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Abstract

For M a compact, orientable manifold and N € R"*! a submanifold, we
construct the cleavage operad that acts on M through correspondences,
analogous to the Cacti Operad acting on M*S', formulating String Topology.
For the unit sphere, N := S™ < R"*! we compute the cleavage operad
to be a coloured E,,i-operad. We twist this structure by the orthogonal
group SO(n + 1) to obtain an operad whose actions prescribe non-unital
(n + 1)-Batalin-Vilkovisky algebras. We show that the action through corre-
spondences transfers to a spectral action on MS" A S—4m(M) Thig action is
obtained through an extension of the Cleavage Operad. Homotopically the
extension is a simplification, and it adjoins a unit to the action on M*°".
We finally give advantages of our geometric stance on generalizing String
Topology even when N = S': We improve on equivariance of group actions on
M?®", and provide apparent links between Knot Theory and String Topology.

Resumé

For M en kompakt, orienterbar mangfoldighed og N = R"*! en delmang-
foldighed konstrueres klgvningsoperaden der ved korrespondancer virker pa
MY pé samme vis som kaktusoperaden virker pa M5’ og giver strengtopologi.
For enhedssfzeren, N := S™ < R""! viser vi at klgvningsoperaden er en
farvet E,i-operad. Vi vridder denne med den ortogonale gruppe SO(n + 1)
og far en operad hvis virkninger er ikke-unitale (n+ 1)-Batalin-Vilkovisky al-
gebraer. Vi viser hvordan korrespondancevirkningen overfores til en spektral
virkning pa M5" A S~4™(M) Denne virkning opnas gennem en udvidelse af
klgvningsoperaden. Homotopisk set er udvidelsen en simplificering, og effek-
ten af udvidelsen pa algebrastrukturen af M*" er en adjungering af enhed.
Yderligere fordele af vores geometriske synspunkt til at generalisere streng-
topologi gives, selv nar N = S': Ekvivarians af gruppevirkninger pa M*°"

forbedres, og vi viser sammenhaenge mellem knudeteori og strengtopologi.
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Overview

As spaces go, the mapping spaces M of contionous maps between mani-
folds NV and M are quite bulky. This thesis is concerned with grasping them
better by finding algebraic structures, specified by actions of operads, on
the mapping spaces. Our strategy will extend an operadic structure on M Sl,
known as String Topology through the Cacti Operad, given in for instance
[Vor05] or |[Kau05|, and reproducing the Chas-Sullivan product |[CS99|. We
shall provide operads that similarly act on M” for M a compact manifold,
and N a submanifold of R"*!.

The thesis is structured with an introduction for each of the three chapters.
Here, we shall here give a brief overview of what one should expect to find

in each chapter.

Chapter 1 is a revision of our preprint [Barl0|, and here we construct
the basic Cleavage Operad that prescribes certain ’'cleaving’ structures on
the mapping space M” through so-called correspondences. That is, for each
N < R™! we give a cleavage operad Cleavy that act on MY through
correspondences. We identify the unit-sphere N = S® < R™"! as a space
where the operad is especially well-behaved, and we show that the operad
associated to S™ is an E,,i-operad. We further twist it by SO(n + 1) to an
operad whose homology gives (n+1)-Batalin-Vilkovisky algebras. In [Hu06| a
claim is given about an algebraic method for providing an F,, i-structure on
X" for X any finite complex. Compared to Hu’s claims, we give a full-blown

geometric constuction of the operadic structure as well as the statement on

7
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(n + 1)-Batalin-Vilkovisky Algebras, superceding F, ., algebras.

Although our methods build on a theory of coloured operads — and there-
fore take a completely different form — it bears more resemblance to the
attempts made by Sullivan and Voronov to directly generalize the so-called
Cacti Operad to higher dimensions. These ideas, and their drawbacks, are
outlined in [CV06, Ch. 5|. In the case of n = 1, the construction we give
can easily be seen to agree with the action of the Cacti Operad up to ho-
motopy. However, basically since there is a vast complexity of mappings be-
tween higher-dimensional spheres, it seems apparent to us that such higher-
dimensional cacti will never attain the topological control we are able to
obtain in this thesis.

Our explicit E,1-structure could also be seen as an extension of [GS08|,
where they obtain a spectral E,-structure on M*" based on the action on
based loop spaces 2" M of the little disk operad on the fibers of the evaluation
map M°" — M.

Chapter 2 constitutes more recent research whose exposition is not yet in a
state ready for publication. In this chapter we present a method for obtaining

the actual homological algebra structure
H, (C[eavsn(—; k)) ® H, (M3n)®k — H, (M°"), (1)

which is given in a stable category of spectra, prior to taking homology.
Reading the literature on String Topology, one might perceive that meth-
ods for obtaining such a structures are well-understood. I disagree; there are
several beautiful methods available, from which one easily can conclude that
there are maps H,(M5")® — H,(M5") pointwise, for a fixed element of
Cleavg.(—; k). However, the nature of these methods also tell us that at-
tempting to extend such maps trivially along Cleavg- is too naive to hope
for. This leaves a gap in our common knowledge on how to obtain the global
map (1) from the pointwise constituents. As is the case for the methods with

pointwise actions, we as well apply umkehr maps, and fix this gap in our spe-
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cific case. We only seem to be able to go through with our argument for the
global action, based on good topological behaviour of Cleavgn. Understood
in the way that it decomposes suitably as manifolds. In fact, the topology of
the acting operad seem to play such a crucial role that we haven’t been able
to go through with the construction for Cleavs. directly, but need to expand
the operad to an even better-behaved 'punctured cleavage operad’ Cleavgn.

Our arguments are based on homotopical considerations of Poincaré dual-
ity as presented in [Kle01].

We should again warn that attempting to construct the action has been
an ongoing theme in the authors years as a PhD-student, and the research
we present in chapter 2 is recent progress. One should not expect more from
it than one would from a draft.

Finally, chapter 3 contains some selected short observations on further per-
spectives of the constructions related to Cleavg.. We feel that these should
be given special attention in the near future. We show that the action of
Cleavs- is well-behaved with respect to SO(n + 1)-equivariance of M5". We
also show how subtleties on the dependancy of the embedding N < R"*!,
gives some potential links between String Topology and knot-theory. We
sketch how Khovanov Homology appears to fit into this picture. Overall, the
intention of this chapter is not to give strict mathematical results but more
to give a feel of the potential for extending the operations of String Topology,

initiating from the constructions of the two previous chapters.
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Chapter 1

The Cleavage Operad and Its
Algebras

1.1 Introduction

In [Vor05], Voronov gave life to the Cacti operad: An operad whose homol-
ogy acts on the shifted homology of the free loop space over a compact,
smooth, orientable manifold M — H,(M?5") — giving it the structure of a
Batalin-Vilkovisky algebra; hereby recovering the Chas-Sullivan product of
[CS99]. As an intermediate operad, Kaufmann in [Kau05| gave an Ey-operad
— the spineless cacti operad — whose homology acts to give a Gerstenhaber
structure, underlying the Batalin-Vilkovisky structure of Chas and Sullivans
String Topology; all reflected in the fact that taking the semi-direct product
of the spineless cacti with SO(2) yields the Cacti operad.

We follow the same general string of ideas, but generalize them by replacing
S! with a manifold N < R""! — of arbitrary dimension — embedded in
euclidean space. Our methods will involve certain decompositions of N, and
for convexly embedded spheres these decompositions are simple enough to
obtain results within topology, our focus will thus take a shift towards N :=
S™ < R™*! the unit-sphere.

11
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What we construct is a coloured operad that acts on MY — the space of
maps from N to M — in a related manner to how the Cacti operad acts
on MS'. As revealed by the previous sentence, we found it necessary to
broaden the scope of the use of the word ’operad’ — and enter the realm of
coloured operads; coloured over topological spaces. As we describe in section
1.2, this colouring is similar to picking a category internal to topological
spaces, with traditional operads being one-object gadgets. We show in 1.5.21
that for N = S™, the homotopy type of this operad is computable, using
combinatorial methods of |Ber97|, as a coloured F,,,i-operad. We then show
how to form a semidirect product of this operad with SO(n + 1), providing
a (n + 1)-Batalin-Vilkovisky structure on the homology of M5".

In [CVO06][Ch. 5], an outline is given for a generalisation of the Cacti op-
erad to the n-dimensional Cacti operad, by replacing lobes with copies of
S™ floating in R™*. Our original motivation was to explicitly compute the
structure of this operad; attempting to construct homotopies equivalating
the little (n + 1)-disks operad and the n-dimensional cacti operad, as was
done in [Bar08] for the 1-dimensional case. However, such attempts did not
seem to have a shortcut, bypassing the structure of the diffeomorphism group
Diff (S™).

Although we are working with coloured operads, and so give an operad
different from the Cacti operad, morally we take the stance of [Kau05] —
starting from a more rigid structure, where diffeomorphisms have no influ-
ence until the twisting of section 1.6 can be inferred. The coloured operad
we define have an operadic structure that is basically given by cleaving N
into smaller submanifolds — timber — and therefore we dub the operad, the
Cleavage Operad over N, Cleavy.

An example of such a cleavage is given in Figure 1.1, starting in picture A,
by cleaving N by a single hyperplane chopping N into two pieces of timber
Ni and Nj in picture B; and hence succesively cleaving the timber produced

into smaller subsets of N. Note that the non-linear ordering in which the
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Figure 1.1: Recursive procedure cleaving a sphere into four pieces of timber

cleaving is done constitutes part of the data; for instance, interchanging the
cuts made in A and B would yield a different cleavage.

However, in order to have an interesting topology, we need to forget as
much of the ordering dictated by the indexing trees as possible. In 1.3.8,
we forget what needs to be forgotten by defining Cleavy as a quotient of
an operad with k-ary structure given as pairs (T, P) where T is a k-ary
binary tree expressing the ordering with which N should be cleaved, and
P = {P,...,P. 1} a tuppel of affine hyperplanes — conveying information
on where to cleave by decorating the internal vertices of T'.

In terms of Figure 1.1, this quotient would allow for an interchange of the
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ordering of hyperplanes, such that the hyperplane of C cleaves before A and

B, as well as allowing an interchange of the hyperplanes of B and C.

Summary of Results

As usual in String Topology, fix a dimension d of the manifold M, and let
H, (=) := Heva(-).

Recall that the correspondence category Corr(C) over a co-complete cate-
gory C is given by letting Ob(Corr(C)) = Ob(C), and the set of morphisms
from objects X to Y, Corr(C)(X,Y) be given as diagrams X <— 7 —Y
where Z is an arbitrary object, and the arrows are morphisms in C. Compo-

sition is given by taking pull-backs.

Theorem A The operad Cleavy acts on MY in the category of correspon-

dences over topological space.

We furthermore indicate how this gives rise to the statement that letting
N := S* < R"*! the unit sphere, and M a compact, smooth, orientable
d-manifold, H, (Cleavgs.) acts on H, (M5").

Producing this homological action requires new techniques, and these are
the focus of the upcoming [Barll]

To examplify the action on correspondences, made precise in section 1.4,
take the cleavage in picture D of Figure 1.1, note first that the collective
boundary of the submanifolds Ny, Ny, N3 and N, of NV has two components
C and C5. Consider the space

Mévl,cz ={fe MY | f(C1) = {k1} = M, f(Cs) = {ko} = M}

— i.e. the space of maps from N to M that are constant on all of C; and all

of Cy. The correspondence JfN <—— Méyhc2 . (MN)IC is given with ¢ the

inclusion. The other map ¢ maps into the i’th factor of (MN)k by taking
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o(f)(m) = f|n,(m) for m € N; and for m ¢ N; letting o(f)(m) be the same

constant as f(C;) where C; is the component separating m from N;.

In [CJ02], it was discovered that for the Cacti operad, a passage to the
latter part of 1.1 can be done via spectra to obtain so-called umkehr maps,
homologically reversing one of the arrows in the correspondences. We follow
this idea, and as in [CJ02| work with something stronger than stated in 1.1,
namely that the action is realized by taking homotopy groups of a stable map
between spectra. where an extended and punctured version of the Cleavage
Operad is introduced as technical assistance for this purpose. This paper will
only indicate how the action works pointwise in Cleavgn, as well as the 2-ary
term of the operad — providing reason to the specifics of the definitions of
Cleavg..

It turns out that working with the punctured cleavage operad corresponds
to adjoining a unit to the algebra of Cleavs.. We therefore stress that the
algebra described in Theorem A is a non-untial algebra, and that the coloured

operad Cleavg. does not have O-ary terms.

Section 1.5 and beyond are used to show the following:

Theorem B The coloured operad Cleavgn is a coloured E,,-operad. Tak-
ing a semidirect product of Cleavg. by SO(n+1) provides a coloured operad
Cleavg. xSO(n + 1) whose homologous actions provides (n + 1)-Batalin-
Vilkovisky algebras.

The main technicality in proving the above theorem is the first statement
of a coloured FE, . i-operad. We apply combinatorial methods of [Ber97] to
show this theorem in section 1.5. The final part of the statement follows in
section 1.6 by the construction of semidirects products as given in [SWO03|.
Briefly, since Cleavg» and its action on M°" is well-behaved with respect to
an action of SO(n + 1), we can apply a coloured construction of a semidirect

product.
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1.2 Operadic and Categorical Concepts

In this section we shall introduce language from the world of operads, used
troughout. For a general overview, we refer to the category theoretic [Lei04,

2.1], where they are called multicategories.
Definition 1.2.1 A coloured operad C consist of
e A class Ob(C) of objects or colours.

e For each k € N and a,ay,...,a; € Ob(C), a class of k-ary morphisms

denoted C (a; ay, . .., a).

e Toie{l,...,k}, feCla;aq,...,ax) k-ary and g € C(a;;by,...,b,) n-
ary an operadic composition fo,g € C(a;a1,...,a; 1,b1,...,bp, air1,. ..

of arity kK +n — 1.

7ak)
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e Units 1, € C(a;a) for any object a.

e An action of ¥, that is, given 0 € ¥} a map o.: C(a;aq,...,a5) —
C(a;asqy, - - -, o) for all k € N and a; € Ob(C).

These are subject to the following conditions, where we toa H < {1,...,m},
denote by Xy the permutation group of the elements of H. As by conven-
tion let ¥y denote the permutation group on the first |H| natural num-
bers. The unique monotone map H — {1,...,|H|} defines an isomorphism

pH: XH — XiH|

e Associativity: For f € C(a;a1,...,ax),9 € C(a;;b,...,by), heC(bjc,...

the identity
foi(gojh)=(foig)ojri-1h
holds fori e {1,...,k}and j € {1,..., m}. For further s € C(a,;dy, ..., d,)

where ¢ < r and u € N we require that

(f O; g) Op § = (f Op 8) Oi+u—-19-

e Y;-equivariance: For o € ¥y, and f € C(a;aq,...,ax),g9 € Cla;; by, ..., by)
the identity
o.(foig) =0olr-f o) 0lr-g

holds where I := {1,...,4,i+m + 1,...,k + m} is the set of integers
from 1 to k + m excluding the set J := {i +1,...,i + m}. For H <
{1,...,k 4+ m} the permutation o|y € ¥y is given, using PH from the

top of this definition, as |y := pg (0\H> where in turn 0‘|H € Y|y is

defined from o by requiring that to r,p € H we have U\H(r) < J|H(p)
whenever o(r) < o(p) so o|g permutes the ordered symbols of H in

the same way that o permutes {1,....,|H|}.
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e Unit-identity: For f € C(a;ay,...,a;) we have

foi]]-ai:fandl]-aolf:f
for allie {1,...,k}.

Indeed, a classical operad is simply a coloured operad with a single object.
We shall refer to such gadgets as monochrome operads. On the other hand,
a category C is the same as a coloured operad with C(a,ay,...,a;) = & for
k> 1.

Familiar concepts like functors, hom-sets and adjoints are extended in the

obvious ways to this multi-arity setting.

Definition 1.2.2 Let (A,[x]) be a symmetric monoidal category. The un-
derlying coloured operad Und 4 is given by letting Ob(Und 4) = Ob(A)

and

Und 4(a;a, ..., a,) = Homy(a) X X an, a).

The usual (monochrome) endomorphism operad End 4 of an object A € A
is given by considering the full subcategory of Und 4 generated by {A} <

Definition 1.2.3 An action of a coloured operad C on A is a functor a: C —

Und 4. A monochrome action of C is a functor a: C — End 4 for an object
Ae A.

In (string) topology, operads are sought after for their actions on topo-
logical entities. As stated in the introduction, we venture on the same basic
safari, but seek monochrome actions of coloured operads. As long as we
seek monochrome actions, the extra colours on the operad become somewhat
opaque — and we get actions similar to that of monochrome operads. To have

topological actions of course requires topology to enter the game:
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To O a coloured operad, denote by O(—; k) the set of all k-ary morphisms
of O. Let O(A; k) be the restriction of O(—; k) with A € Ob(O) incoming.

Definition 1.2.4 Let O be a coloured operad. We say that O is a coloured
topological operad if both Ob(O) and O(—; k) are topological spaces, along
with the data of the following commutative diagram involving a pullback for

m,keNandie{l,... k}:
O(—;k+m —1)<—"0(=; k) xon0) O(—;m) —= O(—;m)
l o
v

O(=; k) Ob(0)

where ev; evaluates at the i’th outgoing colour and ev;, evaluates at the

incoming colour
The structure should naturally adhere to the associativity, unit and -

equivariance conditions as specified in 1.2.1.

