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Abstract: Nikolai Durov has developed a generalization of conventional scheme theory in
which commutative algebraic monads replace commutative unital rings as the basic algebraic
objects. The resulting geometry is expressive enough to encompass conventional scheme the-
ory, tropical algebraic geometry and geometry over the field with one element. It also permits

the construction of important Arakelov theoretical objects, such as the completion Ŝpec Z of
Spec Z. In this thesis, we prove a projective bundle theorem for the field with one element

and compute the Chow rings of the generalized schemes ̂Spec ZN , appearing in the construc-

tion of Ŝpec Z.

Resumé: Nikolai Durov har udviklet en generalisering af konventionel skemateori, hvori kom-
mutative algebraiske monader erstatter kommutative enhedsbærende ringe som de grundlæggende
algebraiske objekter. Den resulterende geometri er bred nok til at omfatte konventionel ske-
mateori, tropisk algebraisk geometri og geometri over legemet med et element. Den giver ogs̊a

mulighed for at konstruere objekter fra Arakelovgeometri, f eks fulstændiggørelsen Ŝpec Z af
Spec Z. I denne afhandling viser vi en projective bundle-sætning for legemet med et element.

Vi undersøger ogs̊a de generaliserede skemaer ̂Spec ZN , som optræder i konstruktionen av

Ŝpec Z, og udregner deres Chow-ringe.
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Introduction

“Are you sure these specks
aren’t supposed to be here?”
JD tentatively touches the
panel. “I mean, maybe it’s
supposed to be, oh, I don’t
know, in or something?”

Bret Easton Ellis
Glamorama

When studying the arithmetic of the ring of integers Z, one can sometimes benefit from
comparing Z with the ring k[x] of polynomials in one variable over a field k. The arithmetic
of k[x] can be studied by considering projective schemes over k and using results such as the
Riemann-Roch and Riemann-Hurwitz theorems. Indeed, when applied to the projective line
P1
k these theorems yield a proof of an analogue of the abc-conjecture for k[x] (cf. e.g. [19]).

Moreover, as was proved by Pierre Deligne, an analogue of the Riemann hypothesis also holds
true for k[x] (cf. [6]). These circumstances have left mathematicians searching for a number

theoretical analogue of P1
k, i.e. an algebro-geometric object Ŝpec Z that relates to the affine

scheme Spec Z like P1
k relates to the affine scheme Spec k[x].

The projective line P1
k can be described as an algebraic one-point compactification of Spec k[x]

in the following way. For any element a ∈ k, there is an associated absolute value on the
quotient field k(x) = Quot k[x]:

va(·) = e−ordx−a(·).

In fact, any equivalence class of non-trivial absolute values on k(x) has a representative of
this form, with the exception of the equivalence class containing the absolute value

v∞ = e− deg(·).

We make two observations:

• Assuming that the field k is algebraically closed, there is a bijection between k and
the set of non-zero prime ideals of k[x].
• The set Ov = {α ∈ k(x); v(α) ≤ 1} is a local ring, for any absolute value v on k(x).

These facts allow for the construction of the projective scheme P1
k, by completing the affine

scheme Spec k[x] with an additional point corresponding to the absolute value v∞.

Now one may try to construct the object Ŝpec Z by completing the affine scheme Spec Z
in a similar way, using absolute values on the quotient field Q = Quot Z. By Ostrowski’s
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2 INTRODUCTION

theorem, any equivalence class of non-trivial absolute values on Q is represented either by
p−ordp(·), for some prime number p, or by the unique archimedean absolute value | · |. Pursuing

the analogy with P1
k, the extra point of Ŝpec Z should be furnished by | · |. However, there is

a serious issue in this situation: The set

O∞ = {α ∈ Q; |α| ≤ 1}

does not admit a ring structure. Consequently, any attempt to construct Ŝpec Z within the
conventional theory is bound to fail.

A framework for completing an arithmetic scheme along the lines described above is provided
by Arakelov geometry. Here the extra data of the “compactification” consist of hermitian
metrics on the arithmetic vector bundles over the scheme. This technique was conceived in
the 1970’s by Suren Arakelov, inspired by Igor Shafarevich’s approach to the Mordell con-
jecture (cf. [1]). A proof of the conjecture based on Arakelov geometric methods would be
found about 20 years later by Paul Vojta (cf. [26]). Today, Arakelov geometry comprises
an important branch of diophantine geometry, featuring for instance its own version of the
Grothendieck-Riemann-Roch theorem (cf. [11]).

A key ingredient in the proof of the analogue of the Riemann hypothesis for k[x] is the
fiber product Spec k[x]×Spec k Spec k[x]. In order to be able to mimic this proof for the ring
Z, one would have to be in possession of an affine scheme playing the role of Spec k. More
precisely, one would need an object F1 and a morphism F1 → Z, which render a non-trivial
fiber product Spec Z×Spec F1 Spec Z. Since Z is the initial object in the category of commuta-
tive unital rings, this means that once again one is forced to step outside of the conventional
theory.

The object F1, commonly referred to as the field with one element, was first envisioned
in 1957 by Jacques Tits in the context of his theory of buildings (cf. [21]). After that, the
concept was mused upon by Mikhail Kapranov, Alexander Smirnov and Yuri I. Manin (cf.
[13] and [17]). A notion of varieties over F1 was proposed by Christophe Soulé in 2004 (cf.
[20]), and his theory was soon to be adopted and developed further by Alain Connes and
Caterina Consani. They were motivated by joint work with Matilde Marcolli, in which they
had discovered connections between F1 and non-commutative geometry (cf. [2] and [3]). In
Connes-Consani’s theory, an F1-scheme is a hybrid of a conventional scheme and a monoid
scheme in the sense defined by Anton Deitmar in 2005 (cf. [4]). Monoid schemes were origi-
nally defined by Anton Deitmar, who has also done illuminating work on their zeta functions
and algebraic K-theory (cf. [4] and [5]).

A conventional scheme can be studied through its functor of points. This is a rule which as-
signs a set to any commutative unital ring and which should be thought of as a parametriza-
tion of zero-sets of algebraic equations (cf. e.g. [9]). Bertrand Toën and Michel Vaquié
describe a version of algebraic geometry over F1 using this perspective. They begin more
generally by associating a theory of algebraic geometry to any symmetric monoidal category
(C,⊗), satisfying some mild conditions (cf. [22]). When (C,⊗) is the category of abelian
groups with the usual tensor product, one recovers conventional scheme theory from their
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construction, and algebraic geometry over F1 is defined to be the case in which (C,⊗) is the
category of sets with the cartesian product. Alberto Vezzani later showed that this theory
is equivalent to Deitmar’s theory of monoid schemes (cf. [25]). A further survey over the
relations between different F1-geometries can be found in [15].

The framework of Toën and Vaquié permits a theory of homotopical algebraic geometry which
they develop in [23] and [24]. Here rings are replaced by ring spectra, according to Fried-
helm Waldhausen’s vision of a brave new algebra. Another materialization of this vision is
the derived algebraic geometry of Jacob Lurie (cf. [16]). These two homotopy theoretical ap-
proaches are not directly related to algebraic geometry over F1, but are in themselves highly
interesting as attempts of redeveloping the foundations of algebraic geometry.

Nikolai Durov’s generalized schemes

A pervading philosophy in extensions of conventional scheme theory is to use basic alge-
braic objects which carry an inherent monoid structure. This is due to the fact that when
defining prime spectra of commutative unital rings, one is most crucially dependent on the
existence of multiplicative systems. The theory of generalized schemes, as developed by Niko-
lai Durov, makes use of this observation as well. Durov suggests that the basic objects of
a generalization of conventional scheme theory should be certain algebraic monads which he
calls generalized rings (cf. [8]). The resulting geometry then becomes expressive enough to
encompass conventional scheme theory, tropical algebraic geometry and a version of algebraic
geometry over F1. It also permits the construction of important objects in Arakelov geometry,

such as the “one-point compactification” Ŝpec Z.

An algebraic monad is the data of an endofunctor Σ on the category of sets, together with nat-
ural transformations µ : Σ ◦Σ→ Σ and ε : id→ Σ, which implement multiplication and unit
respectively (cf. definitions 1.1 and 1.4 in chapter 1). The set Σ(1) is canonically equipped
with a monoid structure: An element x ∈ Σ(1) can be viewed as a map x̃ : 1 → Σ(1), and
so by functoriality gives rise to a map Σ(x̃) : Σ(1) → Σ ◦ Σ(1). Composition with µ yields
an endomorphism of Σ(1).

If the algebraic monad Σ is a generalized ring, then the monoid Σ(1) is commutative. This
provides a notion of multiplicative systems in Σ(1) which can be used to define ideals and
localizations (cf. definitions 2.14 and 2.20 in chapter 1). Following the conventional theory,
one defines the prime spectrum Spec Σ and declares that a generalized scheme is a general-
ized locally ringed space which admits an open cover by prime spectra of generalized rings (cf.
definitions 1.3 and 1.4 in chapter 2).

Let us now briefly summarize how Durov’s theory can be used in order to construct the

object Ŝpec Z. First, we remark that any commutative unital ring R defines a generalized
ring ΣR, such that the underlying topological space of the prime spectrum Spec ΣR coincides
with the underlying topological space of Spec R. Given a natural number N ≥ 2, one defines
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a generalized ring AN with the property that

AN(n) =

{
(λ1, ..., λn) ∈ Z[N−1]n;

n∑
i=1

|λi| ≤ 1

}
, for n ∈ N.

Stated differently, AN(n) is the intersection of Z[N−1]n and the n-octahedron.

The set underlying the prime spectrum Spec AN consists of the following elements.

• The zero ideal of AN .
• Ideals of AN which are generated by prime numbers p, such that p - N .
• The maximal ideal pN∞ = {α ∈ Z[N−1]; |α| < 1}.

The localization of AN with respect to the multiplicative subset generated by N−1 coincides
with the generalized ring defined by the ring Z[N−1]. This permits the glueing of Spec AN
and Spec ΣZ along Spec ΣZ[N−1]:

Ŝpec Z
N

= Spec AN tSpec ΣZ[N−1]
Spec ΣZ.

The object Ŝpec Z
N

is a generalized scheme with the “correct” underlying set in the sense
that there is a one-to-one correspondence between its points and the valuations on Quot Z.
Passing to the limit of a projective system, one obtains an object with the desired topological
properties:

Ŝpec Z = lim←−
N≥2

Ŝpec Z
N
.

(See definition 1.8 in chapter 2.)

The object Ŝpec Z is a generalized locally ringed space, such that any algebraic variety

X over Q admits a finitely presented model X over Ŝpec Z. Furthermore, if X and X are
projective, then any rational point P of X extends to a uniquely determined section σP of
such a model, and the logarithmic height of P can be related to the arithmetic degree of
σ∗POX (1). This makes Durov’s theory suitable for applications in Arakelov geometry.

Let us briefly mention how the field with one element enters in the new theory. The general-
ized ring F1 is defined via

F1(X) = X t {∗}.
While this object admits a morphism to the generalized ring defined by Z in the category of
generalized rings, it turns out that the corresponding fiber product Spec Z ×Spec F1 Spec Z
is isomorphic to Spec Z. In other words, generalized rings do not provide a setting in which
one can approach the Riemann hypothesis according to the ideas described earlier.

The present text

The main results in this thesis are the projective bundle theorem for F1 and a computa-

tion of the Chow rings of the generalized shemes Ŝpec Z
N

, for N ≥ 2 (cf. theorem 1.6 and
corollary 2.11 in chapter 3).
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The proof of the projective bundle theorem starts out in chapter 1 with the following char-
acterization of finitely generated projective modules over generalized polynomial rings (cf.
theorem 3.2 in chapter 1).

Theorem 1. For n ∈ N, any finitely generated projective module over the generalized ring
F1[x1, ..., xn] is stably free.

In chapter 3, theorem 1 is first used in order to compute the Grothendieck group of P1
F1

,
along with its additional ring structure. More precisely, in theorem 1.4 it is established that
there is an isomorphism of abelian groups

K0(P1
F1

) ' Z× Z.
Using induction on n, theorem 1 then allows for a proof of the following.

Theorem 2. (Projective bundle theorem for F1)
For n ∈ N, there is an isomorphism of rings

K0(PnF1
) ' Z[x]/xn+1.

The computation of the Chow rings of the generalized schemes Ŝpec Z
N

is called for by
Durov at the very end of his thesis (cf. (10.7.16) in [8]). A first step towards such a com-
putation is the following characterization of finitely generated projective modules over the
generalized ring AN (cf. theorem 2.1 of chapter 3).

Theorem 3. For a natural number N ≥ 2, any finitely generated projective module over
AN is free.

The strategy in the proof of this theorem is to show that any finitely generated projec-
tive module of rank strictly larger than one is isomorphic to a direct sum of finitely generated
projective modules of lower rank. This reduces the situation to rank one finitely generated
projective modules, for which the desired characterization is achieved by Durov (cf. (7.1.33)
in [8]). (An alternative proof for the rank one-case is also obtained as a porism of lemma 2.2
in chapter 3.)

A consequence of theorem 3 is that isomorphism classes of vector bundles over Ŝpec Z
N

can be identified with certain double cosets of matrices (cf. proposition 2.6 in chapter 3).

This alternative description reveals that the Grothendieck group K0(Ŝpec Z
N

) is generated
by line bundles and that the map

Pic(Ŝpec Z
N

) → K0(Ŝpec Z
N

),

[L] 7→ [L]− 1,

is an injective homomorphism of abelian groups. In this situation, a result by Durov applies
to compute the Grothendieck group.
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Theorem 4. For a natural number N ≥ 2, the map

Z× Pic(Ŝpec Z
N

) → K0(Ŝpec Z
N

),

(n, [L]) 7→ n+ [L]− 1,

is an isomorphism of rings.

The computations of the Chow rings announced above is obtained as a corollary of theo-
rem 4 (cf. corollary 2.11 in chapter 3).

Corollary 5. For a natural number N ≥ 2, the Chow ring of Ŝpec Z
N

is

CH(Ŝpec Z
N

) ' Q⊕ logQ[N−1]∗+.

This computation underlines the similarity between Ŝpec Z
N

and one-dimensional projective

spaces, since it reveals that the intersection theory of Ŝpec Z
N

is one-dimensional. In fact,

theorems 2 and 4 show that the rings K0(P1
F1

) and K0(Ŝpec Z
N

) are isomorphic whenever
N is a prime number. In these cases, the twisting bundle OP1

F1
(−1) corresponds to a unique

line bundle on Ŝpec Z
N

defined by N . Generally, each prime divisor of N gives rise to an
incarnation of this twisting bundle. Hence the Chow rings reflect at once the “curve-like”

nature of Ŝpec Z
N

and the arithmetic complexity of the natural number N .

