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Abstract

This thesis deals with derivatives, the pricing of them and the e�ect they can
have on �nancial markets. In the SABR model we develop a new expansion
for call prices and a fast arbitrage free pricing scheme that uses a one step
implicit �nite di�erence scheme. Next we consider perpetual claims. We sug-
gest a simple �nite di�erence method to price them and prove convergence
for the method. We then apply the method to di�erent examples: We cal-
culate the expected exit time of a di�usion from an interval, price perpetual
CDOs on households with exploding credit risk, calculate the value of cash
when the interest rate can go negative and value perpetual range accruals
in the presence of transaction costs. Thirdly we apply modi�cations of the
Ninomiya-Victoir Monte Carlo scheme to the double-mean-reverting (DMR)
model (a three factor stochastic volatility model). Thereby we demonstrate
on the one hand that fast calibration of the DMR model is practical, and on
the other that suitably modi�ed Ninomiya-Victoir schemes are applicable to
the simulation of much more complicated time-homogeneous models than may
have been thought previously. Last we construct a simple model to capture
feedback e�ects in �nancial markets. Using the model we can under certain
assumptions back out the option position of delta hedgers in a market.
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Summary

This thesis studies di�erent problems in quantitative �nance. It consist of four
papers that can be read independently. A short description of the papers are
given below:

SABR Excursions

Using Markovian projection we construct a local volatility model approxi-
mating the SABR model. This local volatility model can be used to build
fast approximations to European call prices in the SABR model. We develop
a closed form approximation using results from Andersen and Brotherton-
Ratcli�e (2005) and an arbitrage-free approximation using one implicit �nite
di�erence step. The performance is tested against a numerical solution ob-
tained by �nite di�erence and the approximations from Hagan et al. (2002)
and Obloj (2008). The new approximations approximate the numerical so-
lution better and the arbitrage-free approximation eliminates the arbitrage
opportunities for low strike options that have become a problem in regimes
with very low interest rates.

A numerical scheme for perpetual claims

This paper considers a numerical scheme to price perpetual claims. Contrary to
claims with a given maturity date which can be priced solving a PDE, perpetual
claims can be priced solving an ODE, often a two boundary problem. We apply
a simple �nite di�erence scheme to these two-boundary ODEs. Convergence
results are given in a number of cases and we test the method on a variety of
di�erent �nancial examples: We calculate the expected exit time of a di�usion
from an interval, price perpetual CDOs on households with exploding credit
risk, calculate the value of cash when the interest rate can go negative and
value perpetual range accruals in the presence of transaction costs.

Fast Ninomiya-Victoir calibration of the Double-Mean-Reverting

Model

We consider the three factor double mean reverting (DMR) model of Gatheral
(2008), a model which can be successfully calibrated to both VIX options and
SPX options simultaneously. One drawback of this model is that calibration
may be slow because no closed form solution for European options exists. In
this paper, we apply modi�ed versions of the second order Monte Carlo scheme
of Ninomiya and Victoir (2008) and compare these to the Euler-Maruyama
scheme with partial truncation of Lord et al. (2010), demonstrating on the one
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hand that fast calibration of the DMR model is practical, and on the other that
suitably modi�ed Ninomiya-Victoir schemes are applicable to the simulation
of much more complicated time-homogeneous models than may have been
thought previously.

Utility optimization and feedback-e�ects

This paper considers a simple model for a market with one asset and two
agents. One is optimizing expected utility of future wealth and the other is
delta hedging derivatives written on the asset. Using the optimizing behavior
of the �rst agent we can under simple assumptions back out the value of the
delta hedgers option position. We develop the ideas �rst in a continuous time
model, where we obtain approximations of the position, then we move on to use
the LVI model of Andreasen and Huge (2011). Finally we present numerical
examples where the model is applied to option data from di�erent foreign
exchange crosses to �nd the delta hedgers option position.
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Sammenfatning

Denne afhandling studerer forskellige problemer indenfor kvantitativ �nansier-
ing. Den består af �re artikler der kan læses uafhængigt. Nedenfor gives en
kort introduktion til artiklerne.

SABR Excursions

Ved at bruge Markovian projection konstruerer vi en lokal-volatilitets-model
der approksimerer SABR-modellen. Denne lokal-volatilitets-model kan bruges
til at �nde hurtige approksimationer til Europæiske call-optioner i SABR-
modellen. Vi udvikler en approksimation i lukket-form ved at bruge resul-
tater fra Andersen and Brotherton-Ratcli�e (2005) og derefter en arbitragefri
approksimation ved at bruge et implicit �nite di�erence skridt. Metoderne
testes mod en numerisk løsning, der �ndes ved en �nite di�erence metode,
og approksimationerne i Hagan et al. (2002) and Obloj (2008). De nye ap-
proksimationer passer bedre med den numeriske løsning og den arbitragefri
approksimation fjerner de arbitrage muligheder der er blevet et problem for
optioner med lav strike pris i regimer med meget lav rente.

A numerical scheme for perpetual claims

Denne artikel beskriver en numerisk metode til at prise kontrakter med uen-
delig løbetid. I modsætning til kontrakter med en given udløbsdato, der prises
ved at løse en PDE, kan evige kontrakter prises ved at løse en ODE, ofte et
two-boundary problem. Vi løser disse ODEer med en simpel �nite di�erence
metode. Konvegens af metoden vises for en række tilfælde og vi tester derefter
metoden på forskellige �nansielle problemer. Vi udregner det forventede tid-
spunkt en given di�usions process forlader et interval, priser CDOer uden
udløb på husholdninger med eksplosiv kreditrisiko, beregner værdien af kon-
tanter når renten kan blive negativ og prisfastsætter evige range accruels når
der er transaktionsomkostninger forbundet med at handle det underlæggende
aktiv.

Fast Ninomiya-Victoir calibration of the Double-Mean-Reverting

Model

Vi betragter double mean reverting (DMR) modellen fra Gatheral (2008), der
succesfuldt kan kalibreres til både VIX og SPX optioner samtidigt. Der er dog
en ulempe ved modellen, kalibrering kan være en langsommelig process, da
vi ikke har lukkede løsninger til Europæiske optioner. I artiklen anvender vi
modi�cerede udgaver af Ninomiya-Victoir Monte Carlo metoden, se Ninomiya
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and Victoir (2008), der er anden ordens konvergent i tid, og holder disse op
imod en Euler-Maruyama metode med full truncation fra Lord et al. (2010).
Vi demonstrerer herved at DMR modellen kan kalibreres hurtigt og at modi�-
cerede udgaver af Ninomiya-Victoir metoden kan anvendes til at simulere langt
mere komplicerede tids-homogene modeller end hvad man hidtil har troet.

Utility optimization and feedback-e�ects

Artiklen opstiller en simpel model for et marked med et aktiv og to agen-
ter. Den ene agent optimerer sin forventede nytte og den anden delta-hedger
derivater på aktivet. Ved at bruge den første agents nytteoptimerende adfærd
kan vi under simple antagelser regne værdien af den anden agent optionsporte-
følje ud. Ideerne bliver først udviklet i en kontinuert tids model hvor vi udleder
en approksimation til delta-hedgerens optionsposition. Derefter udvikler vi
også ideerne i en LVI model, se Andreasen and Huge (2011). Tilsidst præsen-
teres en række numeriske eksempler, hvor modellen anvendes på optionsdata
fra forskellige valutakryds til at �nde delta-hedgernes optionsposition.
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Chapter 1

Introduction

1.1 General results in Mathematical �nance

In the celebrated paper Black and Scholes (1973) Fischer Black and Myron
Scholes used arbitrage arguments to prove a formula for the value of a Euro-
pean call option written on a lognormally distributed asset. This led to an
explosion of research in option pricing using arbitrage arguments.

We will brie�y present some results on arbitrage free option pricing. They
will help us relate the di�erent papers of the thesis to the general theory. They
are all taken from Björk (2004).

Let us consider a market with N +1 assets St = (S0
t , . . . , S

N
t )′. We assume

they follow some di�usion process under the real world probability measure P :

dSt = µ(t, St)dt+ σ(t, St)dW
P
t (1.1.1)

A strong mathematical result called "The First Fundamental Theorem", Björk
(2004) Theorem 10.14, states that the market is arbitrage free1 if there exists

an equivalent measure Q such that the process
Sit
S0
t
for all i is a martingale

under Q. Another result, "The Second Fundamental Theorem" Björk (2004)
Theorem 10.17, states that the model is complete (we can hedge any derivative
written on (St)t≥0) if there exists one and only one equivalent martingale
measure Q. Using the Girsanov theorem Björk (2004) Theorem 11.3 and the
Converse Girsanov Theorem Björk (2004) Theorem 11.6, we know how to
change measure from P to any equivalent probability measure. We therefore
write the dynamics of St under Q by

dSt = µ(t, St)
Qdt+ σ(t, St)dW

Q
t (1.1.2)

Let us then expand the market by introducing a derivative written on the
assets. Denote the price of this derivative by Vt. We would like the market to

1In fact we should say: There exists no free lunch at vanishing risk in the market

1



2 CHAPTER 1. INTRODUCTION

be arbitrage free after the introduction of Vt, therefore
Vt
S0
t
must be a martingale

under one of the equivalent measures Q. If there only exists one equivalent
martingale measure then the price is uniquely de�ned and we can replicate Vt
completely by trading in St. As

Vt
S0
t
is a martingale we have

Vt
S0
t

= EQ
(
VT
S0
T

∣∣Ft) for T > t

if we therefore know the distribution of VT
S0
T
under Q we can price the claim.

There also exists a PDE representation of the price. If we assume Vt
S0
t

=

f(t, St) and
VT
S0
T

= g(ST ) then using the Feynman-Kac Theorem, Björk (2004)

proposition 5.8, backwards we can write up a PDE for the function f(t, St).

0 = ft(t, s) +

N∑
i=0

µ(t, s)Qi
∂f

∂si
(t, s) +

1

2

N∑
i,j=0

Cij(t, s)
∂2f

∂si∂sj
(t, s)

f(T, s) = g(s)

where C(t, s) = σ(t, s)σ(t, s)′.
We can use any of the two representations to price derivatives, sometimes

it is more convenient to use the �rst sometimes the second.
Another important result is the forward Kolmogorov equation, Björk (2004)

proposition 5.12. The density for the process St under the Q measure can be
found solving the forward PDE

∂p

∂t
(t, s) = −

N∑
i=0

∂

∂si

(
µi(t, s)

Qp(t, s)
)

+
1

2

N∑
i,j=0

∂2

∂si∂sj
(Cij(t, s)p(t, s))

p(0, s) = δ(s− s0)

here we again de�ne C(t, s) = σ(t, s)σ(t, s)′.
If we know the derivative only depends on the density of the underlying at

a single time point (the derivative could for example be a call option) then we
just need the density of the asset at this point to obtain the price.

1.2 Financial models

Equation (1.1.1) speci�es a general �nancial model in this section we present
some di�erent version of it.

The Black-Scholes model is the simplest possible model one can imagine
in continuous time �nance (neglecting the Bachelier model). We assume

dS0
t = rS0

t dt

dS1
t = µS1

t dt+ σS1
t dW

P
t



1.2. FINANCIAL MODELS 3

the �rst asset is risk free and is often referred to as the bank account. Using
the stated results above we �nd that under the Q-measure

dS1
t = rS1

t dt+ σS1
t dW

Q
t

and the derivative price is

Vt = exp(−r(T − t))EQ(VT ).

In this model we can price a number of di�erent derivatives in closed form,
these include European call options.

It is well documented that the Black-Scholes model cannot produce prices
for derivatives that correspond to the market prices we see. Therefore a large
number of other models have been developed, they are normally formulated
under the risk neutral measure and we often assume the risk free asset follows
the process of S0 above. Most often these models will be constructed such
that the prices for European call options are available in closed form. This is
to make calibration of the model easier, we return to this in section 1.4.

We �rst mention a model which actually lies outside the framework above,
this model is the so-called Merton model, see Merton (1976) here

dS1
t = (r − λm)St−dt+ σSt−dW

Q
t + St−dJ

Q
t

where JQt is compound Poisson process with intensity λ and jumps of size
exp(Y )−1 for a normal random variable Y . We have de�nedm = E (exp(Y )− 1).

Another extension is the CEV model, see for example Schroder (1989)

dS1
t = rStdt+ σSβt dWt

for β ≤ 1.
The three models above will all produce arbitrage free option prices and

there exists closed form solutions to the prices of European call options. But
even though the Merton model and the CEV model can produce a wider class
of option prices than the Black-Scholes model it is not certain that they can
�t all option prices in the market. The local volatility model of Dupire (1994)
is a non-parametric model that can �t all European call option prices in the
market. The model is de�ned

dSt = rStdt+ σ(t, St)StdWt

where σ(t, s) is a general function chosen such that the model reprices all
European call options. The model does not yield closed form formulas for
option prices we have to use numerical methods discussed in the next section.

Instead of changing the volatility to a function of St we could formulate a
model where the volatility is stochastic. The Heston model, see Heston (1993),
is speci�ed by

dSt = rStdt+
√
VtStdW

1
t

dVt = κ(θ − Vt)dt+ ε
√
VtdW

2
t
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and dW 1
t dW

2
t = ρdt. Closed form solutions to European call options exists in

this model. Extensions of the model can be found in Bates (1996) and in the
general framework of Du�e et al. (2000).

We also mention the popular SABR model of Hagan et al. (2002), which
is a mixture of a CEV model and a stochastic volatility model

dSt = rStdt+ αtS
β
t dW

1
t

dαt = εαtdW
2
t

and dW 1
t dW

2
t = ρdt. In this model no closed form solutions for European

option prices exists. The reason for its popularity is an expansion formula
developed in Hagan et al. (2002) that gives approximative European call prices.

In recent years options written on the volatility of large equity indexes
have appeared. Models that can price these options consistently with the
options written on the index itself have therefore become popular. We mention
Bergomi (2005), Gatheral (2008) and Cont and Kokholm (2013).

1.3 Pricing options using numerical methods

In the Black-Scholes model, the Merton jump model, the CEV model and
the Heston model closed form solutions to European call options exists. In the
SABR model expansions exist that approximates the option prices. For special
local volatility models expansions for European call option values also exists see
Hagan and Woodward (1999) and Andersen and Brotherton-Ratcli�e (2005).
For the general local volatility case one could use the numerical approximation
in Gatheral and Wang (2012).

In other models or for exotic options where closed form solution are not
possible we are forced to use numerical methods to price the options.

Let us consider a one dimensional model

dSt = rStdt+ σ(t, St)StdW
Q
t

The option price can either be written as the discounted expectation under
the risk neutral measure

V0 = EQ (exp(−rT )g(ST ))

or as the solution to the PDE

0 =
∂f

∂t
(t, s) + rs

∂f

∂s
(t, s) +

1

2
σ(t, s)2s2∂

2f

∂s2
(t, s)− rf(t, s) (1.3.1)

f(T, s) = g(s) (1.3.2)

If we can simulate a stochastic variable with the same distribution as ST un-
derQ then we can use the law of large numbers to calculateEQ (exp(−rT )g(ST ))
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as the average over enough simulated values. The central limit theorem more
or less implies that the error will be O(N−1/2) where N is the number of simu-
lated values, this error is normally called the integration error. The numerical
method presented here is called the Monte Carlo method. In the Black-Scholes
model ST will be lognormally distributed, therefore by simulating enough log-
normally distributed variables we can calculate European option prices. In
most cases though the distribution of ST will not be known, we only know the
SDE that generates the random variable. In order to simulate ST we discretize
the SDE, for example using an Euler-Maruyama scheme

Sti+1 = rSti∆t+ σ(ti, Sti)Sti
√

∆tZi+1

where Zi are iid standard normally distributed. One can show that this dis-
cretization leads to an error of order O(∆t), this error is normally called the
discretization error. So we have two error types, integration error and dis-
cretization error.

The integration error can normally be reduced using Quasi Monte Carlo
methods for example using Sobol numbers, see Joe and Kou (2008).

There also exists discretization methods that lead to lower discretization
error. We could for example use the Ninomiya-Victoir scheme, see Ninomiya
and Victoir (2008). If we consider a one dimensional time homogeneous di�u-
sion

dSt =
1

2
σ(St)σ

′(St)dt+ σ(St)dWt

The corresponding Backward PDE for our model becomes

∂u

∂τ
(τ, x) =

1

2
σ2u(τ, x)

where τ = T − t and we have de�ned σu(τ, x) = σ(x)∂u∂x(τ, x). By di�erenti-
ating in τ we obtain

∂2u

∂τ2
(τ, x) =

1

4
σ4u(τ, x)

We can therefore write

u(∆τ, x) = u(0, x) +
1

2
∆τσ2u(0, x) +

1

8
∆τ2σ4u(0, x) +O(∆τ3)

De�ne exp(V )x = g(1) where

dg

dt
= V (g), g(0) = x.

Set f(x) = u(0, x) and let us calculate E
(
f
(

exp
(√

∆τZσ
)
x
))

where Z is

standard normally distributed. After a long tedious calculation one gets

E
(
f
(

exp
(√

∆τZσ
)
x
))

=

(
1 +

1

2
∆τσ2 +

1

8
∆τ2σ4

)
f(x) +O(∆τ3)
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which implies

E
(
f
(

exp
(√

∆τZσ
)
x
))

= u(∆τ, x) +O(∆τ3).

So the scheme gives third order convergence for one time step. We normally
consider a �xed maturity so we need O

(
1

∆τ

)
time steps therefore we have a

second order scheme.
This scheme will be used in chapter 4 to speed up option pricing in the

model of Gatheral (2008).
Instead of using a Monte Carlo method we can solve the pricing PDE

(1.3.1) by Finite Di�erences. Consider the PDE

0 =
∂f

∂t
(t, s) +

1

2
σ(t, s)2∂

2f

∂s2
(t, s)

f(T, s) = g(s)

we want to approximate the function f(t, s) with a function v(t, s) de�ned
on an equidistant discrete grid {t0, . . . , tM} × {s0, . . . sN}. We set the initial
condition:

v(tM , sj) = g(sj) for sj ∈ {s0, . . . sN}

and approximates the PDE in the internal points sj ∈ {s1, . . . sN−1}

0 =
v(ti, sj)− v(ti−1, sj)

∆t
+(1−θ)1

2
σ(ti, sj)

2 v(ti, sj+1)− 2v(ti, sj) + v(ti, sj−1)

∆x2

+ θ
1

2
σ(ti−1, sj)

2 v(ti−1, sj+1)− 2v(ti−1, sj) + v(ti−1, sj−1)

∆x2

here θ determines how we approximate the spatial derivative. On the boundary
we could use v(ti−1, s0) = v(ti, s0) and v(ti−1, sN ) = v(ti, sN ) as an approx-
imation. We collect the equations for all the grid points and obtain a linear
equation system

(I − θ∆tAti−1)v(ti−1) = (I + (1− θ)∆tAti)v(ti)

this system can be solved very e�ciently for v(ti−1) using the tridag() algo-
rithm of Press et al. (2002). When θ = 0.5 the scheme will be second order
convergent both in space and in time. θ = 1 gives a scheme which in itself can
be seen as discrete time discrete state space model with non-negative transition
densities. This model will always produce arbitrage free prices.

Chapter 3 considers the use of �nite di�erence methods to perpetual claims
and chapter 2 uses �nite di�erence methods both to obtain prices in the SABR
model but also to obtain arbitrage free approximations to option prices using
a one step �nite di�erence approximation with θ = 1.

The discrete time discrete state space model when θ = 1 is used in chapter
5 to calibrate a local volatility model and to solve for a utility maximizing
investors optimal portfolio.
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1.4 The use of �nancial models in practice

Having chosen a model to price and risk manage our derivatives we need to
specify the parameters of the model. This is done by calibrating the model
to liquid derivatives for which market prices exists. The calibration procedure
is normally formulated as quadratic minimization problem, let Vi(Ω) be the
model price of derivative i that depends on the parameters Ω, and let Ṽi be
the market quote. We then wish to solve the problem

min
Ω

N∑
i=1

(
fi(Vi(Ω))− fi(Ṽi)

)2
(1.4.1)

where fi is a function such that the problem is speci�ed in the right quantity
(perhaps we want to solve the problem in dollars or perhaps in implied Black
volatilities).

The quadratic problem is solved using a numerical solver such as the
Levenberg-Marquart algorithm, see Press et al. (2002). The solver evaluates
the model prices of the derivatives a large number of times and searches for
the minimum. In order for the calibration to be fast we therefore need the
calculation of derivative prices to be fast. Both chapter 2 and 4 focus on fast
calculation of option prices to make a fast calibration possible.

When we have obtained the parameters Ω∗ that minimizes the quadratic
problem (1.4.1), we can use the model to price non-standard derivatives, these
will be priced consistently with the liquid derivatives in the market. But just
as important, having speci�ed a model for the underlying we know how the
prices of the derivatives moves with the prices of the underlying and other
derivatives. Therefore we know how to hedge derivatives using the underlying
and possibly other more liquid derivatives.

Imagine a trader having sold a derivative with value Vt. His model speci�es
the value as a function of the underlying (and possibly other processes) Vt =
f(t, St). To hedge himself against �uctuations in the price Vt the trader will
delta hedge the derivative ie he will buy ∂f

∂s (t, St) of the underlying.

In all models considered up until now, we assume the agents in the market
can trade any amount of the underlying without a�ecting the price of it. This
will of course never be true. If we knew the trading patterns of the agents
in the market we would know when the drift and volatility of the asset price
would be high and low. We do not know the trading patterns, but every option
trader knows his own option book and therefore how he will delta hedge it in
the future. We could imagine that this information is being processed by
the option market and therefore that the option prices expresses among other
things the position of the delta hedgers in the market. Chapter 5 will build a
model to extract the delta hedgers option position from option prices.
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1.5 The next chapters

Chapter 2 deals with the SABR model. The expansion formula for call prices
from Hagan et al. (2002) is not arbitrage free, low and high strike options
are priced badly. Using Markovian projection and results from Doust (2012)
we develop a local volatility model that approximately produces the same call
prices as the SABR model. We can then use expansion results from Andersen
and Brotherton-Ratcli�e (2005) to price call options fast. The new expan-
sion will produce fever arbitrage opportunities than the one from Hagan et al.
(2002) but it will not be arbitrage free. A fast arbitrage free approximation
is then developed, we use the local volatility model obtained and apply a one
step implicit �nite di�erence scheme to it together with a correction term,
this will produce arbitrage free prices. In the SABR model the local volatility
function is a CEV function. We can in fact use our approximation for other
functions. We therefore also apply our results to a SABR model with a hyper-
bolic volatility function, see Jackel and Kahl (2008), and obtain an expansion
with very few arbitrage opportunities.

Chapter 3 deals with perpetual claims. If the underlying model is time-
homogeneous then the price of a perpetual claim is the solution to a second
order ODE (often a two boundary problem). We apply a simple �nite di�erence
scheme to solve the ODEs and prove convergence result for linear and nonlinear
ODEs. In the end we consider di�erent examples of �nancial interest.

Chapter 4 considers the second order Monte Carlo scheme of Ninomiya
and Victoir (2008) and the application of this to the double-mean-reverting
model of Gatheral (2008). The Ninomiya-Victoir scheme relies on fast solu-
tion of multidimensional ODEs speci�ed by the model we like to simulate.
The double-mean-reverting model gives rise to ODEs that cannot be solved in
closed form. We extend the Ninomiya-Victoir scheme such that the ODEs of
the new scheme can be solved in closed form. By this we illustrate how the
scheme can be modi�ed to yield closed form simulation for other more com-
plicated models. Next we apply the scheme to the calibration of the double-
mean-reverting model and compare the performance to an Euler-Maruyama
scheme with partial truncation of Lord et al. (2010). We conclude that the
Ninomiya-Victoir scheme can lead to an increase in performance and that we
can calibrate the double-mean-reverting model fast. We also show numerically
that the scheme exhibits second order convergence in time.

Chapter 5 builds a simple feedback-e�ects model in a two person economy.
The �rst agent is a utility optimizing investor and the second is an option trader
delta hedging his option position. We assume the asset has one price when the
�rst agent is alone in the market and another when both agents are present.
The second price is assumed to be a smooth function of the �rst. Using these
assumptions and the dynamics of the price under the equivalent martingale
measure we can approximate the dynamics of the price under the real world
measure. Having found that we can calculate the �rst agents demand for the
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asset, which will give us the delta hedgers demand and thereby his option
position. We construct a continuous time model and also a discrete time
discrete state space model. Numerical examples are provided, here we apply
the discrete model to option data from di�erent foreign exchange crosses.
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Chapter 2

SABR Excursions

Morten Karlsmark

Abstract

Using Markovian projection we construct a local volatility model ap-
proximating the SABR model. This local volatility model can be used to
build fast approximations to European call prices in the SABR model.
We develop a closed form approximation using results from Andersen
and Brotherton-Ratcli�e (2005) and an arbitrage-free approximation us-
ing one implicit �nite di�erence step. The performance is tested against
a numerical solution obtained by �nite di�erence and the approximations
from Hagan et al. (2002) and Obloj (2008). The new approximations ap-
proximate the numerical solution better and the arbitrage-free approxi-
mation eliminates the arbitrage opportunities for low strike options that
have become a problem in regimes with very low interest rates.

2.1 Introduction

The SABR model is used widely by �nancial institutions to price and risk-
manage interest rate derivatives such as European swaptions and Constant
Maturity Swaps. It is a stochastic volatility model where the forward Ft (for
a speci�c expiry) follows

dFt = αtF
β
t dW

1
t

dαt = sαtdW
2
t

(2.1.1)

here d
〈
W 1,W 2

〉
t

= ρdt. Note that αt is lognormally distributed, and the
process for the forward Ft is of the CEV type. The last fact implies that the
forward has a non-zero probability of hitting zero. If it hits zero it will stay
there by arbitrage arguments, see Andersen and Andreasen (2000).

No closed form solution exists for European claims but we can solve the
problem numerically using �nite di�erence, see the appendix in section 2.9, or

13



14 CHAPTER 2. SABR EXCURSIONS

Monte Carlo. These approaches are though to slow to be used in practice as
traders need to risk manage products with hundreds of di�erent underlying
instruments in di�erent currencies. Therefore practitioners have been using
an approximation from Hagan et al. (2002) to value European options. This
approximation, though, introduces arbitrage opportunities in the market, low
and high strike options are priced incorrectly. This has led researchers to sug-
gest a number of other approximations. Most of these approximations lead to
arbitrage possibilities, others are very computationally involved. This paper
suggests a new, computationally fast approximation that generates arbitrage-
free prices. The method uses Markovian projection to obtain a local volatil-
ity model that approximates the SABR model. From this model we develop
one closed form approximation using results from Andersen and Brotherton-
Ratcli�e (2005) and an arbitrage-free approximation using a one step implicit
�nite di�erence scheme. The results are general and they can be applied to
other local volatility functions than the CEV function of the normal SABR
model.

The paper is organized as follows. Section 2.2 considers the Hagan approxi-
mation and provides numerical examples in order to demonstrate the inherent
problems with the approximation. Section 2.3 looks at new approximation
methods that have appeared in the literature. In section 2.4 we develop a
local volatility model that approximates the SABR model, this is done using
Markovian projection. Section 2.5 approximates call prices in the local volatil-
ity model, these are not arbitrage-free. Section 2.6 develops a one step implicit
�nite di�erence scheme to solve for prices in the local volatility model. This
scheme generates arbitrage free prices. The results in section 2.4 and 2.5 are
very general, in section 2.7 we apply them to a model where the CEV function
is replaced by a function with bounded derivative at 0. Section 2.8 concludes.

2.2 The Hagan Approximation

The approximation found in Hagan et al. (2002) has made the SABR model
popular compared to other stochastic volatility models because it is easy to use
and program. We here give a short review of the approximation and presents
some numerical examples.

Consider the process ((Ft −K)+)t≥0 and let us �nd dynamics for it. De�ne
f(x) = (x − K)+, then we have f ′(x) = 1{x>K}(x) and f ′′(x) = δ(x − K).
Where δ(·) is a Dirac delta function. Using Tanaka's formula we get

(FT −K)+ = (F0 −K)+ +

∫ T

0
1{Ft>K}(Ft)αtF

β
t dWt

+
1

2

∫ T

0
δ(Ft −K)α2

tF
2β
t dt.
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Taking mean and using Tornelli we obtain

E
(
(FT −K)+

)
= (F0 −K)+ +

1

2

∫ T

0
E
(
δ(Ft −K)α2

tF
2β
t

)
dt

= (F0 −K)+ +
1

2

∫ T

0

∫ ∫
δ(Ft −K)α2

tF
2βp(t, Ft, αt)dFtdαtdt

= (F0 −K)+ +
1

2

∫ T

0

∫
α2
tK

2βp(t,K, αt)dαtdt

= (F0 −K)+ +
K2β

2

∫ T

0

∫
α2
t p(t,K, αt)dαtdt

here p(t, Ft, αt) is the two dimensional probability density for (Ft, αt). The
derivation here can be proven rigorously, see Carr and Jarrow (1990).