Note that homology does not in general preserve direct limits such as a
push-out, so applying the homology functor to the diagram in 1.2.4 will not
yield another push-out diagram. And in effect not lead to a similar struc-
ture in graded modules. One can however define the homology of a coloured
topological operad as the coloured operad defined partially by the induced

diagram
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where AJoB denotes the pullback of maps A — C' and B — C in graded
modules.

This diagram can in turn be taken to lead to a notion of partially defined
coloured operads. Partial in the sense that the dotted arrow to the pullback-
space is not always invertible. For the purpose of actions of operads, such a
slightly more technical notion of partially defined operads would generally
suffice.

However, the operads we shall define in this thesis will all have contractible
colours, and we can instead of introducing partial operads use the following
proposition to see that in our case, applying the homology functor to our

operads will result in classical operads.

Proposition 1.2.5 Assume that O is a coloured topological operad with
Ob(0O) ~ =, and with evalution maps ev; fibrations for all i € {1,... k},
or with evy, a fibration. Then applying homology to O defines H,(O) as a

classical monochrome operad in the category of graded modules.

Proof. Since Ob(O) ~ =, and the evaluation maps are fibrations, the long
exact sequence of homotopy groups along with the 5-lemma tells us that the
pullback spaces O(—; k) X on(0) O(—; m) and O(—; k) x O(—; m) are homotopy

equivalent for all k£, m € N so we have that

H.(O(—=;k) xop0) O(=;m)) = Ho(O(—; k) x O(—;m)).
The Kiinneth formula now gives the map

07 Ho(O(—; k) @ Hu(O(—;m)) = Hu(O(—; k +m — 1))

used to define classical operads. By definition of coloured topological op-
erads, this map satisfies the needed associativity, unity and Yj-invariance

conditions. ]

Definition 1.2.6 A morphism F: O — P of topological operads internal to
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(A, X)) is given by morphisms
FObI Ob(O) —>Ob(fP),Fk O(—Jﬂ) —>T(—7k) (11)

for all k,m € N, such that these morphisms provide a natural transforma-
tion of the diagrams of the type in 1.2.4 defining the structure for O and
P.

A weak equivalence of topological operads is given by a zig-zag of mor-

phisms, where all continous maps of (1.1) are weak homotopy equivalences.

In particular, a weak equivalence P ~ O of topological coloured operads
induces an isomorphism H,(P) = H,(O).

Example 1.2.7 Let P be a monochrome operad, and X a topological space.
We form the trivial X-coloured operad over P, P x X, by setting

° Ob(fPXX) =X

o Px X(—;k):=P(k)x X

evaluation maps P(k) x X — X are given by the projection map, o;-

composition, pointwise in X, the same as o;-composition in P.

Definition 1.2.8 We say that a coloured operad O is a coloured E, -operad
if there is a weak equivalences of operads between O and P x Ob(O), where

P is a monochrome E,-operad.

In 1.5.5, we use methods of [Ber97] to give a combinatorial way of detecting
a coloured FE,-operad. We then use this to show that the operad we define

in the next section is a coloured FE,i-operad.
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1.3 The Cleavage Operad

1.3.1 Definition of the Cleavage Operad

The operadic structure we shall define will be induced from the operadic
structure of trees. The trees we consider will all, without further specification,
be:

e Binary and finite, in the sense that all vertices are univalent or trivalent,

and there are only finitely many vertices.

e Rooted, in the sense that there is a distinguished univalent vertex called
the root.

e Labelled, in the sense that for a k-ary tree, the k remaining univalent

vertices are numbered from 1,... k.

e Planar, specifying edges out of a trivalent vertex as left- right- or down-

going.

Tree and Tree(k) denotes the set of isomorphism classes of trees, respec-
tively k-ary trees. Grafting of trees defines Tree as a (monochrome) operad.
Let Gr,(R"™') be the oriented Grassmanian of codimension 1 subvec-

torspaces of R"*1,

Definition 1.3.1 Let the space of affine, oriented hyperplanes be given as

Hyp™™ := Gr,,(R"*') x R

where a pair (H,p) € Hyp"™ defines an affine hyperplane P < R"*! by
translating H along p. The hyperplane H € Gr,(R™*!) is oriented by a choice
of normal-vector, we let this choice of normal-vector denote the orientation

of any associated affine hyperplane defined by (H, p).
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Definition 1.3.2 Let

‘TreeHyan (k’) = Trge(k) X (Hypn+1)k—1

We call (T, P) € Treeyy,»+ (k) a (n + 1)-decorated k-ary tree. Here P =
(Py,..., P, 1) denotes the tuple of elements of Hyp™*!'. Specifying the triva-
lent vertices of T" as vy,...,v,_1, these are matched to the trivalent vertices
of T — and we encourage the reader to pretend that P; is dangling from v;.

Denote by TreeHyan the operad constituted from the pieces above.

Convention 1.3.3 Throughout this text, we denote by N < R"*! an em-
bedded, smooth manifold We assume further that N has a recording area,
Rec(N) € R™"! where we have the requirement that N is the boundary of
Rec(N); N = dRec(N).

We shall allow for the recording area of N to be unspecified from the
notation, as it will often be the obvious choice associated with it. However,
as will become clear in the definition of Cleawy, the choice of recording area
is indeed a part of the data of the resulting operad, and a priori two different

choices of recording area will result in two different operads.

Example 1.3.4 The main example in this paper is N := S™ the unit-sphere
inside R™"!. The associated recording area will always be Rec(S™) := D",

the closed unit-disk inside R™*1.

For P e Hyp"™, R"\P consist of the two components (IR”“)]:

(R™1)” | where (]R"H)f is the space in the direction of the normal-vector of
P. We say that P bisects R"*! into these two open subsets of R"*!.
Let (T, P) € Treey,m+1(k), and designate by Vr the set of vertices of T

that are not the root. To our given manifold N and an open submanifold

and

U < N, we associate for each internal vertex v € Vp a subspace U, € N:
If v is the vertex attached through only a single edge to the root, we let
U, = U. Since T is binary, for v € V a trivalent vertex the left-going and

right-going edge connect v to v_ and v, respectively. Let P, € Hyp"™! be
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the decoration at v. We let U,_ = (U,) n (]REH)P” and U,, = U,n (R’}r“)P”.
This determines U, for all v € V.

This timbering process is illustrated in figure 1.2 for the case N = R?, and
three hyperplanes inside R?, it gives three different examples where trees are

decorated by the hyperplanes in some way.

Py P

Py

Figure 1.2: Three hyperplanes Py, P, P; in R? decorating three different trees.
The four leafs of the individual trees will be decorated by the four subsets of
R? indicated by the associated picture below. Removing subtrees including
and above a trivalent vertex, and the associated hyperplanes decorating the
subtree in the picture below specifies the decoration of the other vertices.

Definition 1.3.5 Let U < N be an open submanifold. A tree (7, P) €
Tree n is U-cleaving if we to each trivalent v € Vi decorated by P,
and associated with U, in the recursive process above have that P, intersects
U, non-trivially and transversally.

We let Timbery be the set of subsets of N, called timber, where U €

Timbery if there is an N-cleaving tree, T', with U associated to a leaf of 7.

Hereby Timbery consist of a subset of certain particular open submani-
folds, since at each vertex of a N-cleaving tree, the submanifolds associated
to the two vertices above the vertex are again open submanifolds. Taking the
closure inside IV of these submanifolds will yield a codimension 0 submanifold

potentially with boundary and corners.
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Summarizing the above, we have specified a procedure that to a N-cleaving
tree (7', P) associates at each vertex v of 7" an open submanifold U,. The exact
same procedure can be extended to the recording area Rec(V), so that every
vertex v of T has a subset Rec(U,) associated to it, where the boundary of
Rec(U,) will be the space U,,.

Definition 1.3.6 The space Rec(U,) given above will be called the associated
recording area of U,. In case Rec(V) is a manifold, Rec(U,) will in turn be a
submanifold of Rec(N).

There is a natural topology on Timbery — described by the space of hyper-
planes giving rise to each timber, we assume this is given and wait until the
next section with describing it explicitly to give the definition of the operad

as fast as possible.

Definition 1.3.7 By the pre-N-cleavage operad, we shall understand the
coloured operad Cleavy, given by

e Ob((leavy) = Timbery
o Cleavy(U; k) := {(T, P) € Treey, e () | (T, P) is U-cleaving}

Granted the topology on Timbery, we let

— —

Cleavy(— k)= [[  Cleavy(U;k)

UeOb(Cleavy)

and endow this with a topology as a subset of Ireeyy,» x Timbery. The

operadic composition

o;: Cleavy(U; k) X o o) Cleavy(—;m) — Cleavy(U; k +m — 1)

is given by grafting indexing trees, and retaining all decorations of the result.
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Definition 1.3.8 We let the N-cleavage operad, Cleavy be given by letting

Ob(Cleavy) = {U € Timbery | CU ~ [ [ +}.

finite

Here CU denotes the complement of U as a subspace of N.

For the k-ary morphisms, we take the full suboperad of Cleavy on the
objeﬁs_gb(C[eavN) specified above, and apply a quotient: Cleavy(—; k) :=
Cleavy(—;k)/ ~, where ~ is the equivalence relation given by letting (7', P) ~
(T', Py if for all 4 € {1,...,k} the ’th timber N; associated to (T, P) agrees
with the 7’th timber N/ of (T", P'). If (T, P) and (7", P') are equivalent under
~, we say they are chop-equivalent

Since the cglggs are left unchanged under ~, taking operadic composition
induced by Cleavy is well-defined.

We denote an element of Cleavy(—;k) by [T, P], where (T, P) is a repre-

sentative of the element.

Remark 1.3.9 A priori it would suffice to be given the set Timbery of sub-
sets beforehand, and from this define the operadic structure through these
subsets, with k& open substes whose closure cover U determining the k-ary
information operations of Cleavy (U; k) — avoiding the introduction of trees
and hyperplanes.

However, in our forthcoming computations we shall see that it is important
that we have this very strict relationship between the trees decorated by
hyperplanes and the associated timber. If one had given a more arbitrary
space of subsets of N instead of Timbery, the same combinatorial benefits

would not be available for computations.

Remark 1.3.10 Note that for N = S™, the complement inside S™ of U €
Ob((Cleavs-) is by the generalized Schonflies theorem [Bro60] always given by
a disjoint union of wedges of disks — the wedging occurring when hyperplanes

intersect directly at S™.
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Remark 1.3.11 That we for Cleavy have taken a subspace of objects; i.e.
Ob(Cleavy) < Timbery is necessary in order to obtain homological actions
via umkehr maps, as we shall see in the next section. Do however note that it
is only necessary for the homological actions, meaning that this contractibility
assumption could be skipped if one is interested in a weaker notion of actions
through correspondances.

For N = S' we have Ob((Cleavg:) = Timberg:; the complements CU for
U € Ob(Cleavg:) are always intervals.

Letting N = S™ and n > 1, it follows by a simple Mayer-Vietoris argu-
ment of the Hy-groups along the closure of the timber U and CU associated to
U € Ob(Cleavs»), that we in taking the subspace Ob(Cleavgn) < Timbergn
are excluding the U that are disconnected!'. Using the generalized Schéen-
flies theorem as stated in 1.3.10 we get that all [T, P| with in- and out-put
connected are indeed in Cleavgn.

If we take N = S' x S', forming the subset Ob((Cleavy) < Timbery makes
Cleavy(—; k) = & for k > 1. This can be seen by noting that if we assume
that [T, P] € Cleavy(—;2) then one of the outgoing timber will either be a
cylinder or have a genus. For higher k, the complement of outgoing timber
will contain outgoing timber of Cleavy(—;2) as a subset. And since they are

subsets of S x S!, there will not all be contractible.

The following two definitions give relations among trees in Cleavy(—; k).
These two types of relations — it turns out — are essential in the forthcoming
material. One should however note that these two types of relations are only
examples, and do not, generate all relations imposed on Cleavy(—; k).

To P € Hyp™*!, let —P € Hyp™™! denote the hyperplane given by reversing

orientation of P

Definition 1.3.12 Assume that (7, P) is an N-cleaving tree. Let v be an
internal vertex of T', decorated by P. Let T" be the tree obtained from T by

Lsuch disconnected timber do exist; attempt for instance eating an apple conventionally
to disconnect the peel in the last bite
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interchanging the branches above v, and let P’ denote the set of hyperplanes
with P interchanged with —P.

S’ S S S’
Uz\( o \K o
R R

Figure 1.3: The <> -relation

Alternatively, the local picture 1.3 defines an equivalence relation (T, P) <¢
(T", P"). In Cleavy(—; k), we have that [T, P] = [T”, P']

We say that two hyperplanes P,Q € Hyp™™! are antipodally parallel if —Q

can be obtained from P by translating P via its normal vector.

Definition 1.3.13 The local picture between (7', P) and (7", P) N-cleaving

in 1.4, describes when two N-cleaving trees are <> p-related.

Figure 1.4: The < pg-relation
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Here the internal vertices v; directly above v; in T', decorated by P; and
P; of P have swapped position — along with the branches specified in the
picture — in 7" compared to 7. We let (T, P) <p (1", P) if P, and P; are
antipodally parallel.

In this case we have [T, P] = [T", P] in Cleavy(—;k).

We say that P and @) are parallel if either P,Q or P, —(@ are antipodally

parallel.

Observation 1.3.14 Assume that we are given (T,P) e (Cleavy(—;k),
where all hyperplanes of P are pairwise parallel. Using the < and < p-
relations of 1.3.12 and 1.3.13, we obtain that [T, P] = [Lg, P'], where L
is a leftblown tree as in 1.3.15, and P’ is obtained from P by reversing the

orientations along some hyperplanes.

1.3.2 Topology on the Timber

Definition 1.3.15 We let the arity k left-blown tree be the tree L, € Tree(k),
with the right-going edges all ending at leaves, let the only leaf on a left-going
edge be labelled by k£ — and for the other leaves, if there are ¢ internal vertices

between the leaf and the root, we label the leaf by .

N

Figure 1.5: The left-blown tree L,

Let L, denote the tree with Vi, = ¢, and a single leaf and root.
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Cultivating the cleaving tree appropriately, that is by reversing orientations
of hyperplanes — swapping branches around as in 1.3.14 — and cutting away
unnecessary branches, we can assume U € Timbery to be on the leaf labelled
k + 1 of L; for some k € IN.

Construction 1.3.16 We specify a topology on Timbergn+1 as a subspace by
seeing that there is an injection ¢: Timbergns1 — [[.oy <(Hyp"+1)i/2i>,
where the permutation group >; permutes the factors of the product.

To specify the injection v, note that for U € Timbergn+1, the boundary
of the closure in N of U, 0U contain the information needed to reconstruct
(Lg, P) having U as the decoration on the top-leaf. Such hyperplanes are
given by taking least affine subsets containing certain parts of oU; either
distinguished by different components of 0U — and otherwise a corner of
oU will be the distinguishing feature for (L, P). The function 1) now maps
U € Timbergn+: to the corresponding hyperplanes, (Py,. .., Py) € (Hyp”“)k
decorating L;, and determined by oU. This thus hits the component in the
image of ¢ indexed by k.

There is ambiguity in the above definition of 1; any reordering of the hyper-
planes (P, ..., P;) will give rise to the same top-level timber. We therefore

quotient by ¥; in the image of .
Let Timber? := Timbery u{F}.

Construction 1.3.17 For N ¢ R"*!, we have a surjection py: Timbergn+1 —
Timber?, given by pun(U) = N AU, whenever N n U € Timbery, where
the — followed by ° denotes the opening of the closure inside N; and if
N AU’ ¢ Timbery, we let uy(U) = &. We specify a topology on Timber?
by letting pun be a quotient map.

Note that uy is well-defined since hyperplanes resulting in transversal in-
tersections of N gives rise to uy mapping to the empty set. We need to take
the closure of the opening of N n U to ensure that hyperplanes cleaving N

tangentially has the same effect as cleaving R"*! away from N.
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We let Timbery < Timber% be endowed with the subspace topology

Remark 1.3.18 Specifying uxy as a quotient map means that certain ele-
ments [Ly, P| € Cleavgn+1 will give rise to the same U n N at the top-leaf,
under py. In particular, if [Ly, P] giving rise to U~ N° has some leaf dec-
orated by (#, we can instead consider [Lk_l,E] as giving rise to W°,
where P is given by removing the hyperplane from P decorating the vertex

below said leaf, since the hyperplane in question will not be cleaving N.

Proposition 1.3.19 Let N be a compact submanifold of R"*!. Timbery
is contractible. Similarly, Ob((leavs») is contractible for S < R™*! the

unit-sphere

Proof. Given a point U € Timbery will have CU consist of a disjoint union
of submanifolds of NV that has boundary at the points where U has been
cleaved from N by hyperplanes Pi,..., P.. Each P; has a normal-vector in
the direction towards U, and one in the direction away from U. The topology
on Timbery, precisely determined by these hyperplanes makes it continuous
in Timbery to translate Pi,..., P, in the direction away from U. Since N
is compact, this translation will in finite time take each hyperplane past
tangential hyperplanes of N. Hence each hyperplane eventually disappears
from the cleaving data and by 1.3.18, eventually this translation provides an
element of Cleavy given by the 1-ary undecorated tree L; as an operation
from N to N . This hence defines a homotopy ®,: Timbery — Timbery
with ®y(U) = U and ®,(U) = N, and hence the desired null-homotopy onto
N € Timber .

