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Abstract

This thesis deals with the structure theory of C∗-algebras. We first introduce the
abstract notion of a noncommutative dimension theory by proposing a natural set of
axioms for such theories, see Article A.

We then establish an unexpected connection between the generator problem and
dimension theory. The generator problem asks to determine the minimal number of
generators for a given C∗-algebra. We define the generator rank by not only asking if a
k-tuple exists that generates the C∗-algebra, but also if the set of such tuples is dense.
We show that the generator rank behaves like a dimension theory. As an application we
obtain that every AF-algebra is singly generated, and that the set of generators is dense,
see Article B. We also provide a solution of the generator problem for unital, separable
Z-stable C∗-algebras by showing that such algebras are singly generated, see Article C.

In the second part, we study shape theory for C∗-algebras. We first give a character-
ization of semiprojectivity for commutative C∗-algebras, see Article D. Then, we show
that a C∗-algebra is an inductive limits of projective C∗-algebras if and only if it has
trivial shape. It follows that a C∗-algebra is projective if and only if it is semiprojective
and contractible, see Article E. The equivariant version of semiprojectivity was recently
introduced by Phillips. We answer a couple of natural questions related to this notion.
In particular, we show that equivariant semiprojectivity is preserved when restricting to
a cocompact subgroup, see Article F.

Finally, we study comparison relations for positive elements in a C∗-algebra in con-
nection to comparison relations for the associated open projections in the universal von
Neumann algebra. As an application, we give a new picture of the Cuntz semigroup,
see Article G.

Resumé

Denne afhandling omhandler strukturteori for C∗-algebraer. Vi starter med at in-
troducere ikkekommutativ dimensionsteori ved at foresl̊a aksiomer for s̊adanne teorier,
jf. Artikel A.

Dernæst etablerer vi en uventet forbindelse mellem frembringerproblemet og di-
mensionsteori. Frembringerproblemet omhandler bestemmelsen af det minimale antal
frembringere for en given C∗-algebra. Vi definerer frembringerrangen ved at spørge
ikke kun om k frembringere findes men ogs̊a om mængden af s̊adanne k-tupler er tæt.
Vi viser at frembringerrangen opfører sig som en dimensionsteori. Som en anvendelse
opn̊ar vi at enhver AF-algebra er frembragt af ét element og at mængden af s̊adanne
frembringere er tæt, jf. Artikel B. Vi giver ogs̊a en løsning til frembringerproblemet for
enhedsbærende, seperable, Z-stabile C∗-algebraer ved at vise at s̊adanne algebraer er
frembragt af ét element, jf. Artikel C.

I den anden del af afhandlingen studerer vi gestaltteori for C∗-algebraer. Vi giver
først en karakterisation af semiprojektivitet for kommutative C∗-algebraer, jf. Artikel D.
Dernæst viser vi at en C∗-algebra er en direkte limes af projektive C∗-algebraer hvis og
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kun hvis den har triviel gestalt. Det følger heraf at en C∗-algebra er projektiv hvis og
kun hvis den er semiprojektiv og kontraktibel, jf. Artikel E. Den ækvivariante version
af semiprojektivitet blev for nylig introduceret af Phillips. Vi besvarer et par oplagte
spørgsm̊al relateret til dette begreb. Specielt viser vi at ækvivariant semiprojektivitet
bevares under restriktion til kokompakte undergrupper, jf. Artikel F.

Endelig studeres sammenligningsrelationer for positive elementer i en C∗-algebra
i forbindelse med sammenligningsrelationer for de associerede åbne projektioner i den
universelle von Neumann-algebra. Som en anvendelse heraf gives et nyt billede af Cuntz-
semigruppen, jf. Artikel G.



Preface

This text constitutes my dissertation for the PhD degree in mathematics. It contains the
results of my research carried out as a PhD student at the Department of Mathematics
at the University of Copenhagen from November 2009 to October 2012.

The general subject of the thesis is the structure theory of C∗-algebras, and the two
main themes are noncommutative dimension and shape theory. The thesis comprises
seven articles and a chapter with additional material.

I started my studies by comparing different regularity properties of C∗-algebras con-
nected to the classification problem. During that time, Eduard Ortega was a postdoc in
Copenhagen, and we studied different properties of the Cuntz semigroup of a C∗-algebra.
Together with Mikael Rørdam we established a connection between comparison relations
of positive elements and analogous comparison relations of the associated support pro-
jections. The results appeared in the joint article The Cuntz semigroup and comparison
of open projections, which is included as Appendix G.

In May 2010, I participated in the workshop “Semiprojectivity and Asymptotic
Morphisms” in Copenhagen. There was a problem session where the experts presented
the open questions of the field. This was very inspiring, and together with Adam
Sørensen I started to attack one of the problems, which asked to characterize the spectra
of commutative, semiprojective C∗-algebras. We managed to solve the problem, thus
confirming a conjecture of Blackadar, and the results appeared in the joint article A
characterization of semiprojectivity for commutative C∗-algebras, which is included as
Appendix D.

Another open problem that was presented at the workshop in May 2010 is whether
every C∗-algebra is an inductive limit of semiprojective C∗-algebras. While the general
problem remains open, I obtained a natural characterization of the class of algebras
that are inductive limits of projective C∗-algebras. It follows from this characterization
that a C∗-algebra is projective if and only if it is semiprojective and contractible, which
confirms a conjecture of Loring. The results are contained in the article Inductive limits
of projective C∗-algebras, which is included as Appendix E.

In the spring of 2011, I visited the Centre de Recerca Matemática (CRM) at the
Universitat Autónoma de Barcelona for the Research program “The Cuntz semigroup
and the classification of C∗-algebras”. During that time, I started to work on the
generator problem for C∗-algebras, and together with Wilhelm Winter I obtained a
solution to the problem for unital, separable Z-stable C∗-algebras by showing that such
algebras are singly generated. The results are contained in the joint article The generator
problem for Z-stable C∗-algebras, which is included as Appendix C.

In November 2011, I organized the master class “The nuclear dimension of C∗-
algebras” in Copenhagen. While preparing lecture notes with a survey on noncommuta-
tive dimension theories I realized that there exist properties that all these theories share.
This encouraged me to define an abstract notion of a noncommutative dimension theory,
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by proposing a natural set of axioms for such theories. This is contained in the article
The topological dimension of type I C∗-algebras, which is included as Appendix A.

In the spring of 2012, Christopher Phillips visited Copenhagen. He recently defined
the notion of equivariant semiprojectivity which takes group actions into account. To-
gether with him and Adam Sørensen I studied this notion and we answered a couple of
natural questions. In particular, we give a characterization when the trivial action of a
group is semiprojective. The results are contained in the joint article Semiprojectivity
with and without a group action, which is included as Appendix F.

In January 2012, I attended the workshop “Set theory and C∗-algebras” at the Amer-
ican Institute of Mathematics (AIM) in Palo Alto. I participated in a research session on
the generator problem for non-Z-stable C∗-algebras, which turned into an ongoing joint
project with Karen Strung, Aaron Tikuisis, Joav Orovitz and Stuart White. The joint
work with them was also the starting point for me to study the denseness of generators
in a C∗-algebra. This led to my definition of the generator rank for C∗-algebras. It turns
out that the generator rank has many of the permanence properties that noncommuta-
tive dimension theories satisfy, which establishes an unexpected connection between the
generator problem and dimension theory. The results are contained in the article The
generator rank for C∗-algebras, which is included as Appendix B.

The mentioned articles are attached in a rough systematic order, starting with arti-
cles about dimension theory (which includes the articles about the generator problem),
and then articles about shape theory. This is why the articles do not appear in chrono-
logical order.
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CHAPTER 1

Introduction

1.1. Dimension theory and the generator problem for C∗-algebras

In the first part of the thesis, which consists of the Articles A, B and C, we study
the theory of dimension for C∗-algebras and we establish a connection to the generator
problem for C∗-algebras.

The covering dimension of a space is an assignment that extends our intuitive un-
derstanding that a point is zero-dimensional, a line is one-dimensional, the plane is
two-dimensional, etc. There also exist other dimension theories for spaces, e.g., the
small and large inductive dimension, but they all agree on the class of separable, metric
spaces. In fact, it is the subject of axiomatic dimension theory to show that certain
natural axioms for a dimension theory force it to agree with the (covering) dimension,
see e.g. [Nis74] or [Cha94].

When moving to noncommutative spaces, there is no longer only one natural di-
mension theory. Instead, the theory ramifies into different concepts that suit individual
purposes. The first generalization of dimension theory to C∗-algebras was the stable
rank as introduced in 1983 by Rieffel, [Rie83, Definition 1.4]. It generalizes the charac-
terization of dimension in terms of fragility of maps. Herman and Vaserstein, [HV84],
showed that the stable rank for unital C∗-algebras coincides with the Bass stable rank,
which is a purely algebraic notion that can be defined for every unital ring, and which
was introduced to study non-stable K-theory. This explains why the stable rank for
C∗-algebras has many applications in the computation of K-theory.

The real rank was introduced in 1991 by L. G. Brown and Pedersen, [BP91]. Like
the stable rank, it generalizes the concept of fragility of maps. However, while the stable
rank considers the analog of maps into Cn, the real rank considers the analog of maps
into Rn. Despite this seemingly insignificant difference, the real and stable rank behave
much differently.

More recently, the decomposition rank was introduced by Kirchberg and Winter,
[KW04, Definition 3.1], and the nuclear dimension was introduced by Winter and
Zacharias, [WZ10, Definition 2.1]. These notions are mainly used in connection with
Elliott’s classification program for simple, nuclear C∗-algebras.

It is a recurrent theme that (noncommutative) spaces of low dimension enjoy certain
rigidity or regularity properties. For instance, zero-dimensional compact, metrizable
spaces are very rigid in the sense that two such spaces are homeomorphic whenever they
are shape equivalent. When trying to generalize such a statement to C∗-algebras, one
has to find the “right” non-commutative dimension theory. For instance, the analog
statement easily holds for the nuclear dimension. Indeed, a separable C∗-algebra has
nuclear dimension zero if and only if it is an AF-algebra, and two AF-algebras are
isomorphic whenever they are shape equivalent.

On the other side, the analog statement does not hold for the real rank, i.e., there
exist separable, real rank zero C∗-algebras that are shape equivalent, yet not isomorphic,
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as shown by Dadarlat, [Dad00]. The (counter)example of Dadarlat consists of a nuclear
and a non-nuclear C∗-algebra. It is unknown if a counterexample also exists among
nuclear C∗-algebras, and we think that a positive answer to the following question would
be an interesting way of unifying many of the known results about the classification of
nuclear, real rank zero C∗-algebras:

Question 1.1.1. Are separable, nuclear, real rank C∗-algebras isomorphic whenever
they are shape equivalent?

In Appendix A, The topological dimension of type I C∗-algebras, we introduce the
abstract notion of a noncommutative dimension theory on a class C of C∗-algebras as an
assignment d : C → N = {0, 1, 2, . . . ,∞} such that six natural axioms are satisfied. These
axioms are noncommutative analogs of properties of the covering dimension. Axioms
(D1)-(D4) mean that a noncommutative dimension theory behaves well when passing
to ideals, quotients, direct sums or minimal unitizations. The less obvious axioms are
(D5) and (D6). The former means that a noncommutative dimension theory behaves
well with respect to approximation by sub-C∗-algebras. Recall that a family of sub-
C∗-algebras Ai ⊂ A is said to approximate A if for every finite set F ⊂ A and ε > 0
there exists an index i such that F is contained in Ai up to ε. Then axiom (D5) means
that d(A) ≤ k whenever A is approximated by Ai ⊂ A with d(Ai) ≤ k. It follows that
a noncommutative dimension theory behaves well with respect to inductive limits, i.e,
d(A) ≤ lim infi d(Ai) for every inductive limit A ∼= lim−→i

Ai, as shown in Proposition 2 of
Appendix A.

Lastly, axiom (D6) is the noncommutative analog of the Mardešić factorization the-
orem, see Remark 1 in Appendix A and [Nag70, Corollary 27.5, p.159] or [Mar60,
Lemma 4].

We also introduce a notion of Morita-invariance for dimension theories by requiring
that d(A) = d(B) for any two Morita-equivalent C∗-algebras A andB, see Definition A.2.

The dimension theories mentioned above are indeed noncommutative dimension the-
ories in the sense of Definition A.1. The decomposition rank and nuclear dimension are
Morita-invariant, while the real and stable rank are not. We also show that the topologi-
cal dimension as introduced by L. G. Brown and Pedersen, [BP09], is a noncommutative
dimension theory for type I C∗-algebras.

In Article B, The generator rank for C∗-algebras, we establish an unexpected con-
nection between noncommutative dimension theory and the generator problem.

Let A denote a C∗-algebra. We say that a tuple a = (a1, . . . , ak) ∈ Ak generates A if
there exists no proper sub-C∗-algebra of A containing all elements a1, . . . , ak. For tech-
nical reasons, one often restricts to tuples of self-adjoint elements, denoted by Aksa, and
we let Genk(A)sa denote the set of k-tuples a ∈ Aksa that generate A, see Notation B.2.1.
The generator problem asks to determine the minimal number of self-adjoint generators
for A. Let us denote this invariant by gen(A).

Note that two self-adjoint elements a, b ∈ A generate the same sub-C∗-algebra as
the element a + ib. It follows that A is singly generated, i.e., A contains an element
whose ∗-polynomials form a dense subset of A, if and only if gen(A) ≤ 2.

The invariant gen(−) does not define a noncommutative dimension theory. Indeed,
it may increase when passing to inductive limits as is shown in the introduction of
Article B. This makes it hard to directly compute the minimal number of self-adjoint
generators. For example, we see no obvious way of computing gen(−) on the class of
AF-algebras.
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To obtain a better behaved theory, we consider a “stable” version of the generator
problem. More precisely, instead of asking for the minimal k such that there exists a
generating k-tuple, i.e., such that Genk(A)sa 6= ∅, we want to determine the minimal
number k such that Genk(A)sa is dense in Aksa. In Definition B.2.2, we use this idea to
define the generator rank of A, denote by gr(A), as the minimal k such that Genk+1(A)sa
is dense in Ak+1

sa (notice the index shift). In Proposition B.2.7, we show that Genk(A)sa ⊂
Aksa is a Gδ-subset for each k (although not necessarily dense). It follows that A has
generator rank one if and only if A is singly generated and the set of generators forms
a dense Gδ-subset (also called generic set).

We show that the generator rank for the class of separable C∗-algebras satisfies ax-
ioms (D1),(D2) and (D4)-(D6) of our definition of a noncommutative dimension theory.
The remaining axiom seems to be surprisingly hard to show. We verified it for some
particular classes of C∗-algebras, and it would be very interesting to know if it holds in
general:

Question 1.1.2. Given two separable C∗-algebras A,B, do we have gr(A ⊕ B) =
max{gr(A), gr(B)}?

It is easy to see that a C∗-algebra has generator rank one if it is finite-dimensional
(as a vector space). It follows that every AF-algebra has generator rank one, see Corol-
lary B.3.2. In particular, this solves the generator problem for AF-algebra by showing
that they are all singly generated. In Theorem B.4.23, we compute the generator rank
of homogeneous C∗-algebras. The result shows that a unital, separable AH-algebra
has generator rank one if it has slow dimension growth or if it tensorially absorbs a
UHF-algebra, see Corollary B.4.30.

However, all AH-algebras in the mentioned classes are Z-stable, i.e., they tensorially
absorb the Jian-Su algebra Z. Therefore, the partial solution to the generator problem in
Corollary B.4.30 was already covered by a more general result in Article C, The generator
problem for Z-stable C∗-algebras, which is co-authored with Wilhelm Winter. The main
result in that paper is Theorem C.3.7, which shows that every unital, separable, Z-stable
C∗-algebra is singly generated.

Note that an AF-algebra is Z-stable if (and only if) it has no finite-dimensional
representation. This is, however, not enough to immediately deduce that all AF-algebra
are singly generated.

1.2. Shape theory for C∗-algebras

In the second part of the thesis, which consists of the Articles D, E and F, we study
shape theory for C∗-algebras.

Shape theory is a tool to study global properties of a space by disregarding its local
behavior. It agrees with homotopy theory on spaces with good local behaviour, i.e.,
without singularities, and one usually considers homotopy only for such spaces. One
can consider shape theory as the natural extension of homotopy theory from spaces
without singularities to general spaces.

One approach to shape theory is to approximate a space by nicer spaces, the build-
ing blocks. Then, one studies the original space through its approximating sequence.
The building blocks for commutative shape theory are absolute neighborhood retracts
(ANRs), and to approximate a (compact, metric) space X by building blocks means to
write X as an inverse limit of ANRs. It is a classical result that this is always possible,
i.e., that every compact, metric space is an inverse limit of ANRs (even polyhedra).
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Noncommutative shape theory was introduced by Effros and Kaminker, [EK86],
and developed to its modern form by Blackadar, [Bla85]. The building blocks are the
semiprojective C∗-algebras, which are defined by dualizing the concept of an absolute
neighborhood extensor, which is equivalent to the concept of an ANR; the precise def-
initions are recalled in subsections 2.1 and 2.2 of Article D, and section 2 of Article E.
To approximate a C∗-algebra by building blocks means to write it as an inductive limit
of semiprojective C∗-algebras. This raises the following question:

Question 1.2.1 (Blackadar). Is every C∗-algebra an inductive limit of semiprojec-
tive C∗-algebras?

This problem remains open, although we provide a positive answer for a certain class
of C∗-algebras in Article E. To develop a shape theory for all C∗-algebras, Blackadar
relaxes the requirements of approximating a C∗-algebra using the notion of a semipro-
jective ∗-homomorphism, see e.g. E.2.1. He showed that every separable C∗-algebra can
be approximated in this way, see [Bla85, Theorem 4.3].

In Theorem 1.2 of Article D, A characterization of semiprojectivity for commutative
C∗-algebras, which is co-authored with Adam Sørensen, we show that a unital, separable,
commutative C∗-algebra is semiprojective if and only if its spectrum is a one-dimensional
ANR. This verifies a conjecture of Blackadar.

Both implication of Theorem D.1.2 are non-trivial. Assume first that X is a compact,
metric space such that C(X) is semiprojective. It follows from [Bla85, Proposition 2.11]
thatX is an ANR, and it remains to show that dim(X) ≤ 1. We show that every compact
ANR of dimension at least two contains a copy of one of the three spaces Y1, Y2, Y3 of
“smaller and smaller circle”, as described in Remark D.3.4. If a space X contains a copy
of Y1, Y2 or Y3, then C(X) cannot be semiprojective. The argument is analogous to the
proof showing that C(X) is not semiprojective if X contains a copy of the disc. We
note that our more involved argument with the spaces of “smaller and smaller circles”
is necessary, since a compact ANR of dimension at least two need not contain a copy of
the disc, as shown by Bing and Borsuk, [BB64].

For the converse implication, we have to show that C(X) is semiprojective if X
is a one-dimensional ANR. To establish this result, we prove a structure theorem for
compact, one-dimensional ANRs, see Theorem D.4.17.

To extend our characterization to non-unital commutative C∗-algebras, we study
the structure of non-compact, one-dimensional ANRs and their compactifications. The
structure theorem for such spaces is Theorem D.6.1, and we provide a detailed proof in
chapter 2.

In Article E, Inductive limits of projective C∗-algebras, we show that a C∗-algebra
has trivial shape, i.e., is shape equivalent to the zero C∗-algebra, if and only if it is
an inductive limit of projective C∗-algebras, see Theorem E.4.4. This is the noncom-
mutative analog of the well-known fact in commutative shape theory that a (compact,
metric) space has trivial shape if and only if it is an inverse limit of absolute retracts
(ARs). Every contractible C∗-algebra has trivial shape and is therefore an inductive
limit of projective C∗-algebras. This also provides a positive answer to Question 1.2.1
for a large class of C∗-algebras.

The main application of these results is to show that a C∗-algebra is (weakly) projec-
tive if and only if it is (weakly) semiprojective and has trivial shape, see Theorem E.5.6.
It follows that a C∗-algebra is projective if and only if it is semiprojective and con-
tractible, which confirms a conjecture of Loring, see Corollary E.5.7.



1.2. SHAPE THEORY FOR C∗-ALGEBRAS 5

In Article F, Semiprojectivity with and without a group action, which is co-authored
with Christopher Phillips and Adam Sørensen, we study the notion of equivariant
semiprojectivity, which was introduced by Phillips in [Phi12]. It is defined by applying
the usual definition of semiprojectivity to the category of G-algebras with G-equivariant
∗-homomorphisms.

We show that equivariant semiprojectivity is preserved when restricting the action
to a co-compact subgroup, see Theorem F.3.10. It follows that a compact group can
only act semiprojectively on a C∗-algebra that is semiprojective in the usual sense.
This is no longer true for non-compact groups. Indeed, we construct an example of a
semiprojective action of the group of integers on a C∗-algebra that is not semiprojective
in the usual sense, see Example F.3.12.

For a semiprojective action of a finite group on a unital C∗-algebra, we show that
the crossed product is semiprojective, see Theorem F.5.1. If the action is also satu-
rated, then the fixed point algebra is Morita equivalent to the crossed product, which
implies that it also semiprojective, see Proposition F.6.2. For a semiprojective action of
a non-compact group, we show in Theorem F.6.4 that the fixed point algebra is trivial.
This allows us to characterize the semiprojectivity of trivial group actions: The trivial
action of a group G on a C∗-algebra A is equivariantly semiprojective if and only if G
is compact and A is (non-equivariantly) semiprojective, see Corollary F.6.5.

Finally, in Article G, The Cuntz semigroup and comparison of open projections,
which is co-authored with Eduard Ortega and Mikael Rørdam, we study comparison
relations of positive elements in a C∗-algebra in connection to comparison relations of
the associated open projections in the universal von Neumann algebra. Let a, b be two
positive elements in a C∗-algebra A. We show that a and b are Blackadar equivalent,
i.e., that there exists x ∈ A such that aAa = xAx∗ and x∗Ax = bAb, if and only
if the associated support projections pa, pb ∈ A∗∗ are equivalent in the sense Peligrad
and Zsido, [PZ00, Definition 1.1], which in turn happens precisely if aA and bA are
isomorphic as (right) Hilbert A-modules, see Proposition G.4.3.

This inspired us to define a Cuntz comparison relation for open projections, see
Definition G.3.9, such that two positive elements a, b are Cuntz equivalent in the usual
sense if and only if the associated support projections are Cuntz equivalent, which in
turn happens precisely if the Hilbert A-modules aA and bA are equivalent in the sense
of Coward, Elliott, Ivanescu, [CEI08]. We thus give a new new picture of the Cuntz
semigroup of a C∗-algebra in terms of open projections.





CHAPTER 2

Additional material

In this chapter, we provide additional material for the article in Appendix D, A char-
acterization of semiprojectivity for commutative C∗-algebras, which is co-authored with
Adam P. W. Sørensen.

2.1. Structure of non-compact, one-dimensional ANRs

The goal of this section is to provide a thorough proof of Theorem Appendix D.6.1,
which appears in this section as Theorem 2.1.17, and which shows that if the one-point
compactification of a one-dimensional1, locally compact, separable, metric ANR is an
ANR, then so is every finite-point compactification. This result was obtained together
with Adam Sørensen, and it is certainly known to experts of the field, although we could
not locate it in the literature.

To obtain Theorem 2.1.17, we carry out a detailed study of the structure of non-
compact, one-dimensional ANRs and their compactifications. The result is applied
in Appendix D to study the structure of non-unital, commutative, semiprojective C∗-
algebras. It allows one to extend the characterization of semiprojectivity for commuta-
tive C∗-algebra from the unital to the non-unital setting.

We first recall some basic notions. For more details on continuum theory, we refer
the reader to Nadler’s book, [Nad92].

2.1.1. A continuum is a compact, connected, metric space, and a generalized con-
tinuum is a locally compact, connected, metric space. A Peano continuum is a locally
connected continuum, and a generalized Peano continuum is a locally connected gener-
alized continuum. By a finite graph we mean a graph with finitely many vertices and
edges, or equivalently a compact, one-dimensional CW-complex. By a finite tree we
mean a contractible finite graph.

2.1.2 (Theory of ends). We briefly recall the basics of the theory of ends. The
definitions and results with proofs can all be found in the survey of Eilers, [Eil94]. To
get some intuition, note that the space [0, 1) has one end, while (0, 1) has two ends.

A topological space X is called a Raum if it is connected, locally connected, locally
compact, σ-compact and Hausdorff. We will mostly consider separable, metric Räume2,
and these are exactly the separable, generalized Peano continua. A decreasing sequence
of non-empty, open, connected subsets Gk of a Raum X is said to determine an end of
X if each ∂(Gk) is compact and

⋂
k≥1Gk = ∅. If (Gk)k and (Hk)k are two sequences

determining ends, then the following conditions are equivalent:

(1) for all k: Gk ∩Hk 6= ∅,
1We say that a space is one-dimensional if dim(X) ≤ 1. So, although it sounds weird, a one-

dimensional space can also be zero-dimensional. It would probably be more precise to speak of ”at most
one-dimensional” space, however the usage of the term ”one-dimensional space” is well established.

2Räume is the plural of Raum.

7
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(2) for all k there exists some l such that Gl ⊂ Hk,
(3) for all k there exists some l such that Hl ⊂ Gk.

If (Gk)k and (Hk)k satisfy these conditions, then they are called equivalent, which is
denoted by (Gk)k ≈ (Hk)k. This defines an equivalence relation, and each equivalence
class is called an end of X. We denote the set of ends of X by E(X).

2.1.3 (Compactifications). A compactification of a space X is a pair (Y, ιY ) where
Y is a compact space, ι : X → Y is an embedding and ι(X) is dense in Y . Usually the
embedding is understood and one denotes a compactification just by the space Y .

A non-compact space can have many different compactifications, and one usually re-
stricts attention to Hausdorff compactifications, which exist precisely if X is completely
regular3. Given two compactifications (Y, ιY ) and (Z, ιZ) of X we write (Y, ιY ) ≥ (Z, ιZ)
if there exists a surjective map θ : Y → Z such that θ ◦ ιY = ιZ . This defines a partial
order on the Hausdorff compactifications of X. The Stone-Čech compactification βX is
maximal with respect to this order. The one-point compactification αX is Hausdorff if
and only if X locally compact, and in that case αX is the smallest Hausdorff compacti-
fication of X. The Stone-Čech and one-point compactification are functors in the sense
that every map f : X → Y has a (unique) extension βf : βX → βY and αf : αX → αY .

2.1.4 (Freudenthal compactification). Let X be a Raum. There is a topology on
F (X) := X ∪ E(X) making it into a compact, Hausdorff space such that the natural
inclusion X ⊂ F (X) is an embedding. This is called the Freudenthal compactification of
X. Its remainder F (X) \X is zero-dimensional, and the Freudenthal compactification
is the largest compactification with zero-dimensional remainder.

A proper4 map f : X → Y extends naturally to a map F (f) : (F (X), E(X)) →
(F (Y ), E(Y )). If two proper maps f, g : X → Y are proper homotopic, then the induced
maps F (f), F (g) : (F (X), E(X)) → (F (Y ), E(Y )) are homotopic. Since E(X) is zero-
dimensional, this implies that F (f) and F (g) agree on E(X). It follows that two properly
homotopy equivalent spaces X,Y have homeomorphic spaces of ends E(X) and E(Y ).

In the next result 2.1.5 we give a concrete realization of the homeomorphism E(X) ∼=
E(Y ) in the case of a proper strong deformation retraction. The result is certainly
known, but we could not find it in the literature.

Proposition 2.1.5. Let X,Y be two Räume, and let r : X → Y ⊂ X be a proper
strong deformation retract. Then, the ends of X and Y are in natural one-one-correspon-
dence via the map Φ: E(Y )→ E(X) that sends [(Gk)k] to [(r−1(Gk))k].

Proof. In this proof, we will use that f−1(A) ⊂ f−1(A) for a continuous map f .
Let (Gk)k be a sequence determining an end in Y . Let us check that (r−1(Gk))k

determines an end in Y :

• r−1(Gk) is non-empty, since r(r−1(Gk)) = Gk is non-empty,
• r−1(Gk) is open, since r is continuous,
• r−1(Gk) is connected, since r is a homotopy equivalence,
• To see that ∂(r−1(Gk)) is compact, consider the following computation:

∂(r−1(Gk)) = r−1(Gk) ∩ r−1(Gck) ⊂ r−1(Gk) ∩ r−1(Gck) = r−1(∂Gk).

3A space is completely regular if it is Hausdorff and T3 1
2
, i.e., any disjoint point and closed subset

are functionally separated. In the literature, completely regular spaces are sometimes called ”Tychonoff”
or ”completely T3-space”. Some authors also use completely regular and T3 1

2
in the exact opposite way

as we do here.
4A map f : X → Y is called proper if preimages of compact sets are compact.
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Since r is proper, the preimage r−1(∂Gk) of the compact set ∂Gk is compact
again. Then, the closed subset ∂(r−1(Gk)) ⊂ r−1(∂Gk) is also compact.
• Since Gk is a decreasing sequence, so is r−1(Gk).
• Lastly, let us check that

⋂
k≥1 r

−1(Gk) is empty:
⋂

k≥1
r−1(Gk) ⊂

⋂

k≥1
r−1(Gk) = r−1(

⋂

k≥1
Gk) = ∅.

Given sequences (Gk)k and (Hk)k that determine ends in Y , we have:

(Gk)k ≈ (Hk)k ⇔ ∀k : Gk ∩Hk 6= ∅
⇔ ∀k : r−1(Gk) ∩ r−1(Hk) = r−1(Gk ∩Hk) 6= ∅
⇔ (r−1(Gk))k ≈ (r−1(Hk))k.

This shows that Φ is well-defined and injective.
It remains to show that Φ is surjective. Given a sequence (Gk)k determining an end

in X, it is not necessarily true that (r(Gk))k is a sequence determining an end in Y (for
instance, r(Gk) might not be open). Therefore, we use another approach to the theory
of ends, as developed by Ball, [Bal75]. One considers sequences of points in X, and
calls such a sequence x = (xl)l admissible if:

(i) no subsequence of x converges in X,
(ii) no compact subset of X separates two infinite subsequences of x.

When considered in the Freudenthal compactification F (X), each admissible se-
quence converges to a unique point in E(X) = F (X)\X. Moreover, each point in E(X)
is the limit of an admissible sequence. Consider an end e = [(Gk)k] ∈ E(X). Then an
admissible sequence x converges to e if and only if for each k the sequence x is eventually
in Gk. Let us denote this by x ≈ (Gk)k. In this way, the ends of X can naturally be
identified with equivalence classes of admissible sequences in X.

A proper map f : X → Y sends an admissible sequence x = (xl)l in X to an admis-
sible sequence f(x) = (f(xl))l in Y . This induces a continuous map E(X)→ E(Y ), and
this is the same as the restriction to E(X) of the natural extension F (f) : F (X)→ F (Y )
that was mentioned in 2.1.4.

In our situation, let (Gk)k be a sequence determining an end in X. We want to find
a sequence (Hl)l determining an end in Y such that (Gk)k ≈ (r−1(Hl))l. Let x be an
admissible sequence in X with x ≈ (Gk)k. Consider the admissible sequence r(x) in Y .
It corresponds to an end of Y , and so there exists a sequence (Hl)l determining an end
of Y with r(x) ≈ (Hl)l. This means that the sequence r(x) eventually lies in each set
Hl. It follows that the sequence x eventually lies in each set (r−1(Hl)), or put differently
x ≈ (r−1(Hl))l. Then (Gk)k ≈ x ≈ (r−1(Hl))l. This shows that Φ is surjective. �

2.1.6 (Finite-point compactifications). Let X be a space. A compactification γ(X) of
X is called a finite-point compactification if the remainder γ(X) \X is finite. Since
we only want to work with Hausdorff compactifications, we will restrict our attention
to locally compact, Hausdorff spaces. Finite-point compactifications preserve many
topological properties. Let us discuss some facts that will be used later:

• Connectedness: Every finite-point compactification of a connected space is again
connected.

Indeed, assume A ⊂ γ(X) is clopen. Then A ∩ X ⊂ X is clopen. Since X is
connected, either A ∩X = ∅ or A ∩X = X. We may assume A ∩X = ∅ (otherwise
consider γ(X) \ A instead of A). Then A ⊂ (γ(X) \X). This can only be open in
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γ(X) if A = ∅, which shows that γ(X) contains no non-trivial clopen sets, hence is
connected.

• Local connectedness: Every finite-point compactification of a connected, locally
connected space is again locally connected (and connected).

