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Abstract
In this thesis we study examples of triple spaces, both their structure theory,

their invariant differential operators as well as analysis on them. The first major
results provide us with some examples of triple spaces which are strongly spher-
ical, i.e. satisfy some conditions reminiscent of properties of symmetric spaces.
The algebras of invariant differential operators for these spaces are studied and
the conclusion is that most of them are non-commutative. Finally, we restrict
our attention to a single triple space, giving a specific polar decomposition and
corresponding integration formula, and studying the relations between open or-
bits of parabolic subgroups, multiplicities and distribution vectors.

Resumé
Fokus for denne afhandling er tripelrum, det være sig deres strukturteori, deres
invariante differentialoperatorer, såvel som analyse på dem. Det første hove-
dresultat giver os en række eksempler på triplerum, som er stærkt sfæriske,
dvs. opfylder nogle betingelser, der tilsvarer nogle egenskaber ved symmetriske
rum. Algebraen af invariante differentialoperatorer for disse rum studeres, og det
vises, at de fleste af dem er ikke-kommutative. Til sidst fokuserer vi udelukkende
på et enkelt tripelrum, hvor vi giver en specifik polardekomposition og tilhørende
integrationsformel, og studerer sammenhængen mellem åbne baner af parabolske
undergrupper, multipliciteter og distributionsvektorer.
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PREFACE

The harmonic analysis on semisimple/reductive symmetric spaces is well under-
stood thanks to the effort of Helgason, Flensted-Jensen, Oshima, Matsuki, van
den Ban, Schlichtkrull, Delorme and others which again rests on the work of
Harish-Chandra. However, the requirement on symmetric spaces - the existence
of an involution - seems unnatural, of more like a technical rather than a geo-
metric requirement on the space. Two properties seem to be of great importance
for symmetric spaces, namely sphericality and polarity - properties of a more
geometric nature than the existence of an involution. Thus, the overall idea is
to generalize the Plancherel formula from symmetric spaces to spaces which are
only spherical and polar. This, however, seems to be an overwhelming task and
by no means the scope of this thesis. Here we will focus on certain examples of
spherical and polar spaces, to see which phenomena we can expect or not expect
to occur in general.
The thesis is divided into three chapters as follows: The first chapter contains

background material on more or less advanced topics from representation theory
and harmonic analysis. The results obtained during the studies are described in
the following 2 chapters. In Chapter 2, we study triple spaces in as much gener-
ality as we can (the number of spherical and polar triple spaces turns out to be
quite limited). The main result here is a polar decomposition for certain triple
spaces, a result obtained jointly with Schlichtkrull and Krötz. The resulting pa-
per [10] is attached as an appendix. Finally, in Chapter 3, we study a particular
example of a triple space. Here we are able to determine the Plancherel measure



(up to absolute continuity) and describe a relation between the multiplicities
of the different representations and the number of open orbits of the parabolic
subgroup from which this representation is induced. Also the algebra of invari-
ant differential operators is determined.
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CHAPTER 1

PRELIMINARIES

In this first chapter we recall different notions and concepts from representation
theory and harmonic analysis that will be used throughout this thesis. I make
no claims to novelty in this chapter.
Most results are stated without proofs (indeed, some of the theorems men-

tioned are so profound, that in-depth proofs would make up a thesis of its own)
but references to relevant literature are given. In a few cases, where I was unable
to find a proper reference, I have added my own proofs (most notably the proof
of Proposition 1.36 and of the lemmas preceding it), and in a few cases I have
added a proof from the literature, if I thought it to be an illustrative application
of a previously stated theorem (e.g. the proof of Lemma 1.42).

1.1 Topological Vector Spaces
Definition 1.1. A topological vector space V is a vector space over a field K
equipped with a topology such that addition V × V −→ V and scalar multipli-
cation K× V −→ V are continuous maps.

Obviously, the definition implies that the translation map v 7−→ v+a for some
fixed vector a is a homeomorphism. Thus, the topology of V is determined solely
by the system of neighborhoods of 0, and a linear map between two topological
vector spaces is continuous if and only if it is continuous at 0.

3



4 Chapter 1 – Preliminaries

A topological vector space is called locally convex if there exists a neighbor-
hood basis of 0 consisting of convex sets. An obvious example is a normed space,
where the system (Br(0)) of balls of radius r > 0 is a convex neighborhood ba-
sis. More generally if P is a system of seminorms on a vector space V , such that
for each seminorm p ∈ P, there exists another seminorm q ∈ P and a constant
c > 0, such that

∀v ∈ V : p(v) ≤ cq(v), (1.1)

then the system (Bpr (0))p∈P,r>0 of balls is a neighborhood basis of 0 and by
translation defines a locally convex topology on V . The converse also holds:
if V is a locally convex topological vector space, then there exists a family of
seminorms satisfying (1.1), which generates the topology on V (cf. Proposition
7.6 of [30]).
In other words: a locally convex topology on a vector space means a topology

generated by seminorms.
If there a exists a countable family (pn)n∈N of seminorms generating the

topology (equivalently, if there exists a countable neighborhood basis of 0), we
can define a metric, by

d(v, w) :=
∑

n∈N

1

2n
pn(v − w)

1 + pn(v − w)

and this metric, which is obviously translation invariant, defines the topology
on the vector space. The space is called a Fréchet space if it is complete as
a metric space. One example of a Fréchet space is the Schwartz space S(Rn) .
The classical Schwartz space allows several generalizations to Schwartz spaces
on a group G. Here we outline the definition of a Schwartz space as given in [5]
in Section 2.5: First, pick an inner product on TeG and extend this to a left-
invariant Riemannian metric on G. The metric gives rise to a distance function
d(g1, g2) (note that a change in the inner product in TeG just amounts to a
scaling, and thus the resulting distance functions will just differ by a factor).
Define the scale function : s(g) := exp(d(g, e)). Then we define the Schwartz
space (or rather the L1-Schwartz space)

S(G) := {f ∈ C∞(G) | ∀D ∈ U(gC)∀n ∈ N : s(g)nDf(g) ∈ L1(G)}. (1.2)

The Schwartz space becomes a Fréchet space by equipping it with the topology
generated by the seminorms ‖f‖n,D := ‖s(g)nDf(g)‖L1 for n ∈ N and D ∈
U(g). We return to this space later.
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For a given topological vector space we denote by V ∗ the algebraic dual of
V , i.e. the vector space of linear maps V −→ K. By V ′ we denote the contin-
uous dual , i.e. the subspace of V ∗ consisting of continuous linear functionals.
The continuous dual can be equipped with several different vector space topolo-
gies. The weak topology, is the topology given by the seminorms (pv)v∈V where
pv(ϕ) := |ϕ(v)|. This is the weakest vector space topology on V ′ for which
it holds that the dual of V ′ equals V (as a vector space) in the sense that
the canonical map V −→ (V ′)′ is surjective. The strongest topology on V ′ for
which it holds that (V ′)′ = V is called the Mackey topology . A third important
topology is the strong topology which is the topology of uniform convergence on
bounded subsets. In general, the strong topology is stronger than the Mackey
topology, i.e. the dual of V ′ is larger than V . In the case where the strong topol-
ogy and the Mackey topology coincide, i.e. when (V ′)′ = V , we say that V is
a semi-reflexive space . If the identity holds as topological vector spaces when
(V ′)′ is given the strong dual topology, then we say that V is reflexive .
A matter which is even more delicate than giving the dual space a topology,

is that of topologizing a tensor product of two topological vector spaces. Given
two locally convex topological vector spaces V and W we denote by V ⊗W the
algebraic tensor product of V andW , i.e. the space of finite linear combinations
of elements of the form v⊗w. There are two “extreme” topologies on the tensor
product: The first is the projective topology or π-topology we understand the
strongest vector space topology on V ⊗W making the canonical bilinear map
V×W −→ V⊗W continuous. V⊗W equipped with this topology will be denoted
V ⊗πW and the completion of this space by V ⊗̂πW . By [30] Proposition 43.4 the
projective tensor product satisfies the following topological universal property:
any continuous bilinear form ψ : V × W −→ X to some topological vector
space X extends uniquely to a continuous linear map ψ : V ⊗π W −→ X. The
projective topology on V ⊗W is the unique topology with this property.
If ϕ1 ∈ V ′ and ϕ2 ∈W ′ (the continuous linear duals), then ϕ1 ⊗ ϕ2 given by

(ϕ1 ⊗ ϕ2)(v, w) := ϕ1(v)ϕ2(w)

is a linear functional on V ⊗W , and by the universal property this functional is
indeed continuous if the tensor product is equipped with the projective topology,
i.e. ϕ1 ⊗ ϕ2 ∈ (V ⊗π W )′.
By construction, the projective topology is in some sense the strongest topol-

ogy we could meaningfully put on a tensor product. At the other end of the
scale we find the injective topology or ε-topology which is the weakest vector
space topology on V ⊗W such that linear functionals of the form ϕ1 ⊗ ϕ2 are
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continuous. These were already found to be continuous in the projective topol-
ogy, hence the injective topology is weaker than the projective topology. By
V ⊗εW and V ⊗̂εW we denote the tensor product equipped with the ε-topology
resp. the completion of this. The identity map on the algebraic tensor product
induces an injection V ⊗̂πW −→ V ⊗̂εW .
A locally convex topological space V is called nuclear if for any locally convex

vector spaceW this injection is a homeomorphism. In other words V is nuclear if
and only if the injective and projective topology coincide. Examples of nuclear
spaces are D(M), S(Rn), S(G), C∞(M) (for M a manifold) as well as their
subspaces and their strong duals (cf. [30] p. 530 as well as Proposition 50.1 and
Proposition 50.6). Taking the strong continuous dual of a tensor product where
at least one of the spaces is nuclear is very easy (cf. loc. cit. Proposition 50.7):

(V ⊗̂W )′ = V ′⊗̂W ′. (1.3)

Here V ′ and W ′ are both equipped with the strong dual topology.
If V and W happen to be Hilbert spaces, we have a natural Hilbert space

topology on V ⊗W , namely that given by the inner product

〈v1 ⊗ w2, v2 ⊗ w2〉 := 〈v1, v2〉〈w1, w2〉.

We denote the completion of the tensor product of two Hilbert spaces simply
by V ⊗̂W underlining that this choice of topology is the canonical one. How-
ever, in general, this topology is neither equal to the projective nor the injective
topology, it is somewhere in between. In fact, a Hilbert space (or even a normed
space) is nuclear if and only if it is finite-dimensional. In particular the topo-
logical universal property fails to hold in general.

1.2 Basic Representation Theory
Definition 1.2 (Representation). A continuous representation or just a
representation of a Lie group G on a topological vector space Vπ is a group ho-
momorphism π : G −→ Aut(Vπ) (where Aut(Vπ) is the group of linear bijections
Vπ

∼−−→ Vπ) such that the map (g, v) 7−→ π(g)v is continuous G × Vπ −→ Vπ.
We will often refer to the space Vπ as a G-module.

The definition obviously implies that π(g) is a linear homeomorphism of Vπ
to itself.

Definition 1.3. A representation is called irreducible if the only closed invari-
ant subspaces are the trivial ones.
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A vector v ∈ Vπ is called smooth , if the map g 7−→ π(g)v is a smooth map
g 7−→ π(g)v. By V∞π we denote the space of smooth vectors. The space can
be embedded into C∞(G,Vπ) (the vector v representing the map g 7−→ π(g)v
which was smooth by definition). The latter space is given the topology of
uniform convergence of functions and its derivatives over compact subsets of
G, and V∞π is given the subspace topology. It is not hard to see that V∞π is a
G-invariant subspace of Vπ (albeit not a closed one) and that π restricts to a
continuous representation of G on V∞π .
If Vπ = Hπ is a Hilbert space, π is called unitary if π(g) is a unitary map

for each g. For a Lie group G we denote by Ĝ the set of equivalence classes of
irreducible unitary representations. We will reserve the notation Hπ for infinite-
dimensional Hilbert spaces. For a finite-dimensional representation we will use
Vπ.
Given two groups G1 and G2, and two unitary representations π1 and π2 of

G1 and G2 respectively we form the so-called outer product π1×π2 of G1×G2

on Hπ1
⊗̂Hπ2

given by

(π1 × π2)(g1, g2)v1 ⊗ v2 := (π1(g1)v1)⊗ (π2(g2)v2)

(this is sometimes also denoted π1 � π2 but we will not use this notation here).
If G1 = G2, the restriction to the diagonal is called the tensor product and
denoted π1 ⊗ π2

1:

(π1 ⊗ π2)(g)v1 ⊗ v2 := (π1(g)v1)⊗ (π2(g)v2).

Note that the canonical unitary map Hπ1⊗̂Hπ2

∼−−→ Hπ2⊗̂Hπ1 intertwines π1⊗
π2 and π2 ⊗ π1 which are thus unitarily equivalent, unlike π1 × π2 and π2 × π1

which are usually not necessarily equivalent.
In the unitary case, the topology on H∞π is a Fréchet topology and it is

generated by the seminorms

‖x‖U := ‖Ux‖H

for U ∈ U(gC), the universal enveloping algebra of gC. By a theorem of Gaarding,
H∞π is dense in Hπ.
In what follows, our focus will be almost exclusively on unitary represen-

tations. The main source of non-unitary representations will be restrictions of
1Generally in the literature π1 ⊗ π2 is used both for the tensor product and the outer

product construction. However, at certain places in this thesis we need to distinguish them,
and therefore I found it prudent to have two different notations for them.
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unitary representations to the space of smooth vectors or extensions to distri-
bution vectors : If (π,Hπ) is a unitary representation, then by H−∞π we denote
the continuous linear dual of H

∞
π , i.e. the space of continuous conjugate linear

functionals H∞π −→ C. The elements in this space are called distribution vec-
tors. The space is equipped with the strong dual topology and is turned into a
G-representation space by the dual representation of H∞π , i.e.

(π(g)η)(v) := η(π(g−1)v).

Since H
∞
π ⊆ Hπ we get by dualizing (using the fact that the dual of Hπ is Hπ):

Hπ ⊆ H−∞π , and hence we obtain the following string of (topological) inclusions

H∞π ⊆ Hπ ⊆ H−∞π .

This explains the conjugation in the definition of distribution vectors.
For the remainder of this section we assume G to be a semisimple Lie group

with finite center and with maximally compact subgroup K. We turn now to the
definition of some very important representations, namely the so-called principal
series representations . Let P = MAN be the Langlands decomposition of a
parabolic subgroup (not necessarily a minimal one), let ξ be an irreducible
unitary representation of M on some Hilbert space Hξ and let λ ∈ a∗C. Then we
define a representation (ξ, λ) of P on Hξ by 2

(ξ, λ)(man) := aλ+ρξ(m)

and we induce from this a representation πP,ξ,λ ofG. To be more specific this rep-
resentation is constructed as follows: Consider the space of continuous functions
f : G −→ Hξ with the following equivariance f(xman) = a−(λ+ρ)ξ(m)−1f(x).
Equip it with the norm

‖f‖ :=

∫

K

|f(k)|2dk,

which is indeed a norm on the given space, since a function in there is determined
completely by its behavior on K (because of the decomposition G = KMAN
and the equivariance above). Let HP,ξ,λ denote the norm closure and define the
continuous representation πP,ξ,λ on this space by

(πP,ξ,λ(g)f)(x) := f(g−1x).

2Here ρ = 1
2

∑
α∈Σ+(g,a)(dim gα)α is half the sum of the positive roots for the root system

Σ(g, a).
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The representation is unitary if λ is imaginary.
Not all of the principal series representations are irreducible, and they are

not all inequivalent. It is a delicate issue, and here we only focus on the case
where P = MAN is a minimal parabolic and λ imaginary. Bruhat showed that
the dimension of the space of self-intertwiners of the representation πP,ξ,λ is
bounded by |Wξ,λ| 3 where

Wξ,λ = {w ∈W (G,A) | wξ = ξ, wλ = λ}
andW (G,A) = NK(a)/ZK(a) is the Weyl group. Since the Weyl group is gener-
ated by root reflections of simple roots, it follows that there exists a non-trivial
w mapping λ to itself, if and only if there exists a root α such that 〈λ, α〉 = 0. In
particular, πP,1,λ (these are the so-called spherical principal series representa-
tions ) is reducible if and only if there exists a root α such that 〈λ, α〉 = 0. The
set of such λ’s is clearly a set of measure 0 in ßa. Moreover two representations
πP,ξ1,λ1

and πP,ξ2,λ2
are equivalent if and only if there exists a w ∈ W (G,A)

such that ξ2 = wξ1 and λ2 = wλ1. The construction of an actual intertwiner
is very involved as it is first constructed for λ in a certain subset of a∗C (which
does not necessarily contain ia) and then meromorphically extended.
We shall return to the principal series representations in a later section, when

we discuss the representation theory of SL(2,R).

1.3 K-Finite Vectors
We retain the notation from the previous section and let G be a semisimple Lie
group with finite center, and let K be its maximally compact subgroup. Let π be
a representation of G on some Hilbert space Hπ. For δ ∈ K̂ we denote by Hπ[δ]
the space of K-finite vectors of δ type, i.e. vectors v for which the K-module
span{π(K)v} is equivalent to δ⊕n for some finite n. If π|K is unitary we can, by
Peter-Weyl, decompose π|K into K-types

Hπ
∼=
⊕̂

δ∈K̂

V ⊕nδδ (1.4)

where nδ ∈ N0 ∪ {∞}. Under this isomorphism Hπ,δ is simply V ⊕nδδ .

Definition 1.4 (Admissible representation). A representation π on a Hilbert
space Hπ for which π|K is unitary and which allows a decomposition (1.4) with
nδ <∞ for all δ ∈ K̂, is called an admissible representation.

3See Theorem 7.2 of [21].
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This notion was introduced by Harish-Chandra. Admissible representations
constitute a particularly well-behaved class of representations, where a lot of
information can be extracted from its corresponding infinitesimal Lie algebra
representation (or rather of its corresponding (g,K)-module - a notion to be
defined shortly). Harish-Chandra showed that all irreducible unitary represen-
tations of G are indeed admissible ([21] Theorem 8.1). However, irreducible
non-unitary representations need not be admissible, as was proved by Soergel
[29].
Let

Hπ,K :=
⊕

δ∈K̂

Hπ[δ]

denote the space of K-finite vectors (note that the direct sum here is algebraic!).
From (1.4) it follows that Hπ,K is dense in Hπ. Moreover ([21] Proposition 8.5):

Theorem 1.5 (Harish-Chandra). For π an admissible representation, any
K-finite vector is smooth, i.e. Hπ,K ⊆ H∞π .

Since π(k)π(X)v = π(Ad(k)X)π(k)v it follows easily that Hπ,K is invariant
under π(g). Obviously, it is also invariant under the K-action. Motivated by this
we therefore define

Definition 1.6. A (g,K)-module is a vector space V (no topology involved)
on which we have a representation of the Lie algebra g and a representation of
the group K satisfying the following requirements

1) k ·X · v = Ad(k)X · k · v.

2) For each v ∈ V , span{K ·v} is finite-dimensional and the K-action on this
space is continuous.

3) For X ∈ k we have d
dt

∣∣
t=0

exp(tX) · v = X · v.

Note that 3) makes sense due to 2). For a unitary representation π which is not
necessarily admissible, the space of K-finite vectors is in general not a (g,K)-
module, as it may not admit an action of g. On the other hand it is also clear
that H∞π is in general not a (g,K)-module since requirement 2 is not necessarily
satisfied for an arbitrary smooth vector. However, the space Hπ,K ∩H∞π is in
fact a (g,K)-module and we call this the (g,K)-module associated with π. If π
happens to be admissible, then Hπ,K ∩H∞π = Hπ,K is the associated (g,K)-
module.



1.3 K-Finite Vectors 11

Theorem 1.7 (Harish-Chandra). If π is any representation on Hπ, then
Hπ,K ∩ H∞π is dense in H∞π . In particular, if π is admissible, then Hπ,K is
dense in H∞π .

For a proof see for instance [34], Theorem 4.4.2.1 on p. 261.
If V and W are two (g,K)-modules, Homg,K(V,W ) is the set of linear maps

V −→ W which intertwine both the g-action and the K-action and V and W
are said to be equivalent as (g,K)-modules if there exists an invertible element
in Homg,K(V,W ). A (g,K)-module V is called irreducible if the only subspaces
invariant under both the g-action and the K-action are {0} and V . By a version
of Schur’s Lemma : if V and W are irreducible, then Homg,K(V,W ) ∼= C if the
modules are equivalent, and Homg,K(V,W ) = 0 if they are non-equivalent.
Just as we have dual representations, we also have dual (g,K)-modules . For a

module V , this is defined as Ṽ := (V ∗)K , as the K-finite vectors in the algebraic
dual of V .

Lemma 1.8. Let (π,Hπ) be an admissible G-module. The dual of the (g,K)-
module Hπ,K is the module associated with the dual representation of π on
H′π = Hπ, in other words, the restriction map

(Hπ)K = (H′π)K −→ H̃π,K

is a linear isomorphism.

Proof. Since Hπ,K is dense in Hπ, it is clear that the restriction map is injec-
tive.
We decompose Hπ into irreducible K-modules:

Hπ =
⊕̂

δ∈K̂

V ⊕nδδ

and since π is admissible, each nδ is finite. Thus

Hπ,K
∼=
⊕

δ∈K̂

V ⊕nδδ .

This implies that
H∗π,K =

∏

δ∈K̂

(V ⊕nδδ )∗.

H∗π,K is a K-module and the map that restricts an element in H∗π,K to V ⊕nδδ is a
K-intertwiner (the dual map of an intertwiner is an intertwiner, and restriction
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is the dual map of inclusion map, which is an intertwiner). It means that an
element ξ ∈ (H∗π,K)K when restricted to V ⊕nδδ is non-zero only for finitely many
δ’s. Hence

(H∗π,K)K ∼=
⊕

δ∈K̂

(V ⊕nδδ )∗.

On the other hand, we have

H′π =
⊕̂

δ∈K̂

(V ⊕nδδ )∗

and hence
(H′π)K =

⊕

δ∈K̂

(H⊕nδδ )∗

which equals (H∗π,K)K . This proves the lemma.

A unitary representation of G is said to be infinitesimally irreducible if its
associated (g,K)-module is irreducible, and two unitary representations are said
to be infinitesimally equivalent if there associated (g,K)-modules are equiva-
lent. It is a deep result by Harish-Chandra that a unitary representation of G
is irreducible if and only if it is infinitesimally irreducible and that two irre-
ducible unitary representations are unitarily equivalent if and only if they are
infinitesimally equivalent. For more on (g,K)-modules see [32] Ch. 3.
A (g,K)-module V is called admissible if Homg,K(Vδ, V ) is finite-dimensional

for all δ ∈ K̂ 4. Obviously, the (g,K)-module associated with an admissible
representation is admissible.

Definition 1.9 (Harish-Chandra module). An admissible (g,K)-module V
is called a Harish-Chandra module 5 if it is finitely generated, i.e. if there exists
a finite set {v1, . . . , vn} ⊆ V such that

V =

n⊕

j=1

U(gC)vj .

We see that an irreducible (g,K)-module is finitely generated, since it is gen-
erated by any non-zero vector. Thus if π is an irreducible admissible representa-
tion, its associated (g,K)-module is a Harish-Chandra module. The requirement

4In [5] this is called weak admissibility.
5In [5] a Harish-Chandra module is also called an admissible module.
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of being finitely generated might seem a bit awkward. The reason is that we want
this category to contain also the (associated (g,K)-modules of) non-irreducible
principal series representations.
One of the fundamental results in the theory of Harish-Chandra modules is

the celebrated Casselman Subrepresentation Theorem

Theorem 1.10 (Casselman). Any Harish-Chandra module can be embedded
into the (g,K)-module associated to a principal series representation.

So not only does the category of Harish-Chandra modules contain all the
principal series representations - these and their submodules are the only Harish-
Chandra modules.

1.4 Invariant Differential Operators

Invariant differential operators play a very important role in all of harmonic
analysis. It is visible already in the Fourier theory on R: here the invariant
differential operators are the constant coefficient ones, and we expand functions
in integrals involving exponential maps which are exactly the eigenfunctions of
the constant coefficient differential operators.
We begin with some basic definitions. Let ϕ : M −→M be a diffeomorphism

of a manifold. Then we define an automorphism of C∞(M) by ϕ 7−→ fϕ :=
f ◦ϕ−1. Similarly, we define an automorphism on the set of differential operators
on M by

Dϕf := (Dfϕ
−1

)ϕ = (D(f ◦ ϕ)) ◦ ϕ−1.

We say that D is invariant under the mapping ϕ, if Dϕ = D, i.e. if D(f ◦ϕ) =
(Df) ◦ ϕ.
On a Lie group we have some standard diffeomorphisms: `g : G −→ G, given

by h 7−→ gh as well as rg mapping h 7−→ hg−1. For a subgroup H the left action
descends to diffeomorphisms of the quotient `g : G/H −→ G/H.

Definition 1.11 (Invariant Differential Operator). A differential operator
on a Lie group G is called G-invariant or just invariant if it is invariant under all
left translations `g. The space of all such differential operators is denoted D(G).
More generally, a differential operator on a homogenous space G/H is called
invariant if it is invariant under all left translations `g of G/H. The space of
such operators is denoted D(G/H).
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It is not hard to check that (D1D2)ϕ = Dϕ
1D

ϕ
2 and hence the spaces D(G) and

D(G/H) are actually algebras. Note also the inclusion g ⊆ D(G), since elements
of g are (by definition) first order invariant differential operators 6.
We would like some kind of characterization of the algebra D(G) or D(G/H)

in terms of the Lie algebras g and h. The algebra D(G) is easy to handle. Recall
the universal enveloping algebra U(gC) which as a vector space can be identified
with the symmetric algebra S(gC) consisting of complex polynomials

∑
ai1...inX

i1
1 · · ·Xin

n

for some basis X1, . . . , Xn for g. Since compositions of differential operators are
again invariant, the extension of the map X 7−→ X̃ given in the footnote above,
to U(gC) (which consists of compositions of elements of gC subject to the Lie-
algebra relations) should embed U(gC) into D(G). They even turn out to be
equal:

Theorem 1.12. The map λ : U(gC) −→ D(G) given by

(λ(P )f)(g) = P (∂1, . . . , ∂n)f(g exp(t1X1 + · · ·+ tnXn))|t=0 , f ∈ C∞(G)

is an algebra homomorphism.

By Z(G) we denote the center of D(G) ∼= U(gC). The center turns out to
have an interesting interpretation. First note, that since Ad(g) : g −→ g is a
Lie algebra homomorphism, it extends uniquely to an algebra homomorphism
Ad(g) : U(gC) −→ U(gC). By I(gC) we denote the subset of elements which are
invariant under all Ad(g), i.e. satisfy Ad(g)x = x for all g. These are called the
Ad-invariant polynomials.
For the differential operators we define

Ad(g)D := Drg .

This is again an algebra homomorphism. The motivation for this definition is
that Ad(g) in some sense is a conjugation with g and since D is left-invariant

6However, we may also view g as the tangent space TeG. The connection is that we can
view a tangent vector X as the vector field or differential operator given by

X̃f(g) :=
d

dt

∣∣∣∣
t=0

f(g exp(tX)).
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only the right translation is left. Furthermore, a simple calculation reveals that
for X ∈ g:

(Ad(g)X) = Xrg

which shows that λ(Ad(g)x) = Ad(g)λ(x) for x ∈ U(gC).

Corollary 1.13. Let G be a connected Lie group. The isomorphism λ maps
I(gC) bijectively onto Z(G), in other words the center Z(G) consists of invariant
differential operators which are Ad(g)-invariant i.e. invariant both from the right
and from the left.

For the proof one needs to note that D commutes with X if and only if D is
right exp(tX)-invariant. Since any element in G is a finite product of the form
expX1 · · · expXn the equality of Z(G) and the set of Ad-invariants follows.
One prominent element which is always in Z(G) (when G is semisimple) is

the Casimir element. It is defined as follows: Let {X1, . . . , Xn} be some basis
for g, and let {X̃1, . . . , X̃n} be the dual basis w.r.t. the Killing form B (which is
non-degenerate as G is semisimple). The Casimir element is defined as follows:

ω :=

n∑

i,j=1

B(Xi, Xj)X̃iX̃j .

The center of the universal enveloping algebra can be used to define what
is knows as an infinitesimal character. First we recall the Schur lemma, which
says that the only bounded operators commuting with an irreducible unitary
representation are scalar operators 7 Dixmier proved an infinitesimal version of
this: Let gC be a complex Lie algebra and U(gC) its universal enveloping algebra
and Z(gC) the center of U(gC) (not to be confused with the center of gC which
we denote ZgC). In the following a unital U(gC)-module is a U(gC)-module where
1 ∈ U(gC) (the enveloping algebra, by definition, always contains a unit) acts
as the identity.

Theorem 1.14 (Dixmier). Let ρ be an irreducible unital left U(gC) module.
Then the only U(gC)-linear maps commuting with ρ are scalar operators.

Now, let π be an irreducible admissible representation of a connected reductive
Lie group G. This induces a representation π∗ of the Lie algebra g on the (dense)
space of K-finite vectors. We can complexify this representation and extend to

7In fact, by definition quasisimple representations are representations satisfying that the
only bounded operators commuting with then are scalars. In that sense, Schur’s lemma asserts
that irreducible unitary representations are quasisimple.
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an algebra representation, also denoted π∗, of the universal enveloping algebra
U(gC) on V K . Dixmier’s Theorem implies that π∗(X) is just a scalar multiple
of the identity map idV K when X ∈ Z(g). By the homomorphism property of
π∗ this implies the existence of a homomorphism χπ : Z(gC) −→ C such that

π∗(X) = χπ(X) idV K

for all X ∈ Z(gC). Here χπ is called the infinitesimal character of π. Thus we
are interested in classifying the characters on the algebra Z(gC). This was one
of the first of Harish-Chandra’s great achievements.
The strategy is to identify Z(gC) with a more manageable algebra whose

characters are easier to classify. This identification is via the Harish-Chandra
homomorphism which we now define. We fix a Cartan subalgebra hC ⊆ gC
and let Σ+ = Σ+(gC, hC) denote the set of positive roots w.r.t. hC and some
choice of positivity. In this case we know that (gC)α is 1-dimensional so pick
a basis Eα for each of the root spaces as well as a basis {H1, . . . ,Hk} for the
Cartan subalgebra. Inside U(gC) we consider the two subspaces U(hC) (which
is obviously a commutative subalgebra) and

P :=
⊕

α∈∆+

U(gC)Eα. (1.5)

Then one can show that U(hC)∩P = {0} and that Z(gC) ⊆ U(hC)⊕P. What
does this mean? It means the following: By the Poincaré-Birkhoff-Witt-theorem
a basis for U(gC) is given by elements of the form

Eq1−α1
· · ·Eql−αlH

m1
1 · · ·Hmk

k Ep1α1
· · ·Eplαl ,

and if this belongs to the center, then p1 = · · · = pl = 0 implies q1 = · · · = ql =
0. In other words, assume v to be a highest weight vector in a U(gC)-module of
highest weight λ, then a basis element of the form (1.5) would act on v either
by 0 (if there exists pj 6= 0) or by the scalar

λ(H1)m1 · · ·λ(Hk)mk

(if p1 = · · · = pl = 0 in which case also q1 = · · · = ql = 0).
Since hC and C are both abelian, λ extends via the universal property to an

algebra homomorphism λ : U(hC) −→ C. Thus letting γ′Σ+ : Z(gC) −→ U(hC)
denote the projection onto the first component we see that

X · v = λ(γ′Σ+(X))v (1.6)
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for all X ∈ Z(gC).
Remembering that ρ = 1

2

∑
α∈Σ+ α (for the root system Σ(gC, hC) all the

roots automatically have multiplicity 1) we define a map σΣ+ : hC −→ U(hC)
by

σ∆+(H) := H − ρ(H)1,

we more or less translate by ρ. Again by the universal property, this map extends
to a map σΣ+ : U(hC) −→ U(hC).

Definition 1.15 (Harish-Chandra homomorphism). The Harish-Chandra
homomorphism is the homomorphism γ : Z(gC) −→ U(hC) defined by

γ := σΣ+ ◦ γ′Σ+ . (1.7)

Then, bearing (1.6) in mind, it should come as no surprise that in the highest
weight U(gC)-module of highest weight λ considered before, we have

X · v = (λ− ρ)(γ(X))v. (1.8)

Even though σΣ+ and γ′Σ+ depend on the choice of positivity, the Harish-
Chandra homomorphism does not. Finally, recall that the Weyl group acts on
hC (it acts by the adjoint action of certain equivalence classes of elements in K)
and this action extends to an algebra action on U(hC). Let U(hC)W denote the
subalgebra of elements fixed by the Weyl group action.

Theorem 1.16. The Harish-Chandra homomorphism is an algebra isomor-
phism

γ : Z(gC)
∼−−→ U(hC)W . (1.9)

As, mentioned, any Λ ∈ hC extends to an algebra homomorphism Λ : U(hC) −→
C. Composing with the Harish-Chandra homomorphism gives us

χΛ := Λ ◦ γ : Z(gC) −→ C.

Not all of these maps are different, since γ(X) ∈ U(hC)W we see

χw·Λ(X) = (w · Λ)(γ(X)) = Λ(Ad(w−1)γ(X)) = Λ(γ(X)) = χΛ(X)

and hence χw·Λ = χΛ. Actually the converse statement also holds: if χΛ = χΛ′

then Λ′ = w · Λ for some w in the Weyl group. Thus 8:
8This is Proposition 8.20 and 8.21 in [21]. The last claim, that a closed Weyl chamber is a

fundamental domain for hC/W is Lemma 10.3.B in [20].
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Theorem 1.17. Every homomorphism χ : Z(gC) −→ C is of the form χΛ for
some Λ ∈ h′C, i.e. the set of all characters on Z(gC) is in 1-1 correspondence
with (h∗C)W which in turn is in 1-1 correspondence with a closed Weyl chamber.

We end this section with some general remarks on the algebra D(G/H). Let
π : G −→ G/H denote the natural projection. This gives us a map C∞(G/H) −→
C∞(G), by

f 7−→ f̃ := f ◦ π.
It is not hard to check that the image of this map inside C∞(G) is C∞(G)H
which are the functions which are right H-invariant, i.e. satisfy f(gh) = f(g)
for all h ∈ H. We use this map to identify the spaces C∞(G/H) and C∞(G)H .
In the following, we let DH(G) denote the subset of D(G) consisting of dif-

ferential operators which in addition to the left invariance are also right H-
invariant, i.e. satisfy Drh = D for h ∈ H (another way to phrase this is that
it should be left G-invariant and AdG(H)-invariant). Our first task is to re-
late DH(G) to D(G/H). Unfortunately, it is too much to hope for that the two
spaces can be identified as in the case of smooth functions. If D ∈ DH(G) and
f ∈ C∞(G/H), it is not hard to check that Df̃ ∈ C∞(G) is actually right
H-invariant, thus it is of the form F̃ for some unique F ∈ C∞(G/H). Let µ(D)
denote the operator mapping f to F , i.e. satisfying

(µ(D)f)∼ = Df̃.

It is not hard to see that µ(D) is linear and decreases support, and hence is a
differential operator on G/H. Checking that it is left invariant is also straight-
forward. Thus we get a map µ : DH(G) −→ D(G/H)

Theorem 1.18. The map µ : DH(G) −→ D(G/H) is a surjective algebra ho-
momorphism whose kernel equals DH(G) ∩ D(G)h. Thus it induces an algebra
isomorphism

DH(G)/(DH(G) ∩ D(G)h)
∼−−→ D(G/H). (1.10)

A much more explicit isomorphism can be given, in the case where G/H =
G/K is a Riemannian symmetric space of non-compact type, but we will not go
into that here. We will eventually return to the explicit calculation of two such
algebras in the final chapter.

1.5 Direct Integrals
For compact groups we know (Peter-Weyl) that a unitary representation always
decomposes in a direct sum of irreducible representations. For representations of
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a non-compact group, however, it is no longer the case, that any representation
decomposes discretely, as it may have “continuous” components also. Hence we
need a framework which allows us to deal with non-discrete decompositions of
representations. This framework is provided by the direct integral construction.
Throughout this section, G will denote an arbitrary Lie group.
Let (X,µ) be a measure space and assume we have a family of separable K-

Hilbert spaces Hx parametrized by X. A measurable family of Hilbert spaces is
a family of Hilbert spaces together with a countable set (ei)

∞
i=1 of vector fields

satisfying that the linear span of {ei(x)}∞i=1 is dense in Hx and satisfying that
x 7−→ 〈ei(x), ej(x)〉Hx is a measurable function. From this definition it follows
(cf. Proposition (7.27) in [15]) that there exists disjoint measurable subsets
Xn ⊆ X, for n ∈ N ∪ {∞} such that X =

⋃∞
i=1 and such that

∀x ∈ Xn : Hx
∼= Kn

where K∞ stands for the Hilbert space `2(N,K). A section of a measurable
family of Hilbert spaces is a map

s : X −→
∐

x∈X
Hx

such that s(x) ∈ Hx and such that x 7−→ 〈s(x), ei(x)〉Hx is a measurable function
for all i. Note that ei is a section. We identify two sections if they agree almost
everywhere.