Hagan et al. (2002) uses perturbation techniques in order to approxi-
mate

∫
α2
t p(t,K, αt)dαt. Let us denote this approximation A(t, β, s, F0, α0,K).

Then they approximate
∫ T

0 A(t, β, s, F0, α0,K)dt with an integral∫∞
f(β,s,F0,α0,K) g(y)dy where g(y) is independent of β, s, F0, α0 and K. Setting

f(0, 0, F0, σ,K) = f(β, s, F0, α0,K) and solving for σ they obtain an equiva-
lent normal volatility for any combination of β, s, F0, α0 and K. This normal
volatility is then transformed into a Black volatility.

But the Hagan approximation has some problems. Let us compare the
Black volatilities found using our �nite di�erence approach in section 2.9 with
the Black volatilities from the Hagan approximation. This is done in Figure
2.1 where we picture Black volatilities for 10Yx10Y Swaptions using parame-
ters from the 15th of December 2010. We assume that the swap-rate follows
(2.1.1) under the annuity measure. As seen the Hagan approximation clearly
overvalues all options. This could be acceptable. If we use the Hagan ap-
proximation to calibrate our model to the market and then price using the
Hagan approximation, the model prices will correspond to the market prices
in the neighborhood of the market quotes. The true problem is that the prices
obtained by the Hagan approximation deep in and out of the money are not
arbitrage-free. This can be seen if we di�erentiate the swaption prices twice
in the strike direction to obtain the Arrow-Debreu prices, see Figure 2.2. The
Arrow-Debreu prices make up the probability density of the 10Yx10Y forward
swap-rate under the annuity measure. For the �nite di�erence solution the
density shoots up when the strike approaches zero, this re�ects the fact that
the forward has a positive probability of ending up at 0. The Hagan expan-
sion on the other hand gives a negative density for low strikes, this leads to
arbitrage opportunities:

Just consider a normal butter�y. Buy one call option at strike x1, one
at strike x2 and sell two options at strike x1+x2

2 (we assume x1 < x2). The
price of this strategy approximates the second derivative of the call price in
the strike direction, modulo a multiplication of a positive constant. If x1 and
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Figure 2.1: 10Yx10Y swaption volatilities for the SABR model found using a 2D FD
scheme and the Hagan approximation. Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630,
s = 0.421, ρ = −0.363.
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Figure 2.2: Arrow-Debreu prices for the 10Yx10Y forward swap rate in SABR model.
Found using a 2D FD scheme and the Hagan approximation. Parameters are β = 0.7,
F0 = 0.0439, α0 = 0.0630, s = 0.421, ρ = −0.363.
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x2 are low strikes we will obtain a negative price for such a strategy. But the
payo� will always be a non-negative amount. Hence we have constructed an
arbitrage opportunity.

To avoid these arbitrage opportunities other approximations have appeared
in the literature.

2.3 Other approximations

Obloj (2008) compares a result from Berestycki et al. (2004) with the result in
Hagan et al. (2002). He notes a slight di�erence between the formulas and then
shows that the formula from Berestycki et al. (2004) is better at calculating
the prices for low strike calls. But it is worth noting that Hagan et al. (2002)
actually develops two di�erent expressions for the Black volatility. A general
formula for any form of local volatility function and a speci�c formula for the
CEV case. The �rst general formula can also be used in the SABR case, but it
gives worse prices than the next speci�c formula. It is actually the �rst general
formula that Obloj (2008) considers. The Obloj (2008) formula also gives rise
to arbitrage for low strikes, and it produces a very steep smile as the formula
from Hagan et al. (2002).

As noted Hagan et al. (2002) approximates the time integral∫ T
0 A(t, β, s, F0, α0,K)dt. Benhamou and Croissant (2007) note that this inte-
gral can be solved explicitly using the complex error function. Therefore their
result only relies on the accuracy of the approximation A(t, β, s, F0, α0,K).
This method is a huge improvement compared to Hagan et al. (2002) and
Obloj (2008). But we cannot guarantee in general that the prices will be
arbitrage-free, since we still rely on the approximation of

∫
α2
t p(t,K, αt)dαt.

Also we need to evaluate the complex error function, this will make the method
time consuming.

Another path is chosen in Doust (2012). He derives approximations for∫
αnt p(t,K, αt)dαt for any n. This is done using the same kind of perturbation

techniques as Hagan et al. (2002).
∫
p(t,K, αt)dαt is the marginal density for

Ft as a function of K. The approximation to the marginal density is positive
so if we use this as the density we get arbitrage-free call prices. But the
approximated density does not integrate to one, and the mean is not equal to
the forward price. This means that we need to scale and shift the approximated
density to make the model work. The obtained prices may be arbitrage-free
but it comes at the cost of computation time.

The methods above are derived using expansions. In contrast Kennedy
et al. (2012) takes a probabilistic approach to the problem. They develop a
displaced di�usion SABR model approximating the CEV SABR model. In
this model they obtain closed form expressions for the mean and variance of
the forward given the stochastic volatility. Using these they approximate the
conditional distribution of the forward given the stochastic volatility with a
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Figure 2.3: 10Yx10Y swaption volatilities for the SABR model found using a 2D FD
scheme, the Hagan approximation, the Obloj approximation and the Benhamou and Crois-
sant approximation. Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630, s = 0.421,
ρ = −0.363.

normal distribution or a NIG distribution. As the stochastic volatility is log-
normally distributed, approximative prices can be found by a two dimensional
integral and prices will be arbitrage-free. For the normal approximation further
simpli�cations leads to a method where only one integral has to be evaluated.
This method produces very nice results, but the integral can diverge for large
vol of vol and maturity. The method will probably also be slower than the
methods above, since we have to compute an integral numerically.

Hagan et al. (2002), Obloj (2008) and Benhamou and Croissant (2007)
smiles can be seen in Figure 2.3. As seen the Hagan et al. (2002) and Obloj
(2008) smiles look very alike while the Benhamou and Croissant (2007) smile
lies closer to the true solution.

2.4 The new method

The idea is to develop a local volatility model that prices call options as the
SABR model. We therefore want a model of the form

dFt = σ(Ft, t)dWt (2.4.1)

(note we use the normal model form here) and we need to choose σ(Ft, t) such
that the call prices from the local volatility model agree with the prices from
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the SABR model. Derman and Kani (1998) shows that this can be achieved
if we choose

σ(K, t) = Kβ
√
E(α2

t |Ft = K), (2.4.2)

this is also known as Markovian projection, see Piterbarg (2007). Therefore
we need to compute

E(α2
t |Ft = K) =

∫
α2
t p(t,K, αt)dαt∫
p(t,K, αt)dαt

. (2.4.3)

The numerator is the function Hagan et al. (2002) approximates and as men-
tioned Doust (2012) approximates functions of the form

∫
αnt p(t,K, αt)dαt

for any n. We can therefore use the results from Doust (2012) to derive the
conditional second moment.

2.4.1 Doust's result

Consider the model

dFt = αtC(Ft)dW
1
t

dαt = sαtdW
2
t

(2.4.4)

where d
〈
W 1,W 2

〉
t

= ρdt and C(·) is some function.
Doust (2012) shows that

∫
αnt p(t,K, αt)dαt ≈

αn−1
0

C(K)

√
C(F0)

C(K)
J(y(F0,K))n−3/2

· exp

∫ y(F0,K)

0

1/2ρsα0
B′(α0ξ,K)
B(α0ξ,K) ξ

J(ξ)2
dξ

 exp(−x(y(F0,K))2

2t + κt)
√

2πt

where

J(y) =
√

1− 2ρsy + s2y2

y(F0,K) =
1

α0

∫ F0

K

1

C(f)
df

x(y) =

∫ y

0

1

J(ξ)
dξ

κ =
1

8
(4n2 − 8n+ 2− (2n− 3)(2n− 1)ρ2)s2

+
2n− 1

4
ρsα0

B′(α0y0,K)

B(α0y0,K)
+ α2

0

(
1

4

B′′(α0y0,K)

B(α0y0,K)
− 3

8

(
B′(α0y0,K)

B(α0y0,K)

)2
)

B′(x,K) =
∂B

∂x
(x,K).
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B(x,K) is de�ned by the equality B(α0y(F0,K),K) = C(F0) and y0 is a
constant we have to choose. The result is true for any choice of y0, we will
therefore for each value of F0 and K choose y0 = y(F0,K). This means that
y0 is not constant in F0 and K but it won't matter. The interested reader is
referred to appendix A in Doust (2012).

2.4.2 The conditional second moment

Dividing the approximation for
∫
α2
t p(t,K, αt)dαt with the approximation for∫

p(t,K, αt)dαt we obtain

E(α2
t |Ft = K) ≈ α2

0J(y(F0,K))2 exp

(
ρsα0

B′(α0y0,K)

B(α0y0,K)
t

)
(2.4.5)

and for the SABR model where C(F ) = F β we have

J(y) =
√

1− 2ρsy + s2y2

y(F0,K) =

{
1
α0

log(F0
K ) β = 1

1
α0(1−β)(F 1−β

0 −K1−β) β < 1

B(y,K) =

{
K exp(y) β = 1

(y(1− β) +K1−β)
β

1−β β < 1.

Note that the right hand side of (2.4.5) is always positive, so we can use it as
a local variance.

2.4.3 Call prices

European call prices can be found solving Dupire's forward equation

∂C

∂T
(T,K) =

1

2
σ(T,K)2 ∂

2C

∂K2
(2.4.6)

where C is the call price and

σ(T,K)2 = K2βα2
0J(y(F0,K))2 exp

(
ρsα0

B′(α0y0,K)

B(α0y0,K)
T

)
. (2.4.7)

If we use an implicit �nite di�erence scheme the prices will be arbitrage-free
see Andreasen and Huge (2011b). Prices from a 1D Finite Di�erence scheme
can be seen in Figure 2.4.

2.5 An approximative method

Solving the local volatility model using a �nite di�erence scheme is, like solving
the 2-dimensional problem, too time consuming to be used in practice. Instead
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Figure 2.4: 10Yx10Y swaption volatilities for the SABR model found using a 2D FD
scheme and the 1D FD scheme. Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630,
s = 0.421, ρ = −0.363.

we now develop an approximation to call prices using a method from Andersen
and Brotherton-Ratcli�e (2005).

The price V of an European option in our local volatility model can be
found solving the 1D backward PDE:

∂V

∂t
(t, F ) +

1

2
σ(t, F )2∂

2V

∂F 2
(t, F ) = 0. (2.5.1)

We can write

σ(t, F )2 = ψ(F0, F )2λ(t) (2.5.2)

where

ψ(F0, F ) = F βα0J(y(F0, F )) and λ(t) = exp

(
ρsα0

B′(α0y0,K)

B(α0y0,K)
t

)
.

(2.5.3)
Therefore we can make a deterministic time shift: De�ne

u(t) =

∫ t

0
λ(s)ds (2.5.4)

and we have the new PDE

∂V

∂u
(u, F ) +

1

2
ψ(F0, F )2∂

2V

∂F 2
(u, F ) = 0 (2.5.5)
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because u′(t) = λ(t). Andersen and Brotherton-Ratcli�e (2005) show that we
can approximate the price of a strike K maturity u(T ) call option with the
Black formula using the volatility

σu = Ω0(F0,K) + Ω1(F0,K)u(T )

where

Ω0(F0,K) =
log(F0/K)∫ F0

K ψ(F0, x)−1dx

Ω1(F0,K) = − Ω0(F0,K)(∫ F0

K ψ(F0, x)−1dx
)2 log

(
Ω0(F0,K)

√
KF0

ψ(F0,K)ψ(F0, F0)

)
.

This is when u(t) is the measure of time, inverting to t as our measure we
obtain

σ(F0,K)Black =
Ω0(F0,K)u(T )1/2 + Ω1(F0,K)u(T )3/2

√
T

. (2.5.6)

As seen the denominators of Ω0(F0,K) and Ω1(F0,K) goes to zero as
K → F0. We could therefore experience numerical instability when K comes
close to F0. Using the rule of l'Hôpital we �nd that

lim
K→F0

Ω0(F0,K) =
ψ(F0, F0)

F0

lim
K→F0

Ω1(F0,K) =
1

24

ψ(F0, F0)

F0

·
(
ψ(F0, F0)2

F 2
0

− ∂ψ

∂K
(F0, F0)2 + 2ψ(F0, F0)

∂2ψ

∂K2
(F0, F0)

)
.

We can therefore use these limits when K goes to F0. In order to guarantee
numerical stability around the forward we simply interpolate the smile linearly
between F0 − 0.0001 and F0 + 0.0001.
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Then we calculate
∫ F0

K ψ(F0, x)−1dx.∫ F0

K
ψ(F0, x)−1dx =

∫ F0

K

(
xβα0J (y(F0, x))

)−1
dx

=
1

α0

∫ F0

K
x−β(1− 2ρsy(F0, x) + s2y(F0, x)2)−1/2dx

= −
∫ y(F0,F0)

y(F0,K)
(1− 2ρsy + s2y2)−1/2dy

= −
[

1

s
log
(∣∣∣2s√1− 2ρsy + s2y2 + 2s2y − 2ρs

∣∣∣)]y(F0,F0)

y(F0,K)

=
1

s
log

(∣∣∣∣∣2s√1− 2ρsy(F0,K) + s2y(F0,K)2

+ 2s2y(F0,K)− 2ρs

∣∣∣∣∣
)
− 1

s
log (|2s− 2ρs|)

=
1

s
log

(∣∣∣∣∣
√

1− 2ρsy(F0,K) + s2y(F0,K)2 + sy(F0,K)− ρ
1− ρ

∣∣∣∣∣
)
.

(2.5.7)

where we have used

y(F0,K) =

{
1
α0

log(F0
K ) β = 1

1
α0(1−β)(F 1−β

0 −K1−β) β < 1

and y(F0, F0) = 0.
(2.5.6) is a simple approximation to the Black volatility for European

call/put option prices in the SABR model. We can compare it to the re-
sults from the 1D �nite di�erence scheme considered above, this is done in
Figure 2.5. As seen the approximation is almost as good as solving for option
prices in the local volatility model using �nite di�erence, although some di�er-
ences exists for low strikes. We can also compare it to the approximation from
Hagan et al. (2002) this is done in Figure 2.6. The new approximation seems
to approximate the call prices better than the Hagan approximation. But like
the Hagan approximation it creates arbitrage opportunities in the market, see
Figure 2.7.

2.6 Fast arbitrage-free prices

Let us reconcile. We have approximated the two-dimensional SABR model
with a one-dimensional local volatility model using Markovian projection. We
can �nd European option prices in this local volatility model by �nite di�er-
ence methods, this will give arbitrage-free prices. We have also developed an
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Figure 2.5: 10Yx10Y swaption volatilities for the SABR model found using a 2D FD
scheme, the 1D FD scheme and the Andersen Brotherton-Ratcli�e approximation. Param-
eters are β = 0.7, F0 = 0.0439, α0 = 0.0630, s = 0.421, ρ = −0.363.
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Figure 2.6: 10Yx10Y swaption volatilities for the SABR model found using a 2D FD
scheme, the Hagan approximation and the Andersen Brotherton-Ratcli�e approximation.
Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630, s = 0.421, ρ = −0.363.



2.6. FAST ARBITRAGE-FREE PRICES 25

0.00 0.05 0.10 0.15 0.20

−
30

−
20

−
10

0
10

20
30

Arrow−Debreu prices

Strike

2D FD
Hagan
AB

Figure 2.7: Arrow-Debreu prices for the 10Yx10Y forward swap rate in the SABR model.
Found using a 2D FD scheme, the Hagan approximation and the Andersen Brotherton-
Ratcli�e approximation. Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630, s = 0.421,
ρ = −0.363.

approximation to call prices in the local volatility model using results from
Andersen and Brotherton-Ratcli�e (2005).

Now we are looking for a fast way to calculate arbitrage-free prices, and the
idea is to use an implicit �nite di�erence scheme with only one time step. This
will ensure arbitrage-free prices, see Andreasen and Huge (2011b). In order
to limit the number of grid points in the spatial dimension we will only solve
the PDE in a small interval around ATM where options trade. As boundary
conditions we will use our Andersen Brotherton-Ratcli�e approximation.

We need to choose the grid width for our �nite di�erence scheme. The
width of the grid is chosen as a number of standard deviations in a log-normal
distribution. We choose to set the log-normal volatility equal to the ATM
implied volatility from our Andersen Brotherton-Ratcli�e approximation. The
lower and upper boundary are �oored/capped and we construct the grid in log
space. Then we transform all points back to normal space. In the following
graphs we have Smin = 0.000205 and Smax = 0.203 as boundaries of our �nite
di�erence grid. In between these points we solve the PDE corresponding to
our local volatility model. This procedure will therefore generate arbitrage-free
prices in the interval [Smin;Smax], and on the borders the prices will equal the
Andersen Brotherton-Ratcli�e approximation. Outside the interval we use the
Andersen Brotherton-Ratcli�e approximation as our price. Implied volatilities
calculated using this method are found in Figure 2.8. As seen our volatility
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Figure 2.8: 10Yx10Y swaption volatilities for the SABR model found using a 2D FD
scheme, 1D FD scheme and our 1D FD one step scheme. Parameters are β = 0.7, F0 =
0.0439, α0 = 0.0630, s = 0.421, ρ = −0.363.

smile is v-shaped compared to the true solution. The v-shape can be found in
almost any model where one uses an implicit �nite di�erence scheme with one
time step. It exists because the implicit �nite di�erence scheme with one time
step has not got the time steps to smooth out the probability mass. In fact
if we calculate the transition density for one implicit �nite di�erence step, we
will see it approximates a Laplace distribution when the volatility is constant
e.g. in a normal model, see Andreasen and Huge (2011a). In Figure 2.9 we
have pictured implied volatilities for a normal model. One smile computed
using one time step and another using 100 time steps. The smile is v-shaped
when using one time step.

In order to eliminate the v-shape from the smile of the one step scheme
we will correct the local volatilities to re�ect that we only use one time step.
This is the same approach as in Andreasen and Huge (2013). As noted above
almost all models yield a v-shaped volatility smile when one uses an implicit
�nite di�erence scheme with one time step. Therefore we can calculate a
correction to the local volatilities in a model with closed form vanilla prices.
This correction can then be used in our local volatility model. We choose to
calculate the correction in the normal model (which is the SABR model where
β = 0 and s = 0) this is most convenient.

An implicit �nite di�erence scheme with one time step can generate correct
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Figure 2.9: Implied Black volatilities for a normal model found using an implicit FD
scheme with one time step and an implicit FD scheme with 100 time steps. Parameters are
σ = 0.0071, F0 = 0.0439, T = 10.

call prices if the local volatility function satisfy

σ(T,K)2 = 2
C(T,K)− C(0,K)
∂2C
∂K2 (T,K)FDT

(2.6.1)

for any point K. Here C(T,K) is the correct price of a call with expiry T and

strike K and ∂2C
∂K2 (T,K)FD is the �nite di�erence for the second derivative on

our discrete grid.

The price in a normal model for an expiry T , strike K call is

C(T,K) = (F0 −K)Φ

(
F0 −K
σ
√
T

)
+ σ
√
Tϕ

(
F0 −K
σ
√
T

)
(2.6.2)

where Φ(·) is the standard normal cumulative distribution function and ϕ(·)
is the standard normal density function. We also have

C(0,K) = (F0 −K)+. (2.6.3)

We choose to approximate ∂2C
∂K2 (T,K)FD with ∂2C

∂K2 (T,K) which is the density
of the risk neutral distribution, i.e. a normal density. So in order for the one
step scheme to generate approximately correct call prices in a normal model
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we need to have

σ(T,K)2 = 2
(F0 −K)Φ

(
F0−K
σ
√
T

)
+ σ
√
Tϕ
(
F0−K
σ
√
T

)
− (F0 −K)+

1
σ
√
T
ϕ
(
F0−K
σ
√
T

)
T

= 2σ2

1 +
(F0 −K)Φ

(
F0−K)

σ
√
T

)
− (F0 −K)+

σ
√
Tϕ
(
F0−K
σ
√
T

)


= 2σ2

(
1− xΦ(−x)

ϕ(x)

)

where x = |F0−K|
σ
√
T

. The volatility correction σ(T,K)
σ is then given by

√
2

(
1− xΦ(−x)

ϕ(x)

)
. (2.6.4)

Φ(−x)
ϕ(x) can be approximated by a �fth degree polynomial (see equation 26.2.17

in Abramowitz and Stegun (1972)).

To correct our local volatility model we multiply the previously found local

volatility Kβ
√

E(α2
T |Ft = K) with (2.6.4) at every grid node. But we need to

choose the σ in the expression for x. In order for the correction to work we
need to choose approximately the correct normal volatility σ for each grid
point.

We use the Andersen Brotherton-Ratcli�e approximation to calculate Black
volatilities for each grid point, and then we normalize with

√
F0K

σNormalK =
√
F0KσBlackK . (2.6.5)

This scheme yields the implied volatilities found in Figure 2.10. As seen we get
a nice volatility smile, and the method generates arbitrage-free prices in the
interval [Smin, Smax], see Figure 2.11. The method is also computationally
fast since we use a 1D Finite Di�erence scheme with one time step.

2.7 Other volatility functions: The Hyperbolic

volatility function

In the SABR model the process for the forward is of CEV type. So the forward
has a non-zero probability of hitting zero. This could be one of the reasons for
the problems of expansion methods. To eliminate the problem we could use
a C(·) function with a bounded slope at zero. This function must also have
the same characteristics as the CEV function around ATM since we like the
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Figure 2.10: 10Yx10Y swaption volatilities for the SABR model found using a 2D FD
scheme, our 1D FD scheme and our 1D FD one step scheme with volatility correction.
Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630, s = 0.421, ρ = −0.363.
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Figure 2.11: Arrow-Debreu prices for the 10Yx10Y forward swap rate in the SABR model.
Found using a 2D FD scheme, our 1D FD scheme and our 1D FD one step scheme with
volatility correction. Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630, s = 0.421,
ρ = −0.363.
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Figure 2.12: 10Yx10Y swaption volatilities for the model with CEV function and Hyper-
bolic function. Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630, s = 0.421, ρ = −0.363.

smiles to look the same. A function that ful�lls this is the hyperbolic volatility
function

C(F ) = F β0

(1− β + β2) FF0
+ (β − 1)

(√(
F
F0

)2
+ β2

(
1− F

F0

)2
− β

)
β

(2.7.1)
see Jackel and Kahl (2008). It is easily seen that it has the same value, �rst
and second derivative as the CEV function ATM. Therefore we expect it to
yield similar option prices as the CEV function around ATM. Figure 2.12
shows implied volatilities found using a �nite di�erence scheme on the SABR
model with a CEV function and a hyperbolic function. As seen the volatilities
match each other around ATM. For high strikes we see a steeper smile in the
hyperbolic model while the opposite is true for low strikes.

Using the general result (2.4.5) we can obtain a local volatility model ap-
proximating the SABR model with the hyperbolic volatility function. Again
we need to calculate

∫ F0

K ψ(F0, x)−1dx.∫ F0

K
ψ(F0, x)−1dx =

∫ F0

K
(C(x)α0J(y(F0, x)))−1dx

= −
∫ y(F0,F0)

y(F0,K)
J(y)−1dy.
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as y(F0,K) = 1
α0

∫ F0

K
1

C(f)df . We can use (2.5.7) and we only need to calculate∫ F0

K
1

C(f)df .∫ F0

K
1

C(f)df can be found using Mathematica and we have

∫ F0

K

1

C(F )
dF = F 1−β

0

(
β

2
log

(
β − β K

F0
+ ξ( KF0

))

( KF0
)2

)

− (−1 + β − β2 + β3)

β
√

1 + β2
log

(
1 +

√
1 + β2

β2(−1 + K
F0

) + K
F0

+
√

1 + β2ξ( KF0
)

)

+
1− β + 1

2β
2

β
log

(
β2

β3(−1 + K
F0

) + β2(2− 2 KF0
+ ξ( KF0

)) + 2(1− β)(− K
F0

+ ξ( KF0
))

))

where ξ(x) =
√
β2(−1 + x)2 + x2.

Now we can use a �nite di�erence scheme to solve for prices or approximate
the prices using the Andersen Brotherton-Ratcli�e result. If our hypothesis
is correct the Andersen Brotherton-Ratcli�e approximation should yield fewer
arbitrage opportunities when we use a hyperbolic volatility function than when
we use a CEV function.

As Hagan et al. (2002) derives a formula for a general C(F ) we can in fact
also calculate the option prices using their formula. We can therefore compare
the di�erent approaches. Figure 2.13 shows prices in a model with hyperbolic
volatility function computed using the di�erent approximations. Again the
Andersen Brotherton-Ratcli�e approximation yields a better approximation
than the Hagan approximation.

In Figure 2.14 we picture Arrow-Debreu prices found using the Andersen
Brotherton-Ratcli�e approximation on the model with hyperbolic volatility
function and on the model with CEV function. As seen the model with hyper-
bolic volatility function yields a much nicer density. It gets negative at a much
lower strike than the density found in the model with CEV function. The use
of the hyperbolic volatility function can therefore reduce the problems of call
price expansions in the SABR model. We reach the same conclusion using the
Hagan approximation, see Figure 2.15.

But note that the general Hagan approximation is unstable. For high
strike options the price increases with strike. This is in fact also the case for
the Andersen Brotherton-Ratcli�e approximation but this only happens for
extremely high strikes.

2.8 Conclusion

Using Markovian projection and a result from Doust (2012) we developed a
local volatility model approximating the SABR model. This local volatility
model was then used to construct two approximations to European call op-
tion prices in the SABR model. The �rst approximation was developed using
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Figure 2.13: 10Yx10Y swaption volatilities for the model with Hyperbolic volatility func-
tion. We have used a 2D FD solver, the Hagan approximation and the Andersen Brotherton-
Ratcli�e approximation. Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630, s = 0.421,
ρ = −0.363.
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Figure 2.14: Arrow-Debreu prices for the 10Yx10Y forward swap rate in the model with
a CEV volatility function and a Hyperbolic volatility function. Found using the Andersen
Brotherton-Ratcli�e approximation. Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630,
s = 0.421, ρ = −0.363.
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Figure 2.15: Arrow-Debreu prices for the 10Yx10Y forward swap rate in the model with
a CEV volatility function and a Hyperbolic volatility function. Found using the Hagan
approximation. Parameters are β = 0.7, F0 = 0.0439, α0 = 0.0630, s = 0.421, ρ = −0.363.

results from Andersen and Brotherton-Ratcli�e (2005). As shown in numeri-
cal examples it was better than the Hagan et al. (2002) approximation but it
did not eliminate arbitrage opportunities for low strike options. The second
approximation was a one step implicit �nite di�erence solution of the local
volatility model. To make it work we had to develop a correction to the local
volatility function. The resulting scheme was fast and generated arbitrage-free
prices. The Markovian projection result is general and works for any local
volatility function we choose for our SABR model. We therefore developed
an approximation to a SABR model where the local volatility function was
the hyperbolic local volatility function. In this model the forward cannot hit
zero. The Andersen Brotherton-Ratcli�e approximation for this model gener-
ated prices with fewer arbitrage opportunities than the Andersen Brotherton-
Ratcli�e approximation for the normal SABR model. It can therefore be an
idea to use a local volatility function with a bounded derivative at zero if one
wants easy implementable approximations with fewer arbitrage opportunities.
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2.9 Appendix: FD solution of the SABR model

2.9.1 The forward FD scheme

The benchmark prices for our SABR model will be calculated using a two
dimensional �nite di�erence scheme. Here we explain how. For an introduction
to Finite Di�erence schemes in �nance see Tavella and Randall (2000).