Organization of the material

The thesis consists of four chapters and one appendix. Chapters 1 and 2 give an introduction
to Durov’s theory of generalized schemes and their Grothendieck groups. The exposition of
these chapters follow [8] and [10] closely and, apart from the results in sections 2 and 3 of
chapter 1, they contain no original material. In chapter 3, the projective bundle theorem is

proved, and the computations of the rings K0(Ŝpec Z
N

) and CH(Ŝpec Z
N

) are carried out.
Chapter 4 contains two Grothendieck-Riemann-Roch results for generalized schemes. The
first one concerns projections to Spec F1 and the second one concerns zero-sections between
generalized schemes with finite intersection theory. Appendix A gives a short summary of
sheaf theory and conventional algebraic geometry.



CHAPTER 1

Generalized rings

This chapter begins with a brief summary of the generalization of commutative algebra
proposed by Nikolai Durov in his thesis. The new theory allows for a version of algebraic
geometry which makes it possible to construct a one-point compactification of Spec Z and
schemes over the field with one element. Moreover, since both commutative unital rings
and semi-rings are generalized rings in Durov’s sense, the new algebraic geometry subsumes
both conventional algebraic geometry and tropical algebraic geometry. After introducing
the necessary terminology, we proceed to study free and stably free resolutions in the new
context. Our observations are then used in order to conclude that any finitely generated
projective module over a generalized rings of polynomials over the field with one element is
stably free.

1. Algebraic monads

The algebraic structures which replace commutative unital rings in Durov’s theory will
be certain algebraic monads. These are devices which encode n-ary operations, for n ∈ N, in
the sense of the following definitions.

Definition 1.1. Let C be a category. A monad on C is a triple Σ = (Σ, µ, ε), consisting
of an endofunctor Σ : C → C, and two natural transformations

µ : Σ ◦ Σ→ Σ,

ε : idC → Σ,

which make the following diagrams commute.

Σ ◦ Σ ◦ Σ(X) Σ ◦ Σ(X)

Σ ◦ Σ(X) Σ(X)

Σ(µX)

µΣ(X) µX

µX

idC ◦ Σ(X) Σ ◦ Σ(X) Σ ◦ idC(X)

Σ(X)

εΣ(X)

idΣ(X)

µX

Σ(εX)

Σ(idX)

A homomorphism of monads φ : Σ1 → Σ2 is a natural transformation of the underlying
endofunctors, compatible with the four structural transformations in the sense that for any
morphism f : X → Y in C

φ ◦ εΣ1 = εΣ2 ,

φ ◦ µΣ1 = µΣ2 ◦ (φ · φ).

7



8 1. GENERALIZED RINGS

Definition 1.2. Let Σ be a monad on a category C. A module over Σ is a pair (M,α),
consisting of an object M of C, and a morphism α : Σ(M)→M in C, satisfying

α ◦ µM = α ◦ Σ(α),

α ◦ εM = idM .

A homomorphism f : (M,αM)→ (N,αN) of modules over Σ is an element f ∈ HomC(M,N),
such that f ◦ αM = αN ◦ Σ(f).

Remark 1.3. Given an object X of a category C and a monad Σ = (Σ, µ, ε) on C, the
natural transformation µ furnishes the object Σ(X) with a structure of module over Σ:

µΣ(X) : Σ(Σ(X))→ Σ(X).

Definition 1.4. An endofunctor Σ on the category of sets is algebraic if, for any filtered
family of sets {Xi}i∈I , one has

Σ(lim−→
i

Xi) ' lim−→
i

Σ(Xi).

A monad is algebraic if its underlying endofunctor is algebraic.

Let us define a few algebraic monads.

Definition 1.5. Given a commutative unital ring R, we define the algebraic monad
ΣR = (ΣR, µ, ε) as follows. For a set X, let

ΣR(X) = Homfin
Sets(X,R),

be the set of finitely supported maps from X to R. Elements of ΣR(X) can then be identified
with finite formal linear combinations

λ1{x1}+ ...+ λn{xn},
where λi ∈ R and xi ∈ X, for 1 ≤ i ≤ n. The natural transformation µ is then defined via

µX

(∑
i

λi

{∑
j

νij{xj}

})
=
∑
ij

λiνij{xj},

and the natural transformation ε is defined via εX(x) = {x}.

Remark 1.6. The notion of a module over ΣR coincides with the conventional notion of
a module over R. Indeed, let M be a set, and for each x ∈ M , consider the characteristic
function of x:

χx : X → {0, 1} ⊂ R.

Now assume that (M,α) is a module over ΣR. Putting

x+ y = α(χx + χy),

λx = α(λχx),

one obtains a module over R. Conversely, given a module M over R, the map

λ1{x1}+ ...+ λn{xn}
α7→ λ1x1 + ...+ λnxn,

equips M with the structure of module over ΣR.
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Definition 1.7. (F∅ and F1)
We define the algebraic monad F∅ by

F∅(X) = X,

with both µF∅ and εF∅ given by the identity maps of sets. The field with one element is the
algebraic monad F1 defined by

F1(X) = X t {∗}.

The natural transformation µF1 is given by collapsing two copies of ∗ to one, and the natural
transformation εF1 is given by the inclusion of sets.

Definition 1.8. (Z∞ and AN)
The algebraic monad Z∞ is defined as a submonad of the algebraic monad ΣR (cf. definition
1.5):

Z∞(X) =

{∑
i

λi{xi} ∈ ΣR(X);
∑
i

|λi| ≤ 1

}
.

Further, for any natural number N ≥ 2, the algebraic monad AN is defined as the intersection
of Z∞ with the algebraic monad ΣZ[N−1]:

AN(X) =

{∑
i

λi{xi} ∈ Z∞(X); λi ∈ Z[N−1]

}
.

Definition 1.9. (Endomorphism monads)
The endomorphism monad of a set Y is defined by

End(Y )(X) = Hom(Y X , Y ),

with µEnd(Y ) given by the composition of maps and εEnd(Y ) given by evaluation. To give a
homomorphism Σ → End(Y ) of algebraic monads is equivalent with specifying a module
structure Σ(Y )→ Y (cf. (4.3.8) in [8]).

There is an alternative approach to the theory of algebraic monads which sheds light on
its connection to universal algebra. First note that given a module α : Σ(M) → M , an
element (x1, ..., xn) ∈ Mn may be viewed as a map x̃ : n → M . Hence one may apply the
composite α ◦ Σ(x̃) to an element u ∈ Σ(n) and get an n-ary operation

Σ(n)×Mn →M.

Conversely, given sets Σ(n) of n-ary operations, for n ∈ N, which satisfy certain compatibility
conditions, one can construct a corresponding algebraic monad (cf. (4.5.11) in [8]).

The above shows in particular that the set Σ(1) carries a monoid structure, so it makes
sense to talk about multiplicative subsets of Σ(1). It also makes sense to define ideals and lo-
calizations. However, we will postpone precise definitions until section 2. Instead, we continue
by describing two algebraic monads in terms of their operations.
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Example 1.10. The commutative semi-ring T of tropical numbers is the set R ∪ {∞},
equipped with two binary operations [+] and [×], defined by

[+](a, b) = min(a, b),

[×](a, b) = a+ b.

This data gives rise to an algebraic monad ΣT, which makes it possible to formulate tropical
algebraic geometry in the new framework.

Example 1.11. By adjoining a unary operation [x] : F1(1) → F1(1) to F1, one obtains
the algebraic monad F1[x]. This object is initial in the category of triples (Σ, ρ, f), where Σ
is an algebraic monad, ρ : F1 → Σ is a homomorphism of monads, and f : {x} → Σ(1) is a
map. Explicitly, it is given by

F1[x](n) =

∗,
1x

0, ... nx
0

1x
1, ... nx

1

1x
2, ... nx

2

...
...

 ,

with action

F1[x](1)× F1[x](n) → F1[x](n),

(1x
i,k x

j) 7→ kx
i+j,

for 1 ≤ k ≤ n, and i, j ∈ N.

The algebraic monad F1[x] provides an example of a free algebra over F1, in the sense of
the following definitions.

Definition 1.12. Let Σ be an algebraic monad. An algebra over Σ is a homomorphism
of algebraic monads

ρ : Σ→ T.

We will abuse notation and write just T in cases where no confusion can arise.

Definition 1.13. Let U =
⊔
n∈N Un be a graded set, and consider the category of pairs

(Σ, f), which consist of an algebraic monad Σ, and a map of graded sets

f : U →
⊔
n∈N

Σ(n).

The free algebra generated by U is the initial object F∅〈U〉 in this category. Similarly, for an
algebraic monad T , the free algebra over T generated by U is the initial object T 〈U〉 in the
category whose objects are algebras over T equipped with graded maps as above.

For a proof of the existence of free algebras, see (4.5.2-4.5.8) in [8].

Remark 1.14. If Σ is an algebraic monad and U is a graded set, then the data of a module
over Σ〈U〉 consists of the data of a module M over Σ, together with arbitrarily chosen maps

[u] : Mn →M, for u ∈ Un, with n ∈ N.

(See (4.5.13) in [8].)
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Definition 1.15. Let Σ be an algebraic monad. For m ∈ N, the non-commutative
polynomial algebra in m variables over Σ is the algebraic monad Σ〈x1, ..., xm〉, whose set of
n-ary operations is built up according to the following rules.

(i) 1, ..., n ∈ Σ〈x1, ..., xm〉(n).

(ii) If t ∈ Σ〈x1, ..., xm〉(n), then xit ∈ Σ〈x1, ..., xm〉(n), for 0 ≤ i ≤ m.

(iii) If u ∈ Σ(k) is a k-ary operation of Σ, and t1, ..., tk ∈ Σ〈x1, ..., xm〉(n),

then ut1 · · · tk ∈ Σ〈x1, ..., xm〉(n).

Stated differently, Σ〈x1, ..., xm〉(n) is the set of “valid expressions” in x1, ..., xm and operations
from Σ (cf. (4.5.2)-(4.5.9) in [8]).

Remark 1.16. While it makes sense to talk about the degree of an element t ∈ Σ〈x1, ..., xm〉(1),
it is not always possible to extract coefficients from t (cf. (5.3.22) in [8]). This leads to sub-
stantial technical complications, since it makes it difficult to use properties of Σ to deduce
properties of Σ〈x1, ..., xm〉. This issue will be discussed in section 2.1.

In line with conventional algebraic geometry, we shall work with commutative polyno-
mial algebras, meaning that relations will be imposed between the operations [x1], ..., [xm] of
Σ〈x1, ..., xm〉.

Definition 1.17. Let Σ be a generalized ring. We say that a set of equivalence relations

R = {R(n) ⊂ Σ(n)× Σ(n)}n∈N
is compatible with Σ if t ≡R(k) s and ti ≡R(n) si, for 1 ≤ i ≤ k, implies that

[t]Σ(n)(t1, ..., tk) ≡R(n) [s]Σ(n)(s1, ..., sk).

The quotient of Σ with respect to a set R of compatible equivalence relations is the generalized
ring T , defined via

T (n) = Σ(n)/R(n).

(See (4.4.8) in [8].)

Definition 1.18. The polynomial algebra in m variables over an algebraic monad Σ is the
quotient Σ[x1, ..., xm] of Σ〈x1, ..., xm〉 with respect to the set of equivalence relations generated
by relations which force the operations [xi], for 1 ≤ i ≤ m, to commute.

2. Generalized rings

A ring is a set equipped with two binary operations, addition and multiplication, which
are subject to certain conditions. In particular, these operations commute with one another
in the sense that multiplication distributes over addition. This is an instance of the notion
of commutativity as defined below.

Definition 2.1. Let Σ be an algebraic monad and let m,n ∈ N. Two operations t ∈ Σ(n)
and s ∈ Σ(m) commute if for any module M over Σ, and any family {xij}1≤i≤n,1≤j≤m of
elements of M , one has

t(s(x11, ...., x1m), ..., s(xn1, ..., xnm)) = s(t(x11, ..., x1n), ..., t(xm1, ..., xmn)).

We say that Σ is commutative if all elements of
⊔
n≥0 Σ(n) commute.
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For any two modules M and N over an algebraic monad Σ, the set NM of maps from
M to N becomes a module over Σ by virtue of the module structure on N . Requiring
Σ to be commutative turns out to be equivalent with the requirement that the subset of
homomorphisms of modules HomΣ(M,N) is a submodule of NM for any choices of M and N
(cf. (0.5.2) in [8]).

Definition 2.2. A generalized ring is a commutative algebraic monad Σ on the category
of sets. An element ∗ ∈ Σ(0) is a zero of Σ if it is fixed by any operation of Σ. A homomor-
phism of generalized rings is a homomorphism of the underlying monads. Similarly, a module
over a generalized ring is a module over the underlying monad.

We write GRings for the category of generalized rings and GRings∗ for the category of
generalized rings with zeros. The category of modules over a generalized ring has a coproduct,
which we denote by ⊕.

Examples of algebraic monads with zeros are given by F1, Z∞, AN and ΣR for a commu-
tative unital ring R. The algebraic monad F∅ is a generalized ring that does not have a
zero.

Examples 2.3. (Initial and final objects)
The initial object of the category GRings is the monad F∅ (cf. definition 1.7). The final
object is the monad 1, defined via

1(n) = 1, for n ∈ N.

The initial and final object of GRings∗ is the field with one element F1 (cf. definition 1.7).

Definition 2.4. (Free modules)
Let Σ be a generalized ring. A module α : Σ(F )→ F is free if there exists a set X, such that

HomΣ(F,M) 'MX ,

for any module M over Σ. This entails F ' Σ(X) (cf. (0.4.10) in [8]). A module over Σ
is finitely generated if it admits a surjection from a free module of the form Σ(n), for some
n ∈ N. If Σ has a zero, then a finite free resolution of a module β : Σ(M)→M is a diagram
of module homomorphisms

∗ → Σ(nm)
dm→ · · ·Σ(n0)

d0→M → ∗,
such that di−1 ◦ di = ∗, for 1 ≤ i ≤ m.

Example 2.5. If M is a finitely generated module over the generalized ring F1, then
M = {∗, 1, ..., n}, for some n ∈ N (cf. (10.3.25) in [8]). Hence, M admits the finite free
resolution

∗ → F1(n)→M → ∗.

Definition 2.6. (Stably free and projective modules)
Let Σ be a generalized ring. A module α : Σ(E)→ E is stably free if there exist free modules
F and F ′, such that

E ⊕ F ′ ' F.
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Two modules M and M ′ are stably isomorphic if there exist free modules F and F ′ such that
M ⊕ F ' M ′ ⊕ F ′. If the generalized ring Σ has a zero, then a stably free resolution of a
module β : Σ(M)→M is a diagram of module homomorphisms

∗ → Em
dm→ · · ·E0

d0→M → ∗,

with Ei stably free for 0 ≤ i ≤ m and di−1 ◦ di = ∗, for 1 ≤ i ≤ m. The stably free dimension
of M is the minimal length of such a resolution. A module β : Σ(P )→ P is projective if any
surjection π : M → P of modules over Σ admits a section, i.e. a homomorphism of modules
σ : P →M , such that π ◦ σ = idP .