For the statement on Ob(Cleavs.), note that from the definition 1.3.8
and 1.3.10, that the submanifolds of CU will consist of a disjoint union of
disks. The null-homotopy ®; above will in this case result in smaller and
smaller disks as ¢ increases, and so ®,(U) remains within Ob(Cleavg»), and
the null-homotopy is given as above.

O
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The following proposition tells us in conjunction with 1.3.19 that 1.2.5
applies to Cleavy.

Proposition 1.3.20 The evaluation map evy,: Cleavy(—; k) — Ob(Cleavy)

is a fibration

Proof. To [T, P] € Cleavy(—; k) we shall first of all for each of the hyper-
planes P; of P prescribe the following transformation:

Under the relation 1.3.12, we have to make a choice of normal-vector v;
of P, this defines an interval J; =|j_,j.[ given by the maximal interval
such that translating P; along v; with r € J; as a scalar the hyperplane still
participates in a cleaving configuration as a decoration of T. Note that since
[T, P] is cleaving we have 0 € J; and denote by ¢(.J;) the center-point of the
interval. Note that the other choice of normalvector —v; will give rise to the
interval —J; which will leave the following invariant:

Fix € > 0, if ji . := min{|j_|, j;+} < &, translate P; by sgn(c(J;)) - min{e —
gi . c(J;)} where sgn(c(J;)) is the sign of c(J;).

This translation can naturally be done to all the decorations of a decorated
tree [T, P] € Cleavy(—; k) simultaneously. Call this transformation I'.(T’, P),
note that since we are moving all hyperplanes at once, dependent on how large
e is chosen, I'.([T, P]) does not a priori result in a cleaving tree.

We seek to find a lift in the diagram

Y —= Cleavy(—; k)

-7
- €Vin

-
-

Y x [ —"%Ob(Cleavy)

where we can assume that Y is compact, and therefore pick
0<e< iné(min{jliﬁn | P; decorates ¢(y)})
Y€

where ji. is the minimal value where P; can be translated in order to have
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it still participate in a cleavage as defined above.

The lift h(y, t) is now given as I'-(p(y)) considered as a cleaving tree of the
timber h(y,t). Note that our choice of € makes I'.(¢(y)) result in an element
of Cleavy(—;k), basically since along ¢, the timber h(y,t) will change con-
tinuously and therefore by definition of I'. will for a small neighborhood of
t € I only give rise to a small change in how the configurations of hyperplanes

change, guaranteeing their continual cleaving attributes. O

1.4 Action of Cleavages Through Correspon-

dances

Let M be a compact manifold. We set MY := {f: N — M} — i.e. the space
of unbased, continous maps from N to M, endowed with the compact-open
topology.

Above 1.3.5, we have specified a procedure that to an N-cleaving tree
(T, P) associates at each vertex v of T' an open submanifold U,. As noted
in 1.3.6, this procedure can be extended to the recording area Rec(N), so
that every vertex v of T has a subset Rec(U), associated to it, where the
boundary of Rec(U), will be the space U,. In case Rec(N) is a manifold,
Rec(U), will in turn be a submanifold of Rec(N).

Definition 1.4.1 Let Rec(U) < Rec(N) denote the recording area of U €
Timbery as given above. To a U-cleaving tree (T, P), we associate the blueprint
of (T, P) to be the following subset of Rec(U):

k
Bir.p) := Rec(U)\|_J Rec(U);
i=1

where Rec(U); is the subset of Rec(U) associated to the i’th leaf of (T, P).
By definition of the recursive procedure above 1.3.5, 37 p) will be contained

in the collective union of all the hyperplanes of P, loosely it will consist of all
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points of hyperplanes in P that have been involved in the recursive bisection
process of Rec(U) described above 1.3.5.

In figure 1.1 of the introduction, the boundary of 37 py will be the collective
boundary of the closure within S™ of the submanifolds in picture D.

The notion of a blueprint is invariant under the chop-equivalence of 1.3.8,
so we can make sense of the blueprint for [T, P] € Cleavy(—;k) and shall
denote this by Br p).

—

Definition 1.4.2 We let my(f[7r,p}) denote the quotient of my(Sr,pj), where
two pathcomponents are considered equivalent if the same hyperplane in P

has given rise to these components of S py.

Example 1.4.3 If N = S® € R"*! as the unit-sphere, bounding the unit
disk D"*!, convexity of D"*! entails that mo(Sr,p)) = Wo(/ﬁ[T\£]).

As an example of where the quotient matters, take N a standard-embedding
of S'x St in R?, with recording area D! x S, then cleaving S! x S with a sin-
gle hyperplane into two annuli would have Sz p consist of two components,

whereas Wo(//b)[;ﬂ]) would still be trivial.

Let Corr(C) denote the correspondance category over C a co-complete cat-

egory, as described in the introduction.

i Corr(T
Construction 1.4.4 We construct a functor ®y: Cleavy — Zlnd]\;fvr( op)

That is, an action of Cleavy on MY as an object of the category of natural
transformations of correspondances over Top.

Let [T, P] € Cleavy(U;k). Let CNy, ... ,CNy denote the complement, in-
side of NV, of the timbers associated to the leafs of T'.

The action is given through the following pullback-diagram

M,y (Y (1.2

| t

MmoBrrey) — = [0, MCEND

—
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where res is the restriction map onto each complement.

We define ¢ as the induced of a map ¢: [, (CN;) — WO(/ﬂ[T\g]). To define
¢, note that a component C' of CN;, will have dC\oU be the result of some
cuts of hyperplanes decorating 7T'. By definition of Wo@]), and since C'is a
connected component, the cuts will all constitute the same element, ¢(C') — of
Wo(/ﬁ[;g]) making ¢ well-defined as the map constant map along the timber
intersecting represenatives of 770@]) nontrivially.

By glueing the functions in the pullback space, we can identify M[]; p) as
the space of f € M¥ such that f is constant along each subspace of the
blueprint that is a representative of Wo(,@). We hence have a canonical

inclusion ¢[r p;: M[]%C P M?¥ | and in turn a correspondance

MN LT, P] M[%QB] o* (MN)k:

Example 1.4.5 For the cleavage [T, Py, P, P3] € Cleavs.(S™;4) in picture
D of figure 1.1 in the introduction, we can consider the morphisms defining
diagram (1.2) through figure 1.6, using the mapping functor M) to dual-
ize the morphisms indicated in the figure, we get the maps that define the
pullback diagram (1.2).

Functoriality of the above pullback-construction in 1.4.4 gives us

Proposition 1.4.6 The construction of 1.4.4 defines an action of Cleavy on

M™ as an element of the symmetric monoidal category (Corr(Top), x ).
Proposition 1.4.7 The map res is a fibration.

Proof. Follows directly since the inclusions CN; — N are closed cofibarations,

and res is the dualization under the mapping space functor M. O

The rest of this section is devoted to give a hint at why the action through
correspondances of Cleav g gives rise to a homological action of H, (C[ecw sn)

on H,(M5"). As mentioned in the introducation, we give the full action in
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%
S

<~

w

Figure 1.6: The 4-ary operation of the introduction has the complement of
its timber CNy,CNs,CN3,CVy drawn as the five disks on the bottom right
corner. The upwards arrow are the inclusion maps, so that dualizing them
provides the restriction map. The leftwards maps have as target two points,
and these should be considered as collapsing the components of the blueprint
Bir,p,,p,,p,]- These maps are given as the ones where the boundary of each
disk is contained in a component of the blueprint.

chapter 2, in this section we only give examples and observations that can
be seen as a justification of our definition of Cleavg» and a warm-up to the

homological action.

In obtaining homological actions of Cleavg. on M3", there is a shift of
degrees by the dimension of M, the following proposition gives the insight
along spaces that this holds.

Proposition 1.4.8 Consider the case of N = S™. For any [T, P] € Cleavs.(—;k),
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with associated timber Ny,..., N the number

oo (L1ex) |- o G

will be constantly k — 1 for all [T, P] € Cleavgs.(—; k).

Proof. Note that [y p) constitute the boundary of the disjoint union of
wedges of disks ]_[f;l CN;, so the number | (]_[f;l CNi>
as long as ‘71’0 (5[12])‘ is constant.

Consider a path v: [0,1] — Cleavs.(—; k) with |mo(8y))| = |70(851))| +1
Wo(ﬁv(t))‘ =

will be constant

and such that for a specific ¢ty € [0, 1], we have for all ¢ < t,
mo(By)| = [mo(Brn)]-

By definition of the cleaving proces, v(ty) will have two hyperplanes P, P.
such that P,nP,nRec(S™) is a nontrivial subspace of d Rec(S™) = S™, and for

any € > 0, the same intersection for the hyperplanes of v(to+¢) will be trivial;

‘Fo(ﬁw(o))‘ and for all ¢ > #,

meaning that for sufficiently small €, such that the hyperplanes do not become
parallel, P, n P, < R™"! will be contained in R"*"\ Rec(N). This has the
effect that there is precisely one j € {1,..., k} such that the complement of
the timber indexed by j, CN;, for (ty) has a connected component containing
P, n P, n Rec(N), whereas for v(ty + ¢) this becomes disconnected with
different boundary components of CN; being formed using intersections with
P, and P, respectively. Hence for these basic types of paths, an increase in
mo(Brr,py)| leads to an equal increase in ‘71’0(]_[?:1 CN:)|.

One can use these paths to parametrize a single cleaving hyperplane mov-
ing within Cleavg.(—;k), while the other k — 2 hyperplanes remain fixed.
From such parametrizations, one puts together a general path moving all
hyperplanes of Cleavg.(—;k) and the result follows.

To compute the constant, take a configuration of hyperplanes where all
hyperplanes are parallel, so that 37 p) has k—1 components. In this case the
space of complements of the associated timber, ]_[le CN; will have (k — 2)

spaces CN; that consist of two disjoint spaces, and the two extremal comple-
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ments that consist of a single subdisks of S™. Hence in total 2(k — 2) + 2 =
2(k—1) components. In effect, the constant will be 2(k—1)—(k—1) = k—1.
O

Remark 1.4.9 The above 1.4.8 is only stated for the particular case N :=
S™. However the only place in the proof where we use the nature of S

is to identify that the number ‘WO (]_[f:1 CNZ») will be constant as long as

‘7?0 (/B[Tﬂ)‘ is constant.

Again, we need to work with ‘Wo@]) ‘ as defined in 1.4.2 for more general
N, however this also fits directly into the proof.

Since the hyperplanes of Cleavy(—;k) are required to cleave N transver-
sally, one can indeed use Morse theory to obtain this initial statement of
the proof for a general embedded manifold N. However, we shall not go into
detail with this, as we shall only apply 1.4.8 in the case where N = S™.

Of course in the more general case, this constant will no longer be k—1, and
indeed the constant will potentially vary along components of Cleav N(=: k).
With Cleavg.(—; k) connected, basically since all hyperplanes will cleave S™
transversally, this variance along components is not part of the statement of
1.4.8.

Remark 1.4.10 Note that as we don’t use it in the proof, 1.4.8 holds even
if we drop the assumption in 1.3.8 that for all elements of Cleavgn(—;k)
the associated timber Ny, ..., Nj should satisfy CN; ~ [ [ .. #- In fact, this
assumption is not needed for this paper, but will only be applied in |Barl1]
to define homological actions from the correspondances of 1.4.4.

This is also the case for an extended version of 1.4.8 to Cleavy as indicated
in 1.4.9

Remark 1.4.11 For the case N = S™, as mentioned in the remarks above,
the correspondance diagram (1.2) will by certain umkehr maps for the map

©* eventually lead to a homological action in [Barll]. What we in fact will
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show is something stronger, namely that there is a stable action map, residing

in the category of spectra:

Cleavs.(—; k) x (M) — M5" A glmOM)(k=1) (1.3)

Smashing the above map with the Eilenberg-Maclane spectrum, and tak-
ing homotopy groups yields the action mentioned below Theorem 1.1 of the
introduction.

We shall in 1.4.12 below give an example of the action to illustrate the
reasoning behind the definition of Cleavgn.

We shall first make some remarks on how the constructions of this section
provides the foundation for how this map takes form.

First of all, note that since we in 1.3.8 have assumed that to [T, P] €
C[eavN(—;k:) the associated timber Ny,..., N, will have CN; consist of a
finite disjoint union of contractible spaces. Therefore, in the diagram (1.2),
the space ]—[le M is a Poincaré duality space. That is, up to homotopy it
is equivalent to a product of copies of M.

In the case N = 5", taking such a specific [T, P] as a pointwise version of
(1.3), we should be able to obtain a map (MS")IC — M5 A SAmAM)x (k=1
Indeed, for fixed [T, P] there are methods available in the litterature to do
this. For instance adapting the methods of [CK09, p.14/’Umkehr maps in
String Topology’| provides such a map. Here it is crucial to note that the
map ¢ is up to homotopy an embedding of codimension dim(M) x (k — 1)
where the (k—1)-factor comes from 1.4.7, which provides the dimension-shift
in (1.3).

Yet another method, formulated on the chain-level instead of spectra would
be [FT09, Theorem A].

However, getting from these pointwise umkehr maps to a map such as (1.3)
is a somewhat strenous hike. This is the focus of [Barll]. Note that while

the crucial 1.4.8 hints that it is possible to provide the maps for other N
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than the euclidean embedded unit-spheres S™, the geometry involved makes

us look only at the interesting case Cleavgn.

The complexity of the construction of the umkehr map rises with the arity
of the involved maps. As the arity rises, the map ¢ of (1.2) will by 1.4.8
have constant codimension, whereas the actual dimension will be exposed to
sudden jumps in the actual dimensions of the spaces ¢ is mapping between,
as is indicated in the proof of 1.4.8. The coherence issues of higher arity
lies in patching the instances of such jumps together. The following example

illustrates the case of arity 2 operations where there are no such jumps:

Example 1.4.12 The 2-ary portion Cleavg.(—;2) is a manifold, specified
by a single cleaving hyperplane, it deformation retracts onto S™, which is

determined by the direction of the normal-vector of the cleaving hyperplane.

Consider the pull-back diagram

sm ny 2
MC[E[l’Usn(—;Q) - (MS ) X C[eaUSn(—, 2) (14)
?:1 CN;
M C[eavsn(—; 2) MC[eavsn(*;Z)

Where CN; and CNy denotes the complement inside S™ of the timber as-

2 o
sociated to [T, P] € Cleavg.(—;2). Considering it as a set, MCH[Z;;]L\L;Q) is
given by the disjoint union | [, pic coapgn(—2y M*'- The map res in the dia-
gram is given by letting res(f1, f2, [T, P]) be given as the the restriction of f;

to CN; and f> to CNy along the component indexed by [T, P]. We topologize
I3, CN
C[ell’;gn(fﬂ)

Note that by 1.4.7, pointwise in Cleavg.(—;2), res is a fibration. One
sees that the lifts of this global map can be constructed to be continous in
Cleavg.(—;2) as well.

by making res a quotient map.
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We hereby have homotopy-equivalences

2 .
MC[;;;;]IVE_;Q) = M2 X C[eavsn(—; 2) ~ M2 x S"

and
M x Cleavgn(—;2) ~ M x S™.

Stating that the lower portion of the diagram is an embedding of Poincaré
duality spaces. For instance applying one of the methods mentioned in 1.4.11,
this hereby provides the first sign of an action of Cleavs. on MS", and taking

homotopy groups of this map, we get a map in homology

H, (C[eavsn(—; 2)) ® Hy (M5 — H, s (M)

1.5 Spherical Cleavages are E, . -operads

We now devote energy to prove that Cleavg. is a coloured E,_ j-operad. A
concept defined in 1.2.8

1.5.1 Combinatorics of Coloured FE,-operads

The following combinatorial data of full level graphs is the main tool we use

to describe a detection principle for E,-operads.

Definition 1.5.1 By a full level (n, k)-graph, we shall understand a graph G
with & vertices vy, ..., v, such that all pairs (v;, v;) are connected by precisely
one edge ¢;;. Let n := {0,...,n — 1}. We let each of the (£) edges of G be
labelled by elements of n.

We say that a full level (n, k)-graph G is oriented if there to each edge G
e;; is designated a direction; either from v; to v; or from v; to v;.
To o € Xy, there is a unique orientation of a full level (n,k)-graph, G.

Namely by letting e;; point from v; to v; if 0(i) < o(j), and point from v; to
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v; if o(j) < o(i). We call o the permutation associated to G.

Indeed, assuming that this orientation of G is oriented with no cycles and
comes equipped with a sink and a source, one can reconstruct the permuta-
tion o associated to G from the orientation of GG: Let the index of the sink of
G be mapped to k under o, and successively remove the sink of an oriented
full (n,i)-graph with sink, source and no cycles to obtain a full (n,i — 1)-
graph with induced orientation being guaranteed a sink by the pigeonhole
principle. The index of this sink is mapped to ¢ under og. Continuing this
process until only the source of G is left makes o5 a well-defined permutation

since GG has no cycles.

