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Abstract

In this thesis natural operations on the (higher) Hochschild complex of a given
family of algebras are investigated. We give a description of all formal operations
(in the sense of Wahl) for the class of commutative algebras using Loday’s lambda
operation, Connes’ boundary operator and shuffle products. Furthermore, we intro-
duce a dg-category of looped diagrams and show how to generate operations on the
Hochschild complex of commutative Frobenius algebras out of these. This way we
recover all operations known for symmetric Frobenius algebras (constructed via Sul-
livan diagrams), all the formal operations for commutative algebras (as computed in
the first part of the thesis) and a shifted BV structure which has been investigated
by Abbaspour earlier. We prove that this BV structure comes from a suspended
Cacti operad sitting inside the complex of looped diagrams. Last, we generalize the
setup of formal operations on Hochschild homology to higher Hochschild homology.
We also generalize statements about the formal operations and give smaller models
for the formal operations on higher Hochschild homology in certain cases.
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Resumé

I denne afhandling undersøges naturlige operationer p̊a det (højere) Hochschild
kompleks af algebraer. Vi giver en beskrivelse af alle formelle operationer (som de-
fineret af Wahl) for klassen af kommutative algebraer ved hjælp af Lodays lambda-
operationer, Connes rand-operator og shuffle-produkter. Desuden introducerer vi
en dg-kategori af diagrammer med sløjfer og viser hvordan man genererer opera-
tioner p̊a Hochschild komplekset af kommutative Frobenius algebraer ud af disse.
P̊a denne måde kan vi f̊a alle operationer kendt for symmetriske Frobenius algebraer
(konstrueret via Sullivan diagrammer), alle de formelle operationer for kommuta-
tive algebraer (som blev udregnet i den første del af afhandlingen) samt en forskudt
BV-struktur, der er blevet undersøgt af Abbaspour tidligere. Vi viser at denne BV-
struktur kommer fra en suspenderet Kaktus operad som sidder inde i komplekset
af diagrammer med sløjfe. Til sidst generaliserer vi teorien af formelle operationer
p̊a Hochschild homologi til højere Hochschild homologi. Vi generalisere resultater
om de formelle operationer og giver mindre modeller for de formelle operationer p̊a
højere Hochschild homologi i visse tilfælde.
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Part I

Introduction and Summary





CHAPTER 1

Introduction

1. Motivation

1.1. String topology. A basic starting point for our interest in operations
on Hochschild homology is string topology. String topology studies the structure
on the homology of the free loop space LM of a manifold M , which is defined
to be the unpointed mapping space from the circle S1 to the manifold M . The
subject started in 1999 when Chas and Sullivan gave a construction of a product
H∗(LM)⊗H∗(LM)→ H∗−d(LM) for M a closed oriented manifold of dimension d
(see [CS99]). This product is part of the structure of a Batalin-Vilkovisky algebra
on H∗(LM), an algebra with an operator ∆ of degree one fulfilling a certain relation.
The ∆ operator is given by the action of the fundamental class of S1 on H∗(LM).

The construction of the Chas-Sullivan product is quite geometrically involved.
However, these geometric ideas were used by many authors to generalize them to
operations of the form H∗(LM)⊗n1 → H∗(LM)⊗n2 for two natural numbers n1 and
n2. In [God07] Godin proved that the pair (H∗(M), H∗(LM)) has the structure
of an open-closed homological conformal field theory, which means that we have
operations

H∗(LM)⊗n1 ⊗H∗(M)⊗m1 ⊗HC([n1
m1], [

n2
m2])→ H∗(LM)⊗n2 ⊗H∗(M)⊗m2

where HC([n1
m1], [

n2
m2]) is the homology on the chains of the moduli space of open

closed surfaces with n1 incoming circles, m1 incoming intervals, n2 outgoing circles
and m2 outgoing intervals. Examples of open-closed cobordisms are given in Figure
1. We will come back to this kind of structure later in a more general context.

(a) A closed cobor-
dism, n1 = 1, n2 = 2
and m1 = m2 = 0

(b) An open cobor-
dism, n1 = n2 = 0,
m1 = 2 and m2 = 1

(c) An open-closed cobor-
dism n1 = 2, m1 = 1,
n2 = 2 and m2 = 2

Figure 1. Examples of open-closed cobordisms

Another kind of structure, which is not part of Godin’s construction and plays
a motivating role in this thesis is the Goresky-Hingston coproduct (see [GH09]), a
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4 1. INTRODUCTION

coproduct on relative homology, i.e. a map

H∗(LM,M)→ H∗(LM,M)⊗H∗(LM,M).

However, we will not dwell on this relative setup for now.
Taking coefficients in a field and letting M be a 1-connected closed oriented

manifold, Jones [Jon87] proved that there is an isomorphism

HH∗(C
−∗(M), C−∗(M)) ∼= H−∗(LM),

where HH∗(A,A) denotes the Hochschild homology of an algebra A, introduced in
more detail in the next section. Hence dual string topology operations

H−∗(LM)⊗n2 ⊗H−∗(M)⊗m2 → H−∗(LM)⊗n1 ⊗H−∗(M)⊗m1

are equivalent to operations

HH∗(C
−∗(M), C−∗(M))⊗n2 ⊗H−∗(M)⊗m2

→ HH∗(C
−∗(M), C−∗(M))⊗n1 ⊗H−∗(M)⊗m1 .

This motivates us to investigate operations on Hochschild homology more sys-
tematically.

1.2. Hochschild homology. We proceed with giving a definition of Hochschild
homology. We restrict to associative algebras here, even though there is a more
general setup for A∞-algebras available (see for example [KS09, Section 7.24]). If
not specified otherwise, we work over a commutative ring K and denote by Ch(K)
the category of chain complexes over K. First, we start with ungraded algebras. Let
A be an associative algebra and M an A–bimodule. The Hochschild complex of A
with coefficients in M denoted by C∗(A,M) is the chain complex which in degree k
is given by

Ck(A,M) = M ⊗ A⊗k

with differentials d : Ck(A,M)→ Ck−1(A,M) defined as the sum d =
∑k

i=0(−1)idi
and the di given by

d0(m⊗ a1 ⊗ · · · ⊗ ak) = ma0 ⊗ a1 ⊗ · · · ⊗ ak,
di(m⊗ a1 ⊗ · · · ⊗ ak) = m⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak for 1 ≤ i ≤ k − 1 and

dk(m⊗ a1 ⊗ · · · ⊗ ak) = anm⊗ a0 ⊗ · · · ⊗ ak−1.

For a graded abelian group A∗ we denote by A∗[k] the shifted abelian group with
(A∗[k])n = An−k. Then, for a differential graded algebra A and a differential graded
bimodule M , the Hochschild complex is generalized to

C∗(A,M) =
⊕

k≥0

M ⊗ A⊗k[k]

with differential D + d where d is the differential from above (with a sign twist we
do not deal with here) and D comes from the inner differentials on A and M , i.e.

D(m⊗a1⊗· · ·⊗ak) = dM(m)⊗a1 · · ·⊗ak+
k∑

i=1

±m⊗a1⊗· · ·⊗dA(ai)⊗ai+1⊗· · ·⊗ak.

This means that C∗(A,M) is the total complex of the double complex with horizontal
grading the Hochschild grading and vertical grading the inner grading of A and M .
In the thesis we only deal with the case A = M and from now on restrict to it.
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1.3. Operations on the Hochschild complex of algebras. In order to in-
vestigate string topology operations via Hochschild homology one is interested in
finding operations

C∗(A,A)⊗n1 ⊗ A⊗m1 → C∗(A,A)⊗n2 ⊗ A⊗m2

which are natural in some class of algebras, for example the class of all associative
algebras, commutative algebras or (symmetric/commutative) Frobenius algebras.
In this section we are only interested in operations which descend to homology,
i.e. operations which commute with the boundary. If n1 = n2 = 0 the question
is more basic, since we actually look for operations A⊗m1 → A⊗m2 . In particular
all operations created by permutations and the structure of the algebra (e.g. the
multiplication) are examples of such operations.

1.3.1. The inclusion of the algebra into the complex. The easiest operation in-
volving the Hochschild complex is the inclusion of the algebra into it, i.e. the map
i : A→⊕

k≥0A
⊗k+1 = C∗(A,A) mapping A to the zeroth summand of C∗(A,A).

1.3.2. Connes’ boundary operator. Another example of an operation which is
natural in all associative dg-algebras is Connes’ boundary operator B : C∗(A,A)→
C∗+1(A,A). For a Hochschild chain a = a0 ⊗ · · · ⊗ ak it is defined as

B(a) =
k∑

i=0

±1⊗ ai ⊗ · · · ⊗ ak ⊗ a0 ⊗ · · · ⊗ ai−1,

i.e. it puts a 1 in front of all cyclic permutations of the element a. The operator
B commutes with the Hochschild boundary map and hence defines an operation on
homology. If one works over reduced chains the operator squares to zero (and hence
is a certain boundary itself).

1.4. Operations for commutative algebras. If we restrict ourselves to com-
mutative instead of associative algebras, many more operations are known.

1.4.1. The shuffle product. The shuffle product allows us to multiply Hochschild
chains together, i.e. it gives a degree preserving map

µ : C∗(A,A)⊗ C∗(A,A)→ C∗(A,A)

which for two Hochschild chains a = a0⊗ · · · ⊗ ak and b = b0⊗ · · · ⊗ bl is defined as

µ(a⊗ b) =
∑

σ∈Σk+l

a (k, l)–shuffle

± a0b0 ⊗ cσ(1) ⊗ · · · ⊗ cσ(k+l)

with ci = ai for i ≤ k and ci = bi−k for i > k. A (k, l)–shuffle is a permutation
which preserves the internal order of the first k and of the last l elements, i.e.
σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + l). This means we multiply the
first two elements and stick b into a in all possible manners. The shuffle product
commutes with the boundaries, is associative and graded commutative.

1.4.2. The projection from the Hochschild complex to the algebra. We have al-
ready seen the map A → C∗(A,A) which includes the algebra into the Hochschild
complex. For commutative algebras this map is split, i.e. the projection of the
Hochschild complex onto the first summand is a chain map. This is equivalent to
seeing that C∗(A,A) splits into A and

⊕
k≥1A

⊗k+1 as chain complexes, i.e. that the
Hochschild differential d : A⊗A→ A is trivial. Recall that for a0 ⊗ a1 ∈ A⊗A we



6 1. INTRODUCTION

have d(a0⊗a1) = a0a1±a1a0 which by the commutativity (and since the signs actu-
ally fit) is zero. Thus we have an operation C∗(A,A)→ A natural in all commutative
algebras.

1.4.3. Loday’s lambda operations. In [Lod89] Loday defined operations acting
on the Hochschild complex of a commutative algebra with coefficients in a bimodule
M , i.e. maps λk : C∗(A,M)→ C∗(A,M). He defined them more generally for cyclic
homology and McCarthy generalized them to an even broader setup in [McC93].

All these operations are given by a sum of permutations of the tensor factors in
each Hochschild degree. To specify which permutations are used, the Euler decom-
position of the symmetric group plays an important role. For a permutation σ ∈ Σn

a descent is a number i such that σ(i) > σ(i+ 1). Then the Euler decomposition is
the decomposition of Σn into the subsets Σn,k defined as

Σn,k := {σ ∈ Σn | σ has k − 1 descents}.
In [Lod89], up to a sign twist, the maps lkn acting on M ⊗ A⊗n (but not com-

muting with the boundaries) were defined as

lkn(m⊗ a1 ⊗ · · · ⊗ an) :=
∑

σ∈Σn,k

±m⊗ aσ(1) ⊗ · · · ⊗ aσ(n)

for n ≥ 1 and 1 ≤ k ≤ n, l00(m) = m and lkn = 0 for all other n and k. Out of these
the lambda operations were constructed as

λkn =
k∑

i=0

(
n+ k − i

n

)
lin.

The families λk commute with the boundary maps and hence give operations on
homology.

This is not the only way one can build operations out of the lkn. We want to
mention two further methods:

The shuffle operations shk : C∗(A,M)→ C∗(A,M) are defined as

shkn =
k∑

i=1

(
n− i
k − i

)
lin

for n ≥ 1 and 1 ≤ k ≤ n, sh0
0 = id and shk0 = sh0

n = 0 for k > 0 and n > 0.
For n ≥ 1 we obtain sh1

n = id. The shuffle operations lie in the linear span of the
lambda operations and vice versa. One advantage of the shuffle operations is that
shk acts trivially on all Hochschild degrees smaller than k, so the infinite sum of
shuffle operations is still a well-defined operation on the Hochschild complex.

So far, we have been working with coefficients in any commutative ring K. Taking

coefficients in the rational numbers instead, the idempotents e
(i)
n are defined as the

solutions of the n equations

λkn =
n∑

i=1

kie(i)
n

for 1 ≤ k ≤ n and e
(i)
n = 0 if n < i. These have been studied earlier by Gerstenhaber

and Schack in [GS87] as a generalization of Barr’s idempotent (defined in [Bar68])
and were used to give a Hodge decomposition of Hochschild homology over the
rationals (a decomposition into eigenspaces). In their work they also show that any
natural operation which acts on each Hochschild degree separately can be written
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as a linear combination of these idempotents. Moreover, as the name suggests, they
form a complete set of orthogonal idempotents. An explicit formula in terms of the
lkn is given in [Lod89, Prop. 2.8].

1.5. Operations for symmetric Frobenius algebras. In this section we give
an action of the complex of so called Sullivan diagrams on the Hochschild complex
of symmetric Frobenius algebras. This appeared in Theorem 3.3 of [TZ06] and has
been recovered in a more formal context (which we will come back to later) by Wahl
and Westerland in [WW11, Theorem 6.7].

A Frobenius dg-algebra A is given by a chain complex equipped with the following
data:

• a multiplication m : A ⊗ A → A and a unit 1A : K → A such that m and
1A define a dg-algebra structure on A
• a comultiplication ∆ : A → A ⊗ A and a counit η : A → K such that they

define a dg-coalgebra structure on A

satisfying the so called Frobenius relation

∆ ◦m = (m⊗ id) ◦ (id⊗∆) = (id⊗m) ◦ (∆⊗ id).

We denote the twist map A⊗ A→ A⊗ A by τ .
A Frobenius algebra is called symmetric if η◦m◦τ = η◦m and it is commutative

if m ◦ τ = m. A commutative Frobenius algebra is automatically cocommutative,
i.e. τ ◦∆ = ∆.

There is a graph complex of Sullivan diagrams SD([n1
m1], [

n2
m2]) which is a quo-

tient of another graph complex OC([n1
m1], [

n2
m2]), whose homology is the homology of

the moduli space of open-closed cobordisms with n1 and n2 incoming respective
outgoing circles and m1 and m2 incoming respective outgoing intervals. A Sullivan
diagram can be thought of as a graph with exceptional circles and a cyclic ordering
of the edges incident at all vertices, up to some equivalence relation. Examples of
Sullivan diagrams are shown in Figure 2. By [TZ06, Theorem 3.3] an element in
SD([n1

m1], [
n2
m2]) gives an operation

C∗(A,A)⊗n1 ⊗ A⊗m1 → C∗(A,A)⊗n2 ⊗ A⊗m2 .

1

(a) The BV-
operator

1

2

(b) The product

1

(c) The coproduct

Figure 2. Examples of Sullivan diagrams

This means in particular, that we have a Batalin-Vilkovisky algebra and coal-
gebra structure given by the image of the BV-structure encoded in the homology
of the moduli space of closed surfaces. The BV-operator is shown in Figure 2(a)
and turns out to be Connes’ boundary operator which we defined already in Section
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1.3.2. In Figure 2(b) and Figure 2(c) the Sullivan diagrams giving multiplication
and comultiplication, respectively, are shown. The formulas for these operations are
given by (see [WW11, Section 6]):

(1) Multiplication:

(a0 ⊗ · · · ⊗ ak)⊗ (b0 ⊗ · · · ⊗ bl) 7→
{

0 if k > 0∑±a′′0a′0b0 ⊗ b1 ⊗ · · · ⊗ bl if k = 0

where we use the notation ∆(a0) =
∑
a′0 ⊗ a′′0 for the comultiplication of

a0. This product is zero on homology except for HH0(A,A)⊗HH0(A,A).
(2) Coproduct:

a0 ⊗ · · · ⊗ ak 7→
k∑

i=1

∑
±(a′′0 ⊗ a1 ⊗ · · · ⊗ ai)⊗ (a′0 ⊗ ai+1 ⊗ · · · ⊗ ak).

These constructions can be lifted to the homotopy associative case and give an
action of the moduli space of open closed surfaces on a homotopy associative version
of Frobenius algebras (which has been done in [Cos07] and [KS09]). We will restrict
ourselves to the cases above, since these are the operations which are relevant in this
thesis.

1.6. Commutative Frobenius algebras. Commutative Frobenius algebras
lie in the intersection of all the classes of algebras we have looked at so far. However,
in [Abb13a, Section 7] Abbaspour defined another product on the split complement
of a commutative Frobenius algebra A in C∗(A,A), i.e. a product which is zero on
the image of the embedding A → C∗(A,A). He proves that this gives a shifted
BV-structure on the homology of the chains of positive Hochschild degree (and
thus on HH∗(A,A) if we set the BV-operator zero on Hochschild degree zero) for
A a commutative Frobenius algebra (or even a commutative cocommutative open
Frobenius algebra, which means that we do not require a counit to exist). Again,
we write ∆(a0b0) =

∑
(a0b0)′ ⊗ (a0b0)′′. Then the product of a = a0 ⊗ · · · ak and

b = b0 · · · bl is given by

a · b =

{
0 if k = 0 or l = 0∑±(a0b0)′ ⊗ a1 ⊗ · · · ⊗ ak ⊗ (a0b0)′′ ⊗ b1 ⊗ · · · ⊗ bl else.

This product is commutative on Hochschild homology.

1.7. Identifying operations as string operations. Before we close this sec-
tion we want to connect some of these operations back to string topology, which was
our motivating example to start with. Hence we would like to show that some of the
operations mentioned above are actually operations on HH∗(C−∗(M), C−∗(M)) for
a compact oriented, simply connected manifold M . Working over the rationals, the
complex C∗(M) is quasi-isomorphic to the deRham complex of differential forms on
M (which is a CDGA) and its homology is a strict Frobenius algebra. Following
Lambrechts-Stanley [LS07] this implies that C∗(M) is quasi-isomorphic as an alge-
bra to a commutative Frobenius algebra A−∗ and hence HH∗(C−∗(M), C−∗(M)) ∼=
HH∗(A−∗, A−∗). Thus we get an action of (a shifted version of) the complex SD on
HH∗(C−∗(M), C−∗(M)). Using the dual statement, which was proved in [FT08],
the authors of [WW11, Prop 6.10] prove that the (shifted) CoBV algebra structure
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onHH∗(C−∗(M), C−∗(M)) agrees with the one onH−∗(LM) under the isomorphism
HH∗(C−∗(M), C−∗(M)) ∼= H−∗(LM).

On the other hand, working over the rationals and denoting the deRham algebra
by Ω•(M), we have a direct isomorphism

HH∗(Ω
−•(M),Ω−•(M)) ∼= H−∗(LM).

In [BFG91] it is shown that this isomorphism sends Loday’s lambda operation
λk to (some multiple) of the k–th power operation on LM , i.e. the map induced
by precomposing elements in LM = Map(S1,M) with the k–fold covering map
S1 → S1.

2. The more formal setup

Our goal is to construct natural operations on Hochschild homology, i.e. opera-
tions which are natural in a certain class of algebras. Examples which have shown
up so far are the class of associative algebras, commutative algebras or (symmet-
ric/commutative) Frobenius algebras. More generally, these algebras are encoded as
algebras over some specific PROP which in some cases comes from an operad. Both
concepts are used in this thesis, so we start by recalling their definitions.

2.1. Operads. Operads were originally defined by Boardman-Vogt and May
in their work on iterated loop spaces in [BV73] and [May72]. The data of an
operad is given by operations with some number of inputs and one output together
with a composition law that satisfies certain coherence axioms, generalizing the
idea of an ordinary multiplication of an associative algebra. Operads are used to
describe algebraic structures in symmetric monoidal categories, for example in chain
complexes, simplicial sets or topological spaces. We denote by Σn the symmetric
group on n elements. Then we can define a (unital) operad in a symmetric monoidal
category M as follows:

Definition 2.1 (Operad). An operad O in a symmetric monoidal category M
consists of a sequence of objects O(r) ∈ M with r ∈ N, where O(r) is equipped
with an action of Σr together with the following data:

• A unit morphism 1→ O(1).
• A composition of morphisms

O(n1)⊗ · · · ⊗ O(nr)⊗ O(r)→ O(n1 + · · ·+ nr)

for any r ≥ 0 and all n1, · · · , nr ≥ 0 fulfilling Σn1 × · · · × Σnr– and Σr–
equivariance.

The data needs to satisfy a unit and an associativity axiom (for more details see for
example [Fre12, Sec. 1.1]).

A non-unital operad is such a sequence defined for all r > 0.
It is possible to think of the operations as trees with r inputs and one output,

so that the composition corresponds to gluing the output of the i–th operation in
O(ni) on the i–th input of the operation in O(r) (see Figure 3).

Before we give examples of operads, we define the notion of an algebra over an
operad to connect the topic back to our interest of study:
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λ3 ∈ O(2)

λ2 ∈ O(3)

λ1 ∈ O(1)

γ ∈ O(3)

Figure 3. The composition (O(1) ⊗ O(3) ⊗ O(2)) ⊗ O(3) → O(6)
visualized as gluing of trees

Definition 2.2. An algebra over an operad O is an object A ∈ M together
with morphisms

λ : A⊗r ⊗ O(r)→ A

for each r ≥ 0 which satisfy equivariance, unit and associativity axioms.

An example is the unital associative operad in Sets. It is given by Ass(r) = Σr

with Σr acting through multiplication from the right. The linearization of this
operad defines an operad Ass with Ass(r) = K[Σr] in K-modules or chain complexes
(with trivial differential in this case). Algebras over Ass in K −mod or Ch(K) are
associative respectively differential graded associative algebras.

Similarly, we can define C om on the set-level to be the operad with one element
in each degree, i.e. C om(r) = {1}. Its linearization thus is given by C om(r) = K in
K−mod or Ch(K). For an algebra over C om there is precisely one way to multiply
r elements, which makes the algebras over this operad to be commutative.

Most of the algebras we work with are algebras over an operad. Nevertheless,
we sometimes need a more general setup. The language of PROPs generalizes the
language of operads to a bigger class of algebras.

2.2. PROPs. In order to generalize operads, we want to view the operations
as morphism spaces of categories. Then we can define:

Definition 2.3. A PROP is a symmetric monoidal category with objects the
natural numbers including zero (whose symmetric monoidal structure is given by
+).

An algebra over a PROP E is a strong symmetric monoidal functor from E to
Sets.

We can associate a PROP EO to an operad O in Sets by choosing it to be the
symmetric monoidal category generated by O with O(n) ↪→ EO(n, 1). More precisely,
this can be described as follows: The morphism spaces EO(n,m) are defined to be “all
possible ways to multiply elements together after precomposing with a permutation”,
i.e. a morphism in the PROP is an equivalence class of elements obtained by first
applying an element σ from Σn to the n inputs and then m operations γi each from
a O(ni) with

∑
ni = n where given σ′ ∈ Σn1 ×· · ·×Σnm , σ ∈ Σn and γi ∈ O(ni) we

identify the elements given by the pair (σ′◦σ, γ1×· · ·×γm) and (σ, (γ1×· · ·×γm)◦σ′).
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An example of an operation built from an operad and a permutation is illustrated
in Figure 4. Algebras over the PROP and over the operad agree.

σ ∈ Σ5
γ2 ∈ O(2)

γ3 ∈ O(3)

Figure 4. An element in EO(5, 2) given by a permutation σ ∈ Σ5

and two operations γ2 ∈ O(2) and γ3 ∈ O(3)

A PROP E enriched over chain complexes has morphism chain complexes E(n,m)
and all composition and structure maps are maps of chain complexes. Algebras are
then precisely the enriched strong symmetric monoidal functors E → Ch(K). Thus
for example the dg-PROP associated to the dg-operad Ass gives us differential
graded associative algebras and algebras over the PROP associated to the operad
C om are differential graded commutative algebras. In our notation we will not
distinguish between an operad and its induced PROP.

However, the definition of a PROP does not only recover operads in a more formal
way, it also encodes algebraic structures which cannot be encoded in an operad.
These are all those operations which cannot be written as a permutation composed
with a disjoint union of operations with a certain number of inputs and one output.
An example is the comultiplication on a coalgebra. One might want to use the
notation of cooperads instead - however, when we want to involve comultiplications
and multiplications at the same time, the language of PROPs seems to be the
appropriate one. An example of this are Frobenius algebras which we have defined
in Section 1.5. Going back to the definition, one sees that all operations between
A⊗n and A⊗m inducing the structure are generated by

• a multiplication m : A⊗ A→ A,
• the unit 1A : K→ A,
• the comultiplication ∆ : A→ A⊗ A,
• the counit η : A→ K and
• the twist map τ : A⊗ A→ A⊗ A.

The PROP Fr of Frobenius algebras is the linearization of the unenriched PROP
given by all operations one can build out of the above mentioned where we identify
those giving associativity, unity, coassociativity, counity and the Frobenius relation.
A strong symmetric monoidal functor from the linearization of this PROP to Ch(K)
is then the same as a dg-Frobenius algebra.

The PROPs of symmetric and commutative Frobenius algebras sFr and cFr
are defined analogously, dividing out the extra relations defining symmetry and
commutativity, respectively. Following the work of Lauda and Pfeiffer (cf. [LP08,
Cor. 4.5]), we give an alternative graphical way to view the PROP of symmetric
Frobenius algebras as follows (see also Figure 5 for a general example of a morphism
in sFr(1, 3)):
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1

2

3

4

Figure 5. An element in sFr(1, 3)

A morphism in sFr(m,n) is a graph with m + n (labeled) leaves, all vertices
of valence 3 and a cyclic ordering of the edges at each vertex up to the relation
jumping an edge over a vertex (a local picture of this relation is shown in Figure 6).
Then splitting one edge into two corresponds to comultiplying the algebra element,

1 4

2 3

∼
4

3

1

2

Figure 6. The equivalence relation in the PROP Fr

whereas unifying two edges is the multiplication. The relation in Figure 6 encodes
associativity, coassociativity and the Frobenius relation depending on how it is read.
Symmetry and the fact that doing the twist twice is the identity hold since we do
not choose an embedding into the plane, i.e. symmetry can be unraveled as shown in
Figure 7(a). The PROP cFr is the quotient of sFr by forgetting the cyclic ordering
at the vertices which is the same as dividing out the relation shown in Figure 7(b).

1

2
∼

1

2
(a) the symmetry relation in sFr

1

2
3 ∼

1

2
3

(b) the commutativity relation in cFr

Figure 7. Symmetry and commutativity in terms of graphs

This leads us to another interesting example of a PROP: The PROP of open
cobordisms, which is not concentrated in degree zero as all the other PROPs we
worked with so far were.

Example 2.4 (The PROP of open cobordisms). The category of open cobordisms
is the dg-PROP where we think of a number n ∈ N as a disjoint union of intervals
and the morphisms O(m,n) are given by a graph complex whose homology is the same
as the homology of the moduli spaces of 2–dimensional cobordisms (i.e. Riemann
surfaces with boundary) between these intervals (for an example see Figure 1(b)).
This turns out not to be an associative PROP, i.e. there is no functor Ass → O.
However, it is an A∞-PROP, i.e. there is a functor A∞ → O.
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2.3. Back to Hochschild homology. In the previous section we have seen
that differential graded associative algebras are equivalent to strong symmetric
monoidal functors Ass → Ch(K). It is a natural question to ask whether we can
define a Hochschild complex for other functors Φ : Ass → Ch(K). For that, we
follow [WW11, Section 2]. In order to see how the generalization arises, we first
consider the case of a functor associated to an associative algebra A, i.e. we fix
the strong symmetric monoidal functor Φ defined by Φ(n) = A⊗n. The differential
dΦ on Φ(n) is given by the differential on the tensor product, i.e. the sum over all
actions on one tensor factor (with a sign). The multiplication map A⊗A→ A then
corresponds to the map induced by m ∈ Ass(2, 1) acting on Φ(2).

Hence the Hochschild complex as defined in the first section can be rewritten as

C∗(A,A) =
⊕

k≥0

A⊗k+1 =
⊕

k≥0

Φ(k + 1).

Let mj,k ∈ Ass(n, n − 1) be the element which multiplies the j–th and the k–th
input. Then the differential on the summand Φ(k+ 1) of C∗(A,A) can be rewritten
as

d = dΦ +
k∑

i=0

±Φ(mi+1,i+2)

where mk+1,k+2 := mk+1,1. Stepping back for a second we notice that the defini-
tion of the Hochschild complex as stated above does not use the strong symmetric
monoidality of Φ at all. Using the formulas written above, this defines the Hochschild
complex C(Φ) for an arbitrary dg-functor Ass → Ch(K). A big advantage as we
will see is that this allows to apply the Hochschild complex to the representable
functors E(m,−) for a PROP E with an associative multiplication, i.e. a PROP E
together with a functor Ass → E which is the identity on objects. We can add an
extra functoriality into the definition and write

C(Φ)(m) =
⊕

k≥0

Φ(k + 1 +m)

which then allows us to iterate the construction and obtain

Cn(Φ)(m) =
⊕

k1,...,kn

Φ(k1 + 1 + · · ·+ kn + 1 +m).

For a strong symmetric monoidal functor Φ corresponding to an algebra A we get
an isomorphism

Cn(Φ)(m) ∼= C(Φ)(0)⊗n ⊗ Φ(1)⊗m ∼= C∗(A,A)⊗n ⊗ A⊗m.
2.4. Formal operations on the Hochschild complex. The main goal of

this work is to understand the complex of operations

C∗(A,A)⊗n1 ⊗ A⊗m1 → C∗(A,A)⊗n2 ⊗ A⊗m2

which then for example might correspond to string topology operations. More con-
cretely, we want to find such operations which are natural in some class of algebras
A, that means natural in some associative algebras over a PROP E , i.e. algebras
over a PROP E such that there is a functor Ass → E which is the identity on
objects. We denote the complex of these operations by Nat⊗([n1

m1], [
n2
m2]) and rewrite

the definition in a closer form as the complex of morphisms

Nat⊗E ([n1
m1], [

n2
m2]) = hom(Cn1(Φ)(m1), Cn2(Φ)(m2))
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natural in all strong symmetric monoidal functors Φ : E → Ch(K).
It turns out that this complex is hard to study. On the other hand, the obvious

generalization we could do is to test on all functors and not only on strong symmetric
monoidal functors. Thus, in [Wah12, Sec. 2] Wahl defines the formal operations as

NatE([
n1
m1], [

n2
m2]) = hom(Cn1(Φ)(m1), Cn2(Φ)(m2))

natural in all functors Φ : E → Ch(K).
The big advantage of the second complex is that we can compute the formal

operations more concretely. It was proven in [Wah12, Theorem 2.1] there is an
isomorphism

NatE([
n1
m1], [

n2
m2])
∼=

∏

j1,...,jn1

⊕

k1,...,kn2

E(j1 + · · ·+ jn1 +m1, k1 + · · ·+ kn2 +m2)

where the right hand side is equipped with a degree shift and a complicated dif-
ferential coming from a coHochschild-Hochschild construction itself. It turns out
that the homology of it can be computed explicitly in quite a few cases which
we will come back to after saying a few more words about the relation between
Nat⊗E and NatE . Every operation which is natural in all functors is in particu-
lar natural in all strong symmetric monoidal functors, so we have a restriction

map r : NatE([
n1
m1], [

n2
m2]) → Nat⊗E ([n1

m1], [
n2
m2]). In general we define Ê to be the

PROP with morphism spaces Ê(m,n) all the morphisms A⊗m → A⊗n natural in
all E–algebras A. Then r is injective/surjective/a quasi-isomorphism if and only if

ρ : E(m,n) → Ê(m,n) is (cf. [Wah12, Theorem 2.9]). In particular, in the case
of operads any two operations can be distinguished by their actions on some free
algebra (i.e. ρ is injective), so in the case where E comes from an operad the map r
is injective (see [Wah12, Example 2.11]).

2.5. Computations of NatE . Turning back to the operations on the Hochschild
homology introduced in Section 1.3 we see that using the above definition these are
operations in Nat⊗E ([n1

m1], [
n2
m2]) for E the appropriate class of algebras. Thus, one

might ask the question whether these generalize to operations in NatE([
n1
m1], [

n2
m2]).

Going through the definitions in that section one checks that all operations were
actually defined using only the structure maps like multiplication, comultiplication
and the permutations, i.e. they are all induced by the action of the PROP on the
Hochschild complex. Hence, rewriting them in terms of these generators and apply-
ing Φ, we get an action on the Hochschild complex of Φ for all Φ : E → Ch(K). So
we already know a bunch of formal operations for the PROPs Ass, C om, sFr and
cFr.

In the original paper introducing formal operations [Wah12], Wahl gives three
examples of PROPs E where the homology of NatE can be identified with the ho-
mology of smaller and more combinatorial complexes. The first and most important
example for us is E = sFr. Recall that a Sullivan diagram in SD([n1

m1], [
n2
m2]) gives an

operation
C∗(A,A)⊗n1 ⊗ A⊗m1 → C∗(A,A)⊗n2 ⊗ A⊗m2

and since all these operations are formal, it actually defines an operation

Cn1(Φ)(m1)→ Cn2(Φ)(m2)

natural in all Φ : sFr → Ch(K), i.e. we have dg-maps

JsFr : SD([n1
m1], [

n2
m2])→ NatsFr([

n1
m1], [

n2
m2]),
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which lift to dg-functors for SD and NatsFr categories with elements N × N and
morphism spaces the above ones.

In [Wah12, Theorem 3.8] Wahl proves that JsFr is a quasi-isomorphism of dg-
categories and split injective on each morphism space, i.e. that the homology of the
formal operations is completely described by the already known operations given by
Sullivan diagrams.

The other two computations carried out in [Wah12] do not completely fit into
our setup since the multiplication of the PROPs involved is only associative up to
homotopy. As mentioned earlier, everything done so far can be carried out for A∞-
PROPs and thus NatE makes sense for these PROPs, too. Recall from the beginning
that O is the PROP of open cobordisms, i.e. O(m,n) is given by the chains on the
moduli space of cobordisms from m to n intervals. Similarly, OC([n1

m1], [
n2
m2]) is given

by the chains on the moduli space of cobordisms going from n1 circles and m1

intervals to n2 circles and m2 intervals. Then the chain version of the map JsFr
gives a dg-map

JO : OC([n1
m1], [

n2
m2])→ NatO([n1

m1], [
n2
m2]),

which by [Wah12, Theorem 3.1] is split injective and yields a quasi-isomorphism of
categories.

Restricting O to the subPROP of unital A∞-algebras A+
∞ and OC([n1

m1], [
n2
m2]) to

subspaces Ann([n1
m1], [

n2
m2]) built out of disks and annuli (for a definition see [WW11,

Prop. 6.12]) in [Wah12, Theorem 3.7] it is shown that the restriction of JO to Ann
factors through a quasi-isomorphism

JA+
∞ : Ann([n1

m1], [
n2
m2])→ NatA+

∞([n1
m1], [

n2
m2]).

All the quasi-isomorphisms mentioned in this section are actually split. These
splittings seem to fail as soon as we implement commutativity, since a lot of structure
on the PROP is lost.

3. Generalizations for higher dimensions

3.1. Higher dimensional string topology operations. Another way of gen-
eralizing Section 1 is to look at more general mapping spaces than Map(S1,M). For
example higher string topology deals with operations on Map(Sn,M). These have
been investigated by various authors, see for example [VPS76], [CHV06, Chapter
6],[Bar10], [GTZ10a] and [GTZ12], where the last two use higher Hochschild ho-
mology to give an En+1-structure on Map(Sn,M) if M is an n–connected Poincaré
duality space (with little extra conditions).

To investigate operations on Map(|X•|, |Y•|) for simplicial sets X• and Y• we can
use the generalized Jones isomorphism

H∗(Map(|X•|, |Y•|)) ∼= HHX•(C
∗(Y•), C

∗(Y•)) (3.1)

which holds if the dimension of X• is smaller than or equal the connectivity of Y•
(cf. [GTZ12, Theorem 4.4]). Here, HHX•(C

∗(Y•), C∗(Y•)) is the higher Hochschild
homology of H∗(Y•) with respect to X• which we define in the next section. Hence
looking for operations on higher Hochschild homology is one way to investigate
higher string topology.
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3.2. Higher Hochschild homology and topological Chiral homology.
Let A be a commutative algebra. Given two (ordered) finite sets S and T and a
map f : S → T of sets this induces a map f∗ : A⊗|S| → A⊗|T | such that

f∗(a0 ⊗ · · · ⊗ a|S|−1) = ±b0 ⊗ · · · ⊗ b|T |−1

with bj =
∏

i∈f−1(j) ai (where we view S = {0, · · · , |S| − 1} and T similarly) and
the sign comes from the permutations of the ai. Drawing such a map in terms of
trees we put the ai on the inputs and multiply all those which are sent to the same
output (cf. Figure 8).

a0

a1

a2

a3

a4

f

b0 = a0 · a3

b1 = 1

b2 = a1 · a2 · a4

Figure 8. the map f∗ induced by a map f : {0, . . . , 4} → {0, 1, 2}

For a finite simplicial set X• and a commutative algebra A the higher Hochschild
chains of A with respect to X• are defined as CHX•(A,A)k = A⊗|Xk| with differential∑±di∗ induced by the di : Xk → Xk−1 as explained above. For a commutative
differential graded algebra we again take the total complex with respect to both
differentials. Moreover, for a general simplicial (not necessarily finite) set X• one
takes the colimit over all finite subsets of X•. Higher Hochschild homology was
originally defined in [Pir00] and further work was done in [GTZ10a] and [GTZ12].
In the original paper a version for arbitrary functors from the commutative PROP
to vector spaces was also carried out.

Besides the isomorphism to the cohomology of the topological mapping spaces
stated in Equation (3.1), we want to point out some further properties of higher
Hochschild homology. First of all, there is a simplicial model of the circle given by
the simplicial set S1

k = {0, · · · , k} with boundaries

di(j) =

{
j for i ≤ j

j − 1 for i > j
and dn(j) =

{
j for j 6= n

0 for j = n

and degeneracies si the maps missing i, such that H∗(S1
•) = H∗(S1). Given a

commutative algebra A, we get

CS1•(A,A) ∼= C∗(A,A),

i.e. we recover the ordinary Hochschild chains as defined in Section 1.2.
Taking the simplicial set to be a point, one obtains HHpt(A,A) ∼= A. Moreover,

CHX•(A,A) is always a commutative differential graded algebra itself using a higher
analog of the shuffle product.

Given two simplicial sets X• and Y•, one obtains

CHX•qY•(A,A) ∼= CHX•(A,A)⊗ CHY•(A,A).

Finally, given another simplicial set Z• with an injection X• ↪→ Z• and an
arbitrary map Y• → Z• we put W• = X• ∪

Z•
Y•. By [GTZ10a, Lemma 2.1.6], there
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is an isomorphism

CHX•(A,A) ⊗
CHZ• (A,A)

CHY•(A,A)→ CHW•(A,A).

In [GTZ10b] the authors work with an infinity version of higher Hochschild
homology and prove that a lift of the above properties gives an axiomatic definition of
higher Hochschild homology. More precisely, in [GTZ10b, Theorem 1 and Theorem
2] they prove that CH : sSet∞ × CDGA∞ → CDGA∞ is the unique bifunctor
fulfilling the following axioms:

(1) value on a point: There is a natural equivalence of CDGAs CHpt(A) ∼= A.
(2) monoidal: There are natural equivalences of CDGAs

CHqXi•(A) ∼=
⊗

CHXi•(A).

(3) homotopy gluing/pushout: CH sends homotopy pushout in sSet∞ to
homotopy pushouts in CDGA∞.

Using this axiomatic definition, in [GTZ10b, Theorem 5] they furthermore show
that for an m-dimensional framed manifold M the topological chiral homology (also
called factorization homology)

∫
M

(A) is equivalent to the higher Hochschild homol-
ogy CHM(A).

Topological chiral homology is a homology theory for topological manifolds. It
has been made precise in [Lur12] but arises from work of Beilinson and Drinfeld on
factorization algebras in [BD04]. A good introduction into the topic can be found
in [Fra12]. We finish with giving a definition for the infinity category of topological
spaces:

Define the operad Diskfrm (n) of framed embeddings of n disjoint copies of Rm

to Rm and let Diskfrm (n1, n2) be the PROP associated to the operad. Let M be a
framed m–manifold and define EM(n) = Embfr(

∐
n R

m,M). For Φ : Diskfrm → Top,
the topological Chiral homology of M with coefficients in Φ is the functor∫

M

Φ = Φ
L

⊗
Diskfrm

EM .

The more general definition then goes via the derived coend in infinity categories.





CHAPTER 2

Summary of results

Paper A

The first paper is concerned with the complex of formal operations for the com-
mutative PROP, more precisely it computes the homology of NatC om([n1

m1], [
n2
m2]) for

natural numbers n1,m1, n2,m2. The main ingredient is the identification of the com-
plex with the dual of tensor powers of the Hochschild homology of the cohomology
of the circle.

To be more concrete, working over a field, we first prove that the homology of
NatC om([10], [

1
0]) is concentrated in degrees zero and one. A general element in the

degree zero part is an infinite sum of scalar multiples of Loday’s shuffle operations
(see Section 1.4.3). This is a well-defined operation, since only finitely many shuffle
operations are non-zero on each degree. A general element in degree one is the
composition of such an element with Connes’ boundary operator.

We furthermore prove that the homology of NatC om([n1
m1], [

n2
m2]) can be described

in terms of operations built out of Loday’s shuffle operations, Connes’ boundary
operator and the shuffle product. We specify a procedure to obtain a unique pre-
sentation of a homology class in NatC om([n1

m1], [
n2
m2]) in terms of the above building

blocks.

Paper B

In the second paper we define a dg-category of looped diagrams lD inspired by
the dg-category of Sullivan diagrams SD. We define a dg-functor JcFr from looped
diagrams to the complex of formal operations for the PROP of commutative Frobe-
nius algebras and hence obtain operations natural in all those algebras. We prove
that we recover all operations known for symmetric Frobenius dg-algebras as well as
the formal operations for differential graded commutative algebras (as identified in
Paper A) which in particular include Loday’s lambda and shuffle operations. Fur-
thermore, we prove that there is a chain level version of a suspended cacti operad
inside the complex of looped diagrams which recovers the shifted BV-structure on
the Hochschild homology of commutative Frobenius algebras defined by Abbaspour
(see Section 1.6).

A looped diagram consists of a commutative version of a Sullivan diagram to-
gether with a collection of loops inside it. We use an equivalent description of
Sullivan diagrams as stated in [WW11, Section 2.10] in terms of black and white
graphs. A looped diagram (Γ, γ1, · · · , γn) then more precisely can be described as
follows:

• The diagram Γ is a commutative Sullivan diagram with at least n labeled
leaves, i.e. a graph with its vertices labeled black and white, all black
vertices having valence 3, all white vertices having any valence ≥ 1, an
ordering of the white vertices, a total ordering of the edges at each white

19
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vertex (i.e. a cyclic ordering at the vertex and a choice of start edge) and
at least n labeled leaves.
• For each i we have a loop γi in Γ each starting at the labeled leaf i. If we

view white vertices as circles, a loop in a commutative Sullivan diagram is
a loop in Γ seen as a CW-complex up to the equivalence relation that it is
irrelevant how the loop behaves on the parts away from the white vertices.

Examples of looped diagrams are given in Figure 9, where we dotted the part of the
loop which does not contain data.

1
2

v2

2

1

v1

v3

Figure 9. Two looped diagrams

We prove that out of the span of such diagrams we obtain a dg-category. There
is a restriction functor from Sullivan diagrams to looped diagrams which forgets
the cyclic ordering one has in Sullivan diagrams but puts a loop for each marked
boundary cycle. The diagram

SD

��

JsFr // NatsFr

��
lD JcFr // NatcFr

commutes and hence all operations coming from symmetric Frobenius algebras are
already encoded in the complex lD.

Furthermore, by allowing certain products (i.e. infinite sums of operations)
we can enlarge the complex lD([n1

m1], [
n2
m2]) to ilD([n1

m1], [
n2
m2]) and still have a dg-map

JcFr : ilD([n1
m1], [

n2
m2]) → NatcFr([

n1
m1], [

n2
m2]). Restricting to a subcomplex of tree-like

diagrams, we define a complex ilDC om([n1
m1], [

n2
m2]). The image of the restriction of

JcFr to this subcomplex lies in NatC om([n1
m1], [

n2
m2]) and thus we have a dg-map JC om :

ilDC om([n1
m1], [

n2
m2]) → NatC om([n1

m1], [
n2
m2]). Then we can restate the results of Paper

A in the form that the functor JC om is a quasi-isomorphism. This gives a nicer
combinatorial description of all formal operations for commutative algebras.

Last, we can recover the new shifted BV-structure on the Hochschild chains of
commutative algebras introduced in [Abb13a]. The complex of looped diagrams
in fact comes from a simplicial set. We prove that the geometric realization of a
certain subcomplex is homotopy equivalent to a shifted version of the Cacti operad
as defined by Voronov (cf. [Vor05] and for more details [Kau05]), whose homology
is the BV-operad (by [Vor05], [Kau05] and [Get94]). This then proves that we
have a shifted BV-structure on the Hochschild homology of commutative Frobenius
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dg-algebras coming from an action on the chains. More precisely, we prove the result
for commutative, cocommutative open Frobenius dg-algebras.

Paper C

In this paper we generalize the methods of the Hochschild and coHochschild com-
plex to the setup of higher Hochschild homology in the sense of Pirashvili ([Pir00]).
Already in his original paper Pirashvili considered higher Hochschild homology of
arbitrary functors C om→ K− V ect, which we generalize to graded functors.

Completely analogously to the way one generalizes Hochschild homology of alge-
bras to the Hochschild homology of functors Ass → Ch(K) as explained in Section
2.3, we can define the higher Hochschild homology of Φ : C om → Ch(K) with
respect to a simplicial (finite) set X• as

CX•(Φ)(m) =
⊕

Φ(|X•|+m).

The differential is induced from the differential on Φ and the one coming from the
simplicial abelian group structure on Φ(|X•| + m) with the boundary maps the
ones induced from the boundary maps of the simplicial set di, i.e. the composition
with the maps d∗i ∈ C om(|Xk|, |Xk−1|). We prove that CX•(Φ)(−) is again a dg-
functor, preserves quasi-isomorphisms and is quasi-isomorphic to its reduced version.
Moreover, following [Wah12, Section 2] we introduce the coHochschild construction
DX•(Ψ) for functors Ψ : C omop → Ch(K) and prove that all the above properties
hold similarly.

For two simplicial sets X•, Y• and E a commutative PROP we define the formal
operations

NatE(X•, Y•) = hom(CX•(−), CY•(−))

natural in all functors Φ : E → Ch(K).
Again, these can be computed explicitly, thus we get

NatE(X•, Y•) ∼=
∏

l

⊕

k

E(|Xl|, |Yk|) ∼= DX•(CY•(E(−,−))) (C.1)

which turns out to be true even in a more general context. Furthermore, using the
above result we can give smaller models for the formal operations in certain cases:

First, working over a field F, for X• arbitrary and Y• a simplicial finite set, a
quasi-isomorphism of functors C∗(Y ×−• ) ' A⊗− : C om → Ch(K) induces a quasi-
isomorphism

NatC om(X•, Y•) ' CHX•(A)∗.

In particular if Q ⊂ F, the deRham algebra Ω•(Y•;F) fulfills this property and
therefore

NatC om(X•, Y•) ' CHX•(Ω
•(Y•;F))∗.

Our second computation of NatC om(X•, Y•) only holds when the dimension of the
simplicial set X• is smaller than the connectivity of Y•. Using Bousfield’s spectral
sequence (see [Bou87]), we get a quasi-isomorphism between NatC om(X•, Y•) and
the simplicial chains on the topological mapping space homTop(|X•|, |Y•|). More-
over, we show that this quasi-isomorphism preserves a certain structure close to a
comultiplication on filtrations.





CHAPTER 3

Perspectives

The work described in the previous chapters leads to new questions for further
research. We want to outline a few ideas and problems in this context.

The complex of looped diagrams and string operations:

Using the complex of looped diagrams we found a new model to generate string
operations. By comparison to the results one has for ordinary Sullivan diagrams,
some questions arise:

• What other (interesting) structures on the Hochschild complex of commu-
tative Frobenius algebras can we detect using looped diagrams?
• Do we obtain all formal operations? I.e. is the map ilD → NatcFr injec-

tive/surjective/an isomorphism on homology?
• Is there a direct geometric interpretation of the new string operations analog

to the constructions by Godin in [God07] using fat graphs?
• Is there an ∞-version of looped diagrams acting on the Hochschild chains

of C∞–Frobenius algebras?

The first question could be answered by “a lot” since every looped diagram
gives an operation. However, the existence of the new product and the shifted BV-
structure leads to the question whether there is a whole shifted HCFT structure
inside the operations we get from looped diagrams.

About the second question we can only say that taking all morphisms in ilD
will not lead to an injective map, thus we need to restrict to subcomplexes. One
might want to restrict to lD instead of ilD (i.e. not taking products into account).
However, we have seen that we get a quasi-isomorphism between a subcomplex of
ilD([n1

m1], [
n2
m2]) and NatC om([n1

m1], [
n2
m2]), i.e. we see that the product complexes seem

to be necessary. Moreover, trying to imitate the proof of the weak equivalence
SD → NatsFr directly seems to fail, since this proof heavily relies on the fact that
there is an ordering at the black vertices.

