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Abstract

Probabilistic classifiers are introduced and it is shown that the only regular linear probabilistic
classifier with convex risk is multinomial regression. Penalized empirical risk minimization is
introduced and used to construct supervised learning methods for probabilistic classifiers. A
sparse group lasso penalized approach to high dimensional multinomial classification is pre-
sented. On different real data examples it is found that this approach clearly outperforms
multinomial lasso in terms of error rate and features included in the model. An efficient co-
ordinate descent algorithm is developed and the convergence is established. This algorithm is
implemented in the msgl R package.

Examples of high dimensional multiclass problems are studied, in particular examples of
multiclass classification based on gene expression measurements. One such example is the —
clinically important — problem of identifying the primary tumor site of lever metastases, this
particular problem is studied in detail. In order to adjust for the lever contamination found
in biopsies of metastases a computational contamination model is develop. The contamination
model is presented in a domain adaption framework and a simulation based domain adaption
strategy is presented. It is shown that the presented computational contamination approach
drastically improves the primary tumor site classification of lever contaminated biopsies of
metastases. A final classifier for identification of the primary tumor site is developed. This
classifier is validated on an independent validation set consisting of lever biopsies of metastases
with varying tumor content.



Resumé

Stokastiske klassifikatore introduceres og det bliver vist at den eneste regulaere linear stokastiske
klassifikator med konvex risiko er multinomial regression. Straffet empirisk risiko minimering in-
troduceres og bruges til at konstruere supervisered leerings metoder for stokastiske klassifikatore.
En sparse group lasso straffet tilgang til hgj dimensional multinomial klassifikation preesenteres.
Pa forskellige data eksempler ses det tydeligt at denne tilgang inducere bedre modeler end multi-
nomial lasso. En koordinatvis optimerings algoritme udvikles og konvergensen af denne vises.
Denne algoritme er implementeret i R pakken msgl.

Eksempler pa hgj dimensional mange klasse klassifikations problemer undersgges, specielt
genekspression eksempler. Et sadanne eksempel er — det kliniske vigtige — problem med iden-
tifikation af den primaere tumor af lever metastaser, dette problem studieres i detaljer. En
stokastisk kontaminerings model udvikles for at juster for den lever kontaminering der findes
i biopsier af lever metastaser. Og det vises at denne model forbedre klassifikationen af den
primeere tumor. En endelig klassifikator udvikles og valideres pa et uathaengigt st af lever
biopsier af metastaser.
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Chapter 1

Introduction

This thesis consist of three introductory chapters, the three primary articles Vincent and Hansen
[21], Vincent et al. [22], Perell et al. [I2], one software package Vincent [20] and one secondary
article Spkilde et al. [I4]. The status of this work is disclosed in section below. The main
theme of the thesis is high dimensional multiclass classification, and a central application is
identification of the primary tumor site of metastases. Secondary themes are domain adaption
and non differentiable convex optimization.

We will approach high dimensional multiclass classification by a regularization approach,
specifically by penalized empirical risk minimization. Where a classification problem is said to
be high dimensional multiclass if there are three or more classes and a high number of covariates
relative to the number of samples. We adapt the view that classification is estimation of the
conditional probability of a class given the observed covariates, this viewpoint is termed proba-
bilistic discriminative models by Bishop [2]. Tt is different from the — perhaps more traditional
— view that classification is the problem of discriminating between classes.

Examples of discriminating classification methods are support vector machines for classifica-
tion Vapnik [T9], k-nearest neighbor algorithm and classification trees. Examples of probabilistic
discriminative models are multinomial regression (sometimes also called multiclass logistic re-
gression) and probit regression (see fore example Bishop [2]). Classifiers like linear discriminant
analysis (LDA) models the joint density of the class and covariates, which implies that the
conditional probability of a class is estimated. In fact, for LDA the conditional probability has
the same form as in multinomial regression Hastie et al. [7] — but estimated differently. An
advantage of the probabilistic notion is that not only one class is estimated but the probability
of each of the classes.

Penalized empirical risk minimization is a penalized version of empirical risk minimization
Vapnik [19]. A natural approach is to minimize the penalized log-likelihood risk of the proba-
bilistic model, this corresponds to maximum likelihood estimation. In order for such methods
to be well behaved convexity of the empirical risk is preferable. And as we shall see the only
probabilistic model with convex log-likelihood empirical risk is — in broad terms — the multino-
mial regression model, this statement will be made precise in Chapter[2] Hence we are naturally
lead to the multinomial regression model.

Empirical risk minimization is likely to produce overfitted solutions for high dimensional
problems, we therefore use a penalty to regularize the solution. The penalty is essential in
determining the characteristics of the resulting method, non-differentiable penalties will — if
carefully chosen — induce model selection properties. This has been known for some time, with
the primary example being the lasso or ¢1-norm penalty. As we shall see the ¢;-norm may
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Data set Classes Covariates Parameters Samples
Primary Cancers 11 384 4k 199
Brain Tumor 5 Tk 35k 40
Childhood Leukemia 4 8k 32k 60
Amazon Reviews 50 10k 500k 1500

Table 1.1: Data sets used in chapter 2 — 4. The table lists the number of classes, covariates,
parameters for a multinomial model and samples.

not be the best possible penalty for multiclass classification, a better choice may be a sum of
Eg-normsﬂ —i.e. a group lasso — penalty. Another attractive penalty is the combined ¢;-norm
and fo-norm, this penalty is called the sparse group lasso.

Due to the non-differentiability of the above penalties the development of algorithms for
solving such penalized optimization problems are not simple. The simplest case is ¢;-norm
penalization which can be solved using coordinate descent. Efficient algorithms are available
for solving these types of problems. The fo-norm penalty is slightly more complex, but can
be solved using block coordinate descent. Algorithms for solving the sparse group lasso is
somewhat more complex, we present and establish convergence of one such algorithm in Vincent
and Hansen [21].

In order to compare, assess and select models some vocabulary is needed, Chapter [3|is pri-
marily devoted to defining and illustrating such a vocabulary. A notion of model characteristic
will be introduced, this abstraction broadens the notion of generalization error. The number
of covariates include in the model is an example of a model characteristic. And as we shall
see different penalties will produce methods with different relations between different model
characteristics, as for example the expected generalization error and the expected number of
covariates in the model.

We define the notion of supervised learning method and parametrized supervised learning
method. Empirical risk minimization is an example of a supervised learning method and pe-
nalized empirical risk minimization an example of a parametrized supervised learning method
— these examples will be introduced in Chapter [3] Parametrized supervised learners differ
from supervised learns as they produce not a single model but a sequence of models, usually
parametrized by a positive scaler. For penalized empirical risk minimization this scalar is the
amount of regularization, that is the weight of the penalty. We will discuss various ways of com-
paring such methods and briefly model selection, that is how do we choose an optimal model
among the produced sequence of models.

In the last part of Chapter [3| we will introduce a general notion of subsampling procedures
of which cross validation and standard subsampling is an example. We will show that all such
procedures induce unbiased estimates of the expected model characteristic. Moreover we derive
a formula for the variance, and use this to briefly investigate the variance of cross validation
and standard subsampling.

In Chapter [4] we study the solutions of the optimization problems associated with penalized
empirical risk minimization. A good grasp of the solutions to these problems is a — in my
opinion essential — first step towards a better understanding of the statistical properties of the
estimators induced by penalized empirical risk minimization. Using standard convex analysis we
derive a optimality condition of the solutions of optimization problems with sublinear penalties.

Sublinear penalties will be introduced and defined, they generalize the lasso, group lasso and

Do not confusion the £3-norm with ridge regression, the ridge regression penalty is the square of the £3-norm.
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Work Journal / Repository Status
Vincent and Hansen [2I] Computational Statistics & Data Analysis  under revision
Vincent et al. [22] Bioinformatics submitted
Vincent [20] CRAN on CRAN
Perell et al. [12] Clinical Cancer Research submitted
Sgkilde et al. [14] submitting June

Table 1.2: Status overview

sparse group lasso penalties. Furthermore we give an exact solution when the risk is quadratic
and show how this can be used to get some geometric insight into the solution of such problems.
This exact solution can also be used to derive generic algorithms for solving sublinear penalized
empirical risk minimization problems.

Throughout the thesis various real data sets will be used to illustrate concepts and methods,
the characteristic of the data sets used in the introductory chapters is list in Table Short
descriptions and references related to the data sets can be found in Appendix [C]

1.1 Status and comments

The primary contribution, which we develop in Vincent and Hansen [21], is sparse group lasso
multinomial regression. The idea is to group parameters corresponding to the same covariate
and then estimate models using the sparse group lasso penalized maximum likelihood estimator.
We show that for many real data sets this sparse group lasso estimator is superior to a plain
lasso estimator in terms of archiving a lower error rate with fewer covariates included in the
model. Another important contribution, made in Vincent and Hansen [21], is the development
of a coordinate descent algorithm — suitable for high dimensional problems — for solving the
sparse group lasso penalized maximum likelihood estimates.

The algorithm developed in Vincent and Hansen [2I] was implemented in C++. This im-
plementation was used as a basis for the msgl R package Vincent [20]. The msgl package is
available on CRAN.

In Vincent et al. [22] we develop a contamination model and use it to improve the identifica-
tion of the primary tumor site of lever metastases. The contamination model is presented in a
domain adaption framework and we suggest a simulation based domain adaption strategy. We
use the contamination model in combination with the presented domain adaption strategy, and
show that the combined approach drastically improves the primary tumor site classification of
lever contaminated biopsies of metastases.

A clinically applicable classifier for identification of the primary tumor site of lever metas-
tases is developed and validated in Perell et al. [12]. A long range of classifiers for identification
of the primary tumor site have been published see [2-7] in the reference list of Perell et al. [12].
The developed classifier is designed to be clinically applicably and is — to our knowledge — the
first which is systematically validated on core biopsies of metastases — contrary to many of the
other classifiers developed. It is developed using the contamination model of Vincent et al. [22]
and it can cope with high levels of lever contamination.

Chapter [2] is for the most part a summery of standard theory, however with a focus on
convexity of the risk not normally seen. Theorem [2] states that the only regular linear model
with convex log-likelihood risk is the multinomial model, this result is to my knowledge a new
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result. Chapter [3]primarily introduce and illustrates a vocabulary suitable for use with penalized
empirical risk minimization for high dimensional problems. At the end of Chapter [3] a general
notion of subsampling procedures — of which cross validation is an example — is presented and
it is shown that all such procedures induce unbiased estimators of the expected generalization
error. Moreover a formula — Proposition [3| — for the different components of the variance of
these estimators is established. Proposition |3 can quite easily be established, however, I am not
aware of any other clear statements of this result. The results of Chapter [is to my knowledge
new, it is work in progress.

The status of work intended for publication of this thesis is listed in table The
manuscript Sgkilde et al. [14] is placed in Appendix D, it is work carried out in the year
2011 at Exiqon, it is a first attempt at constructing a classifier for identification of primary
tumor site. The attached manuscript was submitted — but rejected — to Journal of Molecular
Biology. A new manuscript is being prepared and the corresponding author (R. Sgkilde) have
informed me that the revised manuscript will be submitted in June 2013.



Chapter 2

Classification models

2.1 Introduction

In this chapter the classification problem will be formalized. There are two ways to approach
classification, one view is that classification is separation between groups. Another view is
that classification is estimation of the conditional probability of the class given the observed
covariates. In this thesis we take the later viewpoint, that is classification is not just specification
of the class but the probability of the classes.

The error of a classifier is measured using a loss function, we introduce this concept and
show that some regularity of the loss function is required in order to ensure that the Bayes
classifier is optimal. The 01 loss and the log-likelihood loss are introduced and shown to be
regular in the sense that the Bayes classifier has the optimal generalization error.

We introduce parametric models for classification and define the risk and empirical risk of a
classifier. The empirical risk may be seen as an approximation of the risk. For high dimensional
problems this approximation may have defects which can lead to overfitting — we will see an
illustration of this.

Convexity is a desirable property for the risk and empirical risk, and we will discuss the
relation between the convexity of the risk and the convexity of the loss and the model. We will
show that convexity of the loss function, composed with the model, is necessary and sufficient
in order to achieve convexity of the risk and empirical risk. We shall in particular see that
the multinomial regression model is — in broad terms — the only linear model with convex
log-likelihood risk — in section we will make this precise.

A discussion of quadratic approximations of the empirical risk have been placed in appendix
Identifiability is discussed briefly in appendix and in Vincent and Hansen [21].

2.2 The classifier and the loss

A p € N dimensional classification problem with K € N classes consist of a random vector
X € RP and a discrete random variable Y taking K different values. The vector X is called
the covariate vector and the variable Y the response or class variable. The joint distribution
of (X,Y) will be denote by F and the joint density by f. The classes, that is the values of

the response variable Y, is denoted by Sk def {1,..., K}. The number of classes is K and the
number of covariates is p.
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The classification problem is well defined if the class Y depend on the covariate vector
X; prediction of the class Y given the covariates X is called classification in the statistical
literature, see for example Wasserman [23], Hastie et al. [7]. In the computer science literature
this problem is sometimes referred to as pattern recognition.

In the case of classification we seek to predict Y knowing X. A rule that predicts Y given
X is called a classifier, this notion may be formalized by defining a classifier as a function

h:RP = Sy, (2.1)

where for a given covariate vector x € R? the predicted class is h(x). This viewpoint is often
refereed to as pattern recognition Vapnik [19] and h is called a discriminant function Bishop
[2], it is a formalization of the view that classification is the problem of discriminating between
groups.

Another approach to classification is to estimate the probabilities of the classes given the
observed covariates. More precisely the problem of estimating the conditional density of Y given
X, this notion is termed Probabilistic Discriminative Models by Bishop [2]. The advantage of
the probabilistic viewpoint over the discriminative is that additional information about the
underlying conditional probability is estimated. In this thesis we will adapt the probabilistic
view, hence; a classifier is a rule that to each x € RP assigns a probability distribution on the
finite set with K elements. The set of all such probability distributions is the simplex

K
AR {pE 0,11 pi = 1}~
=1

Therefore a precise definition, in accordance with the probabilistic viewpoint, of a classifier is:
Definition 1 (Classifier). A classifier is a function p : RP — AK.

If p is a classifier and = an observed covariate, i.e a realization of X, then the k’th coordinate
pr(x) of p(z) is interpreted as the estimated conditional probability that Y = k given X = z.
In other words py(x) is the estimated probability that the observation, x, belongs to class k.

Given a classifier h, as defined by we may construct a (not very informative) classifier

p by assigning
)1 k=h(x)
p(e) = {O otherwise

for x € RP. Given a classifier p we may construct a classifier h, by choosing

h(z) € argmax py(z).
k=1,...K

When viewing classification as discrete density estimation, it is clear that the true conditional
density of Y given X is the theoretical optimal classifier. This classifier is called the Bayes
classifier. The precise definition is:

Definition 2 (Bayes classifier). The Bayes classifier is the classifier p2®s defined by

e (@) € P(Y = k|X = x).

In terms of the joint density f of (X,Y’) the Bayes classifier

(o) = 20
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where fy (k) = [ f(z,k)dz is the marginal density for Y. In practice we almost never have
any prior knowledge about the joint distribution of (X,Y’), in particular not the conditional
distribution of Y given X. In other words we do not have access to the Bayes classifier, and we
must therefore estimate the conditional distribution of Y given X, i.e. attempt to approximate
the Bayes classifier.

2.2.1 The loss function

To compare and assess the performance of classifiers a measure of the error, or loss, of a
prediction is needed. This error is measured by a loss function, where we shall take a loss
function to be any function of the form

L: AR xSk — RU{+o0}.