Definition 1.5.2 Let K (k) denote the set of full level (n, k)-graphs, ori-

ented via X as above. This gives a bijection n() x Y o K"(k).

We have that K is an operad: To G, € K" (k) and G,,, € K"(m), inserting
the m vertices of G,, instead of i’th vertex of Gy, we obtain a full level
(n,m+k—1) graph Gy o;G,,, by labelling and orienting the edges of G0, G,,
in the following way:

Since we have replaced the 7’th vertex of Gy with k vertices from K" (m),
Gy, lives as a subgraph of Gy o; G,, in k different ways — one for each choice
of replacement vertex for i in G,,. The graph G,, has all its vertices retained
in Gy, o; G,,,, so there is only one choice of subgraph for G,,.

We label and orient all edges of G}, 0;G,,, via the labellings and orientations
of the possibilities of subgraphs G}, and G,,.

An example operadic composition is given in figure 1.7

Observation 1.5.3 Using 1.5.2, we see how K™ is an operad of posets. First
of all, letting K™(2) = n x 3, be given by setting ¥ = {id, 7} and partially

ordering through the arrows of the diagram
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Figure 1.7: An operadic composition of a 3-ary with a 2-ary operation in the
full-graph operad. The labellings ¢, j, k, m are elements of n. Note that in the
4-ary operation both graphs are contained in the final result, and we copy the
labelling of the edges that are going to the vertex the operadic composition
is happening at

(0, id)><:(1, id)><- - (n,id) (1.5)
(0,7) (1,7) (n,T)

Consider the maps 7;;: K"(k) — K"(2), sending Gy € K"(k) to its
subgraph, with one edge, spanned by the vertices v; and v;. Following [Ber97,
1.5|, we let the partial ordering be given by the coarsest ordering such that

7i; is order preserving for all ¢ < j € {0, ..., k}.

Definition 1.5.4 Given O a coloured operad, let S(O) denote the coloured
operad in posets, with objects the subsets of Ob(0), and k-ary morphisms
subsets of O(—; k). The operad is an operad in posets through inclusions of

subspaces.

That is, we let Ob(S(0)) = {0,1}°O). Let S(O)(—; k) := {0,1}9=R).



44 CHAPTER 1. THE CLEAVAGE OPERAD AND ITS ALGEBRAS
These fit into the diagram

S(O)(=;k +m — 1) <——S(0)(—;m) xons(oy S(O)(—; k) —= S(O)(—; k)

l o

S(0)(=;m) - Ob(5(0))

Where as usual ev; evaluates at the i’th colour of S(O)(—;k), given as a
subset of Ob(0) and ev;, evaluates the incoming colour of S(O)(—;m).

Operadic composition is induced from composition in O, pointwise. In the
sense that o;: S(O)(—;m) X ons(0))S(O)(—; k) = S(O)(—; k+m—1) is given
by the subset of O(—; k+m — 1) obtained by to any point of O(—;m) xoy(0)
O(—;k) as an element of S(O)(—;m) Xops(0y S(O)(—; k) applying the o;-
operation from O(—;m) xop0) O(—; k) to O(—;k +m — 1), and taking the

union over the specific subset of these compositions.

Recall from 1.2.7 that to a monochrome operad P and a space X, the
coloured topological operad P x X is coloured over X and the k-ary mor-
phisms are formed by taking the cartesian product of P(k) with X.

The Berger Cellularization Theorem, written in a monochrome fashion in

[Ber97, Th. 1.16] hereby transfers to our coloured setting:

Theorem 1.5.5 Let O be a topological coloured operad. The operad O is
a coloured E,-operad, 1.2.7 if there is a functor Fj,: K"(k) x S(Ob(0O)) —
S(O)(—; k) that is, both a functor with respect to the poset structure as well

as a morphism of coloured operads, satisfying the following:

(A) Let Cy € S(Ob(O). The latching space of a € K™(k) is given by
Lia,cy) = UB<a Fi(5,Co). We require that the morphism

Lia,coy = Fir(a, Cp)

is a cofibration.
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(B) Foralla € K"(k), we require maps F.(«, B) — B where B € S(Ob(0))
such that these are weak equivalences, and natural with respect to mor-
phisms B < C € S(Ob(0)). between the functor Fj(c, —).

(C) colim, co\excn(k)yxon(s(oy Fr(a: Co) = O(—; k), where the colimit is us-
ing the poset-structure on K"(k) — given in 1.5.3 — and inclusions of
subsets in S(Ob(0)). These inclusions should be compatible with the
equation, in the sense that O(U; k) should be given by restricting the
colimit to the Cy € Ob(S(0)) satisfying Cy < U in the indexing cate-
gory.

Proof. First of all, note that K"(k) as a finite poset is a Reedy Category
in the sense of [Dug08, 13.1]; explicitly a degree function deg: K" (k) — Z
can be given by letting deg(a)) be determined by the sum of the (];) labels in
{0,...,n — 1} of the edges of the graph «.

From the assumptions (A)-(C) we get the following homotopy equivalence:

lle

O(—; k) = colimy, cy)e % (k) x s(ob(0y) Fr(er, Co

0

COthoeS(Ob(O)) COhmae K (k) Fk (a CO

lIe

colimeyesion(oy ([N (K™ x Co)(k
(IW(K™)| x Ob(0))(k

lIie

)
)
colime,eg(on(0y) (hocolim e gon ) + % Co)
)
)

The first identification is given in assumption (C), which in turn splits out
into a double colimit. To obtain the homotopy equivalence: Since K" (k) is a
Reedy Category, the assumption (A) allows us to apply [Dug08, 13.4] giving
a homotopy equivalence hocolime g () Fi(c, Co) — colimaegen iy Fi(r, Co)
for fixed incoming colours Cy € S(Ob(0)). From (B) we get a homotopical
identification of Fy(a, Cy) with Cy and this computes the homotopy colimit,

geometrically realizing the nerve of the full graph operad, along with a carte-
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sian product of the colours Cy € S(Ob(O)) — independent of o« € K" (k). The
final identification follows since the naturality of (B) supplies us with a carte-
sian product of the nerve along with an actual direct limit of all inclusions
of S(Ob(0)) which can be identified with the final target of the inclusions,
Ob(0).
One now utilizes F' as a morphism between coloured operads to check that
this gives an operadic weak equivalence O ~ |A(K™)| x Ob(O)
O

Definition 1.5.6 Let O be a coloured topological operad. We call F': K™ x
S(Ob(0)) — S(O) an E,-functor if it satisifes the conditions of 1.5.5

Remark 1.5.7 In order to get an equivalence back to something known, let
DisK,,., denote the little disk operad. We hereby have that the coloured
operad Q)i&k,nﬂ X Ob(C[ea’(}Sn) is a coloured F, i-operad in the sense of
1.2.8, coloured over the same objects as Cleavgn.

1.5.2 An FE, -functor for Cleavg.

Construction 1.5.8 We shall provide the combinatorial data, giving the link
between the full graph operad, and the spherical cleavage operads.

For each n € N, let I = [-1,1] < R""' denote the interval as sit-
ting inside the first coordinate axis of R"*!. Choosing k — 1 distinct points
x1,...,2Tx_1 € I specifies a partition of I into k intervals X; = [—1, 2], X5 =
[21,22],..., Xk = [xr_1,1]. We endow the collection of these intervals with
an ordering, determined by o € 3, ordering them as X(1),. .., Xo).

Parametrize S™ := {s = (s1,...,8,41) € R"™ | |s| = 1} to consider the
map 7: S™ — I given by 1(s1, ..., S,+1) = s1. Any subinterval X; < I defines
timber X; of S™, by n7'(X;).

Positioning hyperplanes P, ..., P, orthogonal to I — such that P; con-

tains the point (z;,0,...,0), as decorations on a cleaving tree we can choose
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their normal-vector of P, to point towards (1,0,...,0) and get colours that
are labelled by 1 to k from left to right along the first coordinate axis.

Under the chop-equivalence of 1.3.8, we can always choose a representing
cleaving tree with two leaves labelled ¢ and ¢+1 directly above an internal ver-
tex for any i € {1,...,k — 1}. For this particular representative of a cleaving
tree with the particular orientations of Py, ..., P._1, applying the transposi-
tion between ¢ and ¢ + 1 corresponds exactly to inverting the orientation of
the decoration at the vertex below the two leafs.

Since X is generated by these transpositions, we can permute the labelle-
ing of the colours by o € 5, and hereby obtain [T}, P,] € Cleavs.(Uk), with
U € Ob(Cleavs») and outgoing colours decorated by o(1),...,o(k) from left

to right along the first coordinate axis of R™*!.

Definition 1.5.9 For a given o € ¥, the collection of all [T}, P, ]| as given
above specifies an element of the subsets of C[eavgn(—; k), where for U €
Ob(Cleavs.) this involves a restriction to the U-cleaving trees (T, P,).
Note that to U € Ob(Cleavg.) choosing the hyperplanes P, to be in
equidistant position from each other, and the closest hyperplanes that no
longer cleave U, defines an embedding of U < Cleavs.(U; k) for each o € %,

Observation 1.5.10 We define J; < [—1,1] as sitting inside the first co-
ordinate axis of R"™! as the subspace where any U-cleaving (7,, P,) have
decorating hyperplanes contain points of Jy.

We shall for the sake of this section allow ourselves to assume that J;; <
[-1,1] is a non-empty subinterval; formally, this can be done by redefining
Cleavg. as a full suboperad of Cleavg. given by restricting Ob((Cleavgn) to
the timber U for which Jy is U-cleaving.

Similar to 1.3.19, one can define a homotopy that pushes the hyperplanes
defining U towards tangenthyperplanes of S™ to show that this restriction
defines a deformation retraction of the objects, and hence makes the inclusion

a weak equivalence of operads.
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Remark 1.5.11 We find it enlightening to note that we can form a subop-
erad, the caterpillar operad ? Catergn, of Cleavg by taking the full subop-
erad under the condition that [T, P| € Caters.(—; k) if [T, P] is of the form
[T,,P,] as in 1.5.9 for some o € ¥y.

The caterpillar operad will control the product structure on H,(M*>"),
however in order to obtain the higher bracket in the Gerstenhaber Algebra,
we shall need more than just parallel hyperplanes — and engage all the ways
hyperplanes can rotate in Cleavgn, in contrast to the sole translational data
of Catergn.

Said in a different way, there is an obvious operadic map from Caterg-
to the little intervals operad, see e.g. [MS04, ch. 2|, determined by how the
hyperplanes of Caterg. partition the z-axis into intervals. The little intervals
operad has the k-ary space given as the space of embeddings of k£ intervals
inside [0, 1]. We can expand these little intervals linearly until they touch each
other, and hereby similarly to Caters.(—; k) partitioning [0, 1] into &k smaller
intervals. This provides a map that is a weak equivalence of coloured operads
from Catergs» to the little intervals operad, considered as a coloured operad
with trivial colours. This hence provide the A,- or F;j-structure on the String
Product associated to M®" for the action in spectra that is constructed in
[Bar11|. The rest of this section is hence devoted to determining the rest of
the B, -structure of Cleavgn.

In order to engage the combinatorics of this rotational data, i.e. define a
E,1-functor, we shall prescribe explicit transformations of the hemispheres

parametrizing the hyperplanes involved in the cleavages.

Definition 1.5.12 We prescribe a function x: S” x R"*!' — Hyp"™! by
letting r(s,t) be given as the oriented hyperplane that contains the point
s+t and has s as a normal vector. In comparison to the tangent plane at
the unit-sphere at s € S < R™*!, k(s,t) has been translated by t.

2collapse the components of the blueprint to a single point, to make a visual link to
this name
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Definition 1.5.13 In the following, when referring to a sphere S?, we shall

generally consider it as sitting inside a string of inclusions

§oC L gic N e Snfl(bn71 gn (1.6)

where all are subsets of R"*!, where S?~! is embedded equatorially into the
first 7 coordinates of S* < Ri*1.

Let S° = {(xo,...,xn) € S" | @y = 0,241 = -++ = x,_1 = 0} and
St = {(xg,...,2,) € R"™ | 2; < 0,254 = -+ = 1,,_1 = 0}. Restrictions of ¢;

n (1.6), yields the partially ordered set of inclusions:

Sn 1¢ n

(L.7)

Since these are all inclusions of closed lower-dimensional submanifolds, it

is a partially ordered set of cofibrations.

Definition 1.5.14 Consider the partially ordered set I, with objects a; <
{1,...,k}, where j indicates that «; is of cardinality j, and morphisms gen-
erated by the opposite arrows of simple inclusions o;_1 — «;.

To f € Ii, where f: a; — «, let the domain be denoted by D(f) := «;

denote the domain of f, and the target T'(f) := «a,. A simle inclusion ¢
defines a lost number j,, := T(y)\D(u) € {1,...,k}.
An i-string of morphisms in [} is given by a sequence ¢ = (t1,...,t5_1) of

opposite arrows of simple inclusions such that D(i,) = T(i,41) — and with
D(1y) ={1,...,k} and T'(t—1) = {i}.
Let Ix|; denote the set of i-strings of Ij.

Remark 1.5.15 While we shall mainly find it convenient to use the notation

of 1.5.14, note that the data of ¢ € I;|; exactly corresponds to a permutation
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of {1,...,k}, where we to 7 assign the lost number of ¢;.
We shall thus allow ourselves to consider ¢ as an element of X, where we
here use the notation t(j) € {1,...,k} to indicate the value of j under the

permutation.

Construction 1.5.16 We shall conglomerate the above constructions into
a specific recursively defined function that provide the technical core in the
definition of the E,-functor.

For each i € {1,...,k — 1}, we want to define a function

@UI Zk X ]k'71|'i X (RU N (Sn X ]R‘n—*_l)kil) i C[eaﬂgn(U, k)

Where Ry < (S™ x R™1)* ™" amounts to a corestriction of each (S™ x
R™*1)-factor that will be specified below.

Each ¢; will specify a hyperplane via its lost number, 1.5.14, as P, of P,.

We shall produce a U-cleaving tree that is decorated by the hyperplanes

K(S1,71)5 oy K(SE—1,Tk—1)-

In order to specify the U-cleaving tree that these hyperplanes decorate, we
utilize the ordering from left to right along the z-axis of the hyperplanes of
P, specified in 1.5.8, as well as the i-string ¢.

We build this tree recursively, and start by positioning r(sy,71) as the
decoration of a 2-ary tree 7. We hereby restrict ©y by letting the first
(S™ x R™*1)-factor of Ry be such that (T, x(s1,7;)) is U-cleaving.

In the recursive step, assume that we have defined the first [ — 1 factors of
Ry and that we are given an [-ary U-cleaving tree (T}, k(s1,71), - - -, k(S1—-1,71-1))
P

such that taking { — 1 hyperplanes of P _, P; ., » and assigning P;

L2ttt
to replace the decoaration k(s;,1;), also yields a U-cleaving tree.

The hyperplane P;, cleaves timber associated to a specific leaf of the deco-
rated tree (7}, P, P; ). We graft a 2-ary tree onto 7; at this leaf, to ob-

Ju_q
tain the (14 1)-ary T;41. We let k(s;, ;) be the decoration at the new internal

R
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vertex of 7;,1, where we define the [I’th factor of Ry by requiring that (s;,r;) €
S™ x R™*! makes the decorated (141, k(s1,71), ..., k(s;,71)) U-cleaving. The
timber at the leaves of the decorated tree (Tji1,k(s1,71),...,kK(s;, 7)) are
induced by the timber at the same leafs of (7}11, F; P ).

We make the following restriction on Ry that will be a technical condition
for the proof of 1.5.20:

(SR

() We intersect Ry by H;:ll(S” x Rec(Uy(s,,r,))), where the cleaved record-
ing area Rec(Uy(s,)) © R™! associated to the vertex decorated by

k(si, 1) is given in 1.3.6.

Any edge e;; of a graph G € K"(k) is uniquely determined as the edge
attached to the vertices labelled by some ordered pair ¢ < j € {1,...,k}. Let
we(i,7) € Zo =: {'+') '} be given by we(7,j) =" +' if e;; points from ¢ to j
and wq(7,j) = —' if e;; points from j to .

Denote by Ag(i,j) € {0,...,n — 1} the labelling of the edge e;;.

Construction 1.5.17 We shall construct an E,,,;-functor for Cleavg.. That
is, we are after a functor D: K"*' x S(Ob(Cleavs.)) — S(Cleavg).

Let G € K"*!(k) be a graph with underlying permutation given by og € ¥,

Let a i-string ¢ € Ix_1|; be given, and let [ € {1,...,k — 1}. We consider
the two lost numbers j,, and j,, , in the sense of 1.5.14. To account for the
case [ = 1, we let j,, := k. Denote by
min{ji,,ji_, )

We define the k’th operadic constituent of D as:

max = ma’X{le7le71} and lein =

Dk(G7 AO) =

U U U @ao (UG7§7 (Rao(bl)v B Ra()(Lk—l)) ) (18)

ap€Ao i€{l,....k—1} telf_1]i

where we to ¢ € I;_1|; let the spaces Ry (1) be a further restriction of the
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A . 1 :
spaces Swggzllmf“ Zm‘”‘; x R™*! considered as the i’th input to Oy, that is a
restriction of the space Ry of 1.5.16.
The further restriction is given by restricting to the pathcomponent of
[T

oG O'G]
G(lein 7leax)

o ey are given in the diagram (1.7).