Definition 1.19 (Direct integral). For a measurable family (Hx) of Hilbert
spaces, we define the direct integral

∫ ⊕

X

Hxdµ(x)

to be the set of equivalence classes of measurable sections satisfying
∫

X

‖s(x)‖2Hx
dµ(x) <∞.

Endowed with the inner product

〈s1, s2〉 :=

∫

X

〈s1(x), s2(x)〉Hxdµ(x)

this becomes a Hilbert space.
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There are two things to note in this connection: 1) the direct integral depends
on the choice of (ei) (the sections used to define measurability). However, for
a different choice of (ei) the corresponding direct integral Hilbert space will,
in a canonical way, be isomorphic to the first one. 2) if ν is another measure
on X such that µ and ν are mutually absolutely continuous, then the map
s 7−→ s

√
dµ/dν is a unitary map

∫ ⊕
X

Hxdµ(x)
∼−−→

∫ ⊕
X

Hxdν(x) (here dµ/dν is
the Radon-Nikodym derivative of µ w.r.t. ν).
We have two obvious examples of direct integrals: 1) a Hilbert (i.e. completed)

direct sum
⊕̂

i∈IHi where the measure space is some discrete countable set I
with the counting measure, and 2) the space L2(X,K, µ) where the measure
space is (X,µ) and Hx = K.

Proposition 1.20. For the direct integral construction the following hold

1) If Hx,y is a doubly indexed measurable family of Hilbert spaces over X×Y ,
with X carrying the measure µ and Y carrying the measure ν, then

∫ ⊕

X×Y
Hx,yd(µ⊗ ν)(x, y) ∼=

∫ ⊕

X

∫ ⊕

Y

Hx,ydν(y)dµ(x)

∼=
∫ ⊕

Y

∫ ⊕

X

Hx,ydµ(x)dν(y).

2) If Hx and Hy are Hilbert spaces indexed over X and Y , then

(∫ ⊕

X

Hxdµ(x)
)
⊗
(∫ ⊕

Y

Hydν(y)
)
∼=
∫ ⊕

X×Y
Hx ⊗Hyd(µ⊗ ν)(x, y).

The first claim is a simple consequence of the Tonelli Theorem. For the second
claim, simply consider two orthonormal bases and check that the natural map
maps one orthonormal basis to the other.
An operator A on H =

∫ ⊕
X

Hxdµ(x) is called decomposable if there exists a
family of operators Ax on Hx such that for all s ∈ H and almost all x ∈ X:

(As)(x) = Ax(s(x)).

Should this be the case, we write A =
∫ ⊕
X
Axdµ(x) and call A the direct integral

of the family of operators (Ax).
This carries over to representations where a direct integral decomposition is

a decomposition of each of the operators π(g) in a “compatible way”:
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Definition 1.21. A unitary representation (π,Hπ) of a topological group on
a direct integral Hilbert space Hπ =

∫ ⊕
X

Hxdµ(x) is called a direct integral
representation and is written

π =

∫ ⊕

X

πxdµ(x)

if there exist representations πx of G on Hx so that each operator π(g) is de-
composable with (π(g))x = πx(g).

Stated differently, if s is a section of the direct integral over X, then π =∫ ⊕
X
πxdµ(x) simply means that

(π(g)s)(x) = πx(g)(s(x))

for almost all x.
For representations we see as a consequence of Proposition 1.20 above, that

if (πx) and (πy) are families of representations of G1 resp. G2, then
(∫ ⊕

X

πxdµ(x)
)
×
(∫ ⊕

Y

πydν(y)
)

=

∫ ⊕

X×Y
(πx × πy)d(µ⊗ ν)(x, y)

as representations of G1 × G2. In particular, if G1 = G2, we get by restricting
to the diagonal in G×G, that

(∫ ⊕

X

πxdµ(x)
)
⊗
(∫ ⊕

Y

πydν(y)
)

=

∫ ⊕

X×Y
(πx ⊗ πy)d(µ⊗ ν)(x, y)

as representations of G.
The following can be seen as a generalization of the Peter-Weyl theorem to

non-compact groups (cf. Theorem 14.10.5 in [33] - the unitary dual of G is
denoted by E(G), see p. 311).

Theorem 1.22. For any unitary representation π of a locally compact group G
of type I 9 there exists a Radon measure on Ĝ (depending on π) and a measurable

9A topological group G is said to be of type I, if any unitary representation π for which
the space of self-intertwiners is just CI, decomposes into a direct sum of irreducibles. The
terminology comes from operator algebra theory: ifAπ denotes the closure in the weak operator
topology of the sub-algebra of B(Hπ) generated by π(g) for g ∈ G, then the requirement that
there are no self-intertwiners of π except the trivial ones, translates into the fact that the
von Neumann algebra Aπ has trivial center, i.e. is a so-called factor , and the condition of
reducibility translates into all Aπ being factors of so-called type I. Examples of type I groups
are compact groups, abelian groups, as well as semisimple and nilpotent groups (cf. [15]
Theorem (7.8)). The result for semisimple groups is due to Harish-Chandra cf. [17], Theorem
7.
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function m : Ĝ −→ N0 ∪ {∞} such that

Hπ =

∫ ⊕

Ĝ

H
⊕m(λ)
λ dµ(λ) and π =

∫ ⊕

Ĝ

π
⊕m(λ)
λ dµ(λ).

The measure µ is unique up to multiplication with an a.e.-bounded measurable
function with a.e.-bounded inverse.

The number m(λ) is the multiplicity of the irreducible representation πλ in
the decomposition of π.
In the case of G being a Lie group of type I, this decomposition gives rise to

corresponding decompositions of H∞π and H−∞π .

Theorem 1.23. Let π =
∫ ⊕
X
πxdµ(x) be a direct integral representation. Then

the following hold :

1) If v ∈ H∞π and v = (vλ) as an element in
∫ ⊕
X

Hλdµ(λ), then vλ ∈ H∞λ for
a.e. λ ∈ X and π(X0)v = (πλ(X0)vλ) for X0 ∈ g. Conversely, if v = (vλ)
and vλ ∈ H∞λ for a.e. λ ∈ X, and if (πλ(X0)vλ) ∈ Hπ for X0 ∈ g, then
v ∈ H∞π .

2) If η ∈ H−∞π , then for a.e. λ ∈ X there exists ηλ ∈ H−∞λ , so

η(v) =

∫

X

ηλ(vλ)dµ(λ)

for all v = (vλ) ∈ H∞π . The integral is absolutely convergent and the ηλ
are a.e. unique. Conversely, if ηλ ∈ H−∞λ is a collection of distribution
vectors, such that λ 7−→ ηλ(vλ) is integrable for all v ∈ H∞π , then

v 7−→
∫

X

ηλ(vλ)dµ(λ)

defines an element of H−∞π .

For a proof of the second claim and for a reference to a proof of the first,
consult [26], Theorem C and Corollary C.I.
With this theorem at hand we can justify a notation like

H∞π =

∫ ⊕

X

H∞λ dµ(λ) and H−∞π =

∫ ⊕

X

H−∞λ dµ(λ)

even though it is not a direct integral of Hilbert spaces.
A distribution vector η is called cyclic if v ∈ H∞π and η(π(g)v) = 0 for all g

implies that v = 0. In particular, a cyclic distribution vector is non-zero.
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Corollary 1.24. If η = (ηλ) ∈ H−∞π =
∫ ⊕
Ĝ

H−∞λ dµ(λ) is a cyclic distribution
vector, then ηλ is cyclic for almost all λ.

This is Theorem (II.5) of [26].

1.6 Fourier Transforms

In the previous section we recorded a theorem guaranteeing the existence of a de-
composition of any unitary representation into a direct integral of irreducibles.
In harmonic analysis on a group, one is usually interested in one particular
representation (or rather 3 related representations) namely the regular repre-
sentations: the left-regular representation L, the right-regular representation R
and the outer product of these two - the bi-regular representation T . The first
2 are representations of G on L2(G) given by

Lg0f(g) := f(g−1
0 g) and Rg0f(g) := f(gg0)

and the bi-regular representation is a representation of G × G on L2(G) given
by

T(g1,g2)f(g) = f(g−1
1 gg2)

The left- and right-regular representations are the dual of the actions ` and r of
G on itself defined in Section 1.4.
For a homogenous space G/H, we only have a left-regular representation -

a representation of G on L2(G/H). The goal is the decomposition of that into
irreducibles. Note that if we view a group G as the homogenous space (G×G)/G
(this is an example of a symmetric space, more on this later), then the regular
representation of this space is the same as the bi-regular representation of G.
A Fourier transform is a specific unitary intertwiner between the left-regular

representation and its direct integral decomposition. In the following we only
deal with Fourier transforms on groups. Fourier transforms on homogenous
spaces (to the extend that they can even be defined) are much more complicated,
one reason being that higher multiplicities may occur.
For the Abelian group Rn we know all the irreducible unitary representations,

they are maps Rn −→ C of the form x 7−→ eiξ·x where ξ runs through Rn. The
classical Fourier transformed of an L1-function, defined as

f̂(ξ) =

∫

Rn
f(x)e−iξ·xdx
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can thus be viewed as a function on R̂n where we integrate f against the irre-
ducible unitary representation of Rn corresponding to ξ. This is the idea that
we generalize to a general group:

Definition 1.25 (Fourier transform). Let G be a topological group and Ĝ
its unitary dual. For f ∈ L1(G) we define the Fourier transformed f̂ of f to be
the operator-valued function on Ĝ given by

f̂(π) =

∫

G

f(g)π(g−1)dg ∈ U(Hπ). (1.11)

The map f 7−→ f̂ is denoted F.

First we note, some basic properties of the Fourier transform:

Proposition 1.26. For the Fourier transform the following hold :

1) The map F is linear, in the sense that for each π ∈ Ĝ:

(af1 + bf2)∧(π) = af̂1(π) + bf̂2(π).

2) ̂(f1 ∗ f2)(π) = f̂2(π)f̂1(π).

3) If f∗(g) = f(g−1), then (̂f∗)(π) = f̂(π)∗.

4) When Lg and Rg are the left and right regular representations respectively,
then

(̂Lgf)(π) = f̂(π)π(g−1) and (̂Rgf)(π) = π(g)f̂(π).

One of the high points of Fourier theory, is the existence of a measure on Ĝ
w.r.t. which one can define an inverse Fourier transform. Before we can state the
inversion formula, we briefly recall the definition of Hilbert-Schmidt and trace
class operators. Let H be a Hilbert space and consider the algebraic tensor
product H ⊗ H. This tensor product is identifiable with the space F (H) of
finite-rank operators H −→ H. We can equip this space with (at least) 3 norms,
1) the operator norm, ‖ · ‖, 2) the so-called trace norm : ‖A‖1 :=

∑
sk(|A|)

where sk(|A|) are the eigenvalues of the operator |A| := (A∗A)
1
2 , and 3) with

the so-called Hilbert-Schmidt norm

‖A‖2 := Tr(A∗A)
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(note that the trace and the sum of eigenvalues are well-defined, as the operators
have finite rank). The Hilbert-Schmidt norm comes from the inner product on
(A | B) = Tr(A∗B) on F (H). Thus the completion of F (H) = H ⊗H in this
norm equals the Hilbert tensor product H⊗̂H.
The three norms are related as follows

‖A‖ ≤ ‖A‖2 ≤ ‖A‖1.
The completion of F (H) in the operator norm is nothing but the space of
compact operators K(H), the completion in the trace norm, S1(H) is the space
of so-called trace class operators and the completion S2(H) = H⊗̂H in the
Hilbert-Schmidt norm consists of the so-called Hilbert-Schmidt operators . From
the relations among the norms we have the following inclusions of spaces

S1(H) ⊆ S2(H) ⊆ K(H).

The trace class operators are characterized by the fact that for any orthonormal
basis (en) for H, the series ∑

i

〈Aei, ei〉

is absolutely convergent, and inspired by the finite-dimensional case, we define
the trace TrA of A to be the above sum (which can be shown to be indepen-
dent of the choice of orthonormal basis). From the definition of Hilbert-Schmidt
operators we see that S2(H)S2(H) ⊆ S1(H), i.e. that a product of two Hilbert-
Schmidt operators has a trace.
Theorem 1.22 guaranteed, for each representation, the existence of a certain

equivalence class of measures, such that the representation decomposes in a
direct integral w.r.t. this measure. For the bi-regular representation of G×G we
can be more specific. The following general version of the Plancherel theorem
says that the measure is supported on the diagonal of (G×G)∧ = Ĝ× Ĝ, that
the multiplicity is at most 1, and that the Fourier transform is an intertwiner

Theorem 1.27 (Plancherel). 10 Let G be a second countable, unimodular
topological group of type I with a fixed Haar measure dg. There exists a unique
measure µ on Ĝ such that π 7−→ Hπ⊗̂Hπ is a measurable field of Hilbert spaces
and such that F as defined in (1.11) maps L1(G)∩L2(G) into

∫ ⊕
Ĝ

Hπ⊗̂Hπdµ(π)
and extends to a unitary map

F : L2(G)
∼−−→

∫ ⊕

Ĝ

Hπ⊗̂Hπdµ(π)

10Cf. [15] Theorem (7.44).
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which intertwines the bi-regular representation T and
∫ ⊕
Ĝ
π × π∗dµ(π).

For this measure it holds for f1, f2 ∈ L1(G) ∩ L2(G) that
∫

G

f1(g)f2(g)dg =

∫

Ĝ

Tr
(
f̂1(π)f̂2(π)∗

)
dµ(π) (1.12)

and in particular

‖f‖2L2(G) =

∫

Ĝ

‖f̂(π)‖22dµ(π). (1.13)

For f ∈ L2(G)∗L2(G) (i.e. f being a linear combination of convolution products)
we have the inversion formula

f(g) =

∫

Ĝ

Tr
(
f̂(π)π(g)∗

)
dµ(π). (1.14)

Note that the first part of the theorem states that f̂(π) is a Hilbert-Schmidt
operator for almost all π, and hence the trace in the Plancherel formula (1.12) is
well-defined. Similarly, for f ∈ L2(G)∗L2(G), f̂(π) will be a linear combination
of products of the form f̂1(π)f̂2(π) which are all trace class operators (for almost
all π) and hence the trace in the inversion formula (1.14) well-defined.

Definition 1.28 (Plancherel measure). The measure on Ĝ whose existence
is guaranteed in the theorem above is called the Plancherel measure of G. The
support Ĝr := suppµ of the Plancherel measure is called the reduced dual of
G.

Summing it all up briefly, relative to the Plancherel measure we have the
following unitary equivalences (2 and 3 following from restriction to the first
resp. second factor)

T ∼
∫ ⊕

Ĝ

(π × π∗)dµ(π),

L ∼
∫ ⊕

Ĝ

(π ⊗ I)dµ(π),

R ∼
∫ ⊕

Ĝ

(I⊗ π∗)dµ(π).

where the Fourier transform acts as the unitary intertwiner. The first equivalence
is a decomposition into irreducibles, the two last are not.
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The explicit determination of the Plancherel measure is one of the really dif-
ficult tasks in harmonic analysis. In the 60s and 70s Harish-Chandra succeeded
in determining the reduced dual and the Plancherel measure for general non-
compact semisimple Lie groups. However, the full dual Ĝ is still unknown for
all but a few of these groups.
The Plancherel formula (1.13) actually follows from the inversion formula at

e ∈ G for f ∈ C∞c (G):

f(e) =

∫

Ĝ

Tr
(
f̂(π)

)
dµ(π)

simply replace f by f∗ ∗f where f∗(g) := f(g−1) and perform a limit argument
to go from C∞c (G) to L2(G). Hence Fourier decomposition smooth compactly
supported functions at the identity element is sometimes called a Plancherel
formula .
For Abelian and compact groups, we can write down explicitly the unitary

dual and the Plancherel measure. For an Abelian group A, we know that the
dual Â is again a topological group. The Plancherel measure turns out to be
nothing but the Haar measure (properly normalized) and the direct integral∫ ⊕
Â

Hπ ⊗Hπdµ(π) is ∫ ⊕

Â

C dµ(π) = L2(Â, µ).

Thus the Fourier transform is a unitary map L2(A)
∼−−→ L2(Â).

To determine the Plancherel measure for a compact group K, we observe the
following identity

Tr
(
f̂(δ)π(k)

)
= f ∗ χδ(k)

for δ ∈ K̂ and χδ(k) := Tr(δ(k)). Hence the Peter-Weyl decomposition of f ∈
L2(K) can be written as

f(k) =
∑

δ∈K̂

d(δ) Tr
(
f̂(δ)π(k)

)

where d(δ) is the dimension of Vδ. This is a Fourier inversion formula for compact
groups. Thus, Fourier theory of a compact group reduces to Peter-Weyl theory,
and that the Plancherel measure on K̂ is nothing but

µ(E) =
∑

δ∈E

d(δ),

i.e. the counting measure weighted by the function d.
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More generally, instead of considering decompositions of L2(G) for a given
group G, we can consider decomposing L2(G/H) for a homogenous space G/H.
The space has a natural left G-action g0(gH) := (g0g)H which induces a left-
regular representation of G on L2(G/H) by

L(g0)f(gH) = f(g−1
0 gH).

As an example: If we view a groupG′ as the homogenous spaceG′ = (G′×G′)/G′
(where G′ is embedded in G′ ×G′ as the diagonal), we see that the left-regular
representation of G′ × G′ on G′ (viewed as a homogenous space) equals the
bi-regular representation. We refer to this example as the group case . Another
example is a G/K where G is a semisimple group and K is a maximally compact
subgroup. Both are examples of symmetric spaces. The latter is referred to as
a Riemannian symmetric space of non-compact type . We return to symmetric
spaces later in this chapter.
Unlike the decomposition of a group, it is no longer to be expected, that

L2(G/H) will have a multiplicity free decomposition. In principle, an irreducible
unitary representation could occur with infinite multiplicity. This makes it very
difficult to write down a general Fourier transform for homogenous spaces.

1.7 More on Smooth Vectors
After the previous two quite general sections, we return, to the setting of G
being a semisimple Lie group with finite center, and K its maximally compact
subgroup. We denote by g = k⊕ p the Cartan decomposition of the Lie algebra
of G.

Definition 1.29 (Moderate Growth). A representation π of a group G with
scale function s on a locally convex topological vector space V is said to be of
moderate growth if for each seminorm p on V there exists a seminorm q on V
and an integer N > 0 such that

∀g ∈ G∀v ∈ V : p(π(g)v) ≤ s(g)Nq(v).

On p. 272 of [9] it is shown that any continuous representation of a group
on a Banach space, as well as its submodule of smooth vectors are always of
moderate growth.

Definition 1.30 (Smooth Representation). A continuous representation on
a topological vector space V is called smooth if all vectors are smooth, i.e. if
V = V∞.
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A unitary representation π on Hπ restricts to a continuous representation on
the Fréchet space H∞π , and the smooth vectors of this representation turn out
to be the same space, i.e.

(H∞π )∞ = H∞π ,

so H∞π is a smooth G-representation. More contraintuitively, also H−∞π is a
smooth G-representation, i.e. (H−∞π )∞ 11.
So smooth distribution vectors aren’t necessarily vectors. But K-finite distri-

bution vectors are:

Proposition 1.31. If π is admissible, then (H−∞π )K = Hπ,K .

Proof. Since Hπ ⊆ H−∞π the inclusion “⊇” is obvious. On the other hand, we
have

(H−∞π )K ⊆ ((Hπ,K)∗)K = (Hπ,K)∼ = Hπ,K

where the last identity follows from Lemma 1.8.

Another way of transforming distribution vectors into actual vectors is to
apply π(f) for f ∈ C∞c (G) where

π(f)η :=

∫

G

f(g)π(g)ηdg

which is to be understood as an integral in H−∞π . If π is the left-regular repre-
sentation, then π(f)η is actually nothing but a convolution with f . One of the
most important applications of a convolution in analysis is to turn “nasty” func-
tions into nice ones. This is indeed also the case for this generalized convolution
π(f):

Proposition 1.32. If π is unitary and f ∈ C∞c (G) and η ∈ H−∞π , then π(f)η ∈
H∞π . If η is in H−∞,Hπ , then the conclusion holds with a function f ∈ C∞(G/H).

Proof. A priori we only know that π(f)η is inH−∞π , i.e. there exists a U ∈ U(g)
such that |η(v)| ≤ C‖v‖U for all v ∈ H∞π . The first goal is to show that η is
continuous w.r.t. the Hilbert space norm, i.e. that we can pick U = 1.
First we note that

π(g0)π(f)v = π(Lg0f)v

11See [5], Remark 2.12.
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when v is a smooth vector. From that we get

π(X)π(f)v =
d

dt

∣∣∣∣
t=0

π(exp tX)π(f)v =
d

dt

∣∣∣∣
t=0

π(Lexp tXf)v

=
d

dt

∣∣∣∣
t=0

∫

G

(Lexp(tX)f)(g)π(g)vdg

=

∫

G

( d

dt

∣∣∣∣
t=0

Lexp(tX)f
)

(g)π(g)vdg

=

∫

G

(Xf)(g)π(g)vdg = π(Xf)v

when X ∈ g. Consequently, π(U)π(f)v = π(Uf)v for U ∈ U(gC).
A quick calculation shows that for v ∈ H∞π we have

(π(f)η)(v) = η(π(f̌)v)

where f̌(g) := f(g−1). Then:

(π(f)η)(v) = |η(π(f̌)v)| ≤ C‖π(f̌)v‖U
= C‖π(U)π(f̌)v‖ = C‖π(Uf̌)v‖
≤ C ′‖v‖

where continuity of π(Uf̌) follows from the fact that Uf̌ is compactly supported.
Thus π(f)η ∈ Hπ.
Now we need to show that it is actually a smooth element in Hπ. By the

same calculations as above, one shows that the X-derivative of π(f)η exists and
equals π(Xf)η which is an element ofHπ. Since f is smooth, we can differentiate
arbitrarily often, hence π(f)η is smooth.
If η ∈ H−∞,Hπ and f ∈ C∞c (G/H) it makes sense to define

π(f)η :=

∫

G/H

f(x)π(x)ηdx

as an integral in H−∞,Hπ . We can find a function F ∈ C∞c (G) such that

f(gH) =

∫

H

F (gh)dh

hence π(f)η = π(F )η which is then actually in H∞π by the first part of the
proof.
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If v = η in the proposition above is actually in Hπ, then π(f)v (and linear
combinations of such) is called a Gaarding vector and the space of all Gaarding
vectors is denoted C∞c (G)∗Hπ (the star is there to indicate convolution). This is
a subspace of the smooth vectors, and Gaarding proved that this space is dense.
A famous theorem by Dixmier and Malliavin sharpens this result, as they
proved that S(G) ∗ H∞π (where S(G) denotes the space of Schwartz functions
defined in (1.2)) actually equals the space of smooth vectors. Casselman and
Wallach were able to push this even further for admissible representations

Theorem 1.33 (Casselman-Wallach). For any admissible representation π
on a Hilbert space it holds that

H∞π = S(G) ∗Hπ,K .

The result can be found in [9], Théorème 3.1.2. It is crucial that the G-
module H∞π is of (at most) moderate growth, otherwise it would grow too fast
to be balanced by the rapidly decreasing functions in S(G) and the convolution
wouldn’t make any sense.
We will be using this result shortly when we prove that the operation of taking

smooth vectors behaves nicely under tensor products. However, this involves the
intricacies of topological tensor products of Fréchet spaces. To cope with these
difficulties, the following result (which can be found in [5]) is extremely useful
12.

Theorem 1.34. If (π,Hπ) is a representation such that its associated (g,K)-
module is a Harish-Chandra module, then the space of smooth vectors H∞π with
the standard Fréchet topology, is a nuclear space. In particular H∞π is nuclear
for π ∈ Ĝ.

Intuitively the theorem follows from the Casselman-Wallach theorem since
S(G) is nuclear and Hπ,K is finitely generated.
In order to study tensor products of smooth vectors, it is fruitful to first ex-

amine how theK-finite vectors behave under tensor products of representations:
Consider the outer product representation π1 × π2 of G1 ×G2. The maximally
compact subgroup is K1×K2 and the K-finite vectors of type δ1×δ2 ∈ K̂1×K̂2

are given by
(Hπ1×π2

)[δ1 × δ2] = Hπ1
[δ1]⊗Hπ2

[δ2]. (1.15)
12The result was known to Harish-Chandra in the case where the representation was irre-

ducible unitary. The theorem here generalizes the statement to encompass e.g. non-irreducible
or non-unitary principal series representations.
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The inclusion “⊇” follows trivially and the inclusion “⊆” follows from the fact
that any v ⊗w ∈ (Hπ1×π2

)δ1×δ2 is in the image of (π1 × π2)(χδ1χδ2) (note that
χδ1×δ2(k1, k2) = χδ1(k1)χδ2(k2)), i.e.

v ⊗ w = (π1 × π2)(χδ1×δ2)v′ ⊗ w′

=

∫

K1×K2

(χδ1(k1)π1(k1)v′)⊗ (χδ2(k2)π2(k2)w′) dk1dk2

=
(∫

K1

χδ1(k1)π1(k1)v′ dk1

)
⊗
(∫

K2

χδ2(k2)π2(k2)w′dk2

)

which is clearly in Hπ1
[δ1]⊗Hπ2

[δ2].
Consequently, by taking a direct sum over K1 ×K2-types, we arrive at

Lemma 1.35. For any two representations π1 and π2 of G1 and G2, it holds
that

(Hπ1×π2
)K1×K2

= Hπ1,K1
⊗Hπ2,K2

(1.16)

where the tensor product to the right is the algebraic tensor product.

The next step, is then to ask if this holds also on the level of smooth vectors,
and indeed, this is the case:

Proposition 1.36. Let π1 and π2 be admissible representations of G1 and G2

respectively and assume that either H∞π1
or H∞π2

is nuclear, then it holds that
H∞π1×π2

= H∞π1
⊗̂H∞π2

as Fréchet spaces.

Proof. Consider the map

H∞π1
×H∞π2

−→ H∞π1×π2
, (v, w) 7−→ v ⊗ w. (1.17)

This map is continuous, for if (vn, wn)→ (0, 0), then ‖vn‖U1
→ 0 and ‖wn‖U2

→
0 for all U1 ∈ U(g1) and U2 ∈ U(g2). From this we get

‖vn ⊗ wn‖U1⊗U2
= ‖π1(U1)vn ⊗ π2(U2)wn‖
= ‖π1(U1)vn‖‖π2(U2)wn‖ = ‖vn‖U1

‖wn‖U2
→ 0

and hence that the map (1.17) is continuous. By the universal property of the
projective topology (recall, the projective and injective topologies on the tensor
product are identical) the map extends to a continuous injection

H∞π1
⊗̂H∞π2

↪−→ H∞π1×π2
.
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But by the Casselman-Wallach Theorem combined with the lemma above, we
get

H∞π1×π2
= S(G1 ×G2) ∗Hπ1×π2,K1×K2

= (S(G1)⊗̂S(G2)) ∗ (Hπ1,K1 ⊗Hπ2,K2)

=
⊕

(δ1,δ2)∈K̂1×K̂2

(S(G1)⊗̂S(G2)) ∗ (Hπ1
[δ1]⊗Hπ2

[δ2])

and as (S(G1)⊗̂S(G2)) ∗ (Hπ1,δ1 ⊗Hπ2,δ2) = (S(G1) ∗Hπ1,δ1)⊗̂(S(G2) ∗Hπ2,δ2),
we conclude that H∞π1×π2

= H∞π1
⊗̂H∞π2

as vector spaces, i.e. that the map (1.17)
is bijective. By the Banach isomorphism theorem for Fréchet spaces, the map is
a homeomorphism.

1.8 Discrete Series Representations
Definition 1.37 (Matrix coefficient). If π is a representation of G on Hπ

and v, w ∈ Hπ, the continuous function on G by

g 7−→ 〈v, π(g)w〉 =: Mv,w (1.18)

is called a matrix coefficient of π.

Matrix coefficients play a very important role in the Peter-Weyl theory of
compact groups, as they provide a concrete realization of an irreducible subrep-
resentation in L2(K).
For non-compact groups, the situation is more complicated, as matrix coeffi-

cients need not be square integrable over G. For instance, the matrix coefficients
for the principal series representations defined earlier are never square integrable.
The ones for which the matrix coefficients are indeed square integrable, have a
special name

Definition 1.38 (Discrete series representations). If π ∈ Ĝ is such that
all matrix coefficients are square integrable functions on G, then π is called a
discrete series representation

For the record, we list some equivalent conditions

Proposition 1.39. For a representation π ∈ Ĝ, the following are equivalent

1) π is a discrete series representation.
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2) There exists a matrix coefficient which is square integrable.

3) The space HomG(Hπ, L
2(G)) is non-trivial.

4) The singleton set {π} ⊆ Ĝ has strictly positive Plancherel measure.

Matrix coefficients are important, since they give an explicit realization of a
discrete series representation inside L2(G). More precisely, from the abstract
Plancherel theorem, we know that L2(G) decomposes as

L2(G) ∼=
(⊕

π∈Ĝd

Hπ⊗̂Hπ

)
⊕
∫ ⊕

Ĝc

Hπ⊗̂Hπdµ(π)

and the embedding of Hπ⊗̂Hπ into L2(G) for π a discrete series representation,
is by the mapping v ⊗ w 7−→ Mv,w (thanks to the conjugation on the second
factor, this is indeed a linear map).
The question of which semisimple Lie groups (with finite center) admit dis-

crete series representations, was completely solved by Harish-Chandra in the
60’s. We give here a brief description of the result as well as the classification of
discrete series representations which he was also able to obtain.

Theorem 1.40 (Harish-Chandra). A semisimple Lie group G admits discrete
series representations if and only if the rank of G equals the rank of its maximally
compact subgroup K 13.

The classical real simple groups: First SL(n,R), this has rank n− 1, whereas
the maximal compact subgroup SO(n) has rank bn2 c and these are identical
if and only if n = 2, thus among the special linear groups only SL(2,R) has a
discrete series. Second SU(p, q) whose maximally compact subgroup is S(U(p)×
U(q)) and both of these have rank p+q−1 and thus these groups always have a
discrete series. For SO(p, g) which has rank bp+q2 c we have a maximal compact
subgroup S(O(p)×O(q)) which has rank bp2c+ b q2c and these are equal if and
only if pq is even. Finally, Sp(n,R) has the maximal compact subgroup U(n)
and both have rank n, and thus the real symplectic groups always have discrete
series.

13Recall that the rank of a semisimple Lie group is the dimension of a Cartan subgroup.
For a compact semisimple group, any maximal torus is automatically a Cartan subgroup, and
hence the rank just equals the dimension of a maximal torus. In other words, the condition for
the existence of discrete series representations is that a maximal torus in K is also a Cartan
subgroup of G.
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The theorem also accounts for a phenomenon observed by Gelfand and oth-
ers in the 40s, that complex semisimple Lie groups never admit discrete series
representations. This is for the following reason: If G is a complex semisimple
Lie group, then it has a compact real form K, i.e. a compact subgroup whose
complexification is all of G. The Cartan decomposition of g is k⊕ ik. If t ⊆ k is
a maximal torus, then t⊕ it is a Cartan subalgebra in g and hence

rankG

rankK
= 2.

This excludes the possibility of having rankK = rankG. This also implies that
groups like SL(n,C), SO(n,C) and Sp(n,C) have no discrete series representa-
tions.
Now for the classification result: Recall that g has the Cartan decomposition

g = k ⊕ s and assume rankG = rankK. Then a Cartan subalgebra hC ⊆ kC
is also a Cartan subalgebra of gC, consequently we can consider the two root
systems

ΣG := Σ(gC, hC) and ΣK := Σ(kC, hC).

Since the Cartan subalgebra hC is contained in kC it is seen that the roots in ΣG
are preserved under the Cartan involution, i.e. θ(α) = α, thus the root spaces
are θ-invariant and thus lie either inside kC or inside sC. A root α ∈ ΣG is called
compact resp. non-compact if (gC)α ⊆ kC resp. (gC)α ⊆ sC. It is easy to see
that ΣK is precisely the set of compact roots. Let WG and WK denote the Weyl
groups of the two root systems. If we have picked a notion of positivity on ΣG,
it induces a positivity on ΣK by Σ+

K = ΣK ∩Σ+
G. With respect to these choices

of positivity let ρG and ρK denote half the sum of the positive roots of ΣG resp.
ΣK . The following theorem and its proof can be found in [21] (Theorem 9.20).

Theorem 1.41 (Classification of the Discrete Series). Under the assump-
tion that G is semisimple with finite center and that rankG = rankK and h is
the common Cartan subalgebra, let λ ∈ (ih)′ be a ΣG-regular element (meaning
that 〈λ, α〉 6= 0 for all α ∈ ΣG) such that λ + ρG is an analytically integral
element. Then there exists a discrete series representation πλ with the following
properties:

1) πλ has infinitesimal character χλ.

2) πλ|K contains with multiplicity 1 the K-type with highest weight Λ =
λ+ ρG − 2ρK .
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3) If Λ′ is a highest weight for a K-type appearing as a summand in πλ|K ,
then Λ′ is of the form Λ′ = Λ +

∑
α∈Σ+(λ) nαα for nα ∈ Z≥0 where Σ+(λ)

consists of all the roots α satisfying 〈λ, α〉 > 0.

Two such representations πλ and πλ′ are equivalent if and only if λ′ = w · λ for
w ∈WK , and each discrete series representation is of the form πλ for some λ.

This result is due to Harish-Chandra in 1966, and the parameter λ is called
the Harish-Chandra parameter . If we would rather parametrize it by its high-
est/lowest weight, we can parametrize it by λ + ρG − 2ρK which is called the
Blattner parameter . The problem of finding a global realization of the discrete
series wasn’t solved until much later by Schmid and others. We return to the
discrete series representations in the concrete case G = SL(2,R) in the next
section.

Now, let’s generalize to a homogenous space G/H. Here we can still talk about a
discrete series representation, namely a representation π ∈ Ĝ for which it holds
that HomG(Hπ, L

2(G/H)) 6= 0. But here we can’t form matrix coefficients as we
did above, simply because g 7−→ 〈v, π(g)w〉 need not descend to a function on
G/H. It would do so, if w was fixed by the H-action, but such H-fixed vectors
need not always exist. Instead we consider for η ∈ H

−∞
π (recall that H−∞π is the

continuous dual of Hπ, hence H
−∞
π consists of continuous linear functionals on

H∞π ), and v ∈ H∞π the generalized matrix coefficient

Mη,v(g) := η(π(g−1)v).

For this function to be right H-invariant we need η to be an H-invariant distri-
bution vector, and the space of these is denoted H

−∞,H
π . The set of irreducible

unitary representations of G which have non-trivial H-invariant distribution
vectors is denoted ĜH . This is a much weaker requirement on a representation
than having an H-fixed vector (see also Section 3.3).
The following lemma and its proof has been taken from [18] p. 136:

Lemma 1.42. The support of the Plancherel measure of G/H is contained in
ĜH , in other words, almost all of the representations occurring in the Plancherel
decomposition of L2(G/H) have a non-trivial H-invariant distribution vector.
In particular all discrete series representations for G/H have non-trivial H-
invariant distribution vectors.

Proof. By δ0 we denote the Dirac distribution in eH. By a Sobolev-embedding
argument, we have a continuous injection L2(G/H)∞ ⊆ C∞(G/H) and hence
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point-evaluations on L2(G/H)∞ are continuous. Clearly, δ0 is a cyclic distribu-
tion vector and by Theorem 1.23 we can decompose δ0:

δ0 =

∫ ⊕

Ĝ

δπ0 dµ(π)

where µ is the Plancherel measure for the left-regular representation on G/H
and where δπ0 is cyclic for almost all π. But since δ0 is H-invariant, we get

∫ ⊕

Ĝ

δπ0 dµ(π) = δ0 = L(h)δ0 =

∫ ⊕

Ĝ

π(h)δπ0 dµ(π)

and thus by uniqueness of the decomposition, it follows that π(h)δπ0 = δπ0 for
almost all π. Thus, except for π in a set of measure 0, δπ0 is cyclic (in particu-
lar non-zero) and H-invariant. Hence the support of the Plancherel measure is
contained in ĜH .