Note that for modules over commutative unital rings, the usual notions of free, finitely
generated, stably free and projective coincide with the ones in definitions 2.4 and 2.6 under
the correspondence described in remark 1.6.

Example 2.7. (A non-free projective module)
Consider the set

p∞ = {λ ∈ R; |λ| < 1}.

In the spirit of valuation theory, the residue field of the generalized ring Z∞ should be the
quotient

Q = Z∞(1)/p∞ ' {−1, 0, 1}.

The set Q inherits the structure of module over Z∞, so there is a homomorphism of monads
Z∞ → End(Q). We define the algebraic monad F∞ as the image of this homomorphism.
Then, for n ∈ N, an element of the free module F∞(n) corresponds to a face of the octahedron
Z∞(n). In particular, F∞(n) has 3n elements. Durov shows that the submodule M ⊂ F∞(2)
generated by the elements {1} and 1

2
{1}+ 1

2
{2} is projective (cf. [8] 10.4.20). Since M has

precisely five elements, it is not free.

Proposition 2.8. A projective module over a generalized ring is stably free if and only
if it admits a finite free resolution.

Proof. It is obvious that stably free modules admit finite free resolutions. Conversely,
let P be a projective module over a generalized ring Σ, and assume that P admits a finite
free resolution

∗ → Σ(nm)
dm→ · · ·Σ(n0)

d0→ P → ∗.

Then Σ(n0) ' ker d0 ⊕ P , since P is projective. Since ker d0 has a finite free resolution
whose length is smaller than that of P , induction on m shows that ker d0 is stably free, i.e.
ker d0⊕Σ(k) is free, for some k ∈ N. Since Σ(n0)⊕Σ(k) is free, this concludes the proof. �

The incarnations of short exact sequences in the theory of generalized rings are the cofi-
bration sequences in the sense of the next definition.

Definition 2.9. Let Σ be a generalized ring with zero and let M ′ j
�M be a monomor-

phism of modules over Σ. The cokernel of j is the pushout along ∗:

M/M ′ = M tM ′ ∗.
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A cofibration sequence is a diagram of modules of the form

M ′ �M �M/M ′.

Lemma 2.10. Consider two cofibration sequences

K � E �M,

K ′ � E ′ �M ′,

such that E and E ′ are stably free. If M and M ′ are stably isomorphic, then K and K ′ are
stably isomorphic.

Proof. Let F and F ′ be free modules such that M ⊕ F ' M ′ ⊕ F ′. Then one has the
two cofibration sequences

K � E ⊕ F
φ
�M ⊕ F,

K ′ � E ′ ⊕ F ′
φ′

�M ′ ⊕ F ′,

Set X = (E ⊕ F )×M⊕F (E ′ ⊕ F ′) and consider the projection onto the first factor

X → E ⊕ F.

The kernel of this map coincides with the kernel of φ′ and since E ⊕F is free, there is a split
cofibration sequence

K ′ � X � E ⊕ F.

Hence X ' K ′ ⊕E ⊕ F . A similar argument shows that X ' K ⊕E ′ ⊕ F ′, so K and K ′ are
stably isomorphic. �

Proposition 2.11. Let ∗ → En → · · · → E0 → M → ∗ be a stably free resolution and
assume that E ′0, ..., E

′
m are stably free modules such that any composition of two maps in the

sequence

E ′m → · · · → E ′0 →M → ∗

is zero. If m < n− 1, then there exists a stably free module E ′m+1 extending this sequence. If
m = n− 1, then ker(E ′n−1 → E ′n−2) is stably free. In particular, given a stably free module E
and a cofibration sequence

N1 � E � N,

the stably free dimension of N1 is strictly smaller than the stably free dimension of N .

Proof. Let

Km =

{
ker(Em → Em−1) for m 6= 0,
ker(E0 →M) for m = 0,

and define K ′m similarly. By lemma 2.11, there exist free modules F and F ′, such that
Km ⊕ F ' K ′m ⊕ F ′. For m < n − 1, we can choose E ′m+1 to be the stably free module
Em+1⊕F . In the case when m = n− 1, Km⊕F is stably free, since Kn ' En. But then K ′m
is stably free as well, since Km ⊕ F ' K ′m ⊕ F ′. This concludes the proof. �
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Proposition 2.12. Let Σ be a generalized ring with zero and let M ′ � M � M ′′ be
a cofibration sequence of finitely generated modules over Σ. If M ′ and M admit finite free
resolutions, then so does M ′′.

Proof. It is possible to construct a commutative diagram of cofibration sequences of
modules

M ′
1 M1 M ′′

1

E ′ E E ′′

M ′ M M ′′

with E ′, E and E ′′ stably free. Indeed, since M ′′ and M ′ are finitely generated, it is possible to
choose epimorphisms E ′′ �M ′′, E0 � E ′′×M ′′M and E1 �M ′. Then we put E = E0⊕E1

and E ′ = ker (E � E ′′), and let M ′
1, M1 and M ′′

1 be the kernels of the homomorphisms
E ′ � M ′, E � M and E ′′ � M ′′, respectively. By proposition 2.11, M1 has stably free
dimension smaller than that of M , and M ′

1 has finite stably free dimension. By induction,
we can reduce to the case when M is stably free. In this case, the existence of a finite free
resolution of M ′′ follows from the existence of a finite free resolution of M ′. �

Proposition 2.13. Let M ′ �M �M ′′ be a cofibration sequence of modules. If M ′ and
M ′′ admit finite free resolutions, then so does M .

Proof. If M ′ and M ′′ are stably free, then M ' M ′ ⊕M ′′, since M ′′ is projective, and
hence M admits a finite free resolution since it is stably free. Generally, we can use the same
argument as in the proof of proposition 2.12 and construct a square like the one above with
E ′, E and E ′′ finitely generated free. It then follows by proposition 2.11 and induction on
the maximum of the stably free dimensions of M ′ and M ′′ that M1 has finite stably free
dimension. Hence M admits a finite free resolution. �

2.1. Ideals and localizations. This section is in part a preparation for the construc-
tion of prime spectra of generalized rings, carried out in chapter 2. It also introduces some
terminology which will be used in section 3 in order to conclude that any finitely generated
projective module over the polynomial algebra F1[x1, ..., xm] is stably free.

Definition 2.14. An ideal of a generalized ring Σ is a module a over Σ, such that
a ⊂ Σ(1). If this containment is strict, then a is said to be proper. Further, a is prime if
Σ(1)\a is a multiplicative system and a is maximal if it is maximal with respect to the partial
order defined by inclusion of proper ideals of Σ. The generalized ring Σ is local if it has a
unique maximal ideal.

In particular, if R is a commutative unital ring, then the set of prime ideals of ΣR coincides
with the set of prime ideals of R.
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Example 2.15. Non-zero ideals of the generalized ring F1[x] are of the form

〈xn〉, for n ∈ N.
More generally, any non-zero ideal of F1[x1, ..., xm] can be generated by a monomial of the
form xj11 · · ·xjmm , for j1, ..., jm ∈ N. In particular, the proper prime ideals of F1[x1, ..., xm] are

{∗}, 〈x1〉, ... 〈xm〉.
Hilbert’s basis theorem states that the commutative ring of polynomials over a Noetherian

commutative unital ring is itself Noetherian, and its proof relies on the extraction of highest
degree coefficients (cf. e.g. IV:4.1 in [14]). Since it is not always possible to extract coefficients
when working with generalized polynomial algebras (see remark 1.16), it is not obvious that
a generalization of this result holds for generalized rings with the following definition of the
Noetherian property.

Definition 2.16. A generalized ring Σ is Noetherian if every ascending chain of ideals

a0 ⊂ a1 ⊂ · · ·
is stationary, i.e. if there exists an n ∈ N such that an = aN , whenever N ≥ n.

The description of the ideal structure of polynomial algebras over F1 in example 2.15
shows that the generalized ring F1 satisfies a Hilbert basis theorem. More generally, it allows
us to conclude the following.

Proposition 2.17. For any m ∈ N, the polynomial algebra F1[x0, ..., xm] is Noetherian.

Definition 2.18. Let Σ be a generalized ring with zero and let M be a module over Σ.
An ideal a ⊂ Σ(1) is the annihilator of an element x ∈M , if

a = {a ∈ Σ(1); ax = ∗}.
A prime ideal p ⊂ Σ(1) is an associated prime of M if there exists an x ∈ M such that p is
the annihilator of x.

Proposition 2.19. Let Σ be a generalized ring with zero and let M be a non-zero module
over Σ. If Σ is Noetherian, then M has an associated prime.

Proof. Since M is non-zero, the set of proper ideals which are annihilators is non-empty.
Since Σ is Noetherian, any ascending chain of annihilators has a maximal element with respect
to inclusion. Let a be such a maximal element and suppose that a is the annihilator of x ∈M .
If a, b ∈ Σ(1) are such that ab ∈ a and a /∈ a, then ax 6= ∗. The ideal generated by b and a
is the annihilator of ax, so the maximality of a implies that b ∈ a. Hence a is an associated
prime of M . �

In line with the conventional theory, the definition of the structure sheaf of a prime
spectrum will use a notion of localizations of the corresponding generalized ring.

Definition 2.20. Let Σ be a generalized ring and let S ⊂ Σ(1) be a multiplicative
system. The localization of Σ with respect to S is the quotient

Σ[S−1](n) = {(a, s) ∈ Σ(n)× S}/ ∼,
where (a, s) ∼ (b, t) if and only if there exists a u ∈ S, such that uta = usb. If M is a module
over Σ, the localization of M with respect to S is constructed in the analogous fashion.
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Remark 2.21. Let us consider the category of pairs (T, ρ), where ρ : Σ → T is an
algebra such that all elements of ρΣ(1)(S) ⊂ T (1) are invertible in T (1). By construction, the
localization Σ[S−1] is the initial object of this category. Given a module Σ(M) → M , one
may consider the case when T = End(M), and use this universal property to conclude that
a module over Σ[S−1] is the datum of a module over Σ, such that all elements s ∈ S act as
bijections (cf. (6.1.6) in [8]).

We consider three instances of localization.

Example 2.22. Let R be a commutative unital ring, and let S ⊂ R be a multiplicative
system. It is immediate from the construction that the generalized ring ΣR[S−1] coincides with
the localization of the generalized ring ΣR in the sense of definition 2.20:

ΣR[S−1] = ΣR[S−1].

We also have an analogous correspondence between the two notions of localization of modules
for this case.

Example 2.23. Localizing the polynomial algebra F1[x] with respect to the multiplicative
system 〈x〉 amounts to formally inverting the map [x] : F1[x](1) → F1[x](1). In particular,
for n ∈ N, the set of n-ary operations of the localization is given by

F1[x][x−1](n) = F1[x, x−1](n) =


∗,

...
...

1x
−1, ... nx

−1

1x
0, ... nx

0

1x
1, ... nx

1

...
...


.

Example 2.24. The localization of the generalized ring AN with respect to the mul-
tiplicative system 〈N−1〉 is ΣZ[N−1]. Indeed, the monoid AN(1) consists of the elements of
Z[N−1] whose L1-norm is smaller than or equal to 1. The canonical embedding AN ↪→ ΣZ[N−1]

induces an injective homomorphism of the localizations

AN [〈N−1〉−1] ↪→ ΣZ[N−1][〈N−1〉−1] = ΣZ[N−1].

Now, whenever λ = (λ1, ..., λn) ∈ ΣZ[N−1](n), one can find an integer k ≥ 0, such that

n∑
i=1

|λi| ≤ Nk.

Since Nkλ ∈ AN(n), one has λ ∈ AN [〈N−1〉−1](n). Hence ΣZ[N−1] injects into AN [〈N−1〉−1],
which proves the claim.

3. Finitely generated projective modules over F1[x0, ..., xm]

Let R be a Noetherian commutative unital ring. If any finitely projective module over R
is stably free, then the same property holds for modules over the polynomial ring R[x1, ..., xm]
(cf. e.g. XXI theorem 2.8 in [14]). The aim of this section is to establish the analogous result
for the generalized ring F1. While the proof is just an adaptation of the one in [14], we choose
to include it for instructional purposes.
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Lemma 3.1. If M is a finitely generated module over F1[x1, ..., xm], then there exist prime
ideals pi ⊂ F1[x1, ..., xm](1) and a filtration of M by submodules

M = M1 ⊃M2 ⊃ · · · ⊃Mk = ∗,
such that Mi/Mi+1 ' F1[x1, ..., xm](1)/pi, for 1 ≤ i ≤ k.

Proof. By propositions 2.17 and 2.19, M has an associated prime p. Let x ∈ M be
such that p is the annihilator of x. Then the submodule of F1[x1, ..., xm](1) generated by
x is isomorphic to F1[x1, ..., xm](1)/p, so the set of submodules of M admitting a filtration
as above is non-empty. Let N be a maximal element in this set and assume that N 6= M .
Then the above argument shows that there is a submodule N ′ of M/N such that N ′/N '
F1[x1, ..., xm](1)/q, for some prime ideal q of F1[x1, ..., xm]. But N ′ is a submodule of M
containing N , which contradicts the maximality of N . �

Theorem 3.2. If P is a finitely generated projective module over F1[x1, ..., xm], then P is
stably free.

In view of proposition 2.8, this is a consequence of the following.

Theorem 3.3. If M is a finitely generated module over F1[x1, ..., xm], then M admits a
finite free resolution.

Proof. Let

M = M1 ⊃M2 ⊃ · · · ⊃Mk = ∗,
be a filtration of M by submodules, as in lemma 3.1. By proposition 2.12, proposition 2.13
and induction, it suffices to prove that associated primes admit finite free resolutions. In
order to get a contradiction, let us assume that p ⊂ F1[x1, ..., xm](1) is an associated prime
which does not admit such a resolution.

Consider the prime ideal

q = p ∩ F1[x1, ..., xm−1](1),

and assume that p has been chosen so that q is maximal with respect to inclusion of ideals of
F1[x1, ..., xm−1] obtained in this way. By example 2.5 and induction on m, q admits a finite
free resolution. Hence the module

p̃ = q⊗F1[x1,...,xm−1] F1[x1, ..., xm](1)

admits a finite free resolution as well. By proposition 2.13, it remains to prove that p/p̃
admits a finite free resolution.