Consider a di�usion process (Xt)t≥0. Let p(t, x, T,X) be the transition
density from (t, x) to (T,X). Here t, T is time and x,X is the value of our
spatial variables. Also let V (t, x) be the price of a European option at time
t when the spatial variable is equal to x. When pricing European options
using PDE's we can choose two di�erent approaches. Either we price using
the backward Kolmogorov PDE

∂V

∂t
(t, x) +AxV (t, x) = 0 (2.9.1)

or we �nd a density using the forward Kolmogorov PDE

− ∂p
∂T

(t, x, T,X) +AXp(t, x, T,X) = 0 (2.9.2)

and then calculate prices integrating the payo� function with respect to the
found density. Here Ax is the in�nitesimal generator in the spatial coordinates
x and AX is the adjoint operator in the coordinates X.

Solving the forward PDE will therefore give us all call prices at once. In
contrast the Backward PDE needs to be solved for each option individually.
If we want prices for many di�erent options the fast method will be to solve
the forward equation.

But solving the forward equation directly is not easy. Especially choosing
the right boundary conditions for our grid is hard. Here we will use a rewriting
of a discretized backward equation and obtain a discretized forward equation.

We follow Andreasen (2009). Consider the normal backward equation:

0 =
∂V

∂t
+AxV

where again Ax is the in�nitesimal generator. Normally we discretize the
spatial dimension and approximate Ax with a matrix Āx, so we obtain a system

0 =
∂v

∂t
+ Āxv

where v is a vector. Now multiply by another vector p and integrate from 0
to T

0 =

∫ T

0
p(t)′

∂v

∂t
(t)dt+

∫ T

0
p(t)′Āxv(t)dt
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using partial integration on the �rst part yields

0 = p(T )′v(T )− p(0)′v(0) +

∫ T

0
p(t)′Āxv(t)− ∂p

∂t
(t)′v(t)dt

= p(T )′v(T )− p(0)′v(0) +

∫ T

0
v(t)′(Āx

′
p(t)− ∂p

∂t
(t))dt.

So if p(t) solves the forward equation

∂p

∂t
(t) = Āx

′
p(t) (2.9.3)

and if
p(0) = 1{f=F0,α=α0}(f, α) (2.9.4)

then p(T ) will be the probabilities for the discrete backward problem. We then
have a discrete forward equation for p:

∂p

∂t
(t) = Āx

′
p(t)

with initial condition p(0) = 1{f=F0,α=α0}(f, α). This can be solved with a
�nite di�erence scheme. The rewriting from backward to forward equation
can be done with any number of spatial dimensions. Note that we only need
to specify the Āx matrix for the backward problem, which normally is easily
done.

We need to �nd prices in the SABR model which has two spatial dimen-
sions. Therefore we will use a Craig-Sneyd solver, see Craig and Sneyd (1988):
For a parabolic forward equation in 2 dimensions

∂V

∂t
(t, x, y) = DxV +DyV +DxyV

we choose θx, θy, θxy and approximate:

(1− θx∆tD̄x)U = (1 + (1− θx)∆tD̄x + ∆tD̄y + ∆tD̄xy)V (t)

(1− θy∆tD̄y)Ṽ (t+ ∆t) = U − θy∆tD̄yV (t)

(1− θx∆tD̄x)U = (1 + (1− θx)∆tD̄x + ∆tD̄y + (1− θxy)∆tD̄xy)V (t)

+ θxy∆tD̄xyṼ (t+ ∆t)

(1− θy∆tD̄y)V (t+ ∆t) = U − θy∆tD̄yV (t)

here D̄x, D̄y and D̄xy are matrices approximating the spatial derivatives. In our
case we de�ne the matrices Āx, Āy and Āxy and then set D̄x = Ā′x, D̄y = Ā′y
and D̄xy = Ā′xy. We will choose θx = θy = θxy = 1

2 which gives second order
convergence in time.
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2.9.2 Call prices

The scheme will return a matrix p of probabilities in the F and α direction.
We can easily calculate the marginal F probabilities by summing over the α
direction:

PFT=x =

m∑
i=1

px,i

here m is the number of points in the α direction.
Let the grid have n points in the F direction, we denote the value of F at

each grid point by (Fi)1≤i≤n. We are interested in call options with strikes in
(Fi)1≤i≤n. To calculate these we simply de�ne

Qj =
n∑

i=j+1

Pi and Rj =
n∑

i=j+1

FiPi. (2.9.5)

A strike Fj call then has the price

Cj =

n∑
i=j+1

(Fi − Fj)Pi = Rj − FjQj .

Starting from j = n− 1 we can calculate all call prices in O(n) time.

2.9.3 The grid

In our implementation we choose to log transform the α-process such that it
will be normally distributed. The width of the grid is chosen to −10 to 10
standard deviations.

We have three points that need to lie on the grid. The lower bound l, the
upper bound u and α0. We know that l will be point 1 and u will be point m
on the grid. α0 will normally not lie on the grid if we do equal spacing. But we
can easily �nd the grid point in an equal spacing that lie closest to α0, let us
call this point r. We now have three pairs of points (1, l), (r, α0), (m,u). We
then do a cubic spline interpolation of these three pairs. To calculate our grid
points we insert numbers from 1 to m into this spline function. This ensures
that α0 is among the grid points.

To choose the width of the grid in the F direction we need to approximate
the standard deviation of F . We can calculate the standard deviation for the
process with α �xed when β = 0, 0.5 and 1. The standard deviation for a
general β is then approximated by a second order polynomial hitting the three
points. The width of the grid is chosen to be the interval −10 to 10 standard
deviations �oored by 0.

To distribute the points on the grid we transform the lower boundary,
upper boundary and F0 using the function f(x) = x1−β . Then we lay out the
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grid points using the cubic spline approach given above. All points are then

transformed back to the normal space using the function g(x) = x
1

1−β . The
transformation is done in order to distribute the grid points in a nice way such
that they vary with the probability distribution.

2.9.4 Boundary conditions

Note that we only need to specify the Āx matrix, which is used for the back-
ward scheme. Therefore we just need to choose boundary conditions for the
backward scheme. We choose to make the function linear at the boundary ie
we set the second order derivatives equal to zero on the boundary. This �ts
well with the absorption condition when Ft = 0.
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Chapter 3

A numerical scheme for

perpetual claims

Morten Karlsmark

Abstract

This paper considers a numerical scheme to price perpetual claims.
Contrary to claims with a given maturity date which can be priced solv-
ing a PDE, perpetual claims can be priced solving an ODE, often a two
boundary problem. We apply a simple �nite di�erence scheme to these
two-boundary ODEs. Convergence results are given in a number of cases
and we test the method on a variety of di�erent �nancial examples: We
calculate the expected exit time of a di�usion from an interval, price
perpetual CDOs on households with exploding credit risk, calculate the
value of cash when the interest rate can go negative and value perpetual
range accruals in the presence of transaction costs.

3.1 Introduction

In continuous time �nance a �nancial claim can normally be priced solving a
PDE which re�ects the payo� function of the claim and the dynamics of the
underlying in the given model, see for example Björk (2004). But there exists
claims without a given maturity date these claims are the so called perpetual
claims. Since they have no given maturity date the prices are not given as
solutions to PDEs, but if our model is time-homogeneous the prices can be
expressed as solutions to ODEs. The ODE will be of second order and is often
a two-boundary problem. Only very simple cases can be solved analytically,
we can though solve the ODE numerically on a �nite interval, if we are able
to specify appropriate boundary conditions.

Perpetual claims are not a common market product, but they are interest-
ing because the valuation yields information about �nite maturity claims and

41
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the underlying model. Moreover some academic questions can be answered by
considering perpetual claims, see for example section 3.5.3.

There exist a large literature on the numerical solution of two boundary
problems, see for example Keller (1976) and Ascher et al. (1995). We will use
a simple �nite di�erence approach and solve our ODE like an implicit step of a
PDE solver. This method is described in for example Ascher et al. (1995). We
will give convergence results for some important cases and consider the use of
the method on di�erent �nancial problems.

The paper is organized as follows: Section 3.2 presents the method. Section
3.3 considers convergence of the method for linear problems. Some results
are well-known but others have to our knowledge not been considered before.
Section 3.4 considers the solution of non-linear problems, here we use the
theory on Viscosity solutions to show convergence. Then in section 3.5 we
apply the method to some examples. These include: �nding the expected exit
time of a di�usion from an interval, pricing perpetual CDOs on households
with exploding credit risk, valuing cash when interest rate can go negative and
pricing perpetual range accruals in the presence of transaction costs. Section
3.6 concludes.

3.2 Discretization of linear second order ODEs

Consider a second order ordinary di�erential equation on the interval (a, b):

1

2
σ(x)2f ′′(x) + µ(x)f ′(x)− k(x)f(x) = g(x) (3.2.1)

with a boundary condition in the point a: k1f(a)+k2f
′(a) = ã and a boundary

condition in the point b: k3f(b) + k4f
′(b) = b̃.

To ease notation later we also de�ne the in�nitesimal operator L(·, ·) such
that

L(x, f(x)) = g(x).

To solve the ODE numerically we discretize the derivatives using �nite
di�erences. It can easily be seen that if a function f is four times di�erentiable
then

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
+O(∆x2)

f ′(x) =
f(x+ ∆x)− f(x)

∆x
+O(∆x)

f ′(x) =
f(x)− f(x−∆x)

∆x
+O(∆x)

f ′′(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
+O(∆x2)
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Discretizing in the points a = x0, x1 . . . , xn−1, xn = b where xi−xi−1 = ∆x,
we obtain n+ 1 equations. Equation 0 < i < n reads

1

2
σ(xi)

2 f(xi + ∆x)− 2f(xi) + f(xi −∆x)

∆x2

+ µ(xi)
f(xi + ∆x)− f(xi −∆x)

2∆x
− k(xi)f(xi) = g(xi)

and for the point a we get

k1f(a) + k2
f(a+ ∆x)− f(a)

∆x
= ã

A similar expression is obtained for the point b. Note that we use a one sided
�nite di�erence to approximate the �rst order derivative in a and b, so if k2 6= 0
the discretization will be of order O(∆x).

We have then obtained a system of linear equations

AF = G (3.2.2)

where G = (ã, g(x1), . . . , g(xn−1), b̃) and F is the approximation to the func-
tion f in the points x0, . . . , xn.

This matrix A will depend both on the chosen �nite di�erence approach
and on the boundary conditions. A will at least be tridiagonal as we need
three points to approximate the second order derivative.

A =


k1 − k2

∆x
k2
∆x . . .

a1 −b1 c1 0 . . .
. . .

. . .
. . .

. . .
. . .

. . . 0 an−1 −bn−1 cn−1

. . . − k4
∆x k3 + k4

∆x

 (3.2.3)

where ai = σ(xi)
2

2∆x2 − µ(xi)
2∆x , bi = σ(xi)

2

∆x2 + k(xi) and ci = σ(xi)
2

2∆x2 + µ(xi)
2∆x .

In �nancial applications the boundary conditions will be determined by
the product we are pricing. If we are pricing a product with a �xed price on
the boundaries a rebate for example we will use the �xed price as boundary
conditions (Dirichlet boundary conditions), so we set k1 = k3 = 1 and k2 =
k4 = 0. Contrary to this some claims are de�ned on an in�nite interval and
we can only solve the ODE numerically in a �nite interval (x0, xn). A normal
thing to do is then to choose the interval (x0, xn) wide enough and assume
linearity at the boundaries, σ(x0) = σ(xn) = 0 which gives

k1 = −k(x0), k2 = µ(x0), G0 = g(x0),

k3 = −k(xn), k4 = µ(xn), Gn = g(xn),
(3.2.4)
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see Tavella and Randall (2000). Another way to de�ne the boundary conditions
is to apply an asymptotic value in both ends, see for example Heider (2010).

It is also possible to use winding ie, approximate the �rst order derivatives
with a single sided �nite di�erence in the direction of the drift, this leads to a
tridiagonal matrix Awind where row i will have the tridiagonal elements

σ(xi)
2

2∆x2
− min(µ(xk), 0)

∆x
,

− σ(xk)
2

∆x2
+

min(µ(xk), 0)

∆x
− max(µ(xk), 0)

∆x
− k(xk),

σ(xk)
2

2∆x2
+

max(µ(xk), 0)

∆x

This �nite di�erence approximation will only be of order O(∆x), but for some
ODEs it is a very useful discretization, see section 3.3.

Yet another trick that can be used is nonuniform spacing, if we de�ne
∆xi = xi − xi−1 we can construct a matrix Anon where row i will have the
tridiagonal elements:

σ(xi)
2

∆xi(∆xi + ∆xi+1)
− µ(xi)∆xi+1

∆xi(∆xi + ∆xi+1)
,

− σ(xi)
2

∆xi∆xi+1
+ µ(xi)

(
∆xi+1

∆xi(∆xi + ∆xi+1)
− ∆xi

∆xi+1(∆xi + ∆xi+1)

)
− k(xi),

σ(xi)
2

∆xi+1(∆xi + ∆xi+1)
+

µ(xi)∆xi
∆xi+1(∆xi + ∆xi+1)

This �nite di�erence approximation will only be of order O(∆xi+1 −∆xi) +

O
(

∆x3
i+∆x3

i+1

∆xi+∆xi+1

)
since the term approximating the second order derivative is of

order one. But if ∆xi+1−∆xi = O(∆x2
i ) we still obtain a second order scheme.

Often a well chosen nonuniform discretization will outperform a simple uniform
discretization.

We have now approximated the ODE with a set of linear equations (3.2.2)
that we need to solve. As A in these examples is tridiagonal we can use a
simple tridag algorithm to solve the system. If A has more bands we can use
LU decomposition. For more on the solution of linear equation systems see
Press et al. (2002).

3.3 Convergence of the method

Assume that the true solution to the ODE is four times di�erentiable. We
wish to approximate the solution of (3.2.1) in the points (x0, . . . , xn). By f
we denote the true solution in the points (x0, . . . , xn) and by F we denote the
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solution to (3.2.2). If we neglect the possible �rst order discretization of the
boundary conditions and apply A to the di�erence F − f we get

A(F − f) = G−G+O(∆x2) = O(∆x2) (3.3.1)

as Af approximates the di�erentials of f to the order ∆x2. This is normally
referred to as consistency of the scheme. (3.3.1) implies

F − f = A−1O(∆x2)

so if every absolute row sum in A−1 is O(1) we have O(∆x2) convergence.
When every absolute row sum in A−1 is O(1) the scheme is said to be stable.

If we use winding to approximate the di�erentials we get

F − f = A−1
windO(∆x) (3.3.2)

and thereby slower convergence. But the row sums of A−1
wind are normally

easier to bound than the row sums of A−1.

Let us now turn to di�erent tridiagonal matrices and show that the absolute
row sums of the inverse are bounded. The �rst result is well-known see Ascher
et al. (1995) again, but we will give a proof anyways.

Proposition 3.3.1. Consider the matrix

A =



−b0 c0 0 . . .
a1 −b1 c1 0 . . .
0 a2 −b2 c2 0 . . .
...

. . .
. . .

. . .
. . .

. . .

0 an−1 −bn−1 cn−1

0 an −bn


If ai ≥ 0, bi > 0, ci ≥ 0 and ai − bi + ci = di < K < 0 for i ∈ {1, . . . , n − 1},
b0 > 0, c0 ≥ 0, an ≥ 0, bn > 0, −b0 + c0 = d0 < K < 0 and an − bn = dn <
K < 0, then A is nonsingular and the absolute row sums of A−1 are bounded

by 1
|K| .

Proof. −A is clearly a Z-matrix, see de�nition 2.5.1 in Horn and Johnson
(1991). By Gershgorin's circle theorem, see page 31 in Horn and Johnson
(1991), we see that all eigenvalues of −A are positive. Therefore −A is an
M-matrix, see de�nition 2.5.2 and 2.1.2 in Horn and Johnson (1991). Using
Theorem 2.5.3 in Horn and Johnson (1991) we see that −A is nonsingular and
all entries in −A−1 are non-negativity so all entries in A−1 are non-positive.
Also

A (1, 1, . . . , 1, 1)′ = (d0, . . . , dn)′
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which gives

(1, 1, . . . , 1, 1)′ = A−1 (d0, . . . , dn)′

As all entries in A−1 are non-positive and (d0, . . . dn) is negative and
bounded away from zero by K we conclude that the absolute row sums of
A−1 are bounded by 1

|K| .

Example 3.3.2. Consider an ODE on the form (3.2.1) with Dirichlet bound-

ary conditions. We discretize it using a matrix on the form (3.2.3). Assume

k(x) > K > 0, σ(x)2

2∆x2 − µ(x)
2∆x > 0 and

σ(x)2

2∆x2 + µ(x)
2∆x > 0 for x ∈ (a, b). It is easily

seen that di = −k(xi), ai, bi, ci > 0 for 1 ≤ i ≤ n − 1. Multiplying equation

0 and n with −1 if necessary we get that b0, bn > 0 and c0 = an = 0. Using

proposition 3.3.1 we see that the row sums of A−1 are O(1).

Example 3.3.3. Consider an ODE on the form (3.2.1) and let us apply our

linear boundary conditions (3.2.4). Assuming the same conditions as in exam-

ple 3.3.2 and now also that µ(x0) ≥ 0 and µ(xn) ≤ 0 we get b0, bn > 0 and

c0, an ≥ 0. Again we can use proposition 3.3.1.

Example 3.3.4. Consider example 3.3.2 but now only assume k(x) > K > 0
for x ∈ (a, b). If we use the normal �nite di�erence discretization we cannot

ful�ll the assumptions in proposition 3.3.1. But if we use winding we get

ai =
σ(xi)

2

2∆x2

−bi = −σ(xi)
2

∆x2
− µ(xi)

∆x
− k(xi)

ci =
σ(xi)

2

2∆x2
+
µ(xi)

∆x

when µ(xi) > 0 and

ai =
σ(xi)

2

2∆x2
− µ(xi)

∆x

−bi = −σ(xi)
2

∆x2
+
µ(xi)

∆x
− k(xi)

ci =
σ(xi)

2

2∆x2

when µ(xi) < 0. We can then apply Proposition 3.3.1 again.

Note that Anon also will ful�ll the conditions under similar assumptions.

When di = ai− bi+ ci cannot be bounded away from zero we need another
result. The next proposition gives some conditions under which we still obtain
convergence.



3.3. CONVERGENCE OF THE METHOD 47

Proposition 3.3.5. Consider a matrix

A =



−b0 c0 0 . . .
a1 −b1 c1 0 . . .
0 a2 −b2 c2 0 . . .
...

. . .
. . .

. . .
. . .

. . .

0 an−1 −bn−1 cn−1

0 an −bn


Assume ai, bi, ci > 0 for all i, ai − bi + ci ≤ 0 for i ∈ {1, . . . n− 1}, b0 ≥ kc0,
bn ≥ kan where k > 1 and independent of n and 1

b0
= O(nα), 1

bn
= O(nβ). If

• ci ≥ ai for i ∈ {1, . . . , n− 1} and maxi∈{1,...,n−1}
1
ci

= O(n−γ),

or

• ai ≥ ci for i ∈ {1, . . . , n− 1} and maxi∈{1,...,n−1}
1
ai

= O(n−γ).

then A is nonsingular and the absolute row sums of A−1 are O(n2−γ+nα+nβ).

Proof. Using J30 from page 136 in Berman and Plemmons (1979) on the vec-
tor (1, . . . , 1)T and −A we see that −A is a nonsingular M -matrix, so A is
nonsingular.

For i ∈ {0, . . . , n} de�ne

τi =
|ci|

|bi| − |ai|
ωi =

|ai|
|bi| − |ci|

with de�nition a0 = cn = 0. Note that both 0 ≤ τi ≤ 1 and 0 ≤ ωi ≤ 1. Then
de�ne

τi,0 = τi

τi,j =

{
τi,j−1 i < j
|ci|

|bi|−τi−1,j−1|ai| else

ωi,0 = ωi

ωi,j =

{
ωi,j−1 n− j < i
|ai|

|bi|−ωi+1,j−1|ci| else

where 0 ≤ τi,j ≤ 1 and 0 ≤ ωi,j ≤ 1 by induction.
Let (mij) = M = A−1, theorem 3.4 in Nabben (1999) states that for any

t ∈ {0, . . . , n− 1} we have

|mi,j | ≤ |mj,j |Πj−1
k=iτk,t for i < j

|mi,j | ≤ |mj,j |Πi
k=j+1ωk,t for i > j

(3.3.3)
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and theorem 3.5 in Nabben (1999) states that

1

|bi|+ τi−1,t|ai|+ ωi+1,t|ci|
≤ |mi,i| ≤

1

|bi| − τi−1,t|ai| − ωi+1,t|ci|

for t ∈ {0, . . . , n− 1}.
Actually theorem 3.5 Nabben (1999) also requires that |bi| − τi−1|ai| −

ωi+1|ci| 6= 0. This seems to be a typo, since the result can be obtained without
this assumption.

In order to use the results we need to calculate τi,j and ωi,j for our matrix.
Let us consider the case where ci ≥ ai, then we only need to look at ωi,j .

We have

ωn,0 ≤
1

k
≤ l

l + 1
for some l ∈ N

ωi,0 ≤ 1 for i ∈ {1, . . . , n− 1}

ω0,0 is not needed.

Let us then look at the recursive equation, we calculate ωi,j when n−j = i:

ωi,j =
|ai|

|bi| − ωi+1,j−1|ci|

=
ai

bi − ωi+1,j−1ci

≤ ai
bi − ωi+1,j−1(bi − ai)

=
1

(1− ωi+1,j−1) biai + ωi+1,j−1

≤ 1

2(1− ωi+1,j−1) + ωi+1,j−1

=
1

2− ωi+1,j−1

The �rst inequality holds because ci ≤ bi − ai, and the last inequality holds
because ci ≥ ai. Using this recursive formula and knowing ωn,0 ≤ l

l+1 we see
that

ωn−i,n−1 ≤
l + i

l + i+ 1
=

l + n− (n− i)
l + n− (n− i) + 1
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So we obtain an upper bound for mi,i when 0 < i < n:

|mi,i| ≤
1

|bi| − τi−1,n−1|ai| − ωi+1,n−1|ci|

≤ 1

bi − ai − l+n−i−1
l+n−i ci

≤ 1

ai + ci − ai − l+n−i−1
l+n−i ci

=
l + n− i

ci

We also have |m0,0| ≤ 1
b0−c0 ≤

1
b0(1− l

l+1
)

= l+1
b0

and |mn,n| ≤ 1
bn−an ≤

1
bn(1− l

l+l
)

= l+1
bn

. Using (3.3.3) we get

|mi,j | ≤
l + n− j

cj

for 0 < j < n, |mi,0| ≤ l+1
b0

and |mi,n| ≤ l+1
bn

.
The absolute sum of row i is therefore bounded by

n−1∑
j=1

l + n− j
cj

+
l + 1

b0
+
l + 1

bn
≤ n(l + n) max

0<j<n

1

cj
+
l + 1

b0
+
l + 1

bn
= O(n2−γ + nα + nβ)

The proof for the ai ≥ ci case is parallel, just look at τ instead of ω.

Proposition 3.3.6. Consider a matrix

A =



−1 0 0 . . .
a1 −b1 c1 0 . . .
0 a2 −b2 c2 0 . . .
...

. . .
. . .

. . .
. . .

. . .

0 an−1 −bn−1 cn−1

0 0 −1


Assume ai, bi, ci > 0, ai − bi + ci ≤ 0, b1 ≥ kc1, bn−1 ≥ kan−1 where k > 1
and independent of n and 1

b1
= O(nα), 1

bn−1
= O(nβ). If

• ci ≥ ai for i ∈ {1, . . . , n− 1} and maxi∈{1,...,n−1}
1
ci

= O(n−γ),

or

• ai ≥ ci for i ∈ {1, . . . , n− 1} and maxi∈{1,...,n−1}
1
ai

= O(n−γ).

Then A is nonsingular and the absolute row sums of A−1 are O(n2−γ + nα +
nβ + 2).
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Proof. Note that we cannot use proposition 3.3.5 directly since c0 = an = 0.
But as in the proof of proposition 3.3.5 we can use J30 from page 136 in

Berman and Plemmons (1979) on the vector (1, . . . , 1)T and −A to see that
−A is a nonsingular M -matrix, so A is nonsingular.

Let us then de�ne the matrix

B =


−b1 c1 0 . . .
a2 −b2 c2 0 . . .
0 a3 −b3 c3 0 . . .
...

. . .
. . .

. . .
. . .

. . . 0 an−1 −bn−1


so

A =


−1 0 . . . . . . 0

a1
...

0 B 0
... cn−1

0 . . . 0 −1


note that B is nonsingular by proposition 3.3.5

It is easy to verify that

A−1 =


−1 0 . . . 0 0

v1 B−1 v2

0 0 . . . 0 −1


where v1

i = a1

(
B−1

)
i,0

and v2
i = cn−1

(
B−1

)
i,n−2

for i ∈ {0, . . . , n− 2}. Using
the proof of proposition 3.3.5 we obtain∣∣v1

i

∣∣ = a1

∣∣∣(B−1
)
i,0

∣∣∣ ≤ a1
1

b1 − c1
≤ 1

and ∣∣v2
i

∣∣ = cn−1

∣∣∣(B−1
)
i,n−2

∣∣∣ ≤ cn−1
1

bn−1 − an−1
≤ 1

for i ∈ {0, . . . , n−2}. Which shows that the absolute sum of row i ∈ {1, . . . , n−
1} in A−1 can be bounded by the absolute sum of row i − 1 in B−1 plus 2.
Also the absolute sum of row 0 and n are 1. Using proposition 3.3.5 on B
gives us the result.

Example 3.3.7. Consider an ODE on the form (3.2.1) with Dirichlet bound-

ary conditions. Assume k(x) ≥ 0, σ(x) > K > 0 and 0 ≤ µ(x) < Kµ on (a, b).
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We get ci ≥ ai, ai − bi + ci ≤ 0, 1
ci

= O(∆x2) = O(n−2) for i ∈ {1, . . . n− 1},
1
b1

= O(n−2) and 1
bn−1

= O(n−2). The Dirichlet boundary conditions gives us

b0 = bn = 1 and c0 = an = 0, and for n large enough we have ai, bi, ci > 0,
b1 >

3
2c1 and bn−1 >

3
2an−1. Using proposition 3.3.6 we see that the absolute

sum of a row in A−1 is O(1). The case Kµ < µ(x) ≤ 0 can be handled in the

same way.

Example 3.3.8. Consider an ODE on the form (3.2.1) given on the inter-

val (0, b) with Dirichlet boundary conditions. Assume k(x) ≥ 0, σ(x) = xβ,
0 < β < 0.5 and 0 ≤ µ(x) < Kµ. We get ci ≥ ai, ai − bi + ci ≤ 0,
1
ci

= O(∆x2−2β) = O(n−2(1−β)), 1
b1

= O(n−2(1−β)) and 1
bn−1

= O(n−2). The

Dirichlet boundary conditions gives us b0 = bn = 1 and c0 = an = 0, and
for n large enough we have ai, bi, ci > 0, b1 >

3
2c1 and bn−1 >

3
2an−1 because

0 < β < 0.5. Using proposition 3.3.6 we see that the absolute sum of a row

in A−1 is O(n2−2(1−β)) = O(n2β). The �nite di�erence scheme will therefore

have an error of O(n2β−2), but only when β < 0.5.

3.4 Methods for Non-linear ODEs

In some cases the price of a product is described by a non-linear ODE. The
ODE will normally be non-linear in the second order derivative or be an ob-
stacle problem. See for example Heider (2010) that deals with the convergence
of �nite di�erence schemes for non-linear PDEs. We will solve the non-linear
ODEs in the viscosity sense using a result from Barles and Souganidis (1991).
For an introduction to Viscosity solutions we refer to Crandall et al. (1992).

Consider a second order non-linear ODE on the interval (a, b)

H(x, f(x), f ′(x), f ′′(x)) =
1

2
σ(x, f ′′(x))2f ′′(x) + µ(x)f ′(x)− k(x)f(x)− g(x) = 0

(3.4.1)

with a boundary condition in the point a: k1f(a)+k2f
′(a) = ã and a boundary

condition in the point b: k3f(b)+k4f
′(b) = b̃. Also assume a viscosity solution

exists to the equation.

We discretize the equation using �nite di�erences to obtain a system

A(F )F = G (3.4.2)



52 CHAPTER 3. A NUMERICAL SCHEME FOR PERPETUAL CLAIMS

A is tridiagonal and the nonzero elements of row i are

σ
(
xi,

Fi+1−2Fi+Fi−1

∆x2

)2

2∆x2
− µ(xi)

2∆x
,

−
σ
(
xi,

Fi+1−2Fi+Fi−1

∆x2

)2

∆x2
− k(xi),

σ
(
xi,

Fi+1−2Fi+Fi−1

∆x2

)2

2∆x2
+
µ(xi)

2∆x

note that the matrix A depends on the discrete function F .