By (H
−∞
π )Hds we denote the space of H-fixed distribution vectors η for which

the matrix coefficients Mη,v are in L2(G/H) for all v ∈ H∞π . For a fixed η, the
map H∞π 3 v 7−→ Mη,v extends to a linear map Hπ −→ L2(G/H), and this is
in fact (can easily be checked) a G-intertwiner. In other words

(H
−∞
π )Hds

∼= HomG(Hπ, L
2(G/H))

and therefore (H
−∞
π )Hds is nontrivial if and only if π is a discrete series repre-

sentation. The map (embedding) Hπ −→ L2(G/H) is a realization of Hπ inside
L2(G/H), and the multiplicity ofHπ inside L2(G/H) equals dim(H

−∞
π )Hds which

is always finite.
We consider in the following two special cases: the group case and the Rie-

mannian case. If we view a group G′ as a homogenous space by identifying
it with (G′ × G′)/G′, a matrix coefficient of some representation π × π∗ (we
know by the abstract Plancherel theory, that any representation appearing in
the decomposition is of this form) of G′ ×G′ is

[g1, g2] 7−→ η(π × π∗(g−1
1 , g−1

2 )v1 ⊗ v2)

where η is a linear form on H∞π×π∗ = H∞π ⊗̂H∞π∗ . A natural guess for such a form
would be the (restriction of the) inner product on Hπ:

v ⊗ w 7−→ 〈v, w〉.
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This is obviously linear and it is continuous for the following reason: The inner
product is continuous as a bilinear map Hπ×Hπ −→ C, and so is its restriction
to H∞π ×H

∞
π since the topology here is stronger. But these spaces are nuclear,

hence a continuous bilinear map extends to a continuous linear map on the
tensor product, by the universal property (any tensor product topology equals
the projective topology). η is invariant under the diagonal action since

η(π × π∗(g−1, g−1)v ⊗ w) = 〈π(g−1)v, π(g−1)w〉 = 〈v, w〉 = η(v ⊗ w)

by unitarity of π. Upon identifying G′ ∼= (G′ ×G′)/G′ by g ∼ [g, e], we see that
the matrix coefficient as a function on G′ is given by

g 7−→ η(π × π∗(g−1, e)v ⊗ w) = 〈π(g−1)v, w〉 = 〈v, π(g)w〉

which is precisely the expression for the matrix coefficient Mv,w from (1.18).
Now we consider the Riemannian case where H = K is compact. But then

we have
H
−∞,K
π ⊆ (H

−∞
π )K = Hπ,K .

Thus in this case η is just the inner product with some K-finite vector, and thus
the matrix coefficient is again of the form (1.18).

1.9 Some Representation Theory of SL(2,R)
In this section we describe, in more concrete terms, the representation theory
of SL(2,R), notably we give concrete realizations of the principal and discrete
series representations.
We begin by the discrete series representations, which we know exist from

the discussion in the previous section. Here K = SO(2) which is abelian of
dimension 1, i.e. its rank is 1 which equals the rang of SL(2,R). Thus in the
complexification sl(2,C) we can take as common Cartan subalgebra so(2,C),
i.e.

hC =
{(z 0

0 −z

) ∣∣∣ z ∈ C
}
.

Just to fix notation, the functional λ ∈ h′C given by

λ

(
i 0
0 −i

)
= a

will just be denoted a.
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The root system ΣK , in this case, is empty, whereas ΣG consists of two roots
±α where α = 2 and with root spaces

(gC)α = C
(

0 1
0 0

)
and (gC)−α = C

(
0 0
1 0

)
.

It is an easy calculation to see that the algebraically integral elements of h′C are
exactly the functionals n ∈ Z and that this is also equal to the space of analyt-
ically integral elements (recall, analytically integral elements are only defined
relative to the system (kC, hC)). Finally, we see that ρK = 0 and that ρG = ±1 -
the sign depending on the choice of positivity (recall, that the positivity is deter-
mined by the element λ, in this case, if λ = ±n for n > 0, then ρG = ±1). Thus
the set of discrete series representations of SL(2,R) is thus parametrized by
Z \ {0}. However, in the following, instead of parametrizing the representations
according to the Harish-Chandra parameter λ, we will rather parametrize them
by their highest or lowest weight, i.e. by their Blattner parameter. The Blattner
parameter corresponding to the Harish-Chandra parameter ±n (for n > 0) is
±(n + 1), thus we have discrete series representations T±n for n = 2, 3, 4, . . ..
The two classes Tn and T−n for n ≥ 2 are called the holomorphic discrete series
and anti-holomorphic discrete series respectively.
Now, we will describe a concrete model for these representations. Let C+

denote the set of complex numbers with strictly positive imaginary part (i.e.
the upper half plane). The Hilbert space for Tn is

Hn :=
{
f : C+ −→ C holomorphic

∣∣∣
∫

C+

|f(x+ iy)|2yn−2dxdy <∞
}

and the action is

Tn

(
a b
c d

)
f(z) := (−bz + d)−nf

( az − c
−bz + d

)
.

The space Hilbert space H−n for T−n is

H−n :=
{
f : C+ −→ C anti-holomorphic

∣∣∣
∫

C+

|f(x+ iy)|2yn−2dxdy <∞
}

and the action of T−n is given by

T−n

(
a b
c d

)
f(z) := (−bz + d)−nf

( az − c
−bz + d

)
.



40 Chapter 1 – Preliminaries

It is easy to see from these definitions that T ∗n = T−n. Remembering that anti-
holomorphic functions are exactly of the form f for f holomorphic, we have

T−n(g)f = Tn(g)f. (1.19)

Furthermore, we can realize H−n as the dual of Hn in that we let f ∈ H−n act
on h ∈ Hn by

f(h) = 〈h, f〉. (1.20)

The Hilbert spaces Hn are the so-called weighted Bergman spaces over C+,
in particular they are reproducing kernel Hilbert spaces:

Lemma 1.43. The spaces H±n are reproducing kernel Hilbert spaces, i.e. point
evaluations are continuous.

Proof. We show it only for Hn, from this the similar property for H−n follows
easily. Fix z0 = x0 + iy0 ∈ C+ and an R > 0 such that the closed ball BR(z0)
is contained in C+. Then for any 0 ≤ r ≤ R we have by the Cauchy formula

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ)dθ

and from this

f(z0) =
1

πR2

∫ R

0

2πrf(z0)dr =
1

πR2

∫ R

0

r

∫ 2π

0

f(z0 + reiθ)dθdr

=
1

πR2

∫

BR(z0)

f(z)dz.

If z = x+ iy ∈ BR(z0) we have 0 < y0 −R ≤ y ≤ y0 +R and hence

|f(z0)| ≤ 1

πR2

∫

BR(z0)

|f(z)|dz

≤ 1

πR2

1

(y0 −R)(n−2)/2

∫ ∫

BR(z0)

|f(x+ iy)|y(n−2)/2dxdy.

From this we get by Cauchy-Schwartz

|f(z0)| ≤ 1

πR2

1

(y0 −R)(n−2)/2

(∫ ∫

BR(z0)

|f(x+ iy)|2yn−2dxdy
) 1

2√
πR

=
1√
πR

1

(y0 −R)(n−2)/2
‖f‖

which shows that evaluation at z0 is continuous.
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In particular this simplifies the process of calculating the derived Lie algebra
representation: For some X ∈ sl(2,R) and f ∈ H∞n the derived Tn(X)f is
again an element in H∞n ⊆ Hn in particular a holomorphic function on C+. By
continuity of point evaluations

(Tn(X)f)(z0) = evz0
( d

dt

∣∣∣∣
t=0

Tn(exp tX)f
)

=
d

dt

∣∣∣∣
t=0

[Tn(exp tX)f(z0)]

we reduce from differentiation in a Hilbert space to differentiation of scalar-
valued functions.
For the basis

H0 :=

(
1 0
0 −1

)
, X0 :=

(
0 1
0 0

)
, Y0 :=

(
0 0
1 0

)

the following formulas are trivially checked:

Tn(H0)f(z) = nf(z) + 2zf ′(z)

Tn(X0)f(z) = nzf(z) + z2f ′(z)

Tn(Y0)f(z) = −f ′(z).

This sl2 triple has one disadvantage, however, namely that none of its elements
lies in the compact Lie subalgebra k. Therefore we will also have to consider the
following triple

T :=

(
0 1
−1 0

)
, X+ :=

1

2

(
1 i
i −1

)
, X− :=

1

2

(
1 −i
−i −1

)
(1.21)

which satisfies

[T,X+] = 2iX+, [T,X−] = −2iX−, [X+, X−] = iT

i.e. (iT,X+, X−) is an sl2-triple. Note that we now have complex matrices! As
we are using these as building blocks for invariant differential operators which
are elements in the enveloping algebra of the complexification of g, this is no
problem.
For later use we record the following transformation formulas

H0 = X+ +X−, X0 = 1
2T − i

2X+ + i
2X−, Y0 = − 1

2T − i
2X+ + i

2X−.

In particular we get

ω = − 1
2T

2 +X+X− +X−X+.
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Extending Tn by complexification to a representation of sl(2,C) we get by use
of the above formulas

Tn(T )f(z) = nzf(z) + (z − i)(z + i)f ′(z)

Tn(X+)f(z) = in
2 (z − i)f(z) + i

2 (z − i)2f ′(z)

Tn(X−)f(z) = − in2 (z + i)f(z)− i
2 (z + i)2f ′(z).

Complexifying T−n we get by (1.19)

T−n(X)f = Tn(X)f. (1.22)

The discrete series representations have a particularly nice weight structure.
Namely, consider the representation Tn and define for k ≥ 0

ψkn(z) :=
(z − i)k

(z + i)k+n
.

It can be checked that ψkn ∈ Hn. Defining kθ :=

(
cos θ sin θ
− sin θ cos θ

)
= exp(θT ) we

calculate that

Tn(kθ)ψ
k
n = ei(n+2k)θψkn and Tn(T )ψkn = i(n+ 2k)ψkn.

Similarly, we define ψ−k−n := ψkn ∈ H−n (i.e. the complex conjugate) and from
(1.19) we get

T−n(kθ)ψ
−k
−n = e−i(n+2k)θψ−k−n and T−n(T )ψ−k−n = −i(n+ 2k)ψ−k−n

We phrase this by saying that ψkn is a K-weight vector for Tn with weight n+2k
and that ψ−k−n is a K-weight vector for T−n with weight −n− 2k. In particular
we see that Tn has a lowest weight, namely n and that T−n has a highest weight,
namely −n.
From the formulas above for Tn(X+) and Tn(X−) as well as the identity

ψkn−1 − 2iψkn = ψk+1
n−1 we get

Tn(X+)ψkn = −(k + n)ψk+1
n and Tn(X−)ψkn = kψk−1

n .

In particular we see that Tn(X+) raises theK-weight by 2i whereas Tn(X−) low-
ers the weight by 2i which was to be expected, given the commutation relations
above. Also we see Tn(X−)ψ0

n = 0.
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For the anti-holomorphic discrete series we get by (1.22)

T−n(X+)ψ−k−n = kψ−k+1
−n and T−n(X−)ψ−k−n = −(k + n)ψ−k−1

−n .

So much for the discrete series representation. We end this section by de-
scribing a concrete model for the principal series representations. In SL(2,R)
we have, up to conjugation, only 1 proper parabolic subgroup, namely the sub-
group of upper triangular matrices

P ′ =
{(a b

0 a−1

) ∣∣∣ a 6= 0, b ∈ R
}
.

The Langlands decomposition is as follows:

M = ±
(

1 0
0 1

)

A =
{(

a 0
0 a−1

) ∣∣∣ a > 0
}

N =
{(1 b

0 1

) ∣∣∣ b ∈ R
}

Hence M̂ ∼= Z2 in the sense that an irreducible unitary representation of M
is either the trivial one, mapping everything to the identity, or the defining
representation. We also note that A is 1-dimensional. Hence principal series
representations are parametrized by the parameters ξ = ±1 and λ ∈ C. A
concrete model for the representation πξ,λ is provided by the Hilbert space

Hξ,λ
∼= L2(R, (1 + x2)Reλdx)

with the following SL(2,R)-action:

π+,λ

(
a b
c d

)
f(x) = | − bx+ d|−1−λf(

ax− c
−bx+ d

)

π−,λ

(
a b
c d

)
f(x) =

sign(−bx+ d)

| − bx+ d|−1−λ f(
ax− c
−bx+ d

).

The representations are unitary if and only if λ is purely imaginary. Moreover,
they are all irreducible, unless (ξ, λ) = ((−1)n+1, n) for some n ∈ Z, and if λ is
imaginary, it holds that πξ,λ is equivalent to πξ,−λ (this follows from the general
theory of principal series, since wξ = ξ for w being one of the two elements in
W (G,A)).
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It is conspicuous that the principal series are reducible for the same n’s for
which we have discrete series representations 14. As a matter of fact, the discrete
series representation Tn actually sits inside π(−1)n+1,n (thus making explicit the
Casselman subrepresentation theorem in this case). More precisely, for n ≥ 2
and ξ = (−1)n+1 the following sequences of (g,K)-modules are exact

0 −→ (Hn ⊕H−n)K −→ (Hξ,n)K −→ Fn −→ 0

0 −→ Fn −→ (Hξ,−n)K −→ (Hn ⊕H−n)K −→ 0

where Fn is the unique irreducible representation of SL(2,R) of dimension n. By
[33] Theorem 11.6.7 (all the (g,K)-modules here are Harish-Chandra modules)
these (g,K)-maps lift to continuous G-homomorphisms and hence we get exact
sequences

0 −→ H∞n ⊕H∞−n −→ H∞ξ,n −→ Fn −→ 0 (1.24)

0 −→ Fn −→ H∞ξ,−n −→ H∞n ⊕H∞−n −→ 0 (1.25)

1.10 Generalities on Symmetric Spaces
In the following 2 chapters we set out to study triple spaces. The overall phi-
losophy is to mimic, as closely as possibly, the theory for symmetric spaces. In
this section we give an ultra-short introduction to the topic.

Definition 1.44 (Symmetric space). Let σ be an involution on a Lie group
G. A symmetric space is a homogenous spaceG/H whereH is an open subgroup
of the fixed-point set Gσ.

In this section we will focus solely on semisimple symmetric spaces, i.e. sym-
metric spaces where G is semisimple. The structure theory of symmetric spaces
is due largely to Rossmann (see [28]) whereas the analysis and representation
theory was developed by Flensted-Jensen, Oshima, van den Ban, Schlichtkrull
and Delorme.
Let G be a semisimple group with finite center and with Cartan involution θ.

The induced involution on the Lie algebra is also denoted θ. Let σ be a second
14There actually also exist certain representations of SL(2,R) for n = ±1 - these are called

Mock discrete series representations or limit discrete series representations, however we will
not treat them here.
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involution and let G/H be a symmetric space w.r.t. this. We can always assume
σ and θ to commute, so this we will do henceforth. The Cartan involution gives
a decomposition g = k⊕s and σ likewise gives a decomposition g = h⊕q (we use
the non-standard notation s for the negative eigenspace of the Cartan involution
to avoid confusion with parabolic subalgebras). As σ and θ commute, it follows
that k and s are σ-invariant and likewise that h and q are θ-invariant and thus
we get a decomposition

g = (k ∩ h)⊕ (k ∩ q)⊕ (s ∩ h)⊕ (s ∩ q).

Putting g+ := (k∩h)⊕(s∩q) and g− := (k∩q)⊕(s∩h) it is clear that g = g+⊕g−
is the decomposition of g induced from the involution θ ◦ σ = σ ◦ θ. Moreover
the decomposition g+ = (k ∩ h)⊕ (s ∩ q) is the Cartan decomposition of g+.
An abelian subalgebra a ⊆ g is said to be split in g, if g decomposes into a

direct sum of root spaces of a. It turns out that an abelian subalgebra of g is
split if and only if it is in s. In particular a is θ-invariant. We will consider split
algebras which are also σ-invariant, hence we let aq ⊆ s ∩ q be a maximally
abelian subspace. The dimension of aq is called the split rank of the symmetric
space. aq is clearly split in both g and in g+ so we have two root systems
Σ(g, aq) and Σ(g+, aq) and two corresponding Weyl groups W := W (g, aq) and
WK∩H := W (g+, aq). As in the Riemannian case we have W = NK(aq)/ZK(aq)
and WK∩H is the image of NK∩H(aq) in W , hence the notation. We denote by
W ⊆ NK(aq) a set of representatives for the quotient W/WK∩H .
One should carefully distinguish the two root systems, since they are both

relevant in different situations. Let a+
q0 denote a choice of open positive Weyl

chamber in aq w.r.t. the big root system Σ(g, aq), i.e. a connected component of

aq \
⋃

α∈Σ(g,aq)

kerα.

These Weyl chambers are of course smaller than the Weyl chambers for the
smaller root system Σ(g+, aq), and in fact

⋃

v∈W

Ad(v)a+
q0

is a closed Weyl chamber w.r.t. Σ(g+, aq). Let a+
q denote the corresponding

open Weyl chamber. For the polar decomposition, it is actually the bigger Weyl
chambers that we need. Let

areg
q := aq \

⋃

α∈Σ(g+,aq)

kerα



46 Chapter 1 – Preliminaries

then a+
q is a connected component of areg

q . This component determines a posi-
tive system Σ+(g+, aq) (all the roots that are positive on a+

q ). Put Aq := exp aq,
Areg
q := exp areg

q and A+
q := exp a+

q . The following result (the polar decomposi-
tion) is due to Flensted-Jensen ([13]):

Theorem 1.45. Each element g ∈ G has a decomposition g = kah, for k ∈ K,
a ∈ Aq and h ∈ H, i.e. G = KAqH and if g ∈ KaH, then a is uniquely
determined modulo WK∩H . The map Φ : K/ZK∩H(aq)×A+

q −→ G/H, given by

(kZK∩H , a) 7−→ kaH

is surjective, and it maps K/ZK∩H(aq) × A+
q diffeomorphically onto an open

dense subset of G/H.

The spaceG/H has a unique (up to a scalar) invariant measure µ. We can push
it forward along Φ−1 from the theorem above to a measure on K/ZK∩H(aq)×
A+
q which is absolutely continuous w.r.t. the canonical invariant measures on

K/ZK∩H(aq) and A+
q , the first one which has been normalized so that

∫
K
f(k) =

∫
K/ZK∩H(aq)

(∫
ZK∩H(aq)

f(kz)dz
)
d(kZ). In particular, for ZK∩H(aq)-invariant

functions on K, integration over K/ZK∩H(aq) is the same as integration over
K. Thus we get Φ−1

∗ µ = J(k, a)dadk where J(k, a) is the determinant of the
Jacobian of the diffeomorphism. This Jacobian has been explicitly computed
by Flensted-Jensen ([14]). To state the expression, we need to introduce some
notation (and here we actually need the root system Σ(g, aq)). Let Σ+(g, aq)
denote a fixed choice of positive system which contains Σ+(g+, aq). Put for
α ∈ Σ(g, aq)

gα := {X ∈ g | ∀H ∈ aq : [H,X] = α(H)X}.
Since aq is θ ◦σ-invariant, it follows that also gα is θ ◦σ-invariant, and if we put
g±α := gα ∩g±, we have a decomposition gα = g+

α ⊕g−α . Let m±α := dim g±α , then

J(k, a) =
∏

α∈Σ+

(aα − a−α)m
+
α (aα + a−α)m

−
α ,

(note, in particular, that the map is independent of k). Thus we get the inte-
gration formula

Corollary 1.46. If dx is a choice of invariant measure on G/H and if dk is
the normalized Haar measure on K, there exists a unique Haar measure da on
Aq such that for any f ∈ L1(G/H):

∫

G/H

f(x)dx =

∫

K

∫

A+
q

f(kaH)J(a)dadk.
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Example 1.47 (The Group Case). Let G′ be a semisimple group and put
G := G′×G′. Let H = G′ viewed as the diagonal in G′×G′. H is the fixed-point
group of the involution σ on G given by σ(g1, g2) = (g2, g1), hence G/H ∼= G′ is
a symmetric space. This particular space was studied by Harish-Chandra who
developed the full Plancherel theory for it in the 50s, 60s and early 70s. The
notion of a triple space, which will be introduced in the next chapter, is a natural
generalization of the group case symmetric space.
On the Lie algebra level, we have g = g′ ⊕ g′ and if g′ = k′ ⊕ s′ is the

Cartan decomposition of g′, then (k′ ⊕ k′) ⊕ (s′ ⊕ s′) =: k ⊕ s is the Cartan
decomposition of g. The induced involution σ gives rise to a decomposition
g = h⊕q where h = {(X,X) |X ∈ g′} and q = {(X,−X) |X ∈ g′}. In particular
we see that s ∩ q = {(X,−X) | X ∈ s}. If a′ ⊆ s′ is maximally abelian, then
aq := {(X,−X) | X ∈ a} is maximally abelian in s ∩ q (and it extends to the
maximally abelian subspace a⊕ a in s). There is a 1-1 correspondence between
the two root systems Σ(g′, a′) and Σ(g, aq), namely α′ ∈ Σ(g′, a′) is mapped to
(α′, α′) ∈ Σ(g, aq) and similarly there is a bijection W (g′, a′)

∼−−→ W (g, aq) by
mapping w′ 7−→ (w′, w′). In this way the well-known structure theory for g′ is
carried over to g.

Example 1.48 (Hyperbolic Spaces). Consider Rp+q (for p, q ≥ 1) equipped
with the pseudo inner product

〈x, y〉 := x1y1 + · · ·+ xpyp − xp+1yp+1 − · · · − xp+qyp+q
and let Xp,q := {x ∈ Rp+q | 〈x, x〉 = 1} if p ≥ 2. If p = 1 the set {x ∈
Rp+q | 〈x, x〉 = 1} has two connected components, one with x1 > 0 and one with
x1 < 0, and we define X1,q to be the connected component with x1 > 0. Note
that the group SOe(p, q) acts transitively on Xp,q and that the stabilizer of the
point e1 = (1, 0, . . . , 0) is SOe(p − 1, q) (viewed as sitting in the lower right
corner of SOe(p, q)). Hence Xp,q = SOe(p, q)/SOe(p − 1, q) as a homogenous
space. Put I := Diag(1,−1, . . . ,−1) and σ(g) := IgI. This is an involution on
SOe(p, q) and it is clear that SOe(p− 1, q) equals the fixed-point set of it. Thus
Xp,q is a symmetric space.
The hyperbolic spaces turn out to be split rank 1 spaces, for instance one could

take as aq the span of Y := Ep+q,1 + E1,p+q (the matrix with 1 in the upper
right and lower left entry and zeros elsewhere). Defining α ∈ a∗q by α(Y ) = 1,
we get that Σ(g, aq) = {±α}. In particular W (g, aq) = {±1}. Moreover it holds
that the other root space Σ(g+, aq) is trivial when q = 1 and equal to Σ(g, aq)
when q > 1. In particularWK∩H is trivial in the first case and equal toW (g, aq)
in the second.
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We now briefly discuss parabolic subgroups. Consider the root system Σ(g, aq)
and pick a positive system Σ+(g, aq) or, equivalently, a positive Weyl chamber
a+
q . We let ∆ ⊆ Σ+(g, aq) be a set of simple roots. For a subset F ⊆ ∆, we

define ΓF := Σ+(g, aq) ∪ (Σ(g, aq) ∩ spanF ). Put

pF := Zg(aq)⊕
⊕

α∈ΓF

gα.

This is a parabolic subalgebra of g, meaning that the normalizer of pF in g
equals pF itself. Moreover, pF is σθ-invariant. Put PF := NG(pF ), then PF is
a σθ-invariant parabolic subgroup of G, and the map F 7−→ PF is a bijection
between the set of subsets of ∆ and the set of all σθ-invariant subgroup of
G containing exp aq. If F = ∅, then PF is a minimal σθ-invariant parabolic
subgroup.
We get a Langlands decomposition of the parabolic subalgebra p = pF =

m1P ⊕ nP where

m1P = Zg(aq)⊕
⊕

α∈ΓF∩(−ΓF )

gα

nP =
⊕

α∈ΓF \(−ΓF )

gα

Since m1P is reductive, we can split it as m1P = Z(m1P )⊕[m1P ,m1P ], and hence
we can split m1P = mP ⊕ aP where

mP = (m1P ∩ k)⊕ ([m1P ,m1P ] ∩ s)

aP = Z(m1P ) ∩ s

and this gives us the Langlands decomposition

p = mP ⊕ aP ⊕ nP

which gives rise to a Langlands decomposition P = MPAPNP on the group
level.
Inside the Weyl group W (g, aq) we have a subgroup WP (depending on P )

which is the subgroup generated by reflections in the roots in ΓF∩(−ΓF ). Denote
byWP a set of representatives for the double quotientWP \W (g, aq)/WK∩H(g, aq).
A parabolic subgroup P acts on G/H in a natural way from the left. As

proved by Matsuki and Rossmann, the set of orbits in G/H of this action is
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finite, and the map w 7−→ PwH gives a bijection between WP and the set of
open orbits.
From these parabolic subgroup we can induce principal series representations,

in the same manner as we did above, with some slight modifications. Given a
parabolic subgroup P (corresponding to the subset F ⊆ ∆), we define

ρP :=
∑

α∈ΓF∩(−ΓF )

(dim gα)α.

Then from ξ ∈ M̂P and λ ∈ ia∗q , we can define a principal series representation
πP,ξ,λ, in the following way: let C(P, ξ, λ) be the space of continuous functions
f : G −→ Hξ which satisfy f(mang) = aλ+ρP ξ(m)f(g). This space is equipped
with the inner product

〈f1, f2〉 :=

∫

K

f1(k)f2(k)dk

and the completion of C(P, ξ, λ) w.r.t. this inner product is denoted HP,ξ,λ.
This is the representation space for the unitary G-representation

πP,ξ,λ(g0)f(g) = f(g−1
0 g)

which is induced from the P -representation (ξ, λ)(man) := ξ(m)aλ+ρP .
We are interested in the H-invariant distribution vectors for these representa-

tions. These can be viewed as H−∞ξ -valued distributions on G/H satisfying the
equivariance Lmanη = aλ+ρP ξ(m)η. The equivariance implies that this distribu-
tion is actually a smooth function on the open P -orbits in G/H 15. In particular
it makes sense to talk about η(w) for w ∈WP (which parametrise the open or-
bits), and it turns out that η(w) ∈ H−∞ξ is actually fixed by (ξ, λ)|P∩wHw−1

which again implies that η(w) ∈ H
−∞,MP∩wHw−1

ξ and that λ|aP∩h = 0. Since
only representation with non-trivial H-fixed distribution vectors can occur in
the Plancherel decomposition, we infer from the above that these can only be
induced from ξ ∈ ⋃w∈WP M̂

MP∩wHw−1

P and λ ∈ ia∗Pq. So already this puts some
restrictions on ξ and λ. But it turns out we have to shrink the possible ξ’s even
further: we only need the ξ’s which are discrete series representations. More
formally put

V (P, ξ, w) := (H−∞ξ )MP∩wHw−1

ds

15For some more details on this see also Section 3.8.
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(which is 0, if ξ is not a discrete series representation) and

V (P, ξ) :=
⊕

w∈WP

V (P, ξ, w).

This is a finite-dimensional space (a non-trivial fact)!

Theorem 1.49. The evaluation map η 7−→ (η(w))w∈WP is linear H
−∞,H
P,ξ,λ −→

V (P, ξ) which is injective for almost all λ ∈ a∗PqC.

The last claim follows by an application of Bruhat theory.
We can invert this map (at least for almost all λ) as follows: Assume that

λ ∈ a∗PqC satisfies that Reλ+ ρP is strictly P -dominant, meaning that 〈Reλ+
ρP , α〉 > 0 for all α ∈ ΓF ∩ (−ΓF ), then for η ∈ V (P, ξ) we define a function
j(P, ξ, λ, η) on G/H by

j(P, ξ, λ, η)(manwH) := aλ+ρP ξ(m)ηw

on the open orbit given by w ∈WP , and zero outside the union of open orbits.
This function turns out to be locally integrable, in particular a distribution,
and hence j(P, ξ, λ, η) ∈ H

−∞,H
P,ξ,λ . The map η 7−→ j(P, ξ, λ, η) is obviously a

right inverse of the evaluation map above (for the λ’s where the above map
was injective). There is one major problem, however, and that is that elements
in iaq are not strictly P -dominant. The way to circumvent this problem is to
meromorphically extend λ 7−→ j(P, ξ, λ, η) to all of a∗PqC: The first, one has
to realise is that one can identify H

−∞,H
P,ξ,λ with the dual of C∞(K, ξ) which is

the space of smooth functions f : K −→ H∞ξ satisfying f(mk) = ξ(m)f(k) for
k ∈ K and m ∈ K ∩MP . Thus we may view λ 7−→ j(P, ξ, λ, η) as a map from
a cone in a∗PqC into the λ-independent space C∞(K, ξ)′. It is to this map, we
perform a meromorphic extension:

Theorem 1.50. The map λ 7−→ j(P, ξ, λ, η) extends to a meromorphic map
a∗PqC −→ C∞(K, ξ)′. If λ is not a pole of this map, then j(P, ξ, λ, η) maps
V (P, ξ) injectively to H

−∞,H
P,ξ,λ and for λ outside the complement of a countable

union of complex hypersurfaces in a∗PqC, the map j(P, ξ, λ) : V (P, ξ) −→ H
−∞,H
P,ξ,λ

is a bijection, the inverse being the evaluation map from above.



CHAPTER 2

TRIPLE SPACES

2.1 Examples and Elementary Properties
We now embark on our study of so-called triple spaces which are a straightfor-
ward generalizations of the group case for symmetric spaces:

Definition 2.1 (Triple Space). A triple space is a homogenous space G/H
where G = G′×G′×G′ for some Lie group G′ and where H = G′ = {(g, g, g) ∈
G | g ∈ G′} is the diagonal.

In the following we will only consider triple spaces for G′ semisimple.
A triple space G/H is a reductive homogenous space , meaning that h has

a vector space complement q which is h-invariant in the sense that it satisfies
[h, q] ⊆ q. Unlike in the symmetric space case, where one picks the −1 eigenspace
of the involution σ, the is no canonical way of picking a complementary subspace
in this case. One example is q := {(X1, X2, X3) ∈ g′⊕g′⊕g′ |X1 +X2 +X3 = 0}.
This is the complement to h which is orthogonal to h w.r.t. the Killing form, and
in this sense we may call this choice of complement “canonical”. More generally,
if (λ1, λ2, λ3) ∈ R3 satisfies that λ1 + λ2 + λ3 6= 0, then

qλ := {(X1, X2, X3) ∈ g′ ⊕ g′ ⊕ g′ | λ1X1 + λ2X2 + λ3X3 = 0}
is an h-invariant complement to h. In fact any h-invariant complement is of this
form:

51
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Proposition 2.2. Let G′ be simple, then qλ as defined above is an h-invariant
complement to g′ and any h-invariant complement is of this form.

Proof. We have already seen that qλ is an h-invariant complement. Assume
q to be an h-invariant complement, and let projh : g −→ h be the projection
onto h along q. Note that both g′ and h are g′-modules in obvious ways (they
are even equivalent) and as g′ is simple, they are irreducible. The two maps
g′ −→ h given by X 7−→ projh(X, 0, 0) and X 7−→ (X,X,X) respectively, are
g′-homomorphisms. By Schur’s lemma there must exist a constant λ1 ∈ R such
that

projh(X, 0, 0) = λ1(X,X,X).

Similarly there exist constants λ2 and λ3 such that

projh(0, X, 0) = λ2(X,X,X),

projh(0, 0, X) = λ3(X,X,X).

This means that

projh(X1, X2, X3) =

(λ1X1 + λ2X2 + λ3X3, λ1X1 + λ2X2 + λ3X3, λ1X1 + λ2X2 + λ3X3)

and hence
q = ker projh = qλ.

This proves the proposition.

However, one big difference to the symmetric case is that we can no longer
find an h-invariant h-complement containing a maximally abelian subalgebra a:
If G′ has rank 1 (and that is our sole concern in the following), a maximally
abelian subalgebra of g is of the form a = R(X1, 0, 0)⊕R(0, X2, 0)⊕R(0, 0, X3)
for Xi ∈ g′. It is quite clear that there exists no λ for which a is contained in
qλ.

For the proof of the Plancherel formula for symmetric spaces, it seems crucial
that symmetric pairs exhibit the following 2 features: (1) the polar decompo-
sition and (2) the existence of open orbits in G/H of the action of a minimal
parabolic subgroup P . This motivates the following definition which was intro-
duced in [24] (here we restrict to semisimple groups):
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Definition 2.3 (Strongly spherical pair). Let G be a semisimple Lie group,
and let H be a closed subgroup. Let a ⊆ s be a maximally abelian subalgebra of
the negative Cartan eigenspace of G. The pair (G,H) is called strongly spherical
if there exist minimal parabolic subgroups P1, . . . , Pn all containing exp a such
that the following are satisfied

1) PiH is open for all i = 1, . . . , n.

2) G =
⋃n
i=1KA

+
i H.

In 2) A+
i is the open Weyl chamber corresponding to the set of positive roots

determined by the parabolic subgroup Pi.

In [24] it is showed that a symmetric pair is in particular also strongly spher-
ical.
In the following we show that the triple spaces for G′ = SL(2, R) or G′ =

SOe(n, 1) are strongly spherical. The first will be our prime example, and the
entire next chapter is devoted to this space alone.

Theorem 2.4. The triple space with G′ = SL(2,R) is strongly spherical.

Proof. To see that this is spherical, it suffices to find a minimal parabolic
subgroup of the triple product whose Lie algebra p satisfies p + sl(2,R) =
sl(2,R) ⊕ sl(2,R) ⊕ sl(2,R) (the copy of sl(2,R) on the left hand side is to
be viewed as the diagonal). Since p is just a sum of minimal parabolic subalge-
bras in the three copies of sl(2,R), it is 6-dimensional, and thus, for dimension
reasons, it suffices to show that p∩ sl(2,R) = {0} (again viewed as the diagonal
in the triple product) is 0. This is equivalent to showing that p1∩p2∩p3 = {0}.
But actually, we prove a little more than that. We prove that if pi = ai⊕ni are

parabolic subalgebras 1, where ai∩aj = {0} when i 6= j, then p1×p2×p3+h = g.

W.l.o.g. we may assume that a1 = R
(

1 0
0 −1

)
. Let θ2, θ3 ∈ [0, 2π[ be so that

Ad(kθi)a1 = ai where kθ =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2) is the standard rotation

by the angle θ. It then follows that pi = Ad(kθi)p1. By assumption on the ai’s,
we have sin θi 6= 0. A calculation shows that a general element of pi has the
form
(
a cos2 θi − b cos θi sin θi − a sin2 θi 2a cos θi sin θi + b cos2 θi

2a cos θi sin θi − b sin2 θi a sin2 θi − a cos2 θi + b cos θi sin θi

)

1Note that SL(2,R) is a so-called split group , meaning that the m-part of a minimal
parabolic is always 0.



54 Chapter 2 – Triple Spaces

and from this (putting b = 2a cos θi
sin θi

) we read off that

p1 ∩ pi = R
(

1 −2 cot θi
0 −1

)

and since cot is injective and θ2 6= θ3 we get

p1 ∩ p2 ∩ p3 = (p1 ∩ p2) ∩ (p1 ∩ p3) = {0}.
Now we want to show that the space is also of polar type. This is a bit more
difficult. Here we sketch the idea of the proof. For the details consult [10] (which
is added as an appendix to this thesis). Let Ai := exp ai for i = 1, 2, 3 be abelian
subgroups of SL(2,R) such that the span of a1, a2 and a3 in s is two-dimensional
(this condition on the ai’s is weaker than above for the sphericality). For the
abelian subgroup A = A1 ×A2 ×A3, the existence of the KAH-decomposition
or equivalently the HAK-decomposition is proved using a geometric argument:
Mod’ing out K to the right, we should prove that G/K = HA·o, in other words,
given a triple of elements (z1, z2, z3) ∈ G/K = G′/K ′ × G′/K ′ × G′/K ′ there
should exist an element g ∈ H = G′ and (a1, a2, a3) ∈ A such that zi = gai · o.
First we consider the similar situation in R2, so we have 3 lines `1, `2 and `3
passing through 0, and we have 3 distinct points x1, x2 and x3 and we want
an isometry that brings xi to lie on line `i. First, we may assume that x1 = 0
and that x2 ∈ `2, this is by two-point homogeneity of R2. Now we slide the
triangle given by x1, x2 and x3 by isometries in such a way that x1 stays on line
`1 and x2 stays on `2, until x2 reaches −x2. But then x3 will have changed to
−x3 and it will have done so following a continuous curve. Thus at some point,
x3 will have passed the line `3. The argument in SL(2,R)/SO(2) is completely
analogous, with straight lines through 0 replaced by geodesic curves through
eK, and using that SL(2,R)/SO(2) is 2-point homogenous (since it is of rank
1).
So now we have showed that if ai ∩ aj = {0} (thus automatically spanning a

two-dimensional subspace of s), then we have aKAH-decomposition and for any
minimal parabolic subgroup Pi containing Ai = exp ai, we have (P1×P2×P3)H
open. If we split up

A = A1 ×A2 ×A3 =
⋃

w∈W (G,A)

w−1A+w

where A+ is some fixed Weyl chamber in A+, then we get

G = KAH =
⋃

w∈W (G,A)

KA+wH.
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W (G,A) = W ′×W ′×W ′ where W ′ ∼= Z2 is the Weyl group of SL(2,R). If we
put WK∩H = {±(1, 1, 1)}, then we see KA+wH = KA+H if w ∈ WK∩H , thus
we get

G =
⋃

w∈W (G,A)/WK∩H

KA+wH.

Since all the parabolic subgroups w−1Pw contain a = a1 × a2 × a3 it follows
from the first part of the proof that w−1PwH is open, and hence the definition
2.3 is satisfied.