Now let p ∈ p/p̃ be a polynomial of minimal degree in xm. Then the coefficient d ∈
F1[x1, ..., xm−1](1) of p is such that

d · p/p̃ ⊂ 〈p〉.
Since F1[x1, ..., xm](1) does not have any divisors of zero, the principal ideal 〈p〉 is (stably)
free as a module over F1[x1, ..., xm]. In particular, it admits a finite free resolution, so by
proposition 2.13, is enough to show that r = (p/p̃)/〈p〉 admits a finite free resolution.
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Using lemma 3.1 again, one obtains a filtration of r by submodules, such that each fac-
tor module is of the form F1[x1, ..., xm](1)/ri for some associated prime ri of r. Since d · r = ∗,
the polynomial d lies in every associated prime of r. The maximality of q implies that each
factor module in the filtration of r admits a finite free resolution, so proposition 2.13 shows
that r itself admits a finite free resolution. This concludes the proof. �





CHAPTER 2

Generalized schemes

Dual to the theory of generalized rings is one of affine generalized schemes. In this chapter,
we introduce the corresponding version of algebraic geometry and use it to construct objects
such as a one-point compactification of Spec Z and generalized schemes over the field with
one element. We also study Grothendieck groups in the new context and equip them with the
additional structures of λ-rings in order to define Chern and Todd classes of vector bundles.

1. Definitions and examples

We begin by defining the prime spectrum of a generalized ring. The reader is encouraged
to compare this process with the one described in section 2 of appendix A.

Definition 1.1. Let Σ be a generalized ring and let Spec Σ be the set of prime ideals of
Σ. The Zariski topology on Spec Σ is generated by the basis which consists of the sets

Da = {p ∈ Spec Σ; a /∈ p}, for a ∈ Σ(1).

We define a sheaf of generalized rings OSpec Σ on the topological space Spec Σ by declaring
that

OSpec Σ(Da) = Σ[a−1], for a ∈ Σ(1).

The pair

Spec Σ = (Spec Σ,OSpec Σ)

is the prime spectrum of Σ.

Let R be a commutative unital ring, and consider the generalized ring ΣR (cf. definition
1.5 in chapter 1). Since the ideal structure of ΣR coincides with the ideal structure of R,
the underlying topological spaces of Spec ΣR and Spec R are the same. Moreover, example
2.22 in chapter 1 shows that OSpec ΣR

(U) is the generalized ring defined by the commutative
unital ring OSpec R(U), for any open subset U ⊂ Spec R. Hence, the prime spectrum of ΣR

in the sense of definition 1.1 may be identified with the prime spectrum of R.

Example 1.2. Recall the generalized ring AN from example 1.8 in chapter 1. Let us now
show that the underlying set of Spec AN is

{〈0〉, 〈p〉, ..., pN∞}p-N ,
where pN∞ = {α ∈ Z[N−1]; |α| < 1} is the maximal ideal of AN . Any prime number p, such
that p - N , generates a prime ideal 〈p〉 of AN . The inverse image of this prime ideal under
the localization homomorphism AN → Z[N−1] is a prime ideal of AN . Since prime ideals of
AN which do not contain N−1 are in bijection with prime ideals of Z[N−1], it then suffices to
show that the only prime ideal p of AN containing N−1 is the maximal ideal pN∞. But for

21
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any λ ∈ pN∞, there exists a k ∈ N, such that |λ|k < N−1. Hence Nλk ∈ AN(1), and λk ∈ p.
Being a prime ideal, p has to contain pN∞.

In order to generalize the notion of a locally ringed space, consider a morphism in the
category of locally ringed spaces

(f, f ]) : (X,OX)→ (Y,OY ).

(See section 2 of appendix A.) The requirement that for any x ∈ X, the induced homomor-
phism of stalks f ]x : OY,f(x) → OX,x is a local homomorphism of local rings is equivalent with
the requirement that for any affine open subschemes U ⊂ X and V ⊂ Y , such that f(U) ⊂ V ,
the restricted morphism

fU,V : U → V,

is induced by a homomorphism of rings OX(V ) → OX(U). This leads to the following
definition of a category of generalized locally ringed spaces.

Definition 1.3. A generalized locally ringed space is a pair (X,OX), consisting of a
topological space X and a sheaf of generalized rings OX on X. The stalk OX,x of X at any
given point x ∈ X is required to be a local generalized ring. A morphism (X,OX)→ (Y,OY )
of generalized locally ringed spaces is a pair (f, f ]), consisting of a continuous map f : X → Y
and a homomorphism f ] : OY → f∗OX of sheaves on Y . Moreover, it is required that for
any open prime spectra Spec Σ1 ⊂ X and Spec Σ2 ⊂ Y , such that f(Spec Σ1) ⊂ Spec Σ2,
the restricted morphism f : Spec Σ1 → Spec Σ2 is induced by a homomorphism Σ2 → Σ1 of
generalized rings. We write GLRS for the category of generalized locally ringed spaces.

Definition 1.4. A generalized scheme is a generalized locally ringed space which admits
an open cover by prime spectra of generalized rings. A generalized scheme is quasi-compact
if this cover can be chosen to be finite. A generalized scheme is affine if it is isomorphic to
the prime spectrum of some generalized ring in the category GLRS.

An immediate consequence of this definition is that morphisms of affine generalized
schemes are in one-to-one correspondence with homomorphisms of generalized rings:

HomGLRS(Spec Σ1, Spec Σ2) ' HomGRings(Σ2,Σ1).

Furthermore, if we let Γ : GLRS → GRings be the functor of global sections, then the
functor Spec : GRings→ GLRS, satisfies

HomGLRS(X, Spec R) ' HomGRings(R,Γ(X,OX)).

(See (6.5.2) in [8].) This is in complete analogy with the classical situation (cf. section 2 of
appendix A).

Example 1.5. (The affine spaces An
Σ)

For n ∈ N, the affine n-space over a generalized ring Σ is the prime spectrum of the polynomial
algebra Σ[x1, ..., xn]:

An
Σ = Spec Σ[x1, ..., xn].

Example 1.6. (The projective one-space P1
Σ)

Our first example of a non-affine generalized scheme is obtained by glueing two affine lines
together. More precisely, let Σ be a generalized ring and consider the multiplicative system
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generated by 1x
1 ∈ Σ[x](1) (cf. example 1.11 in chapter 1). The localization Σ[x]→ Σ[x, x−1]

defines an open embedding Spec Σ[x, x−1] ↪→ Spec Σ[x], so it is possible to glue two copies
of Spec Σ[x] along the open subsets Spec Σ[x, x−1]. The resulting generalized scheme is the
projective one-space over Σ, and will be denoted by P1

Σ.

Example 1.7. (The generalized schemes Ŝpec Z
N

)
For a natural number N ≥ 2, we consider the generalized ring AN , and its localization
ΣZ[N−1] = AN [〈N−1〉−1] (cf. example 2.24 in chapter 1). Since ΣZ[N−1] = ΣZ[N−1] is also

a localization of ΣZ, we can construct a generalized scheme Ŝpec Z
N

by glueing the affine
schemes Spec ΣZ and Spec AN along the open subsets Spec ΣZ[N−1]:

̂Spec ZN = Spec AN tSpec ΣZ[N−1]
Spec ΣZ.

The underlying set of the resulting generalized scheme is Spec Z ∪ {pN∞}, and is hence in
bijection with what should be the underlying set of a one-point compactification of Spec Z.

However, ̂Spec ZN has a topological property which we do not expect from such a compact-

ification: For any prime number p such that p - N , the point 〈p〉 ∈ ̂Spec ZN is tangled with
the point pN∞, in the sense that

{〈p〉} = {〈p〉, pN∞}.
(See (7.1.6) in [8]).

Given natural numbers M,N ≥ 2, consider the inclusion homomorphism φMN : AN ↪→
AMN . By the one-to-one correspondence between morphisms of affine generalized schemes
and homomorphisms of generalized rings, there is an induced morphism

φMN : Spec ANM → Spec AN .

On the open subset Spec Z ∩ Spec AMN , this morphism is the identity, so it is compatible
with the identity morphism Spec Z→ Spec Z. Hence, one obtains a morphism of generalized
schemes

fMN : Ŝpec Z
MN
→ Ŝpec Z

N
,

which is a bijection of the underlying sets. This morphism has the effect of moving points
〈p〉, for which p|M and p - N , to the cluster around pN∞.

Definition 1.8. (The algebraic one-point compactification Ŝpec Z)

With notation as above, the generalized locally ringed space Ŝpec Z is defined as the limit of
the projective system formed by the set {fMN}M,N≥2:

Ŝpec Z = lim←−
N≥2

Ŝpec Z
N
.

Next, we shall generalize example 1.6 and construct the projective spaces PnΣ over a gen-
eralized ring Σ, for n ∈ N. Let Σ[x0, ..., xn](1)+ be the subset of Σ[x0, ..., xn](1) consisting of
elements of strictly positive degree. Given a ∈ Σ[x0, ..., xn](1)+, we let Σ[x0, ..., xn](a) be the
degree-zero part of the localization Σ[x0, ..., xn][a−1], and put

D+(a) = Spec Σ[x0, ..., xn](a).
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Then for 0 ≤ i ≤ n, there are isomorphisms

D+(xi) ' An
Σ = Spec Σ[x1, ..., xn].

Also, for 0 ≤ i, j ≤ n, we have

D+(xixj) ' Spec Σ[x0, ..., xn](xi)[(xj/xi)
−1],

which shows that the collection of the n+ 1 affine spaces D+(xi), for 0 ≤ i ≤ n, can be glued
together.

Definition 1.9. (The projective spaces PnΣ)
With notation as above, the generalized scheme obtained by glueing the D+(xi)’s along the
D+(xixj)’s, for 0 ≤ i, j ≤ n, is the projective n-space over Σ. We denote it by PnΣ.

1.1. A short note on pseudolocalizations. For a commutative unital ring R, in-
clusions of basic open subsets Da ⊂ Spec R are in one-to-one correspondence with finitely
presented flat epimorphisms with domain R (cf. remark 1.5 in appendix A). This is no longer
true for generalized rings, as we shall see now.

To illustrate the situation, we consider a corresponding generalized ring AffR, defined via

AffR(n) = {(λ1, ..., λn) ∈ Rn;
n∑
i=1

λi = 1}.

In some sense, AffR mirrors affine spaces over R, so we would expect that the underlying
topological space of its spectrum coincides with the underlying topological space of Spec R.
However, this fails to be the case unless Spec R has precisely one point. The reason for this
is that the ideal structure of a generalized ring is determined by its monoid of unary opera-
tions. Since AffR has only one unary operation, the underlying topological space of its prime
spectrum reveals very little about the structure of AffR itself.

A related phenomenon is that a homomorphism AffR → AffR[S−1], induced by a conven-
tional localization R → R[S−1], need not be a localization of AffR in the sense of definition
2.20 in chapter 1 (cf. (6.1.27) in [8]). This is due to the fact that we only defined localiza-
tions with respect to sets of unary operations. In view of the characterization of basic open
subsets in terms of finitely presented flat morphisms (cf. remark 1.5 in appendix A), one
may approach localization in a different way, which accounts for the existence of operations
of higher arity.

Definition 1.10. (See (6.1.24) in [8])
A homomorphism of generalized rings ρ : Σ→ T is a pseudolocalization if the induced functor
between module categories is fully faithful, and if T is a flat algebra over Σ.

Every localization is a pseudolocalization, but the converse is not true. Too see this, we
need only consider the homomorphism AffR → AffR[S−1] above, which is a pseudolocalization,
but not a localization. In particular, this implies that Durov’s theory can not be exhibited as
a a special case of the theory suggested by Toën-Vaquié (cf. [22] and remark 2.3 in appendix
A).
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2. Vector bundles

Given a generalized locally ringed space (X,OX), we consider the category of sheaves
of modules over OX . An object of this category is a sheaf E on X, such that E(U) is a
module over OX(U), for any open set U ⊂ X. Furthermore, for each inclusion of open sets
V ⊂ U , the restriction homomorphism E(U) → E(V ) is required to be compatible with the
module structures via the homomorphism OX(U) → OX(V ) of generalized rings. A homo-
morphism of sheaves of modules over OX is a homomorphism of sheaves E → F , such that
for each open set U ⊂ X, the map E(U)→ F(U) is a homomorphism of modules over OX(U).

Given a module M over a generalized ring Σ, there is a canonical sheaf of modules M̃ over
OSpec Σ. It is defined by its values on the basic open sets Da ⊂ Spec Σ:

M̃(Da) = M [a−1].

The assignment M 7→ M̃ extends to a functor which provides a left-adjoint to the global
sections functor.

Definition 2.1. A quasi-coherent sheaf on a generalized locally ringed space (X,OX) is

a sheaf of modules E over OX , such that E|Ui
' M̃i as a sheaf of modules over OX|Ui

, for
some open cover {Ui}i∈I of X and some modules Mi over OX(Ui). A quasi-coherent sheaf is a

vector bundle if the cover {Ui}i∈I can be chosen such that M̃i ' OX|Ui
(ni), for some integers

ni ≥ 1. If all ni can be chosen to have the same value, the vector bundle E has rank ni. A
line bundle is a vector bundle of rank one.

Remark 2.2. If E is a vector bundle on a generalized scheme X, then for any affine open
set U ⊂ X, the set E(U) is a finitely generated projective module. Contrary to the situation
in the conventional theory, the converse is not always true. This is illustrated by the non-free
projective module Q over F∞ (cf. example 2.7 in chapter 1). Since Spec F∞ is a one-point

space, the corresponding sheaf of modules Q̃ over OF∞ cannot be a vector bundle.

Important examples of vector bundles on projective spaces are given by the Serre twists.
In describing them, we first observe that for any polynomial algebra Σ[x0, ..., xn], the free
module Σ[x0, ..., xn](1) admits a canonical Z-grading: For j ∈ Z, the degree-j component is
the subset consisting of the elements of degree j (cf. (5.3.22) in [8]). Let us write L1 for the
resulting Z-graded set. Further, for k ∈ Z, let us write L1[k] for the Z-graded set obtained
from L1 after shifting the degree by k, i.e. the degree-j component of L1[k] is the subset of
L1 consisting of the elements of degree j + k.

For 0 ≤ i ≤ n, denote by L1[k](xi) the degree-zero part of the localization L1[k][x−1
i ]. Since

L1[k](xi) is a module over Σ[x0, ..., xn][x−1
i ], there is an associated quasi-coherent sheaf L̃1[k](xi)

on D+(xi), which is in fact isomorphic to the trivial line bundle. Moreover, since

L1[k](xi)[(xj/xi)
−1] ' L1[k](xixj), for 0 ≤ i, j ≤ n,

the collection {L̃1[k](xi); 0 ≤ i ≤ n} can be glued together to form a line bundle on PnΣ.
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Definition 2.3. (Serre twists on PnΣ)

With notation as above, the line bundle obtained by glueing the L̃1[k](xi)’s is the k:th Serre
twist on PnΣ. We denote it by OPn

Σ
(k).

3. Grothendieck groups

The Grothendieck group of a conventional scheme is by definition the abelian group gen-
erated by isomorphism classes of vector bundles, with relations arising from short exact
sequences (cf. e.g. §8 in chapter II of [27]). Given the notion of vector bundles on a gener-
alized scheme, it is almost evident how to extend this definition. The only difference is that
relations have to be imposed by means of cofibrations in the following sense, since a category
of vector bundles may fail to be pointed in the generalized context.

