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Abstract

Probabilistic classifiers are introduced and it is shown that the only regular linear probabilistic
classifier with convex risk is multinomial regression. Penalized empirical risk minimization is
introduced and used to construct supervised learning methods for probabilistic classifiers. A
sparse group lasso penalized approach to high dimensional multinomial classification is pre-
sented. On different real data examples it is found that this approach clearly outperforms
multinomial lasso in terms of error rate and features included in the model. An efficient co-
ordinate descent algorithm is developed and the convergence is established. This algorithm is
implemented in the msgl R package.

Examples of high dimensional multiclass problems are studied, in particular examples of
multiclass classification based on gene expression measurements. One such example is the –
clinically important – problem of identifying the primary tumor site of lever metastases, this
particular problem is studied in detail. In order to adjust for the lever contamination found
in biopsies of metastases a computational contamination model is develop. The contamination
model is presented in a domain adaption framework and a simulation based domain adaption
strategy is presented. It is shown that the presented computational contamination approach
drastically improves the primary tumor site classification of lever contaminated biopsies of
metastases. A final classifier for identification of the primary tumor site is developed. This
classifier is validated on an independent validation set consisting of lever biopsies of metastases
with varying tumor content.
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Resumé

Stokastiske klassifikatore introduceres og det bliver vist at den eneste regulære linear stokastiske
klassifikator med konvex risiko er multinomial regression. Straffet empirisk risiko minimering in-
troduceres og bruges til at konstruere supervisered lærings metoder for stokastiske klassifikatore.
En sparse group lasso straffet tilgang til høj dimensional multinomial klassifikation præsenteres.
P̊a forskellige data eksempler ses det tydeligt at denne tilgang inducere bedre modeler end multi-
nomial lasso. En koordinatvis optimerings algoritme udvikles og konvergensen af denne vises.
Denne algoritme er implementeret i R pakken msgl.

Eksempler p̊a høj dimensional mange klasse klassifikations problemer undersøges, specielt
genekspression eksempler. Et s̊adanne eksempel er – det kliniske vigtige – problem med iden-
tifikation af den primære tumor af lever metastaser, dette problem studieres i detaljer. En
stokastisk kontaminerings model udvikles for at juster for den lever kontaminering der findes
i biopsier af lever metastaser. Og det vises at denne model forbedre klassifikationen af den
primære tumor. En endelig klassifikator udvikles og valideres p̊a et uafhængigt sæt af lever
biopsier af metastaser.
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Chapter 1

Introduction

This thesis consist of three introductory chapters, the three primary articles Vincent and Hansen
[21], Vincent et al. [22], Perell et al. [12], one software package Vincent [20] and one secondary
article Søkilde et al. [14]. The status of this work is disclosed in section 1.1 below. The main
theme of the thesis is high dimensional multiclass classification, and a central application is
identification of the primary tumor site of metastases. Secondary themes are domain adaption
and non differentiable convex optimization.

We will approach high dimensional multiclass classification by a regularization approach,
specifically by penalized empirical risk minimization. Where a classification problem is said to
be high dimensional multiclass if there are three or more classes and a high number of covariates
relative to the number of samples. We adapt the view that classification is estimation of the
conditional probability of a class given the observed covariates, this viewpoint is termed proba-
bilistic discriminative models by Bishop [2]. It is different from the – perhaps more traditional
– view that classification is the problem of discriminating between classes.

Examples of discriminating classification methods are support vector machines for classifica-
tion Vapnik [19], k-nearest neighbor algorithm and classification trees. Examples of probabilistic
discriminative models are multinomial regression (sometimes also called multiclass logistic re-
gression) and probit regression (see fore example Bishop [2]). Classifiers like linear discriminant
analysis (LDA) models the joint density of the class and covariates, which implies that the
conditional probability of a class is estimated. In fact, for LDA the conditional probability has
the same form as in multinomial regression Hastie et al. [7] – but estimated differently. An
advantage of the probabilistic notion is that not only one class is estimated but the probability
of each of the classes.

Penalized empirical risk minimization is a penalized version of empirical risk minimization
Vapnik [19]. A natural approach is to minimize the penalized log-likelihood risk of the proba-
bilistic model, this corresponds to maximum likelihood estimation. In order for such methods
to be well behaved convexity of the empirical risk is preferable. And as we shall see the only
probabilistic model with convex log-likelihood empirical risk is – in broad terms – the multino-
mial regression model, this statement will be made precise in Chapter 2. Hence we are naturally
lead to the multinomial regression model.

Empirical risk minimization is likely to produce overfitted solutions for high dimensional
problems, we therefore use a penalty to regularize the solution. The penalty is essential in
determining the characteristics of the resulting method, non-differentiable penalties will – if
carefully chosen – induce model selection properties. This has been known for some time, with
the primary example being the lasso or `1-norm penalty. As we shall see the `1-norm may
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Data set Classes Covariates Parameters Samples
Primary Cancers 11 384 4k 199
Brain Tumor 5 7k 35k 40
Childhood Leukemia 4 8k 32k 60
Amazon Reviews 50 10k 500k 1500

Table 1.1: Data sets used in chapter 2 – 4. The table lists the number of classes, covariates,
parameters for a multinomial model and samples.

not be the best possible penalty for multiclass classification, a better choice may be a sum of
`2-norms1 – i.e. a group lasso – penalty. Another attractive penalty is the combined `1-norm
and `2-norm, this penalty is called the sparse group lasso.

Due to the non-differentiability of the above penalties the development of algorithms for
solving such penalized optimization problems are not simple. The simplest case is `1-norm
penalization which can be solved using coordinate descent. Efficient algorithms are available
for solving these types of problems. The `2-norm penalty is slightly more complex, but can
be solved using block coordinate descent. Algorithms for solving the sparse group lasso is
somewhat more complex, we present and establish convergence of one such algorithm in Vincent
and Hansen [21].

In order to compare, assess and select models some vocabulary is needed, Chapter 3 is pri-
marily devoted to defining and illustrating such a vocabulary. A notion of model characteristic
will be introduced, this abstraction broadens the notion of generalization error. The number
of covariates include in the model is an example of a model characteristic. And as we shall
see different penalties will produce methods with different relations between different model
characteristics, as for example the expected generalization error and the expected number of
covariates in the model.

We define the notion of supervised learning method and parametrized supervised learning
method. Empirical risk minimization is an example of a supervised learning method and pe-
nalized empirical risk minimization an example of a parametrized supervised learning method
– these examples will be introduced in Chapter 3. Parametrized supervised learners differ
from supervised learns as they produce not a single model but a sequence of models, usually
parametrized by a positive scaler. For penalized empirical risk minimization this scalar is the
amount of regularization, that is the weight of the penalty. We will discuss various ways of com-
paring such methods and briefly model selection, that is how do we choose an optimal model
among the produced sequence of models.

In the last part of Chapter 3 we will introduce a general notion of subsampling procedures
of which cross validation and standard subsampling is an example. We will show that all such
procedures induce unbiased estimates of the expected model characteristic. Moreover we derive
a formula for the variance, and use this to briefly investigate the variance of cross validation
and standard subsampling.

In Chapter 4 we study the solutions of the optimization problems associated with penalized
empirical risk minimization. A good grasp of the solutions to these problems is a – in my
opinion essential – first step towards a better understanding of the statistical properties of the
estimators induced by penalized empirical risk minimization. Using standard convex analysis we
derive a optimality condition of the solutions of optimization problems with sublinear penalties.

Sublinear penalties will be introduced and defined, they generalize the lasso, group lasso and

1Do not confusion the `2-norm with ridge regression, the ridge regression penalty is the square of the `2-norm.
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Work Journal / Repository Status
Vincent and Hansen [21] Computational Statistics & Data Analysis under revision
Vincent et al. [22] Bioinformatics submitted
Vincent [20] CRAN on CRAN
Perell et al. [12] Clinical Cancer Research submitted
Søkilde et al. [14] submitting June

Table 1.2: Status overview

sparse group lasso penalties. Furthermore we give an exact solution when the risk is quadratic
and show how this can be used to get some geometric insight into the solution of such problems.
This exact solution can also be used to derive generic algorithms for solving sublinear penalized
empirical risk minimization problems.

Throughout the thesis various real data sets will be used to illustrate concepts and methods,
the characteristic of the data sets used in the introductory chapters is list in Table 1.1. Short
descriptions and references related to the data sets can be found in Appendix C.

1.1 Status and comments

The primary contribution, which we develop in Vincent and Hansen [21], is sparse group lasso
multinomial regression. The idea is to group parameters corresponding to the same covariate
and then estimate models using the sparse group lasso penalized maximum likelihood estimator.
We show that for many real data sets this sparse group lasso estimator is superior to a plain
lasso estimator in terms of archiving a lower error rate with fewer covariates included in the
model. Another important contribution, made in Vincent and Hansen [21], is the development
of a coordinate descent algorithm – suitable for high dimensional problems – for solving the
sparse group lasso penalized maximum likelihood estimates.

The algorithm developed in Vincent and Hansen [21] was implemented in C++. This im-
plementation was used as a basis for the msgl R package Vincent [20]. The msgl package is
available on CRAN.

In Vincent et al. [22] we develop a contamination model and use it to improve the identifica-
tion of the primary tumor site of lever metastases. The contamination model is presented in a
domain adaption framework and we suggest a simulation based domain adaption strategy. We
use the contamination model in combination with the presented domain adaption strategy, and
show that the combined approach drastically improves the primary tumor site classification of
lever contaminated biopsies of metastases.

A clinically applicable classifier for identification of the primary tumor site of lever metas-
tases is developed and validated in Perell et al. [12]. A long range of classifiers for identification
of the primary tumor site have been published see [2-7] in the reference list of Perell et al. [12].
The developed classifier is designed to be clinically applicably and is – to our knowledge – the
first which is systematically validated on core biopsies of metastases – contrary to many of the
other classifiers developed. It is developed using the contamination model of Vincent et al. [22]
and it can cope with high levels of lever contamination.

Chapter 2 is for the most part a summery of standard theory, however with a focus on
convexity of the risk not normally seen. Theorem 2 states that the only regular linear model
with convex log-likelihood risk is the multinomial model, this result is to my knowledge a new
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result. Chapter 3 primarily introduce and illustrates a vocabulary suitable for use with penalized
empirical risk minimization for high dimensional problems. At the end of Chapter 3 a general
notion of subsampling procedures – of which cross validation is an example – is presented and
it is shown that all such procedures induce unbiased estimators of the expected generalization
error. Moreover a formula – Proposition 3 – for the different components of the variance of
these estimators is established. Proposition 3 can quite easily be established, however, I am not
aware of any other clear statements of this result. The results of Chapter 4 is to my knowledge
new, it is work in progress.

The status of work intended for publication of this thesis is listed in table 1.2. The
manuscript Søkilde et al. [14] is placed in Appendix D, it is work carried out in the year
2011 at Exiqon, it is a first attempt at constructing a classifier for identification of primary
tumor site. The attached manuscript was submitted – but rejected – to Journal of Molecular
Biology. A new manuscript is being prepared and the corresponding author (R. Søkilde) have
informed me that the revised manuscript will be submitted in June 2013.



Chapter 2

Classification models

2.1 Introduction

In this chapter the classification problem will be formalized. There are two ways to approach
classification, one view is that classification is separation between groups. Another view is
that classification is estimation of the conditional probability of the class given the observed
covariates. In this thesis we take the later viewpoint, that is classification is not just specification
of the class but the probability of the classes.

The error of a classifier is measured using a loss function, we introduce this concept and
show that some regularity of the loss function is required in order to ensure that the Bayes
classifier is optimal. The 01 loss and the log-likelihood loss are introduced and shown to be
regular in the sense that the Bayes classifier has the optimal generalization error.

We introduce parametric models for classification and define the risk and empirical risk of a
classifier. The empirical risk may be seen as an approximation of the risk. For high dimensional
problems this approximation may have defects which can lead to overfitting – we will see an
illustration of this.

Convexity is a desirable property for the risk and empirical risk, and we will discuss the
relation between the convexity of the risk and the convexity of the loss and the model. We will
show that convexity of the loss function, composed with the model, is necessary and sufficient
in order to achieve convexity of the risk and empirical risk. We shall in particular see that
the multinomial regression model is – in broad terms – the only linear model with convex
log-likelihood risk – in section 2.4 we will make this precise.

A discussion of quadratic approximations of the empirical risk have been placed in appendix
A.1. Identifiability is discussed briefly in appendix A.2 and in Vincent and Hansen [21].

2.2 The classifier and the loss

A p ∈ N dimensional classification problem with K ∈ N classes consist of a random vector
X ∈ Rp and a discrete random variable Y taking K different values. The vector X is called
the covariate vector and the variable Y the response or class variable. The joint distribution
of (X,Y ) will be denote by F and the joint density by f . The classes, that is the values of

the response variable Y , is denoted by SK def
= {1, . . . ,K}. The number of classes is K and the

number of covariates is p.

9
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The classification problem is well defined if the class Y depend on the covariate vector
X; prediction of the class Y given the covariates X is called classification in the statistical
literature, see for example Wasserman [23], Hastie et al. [7]. In the computer science literature
this problem is sometimes referred to as pattern recognition.

In the case of classification we seek to predict Y knowing X. A rule that predicts Y given
X is called a classifier, this notion may be formalized by defining a classifier as a function

h : Rp → SK , (2.1)

where for a given covariate vector x ∈ Rp the predicted class is h(x). This viewpoint is often
refereed to as pattern recognition Vapnik [19] and h is called a discriminant function Bishop
[2], it is a formalization of the view that classification is the problem of discriminating between
groups.

Another approach to classification is to estimate the probabilities of the classes given the
observed covariates. More precisely the problem of estimating the conditional density of Y given
X, this notion is termed Probabilistic Discriminative Models by Bishop [2]. The advantage of
the probabilistic viewpoint over the discriminative is that additional information about the
underlying conditional probability is estimated. In this thesis we will adapt the probabilistic
view, hence; a classifier is a rule that to each x ∈ Rp assigns a probability distribution on the
finite set with K elements. The set of all such probability distributions is the simplex

∆K def
=

{
p ∈ [0, 1]K |

K∑

i=1

pi = 1

}
.

Therefore a precise definition, in accordance with the probabilistic viewpoint, of a classifier is:

Definition 1 (Classifier). A classifier is a function p : Rp → ∆K .

If p is a classifier and x an observed covariate, i.e a realization of X, then the k’th coordinate
pk(x) of p(x) is interpreted as the estimated conditional probability that Y = k given X = x.
In other words pk(x) is the estimated probability that the observation, x, belongs to class k.

Given a classifier h, as defined by (2.1) we may construct a (not very informative) classifier
p by assigning

pk(x) =

{
1 k = h(x)

0 otherwise

for x ∈ Rp. Given a classifier p we may construct a classifier h, by choosing

h(x) ∈ arg max
k=1,...,K

pk(x).

When viewing classification as discrete density estimation, it is clear that the true conditional
density of Y given X is the theoretical optimal classifier. This classifier is called the Bayes
classifier. The precise definition is:

Definition 2 (Bayes classifier). The Bayes classifier is the classifier pBayes defined by

pBayes
k (x)

def
= P (Y = k|X = x).

In terms of the joint density f of (X,Y ) the Bayes classifier

pBayes
k (x) =

f(x, k)

fY (k)
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where fY (k) =
∫
f(x, k) dx is the marginal density for Y . In practice we almost never have

any prior knowledge about the joint distribution of (X,Y ), in particular not the conditional
distribution of Y given X. In other words we do not have access to the Bayes classifier, and we
must therefore estimate the conditional distribution of Y given X, i.e. attempt to approximate
the Bayes classifier.

2.2.1 The loss function

To compare and assess the performance of classifiers a measure of the error, or loss, of a
prediction is needed. This error is measured by a loss function, where we shall take a loss
function to be any function of the form

L : ∆K × SK → R ∪ {±∞}.
Given an observation (x, y), i.e. a realization of (X,Y ), the loss L(p(x), y) can be interpreted

as the error the classifier p makes on the observation (x, y). For example, given two classifiers
p1 and p2 the relation

L(p1(x), y) ≤ L(p2(x), y)

may be interpreted as: classifier p1 did a better job predicting the class than p2 on the obser-
vation (x, y). In particular the 01 loss and the log-likelihood loss is of interest to us.

The 01 loss measures if we got the class with the highest probability right. The loss is zero
if the class with highest probability equals the observed class and one otherwise. When making
this definition precise we must ensure that we define a function, that is we need to ensure that in
the cases several classes have the same probability the value of the loss is uniquely determined.
We therefore define the 01 loss by

L(p, y) =





0 if y equals the smallest index in arg max
i=1,...,K

pi

1 otherwise
.

The log-likelihood loss is defined by

L(p, y) = − log py.

As will become clear, see Lemma 1, the log-likelihood loss is, up to a constant, the log likelihood.
Let L be any loss function. Then the expected loss of a classifier is called the generalization

error, risk, or true error. Note that the term generalization error does not specify the loss
function.

Definition 3 (Generalization error). The generalization error of a classifier p is

err(p)
def
= EL(p(X), Y ).

Optimality of the Bayes classifier

Not all loss function will induce a sensible generalization error. Any sensible measure of error
should be consistent with the optimality of the Bayes classifier, that is the optimality of the
true conditional density. This implies that the Bayes classifier should be a minimizer of the
generalization error induced by the loss function. In other words the Bayes classifier should have
the lowest generalization error, and this requirement places restrictions on the loss function.
Theorem 1 below gives a necessary and sufficient condition, on the loss function, that ensures
optimality of the Bays classifier.
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Theorem 1 (Optimality of the Bayes classifier). The following are equivalent

(a) For any classifier p and any joint distribution of (X,Y )

err(pbays) ≤ err(p)

(b) For any π ∈ ∆K , π is a minimizer of

g(s)
def
=

K∑

y=1

πyL(s, y).

Proof. We shall prove the following implications

(a)
1

=⇒ (b)
2

=⇒ (a).

1. Let π ∈ ∆K , denote by fX(x) the marginal density of X and consider the joint density

f(x, y) = πyfX(x).

By condition (a) there exists an x ∈ Rp such that

E(L(pbays(X), Y ) | X = x) ≤ E(L(p(X), Y ) | X = x).

Since

E(L(p(X), Y ) | X = x) =

K∑

y=i

L(p(x), y)P (Y = y | X = x)

=

K∑

y=1

πyL(p(x), y),

it follows that π = pbays(x) is a minimizer of g.

2. Let x ∈ Rp and πy = P (Y = y | X = x), by (b) it follows that pBayes(x) is a minimizer of
g. This implies that, for any classifier p

E(L(pBayes(X), Y ) | X = x) ≤ E(L(p(X), Y ) | X = x),

which in turn implies (a).

A loss function is said to be a regular loss if it comply with condition (b) of Theorem 1. The
01 loss and the log-likelihood loss are regular, see example 1 and 2 below. The generalization
error of the Bayes classifier is called the Bayes rate. For a regular loss this is by Theorem 1 the
lowest achievable generalization error.

A corollary to Theorem 1 is that for a regular loss the Bayes classifier is not only globally
optimal but locally optimal. The precise statement is:

Corollary 1 (Conditional optimality of Bayes classifier). For any classifier p and any joint
distribution on (X,Y )

E(L(pbays(X), Y ) | X = x) ≤ E(L(p(X), Y ) | X = x) for all x ∈ Rp.
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Example 1 (Regularity of log likelihood loss). We need to find the minimizer of

g(s) =

K∑

y=1

−πy log sy

subject to
∑K
y=1 sy = 1. The Lagrangian is

L(s, λ) =

K∑

y=1

−πy log sy + λ

K∑

y=1

sy.

Since g is convex the minimizer s∗ is a solution to the equations

−πy
sy

+ λ = 0 for y ∈ 1, . . . ,K

and
∑K
y=1 sy = 1. This implies that s = π.

Example 2 (Regularity of 01 loss). We have that

g(s) =

K∑

y=1

−πyL(s, y) = 1− πi

where i is the smallest index in arg max
i=1,...,K

si. It follows that

g(π) = 1−max{π1, . . . , πK} ≤ g(s).

2.3 Parametric models

Let B denote a set of parameters, that is a subsets of an euclidean space.

Definition 4 (Parametric model). A parametric model for a classifier is a function

p : B × Rp → ∆K .

Given an parametric model, we say that a β ∈ B is a model for the classifier p(β). A model
β ∈ B induces a density on (X,Y ) we denote this density by fβ . Since a parametric model p,
as defined above, only models the conditional density of Y given X, it follows that the joint
density fβ is

fβ(x, y) = py(β)(x)fX(x) (2.2)

where fX is the marginal density for X.
When viewed as a function of the parameters β ∈ B the generalization error is called the

risk of the model β.

Definition 5 (Risk). The risk of the model β ∈ B is

R(β)
def
= EL(p(β)(X), Y ).
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A classifier may be obtained by minimization of the risk, this approach is called risk mini-
mization. However since we do not know the distribution F of (X,Y ) the risk is unknown, we
need to estimate it from data. Before proceeding, we need to define what precisely we mean
by data. A random data set, or random sample Cramér [5], is a collection of N samples drawn
from the distribution F .

Definition 6 (Random data set). A random data set of size N is a random vector

D = ((X1, Y1), . . . , (XN , YN ))

where (X1, Y1), . . . , (XN , YN ) are i.i.d. according to the distribution F .

A realization of a random data set is a data set D = ((x1, y1), . . . , (xN , yN )) ∈ (Rp×SK)N .

2.3.1 The empirical risk

We may estimate the risk by the mean of a sample of losses. That is given a random data set
D we define:

Definition 7 (Empirical risk). The empirical risk of the model β ∈ B is

R̂D(β)
def
=

1

N

N∑

i=1

L(p(β)(Xi), Yi)

If we by F̂D denote the empirical distribution of D, or the distribution of the sample Cramér
[5], then the empirical risk is the risk R(β) with the joint distribution of (X,Y ) being F̂D. The
empirical risk, as defined above, is a random variable. For a realization D of D we will also use
the notation

R̂D(β) =
1

N

N∑

i=1

L(p(β)(xi), yi).

Since we do not know the risk we seek instead an approximate minimizer of the risk by
minimizing an approximation of the risk obtained from data, namely the empirical risk. This
approach is called the empirical risk minimization principle, see Vapnik [19].

In practice empirical risk minimization may exhibit pronounced overfitting problems – as is
often the case for high dimensional problems. In order to make this more precise assume given
a realization D of the data set D. The Bayes classifier may not be a minimizer of the empirical
risk R̂D. For high dimensional problems the Bayes classifier may be far from the minimizer of
R̂D. In fact, for the 01 loss, we may often be able to construct a classifier p̃ with

n∑

i=1

L(p̃(xi), yi) = 0,

that is with zero empirical risk. This classifier is constructed by requiring that

p̃(xi)k ≈ I(k = yi). (2.3)

The classifier p̃ may not be in the set of parameterizable models, i.e. there may not exist a β ∈ B
such that p̃ = p(β). However when N � p it is often possible to construct p̃ as a linear classifier.
To avoid this overfitting problem we could, for example, use some from of regularization and
thereby obtain a regularized minimizer. In Figure 2.1 we see that near the minimizer obtained
by solving the underdetermined linear system (2.3) the empirical risk is a bad approximation
of the risk (as estimated by a large test set). However near the regularized minimizer obtained
by penalized risk minimization the empirical risk approximates the risk much better.
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Figure 2.1: The value of the empirical risk, on a curve in the space of parameters B. The curve
on the left intercept a regularized minimizer and the curve on the right intercept a overfitted
minimizer. The empirical risk was constructed using 44 samples of the 11 class Primary Cancers
data set – 5 in each class except for on class with 4 samples. The test set consisted of 121 samples,
with 12-15 in each class. The regularized minimizer is obtained by penalized risk minimization
using a group lasso . The overfitted minimizer is obtained by solving the K underdetermined
linear systems (2.3).
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2.3.2 Convexity of the risk

Convexity of the risk and empirical risk is a desirable property. Some of the reasons are:

• Every minimizer is global and the set of all minimizers is convex.

• The well established theory and technology of convex optimization can be applied in the
development and construction of risk minimization algorithms.

For an introduction to convex optimization see Boyd and Vandenberghe [3]. By Proposition 1
below the convexity of the composition of the loss and the parametric model is equivalent to
convexity of the risk and the empirical risk. Convexity of this composition is, in particular,
necessary to ensure convexity of the empirical risk – regardless of the distribution on (X,Y ).
It is therefore an advantage to choose a loss function such that this composition is convex,
otherwise we will have to deal with a non convex risk and empirical risk.

Proposition 1. The following is equivalent

(a) The function
β → L(p(β)(x), y)

is convex for all (x, y) ∈ Rp × SK .

(b) For any distribution of (X,Y ) every realization of the empirical risk is convex.

(c) For any distribution of (X,Y ) the risk is convex.

Proof. Let, as usual, f denote the density of (X,Y ). We shall prove

(a)
1

=⇒ (b)
2

=⇒ (c)
3

=⇒ (a).

1. Since a nonnegative weighted sum of convex functions is convex it follows that any real-
ization of the empirical risk is convex.

2. Since any realization of the empirical risk is convex then for any (x, y) ∈ supp(f) the
function β → L(p(β)(x), y) is convex. It follows that

R(λβ1 + (1− λ)β2) =

K∑

y=1

∫

Rp

L(p(λβ1 + (1− λ)β2)(x), y)f(x, y) dx

≤
K∑

y=1

∫

Rp

[λL(p(β1)(x), y) + (1− λ)L(p(β2)(x), y)] f(x, y) dx

= λR(β1) + (1− λ)R(β2)

3. Given (x, y) ∈ Rp × SK choose f degenerate at (x, y).
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2.3.3 Relation to maximum likelihood

Lemma 1 below states the relation between the log-likelihood risk and the log-likelihood func-
tion.

Lemma 1. For the log-likelihood loss it holds that

`D(β) = NR̂D(β)−
N∑

i=1

log fX(Xi)

where ` is the negative log-likelihood function.

Proof. The joint density of (X,Y ) under the model is given by (2.2), the log likelihood is
therefore

`D(β) =

N∑

i=1

− log f(Xi, Yi)

=

N∑

i=1

− log pYi
(β)(Xi)− log fX(Xi)

= NR̂D(β)−
N∑

i=1

log fX(Xi).

The lemma implies that minimizing the log likelihood risk is equivalent to minimizing the
log likelihood. Risk minimization with the log-likelihood loss therefore amounts to maximum
likelihood estimation. Hence maximum likelihood in the problem of classification may be viewed
as a special case of risk minimization.

2.4 Linear models

For linear classification models the parameters are naturally organized in a matrix;

β =




β11 · · · β1p

...
. . .

...
βK1 · · · βKp︸ ︷︷ ︸

Covariates








Classes (2.4)

such that rows correspond to classes and columns to covariates.

Each K × p matrix β defines a map η : Rp → RK by setting η(x)
def
= βx – if the parameter

β needs to be explicitly stated then we will use the notation ηβ instead of η. The elements of
the vector η(x) are called linear predictors, with the organization (2.4) the k’th element of η is
the linear predictor corresponding class k. Denote the space of K× p real matrices by B, then
a parametric model p : B × Rp → ∆K for a classifier is said to be linear if

p(β) = h ◦ ηβ
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for a function h : RK → ∆K . A linear model is specified completely by specifying the function h,
we shall therefore say that h is the linear model. As usual we may add an intercept parameter
to the model by considering the p+ 1 dimensional problem where x is replaced by (1, x).

A natural requirement for a linear model is that the conditional probability that Y = k
given X essentially only depends on the k’th linear predictor. We shall say that a linear model
satisfying this requirement is regular, the precise definition is:

Definition 8. A linear model is said to be regular if

P (Y = k|X = x) = C(η)g(ηk)

for some functions g : R→ R+ and C : RK → R.

Regularity of a linear model implies that the fraction

P (Y = k|X = x)

P (Y = l|X = x)
=
g(ηk)

g(ηl)
(2.5)

only depends on the k’th and l’th linear predictor. A regular linear model h has a special form,
as lemma 2 below shows.

Lemma 2. The linear model h is regular if and only if

h(η) =
1

∑K
i=1 g(ηi)

(g(η1), . . . , g(ηK)).

for some function g : R→ R+.

Proof.

1 =

K∑

k=1

P (Y = k|X = x) = C(η)

K∑

k=1

g(ηk).

A regular linear model may not be identifiable, this is however not a problem since parame-
ters may be interpreted though equation (2.5). This is in particular the case for the (symmetric)
multinomial regression model, for a discussion see Vincent and Hansen [21] and appendix A.2
– the multinomial model will be introduced below.

2.4.1 Decision boundaries

The decision boundary between class k and class l is the set

{x ∈ Rp | P (Y = k|X = x) = P (Y = l|X = x)}.

For a regular linear model the decision boundary is determined by the equation g(ηk) = g(ηl).
Hence, if g is injective then the decision boundary is the hyperplane given by

ηk − ηl = 0.
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2.4.2 The multinomial model

Multinomial regression is the regular linear model with g = exp. In this section we show that
the multinomial regression model is the only regular linear model fulfilling the following three
requirements.

1. The function g defining the linear model h is twice continues differentiable.

2. The function g is unbounded.

3. For any distribution on (X,Y ) the log-likelihood risk is convex.

This implies that if we want to specify another regular linear model then at least one of the
above requirements would have to be given up. We could for example replace requirement 3 by

for any distribution on (X,Y ) the L-risk is convex,

if the risk is convex for another loss function L.
The main theorem of this section is:

Theorem 2. The only regular linear model fulfilling the three requirements above is the multi-
nomial regression model.

Proof. The statement follows by lemma 1 and 3 and by noting that composition with an affine
function preserves convexity.

Lemma 3. Let h be a regular linear model and assume that g : R → R+ is twice continues
differentiable and unbounded. Then the function

Lk(η) = − log hk(η)

is convex for every k ∈ SK if and only if g(s) = c1 exp(c2s) with c1 > 0, c2 6= 0.

Proof. Let g(s) = c1 exp(c2s) with c1 > 0, c2 6= 0. It follows that Lk is convex, since the log-

sum-exp η → log
∑K
k=1 exp(ηk) is convex. For the converse, assume that L1 is convex. Below

we will show that this implies that

g′(s)2 − g′′(s)g(s) = 0. (2.6)

And since the second order differential equation (2.6) has the solutions g(s) = c1 exp(c2x), with
constants c1 > 0, c2 6= 0, the claim follows.

We still need to show (2.6), in order to do this note that the convexity of L1 implies that
the function

R 3 s→ − log
g(s)

g(s) + c
(2.7)

is convex for every c > 0. The second derivative of (2.7) is

g′′(s)

(
1

g(s) + c
− 1

g(s)

)
+ g′(s)2

(
1

g(s)2
− 1

(g(s) + c)2

)
. (2.8)

Convexity of (2.7) implies that the second derivative (2.8) is nonnegative, it follows that

g′(s)2

(
1−

(
g(s)

g(s) + c

)2
)
− g′′(s)g(s)

(
1− g(s)

g(s) + c

)
≥ 0.
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We must therefore have that

g′(s)2

(
1 +

g(s)

g(s) + c

)
− g′′(s)g(s) ≥ 0,

and since this has to hold for every c > 0 it implies that

g′(s)2 − g(s)g′′(s) ≥ 0.

The convexity of L1 also implies that the function

R 3 s→ − log
c1

c1 + c2 + g(s)
(2.9)

is convex for every c1, c2 > 0. By using that the second derivative of (2.9) is nonnegative we
find that (

g(s)

g(s) + c1 + c2

)
g′(s)2 − g(s)g′′(s) ≤ 0

and since this has to hold for all constants c1, c2 > 0 it follows that

g′(s)2 − g(s)g′′(s) ≤ 0.

2.5 An empirical model

In Chapter 3 we will use simulated data to illustrate various concepts. To do this we will obtain
a model β0, for example using the multinomial group lasso estimator, on a template data set.
Samples is then simulated from a empirical distribution Fsim corresponding to the estimated
model β0, that is the density of Fsim is given by (2.10). The advantage of this empirical model
is that we know the distribution of the data, and this allow us to compute the Bayes rate, the
true error and the variance of the loss.