Given an observation (z,y), i.e. a realization of (X,Y), the loss L(p(z),y) can be interpreted
as the error the classifier p makes on the observation (z,y). For example, given two classifiers
p1 and po the relation

L(pl(‘r)7 y) < L(]JQ(:T)/!/)

may be interpreted as: classifier p; did a better job predicting the class than ps on the obser-
vation (z,y). In particular the 01 loss and the log-likelihood loss is of interest to us.

The 01 loss measures if we got the class with the highest probability right. The loss is zero
if the class with highest probability equals the observed class and one otherwise. When making
this definition precise we must ensure that we define a function, that is we need to ensure that in
the cases several classes have the same probability the value of the loss is uniquely determined.
We therefore define the 01 loss by

0 if y equals the smallest index in arg max p;
Lip.y) = =1
1 otherwise

The log-likelihood loss is defined by

L(p,y) = —logp,.

As will become clear, see Lemmal[T] the log-likelihood loss is, up to a constant, the log likelihood.

Let L be any loss function. Then the expected loss of a classifier is called the generalization
error, risk, or true error. Note that the term generalization error does not specify the loss
function.

Definition 3 (Generalization error). The generalization error of a classifier p is

err(p) Y EL(p(X),Y).

Optimality of the Bayes classifier

Not all loss function will induce a sensible generalization error. Any sensible measure of error
should be consistent with the optimality of the Bayes classifier, that is the optimality of the
true conditional density. This implies that the Bayes classifier should be a minimizer of the
generalization error induced by the loss function. In other words the Bayes classifier should have
the lowest generalization error, and this requirement places restrictions on the loss function.
Theorem [1| below gives a necessary and sufficient condition, on the loss function, that ensures
optimality of the Bays classifier.
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Theorem 1 (Optimality of the Bayes classifier). The following are equivalent
(a) For any classifier p and any joint distribution of (X,Y)

err(p b“ys) <err(p)

(b) For any m € AKX, 7 is a minimizer of
def K
g(s) = myL(s,y).
y=1

Proof. We shall prove the following implications

(a) = () == (a).

1. Let m € AKX denote by fx(x) the marginal density of X and consider the joint density
fz,y) = my fx ().
By condition (a) there exists an 2 € R? such that
E(L(p"™*(X),Y) | X = 2) <E(L(p(X),Y) | X = 2).

Since

K
E(L(p(X),Y) [ X =z) = ZL(P(I),Z/)P(Y =y| X =u1)

it follows that m = p®®*(x) is a minimizer of g.

2. Let x € R? and 7, = P(Y =y | X = x), by (b) it follows that pBa°(z) is a minimizer of
g. This implies that, for any classifier p

E(L(pP(X),Y) | X =) < B(L(p(X),Y) | X =),
which in turn implies (a).
O

A loss function is said to be a regular loss if it comply with condition (b) of Theorem The
01 loss and the log-likelihood loss are regular, see example [1] and |2 below. The generalization
error of the Bayes classifier is called the Bayes rate. For a regular loss this is by Theorem [I| the
lowest achievable generalization error.

A corollary to Theorem [1] is that for a regular loss the Bayes classifier is not only globally
optimal but locally optimal. The precise statement is:

Corollary 1 (Conditional optimality of Bayes classifier). For any classifier p and any joint
distribution on (X,Y)

E(L(p"™(X),Y) | X =2) <E(L(p(X),Y) | X =x) for allz € RP.
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Example 1 (Regularity of log likelihood loss). We need to find the minimizer of

K
g(s) = Z —my log s,
y=1
subject to 25:1 sy = 1. The Lagrangian is
K K
L(s,A\) = Z —my log sy + )\Z Sy.
y=1 y=1

Since g is convex the minimizer s* is a solution to the equations

“Iia=0 foryel,....K
Sy

and fo:l sy = 1. This implies that s = 7.

Example 2 (Regularity of 01 loss). We have that

K
g(s) = —mLis,y) =1-m

y=1

where 1 is the smallest index in arg max s;. It follows that
i=1,...,K

g(m) =1 —max{my,..., 75} < g(s).

2.3 Parametric models

Let B denote a set of parameters, that is a subsets of an euclidean space.

Definition 4 (Parametric model). A parametric model for a classifier is a function
p: B xR - AKX,

Given an parametric model, we say that a 8 € B is a model for the classifier p(3). A model
B € B induces a density on (X,Y) we denote this density by fz. Since a parametric model p,
as defined above, only models the conditional density of ¥ given X, it follows that the joint
density fg is

fa(2,y) = py(B)(2) fx (2) (2.2)

where fx is the marginal density for X.
When viewed as a function of the parameters 5 € B the generalization error is called the
risk of the model 3.

Definition 5 (Risk). The risk of the model 8 € B is

R(B) YELpB)(X),Y).
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A classifier may be obtained by minimization of the risk, this approach is called risk mini-
mization. However since we do not know the distribution F' of (X,Y") the risk is unknown, we
need to estimate it from data. Before proceeding, we need to define what precisely we mean
by data. A random data set, or random sample Cramér [5], is a collection of N samples drawn
from the distribution F.

Definition 6 (Random data set). A random data set of size N is a random vector
D= ((le Yl)a ) (XN’YN))
where (X1,Y1),...,(Xn,Yn) are i.i.d. according to the distribution F.

A realization of a random data set is a data set D = ((z1,v1),...,(xn,yn)) € (RP x Sg)V.

2.3.1 The empirical risk

We may estimate the risk by the mean of a sample of losses. That is given a random data set
© we define:

Definition 7 (Empirical risk). The empirical risk of the model 8 € B is

N
Ro(9) & < 37 Lp(8)(X,), Y0
i=1

If we by F5 denote the empirical distribution of ©, or the distribution of the sample Cramér
5], then the empirical risk is the risk R(j3) with the joint distribution of (X,Y’) being Fip. The
empirical risk, as defined above, is a random variable. For a realization D of © we will also use
the notation

R 1
Rp(B) = N ZL(p(/B)(xi)vyi)'

Since we do not know the risk we seek instead an approximate minimizer of the risk by
minimizing an approximation of the risk obtained from data, namely the empirical risk. This
approach is called the empirical risk minimization principle, see Vapnik [19].

In practice empirical risk minimization may exhibit pronounced overfitting problems — as is
often the case for high dimensional problems. In order to make this more precise assume given
a realization D of the data set ©. The Bayes classifier may not be a minimizer of the empirical
risk Rp. For high dimensional problems the Bayes classifier may be far from the minimizer of
Rp. In fact, for the 01 loss, we may often be able to construct a classifier p with

n
ZL(IS(%)’%) =0,
i=1

that is with zero empirical risk. This classifier is constructed by requiring that

The classifier p may not be in the set of parameterizable models, i.e. there may not exist a 8 € B
such that p = p(8). However when N < p it is often possible to construct p as a linear classifier.
To avoid this overfitting problem we could, for example, use some from of regularization and
thereby obtain a regularized minimizer. In Figure we see that near the minimizer obtained
by solving the underdetermined linear system the empirical risk is a bad approximation
of the risk (as estimated by a large test set). However near the regularized minimizer obtained
by penalized risk minimization the empirical risk approximates the risk much better.
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Regualized minimizer Overfitted minimizer
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Figure 2.1: The value of the empirical risk, on a curve in the space of parameters B. The curve
on the left intercept a regularized minimizer and the curve on the right intercept a overfitted
minimizer. The empirical risk was constructed using 44 samples of the 11 class Primary Cancers
data set — 5 in each class except for on class with 4 samples. The test set consisted of 121 samples,
with 12-15 in each class. The regularized minimizer is obtained by penalized risk minimization
using a group lasso . The overfitted minimizer is obtained by solving the K underdetermined

linear systems ([2.3)).
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2.3.2 Convexity of the risk
Convexity of the risk and empirical risk is a desirable property. Some of the reasons are:
e Every minimizer is global and the set of all minimizers is convex.

e The well established theory and technology of convex optimization can be applied in the
development and construction of risk minimization algorithms.

For an introduction to convex optimization see Boyd and Vandenberghe [3]. By Proposition
below the convexity of the composition of the loss and the parametric model is equivalent to
convexity of the risk and the empirical risk. Convexity of this composition is, in particular,
necessary to ensure convexity of the empirical risk — regardless of the distribution on (X,Y).
It is therefore an advantage to choose a loss function such that this composition is convex,
otherwise we will have to deal with a non convex risk and empirical risk.

Proposition 1. The following is equivalent

(a) The function
g = L(p(B)(x),y)

is convex for all (z,y) € RP x Sk.
(b) For any distribution of (X,Y) every realization of the empirical risk is convez.
(¢) For any distribution of (X,Y) the risk is conver.
Proof. Let, as usual, f denote the density of (X,Y’). We shall prove

(@) = () = () = (a).

1. Since a nonnegative weighted sum of convex functions is convex it follows that any real-
ization of the empirical risk is convex.

2. Since any realization of the empirical risk is convex then for any (z,y) € supp(f) the
function 8 — L(p(8)(x),y) is convex. It follows that

ROG +(1-08) = Y [ Lo08 + (1= D)), 0)(w.9) da

K
<3 [ DL+ (1 VL)) ) da
= AR(B1) + (1 — \)R(B)

3. Given (z,y) € R? x Sk choose f degenerate at (z,y).
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2.3.3 Relation to maximum likelihood

Lemma [I] below states the relation between the log-likelihood risk and the log-likelihood func-
tion.

Lemma 1. For the log-likelihood loss it holds that

N
l5(B) = NRo(B) - Zlong(Xi)

where £ is the negative log-likelihood function.

Proof. The joint density of (X,Y) under the model is given by (2.2)), the log likelihood is
therefore

N

5(8) =) —log f(X:, V)

=1

N
— Z —log py, (B)(X;) — log fx(X;)

N
= NRo(8) = > _log fx(Xi).
i=1

O

The lemma implies that minimizing the log likelihood risk is equivalent to minimizing the
log likelihood. Risk minimization with the log-likelihood loss therefore amounts to maximum
likelihood estimation. Hence maximum likelihood in the problem of classification may be viewed
as a special case of risk minimization.

2.4 Linear models
For linear classification models the parameters are naturally organized in a matrix;
B o B
B = : : Classes (2.4)
Brk1 - Prp

Covariates

such that rows correspond to classes and columns to covariates.

Each K x p matrix 3 defines a map 1 : R? — RX by setting n(z) def Bz — if the parameter
B needs to be explicitly stated then we will use the notation ng instead of . The elements of
the vector n(z) are called linear predictors, with the organization the k’th element of 7 is
the linear predictor corresponding class k. Denote the space of K X p real matrices by B, then
a parametric model p : B x RP — A¥ for a classifier is said to be linear if

p(B) =hong
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for a function h : RX — A A linear model is specified completely by specifying the function h,
we shall therefore say that h is the linear model. As usual we may add an intercept parameter
to the model by considering the p + 1 dimensional problem where x is replaced by (1,x).

A natural requirement for a linear model is that the conditional probability that ¥ = k
given X essentially only depends on the k’th linear predictor. We shall say that a linear model
satisfying this requirement is regular, the precise definition is:

Definition 8. A linear model is said to be reqular if
P(Y = kX =x) = Cn)g(n)
for some functions g : R — Ry and C : RE — R.
Regularity of a linear model implies that the fraction

P(Y =klX =2) g(mn)
PY=lX=2z) g(n) 29)

only depends on the k’th and {’th linear predictor. A regular linear model h has a special form,
as lemma 2] below shows.

Lemma 2. The linear model h is regular if and only if

1

m(g(m), - 9(K))-

h(n) =

for some function g : R — R,.

Proof.

K K
1=Y"P(Y =k|X =2) =C(n) > _ glm)-

k=1 k=1
O

A regular linear model may not be identifiable, this is however not a problem since parame-
ters may be interpreted though equation ([2.5)). This is in particular the case for the (symmetric)
multinomial regression model, for a discussion see Vincent and Hansen [21] and appendix
— the multinomial model will be introduced below.

2.4.1 Decision boundaries
The decision boundary between class k£ and class [ is the set

{z€RP | P(Y =k|X =2) = P(Y = |X = 2)}.

For a regular linear model the decision boundary is determined by the equation g(nx) = g(m)-
Hence, if g is injective then the decision boundary is the hyperplane given by

g —m = 0.
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2.4.2 The multinomial model

Multinomial regression is the regular linear model with ¢ = exp. In this section we show that
the multinomial regression model is the only regular linear model fulfilling the following three
requirements.

1. The function g defining the linear model & is twice continues differentiable.
2. The function g is unbounded.
3. For any distribution on (X,Y") the log-likelihood risk is convex.

This implies that if we want to specify another regular linear model then at least one of the
above requirements would have to be given up. We could for example replace requirement 3 by

for any distribution on (X,Y’) the L-risk is convex,

if the risk is convex for another loss function L.
The main theorem of this section is:

Theorem 2. The only reqular linear model fulfilling the three requirements above is the multi-
nomial regression model.

Proof. The statement follows by lemma [I| and [3| and by noting that composition with an affine
function preserves convexity. O

Lemma 3. Let h be a regular linear model and assume that g : R — Ry is twice continues
differentiable and unbounded. Then the function

Li(n) = —log hi(n)

is convex for every k € Sk if and only if g(s) = ¢1 exp(cas) with ¢; > 0,cy # 0.

Proof. Let g(s) = c¢1 exp(cas) with ¢; > 0,¢a # 0. It follows that Ly is convex, since the log-
sum-exp 1 — log Zszl exp(n) is convex. For the converse, assume that L; is convex. Below
we will show that this implies that

(s = g"(s)g(s) = 0. (2.6)

And since the second order differential equation has the solutions g(s) = ¢ exp(ca), with
constants ¢; > 0, ¢y # 0, the claim follows.

We still need to show , in order to do this note that the convexity of L; implies that
the function

9(s)
Rasﬁ—logm (2.7)

is convex for every ¢ > 0. The second derivative of (2.7) is

1 1 1 1
" / 2
g'() [ ———— — — ) + (s ( - ) : 2.8
o (orre79) 7 (or - worer 29
Convexity of (2.7)) implies that the second derivative (2.8)) is nonnegative, it follows that

g@fo—(fojv—f@m@O—m§29>0
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We must therefore have that
/ 2 1 g(S) _ 1 > 0
792 (14 45 ) ~ delals) > 0

and since this has to hold for every ¢ > 0 it implies that

g'(s)* = g(s)g"(s) > 0.
The convexity of Ly also implies that the function

C1

Ro>s— —log—M—
gcl+cz+g(s)

(2.9)

is convex for every c1,co > 0. By using that the second derivative of (2.9) is nonnegative we
find that

<g(s)g(8)) g'(s)* —g(s)g"(s) <0

+c1+c2

and since this has to hold for all constants ¢y, cy > 0 it follows that

g'(s)> = g(s)g" (s) <0.

2.5 An empirical model

In Chapter |3| we will use simulated data to illustrate various concepts. To do this we will obtain
a model Sy, for example using the multinomial group lasso estimator, on a template data set.
Samples is then simulated from a empirical distribution Fgj, corresponding to the estimated
model By, that is the density of Fy, is given by . The advantage of this empirical model
is that we know the distribution of the data, and this allow us to compute the Bayes rate, the
true error and the variance of the loss.

The simulation scheme uses a real data set

D ={(z1,y1),-... (N, yn)}

as a template for the simulation. The simulation procedure is:

1. The template data set D is randomly split into two disjoint parts D; and Dy containing
respectively N1 and Ny samples.