The last two questions are connected. The work by Godin for fat graphs gives
a geometric interpretation of the operations of the open-closed PROP, i.e. of an
infinity version of Sullivan diagrams. We would like to find an infinity version of the
looped diagrams, which then hopefully should allow a similar geometric construction.
Since this structure is supposed to be much bigger than the one described by OC,
we expect there to be a connection to the recent work of Hepworth and Lahtinen in
[HL13], where they introduce the richer structure of a so called HHGFT acting on
the homology of the free loop space of BG for G a compact Lie group.

On the other hand, the construction of string operations relies on finding a wrong
way map and afterward reading off along the boundary cycles. In ongoing work
Ralph Cohen, Nancy Hingston and Nathalie Wahl try to achieve such a construc-
tion for Sullivan diagrams. It turns out, that in their approach the cyclic ordering
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at the black vertices is irrelevant and only the loops they read off along are impor-
tant. Thus, looped diagrams seem to be the appropriate setup to work in. One first
operation, which we hope to recover this way, is the Goresky-Hingston product on
the relative cohomology H∗(LM,M) (see [GH09]). We conjecture that the product
in the shifted BV-structure on the Hochschild homology of commutative Frobenius
algebras corresponds to the Goresky-Hingston product on H∗(LM,M) under a rel-
ative version of the Jones isomorphism. This was conjectured simultaneously in
[Abb13b].

Give operations on higher Hochschild homology:

A question arising from Paper C is whether the known operations on higher
Hochschild homology (for example the En–structure in [GTZ12, Theorem 4.4] or
the operations leading to the Hodge decomposition in [Pir00]) can be seen as formal
operations on higher Hochschild homology and to give more explicit calculations of
the formal operations for some simplicial set (similar to the computations done for
S1
• in Paper A).

Generalizing the formal operations to other monoidal categories:

At the end of Paper C we give an approach on how to view the Hochschild
construction and formal operations in a broader setup summarizing the constructions
used so far. The proofs given there do not work for all monoidal model categories
yet. So some questions arising from that setup are:

• Can we generalize our constructions and proofs to the category of spectra?
Does this give a generalization of the computations of formal operations
done so far to topological Hochschild homology? What do we know about
the relation of the formal operations and all natural operations in this setup?
• Can we give an infinity version of the proofs done in Section 5 of Paper C?

The first question seems to be approachable using the model structure of S–modules
(cf. [MM02]) in which every object is fibrant. However, in the generalizations
working we additionally need to have an enriched cofibrant replacement functor
which is monoidal and forms a comonad. Even though a more general theory for
cofibrant replacements via comonadic functors is known (see [Gar09, Theorem 3.3]
and [BR12, Cor. 3.1]) we do not see a way to get the monoidality simultaneously.
However, this might also be due to the author’s little knowledge in the area of
S–modules.

Formal operations for cyclic homology:

Restricting ourselves to Hochschild homology is a starting point for the area of
cyclic homology. Many known operations (for example Loday’s lambda operations)
in fact have been constructed as acting on cyclic homology. One question to ask is
how one can carry over the work on Hochschild homology and formal operations to
the world of cyclic homology and how the formal operations of Hochschild homology
and cyclic homology relate.
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THE COMPLEX OF FORMAL OPERATIONS ON THE HOCHSCHILD CHAINS OF

COMMUTATIVE ALGEBRAS

ANGELA KLAMT

Abstract. We compute the homology of the complex of formal operations on the Hochschild complex of

differential graded commutative algebras as defined by Wahl and prove that these can be built as infinite sums
of operations obtained from Loday’s shuffle operations, Connes’ boundary operator and the shuffle product.

Introduction

Natural operations on the Hochschild homology of commutative algebras have been studied by several
authors, see for example [Bar68], [GS87], [Lod89] and [McC93]. Recently, in [Wah12], Wahl defined a complex
of so called formal operations for a given class of algebras, which comes with a dg-map to the complex of
natural transformations. In the case of commutative algebras this map is an injection. In this paper we prove
that the homology of the complex of formal operations in the commutative case can be built out of Loday’s
shuffle operations, Connes’ boundary operator and shuffle products.

The commutative PROP C om is defined to be the symmetric monoidal category with objects the natural
numbers (including zero) and morphism spaces Z[FinSet(−,−)]. Denote by Ch chain complexes over Z. Then
a (unital) commutative differential graded algebra is a strong symmetric monoidal functor C om → Ch. In
[WW11], the Hochschild complex C(Φ) for general functors Φ : C om→ Ch is defined as C(Φ) =

⊕
k Φ(k)[k−

1], with differentials coming from the simplicial structure on Φ(k) which will be made explicit later. For a
strong symmetric monoidal functor Φ (i.e. Φ(1) is a commutative algebra) this definition agrees with the
classical definition of the Hochschild complex C∗(Φ(1),Φ(1)). Iterating the construction, one defines the
iterated Hochschild complex C(n,m)(Φ) (see Section 1.1 for a precise definition). In this paper we compute
the homology of the formal transformations of the (iterated) Hochschild homology of commutative algebras
NatCom([n1

m1], [
n2
m2]) which in [Wah12] were defined as the complex of maps C(n1,m1)(Φ)→ C(n2,m2)(Φ) natural

in all functors Φ : C om→ Ch.
In [Lod89], Loday defined the so called shuffle operations constructed from permutations {1, · · · , n+ 1} →

{1, · · · , n+ 1} which keep the first entry fixed. These act on the n–th degree of the Hochschild complex of an
algebra A by permuting the (n+ 1) factors of A accordingly. Loday’s lambda operations can be obtained by
similar constructions. These correspond to the power operations on the homology of the free loop space of a
manifold (as it is explained in [McC93]). Moreover, they have been used to give a Hodge decomposition of
cyclic and Hochschild homology. Both, the lambda and the shuffle operations commute with the boundary
maps and one can obtain the lambda operations as linear combination of the shuffle operations and vice versa.
However, the shuffle operations fulfill one extra property which makes them suitable for our context: The k–th
shuffle operation shk acts trivially on all Hochschild degrees smaller than k, i.e. (shk)l = 0 if l < k. Hence
the infinite sum of shuffle operations is still a well-defined operation on the Hochschild complex. Denoting
Connes’ boundary operator by B and defining operations Bk = B ◦ shk, we can compute the homology
of NatCom([10], [

1
0]), i.e. the homology of the complex of operations C(Φ) → C(Φ) natural in all functors

Φ : C om→ Ch:

Theorem A (see Theorem 2.8). The homology H∗(Nat([10], [
1
0])) is concentrated in degrees 0 and 1. In these

degrees an explicit description of the elements is given by the following:

(1) Every element in H0(Nat([10], [
1
0])) can be uniquely written as

∑∞
k=0 ck[shk] with ck ∈ Z and [shk]

the classes of the cycles shk in homology. In the i-th degree of the product this is given by

(
∑∞
k=0 ck[shk])i =

∑i
k=0 ck[(shk)i], i.e. it is a finite sum in each component.

(2) Every element in H1(Nat([10], [
1
0])) can be uniquely written as

∑∞
k=0 ck[Bk] with ck ∈ Z and [Bk] the

classes of the cyclesBk in homology. In the i-th degree of the product this is given by (
∑∞
k=0 ck[Bk])i =∑i

k=0 ck[(Bk)i].

The shuffle product generalizes to a degree zero map C(Φ) ⊗ C(Φ) → C(Φ). In the second half of the
paper, we generalize the above theorem to the iterated Hochschild construction and see:

1
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Theorem B (see Theorem 3.4). The complex NatCom([n1
m1], [

n2
m2]) is quasi-isomorphic to the product

∏

k1,··· ,kn1

Ak1,...,kn1

where the complexes Ak1,...,kn1
have trivial differential and are spanned by objects build out of the Bk, shk

and the shuffle product in a procedure described in Definition 3.3.

The complex
∏
k1,··· ,kn1

Ak1,...,kn1
has also an alternative description in terms of graph complexes. In

[Kla13b] we define a complex of looped diagrams and a subcomplex of special tree-like looped diagrams

ĩplDCom([n1
m1], [

n2
m2]) together with a dg-map J̃Com : ĩplDCom([n1

m1], [
n2
m2]) → NatCom([n1

m1], [
n2
m2]) such that the

image J̃Com is exactly the complex
∏
k1,··· ,kn1

Ak1,...,kn1
. In terms of this data, Theorem B can be nicely

rewritten as follows:

Theorem B’. The dg-map J̃Com : ĩplDCom([n1
m1], [

n2
m2])→ NatCom([n1

m1], [
n2
m2]) is a quasi-isomorphism.

Even though Theorem A is a special case of Theorem B, we give a separate proof of it in the first half of
the paper. Parts of the arguments used in the proof of Theorem B are generalizations of those used in the
proof of Theorem A.
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bringing up the connections to the Hochschild homology of the sphere. Moreover, I would like to thank
Martin W. Jacobsen for fruitful discussions on the combinatorics of the operations. Furthermore, I am very
thankful to my advisor Nathalie Wahl for suggesting the topic and helpful discussions and comments. The
author was supported by the Danish National Research Foundation through the Centre for Symmetry and
Deformation (DNRF92).
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Conventions. Throughout the paper we work in the category Ch of chain complexes over the integers Z.
We use the usual sign convention on the tensor product, i.e. the differential dV⊗W on V ⊗W is defined as
dV⊗W (v ⊗ w) = dV (v)⊗ w + (−1)|v|v ⊗ dW (w).

A dg-category E is a category enriched over chain complexes, i.e. the morphism sets are chain complexes. In
this paper we use composition from the right, i.e. we require the composition maps E(m,n)⊗E(n, p)→ E(m, p)
to be chain maps. A dg-functor is an enriched functor Φ : E → Ch, so the structure maps Φ(m)⊗E(m,n)→
Φ(n) are chain maps.

For a graded abelian group A we denote by A[k] the shifted abelian group with (A[k])n = An−k. Through-
out the paper, the natural numbers are assumed to include zero.



OPERATIONS ON THE HOCHSCHILD COMPLEX OF COMMUTATIVE ALGEBRAS 3

1. Recollection of definitions and basic properties

We denote by C om the PROP of unital commutative algebras considered as a dg-PROP concentrated in
degree zero. It is the dg-category with elements the natural numbers (including zero) and morphism spaces
C om(m,n) = Z[FinSet(m,n)] the linearization of the maps of finite sets, where m and n denote the finite
sets with m and n elements, respectively. The PROP C om is an example of a PROP with A∞-multiplication
as used in [WW11] and [Wah12]. Moreover, it also fits in the context of [Kla13a] where we consider PROPs
with commutative multiplication. In the first of the aforementioned papers a more general construction of
Hochschild homology was defined. Denoting the Hochschild complex of a dg-algebra A by C∗(A,A), this
generalization allows us to define the complex of so-called formal operations which is a subcomplex of the
operations

C∗(A,A)⊗n1 ⊗Am1 → C∗(A,A)⊗n2 ⊗Am2

natural in all commutative algebras A. This subcomplex is the complex we calculate in the paper. In this
section, we recall the definition of the Hochschild complex for functors and the complex of formal operations.

1.1. Hochschild and coHochschild complexes. Recall that for a dg-algebra A its Hochschild complex
C∗(A,A) is defined as

C∗(A,A) ∼=
⊕

k

A⊗k[k − 1]

with differential coming from the inner differential on A and the Hochschild differential which takes the sum
over multiplying neighbors together (and an extra summand multiplying the last and first element). We start
with generalizing this definition as it was done in [WW11, Section 5]:

For 1 ≤ i < k Let mk
i,i+1 ∈ FinSet(k, k− 1) be the map which sends i and i+ 1 to i and is orderpreserving

and injective on the other elements. For Φ : C om → Ch a dg-functor the Hochschild complex of Φ is the
functor C(Φ) : C om→ Ch defined by

C(Φ)(n) =
⊕

k≥1

Φ(k + n)[k − 1].

The sets Φ(k + 1 + n) for k ≥ 0 form a simplicial abelian group with boundary maps di = Φ(mk+1
i+1,i+2 + idn)

where we set mk
k,k+1 = mk

1,k and degeneracy maps induced by the map inserting a unit at the i+1–st position.

Denoting the differential on Φ by dΦ, we define the differential on C(Φ)(n) to be the differential coming from
these boundary maps which explicitly is given by

d(x) = dΦ(x) + (−1)|x|
k∑

i=1

(−1)iΦ(mk
i,i+1 + idn)(x).

Note that we used the formula d =
∑k
i=0(−1)i+1di for the differential on the chain complex associated to a

simplicial set instead of the usual choice d =
∑k
i=0(−1)idi. We do so to make the signs fit with the original

definition in [WW11, Section 5].
The reduced Hochschild complex C(Φ)(n) is the reduced chain complex associated to this simplicial abelian

group, i.e. it is given by

C(Φ)(n) =
⊕

Φ(k + n)/U(k)

with U(k) =
∑

1≤i≤k−1 im(ui) where ui : Φ(k−1+n)→ Φ(k+n) is the map inserting a unit at the (i+1)–st
position.

Iterating this construction, the complexes C(n,m)(Φ) and C
(n,m)

(Φ) are given by

C(n,m)(Φ) := Cn(Φ)(m) and C
(n,m)

(Φ) := C
n
(Φ)(m).

Working out the definitions explicitly we obtain

C(n,m)(Φ) ∼=
⊕

j1≥1,··· ,jn≥1

Φ(j1 + · · ·+ jn +m)[j1 + · · ·+ jn − n].

Before we move on to the coHochschild construction, we want to connect the above definition to the
ordinary Hochschild complex of a commutative algebra:

Unital commutative dg-algebras correspond to strong symmetric monoidal functors Φ : C om → Ch by
sending an algebra A to the functor Φ(n) = A⊗n and vice versa. Then the Hochschild complex is given by

C∗(A
⊗−) =

⊕

k≥1

A⊗k[k − 1] ∼= C∗(A,A)
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which is isomorphic to the ordinary Hochschild complex of an algebra. Using the strong monoidality again,
we obtain

C(n,m)(A⊗−) ∼= C∗(A,A)⊗n ⊗A⊗m

and similarly for the reduced versions.
Dually, given a dg-functor Ψ : C omop → Ch its CoHochschild complex is defined as

D(Ψ)(n) =
∏

k≥1

Ψ(k + n)[1− k]

with the differential coming from the cosimplicial structure induced by the multiplications, so for y ∈∏
k≥1 Ψ(k + n) it is given by

d(y)l = (−1)l+1(dΨ(yl)−
l+1∑

i=1

(−1)iΨ(ml+1
i,i+1 + idn)(yk−1))

(see [Wah12, Section 1]). As for the Hochschild construction, we twisted the differential coming from the
cosimplicial structure maps by −1. For strong symmetric monoidal functors this construction is isomorphic
to the classical coHochschild construction of a coalgebras as for example defined in [Yuk81, Sec. 3.1].

Again, we can take the reduced cochain complex D(Ψ)(n) which is the subcomplex

D(Ψ)(n) =
∏

k≥1

k⋂

i=2

ker(ui).

By [Wah12, Prop. 1.7 + 1.8], the inclusion D(Ψ) → D(Ψ) and the projection C(Φ) → C(Φ) are quasi-
isomorphisms.

Again, under the correspondence of counital cocommutative coalgebras and strong monoidal functors
Ψ : C omop → Ch, the coHochschild construction defined above is isomorphic to the ordinary coHochschild
construction of a coalgebra.

Furthermore, we can also spell out the iterated construction explicitly, i.e. for a functor Ψ : C omop → Ch
we get

Dn(Ψ)(m) ∼=
∏

j1,··· ,jn
Ψ(j1 + · · ·+ jn +m)[n− (j1 + · · ·+ jn)].

1.2. Formal operations. The complex of formal operations NatCom([n1
m1], [

n2
m2]) is defined as

NatCom([n1
m1], [

n2
m2]) := hom(C(n1,m1)(Φ), C(n2,m2)(Φ))

natural in all functors Φ : C om→ Ch.
In [Wah12, Theorem 2.1] it was shown that

NatCom([n1
m1], [

n2
m2])

∼= Dn1Cn2(C om(−,−))(m2)(m1) ' Dn1
C
n2

(C om(−,−))(m2)(m1).

Since every graded commutative algebra A defines a strong symmetric monoidal functor A⊗− : C om→ Ch,
every element in NatCom([n1

m1], [
n2
m2]) gives an operation

Cn1,m1(A⊗−) ∼= C∗(A,A)⊗n1 ⊗A⊗m1 → C∗(A,A)⊗n2 ⊗A⊗m2 ∼= Cn2,m2(A⊗−).

More precisely, defining Nat⊗Com([n1
m1], [

n2
m2]) to consist of those transformations which are natural in all com-

mutative dg-algebras A, we get a restriction functor r : NatCom([n1
m1], [

n2
m2])→ Nat⊗Com([n1

m1], [
n2
m2]). Since C om

is the PROP coming from an operad, by [Wah12, Section 2.2] the map r is injective.

2. The homology of NatCom for n1 = n2 = 1 and m1 = m2 = 0

In this section we recall Lodays’s shuffle operations, use them to define cycles shk and Bk in NatCom([10], [
1
0])

and move on to show that every element in the homology is built out of those. More precisely, we will explain
that it is sensible to take infinite sums of the operations shk and Bk, denote the subcomplex generated by
them by X and show that the inclusion X ↪→ DC(C om(−,−)) is a quasi-isomorphism.

Our method of doing so is by considering the filtration on DC(C om(−,−)) arising from it being a total
complex, together with the induced filtration on X. The inclusion yields a map of the associated spectral
sequences which both come from exhaustive and complete. We show that the inclusion is an isomorphism
on the E1–page, hence gives (since X has trivial differential) an isomorphism from X to the homology of
DC(C om(−,−)) ' NatCom([10], [

1
0]).
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2.1. Loday’s lambda and shuffle operations. In this section we recall Loday’s λ- respectively shuffle
operations and give a short recap on their construction. Loday’s operations, which can be defined over Z,
can be seen as a generalization of the Gerstenhaber-Schack idempotents en which can only be defined over Q
(cf. [GS87]) and are a refinement of an operation defined by Barr in [Bar68]. These idempotents were used
to define a Hodge decomposition of Hochschild and cyclic homology and any natural operation which acts on
each Hochschild degree separately and which has trivial differential can be written as a linear combination
of these operations. However, in [Lod89, Prop. 2.8] it was shown how to recover these idempotents from
Loday’s operations.

Recall from Section 1.2 that we have Nat([10], [
1
0])
∼= DC(C om(−,−)). Explicitly, this means that in degree

l we obtain

Nat([10], [
1
0])l
∼= DC(C om(−,−))l ∼=

∏

k≥0

C om(k + 1, k + l + 1).

An element f ∈ ∏k C om(k + 1, k + l + 1) acts on
⊕

i Φ(i + 1) by applying fk to Φ(k + 1). We will use the
same notation for the element in DC(C om(−,−)) and Nat([10], [

1
0]).

We start with the definition of the Euler decomposition of the symmetric group Σn as given in [Lod89].
For a permutation σ ∈ Σn a descent is a number i such that σ(i) > σ(i+ 1). Then one defines

Σn,k := {σ ∈ Σn | σ has k − 1 descents}.
To construct the operations, we notice that every element σ ∈ Σn defines an element in C om(n+ 1, n+ 1) =
Z[FinSet(n+ 1, n+ 1)] by the embedding of Σn into Σn+1 which sends σ to the permutation which leaves 1
fixed and applies the permutation σ to the elements {2, · · · , n+ 1}. We denote the image of Σn,k in Σn+1 by
Σ1
n+1,k.

In [Lod89], up to a sign twist, the operations lkn were defined as

lkn :=
∑

σ∈Σ1
n+1,k

sgn(σ)σ

for n ≥ 1 and 1 ≤ k ≤ n, l00 = 1 and lkn = 0 else. Out of these, two families of operations were constructed,
the λ- and shuffle operations:

λkn =

k∑

i=0

(
n+ k − i

n

)
lin

for all n, k and

shkn =

k∑

i=1

(
n− i
k − i

)
lin

for n ≥ 1 and 1 ≤ k ≤ n, sh0
0 = id and shk0 = sh0

n = 0 for k > 0 and n > 0. For n ≥ 1 we obtain sh1
n = id.

For n ≥ 1 and k ≥ 2 the shuffles can be seen via another combinatorial description: For each k consider all
(p1, · · · , pk)-shuffles in Σn with p1 + · · · pk = n and all pj ≥ 1. As above, we can embed them into Σn+1 by
applying the permutation to {2, · · · , n + 1} and leaving 1 fixed. Taking the sum over all the images (with
sign), we obtain shkn. We write λk =

∏
n λ

k
n and shk =

∏
n sh

k
n for the products in

∏
n C om(n+ 1, n+ 1). In

particular, both define families of formal operations in Nat([10], [
1
0])0.

The elements λk lie in the span of the shk, more precisely

λk =

k∑

m=0

(
k

m

)
shm.(2.1)

The shuffle operations can also be expressed in terms of the lambda operations as

shk =

k∑

m=0

(−1)k−m
(
k

m

)
λm.(2.2)

Remark 2.1. A nice property of the λk is their multiplicative behavior. It is shown in [Lod89, Theorem 1.7]
that

λk · λk′ = λkk
′
.

Together with equations (2.2) and (2.1) we can extract a formula for the multiplication of the shuffle elements
and get

shk · shk′ =

k∑

i=0

k′∑

i′=0

ii′∑

j=0

(−1)k+k′−(i+i′)

(
k

i

)(
k′

i′

)(
ii′

j

)
shj .
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A special property of the shk is that shkn = 0 for n < k. This allows us to take infinite sums
∑∞
k=0 cksh

k

and still obtain a well-defined element in
∏
n C om(n + 1, n + 1) ∼= Nat([10], [

1
0])0, since in each degree only

finitely many terms are nonzero. This is not possible for the λk which is the reason why we need to work
with the shk.

As a next step we see that the operations are actually cycles in Nat([10], [
1
0]). The j–th part of the differential

is given by d(x)j = (−1)j(dh(x)j − dco(x)j) with dh(x) =
∑

(−1)i+1di(x) and dco(x) =
∑

(−1)i+1di(x).

Proposition 2.2 ([Lod89, Proposition 2.3., Cor. 2.5.]). The following holds:

dh(lkn) = dco(lkn−1 − lk−1
n−1)

and thus d(λk) = 0 and d(shk) = 0.

We move on to the definition of a second family of elements Bk which will be used to build the degree one
part of the homology of Nat([10], [

1
0]). We start with the definition of the BV-operator B ∈ ∏l C om(l, l + 1),

which as an operation on Hochschild chains corresponds to the well-known Connes’ boundary operator.
Precomposing this element with the already constructed elements shk we obtain the elements we are looking
for.

Definition 2.3. The element B ∈∏l C om(l, l + 1) has as its l-th component Bl ∈ C om(l, l + 1), defined as

Bl =

l∑

i=1

(−1)i(l+1)gi

with

gi(t) =

{
t+ i+ 1 if t+ i+ 1 ≤ l + 1

t+ i− l else,

i.e. g−1
i (1) = ∅ and we sum over all cyclic permutations of the set {2, · · · , k + 1}.

Finally we define Bk as the composition B ◦ shk.

By the usual computations, one sees that B is a cycle. Thus, since the composition of cycles is a cycle,
the elements Bk are cycles, too. Analogously to above, we can consider infinite sums

∑∞
i=0 ckB

k since only
finitely many Bk are non-trivial in each degree of the image. They can be described explicitly similarly to
the elements shk:

We consider the n embeddings of Σn → C om(n, n + 1) given by composition of maps Σn → C om(n, n)
with the embedding of C om(n, n) into C om(n, n+ 1) not hitting the first element, where the l–th map from
Σn to C om(n, n) is given by adding l (modulo n) to the image of the permutations. We denote the union of
the images of these embeddings of Σ1

n,k in C om(n, n+ 1) by Σ+
n,k.

Then we can define
Rln :=

∑

g∈Σ+
n+1,l

sgn(g)g

and obtain (Bk)n =
∑k
l=1

(
n−l
k−l
)
Rln for k > 0, (B0)0 = R1

0 and (B0)i = 0 for i 6= 0.
Now we are able to define the subcomplex X which will be shown to be isomorphic to the homology of

NatCom([10], [
1
0]).

Definition 2.4. Let X be the graded abelian group which is defined as

Xi =





{∑∞
k=0 cksh

k
∣∣ ck ∈ Z

}
for i = 0{∑∞

k=0 ckB
k
∣∣ ck ∈ Z

}
for i = 1

0 else.

All the elements in X are elements in NatCom([10], [
1
0])
∼= DC(C om(−,−)). Actually, we can take their

equivalence classes with respect to the reduced Hochschild construction and check that they lie in the reduced
coHochschild construction. Thus we can view X as a subcomplex of DC(C om(−,−)) with differential zero.

2.2. The spectral sequence of DC(C om(−,−)). In order to compute the homology of D(C(C om(−,−)))
it will be practical to give a different description of it in terms of the homology of products of S1. that by
the definition of the commutative PROP we have C om(k, l) = Z[FinSet(k, l)] ∼= Z[(FinSet(1, l)×k]. Thus
as abelian groups, we have an isomorphism C om(k, l) ∼= C om(1, l)⊗k. Viewing the Hochschild construction
C(C om(k,−)) as a simplicial abelian group, the l–th level is given by C om(k, l+1) ∼= C om(1, l+1)⊗k and the
boundary maps are given by post composition with the multiplications of neighbors in C om(l + 1, l), which
acts diagonally on the space C om(1, l+1)⊗k. On the other hand, FinSet(1, l+1) is the standard model for the
simplicial circle with one non-degenerate zero- and one non-degenerate one-cell, i.e. H∗(C∗(FinSet(1, l))) ∼=
H∗(S1). We denote S1

• = FinSet(1, •+ 1).
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Applying the coHochschild construction, out of C(C om(−,−)) we form a cosimplicial abelian group
whose coboundary maps are given by precomposition with multiplication. Under the above isomorphism
C(C om(k,−)) ∼= C∗(C om(1,−)×k) this corresponds to doubling the information of the i–th input, i.e. it is
given by the i–th diagonal map. Recall that the reduced complex D(C∗((S1

•)
×k)) is given as

∏

k≥1

k⋂

i=2

ker(ui)

where ui forgets the i–th factor in C∗((S1
•)
×k+1)). Note that because neither the Alexander-Whitney nor the

Eilenberg-Zilber map preserve both the multiplication and the twist map, we cannot go further and replace
this cosimplicial simplicial abelian group with the one C(S1

•)
⊗k+1.

We are interested in computing the homology of the product total complex of the double complex underlying
D(C(C om(−,−)). Recall from [Wei95, Sec. 5.6] that there is an associated second quadrant spectral sequence
(obtained by filtering by columns) which comes from an exhaustive and complete filtration of the total complex
D(C(C om(−,−)). The E1–page is given by taking the homology with respect to the vertical differential, and
since the reduced complex is a direct summand and thus permutes with taking homology, we have

E1
p,q
∼=
p+1⋂

i=2

ker(ui : Hq(S
1
•
×p+1

)→ Hq(S
1
•
×p

)).

The Alexander-Whitney map (cf. [Wei95, Section 8.5.4]) gives an isomorphism Hq(S
1
•
×p

) ∼= (H∗(S1
•)
⊗×p)q.

We denote the generator of H0(S1
•) by 1 and the generator of H1(S1

•) by y. Then we can rewrite the maps
ui as

ui(x1 ⊗ · · · ⊗ xi−1 ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ xp) =

{
x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xp if xi = 1

0 if xi = y.

In particular, we see that the only elements which lie in the kernel of all the ui with i ≥ 2 are elements of the
form x⊗ y ⊗ · · · ⊗ y with x arbitrary. Therefore under the Alexander-Whitney map we can rewrite

E1
p,q
∼=





〈1⊗ y ⊗ · · · ⊗ y︸ ︷︷ ︸
p

〉 if p = q

〈y ⊗ y ⊗ · · · ⊗ y︸ ︷︷ ︸
p

〉 if q = p+ 1

0 else.

2.3. The complex X under the filtration. Since X is a subcomplex of DC(C om(−,−)), we also obtain
an induced filtration FpX of X. Since there is no differential, the corresponding spectral sequence collapses
on the E0–page already. Concretely, the filtration is given by

FpX0
∼=




∑

k≥p
cksh

k

∣∣∣∣∣∣
ck ∈ Z





and similar in degree 1 using the Bk. Since every element in X possesses a unique representation as an
infinite sum, we get that limX/FpX ∼= X and hence the filtration is complete. Since it starts with X itself,
it is exhaustive.

The E0–page of the corresponding spectral sequence can be described as

E0
p,q = FpXq−p/Fp+1Xq−p ∼=





〈shk〉 if p = q

〈Bk〉 if p+ 1 = q

0 else.

Furthermore, since X has no differentials we have Erp,q = E0
p,q for all r.

2.4. The isomorphism on E1–pages. Next we show that the inclusion of X into DC(C om(−,−)) induces
an isomorphism on E1–pages. Therefore, recall that the E0–page of DC(C om(−,−)) is isomorphic to the
double complex itself since the p–th column of the E0–page is the quotient of the total complex of all the
columns indexed greater than or equal to p by the columns indexed greater than p. The map from the
filtration of X into there thus sends 〈shp〉 to shpp ∈ C om(p + 1, p + 1) since it forgets all parts of shp living

in columns greater than p. Since these elements have trivial vertical differential, their image on the E1–page
of DC(C om(−,−)) is the same and we only need to apply the Alexander-Whitney map to shpp and see that

this agrees with the generator 1⊗ y ⊗ · · · ⊗ y︸ ︷︷ ︸
p

and similar for the Bk.
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Lemma 2.5. Let σ be a permutation in Σn+1 with σ(1) = 1. We consider its image in Cn((S1)×n+1) under

the projection from Cn(S1×n+1
). Then AW (σ) = 0 if σ 6= id and AW (idn+1) = 1⊗ y ⊗ · · · ⊗ y︸ ︷︷ ︸

n

.

Proof. We first describe how a permutation σ looks as an element of ((S1)×n+1
n ) and explain what the

boundary maps are. The n-simplices of S1
• are given by {1, . . . , n+ 1}. For i < n the boundary map di maps

both i+ 1 and i+ 2 to i+ 1 and is injective and monotone otherwise. The last boundary map dn maps both
n + 1 and 1 to 1. For a permutation σ with σ(1) = 1 we have di(σ)(1) = 1 for any i. In general, for an
element j ∈ S1

n with j 6= n+ 1 we have

(2.3) di(j) =

{
j ∈ S1

n−1 if i+ 1 ≥ j
j − 1 ∈ S1

n−1 if i+ 1 < j

and for n+ 1 ∈ S1
n

(2.4) di(n+ 1) =

{
n ∈ S1

n−1 if i+ 1 ≤ n
1 ∈ S1

n−1 if i = n.

Denote by 1 ∈ C0(S1
•) the projection of the element 1 ∈ S1

0 and by y ∈ C1(S1
•) the image of the element

2 ∈ S1
1 . All other elements in S1

k are degenerate in C∗(S1
•), i.e. zero after passing to the reduced complex.

We consider the reduced Alexander-Whitney map

AW : Cn((S1)×n+1)→ ((C(S1))⊗n+1)n =
⊕

k1,···kn+1∑
ki=n

Ck1(S1)⊗ · · · ⊗ Ckn+1(S1).

Since Ck(S1) = 0 if k 6= 0, 1 we have
⊕

k1,···kn+1∑
ki=n

Ck1(S1)⊗ · · · ⊗ Ckn+1
(S1) ∼=

⊕

1≤i≤n+1
ki=0,kj=1 for j 6=i

Ck1(S1)⊗ · · · ⊗ Ckn+1
(S1).

By [Wei95, Section 8.5.4] the Alexander Whitney can be described as

AW (x) =
∑

k1,···kn+1∑
ki=n

D
1

k1,··· ,kn+1
(x)⊗ · · · ⊗Dn+1

k1,··· ,kn+1
(x)

with Dj
k1,··· ,kn+1

= dj0 · · · dj0︸ ︷︷ ︸
k1+···+kj−1

djk1+···+kj+1 · · · djn ◦ prj and D
j

k1,··· ,kn+1
the map after projecting to the reduced

complex. Here, prj : (S1
•)
×n+1 → S1

• is the projection onto the j–th factor.
We fix σ ∈ Σn+1 with σ(1) = 1 and compute AW (σ):
Assume k1 = 1. We show that the map to the summand Ck1(S1)⊗ · · · ⊗ Ckn+1

(S1) is zero. To do so, we

show that D
1

k1,··· ,kn+1
(σ) is zero. We have

D1
k1,··· ,kn+1

(σ) = d1
2 · · · d1

n(σ)pr1 ∈ C1(S1).

Since pr1(σ) = 1, using the description of the boundary maps above we see that D1
k1,··· ,kn+1

(σ) = 1 ∈ S1
1

which is degenerate in C1(S1
•), so after projecting to the reduced complex the element becomes zero.

Therefore, the only possible non-zero part of the map AW (σ) to the reduced complex is the one corre-
sponding to k1 = 0 and ki = 1 for 1 < i ≤ n+ 1. Hence we are left to show that

D
j

0,1,··· ,1(id) =

{
1 if j = 1

y if j > 1

and that for σ 6= id there exists a j with 1 < j ≤ n+ 1 such that D
j

0,1,··· ,1(σ) = 0.

For the first part, we take σ = id, i.e. σ(j) = j. We want to show that for the element j ∈ S1
n,

dj0 · · · dj0︸ ︷︷ ︸
j−2

djj · · · djn(j) is 2 ∈ S1
2 , i.e. its image in C∗(S1

•) is given by y. Iterating equation (2.3) for 1 < j < n+ 1

we obtain

djj · · · djn(j) = j ∈ S1
n−((n+1)−j) = S1

j−1

and hence after applying the second case of Equation (2.3) (j − 2) times, we obtain

dj0 · · · dj0︸ ︷︷ ︸
j−2

(j) = j − (j − 2) = 2 ∈ S1
1 ,
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so we have shown the claim for all j 6= n+ 1. For j = n+ 1, equation (2.4) implies

dj0 · · · dj0︸ ︷︷ ︸
n−1

(n+ 1) = 2 ∈ S1
1 .

Therefore, AW (id) = 1⊗ y ⊗ · · · ⊗ y.
Now assume that σ 6= id. Then there is a j such that σ(j) < j. Again

djj · · · djn(σ(j)) = σ(j) ∈ S1
j−1

but in this case we reach the element 1 by applying dj0 only σ(j)− 1 times, i.e.

dj0 · · · dj0︸ ︷︷ ︸
σ(j)−1

(σ(j)) = 1 ∈ S1
j−σ(j).

Applying dj0 more often keeps the result as 1, i.e.

dj0 · · · dj0︸ ︷︷ ︸
j−2

djj · · · djn(σ(j)) = 1 ∈ S1
1 .

This element is degenerate, i.e. zero after projecting to C∗(S1) and hence AW (σ) = 0. �
Similarly to compute the Alexander-Whitney map on the elements Bk one can show

Lemma 2.6. Let g be a bijection {1, . . . , n} → {2, . . . , n+ 1}, viewed as an element in C om(n, n+ 1). Then

AW (g) = 0 if g 6= ĩdn, with ĩdn : {1, . . . , n} → {2, . . . , n + 1} the map defined by ĩdn(j) = j + 1. Moreover,

AW (ĩdn) = y ⊗ · · · ⊗ y︸ ︷︷ ︸
n

.

Proof. Similar to above, one shows that

D
j

1,1,··· ,1(ĩd) = y

and that for g 6= ĩd there exists a j with 1 ≤ j ≤ n such that D
j

1,1,··· ,1(g) = 0. The arguments are completely
analog to the ones in the previous proof. �

Since C∗(S1) ∼= H∗(S1) we have actually computed the image of permutations in homology. In particular,

we can apply this to (shk)k and (Bk)k. Recall that (shk)k =
∑k
i=1 l

i
k =

∑
σ∈Σ1

n
sgn(σ)σ, so it is a sum over

all permutations leaving the first entry fixed and thus contains the summand of the identity exactly once.

Similarly, (Bk)k contains the summand ĩdk+1 once. Now we can conclude:

Corollary 2.7. The inclusion of X into DC(C om(−,−)) induces an isomorphism on the E1–pages of the
corresponding spectral sequences.

Proof. By the above Lemma we get AW ((shk)k) = AW (idk+1) = 1 ⊗ y ⊗ · · · ⊗ y︸ ︷︷ ︸
k

and AW ((Bk)k) =

AW (ĩdk+1) = y ⊗ y ⊗ · · · ⊗ y︸ ︷︷ ︸
k

. Thus after applying the Alexander-Whitney map (which is an isomorphism)

the inclusion from the E1–page of X to the E1–page of DC(C om(−,−)) is an isomorphism. �
2.5. Result. We are ready to state our main theorem of this section:

Theorem 2.8. The homology H∗(Nat([10], [
1
0])) is concentrated in degrees 0 and 1. In these degrees an explicit

description of the elements is given by the following:

(1) Every element in H0(Nat([10], [
1
0])) can be uniquely written as

∑∞
k=0 ck[shk] with ck ∈ Z and [shk]

the classes of the cycles shk in homology. Hence, in the i-th degree of the product this is given by

(
∑∞
k=0 ck[shk])i =

∑i
k=0 ck[(shk)i], i.e. it is a finite sum in each component.

(2) Every element in H1(Nat([10], [
1
0])) can be uniquely written as

∑∞
k=0 ck[Bk] with ck ∈ Z and [Bk] the

classes of the cycles Bk in homology. In the i-th degree of the product this is given by (
∑∞
k=0 ck[Bk])i =∑i

k=0 ck[(Bk)i].

Proof. Both filtrations of the complexes DC(C om(−,−)) and X are complete and exhaustive. By the
Eilenberg-Moore comparison theorem (cf. [Wei95, Theorem 5.5.1]) the inclusion of X into DC(C om(−,−)),
which is an isomorphism on E1–pages induces an isomorphism on the homology. Since the differential on X
is trivial, we get isomorphisms

X ∼= H∗(DC(C om(−,−))) ∼= H∗(Nat([10], [
1
0]))

which proves the theorem. �
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Remark 2.9. (1) We have id = sh0 + sh1 and the BV-operator B = B0 + B1. If the reader prefers to
have these two as part of the generating family, we can replace sh0 by id and B0 by B.

(2) By equation (2.1) the lambda operations lie in the span of the shk. Even though each shk also lies in
the finite span of the λi for i ≤ k, we cannot replace all shk by λk since then the infinite sums taken
above would not anymore be degree-wise finite.

3. Iterated Hochschild homology

In this section we generalize our previous computations and describe the elements in the homology of the
complex NatCom([n1

m1], [
n2
m2]). We start with stating the theorem, give an example of an operation and then

give an outline of the proof.

3.1. Definition of extra generators and the main theorem. To state the main theorem we need to
define a few more elementary operations which are the building blocks for general operations:

Definition 3.1. (1) Let p ∈ NatCom([10], [
0
1]) be the map ⊕k≥0Φ(k + 1) → Φ(1) given by the projection

onto the first summand.
(2) Define sh0 and B0 in NatCom([01], [

1
0]) the restriction of the corresponding elements in NatCom([10], [

1
0])

to the summand Φ(1). Hence, sh0 : Φ(1)→ C∗(Φ) is the inclusion of Φ into the Hochschild complex
and B0 is this inclusion composed with Connes boundary operator.

(3) The shuffle product m1,2 ∈ NatCom([20], [
1
0]) is defined as

(m1,2)j1,j2 =
∑

σ∈Σj1+j2

(j1,j2)–shuffle

sgn(σ)F (σ) ∈ C om(j1 + 1 + j2 + 1, j1 + j2 + 1)

where the sum runs over all (j1, j2)–shuffles σ ∈ Σj1+j2 and the map F (σ) sends 1 and j1 + 2 to 1, i
to σ(i) + 1 if 1 < i ≤ j1 and to σ(i) + 2 if j1 + 2 < i ≤ j2 + 2. Note that we use the identification∏
j1,j2

C om(j1 + 1 + j2 + 1, j1 + j2 + 1) ∼= (D2C(C om(−,−)))0
∼= NatCom([20], [

1
0])0 as described in

Section 1. An illustration of (m1,2)2,1 is given in Figure 2. The shuffle product is associative and
commutative.

Define m1,··· ,r ∈ NatCom([r0], [10]) to be the iterated shuffle product. If we write mM for some subset
M of {1, . . . , r}, we mean the element only applying the shuffle product to this subset.

(4) Define m1,··· ,r ∈ NatCom([0r], [
0
1]) the morphism multiplying all elements together. Again, if we label

by a subset, we mean the operation only multiplying the elements of the subset.

Now one can check:

Lemma 3.2. All the operations defined above are cycles.

Using all these operations, we can define subcomplexes Ak1,··· ,kn1
of NatCom([n1

m1], [
n2
m2]) which we then take

products of to get all formal operations. Elements of Ak1,··· ,kn1
are the composition of first applying the

operations shk and Bk from before to each factor (and precomposing with the inclusion from the algebra
into the Hochschild complex if needed), projecting some of the resulting terms onto the algebra and then
composing with a tensor product of shuffle products and ordinary products in the algebra. We write this
formally as follows:

Definition 3.3. For ki ≥ 0 let Ak1,...,kn1
=
⊕

f,s〈xf,s〉 ⊂ Nat([n1
m1], [

n2
m2]) where f and s are functions

• with f : {1, · · · , n1 +m1} → {1, · · · , n2 +m2} such that f(i) ≤ n2 if ki > 0
• s : f−1({1, · · · , n2})→ {0, 1}

and xf,s is the composition xf,s = x2 ◦ x1 where for c := |f−1({1, · · · , n2})| we define the elements x1 ∈
NatCom([n1

m1], [
c

m1+n1−c]) and x2 ∈ NatCom([ c
m1+n1−c], [

n2
m2]) as follows:

• The element x1 = z1 ⊗ . . . ⊗ zn1+m1 is the tensor product of operations zi. The operations zi are
defined as follows:

– If 1 ≤ i ≤ n1 and
∗ if f(i) ≤ n2 then zi ∈ NatCom([10], [

1
0]) is given by

zi =

{
shki if s(i) = 0

Bki if s(i) = 1,

∗ if f(i) > n2 and thus ki = 0 then zi = p ∈ NatCom([10], [
0
1]).

– If n1 + 1 ≤ i ≤ n1 +m1 and
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∗ if f(i) ≤ n2 then zi ∈ NatCom([01], [
1
0]) given by

zi =

{
sh0 if s(i) = 0

B0 if s(i) = 1,

∗ if f(i) > n2 then zi = id ∈ NatCom([01], [
0
1]).

• The element x2 ∈ Nat([ c
m1+n1−c], [

n2
m2]) takes the shuffle product of all elements with same value j

under f (and this is the output j). More precisely,

x2 = m{f
−1(1)} ⊗ . . .⊗m{f−1(n2)} ⊗m{f−1(n2+1)} ⊗ . . .⊗m{f−1(n2+m2)}.

Since both x1 and x2 got constructed out of cycles the element x is a cycle again. Hence, all complexes
Ak1,··· ,kn1

have trivial differential.
Now we are able to state the main theorem of the paper:

Theorem 3.4. The complex NatCom([n1
m1], [

n2
m2]) is quasi-isomorphic to the product

∏

k1,··· ,kn1

Ak1,...,kn1

and hence a general element in H∗(NatCom([n1
m1], [

n2
m2])) is a unique infinite sum of scalar multiples of the

elements described in Definition 3.3, which are tensor products of the basic operations shk and Bk composed
with tensor products of shuffle and ordinary products.

Remark 3.5. In [Kla13b] we define a complex of looped diagrams and a subcomplex of tree-like looped
diagrams iplDCom([n1

m1], [
n2
m2]) together with a dg-map JCom : iplDCom([n1

m1], [
n2
m2])→ NatCom([n1

m1], [
n2
m2]). There

is a subcomplex ĩplDCom([n1
m1], [

n2
m2]) ⊂ iplDCom([n1

m1], [
n2
m2]) such that the image of this complex is given by∏

k1,··· ,kn1
Ak1,...,kn1

. Denoting the restriction of JCom to ĩplDCom([n1
m1], [

n2
m2]) by J̃Com, the above theorem

can be restated as saying that J̃Com is a quasi-isomorphism (see [Kla13b, Section 3]).

Before we deal with the proof of the theorem, we want to give an example of an operation:

Example 3.6. We give an example of an element in Nat([22], [
2
1]) belonging to the factor A0,2 as defined in

Definition 3.3. So we fixed n1 = 2, m1 = 2, n2 = 2 and m2 = 1. Moreover, we choose k1 = 0 and k2 = 2.
To give a generator in A0,2, we first need a function f : {1, . . . , 2 + 2} → {1, . . . , 2 + 1} such that f(2) ≤ 2.

We choose

1 7→ 3 2 7→ 2 3 7→ 3 4 7→ 2.

So {i |f(i) > n2 = 2} = {1, 3} and therefore we need a function s : {1, . . . , 4}\{1, 3} → {0, 1}. We take
s(2) = 0 and s(4) = 1.

We first describe the x1 part in Definition 3.3. We have x1 = z1⊗z2⊗z3⊗z4 with z1 = p (since f(1) > 2),
z2 = sh2 (since f(2) ≤ 2 and s(2) = 0), z3 = id (since f(3) > 2) and z4 = B0 (since f(4) ≤ 2 and s(4) = 1).

We know that p acts trivially on all degrees greater zero, so x1 can only act non-trivial on degrees (0, l)
for some positive l. The degree (0, 2) part of x1 is illustrated in Figure 1.

(p)0

⊗

(sh1)2

⊗

id

⊗

B0

Figure 1. The operation (x1)0,2

Next we need to illustrate the composition with x2. The element x2 was defined to take the shuffle
products of the outputs which agree on a f(i) ≤ n2 and the ordinary product for those outputs which agree
on a f(i) > n2. We have f(3) = f(1) = 3. This means, that the single outputs of segment 3 and 1 are
multiplied and give the output of segment 3. Moreover f(4) = f(2) = 2. Here we have to apply the shuffle
product. The fourth segment has 2 outputs, the second has 3, so the second output segment will have
2 + 3 − 1 = 4 outputs. The first output of both segments is multiplied together and we take the shuffles of
the rest. We first illustrate what happens on outputs in general (i.e. illustrate m2,4) and then plug in our
elements. In Figure 2 on the left are the old outputs of the two elements (i.e. 3 and 2 outputs) and on the
right their merged outputs. Now we can take everything together, i.e. plug in our elements from before to
compute xf,s = x2 ◦ x1. The degree (0, 2) part of xf,s is illustrated in Figure 3.
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old out from 2nd

old out from 4th

± ±

Figure 2. merging of outputs

±

(4)

(3)

(1)

(3)

(1)

(2)
(2)

±

(4)

(3)

(1)

(3)

(1)

(2)
(2)

±

(4)

(3)

(1)

(3)

(1)

(2)
(2)

Figure 3. The operation (xf,s)0,2

We also describe how the natural transformation associated to this acts on the Hochschild homology of a
commutative algebra A. The element xf,s = x2 ◦ x1 corresponds to a map

C∗(A,A)⊗ C∗(A,A)⊗A⊗A→ C∗(A,A)⊗ C∗(A,A)⊗A.
In the pictures we have given a description (up to sign) of what happens to an element with the first tensor
factor being of length 1 and the second tensor factor of length 3, i.e. for

(q0)⊗ (r0 ⊗ r1 ⊗ r2)⊗ (g)⊗ (h) ∈ C0(A,A)⊗ C2(A,A)⊗A⊗A
the pictures in Figure 3 describe the operation by plugging in q0 at (1), (r0 ⊗ r1 ⊗ r2) at (2), g at (3) and h
at (4). If there is no input mapping to an output, a unit is inserted at that part of the output. Doing this in
the same order as the pictures are given in Figure 3, we get

(q0)⊗ (r0 ⊗ r1 ⊗ r2)⊗ g ⊗ h 7→ ±(1)⊗ (r0 ⊗ h⊗ r2 ⊗ r1)⊗ (q0 · g)

± (1)⊗ (r0 ⊗ r2 ⊗ h⊗ r1)⊗ (q0 · g)± (1)⊗ (r0 ⊗ r2 ⊗ r1 ⊗ h)⊗ (q0 · g)

∈ C0(A,A)⊗ C3(A,A)⊗A.
3.2. Outline of the proof of Theorem 3.4. The proof of Theorem 3.4 is structured as follows:

• In Section 3.3 we construct a subcomplex D of the formal operations such that D ↪→ Nat([n1
m1], [

n2
m2])

is a weak equivalence.

• In Section 3.4 we split D ∼= D̃ ⊕ D̃′ and prove that the homology of D̃′ vanishes.

• In Section 3.5 we define another complex of operations D̂ and show that the Eilenberg-Zilber quasi-

isomorphism defines a map D̂
EZ−−→ D̃ which on each component on the level of elements corresponds

to “multiplication with the elements x2” as defined in Definition 3.3.

• Last, in Section 3.6 similarly to the proof of Theorem 2.8 we show that D̂′ is spanned by elements x1

as defined in Definition 3.3.

Before we can start with our actual computations, we recall a few results about total complexes of multi-
chain complexes and the order of totalization. The two propositions follow from the fact that the spectral
sequences of the half plane double complexes are conditionally convergent together with work of Boardman
[Boa99, Theorem 7.2].

Proposition 3.7 ([Kla13a, Cor. B.12]). Let f : Cp,q → Dp,q be a map of left (respectively right) halfplane
double complexes. If f is a quasi-isomorphism with respect to the vertical differential (i.e. an isomorphism
after taking homology in the vertical direction), f induces a quasi-isomorphism f :

∏
p,q Cp,q →

∏
p,qDp,q

respectively f :
⊕

p,q Cp,q →
⊕

p,qDp,q.