This follows from [dGM67, Theorem 4.1], which states the following: Let κ(X)
be a compactification of a connected, locally connected space X. If κ(X)\X contains
no continuum consisting of more than one point, then κ(X) is locally connected. The
condition holds in particular for finite-point compactifications.

• Dimension: Every finite-point compactification γ(X) of a locally compact, Haus-
dorff space X satisfies dim(X) = dim(γ(X)).

This follows from a standard argument in dimension theory. For instance, we
may use that dim(Y ) = max(dim(U),dim(Y \U)) for a normal space Y with U ⊂ Y
an open subset, see e.g. [Nag70, Theorem 9.11, p.54]. For a finite-point compact-
ification γ(X), X is an open subset of γ(X), and γ(X) is compact and Hausdorff,
hence normal. Further, γ(X) \X is finite, and therefore dim(γ(X) \X) = 0. Thus,
dim(X) = dim(γ(X)).

• Metrizability: Every finite-point compactification of a locally compact, separable,
metric space is again metrizable.

Let γ(X) be a finite-point compactification of a locally compact, separable, metric
space X. A metric space is separable if and only if is second-countable. Thus, there
exists a countable basis {Uk} for the topology of X. A second countable, locally
compact, Hausdorff space is σ-compact, i.e., there exists an increasing sequence of
compact sets K1 ⊂ K2 ⊂ . . . X with

⋃
iKi = X. Then, the following forms a

countable basis for the topology of γ(X):

{Uk} ∪ {(X \Ki) ∪ F | i ≥ 1, F ⊂ (γ(X) \X)}.

Thus, γ(X) is second-countable, and therefore metrizable by Urysohn’s metrization
theorem.

Putting all these facts together, we obtain the following:

Lemma 2.1.7. Let X be a one-dimensional, locally compact, locally connected, con-
nected, separable, metric space. Then every finite-point compactification of X is a one-
dimensional Peano continuum.

2.1.8 (Docility at infinity). It is a natural question, when the Freudenthal compact-
ification of an ANR is again an ANR. This was studied by Sher, [She76], who defined
a space X to be contractible at infinity , if for each compact set A ⊂ X there exists a
compact set B ⊂ X such that each component of X \ B is contractible in X \ A. For
ANRs, this is equivalent with several other natural conditions, and Sher calls an ANR
docile at infinite if it satisfies these conditions.

The main result of [She76] says: An ANRX is docile at infinity if and only if F (X) is
an ANR and E(X) is unstable in F (X). We will see below that a one-dimensional ANR
X is docile at infinite if and only if it has only ”dendritic ends” (see Definition 2.1.12
below).

2.1.9 (Dendrites). A dendrite is a Peano continuum that does not contain a simple
closed curve (i.e., there is no embedding of the circle S1 into it). Every dendrite is one-
dimensional. Let us recall some of the many equivalent characterizations of a dendrite.
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Let X be a Peano continuum. Then X is a dendrite if and only if one (or equivalently
all) of the following conditions holds:

(1) X is one-dimensional and contractible.
(2) X is tree-like. (A compact, metric space X is called tree-like if for every

ε > 0 there exists a finite tree T and a map f : X → T onto T such that
diam(f−1(y)) < ε for all y ∈ T .)

(3) X is dendritic, i.e., any two points of X are separated by the omission of a
third point, see 2.1.10 below.

(4) X is hereditarily unicoherent. (A continuum X is called unicoherent if for each
two subcontinua Y1, Y2 ⊂ X with X = Y1 ∪ Y2, the intersection Y1 ∩ Y2 is a
continuum, i.e., connected. A continuum is called hereditarily unicoherent if
all its subcontinua are unicoherent.)

For more information about dendrites see [Nad92, Chapter 10], [Lel76], [CC60].

2.1.10 (Dendritic spaces). A connected space is called dendritic if each pair of dis-
tinct points can be separated by the omission of some third point. A dendritic Peano
continuum is a dendrite, see 2.1.9. Similarly to the case of a dendrite, there are several
equivalent characterizations when a generalized Peano continuum is dendritic.

Let X be a generalized Peano continuum. Then X is dendritic if and only if one (or
equivalently all) of the following conditions holds:

(1) X contains no simple closed curve.
(2) X is one-dimensional and contractible.
(3) X is hereditarily unicoherent.

For the proofs and further results see [FQ06].
It is possibly false that connected subsets of dendritic spaces are again dendritic

but we are not aware of any published counterexample. However, if X is a connected,
locally connected, locally compact, Hausdorff spaces, then Ward, [War58, Corollary
to Theorem 3], proved that X is dendritic if and only if each subcontinuum of X is a
dendrite. We obtain the following lemma.

Lemma 2.1.11 (see [War58]). Let X be a dendritic Raum. Then every connected,
open subset of X is dendritic.

Proof. Assume X is a dendritic Raum. A Raum is in particular connected, locally
connected, locally compact and Hausdorff, so by the result of Ward each subcontinuum
of X is a dendrite. Let Y ⊂ X be a connected, open subset. Then Y is as also
locally connected, locally compact and Hausdorff. Every subcontinuum of Y is also
a subcontinuum of X and therefore a dendrite. Using Ward’s result in the converse
direction we get that Y is dendritic. �
This implies the following: If (Gk)k is determining an end, and some Gk is dendritic,
then all Gk, Gk+1, . . . are dendritic, i.e., the open sets determining the end are eventually
dendritic. Further, if (Hk)k is another sequence determining an end, and (Gk)k ≈ (Hk)k,
then the sets of Hk are eventually dendritic as well. This justifies the following definition:

Definition 2.1.12. Let X be a Raum, and (Gk)k a sequence determining an end of
X. Then (Gk)k is called dendritic if there exists some k such that Gk is dendritic. An
end is called dendritic if one (or equivalently all) of its representatives are dendritic.

Proposition 2.1.13. Let X be a one-dimensional, connected, locally compact, sep-
arable, metric ANR. Then the following are equivalent:
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(1) X is contractible at infinity,
(2) all ends of X are dendritic.

By [She76, Theorem 4.2], the above conditions are also equivalent to F (X) being an
ANR with E(X) ⊂ F (X) unstable.

Proof. ”(1) ⇒ (2)”: Assume X is contractible at infinity, and let (Gk)k be a
sequence determining an end in X. Consider the compact set A = ∅. There exists
another compact set B ⊂ X such that each component of X \ B is contractible in
X \ A = X. Since

⋂
k≥1Gk = ∅, there exists some k such that the connected set Gk is

contained in X \B, and therefore contractible in X. As shown by Cannon and Conner,
[CC06, Corollary 3.3], the inclusion Gk ⊂ X induces an injective map on fundamental
groups. It follows that the fundamental group of Gk is trivial, which implies that no
circle embeds into Gk. As mentioned in 2.1.10, this implies that Gk is dendritic.

”(2) ⇒ (1)”: Let A ⊂ X be compact. For each end e ∈ E(X), choose a sequence

(G
(e)
k )k with e = [(G

(e)
k )k]. By passing to subsequences we may assume that all G

(e)
k are

dendritic and disjoint from A. Each set G
(e)
k naturally defines an open set G̃

(e)
k ⊂ F (X)

as follows:

G̃
(e)
k = G

(e)
k ∪ {[(Hl)l] ∈ E(X) | eventually Hl ⊂ G(e)

k }.

The open sets G̃
(e)
1 (for e ∈ E(X)) form an open cover containing E(X). Since E(X)

is compact, there exists a finite finite set I ⊂ E(X) such that the subcover {G̃(e)
1 | e ∈ I}

still covers E(X). Set B := X \
(⋃

e∈I G̃
(e)
1

)
. This is a compact set, and X \ B has

dendritic components which are therefore already contractible in themselves. �

We will use the following result several times in proofs below. See [Bor67] for related
and more general results.

Proposition 2.1.14 (Borsuk, [Bor32, Satz 9], see also [Bor67, IV.6.1, p.90]). Let
A be a space with closed subsets A1, A2 ⊂ A such that A = A1 ∪A2. Set A0 := A1 ∩A2.
If A1, A2 and A0, are ANRs, then so is A.

Lemma 2.1.15. Let X be an ANR, and let F ⊂ X be a finite subset. Then the
quotient space X/F is an ANR.

Proof. Let F = {x1, . . . , xk}, and let f : X → Y be the quotient map. Set
y0 := f(xi), the collapsed point. We will use the following theorems of Hanner, [Han51],
see also [Bor67, IV.10., p.96f]:

• First theorem of Hanner: Every open subset of an ANR is again an ANR.
• Second theorem of Hanner: If X =

⋃
k∈NGk, for open sets Gk ⊂ X, and each Gk is

an ANR, then so is X.

It follows that the open set X \F is an ANR. Note that X \F ∼= Y \{y0}. Therefore,
the open subset Y \ {y0} ⊂ Y is an ANR.

For each i, we may find a neighborhood Ui ⊂ X of xi such that the Ui are pairwise
disjoint. Set Vi := f(Ui) and note that in fact Vi ∼= Ui since Ui contains only one of the
collapsed points. Note that Vi ⊂ Y need not be open. However, the set V := V1∪. . .∪Vk
will be an open neighborhood of y0. Moreover, each set Vi is a closed subset of V .

Let us see that V is an ANR. This follows from iterated application of [Bor32,
Satz 9], see 2.1.14. To start, note that V1 ∩ V2 = {y0}, and so V1 ∪ V2 is an ANR. For
i < k, assume V1 ∪ . . .∪Vi is an ANR. Since (V1 ∪ . . .∪Vi)∩Vi+1 = {y0}, it follows that
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V1 ∪ . . .∪ Vi+1 is an ANR. By induction, V is an ANR. Then, by the second theorem of
Hanner, Y = (Y \ {y0}) ∪ V is an ANR. �

Lemma 2.1.16. Let X be a one-dimensional, connected, locally compact, separable,
metric ANR. Then the following are equivalent:

(1) The one-point compactification αX is an ANR.
(2) X has only finitely many ends, and each end is dendritic.
(3) Every finite-point compactification of X is ANR.

Proof. The Lemma holds if X is compact, for then it has no compactifications
other than X, and it also has no ends. So assume from now on that X is non-compact.
By 2.1.7, every finite-point compactification of X is a one-dimensional Peano continuum.

”(1) ⇒ (2)”: Assume αX is an ANR, and denote the attached point at infinity by
x∞. By Theorem 4.12 in Appendix D, the core of αX is a finite graph. Let Y ⊂ αX
be a finite graph that contains core(αX) and x∞. Such a finite graph always exists: If
x∞ ∈ core(αX), then simply use Y = core(αX). Otherwise there is an arc A connecting
x∞ to the core and one may use Y = core(αX) ∪A.

By Proposition 4.16 in Appendix D, there is a strong deformation retract r : αX →
Y . Since X is connected, r−1(x∞) = {x∞}. Set Y0 := Y \ {x∞}. Then r restricts to a
proper strong deformation retract from X onto Y0. By Proposition 2.1.5, this identifies
the ends of Y0 and X via the map Φ: [(Gk)k] 7→ [(r−1(Gk))k].

Since Y is a finite graph, Y0 has only finitely many ends. It follows that also X has
only finitely many ends. Further, each end of X has a representative r−1(Gk), where
(Gk)k is a sequence determining an end of Y0. The ends of Y0 are easily understood and
for large enough k, Gk ' (0, 1), the open interval. Since r is a homotopy equivalence,
and Gk is contractible, so is r−1(Gk). It follows that r−1(Gk) is dendritic.

”(2) ⇒ (3)”: It follows from [She76, Theorem 4.2], see Proposition 2.1.13, that
F (X) is an ANR. Let γ(X) be a finite-point compactification. Since F (X) is the
largest compactification with zero-dimensional remainder, there is a unique surjective
map ϕ : F (X) → γ(X), which restricts to the identity from X ⊂ F (X) to X ⊂ γ(X).
Since E(X) is finite, the space γ(X) can be obtained from F (X) by the successive
collapsing of finitely points (namely, for each y ∈ γ(X) \ X, the points ϕ−1(y) get
identified). It follows from successive application of 2.1.15 that γ(X) is an ANR.

Finally, the implication ”(3) ⇒ (1)” is clear. �
Next, we remove the connectedness assumption in Lemma 2.1.16, and thus obtain the
main result of this section.

Theorem 2.1.17. Let X be a one-dimensional, locally compact, separable, metric
ANR. Then the following are equivalent:

(1) The one-point compactification αX is an ANR.
(2) X has only finitely many compact components and also only finitely many com-

ponents C ⊂ X such that αC is not a dendrite.
(3) Every finite-point compactification of X is an ANR.
(4) Some finite-point compactification of X is an ANR.

Proof. ”(1) ⇒ (2)”: Assume αX is an ANR. Theorem 4.2 of [dGM67] states
the following: A locally connected, rim-compact (e.g. locally compact) Hausdorff space
Y has a locally connected compactification if and only if at most finitely many of the
components of Y are compact. Consequently, since αX is an ANR and every ANR is
locally connected, X has only finitely many compact components.
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Let us look at the non-compact components of X. By [Jac52, Theorem 2], a sepa-
rable ANR has at most countably many components, each of which is open in X and an
ANR itself. Thus, each component of X is a one-dimensional ANR. It follows from Lem-
ma 2.1.7 that the one-point compactification of any component of X is a one-dimensional
Peano continuum.

We consider X embedded into αX. Let x∞ be the point at infinity. Since αX is
ANR, it is contractible at x∞, and so there is a contractible neighborhood U of x∞.Then
all except finitely many components of X lie in U . Let C ⊂ X be a component of X that
lies in U . We want to show that its one-point compactification αC is a dendrite. Since
C is non-compact, C ∪{x∞} ⊂ αX is homeomorphic to αC, which is a one-dimensional
Peano continuum. It follows that αC is a dendrite, since αC ⊂ U and U is contractible.

”(2) ⇒ (3)”: Let γ(X) be a finite-point compactification of X. Since X has only
finitely many compact components, γ(X) has only finitely many components (namely
the compact components of X and for each point in γ(X) \X at most one other com-
ponent). By the mentioned result of Jackson, [Jac52, Theorem 2], γ(X) is an ANR
if and only if each of its finitely many components is ANR. Therefore, without loss of
generality, we may assume from now one that γ(X) is connected. If X was (connected)
compact, then γ(X) = X and there is nothing to show, so that we may also assume X
has no compact components.

Let Y1, . . . , Yn be the finitely many (non-compact) components of X whose one-
point compactification is not a dendrite, and let Dj (j ∈ J) be the other (non-compact)

components of X. For each i = 1, . . . , n, consider the closure Yi ⊂ γ(X). This is a
finite-point compactification of Yi, and therefore, by Lemma 2.1.16, each Yi is an ANR.

For each j ∈ J , the one-point compactification of Dj is a dendrite. Therefore, the

closure Dj ⊂ γ(X) is homeomorphic to αDj and so Dj ∩ (γ(X) \ X) contains exactly
one point.

Let y1, . . . , ym be the points in γ(X) \X. For each k = 1, . . . ,m, define:

Jk := {j ∈ J | xk ∈ Dj}.
The sets J1, . . . , Jm are disjoint with J = J1 ∪ . . . ∪ Jm. For each k = 1, . . . ,m,

consider the set

Ek :=
⋃

j∈Jk
Dj .

The closure of Ek in γ(X) is Ek = Ek ∪ {xk}. Let us check that this is a dendrite.
It is enough to show it is dendritic, i.e., that any two different points x, y ∈ Ek can be
separated by the omission of a third point. We show this by considering two cases:

• Case 1: There exists some j such that both points lie in Dj (possibly, one of the

points is x∞). In that case we use that Dj is dendritic, so that x and y can be

separated by the omission of some point in Dj .

• Case 2: There does not exist some j such that x, y ∈ Dj . In that case both points
are different from x∞, and they can be separated by the omission of x∞.

Finally, we have

γ(X) = D1 ∪ . . . ∪Dk ∪ E1 ∪ . . . ∪ El.
Note that these sets only intersection within the finite set γ(X) \X, so that by iterated
application of Proposition 2.1.14 we get that γ(X) is an ANR.

The implication ”(3) ⇒ (4)” is clear.
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”(4) ⇒ (1)”: Let γ(X) be a finite-point compactification of X that is an ANR.
There is a unique surjective map ϕ : γ(X) → αX, which restricts to the identity from
X ⊂ γ(X) to X ⊂ αX and otherwise collapses all points in γ(X) \X to one point. It
follows from Lemma 2.1.15 that αX is an ANR. �
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THE TOPOLOGICAL DIMENSION OF TYPE I C∗-ALGEBRAS

HANNES THIEL

Abstract. While there is only one natural dimension concept for separable, metric
spaces, the theory of dimension in noncommutative topology ramifies into different
important concepts. To accommodate this, we introduce the abstract notion of a
noncommutative dimension theory by proposing a natural set of axioms. These ax-
ioms are inspired by properties of commutative dimension theory, and they are for
instance satisfied by the real and stable rank, the decomposition rank and the nuclear
dimension.

We add another theory to this list by showing that the topological dimension, as
introduced by Brown and Pedersen, is a noncommutative dimension theory of type I
C∗-algebras. We also give estimates of the real and stable rank of a type I C∗-algebra
in terms of its topological dimension.

1. Introduction

The covering dimension of a topological space is a natural concept that extends our
intuitive understanding that a point is zero-dimensional, a line is one-dimensional etc.
While there also exist other dimension theories for topological spaces (e.g., small and
large inductive dimension), they all agree for separable, metric spaces.

This is in contrast to noncommutative topology where the concept of dimension rami-
fies into different important theories, such as the real and stable rank, the decomposition
rank and the nuclear dimension. Each of these concepts has been studied in its own
right, and they have applications in many different areas. A low dimension in each of
these theories can be considered as a regularity property, and such regularity properties
play an important role in the classification program of C∗-algebras, see [Rør06], [ET08],
[Win12] and the references therein.

In Section 3 of this paper we introduce the abstract notion of a noncommutative
dimension theory as an assignment d : C → N from a class of C∗-algebras to the ex-
tended natural numbers N = {0, 1, 2, . . . ,∞} satisfying a natural set of axioms, see
Definition 1. These axioms are inspired by properties of the theory of covering dimen-
sion, see Remark 1, and they hold for the theories mentioned above. Thus, the proposed
axioms do not define a unique dimension theory of C∗-algebras, but rather they collect
the essential properties that such theories (should) satisfy.

Besides the very plausible axioms (D1)-(D4), we also propose (D5) which means that
the property of being at most n-dimensional is preserved under approximation by sub-
C∗-algebras, see 3. This is the noncommutative analog of the notion of “likeness”, see
4 and [Thi11, 3.1 - 3.3]. This axiom implies that dimension does not increase when
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passing to the limit of an inductive system of C∗-algebras, i.e., d(lim−→Ai) ≤ lim inf d(Ai),
see Proposition 2.

Finally, axiom (D6) says that every separable sub-C∗-algebra C ⊂ A is contained in
a separable sub-C∗-algebra D ⊂ A such that d(D) ≤ d(A). This is the noncommutative
analog of Mardešić’s factorization theorem, which says that every map f : X → Y from a
compact space X to a compact, metrizable space Y can be factorized through a compact,
metrizable space Z with dim(Z) ≤ dim(Y ), see Remark 1 and [Nag70, Corollary 27.5,
p.159] or [Mar60, Lemma 4].

In Section 4 we show that the topological dimension as introduced by Brown and
Pedersen, [BP09], is a dimension theory in the sense of Definition 1 for the class of
type I C∗-algebras. The idea of the topological dimension is to simply consider the
dimension of the primitive ideal space of a C∗-algebra. This will, however, run into
problems if the primitive ideal space is not Hausdorff. One therefore has to restrict to
(locally closed) Hausdorff subsets, and taking the supremum over the dimension of these
Hausdorff subsets defines the topological dimension, see Definition 4.

In Section 5 we show how to estimate the real and stable rank of a type I C∗-algebra
in terms of its topological dimension.

Section 5 of this article is based on the diploma thesis of the author, [Thi09], which
was written under the supervision of Wilhelm Winter at the University of Münster in
2009. Sections 3 and 4 are based upon unpublished notes by the author for the master-
class “The nuclear dimension of C∗-algebras”, held at the University of Copenhagen in
November 2011.

2. Preliminaries

We denote by C∗ the category of C∗-algebras with ∗-homomorphism as morphisms. In
general, by a morphism between C∗-algebras we mean a ∗-homomorphism.

We write J ⊳A to indicate that J is an ideal in A, and by an ideal of a C∗-algebra we
understand a closed, two-sided ideal. Given a C∗-algebra A, we denote by A+ the set

of positive elements. We denote the minimal unitization of A by Ã. The primitive ideal

space of A will be denoted by Prim(A), and the spectrum by Â. We refer the reader to
Blackadar’s book, [Bla06], for details on the theory of C∗-algebras.

If F,G ⊂ A are two subsets of a C∗-algebra, and ε > 0, then we write F ⊂ε G if for
every x ∈ F there exists some y ∈ G such that ‖x − y‖ < ε. Given elements a, b in a
C∗-algebra, we write a =ε b if ‖a− b‖ < ε. Given a, b ∈ A+, we write a≪ b if b acts as
a unit for a, i.e., ab = a, and we write a≪ε b if ab =ε a.

We denote by Mk the C∗-algebra of k-by-k matrices, and by K the C∗-algebra of
compact operators on an infinite-dimensional, separable Hilbert space. We denote by
N = {0, 1, 2, . . . ,∞} the extended natural numbers.

1. As pointed out in [Bla06, II.2.2.7, p.61], the full subcategory of commutative C∗-
algebras is dually equivalent to the category SP∗ whose objects are pointed, compact
Hausdorff spaces and whose morphisms are pointed, continuous maps.

For a locally compact, Hausdorff space X, let αX be its one-point compactification.
Let X+ be the space with one additional point x∞ attached, i.e., X+ = X ⊔ {x∞} if X
is compact, and X+ = αX if X is not compact. In both cases, the basepoint of X+ is
the attached point x∞.
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2. Let X be a space, and let U be a cover of X. The order of U , denoted by ord(U),
is the largest integer k such that some point x ∈ X is contained in k different elements
of U (and ord(U) = ∞ if no such k exists). The covering dimension of X, denoted by
dim(X), is the smallest integer n ≥ 0 such that every finite, open cover of X can be
refined by a finite, open cover that has order at most n+1 (and dim(X) =∞ if no such
n exists). We refer the reader to chapter 2 of Nagami’s book [Nag70] for more details.

It was pointed out by Morita, [Mor75], that in general this definition of covering
dimension should be modified to consider only normal, finite, open covers. However, for
normal spaces (e.g. compact spaces) every finite, open cover is normal, so that we may
use the original definition.

The local covering dimension of X, denoted by locdim(X), is the smallest integer
n ≥ 0 such that every point x ∈ X is contained in a closed neighborhood F such that
dim(F ) ≤ n (and locdim(X) = ∞ if no such n exists). We refer the reader to [Dow55]
and [Pea75, Chapter 5] for more information about the local covering dimension.

It was noted by Brown and Pedersen, [BP09, Section 2.2 (ii)], that locdim(X) =
dim(αX) for a locally compact, Hausdorff space X. We propose that the natural di-
mension of a pointed space (X,x∞) ∈ SP∗ is dim(X) = locdim(X \ {x∞}). Then, for a
commutative C∗-algebra A, the natural dimension is locdim(Prim(A)).

If G ⊂ X is an open subset of a locally compact space, then locdim(G) ≤ locdim(X),
see [Dow55, 4.1]. It was also shown by Dowker that this does not hold for the usual
covering dimension (of non-normal spaces).

3. A family of sub-C∗-algebras Ai ⊂ A is said to approximate a C∗-algebra A (in the
literature there also appears the formulation that the Ai “locally approximate” A), if
for every finite subset F ⊂ A, and every ε > 0, there exists some i such that F ⊂ε Ai.
Let us mention some facts about approximation by subalgebras:

(1) If A1 ⊂ A2 ⊂ . . . ⊂ A is an increasing sequence of sub-C∗-algebras with A =⋃
k Ak, then A is approximated by the family {Ak}.

(2) If A is approximated by a family {Ai}, and J ⊳A is an ideal, then J is approxi-

mated by the family {Ai∩J}. In particular, if A =
⋃

k Ak, then J =
⋃

k(Ak ∩ J).
Similarly, A/J is approximated by the family {Ai/(Ai ∩ J)}.

(3) If A is approximated by a family {Ai}, and B ⊂ A is a hereditary sub-C∗-algebra,
then B might not be approximated by the family {Ai ∩ B}. Nevertheless, B is
approximated by algebras that are isomorphic to hereditary sub-C∗-algebras of
the algebras Ai, see Proposition 4.

4. Let P be some property of C∗-algebras. We say that a C∗-algebra A is P-like (in
the literature there also appears the formulation A is “locally P”) if A is approximated
by subalgebras with property P, see [Thi11, 3.1 - 3.3]. This is motivated by the concept
of P-likeness for commutative spaces, as defined in [MS63, Definition 1] and further
developed in [MM92].

We will work in the category SP∗ of pointed, compact spaces, see 1. Let P be a
non-empty class of spaces. Then, a space X ∈ SP∗ is said to be P-like if for every finite,
open cover U of X there exists a (pointed) map f : X → Y onto some space Y ∈ P and
a finite, open cover V of Y such that U is refined by f−1(V) = {f−1(V ) | V ∈ V}.

Note that we have used P to denote both a class of spaces and a property that spaces
might enjoy. These are just different viewpoints, as we can naturally assign to a property
the class of spaces with that property, and vice versa to each class of spaces the property
of lying in that class.
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For commutative C∗-algebras, the notion of P-likeness for C∗-algebras coincides with
that for spaces. More precisely, it is shown in [Thi11, Proposition 3.4] that for a space
(X,x∞) ∈ SP∗ and a collection P ⊂ SP∗, the following are equivalent:

(a) (X,x∞) is P-like,
(b) C0(X \{x∞}) is approximated by sub-C∗-algebras C0(Y \{y∞}) with (Y, y∞) ∈ P.

We note that the definition of covering dimension can be rephrased as follows. Let Pk
be the collection of all k-dimensional polyhedra (polyhedra are defined by combinatoric
data, and their dimension is defined by this combinatoric data). Then a compact space
X satisfies dim(X) ≤ k if and only if it is Pk-like. This motivates (D5) in Definition 1
below.

5. For the definition of continuous trace C∗-algebras we refer to [Bla06, Definition
IV.1.4.12, p.333]. It is known that a C∗-algebra A has continuous trace if and only if its

spectrum Â is Hausdorff and it satisfies Fell’s condition, i.e., for every π ∈ Â there exists

a neighborhood U ⊂ Â of π and some a ∈ A+ such that ρ(a) is a rank-one projection
for each ρ ∈ U , see [Bla06, Proposition IV.1.4.18, p.335].

6. A C∗-algebra A is called a CCR algebra (sometimes called a liminal algebra) if for
each of its irreducible representations π : A→ B(H) we have that π takes values inside
the compact operators K(H).

A composition series for a C∗-algebra A is a collection of ideals Jα ⊳A, indexed over
all ordinal numbers α ≤ µ for some µ, such that A = Jµ and:

(i) if α ≤ β, then Jα ⊂ Jβ,

(ii) if α is a limit ordinal, then Jα =
⋃

γ<α Jγ .

The C∗-algebras Jα+1/Jα are called the successive quotients of the composition series.
A C∗-algebra is called a type I algebra (sometimes also called postliminal) if it has a

composition series with successive quotients that are CCR algebras. As it turns out, this
is equivalent to having a composition series whose successive quotients have continuous
trace.

For information about type I C∗-algebras and their rich structure we refer the reader
to Chapter IV.1 of Blackadar’s book, [Bla06], and Chapter 6 of Pedersen’s book, [Ped79].

3. Dimension theories for C∗-algebras

In this section, we introduce the notion of a noncommutative dimension theory by
proposing a natural set of axioms that such theories should satisfy. These axioms hold
for many well-known theories, in particular the real and stable rank, the decomposition
rank and the nuclear dimension, see Remark 2, and this will also be discussed more
thoroughly in a forthcoming paper. In Section 4 we will show that the topological
dimension is a dimension theory for type I C∗-algebras.

Our axioms of a noncommutative dimension theory are inspired by facts that the
theory of covering dimension satisfies, see Remark 1.

In Definition 2 we introduce the notion of Morita-invariance for dimension theories.
If a dimension theory is only defined on a subclass of C∗-algebras, then there is a natural
extension of the theory to all C∗-algebras, see Proposition 5. We will show that this
extension preserves Morita-invariance.

We denote by C∗ the category of C∗-algebras, and we will use C to denote a class of
C∗-algebras. We may think of C as a full subcategory of C∗.
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Definition 1. Let C be a class of C∗-algebras that is closed under ∗-isomorphisms, and
closed under taking ideals, quotients, finite direct sums, and minimal unitizations. A
dimension theory for C is an assignment d : C → N = {0, 1, 2, . . . ,∞} such that d(A) =
d(A′) wheneverA,A′ are isomorphic C∗-algebras in C, and moreover the following axioms
are satisfied:

(D1) d(J) ≤ d(A) whenever J ⊳ A is an ideal in A ∈ C,
(D2) d(A/J) ≤ d(A) whenever J ⊳ A ∈ C,
(D3) d(A⊕B) = max{d(A), d(B)}, whenever A,B ∈ C,
(D4) d(Ã) = d(A), whenever A ∈ C.
(D5) If A ∈ C is approximated by subalgebras Ai ∈ C with d(Ai) ≤ n, then d(A) ≤ n.
(D6) Given A ∈ C and a separable sub-C∗-algebra C ⊂ A, there exists a separable

C∗-algebra D ∈ C such that C ⊂ D ⊂ A and d(D) ≤ d(A).

Note that we do not assume that C is closed under approximation by sub-C∗-algebra,
so that the assumption A ∈ C in (D5) is necessary. Moreover, in axiom (D6), we do not
assume that the separable subalgebra C lies in C.
Remark 1. The axioms in Definition 1 are inspired by well-known facts of the local
covering dimension of commutative spaces, see 2.

Axiom (D1) and (D2) generalize the fact that the local covering dimension does not
increase when passing to an open (resp. closed) subspace, see [Dow55, 4.1, 3.1], and
axiom (D3) generalizes the fact that locdim(X ⊔ Y ) = max{locdim(X), locdim(Y )}.
Axiom (D4) generalizes that locdim(X) = locdim(αX), where αX is the one-point
compactification of X.

Axiom (D5) generalizes the fact that a (compact) space is n-dimensional if it is Pn-like
for the class Pn of n-dimensional spaces, see 4. Note also that Proposition 2 generalizes
the fact that dim(lim←−Xi) ≤ lim inf i dim(Xi) for an inverse system of compact spaces Xi.

Axiom (D6) is a generalization of the following factorization theorem, due to Mardešić,
see [Nag70, Corollary 27.5, p.159] or [Mar60, Lemma 4]: Given a compact space X and
a map f : X → Y to a compact, metrizable space Y , there exists a compact, metrizable
space Z and maps g : X → Z, h : Z → Y such that g is onto, dim(Z) ≤ dim(X) and
f = h ◦ g. This generalizes (D6), since a unital, commutative C∗-algebra C(X) is
separable if and only if X is metrizable.

Axioms (D5) and (D6) are also related to the following concept which is due to
Blackadar, [Bla06, Definition II.8.5.1, p.176]: A property P of C∗-algebras is called
separably inheritable if:

(1) For every C∗-algebra A with property P and separable sub-C∗-algebra C ⊂ A,
there exists a separable sub-C∗-algebra D ⊂ A that contains C and has property
P.

(2) Given an inductive system (Ak, ϕk) of separable C∗-algebras with injective con-
necting morphisms ϕk : Ak → Ak+1, if each Ak has property P, then does the
inductive limit lim−→Ak.

Thus, for a dimension theory d, the property “d(A) ≤ n” is separably inheritable.
Axioms (D5) and (D6) imply that d(A) ≤ n if and only if A can be written as an

inductive limit (with injective connecting morphisms) of separable C∗-algebras B with
d(B) ≤ n. This allows us to reduce essentially every question about dimension theories
to the case of separable C∗-algebras.

By explaining the analogs of (D1)-(D6) for pointed, compact spaces, we have shown
the following:
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Proposition 1. Let C∗ab denote the class of commutative C∗-algebras. Then, the as-

signment d : C∗ab → N, d(A) := locdim(Prim(A)), is a dimension theory.

Remark 2. We do not suggest that the axioms of Definition 1 uniquely define a dimen-
sion theory. This is clear since the axioms do not even rule out the assignments that
give each C∗-algebra the same value.