2. A parametric model fy is estimated using D; as training data.

3. Let f; denote the density of the empirical distribution of X in D,. Draw N samples from
the distribution Fy,, with density

def
Fsim(2,9) = py(Bo)(2) f5 (). (2.10)
These N samples constitute the simulated data set.

Clearly the Bayes classifier pP&° = p(f,). Data constructed using the above scheme and
the data used as a template may have very different characteristics. Figure illustrates this.
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Simulated data Real data

10 20 30 40 50 60 10 20 30 40 50 60
Nonzero covariates

Method

Group lasso — Sparse group lasso (a = 0.5) Lasso

Figure 2.2: The expected generalization error as a function of the expected number of covariates
included in the model for three different methods, as estimated by 8-fold cross validation. The
methods were applied to a simulated data set (left) and the corresponding real data set (right).
The real data set is the Childhood Leukemia data set. The number of samples simulated were
equal to the number of samples in the real data set. The group lasso, sparse group lasso and
lasso methods will be discussed in the following chapters.
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2.5.1 Computing the generalization error

Using that the distribution of (X,Y") is discrete, we have that

/ (m y) dFB]m z y ZZ xl7y fblm xZ?g)

Llyl

—ZZ (i, y)py ™ (2:) (2.11)

zlyl

for any function r(z,y). Using formula (2.11)) we may compute the generalization error of any
classifier p. We have that

err(p) = E[L(p(X),Y)]
= /L(p(:p),y) dFsim(‘T7y)

Ny K

Z Z L xz Bayeb( )

zlyl

And the variance of the loss is

Var [L(p(X),Y)] = & Z D (L), y) — err(p))*py™ < (as).



Chapter 3

Learning

3.1 Introduction

Given a set of examples, classes and observed covariates, the question arise on how we should
learn or estimate a classifier from the presented examples. A method or procedure for learning
a classifier from data is called a supervised learning method, we will define this notion pre-
cisely. Empirical risk minimization and penalized empirical risk minimization are examples of
supervised learning methods. Having defined supervised learning we will also discuss various
associated statistics as for example the expected generalization error and the expected number
of covariates.

In section we briefly discuss model assessment and selection and comparison of different
learning methods. And in section [3.4] we discuss error estimation using subsampling procedures
as for example cross validation. We will define a notion of M -subsampling procedures, of which
cross validation is an example, and show that these procedures give unbiased estimates of the
expected generalization error. We will also briefly investigate the variance of these estimators.

3.2 Supervised learning

A supervised learning method is a collection of procedures for constructing a classifier from
data D € (RP x Sg )™ — one procedure for each N € N. This can be modeled by a collection of
functions. We therefore define:

Definition 9 (Supervised learning method). A supervised learning method A is a sequence of
functions { AN }nen each with signature

An - (RPXSK)N x RP — AK

For a data set D € (R? x Sg )V — of size N — we will use the notation Ay (D) for the function

An (D) : RP — Ak defined by
AN(D)(m) = .AN(D, 3:)

Furthermore the classifier obtained by applying A on the data D is denote by A(D) = Ax (D).
We shall say that the classifier A(D) is obtained by training on D. Moreover the data D is
called the training data.

A parameter estimator is an estimator for the parameters in a parametric model. This
concept is captured in the following definition.

23
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Definition 10 (Parameter estimator). A parameter estimator for a parametric model for clas-
sification p : B x R? — AX s a sequence of functions {8y }nen each with the signature

BN : (Rp X SK)N — B.

If a parametric model for classification is given then we may construct a supervised learning
method by composing the parametric model with a parameter estimator. This composition is
as shown in the following diagram:

(RP x Si)¥ x R? 22U B« re

AK

Example 3 (Empirical risk minimization). Empirical risk minimization is an example of a
supervised learning method. Given a parametric model p, a loss function and data D € (RP x
Sk)N we may construct the empirical risk Rp(ﬁ), Empirical risk minimization Vapnik [19]
then estimates a model by

8 = arg minRD(ﬂ). (3.1)
BEB
And a supervised learning method An may be constructed by setting

An(D)(x) = p(B)(x).

3.2.1 Model characteristics

We are often interested in comparing learning methods. We may, for example, be interested in
comparing the expected generalization errors of different methods when applied to data drawn
from some specified population. Moreover other characteristics of the estimated parameters
and/or classifier may be of interest, as for example the number of covariates used in the model.
We therefore need a notion of model characteristics, that broadens the notion of generalization
error — model characteristic will be defined below.

For any supervised learning method the expected error of the resulting classifier is called
the expected generalization error.

Definition 11 (Expected generalization error). The expected generalization error of a super-
vised learning method A is

Err(N) % B(L(An(D)(X).Y)).

Note that the expected generalization error is a function of the number of samples in ©.
We will however often use the notation Err, instead of Err(N), when the number of samples
is implicit. The expected generalization error is the expectation of the true error taken over
training data, as is seen from the relation

Err = E[E(L(Ay(D)(X),Y) | D)] = E(err[A(D))).

The generalization error is an example of a model characteristic, we may however consider
various other characteristics of a parametric model 8 € B. We wish to broaden the concept of
expected generalization error so that we can speak of the expected characteristic of a model. A
model characteristic is induced by a function 7', and we say that:
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Figure 3.1: The group lasso estimator (with fixed A) applied to simulated data sets of size 40,
all data sets were simulated using the same distribution. This distribution were of the from
and the Childhood Leukemia data set were used as a template. With the model of the
distribution 5y obtained using the group lasso estimator (see Example [5). Each of the 100 dots
represent the characteristics of a classifier obtained by training on one of the simulated data
sets. The cross show the expected generalization error and expected number of covariates in
the model, as obtained by the mean of 1k classifiers.
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Definition 12. For a function T : B x (R? x Sk) — R the by T induced model characteristic
is the function x1 : B — R defined by

xr(8) € ET(E, X, 7).

Note that model characteristic concept is only defined for parametric models, contrary to the
expected generalization error which is defined for all supervised learning methods. Examples
of model characteristics are the true error, the number of covariates used in the model and the
number of nonzero parameters in the model.

The expectation of a model characteristic over training data is called the expected model
characteristic, this concept broadens the concept of expected generalization error. Figure
illustrates the concept of expected model characteristics. The definition is:

Definition 13. The expected model characteristic for an estimatorB 1
de A 5
cr B (x2(3) = E (xr [A®)]).-

For a loss L we may let Ty (8, z,y) = L(p(8)(x),y) then the induced model characteristic is
the error, that is

xr, (B) = err(B).

Furthermore the expected model characteristic induced by T is the generalization error, hence
Cr, = E(err[A(D)]) = Err.

If B is a vector space then another example of a model characteristic is the number of
nonzero parameters. This characteristic is induced by the function

Kp
Par(8) = 3" 1(8; #0).

=1

Evidently Par is independent of X and Y — it only depends on the model 5. It follows that the
model characteristic xp,r = Par(3). The expected number of nonzero parameters is

Cpar = E(Par(f Z P(B; # 0).

=1

The vector space B may posses some additional structure. We are primarily interested in the
case where the parameters may be naturally grouped. That is there is a natural decomposition
of the parameter space B = R™

R" =R"™ x --- x R™"
into m € N groups. The groups having dimensions n; € N for ¢ = 1,...,m, hence n = ny +
<-4 . For a vector § € R™ we write g = (1), ..., 30™)) where (V) € R™ ..., 30" € R,
For J =1,...,m we call 3/) the J’th group of 5. We use the notation Bl-(‘]) to denote the i’th
coordinate of the J’th group of 3, whereas f; is the i’th coordinate of 3.

When a grouping of the parameters is present it is natural to consider the number of nonzero

groups, i.e.

Grp(p dzef21 () £ 0).

I=1
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The number of nonzero groups is a model characteristic, induced by itself, hence xgrp = Grp(8).
The expected number of nonzero groups is

m

Cerp =E Grp Z B(J) #0).

For linear models the parameter space B is structured as K x p matrices, with each column
corresponding to a covariate. That is K parameters per covariate, we may group these K
parameters together — we will consider this the standard grouping for linear models. Using this
grouping a parameter § € B can be written as a block matrix in the following way:

8= (5(1) .. .5(17)) .

For linear models, with the standard grouping of the parameters, the number of covariate used
in the model § € B is the number of nonzero groups Grp(5).

Remark 1. The above definition of expected model characteristic can, due to limited number
of samples, be somewhat unhandy for practical use. When estimating the expected model char-
acteristic (or expected generalization error) then in practice we may need to condition on the
number of samples in each class. Given a random data set ® of size N we may define the K
random variables N
Ne YNy = k) fork € Sk

i=1
That is Ny is the number of samples of class k. For a model characteristic x7 and a =
(a1,...,ak) € NE with a1 + - -- + ax = N the conditional expected model characteristic is

Cria = E(xr(3) | M = a1,..., Nk = ag)

For most classification problems it is natural to take a1 = --- = ak.

3.2.2 Parametrized learners.

In many situations one supervised learning method is not enough, we may wish to try out a
range of methods and then select the method that induces classifiers best suited for our needs.
This is the case when we do feature selection, when we select the amount of regularization for
penalized empirical risk minimization or when we adjust some parameter of the method. In
order to formalize and make this precise we will define the concept of parametrized supervised
learning methods.

Definition 14. A parametrized supervised learning method is a sequence of functions { AN }nen
each with the signature

Ayt A x (RP x Sg)" x RP — AK
and such that A(X) (i.e. {AN(N)}nen) is a supervised learning method for each A € A.

Like with supervised learning methods we often consider a parametrized supervised learning
method as a two step procedure, first parameter estimation then application of the parametric
model.
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Definition 15. A parametrized model estimator for a parametric model p is a sequence {BN}TLEN
of functions each with signature

BNZAX(RPXSK)TL—)B.

For a parametrized supervised learning method the expected model characteristic is a func-
tion of the A parameter. An example of a parametrized supervised learning method is penalized
empirical risk minimization;

3.2.3 Penalized empirical risk minimization

Let Rp(ﬁ) denote the empirical risk associated with the parametric model p and data D €
(RP x Sk ). Penalized empirical risk minimization then estimates a model by

B(\) = argmin Rp(B) + A® () (3.2)
BeB

with A > 0 and where ® : B — R, is the regularization term or penalty. The scalar A is
sometimes called the amount of reqularization. A parametrized supervised learning method A
is defined by setting

An(A)(D)(z) = p(B(A))(x)
for D € (RP x Sk ).
For penalized empirical risk minimization the choice of penalty is essential, different penalties
will result in methods with different characteristics. This is evident by looking at Figure [3.3]

and [3.41

Two important examples of penalties are:

Example 4 (Lasso). Lasso (Tibshirani [15]) for linear classification estimates models by pe-
nalized empirical risk minimization with the penalty

K p
(p) = Z Zfij |Bi;]
i=1 j=1
with weights &;; € [0,00). In the case that &; =1 for alli=1,...,K and all j =1,...,p the
penalty is the 1-norm of the vector vec(3). The lasso penalty has been considered for classifica-
tion for some time, see for example Zhu and Hastie [2])].

Example 5 (Group lasso). The standard group lasso for linear classification models (Vincent
and Hansen [21]) estimates models by reqularized risk minimization with the penalty

p
(B)=> HB(")HQ
J=1

with weights vy € [0,00). Do not confuse the group lasso with ridge regression, the latter being
o(B) = ||Vec(6)H§, that is the squared 2-norm. The selection effect of the group lasso comes
from the non differentiability at zero of the 2-norm, which is removed by squaring. Group lasso
penalties has also been used to group covariates in combination with logistic regression (Meier
et al. [T1]), this is however a different use of group lasso than the one presented in this example.
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Figure 3.2: The group lasso estimator applied to simulated data sets of size 80, all data sets
were drawn from the same simulated population. The distribution, used for the simulation, is
of the from . The Brain Tumor data set were used as template, using the group lasso
estimator to obtain the model 3y used for simulation. For each A in a pre-computed sequence
{A1,.-.,A100} of values 1k classifiers were trained on individually simulated data sets. For each
A one classifier was randomly selected and marked by a dot with coordinates (Grp(f), err(8)),
where /3 denotes the model of the classifier. The curve is (Carp(A), Err(X)), as estimated from all
1k classifiers. The shaded area marks the 5% and 95% empirical quantiles of the distributions
err(B(N)) for A € {A1,...,Aigo}. The cross marks the characteristics of the Bayes classifier,
that is the model fy.
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3.3 Model assessment and selection

In this section we will briefly discuss three model assessment and selection tasks. We assume
that the distribution of the data is specified. The tasks are:

1. Method comparison — comparison of the characteristics of two or more methods.
2. Model selection — selection of an model with optimal performance.
3. Model assessment — assessment of the characteristics of a fixed model.

Model selection and assessment may seem to be similar, the difference is that for model
selection the only concern is selection of an optimal model, whereas for model assessment a
concrete estimate of, for example, performance is sought. To be precise we should say model
selection for estimation to distinct it from model selection for identification (Arlot and Celisse
[1]). Model selection for identification aims at selecting the true model whereas model selection
for estimation aims at selecting an optimal model in terms of some measure of error.

3.3.1 Method comparison

For method comparison we are interested in comparing the distributions of the model character-
istics x7(A(D)) and xr(B(D)) with © is a random data set. Although the entire distributions
many be of interest, we usually focus on one-number summaries of the distributions. One-
number summaries are often easier to interpret and estimate. For example, we may compare
expected model characteristics.

For parametric methods expected model characteristics are functions of the parameter A
that parameterize the methods. Considering two parametric methods A and B, the question
arise on how we should compare the two curves

ca: A= Cr(AN) and cp: A= Cr(B(N)).

We cannot simply compare the curves as there, for given A, may not be any natural relation
between c4(A) and cp(X). We could compare the maximum and/or minimum of the curves.
This would seem appropriate if we seek the methods producing the most extreme models with
respect to, for example, the error rate. However, in many situations we not only seek a model
with a low error rate, but one which also has a low model complexity.

Consider the case where we have two model characteristics 77 and T. Typically 77 is a
measure of model complexity and T5 a measure of error (i.e. a loss function). We are then
interested in comparing the distributions

(7, (B4, X1 (Bara))) amd (xr (Bs(A6)): Xz, (Bs(Am)) ) -

Note that the distributions are parametrized with parameter Ay € A4 and Ag € Ap respectively.

Take T3 to be the number of covariates included in the model and T5 the 01 loss. We may
then compare the methods by comparing their corresponding characteristic curves, that is by
comparing the parametrized curves

(Crp(Ba(ra)). Exr(Ba(Aa)) and (Grp(Bs(As). Exr(Be(hs)))

with A4 and Ag in respectively A 4 and Ag. See Figure for an example of a characteristic
curve.
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Figure 3.3: Characteristic curves for the group lasso (see Example7 the lasso (see Example
and the sparse group lasso with o = 0.5 (see section applied to the Primary Cancers data
set. For all three methods the shown characteristic curves are (Cayp, Err) (left) and (Cpayr, Err)
(right). The curves were estimated by 10-fold cross validation on a A-sequence of length 100.

In Figure [3.2) we used simulated data and could therefore compute the exact characteristic
curve, in practice however, we will have to estimate the characteristic curves — that is to estimate
the expected model characteristics. This can often be done using either a cross validation or
a subsampling scheme, as discussed in section In Figure we estimated, using cross
validation, characteristic curves for three different learning methods applied to the Primary
Cancers data set. Looking at Figure [3.3] it is apparent that the three learning methods has
different characteristics.