Proposition 3.8 ([Kla13a, Cor. B.14]). Let f : Cp,q → Dp,q be a map of left (respectively right) halfplane
double complexes. If f is a chain homotopy equivalence with respect to the horizontal differential (i.e. there
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exist g and h s.t. dhor ◦ h+ h ◦ dhor = g ◦ f − id and h′ such that dhor ◦ h′ + h′ ◦ dhor = f ◦ g− id), f induces
a quasi-isomorphism f :

∏
p,q Cp,q →

∏
p,qDp,q respectively f :

⊕
p,q Cp,q →

⊕
p,qDp,q.

We will use the two propositions frequently throughout the computations.

3.3. A smaller subcomplex of the operations. Recall from the definition of the iterated Hochschild
construction in Section 1.2 that

N := NatCom([n1
m1], [

n2
m2])

∼=Dn1Cn2(C om(−,−))(m2))(m1)

∼=
∏

h1,...,hn1

⊕

j1,...,jn2

Ch1 · · ·Chn1Cj1 · · ·Cjn2
(C om(−+m1,−+m2)),

the chain complex of a multi cosimplicial-simplicial abelian group which for fixed hi’s and jl’s is given by
C om(h1 + 1 + · · ·+ hn1 + 1 +m1, j1 + 1 + · · ·+ jn2 + 1 +m2). To treat m1 and m2 equal to the other inputs,
we can view them as extra directions of the multicomplex which we only use in degree zero, i.e.

N ∼=
∏

h1,...,hn1

⊕

j1,...,jn2

Ch1 · · ·Chn1C0 · · ·C0Cj1 · · ·Cjn2
C0 · · ·C0(C om(−,−)).

To rewrite the complex even further, we need some notation:
Let A be a d–multisimplicial abelian group with indexing set {1, · · · , d}. For a set M = {m1, · · · ,mn} ⊆

{1, · · · , d} define diagM A as the d− (n− 1)–multisimplicial abelian group where we have taken the diagonal
in m1, · · · ,mn, i.e. these indices now agree. Write dh = h1 + 1 + · · ·+ hn1

+ 1 +m1.

Since C om(h, l) ∼= C om(1, l)⊗h, we can rewrite

Ch1 · · ·Chn1C0 · · ·C0Cj1 · · ·Cjn2
C0 · · ·C0(C om(−,−))

∼=Ch1 · · ·Chn1C0 · · ·C0Cj1 · · ·Cjn2
C0 · · ·C0(diagall• (C om(1,−)⊗ · · · ⊗ C om(1,−)︸ ︷︷ ︸

dh

))

where all indicates the set of all indices. The cosimplicial boundary maps are given by doubling a factor
C om(1,−). Let π ∈ C om(j1 + 1 + · · · + jn2 + 1 + m2, n2 + m2) be the projection to the intervals, i.e.
π(i) = k for

∑
i<k(ji + 1) ≤ i <

∑
i≤k(ji + 1) (setting jl = 0 for l > n2). Then given a generator

g ∈ C om(dh, j1 + 1 + · · · + jn2
+ 1 + m2) (i.e. g is a map of finite sets) we define f = π ◦ g : {1, · · · , dh} →

{1, · · · , n2 +m2}. The map f is invariant under applying simplicial boundary maps to g and hence for each
fixed tuple {h1, . . . , hn1} we can split

⊕

j1,...,jn2

Cj1 · · ·Cjn2
C0 · · ·C0(diagall• (C om(1,−)⊗ · · · ⊗ C om(1,−)︸ ︷︷ ︸

dh

))

into subcomplexes indexed by maps f : {1, · · · , dh} → {1, · · · , n2 +m2} such that the map in the i–th tensor
factor maps 1 to the f(i)–th interval. We write C omf(j)(1,−) to indicate in which interval 1 is mapped.

Fix such a map f . Now we focus on a single ji for a moment. For simplicity of notation we choose i = 1.
The complex

C∗(diagall• (C omf(1)(1,−+ j2 + 1 + · · ·+m2)⊗ · · · ⊗ C omf(dh)(1,−+ j2 + 1 + · · ·+m2)
︸ ︷︷ ︸

dh

))

by the Eilenberg-Zilber Theorem (cf. [Wei95, Sec. 8.5]) is quasi-isomorphic to the totalization of the complex

C∗(C omf(1)(1,−+ j2 + 1 + · · ·+m2))⊗ · · · ⊗ C∗(C omf(dh)(1,−+ j2 + 1 + · · ·+m2))
︸ ︷︷ ︸

dh

.

Hence we can look at each C∗(C omf(j)(1,− + j2 + 1 + · · · + m2)) separately. Assume that this is the j–th
factor, i.e. if f(j) > 1 we do not hit the interval belonging ∗. Then the differential on C∗(C omf(j)(1,− +
j2 + 1 + · · · + m2)) is alternate zero and the identity and we have C∗(C omf(j)(1,− + j2 + 1 + · · · + m2)) '
C0(C omf(j)(1,− + j2 + 1 + · · · + m2)) ∼= C omf(j)(1, j2 + 1 + · · · + m2) where the last isomorphism follows
from the fact, that it does not matter, whether we include a point, we never map to, or not. Iterating this
argument for all 1 ≤ i ≤ jn2 (and using Proposition 3.7), we can contract

⊕

j1,...,jn2

Cj1 · · ·Cjn2
C0 · · ·C0(diagall• (C omf(1)(1,−)⊗ · · · ⊗ C omf(dh)(1,−)

︸ ︷︷ ︸
dh

))

to ⊕

j1,...,jn2

Cjf(1)
(C om(1,−+ 1))⊗ · · · ⊗ Cf(dh)(C om(1,−+ 1))
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with jl := 0 if n2 < l ≤ n2 +m2. The differential in the i–th direction comes from the simplicial boundaries
acting diagonally on all factors j with f(j) = i. Concluding, we can rewrite this complex as

⊕

j1,··· ,jn2

⊕

f :{1,··· ,dh}
→{1,··· ,n2+m2}

Cj1 · · ·Cjn2
C0 · · ·C0(

diag{i|f(i)=1} · · · diag{i|f(i)=n2+m2}(C om(1,−)⊗ · · · ⊗ C om(1,−)︸ ︷︷ ︸
dh

)

and (after using Proposition 3.7 and Proposition 3.8) get a quasi-isomorphism

N '
∏

h1,··· ,hn1

⊕

f :{1,··· ,dh}
→{1,··· ,n2+m2}

⊕

j1,··· ,jn2

Ch1 · · ·Chn1C0 · · ·C0Cj1 · · ·Cjn2
C0 · · ·C0(

diag{i|f(i)=n2+m2} · · · diag{i|f(i)=1}(C om(1,−)⊗ · · · ⊗ C om(1,−)︸ ︷︷ ︸
dh

).

We denote the last complex by D.

3.4. Splitting off an acyclic subcomplex. As a next step we split off an acyclic subcomplex from D.
Recall dh = h1 + 1 + · · ·+ hn1

+ 1 +m1 and define the subset F ⊂
{
f : {1, · · · , dh} → {1, · · · , n2 +m2}

}

by

F =
{
f : {1, · · · , dh} → {1, · · · , n2 +m2}| s.t. f |{∑j<i(hj+1)+1,··· ,∑j≤i(hj+1)} is constant for all i ≤ n2

}

i.e. all the values belonging to one hi are equal.
The complement of this set is given by

F ′ =
{
f : {1, · · · , dh} → {1, · · · , n2 +m2}| s.t. ∃ i s.t. f |{∑j<i(hj+1)+1,··· ,∑j≤i(hj+1)} is not constant

}
.

Define

D̃ :=
∏

h1,··· ,hn1

⊕

F

⊕

j1,··· ,jn2

Ch1 · · ·Chn1C0 · · ·C0Cj1 · · ·Cjn2
C0 · · ·C0(

diag{i|f(i)=n2+m2} · · · diag{i|f(i)=1}(C om(−,−)⊗ · · · ⊗ C om(−,−)︸ ︷︷ ︸
dh

))

and

D̃′ :=
∏

h1,··· ,hn1

⊕

F ′

⊕

j1,··· ,jn2

Ch1 · · ·Chn1C0 · · ·C0Cj1 · · ·Cjn2
C0 · · ·C0(

diag{i|f(i)=n2+m2} · · · diag{i|f(i)=1}(C om(−,−)⊗ · · · ⊗ C om(−,−)︸ ︷︷ ︸
dh

)).

Then we can show:

Lemma 3.9. Both D̃ and D̃′ are subcomplexes of D and we have a splitting

D ∼= D̃ ⊕ D̃′.
Proof. We need to show that the coboundary maps preserve the decomposition. Recall that the j–th cobound-
ary map belonging to a hi doubles the information of the h1 + 1 + · · ·+hi−1 + 1 + j–th factor and hence adds
in the same value for f . So if f was constant on {∑j<i hj + i, · · · ,∑j≤i hj + i} before, it will stay constant

on {∑j<i hj + i, · · · ,∑j≤i hj + i+ 1} (and on all other intervals, since they did not get touched). Similarly,
if f was not constant on one of the intervals, it cannot become constant that way. This proves that both
complexes are actual subcomplexes and hence the lemma is proven. �

Lemma 3.10. The complex D̃′ has trivial homology.

Proof. Recall that

D̃′ =
∏

h1,··· ,hn1

⊕

F ′

⊕

j1,··· ,jn2

Ch1 · · ·Chn1C0 · · ·C0Cj1 · · ·Cjn2
C0 · · ·C0(

diag{i|f(i)=n2+m2} · · · diag{i|f(i)=1}(C om(−,−)⊗ · · · ⊗ C om(−,−)︸ ︷︷ ︸
dh

)).
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We give a decomposition of F ′ into disjoint sets which are preserved by the boundary and coboundary

maps. This gives a decomposition of D̃′ into a direct sum of chain complexes.
Set F ′1 =

{
f ∈ F ′, f |{1,··· ,h1+1} not constant

}
and in general

F ′t =
{
f ∈ F ′, f |{∑j<i(hj+1)+1,··· ,∑j≤i(hj+1)} const. for all i < t, f |{∑j<t(hj+1)+1,··· ,∑j≤t(hj+1)} not const.

}
,

i.e. F ′t consists of those functions which are constant on the first t− 1 intervals and non-constant on the t–th
one.

The coboundary maps send an element in F ′t to an element in the same F ′t since they preserve the set of
values of f on an interval. So F ′ =

∐
t F
′
t and

D̃′ =
⊕

t

D̃′t

with

D̃′t =
∏

h1,··· ,hn1

⊕

f∈F ′t

⊕

j1,··· ,jn2

Ch1 · · ·Chn1C0 · · ·C0Cj1 · · ·Cjn2
C0 · · ·C0(

diag{i|f(i)=n2+m2} · · · diag{i|f(i)=1}(C om(−,−)⊗ · · · ⊗ C om(−,−)︸ ︷︷ ︸
dh

)).

Define the multi-cosimplicial chain complex

A•,··· ,•

=
⊕

f∈F ′t

⊕

j1,··· ,jn2

Cj1 · · ·Cjn2
C0 · · ·C0(diag{i|f(i)=n2+m2} · · · diag{i|f(i)=1}(C om(−,−)⊗ · · · ⊗ C om(−,−)),

thus

D̃′t =
∏

h1,··· ,hn1

Ch1 · · ·Chn1C0 · · ·C0A•,··· ,•.

Since changing the order in the product total complex is an isomorphism, we can totalize first in the t–th
direction and get

D̃′t ∼=
∏

h1,··· ,hn1

Ch1 · · ·Chn1C0 · · ·C0ChtA•,··· ,•.

We view this as a double chain complex with the first differential the totalization of all hi besides ht and the
second the totalization of the t–th direction and the chain differential of A•,··· ,•. We want to give a retraction
of the total complex of this double complex. Giving a retraction of the double complex is a chain homotopy

equivalence between the double complex and zero. By Proposition 3.7 this yields a quasi-isomorphism D̃′i to
0.

Let A•,··· ,•t = C∗(A•,··· ,•) be the multi-simplicial cochain chain complex where we applied the Moore functor
in the t–th direction. A contraction of this cochain complex for each multi-simplicial degree compatible with

all the other coboundary maps gives a prove that the associated chain complex D̃′t is acyclic.

We need to define a map s : D̃′t → D̃′t such that dt ◦s+s◦dt = id. We will actually give a map s : D̃′t → D

fulfilling this property. Since we have split D into direct summands, the projection of this map to D̃′t gives
the contraction we asked for.

Fix f ∈ F ′t and let x ∈ A•,··· ,•t be in the summand belonging to f . Denote by sit the codegeneracies of the
t–th cosimplicial set.

Let u(x) be minimal such that f(
∑
j<t hj + i+ u(x)) 6= f(

∑
j<t hj + i+ u(x) + 1) (u(x) exists since f was

not constant on that interval). Define

s(x)h1,··· ,hn
= (−1)ht+u(x)+1s

u(x)
t (x)h1,··· ,hn

= (−1)ht+u(x)+1s
u(x)
t (xh1,··· ,ht+1,··· ,hn

).

This map is a retraction, which can be checked by using the simplicial identities several times (and is
omitted here). �
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3.5. Applying Eilenberg-Zilber to unify outputs. Since we requested the functions in F defining D̃ to
be constant on the intervals belonging to the hi, a lot of data is redundant. Hence, we rewrite

D̃ ∼=
⊕

f :{1,··· ,n1+m1}
→{1,··· ,n2+m2}

∏

h1,...,hn1

⊕

j1,··· ,jn2

Ch1 · · ·Chn1C0 · · ·C0Cj1 · · ·Cjn2
C0 · · ·C0(

diag{i|f(i)=1} · · · diag{i|f(i)=n2+m2}(C om(−,−)⊗ · · · ⊗ C om(−,−)︸ ︷︷ ︸
n1+m1

)).

So far we have shown D̃ ' N where the map is the embedding. Next, we show that D̃ is quasi-isomorphic

to yet another complex D̂, which we then are able to describe explicitly. Furthermore, the quasi-isomorphism
is given by the Eilenberg-Zilber map and corresponds to the composition with x2 in the elements of Definition
3.3.

Define

D̂ :=
⊕

f :{1,··· ,n1+m1}
→{1,··· ,n2+m2}

∏

h1,...,hn1

⊕

l1,...,ln1+m1

li=0 if f(i)>n2

Ch1Cl1(C om(−,−))⊗ · · · ⊗ Chn1Cln1
(C om(−,−)))

⊗ Cln1+1
(C om(1,−))⊗ · · · ⊗ Cln1+m1

(C om(1,−))

which is a subcomplex of
⊕

f

Nat
(

[n1
m1], [

|f−1(1,··· ,n2)|
|f−1(n2+1,···n2+m2)|]

)
.

Instead of summing over all li with the condition that li = 0 if f(i) > 0, we can introduce a new summation
by first summing over natural numbers ji for 1 ≤ i ≤ n2 (and setting jn2+1 . . . , jn2+m2

equal to zero) and
then summing over all li such that

∑
f(i)=t li = jt, so

D̂ ∼=
⊕

f :{1,··· ,n1+m1}
→{1,··· ,n2+m2}

∏

h1,...,hn1

⊕

j1,··· ,jn2

⊕

l1,...,ln1+m1∑
f(i)=t li=jt

Ck1 · · ·Chn1Cl1 · · ·Cln1+m1
(C om(−,−)⊗ · · · ⊗ C om(−,−)⊗ C om(1,−)⊗ · · · ⊗ C om(1,−))

where Chi and Cli correspond to the i–th factor in the tensor product.
We now reorder the way we totalize the li’s: We can first totalize in all the directions of each subset of li’s

with f(i) = j for all j and then totalize all those together. For an ordered set M = {m1, · · · ,mn} we write
CM = Cmn · · ·Cm1 . Given a multisimplicial set A and a fixed t applying Eilenberg-Zilber in all directions
with f(i) = t

⊕

li
f(i)=t∑

f(i)=t li=jt

C{li}A ' Cjt diag{i|f(i)=t}A

and hence after applying Proposition 3.7 and Proposition 3.8 we get a quasi-isomorphism

EZ : D̂ → D̃ ∼=
⊕

f :{1,··· ,n1+m1}
→{1,··· ,n2+m2}

∏

h1,...,hn1

⊕

j1,··· ,jn2

Ch1 · · ·Chn1C0 · · ·C0Cj1 · · ·Cjn2
C0 · · ·C0(

diag{i|f(i)=1} · · · diag{i|f(i)=n2+m2}(C om(−,−)⊗ · · · ⊗ C om(−,−)︸ ︷︷ ︸
n1+m1

))

which on elements applies the Eilenberg-Zilber morphism to the outputs which have equal value under f .
By the definition of the Eilenberg-Zilber map (cf. [Wei95, Sec. 8.5]) this corresponds to taking the shuffle
product and hence is multiplication with the element x2 given in Definition 3.3 (which was independent of
the choice of the hi’s).

3.6. Describing a subcomplex in terms of operations. As a last step we need to show that D̂ is
generated by infinite sums of linear combinations of elements of the form x1 as described in Definition 3.3.

We split D̂ into summands D̂f for f : {1, · · · , n1 +m1} → {1, · · · , n2 +m2}. Then D̂f is given by
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D̂f :=
∏

h1,...,hn1

⊕

l1,...,ln1+m1

li=0 if f(i)>n2

Ch1Cl1(C om(−,−))⊗ · · · ⊗ Chn1Cln1
(C om(−,−))

⊗ Cln1+1(C om(1,−))⊗ · · · ⊗ Cln1+m1
(C om(1,−))

Furthermore, C∗C0(C om(−,−)) = C∗(C om(−, 1)) is the cochain complex C om(h, 1) ∼= ∗ in each degree
h − 1 and has differentials 0 and the identity, alternately. The inclusion of the cochain complex with only
one nonzero entry Z = C0C0(C om(−,−)) in degree 0 is a homotopy equivalence and hence induces a quasi-
isomorphism on total complexes. So after reordering, we get a quasi-isomorphism

D̂f '
∏

h1,...,hn1

f(i)≤n2

⊕

l1,...,ln1+m1

f(i)≤n2

Ch1Cl1(C om(−,−))⊗ · · · ⊗ Chn1Cln1
(C om(−,−))

⊗ Cln1+1
(C om(1,−))⊗ · · · ⊗ Cln1+m1

(C om(1,−))

⊗ C0C0(C om(−,−))⊗ · · · ⊗ C0C0(C om(−,−))⊗ C0(C om(1,−))⊗ · · · ⊗ C0(C om(1,−))

The terms C0C0(C om(−,−)) correspond to those i with i ≤ n1 and f(i) > n2, whereas the terms of the
form C0(C om(1,−)) give those i with i > n1 and f(i) > n2. The first ones are spanned by the element
p ∈ Nat([10], [

0
1]) and the second ones by id ∈ Nat([01], [

0
1]).

Now we denote c = |f−1({1, · · · , n2})| and c′ = |f−1({1, · · · , n2}) ∩ {1, · · · , n1}| and after relabeling the
hi and li are left to compute
∏

h1,...,hc′

⊕

l1,··· ,lc
Ch1Cl1(C om(−,−))⊗ · · · ⊗ Chc′Clc′ (C om(−,−))⊗ Clc′+1

(C om(1,−))⊗ · · · ⊗ Clc(C om(1,−))

which is congruent to
∏

h1,...,hc′

⊕

l1,··· ,lc′
C
h1
Cl1(C om(−,−))⊗ · · · ⊗ Chc′Clc′ (C om(−,−))

⊗
⊕

lc′+1,...,lc

Clc′+1
(C om(1,−))⊗ · · · ⊗ Clc(C om(1,−)).

We know that

Cl(C om(1,−)) ∼= Cl(S
1) =





1 if l = 0

y if l = 1

0 else.

In terms of operations, 1 corresponds to sh0 and y to B0 and we thus conclude that the complex
⊕

lc′+1,...,lc

Clc′+1
(C om(1,−))⊗ · · · ⊗ Clc(C om(1,−))

is homotopy equivalent to the complex spanned by tensor products of sh0 and B0.
Now we can deal with the last part of the complex: Using the elements shk and Bk which we constructed

combinatorially earlier on, we can describe a general element in the homology of the above product. This
implies that the subcomplex generated by these cycles is quasi-isomorphic to the complex we were computing
so far.

For j = 0, 1 let c̃j,hi ∈ ChiChi+j(C om(−,−)) be defined via c̃0,hi = shhi and c̃1,hi = Bhi . Completely
analogous to the proof of Theorem 2.8, we can show:

Proposition 3.11. The complex
∏

hi

⊕

li

C
h1
Cl1(C om(−,−))⊗ · · · ⊗ Chc′Clc′ (C om(−,−))

is quasi-isomorphic to the subcomplex which in degree n is given by elements of the form

x =
∑

s:{1,···c′}→{0,1}∑
s(i)=n

∞∑

h1=0

· · ·
∞∑

hc′=0

rsh1,··· ,hc′
c̃s(1),h1 ⊗ · · · ⊗ c̃s(c′),hc′

with rsh1,··· ,hc′
∈ Z.
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Again, in each degree this is a finite sum, since all the (c̃hi)j = 0 for j < hi. More explicitly,

(x)j1,··· ,jc′ =
∑

s:{1,···c′}→{0,1}∑
s(i)=n

j1′∑

h1=0

· · ·
jc′∑

hc′=0

rh1,··· ,hc′ (c̃
s(1),h1)j1 ⊗ · · · ⊗ (c̃s(c

′),hc′ )jc′ .

Proof. The proof is an iteration of the argument in Section 2.
Denote by X the subcomplex described in the theorem, i.e.

Xn =





∑

s:{1,···c′}→{0,1}∑
s(i)=n

∞∑

h1=0

· · ·
∞∑

hc′=0

rsh1,··· ,hc′
c̃s(1),h1 ⊗ · · · ⊗ c̃s(c′),hc′

∣∣∣∣∣∣∣∣
rsh1,··· ,hc′

∈ Z





with trivial differential. We are going to multifilter the total complex and the complex X.

(1) For fixed numbers h1, . . . , hc′ ∈ N we define

Xh1,...,hc′
n =





∑

s:{1,···c′}→{0,1}∑
s(i)=n

rsc̃s(1),h1 ⊗ · · · ⊗ c̃s(c′),hc′

∣∣∣∣∣∣∣∣
rs ∈ Z





The map G
h1,...,hc′
c′ : Xh1,...,hc′ →

(
C
h1
C∗(C om(−,−))⊗ · · · ⊗ Chc′C∗(C om(−,−))

)
[−∑hi],

i.e. to the shifted tensor product of the chain complexes C
h1
C∗(C om(−,−)) defined by sending

c̃s(1),h1 ⊗ · · · ⊗ c̃s(c
′),hc′ to (c̃s(1),h1)h1

⊗ · · · ⊗ (c̃s(c
′),hc′ )hc′ is a quasi-isomorphism. Since all the

involved chains are free, the tensor product commutes with homology. Then this map is the c′–fold
tensor product of the map in Corollary 2.7 and hence an isomorphism on homology.

(2) Fix 0 ≤ i ≤ c′ and h1, · · · , hi ∈ N. Now define

Xh1,...,hi
n =





∑

s:{1,···c′}→{0,1}∑
s(k)=n

∞∑

hi+1=0

· · ·
∞∑

hc′=0

rshi+1,··· ,hc′
c̃s(1),h1 ⊗ · · · ⊗ c̃s(c′),hc′

∣∣∣∣∣∣∣∣
rshi+1,··· ,hc′

∈ Z





i.e. the complex where the values of the first i indices hj is fixed. We next prove that the map

Gh1,··· ,hi

i : Xh1,...,hi →
∏

hi+1,...,hc′

⊕

l1,...,lc′

C
h1
Cl1(C om(−,−))⊗ · · · ⊗ Chc′Clc′ (C om(−,−))

defined on generators by

c̃s(1),h1 ⊗ · · · ⊗ c̃s(c′),hc′ 7→ (c̃s(1),h1)h1
⊗ · · · ⊗ (c̃s(i),hi)hi

⊗ c̃s(i+1),hi+1 ⊗ · · · ⊗ c̃s(c′),hc′

is a quasi-isomorphism. For i = 0 this gives the desired result.
The proof goes by decreasing induction on i. The case i = c′ this was shown in the previous step.

Now choose 0 ≤ i < c′ and assume the statement holds for i + 1. We view the complex as the total
complex of the double complex where we first totalized all but the hi+1 direction and then totalize
the last direction. Thus we can filter the complex by hi+1, i.e. the p-th term in the filtration is given
by

Fp =
∏

hi+1≥p,hi+2,...,hc′

⊕

l1,...,lc′

C
h1
Cl1(C om(−,−))⊗ · · · ⊗ Chc′Clc′ (C om(−,−)).

By [Wei95, Sec. 5.6] this filtration is exhaustive and complete. Again, its E1-page is given by taking
homology in the vertical direction.

On the other hand we can define a similar filtration of Xh1,...,hi :

Fp(X
h1,...,hi
n ) =





∑

s:{1,···c′}→{0,1}∑
s(k)=n

∞∑

hi+1≥p
· · ·

∞∑

hc′=0

rshi+1,··· ,hc′
c̃s(1),h1 ⊗ · · · ⊗ c̃s(c′),hc′

∣∣∣∣∣∣∣∣
rshi+1,··· ,hc′

∈ Z





Since c̃
s(i),hi

k = 0 for k < hi and any s(i), the map Gh1,··· ,hi

i respects the filtration.
Furthermore, this filtration is exhaustive (since it starts with the whole complex) and complete

(as we take infinite sums, i.e. the product over hi). It collapses on the E0–page which then as the
quotient Fp(X

h1,...,hi
n )/Fp+1(Xh1,...,hi

n ) consists of all those terms where hi+1 = p. Hence E0
p,q =

E1
p,q
∼= Xh1,...,p

q . The map Gh1,··· ,hi

i on the p-th quotient now is precisely Gh1,··· ,hi,p
i+1 and thus by
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induction it induces an isomorphism on the E1–pages of two complete, exhaustive spectral sequences.
Hence by the Eilenberg-Moore comparison theorem (see for example [Wei95, Theorem 5.1]) it is an
isomorphism on homology which proves the claim.

The proposition now follows from the case i = 0, since G∅0 is the inclusion of X into the total
complex.

�
Now we are finally able to put everything together and prove the main theorem:

Proof of Theorem 3.4. We have seen that the composition

D̂
EZ−−→ D̃ ↪→ Nat([n1

m1], [
n2
m2])

is a quasi-isomorphism.
The first map actually splits into quasi-isomorphisms

D̂f
EZ−−→ D̃f

given by multiplication with the element x2 described in Definition 3.3. Moreover, taking the results of the

last section together, we have seen that D̂f ⊂ Nat([n1
m1], [

c
n1+m1−c]) is spanned by infinite linear combinations

of elements as described above. The only difference of these elements to the elements described in Definition
3.3 is, that we first chose f and then the ki’s. However, this commutes (it is equivalent to pulling out the
direct sum over the functions f out of the product over the ki’s). Hence the result follows. �
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NATURAL OPERATIONS ON THE HOCHSCHILD COMPLEX OF

COMMUTATIVE FROBENIUS ALGEBRAS VIA THE COMPLEX OF

LOOPED DIAGRAMS

ANGELA KLAMT

Abstract. We define a dg-category of looped diagrams which we use to construct
operations on the Hochschild complex of commutative Frobenius dg-algebras. We show
that we recover the operations known for symmetric Frobenius dg-algebras constructed
using Sullivan chord diagrams as well as all formal operations for commutative algebras
(including Loday’s lambda operations) and prove that there is a chain level version of
a suspended Cacti operad inside the complex of looped diagrams. This recovers the
suspended BV algebra structure on the Hochschild homology of commutative Frobenius
algebras defined by Abbaspour and proves that it comes from an action on the Hochschild
chains.

Introduction

To a dg-algebra A one associates the Hochschild chain complex C∗(A,A). Operations
of the form

C∗(A,A)⊗n1 ⊗A⊗m1 → C∗(A,A)⊗n2 ⊗A⊗m2

have been investigated by many authors. We are interested in those operations which
exist for all algebras of a certain class, more concretely all algebras over a given operad
or PROP. In [Wah12], the complex of so-called formal operations is introduced, a more
computable complex approximating the complex of all natural operations for a given
class of (A∞–)algebras. In this paper we build a combinatorial complex mapping to the
complex of formal operations for the case of commutative Frobenius dg-algebras, defining
in particular a large family of operations for commutative Frobenius dg-algebras.

Before describing the complex of operations, we recall some of the operations known
so far, which we want to be covered by our new complex.

One of the main motivations for investigating operations on Hochschild homology is
given by string topology. String topology started in 1999 when Chas and Sullivan in
[CS99] gave a construction of a product H∗(LM) ⊗ H∗(LM) → H∗−d(LM) for M a
closed oriented manifold of dimension d and LM the free loop space on M , that makes
H∗(LM) into a BV-algebra. Afterward, more operations were discovered and in [God07]
the structure of an open-closed HCFT was exhibited on the pair (H∗(M), H∗(LM)),
yielding a whole family of operations

H∗(LM)⊗n2 ⊗H∗(M)⊗m2 → H∗(LM)⊗n1 ⊗H∗(M)⊗m1

parametrized by the moduli space of Riemann surfaces.
Taking coefficients in a field and M to be a 1-connected closed oriented manifold, Jones

[Jon87] proved that there is an isomorphism

HH∗(C−∗(M), C−∗(M)) ∼= H−∗(LM).

Moreover, if M is a formal manifold, i.e. if we have a weak equivalence C∗(M) ' H∗(M)
preserving the multiplication, we obtain an isomorphism HH∗(C−∗(M), C−∗(M)) ∼=
HH∗(H−∗(M), H−∗(M)). Thus, under these conditions, operations

HH∗(H−∗(M), H−∗(M))⊗n1⊗H−∗(M)⊗m1 → HH∗(H−∗(M), H−∗(M))⊗n2⊗H−∗(M)⊗m2

1
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are equivalent to operations

H−∗(LM)⊗n1 ⊗H−∗(M)⊗m1 → H−∗(LM)⊗n2 ⊗H−∗(M)⊗m2 ,

which are dual to the operations we ask for in string topology. On the other hand, H−∗(M)
is a commutative Frobenius algebra, thus constructing operations on the Hochschild ho-
mology of commutative Frobenius algebras gives us (dual) string operations. This cor-
respondence can be applied even more generally. Working with a field of characteristic
zero and taking the deRham complex Ω•(M) instead of singular cochains, in [LS07] Lam-
brechts and Stanley prove that there is a commutative differential graded Poincaré duality
algebra A weakly equivalent to Ω•(M). A Poincaré duality algebra is a graded version
of a commutative Frobenius algebra. Hence, the Hochschild complex is isomorphic to
HH∗(A−∗, A−∗) and string operations on H−∗(LM) correspond to operations on the
Hochschild homology of HH∗(A−∗, A−∗).

In [GH09] Goresky and Hingston investigate a product on the relative cohomology
H∗(LM,M) that is an operation which is not part of the HCFT mentioned above. We
define a product on the Hochschild homology of commutative Frobenius dg-algebras (or
more precisely on the split summand of positive Hochschild degree) and show that it is
part of a shifted BV-structure. Such a product also occurs in [Abb13a, Section 7] and
[Abb13b, Section 6]. Simultaneously with the aforementioned paper we conjecture that
this product is the operation corresponding to the Goresky-Hingston product under the
above isomorphism (see Conjecture 2.14).

Since commutative Frobenius algebras are in particular symmetric, we want our com-
plex to recover all operations known for symmetric Frobenius algebras. Following the
work of Kontsevich and Soibelman for the action of the chains of the moduli space of
open-closed surfaces on the Hochschild chains of A∞-algebras (cf. [KS09]), in [TZ06]
Tradler and Zeinalian show that a certain chain complex of Sullivan chord diagrams acts
on the Hochschild cochain complex of a symmetric Frobenius algebra (a dual construc-
tion on the Hochschild chains was done by Wahl and Westerland in [WW11]). In [Wah12,
Theorem 3.8] this complex is shown to give all formal operations for symmetric Frobenius
algebras up to a split quasi-isomorphism.

On the other hand, every commutative Frobenius dg-algebra is of course a differential
graded commutative algebra. In [Kla13] we give a description of the homology of all
formal operations for differential graded commutative algebras in terms of Loday’s shuffle
operations (defined in [Lod89]) and the Connes’ boundary operator. Well-known opera-
tions which are covered in this complex are Loday’s λ–operations and the shuffle product
C∗(A,A)⊗ C∗(A,A)→ C∗(A,A).

The chain complex of operations on commutative Frobenius dg-algebras constructed in
this paper recovers all the operations just mentioned: The shifted BV-structure, the oper-
ations coming from Sullivan diagrams and the more classical operations on the Hochschild
chains of commutative algebras. In addition, this complex provides a large class of other
non-trivial operations and can be used to compute relations between the previously known
operations.

We now present our results in more detail. The main new object introduced in this
paper is what we call a looped diagram. A looped diagram of type [

n2
(m1+m2,n1)] is a

pair (Γ,C ) where Γ can be described as an equivalence class of one-dimensional cell
complexes (a “commutative Sullivan diagram”) built from n2 circles by attaching chords
with n1 + m1 + m2 marked points on the circles and C is a collection of n1 loops on Γ
starting at the marked points labeled 1 to n1. An example of a [ 1

(2,2)]–looped diagram is
given in Figure 1.

The set of looped diagrams forms a multi-simplicial set with the boundary maps given
by identifying neighbored marked points on the circles and taking the induced loops. The
corresponding reduced chain complex defines lD([n1

m1], [
n2
m2]), the chain complex of looped

diagrams. Inside lD([n1
m1], [

n2
m2]), we have a subcomplex lD+([n1

m1], [
n2
m2]) of diagrams with an
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1

2

4

3

Figure 1. A [ 1
(2,2)]–looped diagram

open boundary condition which we use to construct operations on commutative cocom-
mutative open Frobenius dg-algebras (commutative Frobenius algebras without a counit).
In both complexes we can compose elements, i.e. we in fact construct dg-categories lD
and lD+ with objects N × N and morphism spaces lD([n1

m1], [
n2
m2]) and lD+([n1

m1], [
n2
m2]) and

show:

Theorem A (see Theorem 2.3). For any commutative Frobenius dg-algebra A there is
a map of chain complexes

C∗(A,A)⊗n1 ⊗A⊗m1 ⊗ lD([n1
m1], [

n2
m2])→ C∗(A,A)⊗n2 ⊗A⊗m2

natural in A and commuting with the composition in lD.
For any commutative, cocommutative open Frobenius dg-algebra A, we have a chain

map

C∗(A,A)⊗n1 ⊗A⊗m1 ⊗ lD+([n1
m1], [

n2
m2])→ C∗(A,A)⊗n2 ⊗A⊗m2

natural in A and preserving the composition of lD. Moreover, all these operations are
formal operations in the sense of [Wah12, Section 2].

Moving on, we enlarge lD([n1
m1], [

n2
m2]) to a complex ilD([n1

m1], [
n2
m2]), where we take prod-

ucts over specific types of diagrams. In this complex not all elements are composable, but
we can show:

Theorem B (see Theorem 2.4). For A a commutative Frobenius dg-algebra there is a
map of chain complexes

C∗(A,A)⊗n1 ⊗A⊗m1 ⊗ ilD([n1
m1], [

n2
m2])→ C∗(A,A)⊗n2 ⊗A⊗m2

natural in A and commuting with the composition of composable elements in ilD. Again,
for A a commutative, cocommutative open Frobenius dg-algebra, we have a chain map

C∗(A,A)⊗n1 ⊗A⊗m1 ⊗ ilD+([n1
m1], [

n2
m2])→ C∗(A,A)⊗n2 ⊗A⊗m2

natural in A.

We first explain how we recover the operations known from symmetric Frobenius al-
gebras. We denote the complexes of Sullivan diagrams by SD([n1

m1], [
n2
m2]) (see Section 1.1

for a definition). As already mentioned, Sullivan diagrams define natural operations for
symmetric Frobenius algebras, i.e. for A a symmetric Frobenius dg-algebra there is an
action

C∗(A,A)⊗n1 ⊗A⊗m1 ⊗ SD([n1
m1], [

n2
m2])→ C∗(A,A)⊗n2 ⊗A⊗m2

natural in A. There is a canonical way to build a looped diagram out of a Sullivan
diagram Γ and thus there is a dg-map K : SD([n1

m1], [
n2
m2]) → lD([n1

m1], [
n2
m2]) commuting

with the composition of diagrams. In Proposition 2.7 we show that both actions (the
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one of SD and the one of lD) are compatible, i.e. that given a commutative Frobenius
dg-algebra A the diagram

C∗(A,A)⊗n1 ⊗A⊗m1 ⊗ SD([n1
m1], [

n2
m2])

id⊗n1⊗id⊗m1⊗K
�� ++

C∗(A,A)⊗n1 ⊗A⊗m1 ⊗ lD([n1
m1], [

n2
m2])

// C∗(A,A)⊗n2 ⊗A⊗m2

commutes.
Second, restricting to those diagrams which only have leaves and no chords glued in,

we define a subcomplex iplDC om([n1
m1], [

n2
m2]) of ilD+([n1

m1], [
n2
m2]). This subcomplex defines

operations for commutative algebras and contains Loday’s lambda operations. More
precisely, by [Kla13, Theorem 3.4] it gives all formal operations of differential graded
commutative algebras up to quasi-isomorphism. So in particular the complex of looped
diagrams includes (up to quasi-isomorphism) all formal operations on the Hochschild
chains of differential graded commutative algebras.

Last, we define another subcomplex plD>0
cact(n1, n2) ⊂ lD+([n1

0 ], [n2
0 ]) with plD>0

cact(n1, n2)
the PROP coming from an operad plD>0

cact(n, 1). We show that a topological version of this
operad is homeomorphic to a topologically desuspended Cacti operad and hence deduce:

Theorem C (see Theorem 4.7). The complex plD>0
cact(n, 1) is a chain model for the

twisted operadic desuspended BV-operad, i.e.

H∗(plD>0
cact(−, 1)) ∼= s̃−1BV

as graded operads.

Here s̃−1 denotes a desuspension with twisted sign. The sign twist comes from the fact
that we actually work with topological operads and suspend topologically by smashing
with the sphere operad (see Definition 4.3). As a corollary of the above theorem we can
deduce:

Corollary D (see Corollary 4.8). There is a desuspended BV-algebra structure on the
Hochschild homology of a commutative cocommutative open Frobenius dg-algebra (in
particular on the Hochschild homology of a commutative Frobenius dg-algebra) which
comes from an action of a chain model of the suspended Cacti operad on the Hochschild
chains. The BV-operator is the ordinary BV-operator on positive Hochschild degrees and
trivial on Hochschild degree zero.

The paper is organized as follows: The combinatorics used in the paper are given in
Section 1. We start with recalling the definitions of black and white graphs and Sullivan
diagrams in Section 1.1. In Section 1.2 we define looped diagrams and show that lD and
lD+ are well-defined dg-categories. The two following sections 1.3 and 1.4 are very techni-
cal and not needed for the actual construction of operations (they will be used to construct
the commutative operations and the action of the Cacti operad). For getting an overview
over the results, we suggest the reader to skip them and come back later, if needed. More
precisely, in Section 1.3 we prove that the subcomplex of diagrams with a constant loop
is a split subcomplex and investigate how the composition looks like on the split comple-
ment of non-constant diagrams. In Section 1.4 we give a finer subdivision of lD>0 on the
level of abelian groups and afterward take the product over all the subgroups to get the
complexes ilD([n1

m1], [
n2
m2]) and ilD+([n1

m1], [
n2
m2]). Composition is not well-defined on these

complexes, but we give some subcomplexes for which composition with every other ele-
ment is well-defined. Section 2 deals with the formal operations on the Hochschild chains
of commutative Frobenius dg-algebras. We start by recalling the definition of Frobenius
algebras in Section 2.1 and the definition and results on formal operations in Section 2.2.
In Section 2.3 we explain how to build formal operations out of looped diagrams, i.e.
prove Theorem A and Theorem B. In Section 2.4 we investigate the connection to the
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operations on symmetric Frobenius algebras stated above. Finally, in Section 2.5 we show
how the shuffle product, the Chas-Sullivan coproduct, the BV-operator and the shifted
commutative product defined in [Abb13a, Section 7] and [Abb13b, Section 6] look like in
terms of looped diagrams and use the techniques of looped diagrams to prove a relation
between the new product and the BV-operator. In Section 3 we define the subcomplexes
of graphs giving the operations of commutative algebras and recall [Kla13, Theorem 3.4]
in terms of these diagrams. In Section 4 we define the complex plD>0

cact(n1, n2), prove
Theorem C and thus obtain the action of a desuspended cacti operad on the Hochschild
chains of a commutative Frobenius dg-algebra (see Corollary D).

In Appendix A we have listed all complexes defined in the paper together with a short
explanation and reference. We hope that this is helpful to keep track of the definitions
throughout the paper.
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Foundation through the Centre for Symmetry and Deformation (DNRF92).

Contents

Introduction 1
Acknowledgements 5
Conventions 5
1. Definitions of graph complexes 6
1.1. Graphs 6
1.2. Commutative Sullivan diagrams and looped diagrams 7
1.3. The split subcomplex of non-constant diagrams 15
1.4. The type of a diagram and products of diagrams 18
2. The natural operations for commutative Frobenius algebras 21
2.1. The category of commutative Frobenius algebras 21
2.2. Formal operations 22
2.3. Building operations out of looped diagrams 26
2.4. Connection to non-commutative operations 27
2.5. First examples of operations and relations 28
3. The operations coming from commutative algebras 30
4. The suspended cacti operad and its action 35
4.1. Operadic constructions 35
4.2. The cacti-like diagrams 36
4.3. The cacti operad 37
4.4. Result and proof 39
Appendix A. An overview over the complexes of looped diagrams 43
References 44

Conventions. If not specified otherwise we work in the category Ch of chain complexes
over Z. We use the usual sign convention on the tensor product, i.e. the differential dV⊗W
on V ⊗W is given by dV⊗W (v ⊗ w) = dV (v)⊗ w + (−1)|v|v ⊗ dW (w).

A dg-category E is a category enriched over chain complexes, i.e. the morphism sets
are chain complexes. We use composition from the right, i.e. we require the composition
maps E(m,n)⊗E(n, p)→ E(m, p) to be chain maps. A dg-functor is an enriched functor
Φ : E → Ch, so the structure maps Φ(m)⊗ E(m,n)→ Φ(n) are chain maps.
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Given a graded abelian group A we denote by A[k] the shifted abelian group with
(A[k])n = An−k. Throughout the paper the natural numbers are always assumed to
include zero.

1. Definitions of graph complexes

In this section we define the chain complex of looped diagrams and its subcomplex of
positive diagrams. The complexes are an extension of a quotient of the chain complex of
Sullivan diagrams which we first recall. We mainly follow [WW11, Section 2].

1.1. Graphs. A graph is a tuple (V,H, s, i) with V the vertices, H the half-edges, s :
H → V the source map and i : H → H an involution. A half-edge is a leaf if it is a
fixed point under i. A fat graph is a graph with a cyclic ordering of the half-edges at the
vertices. The cyclic orderings define boundary cycles on the graph which correspond to
the boundary cycles of the surface one gets by thickening the graph (for more details see
[WW11, Section 2.1]).

In the graphical representation the half-edges are glued to the vertices using s and to
each other using i.

An orientation of a graph is a unit vector in det(R(V q H)). Note that any odd-
valent fat graph has a canonical orientation and that an orientation of a fat graph with
even-valent vertices is given by an ordering of the (even-valent) vertices together with a
choice of a start half-edge hi1 for each (even-valent) vertex (changing the position of the
odd-valent vertices in the ordering or changing the choice of their start half-edge does not
change the orientation). Denoting the half-edges belonging to a vertex vi by hij starting
from the start half-edge and following the cyclic ordering, the canonical orientation is
given by

v1 ∧ h1
1 ∧ · · ·h1

n1
∧ v2 ∧ . . . ∧ hrnr

.

A black and white graph is an oriented fat graph where we label the vertices black or
white and allow the white vertices to have any positive valence, whereas the black vertices
are requested to have valence at least three. The white vertices are ordered and each white
vertex is equipped with a choice of a start half-edge. A [ pm]–graph is a black and white
graph with p white vertices and m labeled leaves, quotiening out the equivalence relation
of forgetting unlabeled leaves which are not the start half-edge of a white vertex. In the
graphical representation we mark the start half-edges by black blocks. An example of a
[32]–graph is given in Figure 2(a). A special example of a [1n]–graph is the graph ln which
will play a crucial role in defining operations. This graph is given by attaching n leaves
to the white vertex and labeling them starting from the start half-edge (for an example
see Figure 2(b)). In general we omit the label v1 in the pictures if there is only one white
vertex.

v1

v3

v2

2

1

(a) A general black and white graph of degree
4

6

5

4

3

2

1

(b) The graph l6

Figure 2. A [32]–graph and the [16]–graph l6
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The degree of a black vertex of valence vb is given by vb − 3 whereas the degree of a
white vertex vw is defined as vw − 1. The degree of a black and white graph is the sum
of the degrees over all its vertices.

The differential of a black and white graph is given by the sum of all graphs obtained
by blowing up all vertices of degree at least 1 in all possible ways, i.e. splitting the set
of half-edges attached to the vertex into two subsets (respecting the cyclic ordering and
with at least 2 elements in each if the vertex was black) and adding an edge in between
these. For more details on the differential and examples see [WW11, Section 2.5].

The chain complex of [pn]–Sullivan diagrams is defined as a quotient of the above com-
plex of [pn]–graphs by the subcomplex spanned by the graphs with at least one black vertex
of valence at least 4 and the boundaries of these graphs. Hence an element in this complex
is an equivalence class of graphs with all its black vertices of valence exactly 3 and the
equivalence relation is generated by the relation shown in Figure 3.

1 4

2 3

∼
4

3

1

2

Figure 3. The equivalence relation on Sullivan diagrams

In [WW11, Theorem 2.7] it was shown that this complex is isomorphic to the complex
of Cyclic Sullivan chord diagrams defined in [TZ06, Def. 2.1].

The dg-category SD is defined to have pairs of natural numbers [nm] as objects and
morphism complexes SD([n1

m1], [
n2
m2]) ⊂ [ n1

n1+m1+m2
]–Sullivan diagrams the subcomplex of

the graphs with the first n1 leaves being sole labeled leaves in their boundary cycle. The
composition is defined in [WW11, Section 2.8].

We want to define looped diagrams as an enlargement of a quotient of these.

1.2. Commutative Sullivan diagrams and looped diagrams.

Definition 1.1. A [ pm]–commutative Sullivan diagram is an equivalence class of [ pm]–
Sullivan diagrams by forgetting the ordering at the black vertices, i.e. the chain complex
[ pm]− CSD of [ pm]–commutative Sullivan diagrams is the quotient of [ pm]–graphs by

• graphs with black vertices of valence at least 4,
• the boundaries of such graphs and
• reordering of the half-edges at black vertices.

An example of two equivalent [11]–commutative Sullivan diagrams is given in Figure 4.

1

∼

1

Figure 4. Two equivalent commutative Sullivan diagrams

Remark 1.2. Black and white graphs were defined with an orientation. As mentioned
above, any trivalent graph has a canonical orientation and so does every white vertex
(starting from the start half edge). Thus every Sullivan diagram has a canonical orienta-
tion. The relation we divide out is the commutativity relation together with the canonical
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orientation of the two graphs. From now on, we always work with the canonical orienta-
tion. However, the orientation was also used to define the sign of the differential and the
sign of the composition. We will spell out these sign explicitly, too.

In order to be able to define a composition, we need an additional structure analogous
to the one we lost going from Sullivan diagrams to commutative Sullivan diagrams. We
define a larger category of looped diagrams which includes all Sullivan diagrams without
free boundary as a subcategory.

Given a white vertex in a black and white graph with k half-edges attached to it, the
half-edges cut the circle around the white vertex into k parts. Given a labeling of the
white vertices v1, · · · , vp we label the segments at the vertex vi by si1, · · · , siki following
the ordering of the half-edges at vi. These segments inherit a canonical orientation from
the ordering at the white vertex and hence we can talk about their start and end. By −sij ,
we mean the segment with the opposite orientation, i.e. start and end got interchanged.
An example of the labeling of segments for one white vertex is given in Figure 5(a). An
arc component of a black and white graph is a set of half-edges and black vertices which
is path-connected with the paths in the graph not passing through a white vertex (i.e. in
pictures, a connected component of the graph after “deleting” the white vertices). For
example, the commutative Sullivan diagram in Figure 4 has one arc component, whereas
the underlying diagram of Figure 5(a) has two arc components (the one with the labeled
leaf and the one without).

1

s1
1

s1
2

s1
3

s1
4

(a) The segments around one white vertex

1

(b) The loop γ = {s1
2, s

1
4}

Figure 5. A commutative Sullivan diagram with segments and a loop
starting from leaf 1

Definition 1.3. A loop in a [ pm]–commutative Sullivan diagram from an arc component a
to itself is an ordered set of oriented segments of the boundary circles of the white vertices
{ε1s

i1
t1
, · · · , εrsirtr} for r ≥ 0, 1 ≤ i1, · · · , ir ≤ p and εi ∈ {−1, 1} such that the following

conditions hold:

(1) ε1s
i1
t1

starts at the arc component a.

(2) εrs
ir
tr ends at the arc component a.

(3) εw+1s
iw+1

tw+1
starts at the arc component at which εws

iw
tw ends (which can be at a

different white vertex!).

(4) εws
iw
tw 6= −εw+1s

iw+1

tw+1
.