Definition 3.1. A homomorphism u : E ′ → E of vector bundles on a generalized scheme
(X,OX) is a cofibration if it can be locally presented as a retract of a standard embedding
e : E ′|Ui

→ E ′|Ui
⊕OX|Ui

(n), i.e. if there exist homomorphisms of modules over OX|Ui

j : E|Ui
→ E ′|Ui

⊕OX|Ui
(n),

q : E ′|Ui
⊕OX|Ui

(n)→ E|Ui
,

such that q ◦ j = id, e = j ◦ u, and u = q ◦ e.

Definition 3.2. Let (X,OX) be a generalized locally ringed space. The Grothendieck
group K0(X) is generated by isomorphism classes [E ] of vector bundles on X, with relations
[∅] = 0 and

[E ]− [F ] = [E ′]− [F ′],

whenever there exist cofibrations u and u′ and a pushout square

F E

F ′ E ′

u

u’

in the category of vector bundles on X.

Remark 3.3. When X is a conventional scheme, a cofibration is precisely an injective ho-
momorphism with cokernel a vector bundle, and definition 3.2 is consistent with the classical
definition of the Grothendieck group of X (cf. (10.3.9) in [8]).

Example 3.4. If Σ is a generalized ring such that every finitely generated projective
module over Σ is stably free, one has

K0(Spec Σ) ' Z.

In particular, corollary 3.2 in chapter 1 implies that K0(An
F1

) ' Z, for all n ∈ N.
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Whenever M and N are two modules over a generalized ring Σ, there exists a module
M ⊗Σ N over Σ, such that

HomΣ(M ⊗Σ N,P ) ' HomΣ(M,HomΣ(N,P )),

for any module P over Σ (cf. (0.5.3) in [8]). Moreover, this tensor product of M and N over
Σ satisfies a universal property with respect to so called bilinear maps, and can be constructed
in the expected way (cf. (5.3.5) in [8]).

For two vector bundles E and F on a generalized scheme X, the tensor product E ⊗OX
F

is defined pointwise by the tensor products of the corresponding modules. This operation
induces the structure of commutative unital ring on the Grothendieck group K0(X):

[E ] · [F ] = [E ⊗ F ].

Furthermore, it equips the set of isomorphism classes of line bundles over X with the structure
of multiplicative abelian group.

Definition 3.5. The Picard group of a generalized scheme X is the abelian group Pic(X),
whose underlying set consists of the isomorphism classes of line bundles on X, and whose
operation is induced by the tensor product of vector bundles.

Example 3.6. For any generalized ring Σ, the Serre twists OPn
Σ
(k) satisfy

OPn
Σ
(k1)⊗OPn

Σ
OPn

Σ
(k2) ' OPn

Σ
(k1 + k2), for k1, k2 ∈ Z.

When k is a field, the Picard group of PnΣk
consists precisely of classes of Serre twists, and

thus

Pic(PnΣk
) ' Z.

Remark 3.7. Isomorphism classes of line bundles over the algebraic one-point compact-

ification Ŝpec Z are in one-to-one correspondence with strictly positive rational numbers (cf.

(10.5.8) in [8]). With the intended analogy between P1
k and Ŝpec Z in mind, one could say

that the positive rational numbers serve as arithmetic Serre twists.

4. λ-ring structures

The aim of the following two sections is to introduce the terminology needed to formulate
the Grothendieck-Riemann-Roch theorem. In particular, the Grothendieck groups of defini-
tion 3.2 will be equipped with so called λ-operations. These operations generalize the notion
of binomial coefficients, and serve to capture combinatorial properties of generalized schemes.

Definition 4.1. A λ-ring structure on a commutative unital ring R consists of a set of
ring homomorphisms

λi : R→ R, for i ∈ N,

such that λ0(x) = 1, λ1(x) = x, and

λk(x+ y) =
k∑
i=0

λi(x)λk−i(y), for k > 0.
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This kind of homomorphisms will be called λ-operations, and a ring equipped with λ-operations
will be called a λ-ring.

A set of ring homomorphisms {λi}i∈N induces a λ-ring structure on a ring R if and only
if the λ-polynomial

λt(x) =
∑
i∈N

λi(x)ti

induces a ring homomorphism

R → 1 + tR[[t]],

x 7→ λt(x).

(See chapter 1 of [10].)

Definition 4.2. An augmentation of a commutative unital ring R is a surjective ring
homomorphism

ε : R→ Z.

Example 4.3. The (unique) augmentation of the ring Z is given by the identity map.
The (unique) λ-ring structure on Z is defined by the binomial coefficients:

λi(n) =

(
n

i

)
, for n ∈ Z.

For a given λ-ring R, there are associated σ-operations σi : R → R, defined via the
σ-polynomial:

σt(x) = λ−t(x)−1 =
∑
i∈N

σi(x)ti.

The λ-operations can be recovered recursively from the σ-operations using the relation

k∑
i=0

(−1)iσi(x)λk−i(x) = 0.

This makes it possible to use σ-operations for an indirect definition of λ-operations. In
defining a λ-ring structure on the Grothendieck groups of generalized schemes, we shall adopt
this approach.

Definition 4.4. Let E be a vector bundle on a generalized scheme X. For i ∈ N, the
i:th symmetric power of E is the quotient

Symi(E) = E⊗i/Si,

with respect to the natural action of the symmetric group Si on i letters. The Grothendieck
group K0(X) is equipped with the structure of λ-ring by inducing λ-operations from the
σ-operations

σi([E ]) = [Symi(E)], for i ∈ Z.

An augmentation of K0(X) is given by the rank map [E ] 7→ rank(E). (See (10.3.18) in [8].)
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Remark 4.5. In the classical theory, λ-operations on Grothendieck groups are defined
directly, by means of exterior powers of vector bundles. The reason why we need to proceed
as we do is that it is impossible to define exterior powers of modules over a generalized ring
Σ which fails to be alternating (cf. (5.5.11) in [8]). In particular, it is impossible to define
exterior powers of modules over F∅ and F1.

We close this section by recording a lemma which will be used in chapter 3 to compute
Grothendieck groups.

Definition 4.6. (The λ-ring P̃ic(X))
Given a generalized scheme X, consider the abelian group

P̃ic(X) = Z× Pic(X).

For i, j ∈ Z and l1, l2 ∈ Pic(X), a structure of commutative unital ring is defined via the
multiplication

(i, l1) · (j, l2) = (ij, jl1 + il2),

and λ-operations are defined by

λi(j, l1) =

((
j

i

)
,

(
j − 1

i− 1

)
· l1
)
.

The map (i, l1) 7→ i provides an augmentation of the resulting ring.

Lemma 4.7. Let X be a generalized scheme, such that the map

c1 : Pic(X) → K0(X),

[L] 7→ [L]− 1,

is a homomorphism of abelian groups. Then the map

ϕ : P̃ic(X) → K0(X),

(i, [L]) 7→ i− 1 + [L],

is a homomorphism of λ-rings. If K0(X) is generated by line bundles, then ϕ is surjective.
If both Z→ K0(X) and c1 are injective, then ϕ is injective.

Proof. See (10.5.21) in [8]. �

5. Characteristic classes of vector bundles

Given λ-operations on a commutative unital ringR, one defines the associated γ-operations
γi : R→ R via the γ-polynomial

γt(x) = λ t
1−t

(x) =
∑
i∈N

γi(x)ti.

Since the γ-polynomial is obtained from the λ-polynomial through an invertible change of
variable, the γ-operations define a new λ-ring structure on R. If R admits an augmentation
ε, one can define a corresponding γ-filtration by putting

F 0R = R,

F 1R = ker ε,
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and for m ≥ 2, letting FmR be the abelian group generated by elements of the form

γi1(x1) · · · γik(xk), with x1, ..., xk ∈ F 1R and
∑k

j=1 ij ≥ m.

We write Gr(R) for the graded ring associated with the γ-filtration:

Gr(R) =
∞⊕
m=0

FmR/Fm+1R.

Definition 5.1. The Chow ring of a generalized scheme X is the rationalization of the
graded ring associated with the γ-filtration of K0(X):

CH(X) = Gr(K0(X))⊗Z Q.

Any morphism f : X → Y of generalized schemes gives rise to a homomorphism of λ-rings

fK : K0(Y )→ K0(X),

via pullback of vector bundles. Moreover, since this homomorphism maps FmK0(Y ) into
FmK0(X), for m ∈ N, it induces a homomorphism of Chow rings

fCH : CH(Y )→ CH(X).

(See (10.6.2) in [8].) Defining maps in the opposite direction is a more complicated task,
which we shall return to when formulating the Grothendieck-Riemann-Roch results of chapter
4.

Next, we define certain subsets of λ-rings which serve as domains of functions giving charac-
teristic classes. This will give us an abstract way of referring to the elements of a Grothendieck
group which correspond to vector bundles.

Definition 5.2. A positive structure on an augmented λ-ring R is a subset E of the
additive group of R, such that

(i) Z+ ⊂ E, E · E = E, and R = E− E.
(ii) ε(e) > 0, for all e ∈ E.

(iii) λi(e) = 0, for i > ε(e).

(iv) λε(e)(e) is a unit in R.

A line element is a positive element u, such that ε(u) = 1.

Example 5.3. For a generalized scheme X, a canonical positive structure on the λ-ring
K0(X) is given by the set of equivalence classes of vector bundles. A line element for this
structure is then an equivalence class of a line bundle.

Given a positive element e of a λ-ring, it is possible to construct a finite extension in
which e splits as a sum of line elements:

e = u1 + ...+ uε(e).

(See §1 of chapter I in [10].) This allows us to make the following definitions.
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Definition 5.4. Let e be a positive element of a λ-ring R and let e = u1 + ...+ uε(e) be
a splitting of e in an extension R′ ⊃ R. The Chern character of e is

ch(e) =

ε(e)∑
i=1

exp(ui − 1) =

ε(e)∑
i=1

∞∑
j=0

(ui − 1)j

j!
∈ Gr(R′)⊗Z Q.

The Todd class of e is

td(e) =

ε(e)∏
i=1

(ui − 1) · exp(ui − 1)

exp(ui − 1)− 1
∈ Gr(R′)⊗Z Q.

The Chern character and the Todd class are multiplicative in the sense that

ch(ee′) = ch(e)ch(e′),

td(e+ e′) = td(e)td(e′),

for any two positive elements e and e′.

Further, one has

ch ◦ φ = Gr(φ)⊗Z Q ◦ ch,

td ◦ φ = Gr(φ)⊗Z Q ◦ td,

for any homomorphism φ of λ-rings.

Remark 5.5. If all elements of FmR/Fm+1R are nilpotent for m ≥ 1, then the Chern
character and the Todd class take values in the ring Gr(R) ⊗Z Q (cf. III:2 in [10]). The
projective bundle theorem in chapter 3 will imply that R = K0(PnF1

) satisfies this nilpotency
condition for n ∈ N, and hence that both ch and td define homomorphisms

K0(PnF1
)→ CH(PnF1

).

We have the following explicit calculation of the σ-operations of Z.

Lemma 5.6. Let e be a positive element of an augmented λ-ring. Then

ε(σi(e)) =

(
ε(e)− 1 + i

i

)
.

Proof. Using a splitting e = u1 + ...+ uε(e), we can write λt(e) =
∏ε(e)

j=1(1 + ujt). Hence

ε(σt(e)) = ε(λ−t(e))
−1 =

ε(e)∏
j=1

ε(1− ujt)−1

= (1− t)−ε(e) =
∑
j

(
ε(e)− 1 + j

j

)
tj.

�





CHAPTER 3

Computations

1. The projective bundle theorem

Our aim in this section is to prove a projective bundle theorem for the generalized ring F1,
i.e. to carry out the computations

K0(PnF1
) ' Z[x]/xn+1, for n ∈ N.

The proof will be loosely based on an argument due to A. Suslin (cf. [18]), and goes by
induction on n ≥ 1. In order to compute K0(P1

F1
), we intend to use lemma 4.7 in chapter 2.

Hence we begin by computing the abelian group Pic(P1
F1

).

Lemma 1.1. The abelian group K0(P1
F1

) is generated by the isomorphism classes of the
line bundles OP1

F1
(k), for k ∈ Z. In particular

Pic(P1
F1

) ' Z.

Proof. In section 3 of chapter 1, it was proved that finitely generated projective modules
over F1[x] are stably free. Hence a vector bundle E over P1

F1
is determined by two stably free

modules E1 and E2, and an isomorphism of localizations f̃ : E1[x−1]
∼→ E2[x−1]. Let m,n ∈ N

be such that E1⊕F1[x](m) ' E2⊕F1[x](m) ' F1[x](n), and let f be the canonical extension

of f̃ to an automorphism of F1[x, x−1](n). Then one obtains a permutation of the generators

1x
0, ...,n x

0 by precomposing f with an automorphism of the form

1x
0 7→1 x

k1

...

nx
0 7→n x

kn

, for some k1, ..., kn ∈ Z.

This shows that the vector bundle over P1
F1

determined by f is isomorphic to OP1
F1

(k1)⊕ ...⊕
OP1

F1
(kn). Hence its direct summand E is also isomorphic to a direct sum of line bundles. �

Remark 1.2. Using a similar argument and the fact that finitely generated projective
modules over F1[x0, ..., xn] are stably free, one can show that K0(PnF1

) is generated by line
bundles and that

Pic(PnF1
) ' Z, for n ∈ N.

In order to show that the map ϕ of lemma 4.7 in chapter 2 is surjective, we need to show
that the map

c1 : Pic(P1
F1

) → K0(P1
F1

),

[OP1
F1

(k)] 7→ [OP1
F1

(k)]− 1,

is a homomorphism of abelian groups. This is achieved through the following lemma.

33
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Lemma 1.3. For k1, k2 ∈ Z, one has

OP1
F1

(k1)⊕OP1
F1

(k2) ' OP1
F1
⊕OP1

F1
(k1 + k2).

Proof. Consider the following two automorphisms of F1[x, x−1](2).

f : 1x
0 7→1 x

k1

2x
0 7→2 x

0

g : 1x
0 7→1 x

0

2x
0 7→2 x

k2

The vector bundle OP1
F1

(k1)⊕OP1
F1

(k2) is determined by the composite automorphism g ◦ f .

Precomposing f and g with the automorphism of F1[x](2) which swaps the generators defines
an isomorphic vector bundle. But the latter composite is given by

1x
0 7→1 x

0

2x
0 7→2 x

k1+k2

and hence the vector bundle it defines is OP1
F1
⊕OP1

F1
(k1 + k2). �

Theorem 1.4. There is an isomorphism of λ-rings

K0(P1
F1

) ' Z× Pic(P1
F1

).

Proof. Combining lemmas 1.1 and 1.3 with lemma 4.7 in chapter 2, it is sufficient to
establish injectivity of the homomorphisms Z→ K0(P1

F1
) and

c1 : Pic(P1
F1

) → K0(P1
F1

),

[L] 7→ [L]− 1.