More interestingly, the following well-known theories are dimension theories for the
class of all C∗-algebras:

(1) The stable rank as defined by Rieffel, [Rie83, Definition 1.4].
(2) The real rank as introduced by Brown and Pedersen, [BP91].
(3) The decomposition rank of Kirchberg and Winter, [KW04, Definition 3.1].
(4) The nuclear dimension of Winter and Zacharias, [WZ10, Definition 2.1].

Indeed, for the real and stable rank, (D1) and (D2) are proven in [EH95, Théorème
1.4] and [Rie83, Theorems 4.3, 4.4]. Axiom (D3) is easily verified, and (D4) holds by
definition. It is shown in [Rie83, Theorem 5.1] that (D5) holds in the special case of an
approximation by a countable inductive limit, but the same argument works for general
approximations and also for the real rank. Finally, it is noted in [Bla06, II.8.5.5, p.178]
that (D6) holds.

For the nuclear dimension, axioms (D1), (D2), (D3), (D6) and (D4) follow from
Propositions 2.5, 2.3, 2.6 and Remark 2.11 in [WZ10], and (D5) is easily verified. For
the decomposition rank, (D5) is also easily verified, and axiom (D6) follows from [WZ10,
Proposition 2.6] adapted for c.p.c. approximations instead of c.p. approximations. The
other axioms (D1)-(D4) follow from Proposition 3.8, 3.11 and Remark 3.2 of [KW04]
for separable C∗-algebras. Using axioms (D5) and (D6) this can be extended to all
C∗-algebras.

Thus, the idea of Definition 1 is to collect the essential properties that many different
noncommutative dimension theories satisfy. Our way of axiomatizing noncommutative
dimension theories should therefore not be confused with the work on axiomatizing the
dimension theory of metrizable spaces, see e.g. [Nis74] or [Cha94], since these works
pursue the goal of finding axioms that uniquely characterize covering dimension.

Proposition 2. Let d : C → N be a dimension theory, and let (Ai, ϕi,j) be an inductive
system with Ai ∈ C and such that the limit A := lim−→Ai also lies in C. Then d(A) ≤
lim inf i d(Ai).

Proof. See [Bla06, II.8.2.1, p.156] for details about inductive systems and inductive
limits. For each i, let ϕ∞,i : Ai → A denote the natural morphism into the inductive
limit. Then the subalgebra ϕ∞,i(Ai) ⊂ A is a quotient of Ai, and therefore d(ϕ∞,i(Ai)) ≤
d(Ai) by (D2). If J ⊂ I is cofinal, then A is approximated by the collection of subalgebras
(ϕ∞,i(Ai))i∈J . It follows from (D5) that d(A) is bounded by supi∈J d(Ai). Since this
holds for each cofinal subset J ⊂ I, we obtain:

d(A) ≤ inf{sup
i∈J

d(Ai) | J ⊂ I cofinal} = lim inf
i

d(Ai),

as desired. �
Lemma 1. Let A be a C∗-algebra, let B ⊂ A be a full, hereditary sub-C∗-algebra, and
let C ⊂ A be a separable sub-C∗-algebra. Then there exists a separable sub-C∗-algebra
D ⊂ A containing C such that D ∩B ⊂ D is full, hereditary.

Proof. The proof is inspired by the proof of [Bla78, Proposition 2.2], see also [Bla06,
Theorem II.8.5.6, p.178]. We inductively define separable sub-C∗-algebras Dk ⊂ A. Set
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D1 := C, and assume Dk has been constructed. Let Sk := {xk1 , xk2 , . . .} be a countable,
dense subset of Dk. Since B is full in A, there exist for each i ≥ 1 finitely many elements
aki,j, c

k
i,j ∈ A and bki,j ∈ B such that

‖xki −
∑

j

aki,jb
k
i,jc

k
i,j‖ < 1/k.

Set Dk+1 := C∗(Dk, a
k
i,j , b

k
i,j , c

k
i,j, i, j ≥ 1). Then define D :=

⋃
k Dk, which is a

separable sub-C∗-algebra of A containing C.
Note that D ∩B ⊂ D is a hereditary sub-C∗-algebra, and let us check that it is also

full. We need to show that the linear span of D(D ∩ B)D is dense in D. Let d ∈ D
and ε > 0 be given. Note that

⋃
k Sk is dense in D. Thus, we may find k and i such

that ‖d − xki ‖ < ε/2. We may assume k ≥ 2/ε. By construction, there are elements
aki,j, c

k
i,j ∈ Dk+1 and bki,j ∈ B ∩ Dk+1 such that ‖xki −

∑
j a

k
i,jb

k
i,jc

k
i,j‖ < 1/k. It follows

that the distance from d to the closed linear span of D(D ∩B)D is at most ε. Since d
and ε were chosen arbitrarily, this shows that D ∩B ⊂ D is full. �

Proposition 3. Let d : C∗ → N be a dimension theory. Then the following statements
are equivalent:

(1) For all C∗-algebras A,B: If B ⊂ A is a full, hereditary sub-C∗-algebra, then d(A) =
d(B).

(2) For all C∗-algebras A,B: If A and B are Morita equivalent, then d(A) = d(B).
(3) For all C∗-algebras A: d(A) = d(A⊗K).

Moreover, each of the statements is equivalent to the (a priori weaker) statement where
the appearing C∗-algebras are additionally assumed to be separable.

If d satisfies the above conditions, and B ⊂ A is a (not necessarily full) hereditary
sub-C∗-algebra, then d(B) ≤ d(A).

Proof. For each of the statements (1), (2), (3), let us denote the statement where the
appearing C∗-algebras are assumed to be separable by (1s), (2s), (3s) respectively. For
example:

(3s) For all separable C∗-algebras A: d(A) = d(A⊗K).

The implications “(1) ⇒ (1s)”, “(2) ⇒ (2s)”, and “(3) ⇒ (3s)” are clear. The
implication “(2s)⇒ (3s)” follows since A and A⊗K are Morita equivalent, and “(1s)⇒
(3s)” follows since A ⊂ A⊗K is a full, hereditary sub-C∗-algebra.

It remains to show the implication “(3s) ⇒ (1)”. Let A be a C∗-algebra, and let
B ⊂ A be a full, hereditary sub-C∗-algebra. We need to show d(A) = d(B). To that
end, we will construct separable sub-C∗-algebras A′ ⊂ A and B′ ⊂ B that approximate
A and B, respectively, and such that d(A′) = d(B′) ≤ min{d(A), d(B)}. Together with
(D5), this implies d(A) = d(B).

So let F ⊂ A and G ⊂ B be finite sets. We may assume G ⊂ F . We want to find A′

and B′ with the mentioned properties and such that F ⊂ A′ and G ⊂ B′.
We inductively define separable sub-C∗-algebras Ck,Dk ⊂ A and Ek ⊂ B such that:

(a) Ck ⊂ Dk and Dk ∩B ⊂ Dk is full,
(b) Dk ∩B ⊂ Ek and d(Ek) ≤ d(B),
(c) Ek,Dk ⊂ Ck+1 and d(Ck+1) ≤ d(A).

We start with C1 := C∗(F ) ⊂ A. If Ck has been constructed, we apply Lemma 1 to
find Dk satisfying (a). If Dk has been constructed, we apply (D6) to Dk∩B ⊂ B to find
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Ek satisfying (b). If Ek has been constructed, we apply axiom (D6) to C∗(Dk, Ek) ⊂ A
to find Ck+1 satisfying (c).

Then let A′ :=
⋃

k Ck =
⋃

k Dk, and B′ :=
⋃

k(Dk ∩B) =
⋃

k Ek. The situation is
shown in the following diagram:

Ck ⊂ Dk ⊂

∪

C∗(Dk, Ek) ⊂

∪

Ck+1 ⊂ . . . ⊂ A′

Dk ∩B ⊂ Ek ⊂ . . . . . . ⊂ B′

Let us verify that A′ and B′ have the desired properties. First, since d(Ck) ≤ d(A)
for all k, we get d(A′) ≤ d(A) from (D5). Similarly, we get d(B′) ≤ d(B). For each
k we have that Dk ∩ B ⊂ Dk is a full, hereditary sub-C∗-algebra, and therefore the
same holds for B′ ⊂ A′. Since A′ and B′ are separable (and hence σ-unital), we may
apply Brown’s stabilization theorem, [Bro77, Theorem 2.8], and obtain A′⊗K ∼= B′⊗K.
Together with the assumption (3s), we obtain d(A′) = d(A′ ⊗K) = d(B′ ⊗K) = d(B′).
This finishes the construction of A′ and B′, and we deduce d(A) = d(B) from (D5).

Lastly, if d satisfies condition (1), and B ⊂ A is a (not necessarily full) hereditary
sub-C∗-algebra, then B is full, hereditary in the ideal J ⊳ A generated by B. By (D1)
and condition (1) we have d(B) = d(J) ≤ d(A). �

Definition 2. A dimension theory d : C∗ → N is called Morita-invariant if it satisfies
the conditions of Proposition 3.

Given positive elements a, b in a C∗-algebra, recall that we write a =σ b if ‖a− b‖ < σ.
We write a≪σ b if ab =σ a.

Lemma 2. For every ε > 0 there exists δ > 0 with the following property: Given a
C∗-algebra A, and contractive elements a, b ∈ A+ with a =δ b, there exists a partial
isometry v ∈ A∗∗ such that:

(1) v(a− δ)+v
∗ ∈ bAb.

(2) If d ∈ A+ is contractive with d≪σ a, then vdv∗ =4σ+ε d.

Proof. To simplify the proof, we will fix δ > 0 and verify the statement for ε = ε(δ)
with the property that ε(δ)→ 0 when δ → 0.

Fix δ > 0. Let A be a C∗-algebra, and let a, b ∈ A+ be contractive elements such that
a =δ b. Without loss of generality we may assume that A is unital. It is well-known
that there exists s ∈ A such that s(a− δ)+s

∗ ∈ bAb, see [Rør92, Proposition 2.4]. One
could follow the proof to obtain an estimate similar to that in statement (2). It is,
however, easier to find v ∈ A∗∗ such that (1) and (2) hold, and for our application in
Proposition 4 it is sufficient that v lies in A∗∗.

It follows from a =δ b that a− δ ≤ b, and hence:

(a− δ)2+ = (a− δ)
1/2
+ (a− δ)(a− δ)

1/2
+ ≤ (a− δ)

1/2
+ b(a− δ)

1/2
+ .

Set z := b1/2(a− δ)
1/2
+ . Then:

|z| = ((a− δ)
1/2
+ b(a− δ)

1/2
+ )1/2, |z∗| = (b1/2(a− δ)+b

1/2)1/2,

and we let z = v|z| be the polar decomposition of z, with v ∈ A∗∗. We claim that v has

the desired properties. First, note that v((a−δ)1/2+ b(a−δ)1/2+ )v∗ = b1/2(a−δ)+b1/2 ∈ bAb,
and therefore also v(a− δ)+v

∗ ∈ bAb, which verifies property (1).
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For property (2), let us start by estimating the distance from a to z and |z|. It is
known that there exists an assignment σ 7→ ε1(σ) with the following property: Whenever
x, y are positive, contractive elements of a C∗-algebra, and x =σ y, then x1/2 =ε1(σ) y

1/2,
and moreover ε1(σ) → 0 as σ → 0. We may assume σ ≤ ε1(σ), and we will use this to
simplify some estimates below.

Then, using (a− δ)+ =δ a and so (a− δ)
1/2
+ =ε1(σ) a

1/2 at the second step,

z = b1/2(a− δ)
1/2
+ =ε1(δ) b

1/2a1/2 =ε1(δ) a.(3.1)

For |z| we compute, using (a− δ)
1/2
+ b(a− δ)

1/2
+ =3ε1(δ) a

2 at the second step,

|z| = ((a− δ)
1/2
+ b(a− δ)

1/2
+ )1/2 =ε1(3ε1(δ)) (a

2)1/2 = a.(3.2)

Let d ∈ A+ be contractive with d ≪σ a. Then ada =2σ d, and we may estimate the
distance from vdv∗ to d as follows:

vdv∗ =2σ vadav∗
(3.2)
==2ε1(3ε1(δ)) v|z|d|z|v∗ = zdz

(3.1)
==4ε1(δ) ada =2σ d.

Thus, ‖vdv∗−d‖ ≤ 4σ+2ε1(3ε1(δ))+4ε1(δ), and this distance converges to 4σ when
δ → 0. This completes the proof. �
Proposition 4. Let A be a C∗-algebra, and let B ⊂ A be a hereditary sub-C∗-algebra.
Assume A is approximated by sub-C∗-algebras Ai ⊂ A. Then B is approximated by
subalgebras that are isomorphic to hereditary sub-C∗-algebras of the algebras Ai, i.e.,
given a finite set F ⊂ B and ε > 0, there exists a sub-C∗-algebra B′ ⊂ B such that
F ⊂ε B

′ and B′ is isomorphic to a hereditary sub-C∗-algebra of Ai for some i.

Proof. Let F ⊂ B and ε > 0 be given. We let γ = ε/36, which is justified by the
estimates that we obtain through the course of the proof. Without loss of generality, we
may assume that F consists of positive, contractive elements.

There exists b ∈ B+ such that b almost acts as a unit on the elements of F in the
sense that x≪γ b for all x ∈ F . Let δ > 0 be the tolerance we get from Lemma 2 for γ.
We may assume δ ≤ γ, and to simplify the computations below we will often estimate
a distance by γ, even if it could be estimated by δ.

By assumption, the algebras Ai approximate A. Thus, there exists i such that there
is a positive, contractive element a ∈ Ai with a =δ b, and such that for each x ∈ F there
exists a positive, contractive x′ ∈ Ai with x′ =δ x. Then:

x′(a− δ)+ =3δ xb =γ x =δ x
′,

and so x′ ≪5γ (a − δ)+, since δ ≤ γ. In general, if two positive, contractive elements
s, t satisfy s ≪σ t, then s =2σ tst ≪σ t. Thus, if for each x ∈ F we set x′′ :=
(a− δ)+x

′(a− δ)+, then we obtain:

x =γ x′ =10γ x′′ ≪5γ (a− δ)+.(3.3)

Since a =δ b, we obtain from Lemma 2 a partial isometry v ∈ A∗∗ such that v(a −
δ)+v

∗ ∈ bAb. Let A′ := (a − δ)+Ai(a − δ)+, which is a hereditary sub-C∗-algebra of
Ai. The map x 7→ vxv∗ defines an isomorphism from A′ onto B′ := vA′v∗. Since B is
hereditary, B′ is a sub-C∗-algebra of B. Let us estimate the distance from F to B′.

For each x ∈ F , we have computed in (3.3) that x′′ ≪5γ (a − δ)+, which implies
x′′ ≪6γ a. From statement (2) of Lemma 2 we deduce vx′′v∗ =25γ x′′. Altogether, the
distance between x and vx′′v∗ is at most 36γ. Since vx′′v∗ ∈ B′, and since we chose
γ = ε/36, we have F ⊂ε B

′, as desired. �



28

10 HANNES THIEL

Proposition 5. Let d : C → N be a dimension theory. For any C∗-algebra A define:

d̃(A) := inf{k ∈ N | A is approximated by sub-C∗-algebras B ∈ C with d(B) ≤ k},(3.4)

where we define the infimum of the empty set to be ∞ ∈ N.

Then d̃ : C∗ → N is a dimension theory that agrees with d on C.
If, moreover, C is closed under stable isomorphism, and d(A) = d(A ⊗ K) for every

(separable) A ∈ C, then d̃ is Morita-invariant.

Proof. If A ∈ C, then clearly d̃(A) ≤ d(A), and the converse inequality follows from

axiom (D5). Axioms (D1)-(D5) for d̃ are easy to check.

Let us check axiom (D6) for d̃. Assume A is a C∗-algebra, and assume C ⊂ A is a

separable sub-C∗-algebra. Set n := d̃(A), which we may assume is finite. We need to

find a separable sub-C∗-algebra D ⊂ A such that C ⊂ D and d̃(D) ≤ n.
We first note the following: For a finite set F ⊂ A, and ε > 0 we can find a separable

sub-C∗-algebra A(F, ε) ⊂ A with d(A(F, ε)) ≤ n and F ⊂ε A(F, ε). Indeed, by definition

of d̃ we can first find a sub-C∗-algebra B ⊂ A with d(B) ≤ n and a finite subset
G ⊂ B such that F ⊂ε G. Applying (D6) to C∗(G) ⊂ B, we may find a separable
sub-C∗-algebra A(F, ε) ⊂ B with d(A(F, ε)) ≤ n and C∗(G) ⊂ A(F, ε), which implies
F ⊂ε A(F, ε).

We will inductively define separable sub-C∗-algebras Dk ⊂ A and countable dense
subsets Sk = {xk1 , xk2 , . . .} ⊂ Dk as follows: We start with D1 := C and choose any
countable dense subset S1 ⊂ D1. If Dl and Sl have been constructed for l ≤ k, then set:

Dk+1 := C∗(Dk, A({xji | i, j ≤ k}, 1/k)) ⊂ A,

and choose any countable dense subset Sk+1 = {xk+1
1 , xk+1

2 , . . .} ⊂ Dk+1.

Set D :=
⋃

k Dk ⊂ A, which is a separable C∗-algebra containing C. Let us check that

d̃(D) ≤ n, which means that we have to show thatD is approximated by sub-C∗-algebras
B ∈ C with d(B) ≤ n.

Note that {xji}i,j≥1 is dense in D. Thus, if a finite subset F ⊂ D, and ε > 0 is

given, we may find k such that F ⊂ε/2 {xji | i, j ≤ k}, and we may assume k > 2/ε. By

construction, D contains the sub-C∗-algebra B := A({xji | i, j ≤ k}, 1/k), which satisfies

d(B) ≤ n and {xji | i, j ≤ k} ⊂1/k B. Then F ⊂ε B, which completes the proof that

d̃(D) ≤ n.
Lastly, assume C is closed under stable isomorphism, and assume d(A) = d(A ⊗ K)

for every separable A ∈ C. This implies the following: If A is a separable C∗-algebra in
C, and B ⊂ A is a hereditary sub-C∗-algebra, then B lies in C and d(B) ≤ d(A).

We want to check condition (3) of Proposition 3 for d̃. Thus, let a separable C∗-
algebra A be given. We need to check d̃(A) = d̃(A⊗K).

If d̃(A) =∞, then clearly d̃(A⊗K) ≤ d̃(A). So assume n := d̃(A) <∞, which means
that A is approximated by algebras Ai ⊂ A with d(Ai) ≤ n. Then A⊗K is approximated
by the subalgebras Ai ⊗K ⊂ A⊗K, and d(Ai ⊗K) = d(Ai) ≤ n by assumption. Then

d̃(A⊗K) ≤ n = d̃(A).

Conversely, if d̃(A ⊗ K) = ∞, then d̃(A) ≤ d̃(A ⊗ K). So assume n := d̃(A ⊗ K) <
∞, which means that A ⊗ K is approximated by algebras Ai ⊂ A with d(Ai) ≤ n.
Consider the hereditary sub-C∗-algebra A ⊗ e1,1 ⊂ A ⊗ K, which is isomorphic to A.
By Proposition 4, A ⊗ e1,1 is approximated by subalgebras Bj ⊂ A ⊗ e1,1 such that
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each Bj is isomorphic to a hereditary sub-C∗-algebras of Ai, for some i = i(j). It

follows d(Bj) ≤ n, and then d̃(A) = d̃(A ⊗ e1,1) ≤ n = d̃(A ⊗ K). Together we get

d̃(A) = d̃(A⊗K), as desired. �

4. Topological dimension

One could try to define a dimension theory by simply considering the dimension of
the primitive ideal space of a C∗-algebra. This will, however, run into problems if the
primitive ideal space is not Hausdorff. Brown and Pedersen, [BP09], suggested a way of
dealing with this problem by restricting to (locally closed) Hausdorff subsets of Prim(A),
and taking the supremum over the dimension of these Hausdorff subsets. This defines
the topological dimension of a C∗-algebra, see Definition 4.

In this section we will show that the topological dimension is a dimension theory in
the sense of Definition 1 for the class of type I C∗-algebras. It follows from the work of
Brown and Pedersen that axioms (D1)-(D4) are satisfied, and we verify axiom (D5) in
Proposition 8. We use transfinite induction over the length of a composition series of
the type I C∗-algebra to verify axiom (D6), see Proposition 9.

See 6 for a short reminder on type I C∗-algebras. For more details, we refer the
reader to Chapter IV.1 of Blackadar’s book, [Bla06], and Chapter 6 of Pedersen’s book,
[Ped79].

Definition 3 (Brown, Pedersen, [BP07, 2.2 (iv)]). Let X be a topological space. We
define:

(1) A subset C ⊂ X is called locally closed if there is a closed set F ⊂ X and an open
set G ⊂ X such that C = F ∩G.

(2) X is called almost Hausdorff if every non-empty closed subset F contains a non-
empty relatively open subset F ∩ G (so F ∩ G is locally closed in X) which is
Hausdorff.

7. We could consider locally closed subsets as “well-placed” subsets. Then, being almost
Hausdorff means having enough “well-placed” Hausdorff subsets.

For a C∗-algebra A, the locally closed subsets of Prim(A) correspond to ideals of
quotients of A (equivalently to quotients of ideals of A) up to canonical isomorphism,
see [BP07, 2.2(iii)]. Therefore, the primitive ideal space of every type I C∗-algebra
is almost Hausdorff, since every non-zero quotient contains a non-zero ideal that has
continuous trace, see [Ped79, Theorem 6.2.11, p. 200], and the primitive ideal space of
a continuous trace C∗-algebra is Hausdorff.

Definition 4 (Brown, Pedersen, [BP07, 2.2(v)]). Let A be a C∗-algebra. If Prim(A) is
almost Hausdorff, then the topological dimension of A, denoted by topdim(A), is:

topdim(A) := sup{locdim(S) | S ⊂ Prim(A) locally closed, Hausdorff}.(4.1)

We will now show that the topological dimension satisfies the axioms of Definition 1.
The following result immediately implies (D1)-(D4).

Proposition 6 (Brown, Pedersen, [BP07, Proposition 2.6]). Let (Jα)α≤µ be a com-
position series for a C∗-algebra A. Then Prim(A) is almost Hausdorff if and only if
Prim(Jα+1/Jα) is almost Hausdorff for each α < µ, and if this is the case, then:

topdim(A) = sup
α<µ

topdim(Jα+1/Jα).(4.1)
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The following result is implicit in the papers of Brown and Pedersen, e.g. [BP09, The-
orem 5.6].

Proposition 7. Let A be a C∗-algebra, and let B ⊂ A be a hereditary sub-C∗-algebra.
If Prim(A) is locally Hausdorff, then so is Prim(B), and then topdim(B) ≤ topdim(A).
If B is even full hereditary, then topdim(B) = topdim(A).

Proof. In general, if B ⊂ A is a hereditary sub-C∗-algebra, then Prim(B) is homeomor-
phic to an open subset of Prim(A). In fact, Prim(B) is canonically homeomorphic to
the primitive ideal space of the ideal generated by B, and this corresponds to an open
subset of Prim(A).

Note that being locally Hausdorff is a property that passes to locally closed sub-
sets, and so it passes from Prim(A) to Prim(B). Further, every locally closed, Haus-
dorff subset S ⊂ Prim(B) is also locally closed (and Hausdorff) in Prim(A). It follows
topdim(B) ≤ topdim(A).

If B is full, then Prim(B) ∼= Prim(A) and therefore topdim(B) = topdim(A). �

Lemma 3. Let A be a continuous trace C∗-algebra, and let n ∈ N. If A is approximated
by sub-C∗-algebras with topological dimension at most n, then topdim(A) ≤ n.

Proof. Since Prim(A) is Hausdorff, we have topdim(A) = locdim(Prim(A)). Thus, it
is enough to show that every x ∈ Prim(A) has a neighborhood U with dim(U) ≤ n.
This will allow us to reduce the problem to the situation that A has a global rank-one
projection, i.e., that there exists a full, abelian projection p ∈ A, see [Bla06, IV.1.4.20,
p.335], which we do as follows:

Let x ∈ Prim(A) be given. Since A has continuous trace, there exists an open
neighborhood U ⊂ Prim(A) of x and an element a ∈ A+ such that ρ(a) is a rank-
one projection for every ρ ∈ U , see 5. Then there exists a closed, compact neighborhood
Y ⊂ Prim(A) of x that is contained in U . Let J ⊳ A be the ideal corresponding to
Prim(A) \ Y . The image of a in the quotient A/J is a full, abelian projection. Since A
is approximated by subalgebras B ⊂ A with topdim(B) ≤ n, A/J is approximated by
the subalgebras B/(B ∩ J) with topdim(B/(B ∩ J)) ≤ topdim(B) ≤ n. If we can show
that this implies dim(Y ) = topdim(A/J) ≤ n, then every point of Prim(A) has a closed
neighborhood of dimension ≤ n, which means topdim(A) = locdim(Prim(A)) ≤ n.

We assume from now on that A has continuous trace with a full, abelian projection
p ∈ A. Thus, pAp ∼= C(X) where X := Prim(A) is a compact, Hausdorff space. Assume
A is approximated by subalgebras Ai ⊂ A with topdim(Ai) ≤ n. It follows from
Proposition 4 that the hereditary sub-C∗-algebra pAp is approximated by subalgebras
Bj such that each Bj is isomorphic to a hereditary sub-C∗-algebra of Ai, for some
i = i(j). By Proposition 7, topdim(Bj) ≤ topdim(Ai(j)) ≤ n for each j.

Thus, C(X) is approximated by commutative subalgebras C(Xj) with dim(Xj) =
topdim(C(Xj)) ≤ n. It follows from Proposition 1 that dim(X) ≤ n, as desired. �

Proposition 8. Let A be a type I C∗-algebra, and let n ∈ N. If A is approximated by
sub-C∗-algebras with topological dimension at most n, then topdim(A) ≤ n.

Proof. Let (Jα)α≤µ be a composition series for A such that each successive quotient
has continuous trace, and assume A is approximated by subalgebras Ai ⊂ A with
topdim(Ai) ≤ n.

Then Jα+1/Jα is approximated by the subalgebras (Ai∩Jα+1)/(Ai∩Jα), see 3. Since
topdim((Ai ∩ Jα+1)/(Ai ∩ Jα)) ≤ topdim(Ai) ≤ n, we obtain from the above Lemma 3
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that topdim(Jα+1/Jα) ≤ n. By Proposition 6, topdim(A) = supα<µ topdim(Jα+1/Jα) ≤
n, as desired. �

Remark 3. It is noted in [BP07, Remark 2.5(v)] that a weaker version of Proposition 8
would follow from [Sud04]. However, the statement is formulated as an axiom there, and
it is not clear that the formulated axioms are consistent and give a dimension theory
that agrees with the topological dimension.

We will now prove that the topological dimension of type I C∗-algebras satisfies the
Mardešić factorization axiom (D6). We start with two lemmas.

Lemma 4. Let A be a continuous trace C∗-algebra, and let C ⊂ A be a separable sub-
C∗-algebra. Then there exists a separable, continuous trace sub-C∗-algebra D ⊂ A that
contains C, and such that the inclusion C ⊂ D is proper, and topdim(D) ≤ topdim(A).

Proof. Let us first reduce to the case that A is σ-unital, and the inclusion C ⊂ A is
proper. To this end, consider the hereditary sub-C∗-algebra A′ := CAC ⊂ A. Since C
is separable, it contains a strictly positive element which is then also strictly positive in
A′. Moreover, having continuous trace passes to hereditary sub-C∗-algebras, see [Ped79,
Proposition 6.2.10, p.199]. Thus, A′ is σ-unital and C ⊂ A′ is proper. Moreover,
topdim(A′) ≤ topdim(A) by Proposition 7.

Thus, by replacing A with CAC, we may assume from now on that A is σ-unital
and that the inclusion C ⊂ A is proper. Set X := Prim(A). By Brown’s stabilization
theorem, [Bro77, Theorem 2.8], there exists an isomorphism Φ: A ⊗ K → C0(X) ⊗ K.
Let eij ∈ K be the canonical matrix units, and consider the following C∗-algebra:

E := C∗(
⋃

i,j

e1iΦ(C ⊗K)ej1) ⊂ C0(X) ⊗ e11.

The following diagram shows some of the C∗-algebras and maps that we will construct
below:

A⊗ e11

∪

⊂ A⊗K

∪

Φ
∼=
// C0(X) ⊗K

∪

D

∪

⊂ Φ−1(D′)

∪
∼=
// C0(Z0)⊗K

∪

= D′

C ⊗ e11 ⊂ C ⊗K ∼=
// Φ(C ⊗K)

Note that E is separable and commutative. Thus, there exists a separable sub-C∗-
algebra C0(Y ) ⊂ C0(X) such that E = C0(Y ) ⊗ e11. We constructed E such that
Φ(C ⊗K) ⊂ C0(Y )⊗K.

The inclusion C0(Y ) ⊂ C0(X) is induced by a pointed, continuous map f : X+ → Y +,
see 1. Recall that a compact, Hausdorff space M is metrizable if and only if C(M) is
separable. Thus, Y + is compact, metrizable.

By Mardešić’s factorization theorem, see [Nag70, Corollary 27.5, p.159] or [Mar60,
Lemma 4], there exists a compact, metrizable space Z with dim(Z) ≤ dim(X) and
continuous (surjective) maps g : X → Z and h : Z → Y such that f = h ◦ g. Set
Z0 := Z \ {g(∞)}, and note that g∗ induces an embedding C0(Z0) ⊂ C0(X). Moreover,
C0(Z0) is separable, since Z is compact, metrizable.
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Consider D′ := C0(Z0) ⊗ K. We have that D′ is a separable, continuous trace C∗-
algebra such that Φ(C⊗K) ⊂ C0(Y )⊗K ⊂ D′, and topdim(D′) = dim(Z) ≤ dim(X) =
topdim(A). We think of C as included in C ⊗K via C ∼= C ⊗ e11. Set

D := (1
Ã
⊗ e11)(Φ

−1(D′))(1
Ã
⊗ e11),

which is a hereditary sub-C∗-algebra of Φ−1(D′) ∼= D′. Hence, D is a separable, con-
tinuous trace C∗-algebra with topdim(D) ≤ topdim(D′) ≤ topdim(A). By construc-
tion, C ⊗ e11 ⊂ D, and this inclusion is proper since D ⊂ A ⊗ e11 and the inclusion
C ⊗ e11 ⊂ A⊗ e11 is proper. �

Lemma 5. Let A be a C∗-algebra, let J ⊳ A be an ideal, and let C ⊂ A be a sub-
C∗-algebra. Assume K ⊂ J is a sub-C∗-algebra that contains C ∩ J and such that the
inclusion C ∩J ⊂ K is proper. Then K is an ideal in the sub-C∗-algebra C∗(K,C) ⊂ A
generated by K and C. Moreover, there is a natural isomorphism C∗(K,C)/K ∼= C/(C∩
J).

Proof. Set B := A/J and denote the quotient morphism by π : A→ B. SetD := π(C) ⊂
B. Clearly, C∗(K,C) contains both K and C, and it is easy to see that the restriction
of π to C∗(K,C) maps onto D. The situation is shown in the following commutative
diagram, where the top and bottom rows are exact:

0 // J // A
π // B // 0

K //

∪

C∗(K,C)

∪

// D

∪

0 // C ∩ J

∪

// C

∪

// D

||

// 0

Let us show that K is an ideal in C∗(K,C). Since C∗(K,C) is generated by elements
of K and C, it is enough to show that xy and yx lie in K whenever x ∈ K and y ∈ K
or y ∈ C. For y ∈ K that is clear, so assume y ∈ C.

Since C∩J ⊂ K is proper, for any ε > 0 there exists c ∈ C∩J such that ‖cxc−x‖ < ε.
Then ‖xy − cxcy‖, ‖yx − ycxc‖ < ε‖y‖. Moreover, cxcy ∈ K and ycxc ∈ K since
cy, yc ∈ C ∩ J ⊂ K. For ε > 0 was arbitrary, it follows that xy, yx ∈ K. This shows
that the middle row in the above diagram is also exact. �

Proposition 9. Let A be a C∗-algebra, let J ⊳ A be an ideal of type I, and let C ⊂ A
be a separable sub-C∗-algebra. Then there exists a separable sub-C∗-algebra D ⊂ A such
that C ⊂ D and topdim(D ∩ J) ≤ topdim(J).

Proof. Let (Jα)α≤µ be a composition series for J with successive quotients that have
continuous trace. To simplify notation, we will write B[α, β) for (B ∩ Jβ)/(B ∩ Jα)
and B[α,∞) for B/(B ∩ Jα) whenever B ⊂ A is a subalgebra and α ≤ β ≤ µ are
ordinals. In particular, A[0, β) = Jβ and A[α,∞) = A/Jα. We prove the statement of
the proposition by transfinite induction over µ, which we carry out in three steps.