The loop is called constant if the set of segments is empty, i.e. if r = 0.
A loop from a leaf k to itself is a loop starting at the arc component the leaf belongs

to.
The composition γ1 ∗ γ2 of loops γ1 and γ2 both starting at the same leaf k is the

concatenation of these two loops (see Figure 6).
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A loop γ starting at the leaf k is called irreducible if it cannot be written as the
composition of two non-trivial loops (i.e. the loop does not return to the arc component
of k before it finishes).

A positively oriented loop in a [ pm]–commutative Sullivan diagram is a loop such that
all orientations of the boundary segments are positive (i.e. εw = 1 for all w).

We draw a loop from a leaf by starting at the leaf and marking the segments of the
white vertex (with orientation). To keep track of their ordering, we also draw the loop
through arc components (dotted) even though this is not part of the data (i.e. changing
the way we walk through an arc component does not change the loop). This way, a loop
in a diagram is really represented by a loop in the picture. An example is given in Figure
5(b).

1

(a) γ1 = (s1
1)

1

(b) γ2 = (s1
2)

1

(c) γ1 ∗ γ2 = (s1
1, s

1
2)

Figure 6. Juxtaposition of loops

Definition 1.4. A [
p

(m,n)]–looped diagram is a [ p
n+m]–commutative Sullivan diagram with

n loops such that the i-th loop starts at the i-th labeled leaf.

An example of a [ 1
(0,2)]–looped diagram and an example of a [ 3

(0,2)]–looped diagram are
given in Figure 7. To indicate which path starts at which leaf we color the label of the
leaf with the same color as the corresponding loop.

1

2
v2

2

1

v1

v3

Figure 7. Two looped diagrams

The decomposition of the underlying commutative Sullivan diagram into connected
components gives a decomposition of the looped diagram into connected components,
since every loop has to stay in a connected component.

We want to make a complex out of these diagrams and thus need to define a differential.
The differential is defined just as for Sullivan diagrams, where we blow up every possible
pair of neighbored vertices at the white vertex with alternating sign (this is equivalent to
the sign given by orientations, cf. [WW11, Section 2.10]).
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For a [
p

(m,n)]–looped diagram (Γ, γ1, · · · , γn) the i-th blow up at the white vertex vk
is the [

p
(m,n)]–looped diagram (Γ′, γ′1, · · · , γ′n) where Γ′ is the blow up of Γ (as explained

in the end of Section 1.1) and the γ′l are given by the γl after forgetting the segment ski
whenever it was part of the loop and relabeling all skj for j > i. We define the differential
d to be the sum of all blow ups with the sign at each vertex vi alternating and starting

with (−1)1+
∑

j<i |vj |. Examples are given in Figure 8 and Figure 13.

1

d −

1

+

1

−
1

+

1

Figure 8. The differential of a looped diagram (with one loop)

Lemma 1.5. The map d defines a differential on [
p

(m,n)]–looped diagrams. The chain

complex of these diagrams is called [
p

(m,n)]–lD.

Proof. One checks that the complex is the reduced chain complex of a p–multisimplicial
set obtained by allowing unlabeled leaves at arbitrary positions. At each white vertex
vk we have a simplicial set with boundary maps di blowing up the (i − 1)-st and i-th
incoming leaves (and doing the induced procedure to the loops) and degeneracies adding
in a unit leaf in between the i-th and (i+ 1)-st vertex and replacing ski by the two pieces
(and relabeling the other segments at that vertex). The simplicial identities hold. �
Remark 1.6. In the previous proof we added a leaf to a vertex, replaced the correspond-
ing boundary segment by the two new pieces and relabeled the others. Morally, we did
nothing to our loop (cf. Figure 9), but being precise, given a looped diagram (Γ, γ) after
adding a leaf to the white vertex vk in between the old edges j and j + 1 we get the
diagram (Γ′, γ′) as follows: The commutative Sullivan diagram Γ′ is the diagram Γ with
the extra half-edge. The new loop γ′ is obtained from γ by replacing all ski for i > j by
ski+1 and if skj was in γ with positive orientation, it is replaced by skj followed by skj+1 and

if it appeared with negative orientation by −skj+1 and −skj .

1 1

Figure 9. Adding a leaf

Remark 1.7. The set of [
p

(m,n)]–looped diagrams with all loops positively oriented is a

subcomplex of the whole complex. We denote this chain complex by [
p

(m,n)]–plD.

We now construct a dg-category out of [
p

(m,n)]–lD, extending the category of Sullivan
diagrams.
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Definition 1.8. Let lD be the dg-category of looped diagrams with objects pairs of
natural numbers [nm] and morphism lD([n1

m1], [
n2
m2]) given by the chain complex [

n2
(m1+m2,n1)]–

lD and composition defined by taking elements x = (Γ, γ1, · · · , γn1) ∈ lD([n1
m1], [

n2
m2]) and

1

◦

1

=

1

−

1

+

1

Figure 10. Composition ◦

y = (Γ′, γ′1, · · · , γ′n2
) ∈ lD([n2

m2], [
n3
m3]) to the element y◦x = (Γ̃, γ̃1, · · · , γ̃n1) ∈ lD([n1

m1], [
n3
m3])

which is zero if there is an i such that the loop γ′i is constant and the vertex vi in Γ has
more than one half-edge attached to it and else is computed as the sum of all possible
([G], g1, · · · , gn1) (with a sign) obtained as follows

(1) The commutative Sullivan diagrams [G] are the equivalence classes of black and
white graphs obtained from x and y by
(a) removing the n2 white vertices from Γ,
(b) For each i = 1, · · · , n2 identifying the start half-edge of the i–th white vertex

vi of Γ with the i–th labeled leaf of Γ′,
(c) starting with i = 1 and continuing inductively

(i) attaching the remaining half-edges from the vertex vi to the white ver-
tices of Γ′ along the loop γ′i following their cyclic ordering (in general
we here have several possibilities),

(ii) replacing the γ′j by the induced ones as describe in Remark 1.6 (which

morally does not do anything),
(d) attaching the last m2 labeled leaves of Γ to the leaves of Γ′ labeled n2 +

1, · · ·n2 +m2 respecting the order.
(2) The gluing defines a map from the boundary segments around the vertex vi in Γ to

ordered subsets of the loop γ′i which are sets of boundary segments in [G]. All the
subsets are disjoint and putting them together following the order of the boundary
segments of vi reproduces the loop γ′i. Since we have such a map for each i, we
get a map from {boundary segments in Γ} to {boundary segments in [G]}. We
define gj to be the image of γj under this map.

The fact that the gj are again loops follows directly from the construction.
The orientation (and thus the sign) is obtained by juxtaposition of the orientations of

Γ and Γ′ as explained in [WW11, Section 2.8]. However, we give a more explicit (but
equivalent) way to compute the sign. It is computed by putting all non-start half-edges
of Γ to the right of the start half-edge of the first white vertex in Γ′ in their cyclic order
and the order of the white vertices in Γ (i.e. the first half-edge of the first white vertex
of Γ is next to the start half-edge of Γ′) and then computing the parity of the number of
half-edges they have to pass to move to their final position. If they are glued left of the
start half-edge of a white vertex then they can move to the right of the start half-edge of
the next white vertex in Γ′ which does not change the sign.

The identity element id[
n1
m1

] in lD([n1
m1], [

n1
m1]) is given by the element id

[10]
q · · · q id

[10]
q

id q · · · q id with id
[10]
∈ lD([10], [

1
0]) the [ 1

(0,1)]–looped diagram shown in Figure 11(a) and
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1

(a) The first building block of
the identity

1

2

(b) The second building
block of the identity

Figure 11. The element id
[10]
∈ lD>0

+ ([10], [
1
0]) and the element id ∈ lD([01], [

0
1])

id ∈ lD([01], [
0
1]) the [ 0

(2,0)]–looped diagram (without white vertices and loops) shown in
Figure 11(b).

The composition defined above is associative. Examples are given in Figure 10 and
Figure 12.

Definition 1.9. Let lD+ be the dg-category of looped diagrams with positive boundary
condition with the same objects as lD and morphisms lD+([n1

m1], [
n2
m2]) those looped dia-

grams in [
n2

(m1+m2,n1)]–lD where every connected component contains at least one white
vertex or one of the m2 last labeled leaves, i.e. a leaf labeled by a number in {n1 +m1 +
1, . . . , n1 +m1 +m2}.

1

2
◦ 2

1

v1 v2

= −
21

+
2

1 −
2

1
+

2

1

−
21

+
2

1
−

2

1

+
2

1

Figure 12. Composition ◦

Definition 1.10. The dg-category plD (and plD+) of positively oriented looped dia-
grams (with positive boundary condition) has the same objects as lD and morphism
plD([n1

m1], [
n2
m2]) given by the chain complex [

n2
(m1+m2,n1)]–plD (lying in lD+([n1

m1], [
n2
m2]), re-

spectively).
Similarly, the dg-category plD+ of positively oriented looped diagrams with positive

boundary condition has the same objects as lD and and morphism plD+([n1
m1], [

n2
m2]) those

looped diagrams lying in the intersection of lD+([n1
m1], [

n2
m2]) and plD([n1

m1], [
n2
m2]).

Proposition 1.11. The composition ◦ of looped diagrams defined above is a chain map

lD([n1
m1], [

n2
m2])⊗ lD([n2

m2], [
n3
m3])→ lD([n1

m1], [
n3
m3]).
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Proof. Take x = (Γ, γ1, · · · , γn1) ∈ lD([n1
m1], [

n2
m2]) and y = (Γ′, γ′1, · · · , γ′n2

) ∈ lD([n2
m2], [

n3
m3])

We need to show that (−1)|x|dy ◦ x+ y ◦ dx = d(y ◦ x).
We refer to edges at the white vertex of the composition as coming from Γ if they

where attached in the gluing process and as coming from Γ′ if they were belonging to Γ′

before. The differential in y ◦ x comes from four different kinds of boundaries, which is
illustrated on the example in Figure 13 where we compute the differential of the second
to last summand of the composition shown in Figure 12. The four kinds of boundaries

2

1
d

−
2

1

+
2

1

−
2

1

+
2
1 −

2

1

+

2

1

Figure 13. The differential of the second to last term of the composition
in Figure 12

are described as follows:

(1) The boundaries coming from the multiplication of edges belonging to Γ′ together
(cf. first, second and last summand in Figure 13).

(2) The boundaries coming from the multiplication of edges originally belonging to
the same white vertex vj in Γ or from two special kinds of boundaries: Those
arising from contracting the first segment of a loop gi if this segment starts at the
arc component which the old start half-edge of vj was attached to and ends at
the old second half-edge of vj . Similarly, we additionally take the terms obtained
from contracting the last segment of a loop gi if this segment starts at the old last
half-edge of vj and ends at the arc component which the old start half-edge of vj
was attached to (cf. second last summand in Figure 13).

(3) The boundaries arising from the multiplication of edges of Γ and Γ′ together
(except for the two cases mentioned in the step before) (cf. third summand in
Figure 13).

(4) The boundaries obtained from the multiplication of edges of Γ coming from two
different white vertices (cf. fourth summand in Figure 13).

We now show that dy ◦ x gives exactly all summands appearing in 1., y ◦ dx all those
appearing in 2. and that the sums of the diagrams in 3. and in 4. are zero (i.e. that
every diagram shows up twice with opposite sign).

(1) In dy we have two kinds of boundaries, the ones coming from contracting boundary
segments which are not contained in any loop and those contracting segments
appearing in loops.

In the first case the two neighbored edges will also be neighbored in y ◦ x and
multiplying them first and then composing with x or first composing and then
multiplying is the same.

In the second case we again have to distinguish two cases. First, if we consider
contracting a segment skj which appears in a loop but none of the loops only

consists of this segment (i.e. γ′i 6= {skj }). Then in the composition there are
summands where we did not glue any edges into this segment. Contracting the
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segment in these summands of y ◦ x agrees with the composition of x with those
boundaries of y where we contracted that segment in Γ′. Second, if we have a
loop γ′i = {skj } but skj is not the whole boundary segment (in which case there

is no contraction on either of the sides) then the contraction of this segment is a
constant loop, so it only gives a term in the composition if there is only one edge
attached to vi in Γ and the composition then makes the part of the loop going
around vi (if there was one) constant. But in y ◦x the according segment can only
be empty in exactly this case and thus the terms agree.

So up to sign we have shown that dy ◦ x agrees with the terms described in 1.
For the sign we divide the edges glued onto Γ′ into two pairs, those left of the

pair of edges of Γ′ we multiply to get the considered element and those right (if
we have several white vertices in Γ′ and the edges we multiply are attached to
vi, edges attached to a white vertex vj with j < i count as being left). Denote
the numbers by eleft and eright. We have |x| = eleft + eright. The sign of the
boundary that multiplies the two vertices in d(y ◦ x) changed by (−1)eleft against
the sign of the boundary of multiplying these edges in y. On the other hand, if
we first multiply the two edges in Γ′ and then glue Γ on, all the edges right of
this boundary have to move over one edge less to get to their position, so the
sign of the composition changes by (−1)eright . Thus the total difference in sign

is (−1)eleft+eright = (−1)|x|, so the terms of (−1)|x|dy ◦ x show up with the same
sign as those in d(y ◦ x).

(2) It is not hard to see that first multiplying neighbored edges around a vertex in x
(and contracting the loop accordingly) and then gluing the result onto y or taking
those summands of d(y ◦ x) were we multiplied neighbored vertices coming from
x (and contracted the piece of the loop) agrees. The special cases described in 2
come from multiplying the start edge with the second or last edge and then gluing
it onto Γ′. Similar considerations as in the first case show that the two terms show
up with the same sign.

(3) Write γ′i = (s1, . . . , sl) with the sj boundary segments in Γ′. If in x ◦ y an edge
e of Γ was glued as the last edge in a segment sj for j < l, then there is another
summand in x◦y where all edges of Γ different to e was glued to the same segment
as before, but e was glued as the first edge to sj+1. The element obtained from the
first element by multiplying the edge e onto the arc component following sj agrees
with the one obtained from the second by multiplying e onto the arc component
before sj+1 which is the same as the arc component following sj (by the definition
of a loop). An example is given by the red edge in the first and fifth summand
in the composition in Figure 12. The boundary multiplying it onto the little loop
(in the first case from the left in the second from the right) is the same.

Hence, all terms in the differential where we multiplied an edge of Γ onto one
of Γ′ show up twice by the above argumentation.

Assume that the first of these two elements form a term in y ◦ x with sign ω
and its differential had sign σ, so in d(y ◦x) the element has sign ω ·σ. To get the
second the specified edge of Γ is moved by r steps (to the right of the boundary
component). This means that it shows up with sign (−1)rω in y ◦x. Moving over
the neighbored edge does not change the sign of the differential and moving over
more edges changes it by −1 each time. Thus the boundary shows up with sign
(−1)r−1σ, so in d(y ◦ x) the element has sign (−1)rω · (−1)r−1σ = −ωσ, i.e. both
terms have opposite signs and cancel.

(4) We are left to show that terms where we multiplied two edges of Γ belonging to
two different white vertices together show up twice, too. However, since we glued
the edges inductively, the argumentation from the previous step works if we view
the edges of the first vertex as fixed and glue the edges of the second vertex onto
that graph.
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�
It is not hard to check that lD+, plD and plD+ are subcategories.
The way we defined our category lD we obtain a functor K : SD → lD which takes a

Sullivan diagram Γ ∈ SD([n1
m1], [

n2
m2]) and sends it to the looped diagram ([Γ], γ1, · · · , γn1)

with γi the loop starting from the i–th labeled leaf and following the boundary cycle the
leaf was in before (see Figure 14 for an example).

1

K

1

Figure 14. The functor K applied to a diagram in SD([10], [
1
0])

Before moving on we want to imitate one more construction done to Sullivan diagrams:
To make them fit for string topology, in [WW11, Section 6.3+6.5] a shifted version was
considered. A Sullivan diagram S was shifted by −d · χ(S, ∂out), where χ(S, ∂out) is
the Euler characteristic of a representative of S as a CW-complex relative to its outgoing
boundary (the n2 white vertices and the m2 labeled outgoing leaves). Similarly, we define:

Definition 1.12. Let lDd to be the shifted version of lD where a looped diagram
(Γ, γ1, · · · , γn1) gets shifted by −d · χ(Γ, ∂out).

In particular, the functor K also gives a functor K : SDd → lDd. For more details on
this construction we refer to [WW11, Section 6.5].

1.3. The split subcomplex of non-constant diagrams. For later purpose we want to
split off those diagrams which have constant loops. They clearly form a subcomplex and
as we will see below this subcomplex is split. In some situations it will be more natural
to work with the non-constant diagrams only.

Definition 1.13. A [
p

(m,n)]–looped diagram (Γ, γ1, · · · , γn) is called partly constant if one

of the γj is a constant loop. The subcomplex of lD([n1
m1], [

n2
m2]) spanned by these diagrams

is denoted by lDcst([n1
m1], [

n2
m2]).

We define the map pj : lD([n1
m1], [

n2
m2])→ lDcst([n1

m1], [
n2
m2]) ⊆ lD([n1

m1], [
n2
m2]) by

pj((Γ, γ1, . . . , γn1)) = (Γ, γ1, . . . , γj−1, cst, γj+1, . . . , γn1)

where cst is the constant loop starting at the leaf j.

Lemma 1.14. The map pj is a chain map.

Proof. Contracting a boundary segment in Γ which was part of the loop γj and then
forgetting the rest of the loop commutes with first forgetting the whole loop and then
contracting the boundary segment, thus pj commutes with the differential. �

For a set T = {t1, · · · , tk} ⊆ {1, · · · , n1} we define pT = ptk ◦ · · · ◦ pt1 , i.e. the map
making the loops corresponding to T constant.

Moreover, we define pcst : lD([n1
m1], [

n2
m2])→ lDcst([n1

m1], [
n2
m2]) by

pcst =

n1∑

k=1

∑

T⊆{1,··· ,n1}
|T |=k

(−1)k+1pT
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Proposition 1.15. The map pcst is a splitting of the inclusion of the subcomplex i :
lDcst([n1

m1], [
n2
m2]) ↪→ lD([n1

m1], [
n2
m2]), i.e.

pcst ◦ i : lDcst([n1
m1], [

n2
m2])→ lDcst([n1

m1], [
n2
m2])

is the identity.

Proof. Let x = (Γ, γ1, . . . , γn1) ∈ lDcst([n1
m1], [

n2
m2]). For simplicity of notation we assume

that γ1 is constant. For a set T with 1 /∈ T we have that pT = p{1}∪T . Since |{1} ∪ T | =
|T |+ 1 these terms show up with opposite signs and thus cancel. The family of all non-
empty subsets T with 1 /∈ T together with {1}∪T are all non-empty subsets of {1, · · · , n1}
except for the set {1}. Thus the only non-trivial term in pcst(x) is p{1}(x) which is x since
the first loop was already constant. �
Definition 1.16. For a looped diagram (Γ, γ1, . . . , γn1) ∈ lD([n1

m1], [
n2
m2]) we define

(Γ, 〈γ1〉, . . . , 〈γn1〉) = (Γ, γ1, . . . , γn1)− pcst((Γ, γ1, . . . , γn1)).

The complex spanned by these diagrams is denoted by lD>0([n1
m1], [

n2
m2]).

Since p∅ = id we can rewrite

(Γ, 〈γ1〉, . . . , 〈γn1〉) =
∑

T⊆{1,··· ,n1}
(−1)|T |pT (Γ, γ1, . . . , γn1).

1

2

(a) The diagram
(Γ, 〈γ1〉, 〈γ2〉) with γ1 = {s1

1}
and γ2 = {s1

2}

v1 v2

1

(b) The dia-
gram (Γ, 〈γ〉) with
γ = {s2

2, s
1
1}

v2 v1

1

(c) The diagram
(Γ, 〈γ〉) with
γ = {s1

1, s
2
1}

Figure 15. Three non-constant diagrams in the new notation

In pictures we mark the loops 〈γ〉 by a bar at the start of the first boundary segment
contained in the loop and a bar at the end of the last boundary segment (so it is the
picture of (Γ, γ1, . . . , γn1) with extra bars in there). Examples are given in Figure 15.

Corollary 1.17. We have a splitting

lD([n1
m1], [

n2
m2])

∼= lDcst([n1
m1], [

n2
m2])⊕ lD>0([n1

m1], [
n2
m2]).

The part of the differential on lD>0([n1
m1], [

n2
m2]) coming from a boundary map contracting

a loop to a constant loop is trivial.
The above splitting induces an isomorphism of chain complexes lD>0([n1

m1], [
n2
m2])

∼=
lD([n1

m1], [
n2
m2])/lDcst([n1

m1], [
n2
m2]) under which the class of (Γ, 〈γ1〉, . . . , 〈γn1〉) is equivalent

to the class of (Γ, γ1, . . . , γn1). One might want to use the second one to compute the
composition of two elements in lD>0([n1

m1], [
n2
m2]). Unfortunately, the partly constant terms

which get subtracted in the definition of (Γ, 〈γ1〉, . . . , 〈γn1〉) can contribute non-trivially
to the composition. In the next part of the section we provide conditions under which
this phenomenon cannot occur.

To do so, we introduce a bit of notation:
We call a white vertex vi in a commutative Sullivan diagram Γ singular if it is of degree

zero, i.e. there is only one boundary segment.
For a looped diagram x = (Γ, γ1, · · · , γn1) and a singular vertex vi we write x\si1 :=

(Γ, γ1\si1, · · · , γn1\si1), where γj\sij is the loop without the boundary segment sij . An
example is given in Figure 16.
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v1 v2

1
v1 v2

1

Figure 16. v1 singular and v1\{s1
1}

For x = (Γ, γ1, . . . , γn1) ∈ lD([n1
m1], [

n2
m2]) denote the set of singular vertices of Γ by

Sx ⊆ {1, · · · , n2} and define sT (x) = (x\T ) for T ⊆ Sx. One checks that for T ⊆ Sx
we have pcst(sT (x)) = sT (pcst(x)) and thus sT (x − pcst(x)) = (id − pcst)(sT (x)) hence
sT : lD>0([n1

m1], [
n2
m2])→ lD>0([n1

m1], [
n2
m2]).

For a looped diagram x = (Γ, 〈γ1〉, . . . , 〈γn〉) ∈ lD>0([n1
m1], [

n2
m2]) we call a subset T of

the singular vertices Sx loop-covering if there is at least one loop γi that only consists
of boundary segments belonging to the white vertices in T (equivalently, γ\T = cst). A
singular white vertex vi is called loop-covering, if T = {vi} is-loop covering. Note that
if all vertices are loop-covering, also all subsets T ⊆ Sx are loop-covering. The white
vertex in Figure 15(a) is not singular. In Figure 15(b) the vertex v1 is singular, but not
loop-covering. In Figure 15(c) both vertices v1 and v2 are singular, but none of them is
loop-covering. However, the set T = {v1, v2} is loop-covering.

We define

s(x) =
∑

T⊆Sx
T not loop-covering

(−1)|T |sT (x).

Note that if for x ∈ lD>0([n1
m1], [

n2
m2]) all singular vertices are loop-covering, then s(x) =

x.
For elements x = (Γ, 〈γ1〉, . . . , 〈γn1〉) ∈ lD>0([n1

m1], [
n2
m2]) and y = (Γ′, 〈γ′1〉, · · · , 〈γ′n2

〉) ∈
lD>0([n2

m2], [
n3
m3]) we denote their lifts by x̂ = (Γ, γ1, · · · , γn1) ∈ lD([n1

m1], [
n2
m2]) and ŷ =

(Γ′, γ′1, · · · , γ′n2
) ∈ lD([n2

m2], [
n3
m3]). Suppose their composition in lD is given by ŷ ◦ x̂ =∑

([G], g1, · · · , gn1). Then we define

y ◦̃ x := ŷ ◦ x̂− pcst(ŷ ◦ x̂) =
∑

([G], 〈g1〉, · · · , 〈gn1〉).
This is not a chain map, but it is not far from being one as in most cases it agrees with
the actual composition y ◦ x. More precisely, we get:

Proposition 1.18. For elements x = (Γ, 〈γ1〉, . . . , 〈γn1〉) ∈ lD>0([n1
m1], [

n2
m2]) and y =

(Γ′, 〈γ′1〉, · · · , 〈γ′n2
〉) ∈ lD>0([n2

m2], [
n3
m3]) their composition in terms of the above notation is

given by

y ◦ x = y ◦̃ s(x).

In particular, y ◦ x ∈ lD>0([n1
m1], [

n3
m3]).

Proof. Using the definition of x and y, we need to show that

(ŷ − pcst(ŷ)) ◦ (x̂− pcst(x̂)) = ŷ ◦ ŝ(x)− pcst(ŷ ◦ ŝ(x))

Let T ⊆ Sx be a subset that is not loop-covering. We claim that ŝT (x) = sT (x̂). To see
so, recall that x takes a representation of x̂ as a linear combination of looped diagrams
and throws away the partly constant ones. Moreover, x = x̂−pcst(x̂). We need to see that
the partly constant terms of x\T = x̂\T − pcst(x̂)\T are exactly given by pcst(x̂)\T . It is
clear that all terms in pcst(x̂)\T are still partly constant. Moreover, by the assumption
that no loop of x (and thus no loop of x̂) is completely covered by T , the diagram x̂\T
cannot be partly constant, which shows the claim.

Now, the above formula is equivalent to showing that
∑

T⊆{1,··· ,n2}

∑

U⊆{1,··· ,n1}
pT (ŷ) ◦ pU (x̂) =

∑

T⊆Sx
T not loop-covering

∑

U⊆{1,··· ,n1}
pU (ŷ ◦ sT (x̂)).
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The proposition follows via the following steps which hold for general elements a =
(Λ, λ1, · · · , λn1) ∈ lD([n1

m1], [
n2
m2]) and b = (Λ′, λ′1, · · · , λ′n2

) ∈ lD([n2
m2], [

n3
m3]):

(1) For U ⊆ {1, · · · , n1} we have pU (a ◦ b) = a ◦ pU (b).
(2) The singular vertices of a and pT (a) agree. For any sets T ⊆ Sa and U ⊆
{1, · · · , n1} the equality sT (pU (a)) = pU (sT (a)) holds, since removing first part of
a loop via a singular vertex and then the whole loop commutes with first removing
the whole loop and then everything else at the white vertex.

(3) We have pT (b) ◦ a = 0 for T * Sa, since then we have a vertex with more than
one edge glued to a constant loop.

(4) We have b ◦ sT (a) = pT (b) ◦ a for T ⊆ Sa since in pT (b) ◦ a all the loops around
the singular vertices in T become constant (because we removed them in b) and
this is the same as first removing them and then gluing them onto b.

(5) For T ⊆ Sa such that T is loop-covering, we have
∑

U⊆{1,··· ,n1}(−1)|U |sT (pU (a)) =

0. To see so, assume that T covers the loop γj of a, i.e. γj only consists of boundary
segments of white vertices belonging to T . For U ⊆ {1, · · · , n1} with j /∈ U , we
get sT (pU (x)) = sT (pU∪{j}(x)), which implies the above claim.

Plugging this in, we obtain

∑

T⊆{1,··· ,n2}

∑

U⊆{1,··· ,n1}
pT (ŷ) ◦ pU (x̂)

(3)
=
∑

T⊆Sx

∑

U⊆{1,··· ,n1}
pT (ŷ) ◦ pU (x̂)

(4)
=
∑

T⊆Sx

∑

U⊆{1,··· ,n1}
ŷ ◦ sT (pU (x̂))

(5)
=

∑

T⊆Sx
T not loop-covering

∑

U⊆{1,··· ,n1}
ŷ ◦ sT (pU (x̂))

(2)
=

∑

T⊆Sx
T not loop-covering

∑

U⊆{1,··· ,n1}
ŷ ◦ pU (sT (x̂))

(1)
=

∑

T⊆Sx
T not loop-covering

∑

U⊆{1,··· ,n1}
pU (ŷ ◦ sT (x̂))

and thus the proposition is proven.
�

Corollary 1.19. Let x ∈ lD>0([n1
m1], [

n2
m2]) and y ∈ lD>0([n2

m2], [
n3
m3]) and assume that all

singular vertices in x are loop-covering. Then their composition is given by

y ◦ x = y ◦̃ x.
This holds in particular if x has no singular vertices.

1.4. The type of a diagram and products of diagrams. In this section we provide a
finer decomposition of lD([n1

m1], [
n2
m2]) on the level of abelian groups. This part is particularly

technical and we invite the reader to skip it and come back later if needed.
As already described above, we can concatenate subloops in a commutative Sullivan

diagram which start at the same labeled leaf. We denote the concatenation of two
loops γ and γ′ by γ ∗ γ′. For a commutative Sullivan diagram Γ with tj loops γij for
1 ≤ i ≤ tj starting at the j-th labeled leaf for 1 ≤ j ≤ n, we define the element

(Γ, 〈γ1
1 , . . . , γ

t1
1 〉, . . . , 〈γ1

n, . . . , γ
tn
n 〉) ∈ lD([n1

m1], [
n2
m2]) as

(Γ, 〈γ1
1 , . . . , γ

t1
1 〉, . . . , 〈γ1

n, . . . , γ
tn
n 〉) :=

∑

U1⊆{1,...,t1}
· · ·

∑

Un⊆{1,...,tn}
(−1)

∑
j(tj−|Uj |)(Γ, γ∗U1

1 , . . . , γ∗Un
n )
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where we define γ
∗Uj

j = γ
u1
j

j ∗ · · ·∗γ
u
|Uj |
j

j if Uj = {u1
j , · · · , u

|Uj |
j } is non-empty and γ∗∅j = cst

the constant loop if Uj is empty.
Note that we can assume that all the γj ’s are not constant since otherwise the element

(Γ, 〈γ1
1 , . . . , γ

t1
1 〉, . . . , 〈γ1

n, . . . , γ
tn
n 〉) is zero. Moreover if all tj were 1 we recover the defini-

tion of the non-constant diagrams lD>0 used in the previous section. Furthermore, if at
least one of the ti is zero, then (Γ, 〈γ1

1 , . . . , γ
t1
1 〉, . . . , 〈γ1

n, . . . , γ
tn
n 〉) is a partially constant

diagram.
In the pictures we draw the diagram (Γ, 〈γ1

1 , . . . , γ
t1
1 〉, . . . , 〈γ1

n, . . . , γ
tn
n 〉) like the diagram

(Γ, γ1
1 ∗ · · · ∗ γt11 , · · · , γ1

n ∗ · · · ∗ γtnn ) but adding bars at the end of each of the loops γji (for
an example see Figure 17).

1

(a) The diagram (Γ, 〈γ1, γ2〉) with
γ1 = {s1

1, s
1
2} and γ2 = {s1

3}

1

(b) The diagram (Γ, 〈λ1, λ2, λ3〉) with
λ1 = {s1

1}, λ2 = {s1
2} and λ3 = {s1

3}

Figure 17. Two elements of lD([10], [
1
0]) depicted in the new notation

Now we restrict to those diagrams where all the subloops γji are irreducible, i.e. cannot
be written as concatenation of non-constant loops.

Definition 1.20. An irreducible [
p

(m,n)]-looped diagram is given by an element of the form

(Γ, 〈γ1
1 , . . . , γ

t1
1 〉, . . . , 〈γ1

n, . . . , γ
tn
n 〉) such that all the loops γji are irreducible. The type

of an irreducible looped diagram (Γ, 〈γ1
1 , . . . , γ

t1
1 〉, . . . , 〈γ1

n, . . . , γ
tn
n 〉) is defined to be the

tuple (t1, · · · , tn).
The abelian group spanned by irreducible looped diagrams of type (t1, · · · , tn) is de-

noted by lDt1,...,tn1 ([n1
m1], [

n2
m2]).

The type of a looped diagram is not preserved by the differential, hence the groups
lDt1,...,tn1 ([n1

m1], [
n2
m2]) are in general not chain complexes.

One checks that every [
p

(m,n)]-looped diagram can be written as the linear combination

of irreducible [
p

(m,n)]-looped diagrams and vice versa. Hence we can rewrite the complex
of looped diagrams as

lD([n1
m1], [

n2
m2])

∼=
⊕

t1,··· ,tn1

lDt1,...,tn1 ([n1
m1], [

n2
m2])

with

lDcst([n1
m1], [

n2
m2])

∼=
⊕

t1,··· ,tn1
∃ j s.t. tj=0

lDt1,...,tn1 ([n1
m1], [

n2
m2])

and

lD>0([n1
m1], [

n2
m2])

∼=
⊕

t1,··· ,tn1
tj>0 for all j

lDt1,...,tn1 ([n1
m1], [

n2
m2]).
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Similarly to working out the composition for positive diagrams explicitly, we want to
say a few words about the composition of irreducible looped diagrams. For x and y two
irreducible looped diagrams, in y ◦ x all old loops of y are not allowed to be empty. This
means that we either have to glue an edge in there or they afterward have to be covered
by a loop again. Moreover, if they were covered but no edge was glued, the diagram where
this subloop is omitted has to be subtracted. For an example see Figure 18. Instead of
taking the direct sum over all types of irreducible looped diagrams (which as explained
just is the complex of looped diagrams) we want to take the product. Unfortunately, in
the product complex over all types composition is not always well-defined. Nevertheless,
we will use this complex and later on deal with composition.

1

◦

1

=

1

−
1

Figure 18. composition of irreducible looped diagrams

Definition 1.21. For n1 > 0 the chain complex of products of irreducible looped diagrams
ilD([n1

m1], [
n2
m2]) is defined as

ilD([n1
m1], [

n2
m2]) =

∏

t1,··· ,tn1

lDt1,...,tn1 ([n1
m1], [

n2
m2])

and

ilD>0([n1
m1], [

n2
m2]) =

∏

ti>0

lDt1,...,tn1 ([n1
m1], [

n2
m2])

Similarly, we define ilD+([n1
m1], [

n2
m2]), iplD([n1

m1], [
n2
m2]) and iplD+([n1

m1], [
n2
m2]) as the prod-

ucts over all types restricted to these subcomplexes.

We see that

ilD([n1
m1], [

n2
m2])

∼= lDcst([n1
m1], [

n2
m2])⊕ ilD>0([n1

m1], [
n2
m2]).

If n1 = 0, we obtain

ilD([ 0
m1

], [n2
m2]) = iplD([ 0

m1
], [n2

m2]) = lD([ 0
m1

], [n2
m2]).

In order to see that the differential on ilD and the other product complexes is well-
defined, we need to check that for a fixed type (t1, . . . , tn) there can only be finitely many
types (t′1, . . . , t

′
n) such that the differential has non-trivial elements of type (t1, . . . , tn).

However, one checks similarly to the computations done for non-constant diagrams that
the differential is zero if an irreducible loop gets contracted and hence in the resulting sum-
mands of the differential there are at least as many irreducible loops as before. Therefore,
the differential of a looped diagram of type (t′1, . . . , t

′
n) has summands of type (t1, . . . , tn)

only if t′i ≤ ti. Thus, on the product over all types, the differential is still welldefined.
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Definition 1.22. For two elements a =
∑∞

t1=1 · · ·
∑∞

tn1=1 at1,...,tn1
∈ ilD([n1

m1], [
n2
m2]) and

b =
∑∞

t1=1 · · ·
∑∞

tn2=1 bt1,...,tn2
∈ ilD([n2

m2], [
n3
m3]) the pair (a, b) is called composable if

∞∑

t1=1

· · ·
∞∑

tn1=1

∞∑

t′1=1

· · ·
∞∑

t′n2
=1

bt′1,...,t′n2
◦ at1,...,tn1

only contains finitely many summands of type (u1, . . . , un1) for arbitrary ui ∈ N.

Definition 1.23. Let plDstart consist of those graphs in plD, where all loops consist of
exactly one boundary segment of a white vertex which is the first boundary segment of
that white vertex.

Proposition 1.24. Let a ∈ ilD([n1
m1], [

n2
m2]) and b ∈ ilD([n2

m2], [
n3
m3]). If one of the following

conditions holds, the pair (a, b) is composable:

(1) n1 = 0, i.e. a ∈ lD([ 0
m1

], [n2
m2]) and b arbitrary,

(2) b lies in the direct sum complex, i.e. b ∈ lD([n2
m2], [

n3
m3]) and a is arbitrary,

(3) we have a ∈ iplDstart([
n1
m1], [

n2
m2]) and b arbitrary.

Note that for a ∈ lD([n1
m1], [

n2
m2]) and b ∈ lD([n2

m2], [
n3
m3]) their composition is just the

composition b ◦ a by definition.

Proof. If n1 = 0 by definition a is contained in lD([ 0
m1

], [n2
m2]) and thus it is a finite sum

of diagrams in this complex. It is sufficient to show that for x a looped diagram in
lD([ 0

m1
], [n2

m2]) and y ∈ lD([n2
m2], [

n3
m3]) there are only finitely many types (t′1, . . . , t

′
n2

) the
diagram y can have such that the composition y ◦ x is non-trivial. We have (

∑n2
i=1 t

′
i)

irreducible loops in y. By the observations we made earlier, we know, that we either have
to glue an edge into each of these loops or cover it with a loop of x. Since x does not
have any loops, we have to glue at least one edge of x in into each irreducible loop for
the composition to be non-trivial. There are only |x| edges which get glued to y, thus the
composition is trivial whenever (

∑n2
i=1 t

′
i) > |x|.

If n1 6= 0 we show that for a given type (t1, . . . , tn1) there are only finitely many
types (t1, . . . , tn1) and (t′1, . . . , t

′
n2

) such that the compositions (bt′1,...,t′n2
◦ at1,...,tn1

) have

summands of type (u1, . . . , un1). In the second case by assumption only finitely many
types occur in b, i.e. we only need to show that for an arbitrary looped diagram y
there are only finitely many types a looped diagram x can have, such that y ◦ x has
type (u1, . . . , un1). However, for a looped diagram x of type (t1, . . . , tn1) the type of
the composition y ◦ x is bounded below by (t1, . . . , tn). Therefore, in the (u1, . . . , un1)
component of the composition, we can only have elements resulting from the composition
of at1,...,tn1

with ti ≤ ui.
The proof of the last case is particularly technical and difficult to explain. Since the

fact is not used later on, we omit the proof. �

The later proposition and the associativity of ◦ imply that the union of morphism
spaces

∐
n1,m1

ilD([n1
m1], [

n2
m2]) is a left iplDstart-module and

∐
n2,m2

ilD([n1
m1], [

n2
m2]) a right

lD-module.

2. The natural operations for commutative Frobenius algebras

2.1. The category of commutative Frobenius algebras. This paper deals with com-
mutative Frobenius algebras, so we start with recalling definitions on the subject.

Definition 2.1. A Frobenius algebra A is given by an abelian group equipped with the
following data:

• a multiplication m : A⊗A→ A and a unit 1A : Z→ A such that m and 1A define
an algebra structure on A
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• a comultiplication ∆ : A → A ⊗ A and a counit η : A → Z such that they define
a coalgebra structure on A

satisfying the so called Frobenius relation ∆◦m = (m⊗ id)◦(id⊗∆) = (id⊗m)◦(∆⊗ id).
If A is a chain complex, we obtain Frobenius dg-algebras.

We denote the twist map A⊗A→ A⊗A by τ .
A Frobenius algebra is called symmetric if η ◦m ◦ τ = η ◦m and it is commutative if

m ◦ τ = m. A commutative Frobenius algebra is cocommutative, i.e. τ ◦∆ = ∆.
An open Frobenius algebra is a Frobenius algebra without a counit. It is cocommutative

if τ ◦∆ = ∆. In this case commutativity does not imply cocommutativity (but we will
only work with commutative cocommutative open Frobenius algebras).

The open cobordism category O was defined in [WW11, section 2.6] to be the dg-
category with objects the natural numbers and morphism O(n,m) the chain complex
of oriented fat graphs with n + m labeled leaves (for the definition see Section 1.1),
i.e. O(n,m) = [ 0

m+n]–Graphs. The category sFr = H0(O) is the category with the
same objects but with cobordisms sFr(n,m) = H0(O)(n,m) := H0(O(n,m)). This
chain complex consists of trivalent graphs module the sliding relation (cf. Figure 3), i.e.
sFr(n,m) = [ 0

m+n]–Sullivan diagrams, so these are Sullivan diagrams without white ver-
tices. A split symmetric monoidal functor Φ : H0(O) → Ch, i.e. an sFr-algebra is an
open TQFT and by [LP08, Cor 4.5] these algebras are precisely the symmetric Frobenius
dg-algebras. Usually one would pass to the closed cobordism category to deal with com-
mutative Frobenius algebras, but we instead want to continue working with graphs (as it is
for example done in [Koc04, Chapter 3]). Adding the commutativity relation is equivalent
to forgetting the ordering of the edges at the vertices. Thus the PROP cFr of commuta-
tive Frobenius algebras can be defined to have objects the natural numbers and morphisms
cFr(m1,m2) = lD([ 0

m1
], [ 0

m2
]) = H0(O)(m1,m2)/ ∼ = [ 0

m1+m2
]–commutative Sullivan dia-

grams. So a commutative Frobenius dg-algebra is a strong symmetric monoidal functor
from cFr to chain complexes. Forgetting the counit is equivalent to restricting to dia-
grams with the positive boundary condition (i.e. forcing every connected component to
have an output). Thus we can define the PROP cFr+ of commutative cocommutative
open Frobenius algebras to have morphism spaces cFr+(m1,m2) = lD+([ 0

m1
], [ 0

m2
]). Hence

a commutative cocommutative open dg-Frobenius algebra is a strong symmetric monoidal
functor cFr+ → Ch.

Moreover, we also have a graded version of commutative Frobenius algebras where the
comultiplication has degree d and the counit has degree −d. Analogously to [WW11,
Section 6.3] for symmetric Frobenius algebras, the shifted PROP cFrd then agrees with
the PROP where we shifted the commutative Sullivan diagrams Γ by −d · χ(Γ, ∂out) (as
defined in the end of Section 1.2), i.e. cFrd(m1,m2) = lDd([ 0

m1
], [ 0

m2
]).

2.2. Formal operations.

2.2.1. Definitions of the Hochschild complex and formal operations. Let E be a PROP
with a multiplication, i.e. a dg-PROP with a functor Ass → E which is the identity on
objects. We define mk

i,j ∈ E(k, k − 1) to be the image of the map in Ass(k, k − 1) which
multiplies the i–th and j–th input and is the identity on all other elements.

We recall the definitions of the Hochschild and coHochschild constructions of functors
from [Wah12, Section 1].

For Φ : E → Ch a dg-functor the Hochschild complex of Φ is the functor C(Φ) : E → Ch
defined by

C(Φ)(n) =
⊕

k≥1

Φ(k + n)[k − 1].

The differential is the total differential of the differential on Φ and the differential coming
from the simplicial abelian group structure with boundary maps di = Φ(mk

i+1,i+2 + idn)
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where we set mk
k,k+1 = mk

k,1 and degeneracy maps induced by the map inserting a unit
at the i+ 1–st position.

The reduced Hochschild complex C(Φ)(n) is the reduced chain complex associated to
this simplicial abelian group, i.e. the quotient by the image of the degeneracies.

Iterating this construction, the functors C(n,m)(Φ) and C
(n,m)

(Φ) are given by

C(n,m)(Φ) := Cn(Φ)(m) and C
(n,m)

(Φ) := C
n
(Φ)(m).

Working out the definitions explicitly, one sees that

C(n,m)(Φ) ∼=
⊕

j1≥1,··· ,jn≥1

Φ(j1 + · · ·+ jn +m)[j1 + · · ·+ jn − n].

The category of E–algebras is equivalent to strong symmetric monoidal functors Φ :
E → Ch, sending an algebra A to the functor A⊗−. For an algebra A, the Hochschild
complex C(A⊗−)(0) is the ordinary Hochschild complex C∗(A,A) (and similarly for the
reduced complexes). Furthermore, we have an isomorphism

(2.1) C(n,m)(A⊗−) ∼= C∗(A,A)⊗n ⊗A⊗m

natural in all E–algebras A.
Dually, given a dg-functor Ψ : Eop → Ch its CoHochschild complex is defined as

D(Ψ(n)) =
∏

k≥1

Ψ(k + n)[1− k]

with the differential coming from the cosimplicial structure induced by the multiplications
and the inner differential on Ψ. Again, we can take the reduced cochain complex D(Ψ)(n).
By [Wah12, Prop. 1.7 + 1.8], the inclusion D(Ψ) → D(Ψ) and the projection C(Φ) →
C(Ψ) are quasi-isomorphisms.

We can also spell out the iterated construction explicitly, i.e. for a functor Ψ : Eop → Ch
we get

Dn(Ψ)(m) ∼=
∏

j1,··· ,jn
Ψ(j1 + · · ·+ jn +m)[n− (j1 + · · ·+ jn)].

The complex of formal operations NatE([
n1
m1], [

n2
m2]) is defined as all maps

C(n1,m1)(Φ)→ C(n2,m2)(Φ)

natural in all functors Φ : E → Ch.
In [Wah12, Theorem 2.1] it is shown that

NatE([
n1
m1], [

n2
m2])

∼= Dn1Cn2(E(−,−))(m2)(m1),

which is used to compute the complex of formal operations explicitly.
Instead of testing on all functors Φ : E → Ch we could test on strong symmetric

monoidal functors only and denote the operations obtained this way by Nat⊗E ([n1
m1], [

n2
m2]).

Via the isomorphism in equation (2.1) a transformation in Nat⊗E ([n1
m1], [

n2
m2]) corresponds

to an operation

C∗(A,A)⊗n1 ⊗A⊗m1 → C∗(A,A)⊗n2 ⊗A⊗m2

natural in all E–algebras A, so in other words it is a natural transformation of the
Hochschild complex. Since every transformation in NatE([

n1
m1], [

n2
m2]) is in particular natural

in all strong symmetric monoidal functors, we have a restriction map ρ : NatE([
n1
m1], [

n2
m2])→

Nat⊗E ([n1
m1], [

n2
m2]), so every formal operation gives us a natural operations of the Hochschild

complex of E–algebras. In general we do not know whether this map is injective or sur-
jective (for more details on this matter see [Wah12, Section 2.2]).
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2.2.2. Formal operations for commutative Frobenius algebras. We now focus on the case
where E = cFr. Using the definitions of the previous section, we can describe the com-
plexes C

n
(cFr(m1,−))(m2) and C

n
(cFr+(m1,−))(m2) as follows:

Lemma 2.2. There are isomorphisms

C
n
(cFr(m1,−))(m2) ∼= lD([ 0

m1
], [ n

m2]) = [ n
m1+m2]− cSD

and
C

n
(cFr+(m1,−))(m2) ∼= lD+([ 0

m1
], [ n

m2]).

This is a direct analog of [WW11, Lemma 6.1] in the commutative setting and the
proof works completely similar.

Applying the coHochschild construction n1 times, we can describe the formal operations
for cFr and cFr+ via

NatcFr([
n1
m1], [

n2
m2]) ' Dn1(C

n2(cFr(−,−)(m2))(m1)

∼=
∏

j1,··· ,jn1

lD([ 0
j1+···+jn1+m1], [

n2
m2])[n1 − Σji]

and
NatcFr+([n1

m1], [
n2
m2]) '

∏

j1,··· ,jn1

lD+([ 0
j1+···+jn1+m1], [

n2
m2])[n1 − Σji].

Since every commutative Frobenius algebra is in particular a commutative cocom-
mutative open Frobenius algebra, we have an induced inclusion NatcFr+([n1

m1], [
n2
m2]) ↪→

NatcFr([
n1
m1], [

n2
m2]). Under the above equivalences, this inclusion corresponds to the inclu-

sions of the subcomplexes lD+([ 0
j1+···+jn1+m1], [

n2
m2]) ↪→ lD([ 0

j1+···+jn1+m1], [
n2
m2]).

The composition in NatcFr (and thus also in NatcFr+) is described in terms of the right
hand side as follows:

For Γ ∈∏j1,··· ,jn1
[

n2
j1+···+jn1+m1+m2]− cSD and Γ′ ∈∏j1,··· ,jn2

[
n3

j1+···+jn2+m2+m3]− cSD
we get (Γ′◦Γ)j1,...,jn1

by attaching a summand G in (Γ)j1,...,jn1
which has n2 white vertices

with each k1, . . . , kn2 half-edges, to the element (Γ′)k1,...,kn2
. This is done by taking away

the white vertices from G and gluing the k1 + · · · + kn2 half-edges onto the according
labeled leaves of (Γ′)k1,...,kn2

.
Before we move on, we want to say a few words about how to view an element in x ∈∏
j1,··· ,jn1

lD([ 0
j1+···+jn1+m1], [

n2
m2]) as an operation on commutative Frobenius dg-algebras,

i.e. how to extract an operation

CC∗(A,A)⊗n1 ⊗Am1 → CC∗(A,A)⊗n2 ⊗Am2 .

We fix a tuple (j1, · · · , jn1) and an element

(a1
0⊗· · ·⊗a1

j1)⊗· · ·⊗(an1
0 ⊗· · ·⊗an1

jn1
)⊗b1⊗· · ·⊗bm1∈CCj1(A,A)⊗· · ·⊗CCjn1

(A,A)⊗Am1 .