Learning curves

The expected generalization error is a function of the number of samples N in the training data.
The learning curve is the graph
(N, Err(N)).

In the case of a parametrized learning method we could consider the curve

(Vi (v )

This curve shows how the optimal model depends on the number of training samples. Another
interesting curve is, for example, the curve

(Com(Br (i), Err(Bx (A7)
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Figure 3.4: Learning curves for the group lasso (see Example , the lasso (see Example |4]) and
the sparse group lasso with o = 0.5 (see section applied to the Primary Cancers data set.
The curves shown are (Carp(An(N5)), Err(By (M%) (left) and (Cpar(Bn (%)), Err(By (M%)
(right), the number of samples per class is shown as numbers on the plots. The lambda pa-
rameter A} is chosen such that the estimator BN()\}‘V) has lowest expected generalization error
among the estimators {BN()\}‘V)} rea- The characteristics were estimated by subsampling (see
section with 200 subsamples. For each subsample a training set of size N and a test set
with 8 samples per class was randomly chosen without overlap.

parametrized by N and where A} 2ef argmin Err(8y())). Examples of such learning curves,
AEA

for three different methods, can be seen in Figure [3.4] Differences between the three methods

are apparent.

3.3.2 Model selection

Model selection is a large research subject and we will here only briefly discuss it, for a more
throughout discussion see for example Arlot and Celisse [I] or Hastie et al. [7]. The main
question of model selection is: given data D € (RP x Sk )» which A should we choose in order
to achieve the optimal error of A(A)(D), i.e. in order to minimize err(A(X)(D)).

Consider now the error function

A — err [A(N)(D)]. (3.3)

It is interesting that when estimating the parameters of a multinomial model using sparse group
lasso the error function for the log-likelihood loss seems always to be quasiconvex —on R
the quasiconvex functions are exactly the monotone and unimodal functions. In fact the error
function seems mostly strictly convex near the minimizer.

Consider the log-likelihood loss and assume, for the following discussion, that the error
function is strictly convex. Then there exist a unique minimizer A* of the error function.
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On approach to model selection is to try and estimate A*. If we can estimate \* well then we
may obtain a model with near optimal error with respect to the likelihood loss.

However, we are often interested in the misclassification error, i.e. the 01 loss. The 01 loss
error function is not quasiconvex, in fact it may oscillate and it is in general hard to estimate
a minimizer. Unfortunately the minimizer of the likelihood loss error function may not be near
a minimizer of the 01 loss error function. Moreover we don’t know the error function.

It is in general difficult to estimate the true error and therefore also the error function. We
can, however, estimate the expected generalization error fairly well. We could therefore attempt
to estimate a minimizer \* of the error function by

A* = arg min Err()).
A
where Err is an estimate of the expected generalization error.

Given an parametrized supervised learning method A and a model selection method, that

is an estimator 5\*, we may construct a supervised learning method by

A*(D) € A(X)(D).

The characteristics of the combined method A* will in general have to be estimated and will
depend on both the characteristics of the method A and the model selection method.

3.3.3 Assessment of model characteristics

Given data D € (RP x Sk)™ we are often interested in various model characteristics of an
estimated model B (D). Some characteristics may be directly accessibly, for example the number
of nonzero parameters or the number of nonzero groups. However other characteristics like the
true error needs to be estimated.

The true error can be estimated using an independent test set. However if no, or only a
small, independent test set is available it is in practice impossible to obtain a unbiased estimate
of the true error. We may instead — by cross validation or other subsampling procedures — obtain
a unbiased estimate of the expected generalization error. The problem, with this approach, is
that we do not know the variance of err[A(D)] nor the variance of our estimation procedure.
Hence the estimated expected generalization error may in worst case be far away from the true
error. Although, in practice, it is often found that the cross validation estimate agrees well with
estimates obtained using an independent test set.

3.4 Error estimation

In this section we consider ways of estimating the model characteristic x7(3) and the expected
model characteristic CT(B) of an estimator 5. An unbiased estimate of the model charac-
teristic can be obtained by an independent test as described below. For the expected model
characteristic various subsampling procedures may be used. Given an estimator B we define:

Definition 16 (Sample model characteristic). For data sets Dyrgin, and Diest of size respectively
Niest and Nypqin the sample model characteristic is

Niest
T(B(Dtrain)y Xi, }/1)

Note that the sample model characteristic is a function of two data sets: a training and a
test data set. Moreover the estimator § is implicit in the definition.
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3.4.1 Estimation by independent test

For a training data set D and a random test data set Dies¢ the the random variable
X1 (D, Drest)-

is called the test characteristic of the estimator 3 (D). By the central limit theorem

(X7 (D, Drest) — 1)
0/ V Ntcst
where p = xr(B) and 02 = Var(T(8,X,Y)). That is the test characteristic is a unbiased

estimator of the model characteristic and the estimated standard error of the test characteristic
is

~> ]V(O7 1) as Ntest — OO

&2
Ntest )
This implies that if Nyeg is sufficiently high we may assume that
)A(T(Da gtest) — M
se

se =

~ N(0,1).

So approximate 95% confidence interval for the model characteristic is therefore
X7 (D, Diest) £ 1.965e.

If the training and test data are dependent then the estimated model characteristic may be
severely biased, this is in particular the case for high dimensional classification. The training
characteristic of B is

>A<T(Da D)
For the most part we are interested in estimating the error, i.e. T is a loss, of the classifier model.
In this case the test characteristic is simply called the test error and the training characteristic
the training error. In Figure we see that the training error is highly over optimistic, the
misclassification error reaches approximately 0 when more than 500 features are included in the
model. We also see that the optimism (the gab between the training and test error) increases
with the number of covariates include in the model.

3.4.2 Estimation by subsampling procedures

In this section we consider subsampling procedures for estimating the expected model charac-
teristic.
Consider the random data set

D= ((X,Y1),...,Xn,Yn)).

of size N. Let Sy denote the set of all permutations of N elements, then for a permutation
7 € Sy define the two data sets

Train = (X2 1), Yr@)s - s (X (Wopin)s Ye(Werain))
and
Diest = (Xr(Nerain+1)> Yr(Newain+1))s - -+ (X (v, Yo(v)))
of size respectively Nipain and Niest = N — Nipain. We are now ready to define a general

notation of subsampling procedures, the idea is that a subsampling procedure is specified by a
distribution on the random permutations. We first define the notion of M-subsample:
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Error — Training error --- Test error

Figure 3.5: The test and training error of the Amazon Reviews data set, the models were
estimated using group lasso. The error measured with the 01 loss (left) and the log-likelihood
loss (right) is shown. The data set were split in two half, keeping class ratios approximately
fixed, one half were used as a training set and the other as a test set. The shaded area indicates
the approximate normal-based 95% confidence interval.
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Definition 17 (M-subsample). A M-subsample of D is the collection

T1 T1 TM T™M
Qtraww ®t65t7 o Dtrmrm Qtest
of 2M data sets where T1,...,Ty € Sy are random permutations.
We will not assume independence of the random permutations 7, ..., 7). We will however
assume that the sequence 7, ..., 7 is exchangeable, i.e. that

P(Tl,...,TM) = P(Tv(l)a“-aT’y(M))

for any permutation v € Sy;. A subsampling procedure is then specified by choosing an ex-
changeable distribution for the random permutations (71, ...,7ps). Cross validation and stan-
dard subsampling are exchangeable procedures, i.e. they are defined by an exchangeable se-
quence of random permutations 7, ..., 7. Cross validation and standard subsampling will be
discussed below

Let O;J = XT(CDT’

train’

D{i,) and define the sample expected model characteristic by
M
ey
i=1

Note that C’T depends on the joint distribution of the permutations (7i,...,7ar), hence the
distribution of Cp will differ depending on the subsampling procedure we choose. However,
as the following proposition show, Cr is always a unbiased estimator of the expected model
characteristic Cp.

Proposition 2. It holds that E(Cr) = Cp.

Proof. For a permutation 7 € Sy we have

( (Dgra.lrﬂ :D‘:est)) [ (/B(eraln) T(Ntrain+1)1 (Ntmerl))]
=E E[ (B(DZram) T(Ntrain+1)1 YT(Ntrain"Fl)) | Qz—rain)]
= E(x7(Dfain)))
= CT

This implies that for any i € {1,..., M}

EX7 (D i Diest) = Cr

train’
hence E(Cr) = Cr. O

The following proposition gives some insight into the components of the variance of the
distribution of the estimator Cr.

Proposition 3. If the sequence of random permutations 71, ..., Ty is exchangeable then
A 1 2 1 1 AT ATe
Var(Cr) = N7 E(c%) + i Var(pu)+ |1 — i Cov(Cr,CF).

where = x7(B) and 0% = Var(T(3,X,Y) | Dirain)-
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Proof. First note that since the data set ® is i.i.d. it follows that

Var( T | Ti?gz—;am) Var(XT(ggam’@Z—ést) | Ti?ggain)

Var( (ﬂ(gtrain)a X, Y) | gtrain)

Ntest
1
Ntest
In particular Var(C7i | 73, .. ) is independent of 7;. Second
E(O’F Tis Qz—;am) - ( (Qz—;alrﬂ ZDZest) | Ti; traln)

r
- ( B(®rrain): X,Y) | Dirain

It follows that

Var(CF) = E [Var(CF | 71, Dfiuin)| + Var [BCF | 71, D)

1
= E(c?) + Var(u).
N P (1)
This implies
. 1 | . o
Var(C’T|71,...,TM):m ZVar(CFF)—i—ZCOV(C?,C;J | 71,y ™)

i=1 i#j
L E(0?) + - Var(u) + — > Cov(CF . CF | )
= — Var — .
N P a7 Varn) + 5 ov(CF,CF | 1,y

i#j
Furthermore by permutational invariance of the subsampling procedure
ECOV(C’;, C';J [T, Tar) = ECOV(CA'QT},CA';2 | 71,72).
So since E(Cr | 71,...,7am) = Cr is independent of 71, ..., 7 is follows that
Var(Cp) = EVar(Cr | 11,...,7m) + VarE(Cr | 71, ..., Tar)

_ 1
NtestM

1 1 AT1 AT
B0+ 5 Vartu) + (1= 5 ) BCon(CR.CF [ i)

Finally the statement follows by noting that by the law of total covariance
ECOV(C’F,C’%2 | 71,72) = Cov(é}l,é;")

since E(CT' | 71, 72) = Cr is independent of 7 and .

Cross validation

The set of permutations (71, ..., 7;) such that

HTi({Ntrain+ 1,...,N)={1,...,N}
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where ][ denotes disjoint union is called the set of split permutations. A k-fold cross validation
is a k-subsampling procedure with Niestk = N, where the joint distribution of the permutations
(T1,...,7) is the discrete uniform distribution with support on the set of split permutations.
It is not difficult to see that the joint density of the permutations is exchangeable.

In the above definition of cross validation we assumed that N is a multiple of k and that the
number of training samples in each split is N — % In many applications this assumption is not
met and the number of training samples varies over the splits. Proposition [3| can not trivially
be generalized to handle such subsampling procedures since the parameter estimator /3 depend
on the number of training samples — and a priori there is no connection between estimators
with different number of training samples, see definition

By Proposition |3 the variance of the cross validation estimator is for k-fold cross validation

A 1 1 1 A A
Var(Cr) = i E(o?) + z Var(u) + (1 - k) Cov(Cr,CP).

Assume that the estimator B is constant under the cross validation permutations of the data,
that is we may take [ to be independent of 7. Then the variance is
L,

Var(Cr) = ~°

since Var(u) = 0 and Cov( AF,C’;’") — 0. Note that stability of 3 and independence of Dl oin
and D72, ensures Cov(Cq',C7?) = 0. Hence we can conclude that if the estimator is stable
under the cross validation permutations then the variance is independent of k, this is an old
result see Kohavi [§].

The assumption of stability of the estimator seldom holds in practice, although we see from
the example of Figure [3.6] that for k£ < 20 the main contribution to the variance does come from
term + E(0?). It is also interesting that leave one out cross validation (k = 40) has the highest

variance, which is seen to be due to the covariance term being quite large.

Standard subsampling

The standard M subsampling procedure is a M-subsampling procedure with the joint distri-
bution of the permutations (71, ..., 7as) the discrete uniform distribution. That is for standard
M subsampling the permutations 7, ...,y are i.i.d.. For a standard subsampling procedure
we typically choose M fairly high, say M < 100, this implies that

Var(Cr) =~ Cov(Cqt, Ch).

This result is also evident from the example in Figure [3.6]
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Figure 3.6: The different contributions, on a simulated data set, to the variance of Cross
validation estimates and standard subsampling estimates of the expected 01 loss. The values of
the different contributions are shown as a function of the number of test samples Niest in each
subsample. The data set was simulated using the simulation scheme of section and with
the Childhood Leukemia data set as template. For the Cross validation the fold k is N/Niest,
for the standard subsampling M = 100. In all cases the total number of samples N were 40.
In order to estimate the contributions of the different terms 200 data sets were simulated, all
drawn from the same distribution. This distribution were of the form , with the Bayes
classifier obtained using multinomial group lasso. For each of the 200 data sets two models
were estimated, corresponding to 71 and 7y, using group lasso. Furthermore for each of the
200 data sets the test errors C’}l and 0;2 were computed and the true error and true variance
were computed using formula . The contributions of the terms were then estimated as
the corresponding empirical statistics.



Chapter 4

Sublinear penalization

4.1 Introduction

In this chapter we discuss a generalization of the lasso, group lasso and sparse group lasso
penalties. We will consider penalized empirical risk minimization with sublinear penalties,
which includes sparse group lasso penalties and much more. A penalty is sublinear if and only
if it is convex and positively homogeneous, see Appendix C for an equivalent definition in terms
of sub-linearity. This may seem like a very broad generalization, however, it is possible to derive
optimality conditions for the solutions, an exact solution for quadratic empirical risk and generic
algorithms for such optimization problems. We will introduce the concept of decomposition of
a penalty, that will allow us to decompose the optimality conditions into a collection of simpler
conditions. Moreover a decomposition also allow us to solve the penalized optimization problem
by using block coordinate descent methods, that is by sequentially solving simpler optimization
problems.

Throughout this chapter we will use several results from convex analysis, Urruty and
Lemaréchal [I8] covers everything we need except coordinate descent methods. A short re-
view tailored to this chapter is given in appendix [Bl The result regarding coordinate decent for
non-differentiable optimization, which we need, can be found in Tseng and Mangasarian [16]
and Tseng and Yun [I7]. A short review is given in appendix A of Vincent and Hansen [21].
For a general introduction to convex optimization see for example Boyd and Vandenberghe [3].

4.2 The penalty

In this section we motivate the definition of sublinear penalties and define the concept of de-
composition of a penalty. In order to do this we assume, as in section [3.2] that the parameters
are grouped. That is we decompose the parameter space

R*"=R™ x ... x R"™

into m € N groups. The groups having dimensions n; € N for ¢ = 1,...,m, hence n = n; +
<-4 np. For a vector § € R" we write 8 = (84, ..., 30™) where (V) e R™ ..., g™ ¢ R,
For J =1,...,m we call 3/) the J’th group of 3. We use the notation Bi(‘]) to denote the i’th
coordinate of the J’th group of 3, whereas f3; is the i’th coordinate of 3.

40
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The penalized risk minimization estimator is defined as a solution to the optimization prob-
lem
minimize Rp(3) + A\®(3) (4.1)
peB
with Rp the empirical risk, ® : R? — R the penalty and with A > 0. All the penalties that
we will consider are convex, hence if the empirical risk Rp is convex then the estimator B is a
solution to a convex optimization problem.