Note, however, that the geometric argument fails in higher dimension than 2:
In R3 we could have the three points (1, 0, 0), (0, 0, 0) and (−1, 0, 0) and as lines
we could have the 3 coordinate axes. It is quite obvious that it is impossible
to move isometrically the 3 points to the three lines. That seems to put the
restriction on the ai’s that they should span a space of dimension 2. That is what
we will assume in the example below. It can be shown by a direct calculation
in the case G′ = SOe(3, 1) that the KAH-decomposition fails, if the ai’s span
a 3-dimensional space!

Theorem 2.5. For G′ = SOe(n, 1) the pair (G′ × G′ × G′, G′) is strongly
spherical.

Proof. First we note that SOe(2, 1) is locally isomorphic to SL(2,R), hence
this case is already captured by the example above. So we need only consider
SOe(n, 1) for n ≥ 3. We can use induction to reduce to the case n = 2.
The proof follows the same line of reasoning as in the SL(2,R) case. Let

K ′ = SO(n) sitting in the upper left corner of SOe(n, 1) and Z ′ := G′/K ′.
Putting o := en+1 ∈ Rn+1, then the map gK ′ 7−→ g · o sends Z ′ bijectively to
{z ∈ Rn+1 | z2

1 + ...+ z2
n − z2

n+1 = −1}. This is our model of Z ′.
From the Cartan decomposition we have s′ ∼= Rn where the column X ∈ Rn

can be embedded into so(n, 1) as the symmetric matrix
(

0 X
XT 0

)
.

Now, put G := G′ × G′ × G′ and H := Diag(G′) and K := K ′ × K ′ × K ′.
Pick nonzero X1, X2, X3 ∈ s′ which span a 2-dimensional subspace in s. Let
Ai := exp(RXi) and A := A1×A2×A3. The claim is that we can use this A for
the KAH-decomposition. Or rather for the equivalent HAK-decomposition.
Following the idea from the SL(2,R)-case, an equivalent statement of the

HAK-decomposition is that for all triples (z1, z2, z3) ∈ Z ′ × Z ′ × Z ′, there
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exists g ∈ G′ and ai ∈ Ai such that g · zi = ai · o. Note that K ′ acts like
SO(n) on Z ′ ∼= s′ ∼= Rn, and hence with an element of K ′ we can rotate the 2-
dimensional subspace spanned by X1, X2, X3 so that it is embedded in s′ ∼= Rn
as {(0, · · · , 0, ∗, ∗)}.
As mentioned, our strategy is to reduce to n = 2, so put G̃′ = SOe(2, 1) which

embeds into SO(n, 1) as (
In−2 0

0 G̃′

)

Note that G̃′ contains A1, A2 and A3. Put G̃ = G̃′ × G̃′ × G̃′. By the H̃AK̃-
decomposition of G̃ it suffices to show that G = HG̃K. In other words we need
to show that for all triples (z1, z2, z3) ∈ Z ′ × Z ′ × Z ′ there exists g ∈ G′ such
that g · z1, g · z2, g · z3 are all in G′ · o, i.e. viewed as vectors in Rn+1 they have
0 in the first n− 2 coordinates.
Since G′ acts transitively on Z ′ we can pick g1 so that g1 · z1 = o. Since K ′

is transitive on the unit ball in Rn, we can pick k2 ∈ K ′ in such a way that
k2g1 · z2 is of the form (0, . . . , 0, ∗) (note that k2 stabilizes o = g1 · z1). Finally
we can pick k3 ∈ SO(n− 1) (sitting in SO(n) in the upper left corner) so that
k3k2g1 · z3 is of the form (0, . . . , 0, ∗, ∗) (note that k3 stabilizes both g1 · z1 and
k2g1 · z2). Put g = k3k2g1 and we are done proving that it is polar.
Now to prove that it is also spherical: we use induction, and since and since

SOe(2, 1) is locally isomorphic to SL(2,R) (in particular they have the same
Lie algebras), we already know it to be true in this case. Thus we consider
SOe(n, 1) for n ≥ 3 (where SOe(m, 1) for m < n sits in the lower right corner
of SOe(n, 1)). To ease notation let

gn := so(n, 1)⊕ so(n, 1)⊕ so(n, 1)

and let hn be the diagonal in that.
Let a1, a2 and a3 be 1-dimensional subalgebras of s′ which together span a

2-dimensional subspace. W.l.o.g. we may assume that ai = RHi where

Hi :=

(
0 q̃i
q̃i 0

)
. (2.1)

and
q̃i :=

(
0
qi

)
.

for q1, q2 and q3 some unit vectors in Rn−1 which span a subspace of dimension
2. Let pi = mi ⊕ ai ⊕ ni be the corresponding parabolic subalgebra. Our goal is
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it to show that
gn = (p1 × p2 × p3) + hn

Our induction assumption is that this holds for n − 1 and hence it suffices to
show that

gn = (p1 × p2 × p3) + hn + gn−1

since p1 × p2 × p3 ⊆ gn−1. From the Bruhat decomposition we know that gn =
(p1×p2×p3)⊕ (n1×n2×n3) so it suffices to show that n1×n2×n3 ⊆ (p1×p2×
p3)+hn+gn−1. Actually it is enough to verify that n1 ⊆ p1+p2∩p3+so(n−1, 1)
(and similarly for n2 and n3) for that being the case, an X ∈ n1 can be written
as X = A+B + C, and then

(X, 0, 0) = (A,−B,−B) + (B,B,B) + (C, 0, 0)

where (A,−B,−B) ∈ p1 × p2 × p3, (B,B,B) ∈ hn and (C, 0, 0) ∈ gn−1.
Now to prove that n1 ⊆ p1 + p2 ∩ p3 + so(n − 1, 1) actually holds. First

we note that m + n = {X ∈ so(n, 1) | X
(
q̃
1

)
= 0} (to ease the notation we

leave out the subscript i for the moment, since it holds for any unit vector
q ∈ Rn). First we check that the dimensions agree. To that end, consider the

map so(n, 1) −→ Rn+1 given by X 7−→ X

(
q̃
1

)
. Since q has norm 1, we can find

A ∈ SO(n) such that Aq̃ = (0, . . . , 0, 1)T , so if we put Ã :=

(
A 0
0 1

)
then

Ã

(
q̃
1

)
=




0
...
1
1


 =: v0.

It is easy to check that so(n, 1)v0 = {w ∈ Rn+1 | wn = wn+1} and hence of
dimension n. Thus we get

so(n, 1)

(
q̃
1

)
= Ã(so(n, 1)v0)

in other words, the image of the map so(n, 1) −→ Rn+1 has dimension n. Thus
the kernel has dimension 1

2n(n−1) which is exactly equal to dimm+dim n (use
the NMAN -decomposition along with the fact that dimA = 1). Hence we only



58 Chapter 2 – Triple Spaces

have to check that m and n lie in the kernel. A general matrix in so(n, 1) has

the form X =

(
A b
bT 0

)
for A ∈ so(n) and b ∈ Rn. A quick calculation shows

[H,X] =

(
q̃bT − bq̃T −Aq̃

q̃T 0

)
(2.2)

when H is of the form (2.1).
If X ∈ k, then b = 0 and the calculation above shows that X ∈ m (i.e.

[H,X] = 0) if and only if Aq̃ = 0 which is equivalent to

X

(
q̃
1

)
= 0

and hence X is in the kernel.
Now for n: The condition [H,X] = X leads to A = q̃bT − bq̃T and b = −Aq̃,

hence
b = −Aq̃ = −(q̃bT − bq̃T )q̃ = −q̃bT q̃ + b

and hence q̃bT q̃ = 0. Using that ‖q̃‖ = 1 we obtain bT q̃ = q̃T q̃bT q̃ = 0, thus
X ∈ n implies

X

(
q̃
1

)
=

(
Aq̃ + b
bT q̃

)
= 0.

All in all we have m+n ⊆ {X ∈ so(n, 1) |X
(
q̃
1

)
= 0} and for dimension reasons

as outlined above, the inclusion is actually an identity.
So now we know how the parabolic generated by q behaves.
Now we consider n1 which is known to have dimension n − 1. But since a1

from which it is formed lies inside so(n − 1, 1), we know that n1 ∩ so(n − 1, 1)
has dimension n− 2. The matrix

Y =




0 qT1 1
−q1 0 0

1 0 0




is in n1 and not in so(n − 1, 1). Thus we are done, if we can show that Y ∈
p1 + p2 ∩ p3. Define

U :=




0 qT1 − rT c
−(q1 − r) 0 0

c 0 0


 and V :=




0 rT 1− c
−r 0 0

1− c 0 0






2.1 Examples and Elementary Properties 59

for some r ∈ Rn−1 and some c ∈ R. Clearly, Y = U + V . Since the qi’s span
a space of dimension 2, we can find λi’s such that λ1q1 + λ2q2 + λ3q3 = 0 and
such that λ1 + λ2 + λ3 6= 0. Using the characterization of the parabolic, we see
that U ∈ p1 and V ∈ p2 ∩ p3 if and only if

r · q1 = 1 + c

r · q2 = −1 + c

r · q3 = −1 + c

This system of equations must have a solution r, if

λ1(1 + c) + λ2(−1 + c) + λ3(−1 + c) = 0,

i.e. if
c =

λ1 − λ2 − λ3

λ1 + λ2 + λ3
.

So with this c and r, we can split Y into two components lying in p1 and p2∩p3

respectively.
By the same reasoning as in the end of the proof of Theorem 2.4 it follows

that Definition 2.3 is satisfied (in the previous proof we only used that SL(2,R)
has rang 1).

All examples of triple spaces so far have the common feature that G′ is a
group of rank 1. It is still unknown if there are groups of higher rank for which
the triple space is strongly spherical (or just spherical and/or polar).
On the other hand it is also clear that not every triple space is strongly

spherical, or even spherical. A necessary condition for a triple space G′ ×
G′ × G′/G′ to be spherical is of course that dim p + dim h ≥ dim g = 3 dim g′.
Writing h = g′ = k′ ⊕ a′ ⊕ n′ and p′ = m′ ⊕ a′ ⊕ n′, we see that the condition
can be restated as 3 dimm′ + dim a′ + dim n′ − 2 dim k′ ≥ 0. And using that
dim k′ = dim n′ + dimm′ we obtain the necessary condition

dimm′ + dim a′ − dim n′ ≥ 0.

Below this number has been calculated for various real simple Lie groups (the
relevant information for the different groups can be found in Appendix C of
[22]):

• SL(n,R): 1
2 (−n2 + 3n− 2)

• Sp(2n,R): n− n2.
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• SU(p, q), for 1 ≤ p ≤ q: 3p+ p2 + q2 − 4pq − 1

• SOe(2p, 2q + 1), for 1 ≤ p ≤ q: 2p2 + 2q2 − 8pq + p+ q

• SOe(2p, 2q + 1), for p > q ≥ 0: 2p2 + 2q2 − 8pq − 5p+ 5q + 3

• SOe(2p+ 1, 2q + 1), for 0 ≤ p ≤ q: 2p2 + 2q2 − 8pq + 3p− 3q + 1

• SOe(2p, 2q), for 1 ≤ p ≤ q: 2p2 + 2q2 − 8pq + 5p− q.
From this list a lot of groups can be ruled out as building blocks for spherical
triple spaces. For example, among the groups SL(n,R) only SL(2,R) works!
Among all the groups SU(1, q), which are all of rank 1, the above inequality is
satisfied for q 6= 2, i.e. the rank 1 group SU(1, 2) cannot act as a building block
for a spherical triple space.
Triple spaces are examples of so-called Gross-Prasad spaces 2:

Definition 2.6 (Gross-Prasad space). Given a symmetric pair (G,H), the
space (G×H)/H (where we view H as the diagonal subgroup {(h, h) |h ∈ H} of
G×H) is called a Gross-Prasad space provided the pair (G×H,H) is spherical
and of polar type.

In [24] some examples of strongly spherical Gross-Prasad spaces are given,
namely those coming from the pairs (GL(n+1,R), GL(n,R)) as well as (O(p, q+
1), O(p, q)), (U(p, q + 1), U(p, q)) and (Sp(p, q + 1), Sp(p, q)). We will briefly
return to these spaces when discussing invariant differential operators later in
this chapter.

2.2 Uniqueness in the Polar Decomposition
If G/H is a homogeneous space of polar type, so that every element g ∈ G
allows a decomposition g = kah, it is of interest to know to which extend the
components in this decomposition are unique. More specifically, we are inter-
ested in uniqueness of the A-component, and hence we ask: if KaH = Ka′H
what is the relation between a and a′? Let’s turn it around and assume HaK =
Ha′K, then we may view aK and a′K as two triples (a1K

′, a2K
′, a3K

′) and
(a′1K

′, a′2K
′, a′3K

′) in G/K = G′/K ′ × G′/K ′ × G′/K ′, and HaK = Ha′K
is now the equality of two H-orbits in G/K. These orbits are equal if and

2The name stems from the work of Benedict Gross and Dipendra Prasad who in [16]
considered branching from SON × SON−1 (over a local field) to the diagonally embedded
subgroup SON−1.
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only if there exists h = (g, g, g) ∈ H such that haK = a′K, i.e. g ∈ G′ is
an isometry of G′/K ′ which maps the triple (a1K

′, a2K
′, a3K

′) to the triple
(a′1K

′, a′2K
′, a′3K

′).
An obvious non-uniqueness is caused by the normalizer NK∩H(a) of a in

K ∩H, which acts on A by conjugation. In the case of a symmetric space, it is
known (see [18], Prop. 7.1.3) that the A component of every g ∈ G is unique
up to such conjugation. For our current triple spaces the description of which
elements in A generate the same K ×H orbit appears to be more complicated,
unless a1 = a2 ⊥ a3 (see further remarks on this at the end of this section).

Theorem 2.7. Let G/H be the triple space with G′ either SL(2,R) or SOe(n, 1),
and let a = a1 × a2 × a3 be a maximally abelian subalgebra with a1 = a2 ⊥ a3.
Let a = (a1, a2, a3) ∈ A with a1 6= a2 and let a′ = (a′1, a

′
2, a
′
3) ∈ A. Then

KaH = Ka′H if and only if a and a′ are conjugate by NK∩H(a).

We first determine explicitly which pairs of elements a, a′ ∈ A are NK∩H(a)-
conjugate when a1 = a2 ⊥ a3.

Lemma 2.8. Let a be as above. Then a, a′ ∈ A are conjugate by NK∩H(a) if
and only if

1) (a′1, a
′
2) = (a1, a2)±1 and a′3 = a±1

3 if n > 2

2) (a′1, a
′
2, a
′
3) = (a1, a2, a3)±1 if n = 2.

Proof. The normalizer NK∩H(a) consists of all the diagonal elements k =
(k0, k0, k0) ∈ G for which

k0 ∈ NK′(a1) ∩NK′(a2) ∩NK′(a3).

As elements aj , a′j ∈ Aj are NK′(aj)-conjugate if and only if a′j = a±1
j , only the

pairs mentioned under (1) can be conjugate when a1 = a2.
Let δ, ε = ±1. For the groups G′ = SL(2,R) or G′ = SOe(n, 1) the adjoint

representation K −→ SO(s′) is surjective. If n > 2 then there exists a trans-
formation in SO(s′) which acts by δ on a1 = a2 and by ε on a3. Its preimages
in K ′ conjugate (a1, a2, a3) to (aδ1, a

δ
2, a

ε
3). When n = 2 such a transformation

exists if and only if δ = ε. The lemma follows.

The following lemmas are used in the proof of Theorem 2.7. Here G′ can be
any semisimple group with Cartan decomposition g′ = k′ ⊕ s′.

Lemma 2.9. Let X,U ∈ s′. Then expX expU expX ∈ exp s′.
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Proof. Let θ denote the Cartan involution and note that the product
exp(tX) exp(tU) exp(tX) belongs to S := {g ∈ G′ | θ(g) = g−1} for all t ∈ [0, 1].
It is easily seen that k expY ∈ S implies k2 = e for k ∈ K0 and Y ∈ s′, and
since e is isolated in the set of elements of order 2 it follows that exp s′ is the
identity component of S. Hence expX expU expX ∈ exp s′.

Lemma 2.10. Let a′ ⊂ s′ be a one-dimensional subspace and let A′ = exp a′.

1) If g ∈ exp s′ and ga0 ∈ a′0K ′ for some a0, a
′
0 ∈ A′, then g = a′0a

−1
0 .

2) If g ∈ G′ and ga1, ga2 ∈ A′K ′ for some a1, a2 ∈ A′ with a1 6= a2 then
g ∈ NK′(a′)A′.

Proof. (1) It follows from ga0 ∈ a′0K
′ that a0ga0 ∈ a0a

′
0K
′. Since a0ga0 ∈

exp s′ by Lemma 2.9, it follows from uniqueness of the Cartan decomposition
that a0ga0 = a0a

′
0 and thus g = a′0a

−1
0 .

(2) Put z0 = eK ′, then A′.z0 is a geodesic in G′/K ′. Since g maps two distinct
points on A′.z0 into A′.z0, it maps the entire geodesic onto itself, and hence so
does g−1. In particular g−1.z0 ∈ A′K ′, that is, g = k0a0 for some k0 ∈ K ′,
a0 ∈ A′. It follows for all a ∈ A′ that

k0ak
−1
0 = ga−1

0 ak−1
0 ∈ gA′K ′ = A′K ′.

As k0ak
−1
0 ∈ exp s′, uniqueness of the Cartan decomposition implies k0ak

−1
0 ∈

A′, i.e. k0 ∈ NK′(a′).

Lemma 2.11. Let a1, a3 ⊂ s′ be one-dimensional subspaces with a1 ⊥ a3 and
let A1 = exp a1, A3 = exp a3. If g ∈ NK′(a1)A1 and ga3 ∈ a′3K

′ for some
a3, a

′
3 ∈ A3, not both equal to e, then g ∈ NK′(a1) ∩NK′(a3).

Proof. We may assume a′3 6= e, as otherwise we interchange it with a3 and
replace g by g−1. We consider the geodesic triangle in G′/K ′ formed by the
geodesics

L1 := A1.z0, L2 := A3.z0, L3 := gA3.z0.

The vertices are

D3 := z0, D2 := g.z0, D1 := ga3.z0 = a′3.z0.

As L1 and L2 intersect orthogonally, angle D3 is right. The isometry g maps L1

to itself and L2 to L3. Hence L1 and L3 also intersect orthogonally and angle
D2 is right. As the sectional curvature of G′/K ′ is non-positive, it is impossible
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for a proper triangle to have two right angles. As L1 6= L2 and D3 6= D1 we
conclude D3 = D2 and L3 = L2. It follows that g ∈ K ′ and by Lemma 2.10 (2)
that g ∈ NK′(a3).

Proof of Theorem 2.7. Assume KaH = Ka′H. Then Kah = Ka′ for some
h = (g, g, g) ∈ H. Applying Lemma 2.10 (2) to the first two coordinates of
Kah = Ka′ we conclude that g ∈ NK′(a1)A1.
If a′3 and a3 are not both e, we can apply Lemma 2.11 to the last coordinate

and conclude g ∈ NK′(a1) ∩ NK′(a3). Hence h ∈ NK∩H(a), and we conclude
that a′ = h−1ah.
If a′3 = a3 = e it follows from the third coordinate that g ∈ K ′. Hence

g ∈ NK′(a1) and a′ = a or a′ = a−1.

As promised some remarks in the case where we do not assume a1 = a2 ⊥ a3.
Assume s to have dimension at least 3, and suppose that we have a1 = a2 not
perpendicular to a3. In the Euclidean setting, this would look like the following
(the plane symbolizing the space spanned by exp a1 and exp a3):

We see from the figure that we have two triples which can be mapped to each
other by an isometry which does not preserve the origin (since it takes place in a
three dimensional space, it is the composition of a rotation around the A1 = A2

axis and a translation). In particular this would correspond to an isometry that
cannot be conjugation by an element in NK∩H(a).
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If we skip the other requirement, that a1 be equal to a2 (but still require a1,
a2 and a3 to span a 2-dimensional subspace), we could get a situation like the
following (again in the Euclidean setting).

Again we see that we can move the one triple into the other by an isometry
that does not preserve the origin, i.e. cannot be a simple conjugation by an
element in NK∩H(a).

2.3 Plancherel Decomposition
In this section we will study triple spaces in full generality (with G′ being a
semisimple group), in the next chapter we will restrict further to the case where
G′ = SL(2,R).
Let K ′ be a maximally compact subgroup of G′, then K := K ′ ×K ′ ×K ′ is

a maximally compact subgroup of G.
For an irreducible symmetric pair (G,H) (i.e. a pair such that the symmetric

space cannot be written as a product of strictly smaller symmetric spaces) where
H is connected, it is known thatH is a maximal connected subgroup in the sense,
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that if H0 is another connected subgroup such that H ⊆ H0 ⊆ G, then H0 is
either H or G. In the triple case, this is no longer true, albeit almost

Proposition 2.12. Let H0 be a connected subgroup satisfying H ⊆ H0 ⊆ G,
then H0 is either H, G or one of the following 3 groups

H1 := {(x, g, g) | x, g ∈ G′}
H2 := {(g, x, g) | x, g ∈ G′}
H3 := {(g, g, x) | x, g ∈ G′}.

Proof. Consider for i = 1, 2, 3 the projection pi : G′ × G′ × G′ −→ G′ × G′
which leaves out the i’th component. The image pi(H0) is a connected subgroup
of G′ × G′ containing the diagonal. Since (G′ × G′, G′) is a symmetric pair,
there are only two possibilities, pi(H0) equals the diagonal or everything. That
basically leaves us four different cases to check.
First case: If pi(H0) equals the diagonal for all i, then H0 = H.
Second case: If pi(H0) equals G′ ×G′ and the two others equal the diagonal:

this can’t occur.
Third case: If pi(H0) equals the diagonal for some i and the two others equal

G′ ×G′, then H0 = Hi.
Fourth case: If pi(H0) = G′ ×G′ for all i, then H0 = G.

In certain situations it can be useful to have a concrete model for the triple
space, just as in the group case, where the group itself is a model for the space
G′ ×G′/G′. The map

[g1, g2, g3] 7−→ (g1g
−1
3 , g2g

−1
3 )

is easily seen to be a well-defined diffeomorphism ϕ : G/H
∼−−→ G′ × G′ with

inverse
(g1, g2) 7−→ [g1, g2, e].

Note, however, that this concrete model is rather non-canonical: we singled out
the third component. Of course, this component is nothing special, we could
just as well have picked the first or the second. In the following we will use
this model mostly for calculations, and to the extend possible we will try to
formulate results without reference to the model.
G/H has a natural G-action ρg = ρ(g1,g2,g3) given by componentwise left mul-

tiplication. Under the diffeomorphism ϕ above this is turned into the following
G-action on G′ ×G′:

(g1, g2, g3) · (g′1, g′2) = (g1g
′
1(g3)−1, g2g

′
2(g3)−1)
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which we also denote ρ. We can write it a little more compactly,

ϕ ◦ ρ(g1,g2,g3) = `(g1,g2) ◦ r(g3,g3) ◦ ϕ. (2.3)

where `(g1,g2) and r(g3,g3) are the left and right actions of G′ ×G′ on itself (cf.
Section 1.4).

Proposition 2.13. Let G′ be a semisimple group. Then the triple space G/H
has a G-invariant measure (unique up to a scalar), and under the diffeomor-
phism ϕ above, this measure coincides (up to scalar multiplication) with the
Haar measure on G′ ×G′. In particular we have the following isomorphisms of
G-spaces

L2(G/H) ∼= L2(G′ ×G′) ∼= L2(G′)⊗̂L2(G′) (2.4)

where the first isomorphism is f 7−→ f ◦ ϕ−1.

Proof. Since G and H are both semisimple, they are unimodular, hence an
invariant measure on G/H exists.
Let µ denote the Haar measure on G′ ×G′, then (ϕ−1)∗(µ) by (2.3) satisfies

ρ(g1,g2,g3)∗(ϕ
−1)∗(µ) = (ϕ−1)∗ ◦ `(g1,g2)∗ ◦ r(g3,g3)∗(µ) = (ϕ−1)∗(µ)

by left and right invariance of µ. Thus (ϕ−1)∗(µ) is G-invariant and therefore
must equal the G-invariant measure on G/H (up to a nonzero scalar).
The last claim of the proposition now easily follows.

Our goal in the following is to develop a Plancherel decomposition for triple
spaces. First we consider a compact example, to see what we can expect.

Example 2.14. Let’s consider the space compact triple space

SU(2)× SU(2)× SU(2)/SU(2).

The Plancherel formula for a compact homogenous space K/M tells us that

L2(K/M) =
⊕

π∈K̂M

Hom(Vπ, V
M
π ).

In this case where K = SU(2) × SU(2) × SU(2), the dual K̂ consists of all
representations of the form π1 × π2 × π3 on V1 ⊗ V2 ⊗ V3. To find the M -fixed
vectors we make the following general observation: assume G1 ⊆ G2 are two
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arbitrary Lie groups and that we have representations πi of Gi on Vi. Then we
can form a representation π of G1 ×G2 on Hom(V1, V2) by

π(g1, g2)(T ) := π2(g2) ◦ T ◦ π1(g1)−1.

Viewing G1 as the diagonal in G1 × G2, the invariant vectors in Hom(V1, V2)
are simply HomG1

(V1, V2), i.e. the set of intertwining operators between π1 and
π2|G2

. Moreover
Hom(V1, V2) ∼= V ∗1 ⊗ V2

as G1 ×G2-spaces and thus

(V ∗1 ⊗ V2)G1 ∼= HomG1
(V1, V2).

We can apply this to the following situation: assume we have a group G and
3 finite-dimensional G-representations V1, V2 and V3. Put G2 := G × G and
let G1 = G be sitting in G2 as the diagonal. Consider now the triple product
V1⊗V2⊗V3 under the action of G×G×G, and write it as V1⊗ (V2⊗V3) under
the action of G × (G × G). Viewing G as the diagonal in G × G we are in the
situation as before and we get

(V1 ⊗ V2 ⊗ V3)G ∼= HomG(V ∗1 , V2 ⊗ V3).

Note, that the representation V2 ⊗ V3 on the right is the restriction to the
diagonal, i.e. it is to be considered a representation of G and not of G × G
(in which case it would have been irreducible and the HomG space would have
been either 0 or 1-dimensional)!
Obviously, there is nothing special about V1, even though we have singled it

out here. We have a natural isomorphism V1 ⊗ V2 ⊗ V3
∼−−→ V2 ⊗ (V1 ⊗ V3) and

hence a natural isomorphism HomG(V ∗1 , V2⊗V3)
∼−−→ HomG(V ∗2 , V1⊗V3) which

are of course also isomorphic to HomG(V ∗3 , V1 ⊗ V2).
Now we return to SU(2). Given a representation V1 ⊗ V2 ⊗ V3, in order to

find the space (V1⊗V2⊗V3)SU(2) (the dimension of which ultimately equals the
multiplicity of π1×π2×π3 in the Plancherel decomposition of L2(K/M)) we have
to decompose π1 ⊗ π2 according to Clebsch-Gordan and find the multiplicity of
π∗3 in this decomposition.
Recall that the irreducible representations of SU(2) are ρn for n ∈ Z≥0 of

dimension n+ 1 and that ρn ⊗ ρm decomposes according to

ρn ⊗ ρm = ρ|n−m| ⊕ ρ|n−m|+2 ⊕ · · · ⊕ ρn+m−2 ⊕ ρn+m. (2.5)
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Moreover, all these representations are self-dual. From the discussion above we
infer that ρn × ρm × ρk occurs in the Plancherel decomposition if and only if
k ∈ {|n−m|, |n−m|+ 2, . . . , n+m}, and they do so with multiplicity 1.
A concrete example: does the representation ρ5× ρ7× ρ1 occur in the decom-

position? Well, according to our recipe, we form the tensor product ρ7⊗ ρ1 and
decompose according to Clebsch-Gordan:

ρ5 ⊗ ρ1 = ρ4 ⊕ ρ6.

We see that ρ1 does not occur in this, and hence that ρ5×ρ1×ρ1 does not occur
in the Plancherel decomposition. Then what about, say ρ5× ρ7× ρ12. Again we
decompose

ρ7 ⊗ ρ12
∼= ρ5 ⊕ ρ7 ⊕ · · · ρ17 ⊕ ρ19

and see that ρ5 does occur, and hence ρ5× ρ7× ρ12 is present in the Plancherel
decomposition.

This is the idea we want to generalize to non-compact triple spaces.
Recall from the section on Fourier transforms that L2(G′) can be decomposed

as

L2(G′) ∼=
∫ ⊕

Ĝ′
Hπ⊗̂Hπdµ(π)

and that the bi-regular representation TG′ of G′ ×G′ on L2(G′) is decomposed
as

TG′ ∼
∫ ⊕

Ĝ′
(π × π∗)dµ(π).

Replacing G′ by G′×G′ we have a bi-regular representation TG′×G′ of G′×G′×
G′ ×G′ on L2(G′ ×G′) which is given by

TG′×G′(g1, g2, g3, g4)f(g, g′) = LG′×G′(g1, g2) ◦RG′×G′(g3, g4)f(g, g′)

= f(g−1
1 gg3, g

−1
2 g′g4)

The action of G′ ×G′ ×G′ on G/H gives a representation ρ of G′ ×G′ ×G′ on
L2(G/H). Under the isomorphism L2(G/H) ∼= L2(G′ ×G′) this representation
is simply (cf. (2.3))

ρ(g1, g2, g3)f(g, g′) = f(g−1
1 gg3, g

−1
2 g′g3).

I.e. if we inject G′ ×G′ ×G′ into G′ ×G′ ×G′ ×G′ by

(g1, g2, g3) 7−→ (g1, g2, g3, g3),
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ρ is simply the restriction of TG′×G′ to G′ × G′ × G′. Decomposing TG′×G′ we
get

TG′×G′ ∼
∫ ⊕

Ĝ′×Ĝ′
(π1 × π2)× (π1 × π2)∗dµ(π1)dµ(π2).

Restricting to G′ ×G′ ×G′ (which comes down to restricting (π1 × π2)∗ to the
diagonal of G′ ×G′) and replacing πi by π∗i (this is allowed, since π is in Ĝ′ if
and only if π∗ is) we get

ρ ∼
∫ ⊕

Ĝ′×Ĝ′
(π∗1 × π∗2)× (π1 ⊗ π2)dµ(π1)dµ(π2). (2.6)

Decomposing the tensor product π1 ⊗ π2 =
∫
Ĝ′
π
⊕mπ3
3 dνπ1,π2

(π3) (cf. Theorem
1.22) we arrive at

Theorem 2.15. The decomposition of ρ into irreducibles is

ρ ∼
∫ ⊕

Ĝ′×Ĝ′
π∗1 × π∗2 ×

(∫ ⊕

Ĝ′
π
⊕mπ3
3 dνπ1,π2

(π3)
)
dµ(π1)dµ(π2)

∼
∫ ⊕

Ĝ′×Ĝ′×G′
(π∗1 × π∗2 × π3)⊕mπ3 dνπ1,π2

(π3)dµ(π2)dµ(π1) (2.7)

where µ is the Plancherel measure on Ĝ′.

This is the general version of the observation from the compact case above.
In effect, the result states that the triple product π∗1 × π∗2 × π3 “occurs” in the
decomposition of ρ if and only if π3 “occurs” in the decomposition of the tensor
product π1 ⊗ π2, and with the same multiplicity.
Just as for groups, we can talk about discrete series representations for a

homogenous space:

Definition 2.16 (Discrete Series). A representation (π,Hπ) ∈ ĜH is called
a discrete series representation for G/H if HomG(Hπ, L

2(G/H)) 6= {0}.

It is clear from the theorem above, that π1 × π2 × π3 is a discrete series
representation for the triple space G/H, if and only if π1 and π2 are discrete
series representations with π∗3 sitting discretely in π1 ⊗ π2, and it is clear that
the multiplicity of π1× π2× π3 in L2(G/H) equals that of π3 in π∗1 ⊗ π∗2 . If this
multiplicity is finite we can write down an explicit isomorphism

Φ : HomG′(H3,H1⊗̂H2)
∼−−→ HomG(H∗1⊗̂H∗2⊗̂H3, L

2(G/H))
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given by

Φ(S)(ϕ1⊗ϕ2⊗v3)[g1, g2, g3] :=
(
π∗1(g−1

1 )ϕ1 ⊗ π∗2(g−1
2 )ϕ2

)
S(π3(g−1

3 )v3). (2.8)

2.4 Invariant Differential Operators

In this section we investigate the algebra of invariant differential operators
D(G/H) first for a general triple space. More specifically, our first concern will
be, to determine, for which of the strongly spherical spaces listed previously in
this chapter, the algebra of invariant differential operators is commutative. It
turns out to be the case for only a few of them.

Definition 2.17. Let G be a Lie group and let K be a compact subgroup. The
pair (G,K) is called a Gelfand pair if for any irreducible unitary representation
π of G, it holds that the multiplicity of the trivial representation of K in π|K is
at most 1.

In the older literature, the terminology will often be used that K is a spherical
subgroup of G.
As the following proposition states there are other (equivalent) ways of defin-

ing Gelfand pairs. We took the above one as the defining property since it is the
one which is best suited for our needs.

Proposition 2.18. For a pair (G,K) of a Lie group and a compact subgroup
K, the following are equivalent

1) (G,K) is a Gelfand pair.

2) The algebra D(G/K) of left G-invariant differential operators on G/K is
commutative.

3) The convolution algebra L1(K\G/K) is commutative.

The equivalence between 1) and 2) is proved in Proposition 6.3.1 in [12] and
the equivalence between 2) and 3) is stated in Theorem 4 in [11].
Well known examples are non-compact Riemannian symmetric pairs (G,K)

where G is a reductive Lie group and K is a maximally compact subgroup. Be-
cause of the duality between compact and non-compact Riemannian symmetric
spaces, also compact Riemannian symmetric pairs (U,K) are Gelfand pairs.
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Definition 2.19. A pair (G,K) of a Lie group G and a compact subgroup K
is called a strong Gelfand pair provided that (G ×K,∆K) (where ∆K means
the K-diagonal in G×K) is a Gelfand pair.

Proposition 2.20. A pair (G,K) where G is connected and K is connected
and compact, is a strong Gelfand pair if and only if for any π ∈ Ĝ and any
δ ∈ K̂, the multiplicity of δ in π|K is at most 1.

Proof. If π ∈ Ĝ and δ ∈ K̂, we note the identities 3

H∆K
π×δ = (Hπ⊗̂Hδ)

∆K = HomK(δ∗, π|K)

where δ∗ is the dual of δ. This leads to the following string of identities of
dimensions:

dim HomK(1, (π × δ)|∆K) = dim HomK(π × δ|∆K , 1) = dimH∆K
π×δ

= dim HomK(δ∗, π|K).

Since any irreducible unitary representation of G × K is of the form π × δ, it
follows that (G×K,∆K) is a Gelfand pair, if and only if the multiplicity of δ∗
in π|K is at most 1.

From the proposition it is clear that any strong Gelfand pair is in particular
a Gelfand pair, hence justifying the name. Note that if (G,K) and (G′,K ′) are
strong Gelfand pairs, then so is (G × G′,K × K ′), simply because, if π|K =⊕

δ∈K̂ δ
⊕mδ and π′|K′ =

⊕
τ∈K̂′ τ

⊕mτ for irreducible representations π and π′
of G and G′ respectively, then mδ,mτ ≤ 1 and hence

(π × π′)|K×K′ =
⊕

(δ,τ)∈K̂×K̂′

(δ × τ)⊕mδmτ

wheremδmτ ≤ 1. Thus irreducible representations of G×G′ decompose without
multiplicity when restricted to K ×K ′.
In the case where G itself is compact, the strong Gelfand pairs have been

classified by Krämer in [23] (he uses the terminology that K is a multiplicity
free subgroup in G). The first two results of his paper relevant to us are the
following (Proposition 2 slightly reformulated and Corollary 2 in loc.cit.):

3We use the notation that π× δ is the representation of G×K on Hπ⊗̂Hδ (the completed
Hilbert tensor product) given by (π × δ)(g, k)v ⊗ w = π(g)v ⊗ δ(k)w.
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Lemma 2.21. Let (G,K) and (G′,K ′) be pairs where G and G′ are compact
and connected, and where K and K ′ are closed and connected subgroups and
assume we have a local isomorphism G −→ G′ which maps K to K ′, then
(G,K) is a strong Gelfand pair if and only if (G′,K ′) is a strong Gelfand pair.

Lemma 2.22. Let G be a compact connected and simple Lie group and K a
closed subgroup and K0 the identity component, then (G,K) is a strong Gelfand
pair if and only if (G,K0) is a strong Gelfand pair.

The following is the main theorem of Krämer’s paper. Note that point 4) is a
consequence of the preceding two lemmas.

Theorem 2.23 (Krämer). Let G be a compact connected Lie group and K a
closed subgroup whose identity component we denote K0.

1) If G is simple, then (G,K) is a strong Gelfand pair if and only if up to
covering, either

• the pair is of the form (SU(n), U(n− 1)) for n ≥ 2, or

• G = SO(n) and K0 = SO(n− 1) for n ≥ 3, n 6= 4, or

• G = SO(8) and K0 = Spin(7), or

• trivially G = K.