To get the resulting element in CC∗(A,A)⊗n2 ⊗Am2 , we need to consider xj1+1,··· ,jn1+1 ∈
lD([ 0

j1+1+···+jn1+1+m1], [
n2
m2]) which is a linear combination of [

n2
j1+1+···+jn1+1+m1+m2]–looped

diagrams. We start with writing a1
0, · · · , a1

j1
on the first j1 + 1–leaves and continue by

putting the other aki following their order. Then we write the bk on the leaves labeled
j1 + 1 + · · · + jn1 + 1 + 1 to j1 + 1 + · · · + jn1 + 1 + m1. We put units on all unlabeled
leaves. Now we have m2 labeled leaves where we have not written an element of A on.
We view these and the half-edges attached to the white vertices as ends of the graph
for a moment. Starting from the leaves labeled with elements of A, we read the black
vertices of the diagram as multiplications and comultiplications, i.e. whenever two edges
meet the assigned elements are multiplied together and if an edge is split up into two the
assigned element is comultiplied. Iterating this until we hit the ends of the graph (the
remaining m2 leaves and all half-edges attached to the white vertices) we obtain a linear
combination of the diagram where we assigned values in A to all ends of the graph.
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We read off our element in CC∗(A,A)⊗n2 ⊗ Am2 by starting with the white vertices:
Each white vertex corresponds to one copy of CC∗(A,A). In the procedure described
above, an element of A is assigned to each half-edge attached to a white vertex. If the
white vertex has degree k, i.e. k + 1 edges attached to with labels c0, · · · ck, the resulting
element lies in CCk(A,A) and is given by c0⊗ ck. The elements assigned to the m2 leaves
give the resulting elements in A⊗m2 .

1

5 3
2 4

6

a1
0

b a1
2 a1

1 a2
0

6

∑

a1
0

b a1
2 a1

1 a2
0

a1
1a

2
0

ba1
2

(a1
0)′(a1

0)′′

Figure 19. How to read off operations

In Figure 19 we have illustrated how to evaluate an element of lD([ 0
3+1+1], [

1
1]), as part

of an operation in NatcFr([21], [
1
1]), on an element (a1

0 ⊗ a1
1 ⊗ a1

2)⊗ (a2
0)⊗ b ∈ CC2(A,A)⊗

CC0(A,A)⊗A. The sum in the last picture is the sum coming from the comultiplication
of a1

0 using Sweedler’s notation ∆(a1
0) =

∑
(a1

0)′ ⊗ (a1
0)′′. The element we read off is

(
∑
ba1

2 ⊗ (a1
0)′ ⊗ (a1

0)′′)⊗ a1
1a

2
0 ∈ CC2(A,A)⊗A.

2.2.3. Splitting off zero chains. It is well-known that for a commutative algebra A the
Hochschild chains C∗(A,A) split as C0(A,A) ⊕ C>0(A,A). This relies on the fact that

d(a0 ⊗ a1) = a0 · a1 − (−1)|a0||a1|a1 · a0 = 0 by the commutativity of A. It generalizes
to the Hochschild complex of functors, since we already get d0 = −d1 ∈ C om(2, 1) and
thus d = 0 ∈ C om(2, 1). Hence for Φ : C om → Ch the differential on degree one of the
Hochschild complex C∗(Φ) is trivial and we get a splitting C∗(Φ) ∼= C0(Φ)⊕C>0(Φ). This

generalizes to the iterated complex C(n,m)(Φ) ∼=
⊕

j1≥1,··· ,jn≥1 Φ(j1 + · · ·+ jn +m) which
we therefore can rewrite as:

C(n,m)(Φ) ∼=
⊕

S⊆{1,··· ,n}

⊕

ji≥2,i/∈S
Φ(j1 + · · ·+ jn +m)

with ji = 1 if i ∈ S, where the first direct sum is a direct sum of chain complexes.
For each S ⊆ {1, · · · , n} with |S| = k the sum

⊕
ji≥2,i/∈S Φ(j1 + · · · + jn + m) with

ji = 1 for i ∈ S is isomorphic to
⊕

jri≥2 Φ(jr1 + · · ·+ jrn−k
+ k +m) given by relabeling

those ji with i /∈ S to jrl and moving the ji with i = 1 to the end (with a sign involved).

Defining C
>0,(n,m)
E :=

⊕
j1≥2,··· ,jn≥2 Φ(j1 + · · ·+ jn +m), we see that

⊕

jri≥2

Φ(jr1 + · · ·+ jrn−k
+ k +m) ∼= C>0,(n−k,m+k)(Φ)

and hence we get can rewrite it as a direct sum of chain complexes as

C(n,m)(Φ) ∼=
⊕

S⊆{1,··· ,n}
C>0,(n−|S|,m+|S|)(Φ).

Defining Nat>0
E ([n1

m1], [
n2
m2]) := homE(C>0,(n1,m1)(−), C(n2,m2)(−)) we conclude

NatE([
n1
m1], [

n2
m2]) = homE(C(n1,m1)(−), C(n2,m2)(−))

=
⊕

S⊆{1,··· ,n1}
homE(C>0,(n1−|S|,m1+|S|)(−), C(n2,m2)(−))

=
⊕

S⊆{1,··· ,n1}
Nat>0

E ([n1−|S|
m1+|S|], [

n2
m2]).
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The same works for the reduced Hochschild construction and reduced natural transfor-
mations, i.e.

NatE([
n1
m1], [

n2
m2]) =

⊕

S⊆{1,··· ,n1}
Nat

>0
E ([n1−|S|

m1+|S|], [
n2
m2]),

which again is a splitting on the level of chain complexes. Similarly, for a functor Ψ :
Eop → Ch we defineD>0,n(Ψ)(m) :=

∏
ji>2 Ψ(j1+· · ·+jn+m). Going through the proof of

[Wah12, Theorem 2.1] one sees that Nat
>0
E ([n1

m1], [
n2
m2])

∼= D
>0,n1(C

n2(E(−,−)(m2))(m1) '
D>0,n1(C

n2(E(−,−)(m2))(m1).
Using the positive coHochschild construction, we can identify the subcomplex Nat>0

cFr
via the following:

Nat
>0
cFr([

n1
m1], [

n2
m2]) '

∏

j1>1,··· ,jn1>1

lD([ 0
j1+···+jn1+m1], [

n2
m2])[n1 − Σji].

2.3. Building operations out of looped diagrams. We describe a dg-functor from lD
to NatcFr which is the identity on objects. Thus we assign an operation on commutative
Frobenius dg-algebras to every looped diagram. In the two sections afterward we will
show that this actually covers interesting operations.

Recall the graph lj ∈ lD([0j], [
1
0]) defined in Section 1.1 given by a single white vertex

with j leaves attached to it and let idm1 ∈ lD([ 0
m1

], [ 0
m1

]) be the identity element, so we

have (lj1 q · · · q ljn1
q idm1)} ∈ lD([ 0

j1+···+jn1+m1], [
n1
m1]) of degree

∑
ji − n1.

Theorem 2.3. There is a functor of dg-categories

J : lD → NatcFr

which is the identity on objects and sends a looped diagram G ∈ lD([n1
m1], [

n2
m2]) to (G ◦

(lj1 q · · · q ljn1
q idm1))j1,··· ,jn1

∈∏j1,··· ,jn1
lD([ 0

j1+···+jn1+m1], [
n2
m2])[n1−Σji]. The functor

restricts to functors

lD+ → NatcFr+ , lD>0 → Nat
>0
cFr and lD>0

+ → Nat
>0
cFr+

.

Proof. After assembling everything together, Lemma 2.2 says that lD is an extension of
cFr in the sense of [WW11]. Then the theorem follows by [WW11, Lemma 5.12]. How-
ever, one can also directly check that the functor preserves the identity and composition.

�
The above theorem provides us with a big family of operations. Unfortunately, these do

not cover all operations we know, in particular not all operations coming from operations
on commutative algebras (which will be investigated in Section 3). The next theorem
provides a bigger set of operations, but we have to be more careful with composition,
since as seen earlier, ilD is not a category anymore.

Theorem 2.4. We have dg-maps

JcFr : ilD([n1
m1], [

n2
m2])→ NatcFr([

n1
m1], [

n2
m2])

and

JcFr+ : ilD+([n1
m1], [

n2
m2])→ NatcFr+([n1

m1], [
n2
m2])

preserving the composition of composable objects.

Proof. We need to show that the map is well-defined, i.e. that an infinite sum a =∑∞
t1=1 · · ·

∑∞
tn1=1 at1,...,tn1

∈ ilD>0([n1
m1], [

n2
m2]) is taken to a well-defined element in the

complex
∏

j1,··· ,jn1
lD([ 0

j1+···+jn1+m1], [
n2
m2]). So we show that for a fixed tuple (j1, · · · , jn1)

only finitely many of the J(at1,...,tn1
)(j1,··· ,jn1 ) are non-zero. In the composition with a

diagram of type (t1, · · · , tn1) none of the
∑
ti loops can be empty and by composing

with li’s only leaves are glued on. Hence for the composition to be non-zero we need
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that ji > ti. Thus the claim is shown. We only need to see that composition of com-
posable elements is preserved. In order to do so we use that all operations in NatcFr

are composable, so if two elements a =
∑∞

t1=1 · · ·
∑∞

tn1=1 at1,...,tn1
∈ ilD([n1

m1], [
n2
m2]) and

b =
∑∞

t′1=1 · · ·
∑∞

t′n2
=1 bt′1,...,t′n2

∈ ilD([n2
m2], [

n3
m3]) are composable then

J(b ◦ a) = J


 ∑

(t1,··· ,tn1 )

∑

(t′1,··· ,t′n2
)

bt′1,...,t′n2
◦ at1,...,tn1




=
∑

(t1,··· ,tn1 )

∑

(t′1,··· ,t′n2
)

J
(
bt′1,...,t′n2

◦ at1,...,tn1

)

=
∑

(t1,··· ,tn1 )

∑

(t′1,··· ,t′n2
)

J
(
bt′1,...,t′n2

)
◦ J
(
at1,...,tn1

)

so the composition agrees. �

Remark 2.5 (Operations of type (t1, · · · , tn)). At this point we want to explain how
the map JcFr actually acts on an element of type (t1, · · · , tn1). There is an easy way to
read off the operation of such an element without going back to the original definition of

the type. For a general element x = (Γ, 〈γ1
1 , . . . , γ

t1
1 〉, . . . , 〈γ1

n1
, . . . , γ

tn1
n1 〉) ∈ ilD([n1

m1], [
n2
m2])

of type (t1, · · · , tn1) the composition with (lj1 q · · · q ljn1
q idm1) is trivial if there is a

ji < ti and is given by all possible ways of (for each i) gluing the ji labeled leaves along
the γri (respecting the order of the leaves and the loops) such that we glued at least
one leaf to each γri (and gluing the m1 extra leaves as usual). In particular the image
JcFr(x) ∈ Nat([n1

m1], [
n2
m2]) acts trivial on all Hochschild degrees (j1, . . . , jn1) with ji < ti

for some i.

2.4. Connection to non-commutative operations. The analog of the functor J has
been defined in the context of symmetric Frobenius algebras in [Wah12, Section 3]. There,
it was even shown to be a split quasi-isomorphism of complexes:

Theorem 2.6 ([Wah12, Theorem 3.8]). The functor

JH0 : SD → NatsFr

defined by sending a graph G to (G ◦ (lj1 q · · · q ljn1
q idm1))j1,··· ,jn1

is a split quasi-
isomorphism.

Using the functor sFr → cFr which induces a functor NatsFr → NatcFr and recalling
the functor K : SD → lD defined at the end of Section 1.2 (cf. Figure 14), one checks
that the definitions were made to make the following proposition true:

Proposition 2.7. The diagram

SD
K

��

JH0 // NatsFr

��
lD J // NatcFr

commutes.

Remark 2.8. Everything done so far works also in the shifted setup, in particular we
get a functor

J : lDd → NatcFrd
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and a commutative diagram

SDd

K
��

JH0 // NatsFrd

��
lDd

J // NatcFrd .

2.5. First examples of operations and relations. Before we investigate some sub-
complexes of lD more systematically, we want to represent some of the known operations
on the Hochschild homology of commutative Frobenius algebras by looped diagrams and
apply the new tools to easily prove a relation between some of them.

1

(a) The identity

1

◦ aj

· · ·

a2

a1

=
aj

· · ·

a2

a1

(b) The image of the identity under J

Figure 20. The element id
[10]
∈ lD>0

+ ([10], [
1
0]) and its image in NatcFr+([10], [

1
0])

Example 2.9 (Identity). As seen before, the diagram id
[10]
∈ lD>0

+ ([10], [
1
0]) shown in Figure

20(a) corresponds to the identity in NatcFr+([10], [
1
0]). In order to see this in pictures, we

spell out the map J : lD>0
+ ([10], [

1
0])→ NatcFr+([10], [

1
0]) explicitly. By definition in degree j

we have J(id
[10]

)j = id
[10]
◦ lj . There is only one way to glue the edges of lj onto id

[10]
, so

the resulting diagram in lD+([0j], [
1
0]) is shown in Figure 20(b), where we labeled the leaves

of lj by a1, · · · , aj . Given a Hochschild chain a1 ⊗ · · · ⊗ aj the image of the operation is
now given by reading off around the white vertex. Thus we get a0 ⊗ · · · ⊗ aj back.

1 2

(a) The shuffle product pr

1 2
◦

a2

a1

v1

b3 b2

b1

v2

= b3

b2

a2

a1 b1

− b3

a2

b2

a1 b1

+ a2

b3

b2

a1 b1

(b) J(pr)2,3 = pr ◦ (l2 q l3)

Figure 21. The element pr ∈ lD>0
+ ([20], [

1
0]) and the degree (2, 3) part of

its image in NatcFr+([20], [
1
0])

Example 2.10 (Shuffle product). The operation pr ∈ lD>0
+ ([20], [

1
0]) shown in Figure 21(a)

is the shuffle product on the Hochschild homology. The composition pr ◦ (lj1 q lj2) glues
the first labeled leaves of lj1 and lj2 onto the start half-edge of pr and all other edges
around the white vertex keeping the cyclic ordering of the edges coming from lj1 and the
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cyclic ordering of the edges coming from lj2 . Thus it produces all shuffles of these edges
and hence corresponds to the shuffle product on the Hochschild chains. The example is
illustrated in Figure 21(b) for j1 = 2 and j2 = 3, where we again already labeled the
leaves by ai and bi to give a clearer understanding of the final operation.

v2 v1

1

(a) The comultiplication ∆

1

(b) The BV operator

1 − 1

− 1 + 1

(c) The element D

Figure 22. The comultiplication, the BV-operator and the boundary
element D

Recall from the introduction that for a 1–connected closed oriented manifold, we have
an isomorphism HH∗(C−∗(M), C−∗(M)) ∼= H−∗(LM). On H−∗(LM) we have a coprod-
uct (the dual of the Chas-Sullivan product) and a BV-operator. On the other hand,
working with coefficients in Q, by [LS07] there is a commutative Frobenius algebra A of
degree d for d = dimM such that we have a weak equivalence C∗(M) ' A and hence
HH∗(C−∗(M), C−∗(M)) ∼= HH∗(A−∗, A−∗). Since A−∗ is a commutative Frobenius al-
gebra of degree −d, we have an action of lD−d on HH∗(A−∗, A−∗) and can show:

Proposition 2.11 (BV-structure on H∗(LM,Q)). Working with coefficients in Q, the
coBV structure on HH∗(C−∗(M), C−∗(M)) ∼= HH∗(A−∗, A−∗), induced via the above iso-
morphism by the dual of the Chas-Sullivan product and the BV-operator on H−∗(LM,Q),
is generated by the operations J(∆) ∈ NatcFr−d

([10], [
2
0]) and J(B) ∈ NatcFr−d

([10], [
1
0]) with

∆ ∈ lD−d([10], [
2
0]) and B ∈ lD−d([10], [

1
0]) the shifted versions of the diagrams illustrated in

Figure 22(a) and Figure 22(b).

Proof. The diagrams ∆ and B are the images of the diagrams illustrated in [WW11,
Figure 13] under the functor K : SD → lD>0. Thus, the result is a direct consequence of
[WW11, Prop. 6.10]. �

1
2 =

1
2 −

1
2 −

1
2

+

1
2

Figure 23. The product µ

Example 2.12 (Product of suspended BV-structure on HH∗). The image of the diagram
µ ∈ lD>0

+ ([20], [
1
0]) shown in Figure 23 (in both ways of visualizing it as an element in lD>0

and lD) defines a product on the Hochschild chains of commutative cocommutative open
Frobenius dg-algebras. This product was introduced in [Abb13a, Section 7] and [Abb13b,
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Section 6], where it was also shown that together with the BV-operator it induces a BV-
structure on the Hochschild homology. In Section 4 we will show that it is part of a
desuspended Cacti operad.

The product µ shows similar behavior as the Goresky-Hingston product on H∗(LM,M)
(cf. [GH09]). For example, the composition of the Goresky-Hingston coproduct with the
Chas-Sullivan product is zero. We can show a similar observation for µ ◦∆, namely:

Proposition 2.13. The composition µ ◦ ∆ is a boundary in lD([10], [
1
0]), i.e. it gives a

trivial operation on Hochschild homology of commutative cocommutative open Frobenius
dg-algebras.

Proof. In Figure 24 we have computed µ◦∆. This is equal to the boundary of the element
D defined in Figure 22(c). �

1
2 ◦ 1

=

1
−

1
−

1
+

1

Figure 24. The composition µ ◦∆ = d(D)

Hence simultaneously with [Abb13b] we conjecture:

Conjecture 2.14. Under the isomorphism H−∗(LM,Q) ∼= HH∗(C−∗(M), C−∗(M)) ∼=
HH∗(A−∗, A−∗) the the Goresky-Hingston product corresponds to the (shifted) operation
induced by µ ∈ lD>0

−d([20], [
1
0]) shown in Figure 23.

3. The operations coming from commutative algebras

We have a map of PROPs C om→ cFr which is the identity on objects and an inclusion
on morphism spaces (since the structure of commutative Frobenius algebras includes the
structure of commutative algebras). Therefore, we get an inclusion NatC om → NatcFr.
This inclusion is split and factors through NatcFr+ .

In [Kla13] we recalled the shuffle operations defined in [Lod89] and computed the
homology of NatC om in terms of infinite sums of shuffles of these. In this section we define
a split subcomplex of iplD([n1

m1], [
n2
m2]) whose image under the map JcFr : iplD([n1

m1], [
n2
m2])→

NatcFr+([n1
m1], [

n2
m2]) defined in Theorem 2.4 is quasi-isomorphic to NatC om([n1

m1], [
n2
m2]). On

the level of complexes we give an even smaller subcomplex of iplD([n1
m1], [

n2
m2]) which has

trivial differential such that the map to NatC om([n1
m1], [

n2
m2]) is a quasi-isomorphism, too.

Definition 3.1. The subcomplex plDC om([n1
m1], [

n2
m2]) of plD+([n1

m1], [
n2
m2]) is spanned by all

looped diagrams (Γ, γ1, · · · , γn1) such that Γ is a disjoint union of n2 white vertices with
trees attached to it (i.e. leaves multiplied together and attached to the white vertex and
thus each irreducible loop goes once around the whole vertex) and m2 labeled outgoing
leaves with trees attached to them. The complex iplDC om([n1

m1], [
n2
m2]) is given as above by

taking products over the type of diagrams as defined in Section 1.4.

Note that an element of type (t1, · · · , tn1) corresponds to the i–th loop given by γi =
〈σ, · · · , σ︸ ︷︷ ︸

ti

〉 with σ the loop going once around the vertex starting at the leaf i. An example
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3

1

4 2m1

1m1

1m2

2

Figure 25. An element in plDC om([42], [
2
1]) of type (2, 1, 1, 1)

of an element in plDC om([42], [
2
1]) of type (2, 1, 1, 1) is given in Figure 25 (where we label

the leaves corresponding to m1 and m2 with subindices).

Example 3.2. We can describe the generators of plDC om([10], [
1
0]) explicitly:

In degree zero it is generated by a family of elements shn. The element shn of type
n is defined as (Γ, 〈σ, · · · , σ〉) where Γ is the diagram with one white vertex and the leaf
attached to the start half-edge and σ the loop going once around the vertex (i.e. we have
n irreducible loops around the vertex). For n = 0 we only have the underlying diagram,
representing the inclusion of the algebra. For an example see Figure 26(a).

The above elements have been defined using the type decomposition from Section 1.4
which we need to use if we want to take products over the elements. However, we saw that
we can rewrite them by ordinary elements in plD([10], [

1
0]). Thus for n > 0, we define the

element λn to be the diagram in plD([10], [
1
0]) looping around the white vertex n times (i.e.

the loop σ∗n which is not irreducible) and thus λ0 = sh0. These elements give us another
generating family of plD>0([10], [

1
0]) and we will come back to them when explaining the

operations corresponding to these diagrams. An example is given in Figure 26(b).
For the degree one part of plDC om([10], [

1
0]) we only give the generating family in terms

of the type decomposition: Recall from Figure 22(b) that the BV-operator is the looped
diagram with a unit at the start half-edge, one labeled incoming leaf attached to the white
vertex and a loop going once around from that leaf.

The elements Bn of type n are defined as B ◦shn, so they are given by the same graphs
as the BV-operator but have n irreducible loops going around (cf. Figure 26(c)).

1

(a) The element sh2

1

(b) The element λ2

1

(c) The element B2

Figure 26. General elements in plD([10], [
1
0])

Lemma 3.3. All morphisms in iplDC om are composable and thus iplDC om is a dg-
category.

Proof. It is enough to check the claim on generators. Given a ∈ plDC om([n1
m1], [

n2
m2]) of

type (t1, . . . , tn1) and b ∈ plDC om([n2
m2], [

n3
m3]) of type (t′1, . . . , t

′
n2

) we give conditions on
the type of the composition being non-zero. First, every irreducible loop of a becomes
an irreducible loop in the composition, i.e. the type of non-trivial elements in a ◦ b is
bounded below by (t1, . . . , tn1).

In plDC om([n1
m1], [

n2
m2]) we can rewrite every diagram as a diagram without loops together

with its type. In particular, in a◦b the underlying diagrams are of the form a◦Γ′ for Γ′ the
underlying diagram of b. Assuming that the minimal non-trivial type of the composition
a ◦ b is (u1, . . . , un1), we obtain that composition with (lu1+1 q · · · q lun1+1 q idm2) is
non-trivial (different underlying diagrams of the same type have different images under
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this composition). Thus J(b ◦ a)(u1+1,··· ,un1+1) is non-zero. However, we know that in

the composition (J(b) ◦ J(a))l1,··· ,ln1
one glues the summands of J(a)l1,··· ,ln1

onto terms

J(b)j1,··· ,jn2
with

∑
ji = deg(a) +

∑
(li− 1). For this to be non-zero, we need J(b)j1,··· ,jn2

to be non-zero, which is only true if ji > t′i for all i. Thus we conclude that
∑
t′i <∑

ji = deg(a) +
∑
ui and hence for any type (u1 · · · , un1) occurring in b ◦ a we have∑

t′i − deg(a) <
∑
ui and ti ≤ ui for all i. This proves the lemma. �

There is an analog of Lemma 2.2 for commutative algebras:

Lemma 3.4. We have an isomorphism

C
n
(C om(m1,−))(m2) ∼= plDC om([ 0

m1
], [ n

m2])

and hence a weak equivalence
∏

j1,··· ,jn1

plDC om([ 0
j1+···+jn1+m1], [

n2
m2])[n1 − Σji]→ NatC om([n1

m1], [
n2
m2]).

It follows that the diagram
∏

j1,··· ,jn1
plDC om([ 0

j1+···+jn1+m1], [
n2
m2])[n1 − Σji]

� _

��

' // NatC om([n1
m1], [

n2
m2])� _

��∏
j1,··· ,jn1

plD([ 0
j1+···+jn1+m1], [

n2
m2])[n1 − Σji]

' // NatcFr([
n1
m1], [

n2
m2])

commutes.
Hence the dg-map JcFr : iplD([n1

m1], [
n2
m2]) → NatcFr([

n1
m1], [

n2
m2]) restricts to a dg-map

JC om : iplDC om([n1
m1], [

n2
m2])→ NatC om([n1

m1], [
n2
m2]).

By Lemma 3.3 all morphisms in iplDC om are composable and since JcFr and hence
also JC om preserve the composition of composable objects, the map JC om is a natural
transformation of categories JC om : iplDC om → NatC om.

Let mr1,··· ,rn be the [ 1
(0,n)]–looped diagram with the tree with n leaves labeled r1 to rn

attached to the start half-edge, no other half-edges attached to the white vertex and a
loop going around the white vertex for each i. For n = 0 the diagram m∅ only has a
unit at the start half-edge. Denote by mr1,··· ,rn the [ 0

(n+1,0)]–looped diagram consisting of
the tree with incoming leaves labeled by r1, · · · rn and one outgoing leaf. For m = 0 this
diagram only has one unlabeled half-edge which is the outgoing leaf (i.e. it is a unit).

1

(a) The element sh2

1

(b) The element B2

7
6
41

(c) The element
m1,4,6,7

7
6
41

out
(d) The element
m1,4,6,7

Figure 27. Building blocks of p̃lDC om

Definition 3.5. The subcomplex p̃lDC om([n1
m1], [

n2
m2]) of plDC om([n1

m1], [
n2
m2]) spanned by

elements x obtained as follows: Given

• a function f : {1, · · · , n1 +m1} → {1, · · · , n2 +m2};
• a tuple of integers (t1, · · · , tn1) (the type), with ti = 0 if f(i) > n2,
• a function s : f−1({1, · · · , n2})→ {0, 1}

we define x = x2 ◦ x1 as the composition of two looped diagrams x1 and x2 with x1 ∈
plDC om([n1

m1], [
c

m1+n1−c]) and x2 ∈ plDC om([ c
m1+n1−c], [

n2
m2]) for c := |f−1({1, · · · , n2})|.
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• The element x1 = x1
1 q . . . q xn1+m1

1 is defined as the disjoint union of n1 + m1

elements with each one incoming leaf (such that we relabeled the leaf of the ith
element by i for i ≤ n1 and jm1 for j = i− n2 for n1 ≤ i ≤ m1 + n1 after taking
disjoint union). These elements are defined as follows:

– If 1 ≤ i ≤ n1 and
∗ if f(i) ≤ n2 then xi1 ∈ plDC om([10], [

1
0]) is given by

xi1 =

{
shti if s(i) = 0

Bti if s(i) = 1.

∗ if f(i) > n2 and thus ti = 0, then xi1 = id ∈ plD>0
C om([10], [

0
1]), the

constant diagram with the incoming leaf glued to the outgoing leaf.
– For n1 + 1 ≤ i ≤ n1 +m1 we have

∗ If f(i) ≤ n2 then xi1 ∈ plDC om([01], [
1
0]) given by

xi1 =

{
sh0 if s(i) = 0

B0 if s(i) = 1.

∗ If f(i) > n2 then xi1 = id ∈ plD>0
C om([01], [

0
1]).

Thus x1 = x1
1 q . . .q xn1+m1

1 ∈ plD([n1
m1], [

c
m1+n1−c]).

• The element x2 ∈ plD([ c
m1+n1−c], [

n2
m2]) multiplies the i–th incoming vertex onto the

outgoing vertex f(i) (and the incoming leaf onto f(i) for i > n2). More precisely,

x2 = m{f−1(1)} q . . .qm{f−1(n2)} qm{f−1(n2+1)} q . . .qm{f−1(n2+m2)}.

We define ĩplDC om([n1
m1], [

n2
m2]) analogous to before by taking products over the type of

these elements.

An example of such an element in p̃lDC om([22], [
1
1]) with t1 = 1, t2 = 2, f(1) = f(2) =

f(4) = 1 and f(3) = 2, s(1) = s(3) = 1 and s(2) = 0 is given in Figure 28. We have
x1 ∈ plDC om([22], [

3
1]) and x2 ∈ plDC om([31], [

1
1]).

1

2

2m1

1m1

1c′

(a) The element x1

3
2

1 1c′

1m2

(b) The element x2

2

1

2m1

1m1

1m2
−

2

1
2m1

1m1

1m2

(c) The element x = x2 ◦ x1

Figure 28. An element in p̃lDC om([22], [
1
1])

Since both elements x1 and x2 have trivial differential, the differential on the com-

plexes p̃lDC om([n1
m1], [

n2
m2]) and ĩplDC om([n1

m1], [
n2
m2]) is also trivial. Note moreover, that

iplDC om([10], [
1
0])
∼= ĩplDC om([10], [

1
0]).

We denote the further restriction of JC om to ĩplDC om([n1
m1], [

n2
m2]) by J̃C om. In [Kla13,

Section 2.3] we recalled Loday’s lambda and shuffle operations λk and shk (cf. [Lod89])
and defined operations Bk as the composition of the shuffle operations with Connes’
boundary operator and used the families shk and Bk to build general operations in
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NatC om([n1
m1], [

n2
m2]). Up to sign, the shuffle operations act on the Hochschild degree n

by taking all (p1, · · · , pk)-shuffles in Σn with p1 + · · · pk = n and all pj ≥ 1 and view these
as elements in C om(n+ 1, n+ 1) leaving the first element fixed. Using this combinatorial
description and recalling from Remark 2.5 how to read off operations of type k, it is not

hard to see that J̃C om sends the looped diagram shk to the operation shk ∈ plD([10], [
1
0]).

Both, as diagrams and as operations we can rewrite the family λk in terms of the shk

with the same coefficients occurring and hence see that J̃C om also sends the diagrams
λk to the corresponding operations λk ∈ plD([10], [

1
0]). Hence this way we recover Lo-

day’s lambda operations. Since we have already seen that Connes’ boundary operator is

send to B under J̃C om, the same follows for the Bk. Moreover, the looped diagrams x1

and x2 constructed in Definition 3.5 are send to the operations x1 and x2 in Definition
[Kla13, Def. 3.3]. Therefore the complex spanned by the diagrams of type (t1, . . . , tn1) in

ĩplDC om([n1
m1], [

n2
m2]) is mapped to the complex At1,··· ,tn1

as defined in [Kla13, Def. 3.3] and

thus J̃C om(ĩplDC om([n1
m1], [

n2
m2]))

∼=
∏
At1,...,tn1

. In [Kla13, Theorem 3.4] we prove that the

inclusion of this complex into NatC om([n1
m1], [

n2
m2]) is a quasi-isomorphism, thus in terms of

looped diagrams the theorem can be restated as:

Theorem 3.6 ([Kla13, Theorem 3.4]). The map J̃C om is a quasi-isomorphism, i.e.

J̃C om : ĩplDC om([n1
m1], [

n2
m2])

'−→ NatC om([n1
m1], [

n2
m2])

and the left complex has trivial differential, thus on homology

H∗(J̃C om) : ĩplDC om([n1
m1], [

n2
m2])

∼=−→ H∗(NatC om([n1
m1], [

n2
m2])).

Corollary 3.7. The inclusion ĩplDC om([n1
m1], [

n2
m2])→ iplDC om([n1

m1], [
n2
m2]) is a quasi-isomorphism.

Proof. Since the differential does not contract a loop going around a whole vertex and
all loops are irreducible and of this kind and there is an isomorphism of chain complexes

plDt1,··· ,tn1
C om ([n1

m1], [
n2
m2])

∼= plDC om([ 0
m1+n1

], [n2
m2]) and similarly by the restriction of this iso-

morphism we have p̃lDt1,··· ,tn1

C om ([n1
m1], [

n2
m2])

∼= p̃lDC om([ 0
m1+n1

], [n2
m2]). Moreover, by Lemma

3.4 and the following constructions NatC om([ 0
m1+n1

], [n2
m2])

∼= plDC om([ 0
m1+n1

], [n2
m2]) and

the map J̃C om in this case is given by the embedding of p̃lDC om([ 0
m1+n1

], [n2
m2]) into this

complex. Since J̃C om is a quasi-isomorphism, the embedding

p̃lDC om([ 0
m1+n1

], [n2
m2])→ plDC om([ 0

m1+n1
], [n2

m2])

is a quasi-isomorphism and thus by the isomorphism of complexes stated above, so is

p̃lDt1,··· ,tn1

C om ([n1
m1], [

n2
m2])→ plDt1,··· ,tn1

C om ([n1
m1], [

n2
m2]).

Since homology commutes with products, the map

∏

(t1,··· ,tn1 )

p̃lDt1,··· ,tn1

C om ([n1
m1], [

n2
m2])→

∏

(t1,··· ,tn1 )

plDt1,··· ,tn1
C om ([n1

m1], [
n2
m2])

is an isomorphism on homology and thus the corollary is proven. �

Corollary 3.8. The map JC om : iplDC om → NatC om is a quasi-isomorphism of dg-
categories.

Proof. We have seen earlier that JC om is a dg-functor. Thus we only need to show that it

is a quasi-isomorphism. By Theorem 3.6 and Corollary 3.7 the maps J̃C om and iC om are

quasi-isomorphisms. Furthermore, JC om ◦ iC om = J̃C om and hence it follows that JC om is
a quasi-isomorphism for all morphism spaces. �
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4. The suspended cacti operad and its action

In this section we define a subcategory plD>0
cact(n1, n2) of plD>0

+ ([n1
0 ], [n2

0 ]) and show that
it is quasi-isomorphic to a suspension of the cacti quasi-operad. We start with operadic
constructions and definitions.

4.1. Operadic constructions. First we give some operadic tools. We only consider
non-unital operads, i.e. operads indexed on the positive integral numbers. Furthermore,
sometimes we will have to work with quasi-operads. A quasi-operad fulfills the same
axioms as an operad beside associativity (for more details see [Kau05, Section 1]).

We work with (quasi-)operads in chain complexes, topological spaces and pointed topo-
logical spaces.

To switch between these, we need the following constructions:

Proposition 4.1. • For P an operad in topological spaces with all structure maps
proper, the level-wise one-point compactification Pc is an operad in pointed spaces
(cf. [AK13, Prop. 4.1]).
• Let P be an operad in topological spaces and I an operadic ideal. Define P/I in

level n to be the pointed space P(n)/I(n) with basepoint I(n). Then P/I is an
operad in pointed spaces.

Next we define some operads used later on:

Definition 4.2. The open simplex operad D is the topological operad with D(n) =

∆̊n−1 = {(s1, · · · , sn) | 0 < si < 1,
∑
si = 1} the open standard n − 1–simplex, with

Σn–action given by permuting the coordinates and composition defined by

◦i : ∆̊k−1 × ∆̊n−1 → ∆̊n+k−2

(t1, · · · tk) ◦i (s1, · · · , sn) = (s1, · · · , si−1, si · t1, · · · , si · tk, si+1, · · · , sn).

The sphere operad Sph is the one-point compactification of D, i.e. Sph(n) = D(n)c.

Note that the operad D is a retract of the scaling operad R>0 defined in [Kau05, 5.1.1]
and given by R>0(n) = Rn

>0. The retraction from R>0 to D sends a tuple (r1, . . . , rn) ∈
Rn
>0 with R =

∑
ri to ( r1

R , . . . ,
rn
R ) ∈ ∆̊n−1.

The operads D and Sph have also been defined in [AK13] where they are denoted by
∆n−1

1 and S, respectively. There, it is also mentioned that one can use the sphere operad
to define operadic suspension. To make this more precise, we recall:

Definition 4.3 ([LV12, Section 7.2.2]). The desuspension operad S−1 is defined as the
endomorphism operad of s−1K with s−1 the shift operator, thus

S−1(n) = hom((s−1K)⊗n, s−1K).

For a graded operad O its operadic desuspension is defined as

s−1O(n) = S−1(n)⊗O(n),

as the Hadamard tensor product of operads (cf. [LV12, Section 5.3.3]). We define the

twisted desuspension operad S̃−1 = H̃∗(Sph) the reduced homology of the sphere operad.
This operad equals S−1(n) as a graded Σn–module, but the signs in the composition
differ. We define the twisted operadic desuspension by

s̃−1O(n) = S̃−1(n)⊗O(n).

Defining the topological operadic desuspension of an operad P in pointed spaces as

Sph ∧ P, on reduced homology one obtains H̃∗(Sph ∧ P) ∼= s̃−1H̃∗(P).
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4.2. The cacti-like diagrams. In this section we define the different kinds of looped
and Sullivan diagrams used later on.

Definition 4.4. An [
n2

(0,n1)]–looped diagram (Γ, γ1, · · · , γn1) belongs to plDcact(n1, n2) if
it fulfills the following properties:

• The white vertices in Γ are not connected, i.e. Γ is the disjoint union of n2

commutative diagrams.
• The underlying commutative Sullivan diagram has a representation embeddable

into the plane.
• Every boundary segment of any white vertex in Γ is part of exactly one loop γi

and all these loops γi are irreducible and positively oriented.
• If an arc component (i.e. the connected components after removing the white

vertex) has genus g (as a graph) there are exactly g constant loops attached to it.

This defines a complex, since by the irreducibility of the loops around the white vertex,
genus in the graph can only be created if a loop is contracted completely and thus there
is a constant loop belonging to the new genus.

Denote by plDcst
cact(n1, n2) the subcomplex of partly constant diagrams (i.e. at least one

of the loops is constant) which in particular contains all diagrams with genus in the arc
components by the last condition in the definition. Let plD>0

cact(n1, n2) be the subcategory
of plD>0([n1

0 ], [n2
0 ]) given by the non-constant diagrams as introduced in Section 1.3. Since

the white vertices are not connected, all singular vertices must be loop covering and hence
by Corollary 1.19 we have an isomorphism of dg-categories

plD>0
cact(n1, n2) ∼= plDcact(n1, n2)/plDcst

cact(n1, n2).

3

1

2

(a) Γ ∈ plD>0
cact(3, 1)

12

3

(b) A different embedding of
Γ

12

3

(c) The corresponding cacti-
like Sullivan diagram F (Γ)

Figure 29. A looped diagram in plD>0
cact(3, 1), the embedding used to

obtain a Sullivan diagram and the corresponding cacti-like Sullivan dia-
gram

By the description every diagram is a disjoint union of looped diagrams with at least
one incoming leaf and hence

plDcact(n1, n2) =
∐

f :{1,...,n1}→{1,··· ,n2}
f surj, ti:=|f−1(i)|

plDcact(t1, 1)× · · · × plDcact(tn2 , 1)

and similarly for plDcst
cact(n1, n2) and plD>0

cact(n1, n2). Furthermore, the chain complexes
plDcact(n, 1), plDcst

cact(n, 1) and plD>0
cact(n, 1) define non-unital dg-operads. An example of

an element in plD>0
cact(3, 1) is given in Figure 29(a).

Before we give an actual definition of the cacti operad, we define the complex of cacti-
like [1n]–Sullivan diagrams:

Definition 4.5. A Sullivan diagram Γ ∈ [1n]− Sullivan diagrams is cacti-like if

• it is embeddable into the plane,
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• the arc components have genus zero as graphs (i.e. viewed as CW-complexes they
are contractible),
• the diagram has exactly n boundary cycles, each labeled by a leaf.

In a first step, we show that on the level of diagrams we have a bijection:

Lemma 4.6. We have a bijection

K : {Cacti-like [1n]− Sullivan diagrams} −→
{

non-constant looped diagrams
(Γ, γ1, · · · , γn) ∈ plDcact(n, 1)

}

with K the map described at the end of Section 1.2 forgetting about the cyclic ordering at
the black vertices though remembering a loop for each boundary cycle.

Proof. The map K has an inverse F which can be described as follows: After forgetting
the labeled leaves, for any looped diagram (Γ, γ1, · · · , γn) ∈ plDcact(n, 1) with no constant
loops the commutative Sullivan diagram Γ can be uniquely (up to the equivalence relation
on Sullivan diagrams) embedded into the plane such that the last segment of the white
vertex is on the outside of the graph. To see so, one verifies that the data of a commutative
Sullivan diagram of degree d without genus in the arc components is equivalent to dividing
{0, · · · , d} into a disjoint union of subsets and connecting all elements of one subset by
an arc component. This becomes unique if the diagram was embeddable into the plane
before and if we glue onto an interval instead of a circle (which we do by the condition
that the last boundary segment lies outside the graph). To define the inverse map F , for
a looped diagram (Γ, γ1, · · · , γn) ∈ plDcact(n, 1) we then choose the labeled leaves to be
inside the loop which starts at this leaf (this is possible since the loops do not overlap).
It is not hard to see that after forgetting the loops this embedding into the plane gives a
cacti-like [1n]–Sullivan diagram. An example of the chosen embedding of the diagram in
Figure 29(a) and the corresponding cacti-like Sullivan diagram are shown in Figure 29.
By definition, the composition F ◦ K is the identity. In order to see that K ◦ F is the
identity too, one checks that every cacti-like [1n]–Sullivan diagram can be embedded into
the plane such that the last segment of the white vertex is on the outside of the diagram.
Choosing this embedding and using the fact that F is well-defined, i.e. independent of
the embedding, it follows directly that K ◦ F is the identity. �

4.3. The cacti operad. In this section we recall the definition of the (normalized) Cacti
operad with spines. The original definition goes back to Voronov in [Vor05]. For an
overview over different definitions of cacti see [Kau05]. We use the definition given in
[CV05, Section 2.2].

An element in Cacti(n) is given by a treelike configuration of n labeled circles with
positive circumferences ci such that

∑
ci = 1 (usually one uses the radii, but for our setup

working with the circumferences immediately is easier) together with the following data:
(1) A cyclic ordering at each intersection point, (2) the choice of a marked point on each
circle and (3) the choice of a global marked point on the whole configuration together
with a choice of a circle this point lies on. Treelike means that the dual graph of this
configuration, whose vertices correspond to the lobes and which has an edge whenever
two circles intersect, is a tree. In the normalized cacti Cacti1(n) all circles have the same
radius/circumference. This is only a quasi-operad, since associativity fails (cf. [Kau05,
Remark 2.9.19]).

In [LUX08] it is shown that Cact can be equivalently defined using the space of chord
diagrams. To avoid even more notation, we apply the equivalence of Sullivan chord
diagrams and Sullivan diagrams as defined in Section 1.1 and give a description of Cacti1

and Cacti in these terms: Cact1(n) is a finite CW complex with cells ∆fΓ(1)−1 × · · · ×
∆fΓ(n)−1 for each Γ a cacti like [1n]–Sullivan diagram whose boundary cycle belonging to

the i–th labeled incoming leaf consists of fΓ(i) pieces. Thus the tj1, . . . , t
j
fΓ(j) give the
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Figure 30. Three different representations of the same element in Cacti1(4)

lengths of the pieces of a lobe starting at the spine (marked point) of the lobe. Hence we
have an isomorphism

Cacti1(n) ∼=
⋃

Γ∈[1n]−Sullivan diagrams, cacti- like

∆fΓ(1)−1 × · · · ×∆fΓ(n)−1

where ∆m is the standard simplex. The correspondence is shown in Figure 30, where we
have drawn an element in Cacti1(4) first as an ordinary cactus, then as a Sullivan chord
diagram with the corresponding arc lengths in ∆1 ×∆1 ×∆2 ×∆1 (i.e. the description
corresponding to [LUX08]) and then in terms of the definition given in the lines above
(Sullivan diagram with arc lengths in ∆1 ×∆1 ×∆2 ×∆1).

The attaching maps identify an element (Γ, ((t11, . . . , t
1
fΓ(1)), . . . , (t

n
1 , . . . , t

n
fΓ(n)))) with

one of the tji = 0 with the pair (Γ′, ((t11, . . . , t
1
fΓ(1)), . . . , t

j
i−1, t

j
i+1, . . . , t

n
fΓ(n)))) where tji is

omitted and Γ′ is the Sullivan diagram where the i–th boundary segment belonging to
the boundary cycle labeled by the j–th leaf is contracted. In Figure 31 we have given an
example, where in the left representative the length t33 (so the last length belonging to the
boundary cycle labeled by the leaf 3) equals zero and in the right representative the last
segment of the boundary cycle of the diagram (which in this case is the first boundary
segment belonging to white vertex) got contracted.

1

3
2

4 , (( 1
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1
2 ), ( 2

3 ,
1
3 ), ( 1

2 ,
1
2 , 0), ( 3
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2
5 )) ∼ 1

3

2
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1
2 ), ( 2

3 ,
1
3 ), ( 1

2 ,
1
2 ), ( 3

5 ,
2
5 ))

Figure 31. The gluing relation in Cacti1(4)

As a space, we have Cacti(n) ∼= Cacti1(n)× ∆̊n−1 where the extra parameters specify
the lengths of the loops. So we get

Cacti(n) ∼=
⋃

Γ∈[1n]−Sullivan diagrams, cacti- like

∆fΓ(1)−1 × · · · ×∆fΓ(n)−1 × ∆̊n−1

and the equivalence relation coming from the one in Cacti1(n).
By [Kau05, Cor. 5.2.3] the homology of the quasi-operad Cacti1 is equivalent to the

homology of Cacti as a graded operad. As announced in [Vor05, Theorem 2.3] (see
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[Kau05, Theorem 5.3.6] for a complete proof), the cacti operad is homotopy equivalent to
the framed little disc operad, and by [Get94] the singular homology of the framed little
disc operad is isomorphic as an algebraic operad to the BV-operad. Thus,

H∗(Cacti1) ∼= BV

as an equivalence of graded operads.

4.4. Result and proof. Now we have given enough definitions to state the main theorem
of the section:

Theorem 4.7. The complex plD>0
cact(n, 1) is a chain model for the twisted operadic desus-

pended BV-operad, i.e.
H∗(plD>0

cact(−, 1)) ∼= s̃−1BV

as graded operads.

Before we prove the theorem, we first want to point out the consequence for the oper-
ations on Hochschild homology:

Corollary 4.8. There is a non-trivial desuspended BV-algebra structure on the Hochschild
homology of a commutative cocommutative open Frobenius dg-algebra (in particular on the
Hochschild homology of a commutative Frobenius dg-algebra) which comes from an action
of a chain model of the suspended Cacti operad on the Hochschild chains.

More precisely, the product is the product given by the action of the looped diagram
shown in Figure 23 and the BV-operator is trivial on Hochschild degree zero and the ordi-
nary BV-operator on all other degrees. Spelling out the product explicitly, one sees that
this BV-structure agrees with the BV-structure on the Hochschild homology of positive
Hochschild degree given in [Abb13a, Section 7] and [Abb13b, Section 6].

To avoid introducing more notation, we write plDcact(n, 1)• and plDcst
cact(n, 1)• for

the associated simplicial sets of the chain complexes (where we allow unlabeled incom-
ing leaves at any point of the white vertex, cf. the proof of Lemma 1.5) and take
their geometric realization. We define an operad structure on this space and show
that on homology we have an isomorphism of operads H∗(plDcact(−, 1)/plDcst

cact(−, 1)) ∼=
H∗(|plDcact(−, 1)•| ,

∣∣plDcst
cact(−, 1))•

∣∣).
Write X• = plDcact(−, 1)•. We first explain why we do not need to care about de-

generate simplices (i.e. diagrams with unlabeled leaves attached to the white vertex at

other positions than the start half-edge). Denote the non-degenerate part by Xnon−deg
• .

Since the boundary of a non-degenerate element in X• is non-degenerate, the simplicial

realization is the realization of Xnon−deg
• as a semi-simplicial set, i.e.

|X•| ∼=
∐

k

(Xnon−deg
k ×∆k)/ ∼

with (x, δiy) ∼ (dix, y).
So an element in the geometric realization is an equivalence class of a looped diagram

together with an assignment of lengths to each piece of the white vertex. Thus a point in
the geometric realization is a diagram where we consider the white vertex as a circle of
length one up to the equivalence relation of rescaling and sliding the arc components. For
composing y onto the i–th loop of x we assume that the boundary segment belonging to
the i–th loop of x have lengths (s1, . . . , sr). Then composition onto the i–th loop rescales
the white vertex of y to lengths

∑
si and glues the diagram into these pieces gluing the

start half-edge onto the labeled leaf and considering the arc components to have lengths
zero. This is similar to the gluing in the arc complex and fat graph considered in [Pen87],
[KLP03] and others. An example of such a composition is shown in Figure 32, where we
glue an element in |plDcact(2, 1)•| onto the second loop of an element in |plDcact(3, 1)•| and
thus obtain an element in |plDcact(4, 1)•|. We have written the lengths of the boundary
segments of the white vertices next to the vertex in the picture. To stay with the notation
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we use in operads we write y ◦i x if we glue y onto the i–th loop of x (i.e. we switch the
order against the ordinary gluing in the chain complex of looped diagrams).

1

2
1
21

3

1
6 ◦2

12

3

1
4

1
8

1
8

1
2

=

4

2

3

1

3
16

1
16

1
8

1
16

1
16

1
2

Figure 32. An example of the composition in |plDcact(−, 1)•|, gluing the
left element onto the second (blue) loop of the right one

Lemma 4.9. With the above operad structure on plDcact(−, 1), we obtain an isomorphism
of operads

H∗(plDcact(−, 1)/plDcst
cact(−, 1)) ∼= H∗(|plDcact(−, 1)•| ,

∣∣plDcst
cact(−, 1))•

∣∣).

Proof. Given a simplicial set X•, we have an isomorphism of chain complexes C∗(X•) ∼=
CCW
∗ (|X•|) where C∗ denotes the normalized chains whereas CCW

∗ stands for the cel-
lular chains of a complex. In our situation this induces isomorphisms plDcact(n, 1) ∼=
CCW
∗ (|plDcact(n, 1)•|) and plDcst

cact(n, 1) ∼= CCW
∗ (|plDcst

cact(n, 1)•|). Since the operadic com-
position on the geometric realization is a cellular map we get an induced composition on
the cellular complexes. Hence we only have to check that on homology the composition
commutes with the isomorphisms.

A diagram x ∈ plDcact(n, 1) of degree k is mapped to the cell given by the x × ∆k.
Given a cell x×∆k and a cell y×∆l with the i–th loop of y non-constant, gluing x×∆k

onto the i–th loop of y × ∆l we obtain the union of the ∆k+l cells which one gets by
gluing the diagram y onto the diagram x in all possible ways. The signs come from the
orientation of the cells. By the definition the complex x ∈ plDcst

cact(n, 1) gets mapped to
the cells belonging to the operad |plDcst

cact(−, 1))|. Since both are operadic ideals, we get
the wished isomorphism on homology. �
Lemma 4.10. We have a homeomorphism of operads in pointed spaces

|plDcact(−, 1)•| /
∣∣plDcst

cact(−, 1)•
∣∣ ∼= Cactic

where Cactic is the one-point compactification of the cacti operad.