We are primarily interested in separable sublinear penalties, the separability of the penalty
implies that the optimization problem separates into a collection of optimization prob-
lems. With each of these problems having a lower dimension than the primary problem .
Separability means that @ is a sum of sublinear functions — a function is sublinear if and only
if it is convex and positively homogeneous, see Appendix [B] - in the following way

o(B) =Y 0s(8)
J=1

where o : R™ — R is sublinear.

Sublinear functions are in bijective correspondence with support functions of compact convex
sets, this implies that there exists m nonempty compact convex sets C; C R™ ... (), C R"m
such that

(B)=>_oc,(BY)
J=1

where o, denotes the support function of C;. If we by ¢ : R”/ < RP denote the canonical
inclusion into the subspace spanned by the J’th parameter group, then by (B.5)

o0, (B) = 01,0 (s (B)).

Hence there exists m nonempty compact convex sets C; C RP, ..., C,, C RP such that
(B) =Y oc,(Pip) (4.2)
J=1

where P : RP — RP? is the projection onto the subspace spanned by the J’th parameter group.
Furthermore the sets C4,...,C,, can be chosen such that C; = P;Cy forall J=1,...,m.

For a support function oc we have for A > 0 the relation Ao = ox¢. This implies that we
without loss of generality may consider minimizers of

Rp(B) + @(B).

The interesting penalties are the non-differentiable ones — since these penalties induce feature
selection properties. We can therefore not restrict our attention to differentiable optimization
problems of the form . Therefore, in order to better understand the solutions of we
must use subdifferential calculus — instead of ordinary differential calculus — to derive optimality
conditions. The subdifferential generalizes the ordinary gradient, see for example Urruty and
Lemaréchal [I8]. In the next section we will use the subdifferential calculus to obtain optimality

conditions for (4.1)).
Example 6 (Norms). The dual norm |-|* of a norm |-|| is

121" & sup{z"v | [lo]] < 1}.
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Furthermore it can be shown that the dual of the dual norm is the original norm. It follows that
if U* denotes the unit ball of the dual norm then

2] = ou- ().

This implies that we may write the canonical lasso penalty, see example[]] as

K »p
||»3||1—U[ llKP ZZ 0[—1,1] Bzg

since the dual of the 1-norm is the co-norm. Since the 2-norm is self dual the canonical group
lasso penalty, see example[d, may be written as

p p
>[5, = Y own 6
I=1 4O
where Us is the unit ball of the 2-norm.

4.2.1 Sublinear penalty

The penalty ® discussed above is itself sublinear and by grouping all parameters together any
sublinear function can be taken as a penalty. By the bijective correspondence between sublinear
functions and support functions of compact convex sets if follows that for any sublinear penalty
® : RP — R there exist a compact convex set C such that ® = o¢.

When dealing with high dimensional problems it is essential that the penalty is separable.
We will use a slightly broader notion than separability as discussed above, we shall say that
a penalty is decomposable if there exists a non-trivial decomposition of the penalty. Where we
define:

Definition 18. A decomposition of the penalty ® is a collection, Py, ..., Py, of projections on
RP, such that the following two conditions are fulfilled

1. The linear map y.'}_, Py is the identity.
2. The collection decomposes C, that is the set equality C = PyC + ---+ P,,C holds.

There will in general be multiple ways to decompose a penalty. The idea is that a decom-
position breaks the large optimization problem into smaller problems which are easier to
solve. And by solving these problems sequentially a solution to the complete problem can be
obtained, we will discuss this further in section

Given a grouping of the parameters and a penalty as defined in terms of we may define
a sublinear penalty by setting ®(8) = o¢(S) where C = C1+-- -+ C,,. And a decomposition by
letting P; be the projection onto the subspace of RP spanned by the J’th group of parameters.
By lemma [4 below the two definitions of ® agree.

Lemma 4. Given a decomposition of ® let Cy = P;C for J =1,...,m, then

=Y oc,(PsB).
J=1
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Proof. Since the collection Py, ..., P, of projections decompose C it follows that

() =0c(B) =Y 00, (B).
J=1

Furthermore since P; is symmetric op,c,(8) = oc,(P;f) for all J =1,...,m, hence
Z oc,(B) = Z op,c,(B)
J=1 J=1

oc, (P;p).

o

<
Il
—

4.3 Optimality conditions

Optimality conditions for (4.1)) can be obtained using the subdifferential, as we will do in
Theorem [3| below. A decomposition of ® separates the optimality conditions into parts. The
following theorem states a necessary and sufficient optimality condition:

Theorem 3. Given a decomposition Py, ..., Py, of ®, the vectorﬁ € R? is a solution to
if and only if the following two conditions are fulfilled for all I =1,...,m

1. —PIVRD(B) e \Cy
2. Prf € AN¢, <7§PIVRD(B)> when Py # 0.

Where Ng(x) is the normal cone to C at z, see Appendix A proof of the Theorem
will be given at the end of this section. Figure illustrates the Theorem for the fs-norm
(group lasso) and ¢1-norm (lasso) penalty using a group decomposition. The Theorem has two
important Corollaries. First, when a group of parameters is nonzero then the corresponding
gradient lies on the boundary of ACj, that is:

Corollary 2. Let 3 be a solution to . If P13 # 0 then —PIV]%D(B) lies on the boundary
of \C7.

Second, a necessary and sufficient condition that 0 is a solution:
Corollary 3. The zero vector is a solution to if and only if VRD(O) e \C.

The importance of Corollary [3] is seen when used in connection with a block coordinate
descent method, then the Corollary may be used as a computationally efficient way to check
if a group of parameters is 0. Algorithms are discussed further in section [£:5] It is clear from
Corollary |3[ that for sufficiently large values of A the zero vector is a solution to . The
infimum of these is denoted Ap.x. Given a decomposition of ® and by Corollary [3] it follows
that

Amax def inf{\ > 0 | zero is a solution to (4.1]) }

= inf{\> 0| for all I =1,...,m it holds that — P;VRp(0) € ACs}
= max inf{\>0|—P;VRp(0) € A\Cr}.

I=1,...,
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-VYR,(5)

e,

Figure 4.1: Tlustration of the optimality condition for respectively the ¢3-norm (group lasso)
and ¢1-norm (lasso) penalty.

4.3.1 Group decomposition

In most cases we are interested in decompositions of ® that reflect a grouping of the variables.
We shall use the following group notation for the gradient: For I = 1,...,m the notation
v )RD(B) stands for the n; dimensional row vector defined by

Vin(8) = (VO Rp(8). VO Rp(B). ...V Rp(8))
When a decomposition reflects a grouping of the parameters then, by Theorem /3 is a solution
of if and only if;
1. —VDRK(B) € ACy
2. B0 € AN, (49 W Rp(3)) when B0 £ 0

forall I=1,...,m.

4.3.2 Proof of Theorem [3

Proof. By convexity of Rp and the penalty it follows that Rp(3) + A®(3) is convex. This
implies that § is a minimizer if and only if

0 € VRp(B) + Add ()

where 0® denotes the subdifferential of ®.
Using the decomposition of ® and that for a support function the subdifferential do¢(z) C C
we find that 3 is a minimizer if and only if foreach I =1,...,m

0e P[VRD(B) + Ao, (P]B). (4.3)
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The subdifferential at zero of a support function o¢, is Cr. Furthermore the subdifferential
of o¢, at Prff # 0 is the face of C; exposed by Prf see Urruty and Lemaréchal [18]. Hence
B € RP is a solution to 1| if and only if forall I =1,...,m

1. —=P;VRp(B) € AC; when P;j3 =0.
2. —PIVRD(B) lie in the face of ACT exposed by PIB when PIBA #0.

Condition 2. above is equivalent to —P;VEp (/3’) € ACr and

P13 € Nxc, (_PIVRD(B)> :
The statement of the Theorem follows by noting that for a convex set C' and =z € C

Nyc(z) ={s € R" | sT(y — ) < 0 for all y € \C}
={seR"|(s/\)T(y—z/\) <0forallyecC}

e )

4.4 Exact solution for quadratic empirical risk

It this section we will derive an exact solution to the optimization problem when the
empirical risk is quadratic. Such a solution will give some insight into the working of these
methods and can possibly be used to derive properties of the resulting estimator. Moreover the
formula may be used to construct efficient algorithms for computing the minimizer. This can
be done in connection with the coordinate gradient decent method and a decomposition of ®,
as discussed further in the next section. We assume that ® = o¢ for some compact convex set
C and consider the case when Rp is quadratic, i.e.

Rp(B)=q'8+BTHB

with H (symmetric) positive definite.
An essential observation, that we need to derive a exact solution, is that we can solve the
equation
—q—HB =Po(—q—HB+B) (4.4)

where Po : RP — RP is the projection onto the set C' — see appendix [Bl The solution is given
in the following lemma.

Lemma 5. For positive definite matriz H the unique solution to equation is
B=—-A""Pyac(-A"q)—H 'q (4.5)
where A = vH.

Proof. We note that for y € C

BY(y+q+HB)=p"AA (y+q+ HP)
= (A g+ A g+ AR (A7 ly + A7 g + Ap).
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Figure 4.2: Illustration of the solution the optimization problem (4.1)) in two dimensions with
different penalties; the group lasso (with one group), the lasso with a non sparse solution and
the lasso with a sparse solution.

By this implies that (4.4]) is equivalent to
ATlq+ AR = Pa-ic(—A7q)
which in turn is seen to be equivalent to (4.5)). O

We are now ready to give the formula for the solution to [

Theorem 4. The mmimizerB of is 0 if —q € C, otherwise
B=—A""Pyac(-A'q)—H 'q.
where A =+/H.

Proof. In order to proof that B: is a solution we must show that condition 1 and 2 of Theorem
is fulfilled. The gradient of Rp is

VRp(B) =q+ HB.

IfB = 0 then —VRD(B) = —q € C, hence condition 1 and 2 are fulfilled. So assume that B #0,
by lemma R o
—q—HB=Po(—q—HB+p) (4.6)

which implies that —VRp(8) = —¢ — HB € C, hence condition 1 is fulfilled. Furthermore by
the relation (B.10) between the normal cone to C' and the projection onto C' equation (4.6
implies that R R

B € ANc(—q — HP),
hence condition 2 is fulfilled. O

If H =id then B(I) = —Po(—§) — q this cases is illustrated in Figure

4.5 Algorithms

In this section we present two algorithms that can be used to solve the penalized minimization
problem with sublinear penalty. A block coordinate descent algorithm and a coordinate gradient
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descent algorithm. For the sparse group lasso problem we used in Vincent and Hansen [21] a
slightly different approach, namely a nested coordinate gradient descent.

We assume given a grouping of the parameters and assume that this grouping decompose
the penalty ®. The resulting minimization problem is separable, with respect to this grouping,
non-differentiable and convex. Define Bo 1 € R? by setting

PjfBe; = Pyf3 for all J # I and P;fe; = 0.
The partial optimization problem for the I'th group is

argmin Rp(Bor + 11(2)) + Aog, (x) (4.7)
reR™I

) _ z and

where ¢; denote the canonical inclusion into the I'th parameter group, i.e. ¢r(x)
L[(l’)(J) = 0 when J # I. The partial optimization problems are themselves of the form
(4.1). Tt follows, by Corollary 3| that we may determine if zero is a solution by checking if
—V(I)Rp(ﬁoj) € ACj. Algorithm |1} is a block coordinate descent algorithm with this rule
added.

Some additional nonstandard routines are needed to complete the algorithms, these routines
depend on the description of the convex sets Cq,...,C,,. For both the algorithms presented
here a routine for checking if a vector is contained in Cj is needed for all I = 1,...,m. For
the block coordinate descent an additional routine for solving the partial optimization problems
is needed for all I = 1,...,m. For the coordinate gradient descent a routine for solving
the convex optimization problem

arg min ||A71(y + CDH;
yeACr

with A a positive definite matrix is need for all I = 1,...,m and with A > 0.

4.5.1 Block coordinate descent

Block coordinate descent is an iterative method where a sequence of parameters {8y} is con-
structed by sequentially solving each of the m partial optimization problems (4.7). Tseng and
Mangasarian [I6] showed that, for separable non-differentiable minimization, block coordinate
descent converges. This implies that Algorithm [I] will provide us with a sequence converging to

a solution of (4.1)).

while until stopping condition is met do
Choose next block index I according to the cyclic rule.

if —V(I)RD(BOM’O]) S )\C[ then
| Let AL =0.

else
Let A
B, = argmin Rp(Boia,or + t1(2)) + Ao, ()
zERMI
end
end

Algorithm 1: Block coordinate descent with rule for checking if a block is zero.
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4.5.2 Coordinate gradient descent

Another more complex but usually also more efficient algorithm applicable for sublinear pe-
nalized minimization problems is a coordinate gradient descent method. Coordinate gradient
descent for separable non-differentiable minimization is addressed in details by Tseng and Yun
[I7]. Coordinate gradient descent is similar to block coordinate descent except quadratic ap-
proximations are being sequentially optimized. The convergence of Algorithm [2]is implied by
Theorem [3] and [@] by realizing that it is simply a coordinate gradient descent algorithm.

while until stopping condition is met do
Choose next block index I according to the cyclic rule.
Construct a quadratic approximation

QB) ~ d"B+ 38T HB

of RD near 501(1.
Let § = VQ(Boror) = ¢ + (HBoia,or)"
if —G € A\Cy then
| Let Al =
else
Let A = \/Hj; and solve the convex optimization problem

t = arg min ||A*1(y + q~)||; .
yeEACT

Let il = —A~t — H;}\q.
end

end
Algorithm 2: Coordinate gradient descent algorithm. The square matrix H;; denotes the
diagonal block of the Hessian matrix corresponding to the I’'th group

4.6 Multinomial sparse group lasso

In this section the multinomial sparse group lasso is shortly discussed, see Vincent and Hansen
[21] for further discussion. The sparse group lasso penalty is defined as

ZW.]Hﬁ(J)‘L‘Fz&Wﬂ (4.8)
J=1 i=1
—_———
group lasso lasso

for group weights v € [0,00)™, and parameter weights & = (¢ ... (™) € [0,00)" where
€M) € [0,00)™,...,£M € [0,00)"". We emphasize that the penalty is specified by

e a grouping of the parameters g = (1), ..., (™),

e and the weights v and &.
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Figure 4.3: Values of the estimated parameters corresponding to one covariate, as a function
of « in the sparse group lasso penalty (4.9). The covariate is miR 17 in the Primary Cancers
data set. Each black line correspond to a parameter, the red line is the sum of the parameters.

We may rewrite the penalty as
> ]
J=1 7
where

ol o)+ £

is a norm whenever v; # 0. If 7; = 0 and the parameter weight at a coordinate ¢ of the

8|

J’th block is 0, i.e. §§J) = 0, then the penalty is a semi-norm. The penalty is in particular
sublinear. We have in Figure plotted the values of the parameters — of the multinomial
model — corresponding to a particular covariate, as the penalty is varied from the group lasso
to the lasso. This is done by considering the collection of sparse group lasso penalties

(1-a) S VE |59 +ad I8l (@9)
J=1 i=1

parametrized by « € [0,1].

If we let O denote the unit ball of the 2-norm and O the unit square i.e. the unit ball of the oco-
norm, then the sparse group lasso penalty ||3||,+|81|+|B2| is equal to cg+0 = o5, . In other
words the convex set O+0O is associated with the sparse group lasso penalty [|8]|,+|81|+|B2|. See
figure [£.4] for an illustration of the convex set associated with the sparse group lasso. Knowing
the associated convex sets of the penalties makes it possible for us to do a geometric comparison
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Figure 4.4: The convex sets associated with two different configurations of the sparse group lasso
penalty in two dimensions. The penalties are ||8||, + |B1] + |82| and |||l + |51] respectively.