The simulation scheme uses a real data set

D = {(x1, y1), . . . , (xN , yN )}

as a template for the simulation. The simulation procedure is:

1. The template data set D is randomly split into two disjoint parts D1 and D2 containing
respectively N1 and N2 samples.

2. A parametric model β0 is estimated using D1 as training data.

3. Let fX̂ denote the density of the empirical distribution of X in D2. Draw N samples from
the distribution Fsim with density

fsim(x, y)
def
= py(β0)(x)fX̂(x). (2.10)

These N samples constitute the simulated data set.

Clearly the Bayes classifier pBayes = p(β0). Data constructed using the above scheme and
the data used as a template may have very different characteristics. Figure 2.2 illustrates this.
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Figure 2.2: The expected generalization error as a function of the expected number of covariates
included in the model for three different methods, as estimated by 8-fold cross validation. The
methods were applied to a simulated data set (left) and the corresponding real data set (right).
The real data set is the Childhood Leukemia data set. The number of samples simulated were
equal to the number of samples in the real data set. The group lasso, sparse group lasso and
lasso methods will be discussed in the following chapters.



CHAPTER 2. CLASSIFICATION MODELS 22

2.5.1 Computing the generalization error

Using that the distribution of (X,Y ) is discrete, we have that

∫
r(x, y) dFsim(x, y) =

N2∑

i=1

K∑

y=1

r(xi, y)fsim(xi, y)

=
1

N2

N2∑

i=1

K∑

y=1

r(xi, y)pBayes
y (xi) (2.11)

for any function r(x, y). Using formula (2.11) we may compute the generalization error of any
classifier p. We have that

err(p) = E [L(p(X), Y )]

=

∫
L(p(x), y) dFsim(x, y)

=
1

N2

N2∑

i=1

K∑

y=1

L(p(xi), y)pBayes
y (xi).

And the variance of the loss is

Var [L(p(X), Y )] =
1

N2

N2∑

i=1

K∑

y=1

(L(p(xi), y)− err(p))2pBayes
y (xi).



Chapter 3

Learning

3.1 Introduction

Given a set of examples, classes and observed covariates, the question arise on how we should
learn or estimate a classifier from the presented examples. A method or procedure for learning
a classifier from data is called a supervised learning method, we will define this notion pre-
cisely. Empirical risk minimization and penalized empirical risk minimization are examples of
supervised learning methods. Having defined supervised learning we will also discuss various
associated statistics as for example the expected generalization error and the expected number
of covariates.

In section 3.3 we briefly discuss model assessment and selection and comparison of different
learning methods. And in section 3.4 we discuss error estimation using subsampling procedures
as for example cross validation. We will define a notion of M -subsampling procedures, of which
cross validation is an example, and show that these procedures give unbiased estimates of the
expected generalization error. We will also briefly investigate the variance of these estimators.

3.2 Supervised learning

A supervised learning method is a collection of procedures for constructing a classifier from
data D ∈ (Rp ×SK)N – one procedure for each N ∈ N. This can be modeled by a collection of
functions. We therefore define:

Definition 9 (Supervised learning method). A supervised learning method A is a sequence of
functions {AN}n∈N each with signature

AN : (Rp × SK)N × Rp → ∆K

For a data set D ∈ (Rp×SK)N – of size N – we will use the notation AN (D) for the function
AN (D) : Rp → ∆K defined by

AN (D)(x) = AN (D,x).

Furthermore the classifier obtained by applying A on the data D is denote by A(D) = AN (D).
We shall say that the classifier A(D) is obtained by training on D. Moreover the data D is
called the training data.

A parameter estimator is an estimator for the parameters in a parametric model. This
concept is captured in the following definition.

23



CHAPTER 3. LEARNING 24

Definition 10 (Parameter estimator). A parameter estimator for a parametric model for clas-

sification p : B × Rp → ∆K is a sequence of functions {β̂N}n∈N each with the signature

β̂N : (Rp × SK)N → B.

If a parametric model for classification is given then we may construct a supervised learning
method by composing the parametric model with a parameter estimator. This composition is
as shown in the following diagram:

(Rp × SK)N × Rp

AN

((

β̂N×id // B × Rp

p

��
∆K

Example 3 (Empirical risk minimization). Empirical risk minimization is an example of a
supervised learning method. Given a parametric model p, a loss function and data D ∈ (Rp ×
SK)N we may construct the empirical risk R̂D(β). Empirical risk minimization Vapnik [19]
then estimates a model by

β̂ = arg min
β∈B

R̂D(β). (3.1)

And a supervised learning method AN may be constructed by setting

AN (D)(x) = p(β̂)(x).

3.2.1 Model characteristics

We are often interested in comparing learning methods. We may, for example, be interested in
comparing the expected generalization errors of different methods when applied to data drawn
from some specified population. Moreover other characteristics of the estimated parameters
and/or classifier may be of interest, as for example the number of covariates used in the model.
We therefore need a notion of model characteristics, that broadens the notion of generalization
error – model characteristic will be defined below.

For any supervised learning method the expected error of the resulting classifier is called
the expected generalization error.

Definition 11 (Expected generalization error). The expected generalization error of a super-
vised learning method A is

Err(N)
def
= E(L(AN (D)(X), Y )).

Note that the expected generalization error is a function of the number of samples in D.
We will however often use the notation Err, instead of Err(N), when the number of samples
is implicit. The expected generalization error is the expectation of the true error taken over
training data, as is seen from the relation

Err = E [E(L(AN (D)(X), Y ) | D)] = E(err[A(D)]).

The generalization error is an example of a model characteristic, we may however consider
various other characteristics of a parametric model β ∈ B. We wish to broaden the concept of
expected generalization error so that we can speak of the expected characteristic of a model. A
model characteristic is induced by a function T , and we say that:
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Figure 3.1: The group lasso estimator (with fixed λ) applied to simulated data sets of size 40,
all data sets were simulated using the same distribution. This distribution were of the from
(2.10) and the Childhood Leukemia data set were used as a template. With the model of the
distribution β0 obtained using the group lasso estimator (see Example 5). Each of the 100 dots
represent the characteristics of a classifier obtained by training on one of the simulated data
sets. The cross show the expected generalization error and expected number of covariates in
the model, as obtained by the mean of 1k classifiers.
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Definition 12. For a function T : B × (Rp × SK)→ R the by T induced model characteristic
is the function χT : B → R defined by

χT (β)
def
= E [T (β,X, Y )] .

Note that model characteristic concept is only defined for parametric models, contrary to the
expected generalization error which is defined for all supervised learning methods. Examples
of model characteristics are the true error, the number of covariates used in the model and the
number of nonzero parameters in the model.

The expectation of a model characteristic over training data is called the expected model
characteristic, this concept broadens the concept of expected generalization error. Figure 3.1
illustrates the concept of expected model characteristics. The definition is:

Definition 13. The expected model characteristic for an estimator β̂ is

CT
def
= E

(
χT (β̂)

)
= E

(
χT

[
β̂(D)

])
.

For a loss L we may let TL(β, x, y) = L(p(β)(x), y) then the induced model characteristic is
the error, that is

χTL
(β) = err(β).

Furthermore the expected model characteristic induced by T is the generalization error, hence

CTL
= E(err[A(D)]) = Err .

If B is a vector space then another example of a model characteristic is the number of
nonzero parameters. This characteristic is induced by the function

Par(β)
def
=

Kp∑

i=1

1(βi 6= 0).

Evidently Par is independent of X and Y – it only depends on the model β. It follows that the
model characteristic χPar = Par(β). The expected number of nonzero parameters is

CPar = E(Par(β̂)) =

Kp∑

i=1

P (β̂i 6= 0).

The vector space B may posses some additional structure. We are primarily interested in the
case where the parameters may be naturally grouped. That is there is a natural decomposition
of the parameter space B = Rn

Rn = Rn1 × · · · × Rnm

into m ∈ N groups. The groups having dimensions ni ∈ N for i = 1, . . . ,m, hence n = n1 +
· · ·+nm. For a vector β ∈ Rn we write β = (β(1), . . . , β(m)) where β(1) ∈ Rn1 , . . . , β(m) ∈ Rnm .

For J = 1, . . . ,m we call β(J) the J ’th group of β. We use the notation β
(J)
i to denote the i’th

coordinate of the J ’th group of β, whereas βi is the i’th coordinate of β.
When a grouping of the parameters is present it is natural to consider the number of nonzero

groups, i.e.

Grp(β)
def
=

m∑

I=1

1(β(I) 6= 0).



CHAPTER 3. LEARNING 27

The number of nonzero groups is a model characteristic, induced by itself, hence χGrp = Grp(β).
The expected number of nonzero groups is

CGrp = E(Grp(β̂)) =

m∑

J=1

P (β̂(J) 6= 0).

For linear models the parameter space B is structured as K × p matrices, with each column
corresponding to a covariate. That is K parameters per covariate, we may group these K
parameters together – we will consider this the standard grouping for linear models. Using this
grouping a parameter β ∈ B can be written as a block matrix in the following way:

β =
(
β(1) · · ·β(p)

)
.

For linear models, with the standard grouping of the parameters, the number of covariate used
in the model β ∈ B is the number of nonzero groups Grp(β).

Remark 1. The above definition of expected model characteristic can, due to limited number
of samples, be somewhat unhandy for practical use. When estimating the expected model char-
acteristic (or expected generalization error) then in practice we may need to condition on the
number of samples in each class. Given a random data set D of size N we may define the K
random variables

Nk
def
=

N∑

i=1

1(Yi = k) for k ∈ SK .

That is Nk is the number of samples of class k. For a model characteristic χT and a =
(a1, . . . , aK) ∈ NK with a1 + · · ·+ aK = N the conditional expected model characteristic is

CT |a = E(χT (β̂) | N1 = a1, . . . , NK = aK)

For most classification problems it is natural to take a1 = · · · = aK .

3.2.2 Parametrized learners.

In many situations one supervised learning method is not enough, we may wish to try out a
range of methods and then select the method that induces classifiers best suited for our needs.
This is the case when we do feature selection, when we select the amount of regularization for
penalized empirical risk minimization or when we adjust some parameter of the method. In
order to formalize and make this precise we will define the concept of parametrized supervised
learning methods.

Definition 14. A parametrized supervised learning method is a sequence of functions {AN}n∈N
each with the signature

AN : Λ× (Rp × SK)n × Rp → ∆K

and such that A(λ) (i.e. {AN (λ)}n∈N) is a supervised learning method for each λ ∈ Λ.

Like with supervised learning methods we often consider a parametrized supervised learning
method as a two step procedure, first parameter estimation then application of the parametric
model.
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Definition 15. A parametrized model estimator for a parametric model p is a sequence {β̂N}n∈N
of functions each with signature

β̂N : Λ× (Rp × SK)n → B.

For a parametrized supervised learning method the expected model characteristic is a func-
tion of the λ parameter. An example of a parametrized supervised learning method is penalized
empirical risk minimization;

3.2.3 Penalized empirical risk minimization

Let R̂D(β) denote the empirical risk associated with the parametric model p and data D ∈
(Rp × SK)N . Penalized empirical risk minimization then estimates a model by

β̂(λ) = arg min
β∈B

R̂D(β) + λΦ(β) (3.2)

with λ > 0 and where Φ : B → R+ is the regularization term or penalty. The scalar λ is
sometimes called the amount of regularization. A parametrized supervised learning method A
is defined by setting

AN (λ)(D)(x) = p(β̂(λ))(x)

for D ∈ (Rp × SK)N .
For penalized empirical risk minimization the choice of penalty is essential, different penalties

will result in methods with different characteristics. This is evident by looking at Figure 3.3
and 3.4.

Two important examples of penalties are:

Example 4 (Lasso). Lasso (Tibshirani [15]) for linear classification estimates models by pe-
nalized empirical risk minimization with the penalty

Φ(β) =

K∑

i=1

p∑

j=1

ξij |βij |

with weights ξij ∈ [0,∞). In the case that ξij = 1 for all i = 1, . . . ,K and all j = 1, . . . , p the
penalty is the 1-norm of the vector vec(β). The lasso penalty has been considered for classifica-
tion for some time, see for example Zhu and Hastie [24].

Example 5 (Group lasso). The standard group lasso for linear classification models (Vincent
and Hansen [21]) estimates models by regularized risk minimization with the penalty

Φ(β) =

p∑

J=1

γJ

∥∥∥β(J)
∥∥∥

2

with weights γJ ∈ [0,∞). Do not confuse the group lasso with ridge regression, the latter being

Φ(β) = ‖vec(β)‖22, that is the squared 2-norm. The selection effect of the group lasso comes
from the non differentiability at zero of the 2-norm, which is removed by squaring. Group lasso
penalties has also been used to group covariates in combination with logistic regression (Meier
et al. [11]), this is however a different use of group lasso than the one presented in this example.
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Figure 3.2: The group lasso estimator applied to simulated data sets of size 80, all data sets
were drawn from the same simulated population. The distribution, used for the simulation, is
of the from (2.10). The Brain Tumor data set were used as template, using the group lasso
estimator to obtain the model β0 used for simulation. For each λ in a pre-computed sequence
{λ1, . . . , λ100} of values 1k classifiers were trained on individually simulated data sets. For each
λ one classifier was randomly selected and marked by a dot with coordinates (Grp(β), err(β)),
where β denotes the model of the classifier. The curve is (CGrp(λ),Err(λ)), as estimated from all
1k classifiers. The shaded area marks the 5% and 95% empirical quantiles of the distributions
err(β̂(λ)) for λ ∈ {λ1, . . . , λ100}. The cross marks the characteristics of the Bayes classifier,
that is the model β0.
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3.3 Model assessment and selection

In this section we will briefly discuss three model assessment and selection tasks. We assume
that the distribution of the data is specified. The tasks are:

1. Method comparison – comparison of the characteristics of two or more methods.

2. Model selection – selection of an model with optimal performance.

3. Model assessment – assessment of the characteristics of a fixed model.

Model selection and assessment may seem to be similar, the difference is that for model
selection the only concern is selection of an optimal model, whereas for model assessment a
concrete estimate of, for example, performance is sought. To be precise we should say model
selection for estimation to distinct it from model selection for identification (Arlot and Celisse
[1]). Model selection for identification aims at selecting the true model whereas model selection
for estimation aims at selecting an optimal model in terms of some measure of error.

3.3.1 Method comparison

For method comparison we are interested in comparing the distributions of the model character-
istics χT (A(D)) and χT (B(D)) with D is a random data set. Although the entire distributions
many be of interest, we usually focus on one-number summaries of the distributions. One-
number summaries are often easier to interpret and estimate. For example, we may compare
expected model characteristics.

For parametric methods expected model characteristics are functions of the parameter λ
that parameterize the methods. Considering two parametric methods A and B, the question
arise on how we should compare the two curves

cA : λ→ CT (A(λ)) and cB : λ→ CT (B(λ)).

We cannot simply compare the curves as there, for given λ, may not be any natural relation
between cA(λ) and cB(λ). We could compare the maximum and/or minimum of the curves.
This would seem appropriate if we seek the methods producing the most extreme models with
respect to, for example, the error rate. However, in many situations we not only seek a model
with a low error rate, but one which also has a low model complexity.

Consider the case where we have two model characteristics T1 and T2. Typically T1 is a
measure of model complexity and T2 a measure of error (i.e. a loss function). We are then
interested in comparing the distributions

(
χT1

(β̂A(λA)), χT2
(β̂A(λA))

)
and

(
χT1

(β̂B(λB)), χT2
(β̂B(λB))

)
.

Note that the distributions are parametrized with parameter λA ∈ ΛA and λB ∈ ΛB respectively.

Take T1 to be the number of covariates included in the model and T2 the 01 loss. We may
then compare the methods by comparing their corresponding characteristic curves, that is by
comparing the parametrized curves

(
Grp(β̂A(λA)),Err(β̂A(λA))

)
and

(
Grp(β̂B(λB)),Err(β̂B(λB))

)

with λA and λB in respectively ΛA and ΛB. See Figure 3.2 for an example of a characteristic
curve.
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Figure 3.3: Characteristic curves for the group lasso (see Example 5), the lasso (see Example 4)
and the sparse group lasso with α = 0.5 (see section 4.6) applied to the Primary Cancers data
set. For all three methods the shown characteristic curves are (CGrp,Err) (left) and (CPar,Err)
(right). The curves were estimated by 10-fold cross validation on a λ-sequence of length 100.

In Figure 3.2 we used simulated data and could therefore compute the exact characteristic
curve, in practice however, we will have to estimate the characteristic curves – that is to estimate
the expected model characteristics. This can often be done using either a cross validation or
a subsampling scheme, as discussed in section 3.4.2. In Figure 3.3 we estimated, using cross
validation, characteristic curves for three different learning methods applied to the Primary
Cancers data set. Looking at Figure 3.3 it is apparent that the three learning methods has
different characteristics.

Learning curves

The expected generalization error is a function of the number of samples N in the training data.
The learning curve is the graph

(N,Err(N)) .

In the case of a parametrized learning method we could consider the curve

(
N,min

λ∈Λ
Err(β̂N (λ))

)
.

This curve shows how the optimal model depends on the number of training samples. Another
interesting curve is, for example, the curve

(
CGrp(β̂N (λ∗N )),Err(β̂N (λ∗N ))

)
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Figure 3.4: Learning curves for the group lasso (see Example 5), the lasso (see Example 4) and
the sparse group lasso with α = 0.5 (see section 4.6) applied to the Primary Cancers data set.

The curves shown are (CGrp(β̂N (λ∗N )),Err(β̂N (λ∗N )) (left) and (CPar(β̂N (λ∗N )),Err(β̂N (λ∗N ))
(right), the number of samples per class is shown as numbers on the plots. The lambda pa-

rameter λ∗N is chosen such that the estimator β̂N (λ∗N ) has lowest expected generalization error

among the estimators {β̂N (λ∗N )}λ∈Λ. The characteristics were estimated by subsampling (see
section 3.4) with 200 subsamples. For each subsample a training set of size N and a test set
with 8 samples per class was randomly chosen without overlap.

parametrized by N and where λ∗N
def
= arg min

λ∈Λ
Err(β̂N (λ)). Examples of such learning curves,

for three different methods, can be seen in Figure 3.4. Differences between the three methods
are apparent.

3.3.2 Model selection

Model selection is a large research subject and we will here only briefly discuss it, for a more
throughout discussion see for example Arlot and Celisse [1] or Hastie et al. [7]. The main
question of model selection is: given data D ∈ (Rp × SK)N which λ should we choose in order
to achieve the optimal error of A(λ)(D), i.e. in order to minimize err(A(λ)(D)).

Consider now the error function

λ→ err [A(λ)(D)] . (3.3)

It is interesting that when estimating the parameters of a multinomial model using sparse group
lasso the error function (3.3) for the log-likelihood loss seems always to be quasiconvex – on R
the quasiconvex functions are exactly the monotone and unimodal functions. In fact the error
function seems mostly strictly convex near the minimizer.

Consider the log-likelihood loss and assume, for the following discussion, that the error
function (3.3) is strictly convex. Then there exist a unique minimizer λ∗ of the error function.
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On approach to model selection is to try and estimate λ∗. If we can estimate λ∗ well then we
may obtain a model with near optimal error with respect to the likelihood loss.

However, we are often interested in the misclassification error, i.e. the 01 loss. The 01 loss
error function is not quasiconvex, in fact it may oscillate and it is in general hard to estimate
a minimizer. Unfortunately the minimizer of the likelihood loss error function may not be near
a minimizer of the 01 loss error function. Moreover we don’t know the error function.

It is in general difficult to estimate the true error and therefore also the error function. We
can, however, estimate the expected generalization error fairly well. We could therefore attempt
to estimate a minimizer λ∗ of the error function by

λ̂∗ = arg min
λ

Êrr(λ).

where Êrr is an estimate of the expected generalization error.
Given an parametrized supervised learning method A and a model selection method, that

is an estimator λ̂∗, we may construct a supervised learning method by

A∗(D)
def
= A(λ̂∗)(D).

The characteristics of the combined method A∗ will in general have to be estimated and will
depend on both the characteristics of the method A and the model selection method.

3.3.3 Assessment of model characteristics

Given data D ∈ (Rp × SK)n we are often interested in various model characteristics of an

estimated model β̂(D). Some characteristics may be directly accessibly, for example the number
of nonzero parameters or the number of nonzero groups. However other characteristics like the
true error needs to be estimated.

The true error can be estimated using an independent test set. However if no, or only a
small, independent test set is available it is in practice impossible to obtain a unbiased estimate
of the true error. We may instead – by cross validation or other subsampling procedures – obtain
a unbiased estimate of the expected generalization error. The problem, with this approach, is
that we do not know the variance of err[A(D)] nor the variance of our estimation procedure.
Hence the estimated expected generalization error may in worst case be far away from the true
error. Although, in practice, it is often found that the cross validation estimate agrees well with
estimates obtained using an independent test set.

3.4 Error estimation

In this section we consider ways of estimating the model characteristic χT (β̂) and the expected

model characteristic CT (β̂) of an estimator β̂. An unbiased estimate of the model charac-
teristic can be obtained by an independent test as described below. For the expected model
characteristic various subsampling procedures may be used. Given an estimator β̂ we define:

Definition 16 (Sample model characteristic). For data sets Dtrain and Dtest of size respectively
Ntest and Ntrain the sample model characteristic is

χ̂T (Dtrain, Dtest)
def
=

1

Ntest

Ntest∑

i=1

T (β̂(Dtrain), Xi, Yi).

Note that the sample model characteristic is a function of two data sets: a training and a
test data set. Moreover the estimator β̂ is implicit in the definition.
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3.4.1 Estimation by independent test

For a training data set D and a random test data set Dtest the the random variable

χ̂T (D,Dtest).

is called the test characteristic of the estimator β̂(D). By the central limit theorem

(χ̂T (D,Dtest)− µ)

σ/
√
Ntest

; N(0, 1) as Ntest →∞

where µ = χT (β̂) and σ2 = Var(T (β̂,X, Y )). That is the test characteristic is a unbiased
estimator of the model characteristic and the estimated standard error of the test characteristic
is

ŝe =

√
σ̂2

Ntest
.

This implies that if Ntest is sufficiently high we may assume that

χ̂T (D,Dtest)− µ
ŝe

≈ N(0, 1).

So approximate 95% confidence interval for the model characteristic is therefore

χ̂T (D,Dtest)± 1.96ŝe.

If the training and test data are dependent then the estimated model characteristic may be
severely biased, this is in particular the case for high dimensional classification. The training
characteristic of β̂ is

χ̂T (D,D).

For the most part we are interested in estimating the error, i.e. T is a loss, of the classifier model.
In this case the test characteristic is simply called the test error and the training characteristic
the training error. In Figure 3.5 we see that the training error is highly over optimistic, the
misclassification error reaches approximately 0 when more than 500 features are included in the
model. We also see that the optimism (the gab between the training and test error) increases
with the number of covariates include in the model.

3.4.2 Estimation by subsampling procedures

In this section we consider subsampling procedures for estimating the expected model charac-
teristic.

Consider the random data set

D = ((X1, Y1), . . . , (XN , YN )) .

of size N . Let SN denote the set of all permutations of N elements, then for a permutation
τ ∈ SN define the two data sets

Dτ
train =

(
(Xτ(1), Yτ(2)), . . . , (Xτ(Ntrain), Yτ(Ntrain))

)

and
Dτ

test =
(
(Xτ(Ntrain+1), Yτ(Ntrain+1)), . . . , (Xτ(N), Yτ(N))

)

of size respectively Ntrain and Ntest = N − Ntrain. We are now ready to define a general
notation of subsampling procedures, the idea is that a subsampling procedure is specified by a
distribution on the random permutations. We first define the notion of M -subsample:
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Figure 3.5: The test and training error of the Amazon Reviews data set, the models were
estimated using group lasso. The error measured with the 01 loss (left) and the log-likelihood
loss (right) is shown. The data set were split in two half, keeping class ratios approximately
fixed, one half were used as a training set and the other as a test set. The shaded area indicates
the approximate normal-based 95% confidence interval.
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Definition 17 (M -subsample). A M -subsample of D is the collection

Dτ1
train,D

τ1
test, . . . ,D

τM
train,D

τM
test

of 2M data sets where τ1, . . . , τM ∈ SN are random permutations.

We will not assume independence of the random permutations τ1, . . . , τM . We will however
assume that the sequence τ1, . . . , τM is exchangeable, i.e. that

P (τ1, . . . , τM ) = P (τγ(1), . . . , τγ(M))

for any permutation γ ∈ SM . A subsampling procedure is then specified by choosing an ex-
changeable distribution for the random permutations (τ1, . . . , τM ). Cross validation and stan-
dard subsampling are exchangeable procedures, i.e. they are defined by an exchangeable se-
quence of random permutations τ1, . . . , τM . Cross validation and standard subsampling will be
discussed below.

Let ĈτiT
def
= χ̂T (Dτi

train,D
τi
test) and define the sample expected model characteristic by

ĈT
def
=

1

M

M∑

i=1

ĈτiT .

Note that ĈT depends on the joint distribution of the permutations (τ1, . . . , τM ), hence the
distribution of ĈT will differ depending on the subsampling procedure we choose. However,
as the following proposition show, ĈT is always a unbiased estimator of the expected model
characteristic CT .

Proposition 2. It holds that E(ĈT ) = CT .

Proof. For a permutation τ ∈ SN we have

E(χ̂T (Dτ
train,D

τ
test)) = E[T (β̂(Dτ

train), Xτ(Ntrain+1), Yτ(Ntrain+1))]

= E E[T (β̂(Dτ
train), Xτ(Ntrain+1), Yτ(Ntrain+1)) | Dτ

train)]

= E(χT (Dτ
train)))

= CT

This implies that for any i ∈ {1, . . . ,M}

E χ̂T (Dτi
train,D

τi
test) = CT

hence E(ĈT ) = CT .

The following proposition gives some insight into the components of the variance of the
distribution of the estimator ĈT .

Proposition 3. If the sequence of random permutations τ1, . . . , τM is exchangeable then

Var(ĈT ) =
1

NtestM
E(σ2) +

1

M
Var(µ) +

(
1− 1

M

)
Cov(Ĉτ1T , Ĉ

τ2
T ).

where µ = χT (β̂) and σ2 = Var(T (β̂,X, Y ) | Dtrain).
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Proof. First note that since the data set D is i.i.d. it follows that

Var(ĈτiT | τi,Dτi
train) = Var(χ̂T (Dτi

train,D
τi
test) | τi,Dτi

train)

=
1

Ntest
Var(T (β̂(Dtrain), X, Y ) | Dtrain)

=
1

Ntest
σ2.

In particular Var(ĈτiT | τi,Dτi
train) is independent of τi. Second

E(ĈτiT | τi,Dτi
train) = E(χ̂T (Dτi

train,D
τi
test) | τi,Dτi

train)

= E
(
T (β̂(Dtrain), X, Y ) | Dtrain

)

= µ.

It follows that

Var(ĈτiT ) = E
[
Var(ĈτiT | τi,Dτi

train)
]

+ Var
[
E(ĈτiT | τi,Dτi

train)
]

=
1

Ntest
E(σ2) + Var(µ).

This implies

Var(ĈT | τ1, . . . , τM ) =
1

M2



M∑

i=1

Var(ĈτiT ) +
∑

i 6=j
Cov(ĈτiT , Ĉ

τj
T | τ1, . . . , τM )




=
1

NtestM
E(σ2) +

1

M
Var(µ) +

1

M2

∑

i 6=j
Cov(ĈτiT , Ĉ

τj
T | τ1, . . . , τM ).

Furthermore by permutational invariance of the subsampling procedure

E Cov(ĈτiT , Ĉ
τj
T | τ1, . . . , τM ) = E Cov(Ĉτ1T , Ĉ

τ2
T | τ1, τ2).

So since E(CT | τ1, . . . , τM ) = CT is independent of τ1, . . . , τM is follows that

Var(CT ) = E Var(CT | τ1, . . . , τM ) + Var E(CT | τ1, . . . , τM )

=
1

NtestM
E(σ2) +

1

M
Var(µ) +

(
1− 1

M

)
E Cov(Ĉτ1T , Ĉ

τ2
T | τ1, τ2).

Finally the statement follows by noting that by the law of total covariance

E Cov(Ĉτ1T , Ĉ
τ2
T | τ1, τ2) = Cov(Ĉτ1T , Ĉ

τ2
T )

since E(Cτ1T | τ1, τ2) = CT is independent of τ1 and τ2.

Cross validation

The set of permutations (τ1, . . . , τk) such that

k∐

i=1

τi({Ntrain + 1, . . . , N}) = {1, . . . , N}
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where
∐

denotes disjoint union is called the set of split permutations. A k-fold cross validation
is a k-subsampling procedure with Ntestk = N , where the joint distribution of the permutations
(τ1, . . . , τk) is the discrete uniform distribution with support on the set of split permutations.
It is not difficult to see that the joint density of the permutations is exchangeable.

In the above definition of cross validation we assumed that N is a multiple of k and that the
number of training samples in each split is N − N

k . In many applications this assumption is not
met and the number of training samples varies over the splits. Proposition 3 can not trivially
be generalized to handle such subsampling procedures since the parameter estimator β̂ depend
on the number of training samples – and a priori there is no connection between estimators
with different number of training samples, see definition 10.

By Proposition 3 the variance of the cross validation estimator is for k-fold cross validation

Var(ĈT ) =
1

N
E(σ2) +

1

k
Var(µ) +

(
1− 1

k

)
Cov(Ĉτ1T , Ĉ

τ2
T ).

Assume that the estimator β̂ is constant under the cross validation permutations of the data,
that is we may take β̂ to be independent of τ . Then the variance is

Var(ĈT ) =
1

N
σ2

since Var(µ) = 0 and Cov(Ĉτ1T , Ĉ
τ2
T ) = 0. Note that stability of β̂ and independence of Dτ1

train

and Dτ2
test ensures Cov(Ĉτ1T , Ĉ

τ2
T ) = 0. Hence we can conclude that if the estimator is stable

under the cross validation permutations then the variance is independent of k, this is an old
result see Kohavi [8].

The assumption of stability of the estimator seldom holds in practice, although we see from
the example of Figure 3.6 that for k ≤ 20 the main contribution to the variance does come from
term 1

N E(σ2). It is also interesting that leave one out cross validation (k = 40) has the highest
variance, which is seen to be due to the covariance term being quite large.

Standard subsampling

The standard M subsampling procedure is a M -subsampling procedure with the joint distri-
bution of the permutations (τ1, . . . , τM ) the discrete uniform distribution. That is for standard
M subsampling the permutations τ1, . . . , τM are i.i.d.. For a standard subsampling procedure
we typically choose M fairly high, say M ≤ 100, this implies that

Var(ĈT ) ≈ Cov(Ĉτ1T , Ĉ
τ1
T ).

This result is also evident from the example in Figure 3.6.
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Figure 3.6: The different contributions, on a simulated data set, to the variance of Cross
validation estimates and standard subsampling estimates of the expected 01 loss. The values of
the different contributions are shown as a function of the number of test samples Ntest in each
subsample. The data set was simulated using the simulation scheme of section 2.5 and with
the Childhood Leukemia data set as template. For the Cross validation the fold k is N/Ntest,
for the standard subsampling M = 100. In all cases the total number of samples N were 40.
In order to estimate the contributions of the different terms 200 data sets were simulated, all
drawn from the same distribution. This distribution were of the form (2.10), with the Bayes
classifier obtained using multinomial group lasso. For each of the 200 data sets two models
were estimated, corresponding to τ1 and τ2, using group lasso. Furthermore for each of the
200 data sets the test errors Ĉτ1T and Ĉτ2T were computed and the true error and true variance
were computed using formula (2.11). The contributions of the terms were then estimated as
the corresponding empirical statistics.