Here, the hemispheres 52

1.5.3 Proof that Cleavages are F,

To state the first lemma, note that maps G — G’ € K" (k) given by raising
the index of an edge of G from ¢ to [ where ¢ < [, will induce injective maps
D(G, Ag) — D(G', A) given by a restriction of the inclusion S* < S as one
of the coordinates of Ry (¢;) under Dy (G, Ag) — Dy(G', Ap). This describes
how D is a functor of posets, and we use the following three lemmas to
check the conditions (A)-(C) of 1.5.5 to prove that Cleavs. is a coloured
FE,, . 1-operad.

Lemma 1.5.18 As in (A) of 1.5.5, consider the latching space L., =
Uegr—¢ Dr(G', Ap). The induced map Lg,a,) > Di(G', Ap) is a cofibration

Proof. The inclusions of submanifolds in (1.7) are of codimension strictly
larger than 0, so these are automatically cofibrations. The maps out of
Dy(G', Ap) are built out of these maps by restricting to ag € Ag-cleaving
trees, along with pushouts and factors of cartesian products. Since whether a
decoration of a ag-cleaving tree is cleaving or not is an open condition (that
is, if it holds for the hyperplane it holds for a small neighborhood of the
hyperplane), the associated restriction of inclusions induced from (1.7) will
again be an inclusion of submanifolds that are of codimension greater than 0.
Each Dy (G', Ay) — Di(G, Ap) will hence result in a cofibration, that can be
obtained as a lower-dimensional skeleton of a CW-structure on Dy (G, Ayp).
Since the latching space is given by a finite union of these lower-dimensional

spaces, the map from the latching space is again a cofibration. O
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Proof. Any [T, P] € Cleavs.(—;k) can be obtained as an element of (1.8)
for some choice of hemispheres determined by G € K" (k). Note namely that
the definition of Oy is a function that exactly mimics the cleaving procedure
above 1.3.5, and therefore will[T, P] as obtained by this cleaving procedure
be obtained since the hemispheres involved in the image of Dy (G, Ag) cover
S™, and since we in 1.5.17 are taking of path-components of [T, P,] for all
o E Xy

O

We say that for (T, P) an S"-cleaving tree that the hyperplane of the
decoration P; dominates another hyperplane P of the decoration of T'if P;
and P, intersect within D"*! and there are points of P, that lie on Brr,p) and
on one of the subspaces of R"*! that has been bisected by P;, but none on
the other side.

Lemma 1.5.20 Given A4y € S(Ob((leavs.)) and G € K"+'(k), there is a
homotopy equivalence Dy (G, Ag) ~ Ap, where Ay is considered as a subspace
of Cleavg.(—; k) by 1.5.9.

Another usage of terminology would be that we supply a deformation re-
traction onto Ag, that is not a strong deformation retraction, in that we
supply a homotopy F: Cleavg.(—; k) x [0,1] — Cleavg.(—; k), where we
only for t € {0,1} guarantee F(ag,t) = ao for ap € Ay = Cleavg.(—; k)

included as above.

Proof. We break the proof, specifying the homotopy into three steps. Our
overall strategy will be that we in the first step show that the effect of different
elements ag of Ob(Cleavg.) as input to can be neglected, as we similar
to the proof of 1.3.19 can push the defining hyperplanes towards tangent-
hyperplanes of S™.

The second step will show that for a given ¢ € I;_1/;, the space

@ao (O-Gvév (Rao (l’l)v B Rao (kal))
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given as one of the constiuents in the union of (1.8) is contractible. Again,
the overall idea will be similar to 1.3.19, in that we push hyperplanes close
enough to be tangential to S™ that all points of the hemisphere gives rise to
a cleaving element. However, in pushing these one needs to take extra care
since the pushing needs to go along cleaving elements of ay for more than

one output timber.

In the final step, we show that the contractible spaces of step 2 are all
glued together along a contractible space containing the element [T, P,.],

hence making the entire Dy (G, A) contractible.

Step 1: Assume that the labelling of the edges of G € K" (k) satisfy
Ag(i,j) =0foralli < je{l,... k}, that is all edges of G are labelled by 0.
In this case, we have that Dy(G, Ap) will pointwise in Ay be the space of all
sets of kK — 1 hyperplanes P, ..., P, orthogonal to the first coordinate axis
of R™*! that cleaves ag € Ay, where the parallel hyperplanes are ordered as

P, of 1.5.8, and o¢ € ¥ is the permutation associated to G.

The space Di(G, Ap) is homotoped onto Ay by considering the interval
Juy S [—1,1] of the first coordinate axis of R™"*! as given in 1.5.10. Ho-
motoping P, ..., P, to be equidistant within J,, for each ay € Ay yields a
deformation retraction onto Ag in the sense of 1.5.9, since the topology of
Ob((Cleavs.) as determined by hyperplanes forming the timber lets the end-
points of .J,, — as points in R vary continuously as functions of Ob(Cleavgn).

Step 2: For a general G € K" (k) and a fixed i-string ¢, and ag € Ay, we
see that the space Oy, (¢, L, (Ray(t1), ..., Ray(tk—1))) is weakly equivalent to
a product of hemispheres, considered as a subspace of C[eavgn(—; k).

We homotope © in k—1 steps according to its recursive definition of 1.5.16.
For the first step, the points (s1,71) € Ry, (¢1) defines a hyperplane by (s, 1)
that cleaves ag. We define a function p: Ob(Cleavgn) x Ry, (1) x [0,1] —
Ob((Cleavs), such that for any s’ € S™, k(s',r1) will cleave u(ag, (s1,71),1) €
Ob(Cleavsn).

In order to do define this function, note that ag as an element of Ob(Cleav )
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is defined by choosing some hyperplanes Hy, ..., H, that cleave S™. For any
one of these r hyperplanes, H;, there is a well-defined normal-vector v; that
points away from the hyperplane r(s;,71). Understood in the sense that
translating H; in the direction of v; will leave x(sq,71) cleaving. Similar to
the proof of 1.3.19, we can therefore define the function u by translating the
hyperplanes H; simultaneously in the direction of v;, we do this until the hy-
perplanes are close enough to tangent-hyperplanes of S™, formally requiring
that the minimal distance between H; n S™ and H; n S™ is larger than some
given ¢ > 0 for all i < j € {1,...,r}. That any s’ € S™ hereby will have
k(s',r1) cleave p(ag, (r1,71),1) can be seen by 1.3.11 since the complement
of this subspace of S™ will consist of disjoint disks, and by (f) of 1.5.16,

r1 € Rec(ag) € Rec(aq) so k(s',r1) will always intersect a; non-trivially.

This hence defines a; := uy(ag, (s1,71),1) € Ob(Cleavs.). In a very similar
fashion, we wish to further deform the k — 1 hyperplanes involved in the
recursively defined ©,,. To this end, assume we are given the hyperplanes
Hi, ... ,H,; where for all 7,5 < r + [ where i # j H; n S" and H; n S"
are of distance at least ¢ to H; n S™. We can take these r + [ as data for
the I’th step of a deformation of O, (Ra,(¢1), - - - Ray(tk—1)), where the first r
hyperplanes defines timber as defined under x4 above, and the remaining [ are
hyperplanes that cleave this timber. By assumption in the definition of ©,,,
we are given a hyperplane x(s;41,741) that cleave some a; € Ob(Cleavg.)

as defined through a portion of the hyperplanes Hy, ..., Hy .

Only choosing j := | 4+ r will potentially satisfy H; n H; n S™ # ¢, and
we therefore wish to push H,,; in the direction of the normal-vector v,
away from (s;11,74+1). Blindly pushing x(s;41,741) in the direction of v,
will deform a; to incorporate more hyperplanes than the ones used to defining
a;, and we need to ensure continuity with respect to these hyperplanes. Let
therefore again v; denote the normal-vector of H; in the direction away from
K(S141,71+1). Let similarly dist(H;) € Ry denote the distance by the hyper-
plane H; must be translated along v; to become a hyperplane, let A(U) € R,
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denote the area of an n — 1-dimensional subspace inside S™. Assume that
H..;nS™and H; n S™ are within ¢ distance of each other; potentially inter-
secting, for i € Ky, ,, < {1,...,l+r —1}. We push the hyperplanes indexed
by Kp,
where ¢ € K

and H,,; simultaneously to obtain hyperplanes H, ;(t) and H;(t)

+1

() at time ¢, hereby forming the timber a;(t). Let as usual

0a;(t) denote the boundary of the closure of a; within S™. We push H; in the

direction of v; with with speed dist(H;(t)) - (1 — %) while H,,; is

pushed with speed dist(H,.(t)) - maXier,, _, (%)7 and we stop once
H,.(t) is at distance at least ¢ - mineq, 41y dist(H;(¢)) from H;(t) for all
'L’ E {17 “ e 7TT+171}'

These formula ensure that H,; is only pushed past the subspace H; n .S™
if there is a significant portion of this subspace forming part of da;. Hereby,
we hence obtain the timber a; that x(s’,7,41) cleaves for all s’ € S™, since the
complement Ca; will consist of a disjoint union of subdisks of S5™.

For | = k—1, this hence gives a subspace of Cleavgn (—; k) parametrized by
the space H;:ll (SZZ((Z;Z:Z:Z; x Rec(a;)), where we again use (f) of 1.5.16,
to identify the parametrizing R""!-factor. Since Rec(U) can be seen to be
contractible, in fact convex, for any U € Ob(C[eavSn), the subspace to our
given i-string is weakly equivalent to a product of hemispheres. Le. it is
weakly contractible.

Step 3: Given ¢ a i-string, and A a [-string, we show that the associated

spaces of ¢ and A,

@aO(Ug,L, (Rao (L1)7 s 7Ra0(L/€*1))) and ®ao (O-GWA? (Rao ()‘1)7 s 7Ra0 ()‘kfl)))

respectively, are glued together along contractible subsets, where we consider
these as subsets of Cleavs.(—; k). Since step 2 tells us that the space associ-
ated to ¢ and the one associated to A are contractible, we have that the glued
spaces are contractible. This follows combining the Mayer-Vietoris sequence,
Hurewicz map and the Van Kampen theorem so that if A and B are two

contractible spaces and A n B is contractible then A U B is again a con-
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tractible space. As we shall see, all spaces associated to elements of Ui:ll I;
will be glued together along the common basepoint determined by the hy-
perplanes P orthogonal to the first coordinate axis of R"*! as determined
by the orientation of G. In effect, the glueing of all these spaces will result
in a contractible space.

In order to see how the spaces are glued together, we see in 1.5.16 that the
spaces associated to ¢ and A are given by choosing new normal-vectors for
the hyperplanes P, ..., B, of P, and decorating them on different trees.

Considering ¢ and A as permutations in Y; as given in 1.5.15, it a necessary
but not sufficient condition that points in the spaces associated to ¢ and A de-

termined by the tuppels ((s1,71), ..., (sk—1,7%—1) and ((s1,71), .., (S}_1, 1))

satisfy

(Sfl(i), Téfl(i)) = (8371(1), T'IAf1(i)) (1.9)
forallie {1,..., k—1}, since the associated timber of the cleaving trees have
to agree.

The condition (1.9) is not sufficient since the way the hyperplanes dominate
each other might be different according to the two trees that the hyperplanes
are decorating. Note first of all that if (1.9) is satisfied, and s,-1(;) = sy-1;) is
the point SS(L(Z.) all the hyperplanes are parallel and orthogonal to the first co-
ordinate axis, where there is no dominance amongst hyperplanes, identifying
the points.

We have an ordering on the hyperplanes of the spaces associated to ¢ and A,
given by Py, ..., Pg—1) and Py, ..., Px—1). Assume we are given [T, P,]
and [7", P,| satisfying (1.9) such that they agree as elements of Dy (G, Ay).
We want to show that there is a unique path homotoping them onto trees
decorated by hyperplanes orthogonal to the first coordinate axis, in which
case step 1 applies to provide the deformation retraction.

For the hyperplane Py, no other hyperplanes Pys, ..., P,x—1) will domi-
nate Py).
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We can use step 2 to assume that for the 2-ary tree decorated by only P, ,
the reparametization of the hyperplane along the geodesic path along the
hemisphere e | always be contained in Cleavgn(—;2).

UJG(lein 7L1max)

However, we need to consider these paths for our trees decorated by multi-

ple hyperplanes. That we in 1.5.17 are taking path-components tells us that
G(leinlemax)
G (U i ¢ Tmax)
will be contained in the space associated to ¢. Since the elements [T, P,| and

the geodesic path along the hemisphere 5’: parametrizing Py
[T", P\] agree, the hyperplane Py-i;, as a decoration of [T", P,] will be
bound to dominate the same hyperplanes as P,;) as an element of [T, BL],
and this will remain true along the reparametization along the geodesic, un-
til P,(1) no longer dominates any other hyperplanes, since otherwise either
[T, P,] or [T, P,] would be reparametrized to non-cleaving trees. To ensure
that no new dominance occurs after the potential step where P,y no longer
dominates any other hyperplanes, one translates along the first coordinate of
R™* in 5228:“:::; x R"*1 at the same speed in the opposite direction as
P,1) is moving away from the hyperplanes it used to dominate.

This eventually brings the hyperplanes P,y parallel with the first coor-
dinate axis of R™"!, and one iterates this construction for the remaining
P2y, ..., B-1) in that order, to — along a geodesic in the parametrizing
hemispheres — bring them all parallel to the first coordinate axis. Finally,
having used step 2, one applies the inverse homotopy of u in step 2, to make
these hyperplanes cleave ag.

As noted previously, step 1 now applies to finish the proof. O
Theorem 1.5.21 (Cleavs. is a coloured E,, . 1-operad.

Proof. The lemmas 1.5.18, 1.5.19, 1.5.20 check (A)-(C) in 1.5.5 the functor
D of 1.5.17 should satisfy in order for Cleavg. to be E, ;. Note that 1.5.20
indeed gives the full naturality as stated in (B), since we give an explicit ho-
motopy equivalence onto Ob((Cleavs.) = Cleavsn(—; k) that respects mor-
phisms of S(Ob(Cleavgn)). O
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Corollary 1.56.22 There is an equivalence of operads
H.(Cleavs.) = H.(Disk )

Proof. By 1.3.19 the colours of Cleavs. are contractible, and by further
1.3.20, we can apply 1.2.5, so H,(Cleavg.) is a monochrome operad and
1.5.21 together with 1.5.7 gives the corollary. O

1.6 Deforming Cleavages Symmetrically

Given a topological space, X, we let Homeo(X) denote the group of self-

homeomorphisms of X.

Similar to having a monochrome G-operad in the category of G-spaces, for

coloured topological operads we give the following definition

Definition 1.6.1 A topological group G acts on a coloured topological op-

erad, O if we are given

e .. G — Homeo(Ob(0)) a continuous map. Given g € G and U €
Ob(0), under adjunction, we denote the corresponding acted upon

element as g.U.

e «;: G — Homeo(O(—;m)) continous maps for all ¢ € {1,...,m} and

m € N.

and these respect the topological structure of operads; i.e. letting g € G

the following diagram should be commutative for all i € {1,...,k} and j €
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{1,...,m}:

OA;kE+m—1) (1.10)

%ﬂlmxowb(o) O(—;m) — O(_;m)
a;(9)
J /
O(—;m) :

o
y
(0)

O(A: k) Ob

In the classical setting, when O is a monochrome operad, this recovers the
notion of a G-operad. In this spirit we call a coloured operad satisfying the
above a coloured G-operad.

In [SW03, 2.1], semidirect products of monochrome operads are introduced,
and we can expand the notion to the coloured setting by only expanding a

little on the operadic evaluation maps:

Definition 1.6.2 For a coloured topological operad O with an action of
a group G, we can form the semidirect product of O by G, as for the
monochrome setting denoted O x G, by letting

e Ob(O x G) = Ob(0)
e O xG=0(—;k) x Gk

Letting ev; and evy, denote the operadic evaluation maps of O. The op-
eradic evaluation maps ev® and ev® for the semidirect product are given
by ev&(w,p1,...,pr) = pi-evi(w) and ev$ = evy,. As for the monochrome

case, the operadic composition o;: (O x G)(—; k) Xop0) (O x G)(—;m) —



1.6. DEFORMING CLEAVAGES SYMMETRICALLY 61

(OxG)(—;k+m—1) is given by twisting the composition of O through the

action of GG in the following sense:

(W; Py, pk)oi(wl§ My 777m) = (wOiPi.w’; Py Pi=1,Pi-Ns -« o5 PisNms Pit1s - - -

Observation 1.6.3 As a gadget constructed from R""!, there is an induced
action of SO(n + 1) on Cleavgn, precisely:

To an affine oriented hyperplane P € Hyp"™ and p € SO(n + 1), letting
p act on R™"! by rotation leads P to the affine oriented hyperplane p.P.
Hereby SO(n + 1) acts on the space Hyp"*'.

There is also an action of SO(n + 1) on Ob(Cleavs.) rotating timber
U € Ob(Cleavs.) obtained by cleaving S™ along some hyperplanes to the
timber p.U obtained by cleaving S™ along the hyperplanes rotated along p.