Figure 4.5: Comparison between the sparse group lasso solution B and the lasso solution f.
The penalties are HBH + ‘Bl‘ + ’Bg’ and 2(|B1| + |B2]) respectively.
2

of the solutions using the results of section [£:4] Figure [4.5] is an example of such a geometric
comparison between the sparse group lasso and the lasso.

As can be seen on Figure [£.3] the sum of the parameters for the group lasso is zero, this is
not a coincidence. For the multinomial group lasso the sum of the estimated parameters within
each group will always be 0.

Proposition 4. For the multinomial group lasso solution B it holds that
A§1)+...+Bg) =0
for each covariate I.

Proof. For the group lasso the normal cone at —%V(I)RD (B) is
{=cd|c>0}
with 6 = VO Rp(B) = £ SN i (h(Bai) — ey,). Since
h(Bai)y + -+ + h(Br;) =1

is follows that 6; + --- + dx = 0. The proposition now follows by Theorem O
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Abstract

The sparse group lasso optimization problem is solved using a coordinate
gradient descent algorithm. The algorithm is applicable to a broad class of
convex loss functions. Convergence of the algorithm is established, and the
algorithm is used to investigate the performance of the multinomial sparse
group lasso classifier. On three different real data examples the multino-
mial group lasso clearly outperforms multinomial lasso in terms of achieved
classification error rate and in terms of including fewer features for the classi-
fication. An implementation of the multinomial sparse group lasso algorithm
is available in the R package msgl. Its performance scales well with the
problem size as illustrated by one of the examples considered — a 50 class
classification problem with 10k features, which amounts to estimating 500k
parameters.

Keywords: Sparse group lasso, classification, high dimensional data
analysis, coordinate gradient descent, penalized loss.

1. Introduction

The sparse group lasso is a regularization method that combines the lasso
[1] and the group lasso [2]. Friedman et al. [3] proposed a coordinate descent
approach for the sparse group lasso optimization problem. Simon et al. [4]
used a generalized gradient descent algorithm for the sparse group lasso and
considered applications of this method to linear, logistic and Cox regression.
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We present a sparse group lasso algorithm suitable for high dimensional prob-
lems. This algorithm is applicable to a broad class of convex loss functions.
In the algorithm we combine three non-differentiable optimization methods:
the coordinate gradient descent [5], the block coordinate descent [6] and a
modified coordinate descent method.

Our main application is to multiclass classification based on the multino-
mial regression model. The lasso penalty has, for some time, been considered
as a regularization approach for multinomial regression [7]. The parameters
in the multinomial model are, however, naturally structured, with multi-
ple parameters corresponding to one feature, and the lasso penalty does not
take this structure into account. To accommodate for this we suggest to add
a group lasso term with the parameters corresponding to the same feature
grouped together. The resulting penalty is known as the sparse group lasso
penalty. We found that using the sparse group lasso penalty for multinomial
regression generally improved the performance of the estimated classifier and
reduced the number of features included in the model.

The formulation of an efficient and robust sparse group lasso algorithm is
not straight forward due to non-differentiability of the penalty. Firstly, the
sparse group lasso penalty is not completely separable, which is problematic
when using a standard coordinate descent scheme. To obtain a robust algo-
rithm an adjustment is necessary. Our solution, which efficiently treats the
singularity at zero that cannot be separated out, is a minor modification of
the coordinate descent algorithm. Secondly, our algorithm is a Newton type
algorithm, hence we sequentially optimize penalized quadratic approxima-
tions of the loss function. This approach raises another challenge: how to
reduce the costs of computing the Hessian? In Section 3.6 we show that an
upper bound on the Hessian is sufficient to determine whether the minimum
over a block of coefficients is attained at zero. This approach enables us
to update a large percentage of the blocks without computing the complete
Hessian. In this way we reduce the run-time, provided that the upper bound
of the Hessian can be computed efficiently. We found that this approach
reduces the run-time on large data sets by a factor of more than 2.

Our focus is on applications of the multinomial sparse group lasso to
problems with many classes. For this purpose we have investigated three
multiclass classification problems. We found that multinomial group lasso
and sparse group lasso perform well on these problems. The error rates were
substantially lower than the best obtained with multinomial lasso, and the
low error rates were achieved for models with fewer features having non-zero



coefficients. For example, we consider a text classification problem consisting
of Amazon reviews with 50 classes and 10k textual features. This problem
showed a large improvement in the error rates: from approximately 40% for
the lasso to less than 20% for the group lasso.

We provide a generic implementation of the sparse group lasso algorithm
in the form of a C++ template library. The implementation for multinomial
and logistic sparse group lasso regression is available as an R package. For
our implementation the time to compute the sparse group lasso solution is of
the same order of magnitude as the time required for the multinomial lasso
algorithm as implemented in the R package glmnet. The computation time
of our implementation scales well with the problem size.

1.1. Sparse group lasso

Consider a convex, bounded below and twice continuously differentiable
function f : R™ — R. We say that 5 € R" is a sparse group lasso minimizer
if it is a solution to the unconstrained convex optimization problem

minimize f + A® (1)

where ® : R" — R is the sparse group lasso penalty (defined below) and
A > 0.

Before defining the sparse group lasso penalty some notation is needed.
We decompose the search space

R"=R™" x ... x R"

into m € N blocks having dimensions n; € N for ¢ = 1,...,m, hence n =
ny + -+ ny. For a vector B € R" we write 8 = (BW),...,3™) where
I e R™, ... 8™ e R* . For J =1,...,m we call 3)) the J'th block of
B. We use the notation ﬂi(J) to denote the 7'th coordinate of the J’th block
of B, whereas [3; is the i’th coordinate of .

Definition 1 (Sparse group lasso penalty). The sparse group lasso penalty
is defined as

o(8) £ (1—a)Y 7 ||B), +a Y & 18
J=1 =1

for a € [0,1], group weights v € [0,00)™, and parameter weights £ =
(€W . ¢tm) € [0, 00)" where D) € [0,00)™, ..., M € [0, 00)™m.
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The sparse group lasso penalty includes the lasso penalty (o« = 1) and
the group lasso penalty (o = 0). Note also that for sufficiently large values
of A the solution of (1) is zero. The infimum of these, denoted A, is
computable, see Section 3.2.

We emphasize that the sparse group lasso penalty is specified by

e a grouping of the parameters 5 = (M), ... ,B(m)),
e and the weights o,y and &.

It is well known that the lasso penalty results in sparse solutions to (1),
while the group lasso penalty results in groupwise sparse solutions (that is,
the entire group of parameters is zero or non-zero). However group lasso
does not give sparsity within groups — sparse group lasso does.

In the second part of the paper we develop an algorithm for solving the
optimization problem (1). The convergence of the algorithm is established for
any sparse group lasso penalty, regardless of how the parameters are grouped.
For multinomial regression, as considered in the next section, we restrict
attention to a specific grouping of the parameters that reflects the features.
In the symmetric parametrization of the multinomial regression model with
K classes there are K parameters per feature. Our suggestion is to group
these K parameters together. Thus we do not group the features, only the
parameters associated with each feature. For the examples we considered this
particular grouping resulted in models with fewer features having non-zero
parameters compared to ordinary lasso penalization. More importantly, the
error rates were typically also smaller.

Our msgl R package supports the particular grouping for multinomial
regression as well as additional groupings of the features, i.e. the number of
parameters in each group is a multiple of K. The sgl C++ template library
can be configured to handle any grouping.

2. The multinomial sparse group lasso classifier

In this section we examine the characteristics of the multinomial sparse
group lasso method. Our main interest is the application of the multinomial
sparse group lasso classifier to problems with many classes. For this purpose
we have chosen three classification problems based on three different data
sets, with 10, 18 and 50 classes. In [8] the microRNA expression profile of
different types of primary cancer samples is studied. In Section 2.2.1 we
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consider the problem of classifying the primary site based on the microRNA
profiles in this data set. The Amazon reviews author classification problem,
presented in [9], is studied in Section 2.2.2. The messenger RNA profile of dif-
ferent human muscle diseases is studied in [10]. We consider, in Section 2.2.3,
the problem of classifying the disease based on the messenger RNA profiles
in this data set. Table 1 summarizes the dimensions and characteristics of
the data sets and the associated classification problems. Finally, in Section
2.3, we examine the characteristics of the method applied to simulated data
sets.

2.1. Setup
Consider a classification problem with K classes, N samples, and p fea-
tures. Assume given a data set (z1,v1),...,(zn,yn) where, for all i =

1,...,N, z; € RP is the observed feature vector and y; € {1,..., K} is
the categorical response. We organize the feature vectors in the N x p design

matrix

X () an)T

As in [7] we use a symmetric parametrization of the multinomial model.

With h:{1,..., K} x R — R given by

h(l, def exp () :
)= S eepn)

the multinomial model is specified by
P(y; = l|z:) = h(l, B + p;).

The model parameters are organized in the K-dimensional vector, 5, of
intercept parameters together with the K x p matrix

5L (W ... g0y, 2)

where ) € RX are the parameters associated with the i’th feature.
The log-likelihood is

(B9, 8) = Ejbgh%, )+ Bay). (3)



Our interest is the sparse group lasso penalized maximum likelihood estima-
tor. That is, (5(?), 3) is estimated as a minimizer of the sparse group lasso
penalized negative-log-likelihood:

P Kp
(B9, 8) + A <(1 —a) ZW 18|, + Oéz&' |5z‘|> , (4)
J=1 =1

In our applications we let v; = VK for all J =1,...,p and & = 1 for all
1 = 1,...,Kp, but other choices are possible in the implementation. Note
that the parameter grouping, as part of the penalty specification, is given in
terms of the columns in (2), i.e. m = p.

A common parametrization of the multinomial regression model singles
out a reference class, and the probabilities of the other classes are then given
relative to the reference class. As pointed out in [11] this is problematic
when lasso penalization is used for parameter estimation, and the symmet-
ric parametrization introduced above, and used in [7] as well, is preferred.
It ensures that the resulting estimator is invariant to permutations of the
classes. The parameters in the symmetric parametrization are, however, not
identifiable. If 8; denotes the I’th row of the matrix 5, then for [,k =1,..., K

% = exp(8,” = B + (B — Bu)a),
and it follows that the differences 5, — 5, and ﬁl(o) — ,EO) are identifiable.
In practice, as was also noted in Section 4.1 in [7], the consequence of the
penalization is that the estimated parameters minimize the sparse group lasso
penalty among all equivalent parameters. If some parameters, like 5, are
not penalized, a procedure like mean centering suggested in [7] can be used
to numerically select one of the equivalent parameters.

2.2. Data examples

The data sets were preprocessed before applying the multinomial sparse
group lasso estimator. Two preprocessing schemes were used: normalization
and standardization. Normalization is sample centering and scaling in order
to obtain a design matrix with row means 0 and row variances 1. Standard-
ization is feature centering and scaling in order to obtain a design matrix
with column means 0 and column variances 1. Note that the order in which
normalization and standardization are applied matters.
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Data set Features K N P

Cancer sites microRNA expressions 18 162 217
Amagzon reviews Various textual features 50 1500 10k
Muscle diseases  Gene expression 10 107 22k

Table 1: Summary of data sets and the associated classification problem.

The purpose of normalization is to remove technical (non-biological) vari-
ation. A range of different normalization procedures exist for biological data.
Sample centering and scaling is one of the simpler procedures. We use this
simple normalization procedure for the two biological data sets in this paper.
Normalization is done before and independently of the sparse group lasso
algorithm.

The purpose of standardization is to create a common scale for the fea-
tures. This ensures that differences in scale will not influence the penalty
and thus the variable selection. Standardization is an option for the sparse
group lasso implementation, and it is applied as the last preprocessing step
for all three example data sets.

We want to compare the performance of the multinomial sparse group
lasso estimator for different values of the regularization parameter a. Ap-
plying the multinomial sparse group lasso estimator with a given « € [0, 1]
and A-sequence, Ai,...,A\g > 0, results in a sequence of estimated models
with parameters {3(\;, @)}iz1,..4. The generalization error can be estimated
by cross validation [12]. For our applications we keep the sample ratio be-
tween classes in the cross validation subsets approximately fixed to that of the
entire data set. Hence, we may compute a sequence, {Err(\;, @) };=1 4, of es-
timated expected generalization errors for the sequence of models. However
for given oy and as we cannot simply compare Err()\z, ap) and Err()\l, am),
since the \; value is scaled differently for different values of . We will in-
stead compare the models with the same number of non-zero parameters and
the same number of non-zero parameter groups, respectively. Define

defZI (A, @) # 0)

with B()\,a) the estimator of 8 for the given values of A and «. That is,
O(A,«) is the number of non-zero parameter blocks in the fitted model.



Note that there is a one-to-one correspondence between parameter blocks
and features in the design matrix. Furthermore, we define the total number
of non-zero parameters as

(A, o) & D 1B\ 0) £0).

In particular, we want to compare the fitted models with the same num-
ber of parameter blocks. There may, however, be more than one A-value
corresponding to a given value of ©. Thus we compare the models on a sub-
sequence of the A-sequence. This subsequence is defined below. With 6; <
-+ < By for d < d denoting the different elements of the set {(:)()\i, @) }ict,d
in increasing order we define

Ai(@) & min {)\ ‘ O\ a) = 02-} .

We then compare the characteristics of the multinomial sparse group lasso
estimators for different a values by comparing the estimates

{(Frr(u(0), 0),6(h(a)), () ) }

2.2.1. Cancer sites

The data set consists of bead-based expression data for 217 microRNAs
from normal and cancer tissue samples. The samples are divided into 11
normal classes, 16 tumor classes and 8 tumor cell line classes. For the pur-
pose of this study we select the normal and tumor classes with more than
5 samples. This results in an 18 class data set with 162 samples. The data
set is unbalanced, with the number of samples in each class ranging from 5
to 26 and with an average of 9 samples per class. Data was normalized and
then standardized before running the sparse group lasso algorithm. For more
information about this data set see [8]. The data set is available from the
Gene Expression Omnibus with accession number GSE2564.

Figure 1 shows the result of a 10-fold cross validation for 5 different values
of «a, including the lasso and group lasso. The A-sequence runs from .«
to 1074, with d = 200. It is evident that the group lasso and sparse group
lasso models achieve a lower expected error using fewer genes than the lasso
model. However, models with a low « value have a larger number of non-zero
parameters than models with a high a value. A reasonable compromise could

i=1,.d
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Figure 1: Estimated expected generalization error, for different values of «, for the mi-
croRNA cancer sites data set. The cross validation based estimate of the expected misclas-
sification error is plotted against the number of non-zero parameter blocks in the model
(left), and against the number of non-zero parameters in the model (right). The estimated
standard error is approximately 0.03 for all models.

be the model with o = 0.25. This model does not only have a low estimated
expected error, but the low error is also achieved with a lower estimated
number of non-zero parameters, compared to group lasso.

2.2.2. Amazon reviews

The Amazon review data set consists of 10k textual features (including
lexical, syntactic, idiosyncratic and content features) extracted from 1500
customer reviews from the Amazon Commerce Website. The reviews were
collected among the reviews from 50 authors with 50 reviews per author.
The primary classification task is to identify the author based on the textual
features. The data and feature set were presented in [9] and can be found in
the UCI machine learning repository [13]. In [9] a Synergetic Neural Network
is used for author classification, and a 2k feature based 10-fold CV accuracy
of 0.805 is reported. The feature selection and training of the classifier were
done separately.