We do not see an easy proof of the fact that the structure maps in Cacti are proper
and hence that the structure maps in Cactic are continuous. However, proving the home-
omorphism in the above statement and checking that it preserves the obvious structure
maps then implies the continuity of these maps.

Proof. Note that
∣∣plDcst

cact(n, 1)•
∣∣ is a closed subspace of the compact space |plDcact(n, 1)•|

(which is the realization of a finite simplicial set). It is a point set topological exercise that
when given a compact space X with a closed subspace X ′, the one-point compactification
of X\X ′ (the complement of X ′ in X) is homeomorphic to X/X ′. Hence proving a
homeomorphism

|plDcact(n, 1)•| \
∣∣plDcst

cact(n, 1)•
∣∣ ∼= Cacti

induces a homeomorphism

|plDcact(−, 1)•| /
∣∣plDcst

cact(−, 1)•
∣∣ ∼= Cactic
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which sends
∣∣plDcst

cact(−, 1)•
∣∣ to the point at infinity of Cactic.

Take (x, y) with x = (Γ, γ1, · · · , γn) ∈ plDcact(−, 1)k and y = (s0, · · · , sk) ∈ ∆n such
that [(x, y)] ∈ |plDcact(n, 1)•| \

∣∣plDcst
cact(n, 1)•

∣∣. This is equivalent to assuming that x
is non-constant and that in y not all of the si belonging to the same loop in x are
zero. More precisely, for F (x) the corresponding cacti-like Sullivan diagram defined in
Lemma 4.6 and fΓ the map which counts how many of the boundary components of
the white vertex belong to each boundary cycle, we reorder and relabel (s0, · · · , sk) to
(t11, . . . , t

1
fF (Γ)(1), t

2
1, . . . , t

n
fF (Γ)(n)). Then the assumption on y is equivalent to Ri =

∑
j t

i
j 6=

0 for all i.
We send the pair (x, y) to

((
t11
R1
, . . . ,

t1fF (Γ)(1)

R1
), . . . , (

tn1
Rn

, . . . ,
tnfF (Γ)(n)

Rn
), (R1, . . . , Rn)) ∈ ∆fΓ(1)−1×· · ·×∆fΓ(n)−1×∆̊n−1

lying in Cacti(n) in the “cell” belonging to F (Γ). Away from the boundary the coordinates
of the simplex (i.e. the si) just give us the lengths of the pieces of the arc of a cacti.

The map is well-defined, since the equivalence relation given by the geometric realiza-

tion (contracting a piece of the boundary is equivalent to setting the corresponding tji
zero) is the same equivalence relation as we have on cacti.

We next construct an inverse. Given

((t11, · · · , t1fΓ(1), t
2
1, . . . , t

n
fΓ(n)), (R1, . . . , Rn)) ∈ ∆fΓ(1)−1 × · · · ×∆fΓ(n)−1 × ∆̊n−1

in the “cell” corresponding to a cacti-like Sullivan diagram Γ, it is mapped to

[(K(Γ), (R1 · t11, · · · , R1 · t1fΓ(1), R2 · t21, . . . , Rn · tnfΓ(n)))] ∈ |plDcact(n, 1)•| .
It is not hard to check that this map is an inverse to the first one. Moreover, both maps
are continuous, hence we have constructed the asked homeomorphism.

Because of the way we defined the maps, it is also clear that composition is preserved
on |plDcact(n, 1)•| \

∣∣plDcst
cact(n, 1)•

∣∣. Composition on |plDcact(n, 1)•| /
∣∣plDcst

cact(n, 1)•
∣∣ sends

everything containing the basepoint to the basepoint and hence agrees with the compo-
sition of the one-point compactification.

�

The next step of the proof goes along the lines of [Kau05, Section 5]. We first need to
define two further operads, one given by a semi-direct product and the analog given by
the semi-direct smash product.

Recall the simplex operad D with D(n) = ∆̊n−1. Let D n Cacti1 be the operad with
(DnCacti1)(n) = D(n)×Cacti1(n) with diagonal Σn–action and the composition which
for (d, c) ∈ D(n)× Cacti1(n) and (d′, c′) ∈ D(k)× Cacti1(k) is defined by

(d, c) ◦i (d′, c′) = (d ◦i d′, c ◦d
′

i c′)

with c ◦d′i c′ computed via the following procedure: Write d′ = (d1, · · · , dk) and rescale c′

by d′, i.e. scale the j–th lobe by dj . Then we glue c′ into the i–th lobe of c and rescale
all lobes back to length 1. A more general theory of the semi-direct product of operads
can be found in [Kau05, Section 1.3].

Similarly, we define the operad Sph n∧ Cacti1+ with pointed spaces (Sph n∧ Cacti1+)(n) =
Sph(n) ∧ Cacti1+(n), where Cacti1+(n) is the space Cacti1(n) with added disjoint base-
point. The composition is defined by

(d ∧ c) ◦i (d′ ∧ c′) = (d ◦i d′) ∧ (c ◦̃d′i c′)

with

c ◦̃d′i c′ =

{
∗ if any of c, c′ or d is the base point

c ◦d′i c′ else.
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On the level of spaces we have

(D(n)× Cacti1(n))c ∼= D(n)c ∧ Cacti1(n)c ∼= Sph(n) ∧ Cacti1+(n)

since Cacti1(n) is a finite CW-complex and hence compact, i.e. its one-point compact-
ification just adds a disjoint basepoint. We defined the operad structures exactly such
that

(D n Cacti1)c ∼= Sph
n∧ Cacti1+.

Rewriting the first part of [Kau05, Theorem 5.2.2] in terms of the simplex operad, we
have:

Lemma 4.11. There is a homeomorphism of operads

Cacti ∼= D n Cacti1

and hence

Cactic ∼= (D n Cacti1)c ∼= Sph
n∧ Cacti1+.

As the last step, we need the analog of the second part [Kau05, Theorem 5.2.2], which
is the analog of the comparison between loops and Moore loops:

Lemma 4.12. There is a homotopy equivalence of pointed quasi-operads

Sph n∧ Cacti1+ ' Sph ∧ Cacti1+.
Proof. Completely similar to [Kau05], the perturbed and unperturbed multiplications are
homotopic. Choosing a line segment from d′ ∈ ∆k−1 to the midpoint of the simplex
(1/k, . . . , 1/k) and denoting the corresponding path d′t, the homotopy for the pointed
quasi-operad composition is defined by

(d, c) ◦i (d′, c′) = (d ◦i d′, c ◦̃d
′
t

i c′)

where we rescale c′ by d′t. �

Now we are able to prove the main proposition of the section:

Proof of Theorem 4.7. Collecting all the homeomorphisms and homotopy equivalences of
(quasi-)operads shown in this section, we get the following isomorphism of operads,

H∗(plD>0
cact(−, 1)) ∼= H∗(plDcact(−, 1)/plDcst

cact(−, 1))

∼= H∗(|plDcact(−, 1)•| ,
∣∣plDcst

cact(−, 1))•
∣∣)

∼= H̃∗(|plDcact(−, 1)•| /
∣∣plDcst

cact(−, 1))•
∣∣)

∼= H̃∗(Cactic)

∼= H̃∗(Sph
n∧ Cacti1+)

∼= H̃∗(Sph ∧ Cacti1+)

∼= S̃−1 ⊗H∗(Cacti)

where the last step is the Kuenneth morphism H̃∗(X) ⊗ H̃∗(Y ) → H̃∗(X ∧ Y ) which is

an isomorphism since H̃∗(X) is free in the case considered here. Moreover, the Kuenneth
morphism is a symmetric monoidal functor and thus preserves the operad structure.

Since H∗(Cacti) is the BV operad, the isomorphism of operads

H∗(plD>0
cact(−, 1)) ∼= S̃−1 ⊗BV

follows. �
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Appendix A. An overview over the complexes of looped diagrams

In the two tables below we give an overview over all the complexes defined in the paper.
Table 1 gives the basic definitions of the complexes and Table 2 applies constructions to
complexes C from the first table.

C Name (if
given)

Description of generators x =
(Γ, γ1, · · · , γn1) ∈ C

Place
defined
in the
paper

lD([n1
m1], [

n2
m2])

looped dia-
grams

Γ a commutative Sullivan diagram
with n1 + m1 + m2 labeled leaves
and n1 loops starting at the first n1–
labeled leaves

Def. 1.8

lD+([n1
m1], [

n2
m2])

looped dia-
grams with
positive bound-
ary condition

x ∈ lD([n1
m1], [

n2
m2]) such that every

connected component contains at
least one white vertex or one of the
m2 last labeled leaves

Def. 1.9

plD([n1
m1], [

n2
m2]),

plD+([n1
m1], [

n2
m2])

positively ori-
ented looped
diagrams (with
positive bound-
ary condition)

x ∈ lD([n1
m1], [

n2
m2]) (or lD+([n1

m1], [
n2
m2]),

resp.) such that all loops are posi-
tively oriented

Def.
1.10

plDstart([
n1
m1], [

n2
m2])

x ∈ plD([n1
m1], [

n2
m2]) such that each

loop γi consists of exactly one
boundary segment of a white vertex
which is the first boundary segment
of that white vertex

Def.
1.23

plDC om([n1
m1], [

n2
m2])

x ∈ plD+([n1
m1], [

n2
m2]) such that Γ is

a disjoint union of n2 white vertices
with trees attached to it and m2 la-
beled outgoing leaves with trees at-
tached to them

Def. 3.1

p̃lDC om([n1
m1], [

n2
m2])

x ∈ plDC om([n1
m1], [

n2
m2]) built via a

specific procedure described in Def.
3.5

Def. 3.5

plDcact(n1, n2)
x ∈ plD+([n1

0 ], [n2
0 ]), all white ver-

tices of Γ connected, Γ is embed-
dable into the plane, all loops ir-
reducible, every bound. segm. of
white vert. is part of exactly one
loop, one constant loop per genus

Def. 4.4

Table 1. Definitions of the (sub)complexes of lD
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D Com-
plex?

Name Definition of x ∈ D Place
de-
fined
in the
paper

Cd Yes the degree of a looped diagram
(Γ, 〈γ1

1 , . . . , γ
t1
1 〉, . . . , 〈γ1

n, . . . , γ
tn
n 〉) is

shifted by −d · χ(Γ, ∂out)

Def.
1.12

C t1,··· ,tn1 No irreducible
looped dia-
grams of type
(t1, · · · , tn1)

x = (Γ, 〈γ1
1 , . . . , γ

t1
1 〉, . . . , 〈γ1

n, . . . , γ
tn
n 〉)

(for the notation cf. Section 1.4) such

that all the loops γji are irreducible

Def.
1.20

C cst Yes partly constant
diagrams

x ∈ C t1,··· ,tn1 with at least one ti = 0
(spanned by those x = (Γ, γ1, · · · , γn1)
with one of the γi constant)

Def.
1.13

C>0 Yes non-constant
diagrams

x ∈ C t1,··· ,tn1 with all ti > 0 (split com-
plement of C cst)

Def.
1.16

iC Yes Products of
irreducible
looped dia-
grams

D =
∏

t1,··· ,tn1
C t1,··· ,tn1 , i.e. infinite

sums of elements, in general composi-
tion is not well-defined

Def.
1.21

Table 2. Constructions applied to complexes C ⊆ lD([n1
m1], [

n2
m2])
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NATURAL OPERATIONS ON THE HIGHER HOCHSCHILD

HOMOLOGY OF COMMUTATIVE ALGEBRAS

ANGELA KLAMT

Abstract. We give the definition of higher (co)Hochschild homology of dg-functors in
the sense of Pirashvili and define their formal operations in the sense of Wahl, which give
a complex of operations on the higher Hochschild homology of commutative algebras.
In certain cases we obtain smaller models of the operations and identify them with the
dual of the chains on the mapping space of simplicial sets.

Introduction

Given a simplicial set X• and a commutative algebra A one can associate to this data
a chain complex CHX•(A), the higher Hochschild complex of A with respect to X• defined
in [Pir00], where the classical Hochschild complex is the one associated to the standard
simplicial decomposition of the circle. In this paper, we are interested in the chain complex
of natural operations on the higher Hochschild complex of given types of algebras such
as commutative algebras, Poisson algebras or commutative Frobenius algebras. Following
the approach of [Wah12], we approximate this chain complex by a complex of formal
operations which we identify in certain cases. Our methods differ from [Wah12] in that
we only work with strictly associative algebras. This allows us to use simplicial techniques
to give easier proofs of many results in [Wah12] in the case of strictly associative algebras.

Let E be a commutative PROP, i.e. a symmetric monoidal dg-category with objects the
natural numbers equipped with a symmetric monoidal dg-functor i : C om → E which is
the identity on objects (where C om is the commutative PROP which is the Z-linearization
of the category of finite ordinals). An E-algebra is a strong symmetric monoidal functor
Φ : E → Ch. Let X• be a simplicial finite set. The higher Hochschild complex of Φ with
respect to X• (in the sense of [Pir00]) denoted by CHX•(Φ(1)) is the total complex of

a simplicial chain complex which in simplicial degree k is given by Φ(1)⊗|Xk| where |Xk|
denotes the cardinality of the set Xk. The boundary maps are induced by the boundary
maps of the simplicial set. Similarly, one can define the higher Hochschild homology for
any dg-functor Φ : E → Ch (not necessary strong symmetric monoidal) by taking the
total complex of the simplicial chain complex with simplicial degree k equal to Φ(|Xk|).
Again, the boundaries are induced by the boundary maps of X• which act on Φ via the
functor i : C om→ E (see Definition 2.3). This defines a functor

CX•(−) : Fun(E ,Ch)→ Ch

and the construction can be extended to arbitrary simplicial sets using homotopy colim-
its. When restricted to strong symmetric monoidal functors, CX•(Φ) is isomorphic to the
higher Hochschild complex CHX•(Φ(1)). On the other hand the higher Hochschild con-
struction can be defined via an enriched tensor product which then, working in the model
category of topological spaces instead of chain complexes looks similar to the definition
of topological Chiral homology.

In the first part of this paper we work in the category of chain complexes and are
interested in the natural transformations of the (iterated) higher Hochschild homology
of E-algebras with respect to simplicial sets X• and Y• denoted by Nat⊗E (X•, Y•) =
Hom(CHX•(−), CHY•(−)). We define the complex of formal operations as the com-
plex NatE(X•, Y•) = Hom(CX•(−), CY•(−)), i.e. we test on all functors and not only on

1
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the strong symmetric monoidal ones. Hence, there is a restriction from NatE(X•, Y•) to
Nat⊗E (X•, Y•). Analogously to [Wah12, Theorem 2.9] we give conditions on the PROP
implying that the restriction is injective/surjective/a quasi-isomorphism (see Theorem
3.4).

The higher Hochschild complex is invariant under quasi-isomorphisms of functors and
quasi-isomorphic to its reduced version (see Section 2.2). It actually can be defined as a
functor CX•(Φ)(−) : Ch → Ch and so we can consider the iterated Hochschild complex.
We show that for two simplicial sets X• and X ′• there is a quasi-isomorphism between
CX•(CX′•(Φ)) and CX•qX′•(Φ) (see Theorem 2.13) and so the general case is covered (up
to quasi-isomorphism) by taking the higher Hochschild complex once.

We similarly define the higher coHochschild complex DX•(Φ) of a coalgebra (see Def-
inition 2.4) and in general of dg-functors Ψ : Eop → Ch. The formal operations between
these are defined as NatDE (X•, Y•) := Hom(DX•(−), DY•(−)). Our first technical theorem
connects the two complexes of formal operations to a third more computable complex:

Theorem A (Theorem 3.2 and Theorem 3.6). For any commutative PROP E and sim-
plicial sets X• and Y• there are isomorphisms of chain complexes

NatE(X•, Y•) ∼= DX•(CY•(E(−,−))) ∼= NatDE (Y•, X•).

For ordinary Hochschild homology this has been proved by Wahl in [Wah12, Theorem
2.1].

In the second part of the paper we consider the case E = C om. Under two types
of conditions on X• and Y• we identify the complex NatC om(X•, Y•) with other, better
known complexes.

First, working over a field F, for X• arbitrary and Y• a simplicial set that is weakly
equivalent to a simplicial finite set, a quasi-isomorphism of functors C∗(Y ×−• ) ' A⊗− :
C om→ Ch induces a quasi-isomorphism

NatC om(X•, Y•) ' CHX•(A)∗

(see Proposition 4.2). In particular if Q ⊂ F, the deRham algebra Ω•(Y•;F) fulfills this
property (see Appendix A) and therefore

NatC om(X•, Y•) ' CHX•(Ω
•(Y•;F))∗.

Our second computation of NatC om(X•, Y•) is when the dimension of the simplicial
set X• is smaller than the connectivity of Y•. Using Bousfield’s spectral sequence (see
[Bou87]), we get a quasi-isomorphism between NatC om(X•, Y•) and the simplicial chains
on the topological mapping space homTop(|X•|, |Y•|). We show moreover, that this quasi-
isomorphism preserves some extra structure close to a comultiplication:

Theorem B (See Theorem 4.11). For an arbitrary simplicial set Y• and a finite simplicial
set X• such that dim(X•) ≤ Conn(Y•), there is weak equivalence

C∗(HomTop(|X•|, |Y•|)) ' NatC om(X•, Y•).

If we take homology with coefficients in a field F, the comultiplication on the homology
H∗(NatC om(X•, Y•);F) induced by the one on H∗(HomTop(|X•|, |Y•|);F) commutes with
restriction to the filtration of Nat, i.e.

H∗(NatC om(X•, Y•);F) //

��

H∗(NatC om(X•, Y•);F)⊗H∗(NatC om(X•, Y•);F)

��
H∗(Nat2m(X•, Y•);F)

H∗(∆2m) // H∗(Natm(X•, Y•);F)⊗H∗(Natm(X•, Y•);F)
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and

H∗(NatC om(X•, Y•);F) //

��

H∗(NatC om(X•, Y•);F)⊗H∗(NatC om(X•, Y•);F)

��
H∗(Nat2m+1(X•, Y•);F)

H∗(∆2m+1)// H∗(Natm+1(X•, Y•);F)⊗H∗(Natm(X•, Y•);F)

commute.

Here, Natm(X•, Y•) is the filtration of NatC om(X•, Y•) by its cosimplicial degree. The
families of maps ∆2m : Nat2m(X•, Y•) → Natm(X•, Y•) ⊗ Natm(X•, Y•) and ∆2m+1 :
Nat2m+1(X•, Y•)→ Natm+1(X•, Y•)⊗Natm(X•, Y•) come from a comultiplication on the
cosimplicial simplicial abelian group underlying NatC om(X•, Y•).

The proof of Theorem B is similar to the proof of [PT03, Theorem 2] and [GTZ10a,
Proposition 2.4.2] but since we are in a kind of dual situation and we do not know a
reference for the theorem in this situation, we need to check the compatibility of the
maps again.

The last part of the paper is an attempt to carry over the techniques to a much broader
generality. We work with M the monoidal model category of chain complexes (with the
projective model structure) or topological spaces (with the mixed model structure) and E
a small category enriched over M . We define the Hochschild construction of an enriched
functor Φ : E → M with respect to an enriched functor A : Eop → Ch as a specific
model for the derived tensor product. More explicitly, for chain complexes and a functor
A : E → Ch with an h–projective replacement BA → A (see Def. 5.2) we define

CA(Φ) := Φ⊗
E
BA

and similarly the coHochschild construction as

DA(Ψ) = homEop(BA,Ψ).

In particular the condition of being an h-projective resolution implies that CA(−) is a
model of the left derived functor of Φ⊗

E
A and DA(−) a model of the right derived functor

of homEop(A,−). Hence for any dg-category E ′ with a map E → E ′, the Hochschild
construction defines a functor CA(−) : Fun(E ′,Ch) → Ch and given A,A′ : E ′ → Ch
we can define the formal transformations NatE ′(A,A′) as all transformations of these
functors. We can prove more general versions of Theorem A and in particular deduce:

Corollary C (see Cor. 5.15 ). Let E and E ′ be small categories cofibrantly enriched over
Ch together with a functor E → E ′ and let A,A′ : Eop → Ch be two enriched functors.
Then

NatE ′(A,A
′) ' DACA′(E ′(−,−)).

The paper is organized as follows: In Section 1 we fix notations and conventions on
(double) chain complexes and simplicial sets. More details are given in Appendix B,
which we will refer to if needed. In Section 2.1 we give the definitions of the higher
Hochschild and coHochschild complexes which are the main subject of the paper. In
Section 2.2 we establish basic properties of these using the simplicial structure given in
our situation. In Section 2.3 we show that the iterated higher (co)Hochschild complex
up to quasi-isomorphism is covered by the single one by applying it with respect to the
disjoint union of simplicial sets. In Section 3 we define the formal operations of the
(co)Hochschild construction and state Theorem A. We also explain the connection to
monoidal functors and define the ∆2m and ∆2m+1 maps which are used in Theorem B. In
Section 4 we fix the commutative PROP and state examples where the formal operations
can be identified with the dual of the higher Hochschild complex of some algebra. The
proof of the examples is given in Appendix A. Finally, in the last part of this section
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we establish the details from [Bou87] to give a proof of Theorem B. Section 5 deals
with the more general setup in monoidal model categories. In Section 5.2 we define the
(co)Hochschild complex in chain complexes and topological spaces and state the analog
of Theorem A for general dg-categories. In Section 5.4.1 we explain how to see higher
Hochschild homology in this more general setup and how to deduce Theorem A from the
more general theorems given before.

Acknowledgements. I would like to thank my advisor Nathalie Wahl for many helpful
discussions, questions and comments. I would also like to thank Grégory Ginot and
Dustin Clausen for fruitful discussions. The author was supported by the Danish National
Research Foundation through the Centre for Symmetry and Deformation (DNRF92).
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1. Homological algebra setup

1.1. Chain complexes and double complexes. Throughout this paper we will use
chain and double chain complexes as dg-categories. In this section we give the sign
conventions and notations used later on.

Notation 1.1 (Sign Conventions). In this paper Ch means the category of Z-graded
chain complexes over Z, unless otherwise specified. For two chain complexes A∗ and B∗
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we fix the differential on Ak ⊗ Bl to be dA ⊗ id + (−1)kid ⊗ dB. A dg-category C is a
category enriched over Ch, i.e. it has morphism spaces C (a, b) which are chain complexes
together with chain maps k → C (a, a) and C (a, b) ⊗ C (b, c) → C (a, c) which fulfill the
unit and associativity conditions. Note that by this convention postcomposition with
morphisms acts from the right. For an abelian category A the dg-category Ch(A ) has
chain complexes C∗ in A as objects. A morphism f of degree k in Ch(C∗, D∗) is a
family of maps (fp) : Cp → Dp+k in A . The differential on Ch(C∗, D∗) is defined as
d(f)i = (−1)i(dD ◦fi−fi−1 ◦dC) : Ci → Di+d−1 (note that by the convention of functions
acting from the right the sign differs from the usual one). For A the category of abelian
groups, we define the dual (A∗)∗ := Ch(A∗,Z) with Z the trivial complex concentrated
in degree 0. For an element f ∈ A∗k, i.e. fi = 0 for i 6= k, one gets d(f)i = 0 for i 6= k + 1

and d(f) = (−1)|f |f ◦ dA.
A map f : C∗ → D∗ in Ch(A ) is called a chain map if it is a degree zero cycle

in Ch(C∗, D∗). A chain map is a quasi-isomorphism if it induces an isomorphism on
homology. Two chain maps f, g : C∗ → D∗ are chain homotopic if there is a degree one
map s ∈ Ch(C∗, D∗)1 such that d ◦ s+ s ◦ d = f − g. A chain map f : C∗ → D∗ is a chain
homotopy equivalence if there exists a map g : D∗ → C∗ such that f ◦ g and g ◦ f are
homotopic to the identity of D∗ and C∗, respectively.

For a dg-category C a dg-functor Φ : C → Ch is an enriched functor, i.e. the structure
maps

cΦ : Φ(a)⊗ C (a, b)→ Φ(b)

are chain maps.

Notation 1.2. A double chain complex C∗,∗ is for each p, q an abelian group Cp,q with
maps dh : Cp,q → Cp−1,q and dv : Cp,q → Cp,q−1 such that dh ◦ dh = 0, dv ◦ dv = 0 and
dh ◦ dv = dv ◦ dh. By this, a double chain complex can be viewed as a chain complex
of chain complexes in two ways: The first one has in each degree p the chain complex
Bp = Cp,∗ (i.e. the differential dh : Bp → Bp−1 is the horizontal one). The second one
has in degree q the chain complex Dq = C∗,q and the differential is the vertical one.

These two ways of seeing double chain complexes as objects in the abelian category of
chain complexes induce two structures of a dg-category on the category of double chain
complexes.

More precisely, we define the dg-category dChh to have as objects double chain com-
plexes C∗,∗. A morphism of degree k in dChh(C∗,∗, D∗,∗) is a map f : C∗,∗ → D∗+k,∗
which is a chain map with respect to dv (i.e. dv ◦ f = f ◦ dv). The differential of f is
given by dh(f)p,q = (−1)p(dhD ◦ fp,q − fp−1,q ◦ dhC).

Similarly, the category dChv is the category with the same objects but inheriting the en-
riched structure with respect to the vertical differential. An element f ∈ dChv(C∗,∗, D∗,∗)
is a map f : C∗,∗ → D∗,∗+k which is a chain map with respect to dh and has differential
dv(f)p,q = (−1)q(dvD ◦ fp,q − fp,q−1 ◦ dvC).

Chain maps of double chain complexes, i.e. maps of degree zero commuting with both
differentials, are precisely the degree zero cycles of the morphism complexes of either
category.

We want to define the total complex of a double complex such that it gives a dg-functor
dChv → Ch. This is done as follows: For a double complex Cp,q define Tot

∏
(C) to be

the product double complex with

Tot
∏

(C)n =
∏

p+q=n

Cp,q

and the direct sum double complex

Tot⊕(C)n =
⊕

p+q=n

Cp,q
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both with differential dp,q = dhp + (−1)pdvq . Note that for a first or third quadrant double
complex both complexes agree.

We define sTot
∏

(C) and sTot⊕(C) to be the switched double complexes with the role of

the horizontal and vertical direction switched. As an abelian group sTot
∏

(C) = Tot
∏

(C)
and sTot⊕(C) = Tot⊕(C) but the differentials are dp,q = (−1)qdhp +dvq . In both cases, the
switched and unswitched complex are isomorphic via the isomorphism

(1.1) x ∈ Cp,q, x 7→ (−1)pqx.

For f ∈ dChv(C∗,∗, D∗,∗) of degree |f | (i.e. fp,q : Cp,q → Dp,q+|f |) and x ∈ Cp,q we

define(Tot(f)(x))p,q = fp,q(xp,q) and sTot(f)(x) = (−1)|f |pf(x) for both the product and
the direct sum total complexes. With these definitions both functors are dg-functors
dChv → Ch (see Proposition B.1).

For a double complex Cp,q we define its filtration by columns as

Fs =
∏

p≤s
Cp,q.

For a right half plane (first and fourth quadrant) double complex, the product becomes
a direct sum, whereas for a left half plane (second and third quadrant) double complex
it can be non-finite. This filtration yields the spectral sequence of double complexes (see
Appendix B.3). The spectral sequence of a right half plane double complex converges
to the direct sum total complex, the one of a left half plane double complex converges
conditionally to the product total complex. We show that this implies that for Cp,q and
Dp,q both either right or left half plane double complexes and a chain map f : Cp,q → Dp,q

which is a quasi-isomorphism in dChv (i.e. a quasi-isomorphism with homology taken in
the vertical direction), f induces a quasi-isomorphism of their direct sum or product
complexes, respectively (see Corollary B.12). If on the other hand f : Cp,q → Dp,q is

a quasi-isomorphism in dChh (i.e. in the category with the horizontal differential) the
spectral sequence argument used in the previous case does not work. However, if f is
a chain homotopy equivalence in dChh it still induces a quasi-isomorphism of the direct
sum or product total complexes, respectively (see Corollary B.14).

1.2. Simplicial sets. In this section we recall the sign conventions and notation for
(co)simplicial sets.

Denote by ∆ the simplex category with objects totally ordered finite sets and mor-
phisms order preserving maps. Let A be an abelian category. A simplicial object A• in
A is a functor A• : ∆op → A . We denote the boundary maps by di and the degeneracy
maps si.

The chain complex C∗(A•) ∈ Ch(A ) is given by Ak in the k-th degree and differential
d =

∑n
i=0(−1)idi.

Definition 1.3 (cf. [Wei95, Chapter 8.3]). The normalized chain complex N∗(A•) ∈
Ch(A ) is defined to be

Nn(A•) =
n−1⋂

i=0

ker(di : An → An−1).

The degenerate subcomplex D∗(A) is given by

Dn(A•) =
⋃
im(si).

A cosimplicial object B• in an abelian category A is a functor B• : ∆→ A . We denote
the boundary maps by di and the degeneracy maps si. The cochain complex C∗(B•) ∈
coCh(A ) is given by Bk in the k-th degree and it has differential d =

∑n+1
i=0 (−1)i+kdi.

By our sign conventions in Notation 1.1, given a simplicial abelian group A• with dual
cosimplicial abelian (A•)∗, we get C∗((A•)∗) = (C−∗(A•))∗.
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For a simplicial set X• we write C∗(X•) for the chain complex given by the chain
complex associated to the linearization of X•, i.e. C∗(X•) := C∗(Z[X•]). Since this
linearization is never applied to simplicial abelian groups, we use the same notation in
both cases.

Definition 1.4. The normalized cochain complex N∗(B•) ∈ coCh(A ) is given by

Nn(B•) =
n−1⋂

i=0

ker(si : Bn → Bn−1).

The degenerate subcomplex D∗(B•) is defined to be

Dn(B•) =
⋃
im(di).

Notation 1.5. We define the reduced Moore complex C∗ of a simplicial object A• as

C∗(A) := C∗(A•)/D∗(A•)

and the reduced Moore cocomplex C
∗

of a cosimplicial object B• as

C
∗
(B•) := N∗(B•).

Proposition 1.6 ([Wei95, Lemma 8.3.7 and Theorem 8.3.8],[Fre12, Lemma 4.2.5]). For
a simplicial object A• in an abelian category A we have

C∗(A•) ∼= N∗(A•)⊕D∗(A•)

and there is a natural chain homotopy equivalence

N∗(A•) 'h C∗(A•).

Together, we have

C∗(A•) 'h C∗(A•).
Dually, for a cosimplicial object B• we have

C∗(B•) ∼= N∗(B•)⊕D∗(B•)

and a natural chain homotopy equivalence

C
∗
(B•) = N∗(B•) 'h C∗(B•).

For a simplicial abelian group A• and its dual cosimplicial abelian group A∗•,

(C∗(A•))∗ ∼= C∗(A∗•) and (C∗(A•))∗ ∼= C
∗
(A∗•).

2. Higher Hochschild homology

Our definitions of the higher Hochschild complex and coHochschild complex of commu-
tative algebras are analogous to the definition of the Hochschild complex for A∞-algebras
given by Wahl and Westerland in [WW11] and the coHochschild complex defined in
[Wah12]. Many of the statements proved in this article have been proven by the afore-
mentioned authors in their case. The proofs generalize but sometimes also simplify by the
tools of simplicial sets we have in our setup. Furthermore, the definition of the Hochschild
complex for functors in the ungraded setup already occurs in [Pir00].
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2.1. Definition.

Notation 2.1. Let FinSet be the category of all finite sets with all maps between them
and FinOrd the category of sets n = {1, . . . , n} with all maps between those. For this
paper we fix an equivalence of categories S : FinSet → FinOrd. Given a finite ordered
set, from now on we denote the cardinality and the set by the same symbol.

Notation 2.2. Denote by C om(−, 1) the unital commutative operad which has one
operation of degree zero in each degree m ≥ 0. Let C om(m,n) be the induced linearized
Prop. We note that as categories C om ∼= Z[FinOrd], i.e. the category with the same
objects but the linearized homomorphism sets and that we have the embedding functor
L : FinOrd→ C om which is the identity on objects.

Let E be a symmetric monoidal dg-category equipped with a functor i : C om→ E . We
assume that i is a bijection on objects.

Definition 2.3. Let Φ be a dg-functor from E to Ch. Let Y• be a simplicial finite set
(i.e. Yk is finite for each k). We define the higher Hochschild complex of Φ with respect
to Y• as CY•(Φ) : E → Ch via

CY•(Φ) : E FY• (Φ)−−−−→ Ch∆op C∗−→ dCh
sTot⊕−−−−→ Ch(2.1)

where FY•(Φ) sends a set n to the simplicial chain complex

FY•(Φ)(n) : ∆op Y•−→FinSet S−→ FinOrd
L(−qn)−−−−−→ C om

i−→ E Φ−→ Ch .

The reduced Higher Hochschild complex of Φ is defined via

CY•(Φ) : E FY• (Φ)−−−−→ Ch∆op C∗−−→ dCh
sTot⊕−−−−→ Ch(2.2)

where C∗ is the reduced chain complex functor defined in Definition 1.3. The construction
so far is functorial in Y• so we can generalize to arbitrary simplicial sets as follows:

If Y• is any simplicial set we define

CY•(Φ)(n) := colim
K•→Y•,
K• finite

CK•(Φ)(n)

and
CY•(Φ)(n) := colim

K•→Y•,
K• finite

CK•(Φ)(n)

as the colimit over all simplicial finite subsets of Y•.

Following [Pir00] there is a different definition using enriched tensor products. Given
a simplicial finite set X• we define

LX•,m(n) =
⊕

k

C om(n,Xk qm)[k]

with differential d : C om(n,Xk q m) → C om(n,Xk−1 q m) given by postcomposition

with d′ =
∑k

i=0(−1)idi where the di ∈ C om(Xk qm,Xk−1qm) are the maps induced by
the simplicial boundary maps di : Xk → Xk−1. LX•,m is a covariant functor C om→ Ch.
If X• is an arbitrary simplicial set, we set

LX•,m = colim
K•→X•,
K• finite

LK•,m.

Then we have an isomorphism

CX•(Φ)(m) ∼= LX•,m ⊗
C om

Φ

where the right hand side is the enriched tensor product as defined in Definition 5.1.
Throughout the first part of the paper we will not work with this definition, but we
return to this description in Section 5.
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Definition 2.4. Let Ψ be a functor from Eop to Ch and let Y• be a simplicial finite set.
We define the higher coHochschild complex of Ψ with respect to Y• as DY•(Ψ) : Eop → Ch
via

DY•(Ψ) : Eop GY• (Ψ)−−−−−→ Ch∆ r◦C∗−−−→ dCh
Tot

∏

−−−→ Ch(2.3)

where GY•(Ψ) sends a set n to the cosimplicial chain complex

GY•(Ψ)(n) : ∆
Y•−→FinSetop S−→ FinOrdop

L(−qn)−−−−−→ C omop i−→ Eop Ψ−→ Ch .

C∗ is the Moore functor defined in Definition 1.4 and r turns a cochain object into a chain
object with the opposite grading (i.e. sending a cochain complex Ai to a chain complex
A−i).

Similar to above we can define the reduced Higher coHochschild complex of Ψ to be

DY•(Ψ) : Eop GY• (Ψ)−−−−−→ Ch∆ r◦C∗−−−→ dCh
Tot

∏

−−−→ Ch .(2.4)

Again, if Y• is any simplicial set we define

DY•(Ψ)(n) := lim(
K•→Y•,
K• finite

)opDK•(Ψ)(n)

and

DY•(Ψ)(n) := lim(
K•→Y•,
K• finite

)opDK•(Ψ)(n)

as the limit over all finite sets.

Again, we can define DY•(Ψ) in terms of LY• equivalently via

DY•(Ψ)(m) ∼= homC omop(LY•,m,Ψ)

where homC omop(−,−) denotes the enriched hom as defined in Definition 5.1.

Remark 2.5. For a simplicial finite set the functor CY•(Φ) can be described more ex-
plicitly:

CY•(Φ)(n)j =
⊕

k+l=j

Φ(Yk q n)l

with the differential of x ∈ Φ(Yk q n) given by

d(x) = dΦ(x) + (−1)|x|
k∑

i=0

(−1)iΦ(di q idn)(x).

Here, di : Yk → Yk−1 is the face map of the simplicial set.
The reduced functor is given as the quotient

CY•(Φ)(n)j =
⊕

k+l=j

Φ(Yk q n)l/Uk

with

Uk =
k−1∑

i=0

im(si q idn)

where the si : Yk−1 → Yk are the degeneracy maps of the simplicial set. Similarly, we
have

DY•(Ψ)(n)j =
∏

l−k=j

Ψ(Yk q n)l.



10 ANGELA KLAMT

For y ∈ DY•(Ψ) the differential is

d(y)k =

k+1∑

i=0

(−1)i+k+1Ψ(di q idn)(yk+1) + (−1)kdΨ(yk)

= (−1)k(dΨ(yk)−
k+1∑

i=0

(−1)iΨ(di q idn)(yk−1)).

The reduced complex is the subcomplex

DY•(Ψ)(n)j =
∏

l−k=j

k−1⋂

i=0

ker(Ψ(si q n))l.

Remark 2.6. Taking E = C om and Φ : C om → Ch strong symmetric monoidal (i.e.
Φ(n) ⊗ Φ(m) ∼= Φ(n + m) in a natural and symmetric way), Φ(1) is a commutative
differential graded algebra. Φ(n) is isomorphic to A⊗n and in this case our definition of
the higher Hochschild complex for a simplicial finite set agrees (up to sign twist) with the
higher Hochschild complex CHX•(A) defined by Pirashvili in [Pir00] (see also [GTZ10b]).

For an element x ∈ A⊗Xk , the isomorphism correcting the sign is given by x 7→ (−1)|x|kx.
For E arbitrary, a strong monoidal functor Φ : E → Ch induces a strong monoidal functor
Φ ◦ i : C om → Ch by precomposing with the inclusion of C om into E and the higher
Hochschild complex of Φ agrees with the higher Hochschild complex of Φ ◦ i.
Remark 2.7. Let S1

• be the simplicial set with two non-degenerate simplices p and t
lying in degree 0 and 1, respectively. We then have S1

k = {yk0 , · · · , ykk} with yk0 = (s0)k(p)

and ykj = sk−1sk−2 · · · ŝj · · · s0(t). This is a simplicial model of the circle. Moreover, it is

isomorphic to the simplicial set with S1
k = {0, · · · , k} and

di(j) =

{
j for i ≤ j
j − 1 for i > j

and dn(j) =

{
j for j 6= n

0 for j = n.

Given a dg-functor Φ : E → Ch we have CS1• (Φ)(n) ∼= C(Φ)(n), where C(Φ)(n) is the
Hochschild complex of the functor Φ defined in [WW11]. The isomorphism corrects the
sign, for x ∈ Φ((k + 1) + n) it is given by x 7→ (−1)kx. Similarly, for Ψ : Eop →
Ch, DS1• (Ψ)(n) ∼= D(Ψ)(n) with D(Ψ)(n) the coHochschild complex defined in [Wah12].
Again, the sign twist between the two definitions for y ∈ Ψ((k + 1) + n) is given by
y 7→ (−1)ky.

2.2. Basic properties of the higher Hochschild and coHochschild functors.

Proposition 2.8. Let Y• be a simplicial set. For a dg-functor Φ : E → Ch the functors
CY•(Φ) and CY•(Φ) : E → Ch are dg-functors. Similarly, for Ψ : Eop → Ch a dg-functor,
DY•(Ψ) and DY•(Ψ) : Eop → Ch are dg-functors.

Proof. We only prove the case of simplicial finite sets, the general case follows by similar
arguments about colimits and limits.

To break up the proof into steps, we have to equip the categories Ch∆op
and Ch∆

with dg-structures: Similar to the definition of dChv we take the levelwise dg-structure
on Ch∆op

. An element in Ch∆op
is a simplicial chain complex, i.e. a double graded

family of abelian groups A•,∗ such that the simplicial structure maps and the differentials

dCh : A•,∗ → A•,∗+1 commute. For two simplicial chain complexes A and B, we define

the complex Ch∆op
(A,B) in degree k to consist of maps f : A•,∗ → B•,∗+k such that f

commutes with all simplicial structure maps. The differential of f is given as d(f)p,q =

(−1)q(dCh
B ◦ fp,q − fp,q−1 ◦ dCh

A ). Similarly, we equip the category of cosimplicial chain

complexes Ch∆ with a levelwise dg-structure.
Now we have to show:
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(1) The functors FY•(Φ) : E → Ch∆op
and GY•(Ψ) : Eop → Ch∆ are dg-functors.

(2) The functors C∗ : Ch∆op → dChv, C∗ : Ch∆op → dChv, C∗ : Ch∆op → dChv and

C
∗

: Ch∆op → dChv are dg-functors.
(3) Tot

∏
and sTot⊕ : dChv → Ch are dg-functors.

2. follows from the definition of the dg-structure on Ch∆op
and dChv, since both are

levelwise and the (co)simplicial structure maps become the horizontal differential of the
double complex. 3. is proved in Proposition B.1.

To show 1. we compute:

FY•(Φ)(n)⊗ E(n,m)→ FY•(Φ)(m)

for all simplicial degrees and show that this is a dg-map. The map

Φ(Yi q n)⊗ E(n,m)→ Φ(Yi qm)

is induced by the degree zero embedding E(n,m) ↪→ E(Yi q n, Yi qm) sending a map f
to idYi q f . This embedding is a chain map since it commutes with the boundary maps.
Moreover, the map

Φ(Yi q n)⊗ E(Yi q n, Yi qm)→ Φ(Yi qm)

is a chain map since Φ is a dg-functor. Therefore, the composition

Φ(Yi q n)⊗ E(n,m)→ Φ(Yi q n)⊗ E(Yi q n, Yi qm)→ Φ(Yi qm)

is a chain map. A similar computation shows that GY•(Ψ) is a dg-functor, too.
Combining the three steps, we have shown that all mentioned functors are compositions

of dg-functors, i.e. dg-functors themselves. �

The previous proposition allows us to iterate the Hochschild and coHochschild con-
structions. Properties of this are given in Section 2.3.

Proposition 2.9. Let Y• be a simplicial set.

(1) If Φ ' Φ′ : E → Ch are quasi-isomorphic functors, then CY•(Φ) ' CY•(Φ
′) are

also quasi-isomorphic functors. The same holds for the reduced complexes. In
particular, the limit in the definition of CY•(Φ) for Y• a simplicial non-finite set
is a homotopy colimit.

(2) If Ψ ' Ψ′ : Eop → Ch are quasi-isomorphic functors, then DY•(Ψ) ' DY•(Ψ
′)

are also quasi-isomorphic functors. The same holds for the reduced complexes. In
particular the limit involved in the construction for simplicial non-finite sets is a
homotopy limit.

Proof. The proof is analogous to [WW11, Proposition 5.7] and [Wah12, Corollary 1.5].
Natural transformations of functors Φ→ Φ′ and Ψ→ Ψ′ induce natural transformations
of functors CY•(Φ) → CY•(Φ

′) and DY•(Ψ) → DY•(Ψ
′), respectively, by composing with

the natural transformations in the according steps of the construction. We are left to
show that these natural transformations are quasi-isomorphisms.

(1) For a simplicial finite set we have an induced map of simplicial chain complexes
FY•(Φ)(n)→ FY•(Φ

′)(n). This map is a quasi-isomorphism in each degree, i.e. a
quasi-isomorphism of simplicial chain complexes. Applying C∗ (or C∗) gives us
a degreewise quasi-isomorphism C∗(FY•(Φ))(n) → C∗(FY•(Φ

′))(n), i.e. a quasi-
isomorphism in dChv. By Corollary B.12 this yields a quasi-isomorphism of the
direct sum total complex. Similarly, by the proof of [Pir00, Theorem 2.4] the
complexes LY•,m are levelwise projective C om-modules and hence the levelwise
tensor product

LY•,m(n) ⊗
C om

Φ ∼= colim
K•→Y•,
K• finite

Φ(Yn qm)



12 ANGELA KLAMT

preserves quasi-isomorphisms. Hence a quasi-isomorphims Φ ' Φ′ again implies
a quasi-isomorphism in dChv and the result follows.

(2) Again, we get a degreewise quasi-isomorphism GY•(Ψ)(n)→ G′Y•(Ψ
′)(n) (respec-

tively of the limits) and thus an induced quasi-isomorphism of product double
complexes.

�

The next proposition is similar to [Wah12, Section 1.2]. However, we will give a sim-
plified proof making use of the simplicial tools that we have in our situation.

Proposition 2.10. Let Y• be a simplicial set.

(1) For Φ : E → Ch the split projection CY•(Φ)(n) → CY•(Φ)(n) is a natural quasi-
isomorphism for all n ∈ E.

(2) For Ψ : Eop → Ch the split inclusion DY•(Φ)(n)→ DY•(Φ)(n) is a natural quasi-
isomorphism for all n ∈ E.

Proof. Since homotopy limits and colimits preserve quasi-isomorphisms, it is enough to
prove the theorem for simplicial finite sets.

(1) By Proposition 1.6 the projection

C∗(FY•(Φ))(n)→ C∗(FY•(Φ))(n)

is a natural chain homotopy equivalence in dChh.
By Corollary B.14 this induces a filtered quasi-isomorphism between the chain

complexes sTot⊕(C∗(FY•(Φ)) and sTot⊕(C∗(FY•(Φ)) and hence a filtered quasi-
isomorphism between CY•(Φ)(n) and CY•(Φ)(n).

(2) Again, the map

i∗ : C
∗
(GY•(Ψ))(n)→ C∗(GY•(Ψ))(n)

is a natural chain homotopy equivalence in dChh and induces by Corollary B.14
the stated quasi-isomorphism.

�

Proposition 2.11 (Duality). Let Φ : E → Ch be a dg-functor and X• a simplicial set.
Then

(CX•(Φ))∗ ∼= DX•(Φ
∗)

where Φ∗ : Eop → Ch is the dual functor, i.e. Φ∗(m) = (Φ(m))∗. The same holds in the
reduced case.

Proof. Since dualizing takes colimits to limits, it is enough to check this on simplicial
finite sets.

Let X• be a simplicial finite set. As abelian groups we have

(CX•(Φ)(n))∗ =

(⊕

k

Ck(Φ(X• q n))

)∗

=
∏

k

(Ck(Φ(X• q n)))∗

=
∏

k

Ck(Φ(X• q n)∗) by Proposition 1.6

= DX•(Φ
∗)(n)
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and similar in the reduced case. We check that this fits with the differential. For y =
(yl) ∈

∏
k Φ(Xk q n)∗ of total degree r, i.e. yl + l = r for all l, we get

dC∗(y)k = (−1)r(y ◦ dC)k

= (−1)r(yk ◦ dΦ + (−1)|yk−1|(
∑

i

(−1)iyk−1 ◦ Φ(di))

= (−1)|yk|+kyk ◦ dΦ + (−1)k+1(
∑

i

(−1)iyk−1 ◦ Φ(di))

On the other hand

dD(y)k = (dD(y))k

= (−1)k(dΦ∗(yk)−
∑

i

(−1)iΦ∗(di)(yk−1))

= (−1)k((−1)|yk|yk ◦ dΦ −
∑

i

(−1)iyk−1 ◦ Φ(di)).

So the differentials agree.
�

2.3. Iterated Hochschild functors. Since the higher (co)Hochschild construction of a
dg-functor is again a dg-functor, we can iterate it. In the first part of this section we show
that the iteration of the higher Hochschild construction with respect to two simplicial sets
X• and Y• is the same as applying the construction once with respect to the disjoint union
X•qY•. This is the analog of the last part of [GTZ10b, Prop. 2] which there was proved
for algebras. In the second part we apply the Hochschild construction to strong symmetric
monoidal functors Φ : E → Ch and show that CX•(CY•(Φ)) ∼= CX•(Φ)⊗ CY•(Φ).

2.3.1. Disjoint Union.

Lemma 2.12. For two simplicial finite sets Y• and Y ′• and a functor Φ : E → Ch and for

each n ∈ E there is a chain homotopy equivalence of complexes in dChh

C∗(FY•qY ′•(Φ)(n))
'h−−→ sTot⊕1,2C∗(FY•(C∗(FY ′•(Φ)(n))))(2.5)

where sTot⊕1,2 : triCh → dCh applies the functor sTot⊕ in the first two directions of a
triple chain complex. The map is natural in n and Φ.

Proof. If we apply the Eilenberg-Zilber Theorem (cf. Theorem B.7) to the bisimplicial
chain complex A•,• defined via

∆op ×∆op Y•×id−−−−→ FinSet×∆op id×Y ′•−−−−→ FinSet× FinSet
S×S−−−→ FinOrd× FinOrd q−→ FinOrd

L(−qn)−−−−−→ C om
i−→ E Φ−→ Ch,

we get a chain homotopy equivalence between C∗(diag•A•,•) = C∗(FY•qY ′•(Φ)(n)) and

Tot⊕C∗C∗(A•,•) = Tot⊕C∗(FY•(C∗(FY ′•(Φ)(n)) which is natural in n and Φ. Postcom-

posing with the isomorphism between Tot⊕ and sTot⊕ described in Equation (1.1) is also
natural in n, since a map n → n′ induces the identity in the first two directions of the
triple chain complex and these are the only directions involved in the sign. Hence, the
whole construction is natural in Φ. �

Since the order of taking total complexes does not matter, we obtain

sTot⊕(sTot⊕1,2C∗(FY•(C∗(FY ′•(Φ)(n)))) ∼= CY•(CY ′•(Φ)(n)).

Moreover, by definition sTot⊕(C∗(FY•qY ′•(Φ)(n))) is equal to CY•qY ′•(Φ)(n).
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Theorem 2.13. For any simplicial sets Y• and Y ′• and a dg-functor Φ : E → Ch there is
a quasi-isomorphism of functors

CY•(CY ′•(Φ))
'−→ CY•qY ′•(Φ).