Step 1: The statement holds for µ = 0. This follows since J is assumed to have a
composition series with length 0 and so J = {0} and we can simply set D := C.

Step 2: If the statement holds for a finite ordinal n, then it also holds for n+ 1.
To prove this, assume J has a composition series (Jα)α≤n+1. Let d := topdim(J).

Given C ⊂ A separable, we want to find a separable subalgebra D ⊂ A with C ⊂ D and
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topdim(D[0, n + 1)) ≤ d. The following commutative diagram, whose rows are short
exact sequences, contains the algebras and maps that we will construct below:

0 // A[0, 1) // A // A[1,∞) // 0

0 // E[0, 1) //

∪

E //

∪

E′ //

∪

0

0 // C[0, 1)

∪

// C

∪

// C[1,∞) //

∪

0

Consider A[1,∞) together with the ideal A[1, n+1) = J [1, n+1). Note that A[1, n+1)
has the canonical composition series (A[1, α))1≤α≤n+1 of length n. By assumption of the
induction, the statement holds for n, and so there is a separable sub-C∗-algebra E′ ⊂
A[1,∞) such that C[1,∞) ⊂ E′ and topdim(E′∩A[1, n+1)) ≤ topdim(A[1, n+1)) ≤ d.
Find a separable sub-C∗-algebra E ⊂ A such that C ⊂ E and E[1,∞) = E′.

We apply Lemma 4 to the inclusion E[0, 1) ⊂ A[0, 1) to find a separable sub-C∗-
algebra K ⊂ A[0, 1) containing E[0, 1) and such that the inclusion E[0, 1) ⊂ K is
proper, and topdim(K) ≤ topdim(A[0, 1)) ≤ d. Set D := C∗(K,E) ⊂ A, which is a
separable C∗-algebra with C ⊂ D. By Lemma 5, D is an extension of E by K, and
therefore Proposition 6 gives:

topdim(D[0, n + 1)) = max{topdim(D[0, 1)), topdim(D[1, n + 1))}
= max{topdim(K), topdim(E′ ∩A[1, n + 1))}
≤ d.

Step 3: Assume λ is a limit ordinal, and n is finite. If the statement holds for all
α < λ, then it holds for λ+ n.

We will prove this by distinguishing the two sub-cases that λ has cofinality at most
ω, or cofinality bigger than ω. We start the construction for both cases together. Later
we will treat them separately. Let d := topdim(J).

We will inductively define ordinals αk < µ and sub-C∗-algebras Dk, Ek ⊂ A with the
following properties:

(1) α1 ≤ α2 ≤ . . .,
(2) Dk ⊂ Ek and topdim(Ek[λ, λ+ n)) ≤ d,
(3) Ek ⊂ Dk+1 and topdim(Dk+1[0, αk+1)) ≤ d.

In both cases 3a and 3b below, we construct Ek fromDk as follows: GivenDk, consider
Dk[λ,∞) ⊂ A[λ,∞) and the ideal A[λ, λ+n)⊳A[λ,∞) which has a composition series of
length n. Since n < λ, we get by assumption of the induction that there exists a separable
subalgebra E′

k ⊂ A[λ,∞) such that Dk[λ,∞) ⊂ E′
k and topdim(E′

k ∩ A[λ, λ + n)) ≤ d.
Let Ek ⊂ A be any separable C∗-algebra such that Dk ⊂ Ek and Ek[λ,∞) = E′

k.
Case 3a: Assume λ has cofinality at most ω, i.e., there exist ordinals 0 = λ0 < λ1 <

λ2 < . . . < λ such that λ = supk λk.
In this case, we let αk := λk, and we set D0 := C. Given Dk, we construct Ek as

described above. Given Ek, we get Dk+1 satisfying (3) by assumption of the induction.
Case 3b: Assume λ has cofinality larger than ω.
We start by setting α0 := 0 and D0 := C. Given Dk, we construct Ek as described

above. Given Ek, we define αk+1 as follows:

αk+1 := inf{α | αk ≤ α ≤ λ, and Ek[0, α) = Ek[0, λ)}.
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Since λ has cofinality larger than ω and Ek is separable, we have αk+1 < λ. Hence, we
get Dk+1 satisfying (3) by assumption of the induction.

From now on we treat the cases 3a and 3b together. Set D :=
⋃

k Dk =
⋃

k Ek. This

is a separable sub-C∗-algebra of A with C ⊂ D. Since D[λ, λ+n) =
⋃

k Ek[λ, λ+ n) and
topdim(Ek[λ, λ+ n)) ≤ d for all k, we get topdim(D[λ, λ+ n)) ≤ d from Proposition 8.

One checks that D[0, λ) =
⋃

k Dk[0, αk). Since topdim(Dk[0, αk)) ≤ d for all k, we
get topdim(D[0, λ)) ≤ d, again by Proposition 8.

Then Proposition 6 gives:

topdim(D[0, λ+ n)) = max{topdim(D[0, λ)), topdim(D[λ, λ + n))} ≤ d.

This completes the proof. �
Corollary 1. The topological dimension of type I C∗-algebras satisfies the Mardešić
factorization axiom (D6), i.e., given a type I C∗-algebra A and a separable sub-C∗-
algebra C ⊂ A, there exists a separable C∗-algebra D ⊂ A such that C ⊂ D ⊂ A and
topdim(D) ≤ topdim(A).

This following theorem is the main result of this paper. It follows immediately from the
above Corollary 1, Proposition 6 and Proposition 8.

Theorem 1. The topological dimension is a noncommutative dimension theory in the
sense of Definition 1 for the class of type I C∗-algebras.

8. Let us extend the topological dimension from the class of type I C∗-algebras to all
C∗-algebras, as defined in Proposition 5. This dimension theory topdim˜ : C∗ → N is
Morita-invariant since topdim(A) = topdim(A⊗K) for any type I C∗-algebra A.

If topdim˜(A) <∞, then A is in particular approximated by type I sub-C∗-algebras.
This implies that A is nuclear, satisfies the universal coefficient theorem (UCT), see
[Dad03, Theorem 1.1], and is not properly infinite. It is possible that this dimension
theory is connected to the decomposition rank and nuclear dimension, although the
exact relation is not clear.

Let us show that the (extended) topological dimension behaves well with respect to
tensor products. First, if A,B are separable, type I C∗-algebras, then Prim(A ⊗ B) ∼=
Prim(A)× Prim(B), see [Bla06, IV.3.4.25, p.390]. This implies:

topdim(A⊗B) ≤ topdim(A) + topdim(B).

Next, assume A,B are C∗-algebras with topdim˜(A) = d1 < ∞ and topdim˜(B) =
d2 <∞. This means that A is approximated by separable, type I algebras Ai ⊂ A with
topdim(Ai) ≤ d1, and similarly B is approximated by separable, type I algebras Bj ⊂ B
with topdim(Bj) ≤ d2. Then A ⊗ B is approximated by the algebras Ai ⊗ Bj , and we
have seen that topdim(Ai ⊗Bj) ≤ d1 + d2. Thus:

topdim˜(A⊗B) ≤ topdim˜(A) + topdim˜(B).

Note that we need not specify the tensor product, since topdim˜(A) < ∞ implies that
A is nuclear.

5. Dimension theories of type I C∗-algebras

In this section we study the relation of the topological dimension of type I C∗-algebras
to other dimension theories. It was shown by Brown, [Bro07, Theorem 3.10], how to
compute the real and stable rank of a CCR algebra A in terms of the topological di-
mension of certain canonical algebras Ak associated to A. We use this to obtain a
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general estimate of the real and stable rank of a CCR algebra in terms of its topologi-
cal dimension, see Corollary 2. Using the composition series of a type I C∗-algebra, we
will obtain similar (but weaker) estimates for general type I C∗-algebras, see Theorem 3.

Let A be a C∗-algebra. We denote by rr(A) its real rank, see [BP91], by sr(A) its stable
rank, and by csr(A) its connected stable rank, see [Rie83, Definition 1.4, 4.7] We denote
by Ak the successive quotient of A that corresponds to the irreducible representations
of dimension k.

If t is a real number, we denote by ⌊t⌋ the largest integer n ≤ t, and by ⌈t⌉ the
smallest integer n ≥ t.

Theorem 2 (Brown, [Bro07, Theorem 3.10]). Let A be a CCR algebra with topdim(A) <
∞. Then:

(1) If topdim(A) ≤ 1, then sr(A) = 1.

(2) If topdim(A) > 1, then sr(A) = supk≥1max{
⌈
topdim(Ak)+2k−1

2k

⌉
, 2}.

(3) If topdim(A) = 0, then rr(A) = 0.

(4) If topdim(A) > 0, then rr(A) = supk≥1max{
⌈
topdim(Ak)

2k−1

⌉
, 1}.

We may draw the following conclusion:

Corollary 2. Let A be a CCR algebra. Then:

sr(A) ≤
⌊
topdim(A)

2

⌋
+ 1,(5.1)

csr(A) ≤
⌊
topdim(A) + 1

2

⌋
+ 1,(5.2)

rr(A) ≤ topdim(A).(5.3)

Proof. If topdim(A) = ∞, then the statements hold. So we may assume topdim(A) <
∞, whence we may apply [Bro07, Theorem 3.10], see Theorem 2.

Let us show (5.1). If topdim(A) ≤ 1, then sr(A) = 1 ≤ ⌊topdim(A)/2⌋ + 1 . If
d := topdim(A) ≥ 2, then we use topdim(Ak) ≤ d to compute:

sr(A) ≤ sup
k

max{
⌈
d+ 2k − 1

2k

⌉
, 2} ≤ max{

⌈
d+ 1

2

⌉
, 2} ≤

⌊
d

2

⌋
+ 1.

Now (5.2) follows from (5.1) since csr(A) ≤ sr(A ⊗ C([0, 1])) in general, by [Nis86,
Lemma 2.4], and topdim(A⊗ C([0, 1])) ≤ topdim(A) + 1, see 8.

To show (5.3), we again use [Bro07, Theorem 3.10], see Theorem 2. If topdim(A) = 0,
then rr(A) = 0 ≤ topdim(A) . If d := topdim(A) ≥ 1, then we use topdim(Ak) ≤ d to
compute:

rr(A) ≤ sup
k

max{
⌈

d

2k − 1

⌉
, 1} ≤ max{⌈d⌉ , 1} ≤ d,

which completes the proof. �

Remark 4. What makes type I C∗-algebras so accessible is the presence of composition
series with successive quotients that are easier to handle (i.e., of continuous trace or
CCR), see 6. They allow us to prove statements by transfinite induction, for which one
has to consider the case of a successor and limit ordinal. Let us see that for statements
about dimension theories one only needs to consider successor ordinals.
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Let (Jα)α≤µ be a composition series, and d a dimension theory. If α is a limit ordinal,

then Jα =
⋃

γ<α Jγ , and we obtain:

d(Jα) ≤(D5) sup
γ<α

d(Jγ) ≤(D1) sup
γ<α

d(Jα),

and thus d(Jα) = supγ<α d(Jγ).
Thus, any reasonable estimate about dimension theories that holds for γ < α will also

hold for α. It follows that we only need to consider a successor ordinal α, in which case
A = Jα is an extension of B = Jα/Jα−1 by I = Jα−1. By assumption the result is true
for I and has to be proved for A (using that B has continuous trace or is CCR). This
idea is used to prove the next theorem.

Theorem 3. Let A be a type I C∗-algebra. Then:

sr(A) ≤
⌊
topdim(A) + 1

2

⌋
+ 1,(5.4)

rr(A) ≤ topdim(A) + 2.(5.5)

Proof. We will prove (5.4) by transfinite induction over the length µ of a composition
series (Jα)α≤µ for A with successive quotients that are CCR algebras.

Set d := topdim(A). Assume the statement holds for some ordinal µ, and let us show
it also holds for µ + 1. Consider the ideal I := Jµ inside A = Jµ+1. We obtain the
following, where the first estimate follows from [Rie83, Theorem 4.11], and the second
estimate follows by assumption of the induction for I and Corollary 2 for the CCR
algebra A/I:

sr(A) ≤ max{sr(I), sr(A/I), csr(A/I)}

≤ max{
⌊
d+ 1

2

⌋
+ 1,

⌊
d

2

⌋
+ 1,

⌊
d+ 1

2

⌋
+ 1}

=

⌊
d+ 1

2

⌋
+ 1.

Let µ be a limit ordinal, and assume the statement holds for α < µ. This means that

sr(Jα) ≤
⌊
topdim(Jα)+1

2

⌋
+ 1 for all α < µ. As explained in Remark 4, we obtain the

desired estimate for µ as follows:

sr(Jµ) = sup
α<µ

sr(Jα) ≤ sup
α<µ

⌊
topdim(Jα) + 1

2

⌋
+ 1 =

⌊
topdim(Jµ) + 1

2

⌋
+ 1.

Finally, (5.5) follows from (5.4), using the estimate rr(A) ≤ 2 sr(A) − 1, which holds
for all C∗-algebras, see [BP91, Proposition 1.2]. �

Remark 5. It follows from [Rie83, Proposition 1.7], Corollary 2, and Theorem 3 that
we may estimate the stable rank of a C∗-algebra A in terms of its topological dimension
as follows:

(1) sr(A) =
⌊
topdim(A)

2

⌋
+ 1, if A is commutative.

(2) sr(A) ≤
⌊
topdim(A)

2

⌋
+ 1, if A is CCR.

(3) sr(A) ≤
⌊
topdim(A)+1

2

⌋
+ 1, if A is type I.

This also shows that the inequality for the stable rank in Corollary 2 cannot be
improved (the same is true for the estimates of real rank and connected stable rank).
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To see that the estimate of Theorem 3 for the stable rank cannot be improved either,
consider the Toeplitz algebra T . We have sr(T ) = 2, while topdim(T ) = 1.
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Abstract. The invariant that assigns to a C∗-algebra its minimal number of genera-
tors lacks natural permanence properties. In particular, it may increase when passing
to ideals or inductive limits. It is therefore hard to compute this invariant directly.

To obtain a better behaved theory, we not only ask if k generators exist, but
also if such tuples are dense. This defines the generator rank, which we show has
many of the permanence properties that are also satisfied by other noncommutative
dimension theories. In particular, it does not increase when passing to ideals, quotients
or inductive limits.

The definition of the generator rank is analogous to that of the real rank, and we
show that the latter always dominates the generator rank. The most interesting value
of the generator rank is one, which means exactly that the generators form a generic
set, that is, a dense Gδ-subset. We compute the generator rank of homgeneous C∗-
algebras, which allows us to deduce that certain AH-algebras have generator rank one.
For example, every AF-algebra has generator rank one and therefore contains a dense
set of generators.

1. Introduction

The generator problem for C∗-algebras is to determine which C∗-algebras are singly
generated. More generally, for a given C∗-algebra A one wants to determine the minimal
number of generators, i.e., the minimal k such that A contains k elements that are not
contained in any proper sub-C∗-algebra. For a more detailed discussion of the generator
problem, we refer the reader to the recent paper by Wilhelm Winter and the author,
[TW12], where it is also shown that every unital, separable Z-stable C∗-algebra is singly
generated, see [TW12, Theorem 3.7].

Given a C∗-algebra A, let us denote by gen(A) the minimal number of self-adjoint
generators for A, and set gen(A) = ∞ if A is not finitely generated, see [Nag]. The
restriction to self-adjoint elements is mainly for convenience. It only leads to a minor
variation of the original generator problem, since two self-adjoint elements a, b generate
the same sub-C∗-algebra as the element a + ib. In particular, A is singly generated if
and only if it is generated by two self-adjoint elements, that is, if and only if gen(A) ≤ 2.
For a compact, metric space X, it is easy to see that gen(C(X)) ≤ k if and only if X
can be embedded into Rk.

The problem with computing the minimal number of self-adjoint generators is that
it does not behave well with respect to inductive limits, i.e., in general we do not
have gen(A) ≤ lim infn gen(An) if A = lim−→An is an inductive limit. This is unfortunate
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since many C∗-algebras are given as inductive limits, e.g., AF-algebras or approximately
homogeneous algebras (AH-algebras).

To see an example where the minimal number of generators increasing when passing
to an inductive limit, let X ⊂ R2 be the topologists sine-curve given by:

X = {0} × [−1, 1] ∪ {(t, sin(1
t
)) | t ∈ (0, 1/2π]}.

Then X can be embedded into R2 but not into R1, and therefore gen(C(X)) = 2. How-
ever, X is an inverse limit of spaces Xn that are each homeomorphic to the interval, i.e.,
Xn

∼= [0, 1]. Therefore C(X) ∼= lim−→n
C(Xn), with gen(C(X)) = 2, while gen(C(Xn)) = 1

for all n. The spaces X and X1,X2,X3 are shown below.

X1= X2= X3= X=

By considering the spaces X × [0, 1] and Xn × [0, 1], one obtains an example of singly
generated C∗-algebras An such that their inductive limit is not singly generated.

To get a better behaved theory, instead of counting the minimal number of self-
adjoint generators, we will count the minimal number of “stable” self-adjoint generators.
This is the underlying idea of our definition of the generator rank of a C∗-algebra, see
Definition 2.2. More precisely, let Ak

sa denote the space of self-adjoint k-tuples in A, and
let Genk(A)sa ⊂ Ak

sa be the subset of tuples that generate A, see Notation 2.1. We say
that A has generator rank at most k, denoted by gr(A) ≤ k, if Genk+1(A)sa is dense
in Ak+1

sa . This definition is analogous to that of the real rank, see Remark 2.3, and this
also explains the index shift of the definition.

Thus, while “gen(A) ≤ k” records that Genk(A)sa is not empty, “gr(A) ≤ k − 1”
records that Genk(A)sa is dense. This indicates why the generator rank is usually much
larger than the minimal number of self-adjoint generators. The payoff, however, is that
the generator rank is much easier to compute.

The paper is organized as follows: In Section 2, we define the generator rank, see
Definition 2.2, and we derive some of its general properties. We show that the set of
generating tuples, Genk(A)sa, always forms a Gδ-subset of A

k
sa, see Proposition 2.7. It

follows, that gr(A) ≤ 1 if and only if the set of generators in A forms a generic set, i.e.,
a dense Gδ-subset.

For an inductive limit A = lim−→An, we obtain

gr(A) ≤ lim inf
n

gr(An),

which shows that the generator rank is indeed better behaved than the theory of counting
the minimal number of generators. As an immediate consequence, we get that every
AF-algebra has generator rank at most one, see Corollary 3.3. Thus, every AF-algebra
contains a generic set of generators.

We show that the generator rank does not increase when passing to ideals or quotients,
see Theorem 2.14 and Proposition 2.12. We also provide an estimate of the generator
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rank of an extension of C∗-algebras in terms of the generator rank of ideal and quotient,
see Theorem 2.17.

This shows that the generator rank has many properties which are also satisfied by
other “dimension theories” for C∗-algebras, such as the real and stable rank, the nuclear
dimension, and the decomposition rank. The concept of a “noncommutative dimension
theory” was recently introduced in [Thi11, Definition 2.1] by proposing six axioms that
such theories should satisfy. Our results show that the generator rank for separable
C∗-algebras satisfies five of these axioms, see Remark 2.16. The remaining axiom would
mean that gr(A⊕B) = max{gr(A), gr(B)}, which seems to be surprisingly hard to show.

In Section 3, we study the generator rank on the class of separable C∗-algebras with
real rank zero. For such algebras, we show that the remaining axiom holds, i.e., that the
generator rank behaves well with respect to direct sums, see Proposition 3.1. We then
show that AF-algebras have generator rank at most one, see Corollary 3.3. We proceed

by showing the estimate gr(A ⊗ Mn) ≤
⌈
gr(A)
n2

⌉
for unital C∗-algebras with real rank

zero and stable rank one, see Theorem 3.6. Therefore, given such an algebra with finite
generator rank, its tensor product with an infinite UHF-algebra has generator rank one.
More generally, we show that every separable, real rank zero C∗-algebra that tensorially
absorbs a UHF-algebra has generator rank at most one, see Proposition 3.8.

In Section 4, we first compute the generator rank of commutative C∗-algebras as
gr(C(X)) = dim(X ×X) for a compact, metric space X, see Proposition 4.7. We then
compute the codimension of the subspace Genk(Mn)sa ⊂ (Mn)

k
sa, see Lemma 4.20. This

allows us to compute the generator rank of homogeneous C∗-algebras, see Theorem 4.23.
In particular, if X is a compact, metric space, and n ≥ 2, then:

gr(C(X,Mn)) =

⌈
dim(X) + 1

2n− 2

⌉
.

This allows us to show that a unital, separable AH-algebra has generator rank one if
it is either simple with slow dimension growth, or when it tensorially absorbs a UHF-
algebra, see Corollary 4.30.

Throughout, we will use the following notation. For a C∗-algebra A, we let Asa (resp.
A+, A

−1) denote the set of self-adjoint (resp. positive, resp. invertible) elements in A.

We denote by Ã the minimal unitization of A. By a morphism between C∗-algebras we
always mean a ∗-homomorphism. We write J ⊳ A to indicate that J is an ideal in A,
and by an ideal of a C∗-algebra we understand a closed, two-sided ideal. The primitive
ideal space of A will be denoted by Prim(A). We write Mk for the C∗-algebra of k-by-k
matrices Mk(C).

Given a, b ∈ A, and ε > 0, we write a =ε b if ‖a− b‖ < ε. If a, b are positive, then we
write a ≪ b if a = ab, and we write a ≪ε b if a =ε ab. If F,G ⊂ A are two subsets, and
a ∈ A, we write a ∈ε G if dist(a,G) < ε, and write F ⊂ε G if x ∈ε G for every x ∈ F .

We use bold letters to denote tuples of elements, e.g., a = (a1, . . . , ak) ∈ Ak.

2. The generator rank

In this section, we define the generator rank of a C∗-algebra, see Definition 2.2, in anal-
ogy to the real rank, see Remark 2.4. We then prove general properties of the generator
rank, in particular that it behaves well with respect to approximation by subalgebras
and inductive limits, see Proposition 2.13. We show that the generator rank does not
increase when passing to ideals or quotients, see Theorem 2.14 and Proposition 2.12.
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We also provide an estimate of the generator rank of an extension of C∗-algebras in
terms of the generator rank of ideal and quotient, see Theorem 2.17.

The concept of a noncommutative dimension theory was introduced in [Thi11, Defi-
nition 2.1] by proposing six axioms that such theories should satisfy. Our results show
that the generator rank for separable C∗-algebras satisfies five of these axioms, see
Remark 2.16, and we conjecture that it also satisfies the missing axiom.

Notation 2.1. Let A be a C∗-algebra. Recall that we use bold letters to denote tuples
of elements, e.g., a = (a1, . . . , ak) ∈ Ak. We denote by C∗(a) the sub-C∗-algebra of A
generated by the elements of a.

For k ≥ 1, we write Ak
sa for (Asa)

k, the space of self-adjoint k-tuples. We denote the
set of generating (self-adjoint) k-tuples by:

Genk(A) := {a ∈ Ak | A = C∗(a)},
Genk(A)sa := Genk(A) ∩Ak

sa.

We equip Ak with the usual norm, i.e., ‖a‖ := max{‖a1‖, . . . , ‖ak‖} for a tuple a ∈ Ak.

Definition 2.2. Let A be a unital C∗-algebra. The generator rank of A, denoted by
gr(A), is the smallest integer k ≥ 0 such that Genk+1(A)sa is dense in Ak+1

sa . If no such
n exists, we set gr(A) = ∞.

Given a non-unital C∗-algebra A, set gr(A) := gr(Ã).

Remark 2.3. The definition of the generator rank is analogous to that of the real rank
as given by Brown and Pedersen, [BP91]. Let us recall the definition.

Let A be a unital C∗-algebra. One uses the following notation:

Lgk(A) := {a ∈ Ak |
k∑

i=1

a∗i ai ∈ A−1},

Lgk(A)sa := Lgk(A) ∩Ak
sa.

The abbreviation “Lg” stands for “left generators”, and the reason is that a tuple a ∈
Ak lies in Lgk(A) if and only if the elements a1, . . . , ak generate A as a (not necessarily
closed) left ideal, i.e., Aa1 + . . . +Aak = A.

Rieffel introduced the (topological) stable rank of A, denoted by sr(A), as the smallest
integer k ≥ 1 such that Lgk(A) is dense in Ak, see [Rie83, Definition 1.4]. Considering
the analogous question for tuples of self-adjoint elements, Brown and Pedersen defined
the real rank of A, denoted by rr(A), as the smallest integer k ≥ 0 such that Lgk+1(A)sa
is dense in Ak+1

sa , see [BP91]. Note the index shift in the definition of the real rank (as
opposed to the definition of stable rank). It leads to nicer formulas, e.g., rr(C(X)) =
dim(X). We use the same index shift in Definition 2.2 since the generator rank is more
closely connected to the real rank than to the stable rank, as we will see now.

Remark 2.4. Let A be a C∗-algebra. We may consider the following variant of the
generator rank, defined as the smallest integer k ≥ 1 such that Genk(A) is dense in
Ak. Let us denote this value by gr′(A). Since the generator rank gr(A) is defined
in analogy to the real rank (using tuples of self-adjoint elements), one might expect
that the invariant gr′ (using tuples of not necessarily self-adjoint elements) has a closer
connection to the stable rank.

This is, however, not the case. For instance, while the estimate rr(A) ≤ gr(A) always
holds, see Proposition 2.5, we will below see an example of a C∗-algebra where sr(A) �
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gr′(A). Moreover, unlike the real and stable rank, the invariants gr and gr′ are very
closely tied together:

gr′(A) =
⌈
gr(A) + 1

2

⌉
.

To prove this formula, consider the map Φ: A2k
sa → Ak that sends (a1, . . . , a2k) ∈ A2k

sa

to (a1 + iak+1, . . . , ak + ia2k) ∈ Ak. In general, two self-adjoint elements c, d ∈ Asa

generate the same sub-C∗-algebra as the element c+id. It follows C∗(a) = C∗(Φ(a)) ⊂ A
for every a ∈ A2k

sa , and so Φ maps Gen2k(A)sa onto Genk(A). Thus, for every k ≥ 1,
gr(A) ≤ 2k − 1 if and only if gr′(A) ≤ k, from which the formula follows.

Assume now that A is unital. If a ∈ Ak
sa generates A as a C∗-algebra, then it also

generates A as a left ideal. Indeed, assume p is a polynomial such that ‖1− p(a)‖ < 1.
Then p(a) is invertible, and we denote its inverse by v ∈ A. Write p as a sum of

polynomials, p =
∑k

i=1 pi, where each pi is of the form pi(x) = qi(x) · xi for some other
polynomial qi. Then:

1 = v · p(a) =
∑

i

(v · qi(a)) ai,

which shows a ∈ Lgk(A)sa.
Thus, for every k ≥ 1, the following inclusion holds:

Genk(A)sa ⊂ Lgk(A)sa,

which immediately implies Proposition 2.5 below.
The analog inclusion Genk(A) ⊂ Lgk(A) does not hold. For a counterexample, con-

sider A = C([0, 1]2,M3). Then sr(A) = 2 and so Lg1(A) is not dense in A. On the other
hand, Gen1(A) is dense in A since gr(A) = 1, see Theorem 4.23. This also shows that
sr(A) � gr′(A).

Proposition 2.5. Let A be a C∗-algebra. Then rr(A) ≤ gr(A).

Proof. This follows immediately from the the definition of real and generator rank to-

gether with the inclusion Genk(Ã)sa ⊂ Lgk(Ã)sa for every k ≥ 1, which is shown in
Remark 2.4. �

While many C∗-algebras have real rank zero, the case of generator rank zero is very
special:

Lemma 2.6. Let A be a C∗-algebra. Then gr(A) = 0 if and only if A is a separable,
commutative C∗-algebra with zero-dimensional spectrum.

Proof. If gr(A) = 0, then A contains a generating self-adjoint element, and so A is
separable and commutative. Thus, it remains to show that gr(A) = 0 if and only if
dim(Prim(A)) = 0 under the assumption that A is separable and commutative. Note
that for every locally compact, second countable, Hausdorff space X, dim(X) = 0 if and
only if dim(X ×X) = 0. Therefore, the result follows from Proposition 4.7. �

It is easy to see that Lgk(A) ⊂ Ak and Lgk(A)sa ⊂ Ak
sa are open subsets. For the sets

of generating tuples, we have the following result:

Proposition 2.7. Let A be a C∗-algebra, and let k ∈ N. Then Genk(A) ⊂ Ak and
Genk(A)sa ⊂ Ak

sa are Gδ-subsets.
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Proof. We show that Genk(A) ⊂ Ak is a Gδ-subset. The empty set is clearly Gδ , so we
may assume Genk(A) 6= ∅, which in turn implies that A is separable. Let a1, a2, . . . be
a dense sequence in A. Define:

Un := {x ∈ Ak | a1, . . . , an ∈1/n C∗(x)}.
Let us check that Un ⊂ Ak is open. So let x ∈ Un. Then there exist polynomials

p1, . . . , pn such that ai =1/n pi(x) for i = 1, . . . , n. We may consider each pi as a function

Ak → A, which is clearly continuous. Therefore, for each i, there exists δi > 0 such that
ai =1/n pi(y) for all y ∈ Ak with y =δi x. Then the open ball around x with radius
min{δ1, . . . , δn} is contained in Un, which is therefore open.

One checks that Genk(A) =
⋂

n≥1 Un, which completes the proof for Genk(A). The

result for Genk(A)sa is proved analogously. �
Remark 2.8. Let A be a unital C∗-algebra. It is a consequence of Remark 2.4 and
Proposition 2.7 that gr(A) ≤ 1 if and only if the set of generators Gen1(A) forms a
generic subset of A, i.e., if and only if Gen1(A) ⊂ A is a dense Gδ-set.

Our main tool to construct generators is the following Lemma 2.9, which was obtained
together with Karen Strung, Aaron Tikuisis, Joav Orovitz and Stuart White at the
workshop “Set theory and C∗-algebras” at the AIM in Palo Alto, January 2012.

It reduces the problem of showing grsa(A) ≤ k. Instead of proving that every tuple
can be approximated arbitrarily closely by tuples that generate the whole C∗-algebra, it
is enough to show that every tuple can be approximated by tuples that approximately
generate a single given element of A.

Lemma 2.9. Let A be a separable C∗-algebra, let k ∈ N, and let S ⊂ Ak be a closed
subset. Assume that for every x ∈ S, every ε > 0, and every z ∈ A there exists y ∈ S
such that y =ε x and z ∈ε C

∗(y). Then Genk(A)∩S ⊂ S is dense, i.e., for every x ∈ S
and ε > 0 there exists y ∈ S such that y =ε x and A = C∗(y).

Proof. Let a2, a3, . . . ∈ A be a dense sequence of A, where each element is repeated
infinitely many times, and set a1 = 0. We inductively find tuples yk ∈ S and numbers
δn > 0 with the following properties:

(1) ‖yn − yn−1‖ < min{δ1/2n−1, δ2/2
n−2, . . . , δn−1/2},

(2) an ∈1/n C∗(y′) whenever y′ =δn yn.

Set y1 := x and δ1 := ε. Then (2) is trivially satisfied.
Assume yi and δi have been constructed for i ≤ n − 1. By assumption, we can find

yn ∈ S satisfying (1) and such that an ∈1/n C∗(yn). Then there exists a polynomial p

such that an =1/n p(yn). We may consider p as a function Ak → A, which is continuous.
Therefore, there exists δn > 0 satisfying (2).

Condition (1) ensures in particular that yn is a Cauchy sequence. Set y := limn yn ∈
S, and let us check that it has the desired properties.

For each n, repeated application of (1) gives:

‖y − yn‖ <
∑

i≥1

δn/2
i = δn.

Thus, ‖y − x‖ = ‖y − y1‖ < δ1 = ε. Moreover, condition (2) ensures that an ∈1/n

C∗(y) for all k. It follows that an ∈ C∗(y), since an was assumed to appear infinitely
many times in the sequence a1, a2, . . .. Since the sequence an is dense in A, it follows
A = C∗(y), as desired. �
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2.10. When we want to estimate the generator rank of an ideal, we have to be careful
about adjoining a unit. Mainly for technical reasons, we introduce the following variant
of the generator rank:

grsa(A) ≤ k :⇔ Genk+1(A)sa ⊂ (Asa)
k+1 is dense .(2.1)

By definition, gr(A) = grsa(Ã). The connection between the generator rank and its
variant is summarized in the next result.