2) If G is semisimple, then (G,K) is a strong Gelfand pair if and only if
there exist strong Gelfand pairs (G1,K1), . . . , (Gn,Kn) with Gi simple and
Ki connected, and there exists a number m, such that we have a local
isomorphism G

∼−−→ G1×· · ·×Gn×SO(4)×m which maps K0 to K1×· · ·×
Kn×SO(3)×m where SO(3) sits inside SO(4) (which is locally isomorphic
to SO(3)× SO(3)) as the diagonal.

3) If G = Gs × T where Gs is semisimple and T is a torus, then (G,K) is
a strong Gelfand pair if and only if (Gs, p(K)) is a strong Gelfand pair
(where p : G −→ Gs is the projection).

4) If q : G̃ −→ G is a connected covering of G, then (G,K) is a strong
Gelfand pair, if and only if (G̃, q−1(K)) is a strong Gelfand pair.

This theorem enables us to determine for each pair (G,K) (where G is com-
pact and connected, and K is a closed subgroup) if it is a strong Gelfand pair
or not: As G is compact, its Lie algebra is automatically reductive, hence is of
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the form g = gs ⊕ Zg, i.e. is a direct sum of a semisimple part gs = [g, g] and
the center. Let Gs be the analytic subgroup of G corresponding to gs, then we
have a covering map π : Gs×T −→ G by (g, z) 7−→ gz. Thus (G,K) is a strong
Gelfand pair if and only if (Gs, q(π

−1(K))) is a strong Gelfand pair.

Corollary 2.24. The only strong Gelfand pair of the form (G0 ×G0, G0) with
G0 compact, connected and simple is (SO(3) × SO(3), SO(3)). Consequently,
(SO(n)×SO(n), SO(n)) is a strong Gelfand pair, if and only if n = 3 or n = 4.

Proof. (SO(3) × SO(3), SO(3)) is a strong Gelfand pair as it is locally iso-
morphic to the Gelfand pair (SO(4), SO(3)). Also (SO(4)× SO(4), SO(4)) is a
strong Gelfand since it is locally isomorphic to the product of the strong Gelfand
pair (SO(3)× SO(3), SO(3)) with itself. The only if statement of this corollary
follows from Krämer’s list of semisimple strong Gelfand pairs above.

Recall that given a real Lie algebra g, we denote by U(gC) the universal
enveloping algebra of the complexification of g and we identify this with the
algebra D(G) of left-invariant differential operators on G. If H is a closed sub-
group of G we can extend the adjoint action of H on g to an algebra action of
H on U(gC) by

Ad(h)X1 · · ·Xn := (Ad(h)X1) · · · (Ad(h)Xn).

Let U(gC)k denote the set of elements of U(g) of degree at most k. By the PBW-
Theorem this is a finite-dimensional space, and it is clear, that it is preserved
by Ad(h). Thus Ad is a finite-dimensional representation of H on U(gC)k. This
of course has a derived representation of h:

Ad∗(X)(X1 · · ·Xn) =
d

dt

∣∣∣∣
t=0

Ad(exp(tX))(X1 · · ·Xn)

=
d

dt

∣∣∣∣
t=0

(Ad(exp(tX))X1) · · · (Ad(exp(tX))Xn)

=

n∑

j=1

X1 · · ·
( d

dt

∣∣∣∣
t=0

Ad(exp(tX))Xj

)
· · ·Xn

=

n∑

j=1

X1 · · · [X,Xj ] · · ·Xn.
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We extend this representation to U(gC) =
⋃
U(gC)k and denote it ad:

ad(X)(X1 · · ·Xn) =

n∑

j=1

X1 · · · (ad(X)Xj) · · ·Xn

= X(X1 · · ·Xn)− (X1 · · ·Xn)X

where the last equality follows from a simple computation involving commuta-
tors. The first expression tells us that ad(X) is a derivation of U(gC) and the
second, that we can view ad(X) as a commutator, just as in the Lie algebra
situation. Since U(gC) is a complex algebra, we can without problems extend
ad to a representation of hC.
By U(gC)H we denote the subset of elements of U(gC) which are invariant

under Ad(h) for all h ∈ H, and by U(gC)h the set of elements which are mapped
to 0 by ad(X) for all X ∈ h, i.e.

U(gC)h =
⋂

X∈h

ker ad(X).

U(gC)hC is defined similarly.

Lemma 2.25. If H is a connected subgroup of G, it follows that U(gC)H =
U(gC)h = U(gC)hC .

Proof. The last identity is obvious and holds whether H is connected or not.
For the first identity, the inclusion “⊆” follows easily by the above, since ad

is the derived representation of Ad. For the reverse inclusion “⊇” we need the
connectivity assumption, for then any h ∈ H can be written as a finite product
h = expX1 · · · expXn for Xj ∈ h so we may assume w.l.o.g. that h = expX1. If
X ∈ U(gC)h, then

Ad(expX1)X = exp(ad(X1))X = (I + (adX1) + 1
2 (adX1)2 + · · · )X = X,

i.e. X ∈ U(gC)H .

Lemma 2.26. If G and G′ are Lie groups with closed connected subgroups H
and H ′ respectively, for which there is a Lie algebra isomorphism ϕ : gC

∼−−→ g′C
between the complexifications of the Lie algebras of G and G′ and such that
ϕ(hC) = ϕ(h′C), then D(G/H) and D(G′/H ′) are isomorphic as algebras.
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Proof. For any homogenous space, we have an algebra isomorphism

D(G/H)
∼−−→ U(gC)H/(U(gC)H ∩ U(gC)h) (2.9)

and by the lemma above the latter equals U(gC)hC/(U(gC)hC ∩ U(gC)hC).
The Lie algebra isomorphism ϕ induces an algebra isomorphism ϕ : U(gC)

∼−−→
U(g′C), and it requires but a small calculation to verify that ϕ(U(gC)hC) =

U(g′C)h
′
C and ϕ(U(gC)hC) = U(g′C)h′C. Thus ϕ induces an algebra isomorphism

U(gC)hC/(U(gC)hC ∩ U(gC)hC)
∼−−→ U(g′C)h

′
C/(U(g′C)h

′
C ∩ U(g′C)h′C)

which, by the remarks at the beginning of the proof, is the desired algebra
isomorphism D(G/H)

∼−−→ D(G′/H ′).

Let us apply this to triple spaces. If G′ is a compact Lie group, it follows
from the above discussion of Gelfand pairs that (G′ ×G′ ×G′, G′) (where G′ is
viewed as the diagonal) is a Gelfand pair if and only if (G′ ×G′, G′) is a strong
Gelfand pair.
Any linear semisimple Lie group G′ has a complexification G′C which in turn

has a compact real form G̃′, in other words, for any linear semisimple Lie group
G′, there is a compact Lie group G̃′ such that the complexification of the two
Lie algebras are isomorphic. We call G̃′ the compact form of G′. By the above
lemma, commutativity of D(G/H) follows if and only if (G̃′× G̃′, G̃′) is a strong
Gelfand pair. Thus we get

Theorem 2.27. Let G/H be a triple space as above with G′ connected and
semisimple. The algebra D(G/H) is commutative if and only if the compact
form of G′ is locally isomorphic to SO(3) or SO(4). In particular, among the
groups G′ = SOe(n, 1), only SOe(2, 1) and SOe(3, 1) have corresponding triple
spaces with commuting invariant differential operators.

Our second application will be to Gross-Prasad spaces. These have been stud-
ied in [24] where it was found that Gross-Prasad spaces from the pairs

• (GL(n+ 1,F), GL(n,F)) for F = R,C,

• (O(p, q + 1), O(p, q)) for p+ q ≥ 2,

• (U(p, q + 1), U(p, q)) for p+ q ≥ 2,

• (Sp(p, q + 1), Sp(p, q)) for p+ q ≥ 2
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are spherical and polar.

Theorem 2.28. For all the Gross-Prasad spaces in the list above except (Sp(p, q+
1)×Sp(p, q))/Sp(p, q), it holds that the algebra of invariant differential operators
is commutative.

Proof. Again it follows from Lemma 2.26 that if (G′, H ′) is a compact form of
(G,H), then D(G ×H/H) ∼= D(G′ ×H ′/H ′). And it follows from Proposition
2.18 that D(G′ × H ′/H ′) is commutative if and only if (G′, H ′) is a strong
Gelfand pair.
The pair (GL(n + 1,R), GL(n,R)) has the compact form (U(n + 1), U(n)).

The map q : SU(n+1)×U(1) −→ U(n+1) given by (A, z) 7−→ zA is a covering
map (since it is a group homomorphism whose corresponding Lie algebra map
is an isomorphism). If we view U(n) as sitting in U(n + 1) in the lower right
corner, then

q−1(U(n)) =
{

(

(
z−1 0
0 z−1A′

)
, z)
∣∣∣A′ ∈ U(n) zn+1 = detA′

}
.

The projection of this set onto SU(n+ 1) is therefore

p(q−1(U(n))) =
{(

z−1 0
0 z−1A′

) ∣∣∣A′ ∈ U(n) zn+1 = detA′
}

which is just the standard embedding of U(n) into SU(n + 1). Since (SU(n +
1), U(n)) is a strong Gelfand pair, it follows (by Krämer’s theorem and Lemma
2.22) that (U(n+1), U(n)) is a strong Gelfand pair. Hence the algebra of differ-
ential operators for the Gross-Prasad space of the pair (GL(n+1,R), GL(n,R))
is commutative.
Similarly, the pair (U(p, q+1), U(p, q)) has compact form (U(p+q+1), U(p+

q)), and this is a strong Gelfand pair by the same arguments as above.
The pair (O(p, q+1), O(p, q)) has compact form (O(p+q+1), O(p+q)) which

is locally isomorphic to the strong Gelfand pair (SO(p+ q + 1), SO(p+ q)).
Finally (Sp(p, q + 1), Sp(p, q)) has compact form (Sp(p + q + 1), Sp(p + q))

which is not a strong Gelfand pair.



CHAPTER 3

A SPECIAL CASE

3.1 Invariant Differential Operators

We continue our description of the algebra D(G/H) from the previous chapter,
now only for the triple space with G′ = SL(2,R). We prove that this is an
abelian algebra in 3 generators.
In this section we will work a lot with U(g1C⊕ g2C), and the following lemma

will make this space slightly easier to handle.

Lemma 3.1. We have an algebra isomorphism

D(G1 ×G2) = U(g1C ⊕ g2C)
∼−−→ U(g1C)⊗ U(g2C) = D(G1)⊗ D(G2)

which maps

(X1, 0) · · · (Xn, 0)(0, Y1) · · · (0, Ym) 7−→ (X1 · · ·Xn)⊗ (Y1 · · ·Ym)

Proof. Consider the map g1 ⊕ g2 −→ U(g1C) ⊗ U(g2C) given by (X,Y ) 7−→
X⊗1+1⊗Y . It is easily checked that this map is linear and satisfies the bracket
relation. Thus it factorizes as an algebra homomorphism through U(g1C⊕ g2C).
This is the desired map. It is easily seen to map a PBW-basis to a PBW-basis,
and thus it is an algebra isomorphism.

77
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We use the model G/H ∼= G′ × G′. The G-action on G′ × G′ is simply that
the two first copies act on each of the arguments from the left and the third
copy acts diagonally from the right. Thus we immediately see that we have the
following string of inclusions

Z(G′ ×G′) ⊆ D(G/H) ⊆ D(G′ ×G′) (3.1)

where Z(G′×G′) is the algebra of bi-invariant differential operators on G′×G′,
which happens to be equal to the center of D(G′ × G′) ∼= U(g′C ⊕ g′C). In our
present example, all inclusions will be strict
Consider the standard basis for sl(2,R)

H0 :=

(
1 0
0 −1

)
, X0 :=

(
0 1
0 0

)
, Y0 :=

(
0 0
1 0

)

(we add subscripts 0 to avoid confusion between H0 as a matrix and H as a
subgroup), which satisfies the usual commutation relations

[X0, Y0] = H0, [H0, X0] = 2X0, [H0, Y0] = −2Y0.

Consider the inclusions (3.1). Z(G′×G′) ⊆ D(G/H) and Z(G′×G′) ∼= Z(G′)⊗
Z(G′) (it is a standard fact from algebra, that the center of a tensor product
of algebras is the tensor product of the centers), and in this specific case of
G′ = SL(2,R), the center Z(G′) is generated by the Casimir element , which
relative the the basis for sl(2,R) above takes the following form: ω = 1

2H
2
0 +

X0Y0+Y0X0 = 1
2H

2
0 +H0+2X0Y0. Consequently, we have at least two generators

for the algebra D(G/H), namely ω⊗1 and 1⊗ω. Furthermore, it can be checked
that the element

Ω := 1
2H0 ⊗H0 +X0 ⊗ Y0 + Y0 ⊗X0

is actually an element of D(G/H) ∼= U(g′C ⊕ g′C)H without being an element of
the center Z(G′ × G′) (it doesn’t commute with H0 ⊗ 1 for instance). In fact,
ω⊗1 and 1⊗ω and Ω constitute a basis for U(g′C⊕g′C)H2 . Thus we have a third
generator and in particular the first inclusion in (3.1) is strict. Also the other
inclusion is strict: X0⊗Y 2

0 for example, is an element in D(G′×G′) = U(g′C⊕g′C)
which is not in U(g′C⊕g′C)H = U(g′C⊕g′C)h (it is not ad(H0)-invariant - in order
to be so, the sum of the powers of X0 should equal the sum of the powers of
Y0).
That leaves us the following question: are there any more generators for

D(G/H) other than ω ⊗ 1, 1 ⊗ ω and Ω? The answer turns out to be no, as
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we now explain. First, note that so(4) ∼= su(2)⊕ su(2) and hence by complexi-
fication sl(2,C)⊕ sl(2,C) ∼= so(4,C). Thus U(sl(2,C)⊕ sl(2,C)) ∼= U(so(4,C)).
Furthermore sl(2,C) ∼= su(2)C ∼= so(3,C). Thus we have

D(G/H) = U(g′C ⊕ g′C)hC = U(so(4,C))so(3).

This particular algebra has been studied in [4] and the statement is that it
is generated by Z(SO(4)) and by Z(SO(3)) (the centers of U(so(4,C)) and
U(so(3,C)) respectively). SO(4) has rank 2 and SO(3) has rang 1 and hence in
total there are 3 generators for D(G/H). Wrapping up:

Theorem 3.2. D(G/H) is a commutative algebra in 3 generators. Viewed as
a subalgebra of D(G′ × G′) ∼= D(G′) ⊗ D(G′), the generators are ω ⊗ 1, 1 ⊗ ω
and Ω.

One drawback of this viewpoint is that it depends on the specific realization
of G/H as G′ ×G′, which is non-canonical since we singled out the third com-
ponent. A slightly different and more invariant viewpoint is the following. For
any homogenous space G/H we have an algebra homomorphism

p : DH(G) −→ D(G/H)

given by (p(D)f)◦p = D(f ◦p) where p : G −→ G/H is the projection and where
DH(G) is the algebra of differential operators which are left G-invariant and
right H-invariant (this algebra is isomorphic to U(gC)H). In particular we can
restrict p to Z(G) ⊆ DH(G) and study how the generators of Z(G) are mapped
to D(G/H). Both algebras are abelian in 3 generators, so if we can show that
it maps generators to generators, it follows that it is an algebra isomorphism.
The identification of D(G/H) with Z(G′ ×G′ ×G′) is more canonical than the
identification with U(g′C ⊕ g′C)h.
To formalize this, let ϕ : G/H

∼−−→ G′ × G′ be the G-equivariant diffeomor-
phism [g1, g2, g3] 7−→ (g1g

−1
3 , g2g

−1
3 ). The induced map on algebras of differential

operators ϕ : D(G/H) −→ DG′(G′ ×G′) given by

(ϕ(D)f)(g1, g2) = D(f ◦ ϕ)(ϕ−1(g1, g2))

is a realization of the identification D(G/H) ∼= DG′(G′ ×G′). Composing p and
ϕ we obtain the map ϕ ◦ p : Z(G′×G′×G′) −→ DG′(G′×G′) which is given by

(ϕ ◦ p)(D)f(ϕ(g0H)) = D(f ◦ ϕ ◦ p)(g0). (3.2)
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Note how the right-hand side makes sense, for any D ∈ D(G), whereas the left-
hand side only makes sense as an invariant differential operator on functions on
G/H if D ∈ DH(G).
We want to calculate the action of this map on the three generators ω⊗1⊗1,

1 ⊗ ω ⊗ 1 and 1 ⊗ 1 ⊗ ω of Z(G′ × G′ × G′) ∼= Z(G′) ⊗ Z(G′) ⊗ Z(G′). It is
not hard to see that ω ⊗ 1 ⊗ 1 and 1 ⊗ ω ⊗ 1 are mapped to ω ⊗ 1 and 1 ⊗ ω
respectively. So the only problem is calculating (ϕ ◦ p)(1⊗ 1⊗ ω). We calculate
the right hand side of (3.2) term by term. First 1⊗ 1⊗H2

0 :

(1⊗ 1⊗H2
0 )(f ◦ ϕ ◦ p)(g1, g2, e)

=
∂2

∂t∂s

∣∣∣∣
(0,0)

(f ◦ ϕ ◦ p)(g1, g2, exp((s+ t)H0))

=
∂2

∂t∂s

∣∣∣∣
(0,0)

f(g1 exp(−(s+ t)H0), g2 exp(−(s+ t)H0)).

For a function h of the form (s, t) 7−→ f(s+ t, s+ t) we get from the chain rule

∂2h

∂t∂s
(0, 0) =

∂2f

∂x2
1

(0, 0) +
∂2f

∂x2
2

(0, 0) + 2
∂2f

∂x1∂x2
(0, 0).

Applied to the expression above we get

(1⊗ 1⊗H2
0 )(f ◦ ϕ ◦ p)(g1, g2, e) = (H2

0 ⊗ 1 + 1⊗H2
0 + 2H0 ⊗H0)f(g1, g2)

in other words (ϕ ◦ p)(1⊗ 1⊗H2
0 ) = H2

0 ⊗ 1 + 1⊗H2
0 + 2H0 ⊗H0.

Then what about (ϕ ◦ p)(1⊗ 1⊗X0Y0)?

(1⊗ 1⊗X0Y0)(f ◦ ϕ ◦ p)(g1, g2, e)

=
∂2

∂t∂s

∣∣∣∣
(0,0)

(f ◦ ϕ ◦ p)(g1, g2, exp(tX0) exp(sY0))

=
∂2

∂s∂t

∣∣∣∣
(0,0)

f(g1 exp(−sY0) exp(−tX0), g2 exp(−sY0) exp(−tX0)).

The t-derivative must be (−X0⊗ 1− 1⊗X0)f(g1 exp(−sY0), g2 exp(−sY0)) and
the s-derivative of this must be

(−Y0 ⊗ 1− 1⊗ Y0)(−X0 ⊗ 1− 1⊗X0)f(g1, g2)

in other words

(ϕ ◦ p)(1⊗ 1⊗X0Y0) = Y0X0 ⊗ 1 + Y0 ⊗X0 +X0 ⊗ Y0 + 1⊗ Y0X0
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and similarly

(ϕ ◦ p)(1⊗ 1⊗ Y0X0) = X0Y0 ⊗ 1 +X0 ⊗ Y0 + Y0 ⊗X0 + 1⊗X0Y0.

From these formulas we conclude that

(ϕ ◦ p)(1⊗ 1⊗ ω) = ω ⊗ 1 + 1⊗ ω + 2Ω (3.3)

and this in combination with 1⊗ω and ω⊗ 1 is a complete set of generators for
DG′(G′ ×G′). Since ϕ is already an algebra homomorphism we conclude

Theorem 3.3. The map p : Z(G′ × G′ × G′) −→ D(G/H) is an algebra iso-
morphism.

In the previous chapter, we noted that there were only two triple spaces
(known so far) which have commuting algebras of invariant differential opera-
tors, namely triple spaces with G′ = SL(2,R) and G′ = SOe(3, 1).
For the second space, we have

D(G/H) = U(so(4,C)⊕ so(4,C))so(4)

and as so(4) ∼= so(3)⊕ so(3), we can write this as

U(so(3,C)⊕4)so(3)⊕so(3)

where (X,Y ) ∈ so(3)⊕ so(3) =: h sits inside so(4,C)⊕ so(4,C) ∼= so(3,C)⊕4 as
(X,Y,X, Y ). We can also embed so(3)⊕so(3) in so(4,C)⊕so(4,C) ∼= so(3,C)⊕4

as (X,Y ) 7−→ (X,X, Y, Y ), i.e. a componentwise embedding of so(3) into so(4)
(as the diagonal). We call this subalgebra h′. It is clear that the Lie algebra
automorphism so(3,C)⊕4 −→ so(3,C)⊕4 which flips the second and third com-
ponent, maps h to h′ and thus gives an isomorphism

D(G/H) ∼= U(so(4,C)⊕ so(4,C))h
′
.

By (1.15) (in the special case where δ1 and δ2 are both the trivial representa-
tion) we get that the space ofK1×K2-invariant vectors in a tensor product is the
tensor product of the spaces of K1 and K2-invariant vectors for the individual
representations. We can apply this to the above setting with K1 = K2 = SO(3)
acting on the finite-dimensional spac U(so(4,C))N (the set of elements of degree
at most N). Then we get

U(so(4,C)⊕ so(4,C))h
′

2N = [U(so(4,C))N ⊗ U(so(4,C))N ]SO(3)×SO(3)

∼= U(so(4,C))
SO(3)
N ⊗ U(so(4,C))

SO(3)
N .
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As this holds for all N , we conclude

U(so(4,C)⊕ so(4,C))h
′ ∼= U(so(4,C))SO(3) ⊗ U(so(4,C))SO(3)

and hence:

Theorem 3.4. For the triple space (G′ ×G′ ×G′)/G′ with G′ = SOe(3, 1), it
holds that

D(G′ ×G′ ×G′)/G′) ∼= D(SL(2,R)×3/SL(2,R))⊗2

hence the algebra of invariant differential operators is a commutative algebra in
6 generators.

This shows, however, that the identification D(G/H) ∼= Z(G) which was true
for the SL(2,R)-triple space, is not true in general, since Z(SOe(3, 1)×3) is an
abelian algebra in only 3 generators.

3.2 Action on Matrix Coefficients
Now we return to the triple space G/H with G′ = SL(2,R). Next goal is to see
how invariant differential operators act on irreducible matrix coefficients and to
show that they are eigenfunctions for the invariant differential operators. This
is analogous to the result for reductive symmetric spaces, where it was shown
by van den Ban in [2], Theorem 1.5.

Theorem 3.5. For any D ∈ D(G/H) and any π ∈ ĜH , then
DMη,v = Mπ(D)η,v = χπ(D)Mη,v (3.4)

holds for all v ∈ H∞π and η ∈ H−∞,Hπ where χπ is the infinitesimal character of
π.

Proof. The entire proof is based on the fact, that we can identify D(G/H)
with Z(G) as shown in the previous section. For any such D we know that
π(D) : H∞π −→ H∞π is just multiplication by χπ(D), the infinitesimal character
evaluated in D. By duality, π(X) acts by the same scalar on H−∞,Hπ . This
explains the last identity in (3.4). To verify the first, we view Mη,v as a right
H-invariant function on G and compute for X ∈ g:

(XMη,v)(g) =
d

dt

∣∣∣∣
t=0

η(π(exp(−tX)g−1)v) = (Xη)(π(g−1)v) = MXη,v(g).

This shows the identity.
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In general, if hC is a Cartan subalgebra of gC, we recall the Harish-Chandra
isomorphism (1.9)

γ : Z(G)
∼−−→ U(hC)W

from Z(G) onto Weyl-invariant polynomials over h∗C. For any λ ∈ h∗C we get a
character of Z(G) by composing it with the Harish-Chandra isomorphism

χλ(D) := λ(γ(D))

and all characters of Z(G) are of this form (cf. Theorem 1.17).
Getting back to SL(2,R): the holomorphic discrete series representation Tm

has Harish-Chandra parameter m+ 1 (the m is the Blattner parameter, i.e. the
lowest K-weight for the representation) and the anti-holomorphic discrete series
representation T−n has Harish-Chandra parameter −n− 1. Thus

χTm(D) = γ(D)(m± 1)1.

As the infinitesimal character satisfies

χπ1×π2
(D1 ⊗D2) = χπ1

(D1) + χπ2
(D2)

we get in general

χTn×Tm×Tk(D1 ⊗D2 ⊗D3) = γ(D1)(n± 1) + γ(D2)(m± 1) + γ(D3)(k ± 1).

In the following example we verify the above considerations by a direct com-
putation.

Example 3.6. Let us confirm these deductions by a concrete hands-on example
where we consider the representation T−n×T−m×Tn+m which is a discrete series
representation for G/H, since Tn+m sits as a direct summand in T ∗−n ⊗ T ∗−m =
Tn⊗Tm. From [27] we know that HomG′(Tn+m, Tn⊗Tm) is 1-dimensional. From
the proof in [27] of the decomposition of Tn⊗Tm we know that both Tn+m and
Tn⊗Tm have unique (up to a scalar) K-weight vectors of weight n+m, namely
ψ0
n+m and ψ0

n ⊗ ψ0
m respectively. Thus any S ∈ HomG′(Hn+m,Hn⊗̂Hm) must

map ψ0
n+m to a multiple of ψ0

n ⊗ ψ0
m. We scale S such that it actually maps

ψ0
n+m to ψ0

n ⊗ ψ0
m.

Under the isomorphism (2.8)

Φ : HomG′(Hn+m,Hn⊗̂Hm)
∼−−→ HomG(H−n⊗̂H−m⊗̂Hn+m, L

2(G/H)),

1Here the ± should be interpreted so that it is + when m > 0 and − when m < 0.
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Φ(S) maps ψ0
−n ⊗ ψ0

−m ⊗ ψ0
n+m to the following function in L2(G/H):

Φ(S)(ψ0
−n ⊗ ψ0

−m ⊗ ψ0
n+m)[g1, g2, g3]

=
(
T−n(g−1

1 )ψ0
−n ⊗ T−m(g−1

2 )ψ0
−m
)
S(Tn+m(g−1

3 )ψ0
n+m).

By the identification G/H ∼= G′ ×G′, (g1, g2) ∼ [g1, g2, e] it suffices to look at

f(g1, g2) := Φ(S)(ψ0
−n ⊗ ψ0

−m ⊗ ψ0
n+m)(g1, g2)

=
[
T−n(g−1

1 )ψ0
−n ⊗ T−m(g−1

2 )ψ0
−m]S(ψ0

n+m)

= [T−n(g−1
1 )ψ0

−n ⊗ T−m(g−1
2 )ψ0

−m](ψ0
n ⊗ ψ0

m)

= (T−n(g−1
1 )ψ0

−n)(ψ0
n) · (T−m(g−1

2 )ψ0
−m)(ψ0

m).

We know that ψ0
−n = ψ0

n, and

T−n(g−1
1 )ψ0

n = Tn(g−1
1 )ψ0

n,

and we know how this acts on the vector ψ0
n, namely by

Tn(g−1
1 )ψ0

n(ψ0
n) = 〈Tn(g−1

1 )ψ0
n, ψ

0
n〉.

Thus we end up with the function

f(g1, g2) = 〈Tn(g−1
1 )ψ0

n, ψ
0
n〉〈Tm(g−1

2 )ψ0
m, ψ

0
m〉.

Now, let us see how a differential operator of the form X⊗1 acts on this function

(X ⊗ 1)f(g1, g2) =
d

dt

∣∣∣∣
t=0

〈Tn(exp(−tX)g−1
1 )ψ0

n, ψ
0
n〉〈Tm(g−1

2 )ψ0
m, ψ

0
m〉

= 〈−Tn(X)Tn(g−1
1 )ψ0

n, ψ
0
n〉〈Tm(g−1

2 )ψ0
m, ψ

0
m〉

= 〈Tn(g−1
1 )ψ0

n, Tn(X)ψ0
n〉〈Tm(g−1

2 )ψ0
m, ψ

0
m〉.

Thus the X-action is moved to the other side of the bracket. Acting with Ω =
1
2T ⊗ T +X+ ⊗X− +X− ⊗X+ (written in the basis (1.21)) we get

(Ωf)(g1, g2) = − 1
2 〈Tn(g−1

1 )ψ0
n, Tn(T )ψ0

n〉〈Tm(g−1
2 )ψ0

m, Tm(T )ψ0
m〉

+ 〈Tn(g−1
1 )ψ0

n, Tn(X+)ψ0
n〉〈Tm(g−1

2 )ψ0
m, Tm(X−)ψ0

m〉
+ 〈Tn(g−1

1 )ψ0
n, Tn(X−)ψ0

n〉〈Tm(g−1
2 )ψ0

m, Tm(X+)ψ0
m〉
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and since the two last terms are 0 and Tn(T )ψ0
n = inψ0

n we get

Ωf = 1
2nmf.

This constant is in agreement with the general considerations above: from (3.3)
we can identify Ω with

1

2
(1⊗ 1⊗ ω − ω ⊗ 1⊗ 1− 1⊗ ω ⊗ 1).

In [21] p. 220 the action of the Harish-Chandra isomorphism on the Casimir
element of SL(2,R) is calculated to be

γ(ω) = 1
2h

2 − 1
2

and thus we get

χT−n×T−m×Tn+m
(Ω) = 1

2 (γ(ω)(n+m+ 1)− γ(ω)(−n− 1)− γ(ω)(−m− 1))

= 1
2

(
( 1

2 (n+m+ 1)2 − 1
2 )− ( 1

2 (n+ 1)2 − 1
2 )− ( 1

2 (m+ 1)2 − 1
2 )
)

= 1
2nm.

3.3 Finite-Dimensional Spherical Representations
Sometimes it can be beneficial to be able to embed a homogenous space G/H
into a finite-dimensional vector space, giving a concrete model of the space. This
is possible if the group G admits a so-called strongly H-spherical representation:

Definition 3.7. Let G be a Lie group and H a subgroup. A representation
(π,Hπ) of G is called H-spherical if there exists a non-trivial vector v ∈ Hπ

such that π(h)v = v for all h ∈ H. The space of such vectors is denoted HH
π .

The representation is called strongly H-spherical if there exists v ∈ HH
π for

which the fixed-point group {g ∈ G | π(g)v = v} equals H.

Clearly, if π is a finite-dimensional strongly H-spherical representation of G,
and v a vector with fixed-point group H, then clearly the map g 7−→ π(g)v
descends to an embedding G/H −→ Vπ, providing us with a model of G/H in
Vπ.
In this section we determine the finite-dimensional irreducible H-spherical

representations of G. The set of these we denote by Ĝfd
H (even though they are

not unitary). But first, let’s recall the corresponding for results for Riemannian
symmetric spaces (Helgason).
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By Weyl’s unitary trick, all finite-dimensional irreducible representations of
a semisimple group G (for which the complexification exists and is simply con-
nected) are in 1-1 correspondence with irreducible finite-dimensional complex
gC-modules, which are again classified by their highest weights. To be more pre-
cise, let hC be a Cartan subalgebra of gC and let Σ(gC, hC) be the corresponding
root system. An element λ ∈ h∗C is called dominant , if

〈λ, α〉 ≥ 0

for all α ∈ Σ+(gC, hC), and λ is called algebraically integral if

2
〈λ, α〉
〈α, α〉 ∈ Z

for all α ∈ Σ(gC, hC). However, by Proposition 4.15 in [21] it suffices to show this
condition for the simple roots only. Irreducible finite-dimensional gC-modules
are - through their highest weights - in bijective correspondence with dominant
integral elements. Helgason sought out the ones, corresponding to K-spherical
representations of G (cf. [22], Thm. 8.49):

Theorem 3.8 (Helgason). Let G be as above, and g = k ⊕ s the Cartan
decomposition and h = t⊕a a maximally non-compact Cartan subalgebra (a ⊆ s
is maximally abelian and t ⊆ Zk(a) is maximally abelian). The K-spherical
representations of G are the πλ’s for which the highest weight λ ∈ hC of the
corresponding gC-module satisfies

1) λ|t = 0,

2) 〈λ|a,β〉〈β,β〉 ∈ Z for all restricted roots β ∈ Σ(g, a).

The conditions can be paraphrased as follows: λ is a functional on a for which
1
2λ is an integral element for the root system Σ(g, a).
For any root system Σ, with a given set of simple roots {α1, . . . , αn} we can

define fundamental weights ω1, . . . , ωn by the requirement

2
〈ωi, αj〉
〈αj , αj〉

= δij .

These are clearly integral elements and actually the Z-span of them equals the
set of integral elements. If the fundamental weights are defined relative to the
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root system Σ(g, a) from Helgason’s theorem, it is clear that the K-spherical
representations are parametrized by the lattice

ΛK := Z(2ω1) + · · ·+ Z(2ωn).

In the special case of sl(2,R), (since it is split), a := R
(

1 0
0 −1

)
is a maxi-

mally non-compact Cartan subalgebra. The roots can be identified with ±2 (in

the sense, that they are the functionals on a mapping
(

1 0
0 −1

)
to ±2). From

that it is clear that the fundamental weight is 1, and hence that the dominant
integral weights are just Z≥0 and for each such k we have a highest weight rep-
resentation πk of dimension k + 1. π0 is the trivial one and π1 is the defining
representation. Note that these representations are self-dual: π∗ = π. The finite-
dimensional irreducible representations of the triple product group SL(2,R)×3

are parametrized by triples (n,m, k) with n,m, k ∈ Z≥0.

Theorem 3.9. The set Ĝfd
H is in 1-1 correspondence with the lattice ΛH :=

N0µ1 + N0µ2 + N0µ3 where µ1 = (1, 1, 0), µ2 = (1, 0, 1) and µ3 = (0, 1, 1).

Proof. From the discussion in Example 2.14 we know exactly which finite-
dimensional irreducible representations have non-trivial H-fixed vectors, namely
πn × πm × πk where |n−m| ≤ k ≤ n+m and where k has the same parity as
n+m.
A general element in ΛH is of the form (λ1, λ2, λ3) = (x+ y, x+ z, y + z) for

positive integers x, y and z, and it is quite easy to see that this triple satisfies
the double inequality above. Moreover λ1 + λ2 − λ3 = 2x, i.e. λ3 has the same
parity as λ1 + λ2. This shows that any element in ΛH is the highest weight of
an H-spherical finite-dimensional irreducible representation.
On the other hand given a triple (λ1, λ2, λ3) satisfying |λ1−λ2| ≤ λ3 ≤ λ1+λ2,

then

x :=
1

2
(λ1 + λ2 − λ3), y :=

1

2
(λ1 − λ2 + λ3), z :=

1

2
(−λ1, λ2, λ3)

are actually integers and (λ1, λ2, λ3) = x(1, 1, 0) + y(1, 0, 1) + z(0, 1, 1), i.e.
(λ1, λ2, λ3) ∈ ΛH .

Combining this theorem with the theorem of Helgason we get the highest
weights corresponding to representations having both H- and K-fixed vectors:
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Corollary 3.10. The finite-dimensional irreducible representations having both
K-invariant vectors and H-invariant vectors are parametrized by the weight
lattice

ΛK,H := N0ν1 + N0ν2 + N0ν3,

where ν1 = 2µ1 = (2, 2, 0), ν2 = 2µ2 = (2, 0, 2) and ν3 = 2µ3 = (0, 2, 2).

Note however, that none of the H-spherical irreducible representations are
strongly H-spherical: the condition that k should have the same parity as n +
m excludes the possibility that they are all odd. Assume n to be even, then
(πn × πm × πk)(−1, 1, 1) is the identity, and hence any H-fixed vector is also
fixed under (−1, 1, 1) which is not in H.

Example 3.11. Here is an example of a (necessarily non-irreducible) strongly
H-spherical representation: π := (π1×π∗1×π0)⊕(π0×π1×π∗1) acting on (Vπ1

⊗
V ∗π1
⊗C)⊕ (C⊗Vπ1

⊗V ∗π1
). Under the isomorphism Vπ1

⊗V ∗π1
∼= HomC(Vπ1

, Vπ1
)

the representation (π1×π∗1)(g1, g2) corresponds to the representation π′(g1, g2)T =
π1(g2) ◦ T ◦ π1(g−1

1 ). The group elements fixing the identity in HomC(Vπ1 , Vπ1)
are exactly (g, g). Now let v be the element in Vπ1 ⊗ V ∗π1

corresponding to the
identity map. Then (v ⊗ 1, 1 ⊗ v) is an element in the representation space of
π, and we note that (π1 × π∗1 × π0)(g1, g2, g3) fixes v ⊗ 1 if and only if g1 = g2.
Similarly, (π0 × π1 × π∗1)(g1, g2, g3) fixes 1 ⊗ v if and only if g2 = g3. All in all
π(g1, g2, g3) fixes (v ⊗ 1, 1 ⊗ v) if and only if g1 = g2 = g3. In other words, the
fixed point group of that element is exactly equal to H.