Proof. We first show the theorem for simplicial finite sets. By Corollary B.14 and the
aforementioned equalities the chain homotopy from Lemma 2.12 induces the requested
quasi-isomorphism in this case. Since tensor product commutes with directed colimits,
the non-finite case follows. �

Everything we did above dualizes to the cohomological case, hence we deduce:

Lemma 2.14. For n ∈ E, two simplicial finite sets Y• and Y ′• and a functor Ψ : Eop → Ch

there is a chain homotopy equivalence in dChh

C∗(GY•qY ′•(n))
'h−−→ Tot

∏
1,2C

∗(GY•(C
∗(GY ′•(Ψ)(n))))(2.6)

where Tot
∏
1,2 : triCh → dCh takes the totalization in the first two directions of a triple

chain complex.

Since taking the product total space of a trisimplicial space is associative (i.e. it does
not matter which two directions one pairs first), we have

Tot
∏

(Tot1,2C
∗(GY•(C

∗(GY ′•(Ψ)(n))) ∼= DY•(DY ′•(Ψ)(n)).

Moreover, by definition Tot
∏

(C∗(GY•qY ′•(Ψ)(n))) is equal to DY•qY ′•(Ψ)(n).

Theorem 2.15. For any simplicial sets Y• and Y ′• and a dg-functor Ψ : Eop → Ch there

is a quasi-isomorphism of functors DY•(DY ′•(Ψ))
'−→ DY•qY ′•(Ψ).

Proof. For simplicial finite sets this is again a direct consequence of Corollary B.14.
For arbitrary simplicial sets, it follows from the fact that DY• commutes with limits. �

2.3.2. Symmetric monoidal functors. For a symmetric monoidal category E a functor
Φ : E → Ch is called symmetric monoidal if there are maps Φ(n) ⊗ Φ(m) → Φ(n + m)
which are natural in n and m and compatible with the symmetries, the associators and
unitors in E and Ch. The functor Φ is called strong if these maps are isomorphisms and
h-strong if they are quasi-isomorphisms.

In this case we want to give an easier description of the iterated Hochschild construction.
For a functor Φ : E → Ch or a functor Ψ : Eop → Ch and a collection of simplicial sets
{X1
• , . . . , X

n
• } we have functors

CXn• (· · ·CX1• (Φ)· · ·) : E → Ch

and

DXn• (· · ·DX1• (Ψ)· · ·) : Eop → Ch,

respectively.

Notation 2.16. To simplify notation, we write

CXn• ,...,X1• (Φ)(m) := CXn• (· · ·CX1• (Φ)· · ·)(m)

and

DXn• ,...,X1• (Ψ)(m) := DXn• (· · ·DX1• (Ψ)· · ·)(m)

and similarly in the reduced cases.

Lemma 2.17. Fix a collection {X1
• , . . . , X

n1• } of simplicial finite sets and m1 ∈ E.
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(1) For Φ : E → Ch we have

CXn1• ,...,X1•
(Φ)(m1) ∼=

⊕

k1,...,kn1

Φ(X1
k1
q · · ·Xn

kn qm1)

and

CXn1• ,...,X1•
(Φ)(m1) ∼=

⊕

k1,...,kn1

Φ(X1
k1
q · · ·Xn

kn qm1)/Uk1,...,kn1

with

Uk1,...,kn1
=

n1∑

j=1

∑

i

imΦ(idq s
Xj

kj

i q id).

For x ∈ Φ(X1
k1
q · · ·Xn

kn
qm1) the differential is given by

dC(x) = dΦ(x) +

n1∑

j=1

(−1)|x|+
∑j−1

t=1 kt
∑

i

(−1)iΦ(idq d
Xj

kj

i q id)(x).

(2) For Ψ : Eop → Ch we have

DX
n1• ,...,X1•

(Ψ)(m1) ∼=
∏

k1,...,kn1

Ψ(X1
k1
q · · ·Xn

kn qm1)

and

DX
n1• ,...,X1•

(Ψ)(m1) ∼=
∏

k1,...,kn1

n1⋂

j=1

kj−1⋂

i=0

ker(idq s
Xj

kj

i q id).

For y ∈ DX
n1• ,...,X1•

(Ψ)(m1) the differential is computed via

dD(y)kn1 ,...,k1
= (−1)

∑n1
t=1 ktdΨ(ykn1 ,...,k1)

−
n1∑

j=1

(−1)
∑n1

t=j kt
∑

i

(−1)iΨ(idq d
Xj

kj

i q id)(ykn1 ,...,kj−1,...,k1).

The following proposition is the analog of [WW11, Prop. 5.10].

Proposition 2.18. Let {X1
• , . . . , X

n
• } be a collection of simplicial sets and m ∈ N. If

Φ : E → Ch is symmetric monoidal there are natural maps

λ : CX1• (Φ)(0)⊗ · · · ⊗ CXn• (Φ)(0)⊗ Φ(1)⊗m → CXn• ,...,X1• (Φ)(m)

and

λ : CX1• (Φ)(0)⊗ · · · ⊗ CXn• (Φ)(0)⊗ Φ(1)⊗m → CXn• ,...,X1• (Φ)(m).

These maps are quasi-isomorphisms if Φ is h-strong. For simplicial finite sets these are
isomorphisms if Φ is strong.

Proof. In the case of simplicial finite sets the proof works completely analogously to the
proof of [WW11, Prop. 5.10]. For arbitrary simplicial sets we need to show that the
maps are quasi-isomorphisms if Φ is (h-)strong. Commuting colimits and tensor products
proves the statement for arbitrary simplicial sets. �
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3. Formal and natural operations of the higher Hochschild complex
functors

3.1. Formal operations. The definitions and results in this section are analog to those
in [Wah12, Section 2].

Recall from Notation 2.16 that for a collection of simplicial sets {X1
• , . . . , X

n1• } and a
natural number m1 ∈ N we denote the iterated Hochschild and coHochschild constructions
by CXn1• ,...,X1•

(Φ)(m1) and DX
n1• ,...,X1•

(Ψ)(m1), respectively. Thus, we have functors

CXn1• ,...,X1•
(−)(m1) : Fun(E ,Ch)→ Ch

and
DX

n1• ,...,X1•
(−)(m1) : Fun(Eop,Ch)→ Ch .

Definition 3.1. For collections {X1
• , . . . , X

n1• } and {Y 1
• , . . . , Y

n2• } of simplicial sets and
natural numbers m1 and m2 the chain complex of formal operations NatE between these
functors is defined to be

NatE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2)

:= hom(CXn1• ,...,X1•
(−)(m1), CY n2• ,...,Y 1•

(−)(m2))

and similarly in the reduced setup

NatE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2)

:= hom(CXn1• ,...,X1•
(−)(m1), CY n2• ,...,Y 1•

(−)(m2)).

We now state the main theorem used to compute the formal operations.

Theorem 3.2. There are isomorphisms of chain complexes

NatE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2)

∼= DX
n1• ,...,X1•

(CY n2• ,...,Y 1•
E(−,−)(m2))(m1)

and

NatE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2)

∼= DX
n1• ,...,X1•

(CY n2• ,...,Y 1•
E(−,−)(m2))(m1).

The theorem can be proved completely along the lines of the proof of [Wah12, Theorem
2.1]. However, in Section 5.4.1, this is deduced from the more general setup of Theorem
5.14. Moreover, we can deduce the following corollary:

Corollary 3.3. We have quasi-isomorphisms of chain complexes

NatE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n1• },m2)

' NatE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n1• },m2)

' NatE(X1
• q . . . Xn1•

∐

m1

∗, Y 1
• q . . . Y n1•

∐

m2

∗)

' NatE(X1
• q . . . Xn1•

∐

m1

∗, Y 1
• q . . . Y n1•

∐

m2

∗).

Proof. We write FX = {X1
• , . . . , X

n1• }, FY = {Y 1
• , . . . , Y

n1• }, qX = X1
• q . . . Xn1•

∐
m1
∗

and qY = Y 1
• q . . . Y n2•

∐
m2
∗. Then the previous theorem reduces the corollary to

showing that

DFX
CFY

(E ′(−,−))(m2)(m1) 'DFX
CFY

(E ′(−,−))(m2)(m1)

'DqXCqY (E ′(−,−)) 'DqXCqY (E ′(−,−)).

By the first part of Lemma 2.10 and Theorem 2.13 all the involved Hochschild con-
structions are quasi-isomorphic. Moreover, by Lemma 2.9 the coHochschild construction



OPERATIONS ON HIGHER HOCHSCHILD HOMOLOGY 17

preserves quasi-isomorphism and again by Lemma 2.10 and Theorem 2.15 all the different
coHochschild constructions above are quasi-isomorphic. Hence, the corollary follows. �

3.2. Restriction to natural transformations of algebras. This section is similar to
[Wah12, Section 2.2]. For simplicity we restrict to simplicial finite sets, but all the results
hold up to quasi-isomorphism in the general case, too.

Denote by C⊗X•(−)(m) the restriction of the higher Hochschild construction to strong
symmetric monoidal functors and similar for the iterated functor. By Proposition 2.18
we have an isomorphism

C⊗
X1•

(−)(0)⊗ · · · ⊗ C⊗Xn•
(−)(0)⊗ (−)(1)⊗m → C⊗

Xn• ,...,X1•
(−)(m).

Denote by

Nat⊗E ({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2)

:= Hom(C⊗
X

n1• ,...,X1•
(−)(m1), C⊗

Y
n2• ,...,Y 1•

(−)(m2))

the natural transformations between those functors. There is a restriction map

r : NatE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2)

→ Nat⊗E ({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2).

For a symmetric monoidal functor Φ : E → Ch we define U(Φ) = Φ(1) the forgetful
functor. Then we define ρ to be the map

ρ : E(m1,m2)→ Hom(U⊗m1 , U⊗m2)

which associates to an element of E its action on all E-algebras. Completely similarly to
[Wah12, Theorem 2.9] one can show

Theorem 3.4. For a commutative Prop E The restriction map r : NatE → Nat⊗E is
injective (resp. surjective) if and only if ρ : E(m1,m2)→ Hom(U⊗m1 , U⊗m2) is injective
(resp. surjective).

Remark 3.5. By [Wah12, Example 2.11], ρ (and therefore r) is always injective if E is
the Prop associated to an operad. Moreover, by [Fre09] for F a field of characteristic 0
and E a prop coming from an operad over the category of (ungraded) vector spaces over
F one gets an equivalence E(s, t) ∼= hom((UV )⊗r, (UV )⊗s), with UV the forgetful functor
from E-algebras to vector spaces (for more details cf. [Wah12, Example 2.13]).

Unfortunately, this also implies that in this case ρ cannot be an isomorphism. To see
so, note that since E(s, t) ∼= hom((UV )⊗r, (UV )⊗s) we would want to get an isomorphism
hom((UV )⊗r, (UV )⊗s) ∼= hom(U⊗r, U⊗s), i.e. a map A⊗r → A⊗s commuting with algebra
morphisms must be determined by what it does in degree 0. This is not true, since a
morphism of algebras over C om needs to respect the twist map. Therefore, there cannot
be a morphism f sending an element b of odd degree to an element f(b) of even degree
(or the other way round). To see so, note that (f ⊗ f)(b ⊗ b) lies in Aeven ⊗ Aeven, i.e.
the twist acts as the identity. Precomposing with the twist, i.e. applying the twist to
b ⊗ b is the same as multiplication with −1, i.e. τ((f ⊗ f)(b ⊗ b)) = −(f ⊗ f)(τ(b ⊗ b))
and hence f does not commute with the twist map. Thus, we can define a natural map
ν : A⊗A→ A with

ν(a⊗ b) =

{
a · b if a or b is of even degree

2a · b if both a and b are of odd degree.

Hence, we found a transformation ν which is not determined on degree zero and thus ρ
cannot be an isomorphism in this case.
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3.3. Formal operations of the coHochschild construction. We can define formal
operations on the coHochschild construction in a similar way to those on the Hochschild
construction.

We define

NatDE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2)

:= hom(DX
n1• ,...,X1•

(−)(m1), DY
n2• ,...,Y 1•

(−)(m2))

and similarly in the reduced setup

NatDE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

m
• },m2)

:= hom(DX
n1• ,...,X1•

(−)(m1), DY
n2• ,...,Y 1•

(−)(m2)).

Theorem 3.6. There are isomorphisms of chain complexes

NatDE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

m
• },m2)

∼= DY
n2• ,...,Y 1•

(CXn1• ,...,X1•
E(−,−)(m1))(m2)

and similar in the reduced case. In particular,

NatE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2)

∼= NatDE({Y 1
• , . . . , Y

n2• },m2; {X1
• , . . . , X

n1• },m1).

Again, in Section 5.4.1, this is deduced from the more general setup of Theorem 5.16.

3.4. Coalgebra structures. From now on we focus on NatE(X•, Y•) for two simplicial
sets X• and Y•, which by Corollary 3.3 covers the general case of families of simplicial
sets up to quasi-isomorphism.

We are going to describe a coalgebra structure on the quotients of a filtration of the
natural transformations of a fixed inner degree. This will give us structure on NatE(X•, Y•)
if E is concentrated in degree zero. In Theorem 4.11 in certain cases we describe a weak
equivalence between NatE(X•, Y•) and the cochains of the topological mapping space
between the realizations of X• and Y•. In homology with field coefficients, we show that
the structure on the quotients agrees with the one induced by the coproduct on the chains
of the mapping space.

To define the structure on the quotients, for a cosimplicial simplicial set A••, we define
a coalgebra structure on C∗C∗(Z[A••]) where Z[−] : FinSet → Ab is the linearization
functor.

Proposition 3.7. Let A•• be a cosimplicial simplicial abelian group. The double complex
C∗C∗(A••) is a counital coalgebra. The comultiplication is the degree zero chain map of
double complexes given by

CkCl(A
•
•)

∆−→CkCl(diag•diag•(A•• ⊗A••))
AW−−→Ck(diag•(

⊕

l1+l2=l

Cl1A
•
• ⊗ Cl2A••))

EZ∗−−−→
⊕

k1+k2=k

⊕

l1+l2=l

Ck1Cl1A
•
• ⊗ Ck2Cl2A

•
•

=(C∗C∗(A••)⊗ C∗C∗(A••))kl
with ∆ being the diagonal map. The counit is the constant one map on C0C

0(A••) and
zero elsewhere.

The coalgebra structure commutes with taking the reduced Moore complex C∗ instead
of C∗ and the same holds in the cosimplicial directions, i.e. taking C

∗
instead of C∗.
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Proof. We need to show the axioms of a coalgebra, i.e. coassociativity and counitality.
We note that (∆ ⊗ id) ◦ EZ∗ ◦ AW ◦∆ = EZ∗2,3 ◦ AW2,3 ◦ (∆ × id) ◦∆ where we apply
the Eilenberg-Zilber and Alexander-Whitney map to the 2nd and 3rd directions of the
trisimplicial set (∆× id) ◦∆(A••). It is clear that (∆× id) ◦∆ = (id×∆) ◦∆. �

We would like to have a comultiplication on the product double complex, but unfor-
tunately since the tensor product does not commute with infinite products, we need to
filter the complex.

For a cochain chain complex D∗≥0
∗≥0 (second quadrant double chain complex) the filtra-

tion of Tot
∏
D by columns defined in Section 1.1 is given by (Fm(D))t =

∏
k≥m+1
l−k=t

Dk
l .

For a cosimplicial simplicial group let

Tm(A••) =
∏

C∗C∗(A••)/Fm(C∗C∗(A••)).

This quotient is isomorphic to the chain complex (
⊕

k≤m
l−k=t

CkCl(A
•
•), d̃), with the new

differential being zero in the cochain direction for k = m and equal to the old differential
otherwise.

Since the filtration is decreasing, we get surjective maps

Tm(A••)
pm−−→ Tm−1(A••)

which under the isomorphism stated above are just the projections onto the smaller sum.
Moreover, T (A••) = limTm(A••).

Proposition 3.8. Let A•• be a cosimplicial simplicial abelian group and ∆ the comulti-

plication defined in Proposition 3.7. ∆ induces maps T 2m(A••)
∆2m−−−→ Tm(A••) ⊗ Tm(A••)

and T 2m+1(A••)
∆2m+1−−−−→ Tm+1(A••)⊗ Tm(A••) such that the diagram

T 2m+1(A••)
∆2m+1 //

p2m+1

��

Tm+1(A••)⊗ Tm(A••)

pm+1⊗id
��

T 2m(A••)
∆2m //

p2m

��

Tm(A••)⊗ Tm(A••)

id⊗pm
��

T 2m−1(A••)
∆2m−1 // Tm(A••)⊗ Tm−1(A••)

(3.1)

commutes.

Proof. We have to check that the map which sends the element [x] ∈ T 2m(A••)n to [∆(x)] ∈
(Tm(A••)⊗Tm(A••))n commutes with the differential. We use the identification under the
isomorphism given above and show that there is a map



⊕

k≤2m
l−k=t

CkCl(A
•
•), d̃


→



⊕

k≤m
l−k=t

CkCl(A
•
•), d̃


⊗



⊕

k≤m
l−k=t

CkCl(A
•
•), d̃


 .

For x ∈ CkCl(A
•
•) with k < 2m, the differential is just the normal differential on the

total complex. The comultiplication maps x to ∆(x) ∈⊕k1+k2=k

⊕
l1+l2=l C

k1Cl1(A••)⊗
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Ck2Cl2(A••). By the definition of the new differential, the projection
⊕

k1+k2=k

⊕

l1+l2=l

Ck1Cl1(A••)⊗ Ck2Cl2(A••)

→
⊕

t1+t2=l−k




⊕

k1≤m
l1−k1=t1

Ck1Cl1(A••), d̃


⊗




⊕

k2≤m
l2−k2=t2

Ck2Cl2(A••), d̃




is a chain map. Similarly one checks that for x ∈ C2mCl(A
•
•), the only non-zero part of the

image of ∆m(x) lies in
⊕

l1+l2=l C
mCl1(A••)⊗CmCl2(A••). The cohomological differential

vanishes on both sides and thus the map is a chain map.
The computations for ∆2m+1 are analogous to the ones above.
By similar considerations one checks that the diagram mentioned in the proposition

commutes.
�

To apply the proposition to the complex of formal transformations of fixed inner degree,
we first start working with DX•CY•(E(−,−)). This complex is given as a totalization of
the triple chain complex C∗C∗E(X•, Y•)∗ where E(−,−)r are the morphisms of degree r
(where we forgot about the differential on E). To avoid confusion, from now on we fix a
degree r, i.e. work with the double chain complex C∗C∗E(X•, Y•)r. It is possible to bring
the last direction into the picture, but this will not be used in this paper and seems to
be rather confusing. So E(X•, Y•)r is a cosimplicial simplicial abelian group and we can
take its total complex. In degree p is given by

T (DX•(CY•(E(−,−)r)) =
∏

l−k=p

(CkClE(X•, Y•)r).

We filter it as done before to obtain the quotients Tm(DX•(CY•(E(−,−)r)). Thus, we get
maps

∆2m : T 2m(DX•(CY•(E(−,−)r)→ Tm(DX•(CY•(E(−,−)r)⊗ Tm(DX•(CY•(E(−,−)r)

and

∆2m+1 : T 2m+1(DX•(CY•(E(−,−)r)→ Tm+1(DX•(CY•(E(−,−)r)⊗Tm(DX•(CY•(E(−,−)r)

fitting in a diagram of the form (3.1) given in Proposition 3.8. If E(−,−) is concentrated
in degree zero we have T (DX•(CY•(E(−,−)0)) = DX•CY•(E(−,−)).

On the other hand, for any Φ : E → Ch and fΦ : Φ(Xk)n → Φ(Xl)m the map f
has degree (l + m) − (k + n) = (l − k) + (m − n). We refer to the first term as the
simplicial degree |f |simp of f and to the second as the inner degree |f |inn. So the complex
C∗C∗ hom(Φ(X•)),Φ(Y•))inn=r of morphisms of a fixed inner degree r is a double chain
complex, too. Taking all homomorphisms which are natural in Φ we get a double chain
complex C∗C∗ hom(−(X•)),−(Y•))inn=r, which by a similar proof to the one of Theorem
3.2 is isomorphic to the double chain complex C∗C∗E(X•, Y•)r. Hence we can define

Nat(X•, Y•)inn=r :=
∏

l−k
CkCl hom(−(X•)),−(Y•))inn=r

so that the isomorphism above gives us an isomorphism

T (DX•(CY•(E(−,−)r) ∼= Nat(X•, Y•)inn=r.

The quotients Natm(X•, Y•)inn=r are defined as the images of the respective quotients
Tm(DX•(CY•(E(−,−)r). By the isomorphisms we get maps

∆2m : Nat2m(X•, Y•)inn=r → Natm(X•, Y•)inn=r ⊗Natm(X•, Y•)inn=r
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and

∆2m+1 : Nat2m+1(X•, Y•)inn=r → Natm+1(X•, Y•)inn=r ⊗Natm(X•, Y•)inn=r

fulfilling the properties proved in Proposition 3.8.
Assembling what we have said, we get:

Proposition 3.9. For two simplicial finite sets X• and Y• the isomorphism in Theorem
3.2 induces isomorphisms

T (DX•(CY•(E(−,−)r))) ∼= NatE(X•, Y•)inn=r.

The complex NatE(X•, Y•)inn=r admits a filtration with quotients NatmE (X•, Y•)inn=r to-
gether with maps ∆2m and ∆2m+1 fitting into a commutative diagram of the form (3.1)
given in Proposition 3.8. In particular, in the case when E(−,−) is concentrated in degree
zero, NatE(X•, Y•)inn=0 = NatE(X•, Y•) and we obtain a filtration of the space of formal
transformations together with maps ∆2m and ∆2m+1.

4. Formal operations for the commutative PROP

For this section we fix E = C om.

4.1. Small models for the formal operations. In this section we aim for an eas-
ier and smaller descriptions of NatC om(X•, Y•), which by Theorem 3.2 is isomorphic to
DX•CY•(C om(−,−)). We start with rewriting the morphism spaces C om(r, s). For
this, recall the linearization functor Z[−] : FinSet → Ab which sends a finite set M
to the free abelian group of formal linear combinations of elements of M . This in-
duces a functor from C om to Ab via the following: An object s is sent to Z[s] and
the map Com(s, t) = Z[FinOrd(s, t)] → Ab(Z[s],Z[t]) is the linear extension of Z[−] :
FinOrd(s, t)→ Ab(Z[s],Z[t]).

Moreover, taking products inside Z[−] gives us a functor Z[(−)×−] : C omop × C om→
Ab which sends an object (t, s) to Z[st]. For an element g ∈ FinOrd(t, t′) we have an

induced map Z[st
′
]→ Z[st] sending a tuple (a1, · · · , at′) ∈ st

′
to (ag(1), · · · , ag(t)) ∈ st. The

action of C omop is again the linear extension of this map FinOrd(t, t′)→ Ab(Z[st
′
],Z[st]).

Lemma 4.1. There is an equivalence of functors

C om(−,−) ∼= Z[(−)×−] ∼= Z[−]⊗− : C omop × C om→ Ab.

Proof. A morphism in FinOrd(t, s) is given by specifying the image for each point of
t independently, i.e. FinOrd(t, s) ∼= FinOrd(1, s)×t = s×t. Since linearization sends
products to tensor products we get an isomorphism C om(t, s) ∼= Z[s]⊗t. By definition,
these isomorphisms are natural. �

By the above considerations, for a simplicial finite set Y• we get a functor

C∗(Z[Y ×−• ]) : C omop → Ch

which is the same as the functor C∗(Y ×−• ). Its dual is given by C∗(Y ×−• ) : C om→ coCh.

Proposition 4.2. Let X• be an arbitrary simplicial set and Y• a simplicial finite set. We
have an isomorphism

DX•(CY•(C om(−,−))) ∼= (CX•(DY•(Z[(−)×−])∗))∗ = (CX•(C
∗(Y ×−• )))∗.

Moreover, working with coefficients in a field F and given a commutative cochain algebra
A∗ in Ch(F −mod) such that C∗(Y ×−• ) and (A∗)⊗− are quasi-isomorphic functors from
C om to Ch(F−mod) we have

DX•(CY•(C om(−,−)) ' CX•(A⊗−)∗ ∼= CHX•(A)∗,

where the last term is the dual of the higher Hochschild homology of A.
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Proof. By the previous lemma C om(−,−) is isomorphic to Z[(−)×−] as a bifunctor and
we therefore obtain DX•(CY•(C om(−,−))) ∼= DX•(CY•(Z[(−)×−])). By Proposition 2.11
we have

(CY•(Z[(−)×−])∗ ∼= DY•((Z[(−)×−])∗).

Moreover, since (CY•(Z[(−)×k])) = C∗(Y ×k• ) is degreewise free and finitely generated for
any k (since Y• is finite in each degree), dualizing twice is isomorphic to the identity, i.e.
we get isomorphisms of functors

CY•(Z[(−)×−]) ∼= (DY•((Z[(−)×−])∗)∗.

Plugging this into our original expression and using Proposition 2.11, we have

DX•(CY•(Z[(−)×−]))) = DX•((DY•((Z[(−)×−])∗)∗) = (CX•(DY•(((Z[(−)×−])∗)∗.

Since DY•((Z[(−)×k])∗) = C∗(Y ×k• ), the first chain of isomorphisms follows.
For the second part of the proposition let A∗ be a commutative cochain algebra such

that (A∗)⊗− and C∗(Y ×−• ) are quasi-isomorphic functors. By Proposition 2.9 we get
a quasi-isomorphism CX•(C

∗(Y ×−• )) ' CX•((A
∗)⊗−) and likewise for their dual spaces

(since we work over a field).
By Remark 2.6, the isomorphism CX•(A

⊗−) ∼= CHX•(A) holds.
�

In the following remark and proposition, we show that we actually can weaken the
conditions on Y• such that Y• only needs to be weakly equivalent to a simplicial finite set.

Remark 4.3. For Y• an arbitrary simplicial set, we still get an isomorphism between
the chain complexes CY•(C om(k,−)) and C∗(Y ×k• ). This is true, since we obtain an
isomorphism of chain complexes

CY•(C om(k,−)) := colim
K•→Y•,
K• finite

C∗(Z[K×k• ]) ∼= C∗(Z[( colim
K•→Y•,
K• finite

K•)×k]) = C∗(Y ×k• ).

Since C∗ and Z[−] are left adjoint functors and hence commute with colimits we have
an isomorphism between colimK•→Y•,

K• finite
C∗(Z[K×k• ]) and C∗(Z[(colimK•→Y•,

K• finite
K•)×k]). From

now on, we do not distinguish between these functors.

Proposition 4.4. Let X• and Y• be arbitrary simplicial sets. For a simplicial set Y ′•
being weakly equivalent to Y• we get a quasi-isomorphism

DX•CY•(C om(−,−)) ' DX•CY ′•(C om(−,−))

and the maps

Tm(DX•CY•(C om(−,−)))→ Tm(DX•CY ′•(C om(−,−)))

commute with the ∆k defined in Section 3.4.
The same holds for the reduced functors.

Proof. By Lemma 4.1 and the previous remark, we have CY•(C om(−,−)) = C∗(Z[Y ×−• ]).
A weak equivalence Y• ' Y ′• induces a weak equivalence of simplicial abelian groups

Z[Y ×r• ] ' Z[Y ′•
×r] (cf. [GJ09, III 2.14]) commuting with the C omop action on these

functors. By the Dold-Kan correspondence this gives a quasi-isomorphism of functors
C∗(Y ×−• ) ' C∗(Y ′•

×−) : C omop → Ch. By Proposition 2.9, applying DX• afterward pre-
serves quasi-isomorphism. Moreover, the construction gives us maps of double complexes
(before taking Tot

∏
). Therefore, we get induced comultiplications on both double com-

plexes as described in Proposition 3.7. By the naturality of the Alexander-Whitney and
Eilenberg-Zilber maps, the quasi-isomorphism commutes with the comultiplication on the
double complexes and therefore with the induced maps ∆k on the quotients. �
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In the following theorems we give an example where we can apply Proposition 4.2,
namely the deRham algebra of a simplicial set which is weakly equivalent to a simplicial
finite set. The proof of the theorem is given in Appendix A.

Theorem 4.5. Let F be a field such that Q ⊆ F, X• an arbitrary simplicial set and
Y• a simplicial set weakly equivalent to a simplicial finite set. Then there is a quasi-
isomorphism

NatC om(CX• , CY•) ' (CHX•(Ω
∗(Y•)))∗ ' (CHX•(Ω

∗(|Y•|)))∗.
4.2. Relationship of the formal operations and the mapping space. Making use
of [Bou87], in this section we prove that under certain conditions there is a weak equiva-
lence between NatC om(X•, Y•) and the singular chain complex of the topological mapping
space homTop(|X|, |Y |). On C∗(homTop(|X|, |Y |)) we have an actual coalgebra structure
with comultiplication being the composition of the induced map of the diagonal and the
Alexander-Whitney map (which the cupproduct is dual to). Working with coefficients
over a field F, this induces a coalgebra structure on H∗(homTop(|X|, |Y |)) and thus by
the aforementioned isomorphism a coalgebra structure on H∗(DX•(CY•(C om(−,−)))).
This restricts to the ∆k maps on the quotients of the filtration of the space introduced in
Section 3.4.

We start with recalling definitions about cosimplicial simplicial sets and introduce the
language used in [Bou87].

For a simplicial set X• its n-skeleton (sknX)• is the subsimplicial set of X• generated
by the simplices of degree ≤ n.

The standard cosimplicial simplicial set ∆•• is defined via

∆•• = hom∆(−,−) : ∆op ×∆→ Set.

This means that in cosimplicial degree m it is given by the standard simplicial set ∆m
• =

hom∆(−,m). The n-skeleton (skn∆)•• of ∆•• is in each cosimplicial degreem the n-skeleton
of the simplicial set ∆m

• , i.e. (skn∆)m• := (skn∆m)•.
For two simplicial sets X• and Y•, the simplicial mapping space is the simplicial set

whose n-th level is given by

Map(X•, Y•)n := homSet∆
op (X• ×∆n

• , Y•).

For a cosimplicial simplicial set Z•• the cosimplicial realization TotZ• is the simplicial
set whose n-th level is given by

(TotZ)n := homSet∆×∆op (∆•• ×∆n
• , Z

•
• ) ⊂

∏

k≥0

Map(∆k
•, Z

k
• )n,

i.e. cosimplicial maps in the simplicial mapping space. We define a filtration (Totm Z) by
(Totm Z)n = homSet∆×∆op ((skm∆)•• × ∆n

• , Z
•
• ). Hence, we obtain maps (Totm+1 Z)• →

(Totm Z)• and the cosimplicial realization can be rewritten as the limit (TotZ)• =
limm(Totm Z)•.

The total complex T∗Z of the double complex of a cosimplicial simplicial set T∗Z =

Tot
∏
C
∗
(C∗(Z•• )) and its filtrations Tm =

∏
k≤mC

k
C l(Z

•
• ) were already discussed in

Section 3.4. Recall that T∗Z is the limit of its filtration, i.e. T∗Z = limm T
m
∗ Z.

Denote by ev[m] the evaluation map Tm((skm∆)••×Totm Z))→ Tm(Z•• ). We define the

element cp as the identity map in hom∆({p}, {p}), i.e. cp ∈ CpCp(∆••). Let cm ∈ Tm(∆••)
be the image of

∑m
i=0 ci under the projection on Tm(∆••). The element cm has trivial

differential in Tm(∆••). Moreover, note that Ck(∆
n) = 0 if k > n.

Following [Bou87] we define the maps λm via

λm : C∗(Totm Z)
cm⊗id−−−−→(Tm((skm∆)••))0 ⊗ C∗(Totm Z)(4.1)

EZ−−→(Tm((skm∆)•• × Totm Z))∗
ev[m]

−−−→ (Tm(Z•• ))∗.
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We know that the reduced cochains have the structure of a coalgebra, i.e. we have maps

C∗(Totk Z)
∆−→ C∗(Totk Z)⊗C∗(Totk Z). Using the projection maps pk,j : C∗(Totk Z)→

C∗(Totj Z) for k ≥ j, we define ∆Tot
2m as the composite

(4.2) C∗(Tot2m Z)
∆−→ C∗(Tot2m Z)⊗ C∗(Tot2m Z)→ C∗(Totm Z)⊗ C∗(Totm Z)

with the last map being p2m,m ⊗ p2m,m. Similarly, ∆Tot
2m+1 is the composite

(4.3)

C∗(Tot2m+1 Z)
∆−→ C∗(Tot2m+1 Z)⊗ C∗(Tot2m+1 Z)→ C∗(Totm+1 Z)⊗ C∗(Totm Z),

with the last map being p2m+1,m+1 ⊗ p2m+1,m.
These induce commutative diagrams

(4.4) C∗(TotZ)
∆ //

p2m

��

C∗(TotZ)⊗ C∗(TotZ)

pm⊗pm
��

C∗(Tot2m Z)
∆Tot

2m // C∗(Totm Z)⊗ C∗(Totm Z)

and

(4.5) C∗(TotZ)
∆ //

p2m+1

��

C∗(TotZ)⊗ C∗(TotZ)

pm+1⊗pm
��

C∗(Tot2m+1 Z)
∆Tot

2m+1// C∗(Totm+1 Z)⊗ C∗(Totm Z).

We now show that the λm commute with the ∆m.

Lemma 4.6. The diagrams

C∗(Tot2m Z)
∆Tot

2m //

λ2m

��

C∗(Totm Z)⊗ C∗(Totm Z)

λm⊗λm
��

T 2mZ
∆2m // TmZ ⊗ TmZ

and

C∗(Tot2m+1 Z)
∆Tot

2m+1//

λ2m+1

��

C∗(Totm+1 Z)⊗ C∗(Totm Z)

λm+1⊗λm
��

T 2mZ
∆2m+1 // Tm+1Z ⊗ TmZ

commute.

Proof. We define the maps ∆2m and ∆2m+1 on the intermediate spaces used in the defi-
nition of λ2m and λ2m+1, respectively (cf. Equation (4.1)).

(1) On C∗(Totk Z) for k = 2m or k = 2m+ 1, the maps ∆Tot
2m and ∆Tot

2m+1 have been
defined in Equation (4.2) and Equation (4.3), respectively.

(2) On (T k((skm∆)••))0⊗C∗(TotZ) it is given by τ2,3◦(∆k⊗∆Tot
k ) where τ2,3 permutes

the second and third term.
(3) On T k(((skm∆)•• × TotZ))∗ it is given by ∆k.
(4) On (T kZ•• )∗ it equals ∆k, too.

(1) The map C∗(Totm Z)
c⊗id−−−→ Tm(∆••) ⊗ C∗(Totm Z) sends x 7→ cm ⊗ x. We show

that ∆2m(c2m) = cm ⊗ cm and ∆2m+1(c2m+1) = cm+1 ⊗ cm. Since the cm are of
total degree zero, permuting them with other elements does not create a sign.
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By Proposition 3.7, this reduces to showing that the comultiplication ∆ on the
double complex C∗C∗∆•• sends the element cp ∈ CpCp∆•• to

∑
p1+p2=p cp1 ⊗ cp2 .

Recall that ∆Tot is given as

∆Tot : Cp(∆
p)

∆∗−−→Cp(∆p ×∆p)
AW−−→

⊕

p1+p2=p

Cp1(∆p)⊗ Cp2(∆p)

EZ∗−−−→
⊕

p1+p2=p

⊕

q1+q2=p

Cp1(∆q1)⊗ Cp2(∆q2).

Since Ca(∆
b) = 0 for a > b, the image lies in

⊕
p1+p2=pCp1(∆p1)⊗ Cp2(∆p2). In

each summand of the reduced complex only one pair of non-degenerate simplices
survives, since all summands not belonging to the identity permutation in EZ∗

are degenerate.

(2) The map Tm((skm∆)••)0 ⊗ C∗(Totm Z)
EZ−−→ Tm((skm∆)•• × Totm Z)∗: On both

sides we first apply ∆∗ and then AW in the simplicial direction. For any two
simplicial sets A• and B•, the diagram

Ck(A•)⊗ C l(B•) EZ //

AW◦∆∗⊗AW◦∆∗
��

Ck+l(diag(A• ×B•))

AW◦∆∗

��

⊕
Ck1(A•)⊗ Ck2(A•)⊗ C l1(B•)⊗ C l2(B•)

τ2,3
��⊕

Ck1(A•)⊗ C l1(B•)⊗ Ck2(A•)⊗ C l2(B•)
EZ //

⊕
Cr1(diag(A• ×B•))⊗ Cr2(diag(A• ×B•))

commutes ([FHT01, I.4 b)]). Hence, in our case applying AW ◦∆∗ commutes with
the asked morphism. Since we apply EZ∗ to the cosimplicial direction on both
sides, which is not affected by the morphism, it preserves the comultiplication.

(3) The map ev[m] commutes with the ∆2m and ∆2m+1 by the naturality of EZ∗,
AW and ∆∗.

�

We will show that under some conditions the map λ : C∗(TotZ) → (T (Z•• ))∗ induced
by the maps λm : C∗(Totm Z)→ (Tm(Z•• ))∗ is a quasi-isomorphism. If this is a case the
above commutativity result implies that the comultiplication on the homology with field
coefficients induces the ∆k maps on the quotients:

Lemma 4.7. Let F be a field and assume that the map λ : C∗(TotZ) → (T (Z•• ))∗
induced by the maps λm : C∗(Totm Z) → (Tm(Z•• ))∗ is a quasi-isomorphism. Denote by
∆ : H∗(T (Z•• );F) → H∗(T (Z•• );F) ⊗ H∗(T (Z•• );F) the image of the comultiplication on
H∗(TotZ;F) under H∗(λ). Then the following diagrams commute:

H∗(T (Z•• );F)
∆ //

p2m

��

H∗(T (Z•• );F)⊗H∗(T (Z•• );F)

pm⊗pm
��

H∗(T 2m(Z•• );F)
H∗(∆2m) // H∗(Tm(Z•• );F)⊗H∗(Tm(Z•• );F)

and

H∗(T (Z•• );F)
∆ //

p2m+1

��

H∗(T (Z•• );F)⊗H∗(T (Z•• );F)

pm+1⊗pm
��

H∗(T 2m+1(Z•• ))
H∗(∆2m+1) // H∗(Tm+1(Z•• );F)⊗H∗(Tm(Z•• );F)
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Proof. During the proof we use the notation C∗ = C∗(TotZ), Cm∗ = C∗(Totm Z), B∗ =
(T (Z•• ))∗ and Bm

∗ = (Tm(Z•• ))∗. To check the commutativity of the diagrams (we only
do it for the first one, the second one works the same), we notice that in the diagram

C∗

λ

��

∆ //

p2m

!!
(1)

C∗ ⊗ C∗

pm⊗pmxx

λ⊗λ

��

(2)

C2m
∗

λ2m

��

∆2m //

(4)

Cm∗ ⊗ Cm∗
λm⊗λm
��

(3)

B2m
∗

∆2m // Bm
∗ ⊗Bm

∗

B∗

p2m

==

B∗ ⊗B∗
pm⊗pm

ff

all the squares commutes. This holds, since (1) commutes by diagram (4.4), (2) and (3)
by the definition of λ as the induced map on the limits and (4) by Lemma 4.6.

Since we work over a field (i.e. the Kuenneth Theorem holds) the above diagram
induces a diagram on homology

H∗(C;F)

H∗(λ)

��

∆ //

H∗(p2m)

''

H∗(C;F)⊗H∗(C;F)

H∗(pm)⊗H∗(pm)tt

H∗(λ)⊗H∗(λ)

��

H∗(C2m;F)

H∗(λ2m)
��

H∗(∆2m)// H∗(Cm;F)⊗H∗(Cm;F)

H∗(λm)⊗H∗(λm)

��
H∗(B2m;F)

(5)

H∗(∆2m)// H∗(Bm;F)⊗H∗(Bm;F)

H∗(B;F)

H∗(p2m)
77

∆ // H∗(B;F)⊗H∗(B;F)

H∗(pm)⊗H∗(pm)

jj

where the comultiplication ∆ : H∗(T (Z•• );F)→ H∗(T (Z•• );F)⊗H∗(T (Z•• );F) is the map
that makes the outer square commute. Since all subsquares beside (5) commute by the
above argumentation, the square (5) also commutes and we have proved the lemma.

�

Before actually applying Bousfield’s spectral sequence theorem and achieving a quasi-
isomorphism, we need one more technical lemma:

Lemma 4.8. For Y• a Kan complex and X• a simplicial set, the cosimplicial simplicial set
Y X•• = homSet(X•, Y•) is fibrant (in the Reedy model structure on cosimplicial simplicial
sets, see [GJ09, Chapter VII.4]), i.e. the maps

homSet(Xn, Y•)→ lim
[n]�[k]

homSet(Xk, Y•)

are Kan fibrations for all n.

Proof. Since lim[n]�[k] homSet(Xk, Y•) is isomorphic to homSet(colim[n]�[k]
n>k

Xk, Y•), we

have to check that the maps

homSet(Xn, Y•)→ homSet(colim
[n]�[k]
n>k

Xk, Y•),
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given by precomposition with the map colim[n]�[k]
n>k

Xk → Xn, are Kan fibrations. Denote

LnX = colim[n]�[k]
n>k

Xk. The map LnX → Xn is the embedding of the degenerate n-

simplices and thus it is injective.
Rewriting homSet(Xn, Y•) =

∏
Xn

Y• =
∏
LnX

Y• ×
∏
Xn\LnX

Y• and analogously

homSet(LnX,Y•) =
∏
LnX

Y• =
∏
LnX

Y• ×
∏
Xn\LnX

∗ the asked map is the product of

the identity on the first factor and the map Y• → ∗ on the second factor.
The latter maps are fibrations, since Y• is a Kan-complex. The identity maps are

fibrations, too. Since the product of Kan fibrations is a Kan fibration, the lemma is
proven. �

For a finite simplicial set X• denote by dim(X•) the maximal degree of a non-degenerate
simplex in X•.

Let Y• be a simplicial set. The homotopy groups are defined as those of the topological
realization of Y•. We work with unpointed simplicial sets, i.e. unpointed spaces. For Y•
path-connected the homotopy groups are well-defined defined by the choice of an arbitrary
base point (up to non-canonical isomorphism). If the fundamental group is abelian and
acts trivial on all higher homotopy groups (i.e. Y• is simple), the isomorphism is canonical.

For a simplicial set Y• we write Conn(Y•) for its connectivity, i.e. the smallest k ≥ 0
such that πk+1(Y ) 6= 0. The homotopy groups of a cosimplicial simplicial set are the
cosimplicial set of homotopy groups in each degree, i.e. (πk(Z

•
• ))

n = πk(Z
n
• ).

For a topological Hausdorff space Y we have an equivalence S•(homTop(|X|, Y )) ∼=
Map(X•, S•(Y )).

For the cosimplicial simplicial set Y X•• , by arguments similar to [PT03, 1.5], the fol-
lowing holds

Tot(Y X•• ) = Map(X•, Y•).

Moreover, for a space Y , we conclude

Tot(S•(Y )X•) = Map(X•, S•(Y )) ∼= S•(homTop(|X|, Y )).

Theorem 4.9. Let X• be a finite simplicial set and Y• be a simple Kan complex such
that dim(X•) ≤ Conn(Y•). Then the maps λm induce a quasi-isomorphism

λ : C∗(Map(X•, Y•))→ T (Y X•• ).

Proof. The proof goes similar to the argumentation for the pointed case in [Bou87, Ex-
ample 4.3]. By [Bou87, Lemma 2.3] the map λ is an isomorphism on homology, i.e. a
quasi-isomorphism if the spectral sequence of a fibrant cosimplicial simplicial set Z•• con-
verges. By [Bou87, Theorem 3.2] for a fibrant cosimplicial simplicial set Z•• with each Zm•
simple, the spectral sequence converges, if the following two conditions hold:

(1) Hmπm+n(Z•• ) = 0 if n ≤ 0.
(2) For all n there are only finitely many m such that Hmπm+n(Z•• ) 6= 0.

If we plug in Z•• = Y X•• , with Y• simple, we get

Hmπm+n(Y X•• ) = πmπm+n(HomSet(X•, Y•))

=Hm(HomSet(X•, πm+n(Y•))) ∼= Hm(C∗(X•);πm+n(Y•)).

The second last equality holds since homotopy groups commute with products. In the
case of Y• a Kan complex, Z•• is fibrant by Lemma 4.8.

Rewriting the conditions for the convergence of the spectral sequence, we obtain

(1) Hm(C∗(X•);πm+n(Y•)) = 0 if n ≤ 0.
(2) For all n there are only finitely many m, such that Hm(C∗(X•);πm+n(Y•)) 6= 0.
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By the universal coefficient Theorem (cf. [Hat02, Theorem 3.2]) we have a (split) short
exact sequence

0→Ext(Hm−1(C∗(X•)), πm+n(Y•))→ Hm(C∗(X•);πm+n(Y•))

→ hom(Hm(C∗(X•)), πm+n(Y•))→ 0

Since Cm(X•) is nonzero only for m ≤ dim(X•), Ext(Hm−1(C∗(X•)), πm+n(Y•)) and
hom(Hm(C∗(X•)), πm+n(Y•)) are both zero for m − 1 > dim(X). Thus, Condition 2.
holds.

To check Hm(C∗(X•);πm+n(Y•)) = 0 if n ≤ 0, we are left to show that the left term
of the short exact sequence vanishes for m− 1 ≤ dim(X) and the right term vanishes for
m ≤ dim(X).

By the connectivity of Y•, πm+n(Y•) = 0 for m + n ≤ Conn(Y ). Hence, if we assume
m ≤ dim(X) and n ≤ 0, we have m + n ≤ m ≤ dim(X) ≤ Conn(Y ), i.e. πm+n(Y•)
vanishes for m ≤ dim(X). Then the first and third term in the short exact sequence also
vanish and Hm(C∗(X•);πm+n(Y•)) = 0 for m ≤ dim(X). So far we have shown that the
last term of the long exact sequence always vanishes and the first term vanishes as long
as m− 1 6= dim(X). Assume m− 1 = dim(X). The group Hdim(X)(C∗(X•)) is free since

Cdim(X)+1(X•) = 0 and thus there are no boundaries divided out when taking homology.

So Ext(Hdim(X)(C∗(X•)), πdim(X)+1+n(Y•)) = Ext(Hdim(X)(C∗(X•)), πdim(X)+1+n(Y•))
vanishes. Taking all this together, we have shown that Condition 1 holds and proved
the theorem.

�

Plugging in the Kan complex S•(Y ) for a space Y , we get

Corollary 4.10. For a finite simplicial set X• and a topological space Y with dim(X) ≤
Conn(Y ), there is a quasi-isomorphism

λ : C∗(HomTop(|X•|, Y ))→ T (S•(Y )X•).

Taking coefficients in a field F, the homology of H∗(HomTop(|X•|, Y );F) is a coalgebra and

thus the homology H∗(T (S•(Y )X•);F) is a coalgebra, too. Using this coalgebra structure
over a field, we get commuting diagrams

H∗(T (S•(Y )X•);F) //

��

H∗(T (S•(Y )X•);F)⊗H∗(T (S•(Y )X•);F)

��
H∗(T 2m(S•(Y )X•);F)

H∗(∆2m)// H∗(Tm(S•(Y )X•);F)⊗H∗(Tm(S•(Y )X•);F)

and

H∗(T (S•(Y )X•);F) //

��

H∗(T (S•(Y )X•);F)⊗H∗(T (S•(Y )X•);F)

��
H∗(T 2m+1(S•(Y )X•);F)

H∗(∆2m+1)// H∗(Tm+1(S•(Y )X•);F)⊗H∗(Tm(S•(Y )X•);F)

.

Proof. By Theorem 4.9 the map λ is a quasi-isomorphism. Lemma 4.7 gives us the
commutativity of the diagrams.

�

Taking everything together, we have:

Theorem 4.11. For an arbitrary simplicial set Y• and a finite simplicial set X• such
that dim(X•) ≤ Conn(Y•), there is weak equivalence

C∗(HomTop(|X•|, |Y•|)) ' NatC om(X•, Y•) ' NatC om(X•, Y•).
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Taking coefficients in a field F the comultiplication on H∗(NatC om(X•, Y•);F) induced by
the one on H∗(HomTop(|X•|, |Y•|);F) commutes with restriction to the filtration of Nat,
i.e.

H∗(NatC om(X•, Y•);F) //

��

H∗(NatC om(X•, Y•);F)⊗H∗(NatC om(X•, Y•);F)

��
H∗(Nat2m(X•, Y•);F)

H∗(∆2m) // H∗(Natm(X•, Y•);F)⊗H∗(Natm(X•, Y•);F)

and

H∗(NatC om(X•, Y•);F) //

��

H∗(NatC om(X•, Y•);F)⊗H∗(NatC om(X•, Y•);F)

��
H∗(Nat2m+1(X•, Y•);F)

H∗(∆2m+1)// H∗(Natm+1(X•, Y•);F)⊗H∗(Natm(X•, Y•);F)

commute.

Proof. We only need to check that all quasi-isomorphisms involved respect the ∆k-maps.

• From Corollary 4.10 we have a quasi-isomorphism of coalgebras

C∗(HomTop(|X•|, |Y•|))→ T (S•(|Y•|)X•).
• By definition

T (S•(Y )X•) = T (HomSet(X•, S•(Y )) = DX•(CS•(|Y•|)(F[−]⊗−))).

• For any simplicial set Y•, one has Y• ' S•(|Y•|), so by Proposition 4.4 we have a
quasi-isomorphism

DX•(CS•(|Y•|)(F[−]⊗−))) = DX•CS•(|Y•|)(C om(−,−)) ' DX•CY•(C om(−,−)),

which commutes with the ∆k maps.
• By the construction explained before Proposition 3.9 the (quasi-) isomorphism
DX•CY•(C om(−,−)) ∼= NatC om(X•, Y•) ' NatC om(X•, Y•) commute with the
∆k-maps.