Lemma 2.11. Let A be a C∗-algebra. Then:

gr(A) = max{rr(A), grsa(A)}.
Proof. If A is unital, the statement follows from Proposition 2.5. So assume A is non-

unital, and denote by 1 ∈ Ã the adjoint unit. Let π : Ã → C be the quotient morphism.

It induces a natural morphism Ãk → Ck, which we also denote by π. Let σ : C → Ã

denote the canonical split of π. We denote the induced morphism σ : Ck → Ãk also by
σ.

Let us show grsa(A) ≤ grsa(Ã) = gr(A). Let k := gr(A) + 1, and we may assume this
is finite. We want to verify the conditions of Lemma 2.9 for S = Ak

sa. So let x ∈ Ak
sa,

ε > 0 and z ∈ A be given. By assumption, there exists y ∈ Ãk
sa with x =ε/2 y and a

polynomial q such that z =ε/2 q(y).

There is a unique decomposition y = a + r for r = σ ◦ π(x) ∈ (C1)k and a ∈ Ak
sa.

Then ‖r‖ < ε/2, and therefore x =ε/2 y =ε/2 a. Note that p(y) = p(a + r) has the

form q(a) + λ1 for some polynomial q and a constant λ ∈ C. Since q(a) ∈ Ak and
p(y) =ε/2 z ∈ An, we get |λ| ≤ ε/2. Then q(a) =ε z, and so z ∈ε C∗(a), which shows

that a has the desired properties. It follows from Lemma 2.9 that Genk(A)sa ⊂ Ak
sa is

dense, and so grsa(A) ≤ gr(A), as desired.
It was shown in Proposition 2.5 that rr(A) ≤ gr(A). Thus, it remains to show gr(A) ≤

max{rr(A), grsa(A)}.
Let k := max{rr(A), grsa(A)}+ 1, and we may assume this is finite. Let x ∈ Ãk

sa and

ε > 0 be given. By assumption, there is x′ ∈ Lgk(Ã)sa with x′ =ε/2 x. Since Lgk(Ã)sa

is open, there exists δ > 0 such that b ∈ Lgk(Ã)sa whenever b ∈ Ãk
sa satisfies b =δ x′.

We may assume δ < ε/2.
There is a unique decomposition x′ = a + r for r = σ ◦ π(x) ∈ (C1)k and a ∈ Ak

sa.
By assumption, there exists a′ ∈ Ak

sa with a′ =δ a and such that C∗(a′) = A. Set

y := a′ + r. Note that y =δ x′, and therefore y ∈ Lgk(Ã)sa. It follows 1 ∈ C∗(y), and
so a′i = yi − ri1 ∈ C∗(y) for i = 1, . . . , k. Thus, y generates Ã. Moreover, y =ε x. We

have shown that Genk(Ã)sa is dense in Ãk
sa, and so gr(A) ≤ k − 1, as desired. �

Proposition 2.12. Let A be a C∗-algebra, and let J ⊳A be an ideal. Then gr(A/J) ≤
gr(A).

Proof. Note that J is also an ideal in Ã, and Ã/J ∼= Ã/J . Let π : Ã → Ã/J de-

note the quotient morphism. It induces a surjective morphism Ãk
sa → Ã/J

k

sa, which

sends Genk(Ã)sa into Genk(Ã/J)sa. Thus, if Genk(Ã)sa ⊂ Ãk
sa is dense, then so is

Genk(Ã/J)sa ⊂ Ã/J
k

sa. This shows gr(A/J) ≤ gr(A). �
One immediate consequence of the key lemma Lemma 2.9 is that the generator rank
behaves well with respect to approximation by sub-C∗-algebras and inductive limits.
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Recall that a collection Ai ⊂ A of sub-C∗-algebras is said to approximate A if for
every finite subset F ⊂ A and for every ε > 0, there exists i such that F ⊂ε Ai.

Proposition 2.13. Let A be a separable C∗-algebra, and let k ≥ 0. Assume A is
approximated by sub-C∗-algebras Ai ⊂ A with gr(Ai) ≤ k. Then gr(A) ≤ k.

Moreover, if A = lim−→An is an inductive limit, then gr(A) ≤ lim infn gr(An).

Proof. Assume A is approximated by a collection Ai ⊂ A with gr(Ai) ≤ k. For each i,
we have rr(Ai) ≤ k by Proposition 2.5. It follows rr(A) ≤ k, since the real rank behaves
well with respect to approximation by subalgebras, as noted in [Thi12, Remark 2]. Thus,
by Lemma 2.11, it is enough to show grsa(A) ≤ k.

We want to verify the conditions of Lemma 2.9 for S = Ak+1
sa . So let x ∈ Ak+1

sa , ε > 0
and z ∈ A be given. Since the Ai approximate A, there exists an index i such that
there is x′ ∈ (Ai)

k+1
sa with x′ =ε/2 x, and such that there is z′ ∈ Ai with z′ =ε z. Since

gr(Ai) ≤ k, there exists y ∈ Genk+1(Ai)sa with y =ε/2 x
′. Then y =ε x and z ∈ε C

∗(y),
as desired. It follows from Lemma 2.9 that grsa(A) ≤ k.

This result, together with Proposition 2.12, implies the estimate for an inductive
limit. The argument is standard for dimension theories, see [Thi12, Proposition 2], but
for the convenience of the reader we include a short proof.

Assume A = lim−→An. For each n, let Bn be the image of An in the inductive limit A.

Then Bn is a quotient of An, and therefore gr(Bn) ≤ gr(An), by Proposition 2.12. Note
that A is approximated by the collection (Bn)n∈J whenever J ⊂ N is cofinal. In that
case, it follows from the above result that gr(A) ≤ supn∈J gr(Bn). Since this holds for
every cofinal subset J ⊂ N, we obtain:

gr(A) ≤ inf{sup
n∈J

gr(Bn) | J ⊂ N cofinal} = lim inf
n

gr(Bn) ≤ lim inf
n

gr(An),

as desired. �
Theorem 2.14. Let A be a C∗-algebra, and let J ⊳A be an ideal. Then gr(J) ≤ gr(A).

Proof. Note that J is also an ideal in Ã and gr(Ã) = gr(A). Thus, we may assume from
now on that A is unital,

It is known that the real rank behaves well with respect to ideals, i.e., rr(J) ≤
rr(A), see [EH95, Théoràme 1.4]. We have rr(A) ≤ gr(A) by Proposition 2.5. Thus,
by Lemma 2.11, it remains to show grsa(J) ≤ gr(A). Let k := gr(A) + 1, and we may
assume this is finite. Then A and J are separable, and so there exists a sequential,
quasi-central approximate unit (hα) ⊂ J+, see [AP77, Corollary 3.3] and [Arv77]. We
may assume ‖hα‖ ≤ 1.

For a vector a = (a1, . . . , ak) ∈ Ak, we will use the following notation:

|a| :=
∑

i

|ai| =
∑

i

(a∗i ai)
1/2,

a(α) := (h1/2α a1h
1/2
α , . . . , h1/2α akh

1/2
α ).

For a ∈ A+, we denote by Her(a) := aAa the hereditary sub-C∗-algebra generated
by a. We will consider the sequence algebra Q :=

∏
α A/

⊕
α A. For an element s ∈ A,

we denote by 〈s〉 ∈ Q the image of the constant sequence. We denote by 〈hα〉 ∈ Q the
image of the sequence (hα). Note that 〈hα〉 commutes with 〈s〉 in Q.

To show grsa(J) ≤ k − 1, we want to verify the conditions of Lemma 2.9. So let
x ∈ Jk

sa, ε > 0 and z ∈ J be given. In 5 steps, we will construct y ∈ Jk
sa such that

y =ε x and z ∈ε C
∗(y).
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Step 1: We will find x′ ∈ Jk
sa and δ > 0 such that x′ =ε/2 x and z ∈ε/4 Her((|x′|−δ)+).

By assumption, there exists a ∈ Genk(A)sa with a =ε/4 x. Then |a| is invertible in
A, and so |a| ≥ 3δ for some δ > 0. Choose an index α0 large enough such that for all
α ≥ α0 the following conditions hold:

z ≪ε/8
1

δ
(3δhα − 2δ)+,(2.2)

x(α) =ε/4 x,(2.3)

|a(α)| =δ h
1/2
α |a|h1/2α .(2.4)

Then, using (2.4) at the second step, we get:

3δhα − 2δ ≤ h1/2α |a|h1/2α − 2δ ≤ |a(α)| − δ.

In general, if two commuting, self-adjoint elements c, d satisfy c ≤ d, then c+ ≤ d+,
but this does not necessarily hold if c and d do not commute. Thus, we may not deduce
(3δhα − 2δ)+ ≤ (|a(α)| − δ)+. However, using the sequence algebra Q, we will show
that this holds up to an arbitrarily small tolerance for sufficiently large α. Indeed, the
elements 〈3δhα − 2δ〉 and 〈|a(α)| − δ〉 commute, and therefore:

〈(3δhα − 2δ)+〉 ≤ 〈(|a(α)| − δ)+〉.
Therefore, for α ≥ α0 large enough we have:

1

δ
(3δhα − 2δ)+ ∈ε/8 Her((|a(α)| − δ)+).(2.5)

For such α, we set x′ := a(α). Let us verify that x′ has the desired properties. From
a =ε/4 x we get a(α) =ε/4 x

(α), and we deduce, using (2.3) at the third step:

x′ = a(α) =ε/4 x
(α) =ε/4 x.

Moreover, it follows from (2.2) and (2.5) that z ∈ε/4 Her((|x′| − δ)+), as desired.
Step 2: Since z ∈ε/4 Her((|x′| − δ)+), there exists a polynomial p such that:

z ≪ε/4 p(x
′) · (|x′| − δ)+.

Set M = 2 ·max{‖p(x′)‖, ‖(|x′| − δ)+‖}. Let η > 0 be such that for all b ∈ Ak
sa with

b =η x′ we have:

z ≪ε/4 p(b) · (|b| − δ)+,(2.6)

|b| =δ |x′|,(2.7)

‖p(b)‖ ≤ M,(2.8)

‖(|b| − δ)+‖ ≤ M.(2.9)

We may assume η < ε/2 and η < δ.
Step 3: Since gr(A) ≤ k − 1, there exists c ∈ Ak

sa with c =η x′ and a polynomial q
such that

z =ε/(4M2) q(c).(2.10)

Then q can be decomposed as a finite sum of polynomials, q =
∑N

d=1 qd, where qd is

homogeneous of degree d, i.e., qd(tc) = tdqd(c) for every t ∈ R+. Set

L := max{‖q1(c)‖, . . . , ‖qN (c)‖}.(2.11)
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Step 4: We show that for every tolerance σ > 0 we have (|c(α)| − δ)+ ≪σ hα for all
α large enough.

To that end, let us verify that limα→∞ ‖(|c(α)| − δ)+ · (1− hα)‖ = 0, which means:
〈
(|c(α)| − δ)+

〉
·
〈
1− hα

〉
= 0,

in Q.
We have c =η x′, and therefore |y| =δ |x′| by (2.7). Let π : A → B denote the

quotient morphism. Since π(|x′|) = 0, we get π(|c| − δ) ≤ 0 and so π((|c| − δ)+) = 0.
Thus, 〈(|c| − δ)+〉 · 〈1− hα〉 = 0, in Q.

For i = 1, . . . , k we have 〈|h1/2α cih
1/2
α |〉 = 〈|ci|1/2hα|ci|1/2〉 ≤ 〈ci〉. It follows that

〈|c(α)|〉 ≤ 〈|c|〉, and since these two elements commute, we get get 〈(|c(α)| − δ)+〉 ≤
〈(|c| − δ)+〉. It follows 〈(|c(α)| − δ)+〉〈1− hα〉 = 0, as desired.

Step 5: We choose the index α large enough satisfying (2.12), (2.13) and (2.14) below

for y := c(α). For (2.12), this is possible since c =η x′ ∈ Jk
sa and so c(α) =η (x′)(α) for

all α, and limα→∞(x′)(α) = x′. For (2.13), this is possible by Step 4. Finally, for (2.14)
this is possible since (hα) is quasi-central.

y =η x′(2.12)

(|y| − δ)+ ≪ε/(4MNL) h
d
α, for d = 1, . . . , N.(2.13)

q(y) =

N∑

d=1

qd(y) =ε/(4M2)

N∑

d=1

hdα · qd(c).(2.14)

Let us check that y = c(α) has the desired properties.
Since η ≤ ε/2, we get, using (2.12) for the first estimate, and using Step 1 for the

second estimate:

y =ε/2 x
′ =ε/2 x.

It remains to check z ∈ε C
∗(y). Since y =η x′, we get from Step 2 that the estimates

(2.6)-(2.9) hold for y. We compute, using (2.14), (2.8) and (2.9) at the first step, using
(2.13), (2.8) and (2.11) at the third step, (2.10) at the fifth step, and (2.6) at the last
step:

p(y) · (|y| − δ)+ · q(y) =ε/4 p(y) · (|y| − δ)+ ·
N∑

d=1

hdα · qd(c)

= p(y) ·
N∑

d=1

(|y| − δ)+ · hdα · qd(c)

=ε/4 p(y) ·
N∑

d=1

(|y| − δ)+ · qd(c)

= p(y)(|y| − δ)+ ·
N∑

d=1

qd(y)

=ε/4 p(y)(|y| − δ)+ · z
=ε/4 z

Since p(y) · (|y| − δ)+ · q(y) ∈ C∗(y), we have verified z ∈ε C
∗(y), as desired.

By Lemma 2.9, it follows grsa(J) ≤ k − 1, as desired. �



Appendix. B 49

THE GENERATOR RANK FOR C∗-ALGEBRAS 11

In [Thi12, Definition 1], the concept of a non-commutative dimension theory was formal-
ized by proposing a set of axioms. These axioms are generalizations of properties of the
dimension of locally compact, Hausdorff spaces, and it was shown that they are satisfied
by many theories, in particular the real and stable rank, the topological dimension, the
decomposition rank and the nuclear dimension.

Definition 2.15 ([Thi12, Definition 1]). Let C be a class of C∗-algebras that is closed
under ∗-isomorphisms, and closed under taking ideals, quotients, finite direct sums,
and minimal unitizations. A dimension theory for C is an assignment d : C → N =
{0, 1, 2, . . . ,∞} such that d(A) = d(A′) whenever A,A′ are isomorphic C∗-algebras in
C, and moreover the following axioms are satisfied:

(D1) d(J) ≤ d(A) whenever J ⊳ A is an ideal in A ∈ C,
(D2) d(A/J) ≤ d(A) whenever J ⊳ A ∈ C,
(D3) d(A⊕B) = max{d(A), d(B)}, whenever A,B ∈ C,
(D4) d(Ã) = d(A), whenever A ∈ C.
(D5) If A ∈ C is approximated by subalgebras Ai ∈ C with d(Ai) ≤ n, then d(A) ≤ n.
(D6) Given A ∈ C and a separable sub-C∗-algebra C ⊂ A, there exists a separable

C∗-algebra D ∈ C such that C ⊂ D ⊂ A and d(D) ≤ d(A).

Note that we do not assume that C is closed under approximation by sub-C∗-algebra,
so that the assumption A ∈ C in (D5) is necessary. Moreover, in axiom (D6), we do not
assume that the separable subalgebra C lies in C.
Remark 2.16. Let us consider the generator rank on the class of separable C∗-algebras.

We have verified axioms (D1) in Theorem 2.14, (D2) in Proposition 2.12 and (D5) in
Proposition 2.13. Note that (D4) holds by definition, and (D6) is superfluous if we only
consider separable C∗-algebras.

The question remains whether axiom (D3) holds, that is, whether gr(A ⊕ B) =
max{gr(A), gr(B)}, and this turns out to be surprisingly difficult. We can only ver-
ify it in specific cases, namely for C∗-algebras of real rank zero, see Proposition 3.1,
or for homogeneous C∗-algebras, see Corollary 4.27. We conjecture that (D3) for the
generator rank holds in general.

The next result gives an estimate of the generator rank of an extension of C∗-algebras
in terms of the generator rank of ideal and quotient. We remark that no such estimate
is known for the real rank.

Theorem 2.17. Let A be a C∗-algebra, and let J ⊳ A be an ideal. Then:

gr(A) ≤ gr(J) + gr(A/J) + 1.

Proof. Since J is also an ideal in Ã, and gr(A) = gr(Ã), we may assume that A is unital.
Set B := A/J . Let k := gr(J)+1 and l := gr(B)+1, which we may assume are finite.

Let π : A → B denote quotient morphism. It induces a natural morphism Al → Bl,
which we also denote by π. Given x ∈ Ak

sa, y ∈ Al
sa and ε > 0, we want to find x′ ∈ Ak

sa,
y′ ∈ Al

sa such that x′ =ε x, y
′ =ε y and A = C∗(x′,y′).

Let b := π(y). Since gr(B) ≤ l − 1, we may find b′ ∈ Genl(B)sa with b′ =ε b. Let
y′ ∈ Al

sa be a lift of b′ with y′ =ε y. For i = 1, . . . , k, choose an element ai ∈ C∗(y′)
such that π(ai) = π(xi). Set a = (a1, . . . , ak) ∈ Ak

sa. Note that x − a ∈ Jk
sa. Since

grsa(J) ≤ gr(J) ≤ k − 1, we may find c ∈ Genk(J)sa with c =ε x − a. Set x′ := a+ c.
Then x′ and y′ have the desired properties. �



50

12 HANNES THIEL

3. The generator rank of real rank zero C∗-algebras

In this section, we restrict our attention to separable C∗-algebras with real rank zero.
On this class of C∗-algebras, the generator rank is a dimension theory in the sense of
Definition 2.15, see Remark 2.16 and Proposition 3.1.

We then show that AF-algebras have generator rank at most one, see Corollary 3.3.

In Theorem 3.6, we prove the estimate gr(A ⊗ Mn) ≤
⌈
gr(A)
n2

⌉
under the additional

assumption that A is unital and has stable rank. This shows that for such algebras
the generator rank decreases when tensoring with matrix algebras of higher and higher
dimension. Thus, if A is a separable, unital, real rank zero, stable rank one C∗-algebra
with finite generator rank, then gr(A ⊗ B) = 1 for any infinite UHF-algebra B. We
generalize this by showing that every separable, real rank zero C∗-algebra that tensorially
absorbs a UHF-algebra has generator rank at most one, see Proposition 3.8.

Proposition 3.1. Let A,B be C∗-algebras of real rank zero. Then gr(A ⊕ B) =
max{gr(A), gr(B)}.
Proof. We have gr(A), gr(B) ≤ gr(A ⊕ B) by Proposition 2.12 (or Theorem 2.14), and
it therefore remains to show gr(A ⊕ B) ≤ max{gr(A), gr(B)}. Since A ⊕ B is an ideal

in Ã ⊕ B̃, we obtain gr(A ⊕ B) ≤ gr(Ã ⊕ B̃) from Theorem 2.14. We have gr(A) =

gr(Ã) and gr(B) = gr(B̃) by definition, and thus it remains to show gr(Ã ⊕ B̃) ≤
max{gr(Ã), gr(B̃)}. We may therefore assume that A and B are unital.

So let A,B be unital, real rank zero C∗-algebras. Let k := max{gr(A), gr(B)} + 1,
and we may assume this is finite. We want to verify the conditions of Lemma 2.9. Let
a ∈ Ak

sa, b ∈ Bk
sa, ε > 0 and x ∈ A, y ∈ B be given. We need to find c ∈ Ak

sa,
d ∈ Bk

sa such that c =ε a, d =ε b and (x⊕ y) ∈ε C
∗(c⊕ d), where we use the notation

a′ ⊕ b′ = (a′1 ⊕ b′1, . . . , a
′
k ⊕ b′k) ∈ (A⊕B)k for the direct sum of tuples.

Since rr(A) = rr(B) = 0, we may perturb a1 and b1 to be invertible, self-adjoint and
have disjoint (finite) spectra. More precisely, there are a′1 ∈ Asa and b′1 ∈ Bsa such that
a′1 =ε/2 a1, b

′
1 =ε/2 b1 and σ(a′1) ∩ σ(b′1) = ∅ and 0 /∈ σ(a′1), 0 /∈ σ(b′1). Let δ0 > 0

be smaller than the distance between any two points in σ(a′1) ∪ σ(b′1) ∪ {0}. Define
continuous functions f, g : R → [0, 1] such that:

(1) f has value 1 on a δ0/4-neighborhood of σ(a′1), and has value 0 on a δ0/4-
neighborhood of σ(b′1) ∪ {0}.

(2) g has value 1 on a δ0/4-neighborhood of σ(b′1), and has value 0 on a δ0/4-
neighborhood of σ(a′1) ∪ {0}.

Let δ > 0 be such that:

(1) Whenever c1 ∈ Asa satisfies c1 =δ a
′
1, then the spectrum σ(c1) is contained in a

δ0/4-neighborhood of σ(a′1).
(2) Whenever d1 ∈ Bsa satisfies d1 =δ b

′
1, then the spectrum σ(d1) is contained in a

δ0/4-neighborhood of σ(b′1).

We may assume δ < ε/2.
By assumption, there exists c ∈ Genk(A)sa with c =δ (a

′
1, a2, . . . , ak), and there exists

d ∈ Genk(B)sa with d =δ (b
′
1, b2, . . . , bk). Then c⊕d =ε a⊕b, and we claim that c⊕d

generates A⊕B.
So let x ⊕ y ∈ A ⊕ B, and η > 0 be given. Since c generates A, there exists a

polynomial p such that x =η p(c). Similarly, there exists a polynomial q such that
y =η q(y). By construction, f(c1) = 1A, f(d1) = 0B , g(c1) = 0A and g(d1) = 1B . It
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follows:

p(c) ⊕ q(d) = f(c1 ⊕ d1)p(c⊕ d) + g(c1 ⊕ d1)q(c⊕ d) ∈ C∗(c⊕ d).

Since x⊕ y ∈ A⊕B, and η > 0 were arbitrary, this shows c⊕ d ∈ Genk(A⊕B)sa.
Thus, Genk(A⊕B)sa is dense in (A⊕B)ksa, and so gr(A⊕B) ≤ k− 1, as desired. �

Lemma 3.2. For n ≥ 2, we have gr(Mn) = 1.

Proof. Let a, b ∈ (Mn)sa and ε > 0 be given. Then there exists a unitary such that uau∗

is diagonal. Let a′ =ε uau∗ be self-adjoint and diagonal such that the spectrum σ(a′)
contains n different non-zero entries. Let b′ =ε ubu

∗ be a self-adjoint element such that
the off-diagonal entries b′i,i+1 are non-zero for i = 1, . . . , n− 1. It is easily checked that

C∗(a′, b′) = Mn.
Since conjugation by u is isometric, we have u∗a′u =ε a and u∗b′u =ε b. Moreover,

C∗(u∗a′u, u∗b′u) = C∗(a′, b′) = Mn. Thus, we have approximated the pair (a, b) by a
generating pair, and since ε > 0 was arbitrary, we get that Gen2(Mn)sa ⊂ (Mn)

2
sa is

dense, as desired. �

Corollary 3.3. Let A be a separable AF-algebra. Then gr(A) ≤ 1.

Proof. It follows from Lemma 3.2 and Proposition 3.1 that gr(B) ≤ 1 for every finite-
dimensional C∗-algebra B. Then, the result for AF-algebras follows directly from
Proposition 2.13. �

We now turn towards the problem of estimating the generator rank of A ⊗ Mn. An
important ingredient is the fact that we can approximately diagonalize matrices, which
is conceptualized by the following notion of Xue:

Definition 3.4 (Xue, [Xue10, Definition 3.1]). Let A be a C∗-algebra, and n ≥ 2. An
element a ∈ A⊗Mn is said to be approximately diagonalizable if for any ε > 0 there
exist a unitary u ∈ A⊗Mn and d1, . . . , dn ∈ A such that ‖uau∗ − diag(d1, . . . , dn)‖ < ε.

We call A approximately diagonal, if for any n ≥ 2, every self-adjoint element in
A⊗Mn is approximately diagonalizable.

Proposition 3.5 (Zhang, [Zha90, Corollary 3.6]). Every real rank zero C∗-algebra is
approximately diagonal.

Theorem 3.6. Let A be a unital C∗-algebra with real rank zero and stable rank one,
and n ∈ N. If gr(A) ≥ 1, then:

gr(A⊗Mn) ≤
⌈
gr(A)

n2

⌉
.

In particular, if gr(A) ≤ n2, then gr(A⊗Mn) ≤ 1.

Proof. The inequality clearly holds if n = 1, so we may assume n ≥ 2. Then also
gr(A⊗Mn) ≥ 1.

Assume gr(A) ≤ (d − 1) · n2 for some d ≥ 2. We need to show gr(A ⊗Mn) ≤ d − 1.

So let c(k) = (c
(k)
i,j ), k = 1, . . . , d be d self-adjoint matrices in A ⊗Mn. In several steps,

we will show how to approximate these matrices by matrices c̄(k) that generate A⊗Mn.
We let eij ∈ Mn denote the canonical matrix units. To simplify notation, we set

a := c(1) and b := c(2). In step 1, we will show that we may assume a is diagonal.
In step 2, we will show that we may also assume that the entries b1,n, . . . , bn−1,n are
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positive, and in step 3 we show that we may further assume that the diagonal entries of
a are invertible and have finite, disjoint spectra.

In step 1 and 2, we will find a unitary u ∈ A ⊗ Mn and consider the conjugated
elements uc(k)u∗. Note that it is enough to find generators close to these new elements
uc(k)u∗, since conjugation by u is isometric, and the elements c(1), . . . , c(d) generate
A⊗Mn if and only if uc(1)u∗, . . . , uc(d)u∗ do.

Step 1: We show that we may assume a = c(1) is diagonal.
By Proposition 3.5, we may approximately diagonalize a, i.e., for every tolerance

ε > 0 there exists a unitary u ∈ A ⊗ Mn and d1, . . . , dn ∈ A such that ‖uau∗ −
diag(d1, . . . , dn)‖ < ε. As explained above, it is enough to find a generating tuple

close to the conjugated matrices uau∗, uc(2)u∗, . . . , uc(d)u∗. Thus, by considering the
conjugated elements, we may from now on assume that a is diagonal.

Step 2: We show that we may assume the n − 1 off-diagonal entries b1,n, . . . , bn−1,n

of b = c(2) are positive and invertible.
Since sr(A) = 1, for each b1,n, . . . , bn−1,n we may find an invertible element in A that

is arbitrarily close. Thus, by perturbing b, we may assume each bi,n is invertible in A.

For i = 1, . . . , n − 1, set ui := (b∗i,nbi,n)
−1/2b∗i,n, which is a unitary in A. Note that

|bi,n| := (b∗i,nbi,n)
1/2 is a positive, invertible element, and |bi,n| = uibi,n.

Set un := 1 and define a diagonal, unitary matrix as u := diag(u1, . . . , un) ∈ A⊗Mn.
As explained above, it is enough to find a generating tuple close to the conjugated
matrices uau∗, ubu∗, uc(3)u∗, . . . , uc(d)u∗. Note that uau∗ is still diagonal, and that the
entries (ubu∗)i,n = uibi,nu

∗
n = |bi,n| are positive and invertible for i = 1, . . . , n−1. Again,

by considering the conjugated elements, we may from now on assume that a is diagonal,
and b1,n, . . . , bn−1,n of b = c(2) are positive, invertible.

Step 3: We show that we may also assume that the diagonal entries of a are invertible
and have finite, disjoint spectra.

Let a = diag(a1, . . . , an) for elements ai ∈ A. Since rr(A) = 0, we may perturb
each ai to be an invertible, self-adjoint element with finite spectrum. By perturbing the
elements ai further, we may assume that their spectra are also disjoint.

From now on, we will assume that a = c(1) and b = c(2) have the additional properties
as exsplained in step 1-3.

Step 4: Let δ0 > 0 be smaller than the distance between any two points in σ(a)∪{0}.
For k = 1, . . . , n, define a continuous function fk : R → [0, 1] such that:

(1) fk has value 1 on a δ0/4-neighborhood of σ(ak),
(2) fk has value 0 on a δ0/4-neighborhood of

⋃
i 6=k σ(ai) ∪ {0}

Let δ > 0 be such that the spectrum σ(a′k) is contained in a δ0/4-neighborhood of
σ(ak) whenever a

′
k ∈ Asa satisfies a′k =δ ak. In that case, we have

fk(ai) =

{
1A , if k = i

0 , if k 6= i
,

and so we may recover the diagonal matrix units from such a′ = diag(a′1, . . . , a
′
n) as

1A ⊗ ek,k = fk(a
′). We may assume δ < ε.

Step 5: We consider the following elements of A:

(1) The n self-adjoint elements a1, . . . , an,
(2) the (n − 1)2 self-adjoint elements corresponding to the entries of the upper-left

(n − 1, n − 1) corner of b,
(3) the (n− 1) positive elements b1,n, . . . , bn−1,n,
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(4) the self-adjoint element bn,n,
(5) and the (d− 2)n2 self-adjoint elements corresponding to the entries of the d− 2

self-adjoint matrices c(3), . . . , c(k) ∈ A⊗Mn.

Together, this gives n+ (n− 1)2 + 1+ (d− 2)n2 = (d− 1)n2 − n+ 2 self-adjoint and
n− 1 positive elements of A.

Since gr(A) ≤ (d − 1)n2, we may find (d − 1)n2 + 1 self-adjoint elements of A that
together generate A, and which we collect as follows:

(1) A diagonal, self-adjoint matrix ā,
(2) A self-adjoint matrix b̄ ∈ A⊗Mn, whose entries b̄1,n, . . . , b̄n−1,n are self-adjoint,

(3) and (d− 2) self-adjoint matrices c̄(3), . . . , c̄(k) ∈ A⊗Mn.

such that ā =δ a, b̄ =ε b and c̄(k) =ε c
(k) for k = 3, . . . , d. For i = 1, . . . , n − 1, we may

ensure that b̄i,n is positive and invertible by choosing it close enough to bi,n.

Let D := C∗(ā, b̄, c̄(3), . . . , c̄(d)) ⊂ A⊗Mn. We claim that D = A⊗Mn.
As explained in Step 4, we have chosen δ such that we can recover the diagonal matrix

units from ā as 1A ⊗ ek,k = fk(ā) ∈ D for k = 1, . . . , n. Following ideas from Olsen,
Zame, [OZ76], we consider the elements gi := (1A⊗ ei,i)b

′(1A⊗ en,n) for i = 1, . . . , n−1.
Note that gi = b̄i,n ⊗ ei,n is an element of D. Then:

g∗i gi = (b̄i,n)
2 ⊗ en,n ∈ D.

Since (b̄i,n)
2 is positive and invertible, we have:

(b̄i,n)
−1 ⊗ en,n ∈ C∗(g∗i gi) ⊂ D.

Then:

1A ⊗ ei,n = gi ·
(
(b̄i,n)

−1 ⊗ en,n
)
∈ D.

It follows that D contains all matrix units 1A ⊗ ei,j . Since the entries of the matrices

ā, b̄, c̄(3), . . . , c̄(k) generate A, we get D = A⊗Mn, as desired. �
Remark 3.7. Let us observe that Theorem 3.6 can be complemented by a partial
converse inequality: Whenever A is a unital C∗-algebra, and Genk(Mn(A))sa is dense in

Mn(A)
k
sa, then necessarily Genkn2(A)sa is dense in Akn2

sa . It follows:
⌈
gr(A) + 1

n2

⌉
− 1 ≤ gr(A⊗Mn).

Thus, if A is a unital C∗-algebra with real rank zero and stable rank one, gr(A) ≥ 1,
and n ∈ N, then:

⌈
gr(A) + 1

n2

⌉
− 1 ≤ gr(A⊗Mn) ≤

⌈
gr(A)

n2

⌉
.

This can probably be improved.

Proposition 3.8. Let A be a separable, real rank zero C∗-algebra that tensorially absorbs
a UHF-algebra. Then gr(A) ≤ 1.

Proof. We will first reduce to the case that A is unital. Let p1, p2 . . . ∈ A be an approx-
imate unit of projections. Consider the corners An := pnApn. Then each An is a unital,
separable, real rank zero C∗-algebra that tensorially absorbs a UHF-algebra. If we can
show gr(An) ≤ 1, then gr(A) ≤ 1 by Proposition 2.13.