3.4 The Polar Decomposition
In the theory of symmetric spaces root systems are used to define regular el-
ements. However, in our case, we don’t have a root system at hand. Well, of
course we do have Σ(g, a), but the problem with this root system is, that it has
nothing to do with the subgroup H (unlike in the symmetric case, where one
considers the root systems Σ(g, aq) or Σ(g+, aq) which depend on σ). There-
fore we begin this section by giving an alternative characterization of regular
elements in the Riemannian symmetric case and use this as motivation for the
definition of regular elements in our case. We then set out to determine the set
of such elements.
But first, we consider the Riemannian symmetric case: The set of regular

elements of a is defined as

areg := a \
⋃

α∈Σ(g,a)

kerα.
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Recall that m equals Zk(a) by definition.

Proposition 3.12. An element H ∈ a is regular if and only if (Ad(expH)k) ∩
k = m which on the other hand is equivalent to Ad(expH)k + a + k = g.

Proof. Let a := expH. We note first, that m always sits in (Ad(a)k) ∩ k since
Ad(a)X = X for X ∈ m. But of course, the intersection Ad(a)k ∩ k may be
bigger (for instance if a = e). However, for dimension reason, the only case
in which Ad(expH)k + a + k can fill up g, is when this intersection is minimal:
from the Iwasawa decomposition and root space decomposition, we easily obtain
dim k = dim n + dimm, therefore the dimension of (Ad(a)k) + a + k is at most

2 dim k + dim a− dimm = dim g.

which is only attained in the case of minimal intersection. This verifies the last
equivalence.
Assume now that α(H) = 0 for some root α and let Xα 6= 0 be a root vector.

Then obviously Xα + θXα ∈ k and Ad(a)Xα = Xα and Ad(a)(θXα) = θXα

(since θXα = X−α - a root vector for the root −α). Thus Xα+θXα ∈ Ad(a)k as
well. Clearly this is not in m. In other words if H is not regular, the intersection
is non-minimal.
For the converse implication, we note that

k = m + {X + θX |X ∈ n}
for dimension reasons (the formula for dim k above). Now we assume (Ad(a)k)∩k
to contain an element X which is not in m. Since it is in particular in k we can
assume it of the form X0 +

∑
α∈Σ+(g,a)(Xα + θXα) with X0 ∈ m and Xα an

element of gα for which at least one Xα is non-zero. Note that θXα ∈ g−α. Then

Ad(a)X = X0 +
∑

α∈Σ+(g,a)

(exp(ad(H))Xα + exp(ad(H))θXα)

= X0 + (eα(H)Xα + e−α(H)θXα)

and since this is also in k, we must have

0 =
∑

α∈Σ+(g,a)

[(eα(H)Xα + e−α(H)θXα)− θ(eα(H)Xα + e−α(H)θXα)]

=
∑

α∈Σ+(g,a)

2 sinh(α(H))Xα −
∑

α∈Σ+(g,a)

2 sinh(α(H))θXα

and since the root spaces gα are linearly independent, we get α(H) = 0 for all
α where Xα 6= 0. Hence H is not regular. This proves the first equivalence.
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In the semisimple symmetric case, a similar result holds. Recall from Section
1.10 that we defined areg

q to be the complement in aq of the union of kernels
of roots in the smaller root system Σ(g+, aq). Then the following holds (cf. [31]
Lemma 1.5):

Proposition 3.13. If a ∈ Areg
q , then there is a decomposition

g = Ad(a)k + aq + h.

Now, let as usual K be a threefold product of K ′ = SO(2). From our study
of polar decompositions in the Sections 2.1 and 2.2, we know that we need A =
A1×A2×A3 to be such that two of the groups are equal and orthogonal to the
other, in order to obtain a polar decomposition with minimal non-uniqueness.
The condition is fulfilled for A = A1 ×A2 ×A1 where

A1 =
{(

et 0
0 e−t

) ∣∣∣ t ∈ R
}

= exp
(
R
(

1 0
0 −1

))

A2 =
{(cosh t sinh t

sinh t cosh t

) ∣∣∣ t ∈ R
}

= exp
(
R
(

0 1
1 0

))
= SOe(1, 1)

and A = A2 × A1 × A2. The propositions above and the fact that m = {0}
motivates the following definition

Definition 3.14. An element a ∈ A is called regular if Ad(a)k ∩ (a ⊕ h) is
non-trivial. An element in A which is not regular is called singular.

The main result in this subsection is the determination of the regular elements
as well as a “regular” polar decomposition of G and an explicit formula for the
Haar measure, when pulled back along the decomposition. Some notation: let
t = (t1, t2, t3) and define

at :=
((cosh t1 sinh t1

sinh t1 cosh t1

)
,

(
et2 0
0 e−t2

)
,

(
cosh t3 sinh t3
sinh t3 cosh t3

))

which is a typical element in A (in fact t 7−→ at is the exponential map a ∼=
R3 ∼−−→ A).

Proposition 3.15. The element at is regular, precisely when t1 6= t3. Equiva-
lently, at is singular precisely when t1 = t3.

Note that the set of singular elements is a hypersurface in A.
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Proof. at being of the form above, and Xθ ∈ k of the form

Xθ =
(( 0 −θ1

θ1 0

)
,

(
0 −θ2

θ2 0

)
,

(
0 −θ3

θ3 0

))

we calculate

Ad(at)Xθ =
(
θ1

(
sinh(2t1) − cosh(2t1)
cosh(2t1) − sinh(2t1)

)
, θ2

(
0 −e2t2

e−2t2 0

)
,

θ3

(
sinh(2t3) − cosh(2t3)
cosh(2t3) − sinh(2t3)

))
. (3.5)

A general element of a⊕ h is of the form

(( a b+ α
c+ α −a

)
,

(
a+ β b
c −a− β

)
,

(
a b+ γ

c+ γ −a

))
(3.6)

for some a, b, c, α, β, γ ∈ R. The question that we ask is: for which t is it possible
to bring Ad(at)Xθ on the form (3.6) (by choosing θ properly)? By comparing
the diagonal elements in the first and the third matrix we get the equation

θ1 sinh(2t1) = θ3 sinh(2t3).

The difference between the antidiagonal elements in all three matrices should
also be the same, i.e.

θ1 cosh(2t1) = θ2 cosh(2t2) = θ3 cosh(2t3).

All in all we get the following system of equations

θ1 sinh(2t1)− θ3 sinh(2t3) = 0

θ1 cosh(2t1)− θ3 cosh(2t3) = 0

θ1 cosh(2t1)− θ2 cosh(2t2) = 0

in the variables θi (the ti’s are fixed). The determinant of this equation system
is (use a hyperbolic addition formula) cosh(2t2) sinh(2(t3 − t1)). Thus if this
determinant is non-zero, i.e. if t1 6= t3, then we have only the trivial solution
θ1 = θ2 = θ3 = 0 and the overlap Ad(at)k ∩ (a⊕ h) is trivial.
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If t1 = t3, we get a non-trivial solution θ2 = 1 and θ1 = θ3 = cosh(2t2)
cosh(2t1) , it is

easy to see that Ad(at)Xθ is in a⊕ h with

a = β = cosh(2t2) tanh(2t1)

b = −e2t2

c = e−2t2

α = γ1 = − cosh(2t2) + e2t2

This proves the proposition.

By areg we denote the set of regular elements in a, and similarly by Areg :=
exp(areg) = {(a1, a2, a3) | a1 6= a3} the set of regular elements in A. Denote by
G+ the set KAregH inside G and let X+ be the image of G+ in G/H.
It is clear from the proposition that Areg consists of two connected com-

ponents. These will serve as our “Weyl chambers”. We now fix the chamber
A+ := {at | t1 > t3}.
Theorem 3.16. It holds that G+ = {(g1, g2, g3) ∈ G|g1g

−1
3 /∈ K ′}. Hence G+ is

open and dense in G and X+ is open and dense in G/H. Put M := {±(e, e, e)}.
Then the map

Φ : K/M ×A+ ∼−−→ X+

given by (kM, a) 7−→ kaH is a diffeomorphism.

Proof. From Theorem 2.4 we know that the pair (G,H) is polar, i.e. we have
G = KAH. Hence for each triple (g1, g2, g3) we can find k1, k2, k3 and a1, a2,
a3 as well as h = (g0, g0, g0) such that

g1 = k1a1g0

g2 = k2a2g0

g3 = k3a3g0

from which we see that g1g
−1
3 = k1a1a

−1
3 k−1

3 . Obviously this is in K ′ if and only
if a1 = a3 (the “if” statement is trivial and the “only if” statement follows from
uniqueness of the A-part in the K ′AK ′-decomposition).
Next we check that Φ is injective. For this we need the fact, that (SL(2,R), A2)

is a symmetric pair (the symmetric space SL(2,R)/SOe(1, 1) is locally isomor-
phic to the hyperbolic space SOe(2, 1)/SOe(1, 1)). Hence we have a decompo-
sition

G′ = K ′A1A2. (3.7)
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As WK∩H = {e} (cf. Example 1.48: SL(2,R)/SOe(1, 1) is locally isomorphic to
SOe(2, 1)/SOe(1, 1) - in particular anything that has to do with root spaces and
Weyl groups is the same for these two spaces) and ZK′∩A2(A1) = {e} (even K ′∩
A2 = {e}) the K ′A1A2-decomposition of any element in G′ is actually unique
(the irregular elements are in the set K ′A1, i.e. a2 = e, and decompositions in
K ′A1 are unique, since K ′ ∩A1 = {e}).
In the first of the equations above we eliminate g0, insert it in the following

two and multiply the first equation by k1 to obtain

k2a2a
−1
1 = g2g

−1
1 k1

k3a3a
−1
1 k−1

1 = g3g
−1
1 .

In the second equation (note, that a1, a3 ∈ A2) we now fix k1, k3 and a :=
a3a
−1
1 according to the K ′A2K

′-decomposition of SL(2,R). k1 is unique up to
multiplication by an element in M ′ = {±e} (cf. Theorem 7.39 in [22]), and a
is unique up to inverse. In the first equation we fix k2, a2 ∈ A1 and a1 ∈ A2

according to the decomposition (3.7). As noted above, these choices are unique.
Now we can either pick a3 = aa1 or a3 = a−1a1 and since a 6= e, we see that
we can pick a3 in a unique way such that (a1, a2, a3) ∈ A+. We also see, that
if we change k1 to −k1 we have also to change k2 to −k2 and k3 to −k3. In
other words k = (k1, k2, k3) is unique up to M (which happens to be equal to
ZK∩H(A)).
To check that Φ, which is already smooth and bijective, is a diffeomorphism,

it suffices to calculate the determinant of the differential

dΦ(kM,at) : T(kM,at)(K/M ×A) −→ TkatHG/H.

We identify the tangent space T(kM,at)(K/M ×A+) = TkMK/M × TatA+ with
k⊕ a via the identification of X ∈ k and Y ∈ a with

d

ds

∣∣∣∣
s=0

k exp(sX)M resp.
d

ds

∣∣∣∣
s=0

at exp(sY ).

and if we identify G/H with G′ ×G′, we may identify TgHG/H with g′ ⊕ g′.
To calculate the determinant, we first fix orthonormal bases for k⊕a and g′⊕g′,

determine the matrix of the differential w.r.t. this basis and then calculate the
determinant. Now put

X :=

(
0 −1
1 0

)
, Y :=

(
1 0
0 −1

)
, Z :=

(
0 1
1 0

)
.
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Then

{(X, 0, 0), (0, X, 0), (0, 0, X)} and {(Z, 0, 0), (0, Y, 0), (0, 0, Z)}

are orthonormal bases for k and a respectively and

{(X, 0), (Y, 0), (Z, 0), (0, X), (0, Y ), (0, Z)}

is an orthonormal basis for g′⊕g′. The matrix representation of dΦ(kM,at) w.r.t.
these bases is:

cosh(2(t1 − t3)) 0 −1 0 0 0
− sinh(2(t1 − t3)) cos(2θ3) 0 0 − sin(2θ3) 0 sin(2θ3)
− sinh(2(t1 − t3)) sin(2θ3) 0 0 cos(2θ3) 0 − cos(2θ3)

0 cosh(2t2) cosh(2t3) −1 0 sinh(2t3) 0
0 f1(t2, t3, θ3) 0 0 cosh(2t3) cos(2θ3) sin(2θ3)
0 f2(t2, t3, θ3) 0 0 cosh(2t3) sin(2θ3) − cos(2θ3)


where

f1(t2, t3, θ3) := − sinh(2t2) sin(2θ3) + sinh(2t3) cosh(2t2) cos(2θ3)

f2(t2, t3, θ3) := sinh(2t2) cos(2θ3) + sinh(2t3) cosh(2t2) sin(2θ3).

The determinant of this matrix can be calculated to be

det(dΦ(kM,at)) = sinh(2(t1 − t3)) cosh(2t2)

which is non-zero for t1 6= t3, in particular when at ∈ A+. This proves that Φ is
a diffeomorphism.

We can use Φ to pull-back the invariant measure µ on G/H toK/M×A+ (the
image measure of µ under Φ−1). From the transformation theorem for integrals,
it is known that

Φ∗(µ) = |det(DΦ)|dkda
and hence from the computation in the proof above we get

Corollary 3.17. For any integrable function f on G/H we have
∫

G/H

f(gH)dµ(gH) =

∫

K/M

∫

A+

f(Φ(kM, at)) sinh(2(t1 − t3)) cosh(2t2)dkdat.

One thing to note is that the determinant of the Jacobian does not depend
on k. This is not surprising as can be seen as follows: Á priori we have

Φ∗(µ) = J(k, a)dkda
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but since Φ−1(k0gH) = (k0, e)Φ
−1(gH) we get

`∗(k0,e)Φ
∗µ = Φ∗`∗k0µ = Φ∗µ

and as `∗(k0,e)(J(k, a)dkda) = J(k−1
0 k, a)dkda we conclude that J must be k-

independent.

3.5 Failure of Convexity
One of the important building blocks in the theory of symmetric spaces, is
the convexity theorem of Erik van den Ban (see [1]), the content of which is
as follows (see also Section 1.10): Let aq be a maximally abelian subspace of
s ∩ q and let a be a σ-stable maximally abelian subspace of s extending aq.
It has a decomposition a = (a ∩ h) ⊕ aq and we denote by Q : a −→ aq the
corresponding projection. Letting A := exp a and picking a positive system for
the root system Σ(g, a) we consider the corresponding Iwasawa decomposition
G = KAN . We denote by H : G −→ a the Iwasawa projection given uniquely
by g = k exp(H (g))n. The convexity gives a complete description of the image
of the map Fa : H −→ aq where a ∈ exp(aq) is fixed and Fa(h) := Q(H (ah)).
First, we will briefly describe the ingredients in the expression. We consider the

decomposition g = g+⊕g− where g+ := (k∩h)⊕(s∩q) and g− := (k∩q)⊕(s∩h)
are the plus and minus 1 eigenspaces of the involution σ ◦ θ. As (k∩ h)⊕ (s∩ q)
is the Cartan decomposition of g+, it follows that Σ(g+, aq) is a root system
and the corresponding Weyl group is denoted WK∩H . Moreover the root spaces
gα for α in the bigger root system Σ(g, aq) are invariant under σ ◦ θ, thus they
split in g+

α ⊕ g−α where g±α := gα ∩ g±. By Σ+
− we understand the set of positive

roots α ∈ Σ+(g, aq) for which g−α 6= 0. For each root α there is a corresponding
co-root Hα, uniquely determined by the condition that Hα is orthogonal to the
kernel of α and α(Hα) = 1. Let Γ(Σ+

−) be the cone

Γ(Σ+
−) :=

⊕

α∈Σ+
−

R≥0Hα.

The statement of the convexity theorem is now the following

Fa(H) = conv(WK∩H log a) + Γ(Σ+
−).

Here conv means the convex hull of the set WK∩H log a. We note, in particular,
that the cone is independent of a and equals Fe(H), and that the entire image
is a convex set.
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A similar result is not to be expected in this more general setting. The triple
SL(2,R)-space will provide us with a counterexample. As the subgroup A we
take

A :=
{(λ1 0

0 λ−1
1

)
,

(
λ2 0
0 λ−1

2

)
,

(
cosh t sinh t
sinh t cosh t

)}
.

This is the split component of the parabolic subgroup P = P ′1×P ′2×P ′3 where P ′1,

P ′2 and P ′3 are the parabolics leaving invariant the lines spanned by e1 :=

(
1
0

)
,

e2 :=

(
0
1

)
and e3 :=

√
2

2

(
1
1

)
respectively.

Now, let H : G −→ a = a1⊕ a2⊕ a3 denote the Iwasawa projection and pick
some a = (a1, a2, a3) ∈ A. We want the study the image of the map Fa : H −→ a
given by

Fa(g) := H (a1g, a2g, a3g)

(there is no aq to project down to: we need all three dimensions of A to obtain
a full KAH-decomposition of G).
First we need to compute the Iwasawa projection. Put

H0 :=

(
1 0
0 −1

)
and T :=

(
0 1
1 0

)

so that a = RH0 ⊕ RH0 ⊕ RT then if

a = (a1, a2, a3) = (

(
λ1 0
0 λ−1

1

)
,

(
λ2 0
0 λ−1

2

)
,

(
cosh t sinh t
sinh t cosh t

)
)

then (log ‖a1e1‖, log ‖a2e2‖, log ‖a3e3‖) = (λ1,−λ2, t) and if g = kiaini is the
Iwasawa decomposition of g according to G′ = K ′A′iN

′
i , then (since Niei = ei

and since ki is an orthogonal transformation)

H (g1, g2, g3) = (log(‖g1e1‖)H0,− log(‖g2e2‖)H0, log(‖g3e3‖)T ).

In particular, if g =

(
a b
c d

)
we get more explicitly

H (g, g, g) =
(

1
2 log(a2 +c2)H0,− 1

2 log(b2 +d2)H0,
1
2 log( 1

2 (a+b)2 + 1
2 (c+d)2)T

)
.

By some simple arithmetics we see that if ( 1
2 log(x)H0,− 1

2 log(y)H0,
1
2 log(z)T )

is in the image H (H) (i.e. equals H

(
a b
c d

)
for some a, b, c and d, then
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xy − 1 = (ab+ cd)2 ≥ 0 and we have z = 1
2 (a2 + b2 + c2 + d2) + ab+ cd which

equals either

z =
x+ y

2
+
√
xy − 1

or
z =

x+ y

2
−
√
xy − 1

depending on the sign of ab+ cd. We conclude that the image H (H) lies inside
the following set:

{( 1
2 log(x)H0,− 1

2 log(y)H0,
1
2 log( 1

2 (x+ y)±
√
xy − 1)T ) | x, y > 0, xy ≥ 1}.

Conversely, assume we have an element in the above set. We want to see that
it is of the form H (g, g, g) i.e. we want to solve the system of equations

x = a2 + c2

y = b2 + d2

1 = ad− bc

given x and y, subject to the constraints x, y > 0 and xy ≥ 1. This is equivalent

to finding two vectors
(
a
c

)
and

(
d
−b

)
satisfying that the lengths are

√
x and

√
y respectively, and that the inner product is 1. The last condition says that

the angle θ between these two vectors should satisfy

cos θ =
1√
xy

and the condition xy ≥ 1 gives that the right-hand side is ≤ 1. Thus the equation
can always be solved (albeit highly non-uniquely). We therefore conclude that
the image H (H) equals

{( 1
2 log(x)H0,− 1

2 log(y)H0,
1
2 log( 1

2 (x+ y)±
√
xy − 1)T ) | x, y > 0, xy ≥ 1}.

or equivalently

{(sH0, tH0,
1
2 log( 1

2 (e2s + e−2t)±
√
e2(s−t) − 1)T ) | s, t ∈ R, s− t ≥ 0}.

Obviously, this set is not convex, and it is not a cone as in the symmetric case.
The chances of obtaining a general convexity theorem don’t seem too good.
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3.6 Plancherel Decomposition
The first point here is to describe what happens when we take the outer product
of two principal series representations. We consider a semisimple group G with
maximally compact subgroup K and a parabolic subgroup P = MAN (not
necessarily minimal). If ξ ∈ M̂ and λ ∈ a∗C, we denote by (πξ,λ,Hξ,λ) the
corresponding principal series representation of G on Hξ,λ. If G′ is another
reductive group and P ′ = M ′A′N ′ a parabolic subgroup, then P × P ′ is a
parabolic subgroup of G×G′ with Langlands decomposition

P × P ′ = (M ×M ′)(A×A′)(N ×N ′).

The claim is that
πξ,λ × πξ′,λ′ = πξ×ξ′,(λ,λ′) (3.8)

as representations of G×G′.
Let’s set up some machinery to prove this

Definition 3.18 (Hilbert Bundle). A Hilbert bundle over a connected topo-
logical space X is a topological space HX along with a continuous map p :
HX −→ X so that

1) Each fiber p−1(x) has a vector space structure.

2) The subspace topology from E on the fiber can be generated by an inner
product.

3) There exists an open cover (Ui) of X and a Hilbert space H and a home-
omorphism

p−1(Ui)
∼−−→ Ui ×H

whose restriction to a fiber is a unitary map p−1(x)
∼−−→ H.

Assume now that the space X comes equipped with a Radon measure. We
will focus on the space of L2-sections L2(X,HX) of a Hilbert bundle and in
order to analyze this, the following result will be useful 2.

Theorem 3.19 (Kuiper). Any infinite-dimensional Hilbert bundle over a com-
pact base space is trivial, i.e. isomorphic to a product bundle X ×H for some
fixed Hilbert space, H.

2The usual statement of Kuiper’s Theorem is that the set of homotopy classes of maps
[X,GL(H)] where X is compact, H is an infinite-dimensional Hilbert space and GL(H) is
the space of invertible bounded isomorphisms of H equipped with the norm topology, is a
singleton. That the following statement follows from this is remarked in [6] p. 63.
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In particular L2-sections of such a vector bundle are justH-valued L2-function
on X, i.e.

L2(X,HX) = L2(X,H) = L2(X)⊗̂H. (3.9)

In the case of a finite-dimensional Hilbert bundle , the situation is of course
more complicated, since it is by no means true that any vector bundle over
a compact space is trivial (just consider the Möbius bundle over the circle).
However, in this case (3.9) is still true, as we now show.

Lemma 3.20. Let p : E −→ X be a topological vector bundle over a compact
topological space X. There exists a measurable bundle isomorphism Φ : E −→
X × Cn (i.e. a measurable map with measurable inverse) whose restrictions to
the fibers are unitary maps.

Proof. We assume the vector bundle to be complex. The real case is similar.
Pick a finite family of local, continuous trivializations

Φi : p−1(Ui)
∼−−→ Ui × Cn, i = 1, . . . , N

about which we may assume that they are fiberwise unitary (if they are not,
simply perform a Gram-Schmidt orthonormalization). Define

V1 := U1, V2 := U2 \ U1, . . . Vk := Uk \ (U1 ∪ · · · ∪ Uk−1), . . .

V1, . . . , VN , is a division ofX into disjoint measurable sets. Consequently, p−1(Vi)
is a measurable subset of E. We can restrict Φi to p−1(Vi) to obtain a measur-
able map Φi : p−1(Vi) −→ Vi × Cn with measurable inverse. Thus we define
Φ : E −→ X × Cn by

Φ(e) :=





Φ1(e), e ∈ p−1(V1)
...

ΦN (e), e ∈ p−1(VN )

.

This is a measurable map with inverse

Φ−1(x, v) =





Φ−1
1 (x, v), x ∈ V1

...
Φ−1
N (x, v), x ∈ VN

which is also measurable. They are clearly both bundle maps. This proves the
lemma.
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Lemma 3.21. If E is an n-dimensional complex vector bundle over the compact
base manifold X then the measurable bundle isomorphism from above gives rise
to a unitary isomorphism Φ̃ : L2(X,E)

∼−−→ L2(X,Cn) ∼= L2(X) ⊗ Cn, more
specifically, the map is given by

(Φ̃f)(x) := p2 ◦ Φ(f(x)) almost everywhere

where p2 : X ×Cn −→ Cn is the projection on the second factor. The inverse is
given by

Φ̃−1(x) = Φ−1(x, f(x)) almost everywhere.

These are easily checked to be inverses of each other. Unitarity of Φ̃ follows
from fiberwise unitarity of Φ.
Now given two Hilbert bundles (finite or infinite-dimensional), we form the

outer tensor product HX �HY over the base space X ×Y where the fiber over
(x, y) is Hx⊗̂Hy

3. We now consider the L2-space of such a tensor product

Proposition 3.22. If HX and HY are two Hilbert bundles over compact base
spaces, then the map L2(X,HX)⊗̂L2(Y,HY ) −→ L2(X × Y,HX �HY ) which
sends s1 ⊗ s2 to the section (x, y) 7−→ s1(x)⊗ s2(y) is a unitary isomorphism.

Proof. It is easy to check that the map is actually unitary. In particular it is
injective and has closed image. Thus we only need to check that the image is
dense.
Assume that en and fm are orthonormal bases for L2(X,HX) and L2(Y,HY )

respectively. The claim is that the sections

(x, y) 7−→ en(x)⊗ fm(y)

form an orthonormal basis for L2(X × Y,HX �HY ).
Trivialize the bundles by Φ : HX −→ X ×H and Φ′ : HY −→ Y ×H′ (in the

infinite-dimensional case, this can be done continuously by Kuiper’s Theorem, in
the finite-dimensional case, this can be done measurably by the lemma above).
If (vi) and (wj) are orthonormal bases of H and H′ respectively, we can form
global L2-sections by

ϕi(x) := Φ−1(x, vi) and ψj(y) := Φ′−1(y, wj).

Obviously (ϕi(x)) and (ψj(y)) are orthonormal bases of the fibers Hx and Hy.
For this it is important that the base spaces are compact.

3This is opposed to the usual tensor product of two bundles over X, which is the pullback
of the outer tensor product from X ×X to X along the diagonal embedding map.
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Now assume that g ∈ L2(X × Y,HX �HY ) satisfies 〈en ⊗ fm, g〉 = 0, i.e.
∫

X

∫

Y

〈en(x)⊗ fm(y), g(x, y)〉 dydx = 0

for all n and m. We can expand g(x, y) ∈ Hx⊗̂Hy in ϕi(x)⊗ ψj(y) to obtain

g(x, y) =
∑

i,j

aij(x, y)ϕi(x)⊗ ψj(y)

for some coefficients aij(x, y) which are L2-functions. Hence the equation be-
comes

0 =

∫

X

∫

Y

〈
en(x)⊗ fm(y),

∑

ij

aij(x, y)ϕi(x)⊗ ψj(y)
〉
dxdy

=

∫

X

〈en(x), ϕi(x)〉
(∫

Y

〈
fm(y),

∑

ij

aij(x, y)ψj(y)
〉
dy
)
dx.

Since functions of the form x 7−→ 〈en(x), ϕi(x)〉 span L2(X), it follows that the
function

x 7−→
∫

Y

〈
fm(y),

∑

ij

aij(x, y)ψj(y)
〉
dy

is zero as an L2-function. Since (fm) is an orthonormal basis of L2(Y,HY ), it
means that for almost all x, the section

y 7−→
∑

ij

aij(x, y)ψj(y)

is zero as an L2-section. Thus it follows that aij are all zero as L2-functions,
and hence that g = 0 in L2(X × Y,HX �HY ).

In the case of trivial line bundles, we recover the well-known fact that L2(X×
Y ) ∼= L2(X)⊗̂L2(Y ).
We can formulate the inducing construction in this setting. Let P = MAN

be some parabolic subgroup (not necessarily minimal). Then the flag variety
G/P = K/(M ∩K) is compact and

P ↪−→ G −→ G/P
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realizes G as the total space of a principal P -bundle over G/P . Given ξ ∈ M̂
and λ ∈ a′C we have a representation (ξ, λ) of P on Hξ by man 7−→ ξ(m)aλ+ρ.
Hence we can form the associated Hilbert bundle

G×(ξ,λ) Hξ −→ G/P

consisting of the equivalence classes [g, v] under the relation

(g, v) ∼ (gp, (ξ, λ)(p−1)v)

for p ∈ P . This is a homogenous Hilbert bundle, when we define the G-action
by g0 · [g, v] = [g0g, v]. The Hilbert space for the induced representation πξ,λ is
Hπ,ξ

∼= L2(G/P,G×(ξ,λ) Hξ), the space of L2-sections of the associated vector
bundle above, and the action is given by 4

(πξ,λ(g0)s)(gP ) = g0 · (s(g−1
0 gP )).

The situation we want to consider is the following: we have two parabolic
subgroups P1 = M1A1N1 and P2 = M2A2N2 of G and G′ respectively, and
hence a parabolic subgroup

P1 × P2 = (M1 ×M2)(A1 ×A2)(N1 ×N2)

of G × G′. Given ξi ∈ M̂i and λi ∈ (a∗i )C we have ξ1 × ξ2 ∈ (M1 ×M2)∧ and
(λ1, λ2) ∈ (a1 ⊕ a2)∗C and we want to verify that the principal series representa-
tion πξ1×ξ2,(λ1,λ2) of G×G′ is equivalent to πξ1,λ1

× πξ2,λ2
.

πξ1×ξ2,(λ1,λ2) is defined on the Hilbert space of L2-sections of the vector bundle

(G×G′)×(ξ1×ξ2,(λ1,λ2)) Hξ1⊗̂Hξ2 (3.10)

over G/P1 ×G′/P2 = (G×G′)/(P1 × P2). The map

(G×G′)×(ξ1×ξ2,(λ1,λ2))Hξ1⊗̂Hξ2 −→ (G×(ξ1,λ1)Hξ1)�(G′×(ξ2,λ2)Hξ2) (3.11)

given by [g1, v1] ⊗ [g2, v2] 7−→ [(g1, g2), v1 ⊗ v2] (which is well-defined) can be
seen to be a bundle isomorphism. Thus from the theory above, we get a natural
Hilbert space isomorphism

L2((G×G′)×(ξ1×ξ2,(λ1,λ2))Hξ1⊗̂Hξ2)
∼−−→ L2(G×(ξ1,λ1)Hξ1)⊗̂L2(G′×(ξ2,λ2)Hξ2)

(3.12)
4More on this can be found in the lecture notes “Induced representations and the Langlands

classification” by Erik van den Ban.
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by composing a section with the bundle isomorphism, in other words

Hξ1×ξ2,(λ1,λ2)
∼= Hξ1,λ1

⊗̂Hξ2,λ2
.

It is easy to see that isomorphism respects the G × G′-action, and we may
therefore conclude

Theorem 3.23. The unitary map (3.12) realizes the equivalence

πξ1×ξ2,(λ1,λ2)
∼= πξ1,λ1

× πξ2,λ2
.

We want to use this result along with (2.7) to calculate the Plancherel measure
(up to absolute continuity) for the SL(2,R)-triple space. The Plancherel measure
for the group is an important ingredient in (2.7), so first we recall the Plancherel
decomposition for SL(2,R) 5:

L2(SL(2,R)) ∼=
∞⊕

k=2

(Hk ⊕H−k)⊗̂(H−k ⊕Hk)

⊕
∫ ⊕

iR+

H1,λ⊗̂H1,−λdλ⊕
∫ ⊕

iR+

H−1,λ⊗̂H−1,−λdλ (3.13)

where the measure dλ on iR+ is the standard Lebesgue measure.
From (2.7) we see that we need to decompose the tensor product of two

representations occurring in the Plancherel decomposition of SL(2,R). Such a
decomposition of representations is provided by [27] Theorems 4.6, 7.1 and 7.3
respectively:

πξ1,λ1 ⊗ πξ2,λ2
∼=
(∫ ⊕

iR+

π⊕2
ξ1ξ2,λ

dλ
)
⊕

⊕

|k|≥2,k≡ξ1ξ2

Tk (3.14)

where the notation k ≡ ξ means that the sum is taken over even k if ξ is trivial
and over odd k if ξ is non-trivial. For a tensor product of a principal series and
a discrete series, the decomposition is

πξ,λ ⊗ Tn ∼=
(∫ ⊕

iR+

π(−1)nξ,λ

)
⊕
⊕

k

Tk (3.15)

5See [21] p. 42.
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where the last summation is over |k| ≥ 2 with the same sign as n and which
satisfy k ≡ (−1)nξ. Finally, for a tensor product of discrete series representations
we have (for n,m ≥ 2)

Tn ⊗ Tm ∼=
∞⊕

k=0

Tn+m+2k

T−n ⊗ T−m ∼=
∞⊕

k=0

T−n−m−2k

T−m ⊗ Tn ∼=
(∫ ⊕

iR+

πξ,λdλ
)
⊕
⊕

k

Tk

where ξ = (−1)n−m and where the summation is over k which satisfy 2 ≤ |k| ≤
|n−m| and have the same sign and parity (i.e. even/odd) as n−m.
We can now write down a list of the representations occurring in the Plancherel

formula forG/H. We divide them into levels according to the number of SL(2,R)
principal series in them. The zeroth level (i.e. the discrete series for G/H) con-
sists of

T−n × T−m × Tn+m+2k for k ≥ 0

Tn × Tm × T−n−m−2k for k ≥ 0 (3.16)
Tn × T−m × Tk

where in the last, k has the same parity and sign as n−m and where 2 ≤ |k| ≤
|n−m|. The Plancherel measure on this part of ĜH is just the counting measure
and all the representations occur with multiplicity 1.
The next level contains the following representations

Tm × T−n × π(−1)n−m,λ for |n|, |m| ≥ 2, λ ∈ iR+

T−n × π(−1)n−m,λ × Tm for |n|, |m| ≥ 2, λ ∈ iR+ (3.17)

π(−1)n−m,λ × T−n × Tm for |n|, |m| ≥ 2, λ ∈ iR+.

We can view this subset of ĜH as a countable set of half-lines, and the Plancherel
measure on each of these half-lines is simply the usual Lebesgue measure, and
all the representation have multiplicity 1.
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The second level looks as follows

πξ1,λ1 × πξ2,λ2 × Tk where |k| ≥ 2 and k ≡ ξ1ξ2, λ1, λ2 ∈ iR+

πξ1,λ1
× Tk × πξ2,λ2

where |k| ≥ 2 and k ≡ ξ1ξ2, λ1, λ2 ∈ iR+ (3.18)

Tk × πξ1,λ1
× πξ2,λ2

where |k| ≥ 2 and k ≡ ξ1ξ2, λ1, λ2 ∈ iR+.

This subset of ĜH , we may view as a countable collection of quadrants and the
Plancherel measure on these is the usual Lebesgue measure. Again, all of these
representations have multiplicity 1.
Finally, the third and last level - the most continuous part looks as follows

πξ1,λ1
× πξ2,λ2

× πξ1ξ2,λ3
for λ1, λ2, λ3 ∈ iR+. (3.19)

We view this as an octant, and the Plancherel measure here equals the Lebesgue
measure. All representations in the most continuous part occur with multiplicity
2.
In the following we want to analyze further the connection between the mul-

tiplicities and the number of open orbits of parabolic subgroups.

3.7 Orbits of Parabolic Subgroups
As minimal parabolic subgroup P ′ in SL(2,R) we pick the subgroup of upper
triangular matrices. This is, up to conjugation within SL(2,R) the unique min-
imal parabolic subgroup in SL(2,R). Thus, in G = G′ × G′ × G′ the list of
conjugacy classes of parabolic subgroups is

P ′ × P ′ × P ′ (3.20)

minimal of dimension 6,

G′ × P ′ × P ′, P ′ ×G′ × P ′, P ′ × P ′ ×G′ (3.21)

of dimension 7

G′ ×G′ × P ′, G′ × P ′ ×G′, P ′ ×G′ ×G′ (3.22)

of dimension 8 and
G′ ×G′ ×G′ (3.23)

of maximal dimension 9.
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By Theorem 3.23 the representations (3.16) are trivially induced from the
parabolic (3.23), the representations (3.17) are induced from (3.22), the rep-
resentations (3.18) are induced from (3.21) and the representations (3.19) are
induced from (3.22).
The parabolic subgroups act on G/H. We want to analyze the orbit structure

of this action. Since (G,H) is a spherical pair, we know at least that it admits
open orbits. For the further analysis we introduce the functions c : SL(2,R) −→
R and d : SL(2,R) −→ R

(
a b
c d

)
7−→ c resp.

(
a b
c d

)
7−→ d

and
B := {g ∈ SL(2,R) | c(g) 6= 0}.

The Bruhat-decomposition of SL(2,R) states that SL(2,R) is the disjoint union

of P andB = NMAN = MANwMAN where w =

(
0 −1
1 0

)
is a representative

of the non-trivial Weyl group element in SL(2,R).
In the following theorem we make use of our “non-canonical” model G/H ∼=

G′×G′. However, later in the case of P minimal, we shall give a more invariant
characterization 6.