We did 10-fold cross validation using multinomial sparse group lasso for
five different values of a. The results are shown in Figure 2. The A-sequence
runs from Apax to 107%, with d = 100. The design matrix is sparse for
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Figure 2: Estimated expected generalization error, for different values of «, for the Amazon
reviews author classification problem. The cross validation based estimate of expected
misclassification error is plotted against the number of non-zero parameter blocks in the
model (left), and against the number of non-zero parameters in the model (right). The
estimated standard error is approximately 0.01 for all models.

this data set. Our implementation of the multinomial sparse group lasso
algorithm utilizes the sparse design matrix to gain speed and for memory
efficiency. No normalization was applied for this data set. Features were
scaled to have variance 1, but were not centered.

For this data set it is evident that lasso performs badly, and that the
group lasso performs best - in fact much better than lasso. The group lasso
achieves an accuracy of around 0.82 with a feature set of size ~ 1k. This
outperforms the neural network in [9].

2.2.3. Muscle diseases

This data set consists of messenger RNA array expression data of 119
muscle biopsies from patients with various muscle diseases. The samples are
divided into 13 diagnostic groups. For this study we only consider classes
with more than 5 samples. This results in a classification problem with 107
samples and 10 classes. The data set is unbalanced with class sizes ranging
from 4 to 20 samples per class. Data was normalized and then standardized
before running the sparse group lasso algorithm. For background information
on this data set, see [10]. The data set is available from the Gene Expression
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Figure 3: Estimated expected generalization error, for different values of «, for the muscle
disease classification problem. The cross validation based estimate of expected misclas-
sification error is plotted against the number of non-zero parameter blocks in the model
(left), and against the number of non-zero parameters in the model (right) The estimated
standard error is approximately 0.04 for all models.

Omnibus with accession number GDS1956.

The results of a 10-fold cross validation are shown in Figure 3. The A-
sequence runs from Ap. to 107°, with d = 200. We see the same trend
as in the other two data examples. Again the group lasso models perform
well, but not significantly better than the closest sparse group lasso models
(a = 0.25). The lasso models perform reasonably well on this data set, but
they are still outperformed by the sparse group lasso models.

2.3. A simulation study

In this section we investigate the characteristics of the sparse group lasso
estimator on simulated data sets. We are primarily interested in trends in
the generalization error as « is varied and A is selected by cross validation on
a relatively small training set. We suspect that this trend will depend on the
distribution of the data. We restrict our attention to multiclass data where
the distribution of the features given the class is Gaussian. Loosely speaking,
we suspect that if the differences in the data distributions are very sparse, i.e.
the centers of the Gaussian distributions are mostly identical across classes,
the lasso will produce models with the lowest generalization error. If the
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data distribution is sparse, but not very sparse, then the optimal « is in the
interval (0,1). For a dense distribution, with center differences between all
or most classes, we expect the group lasso to perform best. The simulation
study confirms this.

The mathematical formulation is as follows. Let

o= (- fix)

where p; € RP for ¢ = 1,...,K and p = p, + pp. Denote by D, a data
set consisting of N samples for each of the K classes — each sampled from
the Gaussian distribution with centers puq, ..., pg, respectively, and with a
common covariance matrix . Let \ be the smallest A\-value with the minimal
estimated expected generalization error, as determined by cross validation on
D,.. Denote by Err, (), @) the generalization error of the model S()\, a) that
has been estimated from the training set D,, by the sparse group lasso, for
the given values of A and . Then let

~

Z,(a) = Erry (A, ) — Errpages (1)

where Errgayes(1t) is the Bayes rate. We are interested in trends in Z,,, as a
function of «, for different configurations of uq,...,ux. To be specific, we

will sample pq, ..., ux from one of the following distributions:

e A sparse model distribution, where the first p, entries of u; are i.i.d.
with a distribution that is a mixture of the uniform distribution on
[—2,2] and the degenerate distribution at 0 with point probability py.

e A dense model distribution, where the first p, entries of u; are i.i.d.
Laplace distributed with location 0 and scale b.

The last p, entries are zero. We take p, = [5/(1 — po)] throughout for
the sparse model distribution. The within class covariance matrix > is con-
structed using features from the cancer site data set. Let X be the empirical
covariance matrix of p randomly chosen features. To avoid that the covari-
ance matrix become singular we take

S = (1—8)% + 0l

for § € (0,1).
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Figure 4: The estimated expected error gap (solid black line) for the three configurations.
The central 95% of the distribution of Z,(«) is shown as the shaded area on the plot. The
error gap for 5 randomly selected p-configurations is shown (red dashed lines).

The primary quantity of interest is
def
err(a) = E(Z,(a)), (5)

the expectation being over p and the data set D,. We are also interested in
how well we can estimate the non-zero patterns of the p;’s. Consider this
as Kp two class classification problems, one for each parameter, where we
predict the p;; to be non-zero if Bl-j is non-zero, and p;; to be zero otherwise.
We calculate the number of false positives, true positives, false negatives and
true negatives. The positive predictive value (ppv) and the true positive
rate (tpr) are of particular interest. The true positive rate measures how
sensitive a given method is at discovering non-zero entries. The positive
predictive value measures the precision with which the method is selecting
the non-zero entries. We consider the following two quantities

tpr(a) g [tpr (B(S\, 04))} and ppv(a) Ly [ppv (B(S\, a))] . (6)

In order to estimate the quantities (5) and (6) we sample M configurations
of p from one of the above distributions. For each configuration we sample
a training and a test data set of sizes NK and 100K, respectively. Using
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the training data set we fit the model 3(), @) and estimate Z,(a) using the
test data set. Estimates ér¥(a), tpr(a) and ppv(a) are the corresponding
averages over the M configurations.

For this study we chose M = 100, N = 15, K = 25, p, = 50, 6 = 0.25

and the following three configuration distributions:

e Thin configurations, where the centers are distributed according to the
sparse model distribution with po = 0.95, as defined above.

e Sparse configurations, where the centers are distributed according to
the sparse model distribution with pg = 0.80.

e Dense configurations, where the centers are distributed according to
the dense model distribution with scale b = 0.2 and p, = 25.

In Figure 4 we see that for thin configurations the lasso has the lowest
estimated error gap, along with the sparse group lasso with o = 0.8. For the
sparse configurations the results indicate that the optimal choice of « is in
the open interval (0, 1), but in this case all choices of « result in a comparable
error gap. For the dense configurations the group lasso is among the methods
with the lowest error gap.

In Figure 5 we plotted the true positive rate for the three configurations.
Except for the thin configurations, the lasso is markedly less sensitive than
the sparse group and group lasso methods. However, looking at Figure 6 we
see that the sparse group and group lasso methods have a lower precision
than the lasso, except for the dense configurations. We note that the group
lasso has the worst precision, except for the dense configurations.

3. The sparse group lasso algorithm

In this section we present the sparse group lasso algorithm. The algorithm
is applicable to a broad class of loss functions. Specifically, we require that
the loss function f : R™ — R is convex, twice continuously differentiable and
bounded below. Additionally, we require that all quadratic approximations
around a point in the sublevel set

{6 €R" [ f(B) + A2(5) < f(bo) + AP(Fo) }

are bounded below, where 3y € R" is the initial point. The last requirement
will ensure that all subproblems are well defined.
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Thin Sparse Dense

Figure 5: The estimated expected true positive rate (solid black line) for the three con-
figurations. The central 95% of the distribution of tpr is shown as the shaded area on the
plot. The true positive rate for 5 randomly selected p-configurations is shown (red dashed
lines).

Thin Sparse Dense

ossey -

Figure 6: The estimated expected positive predictive value (solid black line) for the three
configurations. The central 95% of the distribution of ppv is shown as the shaded area on
the plot. The positive predictive value for 5 randomly selected p-configurations is shown
(red dashed lines).
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The algorithm solves (1) for a decreasing sequence of A values ranging
from M. to a user specified A\pi,. The algorithm consists of four nested
main loops:

e A numerical continuation loop, decreasing .

e An outer coordinate gradient descent loop (Algorithm 1).
e A middle block coordinate descent loop (Algorithm 2).

e An inner modified coordinate descent loop (Algorithm 3).

In Sections 3.3 to 3.5 we discuss the outer, middle and inner loop, re-
spectively. In Section 3.6 we develop a method allowing us to bypass com-
putations of large parts of the Hessian, hereby improving the performance
of the middle loop. Section 4 provides a discussion of the available software
solutions, as well as run-time performance of the current implementation.

Algorithms for solving the group lasso optimization problem have been
around for some time, see, for example, [14] for an interesting application to
multi-response linear regression. The sparse group lasso optimization prob-
lem is, however, more complicated, and group lasso algorithms cannot be
used to compute a solution to the sparse group lasso optimization problem.
Coordinate descent methods still constitute the core of our algorithm, and
we give a short review tailored to this paper in Appendix A. See also [5, 6]
for further details.

3.1. The sparse group lasso penalty

In this section we derive fundamental results regarding the sparse group
lasso penalty.

We first observe that ® is separable in the sense that if, for any group
J €1,...,m, we define the convex penalty ®/) : R* — R by

ngy
A\ def N J) | A
(1) = (1— a)ys ifl, +a D & i
=1

then ®(8) = Y., ®Y)(B)). Separability of the penalty is required to
ensure convergence of coordinate descent methods, see [5, 6], and see also
Appendix A.
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In a block coordinate descent scheme the primary minimization problem
is solved by minimizing each block, one at a time, until convergence. We
consider conditions ensuring that

0 € argmin g(z) + A () (7)

zeER™J

for a given convex and twice continuously differentiable function g : R™ — R.
For J =1,...,m a straightforward calculation shows that the subdifferential
of ®) at zero is

00 (0) = (1 — a)y;B™ + adiag(eW)T™
where B7 & {r eR" |||z||, <1}, T" o [—1,1]" and where for z € R"
diag(z) denotes the n x n diagonal matrix with diagonal x. For an introduc-
tion to the theory of subdifferentials see Chapter 4 in [15].
Proposition 1 below gives a necessary and sufficient condition for (7) to
hold. Before we state the proposition the following definition is needed.

Definition 2. For n € N we define the map k : R® x R" — R"™ by

,d_ef{o |2i| < v

K(v, z ort=1,...,n
(v, 2); zi —sgn(z;)v;  otherwise J

and the function K : R™ x R" — R by

K(,2) < s 2)l5= > (a0 —sgn(z)v)’.

{illzil>vi }
Proposition 1. Assume given a > 0, v,z € R™ and define the closed sets
Y =z +diag(v)T,, and X =aB"+Y.
Then the following hold:

a. k(v,z) = argmin [|y|,.
yey

b. 0 € X if and only if K(v,z) < a®.

c. If K(v,z) > a® then argmin ||z, = (1 —a/y/K(v, z)> k(v, 2).
reX
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The proof of Proposition 1 is given in Appendix C. Proposition 1 implies
that (7) holds if and only if

VEQag), Vg(0) < A1 - a).

The following observations will prove to be valuable. Note that we use <
to denote coordinatewise ordering.

Lemma 1. For any three vectors v, z,z" € R"™ the following hold:
a. K(v,z)=K(v,|z]).
b. K(v,2) < K(v,2') when |z| <|2/].

Proof. (a) is a simple calculation and (b) is a consequence of the definition
and (a). O

3.2. The \-sequence

For sufficiently large A values the only solution to (1) will be zero. We
denote the infimum of these by A\.... By using the above observations it is
clear that

A & inf{/\ >0 ‘B(A) - 0}

:inf{)\ >0 ‘VJ: ,...,m: \/K()\ozg(J),Vf(O)(‘])) <A1 —oz)ny}

= max inf {)\ >0 ' \/K(Aag(J>,Vf(0)(J)) <A1 - Oé)’YJ} :

..... m

It is possible to compute

inf {)\ >0 ‘ \/K(Aag(J), V0))y <A1 - a)w}

by using the fact that the function A — K()\af(‘]),Vf(O)(J)) is piecewise
quadratic and monotone.
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3.3. Quter loop

In the outer loop a coordinate gradient descent scheme is used. In this
paper we use the simplest form of this scheme. In this simple form the
coordinate gradient descent method is similar to Newton’s method; however
the important difference is the way the non-differentiable penalty is handled.
The convergence of the coordinate gradient descent method is not trivial and
is established in [5].

The algorithm is based on a quadratic approximation of the loss function
f, at the current estimate of the minimizer. The difference, A, between the
minimizer of the penalized quadratic approximation and the current estimate
is then a descent direction. A new estimate of the minimizer of the objective
is found by applying a line search in the direction of A. We repeat this
until a stopping condition is met, see Algorithm 1. Note that a line search is
necessary in order to ensure global convergence. For most iterations, however,
t = 1 will give sufficient decrease in the objective. With ¢ = V f(5) and
H = V? (/) the quadratic approximation of f around the current estimate,

B, is
I (w— B) + 5o — BT H( — )

1 1 1
=q¢'z—q" B+ EJTTHI‘ ~3 (ﬁTHx + xTHB) + EBTHB.
H is symmetric, thus it follows that the quadratic approximation of f around

B equals
1
Q) — a5+ 55" HB,
where @) : R" — R is defined by

e 1

Q(z) def (¢q— HB) 'z + §xTHx.

We have reduced problem (1) to the following penalized quadratic optimiza-
tion problem

min Q(x) + A\®(x). (8)

z€R™

The convergence of Algorithm 1 is implied by Theorem 1le in [5]. This
implies:

Proposition 2. FEvery cluster point of the sequence {0k }ren generated by
Algorithm 1 is a solution of problem (1).
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Algorithm 1 Outer loop. Solve (1) by coordinate gradient descent.
Require: 8 = f
repeat
Let ¢ = V[f(8), H=V?f(B) and Q(z) = (¢ — HB) "z + 52" Hx.

N

Compute § = argmin Q(z) + A\®(x).

reR™
Compute step size t and set § = [+ tA, for A = — 6.
until stopping condition is met.

Remark 1. The convergence of Algorithm 1 is ensured even if H is a (sym-
metric) positive definite matriz approzimating V2 f(). For high dimensional
problems it might be computationally beneficial to take H to be diagonal, e.g.
as the diagonal of V2f(3).

3.4. Middle loop

In the middle loop the penalized quadratic optimization problem (8) is
solved. The penalty ® is block separable, i.e.

Q(z) + A®(z) = Q(z) + A Y _ &) (2()

with &) convex, and we can therefore use the block coordinate descent
method over the blocks z(), ..., 2™ . The block coordinate descent method
will converge to a minimizer even for non-differentiable objectives if the non-
differentiable parts are block separable, see [6]. Since ® is separable and
Q is convex, twice continuously differentiable and bounded below, the block
coordinate descent scheme converges to the minimizer of problem (8). Hence,
our problem is reduced to the following collection of problems, one for each
J=1,...,m,

min QY (%) + A&V (1) (9)

zeR™J

where Q) : R™ — R is the quadratic function

&= QzW, ... aVUY g gV am)
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up to an additive constant. We decompose an n X n matrix H into block
matrices in the following way

Hll H12 Hlm
H— ]_—’.21 ]—1.22 H2m
Hml Hm2 Hmm

where H;; is an n; X ny matrix. By the symmetry of H it follows that
1
QY (@) =" (¢~ HA) + 3 (2 > #"Hya — i Hyya + :%:THJJ:%>
I
1
3 (49 + [Hlz = A) — Hisa) + 26T H st
up to an additive constant. We may, therefore, redefine

1
QW(3) & 3Tg) 4 E@THJJ@

def
g = g+ [H(z - )" — Hyyal). (10)

For the collection of problems given by (9) a considerable fraction of the
minimizers will be zero in practice. By Lemma 1 this is the case if and only

if

VEOagW, g) < A(1 - a)y.