In order to show convergence of the scheme to the viscosity solution of
(3.4.1) we need to show that the scheme (3.4.2) is monotone, stable, consis-
tent and that a strong comparison result holds for the di�erential equation
(3.4.1). We will from now on assume a strong comparison result holds for the
di�erential equation (3.4.1).

Proposition 3.4.1. Assume there exists a solution F to the equation system

(3.4.2) for all ∆x < ∆ where ∆ > 0 is some constant. If

• δ > 0 exists such that ∀ε > 0, x ∈ (a, b), f

σ (x, f + ε)2 (f + ε) ≥ σ (x, f)2 f + δε (3.4.3)

• σ(x, ξ)2ξ is continuous and σ(·, ·)2 > K > 0

• µ(x) and g(x) are bounded on (a, b).

• We have Dirichlet boundary conditions or linear boundary conditions on

the form (3.2.4) with µ(a) ≥ 0 and µ(b) ≤ 0.

• k(x) > K > 0

Then the scheme (3.4.2) converges to the viscosity solution of (3.4.1).

Proof. Monotonicity:

We will just verify condition (2.2) in Barles and Souganidis (1991). Other
authors suggest longer de�nitions see Pooley et al. (2003) and D'Halluin et al.
(2005).

Consider �rst equation 1 to n− 1. We perturb Fi+1 and Fi−1 in equation i
with ξi+1 > 0 and ξi−1 > 0. Then we subtract the original equation. Thereby
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we obtain

1

2
σ

(
xi,

Fi+1 + ξi+1 − 2Fi + Fi−1 + ξi−1

∆x2

)2 Fi+1 + ξi+1 − 2Fi + Fi−1 + ξi−1

∆x2

+ µ(xi)
Fi+1 + ξi+1 − Fi−1 − ξi−1

∆x

− 1

2
σ

(
xi,

Fi+1 − 2Fi + Fi−1

∆x2

)2 Fi+1 − 2Fi + Fi−1

∆x2
− µ(xi)

Fi+1 − Fi−1

∆x

≥ ξi+1

(
δ

2∆x2
+
µ(xi)

∆x

)
+ ξi−1

(
δ

2∆x2
− µ(xi)

∆x

)
This is non-negative for ∆x small.

Then we consider the boundary conditions: If we have Dirichlet boundary
conditions (multiplied with −1 in order to �t them into the matrix) we get the
equations

−F0 = −ã
−Fn = −b̃

these will not change when we perturb F1 and Fn−1.
With our linear boundary conditions (3.2.4) we get

−k(a)F0 + µ(a)
F1 − F0

∆x
= g(a) (3.4.4)

−k(b)Fn + µ(b)
Fn − Fn−1

∆x
= g(b) (3.4.5)

A perturbation with ξ1 > 0 in F1 does not decrease (3.4.4) when µ(a) ≥ 0.
Similarly a perturbation with ξn−1 > 0 in Fn−1 does not decrease (3.4.5) when
µ(b) ≤ 0. So the scheme is monotone. Note that we actually have shown the
reverse inequality of (2.2) in Barles and Souganidis (1991), we can of course
reverse the sign by multiplying the entire system with −1.

Consistency:
Consistency is simply satis�ed because σ(x, ξ)2ξ is continuous.

Stability:
Since a solution to A(F )F = G exists when ∆x is small, µ(x) is bounded

on (a, b), k(x) > K > 0 and σ(·, ·)2 > K > 0 we can use proposition 3.3.1 to
obtain

max
i
|Fi| ≤ max

i

|Gi|
|K|

this implies stability since g(x) is bounded on (a, b).
The result follows by Theorem 2.1 in Barles and Souganidis (1991).
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The system (3.4.2) is normally solved using the Newton method, see for
example Ascher et al. (1995). In some models the Newton method can be
analyzed in full detail, this is for example true in the uncertain volatility model
of Avellaneda et al. (1995) and Lyons (1995), see Pooley et al. (2003).

3.4.1 American options

Next we wish to approximate ODEs for American options. Therefore consider
the equation

max
(
H
(
x, f(x), f ′(x), f ′′(x)

)
, φ(x)− f(x)

)
= 0 (3.4.6)

with boundary conditions in the points a and b

max
(
k1f(a) + k2f

′(a)− ã, φ(a)− f(a)
)

= 0

max
(
k3f(b) + k4f

′(b)− b̃, φ(b)− f(b)
)

= 0

Here H(·) has the form (3.4.1). Again we assume the existence of a viscosity
solution to the di�erential equation. Theorem 6.7 in Touzi (2010) shows that
the value of some optimal stopping problems will be a viscosity solution to
(3.4.6).

Approximating H(·) using a matrix A(F ) and a vector G we obtain the
linear complementarity problem

max (A(F )F −G,Φ− F ) = 0 (3.4.7)

which can be written as

A(F )F ≤ G
Φ− F ≤ 0

(A(F )F −G)′(Φ− F ) = 0.

Note that we let A(·) depend on F such that we can capture nonlinearities.
As before we will assume that a strong comparison principle holds for (3.4.6).

Proposition 3.4.2. Assume there exists a solution F to the equation system

(3.4.7) for all ∆x < ∆ where ∆ > 0 is some constant. If

• δ > 0 exists such that ∀ε > 0, x ∈ (a, b), f

σ (x, f + ε)2 (f + ε) ≥ σ (x, f)2 f + δε, (3.4.8)

• σ(x, ξ)2ξ is continuous and σ(·, ·)2 > K > 0

• µ(x), g(x) and φ(x) is bounded on (a, b).
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• We have Dirichlet boundary conditions or our linear boundary conditions

(3.2.4) with µ(a) ≥ 0 and µ(b) ≤ 0.

• k(x) > K > 0

Then the scheme (3.4.7) converge to the viscosity solution of (3.4.6).

Proof. Monotonicity:
Consider equation i ∈ {1, . . . , n − 1} in (3.4.7) and perturb Fi−1 with

ξi−1 > 0 and Fi+1 with ξi+1 > 0. From the proof of proposition 3.4.1 we see
that the �rst part of (3.4.7) does not decrease for ∆x small and the second
part stays the same. Using the same arguments we also see that equation 0
and n are monotone. Therefore we conclude that the scheme is monotone.

Consistency:
Consistency follows since A(F )F −G is consistent for the expression

H (x, f(x), f ′(x), f ′′(x)).

Stability:
The solution to (3.4.7) must satisfy

Ã(F )F = G̃ (3.4.9)

where the matrix Ã(F ) is de�ned by

Ã(F )i,j = A(F )i,j ∀j when (A(F )F )i = Gi

Ã(F )i,j =

{
0 j 6= i
−1 j = i

when Fi = Φi

and the vector G̃ by

G̃i = Gi when (A(F )F )i = Gi

G̃i = −Φi when Fi = Φi

Using proposition 3.3.1 on the system (3.4.9) we see that

max
i
|Fi| ≤ max

i

|G̃i|
min(|K|, 1)

So F is bounded since g(·) and φ(·) are bounded on (a, b). Again the result
follows by Theorem 2.1 in Barles and Souganidis (1991).

If A(F )F in (3.4.7) is linear (A(F ) = A) and −A is a P-matrix, we can
solve the problem using the PSOR algorithm, see Tavella and Randall (2000).
If −A also is a tridiagonal M-matrix we can use the Cryer algorithm, see Cryer
(1983).
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3.5 Applications

There exist a large number of applications for the methods considered here. We
will present four numerical examples. As a simple �rst example we calculate
the expected exit time of a di�usion from a certain interval. The second
example will be the valuation of perpetual CDO tranches on households with
explosive credit risk. The third will be the value of cash in an environment
where interest rates can be negative. The last example will consider the pricing
of a perpetual range accrual when transaction costs are present.

3.5.1 Exit times

We wish to �nd the expected time when a stochastic process leaves a given
interval. So we like to �nd the expected exit time. Assume we have a process

dXt = µ(Xt)dt+ σ(Xt)dWt (3.5.1)

and an interval (a, b). Let τ = inf {t ≥ 0 : Xt /∈ (a, b)} (the exit time) and
de�ne

f(x) = E(τ − t|Xt = x)

We must have f(a) = f(b) = 0 and

f(X0) = E(τ) = E

(∫ τ

0
1 ds

)
(3.5.2)

Using Ito's lemma on f we obtain

f(Xτ ) = f(X0) +

∫ τ

0
µ(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)ds+

∫ τ

0
σ(Xs)f

′(Xs)dWs

where f(Xτ ) = 0. If we assume the stochastic integral is a martingale and
apply the expectation operator we get

f(X0) = −E
(∫ τ

0
µ(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)ds

)
(3.5.3)

Comparing (3.5.2) and (3.5.3) we see that if

µ(x)f ′(x) +
1

2
σ(x)2f ′′(x) = −1

then f(x) is the expected exit time, see also Karatzas and Shreve (1998). This
is a two-boundary ODE and example 3.3.7 or 3.3.8 ensures that our �nite
di�erence method can solve the ODE if µ(x) does not change sign on (a, b).

If we also assume that the process is killed with a function k(x), we can
�nd the expected exit or killing time. We simply use the same arguments as



3.5. APPLICATIONS 57

above but we also take a jump into account that brings Xt to the killed state
c. So the dynamics of Xt is given by

dXt = µ(Xt)dt+ σ(Xt)dWt + (c−Xt)dNt

where Nt is a Poisson process with intensity k(Xt). Using Ito's lemma on a
function f yields

f(Xτ ) = f(X0) +

∫ τ

0
µ(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)ds+

∫ τ

0
σ(Xs)f

′(Xs)dWs

+

∫ τ

0
f(c)− f(Xs)dNs

= f(X0) +

∫ τ

0
µ(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)ds+

∫ τ

0
σ(Xs)f

′(Xs)dWs

+

∫ τ

0
f(c)− f(Xs)dNs −

∫ τ

0
(f(c)− f(Xs)) k(Xs)ds

+

∫ τ

0
(f(c)− f(Xs)) k(Xs)ds

Taking expectation we obtain

f(X0) = −E
(∫ τ

0
µ(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)ds

+

∫ τ

0
(f(c)− f(Xs)) k(Xs)ds

)
and as f(c) = 0 we get

f(X0) = −E
(∫ τ

0
µ(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)ds−
∫ τ

0
f(Xs)k(Xs)ds

)
(3.5.4)

Comparing (3.5.2) and (3.5.4) we see that if

µ(x)f ′(x) +
1

2
σ(x)2f ′′(x)− k(x)f(x) = −1

then f(x) is the expected exit or killing time.
Example 3.3.2 or 3.3.4 ensures that our numerical method can solve the

ODE if k(x) > K > 0.

3.5.1.1 Numerical example

We consider the SDE

dXt = rXt + σXγ
t dWt (3.5.5)
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assume σ = 0.2, r = 0.05 and let γ vary. We set a = 1 and b = 10.
In order to compute the expected exit time we will use a nonuniform grid.

Heuristically, we de�ne g(x) = x1−γ and sees that

dg(Xt) = . . . dt+ CdWt

where C is a constant. As the dWt part is a Gaussian process we choose to
set up an equidistant grid between g(a) and g(b) and transform all the points
back with g−1(·), this will then be our nonuniform grid.

Figure 3.1 shows the expected exit time for di�erent starting values X0. In
�gure 3.2 we consider the same example but now assume the process is killed
with the function

k(Xt) =
1

Xt
(3.5.6)

We have used 100 grid points for all the calculations.
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Figure 3.1: Expected exit time from the
interval (1, 10) for the process (3.5.5), with
parameter values: σ = 0.2, r = 0.05 and γ
is varying see the legend.
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Figure 3.2: Expected exit/killing time
from the interval (1, 10) for the process
(3.5.5), with parameter values: σ = 0.2,
r = 0.05, γ is varying see the legend in
�gure 3.1. The process is killed with the
function (3.5.6).

3.5.2 Perpetual CDOs on households with explosive credit

risk

We consider K households and K Poisson processes determining the default
times of the households. When the i'th Poisson process jumps the i'th house-
hold defaults. The intensity of each Poisson process is given by the process
(λt)t≥0 and we assume that the Poisson processes are independent conditional
on the intensity process. We de�ne

dXt = κ(θ −Xt)dt+ σXγ
t dWt
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and inspired by Andreasen (2001) we let λt = 1
Xt
. This means that the inten-

sity process can explode in �nite time because Xt can hit zero when γ < 1
2 or

when γ = 1
2 and σ2 > 2κθ.

Now, let us look at a perpetual CDO contract on the debt of the households.
All households pay a(Xt)dt dollars in a given time interval dt, so the total
discounted payment from one household is∫ τ

0
exp(−rt)a(Xt)dt

where τ is the default time of the household.

We would like to price di�erent tranches of the CDO. A tranche gives
the right to a speci�c part of the payment stream from the households. The
payment is determined by the number of defaults in the group of households
but di�erent tranches are a�ected di�erently by defaults. Let us consider a
simple example. We let K = 10 and tranche the CDO in three parts: the
equity, junior and senior tranche. The equity tranche gives the right to the
payments from the �rst household to default. The junior tranche gives the
right to the payments from the next two and the senior tranche gives the right
to the payments from the last seven. This means that when no households
have defaulted the holder of the equity tranche receives a(Xt)dt, the holder
of the junior tranche receives 2a(Xt)dt and the holder of the senior tranche
receives 7a(Xt)dt. If one household defaults the equity holder will only receive
0dt going forwards but the holders of the junior and senior tranches will be
una�ected. If two defaults have happened the junior tranche holder will only
receive a(Xt)dt but the senior tranche holder will still be una�ected etc.

In order to price the di�erent tranches we look at the households in the
sequence given by the time of default: The �rst household to default, the
second household to default etc. This we do even though we don't know which
household defaults �rst, but we can specify the default intensity for the �rst
household to default, and thereby value the CDO. This is a consequence of
the Poisson processes being independent conditional on the intensity process.
The process indicating default of the �rst household to default is the default
processes for the individual households summed up. A sum of independent
Poisson processes is a Poisson process with intensities summed up, therefore
the process indicating default of the �rst household to default will be a Poisson
process with intensity Kλ(t). After the �rst default the process indicating the
second default will have intensity (K − 1)λ(t) etc.

Consider the payment stream from the �rst household to default. The
value at time t is

Vt = Et

(∫ τ

t
a(Xs) exp (−r(s− t)) ds

)
1{t≤τ} (3.5.7)

where τ now denotes the default time of the �rst household to default. As Vt
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is the value of a perpetual claim the dynamics are

dVt =

(
V ′(Xt)dXt +

1

2
V ′′(Xt)(dXt)

2 + (0− V (Xt))dNt

)
1{t≤τ}

where Nt is the Poisson process indicating the �rst default.
Look at the process

Mt = exp (−rt)Vt +

∫ t

0
a(Xs) exp (−rs) 1{s≤τ}ds (3.5.8)

and assume it is a martingale, which is true if a(x) is bounded. Applying Ito's
lemma we get

dMt = exp (−rt) (−rVtdt+ a(Xt)dt+ dVt) 1{t≤τ}

AsMt is a martingale the drift term plus the mean of the Poisson process must
be zero, we therefore obtain the di�erential equation

0 = −rV (x) + a(x) + κ(θ − x)V ′(x) +
1

2
σ2x2γV ′′(x) +

K

x
(0− V (x))⇔

−a(x) = −
(
r +

K

x

)
V (x) + κ(θ − x)V ′(x) +

1

2
σ2x2γV ′′(x) (3.5.9)

Let Vi,j(x) denote the value of the payment stream from the i'th household
going default given j households have defaulted. Vi,i−1(x) is then given by the

solution to (3.5.9) if we replace K
x with K−(i−1)

x , as we only have K − (i− 1)
households left. Vi,i−2(x) is the solution to

0 = −rVi,i−2(x) + a(x) + κ(θ − x)V ′i,i−2(x) +
1

2
σ2x2γV ′′i,i−2(x)

+
K − (i− 2)

x
(Vi,i−1(x)− Vi,i−2(x))⇔

− a(x)− K − (i− 2)

x
Vi,i−1(x) =

−
(
r +

K − (i− 2)

x

)
Vi,i−2(x) + κ(θ − x)V ′i,i−2(x) +

1

2
σ2x2γV ′′i,i−2(x)

Note the jump condition, when the next default happens we jump to the
value where i − 1 defaults have happened. Continuing this recursion we can
easily value the payment stream from the i'th household going default when 0
defaults have happened.

All the di�erential equations can be solved using our �nite di�erence tech-
nique. We use the boundary condition V (0) = 0, when the intensity is in�nite
every household defaults immediately. In the other end we set the second order
derivative equal to zero. Doing this we obtain a system on the form

AVi,j = G (3.5.10)
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where G =
(

0,−a(x1)− K−j
x Vi,j+1(x1), . . . ,−a(xn)− K−j

x Vi,j+1(xn)
)′

and

A =


−1 0 0 . . .
a1 −b1 c1 0 . . .
. . .

. . .
. . .

. . .
. . .

. . . 0 −κ(θ−xn)
∆x

κ(θ−xn)
∆x − K−j

xn
− r

 (3.5.11)

where ai =
σ2x2γ

i
2∆x2 − κ(θ−xi)

2∆x , bi =
σ2x2γ

i
∆x2 + K−j

xi
+ r and ci =

σ2x2γ
i

2∆x2 + κ(θ−xi)
2∆x .

As an example let us consider the valuation of our senior tranche. We spec-
ify the payo� when di�erent number of households have defaulted. Since the
value is zero when all households have defaulted we do not include this in our
speci�cation. The payo� speci�cation is then a vector pay = (1, 2, 3, 4, 5, 6, 7, 7, 7, 7)′

To value the tranche we start by solving

−a(x)pay1 = −
(
r +

1

x

)
V1(x) + κ(θ − x)V ′1(x) +

1

2
σx2γV ′′1 (x)

note that the value jumps to zero when default happens. Then for i = 2 to
i = 10 we recursively solve

− a(x)payi −
i

x
Vi−1(x) = −

(
r +

i

x

)
Vi(x) + κ(θ − x)V ′i (x) +

1

2
σ2x2γV ′′i (x)

V10 is the value when zero households have defaulted.
To value the junior tranche we specify pay = (0, . . . , 0, 1, 2, 2) and use the

same method. We can of course start with V8 as V7 = 0. It should now be
clear how easy it is to value a perpetual CDO tranche using this method.

We could also include di�erent e�ects in�uencing the default of households:
Guiso et al. (2013) investigates attitudes towards strategic default on mort-
gages. You default strategically if you choose to default when the value of
your mortgage exceeds the value of your house and you are able to pay the
monthly mortgage payment. Guiso et al. (2013) �nds that "people who know
somebody who defaulted strategically are more likely to declare their intention
to do so". This e�ect could be captured in our model if we let the intensity
of the i'th household to default be f(i)λt instead of (K − (i− 1))λt, here
f(1) = K, f ′(i) ≥ −1 and f ′′(i) ≥ 0. When a household defaults it increases
the probability that other households will do the same thing.

3.5.2.1 Numerical example

We consider the same example as above so we look at ten households. The
equity tranche gives the right to the payments from the �rst household to
default. The junior tranche gives the right to payments from the next two and
the senior tranche gives the right to the last seven.
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If explosion happens all households default. Therefore the probability of
explosion especially in�uence the price of the senior tranche. By controlling
the coe�cient γ we control the explosion probability and therefore the price
of the senior tranche. Consider the parameters: r = 0.05, κ = 0.04, θ = 40,
σ = 5 ·400.5−γ and let γ vary. The σ-parameterization is done in order to make
everything comparable. For simplicity we let a be a constant but choose it in a
way such that the results are on the same scale. For the equity tranche a = 1,
for the junior tranche a = 1

2 and for the senior tranche a = 1
7 . We choose the

left endpoint of the grid to be 0 and the right endpoint to be θ + 5
√

θ2γσ2

2κ .

Here
√

θ2γσ2

2κ is a proxy for the stationary standard deviation which is correct
for the Vasicek and CIR model. The grid is chosen to be uniform with 500
points, a nonuniform grid does not increase precision. In �gure 3.3 to 3.8 we
have graphed prices of the di�erent tranches. We have also included the prices
from a more normal model where

dλt = κ(θ − λt)dt+ σλγt dWt

For this model we have chosen the parameters κ = 0.05, θ = 0.07 and σ =
0.06 · 0.070.5−γ . This is done in order to approximate the equity tranche price
from the explosive model above. We choose a non-uniform grid constructed as

in section 3.5.1.1 with 200 points. The left endpoint is max

(
θ − 5

√
θ2γσ2

2κ , 0

)
and the right endpoint is θ + 5

√
θ2γσ2

2κ . On the boundaries we set the second

order derivative equal to zero. See also Ekström et al. (2009) that deals with
boundary conditions for term structure equations.

As seen di�erent γ generates large di�erences in the prices for the senior
tranche in our explosive model. Notice the clear di�erence between the explo-
sive λ model and the non-explosive λ model. The non-explosive parameteriza-
tion does not provide large price di�erence for the senior tranche even though
the equity tranche is priced di�erently for di�erent γ. So the explosive model
has a nice handle on the senior tranche via the γ parameter.

3.5.3 The value of cash when interest rates can go negative

We follow Andreasen and Bang (2007). Today central banks are obliged to
issue coins and notes when a bank account holder demands it. This should
imply positive interest rates, since we can choose to hold cash instead of keeping
it in the bank. (Holding cash does also imply a cost, insurance for example,
which explains the negative interest rates seen in Switzerland recently, we will
though neglect these costs). If the central banks were not obliged to issue cash,
the interest rate could go negative. A situation that might occur in the future
if society thinks a cash system is too expensive to maintain. In this situation
cash can be worth more than money on a bank account.
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Figure 3.3: The value of the senior
tranche of our CDO when the intensity pro-
cess is explosive. Parameter values: a = 1

7
,

r = 0.05, κ = 0.05, θ = 40, σ = 5 · 400.5−γ

and γ is varying see the legend.

Figure 3.4: The value of the senior
tranche of our CDO when the process is
non-explosive. Parameter values: a = 1

7
,

r = 0.05, κ = 0.05, θ = 0.07, σ = 0.06 ·
0.070.5−γ and γ is varying see the legend in
�gure 3.3. Note that x = 1

λ
.
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Figure 3.5: The value of the junior
tranche of our CDO when the intensity pro-
cess is explosive. Parameter values: a = 1

2
,

r = 0.05, κ = 0.05, θ = 40, σ = 5 · 400.5−γ

and γ is varying see the legend.

Figure 3.6: The value of the junior
tranche of our CDO when the process is
non-explosive. Parameter values: a = 1

2
,

r = 0.05, κ = 0.05, θ = 0.07, σ = 0.06 ·
0.070.5−γ and γ is varying see the legend in
�gure 3.5. Note that x = 1

λ
.
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Figure 3.7: The value of the equity
tranche of our CDO when the intensity pro-
cess is explosive. Parameter values: a = 1,
r = 0.05, κ = 0.05, θ = 40, σ = 5 · 400.5−γ

and γ is varying see the legend.

Figure 3.8: The value of the equity
tranche of our CDO when the process is
non-explosive. Parameter values: a = 1,
r = 0.05, κ = 0.05, θ = 0.07, σ = 0.06 ·
0.070.5−γ and γ is varying see the legend in
�gure 3.7. Note that x = 1

λ
.

Let us consider a person with some cash in hand. He can always place
the money in the bank and obtain the short rate rt. When he has done that
he cannot get the cash back since it is in �xed supply. So he has to choose
the optimal time to place the money in the bank. The value of cash (given
in terms of bank account money) is therefore given as a perpetual stopping
problem

sup
τ

EQ
(

exp

(
−
∫ τ

0
rsds

))
Let us then assume

drt = κ(θ − rt)dt+ σdWQ
t

Using Theorem 6.7 from Touzi (2010) we see that the solution to the stopping
problem is a viscosity solution f to the variational inequalities

0 ≥ κ(θ − r)f ′(r) +
1

2
σ2f ′′(r)− rf(r)

0 ≥ 1− f(r)

0 =

(
κ(θ − r)f ′(r) +

1

2
σ2f ′′(r)− rf(r)

)
(1− f(r))

(3.5.12)

In fact the theorem needs rt to be bounded from below which clearly is violated,
we will though use it anyways. Note also that we get a viscosity solution, we
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will from now on assume it is the unique one. Other solution methods where
one uses the variational inequalities and searches for the maximum solution
will yield the same results in the numerical examples below.

We approximate the system using �nite di�erences, and obtain a linear
complementarity problem:

0 ≥ AF
0 ≥ 1− F
0 = (1− F )′AF

(3.5.13)

Here we use the linear boundary conditions for A. Note that the matrix A is
not diagonally dominant since r can be negative. Therefore proposition 3.3.1
cannot guarantee stability. Let us instead assume stability and also that a
strong comparison principle holds for (3.5.12), then proposition 3.4.2 ensures
convergence of the discrete method to the Viscosity solution of (3.5.12).

We solve (3.5.13) using the Cryer algorithm, see Cryer (1983). The algo-
rithm is developed for M-matrices. Computer experiments, where we simply
calculate the eigenvalues of −A, indicate that for n large enough −A will be
an M-matrix in the numerical examples below.

3.5.3.1 Numerical example

We consider the same example as Andreasen and Bang (2007). They calibrate
the Vasicek model to the interest rate market in 2007 and obtain the param-
eters: κ = 3.3% , θ = 7.7%, σ = 0.67%. In the following we will denote the
optimal stopping short rate by r∗.

Our result is given in �gure 3.9. We get r∗ = 0.83%, which �ts well with
the results in Andreasen and Bang (2007). We have used a uniform grid with

5000 points. The endpoints are θ ± 5
√

σ2

2κ . The large number of points is

needed in order to hit r∗ precisely.
This result means that you should keep your money in your pocket if the

short rate is below 0.83% and if cash is in �xed supply.
We can then investigate what happens when we change σ. Using a uniform

grid with 500 grid points and the same endpoints as above we obtain �gure
3.10. As seen a larger σ means exercise at a higher short rate, simply because
the probability of getting into the negative rate region is higher.

Let us then calibrate the Vasicek model to EUR market data from Septem-
ber 2012. We obtain the parameters κ = 7.1%, θ = 4.7% and σ = 0.72%. The
calibration can be done in a number of ways, we have calibrated κ and θ to
the yield curve and σ to ATM caplets. Using a uniform grid with 5000 points

and the endpoints θ ± 5
√

σ2

2κ we get r∗ = 0.68% and the price of cash can be
seen in �gure 3.11. Again the large number of points is needed in order to hit
r∗ precisely. Even though θ has decreased and σ has increased the optimal r∗

have shifted downwards because κ have gone up.
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Figure 3.9: Value of cash given in terms of
bank account money. Parameters are κ =
3.3%, θ = 7.7% and σ = 0.67%.
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Figure 3.10: Value of cash given in terms
of bank account money. Parameters are
κ = 3.3%, θ = 7.7%, and σ is varying see
the legend.
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Figure 3.11: Value of cash given in terms of bank account money using 2012 parameters.
The parameters are κ = 7.1%, θ = 4.7% and σ = 0.72%
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Instead of solving (3.5.13) one can solve a system taking into account con-
tinuity of the �rst derivative. This gives the same result as solving (3.5.13) as
it should if smooth �t is a condition for optimality.

3.5.4 Perpetual claims with transaction costs

We will now consider the problem of valuing options taking transaction costs
when delta hedging into account.

We consider a stock with price dynamics given by

dSt = µStdt+ σ(St)dWt

where µ > 0.
Let us assume we have bought or sold a derivative on the stock, the deriva-

tive pays an in�nite stream of coupons g(St)dt. We delta-hedge this product
discretely with a frequency of ∆t. Each time we adjust the delta hedge a trans-
action cost has to be payed. Therefore we have to charge an extra premium on
top of the normal price. Leland (1985) develops a model where delta-hedging
is done discretely, we will adopt his framework, see also Wilmott et al. (1993)
which we follow in our heuristic derivations.

Assume that the transaction costs is a function of the number of stocks we
need to trade and the price of the stock at the point of re-hedging: f(St, vt),
where vt is the traded amount.