Let [T, P] € Cleavs.(U;k), for some U € Ob(Cleavs.). Let p.[T, P] =
[T, p.P], understood in the sense that p rotates the decorations of 7" simulta-
neously. Having [T, P] an element of Cleav s (U; k) this should be interpreted
in the sense that p.[T, P] is an element of Cleavs.(p.U; k), ensuring that the
decorated tree cleaving p.U and in turn making this action of SO(n + 1) on
Cleavgn satisfy 1.6.1.

The action of 1.6.3 defines the semidirect product of Cleavs. by SO(n+1),

in the sense of 1.6.2.

Observation 1.6.4 We can extend the action of Cleavg. along correspon-
dances as given in 1.4.4 to an action of Cleavg. xSO(n + 1) on M5". We
do this by considering ([T, P], p1, ..., pr) an element of (Cleavg. x SO(n +

P Pk)
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1))(—; k) and take the following pullback-diagram:

¢

My gy ——— (")

l L,

MoBrr.en) — Hle M (CNi)

Where all spaces are as in 1.4.4, as is the map . However, the twisted re-
striction map res, is given at the i’th factor of (MN)k as resgy; .,0;1. Here the
map resy: M" - M™ denotes the restriction map to the space X < S™.
The element p; € SO(n + 1) is considered as a diffeomorphism of S™, and
resx .p; = denotes the precomposition of p; * of the domain of f € MS" prior
to applying the restriction map. This preapplication of p; L allows us to con-
sider resgy;, .p;l as a map that takes points of p;(CNV;) € S™ and brings these
to CN; where a restriction map is subsequently applied.

Note that whereas this allows us to let ¢ be given as the same morphism
as in 1.4.4, which in turn allows us to again identify the pullback space
M, [STfB] as maps from S™ to M that are constant along the blueprint of [T, P].
However, the fact that we are applying a twisted restriction map means that
the associated map 7 in the pullback will be different from 1.4.4. Concretely,

¢}, is given by having the i’th image maps from S™ to M that are constant

alZ)ng pi(CNV;).

Note that this description of ¢} makes this action of correspondanes re-
spect the operadic composition, in the sense that for ([T, P], p1,--.,px) and
([T, P'],m1, - .. ,nm) or-composable as elements of Cleavg. x SO(n + 1), the
change of colours by p;: S™ — S™ in the operadic composition of the semidi-
rect product makes it necessary for commutativity of operadic associatativity
diagrams to map Mé:ﬂ]oipi.[T’,B’] to the ¢+ 7 —1’th factor of (Msn)k+m71 that
are constant along the subspace 7;(p;(CN;1,;_1)) < S™, where j € {1,...,m}

and i e {1,... k}.

Proposition 1.6.5 Actions of H,(Cleavg. xSO(n + 1)) are BV, 1-algebras,
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when H,(—) denotes homology with coefficients in a field.

Proof. Since Cleavgn is a coloured E, . -operad; 1.5.21, with contractible
colours as; 1.3.19, we have that H,(Cleavs.) is in particular a quadratic
operad, with 3-ary operations relations determined by the Gerstenhaber re-
lations.

Hereby, the statement follows directly by applying [SW03, 4.4], to see that
operadic actions of H,(Cleavsn x SO(n + 1)) agrees with operadic actions of
H,.(DisK,,,, » SO(n + 1)).

O

It is natural to conjecture that there is a weak equivalence of operads
Cleavs. x SO(n + 1) =~ Disk,, ., » SO(n + 1). However the string of equiv-
alences of 1.5.5 does not produce an equivalence extending 1.5.21 to the
setting of BV, 1-operads. One notices that the intermediate terms given in
1.5.5 involves the nerve of the full graph operad. Heurestically, this nerve
construction does not see the action of SO(n + 1) on R™*!. One option for
proving such an extension of 1.5.21 could be to attempt at making SO(n+1)-
equivariant versions of the nerve of the full graph operad. We shall however

not go into these considerations in this thesis.
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Chapter 2

Punctured Cleavages and Umkehr

Maps

2.1 Introduction

The exposition of this chapter is still work in progress, however we go into
detail with the action of Cleavgn on MS". That is, we shall give a first sketch

of a proof of the following theorem

Theorem C For M a compact orientable manifold, there are (stable) maps

in the category of spectra
(Cleavsi (= k) x (M5")" — (257 A gEmODEY (2.1)
such that taking homology, we get an action of H,(Cleavg.) on H,(M").

which is done in 2.4.9 of this section.

Naively, we seek — for any [T, P] € Cleavg.(—; k) — to provide umkehr
maps ' for the correspondance 5" <— M7 p] —— (Msn)k described in
Theorem A of section 1.4 in chapter 1. For a fixed [T, P] € Cleavs.(—;k),

there are several methods available in the litterature for obtaining such an

65
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umkehr map for a fixed [T, P], and as a homotopical application of |[Kle01]

we give one such method in section 2.3.

However, being able to construct umkehr maps pointwise for a single ele-
ment [T, P| only hints at the potential for the map (2.1), it does not auto-
matically imply that these umkehr map are parametrized by Cleavgn(—;k)
as a topological entity. The bulk of this chapter is aimed at patching such

umkehr maps into a global umkehr map.

The main idea will be to find manifolds for which the desired umkehr maps
exist, and then glue the associated umkehr maps together to an action. It
turns out that working directly with Cleavg» has technical disadvantages in
that the associated spaces does not break nicely into acting compact mani-
folds. Therefore we are lead to consider the larger punctured cleavage operad
B E—

Cleav g, which essentially allows for the cleaving hyperplanes to be tangen-
tial to S™.

Having cleaving hyperplanes become tangential to S™ means that we allow
—_—
a point in the k-ary spaces of the coloured operad C[eavsn(—;k) to be a
set consisting of cleaving hyperplanes, along with some points, or punctures,
decorated with elements of the commutative operad; where the arity of the
commutative operad counts the amount of tangential hyperplanes present in
S S —
the point. The topology of Cleavs.(—;k) is rigged such that the punctures
can transfer between being points and being hyperplanes cleaving S™. This
transfer is illustrated in picture 2.1, where we have shown four steps in a
e

path of Cleavs.(S™;7).

As indicated in picture 2.1, punctures can slide past cleaving hyperplanes
and other punctures with no complication. This simplifies the homotopical

type compared to Cleavsn, in that we have the following:

Theorem D There is a homotopy equivalence

>

Cleav s (—; k) ~ (S™)".
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Figure 2.1: Starting from (A) the central cleaving hyperplane moves towards
the top, transferring cleaving hyperplanes to punctures along the way. From
(C) the multiplicity of punctures is indicated by a decrease in the arity of
the associated commutative operad

To state the advantages briefly, we show in 2.4.2 how the homotopically
—_—
simpler Cleavg.(—; k) break up into products of spheres that have the desired
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umkehr map. And since it breaks up into acting Poincaré duality spaces, the
homotopy theory explained in 2.3 can be used to show that the umkehr maps
patch together in a suitable homotopy colimit. Restricting this umkehr map
to Cleavs. we can compose the umkehr map with a continous map to M5"
— providing the promised action of chapter 1.

>

As mentioned, the point of this chapter is to introduce Cleavg. as a gad-
get for obtaining the action of Cleavg.. However as a byproduct of this

—_—
construction, we in 2.4.9 also get an action of the larger Cleavgn.

However, it should be emphasized that the construction of Cleavg. we gave
in the previous chapter will have its actions by non-unital algebra, and there
are no 0-ary operations of Cleavg.. There appears to be no way to append
unit elements of the algebra of Cleavg», without destroying the operadic
composition inside Cleavgn.

—_—

In Cleavg., there are 0-ary operations forgetting the punctures, and it
turns out that the enlargement of the action of Cleavgn to an action of
>
Cleavs. is exactly given by adjoining units to the Batalin-Vilkovisky algebra.
This appears to emphasize the importance of the Batalin-Vilkovisky structure
of String Topology as a non-unital algebra.

This chapter is structured with section 2.2 introducing the punctured cleav-

—_—
age operad Cleavgn, section 2.3 introduces the homotopy theory needed for
providing umkehr maps over compact manifolds, and section 2.4 proves The-
orems C and D, and goes through the argument of how we in the case of
cleavage operads are capable of forming umkehr maps over the entire op-

erad, not just a k-ary element hereof.
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2.2 The Punctured Cleavage Operad

A point [T, P] € Cleavg.(—;k) is determined by the set of hyperplanes

{Pi,..., P, 1} decorated on the tree T', subject to an equivalence relation. As

mentioned in the introduction, we extend Cleavg» through a larger coloured
>

operad Cleavs. with marked points mimicking the cleaving hyperplanes P

vanishing towards tangentplanes of S™.

Definition 2.2.1 Given U € Timberg., we let the open puncture U-operad

with k-ary term be given by the space

Punj(k):= [ Conf;(U) x Comm(k,) x --- x Comm(k;)

k=ki+-+k;

Here, the coproduct is taken over all partitions of k, Conf;(U) denotes the
ordered configuration space on j points and Commi(k;) is the commutative
operad with k; outputs. We relabel the outputs of each Comm(k;) monotonely
by the elements (Z;;:ll k‘m) +1,..., <ZZ:11 k;m> +k;, and let o,,-composition
induced by the operadic composition of the component Comm(k;) having an
output labelled by m.

We define the compactified puncture U-operad of Puny;, by allowing points
x; and z;, in Confy(j) to collide. When z; = x,, we identifthe factors

Comm(k;) and Comm(ky,) of Puny,(k) with Comm(k; + ky,).

As in picture 2.1 of the introduction, a point in Puny (k) is an ordered
configuration of j points in U decorated with j trees, with the tree associated
to x; having k; leafs, and representing an element of the commutative operad
Comm(k;). We call a point labelled by Comm(k) a k-clustering of punctures.

Observation 2.2.2 We have that Puny (k) = U*, since in the compactifi-
cation, the labellings of the commutative operad count the multiplicity of
the points collided — so we have just reconstructed U* allowing collisions of
configurations of Confy (k) := {(z1,...,21) € UF|a; # 2Vl <i < j <k}
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We have forgetfull maps 7, ...7: Puny(k) — Puny(k—1). Assume i is
labelling an element of Comm(k;) as a factor of Puny (k). When k; > 1, we
let 7; be given as the 0-ary operadic operation o,: Comm(k;) — Comm(k;—
1) removing the element labelled i, and let m; be the identity along the rest
of the factors of Purn (k).

When k; = 1, we let m; be induced by the forgetful map p;: Conf;(U) —
Conf; {(U) along the configuration factor of Pumny(k), and let it be the
identity along the rest of the factors.

Construction 2.2.3 Let X, be the permutation group of the letters {1, ..., k}.

As a set, we let

Cleavs.(U; k) := ﬁ Cleavs. (U;i) x Puny(k — i) x S (2.2)
i=1

We make this into an operad coloured over spaces by extending Timbergn
to m := Timberg» US™ and topologizing this as points in z € S™ given
as limit points of timber U, € Timberg» converging towards z.

With the extended timber, relabel the elements of Pumny (k—i) monotonely
to start from k — ¢ + 1 and end at k. We let the output of the k£ — 7 final
elements of Cleavs.(U;) x Puny(k — i) be given by the point z € S™ that
the associated tree labelled by the given point is decorating.

Finally, we topologize | [F_, Cleavs. (U; i) x Pumny (k—i) by letting an open

set be generated from a set, where a subset is described by following data:
e An open set W < Cleavg. x Puny(k —1i)
e for each k — i < j < k, an open set

V € Cleavs.(U;i + 1) x Puny(k —i— 1),

where we require that applying the map 7;: Puny(k—1i) — Puny(k—
i — 1) to the second factor of W yields the second factor of V. Further,



2.2. THE PUNCTURED CLEAVAGE OPERAD 71

for all [T, P] € V, there is a fixed hyperplane P;, such that forgetting
this hyperplane makes the first factor of V' agree with the first factor
of V. Finally, for every configuration of P; in V, the timber labelled
by ¢ + 1 should be entirely contained in the neighborhood W, of the
puncturex, specified by W as the factor affected by ;.

Such pairs (W, V) forms a basis for the topology of [ [V, Cleavs.(U;i) x
Puny(k — ).

A topology for Cleavs.(—; k) is given by letting the ¥;-factor in (2.2) act
by permuting the operadic outputs of Cleavs.(U;i) x Puny(k—i) and equiv-
alating elements of Cleavs.(U;i) x Puny(k —1i) that agree after being acted
upon. We finally topologize Cleavg.(—;k) := [] Cleavs. (U; k)

veTimbergn
as a subspace of Cleavg.({S"},k) x Timbergn.

Remark 2.2.4 An immediate consequence of the construction of the coloured

operad Cleavgn, is that there is an inclusion of coloured operads Cleavgn. <
Cleavg., induced by the inclusion of Cleavs.(U;k) into the i = k part of
(2.2). As explained in the introduction, this inclusion will be a cornerstone
in providing an action of H,(Cleavg.) on H,(M*").

To an element y € Cleavs.(U;k), let [T, P], € Cleavs.(U;i) denote the
element in the first factor of (2.2) describing cleaving hyperplanes, and P, €
Pun; (k—1) the factor of the second, describing punctures. Let (pj,, . .., Di,_, )y
denote the k—i points in the configuration space part of Pun (k—i), counted
with clustering multiplicity. We let p; . be the point labelled by i,,. We call

s
these points punctures of Cleavs.(U; k).

—_
Construction 2.2.5 To x € Cleavg.(—; k) we can form the diagram akin to
the action diagram in 1.4.4 of Cleavgn:
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M (Ms")’f (2.3)
|
N(rfsx)

M) — e

However, we impose the following modifications compared to 1.4.4 for an
R ——
element x € Cleavg.(—; k) :

e We let the blueprint of x be given as the following subset of S™:

By = Birpr, VAP U - U P}

where fip py, is the blueprint associated to [T, P],, and p; the punctures

of .

e When ¢ is a label of [T, P],, we as here let CN; denote the closure of
the complement of the ﬁs&ia‘ued timber N; as a subset of S™, and the
only modification on M11=1 N compared to M11i-1ti is that when the
ouput labelled by i a puncture we want the i’th factor in the mapping
space to be a copy of M. Since CIN; = S™ as the closure of the associated
timber, we shall in this case realize M as M*"/Q_,; that is we quotient
the factor associated to V; = {p;} out by the based loop space, based

opposite the puncture.

e The notation Mi" is misleading in the sense that when x ¢ Cleavg.(—; k),
we do not have a natural way of identifying of M;fn as a subspace of
M#". In picture 2.2 we show the effect of M?" when there is a punc-
ture. As before, each cleaving hyperplane gives rise to a codimension
one subspace where the mapping is constant. However each puncture
gives rise to an 'implosion’ where the i'th mapping space from (Msn)k

’bubbles out’ and survives as attached at —p; to the mappings that are
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constant at the blueprint.

Note that when y € Cleavgn, the above diagram is precisely the same

diagram as described in 1.4.4.

Remark 2.2.6 As indicated in 2.2, there is a map Mg" — M?®", namely
the map that excludes f; in the pullback for all punctures ¢ and include the
remaining as maps S” — M, patched together from the result of hyperplanes
that are actually cleaving, opposed to being punctures.

Each puncture hereby acts as a unit for its associated algebra. In the

: o ny k
sense that the operation for y € Cleavs.(—; k) factors from (MS ) through
(Msn)k_l where [ is the amount of punctures of y, induced by the [ O-ary
> >

operations Cleavgn(—; k) — Cleavg.(—; k — 1) forgetting all the punctures.

2.3 Umkehr Maps Along Manifolds

Throughout this chapter, let F—— X —?~y denote a fibration sequence,
with F' the fiber. Extending the fibration via the homotopy fiber F, :=
{(x,f) € X x BL | f(0) = » f(1) = p(z)}, leads to the usual fibration
sequence QY —— F) x

Note by the above that the monoid QY acts on F}, by concatenation of
based loops, and the associated Borel construction EQY xqy F, fits into a

morphism of fibrations

F,— = EQY xqy F,— > B(QY)

| ! |

F X Y

Assuming that Y is path connected, the two outmost morphisms are the
standard homotopy equivalences, and the middle morphism is the projection
onto X from F,. We shall use the notation Fjoy = EQY xqy F,. The
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Figure 2.2: The top picture shows an operation of an element in
Cleavg.(—;3) with all cleaving hyperplane. Here, the result is a map S™ —
M that is constant along the blueprint. The bottom shows the result of slid-
ing the top hyperplane to a puncture at the top of S™. Here, suddenly the
function f3 is wedged onto the function patched together from the cleavage.
Note that Disregarding f3, we still have a map to S™ that is constant along
the blueprint.
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long exact sequence of homotopy groups now tells us that we have a weak

equivalence:

Lemma 2.3.1 EQY Xqy Fp ~ X
This has the effect that in a pullback diagram

*

X)X (2.4)

|

f

v
A—2>p

with f a fibration, we can identify the map ¢* as a map ¢*: Froa — FraoBp.
In [Kle01], the dualizing spectrum of a group G is given as the G-equviariant

function spectrum Mapg(E G, G), with both source and target being sus-

pension spectra. From theorem [Kle01, Th. D], there is a norm map np: FyopA

FM¥B ag well as a norm map n4: Fpua A Dog — FM4,

Dop —
Here, X"“ denotes the homotopy fixed-point spectrum Map(EG,, X)¢,
that is the fixed point of the associated mapping space, where X is a G-
spectrum.
Taking the induced map of ¢: A — B produces an umkehr map ¢! =

Map(E(p) 4, X): F'B — P4 This map is what leads to the following:

Lemma 2.3.2 If A and B in (2.4) are Poincaré duality spaces, and f is a
fibration, then the above defines an umkehr map in spectra ¢': X A Dop —
f*(X) A Dga.