So we may assume that A is unital. To simplify the proof, we will assume that A
absorbs the 2∞ UHF-algebra, denoted by M2∞ . For other UHF-algebras, the proof is
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analogous but notationally more involved. Since M2∞ is strongly self-absorbing, see
[TW07], there exists a ∗-isomorphism Φ: A → A⊗M2∞ that is approximately unitarily
equivalent to the inclusion ι : A → A ⊗M2∞ given by ι(x) = x ⊗ 1. This means there
exists a sequence of unitaries un ∈ A ⊗ M2∞ such that limn unΦ(a)u

∗
n = ι(a) for all

a ∈ A.
Since A ∼= A⊗M2∞ , it is enough to show gr(A⊗M2∞) ≤ 1. We need to approximate

any pair a, b ∈ A⊗M2∞ of self-adjoint elements by a pair that generates A⊗M2∞ , and
we first reduce the problem to the case that a, b lie in the image of ι.

As explained in the proof of Theorem 3.6, for any unitary u ∈ A ⊗ M2∞ , it is
enough to find generators close to the conjugated elements uau∗, ubu∗. Using the uni-
taries un implementing the approximate unitary equivalence between Φ and ι, we see
that unau

∗
n → ι(Φ(a)) and unbu

∗
n → ι(Φ(b)). If we can find generators a′, b′ close to

ι(Φ(a)), ι(Φ(b)), say a′ =ν ι(Φ(a)) and b′ =ν ι(Φ(b)) for some ν > 0, then for n large
enough we have u∗na

′un =ν a and u∗nb
′un =ν b, and moreover the pair u∗na

′un and u∗nb
′un

generates A⊗M2∞ .
So, let a, b ∈ A be self-adjoint elements, and ε > 0 be given. We need to find

a generating pair of self-adjoint elements c, d ∈ A ⊗ M2∞ such that c =ε a ⊗ 1 and
d =ε b⊗ 1. Since rr(A) = 0, we may assume that a is invertible and has finite spectrum,
i.e., a =

∑
i λipi for some λi ∈ R \ {0} and pairwise orthogonal projections pi ∈ A that

sum to 1A.
Let x1, x2 . . . ∈ A be a sequence of positive elements that generates A and such that

‖xk‖ ≤ ε/2k. Let µ the smaller than the distance between any two values in σ(a)∪{0}.
We may assume µ < ε. We picture M2∞ as M2∞ =

⊗∞
k=1M2, and we let e

(k)
ij , i, j = 1, 2,

be the matrix units of the k-th copy of M2. For p ≥ 1, we let 1(≥p) denote the unit of
the factor

⊗∞
k=pM2. Define c, d ∈ A⊗M2∞ as:

c :=
∑

k≥1

[(∑

i

(λi +
µ

2k
)pi

)
⊗ e

(1)
22 ⊗ · · · ⊗ e

(k−1)
22 ⊗ e

(k)
11 ⊗ 1(≥k+1)

]
,

d := b⊗ 1 +
∑

k≥1

xk ⊗ e
(1)
22 ⊗ · · · ⊗ e

(k−1)
22 ⊗

(
e
(k)
12 + e

(k)
21

)
⊗ 1(≥k+1)

One checks c =ε a⊗ 1 and d =ε b⊗ 1. Set D := C∗(c, d) ⊂ A⊗M2∞ , and let us check
D = A⊗M2∞ .

For k ≥ 1, let fk, gk : R → [0, 1] be continuous functions such that:

(1) fk takes value 1 on {λi +
µ
2k

| i ≥ 1}, and value 0 on {λi +
µ
2l
| i ≥ 1, l 6= k}∪ {0}.

(2) gk takes value 1 on {λi +
µ
2l
| i ≥ 1, l 6= k}, and value 0 on {λi +

µ
2k

| i ≥ 1} ∪ {0}.
Then

e
(1)
22 ⊗ · · · ⊗ e

(k−1)
22 ⊗ e

(k)
11 ⊗ 1(≥k+1) = fk(c) ∈ D,

e
(1)
22 ⊗ · · · ⊗ e

(k−1)
22 ⊗ e

(k)
22 ⊗ 1(≥k+1) = gk(c) ∈ D.

We follow ideas of Olsen, Zame, [OZ76]. For k ≥ 1, consider the element yk :=
fk(c)dgk(c) ∈ D. By construction of d, we have:

yk = xk ⊗ e
(1)
22 ⊗ · · · ⊗ e

(k−1)
22 ⊗ e

(k)
12 ⊗ 1(≥k+1).

Then

y∗kyk = x2k ⊗ e
(1)
22 ⊗ · · · ⊗ e

(k−1)
22 ⊗ e

(k)
22 ⊗ 1(≥k+1) ∈ D.
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Since x2k is positive and invertible, we have (xk)
−1 ⊗ e

(1)
22 ⊗ · · · ⊗ e

(k)
22 ⊗ 1(≥k+1) ∈ D, and

then:

1A ⊗ e
(1)
22 ⊗ · · · ⊗ e

(k−1)
22 ⊗ e

(k)
12 ⊗ 1(≥k+1) ∈ D.

It follows that D contains all matrix units of 1⊗M2∞ , and therefore 1⊗M2∞ ⊂ D.
Then xk ⊗ 1 ∈ D for all k. Since the xk generate A, we get A ⊗ 1 ⊂ D, and then
D = A⊗M2∞ , as desired. �
Remark 3.9. We do not know of any example of a separable, real rank zero C∗-algebra
A for which gr(A) ≥ 2, and it is possible that no such algebra exists. Let us consider the
following weaker question: Do all separable, unital, simple, real rank zero, stable rank
one C∗-algebras have generator rank at most one, or are they at least singly generated?

This is certainly a hard problem, since a positive answer to it would give a positive
solution to the generator problem for von Neumann algebras, which asks whether every
von Neumann algebra acting on a separable Hilbert space is singly generated, see [Kad67,
Problem 14] and [Ge03]. The generator problem for von Neumann algebras has been
reduced to the case of a type II1-factor, see [Wil74]. Every II1-factor M acting on a
separable Hilbert space contains a separable unital, simple, real rank zero, stable rank
one C∗-algebras A ⊂ M such that A′′ = M . If A is singly generated (as a C∗-algebra),
then so is M (as a von Neumann algebra).

4. The generator rank of homogeneous C∗-algebras

In this section, we first compute the generator rank of commutative C∗-algebras, see
Proposition 4.7. The main result is Theorem 4.23, which shows how to compute the
generator rank of homogeneous C∗-algebras. To obtain these results, we have to com-
pute the codimension of Genk(Mn)sa ⊂ (Mn)

k
sa, see Lemma 4.20.

For spaces X,Y we denote by E(X,Y ) the space of continuous embeddings.

4.1. Let us discuss the generator rank of commutative C∗-algebras.
Let X be a compact, metric space, and k ∈ N. We may identify C(X)k+1

sa
∼=

C(X,Rk+1). By the Stone-Weierstrass theorem, an element a ∈ C(X)k+1
sa generates

C(X) if and only if a(x) = (a1(x), . . . , ak+1(x)) 6= 0 for all x ∈ X, and a separates the
points of X.

It follows that gr(C(X)) ≤ k if and only if E(X,Rk+1 \ {0}) is dense in C(X,Rk+1).
We will break this problem into two parts:

(1) When is C(X,Rk+1 \ {0}) ⊂ C(X,Rk+1) dense?
(2) When is E(X,Rk+1 \ {0}) ⊂ C(X,Rk+1 \ {0}) dense?

These questions have been studied and answered in a more general setting. We recall
the results in a way that will also be used to compute the generator rank of homogeneous
C∗-algebras.

4.2. Let X be a compact, metric space, let q ≥ 1.We give C(X,Rq) the topology induced
by the supremum norm ‖f‖ := supx∈X |f(x)|.

If Y ⊂ Rq is closed, then it follows from compactness of X that C(X,Rq\Y ) is an open
subset of C(X,Rq). We want to see when it is also dense. The goal is Proposition 4.4
below, which is a classical result that can be obtained in several ways. A particular
version appeared in [BE91, Theorem 1.3].

Recall that Y ⊂ Rq is said to be “codimension three” if dim(Y ) ≤ q−3. For the notion
of “tameness” of embeddings we refer the reader to the survey by Edwards, [Edw75]. We
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note that every codimension three submanifold M ⊂ Rq, q ≥ 5, is tamely embedded. It
follows that Y ⊂ Rq is a codimension three, tame embedding, if Y is a countable union
of codimension three submanifolds of Rq, q ≥ 5. To derive Proposition 4.4, we will use
the following result:

Proposition 4.3 (Dranishnikov, [Dra91]). Let X be a compact, metric space, and Y ⊂
Rq be a codimension three, tame compact subset. Then the following are equivalent:

(1) C(X,Rq \ Y ) ⊂ C(X,Rq) is dense,
(2) dim(X × Y ) < q.

Proposition 4.4. Let X be a compact, metric space, let q ≥ 5, and let Y ⊂ Rq be a
closed subset that is the countable union of codimension three submanifolds of Rq. Then
the following are equivalent:

(1) C(X,Rq \ Y ) ⊂ C(X,Rq) is dense (and open),
(2) dim(X) < q − dim(Y ).

Proof. We noted in 4.2 that C(X,Rq \ Y ) ⊂ C(X,Rq) is always open.
Set d := dim(Y ). Let Y1, Y2, . . .Rq be codimension three submanifolds such that Y =⋃
k Yk. Then dim(Y ) = supk dim(Yk), and so there exist an index l with dim(Yl) = d.

Choose a compact subset Z ⊂ Yl such that Z ∼= [0, 1]d. It follows from [Edw75] that Z
is tamely embedded in Rq.

Let us show “(1) ⇒ (2)”. Since C(X,Rq \Y ) ⊂ C(X,Rq \Z), we get dim(X ×Z) < q
from Proposition 4.3. Then (2) follows, since dim(X × [0, 1]d) = dim(X) + d.

To show “(2) ⇒ (1)”, assume dim(X) < q− dim(Y ). Let f ∈ C(X,Rq), and ε > 0 be
given. We let B ⊂ Rq be the closed ball of radius (1+ε)‖f‖. Then Y ∩B is codimension
three, tame compact subset. Moreover, dim(X × (Y ∩ B)) ≤ dim(X) + dim(Y ) < q.
By Proposition 4.3, we may find g ∈ C(X,Rq \ (Y ∩B)) with g =ε f . By construction,
g ∈ C(X,Rq \Y ). Since f and ε were arbitrary, this shows that C(X,Rq\Y ) ⊂ C(X,Rq)
is dense, as desired. �

4.5. Let X be a compact, metric space with dim(X) = d. It is a classical result that X
can be embedded into R2d+1, and even more, the embeddings E(X,R2d+1) are dense in
C(X,R2d+1), see e.g. [Eng95, Theorem 1.11.4, p.95].

The converse is not quite true, and it is connected to the question whether dim(X ×
X) = 2dim(X). It is known that the dimension of X × X can only take the values
2 dim(X)− 1 or 2 dim(X). Thus, we may divide the class of all compact, metric, finite-
dimensional spaces into two classes, see the Definition before 3.17 in [Dra01]:

(1) If dim(X ×X) = 2dim(X), we say X is “of basic type”.
(2) If dim(X ×X) < 2 dim(X), we say X is “of exceptional type”.

If dim(X) ≤ 1, then X of basic type, and for every d ≥ 2 there exists a space X of
exceptional type with dim(X) = d.

It is shown by Spież, [Spi90, Theorem 2], that X is of exceptional type if and only if
E(X,R2d) is dense in C(X,R2d). As shown in [DRS91, Theorem 1.1], one may deduce
that the following are equivalent:

(1) dim(X ×X) < q.
(2) E(X,Rq) ⊂ C(X,Rq) is dense.

This result was generalized to topological manifolds by Luukkainen. By a q-manifold
we mean a separable, metric space M such that every point x ∈ M has a neighborhood
homeomorphic to Rq. It follows from [Luu81, Theorem 5.1] that E(C,M) ⊂ C(X,M) is
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dense if q ≥ 2d+1. This is complemented by [Luu91, Theorem 2.5] which shows that X
is of exceptional type if and only if E(X,M) ⊂ C(X,M) is dense for some (and hence
all) 2d-manifolds.

This shows the following result:

Proposition 4.6 (Lukkainen, [Luu81], [Luu91]). Let X be a compact, metric space,
and M a manifold. Then the following are equivalent:

(1) dim(X ×X) < dim(M),
(2) E(X,M) ⊂ C(X,M) is dense.

Proposition 4.7. Let X be a compact, metric space. Then gr(C(X)) = dim(X ×X).
More generally, if A is a separable, commutative C∗-algebra, then

gr(A) = dim(Prim(A)× Prim(A)).

Proof. Let X be a compact, metric space, and let k ∈ N. As explained in 4.1, we have
gr(C(X)) ≤ k if and only if the following conditions hold:

(1) C(X,Rk+1 \ {0}) ⊂ C(X,Rk+1) is dense.
(2) E(X,Rk+1 \ {0}) ⊂ C(X,Rk+1 \ {0}) is dense.

It follows from Proposition 4.4 that (1) is equivalent to dim(X) ≤ k, and it follows
from Proposition 4.6 that (2) is equivalent to dim(X ×X) ≤ k.

Since dim(X) ≤ dim(X ×X), condition (2) implies condition (1), and we deduce:

gr(C(X)) ≤ k ⇔ dim(X ×X) ≤ k,

from which the result follows.
Now let A be a non-unital, separable, commutative C∗-algebra, and setX := Prim(A).

Then Ã has primitive ideal space αX, the one-point compactification of X. Then

gr(A) = gr(Ã) = dim((αX) × (αX)), and the result follows since dim((αX) × (αX)) =
dim(X ×X). �
Lemma 4.8. Let X,Y be compact, metric spaces. Set Z = X ⊔ Y . Then:

dim(Z × Z) ≤ max{dim(X ×X),dim(Y × Y )}.
Moreover, if both X and Y are of exceptional type (see 4.5), then so is Z = X ⊔ Y .

Proof. For any compact, metric space M , we use the notation Mk := M × . . .k × M
for the k-fold Cartesian power. It is shown in [Dra01, Theorem 3.16] that M is of
exceptional type if and only if dim(Mk) = k dim(X) − k + 1 for k ≥ 1, and that M is
of basic type if and only if dim(Mk) = k dim(X) for k ≥ 1. If M,N are two compact
spaces, then dim(M × N) ≤ dim(M) + dim(N), by the product theorem of covering
dimension.

Now let X,Y be two compact, metric space, and set Z = X ⊔ Y . Note that we have
dim(Z) = max{dim(X),dim(Y )}. We distinguish two cases:

Case 1: Assume dim(X) 6= dim(Y ). Without loss of generality we may assume
dim(X) < dim(Y ). Then dim(Z) = dim(Y ). Moreover, dim(X × Z) ≤ dim(X) +
dim(Y ) ≤ dim(Y 2), and dim(X2) ≤ 2 dim(X) ≤ dim(Y 2). Thus, we may estimate:

dim(Z2) = max{dim(X2),dim(X × Y ),dim(Y 2)} ≤ dim(Y 2),

and we also obtain the desired inequality dim(Z2) ≤ max{dim(X2),dim(Y 2)}.
If Y is of exceptional type, then

dim(Z2) ≤ dim(Y 2) = 2dim(Y )− 1 = 2dim(Z)− 1,
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showing that Z is of exceptional type.
Case 2: Assume dim(X) = dim(Y ), and set d := dim(X). We may estimate:

dim(Z2) = max{dim(X2),dim(X × Y ),dim(Y 2)}
≤ max{2 dim(X),dim(X) + dim(Y ), 2 dim(Y )}
≤ 2d.

If at least one of X or Y is of basic type, then max{dim(X2),dim(Y 2)} = 2d, showing
the desired inequality.

If both X and Y are of expectional type, then dim(X2) = dim(Y 2) = 2d− 1, and we
have the following estimate:

dim(X2 × Y ) ≤ dim(X2) + dim(Y ) = 3d− 1,

and similarly dim(X × Y 2) ≤ 3d− 1.
Then:

dim(Z3) = max{dim(X3),dim(X2 × Y ),dim(X × Y 2),dim(Y 3)}
≤ max{3d − 2, 3d − 1, 3d − 1, 3d − 2}
≤ 3d− 1.

If Z were of basic type, then dim(Z3) = 3dim(Z). Thus, Z is of exceptional type, and
so dim(Z2) = 2dim(Z)− 1 = 2d− 1 = max{dim(X2),dim(Y 2)}. �

Proposition 4.9. Let A and B be separable, commutative C∗-algebras. Then gr(A ⊕
B) = max{gr(A), gr(B)}.
Proof. We have gr(A), gr(B) ≤ gr(A⊕B) by Proposition 2.12. For the converse inequal-

ity, note that A ⊕ B is an ideal in Ã ⊕ B̃. Then, using Theorem 2.14 at the first step,
using Proposition 4.7 and Lemma 4.8 at the second step:

gr(A⊕B) ≤ gr(Ã⊕ B̃) ≤ max{gr(Ã), gr(B̃)} = max{gr(A), gr(B)},
as desired. �

We now turn to the computation of the generator rank of homogeneous C∗-algebras.
We first recall the well-known structure theory of such algebras.

Definition 4.10 (Fell, [Fel61, 3.2]). Let A be a C∗-algebra and n ≥ 1. Then A is called
n-homogeneous if all its irreducible representations are n-dimensional. We further say
that A is homogeneous if it is n-homogeneous for some n.

4.11. Let us recall a general construction: Assume B = (E
p−→ X) is a locally trivial

fibre bundle (over a locally compact, Hausdorff space X) whose fiber has the structure
of a C∗-algebra. Let

Γ0(B) = {f : X → E | p ◦ f = idX , (x → ‖f(x)‖) ∈ C0(X)}(4.1)

be the sections of B that vanish at infinity. Then Γ0(B) has a natural structure
of a C∗-algebra, with the algebraic operations defined fibrewise, and norm ‖f‖ :=
supx∈X ‖f(x)‖.

If the bundle has fibreMn (a so-calledMn-bundle), then A := Γ0(B) is n-homogeneous
and Prim(A) ∼= X. Thus, every Mn-bundle defines an n-homogeneous C∗-algebra. The
converse does also hold:
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Proposition 4.12 (Fell, [Fel61, Theorem 3.2]). Let A be a C∗-algebra, n ∈ N. Then
the following are equivalent:

(1) A is n-homogeneous,
(2) A ∼= Γ0(B) for a locally trivial Mn-bundle B.

4.13. Let A be a n-homogeneous C∗-algebra, and set X := Prim(A). Then A is natu-
rally a C0(X)-algebra, with each fiber isomorphic to Mn. For the definition and results
of C0(X)-algebras, we refer the reader to § 1 of [Kas88] or § 2 of [Dad09]. We use the
same notation as in [TW12, 2.4].

4.14. Let A be a C∗-algebra, and k ∈ N. Let us denote the automorphism group of A
by Aut(A). We define a natural action Υ of Aut(A) on Ak

sa. Given α ∈ Aut(A) and
a = (a1, . . . , ak) ∈ Ak

sa we set:

Υ(α)(a) = α · a := (α(a1), . . . , α(ak)).

For α ∈ Aut(A) and a ∈ Ak
sa, note that α ·a = a if and only if α(x) = x for all x ∈ C∗(a).

Thus, the restriction of Υ to Genk(A)sa is free.
For A = Mn, every automorphism is inner. The kernel of the map Un → Aut(Mn)

is the group of central unitary matrices T · 1 ⊂ Un. Let PUn := Un/(T · 1) be the
projective unitary group. It follows that Aut(Mn) ∼= PUn, which is a compact Lie
group of dimension n2 − 1.

Lemma 4.15. Let A be a simple C∗-algebra, let k ∈ N, and let a,b ∈ Genk(A)sa. Then
a ⊕ b ∈ Genk(A ⊕ A)sa if and only if a and b lie in different orbits of the action of
Aut(A) on Genk(A)sa.

Proof. If a = α ·b for some α ∈ Aut(A), then C∗(a⊕b) = {(x, α(x)) | x ∈ A} ∼= A, and
so a⊕ b does not generate A⊕A.

Conversely, let D := C∗(a⊕b) ⊂ A⊕A, and assume that D 6= A⊕A. Let πi : A⊕A →
A be the surjective morphisms on the two summands, i = 1, 2. Then π1(D) = A. Note
that ker(π1) = 0⊕A. If ker(π1)∩D 6= 0, then ker(π1)∩D = 0⊕A, and so D = A⊕A,
a contradiction. Therefore, π1 : D → A is an isomorphism. Similarly π2 : D → A is
an isomorphism. Then α := π2 ◦ π−1

1 is the desired automorphism of A that satisfies
α · a = b. �
Proposition 4.16. Let X be a compact, metric space, let A be a simple, separable C∗-
algebra, and let B a continuous C(X)-algebra with fibers isomorphic to A. Let k ∈ N,
and b ∈ Bk

sa. Then b ∈ Genk(B)sa if and only if the following two conditions are
satisfied:

(1) b pointwise generates A, i.e., for each x ∈ X we have b(x) = (b1(x), . . . , bk(x)) ∈
Genk(A)sa.

(2) b separates the points of X in the sense that for distinct x, y ∈ X the tuples b(x)
and b(y) lie in different orbits of the action of Aut(A) on Genk(A)sa.

Proof. Let us first assume that b ∈ Genk(B)sa. For x ∈ X, let πx : B → A be the
surjective morphism to the fiber at x. This maps Genk(B)sa into Genk(A)sa. This shows
(1). For distinct points x, y ∈ X, consider the surjective morphism ϕ := πx ⊕ πy : B →
A ⊕ A. Since ϕ maps Genk(B)sa into Genk(A ⊕ A)sa, we get b(x) ⊕ b(y) = ϕ(b) ∈
Genk(A⊕A)sa, and so (2) follows from Lemma 4.15.

The converse follows from [TW12, Lemma 3.2], which is proved using the factorial
Stone-Weierstrass conjecture. �
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Notation 4.17. For n, k ∈ N, set:

Ek
n := (Mn)

k
sa, Gk

n := Genk(Mn)sa ⊂ Ek
n.

Lemma 4.18. Let n, k ∈ N. Then Gk
n ⊂ Ek

n is open.

Proof. In general, if A is any C∗-algebra, and Genl(A)sa contains a non-empty open
subset, for some l, then Genk(A)sa is open (but possibly empty) for all k. To see this,
let U ⊂ Genl(A)sa be a non-empty, open subset. Let a be any element of Genk(A)sa.
Then there exist polynomials p1, . . . , pl such that (p1(a), . . . , pl(a)) ∈ U . For i = 1, . . . , l,
let qi := (pi + p∗i )/2, considered as a polynomial that maps Ak

sa to Asa. Consider the
continuous map q : Ak

sa → Al
sa given by q(x) := (q1(x), . . . , ql(x)). Then q(a) ∈ U , and

so q−1(U) is an open subset of Genk(A)sa containing a.
Let ei,j ∈ Mn denote the matrix units. Consider the self-adjoint element a =∑n
s=1

s
nes,s, and b =

∑n−1
s=1 (es,s+1 + es+1,s). Then every pair (a′, b′) ∈ (Mn)

2
sa close

enough to (a, b) generates Mn. Indeed, if a′ is close enough to a, then it generates a
maximal abelian subalgebra of Mn. If b

′ is close enough to b, then it does not commute
with the elements of C∗(a′), and it follows that the commutant of C∗(a′, b′) is C ·1. This
implies C∗(a′, b′) = Mn, as desired. �

Lemma 4.19. Let n, k ∈ N. Let Υ denote the action of PUn on Ek
n, as defined in 4.14.

Let a ∈ Ek
n. Then the following are equivalent:

(1) The stabilizer subgroup of a is trivial.
(2) a ∈ Gk

n.

Proof. Let α ∈ PUn, and let it be represented by a unitary u ∈ Mn. It was noted in
4.14 that α · a = a if and only if α(x) = x for all x ∈ C∗(a). This shows the implication
“(2) ⇒ (1)”.

For the converse, assume a ∈ Ek
n\Gk

n. Let B := C∗(a), the sub-C∗-algebras generated
by a. Since B is a proper sub-C∗-algebra, the commutant B′ is non-trivial. It follows
that there exists a unitary u ∈ B′ which induces a non-trivial automorphism on Mn,
while it stabilizes a, and so the stabilizer subgroup of a is non-trivial. �

Lemma 4.20. Let n, k ≥ 2. Then Ek
n \Gk

n is a closed subset which is a finite union of
codimension three submanifolds and dim(Ek

n \Gk
n) = kn2 − (k − 1)(2n − 2).

If, moreover, X is a compact, metric space, then the following are equivalent:

(1) C(X,Gk
n) ⊂ C(X,Ek

n) is dense (and open),
(2) dim(X) < (k − 1)(2n − 2).

Proof. Set Y := Ek
n \Gk

n, which is closed by Lemma 4.18. The action Υ of PUn on Ek
n,

as defined in 4.14, is a smooth action of a compact Lie group on a manifold, and we
consider its orbit type decomposition.

In general, if a compact Lie group G acts smoothly on a manifold M , and H 6 G is
a closed subgroup, then M(H) denotes the set of points x ∈ M such that the stabilizer
subgroup of x is conjugate to H. Then M decomposes into orbit types M =

⋃
M(H).

Let π : M → M/G denote the quotient map to the orbit space. Then, for each H, the
image of π(M(H)) ⊂ M/G has a unique manifold structure, and the restriction of π to
M(H) is a submersion. We refer the reader to [Mei03] for more details.

By Lemma 4.19, Gk
n is the submanifold corresponding to the trivial stabilizer sub-

group. Thus, we have to consider M(H) for subgroups H 6 PUn with H 6= {1}.
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Let V (Mn) denote the space of sub-C∗-algebras of Mn. Then PUn naturally acts on
V (Mn). Let Ψ: Ek

n → V (Mn) be the map that sends a to Ψ(a) := C∗(a) ⊂ Mn. It is
easily checked that Ψ is PUn-equivariant.

There are only finitely many orbits of the action of PUn on V (Mn), which we may
label by multi-indices ω = (d1,m2, . . . , ds,ms) for di,mi ∈ N and

∑
imidi ≤ n. The

multi-index ω = (d1,m2, . . . , ds,ms) is assigned to a sub-C∗-algebra B ⊂ Mn if B ∼=
Md1 ⊕ . . .⊕Mds , and the copy Mdi ⊂ B has multiplicity mi in the embedding B ⊂ Mn.
Two indices can be assigned to the same orbit, and one could put more restrictions
on the indices to get a unique assignment. For our considerations, however, this is
unimportant, since we are only interested in the dimension of certain submanifolds, and
it is no problem if we consider the same submanifold several times.

Let ω = (d1,m2, . . . , ds,ms) be a multi-index, and let B ⊂ Mn be a sub-C∗-algebra
whose orbit in V (Mn) has index ω. For a ∈ Ek

n, we have Ψ(a) = B if and only if
a ∈ Genk(B)sa ⊂ Genk(Mn)sa = Ek

n. By Corollary 3.3, we have gr(B) ≤ 1, and since
k ≥ 2 we get that Genk(B)sa ⊂ Bk

sa is dense. Moreover, it follows from Lemma 4.18
that Genk(B)sa ⊂ Bk

sa is open. Thus, Ψ−1(B) = Genk(B)sa is a dense, open subset of
the manifold Bk

sa, and therefore:

dim(Ψ−1(B)) = dim(Bk
sa) = k

∑

i

d2i .

Let K(B) ⊂ PUn be the stabilizer subgroup of B. If B is a unital subalgebra of Mn,
then every unitary of B stabilizes B, and so we obtain a natural map U(B) → K(B)
with kernel U(B)∩T·1. If B is a non-unital subalgebra, let r ∈ Mn denote the projection
such that 1B+r = 1. For every unitary u ∈ B, the element u+r is a unitary in Mn that
stabilizes B. Thus, in the unital case, K(B) has a subgroup isomorphic to U(B)/T, and
in the non-unital case, K(B) has a subgroup isomorphic to U(B). Therefore, we get the
rough (but for our purposes sufficient) estimate:

dim(K(B)) ≥ dimU(B)− 1 =
∑

i

d2i − 1.

Let V (ω) ⊂ V (Mn) be the orbit with index ω. Then:

dim(V (ω)) = dim(PUn)− dim(K(B)) ≤ n2 − 1− [
∑

i

d2i − 1] = n2 −
∑

i

d2i .

Therefore:

dim(Ψ−1(V (ω))) = dim(Ψ−1(B)) + dim(V (ω))

≤ k
∑

i

d2i + n2 −
∑

i

d2i

= n2 + (k − 1)
∑

i

d2i .

Note that ω = (n, 1) labels the one-point orbit of Mn ⊂ Mn, and so Ψ−1(V (n, 1)) =
Gk

n. Among ω 6= (n, 1), n2 + (k − 1)
∑

i d
2
i has its maximum value for the partition

d1 = n− 1, d2 = 1 (and m1 = m2 = 1). Thus, for ω 6= (n, 1):

dim(Ψ−1(V (ω))) ≤ n2 + (k − 1)[(n − 1)2 + 1] = kn2 − (k − 1)(2n − 2).

Since Ek
n \Gk

n =
⋃

ω 6=(n,1)Ψ
−1(V (ω)), we get:

dim(Ek
n \Gk

n) ≤ kn2 − (k − 1)(2n − 2).
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The partition ω′ := (n − 1, 1, 1, 1) labels the orbit of B = Mn−1 ⊕ C ⊂ Mn, and one
checksK(B) ∼= Un−1, so that dim(V (ω′)) = n2−1−(n−1)2 and then dim(Ψ−1(V (ω′))) =
kn2− (k− 1)(2n− 2). Since Ψ−1(V (ω′)) ⊂ EK

n \Gk
n, we get dim(EK

n \Gk
n) ≥ kn2− (k−

1)(2n − 2), and so dim(EK
n \Gk

n) = kn2 − (k − 1)(2n − 2), as desired.
Now the assertion of the equivalent conditions follows from our dimension computa-

tions and Proposition 4.4. �

Lemma 4.21. Let A be a unital, separable n-homogeneous C∗-algebra, n ≥ 2, and let
k ≥ 2. Let X := Prim(A), and for x ∈ X let πx : A → Mn be a morphism onto the
fiber at x. Let S be the set of elements a ∈ Ak

sa such that for all x ∈ Prim(A), the tuple
πx(a1), . . . , πx(ak) generates Mn. Then the following are equivalent:

(1) S ⊂ Ak
sa is dense (and open),

(2) dim(X) < (k − 1)(2n − 2).

Proof. There are finitely many closed subsets X1, . . . ,Xr ⊂ X such that the Mn-bundle
associated to A is trivial over each Xi. For each i, let Φi : A → C(Xi,Mn) be a trivial-
ization. This induces a surjective map Ak

sa → C(Xi,Mn)
k
sa

∼= C(Xi, E
k
n), we also denote

by Φi, and which is open by then open mapping theorem., Note that Φi(S) = C(X,Gk
n).

It follows that S =
⋂

iΦ
−1
i (C(X,Gk

n)) is dense if and only if each C(Xi, G
k
n) ⊂

C(Xi, E
k
n) is dense. By Lemma 4.20, this is equivalent to dim(Xi) < (k − 1)(2n − 2)

for each i, and since the Xi form a finite, closed cover of X, this is equivalent to
dim(X) < (k − 1)(2n − 2). �

4.22. Let A be a unital, separable n-homogeneous C∗-algebra, and let k ∈ N. Let
X := Prim(A), and for x ∈ X let πx : A → Mn be a morphism onto the fiber at x. This
induces a natural map Ak

sa → Ek
n, which we also denote by πx.

Let us define a map Ψ: Ak
sa → C(X,Ek

n/PUn) by Ψ(a)(x) := PUn · π(a). Note that
the map from A to its fiber at some point x ∈ X is not unique. It is, however, unique
up to an automorphism of Mn, which shows that Ψ is well-defined.

Restricting Ψ to the subset S as defined in Lemma 4.21, gives a map Ψ: S →
C(X,Gk

n/PUn). Proposition 4.16 shows that Genk(A)sa = Ψ−1(E(X,Gk
n/PUn)).

Theorem 4.23. Let A be a unital, separable n-homogeneous C∗-algebra, n ≥ 2. Set
X := Prim(A), the primitive ideal space of A. Then:

gr(A) =

⌈
dim(X) + 1

2n− 2

⌉
.

Proof. Since Mn is a quotient of A, we get gr(A) ≥ gr(Mn) = 1 by Proposition 2.12 and

Lemma 3.2. We also have
⌈
dim(X)+1

2n−2

⌉
≥ 1 for every value of dim(X). Thus, it is enough

to show that for every k ≥ 2 the following holds:

gr(A) ≤ k − 1 ⇔ dim(X) < (k − 1)(2n − 2).

Let S ⊂ Ak
sa be defined as in Lemma 4.21.