Consider a portfolio Π consisting of the option position (here we assume
the option has been sold) and a delta hedge D:

Π = −V +DS

After a period of time ∆t the portfolio has evolved like

∆Π = −∆V − g(S)∆t+D∆S − f(S + ∆S,∆D)

where the last term is the transaction cost. Doing a Taylor expansion using
Ito's lemma we �nd that

∆Π = σ(S)

(
−∂V
∂s

(S) +D

)√
∆tZ

+

(
−1

2
σ(S)2∂

2V

∂s2
(S)− µS∂V

∂s
(S) + µSD − g(S)

)
∆t− f(S + ∆S,∆D)

where Z ∼ N(0, 1). As D = ∂V
∂S we get

∆Π = −1

2
σ(S)2∂

2V

∂s2
(S)∆t− g(S)∆t− f(S + ∆S,∆D)

Again by a Taylor expansion

∆D =
∂2V

∂s2
(St)σ(St)

√
∆tZ +

∂2V

∂s2
(St)rSt∆t+

1

2

∂3V

∂s3
(St)σ(St)

2∆t+O(∆t3/2)
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where Z ∼ N(0, 1) and independent of Ft.
Then assume f(s, v) = ks|v|, the transaction costs is proportional to the

stock price and the number of stocks you need to trade. We then have

f(St+∆t,∆D)

= kSt+∆t |∆D|

= k
(
St + σ(St)

√
∆tZ +O(∆t)

)
·

∣∣∣∣∣∂2V

∂s2
(St)σ(St)

√
∆tZ +

∂2V

∂s2
(St)rSt∆t+

1

2

∂3V

∂s3
(St)σ(St)

2∆t+O(∆t3/2)

∣∣∣∣∣
= kStσ(St)

√
∆t

∣∣∣∣∂2V

∂s2
(St)Z

∣∣∣∣+O(∆t3/2)

Here we have assumed that

∂2V

∂s2
(St)σ(St)

2 = O(∆t1/2),
∂2V

∂s2
(St)S

2
t = O(∆t1/2) and

∂3V

∂s3
(St) = O(∆t1/2)

which Leland (1985) show is true in his Black-Scholes model. This implies

∆Π = −1

2
σ(St)

2∂
2V

∂s2
(St)∆t− g(St)∆t− kStσ(St)

√
∆t

∣∣∣∣∂2V

∂S2
(St)Z

∣∣∣∣+O(∆t3/2)

Taking conditional expectation and assuming that the expected return from
the portfolio is the same as the riskless rate we obtain (we have also removed
the order term)

r∆t

(
−V (s) + s

∂V

∂s
(s)

)
= −1

2
σ(s)2∂

2V

∂s2
(s)∆t− g(St)∆t

− E
(
kS(t)σ(St)

√
∆t

∣∣∣∣∂2V

∂s2
(St)Z

∣∣∣∣ ∣∣∣∣Ft)
which is

0 =

(
1

2
σ(s)2∂

2V

∂s2
(s) + rs

∂V

∂s
(s)− rV (s) + g(s)

+
E
(
kStσ(St)

√
∆t|Z|

∣∣∣∂2V
∂s2

(St)
∣∣∣ ∣∣Ft)

∆t

)
∆t

The expected value is equal to∫ ∞
−∞

ksσ(s)
√

∆t

∣∣∣∣∂2V

∂s2
(s)

∣∣∣∣ |x| 1√
2π

exp

(
−x

2

2

)
dx =

√
2

π
ksσ(s)

√
∆t

∣∣∣∣∂2V

∂s2
(s)

∣∣∣∣
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.
We have therefore obtained the non-linear ODE

0 =
1

2
σ(s)2∂

2V

∂s2
(s) + rs

∂V

∂s
(s)− rV (s) + g(s) +

√
2

π
ksσ(s)

1√
∆t

∣∣∣∣∂2V

∂s2
(s)

∣∣∣∣
(3.5.14)

The argument can also be made when we have bought a claim. The ODE
then becomes

0 =
1

2
σ(s)2∂

2V

∂s2
(s) + rs

∂V

∂s
(s)− rV (s) + g(s)−

√
2

π
ksσ(s)

1√
∆t

∣∣∣∣∂2V

∂s2
(s)

∣∣∣∣
The model can therefore produce bid and ask prices taking into account

delta hedging. For products with a convex or concave value function the
increase/decrease in price will be the same as a shift up/down in the volatility.
But for a product with a general value function this will not be the case.

Let us work with the ODE (3.5.14). It is on the form (3.4.1) so we discretize
it as in (3.4.2). We see that

σ(s, f ′′(s))2 =
1

2
σ(s)2 +

√
2

π
ksσ(s)

1√
∆t

sign
(
f ′′(s)

)
where we de�ne

sign(x) =

{
1 x ≥ 0
−1 x < 0

(3.5.15)

We then have to solve

A(F )F = G

This we do by the Newton method: Starting with a guess F 1 we can compute
a new guess by a linear approximation around in F 1

A(F 1)F 1 +D(A(F 1)F 1)(F 2 − F 1) = G (3.5.16)

where D(·) denotes the Jacobian, that we need to specify. As A(F )F is not
continuously di�erentiable we will de�ne a generalized Jacobian, see Clarke
(1983). We simply specify the derivative as

∂σ(s, f ′′(s))2f ′′(s)

∂f ′′(s)
=

1

2
σ(s)2 +

√
2

π
ksσ(s)

1√
∆t

sign
(
f ′′(s)

)
where we use the de�nition in (3.5.15).

Then we see that

D(A(F )F ) = A(F )
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so the left hand side of (3.5.16) is

A(F 1)F 1 +D(A(F 1)F 1)(F 2 − F 1) = A(F 1)F 1 +A(F 1)(F 2 − F 1)

= A(F 1)F 2

The Newton method therefore becomes

• Choose a starting guess F old and set error = 2ε.

• While error > ε solve

A(F old)Fnew = G

to obtain Fnew, and set

error = ||Fnew − F old||
F old = Fnew

Since the function A(F )F is semismooth (it is piecewise linear) it can be
shown that the Newton iteration will converge under certain conditions, see Qi
and Sun (1993). But parallel to Pooley et al. (2003) we can easily show that
the algorithm converge from any starting point if the matrices A(F i) ful�ll the
assumptions in proposition 3.3.1:

Consider the two equations

A(F j−1)F j = G⇔ A(F j)F j + (A(F j−1)−A(F j))F j = G

A(F j)F j+1 = G

Subtracting them gives us

A(F j)(F j+1 − F j) = (A(F j−1)−A(F j))F j

Row 0 < i < n on the right hand side will have the form(√
2

π
ksiσ(si)

1√
∆t

(
sign

(
F j−1
i+1 − 2F j−1

i + F j−1
i−1

∆x2

)
−

sign

(
F ji+1 − 2F ji + F ji−1

∆x2

)))(
F ji+1 − 2F ji + F ji−1

∆x2

)
≤ 0

as si ≥ 0 and σ(si) ≥ 0. Row 0 and n on the right hand side will be 0.
Therefore we obtain

A(F j)(F j+1 − F j) ≤ 0

By proposition 3.3.1 −A(F j) is an M -matrix which implies F j+1 ≥ F j . The
sequence of solutions is therefore increasing.
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Then we show that the sequence is bounded. Each row of

A(F j)F j+1 = G

can be written as

ajiF
j+1
i−1 − b

j
iF

j+1
i + cjiF

j+1
i+1 = Gi ⇔

bjiF
j+1
i = ajiF

j+1
i−1 + cjiF

j+1
i+1 −Gi ≤ a

j
iF

j+1
max + cjiF

j+1
max −Gmin

where the subscripts max and min denotes maximal and minimal element of
the vector. This implies

F j+1
max ≤

−Gmin

|K|

with K de�ned in proposition 3.3.1.
Then we turn to uniqueness. Assume we have two solutions F 1 and F 2

A(F 1)F 1 = G⇔ A(F 2)F 1 +
(
A(F 1)−A(F 2)

)
F 1 = G

A(F 2)F 2 = G

subtracting the two equations we obtain

A(F 2)
(
F 1 − F 2

)
= (A(F 2)−A(F 1))F 1

by the same arguments as above we see that

A(F 2)
(
F 1 − F 2

)
≤ 0

and as −A(F 2) is an M-matrix we have

F 1 ≥ F 2

interchanging superscripts we get

F 1 = F 2.

3.5.4.1 Numerical example

We want to look at a perpetual claim with a non convex/concave value func-
tion. Therefore let us consider a perpetual range accrual. A range accrual is
a product that counts up the number of days a given underlying stays within
two boundaries (the range) and pays out an amount in proportion to this num-
ber at maturity. Since we consider perpetual claims let us assume the claim
pays a continuous stream q dt when the underlying is in the range (a, b). Our
di�erential equation becomes

1

2
σ(s)2V ′′(s) + rsV ′(s)− rV (s) = −q1{a<s<b}(s) (3.5.17)
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Including transaction-costs we get

1

2
σ(s)2V ′′(s) + rsV ′(s)− rV (s)±

√
2

π
ksσ(s)

1√
∆t

∣∣V ′′(s)∣∣ = −q1{a<s<b}(s)

(3.5.18)

here ± denotes that we have sold or bought the product. We will assume that
a strong comparison principle holds for (3.5.18).

Let us consider a normal Black-Scholes model where r = 0.05, σ = 0.2.
Assume a = 100, b = 200, k = 0.001, q = 0.2 and that we delta hedge daily,
which means ∆t = 1

250 . In order to price we log-transform the ODE (3.5.18)
to obtain

1

2
σ2
(
Ṽ ′′(x)− Ṽ ′(x)

)
+ rṼ ′(x)− rṼ (x)±

√
2

π
kσ

1√
∆t

∣∣∣Ṽ ′′(x)− Ṽ ′(x)
∣∣∣

= −q1{log(a)<x<log(b)}(x)

We discretize the ODE using a uniform grid with 200 grid points between
log
(
a+b

2

)
− 10σ and log

(
a+b

2

)
+ 10σ. We set Ṽ ′′(x) − Ṽ ′(x) equal to zero on

the left boundary and the Ṽ (x) equal to zero on the right boundary. This is
done in order to make the discrete scheme work.

Note that we have chosen kσ√
∆t

small enough such that (3.4.3) is satis�ed.

We will now demonstrate the ability of the model to generate bid/ask prices
for non-convex/concave products compared to just shifting the volatility up
and down. In �gure 3.12 we graph bid, mid and ask prices for a perpetual range
accrual found solving (3.5.18). Similarly in �gure 3.13 we graph prices obtained

solving (3.5.17) where we shift variance up and down by 2
√

2
πkσ

1√
∆t
. We

clearly see how nicely the Leland model generates bid and ask prices contrary
to just shifting the volatility up and down, this is of course expected.

The model can also be applied to other speci�cations of the volatility func-
tion. We can for example consider a CEV model:

dSt = rStdt+ σSβt dWt.

This leads to the ODE

1

2
σ2s2βV ′′(s) + rsV ′(s)− rV (s)±

√
2

π
kσs1+β 1√

∆t

∣∣V ′′(s)∣∣ = −q1{a<s<b}(s).

Note that monotonicity of the numerical scheme will not be satis�ed in this
case since the ODE both have a s2βV ′′(s) part and a s1+β |V ′′(s)| part. From
now one we therefore assume the numerical scheme converge to the solution
of the ODE.

Let us look at the Bid/Ask spread in the model for di�erent choices of β.
We choose

σ = σ̃

(
a+ b

2

)1−β
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Figure 3.12: Bid, mid and ask prices ob-
tained using the Leland model. Parameters
are r = 0.05, σ = 0.2, a = 100, b = 200,
k = 0.001, q = 0.2 and ∆t = 1

250
. We use

200 points in a region of −10 to 10 standard
deviations.
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Figure 3.13: Option prices for di�erent
levels of volatility. Parameters are r = 0.05,
σ = 0.2, a = 100, b = 200, k = 0.001 and
q = 0.2. We use 200 points in a region of
−10 to 10 standard deviations.
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Figure 3.14: Bid/Ask spread for three di�erent CEV models. Parameters are r = 0.05,
σ = 0.2, a = 100, b = 200, k = 0.001, q = 0.2, ∆t = 1

250
and β is varying see the legend.

We use 200 points in the region −10 to 10 standard deviations calculated in the log-normal
model.

in order to keep everything comparable. Then we set r = 0.05, σ = 0.2,
a = 100, b = 200, k = 0.001, q = 0.2 and ∆t = 1

250 .

Figure 3.14 graph the Bid/Ask spread for three di�erent values of β. For
models with β 6= 1 we do not log-transform but use a nonuniform grid con-
structed as in section 3.5.1.1 with 200 grid points. The endpoints of the grid
are speci�ed by −10 and 10 standard deviations from a+b

2 in the log-normal
model.

As seen a lower CEV coe�cient leads to a lower Bid/Ask spread, this is
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Figure 3.15: Bid/Ask spread for three di�erent CEV models. Parameters are r = 0.05,
σ = 0.2, a = 100, b = 400, k = 0.001, q = 0.2, ∆t = 1

250
and β is varying see the legend.

We use 400 points in the region −15 to 15 standard deviations calculated in the log-normal
model.

expected for high stock prices since the volatility of the stock will be increasing
in β. But for low stock prices the volatility of the stock will be decreasing in
β. The lower Bid/Ask spread for lower β is explained by the fact that the
absolute gamma in the area around 100 is increasing in β.

If we instead consider a range accrual with a higher right boundary, say
b = 400 we will see another picture. In �gure 3.15 we plot the Bid/Ask spreads
for such an option. As seen we now have a range of stock prices where the
Bid/Ask spread is decreasing in β.

3.6 Conclusion

This paper has considered a simple �nite di�erence method to solve two-
boundary ODEs with �nancial applications. We prove rigorously that the
method converge for some di�erent important cases. On top of this we pro-
vide di�erent examples of �nancial interest where the method is used. Of
special interest is the solution to the problem of the value of cash when in-
terest rates can go negative. The numerical solution given here is very simple
and we can extend the method to other more complicated models.
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Abstract

We consider the three factor double mean reverting (DMR) model
of Gatheral (2008), a model which can be successfully calibrated to both
VIX options and SPX options simultaneously. One drawback of this
model is that calibration may be slow because no closed form solution
for European options exists. In this paper, we apply modi�ed versions of
the second order Monte Carlo scheme of Ninomiya and Victoir (2008) and
compare these to the Euler-Maruyama scheme with partial truncation of
Lord et al. (2010), demonstrating on the one hand that fast calibration
of the DMR model is practical, and on the other that suitably modi�ed
Ninomiya-Victoir schemes are applicable to the simulation of much more
complicated time-homogeneous models than may have been thought pre-
viously.

4.1 Introduction

It is common knowledge that the Black-Scholes option pricing model is in-
consistent with market pricing of options. Local volatility models, Lévy mod-
els, stochastic volatility models, stochastic volatility models with jumps and

1WIAS Berlin
2Department of Mathematics, Baruch College, CUNY
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various variants and combinations of these have been proposed to �t market
implied volatilities better and describe the dynamics of the resulting volatility
surface. With the advent of trading in VIX options in 2006 however, marginal
risk-neutral densities of forward volatilities of SPX became e�ectively observ-
able, substantially constraining possible choices of volatility dynamics. Various
authors have since proposed models that price both options on SPX and op-
tions on VIX more or less consistently with the market. Notable amongst
these are the market models of Bergomi (2005) and the variance curve factor
models of Buehler (2006).

In Gatheral (2008), a speci�c three factor variance curve model was in-
troduced with dynamics motivated by economic intuition for the empirical
dynamics of the variance. This model was simultaneously calibrated to SPX
and VIX option markets.

In this double-mean-reverting or DMR model, the dynamics are given by

dSt =
√
vtStdW

1
t , (4.1.1a)

dvt = κ1 (v′t − vt) dt+ ξ1 v
α1
t dW 2

t , (4.1.1b)

dv′t = κ2 (θ − v′t) dt+ ξ2 v
′
t
α2 dW 3

t , (4.1.1c)

where the Brownian motionsWi are all in general correlated with E[dW i
t dW

j
t ] =

ρij dt.
Thus variance mean-reverts to a level that itself moves slowly over time

with the state of the economy. Also, it is a stylized fact that the distribution
of volatility (whether realized or implied) should be roughly lognormal (see
Andersen et al. (2001) for example); when the model is calibrated to market
option prices, we �nd that indeed α1 ≈ 1 consistent with this stylized fact.

One drawback of this model is that no closed-form solution for European
options exists so �nite di�erence or Monte Carlo methods need to be used to
price options. Calibration is therefore slow. In Gatheral (2008), the DMR
model is calibrated using an Euler-Maruyama Monte Carlo scheme with the
partial truncation step of Lord et al. (2010).

In this paper, we show how to apply the second order Monte Carlo scheme
of Ninomiya and Victoir (2008) to the calibration of the DMR model, substan-
tially improving calibration time. In passing, we show that a Ninomiya-Victoir
second order Monte-Carlo scheme with fully closed-form steps can be achieved
for models that are rather more complicated than those (such as the Heston
model) to which the technique has been applied so far.

The plan of the paper is as follows. Section 4.2 describes how the model
of Gatheral (2008) is calibrated. Section 4.3 explains the Monte Carlo scheme
of Ninomiya and Victoir (2008), the drift trick of Bayer et al. (2013) and
a subsequent extension by us which we apply to the DMR model. Section
4.4 presents practical examples of calibration to SPX and VIX options with
numerical results, and in Section 4.5 we perform a convergence analysis with
reasonable parameters. In Section 4.6 we present some concluding remarks.
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4.2 Estimating the constants of the DMR model

In Gatheral (2008), the parameters of the DMR model were calibrated to the
VIX and SPX options markets with a sequence of steps that we will now
individually describe.

4.2.1 Estimation of κ1, κ2, θ and ρ23

As of time t, the T -maturity forward variance is given by

ξt(T ) = E [vT |Ft]

and the T -maturity variance swap by

E
[∫ T

t
vs ds

∣∣∣∣Ft] .
Variance swaps are traded in the market so forward variance is a traded asset.
Under di�usion assumptions, the fair value of a variance swap is given by
evaluating the so-called log-strip of European puts and calls (see Chapter 11
of Gatheral (2006) for example):

E
[∫ T

t
vs ds

∣∣∣∣Ft] = 2

{∫ 0

−∞
p(k) dk +

∫ ∞
0

c(k) dk

}
, (4.2.1)

where k = log(K/Ft,T ) is the log-strike and p and c respectively are put and
call prices expressed as a fraction of the strike price. Thus, given a database of
historical market option prices, market variance swap prices may be estimated
by interpolation, extrapolation and integration.

It is straightforward to verify that in the DMR model (4.1.1), forward
variances are given by

ξt(T ) = θ + (vt − θ) e−κ1 τ + (v′t − θ)
κ1

κ1 − κ2

(
e−κ2 τ − e−κ1 τ

)
, (4.2.2)

where τ = T − t. Direct integration then gives us an expression for the spot
variance curve3

E
[∫ T

t
vs ds

∣∣∣∣Ft] = θ τ + (vt − θ)
1− e−κ1 τ

κ1

+ (v′t − θ)
κ1

κ1 − κ2

{
1− e−κ2 τ

κ2
− 1− e−κ1 τ

κ1

}
. (4.2.3)

In the DMR model, θ, κ1 and κ2 are constants; vt and v
′
t are state variables.

From (4.2.3), variance swaps depend linearly on the state variables. Thus, for

3(4.2.2) and (4.2.3) may be recognized as the Svensson yield curve model, re-used in our
context.
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every choice of θ, κ1 and κ2, given option prices for various expiries, we can
approximate the spot variance curve and infer vt and v

′
t by linear regression.

Performing daily regressions for the seven year period from January 2001
to April 2008, and optimizing over θ, κ1 and κ2 to minimize the mean squared
error between the �tted curves and actual curves, optimal choices of the pa-
rameters θ, κ1 and κ2 and also daily time series of vt and v

′
t were obtained.

The optimal choice of parameters was found to be

θ = 0.078,

κ1 = 5.5,

κ2 = 0.10.

The correlation ρ23 between W 2
t and W 3

t is then estimated as the historical
correlation between the series vt and v

′
t. The estimated value was

ρ23 = 0.59.

4.2.2 Estimation of the exponents α1 and α2

In order to obtain α1 and α2 we need information on how the volatility of
volatility moves with the volatility itself. To obtain a proxy for the volatility
of volatility Gatheral (2008) does the following.

Consider the SABR model for the forward with β = 1:

dFt = αtFtdW
1
t ,

dαt = ναtdW
2
t ,

where dW 1
t dW

2
t = ρdt. An approximative Black-Scholes volatility for short

maturities can be computed using the formula

σBS(k) = α0 f

(
k

α0

)
(4.2.4)

where k := log(K/F0) is the log-strike and

f(y) = − ν y

log

(√
ν2 y2+2 ρ ν y+1−ν y−ρ

1−ρ

) ,
see Hagan et al. (2002). It is observed in Gatheral (2008) that the formula
can �t observed volatilities very well, even for longer maturities. On a given
day we have option quotes for a number of di�erent maturities. We can �t the
SABR model using the approximative formula (4.2.4) and obtain coe�cients
ατ0 , ν

τ , ρτ for each maturity τ . Gatheral (2008) parametrizes the ντ coe�cient
for the di�erent maturities with the function

ντ =
νeff√
τ
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which �ts the term structure of the ν-parameter remarkedly well. The number
νeff is then used as a proxy for the volatility of volatility in a lognormal
volatility model on that given day. The VIX index is used as a proxy for
volatility.

Using the same dataset as in Section 4.2.1, Gatheral (2008) collects a time-
series from January 2001 to April 2008 of νeff obtained by calibration to SPX
options. He also collects VIX quotes. Doing a linear regression of log(νeff )
onto log(VIX) he obtains the equation

log(νeff ) ≈ −0.125− 0.127 log(VIX).

We can therefore write an SDE for the volatility:

dαt = cα−0.127
t αtdWt = cα0.873

t dW 2
t .

In the DMR model we are looking for a coe�cient on the variance vt = α2
t .

Using Ito's lemma we obtain

dvt = O(dt) + 2cv0.9365
t dWt.

We will use the rounded coe�cient α1 = 0.94, which obviously is close to
one. There is insu�cient market data to be able to say anything about the
exponent α2 so in Gatheral (2008), the choice α2 = α1 = 0.94 was made. As
we will see in Section 4.3.2, various simpli�cations are possible if α1 = α2 = 1
(the so-called double lognormal model) so that case will also considered in the
following.

4.2.3 Daily calibration of remaining parameters

Although the volatility of volatility parameters ξ1 and ξ2 are in principle con-
stants of the DMR model, Gatheral (2008) presents empirical evidence that
calibrated parameters are not constant in the data. ξ1 and ξ2 are thus left
free to be calibrated daily to VIX options data. The correlations ρ12 and ρ13

cannot be imputed from VIX option data; they are left free to improve the
daily calibration of the DMR model to SPX data.

So on any given day, both the state variables vt and v
′
t, and the model pa-

rameters ξ1, ξ2, ρ12 and ρ13 are calibrated to VIX and SPX options data. vt and
v′t are calibrated to variance swaps using linear regression and equation (4.2.3).
In Gatheral (2008) calibration of ξ1, ξ2, ρ12 and ρ13 was performed using
Monte-Carlo simulation. The chosen discretization was an Euler-Maruyama
scheme with a partial truncation step, see Lord et al. (2010), which we can
write recursively as

x((k + 1)∆) = −1

2
v(k∆)∆ +

√
v(k∆)Z1

k ,

ṽ((k + 1)∆) = ṽ(k∆) + κ2

(
ṽ′(k∆)− ṽ(k∆)

)
∆ +

(
ṽ(k∆)+

)α1 Z2
k ,

ṽ′((k + 1)∆) = ṽ′(k∆) + κ2

(
θ − ṽ′(k∆)

)
∆ +

(
ṽ′(k∆)+

)α2 Z3
k ,
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here ∆ is the time step, v(k∆) = ṽ(k∆)+, v′(k∆) = ṽ′(k∆)+, x(k∆) =
log(S(k∆)), Zik ∼ N(0,∆) and E[ZikZ

j
k] = ρij∆. This is a general scheme and

we do not need to know moments or asymptotic properties of the density in
order to use it. Lord et al. (2010) �nds the full truncation scheme superior when
simulating the Heston model. When α1 and α2 are close to one however, our
tests suggest that the partial truncation scheme is superior; this improvement
becomes apparent only when time steps are large.

4.3 The Ninomiya-Victoir scheme and drift trick

In Ninomiya and Victoir (2008) a general second order weak discretization
scheme for stochastic di�erential equations was introduced. Consider a multi-
dimensional stochastic di�erential equation in Stratonovich form

dX(t,x) = V0(X(t,x))dt+

d∑
i=1

Vi(X(t,x)) ◦ dBi
t, (4.3.1)

where X(0,x) = x ∈ RN , B1
t , . . . , B

d
t are d independent standard Brownian

motions and Vi : RN → RN , i = 0, . . . , d, are su�ciently regular vector �elds.
In this general setting, the Ninomiya-Victoir scheme based on a uniform grid
with time steps ∆ is recursively given by

X(NV )(0,x) = x,

X(NV )((k + 1)∆,x) =

{
e

∆
2
V0eZ

1
kV1 · · · eZdkVde

∆
2
V0X(NV ) (k∆,x) , Λk = −1,

e
∆
2
V0eZ

d
kVd · · · eZ1

kV1e
∆
2
V0X(NV ) (k∆,x) , Λk = +1.

(4.3.2)

Here etV x ∈ RN denotes the ODE solution at time t ∈ R to

ẏ = V (y) , y (0) = x,

i.e., the �ow of the vector �eld V ,4 and the probability space carries inde-
pendent random-variables (Λk), with values ±1 at probability 1/2, and inde-
pendent N (0,∆) random variables (Zjk). Note that t = Zjk can take negative
values, so one has to ensure that the ODE solutions used in an implementation
of the NV scheme actually do make sense for positive as well as for negative t.
One step in the NV scheme corresponds actually to a (non-discrete) cubature
formula of order m = 5 in the sense of Lyons and Victoir (2004). When seen
from this point of view, the reversal of the order of the �ows depending on the
coin-�ip Λk serves to improve the approximation of the Lévy area and higher

4 (4.3.2) is to be read from right to left, i.e., eZ
d
kVde

∆
2
V0X(NV ) (k∆,x) means that solution

e
∆
2
V0X(NV ) (k∆,x) of the ODE driven by V0 is then used as initial value for the ODE driven

by the vector �eld Vd, which is run until the (possibly negative) time Zdk .
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iterated integrals in the weak sense. On the other hand, one can also interpret
the Ninomiya-Victoir scheme as the stochastic version of a classical operator
splitting scheme, where the in�nitesimal generator V0 + 1

2

∑d
i=1 V

2
i of the dif-

fusion is split into the �rst order di�erential operator V0 and the second order
di�erential operators 1

2V
2

1 , . . . ,
1
2V

2
d .

5 The order-reversal is, in that context,
a well known trick which improves the order of the method and goes back to
Strang (1963).

The Ninomiya-Victoir scheme has attracted wide attention since its intro-
duction; it is nowadays found in various sophisticated numerical packages such
as Inria's software PREMIA for �nancial option computations. A variation of
the scheme designed to deal with degeneracies arising in some a�ne situations
is discussed in Alfonsi (2010).

4.3.1 Improving the e�ciency of the Ninomiya-Victoir

method

4.3.1.1 Changing the driving noise

In terms of numerical e�ciency, cubature methods, and the Ninomiya-Victoir
scheme in particular, heavily rely on the ability to solve, fast and accurately,
ordinary di�erential equations. The general cubature methods involve time-

inhomogeneous ODEs with a rather complicated structure, involving all vector-
�elds at all times. Thus, there is usually no alternative to solving them nu-
merically, often with Runge-Kutta methods. (A detailed discussion on how
Runge-Kutta methods are applied in this context is found in Ninomiya and
Ninomiya (2009).)