Chapter 4

Sublinear penalization

4.1 Introduction

In this chapter we discuss a generalization of the lasso, group lasso and sparse group lasso
penalties. We will consider penalized empirical risk minimization with sublinear penalties,
which includes sparse group lasso penalties and much more. A penalty is sublinear if and only
if it is convex and positively homogeneous, see Appendix C for an equivalent definition in terms
of sub-linearity. This may seem like a very broad generalization, however, it is possible to derive
optimality conditions for the solutions, an exact solution for quadratic empirical risk and generic
algorithms for such optimization problems. We will introduce the concept of decomposition of
a penalty, that will allow us to decompose the optimality conditions into a collection of simpler
conditions. Moreover a decomposition also allow us to solve the penalized optimization problem
by using block coordinate descent methods, that is by sequentially solving simpler optimization
problems.

Throughout this chapter we will use several results from convex analysis, Urruty and
Lemaréchal [18] covers everything we need except coordinate descent methods. A short re-
view tailored to this chapter is given in appendix B. The result regarding coordinate decent for
non-differentiable optimization, which we need, can be found in Tseng and Mangasarian [16]
and Tseng and Yun [17]. A short review is given in appendix A of Vincent and Hansen [21].
For a general introduction to convex optimization see for example Boyd and Vandenberghe [3].

4.2 The penalty

In this section we motivate the definition of sublinear penalties and define the concept of de-
composition of a penalty. In order to do this we assume, as in section 3.2, that the parameters
are grouped. That is we decompose the parameter space

Rn = Rn1 × · · · × Rnm

into m ∈ N groups. The groups having dimensions ni ∈ N for i = 1, . . . ,m, hence n = n1 +
· · ·+nm. For a vector β ∈ Rn we write β = (β(1), . . . , β(m)) where β(1) ∈ Rn1 , . . . , β(m) ∈ Rnm .

For J = 1, . . . ,m we call β(J) the J ’th group of β. We use the notation β
(J)
i to denote the i’th

coordinate of the J ’th group of β, whereas βi is the i’th coordinate of β.

40
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The penalized risk minimization estimator is defined as a solution to the optimization prob-
lem

minimize
β∈B

R̂D(β) + λΦ(β) (4.1)

with R̂D the empirical risk, Φ : Rp → R the penalty and with λ > 0. All the penalties that
we will consider are convex, hence if the empirical risk R̂D is convex then the estimator β̂ is a
solution to a convex optimization problem.

We are primarily interested in separable sublinear penalties, the separability of the penalty
implies that the optimization problem (4.1) separates into a collection of optimization prob-
lems. With each of these problems having a lower dimension than the primary problem (4.1).
Separability means that Φ is a sum of sublinear functions – a function is sublinear if and only
if it is convex and positively homogeneous, see Appendix B – in the following way

Φ(β) =

m∑

J=1

σJ(β(J))

where σJ : RnJ → R is sublinear.
Sublinear functions are in bijective correspondence with support functions of compact convex

sets, this implies that there exists m nonempty compact convex sets C1 ⊆ Rn1 , . . . , Cm ⊆ Rnm

such that

Φ(β) =

m∑

J=1

σCJ
(β(J))

where σCJ
denotes the support function of CJ . If we by ιJ : RnJ ↪→ Rp denote the canonical

inclusion into the subspace spanned by the J ’th parameter group, then by (B.5)

σCJ
(β(J)) = σιJ (CJ )(ιJ(β(J))).

Hence there exists m nonempty compact convex sets C1 ⊆ Rp, . . . , Cm ⊆ Rp such that

Φ(β) =

m∑

J=1

σCJ
(PJβ) (4.2)

where PJ : Rp → Rp is the projection onto the subspace spanned by the J ’th parameter group.
Furthermore the sets C1, . . . , Cm can be chosen such that CJ = PJCJ for all J = 1, . . . ,m.

For a support function σC we have for λ > 0 the relation λσC = σλC . This implies that we
without loss of generality may consider minimizers of

R̂D(β) + Φ(β).

The interesting penalties are the non-differentiable ones – since these penalties induce feature
selection properties. We can therefore not restrict our attention to differentiable optimization
problems of the form (4.1). Therefore, in order to better understand the solutions of (4.1) we
must use subdifferential calculus – instead of ordinary differential calculus – to derive optimality
conditions. The subdifferential generalizes the ordinary gradient, see for example Urruty and
Lemaréchal [18]. In the next section we will use the subdifferential calculus to obtain optimality
conditions for (4.1).

Example 6 (Norms). The dual norm ‖·‖∗ of a norm ‖·‖ is

‖z‖∗ def
= sup{zT v | ‖v‖ ≤ 1}.
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Furthermore it can be shown that the dual of the dual norm is the original norm. It follows that
if U∗ denotes the unit ball of the dual norm then

‖x‖ = σU∗(x).

This implies that we may write the canonical lasso penalty, see example 4, as

‖β‖1 = σ[−1,1]Kp(β) =

K∑

i=1

p∑

j=1

σ[−1,1](βij)

since the dual of the 1-norm is the ∞-norm. Since the 2-norm is self dual the canonical group
lasso penalty, see example 5, may be written as

p∑

I=1

∥∥∥β(I)
∥∥∥

2
=

p∑

I=1

σU2
(β(I))

where U2 is the unit ball of the 2-norm.

4.2.1 Sublinear penalty

The penalty Φ discussed above is itself sublinear and by grouping all parameters together any
sublinear function can be taken as a penalty. By the bijective correspondence between sublinear
functions and support functions of compact convex sets if follows that for any sublinear penalty
Φ : Rp → R there exist a compact convex set C such that Φ = σC .

When dealing with high dimensional problems it is essential that the penalty is separable.
We will use a slightly broader notion than separability as discussed above, we shall say that
a penalty is decomposable if there exists a non-trivial decomposition of the penalty. Where we
define:

Definition 18. A decomposition of the penalty Φ is a collection, P1, . . . , Pm of projections on
Rp, such that the following two conditions are fulfilled

1. The linear map
∑m
J=1 PJ is the identity.

2. The collection decomposes C, that is the set equality C = P1C + · · ·+ PmC holds.

There will in general be multiple ways to decompose a penalty. The idea is that a decom-
position breaks the large optimization problem (4.1) into smaller problems which are easier to
solve. And by solving these problems sequentially a solution to the complete problem can be
obtained, we will discuss this further in section 4.5.

Given a grouping of the parameters and a penalty as defined in terms of (4.2) we may define
a sublinear penalty by setting Φ(β) = σC(β) where C = C1 + · · ·+Cm. And a decomposition by
letting PJ be the projection onto the subspace of Rp spanned by the J ’th group of parameters.
By lemma 4 below the two definitions of Φ agree.

Lemma 4. Given a decomposition of Φ let CJ = PJC for J = 1, . . . ,m, then

Φ(β) =

m∑

J=1

σCJ
(PJβ).
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Proof. Since the collection P1, . . . , Pm of projections decompose C it follows that

Φ(β) = σC(β) =

m∑

J=1

σCJ
(β).

Furthermore since PJ is symmetric σPJCJ
(β) = σCJ

(PJβ) for all J = 1, . . . ,m, hence

m∑

J=1

σCJ
(β) =

m∑

J=1

σPJCJ
(β)

=

m∑

J=1

σCJ
(PJβ).

4.3 Optimality conditions

Optimality conditions for (4.1) can be obtained using the subdifferential, as we will do in
Theorem 3 below. A decomposition of Φ separates the optimality conditions into parts. The
following theorem states a necessary and sufficient optimality condition:

Theorem 3. Given a decomposition P1, . . . , Pm of Φ, the vector β̂ ∈ Rp is a solution to (4.1)
if and only if the following two conditions are fulfilled for all I = 1, . . . ,m

1. −PI∇R̂D(β̂) ∈ λCI

2. PI β̂ ∈ λNCI

(
− 1
λPI∇R̂D(β̂)

)
when PI β̂ 6= 0.

Where NC(x) is the normal cone to C at x, see Appendix B. A proof of the Theorem
will be given at the end of this section. Figure 4.1 illustrates the Theorem for the `2-norm
(group lasso) and `1-norm (lasso) penalty using a group decomposition. The Theorem has two
important Corollaries. First, when a group of parameters is nonzero then the corresponding
gradient lies on the boundary of λCI , that is:

Corollary 2. Let β̂ be a solution to (4.1). If PI β̂ 6= 0 then −PI∇R̂D(β̂) lies on the boundary
of λCI .

Second, a necessary and sufficient condition that 0 is a solution:

Corollary 3. The zero vector is a solution to (4.1) if and only if ∇R̂D(0) ∈ λC.

The importance of Corollary 3 is seen when used in connection with a block coordinate
descent method, then the Corollary may be used as a computationally efficient way to check
if a group of parameters is 0. Algorithms are discussed further in section 4.5. It is clear from
Corollary 3 that for sufficiently large values of λ the zero vector is a solution to (4.1). The
infimum of these is denoted λmax. Given a decomposition of Φ and by Corollary 3 it follows
that

λmax
def
= inf{λ > 0 | zero is a solution to (4.1) }
= inf{λ > 0 | for all I = 1, . . . ,m it holds that − PI∇R̂D(0) ∈ λCI}
= max
I=1,...,m

inf{λ > 0 | −PI∇R̂D(0) ∈ λCI}.
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Figure 4.1: Illustration of the optimality condition for respectively the `2-norm (group lasso)
and `1-norm (lasso) penalty.

4.3.1 Group decomposition

In most cases we are interested in decompositions of Φ that reflect a grouping of the variables.
We shall use the following group notation for the gradient: For I = 1, . . . ,m the notation
∇(I)R̂D(β) stands for the nI dimensional row vector defined by

∇R̂D(β) =
(
∇(1)R̂D(β),∇(2)R̂D(β), . . . ,∇(m)R̂D(β)

)
.

When a decomposition reflects a grouping of the parameters then, by Theorem 3, β̂ is a solution
of (4.1) if and only if;

1. −∇(I)R̂D(β̂) ∈ λCI

2. β̂(I) ∈ λNCI

(
− 1
λ∇(I)R̂D(β̂)

)
when β̂(I) 6= 0

for all I = 1, . . . ,m.

4.3.2 Proof of Theorem 3

Proof. By convexity of R̂D and the penalty it follows that R̂D(β̂) + λΦ(β̂) is convex. This

implies that β̂ is a minimizer if and only if

0 ∈ ∇R̂D(β̂) + λ∂Φ(β̂)

where ∂Φ denotes the subdifferential of Φ.
Using the decomposition of Φ and that for a support function the subdifferential ∂σC(x) ⊆ C

we find that β̂ is a minimizer if and only if for each I = 1, . . . ,m

0 ∈ PI∇R̂D(β̂) + λ∂σCI
(PI β̂). (4.3)
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The subdifferential at zero of a support function σCI
is CI . Furthermore the subdifferential

of σCI
at PI β̂ 6= 0 is the face of CI exposed by PI β̂ see Urruty and Lemaréchal [18]. Hence

β̂ ∈ Rp is a solution to (4.1) if and only if for all I = 1, . . . ,m

1. −PI∇R̂D(β̂) ∈ λCI when PI β̂ = 0.

2. −PI∇R̂D(β̂) lie in the face of λCI exposed by PI β̂ when PI β̂ 6= 0.

Condition 2. above is equivalent to −PI∇R̂D(β̂) ∈ λCI and

PI β̂ ∈ NλCI

(
−PI∇R̂D(β̂)

)
.

The statement of the Theorem follows by noting that for a convex set C and x ∈ C

NλC(x) = {s ∈ Rn | sT (y − x) ≤ 0 for all y ∈ λC}
= {s ∈ Rn | (s/λ)T (y − x/λ) ≤ 0 for all y ∈ C}
= λNC

(x
λ

)

4.4 Exact solution for quadratic empirical risk

It this section we will derive an exact solution to the optimization problem (4.1) when the
empirical risk is quadratic. Such a solution will give some insight into the working of these
methods and can possibly be used to derive properties of the resulting estimator. Moreover the
formula may be used to construct efficient algorithms for computing the minimizer. This can
be done in connection with the coordinate gradient decent method and a decomposition of Φ,
as discussed further in the next section. We assume that Φ = σC for some compact convex set
C and consider the case when R̂D is quadratic, i.e.

R̂D(β) = qTβ + βTHβ

with H (symmetric) positive definite.
An essential observation, that we need to derive a exact solution, is that we can solve the

equation
− q −Hβ = PC(−q −Hβ + β) (4.4)

where PC : Rp → Rp is the projection onto the set C – see appendix B. The solution is given
in the following lemma.

Lemma 5. For positive definite matrix H the unique solution to equation (4.4) is

β = −A−1PA−1C(−A−1q)−H−1q (4.5)

where A =
√
H.

Proof. We note that for y ∈ C

βT (y + q +Hβ) = βTAA−1(y + q +Hβ)

= (−A−1q +A−1q +Aβ)T (A−1y +A−1q +Aβ).
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Figure 4.2: Illustration of the solution the optimization problem (4.1) in two dimensions with
different penalties; the group lasso (with one group), the lasso with a non sparse solution and
the lasso with a sparse solution.

By (B.9) this implies that (4.4) is equivalent to

A−1q +Aβ = PA−1C(−A−1q)

which in turn is seen to be equivalent to (4.5).

We are now ready to give the formula for the solution to 4.

Theorem 4. The minimizer β̂ of (4.1) is 0 if −q ∈ C, otherwise

β̂ = −A−1PA−1C(−A−1q)−H−1q.

where A =
√
H.

Proof. In order to proof that β̂ is a solution we must show that condition 1 and 2 of Theorem
3 is fulfilled. The gradient of R̂D is

∇R̂D(β) = q +Hβ.

If β̂ = 0 then −∇R̂D(β̂) = −q ∈ C, hence condition 1 and 2 are fulfilled. So assume that β̂ 6= 0,
by lemma 5

− q −Hβ̂ = PC(−q −Hβ̂ + β̂) (4.6)

which implies that −∇R̂D(β̂) = −q −Hβ̂ ∈ C, hence condition 1 is fulfilled. Furthermore by
the relation (B.10) between the normal cone to C and the projection onto C equation (4.6)
implies that

β̂ ∈ λNC(−q −Hβ̂),

hence condition 2 is fulfilled.

If H = id then β̂(I) = −PC(−q̃)− q̃ this cases is illustrated in Figure 4.2.

4.5 Algorithms

In this section we present two algorithms that can be used to solve the penalized minimization
problem with sublinear penalty. A block coordinate descent algorithm and a coordinate gradient
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descent algorithm. For the sparse group lasso problem we used in Vincent and Hansen [21] a
slightly different approach, namely a nested coordinate gradient descent.

We assume given a grouping of the parameters and assume that this grouping decompose
the penalty Φ. The resulting minimization problem is separable, with respect to this grouping,
non-differentiable and convex. Define β̂◦I ∈ Rp by setting

PJ β̂◦I = PJ β̂ for all J 6= I and PI β̂◦I = 0.

The partial optimization problem for the I’th group is

arg min
x∈RnI

R̂D(β◦I + ιI(x)) + λσCI
(x) (4.7)

where ιI denote the canonical inclusion into the I’th parameter group, i.e. ιI(x)
(I)

= x and

ιI(x)
(J)

= 0 when J 6= I. The partial optimization problems are themselves of the form
(4.1). It follows, by Corollary 3, that we may determine if zero is a solution by checking if
−∇(I)R̂D(β◦I) ∈ λCI . Algorithm 1 is a block coordinate descent algorithm with this rule
added.

Some additional nonstandard routines are needed to complete the algorithms, these routines
depend on the description of the convex sets C1, . . . , Cm. For both the algorithms presented
here a routine for checking if a vector is contained in CI is needed for all I = 1, . . . ,m. For
the block coordinate descent an additional routine for solving the partial optimization problems
(4.7) is needed for all I = 1, . . . ,m. For the coordinate gradient descent a routine for solving
the convex optimization problem

arg min
y∈λCI

∥∥A−1(y + q̃)
∥∥2

2

with A a positive definite matrix is need for all I = 1, . . . ,m and with λ > 0.

4.5.1 Block coordinate descent

Block coordinate descent is an iterative method where a sequence of parameters {βN} is con-
structed by sequentially solving each of the m partial optimization problems (4.7). Tseng and
Mangasarian [16] showed that, for separable non-differentiable minimization, block coordinate
descent converges. This implies that Algorithm 1 will provide us with a sequence converging to
a solution of (4.1).

while until stopping condition is met do
Choose next block index I according to the cyclic rule.

if −∇(I)R̂D(βold,◦I) ∈ λCI then

Let β
(I)
new = 0.

else
Let

β(I)
new = arg min

x∈RnI

R̂D(βold,◦I + ιI(x)) + λσCI
(x)

end

end
Algorithm 1: Block coordinate descent with rule for checking if a block is zero.
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4.5.2 Coordinate gradient descent

Another more complex but usually also more efficient algorithm applicable for sublinear pe-
nalized minimization problems is a coordinate gradient descent method. Coordinate gradient
descent for separable non-differentiable minimization is addressed in details by Tseng and Yun
[17]. Coordinate gradient descent is similar to block coordinate descent except quadratic ap-
proximations are being sequentially optimized. The convergence of Algorithm 2 is implied by
Theorem 3 and 4, by realizing that it is simply a coordinate gradient descent algorithm.

while until stopping condition is met do
Choose next block index I according to the cyclic rule.
Construct a quadratic approximation

Q(β) ∼ qTβ +
1

2
βTHβ

of R̂D near βold.

Let q̃ = ∇(I)Q(βold,◦I) = q(I) + (Hβold,◦I)
(I)

if −q̃ ∈ λCI then

Let β
(I)
new = 0.

else
Let A =

√
HII and solve the convex optimization problem

t = arg min
y∈λCI

∥∥A−1(y + q̃)
∥∥2

2
.

Let β
(I)
new = −A−1t−H−1

II q̃.
end

end
Algorithm 2: Coordinate gradient descent algorithm. The square matrix HII denotes the
diagonal block of the Hessian matrix corresponding to the I’th group

4.6 Multinomial sparse group lasso

In this section the multinomial sparse group lasso is shortly discussed, see Vincent and Hansen
[21] for further discussion. The sparse group lasso penalty is defined as

m∑

J=1

γJ

∥∥∥β(J)
∥∥∥

2

︸ ︷︷ ︸
group lasso

+

n∑

i=1

ξi |βi|
︸ ︷︷ ︸

lasso

(4.8)

for group weights γ ∈ [0,∞)m, and parameter weights ξ = (ξ(1), . . . , ξ(m)) ∈ [0,∞)n where
ξ(1) ∈ [0,∞)n1 , . . . , ξ(m) ∈ [0,∞)nm . We emphasize that the penalty is specified by

• a grouping of the parameters β = (β(1), . . . , β(m)),

• and the weights γ and ξ.
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Figure 4.3: Values of the estimated parameters corresponding to one covariate, as a function
of α in the sparse group lasso penalty (4.9). The covariate is miR 17 in the Primary Cancers
data set. Each black line correspond to a parameter, the red line is the sum of the parameters.

We may rewrite the penalty (4.8) as
m∑

J=1

∥∥∥β(J)
∥∥∥
J

where ∥∥∥β(J)
∥∥∥
J

= γJ

∥∥∥β(J)
∥∥∥

2
+

nJ∑

i=1

ξ
(J)
i

∣∣∣β(J)
i

∣∣∣

is a norm whenever γJ 6= 0. If γJ = 0 and the parameter weight at a coordinate i of the

J ’th block is 0, i.e. ξ
(J)
i = 0, then the penalty is a semi-norm. The penalty is in particular

sublinear. We have in Figure 4.3 plotted the values of the parameters – of the multinomial
model – corresponding to a particular covariate, as the penalty is varied from the group lasso
to the lasso. This is done by considering the collection of sparse group lasso penalties

(1− α)

m∑

J=1

√
K
∥∥∥β(J)

∥∥∥
2

+ α

n∑

i=1

|βi| (4.9)

parametrized by α ∈ [0, 1].
If we let # denote the unit ball of the 2-norm and 2 the unit square i.e. the unit ball of the∞-

norm, then the sparse group lasso penalty ‖β‖2+|β1|+|β2| is equal to σ2+σ# = σ2+#. In other
words the convex set 2+# is associated with the sparse group lasso penalty ‖β‖2+|β1|+|β2|. See
figure 4.4 for an illustration of the convex set associated with the sparse group lasso. Knowing
the associated convex sets of the penalties makes it possible for us to do a geometric comparison
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Figure 4.4: The convex sets associated with two different configurations of the sparse group lasso
penalty in two dimensions. The penalties are ‖β‖2 + |β1|+ |β2| and ‖β‖2 + |β1| respectively.

Figure 4.5: Comparison between the sparse group lasso solution β̃ and the lasso solution β.

The penalties are
∥∥∥β̃
∥∥∥

2
+
∣∣∣β̃1

∣∣∣+
∣∣∣β̃2

∣∣∣ and 2(|β1|+ |β2|) respectively.

of the solutions using the results of section 4.4. Figure 4.5 is an example of such a geometric
comparison between the sparse group lasso and the lasso.

As can be seen on Figure 4.3 the sum of the parameters for the group lasso is zero, this is
not a coincidence. For the multinomial group lasso the sum of the estimated parameters within
each group will always be 0.

Proposition 4. For the multinomial group lasso solution β̂ it holds that

β̂
(I)
1 + · · ·+ β̂

(I)
K = 0

for each covariate I.

Proof. For the group lasso the normal cone at − 1
λ∇(I)R̂D(β̂) is

{−cδ | c > 0}

with δ = ∇(I)R̂D(β̂) = 1
N

∑N
i=1 xiI(h(β̂xi)− eyi). Since

h(β̂xi)1 + · · ·+ h(β̂xi) = 1

is follows that δ1 + · · ·+ δK = 0. The proposition now follows by Theorem 3.
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Abstract

The sparse group lasso optimization problem is solved using a coordinate
gradient descent algorithm. The algorithm is applicable to a broad class of
convex loss functions. Convergence of the algorithm is established, and the
algorithm is used to investigate the performance of the multinomial sparse
group lasso classifier. On three different real data examples the multino-
mial group lasso clearly outperforms multinomial lasso in terms of achieved
classification error rate and in terms of including fewer features for the classi-
fication. An implementation of the multinomial sparse group lasso algorithm
is available in the R package msgl. Its performance scales well with the
problem size as illustrated by one of the examples considered – a 50 class
classification problem with 10k features, which amounts to estimating 500k
parameters.

Keywords: Sparse group lasso, classification, high dimensional data
analysis, coordinate gradient descent, penalized loss.

1. Introduction

The sparse group lasso is a regularization method that combines the lasso
[1] and the group lasso [2]. Friedman et al. [3] proposed a coordinate descent
approach for the sparse group lasso optimization problem. Simon et al. [4]
used a generalized gradient descent algorithm for the sparse group lasso and
considered applications of this method to linear, logistic and Cox regression.
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E-mail address: vincent@math.ku.dk (M. Vincent).
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We present a sparse group lasso algorithm suitable for high dimensional prob-
lems. This algorithm is applicable to a broad class of convex loss functions.
In the algorithm we combine three non-differentiable optimization methods:
the coordinate gradient descent [5], the block coordinate descent [6] and a
modified coordinate descent method.

Our main application is to multiclass classification based on the multino-
mial regression model. The lasso penalty has, for some time, been considered
as a regularization approach for multinomial regression [7]. The parameters
in the multinomial model are, however, naturally structured, with multi-
ple parameters corresponding to one feature, and the lasso penalty does not
take this structure into account. To accommodate for this we suggest to add
a group lasso term with the parameters corresponding to the same feature
grouped together. The resulting penalty is known as the sparse group lasso
penalty. We found that using the sparse group lasso penalty for multinomial
regression generally improved the performance of the estimated classifier and
reduced the number of features included in the model.

The formulation of an efficient and robust sparse group lasso algorithm is
not straight forward due to non-differentiability of the penalty. Firstly, the
sparse group lasso penalty is not completely separable, which is problematic
when using a standard coordinate descent scheme. To obtain a robust algo-
rithm an adjustment is necessary. Our solution, which efficiently treats the
singularity at zero that cannot be separated out, is a minor modification of
the coordinate descent algorithm. Secondly, our algorithm is a Newton type
algorithm, hence we sequentially optimize penalized quadratic approxima-
tions of the loss function. This approach raises another challenge: how to
reduce the costs of computing the Hessian? In Section 3.6 we show that an
upper bound on the Hessian is sufficient to determine whether the minimum
over a block of coefficients is attained at zero. This approach enables us
to update a large percentage of the blocks without computing the complete
Hessian. In this way we reduce the run-time, provided that the upper bound
of the Hessian can be computed efficiently. We found that this approach
reduces the run-time on large data sets by a factor of more than 2.

Our focus is on applications of the multinomial sparse group lasso to
problems with many classes. For this purpose we have investigated three
multiclass classification problems. We found that multinomial group lasso
and sparse group lasso perform well on these problems. The error rates were
substantially lower than the best obtained with multinomial lasso, and the
low error rates were achieved for models with fewer features having non-zero

2



coefficients. For example, we consider a text classification problem consisting
of Amazon reviews with 50 classes and 10k textual features. This problem
showed a large improvement in the error rates: from approximately 40% for
the lasso to less than 20% for the group lasso.

We provide a generic implementation of the sparse group lasso algorithm
in the form of a C++ template library. The implementation for multinomial
and logistic sparse group lasso regression is available as an R package. For
our implementation the time to compute the sparse group lasso solution is of
the same order of magnitude as the time required for the multinomial lasso
algorithm as implemented in the R package glmnet. The computation time
of our implementation scales well with the problem size.

1.1. Sparse group lasso

Consider a convex, bounded below and twice continuously differentiable
function f : Rn → R. We say that β̂ ∈ Rn is a sparse group lasso minimizer
if it is a solution to the unconstrained convex optimization problem

minimize f + λΦ (1)

where Φ : Rn → R is the sparse group lasso penalty (defined below) and
λ > 0.

Before defining the sparse group lasso penalty some notation is needed.
We decompose the search space

Rn = Rn1 × · · · × Rnm

into m ∈ N blocks having dimensions ni ∈ N for i = 1, . . . ,m, hence n =
n1 + · · · + nm. For a vector β ∈ Rn we write β = (β(1), . . . , β(m)) where
β(1) ∈ Rn1 , . . . , β(m) ∈ Rnm . For J = 1, . . . ,m we call β(J) the J ’th block of
β. We use the notation β

(J)
i to denote the i’th coordinate of the J ’th block

of β, whereas βi is the i’th coordinate of β.

Definition 1 (Sparse group lasso penalty). The sparse group lasso penalty
is defined as

Φ(β)
def
= (1− α)

m∑

J=1

γJ
∥∥β(J)

∥∥
2

+ α

n∑

i=1

ξi |βi|

for α ∈ [0, 1], group weights γ ∈ [0,∞)m, and parameter weights ξ =
(ξ(1), . . . , ξ(m)) ∈ [0,∞)n where ξ(1) ∈ [0,∞)n1 , . . . , ξ(m) ∈ [0,∞)nm.

3



The sparse group lasso penalty includes the lasso penalty (α = 1) and
the group lasso penalty (α = 0). Note also that for sufficiently large values
of λ the solution of (1) is zero. The infimum of these, denoted λmax, is
computable, see Section 3.2.

We emphasize that the sparse group lasso penalty is specified by

• a grouping of the parameters β = (β(1), . . . , β(m)),

• and the weights α, γ and ξ.

It is well known that the lasso penalty results in sparse solutions to (1),
while the group lasso penalty results in groupwise sparse solutions (that is,
the entire group of parameters is zero or non-zero). However group lasso
does not give sparsity within groups – sparse group lasso does.

In the second part of the paper we develop an algorithm for solving the
optimization problem (1). The convergence of the algorithm is established for
any sparse group lasso penalty, regardless of how the parameters are grouped.
For multinomial regression, as considered in the next section, we restrict
attention to a specific grouping of the parameters that reflects the features.
In the symmetric parametrization of the multinomial regression model with
K classes there are K parameters per feature. Our suggestion is to group
these K parameters together. Thus we do not group the features, only the
parameters associated with each feature. For the examples we considered this
particular grouping resulted in models with fewer features having non-zero
parameters compared to ordinary lasso penalization. More importantly, the
error rates were typically also smaller.

Our msgl R package supports the particular grouping for multinomial
regression as well as additional groupings of the features, i.e. the number of
parameters in each group is a multiple of K. The sgl C++ template library
can be configured to handle any grouping.

2. The multinomial sparse group lasso classifier

In this section we examine the characteristics of the multinomial sparse
group lasso method. Our main interest is the application of the multinomial
sparse group lasso classifier to problems with many classes. For this purpose
we have chosen three classification problems based on three different data
sets, with 10, 18 and 50 classes. In [8] the microRNA expression profile of
different types of primary cancer samples is studied. In Section 2.2.1 we
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consider the problem of classifying the primary site based on the microRNA
profiles in this data set. The Amazon reviews author classification problem,
presented in [9], is studied in Section 2.2.2. The messenger RNA profile of dif-
ferent human muscle diseases is studied in [10]. We consider, in Section 2.2.3,
the problem of classifying the disease based on the messenger RNA profiles
in this data set. Table 1 summarizes the dimensions and characteristics of
the data sets and the associated classification problems. Finally, in Section
2.3, we examine the characteristics of the method applied to simulated data
sets.

2.1. Setup

Consider a classification problem with K classes, N samples, and p fea-
tures. Assume given a data set (x1, y1), . . . , (xN , yN) where, for all i =
1, . . . , N , xi ∈ Rp is the observed feature vector and yi ∈ {1, . . . , K} is
the categorical response. We organize the feature vectors in the N×p design
matrix

X
def
= (x1 · · ·xN)T .

As in [7] we use a symmetric parametrization of the multinomial model.
With h : {1, . . . , K} × Rp → R given by

h(l, η)
def
=

exp(ηl)∑K
k=1 exp(ηk)

,

the multinomial model is specified by

P (yi = l|xi) = h(l, β(0) + βxi).

The model parameters are organized in the K-dimensional vector, β(0), of
intercept parameters together with the K × p matrix

β
def
=
(
β(1) · · · β(p)

)
, (2)

where β(i) ∈ RK are the parameters associated with the i’th feature.
The log-likelihood is

`(β(0), β) =
N∑

i=1

log h(yi, β
(0) + βxi). (3)
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Our interest is the sparse group lasso penalized maximum likelihood estima-
tor. That is, (β(0), β) is estimated as a minimizer of the sparse group lasso
penalized negative-log-likelihood:

−`(β(0), β) + λ

(
(1− α)

p∑

J=1

γJ
∥∥β(J)

∥∥
2

+ α

Kp∑

i=1

ξi |βi|
)
. (4)

In our applications we let γJ =
√
K for all J = 1, . . . , p and ξi = 1 for all

i = 1, . . . , Kp, but other choices are possible in the implementation. Note
that the parameter grouping, as part of the penalty specification, is given in
terms of the columns in (2), i.e. m = p.

A common parametrization of the multinomial regression model singles
out a reference class, and the probabilities of the other classes are then given
relative to the reference class. As pointed out in [11] this is problematic
when lasso penalization is used for parameter estimation, and the symmet-
ric parametrization introduced above, and used in [7] as well, is preferred.
It ensures that the resulting estimator is invariant to permutations of the
classes. The parameters in the symmetric parametrization are, however, not
identifiable. If βl denotes the l’th row of the matrix β, then for l, k = 1, . . . , K

P (yi = l|x)

P (yi = k|x)
= exp(β

(0)
l − β

(0)
k + (βl − βk)x),

and it follows that the differences βl − βk and β
(0)
l − β

(0)
k are identifiable.

In practice, as was also noted in Section 4.1 in [7], the consequence of the
penalization is that the estimated parameters minimize the sparse group lasso
penalty among all equivalent parameters. If some parameters, like β(0), are
not penalized, a procedure like mean centering suggested in [7] can be used
to numerically select one of the equivalent parameters.