Assume gr(A) ≤ k−1, i.e., Genk(A)sa ⊂ Ak
sa is dense. Since Genk(A)sa ⊂ S, it follows

from Lemma 4.21 that dim(X) < (k − 1)(2n − 2).
Conversely, assume dim(X) < (k − 1)(2n − 2). Again by Lemma 4.21, we have

that S ⊂ Ak
sa is dense. Consider the map Ψ: S → C(X,Gk

n/PUn), as defined in 4.22.
One checks that this map is continuous and open. Note that Gk

n/PUn is a manifold
of dimension kn2 − (n2 − 1) = (k − 1)n2 + 1. It follows from Proposition 4.6 that
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E(X,Gk
n/PUn) ⊂ C(X,Gk

n/PUn) is dense if and only if dim(X ×X) < (k − 1)n2 + 1.
But this follows from the assumption on dim(X), using n ≥ 2 at the third step:

dim(X ×X) ≤ 2 dim(X) < 2(k − 1)(2n − 2) ≤ (k − 1)n2 + 1.

Then Ψ−1(E(X,Gk
n/PUn)) ⊂ S is dense. It follows from Proposition 4.16 that

Genk(A)sa = Ψ−1(E(X,Gk
n/PUn)), which shows gr(A) ≤ k − 1, as desired. �

Lemma 4.24. Let A be a separable n-homogeneous C∗-algebra. Set X := Prim(A). If
dim(X) < ∞, then A is isomomorphic to an ideal in a unital, separable n-homogeneous
C∗-algebra B with dim(Prim(B)) = dim(X).

Proof. For n = 1 this is clear. For n ≥ 2, this follows from Proposition 2.9 and
Lemma 2.10 in [Phi07], since dim(X) < ∞ implies that the Mn-bundle associated to A
has finite type. �

Corollary 4.25. Let A be a separable n-homogeneous C∗-algebra. Set X := Prim(A).
If n = 1 (i.e., A is commutative), then

gr(A) = dim(X ×X).

If n ≥ 2, then:

gr(A) =

⌈
dim(X) + 1

2n− 2

⌉
.

Proof. For n = 1, this follows from Proposition 4.7. So assume n ≥ 2. If A is unital, the
formula follows from Theorem 4.23, so we may assume A is non-unital. We first show

the inequality gr(A) ≥
⌈
dim(X)+1

2n−2

⌉
. Given a compact subset Y ⊂ X, let A(Y ) denote

the unital, separable, n-homogeneous quotient of A corresponding to Y . It follows from
Theorem 4.23 and Proposition 2.12 that:

⌈
dim(Y ) + 1

2n− 2

⌉
= gr(A(Y )) ≤ gr(A).

The desired inequality follows, since dim(X) is equal to the maximum of dim(Y ) when
Y is running over the compact subsets of X.

The converse inequality is clear if dim(X) = ∞, so assume dim(X) < ∞. By
Lemma 4.24, A is an ideal in a unital, separable n-homoeneous C∗-algebra B with
dim(Prim(B)) = dim(X). It follows from Theorem 2.14 and Theorem 4.23 that:

gr(A) ≤ gr(B) =

⌈
dim(X) + 1

2n − 2

⌉
,

as desired. �

Lemma 4.26. Let A,B be two separable homogeneous C∗-algebras. Then gr(A⊕B) =
max{gr(A), gr(B)}.

Proof. We have gr(A), gr(B) ≤ gr(A ⊕ B) by Proposition 2.12. We need to show the
converse inequality. Assume A is n-homogeneous, and B is m-homogeneous. Set X :=
Prim(A), and Y := Prim(B). If n = m, then A ⊕ B is n-homogeneous with Prim(A ⊕
B) = X ⊔ Y . If n = 1, the result follows from Proposition 4.9.
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If n ≥ 2, then Corollary 4.25 shows:

gr(A⊕B) =

⌈
dim(X ⊔ Y ) + 1

2n− 2

⌉

= max

{⌈
dim(X) + 1

2n− 2

⌉
,

⌈
dim(Y ) + 1

2n− 2

⌉}

= max{gr(A), gr(B)}.
For general C∗-algebras A,B one has Genk(A⊕B)sa ⊂ Genk(A)sa ⊕Genk(B)sa, and

the inclusion might be strict. However, if A is n-homogeneous, and B is m-homogeneous
with n 6= m, then no non-zero quotient of A is isomorphic to a quotient of B, and
therefore:

Genk(A⊕B)sa = Genk(A)sa ⊕Genk(B)sa,

from which the desired equality follows. �
In the same way as Lemma 4.26, one proves the following result:

Corollary 4.27. Let A1, . . . , Ak be separable, homogeneous C∗-algebras. Then:

gr(
⊕

i

Ai) = max
i

gr(Ai).

Remark 4.28. Let A be a unital, separable, n-homogeneous C∗-algebra, n ≥ 2, and set
X := Prim(A). It follows from Theorem 4.23 that the generator rank of A only depends
on dim(X) (and n), but not on dim(X×X). Thus, whether X is of basic or exceptional
type does not matter for the computation of the generator rank of A.

Remark 4.29. Let d ≥ 1 and n ≥ 2, and set A = C([0, 1]d,Mn). Recall that we denote
by gen(A) the minimal number of self-adjoint generators for A. It follows from [Nag],
[BE91] and Theorem 4.23 that:

gen(A) =

⌈
d− 1

n2
+ 1

⌉
, rr(A) =

⌈
d

2n− 1

⌉
, gr(A) =

⌈
d+ 1

2n− 2

⌉
.

This shows that the generator rank is more closely connected to the real rank than to
the minimal number of generators.

The generator problem for simple C∗-algebras asks whether every unital, separable,
simple C∗-algebra A is singly generated, i.e, whether A contains a generating element.
We might consider a strengthened version that asks if gr(A) ≤ 1, i.e., whether the
generating elements in A are dense. It follows from the work of Villadsen that this
strengthened generator problem has a negative answer. Indeed, there exist simple AH-
algebras of arbitrarily high real rank, see [Vil99]. Let A be such an AH-algebra with
rr(A) = ∞. Then gr(A) = ∞, by Proposition 2.5.

Let A be a unital, separable, n-homogeneous C∗-algebra. Then A is an inductive limit
of unital, separable, n-homogeneous C∗-algebras with finite-dimensional primitive ideal
space. It follows from Theorem 4.23 and Proposition 2.13 that the tensor product of
A with an infinite UHF-algebra has generator rank one. Using also Corollary 4.27, we
may draw the following conclusion:

Corollary 4.30. Let A be a unital, separable AH-algebra. Assume either that A is
simple with slow dimension growth, or that A tensorially absorbs a UHF-algebra. Then
gr(A) ≤ 1, and so the generators of A form a generic subset.
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THE GENERATOR PROBLEM FOR Z-STABLE C∗-ALGEBRAS

HANNES THIEL AND WILHELM WINTER

ABSTRACT. The generator problem was posed by Kadison in 1967, and it remains
open until today. We provide a solution for the class of C∗-algebras absorbing the
Jiang-Su algebra Z tensorially. More precisely, we show that every unital, separa-
ble, Z-stable C∗-algebra A is singly generated, which means that there exists an
element x ∈ A that is not contained in any proper sub-C∗-algebra of A.

To give applications of our result, we observe that Z can be embedded into
the reduced group C∗-algebra of a discrete group that contains a non-cyclic, free
subgroup. It follows that certain tensor products with reduced group C∗-algebras
are singly generated. In particular, C∗

r (F∞)⊗ C∗
r (F∞) is singly generated.

1. INTRODUCTION

By an operator algebra we mean a ∗-subalgebra of B(H) that is either closed in
the norm topology (a concrete C∗-algebra) or the weak operator topology (a von
Neumann algebra). One way of realizing an operator algebra is to take a subset of
B(H) and consider the smallest operator algebra containing it.

In a trivial way, every operator algebra can be obtained this way. The situation
becomes interesting if one imposes restrictions on the generating set, and one nat-
ural possibility is to require that it consists of only one element, i.e., to consider
operator algebras that are generated by a single operator. It is an old problem to
determine which operator algebras arise this way.

More generally, one tries to compute the minimal number of elements that gen-
erate a given operator algebra, see 2.1. It is often convenient to consider self-
adjoint generators. Note that two self-adjoint elements a, b generate the same op-
erator algebra as the element a+ ib. Thus, if we ask whether an operator algebra is
singly generated, it is equivalent to ask whether it is generated by two self-adjoint
elements.

In the case of von Neumann algebras, the generator problem was included in
Kadison’s famous ‘Problems on von Neumann algebras’, [Kad67]. This problem
list has turned out to be very influential, yet its original form remains unpublished.
It is indirectly available in an article by Ge, [Ge03], where a brief summary of the
developments around Kadison’s famous problems is given.
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Question 1.1 (Kadison, [Kad67, Problem 14], see also [Ge03]). Is every separably-

acting1 von Neumann algebra singly generated?

As noted in [She09], there exist singly generated von Neumann algebras that
are not separably-acting. However, the separably-acting von Neumann algebras
are the natural class for which one might expect single generation. The answer to
Question 1.1 is still open in general, but many authors have contributed to show
that large classes of separably-acting von Neumann algebras are singly generated.

We just mention an incomplete list of results. It starts with von Neumann,
[vN31], who showed that the abelian operator algebras named after him are gener-
ated by a single self-adjoint element, thus implicitly raising the generator problem.
Some thirty years later, this was extended by Pearcy, [Pea62], who showed that
all von Neumann algebras of type I are singly generated. Then Wogen, [Wog69,
Theorem 2], proved that all properly infinite von Neumann algebras are singly
generated, thus reducing the generator problem to the type II1 case.

Later, this was further reduced to the case of a II1-factor by Willig, [Wil74], and
then to the case of a finitely-generated II1-factor by Sherman, [She09, Theorem
3.8]. This means that Question 1.1 has a positive answer if every separably-acting,
finitely generated II1-factor is singly generated.

There are many properties known to imply that a II1-factor is singly generated.
We just mention that Ge and Popa, [GP98, Theorem 6.2], show that every tensori-

ally non-prime2 II1-factor is singly generated. Our main result Theorem 3.5 can be
considered as a partial C∗-algebraic analog of this result.

Let us also mention that the free group factors W ∗(Fk) are the outstanding
examples of separably-acting von Neumann algebra for which it is not known
whether they are singly generated.

In the case of C∗-algebras, the generator problem is more subtle. There is al-
ready no obvious class of C∗-algebras for which one conjectures that they are

singly generated. Every singly generated C∗-algebra is separable3. However, the
converse is false, and counterexamples can be found among the commutative C∗-
algebras.

In fact, the C∗-algebra C0(X) is generated by n self-adjoint elements if and only
if X can be embedded into Rn. Thus, C0(X) is singly generated if and only if X is
planar, i.e., can be embedded into the plane R2.

It is easy to see that a C∗-algebra A is generated by n self-adjoint elements if and

only if its minimal unitization Ã is generated by n self-adjoint elements. Therefore,
we will mostly consider the generator problem for separable, unital C∗-algebra. In
that case, taking the tensor product with a matrix algebra has the effect of reduc-
ing the necessary number of generators. If A is generated by n2 + 1 self-adjoint
elements, then A⊗Mn is singly generated, see e.g. [Nag04, Theorem 3].

One derives the principle that a C∗-algebra needs less generators if it is ‘more
non-commutative’. Consequently, one might expect a (separable) C∗-algebra to be
singly generated if it is ‘maximally non-commutative’. As a non-unital instance

1A von Neumann algebra is called ‘separably-acting’, or just ‘separable’, if it is a subalgebra of

B(l2N), or equivalently if it has a separable predual.
2A II1-factor M is called tensorially non-prime if it is isomorphic to a tensor product, M1⊗̄M2, of

two II1-factors M1,M2.
3A C∗-algebra is called ‘separable’ if it contains a countable, norm-dense subset
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of this principle, we note that the stabilization, A ⊗ K, of a separable unital C∗-
algebra A is singly generated, [OZ76, Theorem 8]. In the unital case, there are
at least three natural cases when one considers a C∗-algebra A to be ‘maximally
non-commutative’, which are the following:

(1) A contains a simple, unital, nonelementary sub-C∗-algebra,
(2) A contains a sequence of pairwise orthogonal, full elements,
(3) A has no finite-dimensional irreducible representations.

In general, the implications (1) ⇒ (2) ⇒ (3) hold; it is not known if the con-
verses are true.

Conditions (2) and (3) can also be considered for possibly non-unital C∗-alge-
bras, and we let (2∗) be the weaker statement that A contains two orthogonal, full
elements. The implication ‘(3) ⇒ (2)’ holds exactly if the implication ‘(3) ⇒ (2∗)’
holds.

The Global Glimm halving problem asks the following: Given a (possibly non-
unital) C∗-algebra A that satisfies condition (3), does there exist a full map from
the cone over M2 to A? It is not known whether the Global Glimm halving prob-
lem has a positive answer, but if it does then it shows that implication ‘(3) ⇒ (2)’
holds, since the cone over M2 contains two orthogonal, full elements.

Let us remark that the analogs of conditions (1)−(3) for von Neumann algebras
are all equivalent. In fact, if a von Neumann algebra M has no finite-dimensional
representations, then the hyperfinite II1-factor R unitally embeds into M .

Historically, the generator problem for C∗-algebras is mostly asked for C∗-al-
gebras that are simple ore more generally have no finite-dimensional representa-
tions:

Question 1.2. Is every simple, separable, unital C∗-algebra singly generated?

Question 1.3. Is a separable, unital C∗-algebra singly generated provided it has
no finite-dimensional irreducible representations?

The answers to both questions are open. A positive answer to Question 1.3
implies a positive answer to Question 1.2, of course. The converse is not clear.

Let us mention some results that solve the generator problem for particular
classes of separable C∗-algebras. It was shown by Topping, [Top68], that ev-
ery UHF-algebra is singly generated. This was generalized by Olsen and Zame,
[OZ76, Theorem 9], who showed that the tensor product, A⊗B, of any separable,
unital C∗-algebra A with a UHF-algebra B is singly generated.

Later, it was shown by Li and Shen, [LS10, Theorem 3.1], that every unital, ap-

proximately divisible4 C∗-algebra is singly generated. This generalizes the result
of Olsen and Zame, since the tensor product with a UHF-algebra is always ap-
proximately divisible.

In this article we prove that every separable, unital, Z-stable C∗-algebra is
singly generated, see Theorem 3.7. This generalizes the result of Li and Shen,
since every approximately divisible C∗-algebra is Z-stable, see [TW08, Theorem
2.3]. The notion of Z-stability has proven to be very important in the classifica-
tion program of nuclear C∗-algebras, see e.g. [Win07] or [ET08], and it is has been

4A unital C∗-algebra A is ‘approximately divisible’ if for every ε > 0 and finite subset F ⊂ A
there exists a finite-dimensional, unital sub-C∗-algebra B ⊂ A such that B has no characters and

‖xb− bx‖ ≤ ε‖b‖ for all x ∈ F, b ∈ B.
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shown that many nuclear, simple C∗-algebras are Z-stable, see e.g. [Win10]. Z-
stability is also relevant in the non-nuclear context; for example, unital Z-stable
C∗-algebras satisfy Kadison’s similarity property, see [JW11].

This paper proceeds as follows:

In Section 2 we set up our notation and give some basic facts about the genera-
tor rank, see 2.1, and C0(X)-algebras, see 2.4.

Section 3 contains the proof of our main result, which states that the tensor
product A ⊗max B of two separable, unital C∗-algebras is singly generated, if A
satisfies condition (2) from above (e.g. A is simple and non-elementary) and B
admits a unital embedding of the Jiang-Su algebra Z , see Theorem 3.5.

We derive that every separable, unital, Z-stable C∗-algebra is singly generated,
see Theorem 3.7. Our main result can be considered as a (partial) C∗-algebraic
analog of a theorem of Ge and Popa, [GP98, Theorem 6.2], which shows that a
tensor product, M⊗̄N , of two II1-factors M,N is singly generated. In fact, we can
reprove their theorem with our methods, see Corollary 3.11.

In Section 4 we give further applications of our main theorem to tensor prod-
ucts with reduced group C∗-algebras. We first observe that Z embeds unitally into
C∗

r (F∞), the reduced group C∗-algebra of the free group on infinitely many gen-
erators, see Lemma 4.1. Consequently, if a discrete group Γ contains a non-cyclic
free subgroup, then Z embeds unitally into C∗

r (Γ), see Proposition 4.2.
We deduce that tensor products of the form A ⊗max C

∗
r (Γ) are singly generated

if A is a separable, unital C∗-algebra satisfying condition (2) from above, and Γ
is a group containing a non-cyclic free subgroup, see Corollary 4.4. For example,
C∗

r (F∞) ⊗ C∗
r (F∞) is singly generated, although this C∗-algebra is not Z-stable,

see Example 4.5.

2. PRELIMINARIES

By a morphism between C∗-algebras we mean a ∗-homomorphism, and by an
ideal of a C∗-algebra we understand a closed, two-sided ideal. If A is a C∗-al-

gebra, then we denote by Ã its minimal unitization. Often, we write Mk for the
C∗-algebra of k-by-k matrices Mk(C).

2.1. Let A be a C∗-algebra, and Asa ⊂ A the subset of self-adjoint elements. We
say that a set S ⊂ Asa generates A, denoted A = C∗(S), if the smallest sub-C∗-
algebra of A containing S is A itself. We denote by gen(A) the smallest number
n ∈ {1, 2, 3, . . . ,∞} such that A contains a generating subset S ⊂ Asa of cardinality
n, and we call gen(A) the generating rank of A.

We stress that for the definition of gen(A), the generators are assumed to be
self-adjoint. Two self-adjoint elements a, b generate the same C∗-algebra as the
(non-self-adjoint) element a + ib. Therefore, a C∗-algebra A is said to be singly
generated if gen(A) ≤ 2.

For more details on the generating rank we refer the reader to Nagisa, [Nag04],
where also the following simple facts are noted for C∗-algebras A and B:

(1) gen(Ã) = gen(A),
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(2) gen(C∗(A,B)) ≤ gen(A) + gen(B), if A,B are sub-C∗-algebras of a common
C∗-algebra, and where C∗(A,B) denotes the sub-C∗-algebra they generate
together,

(3) gen(A⊕B) = max{gen(A), gen(B)} if at least one of the algebras is unital.

Let I � A be an ideal in a C∗-algebra A. It is easy to see that the generat-
ing rank of the quotient A/I is not bigger than the generating rank of A, i.e.,
gen(A/I) ≤ gen(A), and the generating rank of A can be estimated as gen(A) ≤
gen(I) + gen(A/I). The following result gives an estimate for gen(I), and it is
probably well-known to experts; since we could not locate it in the literature, we
include a short proof.

Proposition 2.2. Let A be a C∗-algebra, and I�A an ideal. Then gen(I) ≤ gen(A)+1.

Proof. We may assume gen(A) is finite. So let a1, . . . , ak be a set of self-adjoint
generators for A. Then A and I are separable, and so I contains a strictly positive
element h. It follows that C∗(h) contains a quasi-central approximate unit, see
[AP77, Corollary 3.3] and [Arv77]. It is straightforward to show that I is generated
by the k + 1 elements h, ha1h, . . . , hakh. �

The following result is attributed to Kirchberg in [Nag04].

Theorem 2.3 (Kirchberg). Every separable, unital, properly infinite C∗-algebra is singly
generated.

Proof. We sketch a proof based on the proof of [OZ76, Theorem 9]. Let A be a sep-
arable, unital, properly infinite C∗-algebra. Then there exist isometries s1, s2, . . . ∈
A with pairwise orthogonal ranges (i.e., A contains a unital copy of the Cuntz
algebra O∞).

Let a1, a2, . . . ∈ A be a sequence of (positive) generators for A such that their
spectra satisfy σ(ak) ⊂ [1/2 · 1/4k, 1/4k]. A generator for A is given by:

x :=
∑

k≥1

(skaks
∗
k + 1/2ksk).

As in in the proof of [OZ76, Theorem 9], one can show that σ(x) ⊂ {0} ∪⋃
k≥1[1/2 · 1/4k, 1/4k]. Let B := C∗(x) ⊂ A. Proceeding inductively, one shows

that ak, sk ∈ B. We only sketch this for k = 1. Set p := s1s
∗
1. Let fn be a sequence

of polynomials converging uniformly to 1 on [1/8, 1/4] and to 0 on [0, 1/16]. Then
fn(x) converges to an element y ∈ B of the form y = p + pb(1 − p) for some
b ∈ A. We compute yy∗ = p(1A + b(1 − p)b∗)p. Then for a continuous function
f : R → R with f(0) = 0 and f(t) = 1 for t ≥ 1, we get f(yy∗) = p ∈ B. Then
s1a1s

∗
1 = pxp ∈ B and s1 = 2 · px(1− p) ∈ B, and then also a1 ∈ B. �

2.4. Let X be a locally compact σ-compact Hausdorff space. A C0(X)-algebra is a
C∗-algebra A together with a morphism η : C0(X) → Z(M(A)), from the commu-
tative C∗-algebra C0(X) to the center of the multiplier algebra of A, such that for
any approximate unit (uλ)Λ of C0(X), η(uλ)a → a for any a ∈ A, or equivalently,
the closure of η(C0(X))A is all of A. Thus, if X is compact, then η is necessarily
unital. We will usually suppress reference to the structure map, and simply write
fa or f ·a instead of η(f)a for the product of a function f ∈ C0(X) and an element
a ∈ A.
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Let Y ⊂ X be a closed subset, and U := X \Y its complement (an open subset).
Then C0(U) ·A is an ideal of A, denoted by A(U). The quotient A/A(U) is denoted
by A(Y ).

Given a point x ∈ X , we write A(x) for A({x}), and we call this C∗-algebra
the fiber of A at x. For an element a ∈ A, we denote by a(x) the image of a in
the fiber A(x). For each a ∈ A, we may consider the map ǎ : x 7→ ‖a(x)‖. This
is a real-valued, upper-semicontinuous function on X , vanishing at infinity. The
C0(X)-algebra A is called continuous if ǎ is a continuous function for each a ∈ A.

For more information on C0(X)-algebras we refer the reader to [Kas88, §1] or
the more recent [Dad09, §2].

2.5. The Jiang-Su algebra Z was constructed in [JS99]; it may be regarded as a C∗-
algebraic analog of the hyperfinite II1-factor. It can be obtained as an inductive
limit of prime dimension drop algebras Zp,q := {f : [0, 1] → Mp ⊗ Mq | f(0) ∈
1p ⊗Mq, f(1) ∈ Mp ⊗ 1q}.

For more details, we refer the reader to [Win11], where Z is characterized in an
entirely abstract manner, and to [Rør04] and [RW10], where it is shown that the
generalized dimension drop algebra Z2∞,3∞ := {f : [0, 1] → M2∞ ⊗M3∞ | f(0) ∈
1 ⊗ M3∞ , f(1) ∈ M2∞ ⊗ 1} embeds unitally into Z ; in fact, Z can be written as a
stationary inductive limit of Z2∞,3∞ .

3. RESULTS

Lemma 3.1. Let A be a separable, unital C∗-algebra. Then gen(A⊗Z2∞,3∞) ≤ 5.

Proof. Consider the ideal I := C0(0, 1) ⊗M6∞ in B := A ⊗ Z2∞,3∞ . The quotient
B/I is isomorphic to (A⊗M2∞)⊕(A⊗M3∞). Thus, we have a short exact sequence:

A⊗ C0(0, 1)⊗M6∞
// A⊗Z2∞,3∞

// (A⊗M2∞)⊕ (A⊗M3∞)

It follows from [OZ76] that the tensor product of a unital, separable C∗-alge-
bra with a UHF-algebra is singly generated. In particular, gen(A⊗M2∞), gen(A⊗
M3∞) ≤ 2. Thus, the quotient satisfies gen(B/I) = max{gen(A ⊗ M2∞), gen(A ⊗
M3∞)} ≤ 2, see 2.1.

Note that I is an ideal in the C∗-algebra C := A ⊗ C(S1) ⊗ M2∞ . We have
gen(C) ≤ 2, and then gen(I) ≤ gen(C) + 1 ≤ 3, by Proposition 2.2. Then, the
extension is generated by at most 2 + 3 = 5 self-adjoint elements. �

The following is a Stone-Weierstrass type result. We prove it using the factorial
Stone-Weierstrass conjecture, which states that a sub-C∗-algebra B ⊂ A exhausts
A if it separates the factorial states of A. The factorial Stone-Weierstrass conjec-
ture was proved for separable C∗-algebras independently by Longo, [Lon84], and
Popa, [Pop84].

See 2.4 for a short introduction to C0(X)-algebras.

Lemma 3.2. Let A be a separable, continuous C0(X)-algebra, and B ⊂ A a sub-C∗-al-
gebra such that the following two conditions are satisfied:

(i) For each x ∈ X , B exhausts the fiber A(x),
(ii) B separates the points of X by full elements, i.e., for each distinct pair of points

x0, x1 ∈ X there exists some b ∈ B such that b(x1) is full in B(x1) = A(x1) and
b(x0) = 0.
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Then A = B.
Condition (ii) is for instance satisfied if B contains the image of the structure map

η : C0(X) → Z(M(A)).

Proof. Set Y := Prim(Z(M(A))), and identify Z(M(A)) with C(Y ). Let π : A →
B(H) be a non-degenerate factor representation. Then π extends to a represen-
tation π̃ : M(A) → B(H). It is straightforward to show π(A)′′ = π̃(M(A))′′,
so that π̃ is a factor representation of M(A). For any c ∈ Z(M(A)), we have
c ∈ π(A)′ ∩ π̃(M(A))′′ = C · 1H . Thus, there exists a point y ∈ Y such that
π̃(c) = c(y) · 1H for all c ∈ Z(M(A)). Since η(C0(X)) contains an approximate unit
for A, we have that π̃ ◦ η is non-zero. Thus, there exists a point x ∈ X such that
π̃ ◦ η(f) = f(x) · 1H for all f ∈ C0(X). This means that π̃ ◦ η vanishes on the ideal
A(X \ {x}), so that π factors through the fiber A(x).

Let us show that B ⊂ A separates the factors states of A. So let ϕ1, ϕ2 be two
different, non-degenerate factors states of A. We have shown above that there
are two points x1, x2 ∈ X such that ϕi factors through A(xi), and we denote by
ϕ̄i : A(xi) → C the induced factor state on A(xi), for i = 1, 2. We distinguish two
cases:

Case 1: x1 = x2. In this case, since ϕ1 6= ϕ2, there exists an element a ∈ A such
that ϕ1(a) 6= ϕ2(a). By condition (i), there exists some element b ∈ B such that
b(x1) = a(x1). Note that ϕi(b) = ϕ̄i(b(x1)) = ϕ̄i(a(x1)) = ϕi(a), for i = 1, 2. Thus,
b separates the two states.

Case 2: x1 6= x2. In this case, by condition (ii), there exists an element b ∈ B
such that b(x2) is full in A(x2) and b(x1) = 0. Since ϕ2 6= 0, there exists an element
a ∈ A such that |ϕ2(a)| = |ϕ̄2(a(x2))| ≥ 1.

Since b(x2) is full, there exist finitely many elements gi, hi ∈ A(x2) such that

‖a(x2) −
∑

i cib(x2)di‖ < 1. By condition (i), there exist elements g̃i, h̃i ∈ B such

that g̃i(x2) = gi and h̃i(x2) = hi. Set b′ :=
∑

i c̃ibd̃i. Then |ϕ2(b
′)| = |ϕ̄2(b

′(x2))| >
0, while b′(x1) = 0. This shows that b′ separates the two states.

It follows that B separates the factor states of A, and therefore B = A by the
factorial Stone-Weierstrass conjecture, proved independently by Longo, [Lon84],
and Popa, [Pop84]. �

Lemma 3.3. Let A be a unital C∗-algebra with gen(A) ≤ 3. Then there exist a positive
element x ∈ A⊗ Z2,3 and two positive, full elements y′, z′ ∈ Z2,3 such that A ⊗ Z2,3 is
generated by x and 1⊗ y′, and further y′ and z′ are orthogonal.

Proof. We consider Z2,3 as the C∗-algebra of continuous functions from [0, 1] to M6

with the boundary conditions

f(0) =



Y

Y
Y


 f(1) =

(
Z

QZQ∗

)
,

where Y ∈ M2 and Z ∈ M3 are arbitrary matrices, and Q ∈ M3 is the following
fixed permutation matrix:

Q =




1
1

1


 .
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This means that f(0), f(1) ∈ M6 have the following form:

f(0) =




µ11 µ12

µ21 µ22

µ11 µ12

µ21 µ22

µ11 µ12

µ21 µ22




f(1) =




λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ22 λ33

λ33 λ31 λ32

λ13 λ11 λ12

λ23 λ21 λ22




,

for numbers µi,j , λi,j ∈ C.
Note that Z2,3 is naturally a continuous C([0, 1])-algebra, with fibers Z2,3(0) ∼=

M2, Z2,3(1) ∼= M3, and Z2,3(t) ∼= M6 for points t ∈ (0, 1) ⊂ [0, 1].
Let a, b, c ∈ A be a set of invertible, positive generators for A. Denote by ei,j the

matrix units in M6. To shorten notation, for indices i, j set fi,j := ei,j + ej,i. For
t ∈ [0, 1] we define the following element of A⊗M6:

xt :=a⊗ (e1,1 + (1− t) · e3,3 + e5,5)

+b⊗ (f1,2 + (1− t) · f3,4 + f5,6)

+c⊗ (e2,2 + (1− t) · e4.4 + e6,6)

+1A ⊗ (t · f2,3 + t · f4,5 + δ(t) · f1,3)

where δ : [0, 1] → [0, 1] is a continuous function on [0, 1] that takes the value 0 at
the endpoints 0 and 1, and is strictly positive at each point t ∈ (0, 1), e.g., δ could
be given by δ(t) = 1/4 − (t − 1/2)2. We also define for t ∈ [0, 1] two elements of
M6:

y′t :=e1,1 + (1− t) · e3,3 + e5,5

z′t :=e2,2 + (1− t) · e4,4 + e6,6

It is easy to check that the assignment x : t 7→ xt defines an element x ∈ A⊗Z2.3.
Similarly, we get two elements y′, z′ ∈ Z2.3 defined via t 7→ y′t and t 7→ z′t. In matrix
form, these elements look as follows:

xt :=




a b δ(t)
b c t

δ(t) t (1− t)a (1 − t)b
(1− t)b (1− t)c t

t a b
b c




y′t :=




1

(1− t)

1




z′t :=




1

(1− t)

1




Set y := 1⊗ y′, and let D := C∗(x+1, y) be the sub-C∗-algebra of E := A⊗Z2,3

generated by the two self-adjoint elements x + 1 and y. Since x ≥ 0, we get that
both 1 and x lie in C∗(x+1). It follows that D = C∗(1, x, y), and we will show that
D = E. Note that E has a natural continuous C([0, 1])-algebra structure (induced
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by the one of Z2,3), with fibers E(0) ∼= A⊗M2, E(1) ∼= A⊗M3, and E(t) ∼= A⊗M6

for points t ∈ (0, 1) ⊂ [0, 1].
Let J := E((0, 1))�E be the natural ideal corresponding to the open set (0, 1) ⊂

[0, 1]. Note that J ∼= A⊗C0((0, 1))⊗M6, and J is naturally a continuous C0((0, 1))-
algebra. We will show in two steps that D exhausts the ideal J (i.e., D ∩ J = J)
and the quotient E/J (i.e., D/(D ∩ J) = E/J).

Step 1: We want to apply Lemma 3.2 to the C((0, 1))-algebra J with sub-C∗-
algebra D ∩ J . To verify condition (ii), note that the C∗-algebra generated by y′

contains C0((0, 1)) ⊗ e3,3. Therefore, D ∩ J contains 1A ⊗ C0((0, 1)) ⊗ e3,3, which
separates the points of (0, 1). Since 1A ⊗ e3,3 ∈ E(t) ∼= A⊗M6 is full, condition (ii)
of Lemma 3.2 holds and it remains to verify condition (i).

We need to show that D ∩ J exhausts all fibers of J . Fix some t ∈ (0, 1), and
set Dt := C∗(1, xt, yt) ⊂ A⊗M6. To simplify notation, we write ēi,j for the matrix
units 1A⊗ei,j ∈ A⊗M6. We need to show that Dt is all of A⊗M6. This will follow
if Dt contains all ēi,j , and for this it is enough to show that the off-diagonal matrix
units ēi,i+1 are in Dt, for i = 1, . . . , 5.