To prove injectivity of the first one, consider the open inclusion A1
F1

↪→ P1
F1

. This map
induces a homomorphism K0(P1

F1
) → K0(A1

F1
) ' K0(Spec F1) ' Z, which must be a left-

inverse, since Z is the initial object in the category of commutative unital rings. To prove
injectivity of c1, consider the homomorphism

deg : K0(P1
F1

) → Pic(P1
F1

),

[OP1
F1

(k1)⊕ ...⊕OP1
F1

(kn)] 7→ OP1
F1

(k1 + ...kn).

It provides a left-inverse of c1. �

Definition 1.5. Let X be a generalized scheme and let Z ⊂ X be a closed set. The
Grothendieck group with support on Z is the subgroup K0

Z(X) of K0(X), consisting of the
elements which vanish when restricted to any open set U , such that U ∩ Z = ∅.

Theorem 1.6. (Projective bundle theorem for F1)
For n ∈ N, let ξn = [OPn

F1
(−1)]− 1 be the first Chern class of the line bundle OPn

F1
(−1). Then

the map

Z[x]/xn+1 → K0(PnF1
),

x 7→ ξn,

is an isomorphism of rings.
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Proof. For n = 0, the statement of the theorem is that K0(Spec F1) ' Z, which is true
by (10.3.25) in [8]. The case n = 1 was proved in theorem 1.4. Now assume that n is such
that the statement of the theorem holds for n− 1. If {0} ∈ An

F1
⊂ PnF1

is a closed point, then
since K0(A1

F1
) ' K0(Spec F1), the construction of projective spaces produce isomorphisms

K0(PnF1
\ {0}) ∼→ K0(Pn−1

F1
×Spec F1 A1

F1
)
∼→ K0(Pn−1

F1
),

such that ξn 7→ ξn−1 under the composite map. By the inductive assumption, K0(Pn−1
F1

) is

freely generated by 1, ξn−1, ..., ξ
n−1
n−1 , so the restriction map K0(PnF1

)→ K0(PnF1
\{0}) is a split

surjection. Hence, one has a short exact sequence of abelian groups

0→ K{0}(PnF1
)→ K0(PnF1

)→ K0(PnF1
\ {0})→ 0,

and it suffices to show that K{0}(PnF1
) is freely generated by ξnn . In order to do this, consider

the double restriction homomorphism

K0(PnF1
)→ K0(Pn−1

F1
)⊕K0(An

F1
\ {0}).

By the inductive assumption, an element of its kernel has to restrict to a multiple of ξnn−1 on
Pn−1
F1

. Since K0(An
F1

) ' Z, we know that this element has to be the difference of equivalence
classes of two bundles which have the same rank. Hence it has to be a multiple of ξnn , since
Pic(PnF1

) ' Z. �

2. Intersection theory of Ŝpec Z
N

In this section, we solve the open problem stated in (10.7.16) of [8] by computing the

Chow rings CH(Ŝpec Z
N

), for natural numbers N ≥ 2. We begin by proving that any finitely
generated projective module over the generalized ring AN is free in section 2.1. In section
2.2, we combine this with lemma 4.7 of chapter 2 and conclude that

K0( ̂Spec ZN) ' Z× logZ[N−1]∗+, for N ≥ 2.

As a corollary, we obtain isomorphisms

CH(Ŝpec Z
N

) ' Q⊕ logQ[N−1]∗+, for N ≥ 2.

2.1. Finitely generated projective modules over AN are free. For a natural num-
ber N ≥ 2, the generalized ring AN was defined via

AN(n) =

{
(λ1, ..., λn);λi ∈ Z[N−1]

n∑
i=1

|λi| ≤ 1

}
, for n ∈ N.

(See definition 1.8 in chapter 1.)

Theorem 2.1. If P is a finitely generated projective module over AN , then P is free.

Let us introduce some notation in order to prove this. We let π : AN(n) → P be a
surjective homomorphism from the free module over AN on n generators (cf. definition 2.6 in
chapter 1), where n is assumed to be minimal. Further, we fix a section σ : P → AN(n) of π,
and put a = σ◦π. Then a2 = a, and a is given by a matrix A = (aij) with entries aij ∈ AN(1).
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For 1 ≤ j ≤ n, we write uj for the image of the standard generator ej of AN(n). Then

‖uj‖1 =
n∑
i=1

|aij| ≤ 1, for all 1 ≤ j ≤ n,

since uj = a(ej) ∈ AN(n).

Lemma 2.2. One has ‖ui‖1 = 1, for all 1 ≤ i ≤ n.

Proof. Let I = {i ∈ n; ‖ui‖1 = 1}. For any vector x = (x1, ..., xn) ∈ Rn, one has

‖Ax‖1 =
n∑
i=1

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣ ≤
n∑
i=1

n∑
j=1

|aij||xj| ≤
n∑
j=1

|xj| = ‖x‖1.

In particular, if ‖Ax‖1 = ‖x‖1, then
n∑
i=1

n∑
j=1

|aij||xj| =
n∑
j=1

|xj|,

which is possible only if for all j, either xj = 0 or
∑

i |aij| = 1, i.e. j ∈ I. Since ‖Aui‖1 =
‖ui‖1, ui belongs to the AN(1)-span of {ui}i∈I , and hence I = n by the minimality of n. �

Note that if R = (rij) is the matrix with entries rij = |aij|, then R2 = R. Indeed, since
A2 = A, one has aik =

∑
j aijajk, so

rik = |aik| ≤
n∑
j=1

|aij||ajk| =
n∑
j=1

rijrjk.

Furthermore

1 =
n∑
i=1

rik ≤
n∑
i=1

n∑
j=1

rijrjk =
n∑
j=1

rjk = 1,

and hence rik =
∑

j rijrjk.

Proposition 2.3. If rij > 0, for all 1 ≤ i, j ≤ n, then all columns of R are equal.

Proof. Let x = (x1, ..., xn)t be the transpose of the i:th row of R. In showing that all
components of x are equal, one may assume that at least one xk = 0. Indeed, one can put
m = mini xi and replace x by x−m(1, ..., 1)t. Since R2 = R, one has Rtx = x. Hence

xk =
n∑
i=1

rikxi,

which implies that xi = 0, for all 1 ≤ i ≤ n, since all rik’s are strictly positive. �

Let us now show that if rij > 0, for all 1 ≤ i, j ≤ n, then P is free of rank one. First we
note that any equality |x1 + ...+ xn| = |x1|+ ...+ |xn| implies that x1 + ...+ xn has the same
sign as xi, for all 1 ≤ i ≤ n. In particular∣∣∣∣∣

n∑
j=1

aijajk

∣∣∣∣∣ = |aik| = rik =
n∑
j=1

rijrjk =
n∑
j=1

|aijajk|,
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so aijajk has the same sign as
∑

j aijajk = aik. Hence aii > 0, for all 1 ≤ i ≤ n. Put

εi =
a1i

|a1i|
,

B = (εiaijε
−1
j ).

Then B defines the same finitely generated projective module over AN as A. Since ε1 = 1,
and ε1a1jε

−1
j = |a1j| = r1j, it may be assumed that a1i > 0, for all 1 ≤ i ≤ n. But then

aij > 0, for all 1 ≤ i, j ≤ n, since a1iaij has the same sign as a1j. By proposition 2.3, all
columns of A are equal, whence the minimality of n and lemma 2.2 implies that A = (1).

Theorem 2.4. If rij = 0 for some i, j ∈ n, then there exist finitely generated projective
modules P ′ and P ′′ over AN , such that

P = P ′ ⊕ P ′′.

Proof. For j ∈ n, we consider the set

Sj = {i; rij > 0}.
Now choose i0 ∈ n, such that the cardinality |Si0| is minimal, and put S = Si0 . One has
i0 ∈ S, since otherwise ui0 would lie in the AN(1)-span of {ej}j 6=i0 , which would contradict the
minimality of n. Note that k ∈ Sj implies that Sk ⊂ Sj, since rij =

∑
k rikrkj. Consequently,

i, j ∈ S implies that Si = Sj = S, by the minimality of |S|. Hence

i, j ∈ S ⇒ rij > 0,

i /∈ S, j ∈ S ⇒ rij = 0.

In other words, one may assume that the matrix A is block-triangular

A =

(
A′ C
0 A′′

)
with A′2 = A′ and A′′2 = A′′, since it is possible to reorder indices in such a way that S = k,
for some k < n.

Write P ′ for the finitely generated projective module over AN defined by the block A′. By
(10.2.12) in [8], there exist homomorphisms

σ′ : P ′ ⊕ AN(n− k)→ P,

j : P → P ′ ⊕ AN(n− k),

such that σ′◦j = idP , j◦(P ′ ↪→ P ) = (P ′ ↪→ P ′ ⊕ AN(n− k)) and σ′◦(P ′ ↪→ P ′ ⊕ AN(n− k)) =
(P ′ ↪→ P ). Put q = j ◦ σ′, and let q′′ be the composite

AN(n− k)→ P ′ ⊕ AN(n− k)
q→ P ′ ⊕ AN(n− k)→ AN(n− k).

Then q2 = q and q′′2 = q′′. In order to show that q = idP ′ ⊕ q′′, consider the standard basis
{ei} of AN(n− k), and put

mi = q(ei), 1 ≤ i ≤ n− k.
Then

mi = λivi + µiwi,
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for some vi ∈ P ′, wi ∈ AN(n−k), and with |λi|+ |µi| ≤ 1. Write m′i for the projection of mi

to AN(n− k), that is

m′i = q′′(ei) = µiwi.

Since q′′2 = q′′, one has ‖q′′(m′i)‖1 = ‖m′i‖1, and hence

‖q′′(wi)‖1 = ‖wi‖1.

Using the same argument as in the proof of lemma 2.2, one concludes that (wi)j = 0, unless
‖m′i‖1 = 1. With I = {i; ‖m′i‖1 = 1}, one has

wi =
∑
j∈I

(wi)jej,

q(wi) =
∑
j∈I

(wi)jmj.

Since

mi = q(mi) = λivi + µiq(wi),

it follows that the AN -submodule of P ′ ⊕ AN(n− k) generated by P ′ and {mj}j∈I contains
mi. Note that

|µi|‖wi‖1 = ‖m′i‖1 = 1, for 1 ≤ i ≤ n− k.

Since wi ∈ AN(n − k), one has ‖wi‖1 ≤ 1. Since also |λi| + |µi| ≤ 1, one concludes that
λi = 0, i.e. mi ∈ AN(n − k). Hence q = idP ′ ⊕ q′′, so that P = P ′ ⊕ P ′′ for the finitely
generated projective module P ′′ over AN defined by q′′. �

By induction on the rank of projective modules, we can now conclude that P is free,
since we have just shown that it is a direct sum of free modules. This concludes the proof of
theorem 2.1. An inspection of the argument yields the following result.

Porism 2.5. If Σ is the stalk at a point of the generalized scheme ̂Spec ZN , then any
finitely projective module over Σ is free.

2.2. Vector bundles over ̂Spec ZN . The category of vector bundles over ̂Spec ZN is
equivalent with the category of triples (EZ, EN , θN), where EZ is a free module over Z, EN a

free module over AN , and θN : EZ[N−1]
∼→ EN [N−1] an isomorphism of modules over Z[N−1].

This follows by combining (7.1.19) in [8] with theorem 2.1. In particular, any vector bundle

over ̂Spec ZN has a well-defined rank.

Given a positive integer r, the vector bundles of rank r admit an alternative description
as a certain double coset of matrices. Namely, let E be a free module of rank r over Z[N−1]
and choose a basis (fi)1≤i≤r of EZ ⊂ E, and a basis (ei)1≤i≤r of EN ⊂ E. Both being bases
of E, they are related to each other by means of a matrix A = (aij) ∈ GLr(Z[N−1]):

ei =
r∑
j=1

aijfj, aij ∈ Z[N−1].
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If we choose another basis for EZ, it is related to (fi)1≤i≤r by means of a matrix B = (bij) ∈
GLr(Z):

fi =
r∑
j=1

bijf
′
j.

Similarly, if we replace (ei)1≤i≤r by another basis of EN , the two bases are related to each
other by means of a matrix C = (cij) in the group Octr of symmetries of the r-octahedron:

e′i =
r∑
j=1

cijej.

Hence, multiplying A from the right by matrices from GLr(Z) and from the left by matrices
from Octr does not change the corresponding vector bundle. Conversely, if A and A′ define
isomorphic vector bundles, we may assume that they arise from different choices of bases in
the same modules EZ and EN . Hence A′ = CAB for some C ∈ Octr and some B ∈ GLr(Z).
We have just shown:

Proposition 2.6. Isomorphism classes of vector bundles of rank r over ̂Spec ZN are in
one-to-one correspondence with double cosets

Octr\GLr(Z[N−1])/GLr(Z).

In particular,

Pic( ̂Spec ZN) ' {±1}\Z[N−1]∗/{±1} ' logZ[N−1]∗+.

We denote the line bundle corresponding to an element log λ ∈ logZ[N−1]∗+ by O(log λ).

Remark 2.7. The notation logZ[N−1]∗+ arises from the convention that Pic( ̂Spec ZN)
should be written additively, while Z[N−1]∗+ is written multiplicatively.

Now let u : E ′ → E be a cofibration of vector bundles over ̂Spec ZN with cofiber E ′′ and
put

E ′Z = Γ(Spec Z, E ′),
EZ = Γ(Spec Z, E),

E ′N = Γ(Spec AN , E ′),
EN = Γ(Spec AN , E).

Let r = rank(E ′) and s = rank(E ′′). Choose a free module E of rank r + s over Z[N−1] and
let (f ′i)1≤ı≤r and (f ′′i )1≤i≤s be bases of E ′Z and EZ/E

′
Z in E, respectively. If fr+i are any lifts

of f ′′i , 1 ≤ i ≤ s, then a basis {fi}1≤i≤r+s of EZ is given by

fi =

{
f ′i for 1 ≤ i ≤ r,
fi for r < i ≤ r + s.

By theorem 2.1, E ′N → EN is isomorphic to AN(r) → AN(r + s), so we may choose a basis
(ei)1≤i≤r+s of EN , such that its first r elements constitute a basis of E ′N , and such that the
images of the remaining s elements constitute a basis of the cofiber E ′′N of E ′N → EN . Let A ∈
GLr+s(Z[N−1]) be the matrix relating (ei)1≤i≤r+s to (fi)1≤i≤r+s, and define A′ ∈ GLr(Z[N−1])
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and A′′ ∈ GLs(Z[N−1]) similarly. Then A, A′ and A′′ describe E , E ′ and E ′′ respectively, and
by construction

A =

(
A′ 0
C A′′

)
.

Conversely, if a vector bundle E admits a description in terms of a block triangular matrix A

of the above form, then we obtain a cofibration E ′ → E of vector bundles over ̂Spec ZN . In

this way, cofibrations of vector bundles over ̂Spec ZN correspond to block-triangular decom-
positions of matrices.