2.2. Data examples

The data sets were preprocessed before applying the multinomial sparse
group lasso estimator. Two preprocessing schemes were used: normalization
and standardization. Normalization is sample centering and scaling in order
to obtain a design matrix with row means 0 and row variances 1. Standard-
ization is feature centering and scaling in order to obtain a design matrix
with column means 0 and column variances 1. Note that the order in which
normalization and standardization are applied matters.
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Data set Features K N p
Cancer sites microRNA expressions 18 162 217
Amazon reviews Various textual features 50 1500 10k
Muscle diseases Gene expression 10 107 22k

Table 1: Summary of data sets and the associated classification problem.

The purpose of normalization is to remove technical (non-biological) vari-
ation. A range of different normalization procedures exist for biological data.
Sample centering and scaling is one of the simpler procedures. We use this
simple normalization procedure for the two biological data sets in this paper.
Normalization is done before and independently of the sparse group lasso
algorithm.

The purpose of standardization is to create a common scale for the fea-
tures. This ensures that differences in scale will not influence the penalty
and thus the variable selection. Standardization is an option for the sparse
group lasso implementation, and it is applied as the last preprocessing step
for all three example data sets.

We want to compare the performance of the multinomial sparse group
lasso estimator for different values of the regularization parameter α. Ap-
plying the multinomial sparse group lasso estimator with a given α ∈ [0, 1]
and λ-sequence, λ1, . . . , λd > 0, results in a sequence of estimated models
with parameters {β̂(λi, α)}i=1,...,d. The generalization error can be estimated
by cross validation [12]. For our applications we keep the sample ratio be-
tween classes in the cross validation subsets approximately fixed to that of the
entire data set. Hence, we may compute a sequence, {Êrr(λi, α)}i=1,...,d, of es-
timated expected generalization errors for the sequence of models. However,
for given α1 and α2 we cannot simply compare Êrr(λi, α1) and Êrr(λi, α2),
since the λi value is scaled differently for different values of α. We will in-
stead compare the models with the same number of non-zero parameters and
the same number of non-zero parameter groups, respectively. Define

Θ̂(λ, α)
def
=

p∑

J=1

I(β̂(J)(λ, α) 6= 0)

with β̂(λ, α) the estimator of β for the given values of λ and α. That is,
Θ̂(λ, α) is the number of non-zero parameter blocks in the fitted model.
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Note that there is a one-to-one correspondence between parameter blocks
and features in the design matrix. Furthermore, we define the total number
of non-zero parameters as

Π̂(λ, α)
def
=

n∑

i=1

I(β̂i(λ, α) 6= 0).

In particular, we want to compare the fitted models with the same num-
ber of parameter blocks. There may, however, be more than one λ-value
corresponding to a given value of Θ̂. Thus we compare the models on a sub-
sequence of the λ-sequence. This subsequence is defined below. With θ1 <
· · · < θd′ for d′ ≤ d denoting the different elements of the set {Θ̂(λi, α)}i=1,...,d

in increasing order we define

λ̃i(α)
def
= min

{
λ
∣∣∣ Θ̂(λ, α) = θi

}
.

We then compare the characteristics of the multinomial sparse group lasso
estimators for different α values by comparing the estimates

{(
Êrr(λ̃i(α), α), Θ̂(λ̃i(α)), Π̂(λ̃i(α))

)}
i=1,...,d′

.

2.2.1. Cancer sites

The data set consists of bead-based expression data for 217 microRNAs
from normal and cancer tissue samples. The samples are divided into 11
normal classes, 16 tumor classes and 8 tumor cell line classes. For the pur-
pose of this study we select the normal and tumor classes with more than
5 samples. This results in an 18 class data set with 162 samples. The data
set is unbalanced, with the number of samples in each class ranging from 5
to 26 and with an average of 9 samples per class. Data was normalized and
then standardized before running the sparse group lasso algorithm. For more
information about this data set see [8]. The data set is available from the
Gene Expression Omnibus with accession number GSE2564.

Figure 1 shows the result of a 10-fold cross validation for 5 different values
of α, including the lasso and group lasso. The λ-sequence runs from λmax

to 10−4, with d = 200. It is evident that the group lasso and sparse group
lasso models achieve a lower expected error using fewer genes than the lasso
model. However, models with a low α value have a larger number of non-zero
parameters than models with a high α value. A reasonable compromise could
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Figure 1: Estimated expected generalization error, for different values of α, for the mi-
croRNA cancer sites data set. The cross validation based estimate of the expected misclas-
sification error is plotted against the number of non-zero parameter blocks in the model
(left), and against the number of non-zero parameters in the model (right). The estimated
standard error is approximately 0.03 for all models.

be the model with α = 0.25. This model does not only have a low estimated
expected error, but the low error is also achieved with a lower estimated
number of non-zero parameters, compared to group lasso.

2.2.2. Amazon reviews

The Amazon review data set consists of 10k textual features (including
lexical, syntactic, idiosyncratic and content features) extracted from 1500
customer reviews from the Amazon Commerce Website. The reviews were
collected among the reviews from 50 authors with 50 reviews per author.
The primary classification task is to identify the author based on the textual
features. The data and feature set were presented in [9] and can be found in
the UCI machine learning repository [13]. In [9] a Synergetic Neural Network
is used for author classification, and a 2k feature based 10-fold CV accuracy
of 0.805 is reported. The feature selection and training of the classifier were
done separately.

We did 10-fold cross validation using multinomial sparse group lasso for
five different values of α. The results are shown in Figure 2. The λ-sequence
runs from λmax to 10−4, with d = 100. The design matrix is sparse for
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Figure 2: Estimated expected generalization error, for different values of α, for the Amazon
reviews author classification problem. The cross validation based estimate of expected
misclassification error is plotted against the number of non-zero parameter blocks in the
model (left), and against the number of non-zero parameters in the model (right). The
estimated standard error is approximately 0.01 for all models.

this data set. Our implementation of the multinomial sparse group lasso
algorithm utilizes the sparse design matrix to gain speed and for memory
efficiency. No normalization was applied for this data set. Features were
scaled to have variance 1, but were not centered.

For this data set it is evident that lasso performs badly, and that the
group lasso performs best - in fact much better than lasso. The group lasso
achieves an accuracy of around 0.82 with a feature set of size ∼ 1k. This
outperforms the neural network in [9].

2.2.3. Muscle diseases

This data set consists of messenger RNA array expression data of 119
muscle biopsies from patients with various muscle diseases. The samples are
divided into 13 diagnostic groups. For this study we only consider classes
with more than 5 samples. This results in a classification problem with 107
samples and 10 classes. The data set is unbalanced with class sizes ranging
from 4 to 20 samples per class. Data was normalized and then standardized
before running the sparse group lasso algorithm. For background information
on this data set, see [10]. The data set is available from the Gene Expression
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Figure 3: Estimated expected generalization error, for different values of α, for the muscle
disease classification problem. The cross validation based estimate of expected misclas-
sification error is plotted against the number of non-zero parameter blocks in the model
(left), and against the number of non-zero parameters in the model (right) The estimated
standard error is approximately 0.04 for all models.

Omnibus with accession number GDS1956.
The results of a 10-fold cross validation are shown in Figure 3. The λ-

sequence runs from λmax to 10−5, with d = 200. We see the same trend
as in the other two data examples. Again the group lasso models perform
well, but not significantly better than the closest sparse group lasso models
(α = 0.25). The lasso models perform reasonably well on this data set, but
they are still outperformed by the sparse group lasso models.

2.3. A simulation study

In this section we investigate the characteristics of the sparse group lasso
estimator on simulated data sets. We are primarily interested in trends in
the generalization error as α is varied and λ̂ is selected by cross validation on
a relatively small training set. We suspect that this trend will depend on the
distribution of the data. We restrict our attention to multiclass data where
the distribution of the features given the class is Gaussian. Loosely speaking,
we suspect that if the differences in the data distributions are very sparse, i.e.
the centers of the Gaussian distributions are mostly identical across classes,
the lasso will produce models with the lowest generalization error. If the
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data distribution is sparse, but not very sparse, then the optimal α is in the
interval (0, 1). For a dense distribution, with center differences between all
or most classes, we expect the group lasso to perform best. The simulation
study confirms this.

The mathematical formulation is as follows. Let

µ = (µ1 . . . µK)

where µi ∈ Rp for i = 1, . . . , K and p = pa + pb. Denote by Dµ a data
set consisting of N samples for each of the K classes – each sampled from
the Gaussian distribution with centers µ1, . . . , µK , respectively, and with a
common covariance matrix Σ. Let λ̂ be the smallest λ-value with the minimal
estimated expected generalization error, as determined by cross validation on
Dµ. Denote by Errµ(λ, α) the generalization error of the model β̂(λ, α) that
has been estimated from the training set Dµ, by the sparse group lasso, for
the given values of λ and α. Then let

Zµ(α) = Errµ(λ̂, α)− ErrBayes(µ)

where ErrBayes(µ) is the Bayes rate. We are interested in trends in Zµ, as a
function of α, for different configurations of µ1, . . . , µK . To be specific, we
will sample µ1, . . . , µK from one of the following distributions:

• A sparse model distribution, where the first pa entries of µi are i.i.d.
with a distribution that is a mixture of the uniform distribution on
[−2, 2] and the degenerate distribution at 0 with point probability p0.

• A dense model distribution, where the first pa entries of µi are i.i.d.
Laplace distributed with location 0 and scale b.

The last pb entries are zero. We take pa = b5/(1 − p0)c throughout for
the sparse model distribution. The within class covariance matrix Σ is con-
structed using features from the cancer site data set. Let Σ0 be the empirical
covariance matrix of p randomly chosen features. To avoid that the covari-
ance matrix become singular we take

Σ = (1− δ)Σ0 + δI

for δ ∈ (0, 1).
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Figure 4: The estimated expected error gap (solid black line) for the three configurations.
The central 95% of the distribution of Zµ(α) is shown as the shaded area on the plot. The
error gap for 5 randomly selected µ-configurations is shown (red dashed lines).

The primary quantity of interest is

err(α)
def
= E (Zµ(α)) , (5)

the expectation being over µ and the data set Dµ. We are also interested in
how well we can estimate the non-zero patterns of the µi’s. Consider this
as Kp two class classification problems, one for each parameter, where we
predict the µij to be non-zero if β̂ij is non-zero, and µij to be zero otherwise.
We calculate the number of false positives, true positives, false negatives and
true negatives. The positive predictive value (ppv) and the true positive
rate (tpr) are of particular interest. The true positive rate measures how
sensitive a given method is at discovering non-zero entries. The positive
predictive value measures the precision with which the method is selecting
the non-zero entries. We consider the following two quantities

tpr(α)
def
= E

[
tpr
(
β̂(λ̂, α)

)]
and ppv(α)

def
= E

[
ppv

(
β̂(λ̂, α)

)]
. (6)

In order to estimate the quantities (5) and (6) we sampleM configurations
of µ from one of the above distributions. For each configuration we sample
a training and a test data set of sizes NK and 100K, respectively. Using
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the training data set we fit the model β̂(λ̂, α) and estimate Zµ(α) using the

test data set. Estimates êrr(α), t̂pr(α) and p̂pv(α) are the corresponding
averages over the M configurations.

For this study we chose M = 100, N = 15, K = 25, pb = 50, δ = 0.25
and the following three configuration distributions:

• Thin configurations, where the centers are distributed according to the
sparse model distribution with p0 = 0.95, as defined above.

• Sparse configurations, where the centers are distributed according to
the sparse model distribution with p0 = 0.80.

• Dense configurations, where the centers are distributed according to
the dense model distribution with scale b = 0.2 and pa = 25.

In Figure 4 we see that for thin configurations the lasso has the lowest
estimated error gap, along with the sparse group lasso with α = 0.8. For the
sparse configurations the results indicate that the optimal choice of α is in
the open interval (0, 1), but in this case all choices of α result in a comparable
error gap. For the dense configurations the group lasso is among the methods
with the lowest error gap.

In Figure 5 we plotted the true positive rate for the three configurations.
Except for the thin configurations, the lasso is markedly less sensitive than
the sparse group and group lasso methods. However, looking at Figure 6 we
see that the sparse group and group lasso methods have a lower precision
than the lasso, except for the dense configurations. We note that the group
lasso has the worst precision, except for the dense configurations.

3. The sparse group lasso algorithm

In this section we present the sparse group lasso algorithm. The algorithm
is applicable to a broad class of loss functions. Specifically, we require that
the loss function f : Rn → R is convex, twice continuously differentiable and
bounded below. Additionally, we require that all quadratic approximations
around a point in the sublevel set

{β ∈ Rn | f(β) + λΦ(β) ≤ f(β0) + λΦ(β0)}

are bounded below, where β0 ∈ Rn is the initial point. The last requirement
will ensure that all subproblems are well defined.
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Figure 5: The estimated expected true positive rate (solid black line) for the three con-
figurations. The central 95% of the distribution of tpr is shown as the shaded area on the
plot. The true positive rate for 5 randomly selected µ-configurations is shown (red dashed
lines).
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The algorithm solves (1) for a decreasing sequence of λ values ranging
from λmax to a user specified λmin. The algorithm consists of four nested
main loops:

• A numerical continuation loop, decreasing λ.

• An outer coordinate gradient descent loop (Algorithm 1).

• A middle block coordinate descent loop (Algorithm 2).

• An inner modified coordinate descent loop (Algorithm 3).

In Sections 3.3 to 3.5 we discuss the outer, middle and inner loop, re-
spectively. In Section 3.6 we develop a method allowing us to bypass com-
putations of large parts of the Hessian, hereby improving the performance
of the middle loop. Section 4 provides a discussion of the available software
solutions, as well as run-time performance of the current implementation.

Algorithms for solving the group lasso optimization problem have been
around for some time, see, for example, [14] for an interesting application to
multi-response linear regression. The sparse group lasso optimization prob-
lem is, however, more complicated, and group lasso algorithms cannot be
used to compute a solution to the sparse group lasso optimization problem.
Coordinate descent methods still constitute the core of our algorithm, and
we give a short review tailored to this paper in Appendix A. See also [5, 6]
for further details.

3.1. The sparse group lasso penalty

In this section we derive fundamental results regarding the sparse group
lasso penalty.

We first observe that Φ is separable in the sense that if, for any group
J ∈ 1, . . . ,m, we define the convex penalty Φ(J) : RnJ → R by

Φ(J)(x̂)
def
= (1− α)γJ ‖x̂‖2 + α

nJ∑

i=1

ξ
(J)
i |x̂i|

then Φ(β) =
∑m

J=1 Φ(J)(β(J)). Separability of the penalty is required to
ensure convergence of coordinate descent methods, see [5, 6], and see also
Appendix A.
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In a block coordinate descent scheme the primary minimization problem
is solved by minimizing each block, one at a time, until convergence. We
consider conditions ensuring that

0 ∈ arg min
x∈RnJ

g(x) + λΦ(J)(x) (7)

for a given convex and twice continuously differentiable function g : RnJ → R.
For J = 1, . . . ,m a straightforward calculation shows that the subdifferential
of Φ(J) at zero is

∂Φ(J)(0) = (1− α)γJB
nJ + α diag(ξ(J))T nJ

where Bn def
= {x ∈ Rn | ‖x‖2 ≤ 1}, T n def

= [−1, 1]n and where for x ∈ Rn

diag(x) denotes the n×n diagonal matrix with diagonal x. For an introduc-
tion to the theory of subdifferentials see Chapter 4 in [15].

Proposition 1 below gives a necessary and sufficient condition for (7) to
hold. Before we state the proposition the following definition is needed.

Definition 2. For n ∈ N we define the map κ : Rn × Rn → Rn by

κ(v, z)i
def
=

{
0 |zi| ≤ vi

zi − sgn(zi)vi otherwise
for i = 1, . . . , n

and the function K : Rn × Rn → R by

K(v, z)
def
= ‖κ(v, z)‖22 =

∑

{i | |zi|>vi }
(zi − sgn(zi)vi)

2 .

Proposition 1. Assume given a > 0, v, z ∈ Rn and define the closed sets

Y = z + diag(v)Tn and X = aBn + Y.

Then the following hold:

a. κ(v, z) = arg min
y∈Y

‖y‖2.

b. 0 ∈ X if and only if K(v, z) ≤ a2.

c. If K(v, z) > a2 then arg min
x∈X

‖x‖2 =
(

1− a/
√
K(v, z)

)
κ(v, z).
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The proof of Proposition 1 is given in Appendix C. Proposition 1 implies
that (7) holds if and only if

√
K(λαξ(J),∇g(0)) ≤ λ(1− α)γJ .

The following observations will prove to be valuable. Note that we use �
to denote coordinatewise ordering.

Lemma 1. For any three vectors v, z, z′ ∈ Rn the following hold:

a. K(v, z) = K(v, |z|).

b. K(v, z) ≤ K(v, z′) when |z| � |z′|.

Proof. (a) is a simple calculation and (b) is a consequence of the definition
and (a).

3.2. The λ-sequence

For sufficiently large λ values the only solution to (1) will be zero. We
denote the infimum of these by λmax. By using the above observations it is
clear that

λmax
def
= inf

{
λ > 0

∣∣∣ β̂(λ) = 0
}

= inf

{
λ > 0

∣∣∣∣ ∀J = 1, . . . ,m :

√
K(λαξ(J),∇f(0)(J)) ≤ λ(1− α)γJ

}

= max
J=1,...,m

inf

{
λ > 0

∣∣∣∣
√
K(λαξ(J),∇f(0)(J)) ≤ λ(1− α)γJ

}
.

It is possible to compute

inf

{
λ > 0

∣∣∣∣
√
K(λαξ(J),∇f(0)(J)) ≤ λ(1− α)γJ

}

by using the fact that the function λ → K(λαξ(J),∇f(0)(J)) is piecewise
quadratic and monotone.
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3.3. Outer loop

In the outer loop a coordinate gradient descent scheme is used. In this
paper we use the simplest form of this scheme. In this simple form the
coordinate gradient descent method is similar to Newton’s method; however
the important difference is the way the non-differentiable penalty is handled.
The convergence of the coordinate gradient descent method is not trivial and
is established in [5].

The algorithm is based on a quadratic approximation of the loss function
f, at the current estimate of the minimizer. The difference, ∆, between the
minimizer of the penalized quadratic approximation and the current estimate
is then a descent direction. A new estimate of the minimizer of the objective
is found by applying a line search in the direction of ∆. We repeat this
until a stopping condition is met, see Algorithm 1. Note that a line search is
necessary in order to ensure global convergence. For most iterations, however,
t = 1 will give sufficient decrease in the objective. With q = ∇f(β) and
H = ∇2f(β) the quadratic approximation of f around the current estimate,
β, is

qT (x− β) +
1

2
(x− β)TH(x− β)

= qTx− qTβ +
1

2
xTHx− 1

2

(
βTHx+ xTHβ

)
+

1

2
βTHβ.

H is symmetric, thus it follows that the quadratic approximation of f around
β equals

Q(x)− qTβ +
1

2
βTHβ,

where Q : Rn → R is defined by

Q(x)
def
= (q −Hβ)Tx+

1

2
xTHx.

We have reduced problem (1) to the following penalized quadratic optimiza-
tion problem

min
x∈Rn

Q(x) + λΦ(x). (8)

The convergence of Algorithm 1 is implied by Theorem 1e in [5]. This
implies:

Proposition 2. Every cluster point of the sequence {βk}k∈N generated by
Algorithm 1 is a solution of problem (1).
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Algorithm 1 Outer loop. Solve (1) by coordinate gradient descent.

Require: β = β0
repeat

Let q = ∇f(β), H = ∇2f(β) and Q(x) = (q −Hβ)Tx+ 1
2
xTHx.

Compute β̂ = arg min
x∈Rn

Q(x) + λΦ(x).

Compute step size t and set β = β + t∆, for ∆ = β − β̂.
until stopping condition is met.

Remark 1. The convergence of Algorithm 1 is ensured even if H is a (sym-
metric) positive definite matrix approximating ∇2f(β). For high dimensional
problems it might be computationally beneficial to take H to be diagonal, e.g.
as the diagonal of ∇2f(β).

3.4. Middle loop

In the middle loop the penalized quadratic optimization problem (8) is
solved. The penalty Φ is block separable, i.e.

Q(x) + λΦ(x) = Q(x) + λ

p∑

J=0

Φ(J)(x(J))

with Φ(J) convex, and we can therefore use the block coordinate descent
method over the blocks x(1), . . . , x(m). The block coordinate descent method
will converge to a minimizer even for non-differentiable objectives if the non-
differentiable parts are block separable, see [6]. Since Φ is separable and
Q is convex, twice continuously differentiable and bounded below, the block
coordinate descent scheme converges to the minimizer of problem (8). Hence,
our problem is reduced to the following collection of problems, one for each
J = 1, . . . ,m,

min
x̂∈RnJ

Q(J)(x̂) + λΦ(J)(x̂) (9)

where Q(J) : RnJ → R is the quadratic function

x̂→ Q(x(1), . . . , x(J−1), x̂, x(J+1), . . . , x(m))

20



up to an additive constant. We decompose an n × n matrix H into block
matrices in the following way

H =




H11 H12 · · · H1m

H21 H22 · · · H2m
...

...
. . .

...
Hm1 Hm2 · · · Hmm




where HIJ is an nI × nJ matrix. By the symmetry of H it follows that

Q(J)(x̂) = x̂T (q −Hβ)(J) +
1

2

(
2
∑

I

x̂THJIx
(I) − x̂THJJx

(J) + x̂THJJ x̂

)

= x̂T
(
q(J) + [H(x− β)](J) −HJJx

(J)
)

+
1

2
x̂THJJ x̂

up to an additive constant. We may, therefore, redefine

Q(J)(x̂)
def
= x̂Tg(J) +

1

2
x̂THJJ x̂

where the block gradient g(J) is defined by

g(J)
def
= q(J) + [H(x− β)](J) −HJJx

(J). (10)

For the collection of problems given by (9) a considerable fraction of the
minimizers will be zero in practice. By Lemma 1 this is the case if and only
if √

K(λαξ(J), g(J)) ≤ λ(1− α)γJ .

These considerations lead us to Algorithm 2.

3.5. Inner loop

Finally we need to determine the minimizer of (9), i.e. the minimizer of

Q(J)(x̂) + λ(1− α)γJ ‖x̂‖2
︸ ︷︷ ︸

loss

+α

nJ∑

i=0

ξ
(J)
i |x̂i|

︸ ︷︷ ︸
penalty

. (11)

The two first terms of (11) are considered the loss function and the last
term is the penalty. Note that the loss is not differentiable at zero (due to
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Algorithm 2 Middle loop. Solve (8) by block coordinate descent.

repeat
Choose next block index J according to the cyclic rule.
Compute the block gradient g(J).
if
√
K(λαξ(J), g(J)) ≤ λ(1− α)γJ then

Let x(J) = 0.
else

Let x(J) = arg min
x̂∈RnJ

Q(J)(x̂) + λΦ(J)(x̂).

end if
until stopping condition is met.

the L2-norm), thus we cannot completely separate out the non-differentiable
parts. This implies that ordinary block coordinate descent is not guaranteed
to converge to a minimizer. Algorithm 3 adjusts for this problem, and we
have the following proposition.

Proposition 3. For any ε > 0 the cluster points of the sequence {x̂k}k∈N
generated by Algorithm 3 are minimizers of (11).

Proof. Since Q(J)(0) + λΦ(J)(0) = 0 Algorithm 3 is a modified block coordi-
nate descent scheme. Furthermore J is chosen such that (11) is not optimal
at 0. We can therefore apply Lemma 4 in Appendix B, from which the claim
follows directly.

Hence, for a given block J = 1, . . . ,m we need to solve the following two
problems:

I. For each j = 1, . . . nJ , compute a minimizer for the function

R 3 x̂→ Q(J)(x(J), . . . , x
(J)
j−1, x̂, x

(J)
j+1, . . . , x

(J)
nJ

)

+ λΦ(J)(x(J), . . . , x
(J)
j−1, x̂, x

(J)
j+1, . . . , x

(J)
nJ

).

II. Compute a descent direction at zero for (11).

Regarding I. Writing out the equation we see that in the j’th iteration we
need to find the minimizer of the function ω : R→ R given by

ω(x̂)
def
= cx̂+

1

2
hx̂2 + γ

√
x̂2 + r + ξ |x̂| (12)
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with c = g
(J)
j +

∑
i 6=j(HJJ)jixi, γ = λ(1 − α)γJ , ξ = λαξ

(J)
j , r =

∑
i 6=j x

2
i ,

and where h is the j’th diagonal of the Hessian block HJJ .
By convexity of f we conclude that h ≥ 0. Lemma 2 below deals with

the case h > 0. Since the quadratic approximation Q is bounded below the
case h = 0 implies that c = 0, hence for h = 0 we have x̂ = 0.

Lemma 2. If h > 0 then the minimizer x̂ of ω is given as follows:

a. If r = 0 or γ = 0 then

x̂ =





ξ+γ−c
h

if c > ξ + γ

0 if |c| ≤ ξ + γ
−ξ−γ−c

h
if c < −ξ − γ

b. If r > 0, γ > 0 then x̂ = 0 if |c| ≤ ξ and otherwise the solution to

c+ sgn(ξ − c)ξ + hx̂+ γ
x̂√
x̂2 + r

= 0.

Proof. Simple calculations will show the results.

For case (b) in the above lemma we solve the equation by applying a
standard root finding method.

Regarding II. For a convex function f : Rn → R and a point x ∈ Rn, the
vector

∆ = −arg min
x̂∈∂f(x)

‖x̂‖2

is a descent direction at x provided f is not optimal at x, see [15], Section
8.4. We may use this fact to compute a descent direction at zero for the
function (11). By Proposition 1 it follows that ∆ ∈ Rn defined by

∆i
def
= −

{
0

∣∣∣g(J)i

∣∣∣ ≤ λαξ
(J)
i

g
(J)
i − λαξ(J)i sgn(g

(J)
i ) otherwise

is a descent direction at zero for the function (11).
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Algorithm 3 Inner loop. Compute the minimizer of (11) by a modified
coordinate descent scheme.

repeat
Choose next parameter index j according to the cyclic rule.
Compute

x
(J)
j = arg min

x̂∈R
Q(J)(x

(J)
1 , . . . , x

(J)
j−1, x̂, x

(J)
j+1, . . . , x

(J)
nJ

)

+ λΦ(J)(x(J), . . . , x
(J)
j−1, x̂, x

(J)
j+1, . . . , x

(J)
nJ

)

if
∥∥x(J)

∥∥
2
< ε and Q(J)(x(J)) + λΦ(J)(x(J)) ≥ 0 then

Compute a descent direction, ∆, at zero for (11).
Use line search to find t such that Q(J)(t∆) + λΦ(J)(t∆) < 0.
Let x(J) = t∆

end if
until stopping condition is met.

3.6. Hessian upper bound optimization

In this section we present a way of reducing the number of blocks for
which the block gradient needs to be computed. The aim is to reduce the
computational costs of the algorithm.

In the middle loop, Algorithm 2, the block gradient (10) is computed for
all m blocks. We shall demonstrate that it is not necessary to compute the
block gradient in order to determine if a block is zero, but that an upper
bound of the block gradient is sufficient. Since the gradient, q, is already
computed we focus on the term involving the Hessian. That is, for J =
1, . . . ,m, we compute a bJ ∈ R such that

∣∣∣[H(x− β)](J)
∣∣∣ � bJDnJ

where Dn
def
= (1, 1, . . . , 1) ∈ Rn. We define

tJ
def
= sup

{
x ≥ 0

∣∣∣∣
√
KJ(λαξ(J), |q(J)|+ xDnJ

) ≤ λ(1− α)γJ

}

when
√
KJ(λαξ(J), |q(J)|) ≤ λ(1 − α)γJ and otherwise let tJ = 0. When
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bJ < tJ it follows by Lemma 1 that

KJ(λαξ(J), g(J)) = KJ(λαξ(J),
∣∣g(J)

∣∣)
≤ KJ(λαξ(J),

∣∣q(J)
∣∣+ bJDnJ

)

≤ λ2(1− α)2γ2J

and by Proposition 1 this implies that the block J is zero. The above con-
siderations lead us to Algorithm 4. Note that it is possible to compute the
tJ ’s by using the fact that function

R 3 x→ KJ(λαξ(J),
∣∣q(J)

∣∣+ xDnJ
)

is monotone and piecewise quadratic.

Algorithm 4 Middle loop with Hessian bound optimization.
repeat

Choose next block index J according to the cyclic rule.
Compute upper bound bJ .
if bJ < tj then

Let x(J) = 0.
else

Compute g(J) and compute new x(J) (see Algorithm 2).
end if

until stopping condition is met.

In Algorithm 4 it is unnecessary to compute the block gradient for all
blocks, but only for those where x(J) 6= 0 or when bj < tJ . This will only
be beneficial if we can efficiently compute a sufficiently good bound bJ . For
a broad class of loss functions this can be done using the Cauchy-Schwarz
inequality.

To assess the performance of the Hessian bound scheme we used our
multinomial sparse group lasso implementation with and without bound op-
timization (and with α = 0.5). Table 2 lists the ratio of the run-time without
using bound optimization to the run-time with bound optimization, on the
three different data sets. The Hessian bound scheme decreases the run-time
for the multinomial loss function, and the ratio increases with the number of
blocks m in the data set. The same trend can be seen for other values of α.

25



Data set n m Ratio
Cancer 3.9k 217 1.14
Amazon 500k 10k 1.76
Muscle 220k 22k 2.47

Table 2: Timing the Hessian bound optimization scheme.

4. Software

We provide two software solutions in relation to the current paper. An
R package, msgl, with a relatively simple interface to our multinomial and
logistic sparse group lasso regression routines. In addition, a C++ template
library, sgl, is provided. The sgl template library gives access to the generic
sparse group lasso routines. The R package relies on this library. The sgl

template library relies on several external libraries. We use the Armadillo C++

library [16] as our primary linear algebra engine. Armadillo is a C++ template
library using expression template techniques to optimize the performance of
matrix expressions, see [17]. Furthermore we utilize several Boost libraries
[18]. Boost is a collection of free peer-reviewed C++ libraries, many of which
are template libraries. For an introduction to these libraries see for exam-
ple [19]. Use of multiple processors for cross validation and subsampling is
supported through OpenMP [20].

The msgl R package is available from CRAN. The sgl library is available
upon request.

4.1. Run-time performance

Table 3 lists run-times of the current multinomial sparse group lasso im-
plementation for three real data examples. For comparison, the glmnet uses
5.2s, 8.3s and 137.0s, respectively, to fit the lasso path for the three data
sets in Table 3. The glmnet is a fast implementation of the coordinate de-
scent algorithm for fitting generalized linear models with the lasso penalty
or the elastic net penalty [7]. Recently, support for multinomial group lasso
has been added to glmnet, see [21]. However, glmnet cannot be used to fit
models with the sparse group lasso penalty.
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Data set n m Lasso
Sparse group lasso

Group lasso
α = 0.75 α = 0.25

Cancer 3.9k 217 5.9s 4.8s 6.3s 6.0s
Muscle 220k 22k 25.0s 25.8s 37.7s 36.7s
Amazon 500k 10k 331.6s 246.7s 480.4s 285.1s

Table 3: Times for computing the multinomial sparse group lasso regression solutions for
a lambda sequence of length 100, on a 2.20 GHz Intel Core i7 processor (using one thread).
In all cases the sequence runs from λmax to 0.002. The number of samples in the data sets
Cancer, Muscle and Amazon are respectively 162, 107 and 1500. See also Table 1 and the
discussions in Sections 2.2.1, 2.2.3 and 2.2.2 respectively.

5. Conclusion

We developed an algorithm for solving the sparse group lasso optimization
problem with a general convex loss function. Furthermore, convergence of the
algorithm was established in a general framework. This framework includes
the sparse group lasso penalized negative-log-likelihood for the multinomial
model, which is of primary interest for multiclass classification problems.