These considerations lead us to Algorithm 2.

3.5. Inner loop

Finally we need to determine the minimizer of (9), i.e. the minimizer of

nJj
Q@) + M1 — a)ys il +a > &7 |l (11)
7=0
lgrss pe;arlty

The two first terms of (11) are considered the loss function and the last
term is the penalty. Note that the loss is not differentiable at zero (due to
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Algorithm 2 Middle loop. Solve (8) by block coordinate descent.
repeat
Choose next block index J according to the cyclic rule.

Compute the block gradient g(/).
if /KA, gD) < \(1 - a)y, then

Let /) = 0.
else
Let 2/) = argmin Q) (2) + A0 ().
2ER™J
end if

until stopping condition is met.

the Lo-norm), thus we cannot completely separate out the non-differentiable
parts. This implies that ordinary block coordinate descent is not guaranteed
to converge to a minimizer. Algorithm 3 adjusts for this problem, and we
have the following proposition.

Proposition 3. For any e > 0 the cluster points of the sequence {Zy}ren
generated by Algorithm 8 are minimizers of (11).

Proof. Since QV)(0) + A®)(0) = 0 Algorithm 3 is a modified block coordi-
nate descent scheme. Furthermore J is chosen such that (11) is not optimal
at 0. We can therefore apply Lemma 4 in Appendix B, from which the claim

follows directly. O
Hence, for a given block J = 1,...,m we need to solve the following two
problems:
I. For each j =1,...ny, compute a minimizer for the function
R>%— QWY . .. ,$§-i)1,f3, xg»i)l, . ,x,(;‘]j))
+ A0 () ,xg-‘i)l, z, $§‘i)17 .. ,x%)).

II. Compute a descent direction at zero for (11).

Regarding I. Writing out the equation we see that in the j’th iteration we
need to find the minimizer of the function w : R — R given by

of . 1 . - .
w() g+ §hx2 +yva?+r+ |2 (12)
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with ¢ = QJ(J) + X iz (Hyg)jim, v = M1 —a)yy, § = AOZSJ(-J), r= i
and where h is the j’th diagonal of the Hessian block H ;.

By convexity of f we conclude that h > 0. Lemma 2 below deals with
the case h > 0. Since the quadratic approximation ¢ is bounded below the
case h = 0 implies that ¢ = 0, hence for h = 0 we have = 0.

Lemma 2. If h > 0 then the minimizer & of w is given as follows:
a. If r =0 ory =0 then

—£+zfc ife>&+y
=<0 if ] <&+
e o< £

b. If r > 0,7 >0 then & =0 if |c| < & and otherwise the solution to

A

c—i—sgn(f—c)ﬁ—i—hi—i—v\/%ﬁ:().

Proof. Simple calculations will show the results. m

For case (b) in the above lemma we solve the equation by applying a
standard root finding method.

Regarding II. For a convex function f : R"™ — R and a point x € R", the
vector
A = —argmin ||z,
2edf(x)
is a descent direction at x provided f is not optimal at z, see [15], Section
8.4. We may use this fact to compute a descent direction at zero for the
function (11). By Proposition 1 it follows that A € R™ defined by

INTC "
g = xag” sgn(g;”)  otherwise

< Aag!”

is a descent direction at zero for the function (11).
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Algorithm 3 Inner loop. Compute the minimizer of (11) by a modified
coordinate descent scheme.

repeat
Choose next parameter index j according to the cyclic rule.
Compute
J . 7)o D NN J
x§ ) = arg min Q' )(x(l ), . ,$§_)1,$,$§+)1, . ,mgu))

2€R
+ A0 (2D ,xgi)l, z, :Eg-i)l, . ,xﬁl‘?)

if ||z, < € and Q) (2))) + A@)(2()) > 0 then

Compute a descent direction, A, at zero for (11).

Use line search to find ¢ such that Q) (tA) + A@)(tA) < 0.

Let 2/) = tA
end if

until stopping condition is met.

3.6. Hessian upper bound optimization

In this section we present a way of reducing the number of blocks for
which the block gradient needs to be computed. The aim is to reduce the
computational costs of the algorithm.

In the middle loop, Algorithm 2, the block gradient (10) is computed for
all m blocks. We shall demonstrate that it is not necessary to compute the
block gradient in order to determine if a block is zero, but that an upper
bound of the block gradient is sufficient. Since the gradient, ¢, is already
computed we focus on the term involving the Hessian. That is, for J =
1,...,m, we compute a by € R such that

[H@ = )| <Dy,

where D, o (1,1,...,1) € R". We define

t; < sup {:v =0 ‘ \/KJ()\ag(J), ¢V +2Dy;) < A1 - a)w}

when /K (A&, [¢D]) < M1 — )y, and otherwise let t; = 0. When
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by <ty it follows by Lemma 1 that

)D

K;(AatYD) gDy = K;(Aag)
( ‘ + bJ-DTLJ)

< Kj(Aa g(J
< )‘2(1 ) ’YJ

and by Proposition 1 this implies that the block .J is zero. The above con-
siderations lead us to Algorithm 4. Note that it is possible to compute the
t;’s by using the fact that function

R >z — K (A, |¢"| +2D,,)

is monotone and piecewise quadratic.

Algorithm 4 Middle loop with Hessian bound optimization.
repeat
Choose next block index J according to the cyclic rule.
Compute upper bound b;.
if by <t; then
Let (/) = 0.
else
Compute g/} and compute new z(/) (see Algorithm 2).
end if
until stopping condition is met.

In Algorithm 4 it is unnecessary to compute the block gradient for all
blocks, but only for those where z(/) # 0 or when b; < ty. This will only
be beneficial if we can efficiently compute a sufficiently good bound b;. For
a broad class of loss functions this can be done using the Cauchy-Schwarz
inequality.

To assess the performance of the Hessian bound scheme we used our
multinomial sparse group lasso implementation with and without bound op-
timization (and with o = 0.5). Table 2 lists the ratio of the run-time without
using bound optimization to the run-time with bound optimization, on the
three different data sets. The Hessian bound scheme decreases the run-time
for the multinomial loss function, and the ratio increases with the number of
blocks m in the data set. The same trend can be seen for other values of a.

25



Data set n m  Ratio
Cancer 3.9k 217 1.14
Amazon 500k 10k  1.76
Muscle 220k 22k 2.47

Table 2: Timing the Hessian bound optimization scheme.

4. Software

We provide two software solutions in relation to the current paper. An
R package, msgl, with a relatively simple interface to our multinomial and
logistic sparse group lasso regression routines. In addition, a C++ template
library, sgl, is provided. The sgl template library gives access to the generic
sparse group lasso routines. The R package relies on this library. The sgl
template library relies on several external libraries. We use the Armadillo C++
library [16] as our primary linear algebra engine. Armadillo is a C++ template
library using expression template techniques to optimize the performance of
matrix expressions, see [17]. Furthermore we utilize several Boost libraries
[18]. Boost is a collection of free peer-reviewed C++ libraries, many of which
are template libraries. For an introduction to these libraries see for exam-
ple [19]. Use of multiple processors for cross validation and subsampling is
supported through OpenMP [20].

The msgl R package is available from CRAN. The sgl library is available
upon request.

4.1. Run-time performance

Table 3 lists run-times of the current multinomial sparse group lasso im-
plementation for three real data examples. For comparison, the glmnet uses
5.2s, 8.3s and 137.0s, respectively, to fit the lasso path for the three data
sets in Table 3. The glmnet is a fast implementation of the coordinate de-
scent algorithm for fitting generalized linear models with the lasso penalty
or the elastic net penalty [7]. Recently, support for multinomial group lasso
has been added to glmnet, see [21]. However, glmnet cannot be used to fit
models with the sparse group lasso penalty.
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Sparse group lasso

Data set n m  Lasso o =075 o—095 Group lasso
Cancer 3.9k 217 5.9s 4.8s 6.3s 6.0s
Muscle 220k 22k 25.0s 25.8s 37.7s 36.7s
Amazon 500k 10k 331.6s 246.7s 480.4s 285.1s

Table 3: Times for computing the multinomial sparse group lasso regression solutions for
a lambda sequence of length 100, on a 2.20 GHz Intel Core i7 processor (using one thread).
In all cases the sequence runs from Ay ax to 0.002. The number of samples in the data sets
Cancer, Muscle and Amazon are respectively 162, 107 and 1500. See also Table 1 and the
discussions in Sections 2.2.1, 2.2.3 and 2.2.2 respectively.

5. Conclusion

We developed an algorithm for solving the sparse group lasso optimization
problem with a general convex loss function. Furthermore, convergence of the
algorithm was established in a general framework. This framework includes
the sparse group lasso penalized negative-log-likelihood for the multinomial
model, which is of primary interest for multiclass classification problems.

We implemented the algorithm as a C++ template library. An R pack-
age is available for the multinomial and the logistic regression loss functions.
We presented applications to multiclass classification problems using three
real data examples. The multinomial group lasso solution achieved optimal
performance in all three examples in terms of estimated expected misclas-
sification error. In one example some sparse group lasso solutions achieved
comparable performance based on fewer features. If there is a cost associated
with the acquisition of each feature, this could be beneficial if we want to
minimize the cost while optimizing the classification performance. In gen-
eral, the sparse group lasso solutions provide more sparse solutions than the
group lasso. Sparsity is generally of interest for model selection purposes and
for interpretation of the model.

Appendix A. Block coordinate descent methods

In this section we review the theoretical basis of the optimization methods
that we apply in the sparse group lasso algorithm. We use three slightly
different methods: a coordinate gradient descent, a block coordinate descent
and a modified block coordinate descent.
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We are interested in unconstrained optimization problems on R"™ where
the coordinates are naturally divided into m € N blocks with dimensions
n; € Nfori=1,...,m. We decompose the search space

R* =R™ x ... x R"

and denote by P; the orthogonal projection onto the i’th block. For a vector
r € R we write z = (¢, ..., (™) where z(V) € R™ ... 2™ ¢ R™. For
i=1,...,m we call 20 the i’th block of x. We assume that the objective
function F': R”™ — R is bounded below and of the form

Fla) = f(@)+ Y hila)

where f : R" — R is convex and each h; : R" — R, for ¢ = 1,....,m
are convex. Furthermore, we assume that for any ¢« = 1,...,m and any
zo = (2o, ..., 2,™) the function

R" > 1 — F(l’o(l), ce ,l’o(i_l), i’, ZEO(H—I), e ,l’o(m))

is hemivariate. A function is said to be hemivariate if it is not constant on
any line segment of its domain.

Appendiz A.1. Coordinate gradient descent

Algorithm 5 Coordinate gradient descent scheme.
repeat
Compute quadratic approximation () of f around the current point x.
Compute search direction

m

2™ = argmin Q(%) + Z hi (29).

el i=1

Let A = x — 2™ and compute step size t using the Armijo rule and let
T 4z +tA.
until stopping condition is met.

For this scheme we make the additional assumption that f is twice con-
tinuously differentiable everywhere. The scheme is outlined in Algorithm 5,
where the step size is chosen by the Armijo rule outlined in Algorithm 6.
Theorem le in [5] implies the following:
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Algorithm 6 Armijo rule.
Require: a € (0,0.5) and b € (0,1)
Let 6 = Vf(x)TA+ >0 (hi(z + A;) — hi(z:)).
while F(x +tA) > F(z) + tad do
t < bt.
end while

Corollary 1. If f is twice continuously differentiable then every cluster point
of the sequence {xy}ren generated by Algorithm 5 is a minimizer of F.

Appendiz A.2. Block coordinate descent

Algorithm 7 Block coordinate descent.
repeat
Choose next block index ¢ according to the cyclic rule.

2@ < argmin F(2 ® Pix).
FERMi
until some stopping condition is met.

The block coordinate descent scheme is outlined in Algorithm 7. By
Corollary 2 below the block coordinate descent method converges to a coor-
dinatewise minimum.

Definition 3. A point p € R" is said to be a coordinatewise minimizer of F
if for each block 1 =1,...,m it holds that

F(p+1(0,...,0,d;,0,...,0)) > F(p) for all d; € R™.

If f is differentiable then by Lemma 3 the block coordinate descent
method converges to a minimizer. Lemma 3 below is a simple consequence
of the separability of F.

Lemma 3. Let p € R™ be a coordinatewise minimizer of F. If f is differen-
tiable at p then p is a stationary point of F.

Proposition 5.1 in [6] implies the following:

Corollary 2. For the sequence {xy}ren generated by the block coordinate
descent algorithm (Algorithm 7) it holds that every cluster point of {k }ren
1s a coordinatewise minimizer of F.
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Algorithm 8 Modified coordinate descent loop.
repeat
Let i <~ i+ 1 mod m.
2@ < argmin F (2 @ Pia).
ZERMi
if ||z — p||, < € and F(z) > F(p) then
Compute descent direction A at p for F.
Use line search to find ¢ such that F(p +tA) < F(p).
Let £ « p +tA.
end if
until stopping condition is met.

Appendix B. Modified block coordinate descent

For this last scheme we make the additional assumption that f is twice
continuously differentiable everywhere except at a given non-optimal point
p € R™. In this case the block coordinate descent method is no longer guar-
anteed to be globally convergent, as it may get stuck at p. One immediate
solution to this is to compute a descent direction at p, then use a line search
to find a starting point zo with F(x¢) < F(p). Since f is differentiable on
the sublevel set {z € R" | F(z) < F(p)} it follows by the results above that
the cluster points of the generated sequence are stationary points of F'. This
procedure is not efficient since it discards a carefully chosen starting point.
We apply the modified coordinate descent loop, outlined in Algorithm 8,
instead.

Lemma 4. Assume that f is differentiable everywhere except at p € R™, and
that F is not optimal at p. Then for any € > 0 the cluster points of the
sequence {x*}ren generated by Algorithm 8 are minimizers of .

Proof. Let z be a cluster point of {z*}. By Corollary 2, z is a coordinatewise
minimizer of /. Then Lemma 3 implies that z is either p or a stationary point
of F. We shall show by contradiction that p is not a cluster point of {a*},cn,
thus assume otherwise. The sequence {F(x"*)}ren is decreasing; hence, if
we can find a ¥ € N such that F(z*) < F(p) we reach a contradiction
(since this would conflict with the continuity of F). Choose k' such that
HZEk/ - pH2 < e. Since we may assume that F(z¥) > F(p) it follows by the

definition of Algorithm 8 that F(z**!) < F(p). O
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Appendix C. Proof of Proposition 1

(a) Straightforward.

(b) If ||k(v, 2)|l, < a then —k(v,z) € aB™ hence 0 € X. For the other
implication simply choose yy € Y such that —y, € aB™ and note that
0. 2) s < lloll, < .

(c) Assume ||k(v, 2)||, > a, and let 2* = (1 — a/ ||k(v, 2)||,)K(v, 2). Then
z* € X and ||z*||, = ||k(v, 2)||, — a. The point z* is in fact a minimizer. To
see this let 2’ € X, that is we have

' =z + as + diag(v)t

for some s € B™ and t € T,,. It follows, by the triangle inequality and (a),
that
12'll, + a = [|a" — as|l, = ||z + diag(v)t[|, = [[£(v, 2)]], -

So ||z'||, > ||k(v, 2)||, — @ = ||z*||, and since X is convex and z — ||z||, is
strictly convex the found minimizer z* is the unique minimizer.
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