Theorem 3.24. Consider a parabolic P acting on G/H ∼= G′ ×G′. If P is of
the form (3.23) or (3.22) there is exactly one orbit, namely G/H itself.
If P is of the form (3.21), then there are two orbits, one open, namely G′×B

and one of lower dimension, namely G′ × P ′.
If P is of the form (3.20) there are two open orbits, namely

O1 := {(g1, g2) ∈ G′ ×G′ | c(g1), c(g2) 6= 0, d(g1)
c(g1) <

d(g2)
c(g2)}

O2 := {(g1, g2) ∈ G′ ×G′ | c(g1), c(g2) 6= 0, d(g1)
c(g1) >

d(g2)
c(g2)}

3 orbits of dimension 5, namely

O3 := B × P ′
O4 := P ′ ×B
O5 := {(g1, g2) ∈ B ×B | g1g

−1
2 ∈ P ′}

6A similar result as the following has been obtained in [25] Proposition 1.2. The result there
is for minimal P but for more general groups than just G′ = SL(2,R). Instead of considering
P -orbits in G/H they consider H-orbits in G/P but that of course amounts to the same thing.
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and one orbit of dimension 4, namely O6 := P ′ × P ′. Furthermore

∂O1 = ∂O2 = O3 ∪ O4 ∪ O5 ∪ O6

∂O3 = ∂O4 = ∂O5 = O6.

Proof. If P = G′ ×G′ ×G′, it is clear that the only orbit is G/H.
Now consider the parabolic P ′ × G′ × G′. This action is transitive on G/H,

since the point [g1, g2, g3] can be reached from [e, e, e] via (e, g−1
1 g2, g

−1
1 g3) ∈

P ′ ×G′ ×G′. Similar of course with the other parabolics in (3.22).
For the parabolic G′ × P ′ × P ′ acting on G′ ×G′, the claim is that we have

2 orbits, namely G′ × P ′ and G′ × B. These orbits contain the points (e, e)
and (e, w). We can reach any point (g, p) in G′ × P ′ from (e, e) by acting with
(g, p, e). Similarly, we can reach any point (g1, g2) ∈ G′ ×B from (e, w): simply
by picking p1 and p2 in P ′ such that p1wp

−1
2 = g2 and g0 ∈ G′ such that

g0p
−1
2 = g1. Then (g0, p1, p2) · (e, w) = (g1, g2). Similarly for the parabolics

P ′ ×G′ × P ′ and P ′ × P ′ ×G′.
Now we come to the minimal parabolic P = P ′×P ′×P ′. Note that G′×G′ =

(P ′ × P ′) ∪ (B × P ′) ∪ (P ′ ×B) ∪ (B ×B) by the Bruhat decomposition of G′.
Note also that B×B = O1∪O2∪O5, since we can reformulate the condition on
O5 to d(g1)

c(g1) = d(g2)
c(g2) . Therefore the sets O1, . . . ,O6 fill up all of G′ × G′. Hence

we just have to prove that they are actually orbits, i.e. that the action of P is
transitive on them. This is clear in the case of the orbit P ′ × P ′.
Now consider O3 = B × P ′. It is easily checked to be invariant under P . It

contains (w, e). Given (g, p) ∈ B × P ′, we can find p1 and p3 in P ′ such that
g = p1wp

−1
3 . Put p2 := pp3, then (g, p) = (p1, p2, p3) · (w, e). Hence B×P ′ is an

orbit. Similarly with P ′ ×B.
Next we consider O5. This set contains (w,w). Again it is easy to see that it

is P -invariant. For transitivity: let (g1, g2) ∈ O5 be given, and find p1 and p3 in
P ′ such that g1 = p1wp

−1
3 and put p2 := (g2g

−1
1 )p1, then (p1, p2, p3) · (w,w) =

(g1, g2).

Finally, we come to the orbit O1. The set contains the point (w,

(
0 −1
1 1

)
).

Let (g1, g2) be some arbitrary element in O1, then
d(g1)
c(g1) <

d(g2)
c(g2) . We define

t :=

√
d(g2)

c(g2)
− d(g1)

c(g1)
and x := − d(g1)

c(g1)t
and p0 :=

(
t x
0 t−1

)
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and from that we get

d(g1p0)

c(g1p0)
= t−2

(
xt+

d(g1)

c(g1)

)
= 0 and

d(g2p0)

c(g2p0)
= t−2

(
xt+

d(g2)

c(g2)

)
= 1.

In other words, by acting with (e, e, p−1
0 ) ∈ P we can bring (g1, g2) on the

following form

g1p0 =

(
a1 b1
c1 0

)
and g2p0 =

(
a2 b2
c2 c2

)

with c1, c2 6= 0. Now we see that
(
c1 −a1

0 c−1
1

)
g1p0 =

(
0 −1
1 0

)
and

(
c2 −a2

0 c−1
2

)
g2p0 =

(
0 −1
1 1

)

and this means that we can bring any element in O1 to (w,

(
0 −1
1 1

)
) by acting

with an element in P . Hence the P -action is transitive on O1. The same proof
with obvious modifications, works for O2.

If [x0] is a point in a P -orbit O in G/H, then the stabilizer for the P -action
at that point is easily seen to be P ∩ x0Hx

−1
0 . Consequently, we have a diffeo-

morphism
P/P ∩ x0Hx

−1
0

∼−−→ O (3.24)

by mapping [p] 7−→ p ·x0. In the case of a symmetric space, if P is a θσ-invariant
parabolic subgroup we get a Langlands-like decomposition of this quotient as
well:

Lemma 3.25. Let (G,H) be a symmetric pair and P ⊆ G a σθ-invariant
parabolic subgroup. Then for each w ∈ WP we have a diffeomorphism

(MP /MP ∩ wHw−1)×APq ×NP ∼−−→ P/P ∩ wHw−1 (3.25)

by mapping
([m], a, n) 7−→ [man].

Proof. Assume first that w = e. The map is well-defined, for if [m] = [m′],
i.e. m′m−1 ∈ H, then m′an(man)−1 = m′m−1 ∈ H, i.e. [man] = [m′an].
It is surjective by the Langlands decomposition and it is injective for the fol-
lowing reason: if ([m], a, n) is mapped to [e], then man ∈ H, meaning that
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manσ(n)−1σ(a)−1σ(m)−1 = e. Using the fact that σ(a) = a−1 and the normal-
ization properties of MP and AP we get

manσ(n)−1σ(a)−1σ(m)−1 = mσ(m)−1a2n′

for some n′ ∈ NP . By uniqueness of the Langlands decomposition we get
mσ(m)−1 = e and a2 = e, which implies m ∈ MP ∩ H and a = e. From
this it follows that n ∈ NP ∩H = {e} and hence the map is injective.
We can reduce P/P ∩ wHw−1, to the above case, since (G,wHw−1) is a

symmetric pair under the involution σw := Cw ◦σ◦Cw−1
7 of G, and P is a σwθ-

invariant parabolic. Equivalently, wPw−1 is a σθ-invariant parabolic. This is for
the following reason: The Lie algebra of the parabolic P splits in a Langlands
decomposition mP ⊕aP ⊕nP . Consider aP which by definition is contained in s.
We can extend it to a maximally abelian subspace a in s containing aq. We can
choose w in such a way that Ad(w) preserves both a∩ q = aq and a∩ h := ah

8.
First, we consider aP which splits into aPh

⊕ aPq
. The fact that σ preserves

ah and aq translates into the fact that Ad(w)|aP commutes with σ. Since Ad(w)
also commutes with θ (as w is chosen in K), it commutes with σθ. Thus, as
aP is σθ-invariant, so is Ad(w)aP . In particular it also follows that Ad(w)aPq

is
σθ-invariant. From this it easily follows that mP ⊕aP which is the centralizer of
aPq

in g is σθ-invariant. So we are only left with nP . A trivial calculation shows
that if

nP =
⊕

α∈Γ

gα

then
Ad(w)nP =

⊕

α∈Γ

gw·α.

Again, θ commutes with Ad(w), and a quick calculation reveals that [H,σ ◦
Ad(w)Xα] = −(w · α)(H)(σ ◦ Ad(w)Xα), i.e. that sigma maps gw·α to g−w·α.
This is equal to the action of θ, and hence nP is σθ-invariant.

In the symmetric space case, this is important since it allows us to effectively
reduce to MP /(MP ∩ wHw−1) and combined with the fact that MP /(MP ∩
wHw−1) is again a symmetric pair, an induction argument can be applied.
Inspired by this, we might anticipate a relation like the following

P/P ∩ x0Hx
−1
0 = MP /MP ∩ x0Hx

−1
0 ×AP /AP ∩ x0Hx

−1
0 ×NP /NP ∩ x0Hx

−1
0

7Cw is conjugation with w.
8This is Lemma 1.1 in [3].
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to hold in our setting. The following example, however, shows that this cannot
be the case in general. Take as P the parabolic G′ × G′ × P ′. Then P ∩ H =
{(p, p, p) | p ∈ P ′} has dimension 2, and hence P/P ∩H has dimension 6. But
as MP = G′×G′×M ′ and MP ∩H = {±(1, 1, 1)} then MP /MP ∩H alone has
dimension 6. As AP = 1×1×A′, NP = 1×1×N ′ and AP ∩H = NP ∩H = {e},
then AP /AP ∩H and NP /NP ∩H both have dimension 1, and we see that the
above identity cannot be satisfied.
Moreover, it is no longer true, that (MP ,MP ∩ x0Hx

−1
0 ) is a spherical pair:

With the same parabolic as above: a minimal parabolic P0 inMP = G′×G′×M ′
has dimension 4, but asMP ∩H has dimension 0, it is impossible for P0×(MP ∩
H) to have an open orbit in MP (which should be 6-dimensional).

3.8 H-Invariant Distribution Vectors
First a useful lemma

Lemma 3.26. Let G be a Lie group and H a closed subgroup such that G/H has
an invariant measure. Let η be a distribution on G/H satisfying Lgη = f(g)η
for some f ∈ C∞(G). Then f is a homomorphism f : G −→ R \ {0}, constant
1 on H, and η equals the smooth function g 7−→ cf(g)−1 for some constant c.

Proof. First we assume that H = {e} and that η is left invariant, i.e. Lgη = η
for all g ∈ G. We calculate (for ϕ a test function)

Xη(ϕ) = −η(Xϕ) = −η
(

lim
t→0

Lexp(−tX)ϕ− ϕ
t

)

= − lim
t→0

η
(Lexp(−tX)ϕ− ϕ

t

)
= − lim

t→0

(Lexp(tX)η − η
t

(ϕ)
)

= 0.

From this formula it follows immediately that a left invariant η satisfies Xη = 0.
Consequently it is also in the kernel of every invariant differential operator on G.
Pick an inner product on TeG and extend it to a G-invariant Riemannian metric
on G. Then the Laplace-Beltrami operator constructed through this metric, is
G-invariant and elliptic. As η is in the kernel of it, η must be a smooth function,
and a constant one even.
For non-trivial H: Assume η ∈ D ′(G/H)G. We lift η to a distribution η] on

G by defining η](ϕ) := η(ϕ]) where

ϕ](gH) :=

∫

H

ϕ(gh)dh
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for ϕ ∈ C∞c (G). It is easy to see that η] is a G-invariant distribution on G.
By the first part of the proof, it is a constant. This means that its action on
functions is just the integral times a constant. For a function ϕ ∈ C∞c (G/H) we
can (by [19] Lemma I.1.10) assume it to be of the form ϕ = ψ] for ψ ∈ C∞c (G)
and hence we get (assuming that the measures on G, H and G/H are properly
normalized)

η(ϕ) = η(ψ]) = c

∫

G

ψ(g)dg = c

∫

G/H

(∫

H

ψ(gh)dh
)
d(gH)

= c

∫

G/H

ψ](gH)d(gH).

This shows that η is constant.
In the more general case, it is easy to see (by multiplicativity of g 7−→ Lg)

that f is a homomorphism f : G −→ R∗ (ifη happens to be the zero distribution,
we can pick f to be constant 1). In particular f is everywhere non-zero. Now
consider the distribution fη. It is easily checked that Lg(fη) = (Lgf)(Lgη) =
f(g−1)ff(g)η = fη, i.e. is left-invariant, hence constant cf. the first part of the
proof. Consequently η = cf−1.

Now, consider a principal series representation πP,ξ,λ occurring in the Plancherel
decomposition of G/H. Then H

−∞,H
P,ξ,λ 6= 0 and any such η ∈ H

−∞,H
P,ξ,λ 6= 0 can be

viewed as a H−∞ξ -valued distribution on G/H satisfying left P -equivariance, in
the sense that

Lmanη = aλ+ρξ(m)η.

From the lemma above, it follows that η restricts to a smooth function on the
open P -orbits in G/H (since an open P -orbit is of the form P/P ∩ x0Hx

−1
0

- it has an invariant measure, since it is an open subset of G/H). Recall the
diffeomorphism (3.24). On an orbit O containing x0, η satisfies η(p ·x0) = η(x0),
and by the equivariance of η:

(ξ, λ)(p)η(x0) = η(x0)

in other words, η(x0) ∈ H−∞ξ should be invariant under the representation (ξ, λ).

In particular η(x0) ∈ H
−∞,MP∩x0Hx

−1
0

ξ and aλ+ρ = 1 for all a ∈ AP ∩ x0Hx
−1
0 .

For symmetric spaces it holds in general that H−∞,Hπ is finite-dimensional
when π ∈ Ĝ (cf. [2] Lemma 3.3) and if π = πP,ξ,λ is a principal series represen-
tation for a generic λ (meaning for λ ∈ a∗qC outside a countable union of certain
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hyperplanes), then a distribution vector η ∈ H
−∞,H
P,ξ,λ is actually completely de-

termined by its valued on the open P -orbits in G/H (this is Corollary 5.3 in [3]
when P is minimal parabolic, in the non-minimal case this is due to Brylinski
and Delorme in [7]).
In our case, we can prove a similar result, namely that for generic λ, the

H-fixed distribution vectors are determined by their values on the open orbits.
Our main tool in the following will be a theorem of Bruhat which we first
describe in full generality (following the delineation in [3] Appendix A which is
for distributions with values in a finite-dimensional vector space - the infinite-
dimensional version is treated in [8] Appendix A2). Later we restrict to the
situation we need.
Consider a manifold M on which a group G acts smoothly. Assume further-

more that we have a finite-dimensional representation τ of G on a vector space
V . By D ′(M,V ) we denote the space of V -valued distributions on M , i.e. the
space of continuous linear maps D(M) −→ V , and we denote by D ′(M, τ) the
subspace of D ′(M,V ) of distributions η which satisfy Lgη = τ(g−1)η (here Lgη
is the dual of the left action on smooth functions on M , just as in the lemma
above in the case ofM being G itself). For a G-orbit O inM , we let D ′k(M,O, τ)
denote the space of distributions η ∈ D ′(M, τ) of distribution order at most k
which satisfy

O ∩ supp η open in supp η.

In order to exclude the trivial case, where O ∩ supp η is open in supp η because
it is empty, we define

D ′k(O, τ) := D ′k(M,O, τ)/{η ∈ D ′k(M,O, τ) | supp η ∩ O = ∅}.
The Bruhat theorem is exactly the tool we need to determine this dimension. In
order to state the theorem, we need some more notation. Fix a point x0 in the
orbit O and let Gx0 denote the stabilizer at this point. Gx0 acts in a natural way
on Tx0M , and it maps the subspace Tx0O to itself. In other words, we have a
representation of Gx0

on the quotient Tx0
M/Tx0

O. By taking the derivative, we
obtain a representation of the Lie algebra gx0

on the quotient Tx0
M/Tx0

O. For
a given H ∈ gx0

we denote by γ1(H), . . . , γm(H) (where m is the codimension
of O in M) the eigenvalues of the corresponding endomorphism of Tx0M/Tx0O.

Theorem 3.27 (Bruhat). If there exists H ∈ gx0
, such that for all eigenvalues

µ of τ(H) and for all ν ∈ Nm0 with |ν| := ν1 + · · ·+ νm ≤ k, it holds that
m∑

i=1

(νi + 1)γi(H) + µ 6= 0, (3.26)



3.8 H-Invariant Distribution Vectors 113

then D ′k(O, π) = 0.

Now, let’s apply it to our setting. The quotient G/H will play the role as the
manifold M , on which the minimal parabolic P = P ′×P ′×P ′ is acting. As we
have seen in the previous section, there are 6 orbits for this action. Consider now
the unitary principal series π = πP,ξ,λ = πξ1,λ1

× πξ2,λ2
× πξ3,λ3

(i.e. λj ∈ iR).
Taking τ to be the character (ξ, λ) of P , we see that H−∞,Hπ is exactly equal to
the space D ′(G/H, τ). Since H−∞ξ = Hξ = C, these are C-valued distributions.
For simplicity of the exposition we shall assume in the following that ξ is the

trivial character of M . The effect of a different ξ just an overall sign change,
that will not affect the analysis.
The strategy is now to apply the Bruhat theorem to the non-open orbits one

by one. First the orbit O3. This orbit contains the point x0 := [w, e, e] and the
stabilizer at that point is

Px0
= P ∩ x0Hx

−1
0 =

{(
a−1 0
0 a

)
,

(
a 0
0 a−1

)
,

(
a 0
0 a−1

) ∣∣∣ a ∈ R∗
}
.

For notational convenience we denote an element as above by pa := (p′−1
a , p′a, p

′
a).

Then the representation (1, λ) restricted to Px0
is just

(1, λ)(pa) = |a|−λ1−1|a|λ2+1|a|λ3+1 = |a|−λ1+λ2+λ3 .

If we put

X0 :=
((−1 0

0 1

)
,

(
1 0
0 −1

)
,

(
1 0
0 −1

))

then the Lie algebra of the stabilizer is px0
= RX0. For the corresponding Lie

algebra representation, we see

(1, λ)(X0) = −λ1 + λ2 + λ3 + 1,

and this obviously has the eigenvalue −λ1 + λ2 + λ3 + 1.
On the other hand we have the action of the stabilizer on the quotient

Tx0
(G/H)/Tx0

O3. For these calculations we use the model G/H = G′ × G′.
The point x0 = [w, e, e] is identified with (w, e) and we see

Tx0(G/H) ∼= TwG
′ × TeG′ = ((Lw)∗TeG

′)× TeG′,

and the action of pa on this quotient is

pa ·((Lw)∗X1, X2) = (p′−1
a wX1p

′−1
a ,Ad(p′a)X2) = ((Lw)∗Ad(p′a)X1,Ad(p′a)X2).
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The derived action of X0 then is

X0 · ((Lw)∗X1, X2) =
(

(Lw)∗ ad

(
1 0
0 −1

)
X1, ad

(
1 0
0 −1

)
X2

)
.

It is clear that the quotient Tx0(G/H)/Tx0O3 is spanned by

(
0,

(
0 0
1 0

))

and the action of X0 on this is

X0 ·
(

0,

(
0 0
1 0

))
=
(

0,

(
0 0
−2 0

))

meaning that X0 acts by the eigenvalue −2.
The left-hand side of (3.26) for H = X0 now reads

−2(ν + 1)− λ1 + λ2 + λ3 + 1

for some ν ∈ N0 less than or equal to k. As −λj are all imaginary, this expression
can’t possibly be 0, unless −λ1 +λ2 +λ3 = 0. But even in that case, we would be
left with −2(ν + 1) + 1 which cannot be zero. Thus we conclude that there can
be no H-fixed distribution vector for the principal series representation πP,ξ,λ
which is supported solely on the orbit O3.
The calculations for the orbits O4 and O5 are similar. They contain the points

[e, w, e] and [e, e, w] respectively and the left-hand side of (3.26) in this case reads

−2(ν + 1) + λ1 − λ2 + λ3 + 1 and − 2(ν + 1) + λ1 + λ2 − λ3 + 1.

Again, as long as λj is imaginary, this can never be 0, so we conclude that there
can be no distribution vectors supported on O4 and O5.
This leaves us with the closed orbit O6. We retain the assumption that ξ = 1.

In the model G/H = G′×G′ this is just P ′×P ′ and it contains the point (e, e)
corresponding to [e, e, e] := x0. The stabilizer in P of this point is easily seen to
be

Px0
= {(p, p, p) | p ∈ P ′}

whose Lie algebra is given by

px0 = {(X,X,X) |X ∈ p′}.
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The restriction of (1, λ) to Px0
is now given by

(1, λ)(p, p, p) = |a|λ1+λ2+λ3+3

when p =

(
a b
0 a−1

)
. To determine the derived representation we fix the fol-

lowing basis elements for px0
:

X1 :=
((

1 0
0 −1

)
,

(
1 0
0 −1

)
,

(
1 0
0 −1

))

X2 :=
((

0 1
0 0

)
,

(
0 1
0 0

)
,

(
0 1
0 0

))

and a simple calculation gives

(1, λ)(X1) = λ1 + λ2 + λ3 + 3,

(1, λ)(X2) = 0.

For the tangent space, we have

Tx0
G/H = T(e,e)(G

′ ×G′) = g′ ⊕ g′

and the action of Px0
hereon is simply

(p, p, p) · (X,Y ) = (Ad(p)X,Ad(p)Y )

and consequently the derived action of px0
is

(Z,Z,Z) · (X,Y ) = ([Z,X], [Z, Y ]).

As basis for the quotient Tx0
(G/H)/Tx0

O6 we pick

X0 :=
((

0 0
1 0

)
, 0
)

and Y0 =
(

0,

(
0 0
1 0

))

and then it is clear (basically since X0 and Y0 are root vectors for the root −2)
that

(X1, X1, X1) ·X0 = −2X0 and (X1, X1, X1) · Y0 = −2Y0.

Thus (X1, X1, X1) acts with the eigenvalue −2 and therefore the left-hand side
of (3.26) reads

−2(ν1 + ν2) + λ1 + λ2 + λ3 − 1.
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Again, as long as λj is imaginary, this can never be 0. So we draw the first
conclusion 9.

Theorem 3.28. Let η ∈ H
−∞,H
P,ξ,λ be an H-fixed distribution vector for a uni-

tary principal series representation πP,ξ,λ with P minimal. Then η is completely
determined by its values on the union of the open orbits. More precisely, given
two points xi ∈ Oi, i = 1, 2 the evaluation map ev : H−∞,HP,ξ,λ −→ C2 given by
η 7−→ (η(x1), η(x2)) is injective. In particular the dimension of H−∞,HP,ξ,λ is at
most 2.

The last statement follows from the fact, that the distribution vector is
uniquely determined on an open orbit by its value at a single point, and the fact
that there are two open orbits, when P is minimal.
However, so far we didn’t use the full strength of the Bruhat theorem. We

only used it for λ imaginary. If we allow the λ-parameters to take non-imaginary
values, we see that the condition (3.26) is actually satisfied for all k, when the
λ’s satisfy the following 4 relations.

−λ1 + λ2 + λ3 /∈ 1 + 2N0 (3.27)
λ1 − λ2 + λ3 /∈ 1 + 2N0 (3.28)
λ1 + λ2 − λ3 /∈ 1 + 2N0 (3.29)
λ1 + λ2 + λ3 /∈ 1 + 2N0 (3.30)

In other words, for (λ1, λ2, λ3) ∈ C3 outside a union of countably many hyper-
planes, the conclusions in the theorem above are still valid.
We can exploit this to draw similar conclusions for representations induced

from higher parabolics. Specifically, let us consider the following representation
π := Tn× π2× π3 where π2 = πξ2,λ2

and π3 = πξ3,λ3
are some unitary principal

series representations and n ≥ 2. The representation π is induced from the
higher parabolic G′ × P ′ × P ′. By (1.25) we have a G-map

H∞ξ0,−n −→ H∞−n ⊕H∞n

where ξ0 = −(−1)n, and this map is surjective with finite-dimensional kernel.
If π2 and π3 denote two arbitrary unitary principal series representations of
SL(2,R), we get a surjective G-map

H∞ξ0,−n⊗̂H∞π2
⊗̂H∞π3

−→ (H∞−n ⊕H∞n )⊗̂H∞π2
⊗̂H∞π3

9The following result has also been obtained in [25], in Section 2 and 3, for G′ = SOe(1, n)

where they refer to elements in H
−∞,H
P,ξ,λ as invariant trilinear functionals. Since the number of

open orbits in their case is 1, they actually prove uniqueness of invariant trilinear functionals.
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which in turn induces an injective linear map

HomH((H∞−n ⊕H∞n )⊗̂H∞π2
⊗̂H∞π3

,C) −→ HomH(H∞ξ0,−n⊗̂H∞π2
⊗̂H∞π3

,C).

Upon noting that H−∞,Hπ = HomH(H∞π ,C) and invoking Proposition 1.36, we
obtain

H
−∞,H
T−n×π2×π3

⊕H
−∞,H
Tn×π2×π3

⊆ H
−∞,H
πξ,−n×π2×π3

.

Complex conjugation gives an isomorphism betweenH
−∞,H
T−n×π2×π3

andH
−∞,H
Tn×π2×π3

.
Thus in the cases where H

−∞,H
πξ0,−n×π2×π3

is 2-dimensional, we must have that
H
−∞,H
T±n×π2×π3

is 1-dimensional. But we see that the triple (−n, λ1, λ2) satisfies
the conditions above, if λ2 6= λ3 or if λ2 = λ3 and n is even. We conclude

Theorem 3.29. If λ2 6= λ3 or if λ2 = λ3 and n is even, then H
−∞,H
T±n×π2×π3

is
at most 1-dimensional. The same is true for H

−∞,H
π1×T±n×π3

and H
−∞,H
π1×π2×T±n

At the next level we have representations of the form Tn × Tm × π3 for some
unitary principal series representation π3 = πξ3,λ3 . We can apply the same trick.
Letting ξ0 = −(−1)n and ξ′0 = −(−1)m we have a surjective map

Hξ0,−n⊗̂H∞ξ′0,−m⊗̂H
∞
π3
−→ (H∞n ⊕H∞−n)⊗̂(H∞m ⊕H∞−m)⊗̂H∞π3

.

By the same reasoning as above (plus restriction) we obtain injective maps

H
−∞,H
Tn×T−m×π3

⊕H
−∞,H
T−n×Tm×π3

↪−→ H
−∞,H
πξ,−n×πξ′,−m×π3

and
H
−∞,H
Tn×Tm×π3

⊕H
−∞,H
T−n×T−m×π3

↪−→ H
−∞,H
πξ,−n×πξ′,−m×π3

.

Since λ3 is imaginary and non-zero, we see that the triple (−n,−m,λ3) always
satisfies all the three conditions above, and as complex conjugation gives iso-
morphisms

H
−∞,H
Tn×T−m×π3

∼−−→ H
−∞,H
T−n×Tm×π3

and
H
−∞,H
T−n×T−m×π3

∼−−→ H
−∞,H
Tn×Tm×π3

we arrive at

Theorem 3.30. For any representation of the form π = Tn × Tm × π3 or
π = Tn×π2×Tm or π = π1×Tn×Tm with πi unitary irreducible and |n|, |m| ≥ 2,
it holds that H−∞,Hπ is of dimension at most 1.
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We can summarize this by saying, that outside the discrete series, the set of
irreducible unitary representations π for which it does not hold that the dimen-
sion of H−∞,Hπ equals the number of open orbits in G/H of the corresponding
parabolic, is a set of Plancherel measure 0.
Unfortunately, the method does not apply to the discrete series. Then we

would have to consider triples (n,m, k) of integers and here there are lot of
examples where the conditions above are not satisfied.

3.9 The Most Continuous Part
In this section, we study the H-fixed distribution vectors of the unitary principal
series representations induced from a minimal parabolic. Here we are able to
show that the space of H-fixed distribution vectors is actually equal to 2.
However, before we can do that we need to put up some machinery. We begin

by giving a more invariant characterization of the orbits under the minimal
parabolic subgroup (without referring to the model G/H ∼= G′ ×G′). First we
define the following functions on G/H:

ψ1([g1, g2, g3]) := c(g2g
−1
3 )

ψ2([g1, g2, g3]) := c(g1g
−1
3 )

ψ3([g1, g2, g3]) := c(g1g
−1
2 ).

Then we see that we can characterize the minimal P -orbits along the following
lines

O1 : ε1ψ1, ε2ψ2, ε3ψ3 > 0, when ε1ε2ε3 = 1

O2 : ε1ψ1, ε2ψ2, ε3ψ3 > 0, when ε1ε2ε3 = −1

O3 : ψ1 = 0, ψ2 6= 0, ψ3 6= 0

O4 : ψ1 6= 0, ψ2 = 0, ψ3 6= 0

O5 : ψ1 6= 0, ψ2 6= 0, ψ3 = 0

O6 : ψ1 = ψ2 = ψ3 = 0.

In the following we concentrate on the two open orbits O1 and O2. Defin-

ing γ1 :=

(
0 −1
1 1

)
and γ2 :=

(
1 0
−1 1

)
, then (w, γi) lies in Oi (where w =

(
0 −1
1 0

)
). It is easy to see that the stabilizer of the P -action at (w, γi) is
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±(1, 1, 1) i.e. equals M ∩H. Hence we have a diffeomorphism

M/(M ∩H)×A×N ∼−−→ Oi

([m], a, n) 7−→ man · (w, γi). (3.31)

From this it is clear, that if η ∈ H
−∞,H
P,ξ,λ , then η(w, λi) ∈ HM∩H

ξ , meaning that
we only need to consider ξ ∈ M̂M∩H , which are ξ = (ξ1, ξ2, ξ3) (viewed as an
element in Z2 × Z2 × Z2) which satisfy ξ1ξ2ξ3 = 1.
Composing the inverse of the above diffeomorphism with the projection onto

the M -part resp. the A-part gives us maps

m : Oi −→M/(M ∩H)

a : Oi −→ A ∼= R3
+

and the individual components of the map a are denoted ai, i = 1, 2, 3. Note that
these maps depend on the choice of base points. We now set out to compute these
maps. The first thing to note is that the maps ψi are left N = N ′ × N ′ × N ′-
invariant, simply because an upper triangular matrix leaves the c-component
unchanged. Therefore, since MA normalizes N we see

ψi(man · x) = ψi(n
′ma · x) = ψi(ma · x).

Thus we may neglect N . An element of M ′A′ is a diagonal matrix of the form
Diag(ma, (ma)−1) where a ∈ ]0,∞[ and m = ±1. Thus we consider a point in
O1 of the form

x := (

(
m1a1 0

0 (m1a1)−1

)
,

(
m2a2 0

0 (m2a2)−1

)
,

(
m3a3 0

0 (m3a3)−1

)
)·[w, γ1, e]

(3.32)
with a1, a2, a3 > 0 and m1,m2,m3 = ±1. A simple calculation gives

ψ1(x) = (m2a2m3a3)−1, ψ2(x) = (m1a1m3a3)−1, ψ3(x) = (m1a1m2a2)−1

(note that ψ1(x)ψ2(x)−1ψ3(x)−1 and the two other expressions are automati-
cally positive). Solving this system of equations gives us the following formulas
for the a-components

a1(x) =
√
ψ1(x)ψ2(x)−1ψ3(x)−1 , a2(x) =

√
ψ1(x)−1ψ2(x)ψ3(x)−1

a3(x) =
√
ψ1(x)−1ψ2(x)−1ψ3(x).
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According to the remarks above, these formulas hold for any point in O1 and
not just for those of the form (3.32).
On O2 relative to the point (w, γ2) = [w, γ2, e] we have similar formulas

a1(x) =
√
−ψ1(x)ψ2(x)−1ψ3(x)−1 , a2(x) =

√
−ψ1(x)−1ψ2(x)ψ3(x)−1

a3(x) =
√
−ψ1(x)−1ψ2(x)−1ψ3(x).

As in the symmetric case we want to examine the connection between the open
orbits and the principal series representations. In the previous section we showed
that the space H

−∞,H
P,ξ,λ was at most 2-dimensional. We devote the rest of this

section to prove the result promised at the beginning, namely that the dimension
of this space is equal to 2. We do it concretely by writing down an explicit inverse
to the evaluation map ev : H−∞,HP,ξ,λ −→ C2: Given η = (η1, η2) ∈ C2, ξ ∈ M̂M∩H

as well as λ = (λ1, λ2, λ3) ∈ a∗C × a∗C × a∗C we can construct an H-invariant
distribution vector as the function

j(P, ξ, λ, η)(x) :=

{
ξ(m(x))a1(x)λ1+1a2(x)λ2+1a3(x)λ3+1ηi if x ∈ O1 ∪ O2

0 if x /∈ O1 ∪ O2

.

Here λi ∈ a∗C is identified with an element in C.

Lemma 3.31. The function j(P, ξ, λ, η) : G/H −→ C as defined above is a
continuous function on G/H if λ satisfies

Re(λ1 − λ2 − λ3 − 1) > 0,

Re(−λ1 + λ2 − λ3 − 1) > 0,

Re(−λ1 − λ2 + λ3 − 1) > 0.

(3.33)

This is an open set in a∗C
∼= C3 and consists of the λ’s where Reλ lies in the

translated cone

Γ := R−




1
1
0


+ R−




1
0
1


+ R−




0
1
1


−




1
1
1


 .

Proof. Substituting in the definition of j(P, ξ, λ, η) the formulas for aj plus
defining

σ1 := 1
2 (λ1 − λ2 − λ3 − 1)

σ2 := 1
2 (−λ1 + λ2 − λ3 − 1)

σ3 := 1
2 (−λ1 − λ2 + λ3 − 1)
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we get on Oi (for i = 1, 2):

j(P, ξ, λ, η)(x) = ξ(m(x))|ψ1(x)|σ1 |ψ2(x)|σ2 |ψ3(x)|σ3ηi.

We want this expression to go to 0, when we converge to the boundary. Recall
that the boundary of O1∪O2 is O3∪O4∪O5∪O6, and from the characterization
of these orbits earlier in this section we see that converging to a point on the
boundary implies the functions ψ1, ψ2 and ψ3 converge to some finite numbers
10, at least one of which is zero. When the λ’s satisfy the conditions in the
lemma, then also the expression above converges to zero. The continuity now
follows.

The problem with the above lemma, is that it only guarantees continuity of
j(P, ξ, λ, η) in a sector in a∗C which does not contain the imaginary “axis” ia∗. In
the theory for symmetric spaces, this problem is dealt with by a meromorphic
extension of λ 7−→ j(P, ξ, λ, η) to all of a∗C.
However, in our case we can do with less. A function need not be continuous

in order to be a distribution, if suffices that it be locally integrable. This is
actually the case for j(P, ξ, λ, η) for λ on the imaginary axis

Theorem 3.32. The function j(P, ξ, λ, η) on G/H is locally integrable when
λ ∈ ia∗, in particular j(P, ξ, λ, η) ∈ H

−∞,H
P,ξ,λ for λ ∈ ia∗.

Proof. Since j(P, ξ, λ, η) is smooth on O1 ∪ O2, it is locally integrable around
any of these points. So we only have to show local integrability around points
on the boundary of O1 ∪ O2. First, from the expression of j(P, ξ, λ, η) from the
proof above with λ imaginary, we see that

|j(P, ξ, λ, η)(x)| = |ψ1(x)|− 1
2 |ψ2(x)|− 1

2 |ψ3(x)|− 1
2 |ηi|

on Oi, i.e. λ-independent. First we assume x ∈ O3, then ψ2(x), ψ3(x) 6= 0, so
we can chose a neighborhood around x where these are non-zero. The problem
is with ψ1(x) = 0. To analyze |ψ1|−

1
2 around this point we use again our model

G/H ∼= G′ ×G′. Thus

|ψ1(g1, g2)|− 1
2 = |c(g1)|− 1

2

where c(g1) is the lower left entry of the matrix g1. Writing g1 = kna = kan′

according to the K ′N ′A′ and K ′A′N ′ decomposition respectively, and letting
10As opposed to the a-functions which can diverge to ∞.
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U1 and U2 be open neighborhoods around g1 and g2 respectively (U2 of total
measure 1) we get (assuming for simplicity of calculations that |ηi| = 1)

∫

G′×G′
1U1×U2

|ψ1(g1, g2)|− 1
2 dg1dg2 =

∫

K′×N ′×A′
1U1
|c(kna)|− 1

2 dadndk

and since |c(kna)|− 1
2 = |c(kan′)|− 1

2 = |c(ka)|− 1
2 we get

∫

G′×G′
1U1×U2

|ψ1(g1, g2)|− 1
2 dg1dg2 =

∫

K′×N ′×A′
1U1
|c(ka)|− 1

2 dadndk.

Putting a = at = Diag(et, e−t) and k =

(
cos θ − sin θ
sin θ cos θ

)
the expression equals

∫

N

∫ 2π

0

∫

R
1V | sin θ|−

1
2 e−

1
2 tdtdθdn

where V is the preimage in N ′ × [0, 2π[×R of U1 under the natural map N ′ ×
[0, 2π[×R −→ SL(2,R). As | sin θ| ≥ 1

2 |θ| for sufficiently small θ, we have
| sin θ|− 1

2 ≤
√

2|θ|− 1
2 and since

∫ ε

−ε
|θ|− 1

2 dθ = 4
√
ε <∞

we see that the integral above converges provided U1 is chosen small enough.
Thus j(P, ξ, λ, η) is integrable around any point x ∈ O3. The argument runs
similarly for x ∈ O4 or x ∈ O5.
Therefore only the case of a point in O6 remains. So we have to investigate

the function

|j(P, ξ, λ, η)(x)| = |ψ1(x)|−
1
2 |ψ2(x)|−

1
2 |ψ3(x)|−

1
2 |ηi| (3.34)

around a point where ψ1(x) = ψ2(x) = ψ3(x) = 0. We may assume that |ηi| = 1,
and employing our model G/H = G′ ×G′ we consider the function

(g1, g2) 7−→ |c(g2)|− 1
2 |c(g1)|−

1
2 |c(g1g

−1
2 )|− 1

2 .