We implemented the algorithm as a C++ template library. An R pack-
age is available for the multinomial and the logistic regression loss functions.
We presented applications to multiclass classification problems using three
real data examples. The multinomial group lasso solution achieved optimal
performance in all three examples in terms of estimated expected misclas-
sification error. In one example some sparse group lasso solutions achieved
comparable performance based on fewer features. If there is a cost associated
with the acquisition of each feature, this could be beneficial if we want to
minimize the cost while optimizing the classification performance. In gen-
eral, the sparse group lasso solutions provide more sparse solutions than the
group lasso. Sparsity is generally of interest for model selection purposes and
for interpretation of the model.

Appendix A. Block coordinate descent methods

In this section we review the theoretical basis of the optimization methods
that we apply in the sparse group lasso algorithm. We use three slightly
different methods: a coordinate gradient descent, a block coordinate descent
and a modified block coordinate descent.
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We are interested in unconstrained optimization problems on Rn where
the coordinates are naturally divided into m ∈ N blocks with dimensions
ni ∈ N for i = 1, . . . ,m. We decompose the search space

Rn = Rn1 × · · · × Rnm

and denote by Pi the orthogonal projection onto the i’th block. For a vector
x ∈ Rn we write x = (x(1), . . . , x(m)) where x(1) ∈ Rn1 , . . . , x(m) ∈ Rnm . For
i = 1, . . . ,m we call x(i) the i’th block of x. We assume that the objective
function F : Rn → R is bounded below and of the form

F (x) = f(x) +
m∑

i=1

hi(x
(i))

where f : Rn → R is convex and each hi : Rni → R, for i = 1, . . . ,m
are convex. Furthermore, we assume that for any i = 1, . . . ,m and any
x0 = (x0

(1), . . . , x0
(m)) the function

Rni 3 x̂→ F (x0
(1), . . . , x0

(i−1), x̂, x0
(i+1), . . . , x0

(m))

is hemivariate. A function is said to be hemivariate if it is not constant on
any line segment of its domain.

Appendix A.1. Coordinate gradient descent

Algorithm 5 Coordinate gradient descent scheme.
repeat

Compute quadratic approximation Q of f around the current point x.
Compute search direction

xnew = arg min
x̂∈Rn

Q(x̂) +
m∑

i=1

hi
(
x̂(i)
)
.

Let ∆ = x− xnew and compute step size t using the Armijo rule and let
x← x+ t∆.

until stopping condition is met.

For this scheme we make the additional assumption that f is twice con-
tinuously differentiable everywhere. The scheme is outlined in Algorithm 5,
where the step size is chosen by the Armijo rule outlined in Algorithm 6.
Theorem 1e in [5] implies the following:
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Algorithm 6 Armijo rule.

Require: a ∈ (0, 0.5) and b ∈ (0, 1)
Let δ = ∇f(x)T∆ +

∑m
i=1 (hi(xi + ∆i)− hi(xi)).

while F (x+ t∆) > F (x) + taδ do
t← bt.

end while

Corollary 1. If f is twice continuously differentiable then every cluster point
of the sequence {xk}k∈N generated by Algorithm 5 is a minimizer of F .

Appendix A.2. Block coordinate descent

Algorithm 7 Block coordinate descent.
repeat

Choose next block index i according to the cyclic rule.
x(i) ← arg min

x̂∈Rni

F (x̂⊕ P⊥i x).

until some stopping condition is met.

The block coordinate descent scheme is outlined in Algorithm 7. By
Corollary 2 below the block coordinate descent method converges to a coor-
dinatewise minimum.

Definition 3. A point p ∈ Rn is said to be a coordinatewise minimizer of F
if for each block i = 1, . . . ,m it holds that

F (p+ (0, . . . , 0, di, 0, . . . , 0)) ≥ F (p) for all di ∈ Rni .

If f is differentiable then by Lemma 3 the block coordinate descent
method converges to a minimizer. Lemma 3 below is a simple consequence
of the separability of F .

Lemma 3. Let p ∈ Rn be a coordinatewise minimizer of F . If f is differen-
tiable at p then p is a stationary point of F .

Proposition 5.1 in [6] implies the following:

Corollary 2. For the sequence {xk}k∈N generated by the block coordinate
descent algorithm (Algorithm 7) it holds that every cluster point of {xk}k∈N
is a coordinatewise minimizer of F .
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Algorithm 8 Modified coordinate descent loop.
repeat

Let i← i+ 1 mod m.
x(i) ← arg min

x̂∈Rni

F (x̂⊕ P⊥i x).

if ‖x− p‖2 < ε and F (x) ≥ F (p) then
Compute descent direction ∆ at p for F .
Use line search to find t such that F (p+ t∆) < F (p).
Let x(i) ← p+ t∆.

end if
until stopping condition is met.

Appendix B. Modified block coordinate descent

For this last scheme we make the additional assumption that f is twice
continuously differentiable everywhere except at a given non-optimal point
p ∈ Rn. In this case the block coordinate descent method is no longer guar-
anteed to be globally convergent, as it may get stuck at p. One immediate
solution to this is to compute a descent direction at p, then use a line search
to find a starting point x0 with F (x0) < F (p). Since f is differentiable on
the sublevel set {x ∈ Rn |F (x) < F (p)} it follows by the results above that
the cluster points of the generated sequence are stationary points of F . This
procedure is not efficient since it discards a carefully chosen starting point.
We apply the modified coordinate descent loop, outlined in Algorithm 8,
instead.

Lemma 4. Assume that f is differentiable everywhere except at p ∈ Rn, and
that F is not optimal at p. Then for any ε > 0 the cluster points of the
sequence {xk}k∈N generated by Algorithm 8 are minimizers of F .

Proof. Let z be a cluster point of {xk}. By Corollary 2, z is a coordinatewise
minimizer of F . Then Lemma 3 implies that z is either p or a stationary point
of F . We shall show by contradiction that p is not a cluster point of {xk}k∈N,
thus assume otherwise. The sequence {F (xk)}k∈N is decreasing; hence, if
we can find a k′ ∈ N such that F (xk

′
) < F (p) we reach a contradiction

(since this would conflict with the continuity of F ). Choose k′ such that∥∥xk′ − p
∥∥
2
< ε. Since we may assume that F (xk

′
) ≥ F (p) it follows by the

definition of Algorithm 8 that F (xk
′+1) < F (p).
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Appendix C. Proof of Proposition 1

(a) Straightforward.
(b) If ‖κ(v, z)‖2 ≤ a then −κ(v, z) ∈ aBn hence 0 ∈ X. For the other

implication simply choose y0 ∈ Y such that −y0 ∈ aBn and note that
‖κ(v, z)‖2 ≤ ‖y0‖2 ≤ a.

(c) Assume ‖κ(v, z)‖2 > a, and let x∗ = (1− a/ ‖κ(v, z)‖2)κ(v, z). Then
x∗ ∈ X and ‖x∗‖2 = ‖κ(v, z)‖2 − a. The point x∗ is in fact a minimizer. To
see this let x′ ∈ X, that is we have

x′ = z + as+ diag(v)t

for some s ∈ Bn and t ∈ Tn. It follows, by the triangle inequality and (a),
that

‖x′‖2 + a ≥ ‖x′ − as‖2 = ‖z + diag(v)t‖2 ≥ ‖κ(v, z)‖2 .
So ‖x′‖2 ≥ ‖κ(v, z)‖2 − a = ‖x∗‖2 and since X is convex and x → ‖x‖2 is
strictly convex the found minimizer x∗ is the unique minimizer.
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ABSTRACT
Motivation: Contamination of cancer tissue by surrounding benign
(non-cancer) tissues is a concern for molecular cancer diagnostics.
This is because an observed molecular signature will be distorted by
the surrounding benign tissue, possibly leading to incorrect diagnosis.
One example is molecular identification of the primary tumor site
of metastases, since biopsies of metastases typically contain a
significant amount of benign tissue.
Results: A model of tissue contamination is presented. This
contamination model works independently of the training of a
molecular predictor, and it can be combined with any predictor
model. The usability of the model is illustrated on primary tumor
site identification of liver biopsies. Specifically on a human data set
consisting of microRNA expression measurements of primary tumor
samples, benign liver samples and liver metastases. For this data
set the best contamination model decreased the overall expected
prediction error from 60% to 35%. Most notably, a decrease from
80% to 35% was seen for metastases with low tumor content.
Availability: http://www.math.ku.dk/∼richard/msgl/
Contact: vincent@math.ku.dk

1 INTRODUCTION
Several studies have considered molecular predictors for primary
tumor site identification, see Ramaswamy et al., 2001, Lu et al.,
2005 and Rosenfeld et al., 2008. These studies all report an error
rate of around 10% in predicting the primary tumor site from
primary tumor samples, which is consistent with our findings, see
Section 3. However, the performance of molecular predictors on
metastatic samples is less clear. Most studies assess the performance
of their predictor using a combination of primary and metastatic
samples, with an unbalanced metastatic sample set. Moreover,
samples of metastatic cancers, which are difficult to diagnose by
conventional diagnostic methods, are generally underrepresented in
the validation. To correctly validate the performance of a predictor,
the validation samples must be representative for the samples that
the predictor is intended to be used on. For the majority of patients
with metastatic cancer, identification of the primary tumor site relies

∗to whom correspondence should be addressed

Fig. 1: Micrograph of a liver core biopsy with cancer. Cancer as well
as normal (benign) tissue can clearly be seen.

on small formalin-fixed paraffin-embedded (FFPE) needle biopsies
(core biopsies) from metastatic lesions. Hence, we argue that a
molecular predictor designed to assist in the diagnosis of patients
with metastatic cancer must be compatible with and validated on
core biopsy samples.

For the development of such a predictor it seems preferable to
train it exclusively on core biopsies of metastatic tissue. It is,
however, difficult to obtain a sufficient amount of metastatic tumor
biopsies of known primary tumor origin. Furthermore, a larger
technical variation due the smaller amount of processed material,
and the varying tumor content, make it difficult in practice to rely
on core biopsies only. Therefore, previous studies as well as ours
have relied on primary tumor samples in the training set.

These considerations leads to the central problem that we address
in this paper; when core biopsy samples are scarce or completely
absent, how can we best adapt primary tumor samples to build a
molecular predictor of metastatic tumor samples?

Such an adaption is generally referred to as a domain adaption.
The problem being that the distribution of the cases to be predicted
(the target domain) is not the same as the distribution of the cases
used for training (the source domain), see e.g. Mansour et al., 2009
and Daumé et al., 2006. To overcome this problem we explicitly

c© Oxford University Press 2005. 1



Vincent et al

model how the target domain is related to the source domain and
use this model to train a predictor. A central difference between
the source and target domains in our setting is caused by the fact
that a core biopsy from a metastatic lesion is contaminated by tissue
surrounding the tumor cells, that is, benign tissue from the biopsy
site unrelated to the tumor, see Figure 1. Another difference can
arise if the molecular signature of the metastatic tumor deviates from
the signature of the primary tumor, see, for example, Ramaswamy
et al., 2002 or Albini et al., 2008 for a discussion of the biology of
metastases. Our results, as well as other recent findings, Elloumi
et al., 2011, suggest that tissue contamination may result in a
decline of performance for molecular predictors. Contamination
appears to be particularly problematic for identification of primary
tumor sites based on microRNA expression. The problem may
not be as severe for other molecular predictors, such as predictors
based on messenger RNA. Our contamination model and suggested
methodology are, however, not specific to microRNA expression
or the technological platform used. It is a general, computational
model, which is broadly applicable whenever tissue contamination
constitutes a problem.

For primary tumor site identification of liver core biopsies we
show that an unmodified predictor trained solely on microRNA
expression measurements from primary tumors and benign liver
samples has a high error rate (60% in our case), see Section 3.2.
This error rate is reduced to around 35% using our contamination
model and suggested domain adaption procedure. Finally, we show
that metastatic tumor samples from the liver can be combined with
our model in the training phase. This combined approach can, in our
case, bring the error rate further down to around 30%.

2 METHODS

2.1 Domain adaption
To present our contamination model in an appropriate context we briefly
review the domain adaption terminology. The goal is to predict samples
drawn from a distribution T called the target distribution or target domain.
However, none or only a small number of samples drawn from T are
available for training. The philosophy of domain adaption is to use a related
distribution S, called the source distribution or source domain, to construct
a target domain predictor. Typically, either the source distribution or a
predictor trained on samples from the source distribution are adapted to the
target domain – perhaps using (the few) available target samples.

In our setting the source distribution is the distribution of molecular
signatures for primary tumor and benign liver samples (resections). The
target distribution is the distribution of molecular signatures from liver
core biopsies. The relation between the source distribution and the target
distribution is made explicit in Section 2.2 below. We suggest to apply the
following general domain adaption strategy to our problem.

1. Specify a domain adaption model, that is, specify a map

F : Fsource → Ftarget

where Fsource and Ftarget denote the sets of relevant source and target
distributions, respectively.

2. With Ŝn the empirical distribution of n source samples use the plug-in
estimate F (Ŝn) as an estimate of the target distribution.

3. Generate an approximate target distribution Tsim by simulation of
artificial target samples based on F (Ŝn).

4. Use Tsim for training of a predictor.

The domain adaption model F provides a special kind of relation between
source and target – for any given source S there is only one related target,
the model target F (S). In practice, the model F will contain unknown
components that have to specified or estimated from data as well.

Note that three approximations are involved, namely

T ≈︸︷︷︸
depends on the model

F (S) ≈︸︷︷︸
small for n large

F (Ŝn) ≈︸︷︷︸
small

Tsim.

2.2 Contamination models
A simple model of the molecular signature from a liver contaminated core
biopsy is

α× primary tumor signature + (1− α)× normal liver signature

where α ∈ [0, 1] is the relative amount of tumor content. This is
a plausible model on the molecular level but the contamination is not
necessarily additive on the measured scale. We therefore need to transform
the measurements using a suitable scale function f : Rp → Rp, which is a
function

f(x1, . . . , xp) = (g(x1), . . . , g(xp))

for a continuous strictly monotone function g : R→ R.
Letting (X,Y ) ∈ Rp × {1, . . . ,K} denote a pair of random variables

with X representing the molecular signature for a primary tumor with site
label Y , the distribution of (X,Y ) is the source distribution. With Z ∈ Rp

a random variable representing the contamination we introduce

U(y)
def
= f

(
αf−1(X) + (1− α)f−1(Z)

)
| Y = y

for f a scale function and α ∈ [0, 1] another random variable representing
the relative amount of tumor content. The variablesX , Z and α are assumed
conditionally independent given Y as illustrated in Figure 2a. With YT the
marginal distribution of class labels in the target distribution, the distribution
of (U(YT ), YT ) constitutes our model target. The model is specified by
choosing a scale function and conditional distributions of Z and α given Y .

We will consider domain adaption models for two particular scale
functions. The linear scale function is given by simply taking f to be the
identity, thus assuming that the contamination is additive on the measured
scale. The data example used in this paper consists of measurements of
microRNA (miRNA, a small non-coding RNA molecule) expression using
quantitative PCR (qPCR), see, for example, Vaerman et al., 2004 or
VanGuilder et al., 2008 for an introduction to qPCR. For qPCR a logarithmic
scale function that models the relation between actual miRNA concentration
and the measured quantity is appropriate. The log scale function is given by

g(δ)
def
= −K log δ,

for δ ∈ (0, 1] and a constant K > 0. The log scale function can be
derived based on theoretical considerations for qPCR reactions. The constant
η = eK − 1 is the amplification efficiency, and we use a standard value of
η = 0.8 throughout.

2.3 Simulation of artificial core biopsies
The approximate target distribution Tsim is generated as a weighted empirical
distribution of a total of M simulated samples. First, the class labels
y1, . . . , yM are sampled or chosen. Based on the source data set (the
primary tumors) we sample x1, . . . , xM independently given y1, . . . , yM
such that xi | yi is sampled from the conditional empirical distribution of the
source data given yi. That is, xi is drawn with replacement from the source
data with class label yi. Given a data set from the contamination distribution
we drawM samples with replacement, z1, . . . , zM , from the contamination
data. In addition, we sample α1, . . . , αM independently given y1, . . . , yM
such that αi | yi has the desired distribution. For a given scale function f
we compute

ui = f
(
αif
−1(xi) + (1− αi)f

−1(zi)
)
,

and the empirical distribution of the samples (u1, y1), . . . , (uM , yM ) with
weights ω1, . . . , ωM form the approximate target distribution Tsim. The
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Fig. 2: The random variablesX , Y , Z and α represent the molecular
signature from the primary tumor, its site label, the signature
from liver contamination and the tumor proportion, respectively. A
minimal assumption (a) for our domain adaption model is thatX , Z
andα are conditionally independent given Y . The actual assumption
made (b) is that Z is marginally independent of the other variables
and that X and α are conditionally independent given Y .

weights can be chosen to achieve a desired distribution of class labels in Tsim,
for example, to match the distribution of class labels for the primary tumor
data set. The simulation assumes the conditional independence structure
illustrated in Figure 2b. If the less restrictive conditional independence
structure illustrated in Figure 2a is assumed, we need to adjust the simulation
to draw zi conditionally on yi, but this requires knowledge of a class
dependent contamination distribution.

2.4 Multinomial group lasso regression
The data set used in this paper consists of miRNA signatures from 9 different
classes, see Table 1. For class prediction we use multinomial logistic
regression, which is the multiclass extension of logistic regression. The
predictor is trained using a group lasso penalized likelihood approach as
treated in details in Vincent et al., 2012.

We briefly review the multinomial group lasso regression method.
Consider a prediction problem with K classes, N samples, and p features.
Assume given a data set (x1, y1), . . . , (xN , yN ) where, for all i =
1, . . . , N , xi ∈ Rp is the observed feature vector and yi ∈ {1, . . . ,K}
is the categorical class label. With h : {1, . . . ,K} × Rp → R defined as

h(l, η)
def
=

exp(ηl)∑K
k=1 exp(ηk)

,

the (symmetric) multinomial model is given by

P (Y = l | x) = h(l, β(0) + βx).

Here the parameters are organized as the K-dimensional vector β(0) of
intercept parameters and the K × p matrix

β
def
=
(
β(1) · · ·β(p)

)
, (1)

with β(j) ∈ RK the parameters associated with the j’th feature. The group
lasso maximum likelihood estimator of (β(0), β) is the minimizer of the
group lasso penalized negative log-likelihood,

−
N∑

i=1

ωi log h(yi, β
(0) + βxi) + λ

p∑

J=1

∥∥∥β(J)
∥∥∥
2
, (2)

where ω1, . . . , ωN are sample weights. Here || · ||2 is the 2–norm on RK .
The penalization results in feature selection meaning that for some features
the corresponding parameter vector is estimated to be 0. The regularization
parameter λ > 0 is a tuning parameter and the larger λ is the fewer features
are selected.

Table 1. Number of samples included in the study. For the metastases the
numbers a and b shown as (a/b) are the numbers of low and high tumor content
samples, respectively.

Class description Primaries Metastases
(resections) (core biopsies)

Breast cancer 17 7 (5/2)
Colorectal cancer 20 12 (8/4)
Gastric/Cardia cancer 18 12 (8/4)
Pancreatic cancer 20 10 (5/5)
Squamous cell cancers (of different origins) 16 12 (6/6)

Hepatocellular carcinoma 17 3
Cholangiocarcinoma 20 4

Cirrhotic liver 17 8
Normal liver 20 7

2.5 Biological samples
Samples were selected from 240 independent patients and consist of a
total of 128 resected primary tumors of different origin (representing 7
primary tumor classes), 60 liver core biopsies from metastatic tumors of
known origin (representing the same predefined 7 primary tumor classes),
37 resected and 15 core biopsies from benign liver. The 9 classes were
further grouped into 3 groups; metastatic cancers, primary liver cancers
and benign liver, see Table 1. Samples were obtained from The University
Hospital of Copenhagen, Denmark. The sample set is a subset of the
samples used in Perell et al., 2013. All samples were archived formalin-
fixed paraffin embedded (FFPE) tissues (dated 2000-2012). All primary
tumor resections were cut into one section of 10 µm and laser-dissected
before being processed in order to remove the surrounding benign tissue.
Core biopsies were cut into two sections of 5 µm according to standard
pathological procedure – no micro-dissection was performed. Malignant
core biopsy samples were required to have a minimum tumor content of
10%. Tumor content was defined as tumor- and stromal-cells. All samples
were from independent patients, hence no patient overlap between primary
tumor samples and metastatic samples were accepted. All samples were
reviewed by an independent pathologist to confirm the reference diagnosis
and to estimate the percentage of tumor cells. Based on the tumor cell
estimate, the core biopsy samples were divided into two groups representing
high (above 50%) and low (below 50%) tumor content. For each sample the
expression levels of 377 miRNAs were measured using quantitative real time
PCR (TaqManlow density array cards, human MicroRNA array A, Applied
Biosystems) according to manufacturers instructions.

Before any multinomial predictor was trained the artificial core
biopsy data were simulated and data were preprocessed. Simulation and
preprocessing were executed in the following order.

1. Controls and miRNAs not expressed in the primary tumor samples were
removed.

2. Linear and log scale artificial core biopsies were simulated, see Section
2.3.

3. All samples, that is, primary tumor samples, core biopsy samples
and the artificial core biopsy samples, were normalized and then
standardized as described below.

The data were first normalized by centering and scaling the individual
samples to mean 0 and variance 1. The purpose of normalization is to
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Fig. 3: Estimated expected generalization error for prediction of
liver core biopsies. The error is shown as a function of miRNAs
included in the predictor. The predictors were trained using primary
tumor samples or artificial core biopsy samples derived from
primary tumor samples using either a linear or a log scale function.

remove technical (non-biological) variation. The data were standardized by
centering and scaling the expression measurements for each miRNA across
the samples. This is to ensure that differences in scale will not influence the
variable selection. The centers and scales were estimated using the primary
tumor samples and applied for standardization of the primary tumor samples
as well as the core biopsy and artificial core biopsy samples. That is, the
standardized sample x̃ ∈ Rp of a sample x ∈ Rp is given by

x̃i =
xi − µ̂i
σ̂i

for i = 1, . . . , p

where µ̂i and σ̂i denote the empirical mean and standard deviation,
respectively, for the i’th miRNA in the primary tumor data set. Note that
the order in which normalization and standardization are applied matters.

3 RESULTS
In this section we present the results obtained by testing our domain
adaption model on the miRNA expression data set described in
Section 2.5. The domain adaption model was used with a linear and
a log scale function, as described in Section 2.2, in combination with
the multinomial group lasso predictor, see Section 2.4. The results
obtained with and without using the domain adaption model where
compared.

Primary tumors and metastases are biologically different, and it
is therefore reasonable to expect a difference between their miRNA
signature. Moreover technical differences between resections and
core biopsies may influence the measured miRNA signature. It is
therefore natural to expect that the performance of a predictor will
differ between these two domains. We found, in our case, this
difference to be fairly large.

We trained a multinomial group lasso predictor solely on
the resections. This predictor achieved an overall expected
generalization error of 11% on the resected primary tumors and
benign liver samples, as estimated by 10-fold cross-validation.
However, on liver core biopsies – which is our target domain – this
predictor had an overall error of around 60%.

Metastatic cancers Liver related classes
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Fig. 4: Estimated expected generalization error for prediction of
liver core biopsies. The error is shown as a function of miRNAs
included in the predictor. The results are stratified according to the
four following subgroups: metastatic cancers, liver related classes
(benign liver, hepatocellular carcinoma and cholangiocarcinoma),
metastatic cancer samples with low tumor content and metastatic
cancer samples with high tumor content.

Note that all error rates reported henceforth in this paper originate
from validation on our target domain. That is samples from one of
the following categories: liver core biopsies of metastatic tumors,
liver core biopsies of primary liver cancers or core biopsies of
benign liver.

3.1 Prediction based on primary tumor samples
The results presented in this section were obtained using primary
tumor and benign liver resections for training – i.e. no core biopsy
samples where used for training. Error rates were estimated solely
on liver core biopsy samples. We compared multinomial group lasso
predictors obtained by training on one of the following three data
sets:

a. Primary tumor and benign liver samples.

b. Artificial core biopsies obtained using the linear scale function.

c. Artificial core biopsies obtained using the log scale function.

For the simulation of artificial core biopsies, as described in
Section 2.3, we used the 20 normal liver resections as contamination
data. The distribution of α was taken as a beta distribution with
shape parameters (2, 2) for the 7 cancer classes and degenerate at 1
for the 2 benign liver classes. That is, for the benign liver classes no
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contamination was added. The two artificial core biopsy data sets
were generated by using either the linear or the log scale functions
described in Section 2.2. The simulation was carried out with 750
samples from each class and the weights were chosen as

ωi =
Nprim,yi

750

where Nprim,yi is the number of primary samples of class yi. For
the two benign liver classes the simulation amounts to sampling
with replacement from their empirical distribution. In practice, the
simulation step for these two classes was therefore skipped and the
37 benign liver resections were just included, all with weight 1.

Figure 3 shows estimates of the expected generalization error
against the number of miRNAs included in the predictor. A larger
number of miRNAs corresponds to a lower value of the tuning
parameter λ. The predictors trained directly on the primary cancer
samples performed poorly when applied to the core biopsy samples.
The best predictors achieved an overall error around 60%. Figure
4 further shows that effectively only the liver related classes got
predicted correctly by these predictors. The overall error dropped to
around 50% for the predictors trained on the artificial core biopsies
using the linear scale function. Using the log scale function the
overall error could be further reduced to around 35%. Figure 4
shows that the overall improvements embraced notable differences
between sample subgroups. In particular, the log scale function
performed best on core biopsies with a low tumor content, while it
did not improve the error rate as much for the high tumor content
samples. In fact, the linear scale function resulted in marginally
better predictors for the high tumor content samples.

3.2 Prediction based on metastatic tumor samples
For comparison we trained a predictor solely on the available core
biopsy samples, i.e. on metastatic cancer, primary liver cancer
and benign liver samples. Using leave-one-out cross-validation the
overall expected generalization error was estimated to about 55%
for a predictor using around 100 miRNAs. It is likely that this error
rate would be reduced if additional core biopsies where available for
training.

3.3 Prediction based on primary and metastatic tumor
samples

To further improve the predictors we investigated the effect of
training on either primary tumor samples or artificial core biopsies
in combination with available core biopsies. This was investigated
in a setup where we included n = 1, 2, 3 or 4 core biopsy samples
from each class in the training data.

To assess the performance we used the following subsampling
procedure repeated 100 times.

1. Randomly split the core biopsy samples in a training and a test
data set such that each contain roughly half of the samples per
class.

2. Randomly sample n core biopsies from the training data set for
each of the metastatic cancer classes.

3. Train the multinomial predictor on the combined training data
set (artificial core biopsies/primary tumor samples + biological
core biopsies selected for training).
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Fig. 5: Estimated expected generalization error for primary tumor
prediction of metastatic liver core biopsies. The error is shown as
a function of the estimated expected number of miRNAs included
in the predictor. The plots show the error for predictors trained
on primary tumor samples or artificial core biopsy samples in
combination with biological core biopsies. The line type represents
the number of biological core biopsies included per class in the
estimation procedure. Biological core biopsies were not included in
the hepatocellular carcinoma class, cholangiocarcinoma class and
benign liver classes.

4. Estimate the misclassification error on the core biopsy test data
set.

Figure 5 shows that the combination of primary tumors and
core biopsies resulted in predictors with a smallest achievable error
around 40% for the metastatic cancers. Combining the artificial core
biopsies with the biological core biopsies this error was reduced
to around 30% using the log or linear scale function. The optimal
models were achieved with 40-60 miRNAs using the log scale and
60-80 miRNAs using the linear scale. Figure 5 further shows that for
the log scale function no detectable improvement on the low tumor
content samples was obtained by including biological core biopsies,
while a considerable improvement was obtained for the high tumor
content samples. For the linear scale function the improvement by
including biological core biopsies is present for the low as well as
the high tumor content samples.
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4 DISCUSSION
Contamination of samples can affect the performance of molecular
predictors. This has been established in other studies, e.g. Elloumi
et al. (2011), and we have shown that the effect can be drastic in
relation to primary tumor site identification. Other studies using
molecular predictors for primary tumor site identification attempt
to minimize benign tissue contamination by micro-dissection.
However, micro-dissection may not always be applied to core
biopsies or may cause delay in the diagnostic work-up. Hence tissue
contamination remains to be an issue when core biopsy samples are
involved.

We have developed a computational approach that deals with
tissue contamination from surrounding tissue, and we have shown
that the method drastically improves the performance of a molecular
predictor on a non-trivial multiclass problem. The domain adaption
approach, which we suggest, is flexible and yet simple to
implement. In this paper we only considered metastatic liver
core biopsies, but it is natural to assume that our contamination
model works well for other biopsy sites than liver. In addition,
although we only address tissue contamination specifically, our
contamination model has the potential to be used to model
background contamination in other types of samples.

Our results indicate that the suggested domain adaption approach
was able to adjust for normal liver contamination present in
core biopsy samples. By using this approach we were able to
considerably reduce the error of primary tumor site identification
for metastatic cancers. It is notable that inclusion of metastatic
samples for training only resulted in a slight improvement of the
error. Moreover this improvement may be caused by the additional
number of independent biological samples included in the training
set. This suggests that the contamination model successfully
captures the liver contamination, and that there is not much more
that can be learned about the target distribution.

Based on our findings, it is tempting to conclude that
observed differences in molecular signatures from primary tumor
resections and core biopsies of metastatic tumors are due to tissue
contamination. However, our results do not support such a strong
conclusion. Investigations of other differences at the molecular level
between primary cancer and corresponding metastases may help to
further improve molecular predictors.

Surprisingly, the improvements due to the contamination model
were most pronounced for samples with a low tumor content. We
would expect such samples to be more difficult to predict than high
tumor content samples. The estimated tumor content is, in fact, an
estimate of the relative amount of stroma and tumor content. Thus a
possible explanation is potential stroma contamination, which is not
part of our model.
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Translational relevance 

Approximately 10-15 % of all cancer patients present with metastatic disease. 

Identification of the primary tumor site is clinically important, but remains a challenge. For 

the majority of these patients, primary tumor site identification relies on small biopsies from 

metastatic lesions. Tissue heterogeneity and inadequacy pose a problem for 

histopathological classification, but it is not yet established to which extend it affects 

molecular classification. We have developed a microRNA-based classifier, which predicts 

the primary tumor site of liver biopsies, using a minimum of tissue, with limited tumor 

content and without prior microdissection. Hence, molecular classification can proceed in 

concert with conventional diagnostic work-up, without compromising normal 

histopathological assessment. Our results indicate that surrounding normal tissue from the 

biopsy site may critically influence molecular classification. A significant improvement in 

classification accuracy was obtained when the influence of normal tissue was limited by 

application of a computational contamination model.            

  

Abstract 

Purpose: To develop a classifier based on microRNAs for primary tumor site identification 

of liver core biopsies and to explore the influence of surrounding normal liver tissue on 

classification. 

Experimental Design: MicroRNA expression profiling was performed using quantitative 

Real-Time PCR on formalin-fixed paraffin-embedded samples. 278 primary tumors, liver 

metastases and normal liver samples were used as a training set, representing eight 

primary tumor classes, a class of squamous cell carcinoma (mixed population) and a class 
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of normal liver tissue. A computational model was applied to adjust for normal liver tissue 

contamination. Performance was estimated by cross-validation, followed by independent 

validation on 55 liver core biopsies representing metastases, primary liver cancer and 

normal liver tissue.  

Results: A microRNA classifier developed using the computational contamination model 

showed an overall classification accuracy of 74.5 % upon independent validation. 

Performance was estimated exclusively using small liver biopsies, with a tumor content as 

low as 10 %. For comparison, a classifier trained without adjusting for liver tissue 

contamination, showed a classification accuracy of 38.2 %.  

Conclusions: A clinically applicable microRNA classifier, which identifies the primary 

tumor site of liver core biopsies, was developed and validated. A potential risk of 

misclassification due to surrounding normal liver tissue was observed. By applying a 

computational contamination model, the classification accuracy improved significantly, 

obviating the need for microdissection. 

 

Introduction 

Current cancer treatment strategies are based on the anatomical site of the primary tumor. 