Proof. Since A and B are Poincaré duality spaces, [Kle01, Th. D] gives us that
the norm-maps involved in the following string of morphisms are homotopy-

equivalences of spectra:

X A DQB FhQB A DQBLF}’QB (25)

|
T
[

J*(X) A Diga <— Fra) A Doa <— hA
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The two extremal morphisms are also homotopy equivalences from calcula-
tions above. Therefore, an umkehr map X A Dop — f*(X) A Dqyu is given

by choosing homotopy inverses in the string of morphisms above. O

From |Kle01, Th. A|, we furthermore have that Dgqy is a sphere spectrum
of dimension — dim(A).

Consider a diagram of the form

x-—lop<® 4 (2.6)
TR
X B A PA
VE L
X' —B <A
with the circular morphisms being retractions, ppotg = 1g, pgpoitg = lp
and ppoty = 14 — and where these retractive properties are commuting with
the morphisms f and .
Assume that f and [’ are fibrations, with fibers F and F”.

The morphisms ¢y and ¢f+(x) induced from the diagram 2.6 gives a diagram

E A DQB i>f*(E) N DQA (27)
LEJ\]I LEx(Eyal

E' A DQB 4>fl*(El) AN DQA

of maps, with the top map being the umkehr map of 2.3.2. The diagram

2.6 also gives group extensions

QA 2> QA — Q(A'/A)

OB —2-QB — Q(B'/B)

By [Kle01, Th. B+C|, there is an equivalence of spectra Dga ~ Dga A
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Dqarja and Dopr ~ Dop A Doppr. Taking the morphism into the first factor
hence produces morphisms of spectra that extends (2.7) by composition to

a morphism

E A DQB 490> f*(E) N DQA (28)
|
Lf Lf*V(E)
E' A DQB/ I f/* (El) VAN DQA/

By 2.6, there are retraction maps pg and pp«py fitting into the above

diagram.

Lemma 2.3.3 Assuming that A, A’, B, B’ are Poincaré duality spaces, in
(2.6)we have the identity

o' =prpoyToip

Proof. By |Kle01, Th. A| we have an identification of D¢ as a sphere spec-
trum of dimension — dim(C') if C' is Poincaré duality space. The progression
from (2.7) to (2.8) is hence a desuspension map, so ¢'" fits into the lower
morphism of (2.7) and the identity follows. O

2.4 Patching Actions in Cleavage Operads

We now go into detail with the promised homologous action of the previous
chapter; that is we shall provide the action of H,(Cleavs.) on H,(M5"). The
strategy being that we will decompose Cleavs»(—; k) into smaller manifolds.
We then apply the methods of section 2.3 to obtain umkehr maps for the
constituents we have decomposed the space into. Via a homotopy colimit, we
then show that these patch together to a global umkehr map, for the corre-
spondance diagrams given in 2.2.5. An action of Cleavg. is then obtained
through the embedding of 2.2.4
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Obtaining the action through an action of Cleavg» gives us the advantage
that the larger acting space is homotopically simple, and we avoid having
to deal with certain considerations on manifolds with boundary involved in
the underlying Poincaré duality arguments, had we attempted to make the

construction for Cleavgn directly.

2.4.1 Patching Actions In Families

- —_—
To any timber U € Timberg» there is an embedding C[eavsn(U; k) —
—
Cleavs.(S™; k), extending the cleaving hyperplanes on U to cleaving hy-
—_—
perplanes on S™. We shall therefore restrict attention to Cleavg.(S™; k) in
decomposing the space. The action for other Cleavs.(U;k) will be given
through this embedding.
—_—
We start out by covering Cleavg.(S™; k) by a suitable set of closed spaces.
To x € Cleavs.(S™; k), let |mo(53,)| denote the amount of components of the
blueprint.

. _—>
Definition 2.4.1 Let the m-evasion space A,, € Cleavg.(S™; k) be the sub-
space given by requiring that y € A,, has |m(5y)| = m +1

Hereby, Ag will consist of punctured cleavages where all the hyperplanes
and punctures involved intersect non-trivially inside D"*!. On the other hand
Ag_o consist of cleavages where none of the involved hyperplanes intersect
non-trivially inside D"*!, and configuration points disjoint from the hyper-
planes.

Let A,, denote the componentwise closure of the m-veering space inside
—_—

Cleavs.(S™; k). Componentwise, in the sense that if two components C; <
A, and Cy € A, have C; n Cy # &, we let C; and C, be disjoint spaces in
A,
—_
We specify a covering of Cleavs.(S™; k) by taking intersections of all the

components of the spaces A, for all m € {0, ...,k — 2}.
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This covering defines a category, Patz— with objects given as intersections
of components of elements of {4,,} and morphisms given by inclusions of

subspaces.

Lemma 2.4.2 For any A € Ob(Paty,,;), A is homotopy equivalent to a

disjoint union of a product of spheres.

s
Proof. An element [T, P] € Cleavg.(—;k) is called a m-slinky if Bz p) is
connected and consists of precisely m — 1 hyperplanes and punctures. We
require that each hyperplane intersects nontrivially with at least one other
hyperplane or puncture, and that such intersections will always be a single
wedge-point.

Note that Ay N A,_, consists precisely of all k-slinkys. As we progress
towards larger spaces in Paty,,;, hyperplanes of the involved spaces will be
allowed to form in other patterns than slinkies.

The claim we want to show is that the spaces A; n A; where i < j as
well as A;, deformation retract onto the space of punctures on S™ where in
the first case at least w := j — i, and the second, w := j punctures are
part of a cluster of punctures. Meaning that there are in total k — 1 — w
punctures counted without multiplicity. Showing this, we will have shown
that A; ~ (S")" 7" ~ 4, n A,

Choose [ € {1, ..., k}, associated to a point a € A, there is timber U; < S™,
and timber U, for the associated Cleavage Operad over D", Being convex,
Ul has a well-defined center-of-mass u;, and we can define the deformation re-
tracting by pushing hyperplanes in the direction away from wu; in the following
way:

A direction vector v, is defined by the shortest line from u; to a given
hyperplane P,, pointing away from wu;. If P, is a hyperplane containing w;,
we let v, = 0; note that in this case P, will always be dominated by some
hyperplane closer to U,. In order to ensure continuity with respect to these
hyperplanes, normalize v, and scale it by the norm of the inner product

Vp - Up|-
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We push the hyperplanes in the following way:

(A) If P, is not participating in a slinky, we translate it by the direction
vector vp,. If there are hyperplanes in the direction of P, that have not

yet been translated into configuration points, we leave P, stationary.

(B) If P, is participating in a slinky, and only a single wedge-point a of
other hyperplanes, discounting configuration points, is attached to P,
we specify a rotation of P,, centered around a, by letting v, denote the

tangential direction of the rotation.

(C) If P, is bounding U, but it is participating in a slinky where none of
the other hyperplanes bound U,, we in (B) leave P, stationary until
P, is the only hyperplane left that is not a configuration point in the
slinky.

(D) If P, is participating in a slinky, and has multiple wedge-points arising
from intersections with other hyperplanes, we let it be stationary until
it’s wedge-points have decimated to configuration points enough that
it falls under (B) above.

The above procedure will lead all cleaving hyperplanes to eventually be-
come tangent to S™, and hence become punctures. Hereby providing the
desired deformation retraction of A. Continuity of the procedure in the tran-
sition of hyperplanes from (A) to (B) can be checked using the fact that we
are using what is in (A) translational data to what in (B) is tangential data
for the rotation.

(A) ensures that not only the hyperplanes participating in slinkies, but all
hyperplanes will eventually turn into configuration points.

(C) and the condition on hyperplanes being stationary ensures that hyper-
planes won’t be pushed into a position where they are no longer cleaving.

Note that the deformation retratction is well-defined, in the sense that the

retraction never goes out of A. Note namely that (B) and (D) ensures that
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the sum of the amount of hyperplanes and configuration points participating

in slinkies never decreases.
O

Although not entirely contained in the lemma above, we note that the
same homotopy as specified in the proof above computes the homotopy type
—_—
of Cleavg.. This thus proves Theorem D stated in the introduction.

Definition 2.4.3 To x € A,,, there are associated timber N, ..., N), and
the complement of the associated timber ]_[le CN}X will consist of a disjoint
union of wedges of disks and points, as described in 1.3.10.

A point x € A,,\A,, will have |mo(B,] < m + 1. Hence, for some j €
{1,...,k}, the closure inside S™ of the complement of the timber of x will
have CNJX consisting of less components compared to the case of x' € A,
lying in the same path-component of A,, as . Since a point in A4,,\A,, can
be considered a limiting point of elements of A,,, the lesser components of
CN;< will be signified by a wedge \/, C; of components C; that in any path
away from A,,\A,, becomes disjoint.

We shall make the dogma that whenever \/, C; occurs as as above in A,,,
the symbol [IN;< shall indicate the space with [ [, C; replacing \/, C.

Similarly, if CN;* consist of the clustered punctures p;, = --- = p;,, we let

CN; = H{:l{pl}'

The above dogma ensures that |m(53,)]| is constant for any x € A,,. Hence
timber will always ’evade collision’ in A,,.

We shall define a functor F' that goes from the category Pat 71— to the
subcategory of the diagram-category of topology spaces, given by pullbacks,

I.e. Diagrams of the form

F(A)1g ——=F(A)e

I

F(A)g1 —= F(A)2z
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We shall generally adhere to the above notation, and use the pairs of
elements of {1,2}; (1,1),(1,2),(2,1),(2,2) to refer to the specific spot above
in a pullback diagram. Call the category of these diagrams Udiag.

Our first step in defining the umkehr map is an intermediate functor G
that will be enough for providing an umkehr for correspondences over the

space A,,.

Construction 2.4.4 Let G be the following functor from the category {A4,,}

of the evasion spaces A,,, into Udiag:

Em (M) 5 A, (2:9)
1 e
) - R
Mmo(Brr.p)l « Tm — G(AW)Q:Q

Since we have a pullback-diagram, G(A,,); 1 will be specified in the follow-
ing.

We first define G(A,,)22, and the morphism rés. First of all, as a set, we
let

MM = [T M
Am

XEAm

N
where CN)X is the i’th output of the element x € Cleavg.(S™; k) as in 2.4.3.

We specify a topology on this space as the quotient space under the restric-
tion map from (Msn)]Cer x A, here as specified in 2.4.3, each component
of CN¥ is included into one of the k +m copies of S involved in the domain.
Since we have taken componentwise closure of A,,, the map is well defined
as the CV}¥ exercising multiple components will be constant throughout each
component of A,,.

Note as in 2.2.5 that since we are taking closures of complements, when

NX = {p;} is a puncture we have that CN* = S™. Consider the subspace
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(€, M)z, < ME‘Z ' given as the mappings where whenever CN* = 5™, and

m

thus N; = {p;}, the associated map f;: S — M will have f;(—p;) = = €
M some fixed basepoint. That is, (Q?—pi}M)T is the subspace of all based

m

loopspaces occurring in Miﬁ We hereby let G(A,,)s2 be the quotient space

G(Tm)Q,Q = Mizi/(Q{*Pi})m

The map rés is given as the restriction map res: (M S")]Hm x A, — M%,
composed with the quotient map to G(4,,)s..
Pointwise, the map 7 — is given as in 1.2 — as the constant maps along

the components that share points with the component of the blueprint.

For a disk of CN¥ # S™, we can define a point specifying the centre-of mass
— for instance by maximizing the time with which any geodesic flow will reach
the boundary of the disk. For a sequence in A,, with N; converging to {p;},
the centre of masses will converge towards {—p;}. Evaluating at centre of

, and —p; where N; = {p;}, hereby

. CN;
mass in a tuppel (fi,..., fitm)y € MAm

provides the following homotopy-equivalence:
Lemma 2.4.5 G(A,,)s2 is homotopy equivalent to M*+™ x A, .
Remark 2.4.6 Disregarding the punctures in 2.4.4, the map

res: (Msn)k+m X <E N Cleavg.(—; k)) — M%nc[wysn(_;k)
is a fibration.

This can be seen by restricting to a fixed x € A,, n Cleavg.(—; k), the
map consist of a dualisation of cofibrations CN¥ < S™ cofibrations taken
componentwise if CN;* has multiple components. Since we can choose the
maps that make (S™ CN;) a neighbourhood deformation retraction pair to be
depending continuously on A,, N Cleavg.(—; k) we can define the associated
lift pointwise in A, N Cleavgn(—; k).
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Recall that a quasifibration f: £ — B is a surjective map such that
(E, f~Y(b)) — (B,b) is a weak equivalence.

We doubt that the map res as given in 2.4.4 with punctures included is
an actual fibration. However, basically by its definition, the map res — where

we have quotiented the 'missing’ fibers of rés in the base of G(A), 2, we have
that

Proposition 2.4.7 The maps res and rés of 2.4.4 are quasifibrations

The statement on rés can be seen identifying the map as the evaluation
along the blueprint of y where they in F'(A);; will be constant.

By 2.4.5 and 2.4.2, we have a pullback-diagram with the lower portion of
the spaces being manifolds. Since we have vertical quasifibrations, we can in
turn produce an umkehr, for each U-diagram indexed by A,, independently.
However, we shall need one more step in extending our umkehr-diagrams in
order to patch the local umkehr maps into a global umkehr map.

We shall thus replace the functor GG by a functor F': Patyy,,:

Construction 2.4.8 Fixing y € A,,, as seen in 2.4.4, the set of complements
of associated timber ]_[f;l CN; consist of k + m contractible components.
Choosing any k — 2 —m of these components D1, ..., Dy_o_,, gives a restric-

tion map in the same way as in 2.4.4

n o kL CNuI[FZ2™m Dy
res: M°" x 4, — M%*l iy ,

where the latter is a quotient space under the map.

Again, when x has a puncture p;, the associated component CV;, as well
as any chosen D; corresponding to p; will be a copy of S™. Again, analogous
to 2.4.4, we let (€(_,,})) denote the based loop spaces —p; for such values
of x. We let

CN; utf;f*mDi/(

- ]_[I'C—l
F(Am)2p = M= Qp) 7
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and consider the diagram, with the square involving G(A,,)11 and G(4,,)2.2
being the diagram (2.9):

F(An)o (M) x A,
e G(Am)1a (M57) T %
/ l /A/
F(AD l ()0 A i
MImoBre)l « A <le? G(E)QQ
- l
- K /”/
M1 < A, : F(A)22

The maps labelled A are all a suitable iteration of diagonal maps, making
the diagram commute. The map 7 is specified by noting that for y € A,, we
have |my(5,| = m+1. The difference between k—1 and m+1is k—2—m, and
having chosen the components D, ..., Dy _o ., we specify n as the map that
is given by ¢—along m+1 of the factors of M*=1 and for each j € k—2—m,
we choose one of the other factors in M*~! doubled by the diagonal map,
and let n be constant along D;.

We let F': Patz-, — Udiag be given as the pullback square involving
F(Anp)11

We let F(A,,)o be given by noting that the extra choices involved in this
construction will in the pullback space F(A,,); give rise to k mappings from
S™ — M that fit together as in 2.2.5, as well £ — 2 mappings given by the
choices of components involved in F' and G. pr is the projection map that
projects these extra k — 2 mappings away. To any x € A,,, the associated

space F'(Ap,)o restricted to x will be given by M?" of 2.2.5.

(2.10)
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The explicit definition of F' is highly dependent on the choices made above,
as we shall see, 2.3.3 will make these choices cancel out in taking a pullback
along the top-maps in the diagram of 2.4.8.

Note that with the definition of F' — which image has no reference to m, F
is also defined for A,, " A,, so F' can be extended to a functor F': Patys,; —
Udiag. This is the functor for which we need to show that the umkehr maps
for A,, defined by 2.3.2 patch together to a global umkehr map of the entire
operad Cleavgn:

Theorem 2.4.9 The diagrams (2.10) exhibit an action of Cleavg. in the

category of spectra. Meaning that we have a map

(MS ) X C[ea’l/sn(—;k;) N MS A Sdlm(M)(k;fl)-

Restricting this map to Cleavg.(—; k) provides an action of H,(Cleavsn)
on H,(M5").

Homotopically, the result of Theorem D tells us that the larger space
S —
Cleavg.(—; k) is much simpler than Cleavg.(—;k), which is the k’th level
of an F, . -operad. However, as in 2.2.6, the algebra we get from acting by
—_—
Cleavs. is a unital algebra, whereas the algebra we get from Cleavg. is a

non-unital one.

Proof. To A € Ob(Paty,,}), we take a choice of functor F'. Lemma 2.4.2 tells
us that A is a Poincaré duality space, and therefore, using 2.4.5, the spaces
F(A)2s and F(A)y, of 2.4.8 are Poincaré duality spaces as well.