We write gi = ainiki (for i = 1, 2) and since the c-function is both left and right
N -invariant, we get

|c(a2n2k2)|− 1
2 |c(a1n1k1)|− 1

2 |c(a1n1k1k
−1
2 n−1

2 a−1
2 )|− 1

2

= |c(a2k2)|− 1
2 |c(a1k1)|− 1

2 |c(a1k1k
−1
2 a−1

2 |−
1
2
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and if ai =

(
eti 0
0 e−ti

)
and ki =

(
cos θi − sin θi
sin θi cos θi

)
, then

k1k
−1
2 =

(
cos(θ1 − θ2) − sin(θ1 − θ2)
sin(θ1 − θ2) cos(θ1 − θ2)

)

so that c(k1k
−1
2 ) = sin(θ1 − θ2) and the expression above becomes

| sin θ1|−
1
2 | sin θ2|−

1
2 | sin(θ1 − θ2)|− 1

2 et1+t2 . (3.35)

We need to analyze this around (θ1, θ2) = (0, 0). The exponential factor is locally
bounded, so that we need not worry about. As above, when |θi| is sufficiently
small, we may assume | sin θi|−

1
2 ≤
√

2|θi|−
1
2 . Thus we can estimate (again in a

proper neighborhood of (0, 0)) the expression (3.35) to be bounded by

|θ1|−
1
2 |θ2|−

1
2 |θ1 − θ2|−

1
2

(times some constant which we leave out). We want to integrate this expression
over a ball of sufficiently small radius ε in the θ1θ2-plane, and switch to polar
coordinates (r, ϕ):

∫∫

Bε(0)

|θ1|−
1
2 |θ2|−

1
2 |θ1 − θ2|−

1
2 dθ1dθ2 (3.36)

=

∫ ε

0

r−
1
2 dr

∫ π

−π
| cosϕ sinϕ(cosϕ− sinϕ)|− 1

2 dϕ.

The first integral is convergent, so no worry here. For the second integral, we have
7 problematic points where the integrand diverges to infinity: 0, π and 2π (where
sinϕ = 0), π2 and 3π

2 where cosϕ = 0 and finally π
4 and 5π

4 where cosϕ−sinϕ =

0. Around 0 we can estimate as we did above, namely | sinϕ|− 1
2 ≤

√
2|ϕ|− 1

2

and |ϕ|− 1
2 is integrable around 0. Thus 0 is no problem. Similar arguments

work for the points π, 2π, π
2 and 3π

2 . Around π
4 we can estimate as follows:

| cosϕ− sinϕ| ≥ 1
2 |ϕ− π

4 | and consequently | cosϕ− sinϕ|− 1
2 ≤ |ϕ− π

4 |−
1
2 and

the right-hand side is integrable around π
4 . This means that the integral (3.36)

converges and that (3.34) is locally integrable around points in O6.

Corollary 3.33. When λ ∈ ia∗, then the map C2 3 η 7−→ j(P, ξ, λ, η) ∈ H
−∞,H
P,ξ,λ

is an inverse to the evaluation map ev. In particular H
−∞,H
P,ξ,λ is 2-dimensional.
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1. Introduction

Let G0 be a real reductive group and let G = G0 × G0 × G0 and
H = diag(G0). The corresponding homogeneous space G/H is called a
triple space. Triple spaces are examples of non-symmetric homogeneous
spaces, as there is no involution of G with fixed point group H. It is
interesting in the non-symmetric setting to explore properties, which
play an important role for the harmonic analysis of symmetric spaces.
In this paper we examine the geometric structure of some triple spaces
from this point of view.
One important structural result for symmetric spaces is the polar de-

composition G = KAH. Here K ⊂ G is a maximal compact subgroup,
and A ⊂ G is abelian. Polar decomposition for a Riemannian symmet-
ric space G/K is due to Cartan, and it was generalized to reductive
symmetric spaces in the form G = KAH by Flensted-Jensen [2].
For triple spaces in general, the sum of the dimensions of K, A and

H can be strictly smaller than the dimension of G, which obviously
prevents G = KAH. Here we are interested in the triple spaces with

(1.1) G0 = SL(2,R), SL(2,C), SOe(n, 1) (n = 2, 3, . . . )

for which there is no obstruction by dimensions. In Theorem 3.2 we
show that indeed these spaces admit a polar decomposition as above,
and we determine precisely for which maximal split abelian subgroups
A the decomposition is valid. For the simplest choice of group A we de-
scribe the indeterminateness of the A-component for a given element in
G, and we identify the invariant measure on G/H in these coordinates.
Another important structural result for a Riemannian symmetric

space G/K is the fact (closely related to Iwasawa decomposition) that
minimal parabolic subgroups P act transitively. For non-Riemannian
symmetric spaces there is no transitive action of P , but it is an im-
portant result, due to Wolf [7], that P has an orbit on G/H which
is open. In Proposition 6.1 we verify that this is the case also for the
spaces in (1.1), and we determine precisely for which minimal parabolic
subgroups P the orbit through the origin is open.
By combining these results we conclude in Corollary 6.4 that there

exist maximal split abelian subgroups A for which G = KAH and for
which PH is open for all minimal parabolic subgroups P with P ⊃ A,
a property which plays an important role in [5].
An interesting observation (which surprised us) is that in some cases

there are also maximal split abelian subgroups A for which PH is open
for all minimal parabolic subgroups P with P ⊂ A, but for which the
polar decomposition fails (see Remark 6.5).



DECOMPOSITION THEOREMS 3

The fact that the triple space of SL(2,C) admits open P -orbits fol-
lows from [4] p. 152. A homogeneous space of algebraic groups over C
with an open Borel orbit is said to be spherical, cf [1], and the spaces
we consider may be seen as prototypes of spherical spaces over R.
In a final section we introduce an infinitesimal version of the polar

decomposition, and show that in the current setting it is valid if and
only if the global polar decomposition G = KAH is valid.
The harmonic analysis on SL(2,R) is an essential example for un-

derstanding the harmonic analysis on general reductive groups. We
expect the triple spaces considered here to serve similarly for the har-
monic analysis on non-symmetric homogeneous spaces, which is yet to
be developed.

2. Notation

Let g0 = k0 ⊕ s0 be a Cartan decomposition of the Lie algebra g0 of
G0, and put

k = k0 × k0 × k0, s = s0 × s0 × s0,

then g = k ⊕ s is also a Cartan decomposition. The maximal abelian
subspaces of s have the form

(2.1) a = a1 × a2 × a3

with three maximal abelian subspaces a1, a2, a3 in s0.
If for each j we let Aj = exp aj and choose a positive system for

the roots of aj, then with G0 = K0AjNj for j = 1, 2, 3 we obtain the
Iwasawa decomposition G = KAN where

K = K0 ×K0 ×K0, A = A1 × A2 × A3, N = N1 ×N2 ×N3.

Likewise we obtain the minimal parabolic subgroup

P = P1 × P2 × P3 = MAN

where M = M1 × M2 × M3 and each Pj = MjAjNj is a minimal
parabolic subgroup of G0.

3. Polar decomposition

Let G/H be a homogeneous space of a reductive group G, and let
g = k ⊕ s be a Cartan decomposition of the Lie algebra of G. A
decomposition of G of the form

(3.1) G = KAH,

with A = exp a, for an abelian subspace a ⊂ s, is said to be a polar
decomposition. If such a decomposition exists, then the homogeneous
space G/H is said to be of polar type (see [5]).
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The fact that symmetric spaces are of polar type implies in particular
that every double space G/H = (G0 × G0)/ diag(G0) with G0 a real
reductive group admits a polar decomposition. Here we can take

a = a0 × a0

for a maximal abelian subspace a0 ⊂ s0 (in fact, it would suffice to
take already the antidiagonal of a0×a0). Then A has the form A1×A2

with A1 = A2. In contrast, triple spaces do not admit G = KAH for
A = A1 × A2 × A3 if A1 = A2 = A3:

Lemma 3.1. Let G/H be the triple space of a non-compact semisimple
Lie group G0. Let a0 ⊂ s0 be maximal abelian and let A = A0×A0×A0.
Then KAH is a proper subset of G.

Proof. Let a0 ∈ A0 be a regular element. We claim that a triple
(g1, g2, g3) = (g1, a0, e) belongs to KAH only if g1 ∈ K0A0. Assume
gi = kiaig for i = 1, 2, 3 with ki ∈ K0, Ai ∈ A0 and g ∈ G0. From

a0 = g2g
−1
3 = k2a2a

−1
3 k−1

3

we deduce that k2 = k3, and from the regularity of a0 we then deduce
that k3 belongs to the normalizer NK0(a0) (see [3], Thm. 7.39). Then

g1 = g1g
−1
3 = k1a1a

−1
3 k−1

3 ∈ K0A0.

The lemma follows immediately. �
It was observed in [5] that the triple spaces for the groups considered

in (1.1) are of polar type. In the following theorem we determine, for
these groups, all the maximal abelian subspaces a of g for which (3.1)
holds.

Theorem 3.2. Let G0 be one of groups (1.1) and a ⊂ s as in (2.1).
Then G = KAH if and only if a1 + a2 + a3 has dimension two in g0.
In particular, G/H is of polar type.

We shall approach G = KAH by a geometric argument. Let Z0 =
G0/K0 be the Riemannian symmetric space associated with G0, and
let z0 = eK0 ∈ Z0 denote its origin. Recall that (up to covering) G0

is the identity component of the group of isometries of Z0. Then it is
easily seen that G = KAH is equivalent to the following:

Property 3.3. For every triple (z1, z2, z3) of points zj ∈ Z0 there exist
a triple (y1, y2, y3) of points yj ∈ Z0 with yj ∈ Ajz0 for each j, and an
isometry g ∈ G0 such that gzj = yj for j = 1, 2, 3.

In order to illustrate the idea of proof, let us first state and prove a
Euclidean analogue.



DECOMPOSITION THEOREMS 5

Proposition 3.4. Let ℓ1, ℓ2, ℓ3 ⊂ Rn be lines through the origin O.
The following statements are equivalent

(1) dim(ℓ1 + ℓ2 + ℓ3) = 2
(2) For every triple of points z1, z2, z3 ∈ Rn there exists a rigid

motion g of Rn with g(zj) ∈ ℓj for each j = 1, 2, 3.

Proof. (1)⇒(2). Since the group of rigid motions is transitive on the 2-
planes in Rn, we may assume that z1, z2 and z3 belong to the subspace
spanned by the lines. This reduces the proof to the case n = 2.
We shall assume the zj are distinct as otherwise the result is easily

seen. Furthermore, as at most two of the lines are identical, let us
assume that ℓ1 6= ℓ2. Let d denote the distance between z1 and z2, and
consider the set X of pairs (X1, X2) of points X1 ∈ ℓ1 and X2 ∈ ℓ2 with
distance d from each other. Let D1 be a point on ℓ1 with distance d to
the origin, then (D1, O) and (−D1, O) belong to X, and it follows from
the geometry that we can connect these points by a continuous curve
s 7→ (X1(s), X2(s)) in X, say with s ∈ [−1, 1]. For example, we can
arrange that first X1(s) moves from −D1 to O along ℓ1, while at the
same time X2(s) moves along ℓ2 at distance d from X1(s). Then X2(s)
moves from O to a point D2 ∈ ℓ2 at distance d from O. After that,
X1(s) moves from O to D1, while X2(s) moves back from D2 to O.
When s passes through the interval [−1, 1], the line segment from

X1(s) to X2(s) slides with its endpoints on the two lines. We define
X3(s) such that the three points form a triangle congruent to the one
formed by z1, z2 and z3. In other words, for each s ∈ [−1, 1] there
exists a unique rigid motion gs of Rn for which gs(z1) = X1(s) and
gs(z2) = X2(s). We let X3(s) = gs(z3). See the following figure.
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ℓ1

ℓ2

−D1 = X1(−1)

O = X2(−1) = X1(0) = X2(1)

X3(−1)

X2(0)
X3(0)

X3(s)

D1 = X1(1)

X3(1)

As X1(s) and X2(s) depend continuously on s, then so does gs (in
the standard topology of the group of rigid motions) and hence also
X3(s). Since X1(±1) are opposite points while X2(±1) = O, the points
X3(±1) must be opposite as well. Since s 7→ X3(s) is a continuous curve
that connects two opposite points, it intersects with every line through
O. Let s ∈ [−1, 1] be a parameter value for which X3(s) ∈ ℓ3. Now gs
is the desired rigid motion.
(2)⇒(1). Note that a rigid motion maps affine lines to affine lines. If

dim(ℓ1 + ℓ2 + ℓ3) = 1 then ℓ1 = ℓ2 = ℓ3, and it is clear that only triples
of points which are positioned in a common affine line can be brought
into it by a rigid motion. Hence dim(ℓ1 + ℓ2 + ℓ3) = 1 is excluded.
Let z1, z2, z3 be an arbitrary triple of distinct points located on a

common affine line ℓ, and let g be a rigid motion which brings these
points into the ℓj. Then O can be one of the points g(zj), or not. In
the first case, say if g(z1) = O, it follows that ℓ2 and ℓ3 are both equal
to g(ℓ), since each of these lines have two points in common with g(ℓ).
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Hence dim(ℓ1 + ℓ2 + ℓ3) ≤ 2. In the second case, the line g(ℓ) together
with O spans a 2-dimensional subspace of Rn, which contains all the
lines ℓj. Hence again dim(ℓ1 + ℓ2 + ℓ3) ≤ 2. �

We proceed with the proof of Theorem 3.2.

Proof. Note that SL(2,R) and SL(2,C) are locally isomorphic to SOe(2, 1)
and SOe(3, 1), respectively. The centers of SL(2,R) and SL(2,C) be-
long to K, and hence G = KAH will hold for the triple spaces of
these groups if and only if it holds for the triple spaces of their adjoint
groups. Thus it suffices to consider G0 = SO(n, 1) with n ≥ 2.
The elements in so(n, 1) have the form

(3.2) X =

(
A b
bt 0

)

where A ∈ so(n) and b ∈ Rn, and s0 consists of the elements with
A = 0.
Assume first that a1+a2+a3 is 2-dimensional. By transitivity of the

action of K0 = SO(n) on the 2-dimensional subspaces of Rn we may
assume that a1+a2+a3 consists of the matrices X as above with A = 0
and b non-zero only in the last two coordinates. Hence a1 + a2 + a3 is
contained in the so(2, 1)-subalgebra in the lower right corner of so(n, 1).
It follows that exp(a1 + a2 + a3).z0 is a 2-dimensional totally geodesic
submanifold of Z0.
Let z1, z2, z3 ∈ Z0 be given. Every triple of points in Z0 belongs to

a 2-dimensional totally geodesic submanifold Z ′
0 of Z0. For example,

in the model of Z0 as a one-sheeted hyperboliod in Rn+1, we can ob-
tain Z ′

0 as the intersection of Z0 with a 3-dimensional subspace of Rn+1

containing the three points. Since G0 is transitive on geodesic subman-
ifolds, we may assume that z1, z2, z3 are contained in the submanifold
generated by a1+a2+a3. We have thus essentially reduced to the case
n = 2, and shall assume n = 2 from now on.
We proceed exactly as in the Euclidean case and produce a pair of

points X1(s) and X2(s) on the geodesic lines exp(a1).z0 and exp(a2).z0,
respectively. The two points are chosen so that they have the same
non-Euclidean distance from each other as z1 and z2, and they de-
pend continuously on s ∈ [−1, 1]. Moreover, X1(−1) and X1(1) are
symmetric with respect to z0, while X2(−1) = X2(1) = z0. As Z0

is two-point homogeneous, there exists for each s ∈ [−1, 1] a unique
isometry gs ∈ G0 such that gs(zj) = Xj(s) for j = 1, 2. As before, a
value of s, where the continuous curve s 7→ gs(z3) intersects exp(a3),
produces the desired isometry gs of Property 3.3. Hence G = KAH.
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We return to the case n ≥ 2 and assume conversely that G = KAH.
It follows from Lemma 3.1 that dim(a1 + a2 + a3) > 1. We want to
exclude dim(a1 + a2 + a3) = 3. Again we follow the Euclidean proof
and select an arbitrary triple of distinct points z1, z2, z3 on a single
geodesic γ in Z0. Then there is g ∈ G0 such that gzj = yj for some
yj ∈ exp(aj).z0, for j = 1, 2, 3. If one of the yj’s, say y1, is z0, then
exp(a2).z0 = exp(a3).z0 = g(γ) and hence a2 = a3. Otherwise, the
geodesic g(γ) is contained, together with O, in a 2-dimensional totally
geodesic submanifold of Z0. This submanifold necessarily contains the
geodesic exp(aj).z0 for each j. Hence dim(a1 + a2 + a3) ≤ 2. �

4. Uniqueness

If G/H is a homogeneous space of polar type, so that every element
g ∈ G allows a decomposition g = kah, it is of interest to know to
which extend the components in this decomposition are unique. An
obvious non-uniqueness is caused by the normalizer NK∩H(a) of a in
K ∩ H, which acts on A by conjugation. In the case of a symmetric
space, it is known (see [6], Prop. 7.1.3) that the A component of every
g ∈ G is unique up to such conjugation. For our current triple spaces
the description of which elements in A generate the same K ×H orbit
appears to be more complicated, unless a1 = a2 ⊥ a3.

Theorem 4.1. Let G/H be the triple space with G0 as in (1.1), and
let a be as in (2.1) with a1 = a2 ⊥ a3. Let a = (a1, a2, a3) ∈ A with
a1 6= a2 and let a′ = (a′1, a

′
2, a

′
3) ∈ A. Then KaH = Ka′H if and only

if a and a′ are conjugate by NK∩H(a).

We first determine explicitly which pairs of elements a, a′ ∈ A are
NK∩H(a)-conjugate when a1 = a2 ⊥ a3.

Lemma 4.2. Let a be as above. Then a, a′ ∈ A are conjugate by
NK∩H(a) if and only if

(1) (a′1, a
′
2) = (a1, a2)

±1 and a′3 = a±1
3 if n > 2

(2) (a′1, a
′
2, a

′
3) = (a1, a2, a3)

±1 if n = 2.

Proof. The normalizer NK∩H(a) consists of all the diagonal elements
k = (k0, k0, k0) ∈ G for which

k0 ∈ NK0(a1) ∩NK0(a2) ∩NK0(a3).

As elements aj, a
′
j ∈ Aj are NK0(aj)-conjugate if and only if a′j = a±1

j ,
only the pairs mentioned under (1) can be conjugate when a1 = a2.
Let δ, ǫ = ±1. For the groups in (1.1) the adjoint representation is

surjective K0 → SO(s0). If n > 2 then there exists a transformation in
SO(s0) which acts by δ on a1 = a2 and by ǫ on a3. Its preimages in K0
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conjugate (a1, a2, a3) to (aδ1, a
δ
2, a

ǫ
3). When n = 2 such a transformation

exists if and only if δ = ǫ. The lemma follows. �
The following lemmas are used in the proof of Theorem 4.1. Here G0

can be any real reductive group with Cartan decomposition g0 = k0+s0.

Lemma 4.3. Let X,U ∈ s0. Then expX expU expX ∈ exp s0.

Proof. Let θ denote the Cartan involution and note that the product
exp(tX) exp(tU) exp(tX) belongs to S = {g ∈ G0 | θ(g) = g−1} for
all t ∈ [0, 1]. It is easily seen that k expY ∈ S implies k2 = e for
k ∈ K0 and Y ∈ s0, and since e is isolated in the set of elements of
order 2 it follows that exp s0 is the identity component of S. Hence
expX expU expX ∈ exp s0. �
Lemma 4.4. Let a0 ⊂ s0 be a one-dimensional subspace and let A0 =
exp a0.

(1) If g ∈ exp s0 and ga0 ∈ a′0K0 for some a0, a
′
0 ∈ A0, then g =

a′0a
−1
0 .

(2) If g ∈ G0 and ga1, ga2 ∈ A0K0 for some a1, a2 ∈ A0 with
a1 6= a2 then g ∈ NK0(a0)A0.

Proof. (1) It follows from ga0 ∈ a′0K0 that a0ga0 ∈ a0a
′
0K0. Since

a0ga0 ∈ exp s0 by Lemma 4.3, it follows from uniqueness of the Cartan
decomposition that a0ga0 = a0a

′
0 and thus g = a′0a

−1
0 .

(2) Put z0 = eK0, then A0.z0 is a geodesic in G0/K0. Since g maps
two distinct points on A0.z0 into A0.z0, it maps the entire geodesic
onto itself, and hence so does g−1. In particular g−1.z0 ∈ A0K0, that
is, g = k0a0 for some k0 ∈ K0, a0 ∈ A0. It follows for all a ∈ A0 that

k0ak
−1
0 = ga−1

0 ak−1
0 ∈ gA0K0 = A0K0.

As k0ak
−1
0 ∈ exp s0, uniqueness of the Cartan decomposition implies

k0ak
−1
0 ∈ A0, i.e. k0 ∈ NK0(a0). �

Lemma 4.5. Let a1, a3 ⊂ s0 be one-dimensional subspaces with a1 ⊥ a3
and let A1 = exp a1, A3 = exp a3. If g ∈ NK0(a1)A1 and ga3 ∈ a′3K0

for some a3, a
′
3 ∈ A3, not both equal to e, then g ∈ NK0(a1) ∩NK0(a3).

Proof. We may assume a′3 6= e, as otherwise we interchange it with
a3 and replace g by g−1. We consider the geodesic triangle in G0/K0

formed by the geodesics

L1 := A1.z0, L2 := A3.z0, L3 := gA3.z0.

The vertices are

D3 := z0, D2 := g.z0, D1 := ga3.z0 = a′3.z0.
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As L1 and L2 intersect orthogonally, angle D3 is right. The isometry
g maps L1 to itself and L2 to L3. Hence L1 and L3 also intersect
orthogonally and angleD2 is right. As the sectional curvature of G0/K0

is ≤ 0, it is impossible for a proper triangle to have two right angles.
As L1 6= L2 and D3 6= D1 we conclude D3 = D2 and L3 = L2. It
follows that g ∈ K0 and by Lemma 4.4 (2) that g ∈ NK0(a3). �

Proof of Theorem 4.1. Assume KaH = Ka′H. Then Kah = Ka′ for
some h = (g, g, g) ∈ H. Applying Lemma 4.4 (2) to the first two
coordinates of Kah = Ka′ we conclude that g ∈ NK0(a1)A1.
If a′3 and a3 are not both e, we can apply Lemma 4.5 to the last

coordinate and conclude g ∈ NK0(a1) ∩NK0(a3). Hence h ∈ NK∩H(a),
and we conclude that a′ = h−1ah.
If a′3 = a3 = e it follows from the third coordinate that g ∈ K0.

Hence g ∈ NK0(a1) and a′ = a or a′ = a−1. �

Remark 4.6. When dim s0 = 2 the assumption in Theorem 4.1 and
Lemmas 4.2, 4.5, that a1 = a2 ⊥ a3, can be relaxed to a1 = a2 6=
a3 with unchanged conclusions. This follows from the fact that in
a two dimensional space the only proper orthogonal transformations
which normalize a one-dimensional subspace are ±I. Hence NK0(a1) =
NK0(a3) in this case.

5. A formula for the invariant measure

In a situation where there is uniqueness (up to some well-described
isomorphism), it is of interest to explicitly determine the invariant mea-
sure with respect to the KAH-coordinates.
For any triple space G/H of a unimodular Lie group G0 we note that

the map

(5.1) G0 ×G0 → G/H, (g1, g2) 7→ (g1, g2, e)H

is a G0 × G0-equivariant diffeomorphism. Accordingly the invariant
measure on G/H identifies with the Haar measure on G0 ×G0.
For G0 = SOe(n, 1) we define X ∈ so(n, 1) by (3.2) with A = 0

and b = en, and Y ∈ so(n, 1) similarly with A = 0 and b = e1. Let
a1 = a2 = RX and a3 = RY , then a3 ⊥ a1. Let

at = exp(tX) ∈ A1 = A2, bs = exp(sY ) ∈ A3.

Lemma 5.1. Let G/H be the triple space of G0 = SOe(n, 1) and let
a1 = a2 and a3 be as above. Consider the polar coordinates

(5.2) K × R3 ∋ (k, t1, t2, s) 7→ (k1at1 , k2at2 , k3bs)H
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on G/H. The invariant measure dz of G/H can be normalized so that
in these coordinates

(5.3) dz = J(t1, t2, s) dk dt1 dt2 ds

where dk is Haar measure, dt1, dt2, ds Lebesgue measure, and where

J(t1, t2, s) = | sinhn−1(t1 − t2) sinh
n−2(s) cosh(s)|.

Proof. On G0×G0 we use the formula (see [6], Thm. 8.1.1) for integra-
tion in KAH coordinates for the symmetric space G0×G0/ diag(G0) =
G0. The map

(K0 ×K0)× A0 ×G0 → G0 ×G0

defined by

(k, at, g) 7→ (k1at/2g, k2a−t/2g)

is a parametrization (up to the sign of t), and the Haar measure on
G0 ×G0 writes as

(5.4) | sinhn−1(t)| dk1 dk2 dt dg .

Further we decompose the diagonal copy of G0 by means of the
HAK coordinates for the symmetric space G0/(SO(n−1)×A1), where
SO(n − 1) is located in the upper left corner of G0. Note that the
subgroup A3 serves as the ‘A’ in this decomposition. In the coordinates

K0 × A3 × SO(n− 1)× A1 → G0, (k3, bs,m, au) 7→ aumbsk3

we obtain (again using [6], Thm. 8.1.1),

(5.5) dg = | sinhn−2(s) cosh(s)| dk3 dbs dmdu .

Combining (5.4) and (5.5), we have the coordinates

(k1au+t/2mbsk3, k2au−t/2mbsk3)

on G0 ×G0, with Jacobian | sinhn−1(t) sinhn−2(s) cosh(s)|. As the sub-
group SO(n − 1) centralizes A1, the integration over m is swallowed
by the integrations over k1 and k2. Changing coordinates u, t to
t1 = u+ t/2 and t2 = u− t/2 we find t = t1 − t2.
Finally we apply (5.1) so that the above coordinates correspond to

(k1, k2, k3)(at1 , at2 , b−s) diag(G0)

This proves (5.3). �
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6. Spherical decomposition

A decomposition of g of the form

(6.1) g = p+ h

with p a minimal parabolic subalgebra is said to be a spherical decom-
position. If such a decomposition exists, then the homogeneous space
G/H is said to be of spherical type (see [5]).
Note that with g0 = so(n, 1) we have (see (6.4) and (6.5))

dim p+ dim h− dim g = 1
2
(n2 − 5n+ 6) ≥ 0.

In particular spherical decompositions will be direct sums if n = 2, 3.
It was observed in [5] that the triple spaces for the groups considered

in (1.1) are of spherical type. In the following we determine for each n
all the minimal parabolic subalgebras p for which (6.1) holds.

Proposition 6.1. Let G0 be one of the groups (1.1) and let p = p1 ×
p2 × p3 a minimal parabolic subalgebra. Then g = p + h holds if and
only if p1, p2 and p3 are distinct.
In particular, the triple space G/H is of spherical type for all groups

G0 in (1.1).

We prepare by the following lemma.

Lemma 6.2. Let U1, U2, U3 ⊂ V be subspaces of a vector space V . Put

U := U1 × U2 × U3 ⊂ X := V × V × V,

and Y := diag(V ) ⊂ X. Then X = U + Y if and only if

(6.2) V = U1 + (U2 ∩ U3) = U2 + (U3 ∩ U1) = U3 + (U1 ∩ U2).

Proof. Assume first that X = U + Y and let v ∈ V be given. Writing

(v, 0, 0) = (u1, u2, u3) + diag(w)

we see that w = −u2 = −u3 ∈ U2 ∩ U3, and hence v = u1 + w ∈
U1 + (U2 ∩ U3). The other two statements in (6.2) follow similarly.
Conversely, we assume (6.2) and let x = (x1, x2, x3) ∈ X be given.

We decompose x1, x2 and x3 according to the three decompositions in
(6.2), that is,

x1 = u1 + t1, u1 ∈ U1, t1 ∈ U2 ∩ U3

x2 = u2 + t2, u2 ∈ U2, t2 ∈ U3 ∩ U1

x3 = u3 + t3, u3 ∈ U3, t3 ∈ U1 ∩ U2.

Then

x = (u1 − t2 − t3, u2 − t1 − t3, u3 − t1 − t2) + diag(t1 + t2 + t3)

is a decomposition of the desired form U + Y . �
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Remark 6.3. In fact, it is easily seen that any two of the decomposi-
tions of V in (6.2) together imply the third.

Proof of Proposition 6.1. It suffices to consider G0 = SO0(n, 1) because
of the local isomorphisms.
If for example p1 = p2 then p1 + (p2 ∩ p3) = p1. Hence p1 + (p2 ∩ p3)

is proper in g0 and it follows from Lemma 6.2 that g = p + h fails to
hold. This implies one direction of the first statement.
For the other direction it follows from Lemma 6.2 that it suffices to

prove

g0 = p1 + (p2 ∩ p3)

for all triples of distinct parabolics in so(n, 1). We shall do this by
proving

(6.3) dim g0 = dim p1 + dim(p2 ∩ p3)− dim(p1 ∩ p2 ∩ p3).

We find

(6.4) dim g0 = dim so(n, 1) = 1
2
(n2 + n),

and claim that

dim p1 =
1
2
(n2 − n+ 2)(6.5)

dim(p1 ∩ p2) =
1
2
(n2 − 3n+ 4)(6.6)

dim(p1 ∩ p2 ∩ p3) =
1
2
(n2 − 5n+ 6).(6.7)

The equations (6.4)-(6.7) imply (6.3).
The parabolic subalgebras p of so(n, 1) are the normalizers of the

isotropic lines in Rn+1, that is, the one-dimensional subspaces of the
form Lq = R(q, 1) where q ∈ Rn with ‖q‖ = 1.
Recall that all elements in so(n, 1) have the form (3.2) with A ∈ so(n)

and b ∈ Rn. It follows that X ∈ p if and only if

(6.8) Aq + b = (b · q)q.
Let us prove (6.5). Let q1 be the unit vector such that p1 is the

stabilizer of Lq1 , and extend q1 to a basis q1, . . . , qn for Rn. For b ∈ Rn

we let x1 = (b · q1)q1 − b and we observe that x1 · q1 = 0. According to
(6.8) the matrix X of (3.2) belongs to p1 if and only if Aq1 = x1. In
order to satisfy that we can define an n× n matrix A by

(6.9) Aqi · qj :=





x1 · qj for i = 1

−x1 · qi for j = 1

aij for i, j > 1
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with arbitrary antisymmetric entries in the last line. Then A ∈ so(n)
and Aq1 = x1. The degree of freedom for each b is

dim so(n− 1) = 1
2
(n− 1)(n− 2),

and hence dim p1 = n+ 1
2
(n− 1)(n− 2) = 1

2
(n2 − n+ 2) as asserted.

Next we prove (6.6). Let q1, q2 be the unit vectors such that pi is the
stabilizer of Lqi . By assumption q1 6= q2. For the element X of (3.2) to
be in p1 ∩ p2 we need that (6.8) is satisfied in both cases, that is,

(6.10) Aqi = xi, (i = 1, 2).

where xi = (b · qi)qi − b. Now

x2 · q1 + x1 · q2 = (q1 · q2 − 1)(b · (q1 + q2)).

Note that q1 · q2 < 1 since q1 6= q2. As A ∈ so(n) we conclude that

b · (q1 + q2) = 0

since otherwise (6.10) would lead to contradiction.
Conversely, let b ∈ Rn be such that b · (q1 + q2) = 0 and define x1, x2

by xi = (b · qi)qi − b. Then xi · qj = −xj · qi for all pairs i, j ≤ 1, 2. We
extend q1, q2 to a basis and define an n× n matrix A by

(6.11) Aqi · qj =





xi · qj for i = 1, 2

−xj · qi for j = 1, 2

aij for i, j > 2

with arbitrary antisymmetric entries in the last line. Then A ∈ so(n)
and (6.10) holds. The degree of freedom for each b is

dim so(n− 2) = 1
2
(n− 2)(n− 3)

and hence dim(p1 ∩ p2) = n− 1 + 1
2
(n− 2)(n− 3) = 1

2
(n2 − 3n+ 4) as

asserted.
Finally, to prove (6.7) assume that X in (3.2) belongs to p1∩p2∩p3.

As above, it follows that

b · (q1 + q2) = b · (q1 + q3) = b · (q2 + q3) = 0

which implies that b · qi = 0 for i = 1, 2, 3. If this is satisfied by b, the
condition (6.8) simplifies to

(6.12) Aqi = −b, i = 1, 2, 3.

We first assume that q1, q2, q3 are linearly independent and extend to
a basis as before. Given b ∈ Rn such that b · qi = 0 for i = 1, 2, 3 we
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define A by

(6.13) Aqi · qj =





−b · qj for i = 1, 2, 3

b · qi for j = 1, 2, 3

aij for i, j > 3

with arbitrary antisymmetric entries in the last line. The degree of
freedom for each b is

dim so(n− 3) = 1
2
(n− 3)(n− 4)

and hence dim(p1 ∩ p2 ∩ p3) = n− 3+ 1
2
(n− 3)(n− 4) = 1

2
(n2− 5n+6)

as asserted.
Next we assume linear dependence of q1, q2, q3. This implies a further

obstruction to b. In fact, let λ1q1 + λ2q2 + λ3q3 = 0 be a non-trivial
relation, then it follows from (6.12) that (λ1 + λ2 + λ3)b = 0. Since
q1, q2, q3 are assumed to be distinct unit vectors the sum of the λ’s
cannot be zero, and we conclude that b = 0. Thus in this case the only
freedom comes from the choice of A. That can be chosen arbitrarily
from the annihilator in so(n) of the space spanned by the three q’s. We
obtain dim(p1 ∩ p2 ∩ p3) = dim so(n − 2) = 1

2
(n2 − 5n + 6) as before.

This concludes the proof of (6.7).
In particular, if a1, a2 and a3 are all different, then g = p + h for

every parabolic subalgebra p above a = a1 × a2 × a3. Hence G/H is of
spherical type. �

Corollary 6.4. There exists a maximal abelian subspace a ⊂ s for
which both

(i) the polar decomposition (3.1) is valid, and
(ii) the spherical decomposition (6.1) is valid for all minimal para-

bolic subalgebras containing a.

Proof. Let aj ⊂ s0 for j = 1, 2, 3 be mutually different and with a
two-dimensional sum. It follows from Theorem 3.2 and Proposition 6.1
that a = a1 × a2 × a3 satisfies (i) and (ii). �

Remark 6.5. The properties of a reductive homogeneous space G/H
that it is of polar type, respectively of spherical type, appear to be
closely related. However, the relation is not as strong as one might
hope, because the conditions on a are different in Theorem 3.2 and
Proposition 6.1. In particular, there exist maximal abelian subspaces
a ⊂ g which fulfill (ii) but not (i), namely the ’most generic’ ones, for
which dim(a1 + a2 + a3) = 3.
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7. Infinitesimal polar decomposition

Here we consider an infinitesimal version of the polar decomposition
G = KAH. Let G/H be a homogeneous space of a reductive group G,
and let g = k+ s be a Cartan decomposition.

Definition 7.1. A decomposition of the form

(7.1) s = Ad(K ∩H)a+ s ∩ h

with an abelian subspace a ⊂ s is called a polar decomposition.
If there exists such a decomposition of s then we say that G/H is

infinitesimally polar.

Here

Ad(K ∩H)a = {Ad(k)X | k ∈ K ∩H,X ∈ a}.
Note that this need not be a vector subspace of s.
If G/H is a symmetric space, then we can choose the Cartan decom-

position so that k and s are stable under the involution σ that deter-
mines G/H. If g = h+ q denotes the decomposition of g in +1 and −1
eigenspaces for σ, then s = s∩q+s∩h. If furthermore aq is a maximal
abelian subspace of s ∩ q, then it is known that s ∩ q = Ad(K ∩H)aq
and hence (7.1) follows.
The following lemma suggests that there is a close connection be-

tween polar decomposability and infinitesimally polar decomposability.

Lemma 7.2. Let G0 be one of groups (1.1) and let a = a1 × a2 × a3.
Then the infinitesimal polar decomposition (7.1) holds if and only if
dim(a1 + a2 + a3) = 2.

Proof. For the triple spaces, the polar decomposition (7.1) interprets to
the statement that for every triple of points Z1, Z2, Z3 ∈ s0 there exist
k ∈ K0, T ∈ s0 and Xj ∈ aj (j = 1, 2, 3) such that Zj = Ad(k)Xj +
T . As the maps X 7→ Ad(k)X + T with k ∈ K0 and T ∈ s0 are
exactly the rigid motions of s0, this lemma is precisely the content of
Proposition 3.4. �

Combining the lemma with Theorem 3.2 we see that for our triple
spaces the infinitesimal polar decomposition holds with a given a if
and only if the global polar decomposition G = KAH holds for the
corresponding A = exp a.
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