Therefore, a correct diagnosis of the primary tumor site remains an essential first step in 

disease management. Since more specific treatment regimens have emerged for many 

solid tumors, correct primary tumor site identification has become increasingly important.  

Despite improvements in imaging techniques and the use of immunohistochemical (IHC) 

markers, cancer patients presenting with metastatic disease at the time of diagnosis still 

represent a diagnostic challenge and in 3-5 % of these patients, the primary tumor site 
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remains undetectable [1]. As a result, these patients may be subjected to a time-

consuming and expensive diagnostic work-up, resulting in treatment delay or even a 

suboptimal or incorrect treatment strategy.  

In recent years, effort has been made towards establishing new supplementary diagnostic 

tools for primary tumor site identification. Molecular profiling is a promising diagnostic 

approach, which has the potential to provide an objective classification of uncertain or 

unknown metastatic cancers and render the diagnostic work-up of cancer patients more 

time- and cost-effective.  

Several molecular classifiers, based on either messenger RNA (mRNA) or microRNA 

(miRNA) analysis, have been developed for primary tumor site identification. These 

classifiers show promising cross-validation and independent validation results. However, 

validation is often performed on a sample set predominantly constituted by primary tumors 

[2-7]. Primary tumors and their corresponding metastases may exhibit significant 

molecular differences due to altered biology or diversity in specimen sampling, which may 

influence classification accuracy. Such an influence may potentially be overlooked if 

metastatic samples represent a small part of the total validation set.  Additionally, it is not 

well established to which extend normal tissue contamination affects molecular 

classification.  

For the majority of patients with metastatic cancer, classification of the primary tumor site 

relies on formalin-fixed paraffin-embedded (FFPE) core biopsies from metastatic lesions. 

Standard specimen sampling methods result in heterogeneous samples, consisting of 

varying amounts of malignant cells and normal tissue [8]. A molecular classifier for primary 

tumor site identification in patients with metastatic disease must therefore be compatible 

with FFPE biopsy specimens, representing metastatic tissue with limited tumor content. 
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Furthermore, the possible influence on classification by normal tissue contamination must 

be considered. Essentially, the classifier performance must be assessed on representative 

samples for which the classifier is intended to perform. 

The primary objective of this study was to develop a classifier able to identify the primary 

tumor site of FFPE liver core biopsies. Additionally, the classifier should be easy to apply 

in the daily clinic. Hence, the classifier should be able to perform on restricted tissue and 

tumor amount without the need for prior microdissection. We used miRNA, which is a class 

of small (21-24 nucleotides) non-coding RNA molecules [9], since these are known to be 

highly stable in FFPE tissue [10]. The biopsy site was limited to a single organ in order to 

explore the influence of surrounding normal tissue on primary tumor site classification. A 

computational contamination model was incorporated to allow classification of core 

biopsies even in the presence of normal liver tissue [11]. Furthermore we explored if the 

miRNA profile of metastases provides additional information necessary for correct 

classification, when compared to primary tumors.   

 

Materials and Methods 

Clinical samples  

Tissue samples from 338 patients, corresponding to one of the following ten predefined 

assay classes, were obtained from archives of the pathology department, Copenhagen 

University Hospital, Rigshospitalet, Denmark: Lung cancer, breast cancer, gastric/cardia 

cancer, colorectal cancer, bladder cancer, pancreatic cancer, hepatocellular carcinoma, 

cholangiocarcinoma, squamous cell cancers of different origin, and normal liver tissue  

The study was conducted according to national guidelines.  



6 
 

When selecting samples, the following issues were considered :(i) a single confident 

reference diagnosis was required. The reference diagnosis was established based on the 

original pathology report, clinical data and radiological findings; (ii) the training set should 

include the most common histological subtypes and represent a varied spectrum of 

dedifferentiation; (iii) each patient could only be represented by one sample, hence 

primary tumor samples and metastatic samples were unmatched.  

Samples were formalin-fixed paraffin-embedded (FFPE) tissue specimens (dated 2000-

2012). The sample set consisted of 199 surgical resections (162 primary tumors and 37 

normal liver samples) and 134 liver core biopsies (109 primary liver cancers and liver 

metastases of known origin, and 25 normal liver samples). Normal liver samples were 

obtained from large surgical liver resections for colorectal metastases or from explanted 

livers. These samples were subdivided into (i) liver samples containing mild reactive 

changes due to the presence of a tumor in the proximity and (ii) cirrhotic liver. Cirrhosis 

was included in order to differentiate non-neoplastic fibrosis from the desmoplastic stromal 

reaction of metastatic lesions. Characteristics of the samples are shown in Table 1. 

Primary tumors were assigned a differentiation grade, according to international 

guidelines. Additionally, all samples were independently reviewed by an expert pathologist 

to confirm the reference diagnosis and estimate the tumor percentage. The percentage of 

tumor tissue in resected samples (primary tumors) was defined as the relative amount of 

tumor cells. In core biopsies, the tumor tissue content was defined as the relative area of 

combined tumor tissue and desmoplastic stroma. The tumor percentage was estimated 

from a hematoxylin and eosin-stained section.    

From each primary tumor resection, one 10 µm section was cut. To obtain tumor specific 

miRNA expression profiles, primary tumor samples were microdissected using the 
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Arcturus XT Microdissection System (Applied Biosystems, Foster City, CA) to ensure a 

tumor cell content of ≥ 60 %. The influence of non-malignant cells was limited by excluding 

samples with ≥ 50 % fibrosis, hemorrhage or necrosis (arbitrary cut-off). 

Two sections of 5 µm were cut from each liver core biopsy, according to standard 

pathological procedures. No microdissection was performed on these samples. The only 

requirement was a minimum of 10 % tumor tissue without further limitations, regarding 

fibrosis, hemorrhage or necrosis. 

Samples were initially split into a training set consisting of the 199 surgical resections and 

79 core biopsies (2-12 biopsies in each class) and a validation set consisting of the 

remaining 55 liver core biopsies (5 samples randomly chosen from each class).  

 

 RNA extraction 

Total RNA was extracted from FFPE tissue using a combination of ReCover All Total 

Nucleic Acid Isolation Kit (Ambion, Austin, Tx) and RNAqueous Micro Kit (Ambion). Briefly, 

the microdissected sections were deparaffinized by first adding 1 ml 100 % xylene and 

subsequently 1 ml 100 % ethanol. The later RNA extraction steps were similar for all 

dissected and non-dissected samples. The tissue was digested using 100 µl digestion 

buffer and 4 µl ProteinaseK (ReCover All) at 50 ˚C for 15 min and 80 ˚C for 15 min 

according to the manufacturer`s instructions. RNA was subsequently purified on columns 

and eluted in 15 µl elution solution (RNAqueous) according to the manufacturer`s protocol. 

Total RNA yield and quality was evaluated using Nanodrop ND-1000 spectrophotometer 

(NanoDrop Technologies, Wilmington).    
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miRNA Quantitative real-time PCR profiling 

TaqMan low density array (TLDA) cards, human MicroRNA array A (Applied Biosystems) 

were used to determine the expression of 377 microRNAs. Each array contains six 

positive controls. RT-PCR reactions were performed according to the manufacturer’s 

instructions. All reagents were obtained from Applied Biosystems. Briefly, 30 ng of total 

RNA was reverse transcribed (RT) with Megaplex RT primer human pool A and the 

TaqMan miRNA reverse transcription kit in a total volume of 7.5 µl per reaction. The 

amount of miRNA that can be extracted from core biopsies may be limited, and a 40 round 

pre-amplification step was therefore included. cDNA of liver core biopsies as well as 

primary tumor resections was pre-amplified in order to make the analysis from primary 

tumors and metastases comparable. Pre-amplification was performed using 2.5 µl RT 

product together with Megaplex PreAmp Primers and TaqMan PreAmp Master Mix in a 25 

µl PCR reaction. Given that the FFPE tissue was not collected with RNA preservation in 

mind, we used the expression of the small nucleolar RNA, RNU44, as a surrogate 

measure of RNA integrity prior to miRNA quantification. RNU44 expression was examined 

in triplicate in the pre-amplified cDNA-mix using a 384-well plate. Each reaction consisted 

of 2.5 µl pre-amplified cDNA, 0.5 µl TaqMAn MicroRNA assay, 5 µl Universal Master Mix 

No AmpErase UNG and 2 µl Nuclease-free water (all from Applied Biosystems). PCR 

reactions were run on an Applied Biosystems 7900 HT system, according to the 

manufacturer`s instructions and analyzed using SDS software (v.2.4, automatic baseline 

setting). Based on preliminary results, we defined a mean cycle threshold (Ct) value ≤ 20 

as a cut-off and only samples with Ct values below this cut-off were further processed. 

Pre-amplified cDNA was diluted with 375 µl 0.1 TE (ph. 8.0) and transferred to a TaqMan 

Human MicroRNA A array (v. 2.0). Quantitative real-time PCR was performed using an 
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Applied Biosystems ViiA 7 Real Time PCR and TaqMan Advanced Master Mix with 50 µl 

input cDNA template per lane. Ct values were calculated using the ViiA 7 software (v. 1.1). 

Successful analysis was performed for 333 samples (98.5 %). Five samples were 

excluded because the RNU44 Ct-values were above the predefined cut-off.  

 

Statistical models and methods 

Three different classifiers were developed based on the multinomial model for 

classification. The multinomial models were trained using a variation of multinomial lasso 

[12]. For two of the classifiers a contamination model was used to adjust for normal liver 

contamination. This adjustment was done by a simulation approach as part of the 

multinomial model training procedure [11].  The following procedures for data 

preprocessing, simulation and training were used: 

1. Controls and miRNAs not expressed in the primary tumor samples were removed.  

2. A simulated data set mimicking liver core biopsies was constructed from the 

contamination model, using only normal liver and primary tumor resections from the 

training set. 

3. All samples were normalized by centering and scaling the individual samples to 

mean 0 and variance 1.  

4. For each of the three classifiers the multinomial model was trained using the 

training data, the simulated data or a combination of the two data sets. 

To model miRNA expression of liver contaminated core biopsies (step 2), a simulated data 

set was constructed using a contamination model [11]. The contamination model is 

specified as a mixture of miRNA expressions from primary tumor and normal liver 

according to 
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ߙ ൈ primary tumor signature ሺ1 െ ሻߙ ൈ normal liver signature 

where α denotes the tumor percentage. The tumor percentage was taken to follow a beta 

distribution with first shape parameter equal to four and second shape parameter equal to 

three. Due to non-linearity of the PCR amplification, the  model was not applied to the 

observed scale but to a suitably transformed scale [11]. Random sampling with 

replacement of the primary tumor and the normal liver samples in the training data set as 

well as random sampling of α was used to simulate core biopsy samples by the 

contamination model.    

For classifier development, we used the multinomial group lasso model as previously 

described [13]. In our set-up, the multinomial model is a model of the probability of the 10 

assay classes given the observed 377 miRNA expression measurements from each 

sample. The log-probability of each class is, up to a constant, a weighted sum of the 

miRNA expressions. The model provides an estimate of the class probability and not just a 

classification. As a consequence of the multinomial group lasso method, the weights for 

some miRNAs will be 0 for all classes. The method thus automatically selects those 

miRNAs, most relevant for classification. Standardization of miRNA expressions across 

samples was done internally in the training algorithm to avoid that difference in scale could 

influence the miRNA selection.  

The multinomial group lasso method produce a sequence of 100 models, with each model 

selecting different combinations of miRNAs. To select a final model, from the 100 

produced models, an additional model selection procedure was performed. This was done 

by cross-validation using the negative log-likelihood loss. 

To obtain an unbiased assessment of the performance of the final model we used nested 

cross-validation. By an outer cross-validation loop we estimated the performance of the 
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model obtained by the combined training and cross-validation based model selection 

procedure. In addition to the cross-validation an independent validation was performed. 

 

Results 

MicroRNA classifier based exclusively on primary tumors misclassifies core 

biopsies.  

To investigate whether a miRNA profile obtained exclusively from primary tumors was able 

to classify the primary tumor site of liver core biopsies, predominantly consisting of 

metastases, we subdivided our training set. The original training samples were divided into 

a smaller training set consisting of the 199 resections (primary tumors and normal liver 

samples) and a test set consisting of the 79 liver core biopsies (metastases, primary liver 

cancer and normal liver tissue). This resulted in a model based on expression profiles from 

55 miRNAs (PRIM classifier). The PRIM classifier showed a 90 % overall accuracy upon 

10-fold cross validation (Supplementary Figure S1). When applied to the 79-core biopsy 

test set, the accuracy dropped to 44.3 % (Table 2) with a pronounced difference in 

classification accuracy across the different assay classes. The PRIM classifier performed 

well on core biopsies consisting of normal liver, but generally poor on metastases from 

non-liver derived primary tumors. Liver metastases from colorectal cancer constituted an 

exception, with 67 % being classified correctly. A complete list of classifier predictions is 

given in Supplementary Table S1. Approximately 40 % (17/43) of the misclassified 

samples were classified as normal liver (reactive liver or cirrhosis) and 35/40 misclassified 

metastases from non-liver derived primary tumors were classified as either primary liver 

cancer or normal liver. This strongly indicated that contamination with normal liver in core 
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biopsies impeded correct classification. A principal component plot (Figure 1) illustrates 

how core biopsies independent of class clustered together with liver derived samples.   

Application of a contamination model for classifier training improves classification 

of core biopsies. 

To improve classification of liver core biopsies, we used a computational contamination 

model (CCM). Based on the assumption that the level of individual miRNAs in tumor tissue 

and the surrounding liver tissue is independent of one another, samples constructed using 

the contamination model mimic liver core biopsies. These samples were constructed for 

each assay class only using miRNA profiles of normal liver and primary tumor resections 

from the 199-sample training set. By exchanging the original primary tumors with the 

computational constructed samples as a training set, we developed a model consisting of 

104 miRNAs (CCM classifier).   

To test the performance of the CCM classifier on liver core biopsies, we applied the 79 

liver core biopsy test set. The accuracy showed an improvement across most assay 

classes, with a pronounced effect on non-liver derived malignancies, resulting in an overall 

accuracy of 58.2 % (Table 2). The improved classification accuracy was largely due to a 

reduction in samples being misclassified as normal liver (8/32) and fewer metastases from 

non-liver derived primary tumors being misclassified as derived from the liver (11/30) (see 

Supplementary Table S1 for a complete list of classifier predictions). 

Liver biopsies may feature important information for correct classification. 

miRNA signatures may differ between primary tumors and metastases, not only due to 

normal tissue contamination but also due to underlying biological differences. Such 

biological differences will obviously not be present in the computational constructed 
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samples. Therefore, to encompass a potential molecular difference between primary 

tumors and metastases, we used the same computational developed training samples as 

described for the CCM classifier together with the 79 liver core biopsies (CB). From this 

combined training set, we developed a model consisting of 116 miRNAs (CCM+CB 

classifier). To estimate the performance of this CCM+CB classifier, 8-fold cross-validation 

was performed, which showed 67.1 % overall accuracy (Table 2 and Supplementary 

Figure S2). Further, an independent validation using 55 liver core biopsies was performed, 

demonstrating an overall accuracy of 74.5 %. Figure 2 shows the independent validation 

results of the CCM+CB classifier illustrated by a confusion matrix. For comparison, we 

applied the independent validation set to the PRIM classifier and the CCM classifier and 

obtained overall accuracies of 38.2 % and 67.3 %, respectively. A comparison of validation 

results between the three classifiers is shown in Table 3.  

An important feature of a clinical applicable classifier is the ability to deliver a single high 

confident prediction. By proposing two or more differential diagnosis, uncertainty and 

subjectivity may be imposed. Due to these considerations, training biopsies were used to 

establish a threshold for high-confidence predictions. Based on this threshold a prediction 

was defined as high confidence if the model probability was larger than 0.6. When applied 

to the independent validation set, 65 % of the samples were high-confidence predictions, 

with 89 % being classified according to the reference diagnosis. Table 4 shows the 

number of high confidence predictions in the independent validation set. 

The miRNAs included in the 55-microRNA PRIM classifier, the 104-microRNA CCM 

classifier and the 116-microRNA CCM+CB classifier are listed in Supplementary Table S2. 

Forty-two miRNAs were included in all three classifiers, whereas 5 miRNAs were only 

represented in the PRIM classifier, amongst them miR-122, known to be specifically 
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expressed in liver tissue.  The additional miRNAs in the CCM and CCM+CB classifiers 

tend to reflect contribution of more miRNAs belonging to the same families.  

Subclass analysis.  

Approximately 40 % of the core biopsies included in this study yielded a tumor percentage 

lower than 50%, with 26 % of the samples containing ≤ 35 % tumor tissue. To address 

whether a low tumor percentage could compromise classification, an analysis based on 

the amount of tumor tissue in the samples was performed. Liver core biopsies containing 

tumor tissue were subdivided into low (≤ 35 %), moderate (>35-65 %) and high tumor 

content (> 65 %). We observed a slightly higher overall error rate for samples with low 

tumor content (13/31 samples), while no difference in error rate was observed for samples 

yielding moderate (10/33 samples) or high (14/45 samples) tumor content. Supplementary 

Table S1 provides a complete list of predictions for each of these classifiers together with 

tumor percentage and sample age. 

 

Discussion 

We present the development and validation of a microRNA (miRNA) classifier, designed 

as a supplementary diagnostic tool to histopathological evaluation and imaging, during the 

diagnostic work-up of patients suspected of malignant liver disease (i.e. metastases or 

primary liver cancer). The classifier is trained on primary tumors, liver metastases and 

normal liver tissue and consists of expression profiles from 116 miRNAs. The classifier 

performs on formalin-fixed paraffin-embedded (FFPE) liver core biopsies with limited 

amount of tumor tissue and varying amount of normal liver tissue. It distinguishes between 

eight primary tumor classes, squamous cell carcinoma (mixed population) and normal liver 

tissue with an overall accuracy of 67.1 % upon cross-validation and 74.5 % upon an 
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independent validation. To mimic the daily diagnostic routine, we validated the classifier 

using small sections of liver core biopsies with as little as 10 % tumor tissue and refrained 

from microdissection. This allows miRNA analysis to proceed independently and 

simultaneously with the histopathological work-up, without causing delay in the final 

diagnostic subgrouping of the patient.  

As opposed to previously reported classifiers, we limited the application to a single biopsy 

site. This allowed us to study the impact of surrounding normal tissue on primary tumor 

site classification, avoiding classification bias caused by biopsy site and reducing the 

number of validation samples needed. The liver was chosen because: (i) it is a common 

site for metastatic disease and the most common single site of metastatic involvement in 

patients with carcinoma of unknown primary site (CUP) [1]; (ii) it represents the most 

common metastatic site for gastrointestinal (GI) cancers [14] and (iii) the liver is easily 

accessible for  biopsy.  

Tumor samples contain varying amounts of malignant cells, stromal cells and surrounding 

(contaminating) normal tissue from the biopsy/resection site. The influence of surrounding 

normal tissue on molecular classification is not clear, although a potential systematic 

classification bias, caused by normal tissue, has been reported [15, 16]. Most previously 

developed diagnostic classifiers require high tumor content (≥60 % tumor) and use 

microdissection on selected samples, prior to gene expression analysis, for tumor cell 

enrichment. Although microdissection reduces the surrounding normal tissue, it also holds 

several disadvantages. Most importantly, microdissection may not always be possible due 

to a relatively small number of tumor cells located dispersedly in the liver core biopsy [8]. 

In addition, microdissection may be time consuming. To investigate the influence of normal 

liver tissue contamination, we constructed a miRNA classifier (PRIM classifier) only based 
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on primary tumor samples. Although a high cross-validation accuracy of 90 % was 

achieved, the PRIM classifier showed a disappointing classification accuracy of 38.2 % on 

the independent validation set consisting of liver core biopsies. The low classification 

accuracy was predominantly caused by samples being misclassified as normal liver or 

primary liver malignancies. By adjusting for normal liver contamination, the accuracy 

improved significantly to 67.3 % upon independent validation. Hence, our results indicate 

that a miRNA signature is sustained in metastases compared to corresponding primary 

tumors, but contamination with surrounding normal tissue must be considered a potential 

cause of error in molecular primary tumor site classification based on miRNA.   

The genetic events responsible for the metastatic process are still poorly understood. The 

key question is whether metastasis is driven by mutations that occur after the tumor cells 

arrive at a distant site [17] or whether the complete repertoire of somatic mutations are 

generated by heterogeneous clones in the primary tumor [18, 19]. Increasing evidence 

support a key role for miRNAs in cancer cell invasion, migration and metastasis [20], and 

studies have reported altered miRNA signatures in metastases compared to matched 

primary tumors [21, 22]. By including metastatic liver core biopsies in the training set, we 

observed an increase in classification accuracy from 67.3 % to 74.5 % upon independent 

validation, with a notable effect on pancreatic cancer classification. This improvement 

could be due to different genetic information in metastases, compared to primary tumors.  

Metastases from the GI tract, especially pancreatic and gastric cancers, are usually 

difficult to distinguish from one another and from cholangiocarcinomas by histopathology 

alone [23, 24]. As illustrated in Supplementary Fig. S2, our classification demonstrates a 

similar tendency, especially upon cross-validation. The tendency was less clear from the 

independent validation results (Fig 2).  Still, a significant proportion of GI tract cancers 
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were correctly classified from their miRNA signature. Cholangiocarcinomas constituted an 

exception, since only 1 out of 5 validation samples was correctly classified. The poor 

classification accuracy was predominantly due to misclassification as normal liver. 

Samples with moderate to high tumor content showed no difference in classification rate, 

but a trend towards a slightly higher error rate in samples with low tumor content was 

observed. We defined and estimated tumor content in core biopsies as both tumor- and 

stromal-cells, which may explain why no further improvement in classification was 

observed for samples with high tumor content. Due to differences in class distribution and 

an unequal number of samples, the impact of tumor percentage on classification must be 

interpreted with caution. Still, approximately 60 % of all samples with low tumor content 

were correctly classified.    

In recent years, two diagnostic mRNA classifiers [4, 25] and one miRNA classifier [3] have 

become commercially available. It is difficult to compare performance across classifiers, 

due to different configurations of assay classes. Obviously, differences in number and 

sample distribution among the included assay classes affect the performance estimate, but 

other important considerations need to be highlighted. First, the performance of most 

classifiers is often estimated on a combination of primary tumor samples and metastatic 

samples, with metastases contributing merely 1/3 of the total validation set. In the present 

study, we showed that primary tumor site classification from primary tumor samples 

reached 90 % accuracy but only 38.2 % accuracy was achieved when the classifier was 

applied to an independent set of liver core biopsies, predominantly constituting 

metastases. Second, most classifiers are validated on a combination of resections and 

biopsies. Since the relative amount of normal surrounding tissue usually is higher in 

biopsies than in resections, the influence of normal tissue contamination may be 
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overlooked by this approach. The importance of validating a molecular classifier on 

representative samples on which it is intended to perform, remains essential in order to 

avoid potential overestimation of classifier performance.  

Ideally, a classifier should be able to distinguish between every known primary tumor, and 

every known subtype. However, this may not be possible due to overlap between genetic 

signatures and limited number of samples. Therefore, the selection of primary tumor 

classes in the present study was made to encompass (i) primary tumors that often 

metastasize to the liver, (ii) primary tumors difficult to diagnose with conventional 

diagnostic methods and (iii) common primary tumors for which an effective systemic 

treatment is available, making a correct tumor classification clinically important. Liver 

metastases may originate from primary tumors not included in the training set. This is not 

different from other classifiers, but highlights the importance of a multidisciplinary 

approach in cancer diagnostics.  

Histopathology remains the cornerstone in primary tumor site identification. Although 

diagnostic accuracy has improved with the routine use of IHC markers, the primary tumor 

site is still missed in a substantial number of patients with metastatic cancer, due to 

unspecific morphological appearance and lack of specific IHC markers. Furthermore, 

diagnosis of the primary tumor site of metastatic tissue by histopathology often requires a 

step-wise and time-consuming approach [26]. An important and yet unanswered question 

is whether molecular classification adds to the preexisting diagnostic work-up.  In a 

recently published meta-analysis, the classification accuracy of immunohistochemistry was 

estimated based on five studies, showing an expected mean accuracy of 65.6 % in 

primary tumor site identification of metastatic cancers [27]. However, the results may not 

reflect the true ability of IHC, due to differences in class distribution among the included 
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studies and a restricted number of IHC stains.  Importantly, 3 out of 5 studies in the meta-

analysis either did not include GI cancers or included GI cancers as one common group 

[28-30]. A comparison between molecular classification and IHC guided methods was 

recently reported in a pilot study, showing a higher percentage of correctly diagnosed 

metastatic samples, when a molecular classification method was applied [31].  Notably, a 

substantial inter-observer difference was revealed amongst the five pathologists who took 

part in the study. Hence, the multi-disciplinary diagnostic work-up of cancer patients, which 

includes clinical assessment, imaging and histopathology, may indeed improve if 

molecular classification is added.  

In conclusion, we have developed a miRNA classifier, which is able to determine the 

primary tumor site of FFPE liver core biopsies. Based on our data set, the signal provided 

by the surrounding normal liver hampered correct classification significantly. By applying a 

computational contamination model, adjustment of the liver signal was accomplished and 

a valid classification could be established on tissue containing less than 35 % tumor, 

making prior microdissection redundant. The results of an independent validation study 

performed entirely on liver core biopsies, predominantly representing metastatic tumors, is 

encouraging. Due to a limited amount of core biopsies, the independent validation was 

performed on a restricted data set, which is a limitation of our study. Notably, the validation 

samples reflect the characteristics of the underlying population of interest. The classifier 

was designed to perform on biopsies exclusively from the liver. Although it has several 

advantages, it also narrows the clinical application. In order to broaden the future use of 

the classifier, it seems reasonable to believe that the classifier could be transformed, 

enabling diagnosis of metastases from several other sites including lymph nodes, lung and 

bone.  
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In patients where IHC provides inadequate classification (none or multiple diagnoses) or 

when histopathology and imaging offers discordant diagnostic suggestions, the miRNA 

classifier may add important diagnostic information. An independent validation on a larger 

sample set consisting of metastatic lesions and a prospectively conducted study is 

planned to validate the applicability of this classifier in the diagnostic setting.  
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Figure Legends 

Figure 1.Principal Component Plot illustrating the clustering of training samples. Samples 

were divided into: A) Core biopsies from non-liver derived malignancies representing 

metastases from bladder, breast, colorectal, gastric/cardia, lung, pancreatic cancer and 

mixed primary tumors of squamous cell morphology. B) Resected non-liver derived 

malignancies constituting primary tumors from the same 7 classes mentioned above. C) 

Core biopsies from liver derived malignancies (hepatocellular carcinoma, 

cholangiocarcinoma) and normal liver (reactive and cirrhotic).  D) Resected liver-derived 

malignancies and normal liver.  
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Figure 2.Confusion matrix showing CCM+CB classifier predictions upon the independent 

validation set consisting of 55 liver core biopsies. Each row and column corresponds to 

one of the assay classes included in the classifier. Columns indicate classes according to 

the reference diagnosis; rows indicate the diagnosis predicted by the CCM+CB classifier. 

Numbers on the diagonal indicate cases for which the predicted diagnosis matched the 

reference diagnosis, whereas off-diagonal numbers were in disagreement and counted as 

test errors. The positive percentage agreement for each class was calculated.   

Squamous, Squamous cell carcinoma (mixed population); CCA, cholangiocarcinoma; 

CRC, colorectal carcinoma; GC, gastric or cardia carcinoma; HCC, hepatocellular 

carcinoma. 

 

Supplementary Figure S1. Confusion matrix showing PRIM classifier predictions upon 

cross-validation. The PRIM classifier was trained on primary tumor and normal liver 

resections only. Classes according to reference diagnosis are shown along the columns 

and classes according to classifier predictions are shown along the rows. The positive 

percentage agreement for each assay class was calculated. 

Squamous, squamous cell carcinoma (mixed population); CCA, cholangiocarcinoma; 

CRC, Colorectal carcinoma; GC, gastric or cardia carcinoma; HCC, hepatocellular 

carcinoma,  

 

Supplementary Figure S2. Confusion matrix showing CCM+CB classifier predictions 

upon 8-fold cross-validation. Cross-validation was performed on 79 liver core biopsies. 

Each assay class was represented by 2-12 samples. Each row and column corresponds to 

one of the assay classes included in the classifier. Columns indicate classes according to 
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the reference diagnosis; rows indicate the diagnosis predicted by the CCM+CB classifier. 

Numbers on the diagonal indicate cases for which the predicted diagnosis matched the 

reference diagnosis, whereas off-diagonal numbers were in disagreement and counted as 

test errors. The positive percentage agreement for each class was calculated.   

Squamous, squamous cell carcinoma (mixed population); CCA, cholangiocarcinoma; 

CRC, colorectal carcinoma; GC, gastric or cardia carcinoma; HCC, hepatocellular 

carcinoma. 

 



Table 1.Selected characteristics of samples included in classifier training and validation 

Tissue of 
origin       

Histology           Resection no. (TR) 
 

  Biopsy no. (TR)   
                 

   Biopsy no. (V) 

Bladder Urothelial 
carcinoma 

         17                  2                     5 

Breast Invasive ductal, 
lobular, medullar 

         17                  7                     5  

Billiary tract 
 

Adenocarcinoma          20                  4                     5  

Colorectal Adenocarcinoma, 
mucinous 
adenocarcinoma 

         20                12                     5 

Gastric/cardia Adenocarcinoma, 
signet ring cell 
carcinoma 

         18                12                     5 

Liver Hepatocellular 
carcinoma 

         17                  3                     5 

Normal liver 
 

Reactive          20                  7                     5 

Normal liver 
 

Cirrhotic          17                  8                     5 

Lung Adenocarcinoma, 
Mixed type, 
 Large cell 

         17                  2                     5 

Pancreas 
 

Adenocarcinoma          20                 10                    5 

Cervix, Lung, 
Anal, 
Esophagus, 
Head and Neck 

Squamous cell 
carcinoma 

          16                 12                     5 

Total           199                 79                    55 
     
     
 

The tissue of origin, histology and number (no.) of samples used for classifier training (TR) and 
independent validation (V) are listed. Normal liver was subdivided into reactive and cirrhotic liver, 
but was regarded as one class. Squamous cell carcinoma was regarded as one class of mixed 
population. 
Resection, primary tumor and normal liver resections; Biopsy, liver core biopsies consisting of 
liver metastases, primary liver cancer and normal liver.  



 

Table 2. Performance of the PRIM classifier, CCM classifier and CCM+CB classifier on the 79-
core biopsy sample set. 
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PRIM 0 2 4 8 2 1 1 1 2 14 44.3 %

CCM 0 0 2 9 8 1 1 3 8 14 58.2 %

CCM+CB 1 4 4 8 8 1 1 4 9 13 67.1 %

 

Each assay class was represented by 2-15 samples, as marked in brackets. The number of 
correctly classified samples according to the reference diagnosis is listed for each assay class. The 
sample set constituted a test set for the PRIM and CCM classifier. For the CCM+CB classifier, 
performance was estimated by eight-fold cross validation.  
Squamous, squamous cell carcinoma (mixed population). Normal liver, 8 cirrhotic and 7 reactive 
liver samples. CCA, cholangiocarcinoma; CRC, colorectal carcinoma; GC, gastric or cardia 
carcinoma; HCC, hepatocellular carcinoma.  
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Lung 0 0 0 0 0 0 0 3 0 0 

Pancreas 0 1 0 0 1 0 0 1 5 0 
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s 0 0 0 1 0 0 0 0 0 3 

           

Positive percentage 
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Figure 2. 
 