Given any right coset GLr(Z[N−1])/GLr(Z), one can construct a matrixA = (aij) ∈ GLr(Z[N−1])
in the same coset, such that

(i) A is lower-triangular, i.e. aij = 0 for i < j.

(ii) A has positive diagonal elements, i.e. aii > 0.

This is done in [8] (10.5.15).

Lemma 2.8. K0( ̂Spec ZN) is generated by line bundles.

Proof. Let E be a vector bundle of rank r, and let A be a matrix of the above type
describing E . Since A is in particular block triangular, it corresponds to a cofibration of
vector bundles. Since A is in fact completely triangular, we have the equality

[E ] =
r∑
i=1

[O(log aii)] in K0( ̂Spec ZN).

�

Lemma 2.9. The map

c1 : logZ[N−1]∗+ → K0( ̂Spec ZN),

log λ 7→ [O(log λ)]− 1,

is an injective homomorphism of abelian groups.

Proof. First we check that

[O(log λ+ log µ)]− 1 = [O(log λ)]− 1 + [O(log µ)]− 1,

in K0( ̂Spec ZN). Consider the vector bundle E over K0( ̂Spec ZN) defined by the matrix

A =

(
λ 0
1 µ

)
.

Then [E ] = [O(log λ)] + [O(log µ)] in K0( ̂Spec ZN). Multiplying A by

(
0 1
1 0

)
∈ Oct2 from

the left, we obtain

A′ =

(
1 µ
λ 0

)
.
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Consider the canonical lower-triangular form A′′ = (a′′ij) of A′. Since A′ is congruent to
A′′ modulo GL2(Z), the row gcd’s of A′ and A′′ must be equal, so a′′11 = gcd(1, µ) = 1.
Also, since matrices in GL2(Z) have determinant ±1, a′′22 = detA′′ = ± detA = ±λµ.
All numbers involved are positive, so we get a′′22 = λµ. Since A′′ also defines E , we have

[E ] = [O(log λ + log µ)] + 1 in K0( ̂Spec ZN), proving that c1 is a homomorphism of abelian
groups. To prove injectivity, we consider the map

deg : K0( ̂Spec ZN) → logZ[N−1]∗+,

which sends the class of a vector bundle E represented by the matrix A to the element
log | detA|. Since deg ◦ c1 = id, c1 is injective. �

Theorem 2.10. Let N ≥ 2. Then there is an isomorphism of λ-rings

K0( ̂Spec ZN) ' Z× logZ[N−1]∗+.

Proof. Recall from proposition 2.6 that Pic( ̂Spec ZN) ' logZ[N−1]∗+, and consider the
map

ϕ : Z× logZ[N−1]∗+ → K0( ̂Spec ZN),

from lemma 4.7 in chapter 2. Combining this lemma with lemmas 2.8 and 2.9, we conclude
that ϕ is a surjective homomorphism of λ-rings. To establish injectivity, it remains to show

that the homomorphism Z→ K0( ̂Spec ZN) is injective. But this follows from the existence of

a morphism Spec Q→ ̂Spec ZN , inducing a homomorphism K0( ̂Spec ZN)→ K0(Spec Q) =
Z of commutative unital rings. �

Corollary 2.11. Let N ≥ 2. Then

CH(Ŝpec Z
N

) ' Q⊕ logQ[N−1]∗+.

Proof. One has

F 0K0(Ŝpec Z
N

) = K0(Ŝpec Z
N

),

F 1K0(Ŝpec Z
N

) = ker ε = 0× logZ[N−1]∗+.

Furthermore, for any l ∈ logZ[N−1]∗+, one has

λi(0, l) = λi(i− 1, l) = (0,

(
i− 2

i− 1

)
l) = 0, for i ≥ 2.

This implies that F 2K0(Ŝpec Z
N

) is generated by elements of the form λ1(l1)λ1(l2), for l1, l2 ∈
ker ε. But λ1 is the identity, and logZ[N−1]∗+

2
= 0 in K0(Ŝpec Z

N
), so F 2K0(Ŝpec Z

N
) = {0}.

This shows that Gr(K0(Ŝpec Z
N

)) ' Z⊕ logZ[N−1]∗+. Hence

CH(Ŝpec Z
N

) = Gr(K0(Ŝpec Z
N

))⊗Z Q ' Q⊕ logQ[N−1]∗+.

�





CHAPTER 4

Grothendieck-Riemann-Roch results

One of the most important tools in algebraic geometry is Grothendieck’s relativization
of the classical Riemann-Roch theorem. Originating in the theory of Riemann surfaces, the
Riemann-Roch theorem gives a formula which can be used to calculate the Euler characteristic
of a line bundle L(D) over a non-singular projective curve X of genus g:

dimH0(X,L(D))− dimH1(X,L(D)) = degD + 1− g.
(See e.g. IV:1.3 in [12]).

Using the formalism of Chern classes, Hirzebruch generalized the Riemann-Roch formula
to the following statement about higher dimensional varieties.

Theorem. (Hirzebruch-Riemann-Roch)
If E is a locally free sheaf on a non-singular projective variety X of dimension n, then

n∑
i=0

(−1)i dimH i(X, E) = deg(ch(E)tdX)2n.

Here tdX is the Todd class of X and (−)2n denotes the degree 2n-component of the co-
homology ring (cf. appendix A.4 in [12]).

In generalizing Hirzebruch’s formula, Grothendieck took as his point of departure certain
morphisms f : X → Y between schemes. In this relative setting, a Riemann-Roch type result
concerns the relation between the Chern characters chX and chY induced by f . Indeed, given
a coherent sheaf F on X, the relative incarnations of the cohomology groups on the left-hand
side of the Hirzebruch-Riemann-Roch formula are the coherent sheaves Rif∗F , for 0 ≤ i ≤ n.
Now let φ be any homomorphism from the abelian group generated by the coherent sheaves
on X to another abelian group, such that

φ(F) = φ(F ′) + φ(F ′′)
for any short exact sequence 0→ F ′ → F → F ′′ → 0. By the construction of Grothendieck
groups, the homomorphism φ factors through K0(Y ), and hence there is an induced additive
map

ψ : K0(X) → K0(Y ),

[F ] 7→
∑
i

(−1)j[Rif∗F ].

Using the pushforward in cohomology

fH : H(X)→ H(Y ),

43
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and the Todd class tdf of f , one arrives at the following generalization of the Riemann-Roch
theorem (cf. e.g. appendix A:5 in [12]).

Theorem. (Grothendieck-Riemann-Roch)
Let f : X → Y be a projective morphism between connected schemes which are quasi-projective
over a Noetherian base. Then the following diagram is commuative.

K0(X) K0(Y )

H(X) H(Y )

fK

ch(−) · tdf ch(−)

fH

In this chapter, we prove Grothendieck-Riemann-Roch type results for certain morphisms
between generalized schemes. Section 1 concerns the morphisms of the form

PnF1
→ Spec F1, for n ∈ N.

The key to the Grothendieck-Riemann-Roch theorem in this case turns out to be the pro-
jective bundle theorem of the previous chapter. In section 2, we define zero-sections of
generalized schemes and prove a corresponding Grothendieck-Riemann-Roch theorem under
a certain finiteness assumption.

1. Projections to Spec F1

For n ∈ N, the structure homomorphism F1 → F1[x0, ..., xn] of the polynomial algebra in
n+ 1 variables over F1 induces a morphism of generalized schemes

PnF1

p→ Spec F1.

We will now define the pushforward of this morphism:

pK : K0(PnF1
)→ K0(Spec F1).

Observe that since K0(PnF1
) is generated by the elements [OPn

F1
(−1)]k = [OPn

F1
(−k)], for

0 ≤ k ≤ n (cf. theorem 1.6 in chapter 3), it will suffice to know where these elements
map under pK .

We take our cues from the conventional theory and consider a projection PnX
p̃→ X, where X

is a Noetherian scheme. For 0 ≤ k ≤ n, one has the equality∑
i

(−1)i[Rip̃∗OPn
X

(k)] = [Symk(O⊕(n+1)
X )] in K0(X).

(See V:§2 in [10].) In cases when K0(X) ' Z, e.g. when X is the prime spectrum of a field,
one can combine this with lemma 5.6 in chapter 2 to show that

p̃K([OPn
X

(k)]) = σk(n+ 1) =

(
n+ k

k

)
, for 0 ≤ k ≤ n.
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Lemma 1.1. Let n ∈ N. If φ : K0(PnF1
) → K0(Spec F1) is the Z-linear functional such

that

φ([OPn
F1

(k)]) =

(
n+ k

k

)
, for 0 ≤ k ≤ n,

then φ([OPn
F1

(−k)]) = 0, for 0 < k ≤ n.

Proof. The projective bundle theorem yields the identity ([OPn
F1

(−1)]−1)n+1 = 0. Mul-

tiplying it by [OPn
F1

(1)]n, we obtain the relation

[OPn
F1

(−1)] =
n∑
i=0

(−1)n−i
(
n+ 1

i

)
[OPn

F1
(1)]n−i.

The relation between λ- and σ-operations now implies that

φ([OPn
F1

(−1)]) =
n∑
i=0

(−1)n−iλi(n+ 1)σn−i(n+ 1) = 0.

The general case is proved in a similar manner, through multiplication of the above identity
with [OPn

F1
(1)]n+1−k and use of induction on k ≥ 1. �

Definition 1.2. For n ∈ N, the homomorphism pK : K0(PnF1
)→ K0(Spec F1) of abelian

groups is defined via

pK([OPn
F1

(−k)]) =

{
1 for k = 0,
0 for 0 < k ≤ n.

One checks that pK is of graded degree −(n+ 1), which implies that there is an induced
graded homomorphism

pGr : Gr(K0(PnF1
))→ Gr(K0(Spec F1)).

The following proposition gives an explicit description of the latter map.

Proposition 1.3. Let ξ =
(

[OPn
F1

(1)]− 1
)

mod F 2(K0(PnF1
)). Then

pGr(ξ
j) =

{
1 for j = n,
0 otherwise.

In words, pGr picks up the n:th coefficient of its argument, expressed as a power series in ξ.

Proof. For j 6= n, the value 0 is obtained, since pK(F iK0(PnF1
)) ⊂ F i−n−1K0(PnF1

). For
j = n, consider the identities

(1− t)−n−1 =
∑
i∈N

(
n+ i

i

)
ti,

(1− t)n =
∑
i∈N

(−1)n−i
(
n

i

)
tn−i.
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They imply that
∑n

i=0(−1)n−i
(
n+i
i

)(
n
i

)
is the coefficient of tn in the power series expansion of

(1− t)−1. Hence

1 =
n∑
i=0

(−1)n−i
(
n+ i

i

)(
n

i

)
=

n∑
i=0

(−1)n−ipK([OPn
F1

(i)])

(
n

i

)
= pK(([OPn

F1
(1)]− 1)n) = pGr(ξ

n),

This concludes the proof of the proposition. �

Now we claim that the Chow ring CH(PnF1
) is a receptacle for Chern characters and Todd

classes of vector bundles on PnF1
. Indeed, by remark 5.5 in chapter 2, this will follow if we can

show that any element of F iK0(PnF1
)/F i+1K0(PnF1

) is nilpotent for i ≥ 1. But this is clear,
since

F 1K0(PnF1
) = 〈[OPn

F1
(−1)]− 1〉.

We arrive at the following Grothendieck-Riemann-Roch type result.

Theorem 1.4. (Grothendieck-Riemann-Roch for projections to Spec F1)
For n ∈ N, let

tdn = td([OPn
F1

(1)])n+1.

If pCH is the Q-linear extension of pGr, then the following diagram commutes.

K0(PnF1
) K0(Spec F1)

CH(PnF1
) CH(Spec F1)

pK

ch(−) · tdn ch(−)

pCH

Proof. It suffices to check commutativity for the classes [OPn
F1

(−1)]k = [OPn
F1

(−k)],

for 0 ≤ k ≤ n, since they generate K0(PnF1
). The homomorphism ch : K0(Spec F1) →

CH(Spec F1) is the canonical inclusion Z ↪→ Q, so we have

ch ◦ pK([OPn
F1

(−k)]) =

{
1 for k = 0,
0 for 0 < k ≤ n,

by definition 1.2. By proposition 1.3, we need to show that ch ◦ pK([OPn
F1

(−k)]) coincides

with the n:th coefficient of ch([OPn
F1

(−k)]) · tdn, expressed as a power series in

ξ =
(

[OPn
F1

(1)]− 1
)

mod F 2(K0(PnF1
)).

Multiplicativity of the Chern character implies that the power series in question is

exp(ξ)−k ·
(
ξ · exp(ξ)

exp(ξ)− 1

)n+1

.

The coefficient of ξn is the residue of

exp(−ξk)dξ

(1− exp(−ξ))n+1
.
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Changing variables y = 1− exp(−ξ), we see that this is the same the residue of

(1− y)k−1dy

yn+1
,

which is the coefficient of yn in the power series (1−y)k−1. Since this coefficient is 1 for k = 0
and 0 for 0 < k ≤ n, the statement of the theorem follows. �

2. Zero-sections

Let φ : Σ→ Σ′ be a surjective homomorphism of generalized rings and assume that Σ has
a zero ∗. If φ is obtained by imposing relations of the form ai = ∗, then the corresponding
morphism Spec Σ′ → Spec Σ is topologically closed. However, if φ is obtained by imposing
relations of the form ai = bi, then Spec Σ′ → Spec Σ is not necessarily topologically closed,
since one may not be able to replace those relations by relations of the form ai− bi = ∗. Con-
sequently, topologically closed morphisms between generalized schemes are relatively rare.
For this reason, Durov defines a morphism of generalized schemes f : X → Y to be a closed
immersion if the induced homomorpism OY → f∗OX is an epimorphism. In particular, it is
not required that a closed immersion of generalized schemes is topologically closed.

Given any generalized scheme X and a vector bundle E over X, it is possible to generalize
the construction of projective spaces (cf. definition 1.9 in chapter 2) and obtain a projective
bundle, denoted P(E). For a detailed description of the construction, see (6.6) in [8]. In this
section, we shall consider a special case of closed immersions whose targets are projective
bundles.

Definition 2.1. A morphism s : X → Y of generalized schemes is a zero-section if there
exists a vector bundle E on X such that Y = P(E ⊕OX) and s : X → P(E ⊕OX) is induced
by projection to the second factor:

E ⊕ OX → OX .
In particular, a zero-section is a section of the canonical projection p : P(E ⊕ OX) → X,

so the induced pullback

sK : K0(P(E ⊕ OX))→ K0(X)

is surjective. In order to formulate and prove a Grothendieck-Riemann-Roch result for zero-
sections, we need to introduce the concept of an involution of a λ-ring.