Since 2.4.7 tells us that the needed maps are quasifibrations, we by 2.3.2

get that there is an umkehr map

gO!A: F(A)i2 A Dap(ay,, = F(A)11 A Dara),,

We have stated 2.3.2 with fibrations instead of quasifibrations to ensure

that the pullback of fibrations is again a fibration. In 2.4.7, we have however
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seen that in our case with quasifibrations, this is still the case for all pullback-
diagrams we consider. The results of chapter 2.3 hence holds with fibration
replaced with quasifibrations.

By [Kle01, Th. A], the dualizing spectra will be given by desuspended
sphere spectra. The domain of ¢!y will be a sphere spectrum desuspended by
dim(M) - (2(k — 1)) + dim(A) and the target desuspended by dim(M) - (k —
1) + dim(A), where dim(A) denotes the dimension of the product of spheres
given by the deformation retraction of 2.4.2.

Smashing (MS")k x A and M7" with the same dualising spectra as above,
and in that order, we get that composition with the induced map in spectra

with the maps A and pr above provide an action

Ax (M) = F(A)y A §EmOD G-

where we have suspended the map suitably to have no desuspensions on
the domain of the action.

Let A" — A be a morphism in Paty,,;, these are inclusions. Restricting the
action of A to A" will by 2.3.3 yield the same umkehr map, as producing the
action for A’ directly.

Therefore, taking the colimit of the associated umkehr maps provide a

morphism in spectra, and using 2.3.2, we get the desired morphism

(MS")k x Cleavg. — hocolim aepat,, , F(A)o) A Gdim(M)-(k—1)

We identify the target of the above as in 2.2.6, where we see that the

homotopy colimit hocolimpys,, , F(A)y is equivalent to the space of maps
¢ -

S™ — M constant along the blueprint of y € Cleavg.(—;k), with extra
functions f; wedged on whenever ¢ is a puncture. Again as in 2.2.6, forgetting
the extra f; defines a map to M°" which in turn provides the action.

The action of Cleavg.(—;k) is given by restricting the spectrum in the

—_—

domain from Cleavg.(—;k), and in effect also restricting the intermediate
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spectrum M=" A Qdim(M)-(k=1) o pfS” A Gim(M)-(k=1)

Cleavgn(—:x) a4
Restricting hocolimzp,, -,

}F(Z)O to Cleavsn(—;k), hereby avoiding the

punctures, gives the space M g;;m/sn of maps that are constant along each
blueprint of y € Cleavgn. The map M3, — M?®" is now pointwise in

C[ell’llsn
Cleavgn (—; k) an inclusion. Whereas one sees that the punctures are precisely

units for the algebra
Smashing with the associated Eilenberg-Maclane spectrum, and taking
homotopy groups, we get the statement for homology groups.
O

Remark 2.4.10 The proof of 2.4.9 deals with the operad Cleavgn. It is
however easy to see that the action constructed in this theorem extends to
Cleavg. x SO(n + 1) as constructed in 1.6.

Note namely that the top-right triangle of (2.10) can be extended to the

diagram

(M) % (SO(n + 1))" x 4,

\

(MS")Hm x (SO(n +1))* x 4,

(MS")Q(k_l) x (SO(n + 1)) x 4,

using 1.6.4, we see that the entire diagram of (2.10) can be extended to
include the above diagram, having the exact same entries ats (2.10) in the
lower entries.

Finally, the space A,, is closed under action by SO(n + 1) and this hence
leads to a action of the decomposition of the semidirect product; and the

proof of 2.4.9 can be directly extended to provide a stable action map

_—

(MS")k x Cleavgn SO(n + 1)(—; k) — MS" A qdim(M) (k1)
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In light of 1.6.5, The above remark hence gives us the following corollary:

Corollary 2.4.11 H,(M*") is a (n + 1)-Batalin-Vilkovisky algebra.
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Chapter 3

Further Perspectives

3.1 Summing Up

In the two previous chapters, we have formed an operadic foundation for
higher dimensional String Topology, as prescribed by the Cleavage Operads.
In the first chapter our most prominent results were the fact that there
are coloured F, i-operads and operads encoding (n + 1)-Batalin-Vilkovisky
algebras acting on M®". In the second chapter, we gave the spectral action
of Cleavgn on M5". These results all seem to have been anticipated since
the early years of String Topology. However, we do stress that the main
novelty we present lies in the explicit geometric construction of the Cleavage
Operads.

Compared to the 1-dimensional Cacti Operad as introduced by Voronov
in [Vor05|, the operad Cleavg act on MS" similar to the Cacti Operad;
but only up to homotopy. Where the Cacti Operad acts by lifting actual
embeddings of finite products of M to M* " via a pullback, our operads specify
this lift through certain mapping spaces homotopy equivalent to products of
M. In the first section of this chapter, we show how this up to homotopy’
viewpoint has advantages when considering equivariance of M 5! or generally

M?®" compared to the classical case.

91
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Furthermore, we have not only specified acting operads for M*", but for
any N < R""! an acting operad on M”. The necessary conditions given in
1.3.8 that the complement of all timber N; of N is componentwise contractible
makes the action less interesting for general manifolds N < R"*!. That
these operad acts to give an actual algebra, in the classical non-operadic
sense appears to be a rare phenomenon. However, the choice of embeddings
N < R™*! still gives leavage for different structure of the acting operads. In
the final section of this chapter we indicate how knots S! < R?, appear to
give new structures on free loop spaces. As for the Cleavage Operad, we can
produce an operad that cleave knots into smaller components. Inspired by a
tale, we call this operad the Gordian Knot Operad. Khovanov Homology can
be used to determine the complexity of a knot. Dependent on this complexity,

different algebraic structures will — conjecturely — come from the cleaved knot.
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3.2 Operational Equivariance

One problem in other approaches to String Topology, via for instance the
Cacti Operad, is that in the pullback ’pinch diagram’, describing the basic

operation on the free loop-space, we do not have S'-equivariance:

MS"—E 08 % M (3.1)

L

M—>A M x M
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where the map ev is the evaluation map for some fixed points of S*. M5’
is the space of maps from the figure eight’, given as maps from S*[[S1/ ~,
where ~ is the equivalence relation that wedges the circles together at the
evaluation points of ev.

Non-equivariance of the action is understood in the sense that we have an
action of S' in the domain MS" x M5 of the evaluation map ev, acting by
St on MS' by precomposing on the domain of the maps S* — M. However,
there is in general no natural way to act by S' on M x M. This makes the
map ¢ similarly not S'-equivariant. This has the implications that if one
inspects ¢ and its associated umkehr, ¢', the equivariance is ill-behaved. The
picture gets worse in higher arity than two in diagrams similar to 3.1. These
are described by cacti with several lobes intersecting each other, in the sense
of for instance [Vor05|. Both [Wes08| and [KMO07, Prospectus| are examples
where this is an outspoken problem.

We shall point out how the operad Cleavg» is much more well-behaved
with respect to SO(n+1)-equivariance of the action on M*5". The basic action
diagram related to Cleavg. is given in 1.4.4 in (1.2). Compared to 3.1, the
restriction map res does carry SO(n + 1)-equivariance. Indeed, the space of
objects of Cleavgn, Ob(Cleavsn) has an action of SO(n+1), rotating timber
of S™ via the action of SO(n+1) on S™. Since the action of SO(n+1) on R™*?
transports cleaving hyperplanes to cleaving hyperplanes, it also transports
timber to timber.

Denoting the action on timber N; € Timberg. as a.N; for a € SO(n + 1),
the restriction map is equivariant in the sense that we have the commutative
diagram

() = ()
ML= CNe —2 i, CanNs
where the topmost map is the diagonal action of SO(n + 1) on the domain
along the k factors of M*>". This SO(n + 1)-equivariance has the effect that
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the associated maps : M[STT:B] — (MS")}C and its umkehr are SO(n + 1)-
equivariant as well. In the sense that the SO(n + 1)-action will rotate the
blueprint of [T, P], along which maps in M[ST" p] are constant; and this is
precisely the action with wich ¢ is equivariant.

This improved equivariance leads us to the following question, inspired by
the work of [Wes08]:

Question 3.2.1 What does an (SO(n + 1))-equivariant version of Cleavgn
tell us about the equivariant homology HEC" D (Ar5™)?

3.3 Dependency of the Embedding

The results we obtain in chapter 1 are all relying on the fact that we are
working with S™ € R"*! the unit-sphere.We shall in this section employ the
fact that any embedding of N inside R"*! gives a new operad. In particular
any knot S* < R3? gives a new operad. However we shall show indications
that this direct approach does not give much new interesting information to
String Topology.

Instead we shall in the end of this section aim for hinting towards an ex-
tension of String Topology via Khovanov Homology — in the sense that every
knot K € Emb(S', R?) gives a different theory, with the un-knot providing
standard String Topology.

3.3.1 Change of Embeddings

To an embedding e: N < R"*!, we have in section 2.2 defined an associated
Cleavage Operad, and for the sake of this chapter, we shall therefore refer to
the Cleavage Operad associated to e as Cleav..

As a starting observation, the dimension of the ambient space N lives in

does not affect the homotopy type of the Cleavage Operad:
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Proposition 3.3.1 Let an embedding e: N — R"™ be given, and denote
by ¢: R® — R"™"! the inclusion of the first n coordinates. There is a weak

equivalence of operads Cleav. ~ Cleav,..

Proof. An oriented hyperplane of R"*!, with points entirely contained in
t(R™) does not intersect N transversally. Neither is an oriented hyperplane
of R"*! transversal if they do not does not intersect N. Given a hyper-
plane P of R" intersecting N transversally, there is hence an S*\S® worth of
choices of hyperplanes of R""! whose intersection with N = R"*! agrees with
P A N. The two contractible components of S*\S° corresponds to a choice
of orientation of P. Contraction of these intervals provides the homotopy

equivalence. O

Given an embedded knot K: S' — R3, we have an associated operad
Cleavy. One could hope that this operad would provide new operations
on MS" — other than the Es-operations determined in 1.5.21. We take the

following example as indication that such hopes are best off shattered.

Example 3.3.2 The left part of picture 3.1 shows an operation associated
to an non-convex embedding S' — R2. The point of the example being that
we obtain timber N; and Ny with multiple components. Hereby MITZ1 oV
M*, whereas we still have that the blueprint consists of a single element.
Therefore, in the diagram (1.2) of 1.4.4 the map M™¥r.r) — M= N g yp
to homotopy an embedding of codimension 3 dim(A/). This has the effect that
the operation associated to this particular cleavage will be a map H, (M Sl)@
Ho (M) — Hy 3aiman (M), with the degree of the target differing from
the 2-ary of operation Cleavg.(—;2) by 2dim(M). A priori the operations
associated to a non-convex embedding is hereby a new ’higher’ operation.
In [CG04| a fat-graph model for higher string operations on H,(M5") is
given. In the sense that any fat-graph gives rise to a new higher operations
as well. In picture 3.1, we have indicated a fat-graph associated to the non-

convex-embedding. Briefly, any such fat-graph can be obtained by collapsing
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the blueprint associated to [T, P|to a point, and hereby for each timber N;
obtain as many loops as there are components of N;. We make it into a fat-
graph, by making sure that there is a single incoming edge, wrapping the
loops by encapsulating the loops by an extra full edge. Finally, we join the
timber separated by a hyperplane through a single full edge.

o O
-

Figure 3.1: An example of a cloven non-convex embedding is displayed to the
left. Notice that a single cleavage here makes N7 consist of two components,
which also holds for Ny and their complements. To the cleavage we can
associate a fat-graph with two out-going and one incoming boundary circles.

The two components of N; and Ny are signified by the two loops at the
outgoing boundary circles

It can be seen that the operation associated to such a non-convex em-
bedding are precisely the same as the operation associated to the fat-graph
model. The surface associated to this particular fat-graph will have genus
greater than zero, as will all higher operations arising from non-convex em-
beddings. In [Tam10, Th. A, it is shown that all such higher genus operations
are trivial.

As a consequence, all new operations we attempt at constructing for Cleav,
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were e: ST — R™ is an embedding will all be trivial. There are no interesting

operations asides the ones arising from the unit-circle S* < R2.

Morally, and at least for S' < IR? this says that isotopies doesn’t create
new operations. Low-dimensional topologists would therefore consider the
apparantly negative result of Tamanoi a positive one instead. And indeed we
shall follow this positive spin, and consider it a starting point for making
String Topology a knot-invariant. We dedicate the rest of this section to
briefly indicate how we envision extending String Topology extended via
Khovanov Homology.

In order to work from the perspective of knot theory, we need to turn to
knot diagrams rather than actual embeddings K € Emb(S', R?). That is,
up to finitely many self-intersections, i.e. points p € R? with |K~!(p)| = 2,
K: S' — R?is an embedding. A knot diagram signifies a particular angle
to look at a knot, considering R? as the first two coordinates of R?. An
actual embedding of St inside R? can hereby be reconstructed from the knot
diagram. Using 3.3.1 as intuition, this knot reconstruction procedure does
not appear to contain any homotopical information and we shall not pay

it any attention, only define the Gordian Knot Operad via knot diagrams.

3.3.2 The Gordian Knot Operad

We shall show how to twist the Cleavage Operad of a knot to obtain a
bi-graded homological operad that acts skew-graded on the homology of
H,(M5") — skew-graded in the sense that the grading of the action will de-
pend on the knot involved in Khovanov Homology.

To a knot-diagram K < R?, let v < R? denote the set of crossing points
of R?. Given an oriented hyperplane P € Hyp? we say that P is transverse
to K if Pnyx = & and P intersects K\7yk transversally as submanifolds of
R2.

Using this definition of transversality for knot diagrams, we literally define
the Cleavage Operad Cleavy of a knot diagram K < IR? as in 1.3.8.
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Recall from, say [BNO5| that Khovanov Homology is given as the Homol-
ogy of the Khovanov Complex Ck. The complex C is basically defined by
smoothing the knot diagram at each of the crossing points vy, using one of

the four Skein relations depicted in picture 3.2.

deg=sgn deg=0 crossing sgn

X
> (PX

Figure 3.2: The Skein relations giving the Khovanov Complex. The sign of
the crossing is listed in the final column, and the degree — that can attain
the values —1,0,1 — are indicated in the top row.

> (P C

Dividing vx into 7; consisting of positive crossings, and v, the negative
crossings. To both 77 and 7 there are two Skein relations, we hence arrive
at 2‘7;;| + 2'7;(| different ways of applying the Skein relations to smoothen
the knot. Toi e {1,..., 21kl 4 2171}, let K; denote the smoothing associated
to a given choice of smoothing, suitably ordered. All smoothings K; is hence
a disjoint union of circles inside IR2. There is a Z-grading associated to a
smoothing, given as the sum of the smoothing degrees in 3.2. One builds a
complex using this grading, and by generating a module freely from all K,
and choosing signs of morphisms appropriately as is usually done to obtain

complexes. Again, we refer to [BNO05] for the details.
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The important point to note is that to each Kj;, there is an associated
Cleavage Operad Cleav K,, simply because K is given as disjoint circles inside
of R% Hence each of this operads fit into the exact same picture as the
Khovanov Complex, and each C[echi is assigned a degree according to
what smoothing has been performed to it. This leads us to the following

definition

Definition 3.3.3 The Gordian Knot Complex gorL{K is the complex of
coloured operads given with a disjoint union of gorcf . of degree j at the
7’th spot of the complex. Choosing formal morphisms between the degrees

provides the structure of a complex of coloured operads.

Observation 3.3.4 The Gordian Knot Complex acts on MIxS" in the fol-
lowing sense:

Each Cleavy, acts on M%: in the sense of 2.4.9. It hence also acts on
M1x5" by only affecting the mo(K;) first components of MUIn5" We can
hence build a Khovanov complex along the algebra structure on MLIx sl
induced from the action of C[eavKi. Again, this complex is built completely
in the same way as one builds the Khovanov Complex; each K; generates an
algebra-structure on M!H~3 1, and the morphisms of the Khovanov-Complex
transfer into morphism MLx st Mlx S given by diagonal maps, inserting
an extra copy of M 5" whenever the Skein Relation gives rise to an extra
copy of S, and projection maps, forgetting a copy of M 5" whenever the

Skein relation makes two copies of S! into a single S?.

We can hence create a Khovanov Complex of MIIx Sl, acted upon by
gorch. We call the homology of this complex the gordian knot operad.
However the question of what Homology of the complex gon{ 5 actually
means in an operadic context is more subtle, at least in the sense that in
order to obtain the action of the associated Gordian Knot Operad a knot
invariant. Analogous to 3.3.2, we can’t simply hope that isotoping the knot

S! < R? and obtain an invariant Khovanov Complex. We shall not go into a
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concrete description of this issue, but just note that the cleaving hyperplanes
separate the knot K into tangles. This is precisely the issue dealt with in
[LP09], where they in [LP09, Th. 4.4] show how the Khovanov Homology of
a knot decomposed into tangles glue together along a limit-construction to
fit into a so-called Knowledgeable Frobenius Algebra. As a cliffhanger, we
conjecture that the construction of Lauda and Pfeiffer transfer to the setting
of MUx5" in the sense that the associated algebraic structure induced from
the Gordian Knot operad will be a knot invariant; and furthermore it seems
likely that it is possible to formulate how H,(Mllxst) is a knowledgeable

Frobenius algebra ’over the Chas-Sullivan Loop product’.
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