 

Table 3. Results of the independent validation of the PRIM classifier, CCM classifier and CCM+CB 
classifier.  
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PRIM 1 1 1 3 1 3 0 0 2 9 38.2 %

CCM 3 4 3 4 2 4 3 0 4 10 67.3 %

CCM+CB 3 4 1 4 3 5 3 5 3 10 74.5 %

 

The performance of each of the three classifiers on the independent validation set consisting of 55 
liver core biopsies is shown. Each class was represented by 5 samples, except the Normal liver 
class, which consisted of 5 reactive liver samples and 5 cirrhotic liver samples. The number of 
correctly classified samples according to the reference diagnosis is listed for each assay class. 
Squamous, squamous cell carcinoma (mixed population); CCA, cholangiocarcinoma; CRC, 
colorectal carcinoma; GC, gastric or cardia carcinoma; HCC, hepatocellular carcinoma. 
 

 



Table 4. High confidence predictions of the CCM+CB classifier.  
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Agreement with 
reference diagnosis 

  3     3     1     3     2     5     2     1     3   9    32 

Positive percentage 
agreement 100% 100% 50% 100% 67% 100% 100% 100% 75% 90% 89% 

The number of high confidence predictions (estimated class probability ≥ 0.6) and the number of 
high confidence predictions in agreement with the reference diagnosis are listed for the 55 liver 
core biopsies constituting the independent validation set. The positive percentage agreement was 
calculated for each individual class and for the overall agreement.    
Squamous, squamous cell carcinoma (mixed population); CCA, cholangiocarcinoma; CRC, 
colorectal carcinoma; GC, gastric or cardia carcinoma; HCC, hepatocellular carcinoma.  
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Package ‘msgl’
May 27, 2013

Type Package

Title High dimensional multiclass classification using sparse group lasso

Version 0.1.3

Date 2013-20-05

Author Martin Vincent

Maintainer Martin Vincent <vincent@math.ku.dk>

Description Sparse group lasso multiclass classification, suitable for
high dimensional problems with many classes. Fast algorithm for
solving the multinomial sparse group lasso convex optimization
problem. This package apply template metaprogramming
techniques, therefore -- when compiling the package from source
-- a high level of optimization is needed to gain full speed
(e.g. for the GCC compiler use -O3). Use of multiple processors
for cross validation and subsampling is supported through
OpenMP. The Armadillo C++ library is used as the primary linear
algebra engine. Armadillo is licensed under the MPL 2.0. The
Armadillo C++ library is primarily developed at NICTA
(Australia) by Conrad Sanderson, with contributions from around
the world. Furthermore the package utilize various Boost
libraries, in particular the Tuple library by Jaakko Jarvi and
the Random library by Jens Maurer. The Boost libraries are
licensed under the Boost Software License.

URL http://arxiv.org/abs/1205.1245 http://arma.sourceforge.net/,
http://www.boost.org/

License GPL (>= 2)

LazyLoad yes

Depends R (>= 2.13.0), Matrix, RcppProgress, RcppArmadillo, BH

LinkingTo Rcpp, RcppProgress, RcppArmadillo, BH
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2 msgl

Collate ’msgl_multinomial.R’

NeedsCompilation yes

Repository CRAN

Date/Publication 2013-05-27 22:45:46

R topics documented:
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msgl Fit a multinomial sparse group lasso regularization path.

Description

For a classification problem with K classes and p covariates dived into m groups. A sequence of
minimizers (one for each lambda given in the lambda argument) of

R̂(β) + λ

(
(1− α)

m∑

J=1

γJ‖β(J)‖2 + α

n∑

i=1

ξi|βi|
)

where R̂ is the weighted empirical log-likelihood risk of the multinomial regression model. The
vector β(J) denotes the parameters associated with the J’th group of covariates (default is one
covariate per group, hence the default dimension of β(J) isK). The group weights γ ∈ [0,∞)m and
the parameter weights ξ = (ξ(1), . . . , ξ(m)) ∈ [0,∞)n with ξ(1) ∈ [0,∞)n1 , . . . , ξ(m) ∈ [0,∞)nm .

Usage

msgl(x, classes,
sampleWeights = rep(1/length(classes), length(classes)),
grouping = NULL, groupWeights = NULL,
parameterWeights = NULL, alpha = 0.5,
standardize = TRUE, lambda, return = 1:length(lambda),
sparse.data = FALSE,
algorithm.config = sgl.standard.config)
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Arguments

x design matrix, matrix of size N × p.
classes classes, factor of length N .
sampleWeights sample weights, a vector of length N .
grouping grouping of covariates, a vector of length p. Each element of the vector specify-

ing the group of the covariate.
groupWeights the group weights, a vector of length m+1 (the number of groups). The first el-

ement of the vector is the intercept weight. If groupWeights = NULL default
weights will be used. Default weights are 0 for the intercept and

√
K · number of covariates in the group

for all other weights.
parameterWeights

a matrix of size K × (p + 1). The first column of the matrix is the intercept
weights. Default weights are is 0 for the intercept weights and 1 for all other
weights.

alpha the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group
lasso penalty.

standardize if TRUE the covariates are standardize before fitting the model. The model
parameters are returned in the original scale.

lambda the lambda sequence for the regularization path.
return the indices of lambda values for which to return a the fitted parameters.
sparse.data if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as

sparse by default.
algorithm.config

the algorithm configuration to be used.

Value

beta the fitted parameters – a list of length length(lambda) with each entry a matrix
of size K × (p+ 1) holding the fitted parameters

loss the values of the loss function
objective the values of the objective function (i.e. loss + penalty)
lambda the lambda values used

Author(s)

Martin Vincent

Examples

data(SimData)
x <- sim.data$x
classes <- sim.data$classes
lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 100L, lambda.min = 0.01)
fit <- msgl(x, classes, alpha = .5, lambda = lambda)
fit$beta[[10]] #model with lambda = lambda[10]



4 msgl.cv

msgl.cv Multinomial sparse group lasso cross validation using multiple pos-
sessors

Description

Multinomial sparse group lasso cross validation using multiple possessors

Usage

msgl.cv(x, classes, sampleWeights = NULL,
grouping = NULL, groupWeights = NULL,
parameterWeights = NULL, alpha = 0.5,
standardize = TRUE, lambda, fold = 10L,
cv.indices = list(), sparse.data = FALSE,
max.threads = 2L, seed = 331L,
algorithm.config = sgl.standard.config)

Arguments

x design matrix, matrix of size N × p.

classes classes, factor of length N .

sampleWeights sample weights, a vector of length N .

grouping grouping of covariates, a vector of length p. Each element of the vector specify-
ing the group of the covariate.

groupWeights the group weights, a vector of length m+1 (the number of groups). The first el-
ement of the vector is the intercept weight. If groupWeights = NULL default
weights will be used. Default weights are 0 for the intercept and

√
K · number of covariates in the group

for all other weights.
parameterWeights

a matrix of size K × (p + 1). The first column of the matrix is the intercept
weights. Default weights are is 0 for the intercept weights and 1 for all other
weights.

alpha the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group
lasso penalty.

standardize if TRUE the covariates are standardize before fitting the model. The model
parameters are returned in the original scale.

lambda the lambda sequence for the regularization path.

fold the fold of the cross validation, an integer larger than 1 and less than N + 1. Ig-
nored if cv.indices != NULL. If fold≤max(table(classes)) then the data
will be split into fold disjoint subsets keeping the ration of classes approxi-
mately equal. Otherwise the data will be split into fold disjoint subsets without
keeping the ration fixed.
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cv.indices a list of indices of a cross validation splitting. If cv.indices = NULL then a
random splitting will be generated using the fold argument.

sparse.data if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as
sparse by default.

max.threads the maximal number of threads to be used

seed the seed used for generating the random cross validation splitting, only used if
fold≤max(table(classes)).

algorithm.config

the algorithm configuration to be used.

Value

link the linear predictors – a list of length length(lambda) one item for each lambda
value, with each item a matrix of size K ×N containing the linear predictors.

response the estimated probabilities - a list of length length(lambda) one item for each
lambda value, with each item a matrix of sizeK×N containing the probabilities.

classes the estimated classes - a matrix of size N × d with d =length(lambda).

cv.indices the cross validation splitting used.

features average number of features used in the models.

parameters average number of parameters used in the models.

Author(s)

Martin Vincent

Examples

data(SimData)
x <- sim.data$x
classes <- sim.data$classes
lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 25L, lambda.min = 0.03)
fit.cv <- msgl.cv(x, classes, alpha = .5, lambda = lambda)

# Missclassification count
colSums(fit.cv$classes != classes)

msgl.lambda.seq Computes a lambda sequence for the regularization path

Description

Computes a decreasing lambda sequence of length d. The sequence ranges from a data determined
maximal lambda λmax to the user inputed lambda.min.
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Usage

msgl.lambda.seq(x, classes,
sampleWeights = rep(1/length(classes), length(classes)),
grouping = NULL, groupWeights = NULL,
parameterWeights = NULL, alpha = 0.5, d = 100L,
standardize = TRUE, lambda.min, sparse.data = FALSE,
algorithm.config = sgl.standard.config)

Arguments

x design matrix, matrix of size N × p.

classes classes, factor of length N .

sampleWeights sample weights, a vector of length N .

grouping grouping of covariates, a vector of length p. Each element of the vector specify-
ing the group of the covariate.

groupWeights the group weights, a vector of length m+1 (the number of groups). The first el-
ement of the vector is the intercept weight. If groupWeights = NULL default
weights will be used. Default weights are 0 for the intercept and

√
K · number of covariates in the group

for all other weights.
parameterWeights

a matrix of size K × (p + 1). The first column of the matrix is the intercept
weights. Default weights are is 0 for the intercept weights and 1 for all other
weights.

alpha the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group
lasso penalty.

d the length of lambda sequence

standardize if TRUE the covariates are standardize before fitting the model. The model
parameters are returned in the original scale.

lambda.min the smallest lambda value in the computed sequence.

sparse.data if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as
sparse by default.

algorithm.config

the algorithm configuration to be used.

Value

a vector of length d containing the compute lambda sequence.

Author(s)

Martin Vincent
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Examples

data(SimData)
x <- sim.data$x
classes <- sim.data$classes
lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 100L, lambda.min = 0.01)

msgl.subsampling Multinomial sparse group lasso generic subsampling procedure

Description

Support the use of multiple processors.

Usage

msgl.subsampling(x, classes,
sampleWeights = rep(1/length(classes), length(classes)),
grouping = NULL, groupWeights = NULL,
parameterWeights = NULL, alpha = 0.5,
standardize = TRUE, lambda, training, test,
sparse.data = FALSE, max.threads = 2L,
algorithm.config = sgl.standard.config)

Arguments

x design matrix, matrix of size N × p.

classes classes, factor of length N .

sampleWeights sample weights, a vector of length N .

grouping grouping of covariates, a vector of length p. Each element of the vector specify-
ing the group of the covariate.

groupWeights the group weights, a vector of length m+1 (the number of groups). The first el-
ement of the vector is the intercept weight. If groupWeights = NULL default
weights will be used. Default weights are 0 for the intercept and

√
K · number of covariates in the group

for all other weights.
parameterWeights

a matrix of size K × (p + 1). The first column of the matrix is the intercept
weights. Default weights are is 0 for the intercept weights and 1 for all other
weights.

alpha the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group
lasso penalty.

standardize if TRUE the covariates are standardize before fitting the model. The model
parameters are returned in the original scale.
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lambda the lambda sequence for the regularization path.

training a list of training samples, each item of the list corresponding to a subsample.
Each item in the list must be a vector with the indices of the training samples for
the corresponding subsample. The length of the list must equal the length of the
test list.

test a list of test samples, each item of the list corresponding to a subsample. Each
item in the list must be vector with the indices of the test samples for the
corresponding subsample. The length of the list must equal the length of the
training list.

sparse.data if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as
sparse by default.

max.threads the maximal number of threads to be used
algorithm.config

the algorithm configuration to be used.

Value

link the linear predictors – a list of length length(test) with each element of the
list another list of length length(lambda) one item for each lambda value, with
each item a matrix of size K ×N containing the linear predictors.

response the estimated probabilities – a list of length length(test) with each element of
the list another list of length length(lambda) one item for each lambda value,
with each item a matrix of size K ×N containing the probabilities.

classes the estimated classes – a list of length length(test) with each element of the
list a matrix of size N × d with d =length(lambda).

features number of features used in the models.

parameters number of parameters used in the models.

Author(s)

Martin Vincent

Examples

data(SimData)
x <- sim.data$x
classes <- sim.data$classes
lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 100L, lambda.min = 0.03)

test <- replicate(5, sample(1:length(classes))[1:20], simplify = FALSE)
train <- lapply(test, function(s) (1:length(classes))[-s])

fit.sub <- msgl.subsampling(x, classes, alpha = .5, lambda = lambda,
training = train, test = test)

# Missclassification count of second subsample
colSums(fit.sub$classes[[2]] != classes[test[[2]]])
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predict.msgl Predict

Description

Computes the linear predictors, the estimated probabilities and the estimated classes for a new data
set.

Usage

## S3 method for class ’msgl’
predict(object, x, sparse.data = FALSE,

...)

Arguments

object an object of class msgl, produced with msgl.

x a data matrix of size Nnew × p.

sparse.data if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as
sparse by default.

... ignored.

Value

link the linear predictors – a list of length length(fit$beta) one item for each
model, with each item a matrix of size K ×Nnew containing the linear predic-
tors.

response the estimated probabilities – a list of length length(fit$beta) one item for
each model, with each item a matrix of size K×Nnew containing the probabil-
ities.

classes the estimated classes – a matrix of size Nnew×d with d =length(fit$beta).

Author(s)

Martin Vincent
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sgl.algorithm.config Create a new algorithm configuration

Description

With the exception of verbose it is not recommended to change any of the default values.

Usage

sgl.algorithm.config(tolerance_penalized_main_equation_loop = 1e-10,
tolerance_penalized_inner_loop_alpha = 1e-04,
tolerance_penalized_inner_loop_beta = 1,
tolerance_penalized_middel_loop_alpha = 0.01,
tolerance_penalized_outer_loop_alpha = 0.01,
tolerance_penalized_outer_loop_beta = 0,
tolerance_penalized_outer_loop_gamma = 1e-05,
use_bound_optimization = TRUE,
use_stepsize_optimization_in_penalizeed_loop = TRUE,
stepsize_opt_penalized_initial_t = 1,
stepsize_opt_penalized_a = 0.1,
stepsize_opt_penalized_b = 0.1, verbose = FALSE)

Arguments

tolerance_penalized_main_equation_loop

tolerance threshold.
tolerance_penalized_inner_loop_alpha

tolerance threshold.
tolerance_penalized_inner_loop_beta

tolerance threshold.
tolerance_penalized_middel_loop_alpha

tolerance threshold.
tolerance_penalized_outer_loop_alpha

tolerance threshold.
tolerance_penalized_outer_loop_beta

tolerance threshold.
tolerance_penalized_outer_loop_gamma

tolerance threshold.
use_bound_optimization

if TRUE hessian bound check will be used.
use_stepsize_optimization_in_penalizeed_loop

if TRUE step-size optimization will be used.
stepsize_opt_penalized_initial_t

initial step-size.
stepsize_opt_penalized_a

step-size optimization parameter.
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stepsize_opt_penalized_b

step-size optimization parameter.
verbose If TRUE some information, regarding the status of the algorithm, will be printed

in the R terminal.

Value

A configuration.

Author(s)

Martin Vincent

Examples

config.verbose <- sgl.algorithm.config(verbose = TRUE)

sgl.standard.config Standard algorithm configuration

Description

sgl.standard.config <- sgl.algorithm.config()

Usage

sgl.standard.config

Format

List of 13 $ tolerance_penalized_main_equation_loop : num 1e-10 $ tolerance_penalized_inner_loop_alpha
: num 1e-04 $ tolerance_penalized_inner_loop_beta : num 1 $ tolerance_penalized_middel_loop_alpha
: num 0.01 $ tolerance_penalized_outer_loop_alpha : num 0.01 $ tolerance_penalized_outer_loop_beta
: num 0 $ tolerance_penalized_outer_loop_gamma : num 1e-05 $ use_bound_optimization : logi
TRUE $ use_stepsize_optimization_in_penalizeed_loop: logi TRUE $ stepsize_opt_penalized_initial_t
: num 1 $ stepsize_opt_penalized_a : num 0.1 $ stepsize_opt_penalized_b : num 0.1 $ verbose :
logi FALSE

Author(s)

Martin Vicnet

sim.data Simulated data set

Description

The use of this data set is only intended for testing and examples. The data set contains 100 simu-
lated samples grouped into 10 classes. For each sample 400 covariates have been simulated.
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Appendix A

Various results

A.1 Quadratic approximations

Consider the linear model setup of section 2.4, hence B is the space of K×p matrices. We shall,
for β ∈ B, denote vecβ by β, in order to avoid to heavy notation. Consider now the quadratic
approximation Q : B → R

Q(β)
def
= R̂D(β0) +∇R̂D(β0)T

(
β − β0

)
+

1

2

(
β − β0

)T ∇2R̂D
(
β − β0

)
(A.1)

of the empirical risk R̂D at β0 ∈ B. Often we seek a minimizer of the empirical risk (perhaps
regularized) and often such a minimizer is obtained by sequentially optimizing quadratic ap-
proximations as (A.1). If the quadratic approximations are not bounded below then such an
approach will fail. It is therefore a central question if the quadratic approximations are bounded
below or not. For linear models Proposition 6 below provide a sufficient condition in terms of
the functions Lk : RK → R defined by

Lk(η)
def
= L(h(η), k)

for k ∈ SK and a loss L. Namely, if the gradient of Lk is orthogonal to the kernel of the Hessian
of Lk then the quadratic approximation (A.1) is bounded below.

A.1.1 The gradient and the Hessian

The gradient and the Hessian of the empirical risk of linear models has a specific form as can
be seen in Proposition 5 below. For any loss L and any linear model h we have that;

Proposition 5. The equalities

∇R̂D(β) =
1

N

N∑

i=1

xi ⊗∇Lyi(βxi)

and

∇2R̂D(β) =
1

N

N∑

i=1

xix
T
i ⊗∇2Lyi(βxi)

holds.
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Proof. For the first equality we need to show that, for k ∈ SK , the gradient of Rk(β)
def
= Lk(βx)

is
xT ⊗∇Lk(βx).

Define ηx : B → RK by ηx(β)
def
= βx, then Rk(β) = Lk ◦ ηx. The differential of Rk is

dRk = dLk ◦ ηx)

= dLk dβx.

This implies that
dRk = xT ⊗ dLk d vecβ.

The first equality now follows by the first identification theorem, see Magnus and Neudecker
[10].

The differential of the transposed of the gradient ∇Rk = x⊗∇Lk(βx) is
(
x⊗ d(∇LTk )(βx)

)
dβx.

This implies that
d vec∇RTk = xT ⊗

(
x⊗∇2Lk(βx)

)
d vecβ.

The second equality now follows by the first identification theorem.

A.1.2 The multinomial regression model

For the multinomial regression model the gradient of Lk is

∇Lk(η) = h(η)− ek,

and the Hessian is
∇2Lk(η) = diag(h(η))− h(η)Th(η).

The kernel of the Hessian is seen to be the subspace generated by the single vector v =
e1 + · · · + eK . Since (el − p̃)T v = 0 for all l = 1, . . . ,K the conditions in Proposition 6 are
fulfilled; hence, the quadratic approximations of the multinomial log likelihood are bounded
below. It is desirable that the quadratic approximations are bounded below as this ensures that
a minimizer, of the quadratic approximation, exists.

Proposition 6. If the gradient ∇Lk(η) is orthogonal to the kernel of the Hessian ∇2Lk(η) for
all η ∈ RK and k ∈ SK then Q is bounded below.

Proof. Define for each i = 1, . . . , N the quadratic function Qi : RK×p → R by

Qi(β)
def
= [xi ⊗∇Lyi(β0xi)]

T (
β − β0

)
+

1

2

(
β − β0

)T [
xix

T
i ⊗∇2Lyi(β0xi)

] (
β − β0

)
.

Then Q(β) = R̂D(β0) +
∑N
i=1Qi(β) and since, by lemma 6, each of the Qi quadratic functions

are bounded below then we are done.

Lemma 6. Assume that the gradient ∇Lk(η) is orthogonal to the kernel of the Hessian ∇2Lk(η).
Then the quadratic function

[x⊗∇Lk(η)]
T (
β − β0

)
+

1

2

(
β − β0

)T [
xxT ⊗∇2Lk(η)(β0x)

] (
β − β0

)

is bounded below.
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Proof. Let V = ker∇2Lk(η); hence, V is a subspace of RK . Denote by v1, . . . , vm a basis for V ,
and extend this to a basis v1, . . . , vK for RK . Choose a basis w1, . . . , wp for Rp. The collection
wj ⊗ vk for j = 1, . . . p, k = 1, . . . ,K is then a basis for the tensor product RK ⊗Rp ' RK×p. If

(
xxT ⊗∇2Lk(η)

)
wj ⊗ vk = 0

then xTi wj = 0 or vk ∈ V . It follows that, in this case,

(xi ⊗∇Lk(η))
T
wj ⊗ vk = 0.

The statement now follows by Lemma 7.

Lemma 7. Let q ∈ Rn and let A be any symmetric positive semi-definite n× n matrix. If q is
orthogonal to the kernel of A, then the quadratic function Q : Rn → R defined by

Q(z) = qT z + zTAz

is bounded below.

Proof. Let V denote the kernel of A, and assume that q is orthogonal to V . Then for any vector
v ∈ Rn

Q(v) = Q(Pv)

where P is the projection onto the orthogonal complement of V . Q is bounded below on the
orthogonal complement V ⊥ of V , since PTAP is positive definite on V ⊥.

A.2 Identifiability and parameter interpretation

For a parametric model p : B × Rp → ∆K the set of parameterizable models is

P def
= {q : Rp → ∆K | there exists β ∈ B such that q = p(β)}.

The set P is a subset of the set of all conditional distributions on Y given X. It is the image

of the function B
φ−→ P, defined by mapping β to the function x → p(β)(x). The set

Eq
def
= φ−1(q) ⊆ B is called the fiber over q ∈ P. The fibers partitions the parameter set B into

disjoint sets, i.e.

B =
∐

q∈P
Eq

where q is denotes disjoint union; an ordinary union in which the sets are disjoint.
The set P is the set of all, by the model, reachable classifiers. The question of identifiability

is the question of the structure of the fibers of the model. Each fiber corresponds to a unique
classifier, hence the model can be used to identity parameters modulo the structure of the fibers.

When dealing with classification we are sometimes only interested in using the model to
make predictions, in such cases identifiability is not an issue we need to consider. If we wish to
interpret the estimated parameters of the model then we need to have in mind the structure of
the fibers.

The strongest form of identifiability is when each parameter corresponds to a unique classi-
fier. That is;

Definition 19 (Strong identifiability). A model is said to be strong identifiable if the fibers of
the model are singletons.
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Strong identifiability is the usual notion of identifiability. However strong identifiability is
too restrictive for the models and estimators we will study.

In the linear case where B can be structured as the space of K × p matrices, we can define
linear identifiability. We will say that;

Definition 20 (Linear identifiability). A model is linear identifiable if the fibers of the model
are

β0 + 1K ⊗ Rp

for β0 ∈ B and where 1K is the K dimensional vector of all ones 1.

A.2.1 Identifiability of regular linear models

Let h be a regular linear model. The fibers over β0 ∈ B is

{β ∈ B | p(β) = p(β0)} = {β ∈ B | βx ∈ h−1(β0x) for all x ∈ Rp}.

It follows by Lemma 8 that; the fiber over β0 ∈ B is the set of all β ∈ B for which there exist
a function c : Rp → R+ such that

c(x)g(ηk(x)) = g(η̃k(x)) for all x ∈ Rp

for all k ∈ SK and where η(x) = βx and η̃(x) = β0x.

Lemma 8. Let ξ ∈ ∆K then for a regular linear model h

h−1(ξ) = {η ∈ RK | there exist c > 0 such that g(η̃k) = cg(ηk) for all k ∈ SK}

where η̃ ∈ h−1(ξ).

Proof. It follows directly form Lemma 2 that the inclusion ⊇ holds. To see that the other
inclusion holds let η ∈ h−1(ξ) and c = g(η̃1)/g(η1). Since h(η) = h(η̃) = ξ we have that

g(η̃1)
∑K
k=1 g(η̃k)

= ξ1 =
g(η1)

∑K
k=1 g(ηk)

which implies that ∑K
k=1 g(ηk)

∑K
k=1 g(η̃k)

=
g(η1)

g(η̃1)
=

1

c
. (A.2)

Now for l ∈ SK we have that

g(η̃l)∑K
k=1 g(η̃k)

= ξl =
g(ηl)∑K
k=1 g(ηk)

which by (A.2) implies that
g(η̃l) = cg(ηl).

1β0 + 1K ⊗ Rp is short notation for the set {β0 + 1K ⊗ v | v ∈ Rp}
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A.2.2 Identifiability of the (symmetric) multinomial regression model

Theorem 5. The (symmetric) multinomial regression model is linear identifiable.

Proof. By Lemma 8 we have that the fiber over p(β̃) is the union of

A(c) = {β ∈ RK×p | exp(βx) = exp(β̃x+ c(x)1) for all x ∈ Rp}
= {β ∈ RK×p | (β − β̃)x = c(x)1 for all x ∈ Rp}

over all functions c : Rp → R. Since A(c) = ∅ if c is non-linear, it follows that the fiber over
p(β̃) is ⋃

{c:Rp→R|c is linear}
A(c).

Which implies that the fiber is

{β ∈ RK×p | there exist c ∈ Rp such that (β − β̃)x = cTx1}.

This can be rewritten as

{β ∈ RK×p | there exist c ∈ Rp such that β = β̃ + 1⊗ cT }.



Appendix B

Results from convex analysis

In this appendix some results from convex analysis are collected, details can be found in Urruty
and Lemaréchal [18].

B.0.3 Set operations

We will use the following convex preserving set operations;

• For a convex set C scalar multiplication by λ ∈ R is the convex set

λC
def
= {λs | s ∈ C}. (B.1)

• For a affine map A the image A(C) of C is the convex set

AC
def
= A(C). (B.2)

• For convex sets C1 and C2 the sum is the convex set

C1 + C2
def
= {t+ s | t ∈ C1, s ∈ C2}. (B.3)

B.0.4 Sublinear function

A function σ : Rn → R is said to be (finite) sublinear if

σ(t1x1 + t2x2) ≤ t1σ(x1) + t2σ(x2) (B.4)

for all x1, x2 ∈ Rn and all t1, t2 > 0. A function is sublinear if and only if it is convex and
positively homogeneous. Examples of sublinear functions are norms, semi norms and linear
functions.

B.0.5 Support function

For a compact convex set C ⊆ Rn the support function of C is the function σC : Rn → R
defined by

σC(x)
def
= sup{sTx | s ∈ C}. (B.5)

We note that following properties of support functions can be shown;
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Figure B.1: Examples of normal cones

• Sublinear functions is in a bijective correspondence with support functions of compact
convex sets.

• For a symmetric matrix A and a support function σC it follows by the definition that
σC(Ax) = σAC(x).

• For convex sets C1 and C2 σC1
(x) + σC2

(x) = σC1+C2
(x).

B.0.6 Normal cone

For a convex set C the normal cone to C at x is

NC(x)
def
= {s ∈ Rn | sT (y − x) ≤ 0 for all y ∈ C}. (B.6)

The normal cone is a cone.

B.0.7 Projection onto a convex set

Let C ⊆ Rp be a compact convex set, the projection of x ∈ Rp onto C is the element in C with
smallest distance to x, i.e. a solution to

minimize
y∈C

‖y − x‖22 . (B.7)

It can be shown that (B.7) always have a unique solution. We may therefore define the projection
onto C as the function PC : Rp → Rp given by

PC(x)
def
= arg min

y∈C
‖y − x‖22 . (B.8)

The following properties can be shown

• For x ∈ Rp
t = PC(x) ⇐⇒ (x− t)T (y − t) ≤ 0 for all y ∈ C. (B.9)

• For x ∈ C and t ∈ Rp it holds that

t ∈ NC(x) ⇐⇒ x = PC(x+ t). (B.10)



Appendix C

Data examples

• Primary Cancers This data set is a subset of the data used in Perell et al. [12] (Chapter
7). The data set consist of miRNA expression measurements of leaser dissected primary
cancers.

• Childhood Leukemia Gene expression in acute lymphoblastic leukemia cells after treat-
ment with methotrexate and mercaptopurine given alone or in combination, Cheok et al.
[4]. Genes not present in at least one sample were removed.

• Brain tumor The data set consist of mRNA measurements of 4 different tumors of the
central nervous system and normal cerebellum, Pomeroy et al. [13].

• Amazon reviews The Amazon review data set consists of 10k textual features (includ-
ing lexical, syntactic, idiosyncratic and content features) extracted from 1500 customer
reviews from the Amazon Commerce Website. The reviews were collected among the
reviews from 50 authors with 50 reviews per author. The primary classification task is to
identify the author based on the textual features. The data and feature set were presented
in [9] and can be found in the UCI machine learning repository [6].
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Article: Efficient identification of
metastases

R. Søkilde, M. Vincent, A. K. Møller, A. Hansen, P. E. Høiby, T. Blondal, B. S. Nielsen,
G. Daugaard, S. Møller, and T. Litman. Efficient identification of metastases by their microrna
profile
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Abstract 

Carcinomas of unknown primary origin constitute 3‐5% of all newly diagnosed metastatic cancers, of which 

the primary source is difficult to classify with current histological methods. Effective cancer treatment 

depends on early and accurate identification of the tumor, which is why patients with metastases of 

unknown origin have poor prognosis and short survival. Because microRNA expression is highly tissue 

specific, the microRNA profile of a metastasis may be used to identify its origin. As a first step to realize this 

goal, we evaluated the potential of microRNA profiling for identification of both the primary tumor and of 

its metastases. 

208 formalin‐fixed paraffin‐embedded samples representing 15 different histologies were profiled on an 

LNA‐enhanced microarray platform, which allows for highly sensitive and specific detection of microRNA. 

Based on these data, we developed and cross‐validated a novel classification algorithm, LASSO (least 

absolute shrinkage and selection operator), which had an overall accuracy of 85%. When the classifier was 

applied on an independent test set of 48 metastases, the primary site was correctly identified in 42 cases 

(88% accuracy). 

Our findings suggest, that microRNA expression profiling on paraffin tissue can efficiently predict the 

primary origin of a tumor, and may provide pathologists with a molecular tool that can improve their 

capability to correctly identify the origin of hitherto unidentifiable metastatic tumors, and eventually, 

enable tailored therapy. 

Keywords: 

Non-coding RNA; Expression; LASSO; FFPE; Feature selection 
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Abbreviations 

ANN, artificial neural network 

CUP, carcinoma of unknown primary origin 

FFPE, formalin-fixed paraffin-embedded 

H&E, Hematoxylin‐eosin 

KNN, K nearest neighbors 

LASSO, least absolute shrinkage and selection operator 

LDA, linear discriminant analysis 

LNA, locked nucleic acid 

miRNA, microRNA 

SVM, support vector machine
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Introduction 

Carcinoma of unknown primary site (CUP) represents a heterogeneous group of metastatic malignancies 

for which no primary site of the tumor can be identified following a thorough medical history, careful 

clinical examination and extensive diagnostic work‐up. CUP accounts for approximately 5 % of all cancer 

diagnoses and represents the seventh most frequent type of cancer. It is characterized by early 

dissemination, aggressive biology, uncommon metastatic sites, resistance to therapy and usually, a poor 

prognosis1. Even with an extensive diagnostic work‐up using advanced immunohistochemical and imaging 

techniques, the frequency of detecting the primary tumor site remains low. In less than 30 % of CUP 

patients a primary tumor site is identified ante mortem. Post mortem examinations reveal a putative 

primary tumor site in 60‐80 % of CUP patients, most often in the lung (27 %), pancreas (24 %) or in the 

hepatobiliary tree (8 %)2.  Failure to identify the primary tumor site may negatively influence patient 

management, as tailored chemotherapeutic regimens and targeted agents are being developed for a 

number of solid tumors.  