Definition 2.2. Let R be an augmented λ-ring with positive structure. An involution
of R is a ring homomorphism

R → R,

x 7→ x∨,

such that x∨∨ = x and ε(x∨) = ε(x), for all x ∈ R. Furthermore, we require that u∨ = u−1

for all line elements u ∈ R.

Example 2.3. For a generalized locally ringed space (X,OX), we define an involution of
the λ-ring K0(X) via

[F ]∨ = [HomOX
(F ,OX)].
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The circumstance which motivates us to consider involutions in the first place is the
description of the K-theoretical pushforward of a zero-section of conventional schemes

s : X → P(E ⊕ OX).

The pushforward sK satisfies the projection formula with respect to theK-theoretical pullback
sK :

sK(a · sK(b)) = sK(a) · b, for all a ∈ K0(X) and all b ∈ K0(P(E ⊕ OX)).

Consequently, the map sK is determined by the element sK(1). In order to describe this
element, we use the hyperplane sheaf H on P(E ⊕ OX), which fits into the short exact
sequence

0→ H→ p∗(E)⊕OP(E⊕OX) → OP(E⊕OX)(1)→ 0.

In view of the Koszul resolution

0→ ΛnH∨ → Λn−1H∨ → · · · → Λ1H∨ s∨→ OP(E⊕OX) → s∗OX → 0,

the element sK(1) is given by the sum λ−1([H]∨). These observations lead us to the following
definition.

Definition 2.4. Let s : X → Y = P(E ⊕ OX) be a zero-section of generalized schemes.
The associated hyperplane element is

hs = [p∗(E)] + 1− [OP(E⊕OX)(1)] ∈ K0(Y ).

The K-theoretical pushforward of s is defined via

sK([F ]) = pK([F ]) · λ−1(h∨s ),

where p : Y → X is the canonical projection.

Lemma 2.5. For a zero-section of generalized schemes s : X → Y , the pushforward sK is
of graded degree d = ε(h∨s ).

Proof. For n ∈ N and a ∈ F nK0(X), let b ∈ F nK0(Y ) be such that a = sK(b). Then

sK(a) = sK(sK(b)) = sK(1) · b = λ−1(h∨s ) · b ∈ F n+dK0(Y ).

�

Hence, any zero-section s : X → Y of generalized schemes induces a graded homomor-
phism sGr : Gr(K0(X)) → Gr(K0(Y )). The next two lemmas will yield a description of the
element sGr(1) ∈ Gr(K0(Y )).

Lemma 2.6. Let R be an augmented λ-ring with positive structure and involution. Let e
be a positive element in R, splitting as a sum u1 + ...+ um of line elements in an extension.
Then

(i) γv(e−m) =
m∑
i=0

λi(e)vi(1− v)m−i,

(ii) λi(e) = λm−i(e∨)λm(e).
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Proof. (i) Since the γ-operations define a new λ-ring structure on R, the γ-polynomial
is a ring homomorphism. Hence

γv(e−m) =
γv(e)

γv(m)
.

Since

γv(m) = λ v
1−v

(m) =
m∑
i=0

(
m

i

)(
v

1− v

)i
=

(
1 +

v

1− v

)m
= (1− v)−m,

we obtain

γv(e−m) = λ v
1−v

(e) · (1− v)m

=
m∑
i=0

λi(e)vi(1− v)m−i.

(ii) We have

λt(e) =
m∏
i=1

(1 + uit) =
m∏
i=1

uit(u
−1
i t−1 + 1)

= tm ·
m∏
i=1

ui ·
m∏
i=1

(1 + u∨i t
−1)

= tm · λm(e) · λt−1(e∨)

= λm(e) ·
m∑
i=0

λm−i(e∨)ti.

This identity proves the claim. �

Lemma 2.7. Let s : X → Y be a zero-section of generalized schemes, and let hs =
u1 + ...+ um be a splitting of the associated hyperplane element into a sum of line elements.
Then

sGr(1) =
m∏
i=1

(ui − 1).

Proof. For a positive element e and i ∈ N, put ci(e) = γi(e − ε(e)) mod F i+1. As a
consequence of the splitting, we have

m∑
i=0

ci(hs)t
i =

m∏
i=1

(1 + c1(ui)t),

and hence γm(hs −m) =
∏m

i=1(ui − 1). Setting v = t−1 in lemma 2.6 (i) and multiplying by
tm, one obtains

m∑
i=0

γi(hs −m)tm−i =
m∑
i=0

λi(hs)(t− 1)m−i.
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Evaluating this equality in t = 0 and using lemma 2.6 (ii), one obtains

γm(hs −m) =
m∑
i=0

λm−i(h∨s )λm(hs)(−1)m−i

= λ−1(h∨s )λm(hs).

Hence
m∏
i=1

(ui − 1) = γm(hs −m) = λ−1(h∨s )λm(hs) ≡ λ−1(h∨s ) mod F 1,

since λm(hs) is a line element. The assertion follows. �

Proposition 2.8. With notation as in lemma 2.7

ch(sK(1)) =
sGr(1)

td(hs)
.

Proof. By definition

ch(sK(1)) = ch(λ−1(h∨s )) =
m∏
i=1

(1− ch(u∨i )) =
m∏
i=1

(1− exp(1− ui)) .

Now since

td(hs) · ch(sK(1)) =
m∏
i=1

(ui − 1)exp(ui − 1)

exp(ui − 1)− 1
·
m∏
i=1

(1− exp(1− ui)) =
m∏
i=1

(ui − 1) ,

we are done by lemma 2.7. �

In what remains of this chapter, we shall assume that all involved generalized schemes
satisfy the nilpotency condition of remark 5.5 in chapter 2. This guarantees that the respective
Chern characters and Todd classes define ring homomorphisms

ch : K0(−)→ CH(−),

td : K0(−)→ CH(−).

Theorem 2.9. (Grothendieck-Riemann-Roch for zero-sections)
Let s : X → Y be a zero-section of generalized schemes which satisfy the nilpotency condition
of remark 5.5 in chapter 2. Let

tds = td(−sK(hs)) ∈ CH(X),

and let sCH be the Q-linear extension of sGr. Then the following diagram commutes.

K0(X) K0(Y )

CH(X) CH(Y )

sK

ch(−) · tds ch(−)

sCH
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Proof. For a ∈ K0(X), let b ∈ K0(Y ) be such that sK(b) = a. Then

ch ◦ sK(a) = ch(sK(1) · b) = ch(sK(1)) · ch(b),

by the multiplicativity of ch. Now proposition 2.8 gives

ch(sK(1)) · ch(b) =
sGr(1)

td(hs)
· ch(b).

Since

sGr(1)

td(hs)
· ch(b) = sGr

(
sGr

(
ch(b)

td(hs)

))
= sGr

(
sGr ◦ ch(b) · sGr(td(hs)

−1)
)

= sGr

(
sGr ◦ ch(b) · td(sK(hs))

−1
)

= sGr(ch ◦ sK(b) · tds)
= sGr(ch(a) · tds),

we are done. �





APPENDIX A

Preliminaries on sheaves, sites and algebraic geometry

1. Sheaves and sites

Consider three open subsets of the real line, U , V and W , such that

U ⊃ W , V ⊃ W , and U ∪ V = R.

Suppose that we are given a continuous real-valued function f on U and a continuous real-
valued function g on V , such that the two restrictions f |W and g|W coincide. Then there is
a unique real-valued continuous function h on R, which is obtained by “patching” fU and fV
along W , in the sense that

h|U = f and h|V = g.

In contrast, let {Ui}i∈N, be the open cover of R with Ui given by

Ui = {x ∈ R; |x| < i}.
If we are given bounded functions fi on Ui, for each i ∈ N, such that

fi|Ui∩Uj
= fj|Ui∩Uj

, for all i, j ∈ N,

it may be the case that the function f on R, obtained by “patching” as above, fails to be
bounded on R. Indeed, an instance of this is when fi = idUi

, for all i ∈ N. The sheaf property
provides a rigorous way of expressing that a class of functions is stable under the kind of
patching outlined above.

We begin by considering presheaves. These are devices which will be used to “bookkeep”
collections of local data, such as different sets of functions on the open subsets of a topologi-
cal space.

Definition 1.1. A presheaf on a category C is a contravariant functor

Γ : C → Sets.
By a presheaf of groups, a presheaf of rings, or a presheaf of objects of D, for a fixed category
D, we shall mean a presheaf taking its values in the category of groups, in the category
of rings, or in the category D, respectively. A homomorphism of presheaves is a natural
transformation of functors.

Definition 1.2. Given a topological space X, we let O(X) denote the category whose
objects are the open subsets of X and whose morphisms are the inclusions of open subsets.
By a slight abuse of terminology, we shall refer to a presheaf on O(X) as a presheaf on X.
The stalk of such a presheaf F at a point x ∈ X is the set

Fx = lim−→
U3x
F(U).

53
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Definition 1.3. Let C be a category admitting pullbacks. A (basis for a) Grothendieck
topology on C is a rule T, which to each object U of C assigns a collection T(U) consisting of
families of morphisms with codomain U , such that the following conditions are satisfied.

(G1) For any isomorphism V → U , one has {V → U} ∈ T(U).

(G2) For any {Ui → U ; i ∈ I} ∈ T(U), and any morphism V → U , the collection

of pullbacks {Ui ×U V → V ; i ∈ I} belongs to T(V ).

(G3) If {Ui → U ; i ∈ I} ∈ T(U) and {Vij → Ui; j ∈ Ji} ∈ T(Ui), for each i ∈ I,

then the collection of composites {Vij → U ; j ∈ Ji, i ∈ I} belongs to T(U).

A site is a pair (C,T), where C is a category and T is a Grothendieck topology on C.
Given a topological space X, we define a Grothendieck topology TX on the category

O(X) by choosing TX(U) as the collection of open covers of the open subset U ⊂ X, with
each member contained in U . Condition (G1) is then satisfied since any open subset is
covered by itself. Condition (G2) is satisfied since a family {Ui ∩ V }i∈I covers V whenever
the family {Ui}i∈I covers U . Finally, condition (G3) is satisfied since whenever one has a
family {Ui}i∈I which covers U and a family {Vij}j∈Ji which covers Ui, for each i ∈ I, then the
family {Vij}j∈Ji,i∈I covers U . In this way, we associate a site (O(X),TX) to any topological
space X.

Definition 1.4. Let Rings be the category of commutative unital rings. The Zariski site
is the pair (Ringsop,TZar), where TZar is the Grothendieck topology which to an object R
assigns the collection of families of duals of localizations R→ R[r−1], such that the elements
r ∈ R generate the unit ideal:

TZar(R) = {{R[r−1]→ R}r∈S; S ⊂ R, 〈S〉 = R}.
Remark 1.5. Localizations of the form R → R[r−1] are precisely the finitely presented

flat epimorphisms with domain R (cf. [22]). Since being finitely presented and flat is a
property that makes sense for any morphism between monoid objects of a symmetric monoidal
category, it is possible to define the Zariski site starting with any category of monoid objects
in a symmetric monoidal category.

Definition 1.6. Let (C,T) be a site such that the category C has all limits. A presheaf
F on C is a sheaf if, for any object U and any family {Ui → U ; i ∈ I} ∈ T(U), the following
diagram is an equalizer.

F(U)→
∏
i∈I

F(Ui) ⇒
∏
i,j∈I

F(Ui ×U Uj)

A homomorphism of sheaves is a homomorphism of the underlying presheaf. By a sheaf on a
topological space X, we mean a sheaf on the site (O(X),TX).

Examples 1.7. The presheaf which to an open subset U ⊂ R assigns the set of real-valued
continuous functions on U is a sheaf on R by virtue of the fact that a set of such functions
which coincide on restrictions may be glued together to a continuous real-valued function.
Since bounded functions cannot always be glued together to form a bounded function, the
presheaf which to an open subset U ⊂ R assigns the set of bounded functions on U fails to
be a sheaf on R. For any commutative unital ring R, the functor HomRings(−, R) is a sheaf
on the Zariski site.
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2. Algebraic geometry

Consider the category LRS of locally ringed spaces. An object of LRS is a pair (X,OX),
consisting of a topological space X and a sheaf OX of commutative unital rings on X. It is
also required that the stalk OX,x of OX at any given point x ∈ X is a local ring. A morphism
(X,OX) → (Y,OY ) in LRS is a pair (f, f ]), consisting of a continuous map X → Y and
a homomorphism f ] : OY → f∗OX of sheaves on Y , such that the induced homomorphism
f ]x : OY,f(x) → OX,x is a local homomorphism of local rings.

The contravariant functor of global sections

Γ : LRS → Rings,
(X,OX) 7→ OX(X),

has a left-adjoint Spec : Rings→ LRS. This means that there are isomorphisms

HomLRS(X, Spec R) ' HomRings(R,Γ(X,OX)),

for any choices of a locally ringed space X and a commutative unital ring R. One can describe
the locally ringed space Spec R explicitly as follows. First, the Zariski topology is defined on
the set Spec R of prime ideals of R by choosing a basis consisting of the sets

Da = {p ∈ Spec R; a /∈ p}, for a ∈ R.

Then the structure sheaf OSpec R is defined by declaring that its values on the basis sets are

OSpec R(Da) = R[a−1].

Definition 2.1. An affine scheme is a locally ringed space of the form Spec R, for some
commutative unital ring R. A scheme is a locally ringed space which admits an open cover
by affine schemes.

The definition above bears much resemblance to the definition of a manifold. Indeed, both
schemes and manifolds are topological spaces which admit covers by specific basic spaces.
Nevertheless, the behavior of schemes is usually more complicated than that of manifolds.
For instance, a point of a scheme may be non-closed and residue fields may vary between
different points of the same scheme.

An instructive way to approach a scheme can be to consider its functor of points. This
perspective illuminates the transformation of algebraic geometry from the study of zero-sets
of algebraic equations to the study of rules which parametrize such zero-sets. More precisely,
consider affine scheme X, defined by a system of polynomial equations {fi = 0}i∈I :

X = Spec Z[x1, ...]/(fi)i∈I .

The characterizing property of the functor Spec is that a morphism from an affine scheme
Spec R to X can be identified with a homomorphism of rings Z[x1, ...]/(fi)i∈I → R. Such a
morphism exists if and only if the images of the variables x1, ... satisfy the equations fi = 0,
for i ∈ I.
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Definition 2.2. The functor of points of a scheme X is the contravariant functor

FX : Rings → Sets
R 7→ HomLRS(Spec R,X).

Using the terminology of section 1, a functor of points FX is a presheaf on the category
Rings. Furthermore, a comparison between the definition of the Zariski topology and the
definition of the Grothendieck topology TZar reveals that FX is a sheaf on the Zariski site.

Remark 2.3. It is an interesting problem to characterize the sheavesRings→ Sets which
are represented by schemes. This is done in [7], and has inspired alternatives to conventional
algebraic geometry which are non-additive and/or homotopical in nature (cf. [22], [23] and
[24]).
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