Using the canonical splitting induced by the model formulation, the Ninomiya-
Victoir scheme only involves the composition of solution �ows to time-homogeneous
ODEs. In particular, there will be �lucky� cases of models where all (or at
least most) ODE �ows can be solved exactly � in terms of easy-to-evaluate
expressions. In such a case, one has e�ectively found a second order weak ap-
proximation method which can be implemented without relying on numerical
ODE solvers, and the Ninomiya-Victoir method can be expected to perform
especially well in such cases. As was observed by Ninomiya and Victoir (2008),
the Heston model is such a lucky case. However, one soon encounters mod-
els (e.g., the popular SABR model) in which some of the vector-�elds do not
allow for �ows in closed form. In Bayer et al. (2013), it was found that the
class of favorable models can be signi�cantly enlarged by working with an al-
most trivial modi�cation of the NV scheme. This modi�cation is based on the

5Recall that a vector �eld V : RN → RN is identi�ed with the �rst order linear di�erential
operator acting on smooth functions f : RN → R by V f(x) ≡ ∇f(x) · V (x). By iteration,
V 2 can then be interpreted as a linear second order di�erential operator.
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equivalence of (4.3.1) with

dX(t,x) =

V0(X(t,x))−
d∑
j=1

γjVj(X(t,x))

 dt+

+

d∑
j=1

Vj(X(t,x)) ◦ d
(
Bj
t + γjt

)

≡V (γ)
0 (X(t,x)) dt+

d∑
j=1

Vj(X(t,x)) ◦ d
(
Bj
t + γjt

)
whatever the choice of drift parameters γ1, . . . , γd. Assume that all di�usion
vector-�elds (V1, . . . , Vd) allow for �ows in closed form, whereas etV0 is not
available in closed form.6 The point is that, in a variety of concrete examples,

one can pick drift parameters γ1, . . . , γd in a way that etV
(γ)
0 can be solved in

closed form after all.

Therefore, we propose the following variant of the Ninomiya-Victoir method
(which, following Bayer et al. (2013), shall be referred to as the �Ninomiya-
Victoir scheme with drift (trick)�):

XNV d) (0,x) = x,

X(NV d) ((k + 1)∆,x) ={
e

∆
2
V

(γ)
0 eZ

1
kV1 · · · eZdkVde

∆
2
V

(γ)
0 X(NV d) (k∆,x) , Λk = −1,

e
∆
2
V

(γ)
0 eZ

d
kVd · · · eZ1

kV1e
∆
2
V

(γ)
0 X(NV d) (k∆,x) , Λk = +1,

(4.3.3)

where Zik ∼ N (∆γi,∆) independent of each other.

Note that (4.3.3) corresponds to the splitting of the di�erential operator
according to

V0 +
1

2

d∑
i=1

V 2
i = V

(γ)
0 +

d∑
i=1

(
1

2
V 2
i + γiVi

)
.

4.3.1.2 Incorporating ODE splitting

The strategy of Section 4.3.1.1, namely to replace the standard Ninomiya-
Victoir splitting (4.3.2) by a di�erent one customized to the speci�c problem
at hand, can be generalized to accommodate for an even wider class of prob-
lems. In particular, one can directly incorporate any splitting scheme (in the
ODE sense) for any of the ODEs involved in (4.3.2) into the Ninomiya-Victoir
scheme. Let us again assume that (only) the Stratonovich vector �eld V0 is

6As models are usually devised in the Ito framework and V0 is obtained from the Ito
drift by the Stratonovich correction, this situation is quite common in �nance.
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too complicated to allow for closed form solutions of the corresponding ODEs.
The structure of the Stratonovich drift vector �eld

V0(x) = V (x)− 1

2

d∑
i=1

DVi(x) · Vi(x),

where V : RN → RN denotes the drift vector �eld of the SDE in the Ito
formulation and DVi denotes the Jacobian of the vector �eld Vi, i = 1, . . . , d,
motivates to apply a classical ODE splitting scheme in order to solve the
ODE ẏ = V0(y), i.e., we try to �nd vector �elds V0,1 and V0,2 such that
V0 = V0,1 + V0,2 and the ODEs driven by V0,1 and V0,2 have (closed-form)
solutions etV0,1 and etV0,2 , respectively. In that case, the solution e∆V0 of the
ODE driven by the vector �eld V0 at time ∆ can be approximated by

e∆V0x = e∆V0,1e∆V0,2x +O(∆2) = e∆V0,2e∆V0,1x +O(∆2),

a method sometimes known as symplectic Euler scheme, see Hairer et al.
(2006). We can incorporate the symplectic Euler method in the Ninomiya-
Victoir scheme as follows: starting withX(NV s)(0,x) = x, we iterate according
to

X(NV s)((k + 1)∆,x) ={
e

∆
2
V0,1e

∆
2
V0,2eZ

1
kV1 · · · eZdkVde

∆
2
V0,2e

∆
2
V0,1X(NV s) (k∆,x) , Λk = −1,

e
∆
2
V0,1e

∆
2
V0,2eZ

d
kVd · · · eZ1

kV1e
∆
2
V0,2e

∆
2
V0,1X(NV s) (k∆,x) , Λk = +1.

(4.3.4)

Even though the symplectic Euler scheme only has local order two, the Strang
trick of repeating the symplectic Euler scheme once while inverting the order
of the vector �elds, again produces a scheme with local order three and, hence,
global order two. Indeed, note that the Verlet scheme

e∆V0x = e
∆
2
V0,1e∆V0,2e

∆
2
V0,1x +O(∆3)

obtained by omitting the di�usion part in (4.3.4) has (global) order two. Both
the Verlet and the symplectic Euler scheme are examples of geometric inte-

grators for ODEs, and we again refer to Hairer et al. (2006) for much more
information.

4.3.1.3 Analysis of the modi�ed Ninomiya Victoir scheme

of (4.3.4)

We give a sketch of the proof that the modi�ed NV algorithm (4.3.4) has
second order convergence in the weak sense. In particular, in the following we
assume su�cient regularity for all involved functions and vector �elds. Let X∆

denote the true solution of the SDE at time ∆ and let X∆ ≡ X(NV s)(∆,x)
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denote the output of the modi�ed NV algorithm after one time step of size
∆, both started at x at time 0. By the Markov property, it su�ces to show
that the weak local error is of third order (see, for instance, Talay and Tubaro
(1990)), i.e., that

E[f(X∆)]− E[f(X∆)] = O(∆3) (4.3.5)

for su�ciently smooth test functions f . Indeed, denote
u(t,y) = E [g (XT ) | Xt = y] and assume that we want to approximate
E [g(XT )] = u(0,x) by E

[
g(Xn∆)

]
= E

[
u(n∆,Xn∆)

]
with ∆ = T/n. Then,

by a telescoping sum, we may decompose the global error E
[
g(Xn∆)

]
−u(0,x)

as the sum of the local errors

E
[
g(Xn∆)

]
− u(0,x) =

n−1∑
k=0

E
[
u((k + 1)∆,X(k+1)∆)− u(k∆,Xk∆)

]
.

Assuming (4.3.5), we have

E
[
u((k + 1)∆,X(k+1)∆)− u(k∆,Xk∆)

]
= O(∆3),

by �rst conditioning on Xk∆. However, we sum n = T/∆ of these terms, so
that the global error is O(∆2).

For the proof of (4.3.5), note that the �multiplication� of vector �elds in
the sense of iterative applications of vector �elds as di�erential operators is
certainly non-commutative. Taylor expansion applied to (4.3.4) implies that

E[f(X∆)] =
1

2

(
1 +

1

2
∆V0,1 +

1

8
∆2V 2

0,1

)(
1 +

1

2
∆V0,2 +

1

8
∆2V 2

0,2

)
(

1 +
1

2
∆V 2

1 +
1

8
∆2V 4

1

)
· · ·
(

1 +
1

2
∆V 2

d +
1

8
∆2V 4

d

)
(

1 +
1

2
∆V0,2 +

1

8
∆2V 2

0,2

)(
1 +

1

2
∆V0,1 +

1

8
∆2V 2

0,1

)
f(x)+

+
1

2

(
1 +

1

2
∆V0,1 +

1

8
∆2V 2

0,1

)(
1 +

1

2
∆V0,2 +

1

8
∆2V 2

0,2

)
(

1 +
1

2
∆V 2

d +
1

8
∆2V 4

d

)
· · ·
(

1 +
1

2
∆V 2

1 +
1

8
∆2V 4

1

)
(

1 +
1

2
∆V0,2 +

1

8
∆2V 2

0,2

)(
1 +

1

2
∆V0,1 +

1

8
∆2V 2

0,1

)
f(x) +O(∆3)

= f(x) + ∆

(
V0 +

1

2

d∑
i=1

V 2
i

)
f(x)+

+
1

2
∆2

(
V0 +

1

2

d∑
i=1

V 2
i

)2

f(x) +O(∆3)

= E[f(X∆)] +O(∆3),
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where the last equality follows since V0 + 1
2

∑d
i=1 V

2
i is the in�nitesimal gener-

ator of the di�usion X(t,x).

4.3.2 The Ninomiya-Victoir scheme for the DMR model

4.3.2.1 The Stratonovich formulation of the DMR model

Consider again the DMR model (4.1.1) re-expressed in terms of independent
Brownian motions Bi:

dSt =
√
vt St dB

1
t ,

dvt = κ1 (v′t − vt) dt+ ξ1v
α1
t

(
ρ̃1,2dB

1
t +

√
1− ρ̃2

1,2dB
2
t

)
,

dv′t = κ2 (θ − v′t) dt+ ξ2v
′α2
t

(
ρ̃1,3dB

1
t + ρ̃2,3dB

2
t +

√
1− ρ̃2

1,3 − ρ̃2
2,3 dB

3
t

)
,

(4.3.6)

where ρ̃12 = ρ12, ρ̃13 = ρ13 and ρ̃23 = ρ23−ρ12ρ13√
1−ρ2

12

. In order to apply the sim-

ulation method of Ninomiya and Victoir (2008) we need to re-express the Itô
SDEs (4.3.6) in Stratonovich form (see for example De�nition 3.13 of Karatzas
and Shreve (1988)).

We �rst compute the quadratic covariation terms as follows:

d
[√
vt S,B

1
]
t

=

{
1

2
ρ̃1,2 v

α1− 1
2

t + vt

}
St dt

d
[
ξ1 v

α1
t ,
(
ρ̃1,2B

1 +
√

1− ρ̃2
1,2B

2
)]

t
= ξ2

1 α1 v
2α1−1
t dt

d
[
ξ2v
′
t
α2 ,
(
ρ̃1,3B

1 + ρ̃2,3B
2 +

√
1− ρ̃2

1,3 − ρ̃2
2,3B

3
)]

t
= ξ2

2 α2 v
′
t
2α2−1

dt.

We then obtain the Stratonovich form of (4.3.6):

X(t,x) = x +

∫ t

0
V0 (X(s,x)) ds+

3∑
j=1

∫ t

0
Vj (X(s,x)) ◦ dBj

s (4.3.7)

where the state vectorX(t,x) = (St, vt, v
′
t)
T , the initial condition x = (S0, v0, v

′
0)T ,

and the driving vector �elds are given by

V0(x) =

−
1
2

(
1
2 ξ1 ρ̃1,2 x

α1− 1
2

2 x1 + x2 x1

)
−κ1 (x2 − x3)− 1

2 ξ
2
1 α1 x

2α1−1
2

−κ2(x3 − θ)− 1
2 ξ

2
2 α2 x

2α2−1
3

 ,

and

V1(x) =
(√
x2 x1 ρ̃1,2 ξ1 x

α1
2 ρ̃1,3 ξ2 x

α2
3

)T
,

V2(x) =
(

0
√

1− ρ̃2
1,2 ξ1 x

α1
2 ρ̃2,3 ξ2 x

α2
3

)T
,

V3(x) =
(

0 0
√

1− ρ̃2
1,3 − ρ̃2

2,3 ξ2 x
α2
3

)T
.
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In order to proceed with the Ninomiya-Victoir splitting, we thus need to
solve the ordinary di�erential equations

d

dt
x(t) = Vi(x(t))

for all i ∈ {0, 1, 2, 3} and t ∈ R with some given boundary condition.

4.3.2.2 The �ow of the di�usion vector �elds

Following Bayer et al. (2013), it is straightforward to verify that the solution
to the (one-dimensional) ODE

d

dt
x(t) = h(t)α x(t)β (4.3.8)

is given by

x(t) =

{[
(1− β)H(t) + x(0)1−β] 1

1−β
+ , 0 < β < 1,

x(0) eH(t), β = 1,
(4.3.9)

where

H(t) =

∫ t

0
h(s)α ds.

We can thus solve the ODEs

d

dt
x(t) = Vi(x(t))

for i ∈ {1, 2, 3} in closed form. The NV algorithm requires solutions of the
ODEs driven by the di�usion vector �elds for negative times t. As d

dtx(−t) =
−ẋ(−t), this essentially means that the sign of the coe�cient changes. In any
case, for a �xed time interval I = [0, T ] (or I = [−T, 0] in the negative time
case), (4.3.9) is the unique solution to (4.3.8), provided that x(0) 6= 0. This
follows by standard arguments when x > 0 on I. On the other hand, note that
in our case h(t) cannot change its sign on I for the ODEs under considerations
here. Thus, H is always a monotonous function on I. So, for x(0) > 0, we
can only get x(t) = 0 for some t ∈ I, if H is negative on I. But then x
must stay at 0 for the remaining time to T (or −T , respectively). If, however,
x(0) = 0, then there might, indeed, be several real-valued solutions for (4.3.8).
For instance in the positive time case, when h > 0, both (4.3.9) and x ≡ 0 are
solutions. This phenomenon re�ects the fact that the NV scheme should not
be expected to perform any better than the EM scheme, when paths of the
underlying SDE come too close to 0 too often, as has been found in several
numerical studies, e.g., by Lord et al. (2010).
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4.3.2.3 The �ow of the Stratonovich drift vector �eld

Solving the ODE for i = 0 is a little trickier with no obvious closed-form so-
lution for general values of the exponents αi. Whereas a numerical solution
would be possible by for example applying a Runga-Kutta method, by fur-
ther splitting the operator, we may obtain a reasonably simple closed-form
simulation step. That is, we write

V0 = V0,1 + V0,2

with

V0,1(x) =

 −1
2 x2 x1

−κ1 (x2 − x3)
−κ2 (x3 − θ)

 , V0,2(x) =

 −1
4 ξ1 ρ̃1,2 x

α1− 1
2

2 x1

−1
2 ξ

2
1 α1 x

2α1−1
2

−1
2 ξ

2
2 α2 x

2α2−1
3

 .

and solve the equations

d

dt
x(t) = V0,j(x(t)) with j = 1, 2.

Solution for j = 1

The equation in the third row which reads

d

dt
x3(t) = −κ2 (x3 − θ)

has the solution

x3(t) = θ + e−κ2 t (x3(0)− θ) .

The second ODE has the solution

x2(t) = e−κ1 t x2(0) + κ1

∫ t

0
e−κ1 (t−s) x3(s) ds

which is just the forward variance curve ξt(T ). The �rst ODE reads

d

dt
x1(t) = −1

2
x2(t)x1(t)

with the solution

x1(t) = x1(0) exp

{
−1

2
H(t)

}
with H(t) =

∫ t
0 x2(s) ds which we recognize as the spot variance swap curve.
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Solution for j = 2

If α1 6= 1 and α2 6= 1, the second and third ODEs have solutions

x2(t) =
[
x2(0)2(1−α1) − α1 (1− α1) ξ2

1 t
] 1

2(1−α1)

+
,

x3(t) =
[
x3(0)2(1−α2) − α2 (1− α2) ξ2

2 t
] 1

2(1−α2)

+
.

The �rst ODE reads

d

dt
x1(t) = −1

4
ξ1 ρ̃1,2 x

α1− 1
2

2 x1

with the solution

x1(t) = x1(0) exp

{
−1

4
ξ1 ρ̃1,2H(t)

}
where H(t) =

∫ t
0 x2(s)α1− 1

2 ds. H(t) can also then be computed explicitly as

H(t) =
2

α1 (3/2− α1) ξ2
1

{
x2(0)3/2−α1 − x2(t)3/2−α1

}
.

4.3.2.4 The double lognormal case: α1 = α2 = 1

The special case α1 = 1, α2 = 1 gives the double lognormal model of Gatheral
(2008), a model which both �ts the empirical SPX and VIX surfaces well and
displays remarkable parameter stability. In this case, we may obtain even
simpler closed-form solutions by applying the drift trick of Bayer et al. (2013)
explained in Section 4.3. This trick involves simplifying V0 by subtracting
components spanned by the the vector �elds V1, V2, V3. This is achieved by
introducing drift in the Brownian motions. Speci�cally, with

V γ
0 = V0 − γ1V1 − γ2V2 − γ3V3,

and choosing

γ1 = −ξ1 ρ̃1,2,

γ2 = −
κ1 + 1

2ξ
2
1 + γ1 ρ̃1,2 ξ1

ξ1

√
1− ρ̃2

1,2

,

γ3 = −
κ2 + 1

2 ξ
2
2 − ρ̃1,3 ξ2 γ1 − ρ̃2,3 ξ2 γ2

ξ2

√
1− ρ̃2

1,3 − ρ̃2
2,3

,

we have the much simpler expression

V γ
0 =

 −1
2 x2 x1

κ1 x3

κ2 θ

 .



4.4. CALIBRATING THE MODEL 91

The third and second di�erential equations respectively have solutions

x3(t) = x3(0) + κ2 θ t,

x2(t) = x2(0) + κ1

(
x3(0) t+

1

2
κ2 θ t

2

)
.

The �rst ODE reads

d

dt
x1(t) = −1

2
x2(t)x1(t)

with the solution

x1(t) = x1(0) exp

{
−1

2
H(t)

}
where

H(t) =

∫ t

0
x2(s) ds

= x2(0) t+ κ1

(
1

2
x3(0) t+

1

6
κ2 θ t

3

)
.

4.3.3 Summary of the modi�ed Ninomiya-Victoir procedure

Adopting the notation of Bayer et al. (2013), if Λk is a Bernoulli random
variable, the kth NV time step of length ∆ in the modi�ed NV simulation of
Section 4.3.2.3 is of the form

X ((k + 1) ∆,x)

=

{
e

1
2

∆V0,1 e
1
2

∆V0,2 eZ
1
k V1 eZ

2
k V2 eZ

3
k V3 e

1
2

∆V0,2 e
1
2

∆V0,1X(k∆,x) if Λk = −1,

e
1
2

∆V0,1 e
1
2

∆V0,2 eZ
3
k V3 eZ

2
k V2 eZ

1
k V1 e

1
2

∆V0,2 e
1
2

∆V0,1X(k∆,x) if Λk = +1

where the Zik ∼ N(0,∆) are independent of each other.
Similarly, in the NV procedure with drift trick of Section 4.3.2.4, the kth

NV time step is of the simpler form

X ((k + 1) ∆,x)

=

{
e

1
2

∆V γ0 eZ
1
k V1 eZ

2
k V2 eZ

3
k V3 e

1
2

∆V γ0 X(k∆,x) if Λk = −1

e
1
2

∆V γ0 eZ
3
k V3 eZ

2
k V2 eZ

1
k V1 e

1
2

∆V γ0 X(k∆,x) if Λk = +1

where the Zik ∼ N(γi ∆,∆) (note the nonzero drift) are independent of each
other.

4.4 Calibrating the model

4.4.1 Calibrating daily parameters

As mentioned in Section 4.2.3 we would like to infer vt, v
′
t, ξ1, ξ2, ρ12 and ρ13

daily. The calibration of these parameters is divided into several steps.
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4.4.1.1 v0 and v
′
0

We saw in Section 4.2.1 that the prices of variance swaps may be estimated
from the market prices of SPX options using equation (4.2.1). This computa-
tion requires a continuous set of option prices which we obtain by �tting the
SVI parametrization (see for example Gatheral and Jacquier (2012)) to the
volatility smile for each expiry. Then from (4.2.3), given κ1, κ2 and θ, v0 and
v′0 may be obtained by linear regression.

4.4.1.2 ξ1 and ξ2

The volatility parameters ξ1 and ξ2 of the variance processes are obtained by
calibrating the model to the market prices of VIX options.

We proxy the underlying of a VIX option by the expected forward variance
in our model. The payo� of a call option on the VIX index with strike K
expiring at time T may therefore be written as√E

[∫ T+∆

T
vsds

∣∣∣∣ FT]−K
+

where ∆ is the length (approximately one month) of the VIX index. For each
Monte Carlo path we have a value for vT and v′T , so the expected forward

variance E
[∫ T+∆

T vsds
∣∣∣ FT ] may be computed using (4.2.3). Averaging over

all paths gives the model price of the VIX option.

Our chosen objective function is the sum of squared di�erence between
market VIX option prices and the model VIX option prices, both expressed in
terms of Black-Scholes implied volatility. Errors are weighted by the reciprocal
of the bid-ask spread: √√√√∑

i

(
σmidi − σmodeli

σaski − σbidi

)2

.

The minimization is performed with a Levenberg-Marquardt algorithm,
setting starting values to ξ1 = 2.5 and ξ2 = 0.4, values typical of those that
we observe.

4.4.1.3 ρ12 and ρ13

We are then left with the two parameters ρ12 and ρ13 to calibrate. These
are used to �t the SPX volatility surface. Our chosen objective function is
again the sum of squared di�erences between market SPX option prices and
model SPX option prices, all in implied volatility terms and weighted by the
reciprocal of the bid-ask spread.
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The objective function can though have multiple local minima, which lead
to poor performance of the Levenberg-Marquardt algorithm. This is especially
true when using the EM algorithm in combination with pseudo random num-
bers. To improve performance we need to �nd a good starting point before
applying the solver. We achieve this by evaluating the function at a number
of points and starting the Levenberg-Marquardt algorithm at the best point.

When we �t the Heston model to SPX option data, the imputed stock-
volatility correlation parameter is typically around −0.7. It seems reasonable
then that the two correlation parameters ρ12 and ρ13 should be in the same ball-
park. We therefore search for ρ12 and ρ13 in the region [−1,−0.5]× [−1,−0.5],
restricted by condition that ρ̃2

13 + ρ̃2
23 ≤ 1. A good starting point can be found

by evaluating the objective function at 30 Sobol points in this region.

4.4.2 Calibration examples with tests of Monte Carlo

schemes

We now consider two calibration examples: One with data from April 3, 2007,
and the other with data from September 15, 2011. In both of these examples,
we will compare the calibration performance of the modi�ed Ninomiya-Victoir
scheme described in Section 4.3 with that of the Euler-Maruyama scheme with
partial truncation step described in Section 4.2.3. We thereby test both the
model and the calibration routines in pre- and post-crisis environments.

Our testing strategy is as follows: With respectively 29 = 512, 211 = 2048
and 213 = 8192 paths we calibrate the model using 6, 10, 20, . . . , 100, 200, 300,
400, 500, 1000, 2000 time steps, thereby obtaining calibrated values for ξ1 and
ξ2.

For each such calibration we obtain optimal volatility parameters. For ex-
ample ξopt,30,11

1 and ξopt,30,11
1 , are optimal parameters for a calibration with 30

time steps and 211 paths. Using the optimal parameters we then perform an-
other Ninomiya-Victoir Monte Carlo simulation with 216 = 65, 536 paths and
500 time steps. This latter simulation we use to measure how well the param-
eters obtained by the calibration �t the market. This is done by calculating
the mean squared error objective function (RMSE) between the model prices
obtained using 216 = 65, 536 paths, 500 time steps and the market prices. We
can then assess what the minimum required number of paths and time steps
is to obtain a calibration accurate enough for practical applications.

We also compare the performance of a classic Monte Carlo (MC) scheme us-
ing pseudo random numbers with that of a Quasi Monte Carlo (QMC) scheme
using Sobol quasi random numbers. If the dimension of the integration problem
is small, Quasi Monte Carlo should theoretically result in a lower integration
error compared to Monte Carlo. Increasing the number of dimensions however
decreases the e�ciency of the Quasi Monte Carlo method and at some point
the Monte Carlo method beats it with a lower integration error. In our im-
plementation, the dimension of the integration problem is the number of time
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steps times the number of random variables required per time step (which is
three for EM and four for NV due to the coin �ip).

There exists a number of heuristic ways to deal with the curse of dimen-
sionality of QMC, see for example da Silva and Barbe (2005). These methods
will though not be tried out.

All computations were run on an ASUS desktop with an Intel Core i3 cpu
at 2.40 GHz CPU and 4GB memory. The simulations were done in Java using
the SSJ package, see �http://www.iro.umontreal.ca/ simardr/ssj/indexe.html�.
For the Sobol sequences we used the built in direction numbers up to 360 di-
mensions. Sequences with more dimension were created using direction num-
bers from the webpage �http://web.maths.unsw.edu.au/ fkuo/sobol/new-joe-
kuo-6.21201�, these have been obtained using the search criteria D(6) see Joe
and Kou (2008). Pseudo random numbers were generated using the Mersenne
twister, MT19937. Optimization were done using the Levenberg-Marquardt
algorithm present in the SSJ package, this is a Java translation of the MIN-
PACK routine, see More et al. (1980).

4.4.3 April 3, 2007

4.4.3.1 The data

The SPX option dataset contains prices for 421 options, 388 of them include
both bid and ask prices, we only use these options in our calibration. There
are 14 di�erent option maturities in the dataset ranging from 0.005 to 2.71
years, the forward for the �rst maturity is 1438.62 and for the last maturity
1556.75. The strikes for the di�erent options lie in the interval 600 to 2000.
The VIX option dataset contains prices for 108 options, 96 of them include
both bid and ask prices, again we only use options with both bid and ask
prices. The dataset contains 7 di�erent maturities ranging from 0.04 years to
1.13 years. The forward for the �rst maturity is 13.97 and 15.29 for the last
maturity. Strikes lie in the interval 10 to 30.

4.4.3.2 Calibration of v0 and v′0

As explained in Section 4.4.1.1, we use linear regression to calibrate model
variance swaps to market variance swaps (proxied by the SVI log-strip) giving
us the parameters

v0 = 0.0153,

v′0 = 0.0224.

The resulting �t is graphed in Figure 4.1.
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Figure 4.1: SPX market variance swaps as points together with the calibrated model
variance swap curve (solid line). Data from April 3, 2007.

4.4.3.3 Calibration of ξ1 and ξ2 to VIX options

In Figure 4.2 we have graphed the RMSE from the di�erent calibrations as a
function of number of time steps used.
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Figure 4.2: RMSE from NV and EM calibration of the DMR model to VIX option prices
from the 3rd of April 2007. We have set α1 = α2 = 0.94. Pseudo random number are used
in (a) and quasi random numbers are used in (b). The legend in (a) speci�es the method
and the log2 number of paths.

The �gure clearly indicate that a lower bound for the calibration RMSE
exists around 0.8. Even with 213 paths we do not get below this barrier. We
see a clear advantage of using the NV scheme compared to the EM scheme.
Using the NV scheme a calibration can be done using 20− 30 time steps and
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211 or 213 paths. In comparison we need 400 − 500 time steps if we use the
EM scheme. Therefore we can reduce the number of time steps by a factor of
15 or so.

The integration error seems to be negligible at 211 paths. A good compro-
mise between calibration quality and computational cost therefore seems to be
an NV scheme using 211 paths and 30 time steps.

In Figure 4.3 we graph market VIX Black-Scholes implied volatility smiles
together with model smiles. The model parameters ξ1 and ξ2 were calibrated to
the market using MC with 30 NV time steps and 211 paths. Total calibration
time was 1.47 seconds. The resulting calibrated ξ parameters are:

ξ1 = 2.873,

ξ2 = 0.302.

Model option prices were then computed using 100 NV QMC time steps and
216 paths. By inspection of Figure 4.3, the quality of the calibration is quite
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Figure 4.3: Implied Black volatilities for VIX options on April 3, 2007 (bid price (red
dots), ask price (blue dots) and mid price (green line)) and model prices from a QMC-NV
scheme using 100 time steps and 216 paths (yellow line). The model parameters ξ1 and ξ2
are obtained by a calibration using a MC-NV scheme with 30 time steps and 211 Monte
Carlo paths.

acceptable, though VIX option bid-ask spreads are admittedly wide.

4.4.3.4 Calibration of ρ12 and ρ13 to SPX options

This test consists in �xing all parameters including the values of ξ1 and ξ2

found by the MC-NV calibration of section 4.4.3.3.



4.4. CALIBRATING THE MODEL 97

Let us start by doing a normal Levenberg-Marquadt calibration started in
(−0.7,−0.7), without an initial search for an optimal point. Figure 4.4 shows
the RMSE results
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Figure 4.4: RMSE from NV and EM calibration of the DMR model to SPX option prices
from the 3rd of April 2007. We have set α1 = α2 = 0.94, ξ1 = 2.873, ξ2 = 0.302 and
the calibration is done with quasi random numbers using a Levenberg-Marquardt optimizer
starting in (−0.7,−0.7). The legend speci�es the method and the log2 number of paths.