Cancer classification based on gene expression profiling by DNA microarrays was 

demonstrated already in 1999 for leukemia by Golub et al.3, and subsequently, has been extended to 

include categorization of solid tumors and their metastases4–11. Therefore, gene expression profiling could 

be an important diagnostic tool in CUP patients by predicting the primary tumor site and thus, enabling 

tailored organ‐specific therapy that hopefully can be translated into improved survival. 

MicroRNAs (miRNAs) constitute a recently discovered class of tissue specific, small, non‐

coding RNAs, which regulate the expression of genes involved in many biological processes, including 

development, differentiation, apoptosis and carcinogenesis12,13. Several studies have shown that miRNAs 

are promising molecular biomarkers for classification of cancer14–17. Besides their tissue specificity, a major 

advantage of miRNAs is their short size, which renders them more stable in formalin‐fixed, paraffin‐

embedded (FFPE) material compared to mRNA18,19.  

In the present study, we developed a miRNA classifier and evaluated its potential to predict 

the origin of the primary tumor in cancer patients.  By applying a microarray platform based on locked 
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nucleic acid (LNA) modified detection probes 20, which enable highly sensitive and specific detection of 

miRNAs, we identified tissue specific microRNA signatures for 35 tumors and histologies, of which 15 were 

included in a novel multi‐class classification algorithm that can predict the site of tumor origin with high 

accuracy. 

 

 

Results 

 

Sample selection 

To obtain a comprehensive data set for constructing the microarray tumor database, we initially profiled 

408 tissue samples covering 35 different histologies (data not shown). Selection of the tumor classes for the 

final classifier was based on the results from autopsy studies in CUP patients: More than 75% of all CUP 

cases are adenocarcinomas and poorly differentiated carcinomas, of which the most common primary 

tumor sites identified at autopsy are pancreas (25%), lung (20%), stomach, colorectal, and hepatobiliary 

tract (8‐12% each), and kidney (5%). Squamous cell carcinomas account for 5‐10 % where the primary site 

most often originates from head and neck cancers, while melanoma represent 4% of all CUP cases21. 

However, these relative frequencies should be interpreted with caution, as the epidemiology of CUP is 

changing due to both improved imaging technology and lifestyle habits, and therefore, different studies 

report very dissimilar frequencies of identified primary sites2.  

 

Based on the above considerations, our final classifier includes profiles from 15 known cancer classes with 

12 carcinomas as well as melanoma, germ cell tumors, and lymphoma, as the latter can be difficult to 

distinguish from poorly differentiated carcinoma. The classifier was developed on FFPE material as it is 

readily available, miRNAs are stable in FFPE blocks, and straightforward to extract 22 . Table 1 lists the 

training set of 208 FFPE samples (199 primary tumors and 9 metastases) representing 15 known cancer 

classes and their histologies (columns 1 and 2). A detailed summary of the patient demographic data can be 

found in Supplementary Table S1.  
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[Table 1] 

 

Tissue specific miRNA expression 

The distribution of tissue specific miRNAs (i.e. those miRNAs that were preferentially expressed in samples 

originating from one tissue compared to all other tissues) is summarized in the heat-map below (Fig. 1). 

 

[Figure 1] 

 

From the heat‐map it is evident that some histologies are easy to distinguish from the rest due to a strong 

and homogeneous tissue specific miRNA signature (adrenal, lymphoma, germ cell, prostate, GIST, and 

melanoma), while other tissue origins are more difficult to classify accurately, mainly because of 

heterogeneity within the group (ovary, lung), or because of high similarity to related tissue types (colorectal 

and EG‐junction).    

 

Feature selection 

Because selection of the candidate biomarkers is crucial for the performance of the classifier, we took 

several different approaches to identify the best possible tissue‐specific markers. The first – and simplest – 

approach was to run “one‐against‐one” and “one‐against‐all” comparisons for each cancer class/tissue, 

identifying differentially expressed miRNAs by t‐tests. However, running multiple two‐sample t‐tests may 

result in an increased risk of committing a Type I error (false positive), which is why we also applied ANOVA 

(analysis of variance) to compare all 15 means (of the different cancer classes) in one test. Yet, because 

filtering based methods, such as t‐test and ANOVA, do not provide a cross validation option for optimizing 

the set of discriminatory features, we decided for an embedded approach, namely the LASSO method, 

which integrates feature selection within the classifier construction. With this method 132 miRNAs with 

high tissue discriminatory potential were identified; these are listed in Supplementary Table S2, which is a 

data matrix showing each feature’s LASSO model coefficient for the particular tissue of interest. 
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Finally, we made a literature search for tissue‐specific miRNAs, and compared these to our top candidate 

discriminatory miRNAs. There was, not surprisingly, a high degree of overlap between the miRNAs 

identified in our study and those reported previously as having high predictive ability for cancer 

classification15–17. The overlapping miRNAs are also indicated in Supplementary Table S2.  

 

 

Classifier performance 

Many different algorithms are available for multiclass classification and feature selection, such as KNN23, 

genetic algorithm (GA)10, linear discriminant analysis (LDA)24, support vector machine (SVM)11, recursive 

feature elimination4, nearest shrunken centroids15, decision trees16,25, and artificial neural networks26,27.  

  One of the main objectives of this study was to combine feature selection and multiclass 

classification into one process, which should be able to integrate identification of highly informative 

features useful for classification with cross validation of the results. This dual function is not offered by 

most other commonly used algorithms, which is why we decided to remodel the LASSO algorithm for this 

purpose28. Specifically, we wished to optimize the model to obtain as high sensitivity (and accuracy) on all 

15 tumor classes as possible. This is illustrated in Figure 2, which shows the performance of the LASSO 

classifier as a function of the regularization parameter. 

[Figure 2] 

 

  The results of the 5‐fold cross validation of the LASSO classifier are illustrated in Table 2, 

which is a confusion matrix, showing the number of correct classifications along the diagonal. The correct 

tissue of origin was predicted in the vast majority of cases (176 of 208 samples tested) with an overall 

accuracy of 85%. Typically, the false‐positive calls were due to similarities in histology causing cross‐

reactivity; for example, three gastro‐esophageal (EG‐junction) samples were wrongly predicted as 

colorectal. We were not able to separate stomach cancers from esophageal adenocarcinomas based on 

their miRNA profile, why we decided to pool these two, rather similar histologies, which is consistent with 

other, recent miRNA profiling studies16,17. 
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[Table 2] 

 

 

Validation on metastatic samples 

Except for melanoma, the LASSO classifier was built on primary tumors. Therefore, it was important to 

validate its performance in an independent test set consisting of metastases (n=48) from different sites, 

including liver, lymph nodes and peritoneum, to ensure that over‐fitting to the original training data was 

not an issue. The results of the validation are summarized in Table 3. During the optimization of the 

classifier, we discovered that even though the validation samples all contained less than 25% normal 

surrounding tissue, the signal from especially the liver, classified most metastases to the liver as 

cholangiocarcinoma. Therefore, it was necessary to add the rule to the classifier that the site of metastasis 

cannot be classified as the primary tumor (i.e. metastasis to the liver is excluded from being identified as a 

primary liver tumor). The main prediction of the LASSO classifier was correct in 33/48 cases, or 42/48 cases 

(88% accuracy), considering both the first (33 cases) and the second (9 cases) classification attempt. Thus, 

the classification of the independent test set consisting of metastatic samples only showed that the 

performance of the LASSO classifier was comparable to the estimates from the 5‐fold cross validation. The 

same trend of misclassification of the digestive system is seen for the metastatic samples, as for the 

primary tumors.  

[Table 3] 

 

 

Discussion 

CUP represents a well‐recognized and important clinical problem, because optimal treatment selection 

depends on a correct identification of the site of origin, which is per definition occult in a patient presenting 

with CUP. Therefore, many attempts have been made to improve diagnostic pathology workup of CUP, 

ranging from purely immunohistochemical schemes for sub-typing the tumor29,30, over combined 
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classification approaches27, to proteomic analysis 31 and machine learning algorithms based on large‐scale 

mRNA microarray profiling 4,5,9,11,32–34 or on RT‐PCR data 10,24,35,36. Recently, miRNAs, which are characterized 

by their highly tissue specific expression, have also been reported as useful for classification of tumor 

types14–17.  

 In this study, we have applied an LNA‐enhanced microarray platform to generate miRNA 

expression profiles from 208 FFPE samples representing 15 different tumor histologies. The miRNA data 

were used to successfully develop and validate a novel classification scheme, based on the LASSO 

algorithm, which integrates feature selection within the classifier construction28. The accuracy of the LASSO 

algorithm was 85% when assessed by 5‐fold cross validation on the initial training set, and 88% when 

applied on an independent test set of 48 known metastases (considering both the first and second 

classification attempt). Thus, the current approach has approximately the same sensitivity as other multi‐

class classification methods10,16. Validation on more metastases, representing more histological classes and 

metastatic locations would be valuable, but is limited by the scarcity of metastatic samples. 

Where the LASSO method shows its strength, is its approximately equal sensitivity to all the classes in the 

classifier. Other methods may suffer from very poor performance on a few classes; for example, the 

combined tree and KNN based miRNA classifier reported by Rosenfeld et al. has 0 (zero) sensitivity to 

bladder cancer16, while the LASSO algorithm detects this histology with a mean sensitivity of 95%.  

  Identifying the algorithm that is best suited for clinical use is an ongoing and controversial 

discussion. It has been argued that “black box” machine learning classifiers, such as SVM and ANN, are not 

as transparent as e.g. decision trees for practical use by pathologists16,27. However, in spite of their intuitive 

and visual appeal, decision trees are not without limitations: if they become over‐complex they do not 

generalize the data well, and there is no backtracking option, meaning that a local (erroneous) optimal 

solution will prevent one from reaching the global optimal solution, e.g. the correct classification will be 

missed once a wrong path is followed down a branch 37. In this respect, it is interesting that the binary 

decision tree originally proposed by Rosenfeld et al for miRNA classification of cancer tissue16, has 

undergone substantial structural changes in the follow‐up study by Rosenwald et al17, resulting in a more 

complex tree (with 12 branch points for some class labels) and more than half of the 48 miRNAs reported in 
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the original study replaced by other, tissue‐specific miRNAs. This adjustment of tree structure probably 

reflects both the altered tissue selection and the optimized selection of features.  

 A recent paper by Centeno et al. suggests a hybrid, decision tree model, which incorporates 

both IHC and expression data for optimal separation of four types of carcinoma27. However, one should 

bear in mind that interpretation of IHC staining is subjective and therefore, it can be difficult to determine a 

positive from a negative (as Gown’s fourth law of immunohistochemistry laconically states: “All that turns 

brown is not positive”38). A recent meta‐analysis performed by Anderson and Weiss showed that IHC only 

provides correct tissue identification in 65.6% of metastatic cancers39, which underscores the need for 

improved identification of the primary site of metastatic cancers.  

 

We believe that the LASSO algorithm offers the best of both worlds – that is: the 

performance of the complex machine learning algorithm together with the intuitive understanding of the 

simpler classifiers – as it is very powerful and easy to train, the model complexity (number and type of 

features) can be easily controlled, over‐fitting is restricted by a penalty term, and data interpretation is 

simple: the read‐out is the likelihood of a correct classification. Other conventional methods, such as LDA 

and KNN, resulted in less accurate classification (data not shown) of this data compared to LASSO. 

We were able to identify the origin of metastatic tumors by their miRNA profiles, and this is 

consistent with the paradigm that the genetic makeup of a primary tumor is retained in the distant 

metastases8,16,24. Several of the identified tissue‐specific miRNAs are involved in differentiation, so if the 

miRNA signature is retained in the metastases, it should be possible to identify its tissue of origin, unless 

the cancer is so dedifferentiated, that all molecular marks of its primary origin are lost. This brings up the 

question if a “real” CUP represents an entity of its own, with a “CUP‐specific” rather than a primary tissue 

specific molecular signature4,40–42.  

Some tissues are inherently difficult to classify correctly, for example pancreas cancer, which 

is often poorly differentiated or dedifferentiated, and lung cancer with many possible histologies. In our 

validation study, the classifier was able to correctly label pancreas as the primary site in 3 out of 5 cases; 

this is an improvement compared to what could be achieved in the commercial CupPrint follow‐up study34, 
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where none of the three pancreas cancers could be identified. Additionally, Park et al. 43 found that with 

IHC markers the sensitivity towards the combined group of pancreas cancer and cholangiocarcinoma was 

quite low (28%).  

 

We discovered that a major limitation to this type of study is the identification of the 

superimposed host tissue (the site of the metastasis) signature ‐ typically liver or lymph node ‐ rather than 

the metastasis signature, in particular, when the amount of host tissue is large compared to the metastasis. 

Therefore, when optimizing the classifier, we had to make the assumption that a metastasis to the liver 

cannot be primary liver cancer, and that a lymph node metastasis is not a lymphoma. A mixture model 

approach as suggested by Ghosh 44 and by Clarke et al.45, trying to subtract the host tissue signature from 

the metastasis signature appeared problematic, mainly due to the difficulty in estimating the ratio of tumor 

to normal tissue. A likely solution to the problem of contaminating surrounding tissue is to apply laser 

capture micro‐dissection46, as suggested by Chen et al for miRNA analysis in intrahepatic 

cholangiocarcinoma47.  

 

 In conclusion, our study suggests that microRNA expression profiling on FFPE tissue, followed 

by an efficient multi‐class classification algorithm – in this case LASSO ‐ can efficiently predict the primary 

origin of a tumor. Thus, it may provide pathologists with an adjunct molecular tool that either alone or in 

combination with other relevant biomarkers, such as mRNA and proteins e.g. automated IHC), can improve 

their capability to correctly identify the origin of metastatic tumors, and eventually, advance and expedite 

rational, specific therapy of patients with metastatic disease. 

 

Materials and Methods 

 

Tumor samples 

More than 400 FFPE tumor (both primary and metastases) and normal adjacent tissue samples were 

procured from National Disease Research Interchange (NDRI, Philadelphia, PA), Cytomyx (Lexington, MA), 
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Proteogenex (Culver City, CA), and our in‐house tissue bank. Every sample was obtained with a copy of its 

anonymized pathological report, and both the pathology information and an H&E section of each 

preparation was reviewed by a pathologist (AH) to ascertain the diagnosis, origin, and tumor percentage of 

the sample. Inclusion criteria for subsequent RNA extraction and miRNA expression analysis were: >0.5 

mm2 tumor size, <25% normal adjacent tissue < 20% necrosis or hemorrhage, and confirmed histology. In 

the pilot phase of the project, we collected 408 samples from 35 different tumor histologies to cover a 

broad selection of solid tumors, whereas for the classifier, we narrowed down the list of included tissues to 

15 (represented by 208 FFPE samples), to represent only the clinically most relevant histologies for 

identification of tumors of unknown origin (Table 1). All demographic metadata were deposited in a 

database, and are available in Supplementary Table S1. For validation of the classifier, an independent set 

of 48 metastases with known origin was collected from NDRI, and our in‐house tissue‐bank. 

 

 

RNA isolation 

Total RNA was extracted from 20µm FFPE sections with the High Pure miRNA Isolation Kit (Roche Applied 

Science, Mannheim, Germany) according to the manufacturer’s instructions. After elution in 40µl RNase 

free water, the RNA concentration (A260 nm) and purity (A260/280 and A260/230 ratios) were assessed 

with a Nanodrop ND‐1000 spectrophotometer (Thermo Scientific, Wilmington DE). The RNA was stored at ‐

80 C until further analysis. 

 

Microarray profiling 

For microarray analysis, we applied a common reference design, where the reference sample contains a 

mixture of total RNA representing all tissue types in the study. This allows for both one‐ and two‐channel 

data analysis, as described in detail by Søkilde et al.48.  In the current study, we applied the two‐channel 

ratio analysis, as this permits comparison across different array versions. 1 µg of total RNA from each 

sample was labeled using the miRCURY™ LNA microRNA Power labeling Kit (Exiqon, Vedbæk, Denmark) 

following a two‐step protocol: First, Calf Intestinal Alkaline Phosphatase (CIAP) was applied to remove 
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terminal 5’phosphates, and next, fluorescent labels were attached enzymatically to the 3’‐end of the 

microRNAs. Sample specific RNA was labeled with Hy3 (green) fluorophore, while the common reference 

RNA pool was labeled with the Hy5 (red). 

The Hy3 and Hy5 labeled RNA samples were mixed, and co‐hybridized to miRCURY™ LNA Arrays (Exiqon, 

Vedbæk, Denmark), which contain Tm normalized capture probes targeting miRNAs from human, mouse 

and rat , as registered in miRBase v.15.0 at the Sanger Institute 49 . Hybridization was carried out overnight 

for 16 hours at 65 °C in a Tecan HS4800 hybridization station (Tecan, Männedorf, Switzerland). After 

washing and drying, the microarray slides were scanned under ozone free conditions (ozone level < 2.0 ppb 

to minimize bleaching of the fluorescent dyes) in a G2565BA Microarray Scanner System, (Agilent, Santa 

Clara, CA). The resulting images were quantified using Imagene v. 8.0 (BioDiscovery, El Segundo, CA), and 

both automatic quality control (flagging of poor spots by the software) as well as manual, visual inspection 

was performed to ensure the highest possible data quality. 

 

Quantitative real‐time PCR  

The expression levels of 39 selected miRNAs were validated by quantitative RT‐PCR applying the miRCURY 

LNA™ Universal RT microRNA PCR system and SYBR™ Green master mix following the manufacturer’s 

instructions (Exiqon, Vedbæk, Denmark). The results are shown in Supplementary Figure S1. 

 

 

Data pre‐processing and normalization 

All low‐level analyses were carried out in the R environment, including importing and pre‐processing of the 

data using the LIMMA package (http://bioconductor.org). Mean pixel intensities were used to calculate 

signal (foreground) spot intensities, and median pixel intensities were applied to estimate background 

intensity. After excluding flagged spots from the analysis, the “normexp” background correction method, 

with offset=10 was applied50. For intra‐slide normalization, the global Lowess (LOcally Weighted Scatterplot 

Smoothing) regression algorithm was applied, and log2 ratios of four intra‐slide replicates were averaged. 
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All expression data were deposited in the Rosetta Resolver (Rosetta Biosoftware, UK) data management 

and analysis system. 

 

Feature selection and classification 

A miRNA expression database was built for identification of miRNAs with high discriminatory power 

between tumor histologies. Three approaches for feature selection, filters, wrappers, and embedded 

methods are commonly used51. Here, we have applied both filtering and a wrapper: differentially expressed 

miRNAs were identified by running a one versus one, as well as a one versus all t‐test for each histology, 

followed by ranking of the most significant candidate miRNAs. Additionally, the feature selection 

embedded in the least absolute shrinkage and selection operator (LASSO) classification algorithm was 

applied. We then tested and 5‐fold cross‐validated the LASSO algorithm and have listed its model 

coefficient, a measure of discriminatory potential, in Supplementary Table S2. The model coefficients have 

also been visualized in a heat‐map (Supplementary Figure S2) The LASSO classifier was originally described 

by Tibshirani 52 and is based on a multinomial logistic model, which is fitted using L1 regularization53. The 

regularization parameter is chosen by evaluating the results of a cross validation along the entire 

regularization path. To solve the L1 regularized optimization problem. we used the glmnet algorithm28. The 

classifier was built on log2 ratio data from the 208 samples and 15 cancer classes listed in Table 1 

Statistical analysis 

All calculations and statistical tests were done in the free software environment for statistical computing 

and graphics R v.2.9.2 (www.r‐project.org). For microarray analysis, the open source package for R, 

Bioconductor was used (www.bioconductor.org).  
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Figure 1: Expression of cancer‐tissue specific miRNAs (rows) across 208 samples columns) representing the 

15 histologies in the training set. The heat map shows median normalized log data for the top 5‐10 miRNAs 

identified by LASSO’s embedded feature selection algorithm) per class. 

Figure 2: The plot shows the performance, assessed by 5‐fold cross‐validation, of the LASSO classification 

methods as a  function of the LASSO regularization parameter: –  log λ. The  final regularization parameter 

selected for LASSO was 4.1. We settled at this value, as more complex models would entail more miRNAs 

without a corresponding gain  in performance. The red curve shows ”one‐against‐all” accuracy,   the green 

curve is PPV (positive predictive value), and the blue curve is accuracy of the classifier. The “Classifier” plot 

(top  left)  represents  the  overall  performance  of  the  classifier.  The  curve  shown  is  the  percentages  of 

correctly classified samples, while the shade indicates the standard deviation. The following 15 plots show 

the performance with  respect  to  individual  tissue classes. The statistics  in  these plots are generated  in a 

‘one against all’ fashion:  i.e. the positive  is the tissue class of  interest, and the negative  is the group of all 

other tissue Classes. 

Table 1: Number of samples per tissue, true positive count (TP), mean positive predictive value (PPV), and 

sensitivity of the classification, assessed by 5‐fold cross‐validation of the classifier. 

Table 2: Confusion matrix of classification results showing the number of correct classifications along the 

diagonal and the number of misclassifications off the diagonal (based on 5‐fold cross validation of the 

LASSO classifier). 

Table 3: Validation of the LASSO classifier on an independent test set of 48 metastatic samples. The true 

tissue of origin and the site of metastasis are listed in column 1 and 3, respectively. Column 2 indicates 

whether the classifier was correct in either its first (column 4) or second (column 6) prediction. The 

percentages (columns 5 and 7) are calculated by the LASSO algorithm and indicate the likelihood of a 

correct classification of the particular tissue. 
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Tissue  Histology 
Samples 

(n) 
TP 
 

Mean 
PPV 

Mean 
Sensitivity 

Adrenal  Cortical carcinoma (ACC)  8  6  100%  70% 

Bile duct  Cholangiocarcinoma  18  14  100%  78% 

Colorectal   Adenocarcinoma, 
Mucinous adenocarcimona 

17  13  77%  78% 

1 EG‐junction 
Adenocarcinoma, signet cell, 
mucinous adenocarcinoma,  
(Squamous excluded) 

20  17  83%  85% 

Germ cell tumor 
Non‐seminoma, seminoma, 
embryonal carcinoma, 
yolk sac carcinoma 

7  7  83%  100% 

GIST   Gastrointestinal stromal tumor  5  4  100%  80% 

Kidney   Papillary cell carcinoma,  
clear cell carcinoma 

20  18  87%  90% 

Lung   Adenocarcinoma 
(Squamous excluded) 

20  18  86%  90% 

Lymphoma   B cell, large cell,  
marginal zone Hodgkin’s 

13  12  95%  93% 

Melanoma   Malignant melanoma  9  9  100%  100% 

Ovary   Serous, mucinous, endometrioid 
adenocarcinoma, clear cell 

20  13  90%  65% 

Pancreas   Ductal adenocarcinoma,  
mucinous non‐cystic 

20  16  80%  80% 

Prostate   Adenocarcinoma  5  4  100%  80% 

Thyroid   Papillary, Hurthle cell,  
follicular carcinoma 

6  6  100%  100% 

Urinary bladder   Transitional cell carcinoma,  
papillary and non‐papillary 

20  19  83%  95% 

Total    208  176     

 

Table  1:  Number  of  samples  per  tissue,  true  positive  count  (TP),  mean  positive  predictive  value  (PPV),  and 

sensitivity of the classification, assessed by 5‐fold cross‐validation of the classifier. 

 

1 The “EG‐junction” class combines samples from esophagus and gastric cancers. 
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      True class 
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Adrenal gland  6  0 0 0 0 0 0 0 0  0  0  0 0 0 0

Cholangiocarcinoma  0  14 0 0 0 0 0 0 0  0  0  0 0 0 0

Colorectal  0  0 13 3 0 0 0 0 0  0  1  1 0 0 0

EG – junction  0  1 2 17 0 0 0 0 0  0  1  2 0 0 0

Germ cell tumor  0  0 0 0 7 0 0 0 0  0  1  0 0 0 1

GIST  0  0 0 0 0 4 0 0 0  0  0  0 0 0 0

Kidney  0  1 0 0 0 1 18 0 0  0  1  1 0 0 0

Lung  0  2 0 0 0 0 0 18 0  0  1  0 0 0 0

Lymphoma  0  0 0 0 0 0 0 1 12  0  0  0 0 0 0

Melanoma  0  0 0 0 0 0 0 0 0  9  0  0 0 0 0

Ovary  1  0 0 0 0 0 1 0 0  0  13  0 0 0 0

Pancreas  1  0 2 0 0 0 1 0 0  0  1  16 0 0 0

Prostate  0  0 0 0 0 0 0 0 0  0  0  0 4 0 0

Thyroid  0  0 0 0 0 0 0 0 0  0  0  0 0 6 0

P
re
d
ic
te
d
 c
la
ss
 

Urothelial  0  0 0 0 0 0 0 1 1  0  1  0 1 0 19
 

Table 2: Confusion matrix of classification results showing the number of correct classifications along the diagonal 
and the number of mis‐classifications off the diagonal (based on 5‐fold cross validation of the LASSO classifier). 
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True Class  Correct  Metastasis site  1. Prediction Percent 2. prediction  Percent 

Colorectal  2
nd
  Pelvis  *EG – junction 31% Colorectal  22%

Colorectal  1st  Adrenal gland  Colorectal 52% Ovary  16%

Colorectal  1st  Liver  Colorectal 74% Ovary  11%

Colorectal  1
st
  Liver  Colorectal 51% EG – junction  20%

Colorectal  1
st
  Liver  Colorectal 81% Ovary  7%

Colorectal  1st  Liver  Colorectal 70% Ovary  9%

Colorectal  No  Liver  Pancreas 30% Kidney  17%

Colorectal  1
st
  Lung  Colorectal 54% EG – junction  14%

Colorectal  1
st
  Liver  Colorectal 61% EG – junction  11%

Colorectal  2nd  Omentum  Pancreas 35% Colorectal  22%

Colorectal  2nd  Liver  EG – junction 30% Colorectal  19%

Colorectal  2
nd
  Omentum  EG – junction 40% Colorectal  37%

Colorectal  1
st
  Lung  Colorectal 53% EG – junction  17%

Colorectal  1st  Pending  Colorectal 56% EG – junction  23%

EG ‐ junction  1
st
  Lymph node  EG – junction 17% Pancreas  15%

EG ‐ junction  1
st
  Lymph node  EG – junction 54% Lymphoma  19%

EG ‐ junction  1
st
  Lymph node  EG – junction 46% Colorectal  14%

Pancreas  1st  Lymph node  Pancreas 81% Lung   3%

Pancreas  2
nd
  Omentum  EG – junction 19% Pancreas  17%

Pancreas  2nd  Abdominal wall  Lung 17% Pancreas  16%

Pancreas  No  Liver  Colorectal 51% EG – junction  22%

Pancreas  No  Omentum  EG – junction 40% Colorectal  31%

Ovary  1st  Bowel  Ovary 37% Urothelial carcinoma 23%

Ovary  1st  Colon  Ovary 31% Lung  22%

Ovary  2
nd
  Colon  Pancreas 60% Ovary  13%

Ovary  1st  Colon  Ovary 94% Thyroid  4%

Ovary  No  Colon  EG – junction 46% Pancreas  9%

Ovary  1
st
  Gastric wall  Ovary 38% Thyroid  38%

Ovary  1st  Omentum  Ovary 33% Lung  18%

Ovary  1st  Omentum  Ovary 37% Pancreas  26%

Ovary  1
st
  Omentum  Ovary 45% Thyroid  12%

Ovary  1st  Omentum  Ovary 70% Kidney  19%

Ovary  No  Omentum  Urothelial 49% Lung  32%

Ovary  1
st
  Omentum  Ovary 83% Pancreas  6%

Ovary  2nd  Omentum  Cholangiocarcinoma 19% Ovary  16%

Ovary  1st  Omentum  Ovary 55% Thyroid  17%

Ovary  1st  Omentum  Ovary 47% Thyroid  18%

Ovary  2nd  Pelvis  Lung 39% Ovary  16%

Ovary  1st  Pending  Ovary 31% Lung  13%

Ovary  1
st
  Pending  Ovary 54% Thyroid  16%

Kidney  1st  Lung  Kidney 51% Cholangiocarcinoma 14%

Kidney  1st  Lymph node  Kidney 61% Cholangiocarcinoma 10%

Kidney  1st  Adrenal gland  Kidney 76% Melanoma  4%

Kidney  1st  Pancreas  Kidney 96% EG – junction  1%

Kidney  1st  Pancreas  Kidney 42% Ovary  29%

Lung  1st  Lymph node  Lung 44% Kidney  12%

Lung  No  Lymph node  Urothelial 48% Cholangiocarcinoma 30%

Urothelial  1st  Colon  Urothelial 75% Pancreas  13%

 
 
Table 3: Validation of the LASSO classifier on an independent test set of 48 metastatic samples. The true tissue of origin and the 
site of metastasis are listed in column 1 and 3, respectively. Column 2 indicates whether the classifier was correct in either its 
first (column 4) or second (column 6) prediction. The percentages (columns 5 and 7) are calculated by the LASSO algorithm and 
indicate the likelihood of a correct classification of the particular tissue. 



Nomenclature

ιI The canonical inclusion into the I’th parameter group, page 42

β A parameter, i.e an element of B, page 10

β(I) Group I of β - a vector, page 23

D A random data set, page 11

∆K The K’th probability simplex, page 6

Err The expected generalization error, page 22

err(p) The generalization error of p, page 8

η The linear predictors, page 14

Grp Number of nonzero groups, page 23

R̂D The empirical risk, page 11

β̂ Parameter estimator, page 20

β̂N Parameter estimator for n samples, page 20

N The positive natural numbers, page 6

R+ The positive real numbers, page 15

A Supervised learning method, page 20

A(λ) Parametrized supervised learning method, page 24

AN Supervised learning method for n samples, page 20

P Subset of the set of all conditional distributions on Y given X, page 134

SK The finite set containing K elements, page 6

p A classifier, page 6

pBayes The Bayes classifier, page 7

Par Number of nonzero parameters, page 23

Φ Sublinear penalty, page 36
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σC Support function of C, page 136

A Positive definite matrix, page 43

B The set of parameters, page 10

C A convex set, page 136

CT Model characteristic, page 22

D A realization of a random data set, page 11

D Data set, realization of a random data set D, page 20

F Joint distribution of (X,Y ), page 6

f(x, y) The joint distribution of (X,Y ), page 6

H Hessian matrix, page 43

h A linear model - a function RK → ∆K , page 14

HII Diagonal block of the Hessian matrix corresponding to the I’th group, page 43

K The number of classes, page 6

L A loss function, page 7

N The number of samples, page 11

NC(x) Normal cone to C at x - a cone, page 137

p The dimension of the covariate vector, page 6

PC The projection onto compact convex set C - a function, page 137

PI Projection operator, part of a decomposition, page 38

R risk, page 11

X The covariate vector - a random vector, page 6

Y The response vector - a discrete random vector, page 6
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A simulation scheme, 20
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classification, 10
classifier, 10

definition, 10
density estimation, 10
parametric model, 13

Conditional optimality of Bayes classifier,
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Constructing a decomposition, 42
Convexity desirable property, 16
Convexity lemma, 16
Convexity preserving set operations, 144
coordinate gradient descent, 48
cross validation, 37

variance, 38

decomposition
optimality, 44

empirical risk, 14
Empirical risk bounded below, 140
Empirical risk minimization, 24
empirical risk minimization

penalized, 28
error function, 32

expected, 33
expected generalization error, 24
expected model characteristic, 26, 36

Fibers, 141

generalization error, 11
group lasso, 50
grouping of parameters, 26, 40

identifiability, 141
strong, 141

Identifiability of multinomial model, 143
Identifiability of regular linear model, 142
Interpretation, 10

Lambda and the penalty, 41
learning curve, 31

parametrized learners, 31
Linear identifiability, 142
linear identifiable, 142
linear model

decision boundaries, 18
definition, 17
identifiable, 18
intercept, 18
Organization of parameters, 17
regular, 18

linear predictors, 17
liner model

regular, 18
Log-likelihood loss, 11
Loss function, 11
Loss function interpretation, 11

model characteristic, 26
compare, 30
conditional expected, 27
expected, 26
linear models, 27
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nonzero parameters, 26
parametric methods, 30
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