Taking these steps together, the theorem is proven. �

5. The general setup in closed monoidal model categories

Let M be a closed monoidal model category and E a small category enriched in M . In
this section we define the Hochschild and coHochschild construction for M = Top or Ch
and modules over E , i.e. for enriched functors Φ : E →M and Ψ : Eop →M , respectively.
Then we can also define the formal operations and prove generalizations of Theorem 3.2
and Theorem 3.6 for chain complexes. We hope to achieve results for topological spaces
too and state what properties should suffice. This is work in progress. All the functors
considered are enriched over M and so are the categories E and E ′, if not stated otherwise.

5.1. Derived tensor products and mapping spaces. We recall definitions and con-
structions on the derived tensor product and the derived end. We mostly follow Emily
Riehl’s notes [Rie12].

Definition 5.1. Let E be a small M -enriched category, G : Eop →M and F : E →M
enriched functors. The enriched coend or enriched tensor product of F and G is defined
as

F ⊗
E
G = coeq


∐

d,d′
(F (d)⊗G(d′))⊗ E(d, d′) ⇒

∐

d

F (d)⊗G(d)


 .
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Similarly, for F,G : E →M the enriched end is defined as

homE(F,G) = eq


∏

d

hom(F (d), G(d)) ⇒
∏

d,d′
hom(E(d, d′), hom(F (d), G(d′)))


 .

So far, the constructions do not respect weak-equivalences in the functors. This is
repaired by taking the homotopy coend or homotopy end (by taking the homotopy co-

equalizer and equalizer) which are denoted by −
L
⊗
E
− and R homE(−,−), respectively.

In the unenriched setup, one would use the bar and cobar construction to give an ex-
plicit construction (and thus a proof of the existence) of the derived functors. This is
not always possible in the enriched setup. For the rest of this section we will work with
chain complexes and compactly generated topological spaces equipped with the projec-
tive and mixed model structure, respectively (for more details on the model structures cf.
Appendix B.4).

Definition 5.2. Let E be a small category enriched in Ch. We call a functor BA : Eop →
Ch an h-projective replacement of a functor A : Eop → Ch if there is a levelwise quasi-

isomorphism BA
'−→ A such that homEop(BA,−) is a right derived functor of homEop(A,−)

and −⊗
E
BA is a left derived functor of −

L
⊗
E
A.

Similarly, for topological spaces we define:

Definition 5.3. Let E be a small category enriched in Top and Q(−) an enriched levelwise
cofibrant replacement functor, i.e. it induces a continuous map between the hom-spaces
hom(X,Y ) and hom(Q(X), Q(Y )) for two topological spaces X and Y . We call a functor
BA : Eop → Top a topological h-projective replacement of a functor A : Eop → Top if

there is a levelwise weak equivalence BA
'−→ A and if there are natural weak equivalences

such that homEop(BA,−) is a right derived functor of homEop(A,−) and Q(−) ⊗
E
BA is

a left derived functor of −
L
⊗
E
A where Q(−) is an enriched levelwise cofibrant replace-

ment functor , i.e. it induces a continuous map between the hom-spaces hom(X,Y ) and
hom(Q(X), Q(Y )) for two topological spaces X and Y .

Note that on topological spaces we replace the other tensor functor levelwise cofibrantly.
This is a weaker condition than the one we ask in chain complexes. On the other hand,
in chain complexes we often can find replacements BA satisfying the stronger condition.

A functor B : E → M is called (topological) h-projective if it is a (topological) h-
projective resolution of itself, i.e. if the enriched tensor product realizes the derived
tensor product.

In the remainder of this section we want to give constructions of h-projective replace-
ments in spaces. However, these only work under certain conditions.

We start with the definition of the bar construction:

Definition 5.4. For a small M –enriched category E , two functors G : Eop → M and
F : E →M , the enriched simplicial bar construction is the simplicial object in M whose
n–th level is defined as

Bn(F, E , G) =
∐

d0,··· ,dn∈E
F (d0)⊗ E(d0, d1)⊗ · · · ⊗ E(dn−1, dn)⊗G(dn)

with the i–th face map being induced by the composition E(di−1, di) ⊗ E(di, di+1) →
E(di−1, di+1) for 0 < i < n and the induced maps on F (d0) and G(dn) for i = 0 or i = n,
respectively. The degeneracies are the maps induced by the map ∗ → E(di, di) plugged in
at the i+ 1–st position.
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For M = Top the enriched bar construction is then the geometric realization, i.e.

B(F, E , G) = |B•(F, E , G)|
and for M = Ch it is the totalization of the double chain complex C∗(B•(G, E , F )), i.e.

B(F, E , G) = Tot⊕C∗(B•(F, E , G)).

Similarly, for two functors F,G : E →M the enriched cosimplicial cobar construction
is the cosimplicial object in M with n–th degree given by

Cn(G, E , F ) =
∏

d0,··· ,dn
hom(G(d0)⊗ E(d0, d1)⊗ · · · ⊗ E(dn−1, dn), F (dn))

with the face map for 0 ≤ i < n coming from the composition and the n–th face map
being induced by applying the extra map to F (dn−1).

For M = Top the enriched cobar construction is the totalization, i.e.

C(G, E , F ) = Tot(C•(G, E , F ))

and similarly for M = Ch it is the total product complex of the double complex, i.e.

C(G, E , F ) = Tot
∏

(C∗(G, E , F )).

Note that for both bar constructions defined above, we can apply the enriched Yoneda
Lemma levelwise and get an isomorphism/homeomorphism

B(F, E , G) ∼= F ⊗
E
B(E , E , G)

where B(E , E , G) : Eop → M takes x ∈ E to B(E(x,−), E , G). Moreover, taking the
category Eop instead of E and thus F : (Eop)op →M , we get

B(F, E , G) = B(G, Eop, F ).

Lemma 5.5. Let E be an M –enriched category where M = Ch or Top. Then we can
express the cobar construction via the bar construction as follows:

C(G, E , F ) ∼= homE(B(G, E , E), F ).

Proof. We first show that C•(G, E , F ) ∼= homE(B•(G, E , E), F ), so in each level we first
need to give an isomorphism Cn(G, E , F ) ∼= homE(Bn(G, E , E), F ). We see

homE(Bn(G, E , E), F ) =
∏

d0,··· ,dn
homE(G(d0)⊗ E(d0, d1)⊗ · · · ⊗ E(dn−1, dn)⊗ E(dn,−), F )

∼=
∏

d0,··· ,dn
hom(G(d0)⊗ E(d0, d1)⊗ · · · ⊗ E(dn−1, dn), F (dn))

where the last step is the enriched Yoneda Lemma. One easily checks that the simplicial
structure maps of B• get mapped to those of C•. Therefore we obtain C•(G, E , F ) ∼=
homE(B•(G, E , E), F ) and hence, since Tot is the dual of geometric realization (it is the
end corresponding to the coend of geometric realization), we have

C(G, E , F ) = TotC•(G, E , F ) ∼= Tot homE(B•(G, E , E), F ) ∼= homE(|B•(G, E , E)|, F ).

Thus the lemma is proven for M = Top. Since taking Tot⊕ is dual to taking Tot
∏

, the
same holds for M = Ch. �

We need to give the right setup for the bar construction to be an h-projective replace-
ment:

Definition 5.6. Let E be a small category enriched over Top or Ch (equipped with the
mixed and projective model structure, respectively). The category E is called cofibrantly
enriched if

• all the morphism spaces are cofibrant and
• the maps id→ E(a, a) are cofibrations for all a ∈ E .
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In the mixed model structure for spaces (cf. Appendix B.4.1) this requires all mor-
phism spaces to be strong homotopy equivalent to CW-complexes and the embeddings
of the identity to be Hurewicz cofibrations that are composition of a relative homotopy
equivalence and a relative CW-complex (cf. Appendix B.4.2). On chain complexes the
conditions are always fulfilled if all the E(a, a) are bounded below, levelwise projective
and the inclusion of the identity is a cofibration.

For M = Top, the following theorem allows us to use the bar construction:

Theorem 5.7 ([Shu06, Theorem 23.12], for more details see [Rie12, Sec. 9.2]). Let E be
a cofibrantly enriched topological category and let Q be an enriched cofibrant replacement.
Then an explicit model for the derived functor of the enriched tensor product − ⊗

E
− is

given by −
L
⊗
E
− = B(Q(−), E , Q(−)). An explicit model for the derived enriched end is

given by R homEop(−,−) = C(Q(−), E ,−).
In particular, for every A : Eop → Ch the functor B(E , E , Q(A)) is a topological h-

projective replacement.

Note that we did not need to use a fibrant replacement for the cobar construction, since
all spaces are fibrant.

For chain complexes we hope that the enriched bar construction is h-cofibrant, too.
However, for the moment we can only show that it preserves weak-equivalences.

Proposition 5.8. Let E be cofibrantly enriched over chain complexes and A : Eop →
Ch. Then B(−, E , Q(A)) and C(A, E ,−) preserve weak equivalences. Again, Q(−) is a
functorial cofibrant replacement.

Proof. For the proof assume that A is levelwise cofibrant. We need to check that both
C(A, E ,−) and B(−, E , A) preserve quasi-isomorphisms. A quasi-isomorphism Φ ' Φ′

induces quasi-isomorphisms

hom(A(d0)⊗ E(d0, d1)⊗ · · ·⊗E(dn−1, dn),Φ(dn))

' hom(A(d0)⊗ E(d0, d1)⊗ · · · ⊗ E(dn−1, dn),Φ′(dn))

and

A(d0)⊗E(d0, d1)⊗· · ·⊗E(dn−1, dn)⊗Φ(dn)'A(d0)⊗E(d0, d1)⊗· · ·⊗E(dn−1, dn)⊗Φ′(dn)

for all di ∈ E since both A and E(−,−) were levelwise cofibrant. Thus we can apply
Corollary B.12 to compare the total complex of the double complex C∗(A, E ,Φ) with
C∗(A, E ,Φ′) and B∗(A, E ,Φ) with B∗(A, E ,Φ′) which proves the claim. �

5.2. Hochschild and coHochschild construction and formal operations. In this
section we fix two small, M -enriched categories E and E ′ for M = Top or Ch together
with an enriched functor E → E ′. To define the Hochschild and coHochschild construction,
we have to distinguish the two cases. First assume that E is enriched over Ch.

Definition 5.9. For an h-projective functorB : Eop → Ch the Hochschild functor CB(−) :
Fun(E ,Ch)→ Ch sends a functor Φ : E → Ch to

CB(Φ) = Φ⊗
E
B.

Similarly, the coHochschild functor DA(−) : Fun(Eop,Ch) → Ch sends a functor Ψ :
Eop →M to

DB(Ψ) = homEop(B,Ψ).

If E is enriched over Top, we define:
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Definition 5.10. For a topological h-projective functor B : Eop → Top and Q an enriched
cofibrant replacement functor the Hochschild functor CB(−) : Fun(E , T op)→ Top sends
a functor Φ : E → Top to

CB(Φ) = Q(Φ)⊗
E
B.

Similarly, the coHochschild functor DA(−) : Fun(Eop, T op) → Top sends a functor Ψ :
Eop →M to

DB(Ψ) = homEop(B,Ψ).

In both cases (i.e. if E is enriched over M for M = Ch or Top), we can define:

Definition 5.11. If A has a (topological) h-projective resolution BA then we define

CA(−) = CBA
(−)

and

DA(−) = DBA
(−).

The above give specific models for the derived enriched tensor product −
L
⊗
E
A and the

derived enriched hom functor R homEop(A,−). Moreover, since a choice of h-projective
resolution is involved, the Hochschild and coHochschild constructions are only well-defined
up to weak equivalence. In topological spaces if E is cofibrantly enriched, we can fix a
standard model by choosing BA to be the bar construction. However, for chain complexes
we will see that all further definitions also only depend on the choice of h-projective
resolution up to weak equivalence.

For another enriched category E ′ with a functor i : E → E ′, a functor Φ : E ′ →M the
composition Φ ◦ i defines a functor E → Ch. For A : Eop →M and Φ : E ′ →M we write
CA(Φ) := CA(Φ ◦ i), i.e. we see CA(−) : Fun(E ′,M ) → M . We use this to define the
formal operations:

Definition 5.12. Let A and A′ be two contravariant functors A,A′ : Eop → M which
have h-projective resolutions BA and BA′ . Then the formal operations are defined as the
mapping space

NatE ′(A,A
′) = homFun(E ′,M )(CA(−), CA′(−)).

Similarly, the coformal operations are defined as the mapping space

NatDE ′(A,A
′) = homFun(E ′op,M )(DA(−), DA′(−)).

Note that the above definition depends on the choice of h-projective resolution we have
chosen for A and A′. However, for chain complexes we will see later that up to weak
equivalence the spaces NatE ′(A,A′) and NatDE ′(A,A

′) are independent of this choice. To
avoid confusion, from now on we assume that we have fixed h-projective resolutions BA
and BA′ for A and A′, respectively.

Remark 5.13. If we can choose BA and BA′ such that CA(Φ) and CA′(Φ) are cofi-
brant, i.e. CA(Φ) and CA′(Φ) are in particular cofibrant replacements of any model
of the enriched derived tensor product, then NatE ′(A,A′) = hom(CA(−), CA′(−)) ∼=
R hom(CA(−), CA′(−)) and since R hom(CA(−), CA′(−)) ' R hom(−

L
⊗
E
A,−

L
⊗
E
A′),

we have

NatE ′(A,A
′) ' R hom(−

L
⊗
E
A,−

L
⊗
E
A′).

Unfortunately, we do not see how to achieve this generalization in the case of chain com-
plexes. However, working in topological spaces with E cofibrantly enriched, the enriched
bar construction B(Q(Φ), E , Q(A)) is cofibrant, since it is the geometric realization (i.e.
a left Quillen functor) of the Reedy cofibrant simplicial space B•(Q(Φ), E , Q(A)).
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Theorem 5.14. Let E and E ′ be small categories enriched over Ch together with a func-
tor E → E ′ and let B,B′ : Eop → Ch be two h-projective functors. Then we have an
isomorphism

NatE ′(B,B
′) ∼= DBCB′(E ′(−,−)).

For the general case, we can deduce:

Corollary 5.15. Let E and E ′ be small categories enriched over Ch together with a functor
E → E ′ and let A,A′ : Eop → Ch be two functors which have h-projective resolutions. Then

NatE ′(A,A
′) ' DACA′(E ′(−,−))

and in particular NatE ′(A,A′) is independent of the choice of h-projective resolutions.

For the coformal transformations we can only prove the theorem in the case of M = Ch.

Theorem 5.16. Let E and E ′ be small categories enriched over Ch together with a functor
E → E ′ and let B and B′ : Eop → Ch be two h-projective functors. Then we have an
isomorphism

NatDE ′(B,B
′) ∼= DB′CB(E ′(−,−)).

Corollary 5.17. Let E and E ′ be as above and A,A′ : Eop → M be two functors which
have h-projective resolutions. Then we have a weak equivalence

NatDE ′(A,A
′) ' DA′CA(E ′(−,−))

and again NatDE ′(A,A
′) is independent of the choice of h-projective resolution.

The corollaries all follow from the fact, that DACA′(E ′(−,−)) (up to weak equivalence)
is independent of the choice of h-projective resolution, since both DA and CA′ are so and
DA preserves weak equivalences (since it is a model of a derived functor).

It is work in progress to achieve similar theorems for topological spaces. The main
ingredient is a cofibrant replacement functor Q which is continuous (as explained earlier),
strong monoidal and comonadic. Under this conditions one can prove the analog for
topological spaces. A nice application would be to compute the formal operations in the

case of Chiral homology, which for Diskfrm the framed m–disk operad and M a framed
m–manifold is computed as ∫

M
Φ = Φ

L
⊗

Diskfrm

EM .

Since we are not aware whether a cofibrant replacement functor with the above properties
exists, we cannot say anything more about that case here.

5.3. The proofs for chain complexes. In this section we give a proof of Theorem 5.14.
We first check:

Lemma 5.18. Let M be a closed monoidal model category and E and E ′ be small cate-
gories enriched over M together with a functor E → E ′. Moreover, take B : Eop → M
and functors H1 : Fun(E ,M )→ Fun(E ,M ) and H2 : Fun(E ,M )→M . Then we have
an isomorphism

hom(H1(−)⊗
E
B,H2(−)) ∼= homEop(B, hom(H1(−), H2(−)))

where in both cases the hom-sets are natural in all Φ : E ′ →M .

Proof. Under the tensor hom adjunction, all morphisms in hom(H1(Φ)⊗
E
B,H2(Φ)) natural

in Φ correspond to homEop(B, hom(H1(Φ), H2(Φ)) natural in Φ. Since the naturality is
only used in the second hom, this is the same as (compatible) maps from B into the set
of all elements of hom(H1(Φ), H2(Φ)) that are natural in Φ. �

Next we check:
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Lemma 5.19. For a functor H : Fun(E ′,Ch)→ Ch we have an isomorphism

homFun(E ′,Ch)(−(e), H) ∼= H ◦ E ′(e,−).

Proof. For each Φ : E ′ → Ch we define a map

FΦ : E ′(e,−)⊗
E
B → hom(Φ(e),Φ⊗

E
B)

as the adjoint of the map

F̃Φ : E ′(e,−)⊗
E
B ⊗ Φ(e)→ Φ⊗

E
B

given by sending an element f ⊗ b ⊗ x to f(x) ⊗ b. One checks that this is defined on
equivalence classes of the coend and is natural in Φ.

Given a natural transformation ν ∈ hom(−(e), (−) ⊗
E
B) we can plug in the functor

E ′(e,−) and thus get νE ′(e,−) ∈ hom(E ′(e, e), E ′(e,−) ⊗
E
B). Evaluating at the identity

id ∈ E ′(e, e), we define

G : hom(−(e), (−)⊗
E
B)→ E ′(e,−)⊗

E
B

as G(ν) = νE ′(e,−)(id).
We need to show that the two maps are inverse to each other: The composition G ◦ F

sends an element f ⊗ b ∈ E ′(e,−)⊗
E
B to (f ◦ id)⊗ b = f ⊗ b and thus equals the identity.

To see that F ◦G is the identity we fix a natural transformation ν ∈ hom(−(e), (−)⊗
E
B)

and an element x ∈ Φ(e). Define a natural transformation µx ∈ E ′(e,−) → Φ(−) by
sending an element f ∈ E ′(e, k) to f(x) ∈ Φ(k). The naturality of ν induces a commutative
diagram

E ′(e, e) ν //

µx,e

��

E ′(e,−)⊗
E
B

µx

��
Φ(e)

ν // Φ⊗
E
B

for every x.
Checking the diagram on id ∈ E ′(e, e), the composition via the lower left corner gives

ν(x) whereas the composition via the upper right corner is G ◦ F (ν)(x). Thus ν(x) =
G ◦ F (ν)(x) for all natural transformations ν and for all x, hence F ◦G = id. �

Proof of Theorem 5.14. By the definition, we have that Nate′(B,B
′) is given by the col-

lection of compatible morphisms in hom(Φ⊗
E
B,Φ⊗

E
B′) which are natural in Φ : E ′ → Ch.

Applying Lemma 5.18 to H1 = id and H2 = −⊗
E
B′ we get

homFun(E ′,Ch)(CB(−), CB′(−)) ∼= homEop(B, homFun(E ′,Ch)(−,−⊗E B
′)).

By the previous lemma we obtain homFun(E ′,Ch)(−,−⊗E B
′)) ∼= E ′(e,−)⊗

E
B′ and thus

homEop(B, homFun(E ′,Ch)(−,−⊗E B
′)) ∼= homEop(B, E ′(−,−)⊗

E
B′) ∼= DBCB′(E ′(−,−))

where the last isomorphism is given by the definition of the coHochschild and Hochschild
complex. Thus the theorem is proven. �

Next we give a proof of the theorem for the coformal operations:
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Proof of Theorem 5.16. We start with describing a map FΨ : homEop(B′, E ′(−,−)⊗
E
B)→

hom(homEop(B,Ψ), homEop(B′,Ψ)) for all Ψ : Eop → Ch that is natural in Ψ. Using the
tensor-hom adjunction, we need to construct a map

F̃Ψ : homEop(B′, E ′(−,−)⊗
E
B)⊗ homEop(B,Ψ)→ homEop(B′,Ψ).

For f ∈ homEop(B,Ψ) we have a map

Rf ∈ homEop(E ′(−,−)⊗
E
B, E ′(−,−)⊗

E
Ψ)

defined as Rf = id ⊗ f . One checks that this is well-defined with the end and coend
constructions involved. Moreover, the evaluation ev is an element in homEop(E ′(−,−) ⊗

E
Ψ,Ψ). For h ∈ homEop(B′, E ′(−,−) ⊗

E
B) and f ∈ homEop(B,Ψ) we define F̃Ψ(h ⊗ f) as

the enriched composition

B′ h−→ E ′(−,−)⊗
E
B

Rf−−→ E ′(−,−)⊗
E

Ψ
ev−→ Ψ,

i.e. F̃Ψ(h⊗ f) = ev ◦Rf ◦ h ∈ homEop(B′,Ψ).
The inverse map G is easier to construct. Given ν ∈ hom(homEop(B,−), homEop(B′,−))

we want to apply ν to the functor E ′(−,−)⊗
E
B. This gives us a map

ν(E ′(−,−)⊗
E
B) : homEop(B, E ′(−,−)⊗

E
B)→ homEop(B′, E ′(−,−)⊗

E
B)

which we evaluate on the element w ∈ homEop(B, E ′(−,−)⊗
E
B) defined by w(b) = id⊗ b.

Hence G = ν(E ′(−,−)⊗
E
B)(w) ∈ homEop(B′, E ′(−,−)⊗

E
B).

We need to show that the two maps are inverse: To see that G ◦ F is the identity, for

f = id ∈ homEop(B,B) we need to show that F̃(E ′(−,−)⊗
E
B)(id ⊗ f) = id. Plugging in the

definition we see that ev ◦Rf = id and thus the claim follows.
To show F ◦ G = id, we fix a Ψ : Eop → Ch and f ∈ homEop(B,Ψ). We define a

map Hf ∈ homEop(E ′(−,−) ⊗
E
B,Ψ) by Hf = ev ◦ Rf . Given a natural transformation

ν ∈ hom(homEop(B,−),homEop(B′,−)) we thus get a commutative diagram

homEop(B, E ′(−,−)⊗
E
B)

ν(E′(−,−)⊗EB) //

Hf ∗
��

homEop(B, E ′(−,−)⊗
E
B)

Hf∗
��

homEop(B,Ψ)
νΨ // homEop(B,Ψ)

where Hf ∗ is the induced map by postcomposition.
Evaluating the diagram on the element w = id⊗− ∈ homEop(B, E ′(−,−)⊗

E
B) via the

upper horizontal map it is sent to ν(E ′(−,−)⊗EB)(w) = G(ν) and postcomposition with Hf

gives F (G(ν))(f). On the other hand, Hf ◦ w = f and thus composition via the lower
left corner is νΨ(f). Hence νΨ(f) = F (G(ν))(f) for all f and ν and thus F ◦G = id. �

5.4. Applications to higher Hochschild homology. In this section we want to apply
the results proved so far to higher Hochschild and Chiral homology. In both cases we
want the categories E and E ′ to be PROPs enriched over Ch or Top, i.e. they are enriched
symmetric monoidal categories with objects the natural numbers including zero (so we
also assume that the structure maps are enriched monoidal functors). Moreover, for
simplicity, we always assume that the functor E → E ′ is the identity on objects.
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5.4.1. Higher Hochschild homology as a derived tensor product. In this section we focus
on the setup to deduce Theorem 3.2 and Theorem 3.6 from Theorem 5.14 and 5.16. From
now on we choose E = C om. Given a simplicial set X• we want to use the chain complex
LX• mentioned in Section 2.1 to rewrite the higher Hochschild complex CX•(Φ) defined in
Definition 2.3 as the complex CLX• (Φ) defined in Definition 5.9 and similarly for DX•(Ψ)
and DLX• (Ψ). So we recall and define:

Given a simplicial finite set X• we define

LX•(e) =
⊕

k

C om(e,Xk)[k]

with differential d : C om(e,Xk) → C om(e,Xk−1) given by postcomposition with d′ =∑k
i=0(−1)idi where the di ∈ C om(Xk, Xk−1) are the maps induced by the simplicial

boundary maps di : Xk → Xk−1.
Similarly, for a family of simplicial finite sets {X1

• , · · · , Xn
• } and a natural number m

we define

LX1• ,...,Xn• ,m(e) =
⊕

k1,··· ,kn
C om(e,X1

k1
q · · · qXn

kn qm)[k1 + · · ·+ kn]

where the differential comes from the boundary maps of the multisimplicial abelian group
structure on C om(e,X1

• q · · · qXn
• qm).

For X• an arbitrary simplicial set we define

(5.1) LX•(e) = colim
X•←↩K0

•←↩K1
•←↩···←↩Kn

•
Ki
• finite

LKn• (e)

and similarly for the iterated construction.
Analogously, we define the complex

L X1• ,...,Xn• ,m(e) =
⊕

k1,··· ,kn
C om(e,X1

k1
q · · · qXn

kn qm)[k1 + · · ·+ kn]/Uk1,··· ,kn

with Uk1,··· ,kn the image of the simplicial degeneracy maps, i.e. L X1• ,...,Xn• ,m(e) is the

reduced chain complex of the multisimplicial abelian group C om(e,X1
• q · · · qXn

• qm).
Again, for simplicial non-finite sets, we take the similar construction of equation (5.1).

Lemma 5.20. We have isomorphisms

Φ ⊗
C om

LX1• ,...,Xn• ,m
∼= CX1• ,...,Xn• (Φ)(m),

Φ ⊗
C om

L X1• ,...,Xn• ,m
∼= CX1• ,...,Xn• (Φ)(m),

homC omop(LX1• ,...,Xn• ,m,Ψ(−)) ∼= DX1• ,...,Xn• (Ψ)(m) and

homC omop(L X1• ,...,Xn• ,m,Ψ(−)) ∼= DX1• ,...,Xn• (Ψ)(m)

natural in Φ and Ψ, respectively. In particular given two families of simplicial sets
{X1
• , . . . , X

n1• } and {Y 1
• , . . . , Y

n2• } together with natural numbers m1 and m2 there are
isomorphisms

NatE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2) ∼= NatE(LX1• ,...,X
n1• ,m1

,LY 1• ,...,Y
n2• ,m2

) and

NatE({X1
• , . . . , X

n1• },m1; {Y 1
• , . . . , Y

n2• },m2) ∼= NatE(L X1• ,...,X
n1• ,m1

,L Y 1• ,...,Y
n2• ,m2

)

where the left hand sides where defined in Definition 3.1 and the right hand sides of the
equality is the complex of formal operations defined earlier in this section.
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Proof. Plugging in the definition for a simplicial finite set, we get

Φ ⊗
C om

LX1• ,...,Xn• ,m = Φ ⊗
C om

⊕

k1,··· ,kn
C om(e,X1

k1
q · · · qXn

kn qm)[k1 + · · ·+ kn]

∼=
⊕

k1,··· ,kn
Φ(X1

k1
q · · · qXn

kn qm)[k1 + · · ·+ kn]

= CX1• ,...,Xn• (Φ)(m)

which follows from the Yoneda lemma. One easily checks that the differentials agree and
that the isomorphism factors through the reduced versions. Since the tensor product
commutes with colimits, the result for simplicial non-finite sets follows. The proof for the
coHochschild construction works similarly. �
Lemma 5.21. For a family of simplicial sets {X1

• , . . . , X
n
• } and a natural number m the

functors LX1• ,...,Xn• ,m and L X1• ,...,Xn• ,m are h-projective.

Proof. In Proposition 2.9 we have shown (both in the finite and non-finite case) that
the functors CX1• ,...,Xn• (−)(m), CX1• ,...,Xn• (−)(m), DX1• ,...,Xn• (−)(m) and DX1• ,...,Xn• (−)(m)
preserve quasi-isomorphism and thus so do the functors − ⊗C om LX1• ,...,Xn• ,m, − ⊗C om

L X1• ,...,Xn• ,m, homC omop(LX1• ,...,Xn• ,m,−) and homC omop(L X1• ,...,Xn• ,m,−) by the previous
lemma. Hence they give a model for the derived tensor product and hom, respectively. �

Now we are finally able to deduce Theorem 3.2 and Theorem 3.6:

Proof of Theorem 3.2 and Theorem 3.6. Since both LX1• ,...,Xn• ,m and L X1• ,...,Xn• ,m are h-
projective, the assumptions of Theorems 5.14 and 5.16 are fulfilled. By the isomorphism
in Lemma 5.20, this implies the reduced and non-reduced versions of Theorem 3.2 and
Theorem 3.6. �
Remark 5.22. Let A∞ be the dg-PROP encoding A∞–algebras, i.e. algebras only asso-
ciative up to homotopy (see for example [WW11, Sec. 3.1]). We say that E ′ is a PROP
with A∞-multiplication, if there is a functor A∞ → E ′ which is an isomorphism on ob-
jects. For such a PROP E ′ with A∞-multiplication, two enriched functors Φ : E ′ → Ch
and Ψ : E ′op → Ch, in [WW11, Def. 5.1] and [Wah12, Def 1.1] the Hochschild and
coHochschild complex were defined as

C(Φ)(m) = Φ(−+m) ⊗
A∞

L

and
D(Ψ)(m) = homAop

∞(L ,Ψ(−+m))

for L a complex of graphs (defined more generally later). For a fixed m we can again
change L slightly to some Lm and can rewrite

C(Φ)(m) = Φ(−) ⊗
A∞

Lm

and
D(Ψ)(m) = homAop

∞(Lm,Ψ(−))

and thus can use Theorem 5.14 to reprove [Wah12, Theorem 2.1].

Appendix A. More details for Theorem 4.5

Let F be a field with Q ⊆ F. We briefly recall details on the de Rham algebra and give
a proof of Theorem 4.5. This is mainly based on material from [FHT01, Chapter 10].

Definition A.1. The simplicial deRham algebra is the graded commutative simplicial
cochain algebra Ω∗• with n-simplices

Ω∗n =
F[t0, . . . , tn]⊗ Λ(dt0, . . . , dtn)

(t0 + · · ·+ tn − 1, dt0 + · · ·+ dtn)
, |ti| = 0, |dti| = 1
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with differential

d(f) =
∑ ∂f

∂ti
dti,

for f ∈ F[t0, . . . , tn]/(
∑
ti − 1). The simplicial de Rham algebra of a simplicial set X•

Ω∗(X•) is the graded commutative simplicial cochain algebra

Ω∗(X•) = Hom∆op(X•,Ω∗•)

inheriting the algebra structure from Ω∗•.

For a topological space this gives the usual de Rham algebra Ω∗(X) if we take the sim-
plicial set S•(X), the singular chains of X. Moreover, there is a natural quasi-isomorphism
Ω∗(X•) ' Ω∗(|X•|).
Theorem A.2 ([FHT01, Theorem 10.9]). For each simplicial set there is a zig zag of
natural quasi-isomorphisms

Ω∗(X•)→ • ← C∗(X•).

Note that the naturality ensures that we have a zig zag of quasi-isomorphisms of func-
tors between C∗(Y ×−• ) and Ω∗(Y ×−• ) : C omop → Ch.

Since −⊗− is the coproduct in cdga, for two simplicial sets X• and Y• the maps induced
by the projections X × Y → X and X × Y → Y induce a map Ω∗(X•) ⊗ Ω∗(Y•) →
Ω∗(X• × Y•), which is known to be a quasi-isomorphism. By definition, this map is
associative, i.e. we get a quasi-isomorphism Ω∗(X•)⊗Ω∗(Y•)⊗Ω∗(Z•)→ Ω∗(X•×Y•×Z•).
Denote by τ the algebraic twist on Ω∗(X•)⊗ Ω∗(Y•) and Ω∗(τ) the twist induced by the
twist on the level of simplicial sets on Ω∗(X• × Y•). We want to see that the following
diagram commutes:

Ω∗(X•)⊗ Ω∗(Y•) //

τ

��

Ω∗(X• × Y•)
Ω∗(τ)
��

Ω∗(Y•)⊗ Ω∗(X•) // Ω∗(Y• ×X•).
Precomposing with the inclusions of Ω∗(X•) and Ω∗(Y•), respectively, going via the up-
per right corner and going via the lower left corner commute. Therefore, by the univer-
sal property of the coproduct, the diagram commutes. Similarly, taking id ⊗ Ω∗(f) on
Ω∗(X•) ⊗ Ω∗(Y•) and then mapping to Ω∗(Y• ×X•) commutes with first mapping there
and then taking Ω∗(id× f). Furthermore, the diagram

Ω∗(X•)⊗ Ω∗(X•) //

µ

��

Ω∗(X• ×X•)
Ω∗(∆)
��

Ω∗(X•)
= // Ω∗(X•)

commutes and tensoring with the unit agrees with the map induced by forgetting the
corresponding copy of X•. Thus we have shown that permuting any two factors or mul-
tiplying any two factors is preserved under the quasi-isomorphism Ω∗(Y ×k• ) ' Ω∗(Y•)⊗k

and hence we have a quasi-isomorphism of functors

C∗(Y ×−• ) ' Ω∗(Y ×−• ) ' Ω∗(Y•)⊗− : C omop → Ch .

Applying Proposition 4.2, we have proved Theorem 4.5.

Appendix B. Algebraic tools

In this appendix we give some additional proofs needed in Section 1 and some back-
ground on spectral sequences of double complexes and homotopy limits.
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B.1. Functorality of Tot and sTot. Let Ch and dChv be the dg-categories of chain
complexes and double chain complexes with respect to the vertical differential, respec-
tively, which were defined in Section 1. There we also defined the (switched) total complex
functors (s) Tot

∏
: dChv → Ch and (s) Tot⊕ : dChv → Ch.

Proposition B.1. The functors Tot
∏

, Tot⊕, sTot
∏

, sTot⊕ : dChv → Ch are dg-
functors.

Proof. The calculations are the same for the direct sum and product complexes. There-
fore, we omit the label and handle both cases at the same time. We start with the
unswitched double complex: Let f be a map f : C•,• → D•,•+|f |. We compute

dTot(f)p,q = (−1)p+q(dD ◦ f − f ◦ dC)

= (−1)p+q(dDh ◦ f + (−1)pdDv ◦ f − f ◦ dCh − (−1)pf ◦ dCv )

= (−1)q(dDv ◦ f − f ◦ dCv )

= Tot(dv(f)).

To avoid confusion, we do the second computation on elements, i.e. we look at

d(x⊗ sTot(f)) 7→ d(sTot(f)(x)).

We get

d(x⊗ sTot(f))

= dx⊗ sTot(f) + (−1)p+qx⊗ d(sTot(f))

= dv(x)⊗ sTot(f) + (−1)qdh(x)⊗ sTot(f) + (−1)p+qx⊗ d(sTot(f))

7→ sTot(f)(dv(x)) + (−1)q sTot(f)(dh(x)) + (−1)p+qd(sTot(f))(x)

= (−1)|f |pf(dv(x)) + (−1)|f |(p+1)+qf(dh(x)) + (−1)p+qd(sTot(f))(x).

On the other hand

d(sTot(f)(x)) = (−1)p|f |dv(f(x)) + (−1)p|f |+(q+|f |)dh(f(x)).

Comparing the two results, we obtain

(−1)|f |pf(dv(x)) + (−1)|f |(p+1)+qf(dh(x)) + (−1)p+qd(sTot(f))(x)

= (−1)p|f |dv(f(x)) + (−1)p|f |+q+|f |dh(f(x))

⇔(−1)p+qd(sTot(f))(x)

= (−1)|f |p(dv(f(x))− f(dv(x))) + (−1)|f |(p+1)+q(dh(f(x))− f(dh(x))

and plugging in the assumptions on the right side we get

⇔(−1)p+qd(sTot(f))(x) = (−1)|f |p+q(dv(f)(x)) + 0

⇔d(sTot(f))(x) = (−1)(|f |+1)pdv(f)(x).

However, computing sTot(dv(f))(x) we have

sTot(dv(f))(x) = (−1)|dv(f)|pdv(f)(x) = (−1)(|f |+1)pdv(f)(x)

i.e. for any x we have that d(sTot(f))(x) = sTot(dv(f))(x) hence the claim follows. �

B.2. The Eilenberg-Zilber Theorem. In this section we recall the simplicial and
cosimplicial Eilenberg-Zilber and Alexander-Whitney maps and the Eilenberg-Zilber The-
orem. This is based on [Wei95, Chapter 8.5] and [GM04, Appendix 3].
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Definition B.2. For a bisimplicial object A•,• in an abelian category A the simplicial
object diag•(A•,•) is given by composing the diagonal map ∆→ ∆×∆ with A•,•. Thus
diagn(A•,•) = An,n.

Similarly, for a bicosimplicial object B•,• in an abelian category A the cosimplicial
object diag•(B•,•) is the composition of the diagonal map ∆ → ∆ ×∆ with B•,•. Thus
diagn(B•,•) = Bn,n.

We first work in the simplicial setup (cf. [Wei95, Chapter 8.5.]).

Definition B.3 (Alexander-Whitney map). Let A•,• be a bisimplicial object with hor-

izontal boundary maps dhi and vertical face maps dvi . For p + q = n the map AWp,q :
An,n → Ap,q is defined as

dhp+1 · · · dhn dv0 · · · dv0︸ ︷︷ ︸
p

.

The sum over all p and q yields a map AWn : An,n → Tot⊕n C∗C∗(A•,•) and assembling
all these maps gives a chain map

AW : C∗(diag•A•,•)→ Tot⊕C∗C∗(A•,•)

called the Alexander-Whitney map. The map is natural with respect to morphisms of
bisimplicial objects.

Furthermore, the map is well-defined on reduced complexes and we have a commutative
square

C∗(diag•A•,•)
AW //

'
��

Tot⊕C∗C∗(A•,•)

'
��

C∗(diag•A•,•)
AW // Tot⊕C∗C∗(A•,•).

Remark B.4. For a trisimplicial object A•,•,• with boundary maps d1
i , d

2
i and d3

i , we
can iterate the Alexander-Whitney map. The map (AW ⊗ id) ◦AW

C∗(diag•A•,•,•)→ Tot⊕Tot⊕1,2C∗C∗(A•,•,•)

is induced by maps AWp1,p2,p3 : An,n,n → Ap1,p2,p3 with p1 + p2 + p3 = n defined as

d1
p1+1 · · · d1

n ◦ d2
0 · · · d2

0︸ ︷︷ ︸
p1

d2
p1+p2+1 · · · d2

n ◦ d3
0 · · · d3

0︸ ︷︷ ︸
p1+p2

.

This explicit definition of the maps implies the coassociativity of the Alexander-Whitney
map, i.e. (AW ⊗ id) ◦AW = (id⊗AW ) ◦AW .

Definition B.5 (Eilenberg-Zilber map). Let A•,• be a bisimplicial object with code-

generacy maps shi and svi . For p + q = n the map EZp,q : Ap,q → An,n is defined to
be ∑

(p,q) shuffles µ

(−1)sgn(µ)shµ(n) · · · shµ(p+1)s
v
µ(p) · · · svµ(1).

The sum of these maps gives a chain map

EZ : Tot⊕C∗C∗(A•,•)→ C∗(diag•A•,•),

called the Eilenberg-Zilber map. It is natural with respect to morphisms of cosimplicial
objects.

The Eilenberg-Zilber map commutes with restriction to the reduced complex, too.

Remark B.6. Via the explicit formulas of the Eilenberg-Zilber map given above, it is
easy to check that it is associative.
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Theorem B.7 (simplicial Eilenberg-Zilber). For a bisimplicial object A•,• in an abelian
category A the maps EZ and AW yield chain homotopy equivalences

AW : C∗(diag•A•,•) � Tot⊕C∗C∗(A•,•) : EZ

restricting to the reduced complexes.

Dually, for a cosimplicial object B•,• we define

AW ∗ : Tot⊕C∗C∗(B•,•)→ C∗(diagB•,•)

EZ∗ : C∗(diag•B•,•)→ Tot⊕C∗C∗(B•,•)

using the coface maps and codegeneracies, respectively. Again, the maps commute with
restriction to the reduced complexes.

Theorem B.8 (cosimplicial Eilenberg-Zilber, [GM04, A.3]). For a bicosimplicial object
B•,• in an abelian category A the maps EZ∗ and AW ∗ yield chain homotopy equivalences

AW ∗ : Tot⊕C∗C∗(B•,•) � C∗(diag•B•,•) : EZ∗

restricting to the reduced complexes.

B.3. Spectral sequences for double complexes. We recall the results for spectral
sequences of right and left half plane double complexes, i.e. complexes being zero in the
left and right halfplane, respectively.

Theorem B.9 ([Wei95, Section 5.6.]). Let Cp,q be a right half plane double complex.
Then filtration by columns gives a spectral sequence with E0

p,q = Cp,q, E
1
p,q = Hv

q (Cp,∗, dv)
and E2

p,q = Hh
p (Hv

q (C∗,∗), (−1)qdh) strongly converging to Hp+q(sTot⊕(C∗,∗)).

Now let Cp,q be a left half plane double complex. The filtration by columns was defined

as Fs = Tot
∏

(C∗,∗) for s > 0 and

Fs =
∏

p≤s
Cp,q.

This gives us a descending filtration · · · ⊆ Fs−1 ⊆ Fs ⊆ · · · starting at F0 = Tot
∏
Cp,q

with (Fs)s+t/(Fs−1)s+t = Cs,t. Therefore, by [Wei95, Theorem 5.4.1] the associated
spectral sequence has the form

Ep,q1 = Hq(Cp,∗, d2)⇒ Hp+q(Tot
∏
C∗,∗).

This spectral sequence does not need to converge, but it always converges conditionally:

Theorem B.10. For any left half plane double complex the spectral sequence associated
to the product filtration by columns defined above is conditionally convergent.

Proof. Applying [Boa99, Theorem 9.2] we have to show that the filtration is exhaustive,

complete and Hausdorff. The fact that
⋃
s Fs = F0 = Tot

∏
(C∗,∗) shows that the filtration

is exhaustive. By [Wei95, Section 5.6], the spectral sequence is complete Hausdorff. �

Theorem B.11. In both situations (i.e. either right or left half plane double complex)
a morphism of double complexes inducing an isomorphism on Er-pages for some r > 0
induces an isomorphism of filtered groups on the target.

Proof. In the case of strong convergence (i.e. right halfplane double complex) this follows
by the classical Comparison Theorem ([Wei95, Theorem 5.2.12]).

In the second case, by [Boa99, Proposition 2.4] we have an isomorphism between the
E∞ and RE∞ pages. Moreover, both spectral sequences converge to the limit by the
previous theorem. Applying [Boa99, Theorem 7.2], we get an isomorphism of filtered
groups. �
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Corollary B.12. Let f : Cp,q → Dp,q be a map of left (respectively right) half plane
double complexes. If f is a quasi-isomorphism with respect to the vertical differential
(i.e. an isomorphism after taking homology in the vertical direction), f induces a quasi-
isomorphism f :

∏
p,q Cp,q →

∏
p,qDp,q respectively f :

⊕
p,q Cp,q →

⊕
p,qDp,q.

Proof. A map f as given in the corollary induces an isomorphism of the E1-pages of the
respective spectral sequences. Thus, by the previous theorem, the claim follows. �

If we have a map which is a quasi-isomorphism with respect to the horizontal differen-
tial, we have to ask for stronger properties for it to induce a quasi-isomorphism of total
complexes, namely it has to be a chain homotopy equivalence. To deduce this result, we
need a small technical lemma from homological algebra:

Lemma B.13. Let A and B be two abelian categories and F : A → B an additive
functor. Then the induced functor F : Ch(A ) → Ch(B) preserves chain homotopy
equivalences.

Proof. For f and g inverse chain homotopy equivalences, we have maps K,L such that
dn+1 ◦ Kn + Kn+1 ◦ dn = fn ◦ gn − id and dn+1 ◦ Ln + Ln+1 ◦ dn = gn ◦ fn − id. Since
F is additive, F (dn+1) ◦ F (K)n + F (K)n+1 ◦ F (dn) = F (f)n ◦ F (g)n − id and F (dn+1) ◦
F (L)n + F (L)n+1 ◦ F (dn) = F (g)n ◦ F (f)n − id, i.e. F (f) and F (g) are inverse chain
homotopy equivalences. �

On the other hand, for a chain map f : Cp,q → Dp,q being a chain homotopy equivalence

in dChh (as defined above) it also induces a quasi-isomorphism of the respective total
complexes (see Corollary B.14).

Corollary B.14. A chain-homotopy equivalence of (double) complexes C∗,∗ and C̃∗,∗ in

dChh or D∗,∗ and D̃∗,∗ in dChh (i.e. with respect to the horizontal differential) in-

duces quasi-isomorphisms of total complexes sTot⊕C∗,∗ ' sTot⊕ C̃∗,∗ and Tot
∏
D∗,∗ '

Tot
∏
D̃∗,∗, respectively.

Proof. Given chain homotopy equivalences

iC : C∗,∗ � C̃∗,∗ : pC and iD : D∗,∗ � D̃∗,∗ : pD,

respectively, by the additivity of the homology functor H∗ : Ch → Ab and Lemma B.13
we get a chain homotopy equivalence after taking homology in the vertical direction, i.e.
maps such that both compositions are chain homotopic to the identity:

iC∗ : H∗(C∗,∗, d2) � H∗(C̃∗,∗, d2) : pC∗ and iD∗ : H∗(D∗,∗, d2) � H∗(D̃∗,∗, d2) : pD∗ .

This implies that the maps induce isomorphisms after taking homology in the horizontal
direction, i.e.

iC∗ : H∗(H∗(C∗,∗, d2), d1)
∼=−→ H∗(H∗(C̃∗,∗, d2), d1)

and

iD∗ : H∗(H∗(D∗,∗, d2), d1)
∼=−→ H∗(H∗(D̃∗,∗, d2), d1).

So looking at the associated right and left half-plane spectral sequences of the double
complexes (cf. Theorem B.9 and B.10, respectively), iC and iD are maps of spectral
sequences inducing isomorphisms on the E2-pages. By Theorem B.11, this yields filtered

isomorphisms of sTot⊕C∗,∗ ' sTot⊕ C̃∗,∗ and Tot
∏
D∗,∗ ' Tot

∏
D̃∗,∗, respectively. �

B.4. The model structures on topological spaces and chain complexes used
in Section 5. Here we recall the mixed model structure on topological spaces and the
projective model structure on unbounded chain complexes over a ring which are used in
Section 5. Given a model category M , we denote by (C,W,F ) the tuple of the sets of
cofibrations, weak equivalences and fibrations.
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B.4.1. The mixed model structure on topological spaces. In this section we follow the
introduction to the mixed model structure on compactly generated topological spaces
provided in [MP11, 17.3 and 17.4].

The mixed model structure, which mixes the Quillen and the Hurewicz model structure
on topological spaces, was first introduced by Cole in [Col06]. Cole proves more generally
that given a category M with two model structures (Cq,Wq, Fq) and (Ch,Wh, Fh) such
that Fh ⊂ Fq and Wh ⊂ Wq there is a model structure (Cm,Wm, Fm) with Wm = Wq

and Fm = Fh and the cofibrations are those maps j ∈ Ch, which factor as j = f ◦ i with
f ∈Wh and i ∈ Cq.

In topological spaces (Cq,Wq, Fq) is chosen to be the Quillen model structure, so the
weak equivalences Wq are the weak homotopy equivalences, i.e. the maps that induce
bijections on path components and an isomorphism on homotopy groups for all choices
of basepoints. The q–fibrations Fq are the Serre fibrations. Then the q–cofibrations are
defined to be those maps, which have the left lifting property with respect to the acyclic
q–fibrations.

The Hurewicz (or Strøm) model structure (Ch,Wh, Fh) has as weak equivalences the
homotopy equivalences and Fh and Ch the Hurewicz fibrations and cofibrations, respec-
tively.

Then the mixed model structure has as weak equivalences the weak homotopy equiv-
alences and the fibrations the Hurewicz fibrations. Hence the cofibrations are those
Hurewicz cofibrations j, that factor as j = f ◦ i with f a (strong) homotopy equivalence
and i a Quillen cofibration. Since one composes with a homotopy equivalence afterwards,
one can assume that i : A→ X is a relative CW-complex.

The following facts where shown in [Col06]:

• Every space is fibrant.
• The cofibrant spaces are exactly those which are strongly homotopy equivalent to

CW-complexes.
• The model structure turns Top into a closed monoidal model category.
• There are Quillen adjunctions to both Top with the Quillen and Top with the

Hurewicz model structure.

The last two properties imply that we have a strong monoidal Quillen adjunction to
simplicial sets.

B.4.2. The projective model structure on unbounded chain complexes. On unbounded
chain complexes Ch(R) for R a commutative ring, we use the projective model struc-
ture. More details can be found in [Hov99, 2.3] and [MP11, 17.3 and 17.4].

The weak equivalences are the quasi-isomorphisms. The fibrations are the levelwise
surjective maps, i.e. p : X∗ → Y∗ is a fibration if pk : Xk → Yk is surjective for all k.
The cofibrations are a little more difficult to describe explicitly and therefore are omitted
here. Cofibrant objects are levelwise projective, but the converse is only true for bounded
below chain complexes. Every chain complex is fibrant in this model structure.

The model category Ch(R) is a strong monoidal model category. It is cofibrantly
generated and thus there is a functorial cofibrant replacement functor.

By [Hov01, Cor. 3.7] the derived tensor product can be computed by only replacing
one of the factors cofibrantly.
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