The NV scheme performs acceptably, especially using 213 paths, but the 29

paths calibration seems to be unacceptably o�. The EM scheme shows strange
behavior: note that for the �rst number of time steps the 29 paths calibration
does best of all the methods, while the EM scheme with more paths shows
jumpy behavior, sometimes it �nds a good minimum other times it does not.
In order to improve the method we use the simple search algorithm described
in Section 4.4.1.3. In Figure 4.5 we have applied this before the Levenberg-
Marquardt optimizer. After the search algorithm has been applied the EM
scheme performs just as well if not better than the NV scheme. The NV
scheme with 213 paths and 30 time steps could in principle save us from using
the search algorithm but since the NV scheme is much more involved than
the EM scheme we will not obtain a speedup. The RMSEs reported in Figure
4.5 clearly show that 211 QMC paths are su�cient in order to obtain a good
calibration. The spikes in �gure 4.5(a) seems strange, but they only exists for
a low number of paths and for pseudo random number. We conclude that it
is best to use quasi random numbers when calibrating to SPX options.

In Figure 4.6, we graph market SPX Black-Scholes implied volatility smiles
together with model smiles. The correlation parameters ρ12 and ρ13 were
calibrated to the market using QMC with 30 EM time steps and 211 paths.
Total calibration time was 2.94 seconds in this case. The resulting calibrated
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Figure 4.5: RMSE from NV and EM calibration of the DMR model to SPX option prices
from the 3rd of April 2007. We have set α1 = α2 = 0.94, ξ1 = 2.873, ξ2 = 0.302. Pseudo
random number are used in (a) and quasi random numbers are used in (b). The legend in
(b) speci�es the method and the log2 number of paths.

parameters are:

ρ12 = −0.992,

ρ13 = −0.615

Model SPX option prices were again computed using a QMC-NV scheme with
100 time steps and 216 paths.

Inspecting Figure 4.6, we note that the DMR model �ts longer expiration
SPX option smiles very well, shorter expirations somewhat less well. This of
course is not unexpected for a three-factor model of the DMR type. Note
the kinks in the model implied volatilities for T = 0.049 and 0.20. These
appear since we use too few paths, the model will therefore produce a time
value of zero for options far from ATM. Finally, we observe that the calibrated
parameters are quite consistent with those reported in Gatheral (2008), except
ρ12. However the calibration routine described here runs very much faster.

4.4.3.5 Calibration RMSE

One could argue that the preceeding tests only examine whether or not the
methods produce parameters that are good, and not that the schemes with the
chosen number of paths and time steps �t the market prices. In �gure 4.7 we
graph the RMSE between the market prices and the model prices calculated
with the same number of paths and time steps that we use in the calibrations.
We have for example obtained ξopt,30,11

1 and ξopt,30,11
1 the optimal parameters

for a calibration with 30 time steps and 211 paths. To obtain the calibration
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Figure 4.6: Implied Black volatilities for SPX options on April 3, 2007 (bid price (red
dots), ask price (blue dots) and mid price (green line)) and model prices from a QMC-NV
scheme using 100 time steps and 216 paths (yellow line). The parameters for the model have
been obtained using an NV scheme with 30 time steps and 211 paths to calibrate the model
to the VIX options, and an EM scheme with 30 time steps and 211 paths to calibrate the
model to the SPX options.

RMSE we �rst simulate the model using 30 time steps, 211 paths, ξopt,30,11
1

and ξopt,30,11
1 . Then we calculate the RMSE between these model prices and

market prices.

For the VIX options we do not observe that big a di�erence from the
previous RMSE graph. The RMSE only become a bit more bumpy, which is
expected since we have higher integration error. The NV scheme with 213 or
211 paths can �t market prices with relatively few steps while the EM scheme
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Figure 4.7: RMSE from NV and EM calibration of the DMR model to VIX and SPX
option prices from the 3rd of April 2007. We have set α1 = α2 = 0.94 and for the calibration
to SPX options we have also set ξ1 = 2.873, ξ2 = 0.302. Calibration to VIX options are
considered in (a) with pseudo random numbers and in (b) with quasi random numbers.
Calibration to SPX options are considered in (c) with quasi random numbers but without
the search algorithm and in (d) with quasi random number and the search algorithm. The
legend in (a) speci�es the method and the log2 number of paths.

needs at least 200 steps.

For SPX options we observe that the NV scheme with 213 or 211 paths
and relatively few time steps generates good �ts to market prices. In contrast,
the EM scheme requires a large number of time steps to achieve the same
�t quality. Nevertheless, if we are concerned only with calibration, the EM
scheme does produce perfectly acceptable parameters with few time steps at
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signi�cantly lower computational cost than NV.

4.4.4 September 15, 2011

The dataset of Section 4.4.3 is from a period before the 2008 �nancial crisis. To
investigate whether the model still works under more recent market conditions,
and to further compare simulation schemes, we now calibrate the DMR model
to data from September 15, 2011.

4.4.4.1 The data

The SPX option dataset contains prices for 1176 options, 931 of them with
both bid and ask prices, which we use in our calibration. The dataset contains
14 di�erent maturities ranging from 0.0027 to 2.26 years. The strikes range
from 100 to 3000. The forward for the �rst maturity is 1207.70 and for the
last maturity 1159.83.

The VIX option data contains prices for 202 options, 148 of them have
both bid and ask prices, again these are options we consider in our calibration.
The dataset contains 6 di�erent maturities ranging from 0.016 years to 0.42
years. The strikes ranges from 17 to 100. The forward is 33.23 for the �rst
maturity and 31.29 for the last maturity.

4.4.4.2 Calibration of the parameters

Using linear regression to calibrate v0 and v′0 gives us the parameters

v0 = 0.114,

v′0 = 0.110.

We then test how well the various simulation schemes calibrate the model
to VIX options as in Section 4.4.3.3, presenting the results in �gure 4.8.

The NV discretization again beats the EM discretization but the di�erence
is not as signi�cant as in the 2007 example, requiring of the order of a factor
10 fewer time steps. The reasons for the decrease in relative performance are
twofold: There are no long-dated VIX options in the 2011 dataset, and the
volatility processes have higher starting values.

The longest VIX options have a maturity of 1.13 years in the 2007 dataset
and 0.42 years in the 2011 dataset. We therefore expect the EM scheme to
use 1.13

0.42 = 2.69 as many time steps in 2007 than in 2011, everything else
being equal. Since the NV-scheme is second order convergent it will only use√

2.69 = 1.64 as many time steps in 2007 than in 2011.
The higher value for the volatility processes means that they will hit zero

less frequently. This a�ects both schemes in a positive way. We can therefore
reduce the number of time steps for both schemes compared to the 2007 cali-
bration. But there exists a lower bound, the number of VIX option maturities
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Figure 4.8: RMSE from NV and EM calibration of the DMR model to VIX option prices
from the 15th of September 2011. We have set α1 = α2 = 0.94. Pseudo random number
are used in (a) and quasi random numbers are used in (b). The legend in (a) speci�es the
method and the log2 number of paths.

we need to hit. Therefore the number of time steps cannot be lower than 6,
even though the NV scheme could approximate the longest maturity well with
fewer equidistant time steps.

In Figure 4.9 we graph market VIX Black-Scholes implied volatility smiles
together with model smiles. The calibrated ξ parameters are

ξ1 = 2.689,

ξ2 = 0.502.

they were obtained using an MC-NV scheme with 6 time steps and 211 paths.
Model option prices were then computed using 100 NV QMC time steps and
216 paths.

We observe that the DMR model generates VIX smiles that are too �at.
This suggests that the lognormal DMR model with α1 = α2 = 1, which is
faster to simulate, may also �t better. We investigate this in Section 4.4.5.
The bid-ask spread have also decreased compared to the 2007 data, making it
harder for the model to hit the market prices.

Using ξ1 and ξ2 just obtained we then calibrate correlation parameters.
Results from this calibration are presented in Figure 4.10.

Again, we see no advantage in using the NV discretization over the simpler
(and less costly) EM discretization and we also conclude that quasi random
numbers have to be used when calibrating to SPX options.

In Figure 4.11 we graph market SPX Black-Scholes implied volatility smiles
together with model smiles. The model parameters ρ12 and ρ13 were calibrated
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Figure 4.9: Implied Black volatilities for VIX options on September 15, 2011 (bid price
(red dots), ask price (blue dots) and mid price (green line)) and model prices from a QMC-
NV scheme using 100 time steps and 216 paths (yellow line). The model parameters ξ1 and
ξ2 are obtained by a calibration using a NV scheme with 6 time steps and 211 Monte Carlo
paths.
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Figure 4.10: RMSE from NV and EM calibration of the DMR model to SPX option prices
from the 15th of September 2011. We have set α1 = α2 = 0.94, ξ1 = 2.689 and ξ2 = 0.502.
Pseudo random number are used in (a) and quasi random numbers are used in (b). The
legend in (b) speci�es the method and the log2 number of paths.

to the market using QMC-EM scheme with 14 time steps, 211 paths and search
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for a good starting point. The resulting calibrated ρ parameters are:

ρ12 = −0.982,

ρ13 = −0.727.

Model option prices were then computed using 100 NV QMC time steps and
216 paths. As with the 2007 calibration, the DMR model �ts SPX option
prices well except for very short expirations.
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Figure 4.11: Implied Black volatilities for SPX options on September 15, 2011 (bid price
(red dots), ask price (blue dots) and mid price (green line)) and model prices from the NV
scheme using 100 time steps and 216 Quasi Monte Carlo paths (yellow line). The parameters
for the model have been obtained using the NV scheme with 6 time steps and 211 Monte
Carlo paths to calibrate the model to the VIX options, and an EM scheme with 14 time
steps and 211 Quasi Monte Carlo paths to calibrate the model to the SPX options.
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4.4.5 Lognormal DMR model calibration to 2011 data

In the previous section we saw that a model where α1 = α2 = 0.94 generates
VIX option smiles that are too �at compared to the market prices of our
2011 example. In order to increase the steepness of the smile we calibrate the
simpler lognormal DMR model with α1 = α2 = 1.
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Figure 4.12: Implied Black volatilities for VIX option prices on September 15, 2011 (bid
price (red dots), ask price (blue dots) and mid price (green line)) and model prices from
QMC-NV with 100 time steps and 216 paths (yellow line). The parameters are obtained by
calibration using 10 NV time steps and 211 QMC paths.

In Figure 4.12 we graph the VIX option smiles obtained from the lognormal
model. The volatility parameters have been obtained using an MC-NV scheme
with 10 time steps and 211 paths. The smiles have steepened compared to the
graph in Section 4.4.4.2, the lognormal DMR model therefore �ts the market
better than the more complicated DMR model calibrated in Section 4.4.4.2.
But the option smiles still seem to be too �at. Calibrating the double lognormal
model to the SPX options yields more or less the same smiles as before.

4.4.6 Computation times

As we have seen, the NV-scheme can reduce by a large factor the number of
time steps needed to achieve a good calibration of the DMR model to VIX
options. In the 2007 example we got a reduction of a factor 15 and in the
2011 example we got a reduction of a factor 10. But this will not lead to
an equivalent reduction in computation time because the NV discretization
involves more computation and is therefore slower.
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In Table 4.1, we present the empirical computational cost of the NV dis-
cretization relative to the EM discretization. The results are obtained using
quasi random numbers, we get almost the same results if we use pseudo ran-
dom numbers. Because of the drift trick, the NV discretization step is much
simpler in the case α1 = α2 = 1 therefore we present this case separately. 2D
is the case where we only simulate the variance processes i.e. when we have to
price VIX options. 3D is the simulation of the full model.

2D 3D

α1 = α2 = 0.94 4.55 6.84

α1 = α2 = 1 1.81 3.08

Table 4.1: Relative computation times for NV steps in terms of EM steps. 2D means
simulation of the variance process only (i.e. for VIX options); 3D means simulation of the
full model. The values are obtained by simulating with 90 time steps and 218 QMC paths
using the parameters obtained in the 2011 calibrations.

We conclude that it is better to use the EM discretization when calibrating
to SPX options where there is little if any RMSE reduction bene�t from using
the NV step. However, for VIX options, we can achieve a speedup of 3 − 4
times in the 2007 example, 2 in the 2011 example and 5 in the 2011 lognormal
DMR example. In summary, the optimal calibration recipe appears to be:

• Calibrate ξ1 and ξ2 with a Ninomiya-Victoir scheme.

• Calibrate ρ12 and ρ13 with an Euler-Maruyama scheme.

Using Java code with 30 time steps and 211 paths we can typically calibrate
the model to both SPX and VIX option markets in approximately 5 seconds.

4.5 Convergence of the discretization schemes

Having demonstrated in Section 4.4 that we have fast and accurate calibra-
tion of the DMR model to VIX and SPX options and moreover that �ts to
the market are good, we focus in this section on numerical tests of the conver-
gence of the Ninomiya-Victoir (NV) discretization scheme presented in Section
4.3.2 relative to that of the Euler-Maruyama scheme with partial truncation
presented in Section 4.2.3.

We use parameters resulting from the calibrations of Section 4.4.4 sum-
marized in Table 4.2. We consider options with a maturity of one year and
three di�erent strikes, 0.8 times the forward, ATM and 1.2 times the forward.
All option prices are computed using randomized QMC. The randomization
is done by scrambling the net and then adding a random shift to the QMC
numbers, see Glasserman (2004). This is done in order to obtain a Monte
Carlo error around the price.
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θ 0.078
κ1 5.5
κ2 0.1
ρ23 0.59
v0 0.114
v′0 0.110
α1 0.94
α2 0.94
ξ1 2.689
ξ2 0.502

ρ12 = ρ̃12 −0.982
ρ13 = ρ̃13 −0.727

ρ̃23 −0.656

Table 4.2: Parameters from the calibration to data from September 15, 2011 with α1 =
α2 = 0.94.

The "true" option prices are computed using 8 independent realizations,
each realization is calculated using the NV scheme with 200 time steps and
227 = 134, 217, 728 QMC paths.

To obtain convergence graphs we calculate option prices using 5, 10, 20, 30,
50, 70 time steps for the NV scheme and 5, 10, 20, 30, 50, 70, 100, 200, 500 time
steps for the EM scheme. We simulate 64 independent realizations of the
NV prices and 128 independent realizations of the EM prices, each price is
computed using 223 = 8.388.608 QMC paths. Convergence graphs can be seen
in Figure 4.13.

The VIX option graphs in Figure 4.13 clearly show that the NV scheme
has second order convergence while the EM scheme only converges with order
one. For SPX options the picture is blurred a bit by the strange behavior of
the EM scheme. There seems to be a kink in the error graph around 50 time
steps. The kink exists because the EM scheme with a small number of time
steps creates too high option prices, while the EM scheme with a large number
of steps creates too low option prices. Therefore the EM scheme price has to
cross the "true" price at one point, this point lies around 50 time steps. After
the kink we see �rst order convergence of the EM scheme. The NV scheme
clearly shows second order convergence.

In Lord et al. (2010) the Ninomiya-Victoir scheme was found inferior to
the full truncation scheme when simulating the Heston model. In the Heston
model the stochastic volatility is a CIR process (α1 = 0.5 and no v′t), but in the
DMR model we consider α1 ≈ 1. If the parameters of the CIR process violate
the Feller condition, 0 is an attainable boundary, and even if they satisfy the
Feller condition the process can hit 0 when we simulate the model discretely. If



108
CHAPTER 4. FAST NINOMIYA-VICTOIR CALIBRATION OF THE

DOUBLE-MEAN-REVERTING MODEL

5 10 20 50 100 500

0.
00

2
0.

01
0

0.
05

0
0.

50
0

Time steps

E
rr

or
O(N−1)
O(N−2)
NV
EM

(a) VIX option, ITM

5 10 20 50 100 500

0.
00

2
0.

01
0

0.
05

0
0.

50
0

Time steps

E
rr

or
(b) VIX option, ATM

5 10 20 50 100 500

0.
00

2
0.

01
0

0.
05

0
0.

50
0

Time steps

E
rr

or

(c) VIX option, OTM

5 10 20 50 100 500

5e
−

06
5e

−
05

5e
−

04
5e

−
03

Time steps

E
rr

or

(d) SPX option, ITM

5 10 20 50 100 500

2e
−

05
2e

−
04

2e
−

03
2e

−
02

Time steps

E
rr

or

(e) SPX option, ATM

5 10 20 50 100 500

2e
−

05
1e

−
04

5e
−

04
5e

−
03

Time steps
E

rr
or

(f) SPX option, OTM

Figure 4.13: Pricing error for 1 year VIX and SPX options in a DMR model with pa-
rameters from 15th of September 2011 where α1 = α2 = 0.94. A con�dence interval of two
standard deviations around the error are marked with the dashed lines. The legend in (a)
speci�es the method.

α1 is closer to one this will happen less frequently. We may therefore expect a
method which is second order accurate for smooth volatility and drift functions
with bounded derivatives to perform better when α1 ≈ 1.

Figure 4.13 (d)-(f) clearly show that the Ninomiya-Victoir scheme comes
much closer to the true price of SPX options for a given number of time steps,
this is also what we conclude from section 4.4.3.5. But the extra precision of
the NV scheme will be of no use when calibrating the correlation parameters
since we can do that using the EM scheme with a low number of time steps.
Given its signi�cantly lower computational cost, the EM scheme is therefore
to be preferred when calibrating to SPX options.

As for pricing VIX options, (which Lord et al. (2010) do not consider), our
tests show that the outperformance of the NV scheme is su�cient for it to be
preferred over the EM scheme for the calibration of volatility parameters.
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4.6 Conclusion

In this paper, we have presented two straightforward modi�cations of the stan-
dard Ninomiya-Victoir discretization scheme that conserve second order weak
convergence but permit simple closed-form solutions to the ODE's, avoiding
the use of numerical integration methods such as Runge-Kutta. Using these
schemes for VIX options and the simpler Euler-Maruyama scheme for SPX
options, we demonstrated that it is possible to achieve fast and accurate cali-
bration of the DMR model of Gatheral (2008) to both SPX and VIX options
markets simultaneously. Moreover, we demonstrated that the DMR model
�ts SPX and VIX options market data well for two particular dates chosen
to represent two very di�erent market environments from before and after the
2008 �nancial crisis. The �tted parameters of the model over time appear to
be remarkably stable.

Finally we performed an empirical analysis of the convergence of the Ninomiya-
Victoir (NV) and Euler-Maruyama discretization schemes demonstrating that
the NV scheme was indeed second-order weak convergent.
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Chapter 5

Utility optimization and

feedback-e�ects

Morten Karlsmark

Abstract

This paper considers a simple model for a market with one asset
and two agents. One is optimizing expected utility of future wealth and
the other is delta hedging derivatives written on the asset. Using the
optimizing behavior of the �rst agent we can under simple assumptions
back out the value of the delta hedgers option position. We develop the
ideas �rst in a continuous time model, where we obtain approximations
of the position, then we move on to use the LVI model of Andreasen and
Huge (2011). Finally we present numerical examples where the model is
applied to option data from di�erent foreign exchange crosses to �nd the
delta hedgers option position.

5.1 Introduction

Consider a market with one asset. This asset has a true value (Xt)t≥0, a value
re�ecting the future cash �ows and the risk averseness of the investors. But it
also has a market price (St)t≥0, which does not have to coincide with the true
value in general. The di�erence in price exists because not all agents in the
market act as investors but have other objectives, delta hedging derivatives for
example.

Let us look at two di�erent agents trading the asset, a value investor who
trades according to the di�erence between the true value and the market price,
and a delta hedger, hedging a derivative with value F (St) to him.

Assume the demand of the value investor is A(Xt − St) where A(·) is an
increasing function. If the asset is cheap he will demand a positive amount
and vice versa. The delta hedgers demand will be −F ′(St). This is more or
less Example 3 in Schönbucher and Wilmott (2000).
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We assume the asset is in �xed supply equal to a constant K. The market
price St must then satisfy the equation

A(Xt − St)− F ′(St) = K

an Itô expansion yields

A′(Xt − St)dXt −A′(Xt − St)dSt − F ′′(St)dSt +O(dt) = 0

which implies

dSt =
1

1 + F ′′(St)
A′(Xt−St)

dXt +O(dt) (5.1.1)

where A′(Xt − St) > 0. If the delta hedger is long gamma (F ′′(St) > 0),
volatility will be low and vice versa. Delta hedging therefore creates a feedback
e�ect on the asset price. Note that if F ′′(St) can pass −A(Xt−St) the volatility
will explode, so the model is not that well speci�ed.

There exists a vast literature on models like this. We mention Frey and
Stremme (1997), Platen and Schweizer (1998), Sircar and Papanicolaou (1998),
Frey (1998) and Schönbucher and Wilmott (2000) that all consider feedback
e�ects models and investigate the e�ect on stock prices and option smiles.

An implication of (5.1.1) can also be stock pinning. If delta hedgers are
long straddles at certain strikes they will be long gamma in these points. The
volatility in (5.1.1) will therefore go to zero around these strikes and the asset
could be pinned when the straddles mature. Krishnan and Nelken (2001) and
Avellaneda and Lipkin (2003) builds models to capture the e�ect and value
options under it. Jeannin et al. (2008) builds a more complex pinning model,
taking into account the results of Frey and Stremme (1997).

Empirical tests of the feedback e�ects hypothesis can also be found. Ni
et al. (2005) tests for stock pinning in American stocks and �nds that delta
hedging of institutional investors contribute to stock pinning. Pearson et al.
(2008) test for the impact of delta hedging besides stock pinning and �nds that
the delta hedging of institutional investors have a signi�cant e�ect on stock
price volatility.

See also Patel (2006) and Madigan (2008) for reports on feedback e�ects
in the interest rate markets.

As noted the volatility in (5.1.1) can explode when F ′′(St) can pass−A(Xt−
St). The mentioned literature have di�erent �xes for this. Andreasen (2008)
shows that this problem can be solved if the value investor acts as utility
optimizer.

The normal way to specify a feedback model is to assume some behavior
of the value investor and that the delta hedger is hedging a speci�ed posi-
tion. From this the dynamics of the market price can be derived. This is
how the mentioned papers above build their models. Our procedure will be
fundamental di�erent from this.
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We will use the intuition gained from (5.1.1) and assume the market price
is a function of the underlying true value St = f(Xt). Also we will assume the
risk-neutral dynamics of St is of the local volatility form. Using these assump-
tions and a local volatility model calibrated to the market we approximate
the dynamics of St under the real world measure. Then assuming the value
investor is utility optimizing we can derive his demand from the real world
dynamics of St. Since the value investor and the delta hedger are the only
agents in the market, their demand must equal the supply of the asset and
thereby we can obtain the delta hedgers demand. From this we can derive his
position in the option market.

We therefore turn things upside down. Instead of assuming the delta
hedgers have a given option position we will derive the position from mar-
ket data.

In order to obtain our results we will need some results from utility optimiz-
ing theory. Therefore the paper is organized as follows: Section 5.2 considers
classic utility optimization of terminal wealth for an agent investing in an asset
following a general di�usion. Section 5.3 considers a continuous time feedback
model and develops approximations to the delta hedgers position. Section 5.4
considers a discrete time discrete state space model the so called LVI model
of Andreasen and Huge (2011). We show how to obtain the delta hedgers
position in this model. Section 5.5 deals with numerical experiments. Here
we use the results from section 5.4 on option data to derive the delta hedgers
position in di�erent foreign exchange crosses. Section 5.6 concludes.

We do all calculations in forward prices and assume the value investor
invest in forwards contracts, this simpli�es results. It is also possible to do a
full generalization with rates and dividends.

5.2 Utility optimization

5.2.1 Exponential utility

Consider an asset with a T -forward price of STt where

dSTt = µ(t, STt )dt+ σ(t, STt )dWP
t

and an investor trading in ST who wishes to optimize his expected exponential
utility at time T

E (− exp(−γVT )) , γ > 0.

The self-�nancing value process Vt has the dynamics

dVt = αtdS
T
t

where (αt)0≤t≤T is the chosen investment strategy. As the investor buys at
the money forward contracts all money transfers happen at time T . Since this
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is the case the investor cannot invest in bonds, therefore we do not take them
into account.

The optimal value function is given by

J(t, s, v) = sup
α
Et,s,v (− exp (−γVT ))

= exp (−γv) sup
α
Et,s,v

(
− exp

(
−γ
∫ T

t
αsdS

T
s

))
we therefore guess a solution on the form

J(t, s, v) = exp (−γv) j(t, s). (5.2.1)

The HJB equation, see Björk (2004), for the problem is

Jt(t, s, v) + sup
α

(
µ(t, s)Js(t, s, v) +

1

2
σ(t, s)2Jss(t, s, v)

+ αµ(t, s)Jv(t, s, v) +
1

2
α2σ(t, s)2Jvv(t, s, v) + ασ(t, s)2Jsv(t, s, v)

)
= 0.

Using the form of (5.2.1) and dividing by exp (−γv) we get

jt(t, s) + sup
α

(
µ(t, s)js(t, s) +

1

2
σ(t, s)2jss(t, s)

− γαµ(t, s)j(t, s) +
1

2
γ2α2σ(t, s)2j(t, s)− γασ(t, s)2js(t, s)

)
= 0. (5.2.2)

As j < 0 the �rst order condition for optimal α is

α(t, s) =
µ(t, s)

γσ(t, s)2
+
js(t, s)

γj(t, s)
. (5.2.3)

and the second order condition is trivially satis�ed since γ > 0. If j(t, s) solves
(5.2.2) then we know exp(−γv)j(t, s) will solve the HJB equation, and then
our guess will be the true solution.

5.2.2 CRRA utility

Now consider an asset with a forward price STt which ful�lls

dSTt = µ(t, STt )STt dt+ σ(t, STt )STt dW
P
t

and an investor trading in STt who wishes to optimize his expected CRRA
utility at time T

E

(
V γ
T

γ

)
= E

(
1

γ
exp (γ log(VT ))

)
, γ < 1.



5.2. UTILITY OPTIMIZATION 117

The value process Vt has the dynamics

dVt = αtdS
T
t

= αtµ(t, STt )STt dt+ ασ(t, STt )STt dWt

= βtµ(t, STt )Vtdt+ βtσ(t, STt )VtdWt

where βt =
αtSTt
Vt

is the chosen relative investment strategy.
Let Xt = log(Vt) then we have

dXt =

(
βtµ(t, STt )− 1

2
β2
t σ(t, STt )2

)
dt+ βtσ(t, STt )dWt.

We de�ne the problem in terms of β and x so the optimal value function is
given by

J(t, s, x) = sup
β
Et,s,x

(
exp (γXT )

γ

)
=

exp (γx)

γ
sup
β
Et,s,x

(
exp

(
γ

∫ T

t
βsµ(s, STs )

− 1

2
β2
sσ(s, STs )2ds+

∫ T

t
βsσ(s, STs )dWs

))
as in section 5.2 we guess a solution on the form

J(t, s, x) =
exp (γx)

γ
j(t, s). (5.2.4)

The HJB equation for the problem is

0 = Jt(t, s, x) + sup
α

(
µ(t, s)sJs(t, s, x) +

1

2
σ(t, s)2s2Jss(t, s, x)

+

(
βµ(t, s)− 1

2
β2σ(t, s)2

)
Jx(t, s, x)

+
1

2
β2σ(t, s)2Jxx(t, s, x) + βσ(t, s)2sJsx(t, s, x)

)

using the form of (5.2.4) and dividing with exp (γx) we get:

0 = jt(t, s) + sup
β

(
µ(t, s)sjs(t, s) +

1

2
σ(t, s)2s2jss(t, s)+(

βµ(t, s)− 1

2
β2σ(t, s)2

)
j(t, s) +

1

2
γβ2σ(t, s)2j(t, s) + βσ(t, s)2sjs(t, s)

)
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as j 6= 0 the �rst order condition for optimal β is

β(t, s) =
µ(t, s)

(1− γ)σ(t, s)2
+

js(t, s)s

(1− γ)j(t, s)

and the second order condition (γ−1)σ(t, s)2j(t, s) < 0 is satis�ed when γ < 1.
The optimal α is therefore given as

α(t, s, v) =

(
µ(t, s)s

(1− γ)σ(t, s)2s2
+

js(t, s)

(1− γ)j(t, s)

)
v. (5.2.5)

We can think of the v not as the wealth of the investors portfolio today
but the wealth at time T . In order to start of the strategy the investor needs
v > 0. We simply assume the investor is guaranteed some money at time T .

5.3 An approximation in a continuous time model

Consider a �nancial market with one traded asset, the true T -forward price
follows the SDE

dXT
t = g(t,XT

t )dt+ h(t,XT
t )dWP

t

under the real world measure P . We look at a utility optimizing agent in
this market. He wish to optimize the expected utility of wealth at time T ,
E(u(VT )). Given g(·, ·) and h(·, ·) the optimization will yield a demand func-
tion D(t,XT

t ).
Now assume the supply of the asset is k, we therefore obtain an equilibrium

condition

D(t,XT
t ) = k

Given a utility function u(·) and a volatility h(·, ·), the drift g(·, ·) must satisfy
a condition to make the equilibrium hold.

Now we introduce a delta hedger in the market. He has sold and bought
options on the asset and delta hedges his position using the forward contract
(Note that we implicitly assume the counterparties of the option contracts
never trade the underlying asset). This destroys the normal equilibrium,
we no longer see the true value of the asset but the market price STt . The
value investor will then demand D̃(t, STt ) and the delta hedgers will demand
−Fs(t, STt ) where F is the value of his option position, this implies

D̃(t, STt )− Fs(t, STt ) = k.

We will assume STt = f(t,XT
t ) where f is a smooth function with fx(t, x) > 0.

This seems reasonable, the delta hedger moves the price from XT
t to STt when

he enters the market.
If we can �nd the position of the utility optimizing investor we can back

out the delta hedgers delta. Thereby we can obtain F (t, s) the value of the
delta hedgers option position and the gamma Fss(t, s).
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5.3.1 Specifying the dynamics of XT
t

Assume the utility optimizing agent is the only person present in the market,
and that he maximizes exponential or CRRA utility. As a start let us assume
the supply of the asset is zero k = 0 (this could for example be a foreign
exchange cross). This implies Vt = V0 for all t ∈ [0, T ]. He therefore knows
VT at time t ∈ [0, T ] and his expected utility will not change as a function of
XT
t . We then have Jx(t, x, v) = 0, using our results for the optimal strategy,

see section 5.2.1 and 5.2.2, we get g(t, x) = 0, so Xt has zero drift.
Then assume k 6= 0. This is a much more complicated problem. Consider

for example the exponential utility case: The PDE for j(t, x) is

jt(t, x) + g(t, x)jx(t, x) +
1

2
h(t, x)2jxx(t, x)− γkg(t, x)j(t, x)

+
1

2
γ2k2h(t, x)2j(t, x)− γkh(t, x)2jx(t, x) = 0 (5.3.1)

and we also know

k =
g(t, x)

γh(t, x)2
+
jx(t, x)

γj(t, x)
⇔ g(t, x) =

(
kγ − jx(t, x)

j(t, x)

)
h(t, x)2. (5.3.2)

Inserting this into (5.3.1) we obtain

0 = jt(t, x)− jx(t, x)2

j(t, x)
h(t, x)2 +

1

2
h(t, x)2jxx(t, x)

+ jx(t, x)γkh(t, x)− 1

2
γ2k2h(t, x)2j(t, x).

So in order to obtain g(t, x) we need to solve this nonlinear PDE and use
(5.3.2). For the CRRA utility case we get an even more complicated expression.
This therefore seems to be a dead end.

In the exponential utility case we could of course approximate (5.2.3) by

α(t, x) ≈ g(t, x)

γh(t, x)2

and then use

g(t, x) ≈ kγh(t, x)2

as the drift. But going forwards we will assume k = 0, and in the empirical
part only work with assets where this can be justi�ed.

5.3.2 Specifying the dynamics for STt

We have assumed k = 0, the dynamics of XT
t is therefore

dXT
t = h(t,XT

t )dWP
t .
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Also we assumed STt = f(t,XT
t ) where fx(t, x) > 0. Applying Ito's lemma we

obtain

dSTt =

(
ft(t,X

T
t ) +

1

2
fxx(t,XT

t )h(XT
t )2

)
dt+ fx(t,XT

t )h(XT
t )dWP

t

= µ(t, STt )dt+ σ(t, STt )dWP
t .

(5.3.3)

Assume the existence of a risk neutral probability measure Q, as we are
looking at the forward price we have

dSTt = σ(t, STt )dWQ
t

where σ(t, s) is the local volatility function that can be obtained from European
call/put prices by the Dupire equation.

By (5.3.3) we have fx(t, x)h(t, x) = σ(t, f(t, x)). To obtain fxx(t, x)h(t, x)2

we di�erentiate σ(t, s) = σ(t, f(t, x)) in x

∂

∂x
σ(t, f(t, x)) =

∂

∂x
(fx(t, x)h(t, x))

we use the chain rule on the left side

σs(t, f(t, x))fx(t, x) = fxx(t, x)h(t, x) + fx(t, x)hx(t, x)

and multiply with h(t, x)

σs(t, f(t, x))σ(t, f(t, x)) = fxx(t, x)h(t, x)2 + σ(t, f(t, x))hx(t, x)

which is

fxx(t, x)h(t, x)2 = σ(t, f(t, x)) (σs(t, f(t, x))− hx(t, x)) . (5.3.4)

If we know the local volatility function σ(t, s) we can di�erentiate it and
thereby we will know the �rst two expressions on the right hand side of (5.3.4).
In order to obtain the last expression we have to specify h(·, ·), the volatility
of the true price XT

t . One could for example assume that Xt was normally
(h(t, x) = C) or log-normally (h(t, x) = Cx) distributed. If we believe the
feedback-e�ects levels out over long time horizons one could use a historic
volatility as a proxy for C. Another idea would be to use an at the money
volatility from the market, and then measure the feedback e�ects relative to
this model speci�cation.

The last thing we need to determine is ft(t, x). f(t, x) can be obtained up
to a function in t since (5.3.3) implies the ODE

fx(t, x) =
σ(t, f(t, x))

h(x)

for each t. Therefore we cannot determine ft(t, x) uniquely.
To get around this we could assume f(t, x0) = s0 for all t and obtain the

function f(t, x). But in the following we will ignore the ft(t, x) part of the
drift.
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5.3.3 The Delta hedger's option book

Having speci�ed the dynamics of STt under the P -measure we can obtain the
optimal strategy of the value investor α(t, s), then we can solve for the delta
hedgers option position:

Assume the delta hedger is hedging a position with the value

F (t, STt ) = EQt

(∫ T

t
exp

(
−
∫ u

t
r(y)dy

)
m
(
u, STu

)
du

+ exp

(
−
∫ T

t
r(y)dy

)
n
(
STT
))

where r(y) is a deterministic function. The value of the claim will solve the
PDE

Ft(t, s) +
1

2
σ(s)2Fss(t, s)− r(t)F (t, s) = −m(t, s), (5.3.5)

F (T, s) = n(s)

In order to delta hedge this position he has to hold −Fs(t, s) of the asset.
The only other agent present in the market is the value investor and the market
has to clear so α(t, s) = Fs(t, s) has to hold (we assume k = 0). Integrating
α(t, s) we obtain the value of the delta hedger's option position. Di�erenti-
ating α(t, s) we obtain the gamma of the position. We can also back out the
dividends m(t, s) payed over each in�nitesimal period.

This information could be valuable if we would like to trade options on
the asset. Using the method we will know the overall positions of the delta
hedgers in the market, and the gamma of their position tells us the danger
zones of the volatility surface where delta hedging could become di�cult.

5.3.4 Approximate optimal investment

We can use the �rst part of (5.2.3) or (5.2.5) as an approximation to the
optimal investment strategy

αt ≈
µ(t, s)

γσ(t, s)2
or αt ≈

µ(t, s)

(1− γ)σ(t, s)2
v. (5.3.6)

The expression to the right with γ = 0 is actually the optimal investment
strategy for a log utility investor, see Karatzas and Shreve (1998) example
3.6.6.

µ(t, s) is approximated by

µ(t, s) ≈ 1

2
σ(t, s) (σs(t, s)− hx(t, x))

where we have to choose h(t, x).
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5.3.5 Approximative option position and gamma

Using (5.3.6) we can obtain an approximation of the option hedgers position.
Let us use the exponential utility strategy the corresponding CRRA strategy
can be found by multiplying with the wealth.

F (t, s) =

∫ s 1

2

σs(t, s)− hx(t, x)

γσ(t, s)
ds

=
1

2γ

(
log(σ(t, s))−

∫ s hx(t, x)

σ(t, s)
ds

)
=

1

2γ

(
log(σ(t, s))−

∫ s hx(t, x)

h(x)fx(t, x)
ds

)

we know ds
dx = fx(t, x) therefore

=
1

2γ

(
log(σ(t, s))−

∫ x hx(t, x)

h(x)fx(t, x)
fx(t, x)dx

)
=

1

2γ
(log(σ(t, s))− log(h(t, x)) + c)

=
1

2γ

(
log

(
σ(t, s)

h(t, x)

)
+ c

)
(5.3.7)

If the local volatility of the market is higher than the true local volatility the
delta hedgers have a relatively large position at this point.

To obtain the gamma we calculate

∂

∂s

(
σs(t, s)− hx(t, x)

2γσ(t, s)

)
=

1

2γ

(
σss(t, s)− hxs(t, x)

σ(t, s)
− σs(t, s) (σs(t, s)− hx(t, x))

σ(t, s)2

)
=

1

2γ

(
σss(t, s)− hxx(t, x)fx(t, x)−1

σ(t, s)
− σs(t, s) (σs(t, s)− hx(t, x))

σ(t, s)2

)
=

1

2γ

(
σss(t, s)σ(t, s)− hxx(t, x)fx(t, x)−1σ(t, s)

σ(t, s)2
−

σs(t, s) (σs(t, s)− hx(t, x))

σ(t, s)2

)
=

1

2γ

(
σss(t, s)σ(t, s)− hxx(t, x)h(t, x)− σs(t, s) (σs(t, s)− hx(t, x))

σ(t, s)2

)
.

We see that the gamma depends on the di�erences in the �rst and second
order derivatives of the local volatility of the market and true local volatility
function.
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5.4 A discrete model: LVI

Instead of working with a continuous time model we can work with a discrete
model. The so called LVI model, see Andreasen and Huge (2011), can be
calibrated to a market of European call and put options and we can also easily
solve the investors optimization problem in the model.

5.4.1 The LVI model

The price of a derivative in our continuous time model (neglecting discounting)
is the solution to the PDE

0 = vt(t, s) +
1

2
σ(t, s)2vss(t, s)

We approximate the PDE by an implicit �nite di�erences scheme

0 =
vti+1 − vti

∆ti
+Aivti (5.4.1)

here Ai is a �nite di�erence matrix containing both the function σ(t, s)2 and
the second order �nite di�erence:

Ai =


0 0 . . .

σ(ti,s1)2

2∆s2
−σ(ti,s1)2

∆s2
σ(ti,s1)2

2∆s2
0 . . .

. . .
. . .

. . .
. . .

. . .

. . . 0 σ(ti,sn−1)2

2∆s2
−σ(ti,sn−1)2

∆s2
σ(ti,sn−1)2

2∆s2

. . . 0 0


Note that we have set the second order derivative equal to zero on the bound-
ary.

Rearranging (5.4.1), we obtain

(I −∆tiAi)vti = vti+1 ⇔ vti = (I −∆tiAi)
−1vti+1

where I is the identity matrix. De�ne C = (I −∆tiAi)
−1. As (I −∆tiAi) is

an M-Matrix, see Horn and Johnson (1991), we know that Cij ≥ 0 and since
(I−∆tiAi)1 = 1 we also have C1 = 1 where 1 = (1, . . . , 1)′. Therefore C can
be interpreted as the transition probabilities of the discrete system (Cij is is the
transition probability from state si to state sj). We also get (I −∆tiAi)s = s
so the process de�ned by C will be a martingale. By specifying the �nite
di�erence scheme we have in fact speci�ed an arbitrage free discrete state
space discrete time model for the forward under the Equivalent Martingale
Measure Q.

The model can be calibrated to any European option surface yielding a
discrete local volatility function σ(t, s).
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5.4.2 Speci�cation of the P-measure in the discrete model

As in the continuous model we will assume the supply of the asset is zero,
therefore we would like the true price XT

t to be a martingale under the P -
measure. We assume the transition probabilities for XT

t from time ti to ti+1

under P can be written as(
I − ∆ti

2
h(ti, x)2δxx

)−1

Here δxx is the discrete second order �nite di�erence operator.
Since x is a linear function of x we have(

I − ∆ti
2
h(ti, x)2δxx

)
x = x

so XT
t will be a martingale under the P measure.
In the same manner we assume that the transition probabilities for STt

from ti to ti+1 under Q can be written on the form(
I − ∆ti

2
σ(ti, s)

2δss

)−1

.

σ(ti, s) is found by calibrating the model to the market, see section 5.4.1.
Under the P-measure we specify the transition probabilities for STt as(

I − ∆ti
2
σ(ti, s)

2δss −∆tiµ(ti, s)δs

)−1

.

Here we might have to use winding in order to ensure positive transition prob-
abilities, see for example Karlsmark (2013).

We have(
I − ∆ti

2
σ(ti, s)

2δss −∆tiµ(ti, s)δs

)
s = s−∆tiµ(ti, s)

since δss = 1, so STt has a drift under the P-measure.
Then we assume s = f(x) where f is an increasing function. f is chosen

like this because our grid in s and x is �xed for all times. The transition
probability from si to sj is the same as the transition probability from xi to
xj so we obtain the system(

I − ∆ti
2
σ(ti, s)

2δss −∆tiµ(ti, s)δs

)−1

=

(
I − ∆ti

2
h(ti, x)2δxx

)−1

⇔

1

2
σ(ti, s)

2δss + µ(ti, s)δs =
1

2
h(ti, x)2δxx

Unfortunately this system cannot be solved, we need a di�erent µ(ti, s) not
only for each row, but also for each column. As an approximation we solve the
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equation system when the �nite di�erence operators are replaced by di�erential
operators:

1

2
σ(ti, s)

2 ∂
2

∂s2
+ µ(ti, s)

∂

∂s
=

1

2
h(ti, x)2 ∂

2

∂x2
⇔

1

2
σ(ti, s)

2 ∂
2

∂s2
+ µ(ti, s)

∂

∂s
=

1

2
h(ti, x)2

(
f ′(x)2 ∂

2

∂s2
+ f ′′(x)

∂

∂s

)
This equation has to hold for any function we multiply onto both sides. If we
multiply a linear function of s we get

µ(ti, s) =
1

2
h(ti, x)2f ′′(x) (5.4.2)

therefore we also have

1

2
σ(ti, s)

2 =
1

2
h(ti, x)2f ′(x)2. (5.4.3)

Di�erentiating (5.4.3) in x we obtain

σ(ti, s)σs(ti, s)f
′(x) = h(ti, x)hx(ti, x)f ′(x)2 + h(ti, x)2f ′(x)f ′′(x)

which is

f ′′(x)h(ti, x)2 = σ(ti, s)σs(ti, s)− h(ti, x)hx(ti, x)f ′(x)

and we get

µ(ti, s) =
1

2
σ(ti, s) (σs(ti, s)− hx(ti, x)) .

This looks like the result in the continuous case. But we have chosen f to be
a function only of x therefore we have no ft part in this expression.

The LVI model provides us with a discrete function σ(ti, s), we then ap-
proximate σs(ti, s) with �nite di�erences. Then we need to specify the hx(ti, x)
function, this will be dealt with in the speci�c examples of section 5.5. On the
boundary of our �nite di�erence matrix we will set both the �rst and second
order derivative equal to zero.

We have then speci�ed the LVI version of the model, and we can solve for
the optimal investment strategy of the value investor.

5.4.3 Utility optimization

We follow Andreasen (2008). Consider an investor who holds the initial wealth
V0 and invest in Stnt . He wants to maximize his expected utility

sup
{αj}0≤j≤n−1

E

u
V0 +

n−1∑
j=0

αj

(
Stntj , Vtj

)(
Stntj+1

− Stntj
)
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In full generality this problem is two-dimensional since α depends on Stn

and V . We can get around this if we work with the exponential or the CRRA
utility function.

Let us consider the exponential utility function u(x) = − exp(−γx) then

sup
{αj}0≤j≤n−1

E (− exp (−γVtn))

= sup
{αj}0≤j≤n−1

E
(
− exp(−γVtn−1) exp

(
−γαn−1

(
Stntn−1

, Vtn−1

)(
Stntn − S

tn
tn−1

)))
= sup
{αj}0≤j≤n−2

E

(
exp(−γVtn−1)

sup
αn−1

Etn−1

(
− exp

(
−γαn−1

(
Stntn−1

, Vtn−1

)(
Stntn − S

tn
tn−1

))))
.

Now consider

sup
αn−1

Etn−1

(
− exp

(
−γαn−1

(
Stntn−1

, Vtn−1

)(
Stntn − S

tn
tn−1

)))
and note that the optimal αn−1 does not depend on Vtn−1 since (Stnti )0≤i≤n is
Markov. We therefore de�ne

Kn−1

(
Stntn−1

)
= sup

αn−1

Etn−1

(
− exp

(
−γαn−1

(
Stntn−1

)(
Stntn − S

tn
tn−1

)))
.

Continuing backwards we also de�ne

Ki

(
Stnti
)

= sup
αi

Eti
(

exp
(
−γαi

(
Stnti
) (
Stnti+1

− Stnti
))

Ki+1

(
Stnti+1

))
as the optimal αi does not depend on Vti . By de�nition we have

Ki

(
Stnti
)

= sup
{αj}i≤j≤n−1

Eti

− exp

−γ n−1∑
j=i

αj

(
Stntj , Vtj

)(
Stntj+1

− Stntj
) .

AssumeKi+1

(
Stnti+1

)
has been obtained. To �nd αi we di�erentiateKi(Sti)

in αi and obtain the equation

Eti
(

∂

∂αi
exp

(
−γαi

(
Stnti+1

− Stnti
))

Ki+1

(
Stnti+1

))
= 0. (5.4.4)

We can write this as

Eti
(
−γ
(
Stnti+1

− Stnti
)

exp
(
−γαi

(
Stnti+1

− Stnti
))

Ki+1

(
Stnti+1

))
= 0
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which gives us

Eti
(
Stnti+1

exp
(
−γαiStnti+1

)
Ki+1

(
Stnti+1

))
− Stnti Eti

(
exp

(
−γαiStnti+1

)
Ki+1

(
Stnti+1

))
= 0.

De�ne

L(ti, α) = Eti
(
Stnti+1

exp
(
−γαStnti+1

)
Ki+1

(
Stnti+1

))
and

M(ti, α) = Eti
(

exp
(
−γαStnti+1

)
Ki+1

(
Stnti+1

))
.

For a �xed α, L(ti, α) and M(ti, α) are the solutions to

(I −∆tiAi)L(ti, α) = s exp (−γαs)Ki+1 (s)

(I −∆tiAi)M(ti, α) = exp (−γαs)Ki+1 (s)

where s is the grid of stock prices and Ai = 1
2σ(ti, s)

2δss + µ(ti, s)δs is our
�nite di�erence matrix for the period (ti, ti+1] under the P -measure.

We choose N constants (αj)1≤j≤N and solve for L and M for each αj . We
obtain

L(ti, αj)k − skM(ti, αj)k j = 1, . . . , N (5.4.5)

for each grid point sk, and we wish to �nd α that makes (5.4.5) equal zero. By
a search in (αj)1≤j≤N we obtain αl and αl+1 such that αl ≤ α ≤ αl+1. The
optimal α is then approximated by linear interpolation between αl and αl+1

given the slope of the function (5.4.5).
The procedure described here is more or less "piecewise constant policy

timestepping" with an extra interpolation of α, see Forsyth and Labahn (2008)
and the references therein.

In the CRRA utility case we can do the following for the last time step:

sup
αn−1

En−1

(
1

γ

(
Vtn−1 + αn−1

(
Stntn−1

, Vtn−1

)(
Stntn − S

tn
tn−1

))γ)

=
1

γ
V γ
tn−1

sup
αn−1

En−1

1 +
αn−1

(
Stntn−1

, Vtn−1

)
Vtn−1

(
Stntn − S

tn
tn−1

)γ
=

1

γ
V γ
tn−1

sup
βn−1

En−1

((
1 + βn−1

(
Stntn−1

, Vtn−1

)(
Stntn − St

tn
n−1

))γ)
.

Note that the optimal βn−1 will not depend on Vtn−1 and we can solve for it
using the same procedure as above. Doing this recursively we obtain βi(Sti)
for i = 0, . . . , n−1 and we have αi(Sti , Vti) = βi(Sti)Vti . If we know the initial
wealth of the value investor we can calculate how much he invests in the asset
at time t0.
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5.4.4 The delta hedger

In the continuous time model we know the delta hedger will hold −Fs(t, s) of
the asset where F (t, s) is the value of his option portfolio. As an approximation
we will assume the same thing is true in our discrete model. Also as in section
5.3.3 we assume the delta hedger's position in the asset is the opposite of the
value investors position.

Therefore we can obtain the value of the delta hedgers position by inte-
grating α(t, s) in s for each t, this is done numerically by the trapezoidal rule.
We can also obtain the gamma by di�erentiating α(t, s) in s, this can be done
by �nite di�erences.

When we have the value of the delta hedgers position we can in fact also
compute the future dividend payments by him. This is done using the discrete
version of (5.3.5) to get

M(ti, ti+1) =
1

∆ti
((I −∆tiAi)F (ti)− F (ti+1)) .

Ai will now also include discounting.

5.5 Numerical examples

5.5.1 The Data

We will use our discrete model in the foreign exchange market. The foreign
exchange market is chosen because investors are not naturally long or short a
foreign exchange cross. We can therefore assume the supply of the underlying
is zero when no delta hedgers are present. This assumption will for example
clearly be wrong in the equity markets.

We consider four FX crosses: USD/JPY, EUR/USD, USD/GBP and
EUR/CHF for the date March 19, 2013. Data where gathered from Bloomberg
using the Excel function "BDH". We use the option quotes ATM, RR5, RR10,
RR15, RR25, RR35, BF5, BF10, BF15, BF25, and BF35 for the maturities
1W, 2W, 3W, 1M, 2M, 3M, 6M, 1Y, 18M, 2Y, 3Y, and 5Y.

The FX forward curves were built using FX forward quotes from Bloomberg,
we use the quotes SPOT, 1W, 2W, 3W, 1M, 2M, 3M, 4M, 5M, 6M, 9M, 12M,
18M, 2Y, 3Y, 4Y, and 5Y.

5.5.2 Choosing the underlying model

A natural way to specify the underlying model in the FX markets is to choose
a log-normal model ie h(t, x) = Kx in the continuous time case. But the LVI
model is not a continuous time model, the choice h(t, x) = Kx would not
correspond to a log-normal model.

All our option quotes are given as Black volatilities, in order to obtain an
h function that corresponds to a log-normal model we will do the following:
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For each maturity we set the Black volatilities of all options equal to the ATM
Black volatility. Thereby we obtain a �at Black smile for each maturity. Then
we calibrate the LVI model to these quotes and obtain a function h(t, x), which
can be di�erentiated by �nite di�erence to obtain hx(t, x).

Let us then take a look at the approximative strategy from section 5.3

αt ≈
σs(t, s)− hx(t, x)

γσ(t, s)
.

We can write σ(t, s) and h(t, x) on the Black form instead and we see that

σs(t, s)− hx(t, x) = σBlacks (t, s)s+ σBlack(t, s)−
(
hBlackx (t, x)x+ hBlack(t, x)

)
Our LVI parametrization does a �at extrapolation of the Black volatility.
Therefore the di�erence σBlack(t, s)− hBlack(t, x) will make the delta hedgers
position increase or decrease linearly for very high and low strikes, as we inte-
grate αt in the s direction.

To counteract this we choose to remove σBlack(t, s) − hBlack(t, x) from
µ(t, s) such that the trading strategy becomes

αt ≈
σBlacks (t, s)s− hBlackx (t, x)x

γσBlack(t, s)s
.

We then capture more naturally the important parts of the delta hedgers
position.

The choice of h(t, x) is of course very arbitrary. If we had another view
on the true smile we could calibrate the LVI model to this and obtain another
result. One could for example set h(t, x) equal to yesterdays local volatility
function σ(t, s). Doing that we would more or less obtain the delta hedgers
position relative to yesterdays position.

5.5.3 Grid speci�cation

In order to interpolate the local volatility function we use a log transformed
�nite di�erence scheme:(

I − ∆t

2
σBlack(t, exp(x))2(δxx − δx)

)
vi(exp(x)) = vi+1(exp(x))

where s = exp(x). exp(x) will not be a martingale in this scheme, but the
obtained local volatility function will be nicer than the one obtained in a
normal scheme.

For the optimization we will also use a log-transformed scheme. As we
include a drift for the asset, the martingale property will not be important.

Note that in both of the above cases we still obtain non-negative transition
densities if the matrix (I −∆tA) (A is our �nite di�erence matrix) is an M -
matrix, see Horn and Johnson (1991). This will be true if our �nite di�erence



130
CHAPTER 5. UTILITY OPTIMIZATION AND FEEDBACK-EFFECTS

grid is dense enough or if we use winding. In the examples below the �nite
di�erence grid will be dense enough so we will not use winding.

Under the risk neutral measure the spot of the FX cross will have a drift
µ(s). We use the time 0 forward F 0

t to interpolate the local volatility function.
Here we de�ne

F 0
t = St exp

(
−
∫ t

0
µ(s)ds

)
.

So our local volatility function will actually be a function of F 0
t . To get a

function of our time T forward we add log
(
FT0
F 0

0

)
to all grid points. Then we

can do the portfolio optimization in the forward (F Tt )0≤t≤T .

The grid of the log-transformed scheme will span the interval [log(F T0 ) −
5σT, log(F T0 )+5σT ], where σ is the Black volatility for the longest ATM option
and T is the maturity for the longest options. It will contain 500 grid points
and we will use 1000 di�erent test α's when we search for the optimal α.

5.5.4 Delta hedgers position on March 19 2013

We apply the method to the four option smiles from March 19, 2013. Let
us start by looking at the USD/JPY example. We plot the local volatilities
obtained by the LVI model divided with the local volatilities from our true
model (the log-normal model).

Then we plot the delta hedgers position using the same data, this can be
seen in �gure 5.2. In the �gure we start at time 0, the graph below is the value
of the delta hedgers position at time 0 as a function of the underlying. We
end at time 3 this is the value of the delta hedgers position 3 years from now,
if the delta hedgers do not take on new option positions.

Note �rst of all how much �gure 5.1 and 5.2 looks like each other, the
approximation (5.3.7) seems to hold quite well even in the LVI model.

Then note how the volatility in �gure 5.1 follows the position in �gure
5.2. Left of ATM the position goes from �at to downward sloping this implies
that the delta hedger has a negative gamma which by (5.1.1) implies a high
volatility. Around ATM the position goes from downward sloping to upward
sloping therefore the gamma will be positive and the volatility will be low.
Right of ATM the position goes from upward sloping to �at this implies a
negative gamma and therefore a high volatility. Everything �ts with (5.1.1).

Next we plot the delta hedgers position for the other crosses these can be
seen in �gure 5.3 to 5.5.

The level of the position is of course relative. We have used the exponential
utility function to obtain the results, since we have no information about the
wealth of the value investor. Also we do not know the overall level of the
position (the c in (5.3.7)) therefore we have just used 0.
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Figure 5.1: The local volatility of the market divided with the true local volatility for
USD/JPY on March 19, 2013

5.6 Conclusion

This paper has considered a method to obtain the value of the delta hedger's
option position in a market. The results rely on a number of assumptions,
among them that the value investor and delta hedgers are the only agents
present in the market. We also need to specify the dynamics of the underlying
when no delta hedgers are present. The numerical results will therefore depend
heavily on these assumptions, but the results can give an indication of the delta
hedger's position. The method is therefore a step towards a practical use of
the feedback e�ects models developed by Frey and Stremme (1997) and others.
Future research could include models with stochastic volatility or jumps as well
as applying the model to equity markets where we cannot make the assumption
that the supply of the underlying is zero.
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Figure 5.2: The value of the delta hedger position in USD/JPY on March 19, 2013
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Figure 5.3: The value of the delta hedger position in EUR/USD on March 19, 2013
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Figure 5.4: The value of the delta hedger position in GBP/USD on March 19, 2013
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Figure 5.5: The value of the delta hedger position in EUR/CHF on March 19, 2013
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