The spectrum of yt is {0, 1− t, 1}. Applying functional calculus to yt we obtain
that the following three elements lie in Dt:

u := ē1,1 + ē5,5

v := ē3,3

w := 1− v − u = ē2,2 + ē4,4 + ē6,6

Then, we proceed as follows:

1. ē1,3 = δ(t)−1uxtv ∈ Dt and so ē1,1, ē5,5 ∈ Dt.

2. g := b ⊗ e1,2 = ē1,1xtw ∈ Dt. It follows b ⊗ e1,1 = (gg∗)1/2 ∈ Dt, cf. [OZ76].
Then b−1 ⊗ e1,1 ∈ C∗(b ⊗ e1,1) ⊂ Dt and so ē1,2 = (b−1 ⊗ e1,1) · g ∈ Dt and
ē2,2 ∈ Dt.

3. b ⊗ e3,4 = (1 − t)−1ē3,3xt(w − ē2,2) ∈ Dt. Arguing as above, it follows that
ē3,4 ∈ Dt, and then ē4,4, ē6,6 ∈ Dt.

4. ē2,3 = t−1ē2,2xtē3,3 ∈ Dt.
5. ē4,5 = t−1ē4,4xtē5,5 ∈ Dt.
6. b⊗ e5,6 = ē5,5xtē6,6 ∈ Dt and so ē5,6 ∈ Dt.

This shows that D ∩ J exhausts the fibers of J . We may apply Lemma 3.2 and
deduce D ∩ J = J , which finishes step 1.

Step 2: We want to show that D/J exhausts E/J = E({0, 1}) ∼= A⊗ (M2⊕M3).

Let us denote the matrix units in M2 by e
(0)
i,j , i = 1, 2, and the matrix units in

M3 by e
(1)
i,j , i = 1, 2, 3. To simplify notation, we write ē

(k)
i,j for the matrix units

1A ⊗ e
(k)
i,j ∈ A⊗ (M2 ⊕M3). Let us denote the image of x and y in D/J by v and w:

v = a⊗ (e
(0)
1,1 + e

(1)
1,1) + b⊗ (e

(0)
1,2 + e

(0)
2,1 + e

(1)
1,2 + e

(1)
2,1) + c⊗ (e

(0)
2,2 + e

(1)
2,2) + ē

(1)
2,3 + ē

(1)
3,2

=

(
a b
b c

)
⊕



a b
b c 1

1




w = ē
(0)
1,1 + ē

(1)
1,1 =

(
1 0
0 0

)
⊕



1

0
0


 .
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As in step 1, it is enough to show that D/J contains the off-diagonal matrix units

ē
(0)
1,2, ē

(1)
1,2 and ē

(1)
2,3. We argue as follows:

1. g := wv(1−w) = b⊗ (e
(0)
1,2+ e

(1)
1,2) ∈ D/J . As in step 1, it follows that b⊗ (e

(0)
1,1+

e
(1)
1,1) = (gg∗)1/2 ∈ D/J . Then b−1 ⊗ (e

(0)
1,1 + e

(1)
1,1) ∈ D/J , and so ē

(0)
1,2 + ē

(1)
1,2 =

(b−1 ⊗ (e
(0)
1,1 + e

(1)
1,1)) · g ∈ D/J . It follows that ē

(0)
2,2 + ē

(1)
2,2 ∈ D/J .

2. ē
(1)
3,3 = 1− w − (ē

(0)
2,2 + ē

(1)
2,2) ∈ D/J .

3. ē
(1)
2,3 = vē

(1)
3,3 ∈ D/J , and so ē

(1)
2,2 ∈ D/J .

4. b⊗ e
(1)
1,2 = wvē

(1)
2,2 ∈ D/J . Again, this implies ē

(1)
1,2 ∈ D/J and so ē

(1)
1,1 ∈ D/J .

5. ē
(0)
1,1 = w − ē

(1)
1,1 ∈ D/J .

6. ē
(0)
2,2 = 1− w − ē

(1)
2,2 − ē

(1)
3,3 ∈ D/J .

7. b⊗ e
(0)
1,2 = ē

(0)
1,1vē

(0)
2,2 ∈ D/J . Again, this implies ē

(0)
1,2 ∈ D/J .

This finishes step 2.
We have seen that A ⊗ Z2,3 is generated by x + 1 and y. Moreover, z′ is full,

positive and orthogonal to y′. �

Lemma 3.4. Let A be a separable, unital C∗-algebra. Then there exist a positive element
x ∈ A⊗ Z2∞,3∞ and two positive, full elements y′, z′ ∈ Z2∞,3∞ such that A⊗ Z2∞,3∞

is generated by x and y := 1⊗ y′, and further y′ and z′ are orthogonal.

Proof. Let B := A⊗Z2∞,3∞ . Note that Z2∞,3∞ ⊗Z2,3 is naturally a C([0, 1]× [0, 1])-
algebra. Then, the quotient corresponding to the diagonal {(t, t) | t ∈ [0, 1]} ⊂
[0, 1]× [0, 1] is isomorphic to Z2∞,3∞ , and we denote the resulting surjective mor-
phism by π : Z2∞,3∞ ⊗Z2,3 → Z2∞,3∞ . We proceed in two steps.

Step 1: We show that gen(B) ≤ k + 1 implies gen(B) ≤ k for k ≥ 2. So assume
B is generated by the self-adjoint, invertible elements a1, . . . , ak+1. The sub-C∗-al-
gebra C := C∗(ak−1, ak, ak+1) ⊂ B is unital and satisfies gen(C) ≤ 3. Consider the
C∗-algebra B ⊗ Z2,3. By Lemma 3.3, the sub-C∗-algebra C ⊗ Z2,3 is generated by
two self-adjoint elements, say b, c.

One readily checks that B ⊗ Z2,3 is generated by the k self-adjoint elements
a1 ⊗ 1, . . . , ak−2 ⊗ 1, b, c. Since B = A ⊗ Z2∞,3∞ is isomorphic to a quotient of
B ⊗Z2,3 = A⊗Z2∞,3∞ ⊗Z2,3, we obtain gen(B) ≤ gen(B ⊗Z2,3) ≤ k.

Step 2: By Lemma 3.1, we have gen(B) ≤ 5. Applying Step 1 several times, we
obtain gen(B) ≤ 3.

It follows from Lemma 3.3 that there exists a positive element x̃ ∈ B ⊗Z2,3 and
two positive, full elements ỹ′, z̃′ ∈ Z2,3 such that B ⊗ Z2,3 is generated by x̃ and
1⊗ ỹ′, and further ỹ′ and z̃′ are orthogonal.

Consider the surjective morphism id⊗π : A ⊗ Z2∞,3∞ ⊗ Z2,3 → A ⊗ Z2∞,3∞ .
One checks that the elements x := (id⊗π)(x̃) ∈ A⊗Z2∞,3∞ , and y′ := π(ỹ′), z′ :=
π(z̃′) ∈ Z2∞,3∞ have the desired properties. �

Theorem 3.5. Let A,B be two separable, unital C∗-algebras. Assume the following:

(1) A contains a sequence a1, a2, . . . of full, positive elements that are pairwise or-
thogonal,

(2) B admits a unital embedding of the Jiang-Su algebra Z .

Then A ⊗max B is singly generated. Every other tensor product A ⊗λ B is a quotient of
A⊗max B, and therefore is also singly generated.
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Proof. There exists a unital embedding of Z2∞,3∞ in Z , so we may assume that
there is a unital embedding of Z2∞,3∞ in B. We may assume that the elements
a1, a2, . . . ∈ A are contractive.

Choose a sequence b1, b2, . . . ∈ B of contractive, positive elements that is dense
in the set of all contractive, positive elements of B.

Consider the sub-C∗-algebra A⊗Z2∞,3∞ ⊂ A⊗maxB. By Lemma 3.4, there exist
a positive element x ∈ A⊗Z2∞,3∞ and two full, positive elements y′, z′ ∈ Z2∞,3∞

such that A ⊗ Z2∞,3∞ is generated by x and y := 1 ⊗ y′, and further y′ and z′ are
orthogonal.

Define the following two elements of A⊗max B:

v := x, w := 1⊗ y′ −
∑

k≥1

1/2k · ak ⊗ (z′bkz
′).

Let D := C∗(v, w) be the sub-C∗-algebra of A⊗max B generated by v and w. We
claim that D = A⊗B.

Step 1: We show A ⊗ Z2∞,3∞ ⊂ D. Note that the two elements 1 ⊗ y′ and∑
k≥1 1/2

k · ak ⊗ (z′bkz′) are positive and orthogonal. It follows that 1 ⊗ y′ is the

positive part of w, and therefore 1⊗y′ ∈ D. Therefore, C∗(v, 1⊗y′) = A⊗Z2∞,3∞ ⊂
D.

Step 2: We show 1 ⊗ B ⊂ D. We have g :=
∑

k≥1 1/2
k · ak ⊗ (z′bkz′) ∈ D. It

follows from Step 1 that ak⊗1 ∈ D, and so a2k⊗ (z′bkz′) = 2k · (ak ⊗1)g ∈ D. Since
a2k is full, there exist finitely many elements ci, di ∈ A such that 1A =

∑
i cia

2
kdi. By

Step 1, we have ci⊗1, di⊗1 ∈ D. Then 1⊗ (z′bkz′) =
∑

i(ci⊗1)(a2k⊗ (z′bkz′))(di⊗
1) ∈ D, for each k.

Let b ∈ B be a contractive, positive element. Then b = limj bk(j) for certain in-
dices k(j). Then 1⊗ (z′bz′) = limj 1⊗ (z′bk(j)z′) ∈ D. It follows that the hereditary

sub-C∗-algebra 1 ⊗ z′Bz′ is contained in D. Since z′ is full in Z2∞,3∞ , there exist
finitely many elements ci, di ∈ Z2∞,3∞ such that 1B =

∑
i ciz

′di. We have seen
that 1 ⊗ z′bz′ ∈ D for any b ∈ B. Then 1 ⊗ bz′ =

∑
i(1 ⊗ ci)(1 ⊗ z′dibz′) ∈ D for

any b ∈ B. Similarly 1⊗ b =
∑

i(1 ⊗ bciz
′)(1 ⊗ di) ∈ D for any b ∈ B, as desired.

It follows from Steps 1 and 2 that for each a ∈ A and b ∈ B the simple tensor
a⊗ b is contained in D. The conclusion follows since A⊗max B is the closure of the
linear span of simple tensors. �

Corollary 3.6. Let A,B be two separable, unital C∗-algebras that both admit a unital
embedding of the Jiang-Su algebra Z . Then A⊗max B is singly generated.

Proof. It is easy to verify that condition (i) of Theorem 3.5 is fulfilled if A admits a
unital embedding of Z . �

Theorem 3.7. Let A be a unital, separable C∗-algebra. Then A⊗Z is singly generated.

Proof. Note that A ⊗ Z ∼= (A ⊗ Z) ⊗ Z . It is clear that both A ⊗ Z and Z admit
unital embeddings of Z . Then apply the above Corollary 3.6. �

Corollary 3.8. Let A be a separable C∗-algebra. Then gen(A⊗Z) ≤ 3.

Proof. Let Ã be the minimal unitization of A. It follows from Theorem 3.7 that

gen(Ã ⊗ Z) ≤ 2. Since A ⊗ Z is an ideal in Ã ⊗ Z , we get gen(A ⊗ Z) ≤ gen(Ã ⊗
Z) + 1 ≤ 3 from Proposition 2.2, as desired. �
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Our results allow us to give new proofs for results about single generation of cer-
tain von Neumann algebras.

Proposition 3.9. Assume M,N are separably-acting von Neumann algebras that both
admit a unital embedding of the hyperfinite II1-factor. Then M⊗̄N is singly generated.

Proof. Consider the GNS-representation π : Z → B(H) of the Jiang-Su algebra
with respect to its tracial state. The weak closure, π(Z)′′, is isomorphic to the
hyperfinite II1-factor R. Thus, there exists a weakly dense, unital copy of Z inside
R.

Choose weakly dense, separable, unital C∗-algebras A0 ⊂ M , and similarly
B0 ⊂ N . Consider Z ⊂ R ⊂ M and set A := C∗(A0,Z) ⊂ M . Similarly set
B := C∗(B0,Z) ⊂ N .

Then A and B are separable, unital C∗-algebras that both contain unital copies
of the Jiang-Su algebra. By Corollary 3.6, A⊗max B is singly generated.

Consider the sub-C∗-algebra C := C∗(A⊗̄1, 1⊗̄B) ⊂ M⊗̄N . Then C is a quo-
tient of A ⊗max B, and therefore singly generated. Since C is weakly dense in
M⊗̄N , we obtain that M⊗̄N is singly generated, as desired. �

Remark 3.10. We note that a von Neumann algebra M admits a unital embedding
of R if and only if M has no (non-zero) finite-dimensional representations.

The analogous statement for C∗-algebras would be that a C∗-algebra A admits
a unital embedding of Z if and only if A has no (non-zero) finite-dimensional
representations. It was shown by Elliott and Rørdam, [ER06], that this is true for
C∗-algebras of real rank zero. However, in [DHTW09] a simple, separable, unital,
non-elementary AH-algebra is constructed into which Z does not embed.

As a particular case of Proposition 3.9 we obtain the following result of Ge and
Popa.

Corollary 3.11 (Ge, Popa, [GP98, Theorem 6.2]). Assume M,N are separably-acting
II1-factors. Then M⊗̄N is singly generated.

4. APPLICATIONS

In this section we show that the Jiang-Su algebra Z embeds unitally into the re-
duced group C∗-algebras, C∗

r (Γ), of groups Γ that contain a non-cyclic free sub-
group, see Proposition 4.2. We only consider discrete groups, and we let Fk denote
the free group with k generators (k ∈ {2, 3 . . . ,∞}).

We can apply Theorem 3.5 to show that certain tensor products of the form
A ⊗max C∗

r (Γ) are singly generated, see Corollary 4.4. In particular, C∗
r (F∞) ⊗

C∗
r (F∞) is singly generated, although it is not Z-stable, see Example 4.5.

4.1. It was shown by Robert, [Rob10], that the Jiang-Su algebra Z embeds unitally
into C∗

r (F∞). A key observation is that C∗
r (F∞) has strict comparison of positive

elements. This follows from the work of Dykema and Rørdam on reduced free
product C∗-algebras, see [DR98] and [DR00].

Dykema and Rørdam study the comparison of projections, but this can be gen-
eralized to obtain results about the comparison of positive elements, as noted by
Robert, [Rob10]. In particular, [DR98, Lemma 5.3] and [DR00, Theorem 2.1] can be
generalized, and it follows that C∗

r (F∞) has strict comparison of positive elements.
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Proposition 4.2. If Γ is a discrete group that contains F∞ as a subgroup, then Z embeds
unitally into C∗

r (Γ).

Proof. In general, for any subgroup Γ1 of a discrete group Γ, we have a unital
embedding C∗

r (Γ1) ⊂ C∗
r (Γ). Hence, if F∞ is a subgroup of Γ, then C∗

r (Γ) contains
a unital copy of C∗

r (F∞), which in turn contains a unital copy of Z . �

Remark 4.3. Every non-cyclic free group Fk (k ≥ 2) contains F∞ as a subgroup. In
general, by the Nielsen-Schreier theorem, every subgroup of a free group is again
free. Thus, if a, b are free elements, then the the elements akbk generate a subgroup
Γ = 〈akbk, k ≥ 1〉 that is free, and since none of the elements akbk is contained in
the subgroup generated by the other elements, we have Γ ∼= F∞.

Thus, when we ask which discrete groups contain F∞ as a subgroup, we are
equivalently asking which groups Γ contain a non-cyclic free subgroup. It is a
necessary condition that Γ is non-amenable. The converse implication is known
as the von Neumann conjecture, but this was disproved in 1980 by Ol’shanskij.

A counterexample are the so-called Tarski monster groups, in which every non-
trivial proper subgroup is cyclic of some fixed prime order. Clearly, such a group
cannot contain F∞ as a subgroup, and it is Ol’shanskij’s contribution to show that
Tarski monster groups exist and are non-amenable.

On the other hand, every group with the weak Powers property, as defined in
[BN88], has a non-cyclic free subgroup. A proof can be found in [dlH07], which
also lists classes of groups that have the (weak) Powers property. We just mention
that all free products Γ1 ∗Γ2 with |Γ1| ≥ 2, |Γ2| ≥ 3 have the Powers property, and
therefore Proposition 4.2 applies.

We may derive the following from Theorem 3.5 and Proposition 4.2:

Corollary 4.4. Let A be a separable, unital C∗-algebra that contains a countable sequence
of pairwise orthogonal, full elements (e.g., A is simple and nonelementary), and let Γ be a
group that contains a non-cyclic free subgroup. Then A⊗max C

∗
r (Γ) is singly generated.

Example 4.5. Let Γ1,Γ2 be two groups that contain non-cyclic free subgroups.
Then C∗

r (Γ1 × Γ2) ∼= C∗
r (Γ1) ⊗max C∗

r (Γ2) is singly generated. For example, for
any k, l ∈ {2, 3, . . . ,∞}, the C∗-algebra C∗

r (Fk)⊗max C
∗
r (Fl) is singly generated. In

particular, C∗
r (F∞)⊗max C

∗
r (F∞) is singly generated.

It was pointed out to the authors by S. Wassermann that C∗
r (Fk)⊗C∗

r (Fl) is not
Z-stable, for any k, l ∈ {2, 3, . . . ,∞}. In fact, if C∗

r (Fk)⊗C∗
r (Fl) ∼= A⊗B⊗C, then

one of the three algebras A,B or C is isomorphic to C. This is a generalization of
the fact that C∗

r (Fk) is tensorially prime, and it can be proved similarly.
We note that it is a difficult open problem whether C∗

r (Fk) is singly generated
itself.

Question 4.6. Given a non-amenable (discrete) group Γ. Does C∗
r (Γ) admit a uni-

tal embedding of Z?

For each group Γ, the trivial group-morphism Γ → {1} induces a surjective mor-
phism C∗(Γ) → C. Thus, the Jiang-Su algebra can never unitally embed into a full
group C∗-algebra. If Γ is amenable, then C∗

r (Γ)
∼= C∗(Γ), and consequently there

is no unital embedding of Z into the reduced group C∗-algebra of an amenable
group.
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On the other hand, if Γ contains a non-cyclic free subgroup, then Proposition 4.2
gives a positive answer to Question 4.6. As noted in Remark 4.3, not every non-
amenable group contains a non-cyclic free subgroup. However, it is known that
the reduced group C∗-algebra of a non-amenable group has no finite-dimensional
representations, which is a necessary condition for the Jiang-Su algebra to embed.
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A characterization of semiprojectivity for
commutative C∗-algebras

Adam P. W. Sørensen and Hannes Thiel

Abstract

Given a compact metric space X, we show that the commutative C∗-algebra C(X) is semiprojec-
tive if and only if X is an absolute neighbourhood retract of dimension at most 1. This confirms
a conjecture of Blackadar.

Generalizing to the non-unital setting, we derive a characterization of semiprojectivity for
separable, commutative C∗-algebras. As applications of our results, we prove two theorems
about the structure of semiprojective commutative C∗-algebras. Letting A be a commutative
C∗-algebra, we show firstly: If I is an ideal of A and A/I is finite-dimensional, then A is
semiprojective if and only if I is; and secondly: A is semiprojective if and only if M2(A) is.
This answers two questions about semiprojective C∗-algebras in the commutative case.

1. Introduction

A semiprojective C∗-algebra is the non-commutative analogue of an absolute neighbour-
hood retract (ANR). Indeed if X is a compact metrizable space, then C(X) is semiprojective
in the category of commutative C∗-algebras if and only if X is an ANR. The concept of
semiprojectivity was first introduced by Effros and Kaminker [13]. They wanted to study shape
theory for C∗-algebras. Soon after both non-commutative shape theory and semiprojectivity
were developed to their modern forms by Blackadar [3]. When moving from the world of
topology to the world of C∗-algebras, the Gelfand transform was used to ‘reverse arrows’.
Hence, where a topologist might think of an ANR as a space that behaves well with respect
to embeddings out of it, a C∗-algebraist will think of a semiprojective C∗-algebra as one that
behaves well with respect to surjections onto it.

Shape theory is a machinery that allows to focus on the global properties of a space by
abstracting from its local behaviour. This is done by approximating the space by a system of
nicer spaces, and then studying this approximating system instead of the original space. In
the topological world, this is carried out by writing a space as an inverse limit of ANRs, and
it is a classical result that every compact, metric space can be obtained this way. Dually, one
would expect to be able to write every unital, separable C∗- algebra as an inductive limit of
semiprojective C∗-algebras. It is, however, not yet known if this is always possible. Recently,
some progress was made on this problem by Loring and Shulman [LS10] and the second named
author [Thi11]. One of the main problems is that we do not have a very large supply of
semiprojective C∗-algebras.
Although semiprojectivity was modelled on ANRs, the first large class of C∗-algebras shown

to be semiprojective were the highly non-commutative Cuntz–Krieger algebras; see [3]. Since
then, these results have been extended to cover all Kirchberg algebras satisfying the universal
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coefficient theorem, with finitely generated (f.g.) K-theory and free K1-group (see [25, 26]),
and it is conjectured that in fact all Kirchberg algebras with f.g. K-theory are semiprojective.

Yet, the following natural question remained unanswered.

Question 1.1. Which commutative C∗-algebras are semiprojective?

It has long been known that for a commutative C∗-algebra to be semiprojective, its spectrum
must be an ANR. It has also been known for a long time that this does not suffice. Indeed
both date back to Blackadar’s original paper. As an example, the continuous functions on the
two disc C(D2) is not a semiprojective C∗-algebra (see Propositions 3.2 and 3.3).
An important partial answer was obtained by Loring [18, Proposition 16.2.1, p. 125] who

showed that all one-dimensional CW-complexes give rise to semiprojective C∗-algebras. In
[15], this was extended to the class of one-dimensional non-commutative CW-complexes.

In another direction, Chigogidze and Dranishnikov recently gave a characterization of the
commutative C∗-algebras that are projective: They showed in [11, Theorem 4.3] that C(X)
is projective in the category of unital, separable C∗-algebras with unital ∗-homomorphisms if
and only if X is an absolute retract (AR) and dim(X) � 1. Inspired by their results, we obtain
the following answer to Question 1.1.

Theorem 1.2. Let X be a compact, metric space. The following are equivalent:

(I) C(X) is semiprojective;
(II) X is an ANR and dim(X) � 1.

This confirms a conjecture of Blackadar [5, II.8.3.8, p. 163]. Along the way, we obtain some
results about the structure of ANRs (see Remark 3.4 for the result about ANRs of dimension
at least 2 and Theorem 4.17 for a result about ANRs of dimension 1). We proceed as follows.

In Section 2, we recall the basic concepts of commutative and non-commutative shape theory,
in particular the notion of an ANR and of semiprojectivity.

In Section 3, we show the implication ‘(I) ⇒ (II)’ of our main result Theorem 1.2. The idea
is to use the topological properties of higher dimensional spaces, to show that if C(X) was
semiprojective and X an ANR of dimension at least 2, then we could solve a lifting problem
known to be unsolvable. In particular, we obtain a characterization of ANRs of dimension at
least 2.

In Section 4, we study the structure of compact, one-dimensional ANRs. This section is
purely topological. We characterize when a one-dimensional Peano continuumX is an ANR; see
Proposition 4.12. As it turns out, one criterion is thatX contains a finite subgraph that contains
all homotopy information, a (homotopy) core; see Proposition 4.10. This is also equivalent to
K∗(X) being f.g., which is a recurring property in connection with semiprojectivity.
The main result of this section is Theorem 4.17, which describes the internal structure

of a compact, one-dimensional ANR X. Starting with the homotopy core Y1 ⊂ X, there is
an increasing sequence of subgraphs Y1 ⊂ Y2 ⊂ . . . ⊂ X that exhaust X, and such that Yk+1

is obtained from Yk by simply attaching a line segment at one end to a point in Yk. This
generalizes the classical structure theorem for dendrites (which are precisely the contractible,
compact, one-dimensional ANRs).

In Section 5, we show the implication ‘(II) ⇒ (I)’ of Theorem 1.2. Using the structure
Theorem 4.17 for a one-dimensional ANR X, we obtain subgraphs Yk ⊂ X such that X ∼=
lim←−Yk. The first graph Y1 contains all K-theory information, and the subsequent graphs are
obtained by attaching line segments. Dualizing, we can write C(X) as an inductive limit
C(X) = lim−→C(Yk), with bounding maps induced by retractions.
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The main result of this section is Proposition 5.3. Using the structure of inductive limits, it
shows that if C(Y1) is semiprojective, then C(X) is semiprojective. The idea of solving lifting
problems (that is, proving semiprojectivity) along inductive limits is central in [11], but it has
also been used before, for instance, by Blackadar in order to prove that the Cuntz algebra
O∞ is semiprojective. We wish to point out that Chigogidze and Dranishnikov only needed
semiprojectivity, and not projectivity, in many steps of their proofs.

The proof ‘(II) ⇒ (I)’ follows from Proposition 5.3 if we can find an initial lift from C(Y1).
For this we use Loring’s deep result [18] which says that C(Y ) is semiprojective for every finite
graph Y . We also need Loring’s result to write the algebras C(Yk) as universal C

∗-algebras.
In Section 6, we give applications of our main result Theorem 1.2. First, we analyse the

structure of non-compact, one-dimensional ANRs. We give a characterization of when the one-
point compactification of such spaces is again an ANR; see Proposition 6.1. Using the
characterization of semiprojectivity for unital, separable, commutative C∗-algebras given
in Theorem 1.2, we derive a characterization of semiprojectivity for non-unital, separable,
commutative C∗-algebras; see Proposition 6.2.

In Proposition 6.1, we note that the one-point compactification of the considered spaces is
an ANR if and only if every finite-point compactification is an ANR. This allows us to study
short exact sequences

0 �� I �� A �� F �� 0

with F finite-dimensional. In [18], Loring asked whether semiprojectivity of I implies
semiprojectivity of A under the assumption that F = C. Later Blackadar upgraded this to
a conjecture (under the additional assumption that the extension is split), [4, Conjecture 4.5].
Recently, Enders (private communication) showed that semiprojectivity passes to ideals when
the quotient is finite-dimensional. Blackadars conjecture remains open. (After submission
of this paper, Eilers and Katsura (private communication) have shown by example that
Blackadars’ conjecture is false in general.)

However, in Proposition 6.3 we answer Loring’s questions in the positive under the additional
assumption that, A is commutative but with F being any finite-dimensional C∗-algebra.

We also study the semiprojectivity of C∗-algebras of the form C0(X,Mk). We derive
in Corollary 6.9 that for a separable, commutative C∗-algebra A, the algebra A⊗Mk is
semiprojective if and only if A is semiprojective. Whether or not this holds for general C∗-
algebras is open. The question is related to a conjecture by Blackadar [4, Conjecture 4.4].
(Eilers and Katsura (private communication) also have a counterexample to this conjecture.
They do not, at present, have an example of a non-semiprojective C∗-algebra A with M2(A)
semiprojective.) It is known that semiprojectivity of A implies that A⊗Mk is semiprojective
[3, Corollary 2.28; 18, Theorem 14.2.2, p. 110].

As a final application, we consider the following variant of Question 1.1: When is a
commutative C∗-algebra weakly (semi-)projective? In order to study this problem, we analyse
the structure of one-dimensional approximative absolute (neighbourhood) retracts, abbreviated
AA(N)R. In Proposition 6.15, we show that such spaces are approximated from within by finite
trees (finite graphs).

Let S1 denote the category of separable unital C∗-algebras with unital morphisms. We
can then summarize our results, Theorems 1.2 and 6.16, and the result of Chigogidze and
Dranishnikov [11, Theorem 4.3] as the following theorem.

Theorem 1.3. Let X be a compact, metric space with dim(X) � 1. Then:

(1) C(X) is projective in S1 ⇔ X is an AR;
(2) C(X) is weakly projective in S1 ⇔ X is an AAR;
(3) C(X) is semiprojective in S1 ⇔ X is an ANR;
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(4) C(X) is weakly semiprojective in S1 ⇔ X is an AANR.

Moreover, C(X) projective or semiprojective already implies dim(X) � 1.

2. Preliminaries

By A,B,C,D we mostly denote C∗-algebras, usually assumed to be separable here, and by
a morphism between C∗-algebras we understand a ∗-homomorphism. By an ideal in a C∗-
algebra, we mean a closed, two-sided ideal. If A is a C∗-algebra, then we denote by Ã its
minimal unitalization, and by A+ the forced unitalization. Thus, if A is unital, then Ã = A
and A+ ∼= A⊕ C. We use the symbol � to denote homotopy equivalence.
We write S for the category of separable C∗-algebras with all morphisms, and S1 for the

category of unital separable C∗-algebras with all unital morphisms. We denote by SC the full
subcategory of S consisting of (separable) commutative C∗-algebras. Similarly for SC1.
By a map between two topological spaces, we mean a continuous map. Given ε > 0 and

subsets F,G ⊂ X of a metric space, we say F is ε-contained in G, denoted by F ⊂ε G, if for
every x ∈ F there exists some y ∈ G such that dX(x, y) < ε. Given two maps ϕ,ψ : X → Y
between metric spaces and a subset F ⊂ X, we say ‘ϕ and ψ agree on F ’, denoted ϕ =F ψ,
if ϕ(x) = ψ(x) for all x ∈ F . If moreover ε > 0 is given, then we say ‘ϕ and ψ agree up to
ε’, denoted by ϕ =ε ψ, if dY (ϕ(x), ψ(x)) < ε for all x ∈ X (for normed spaces, this is usually
denoted by ‖ϕ− ψ‖∞ < ε). We say ‘ϕ and ψ agree on F up to ε’, denoted by ϕ =Fε ψ, if
dY (ϕ(x), ψ(x)) < ε for all x ∈ F .

2.1. (Approximative) absolute (neighbourhood) retracts

Recall that a pair of spaces, (Y,Z), is simply a space Y with a closed subset Z. A metric space
X is an absolute retract, abbreviated by AR, if, for all pairs (Y,Z) of metric spaces and maps
f : Z → X, there exists a map g : Z → X such that f = g ◦ ι, where ι : Z ↪→ Y is the inclusion
map. This means that the following diagram can be completed to commute:

Y

g

��
X Z

f
��

��

ι

��

A metric space X is an approximative absolute retract, abbreviated by AAR, if, for all
ε > 0 the diagram can be completed to commute up to ε. A metric space X is an absolute
neighbourhood retract, abbreviated by ANR, if, for all pairs (Y,Z) of metric spaces and maps
f : Z → X, there exists a closed neighbourhood V of Z and a map g : V → X such that f = g ◦ ι
where ι : Z ↪→ V is the inclusion map. This means that the following diagram can be completed
to commute:

Y

V
��

��

g

��
X Z

f
��

��

ι

��
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A metric space X is an approximative absolute neighbourhood retract, abbreviated by
AANR, if, for all ε > 0 the diagram can be completed to commute up to ε. For details about
ARs and ANRs see [6]. We only consider compact AARs and AANRs in this paper, and the
reader is referred to [12] for more details.

We consider shape theory for separable C∗-algebras as developed by Blackadar. See [3] for
more on projective and semiprojective C∗-algebras. For the notion of weakly semiprojective
see [14], for weak projectivity see [19]. Let us briefly recall the main notions and results.

2.2. (Weakly) (semi-) projective C∗-algebras

Let D be a subcategory of the category of C∗-algebras, closed under quotients. (This means the
following: Assume that B is a quotient C∗-algebra of A with quotient morphism π : A→ B. If
A ∈ D, then B ∈ D and π is a D-morphism.) A D-morphism ϕ : A→ B is called projective in
D if, for any C∗-algebra C in D and D-morphism σ : B → C/J to some quotient, there exists a
D-morphism σ̄ : A→ C such that π ◦ σ̄ = σ ◦ ϕ, where π : C → C/J is the quotient morphism.
This means that the following diagram can be completed to commute:

C

π

��
A ϕ

��

σ̄

��

B σ
�� C/J

A D-morphism is called weakly projective if for all finite subsets F of A and all ε > 0” the
diagram can be completed to commute up to ε on F . A C∗-algebra A is called (weakly)
projective in D if the identity morphism idA : A→ A is (weakly) projective.

A D-morphism ϕ : A→ B is called semiprojective in D if, for any C∗-algebra C in D and
increasing sequence of ideals J1 � J2 � . . .� C and D-morphism σ : B → C/

⋃
k Jk, there exists

an index k and a D-morphism σ̄ : A→ C/Jk such that πk ◦ σ̄ = σ ◦ ϕ, where πk : C/Jk →
C/
⋃
k Jk is the quotient morphism. This means that the following diagram can be completed

to commute:

C

��
C/Jk

π

��
A ϕ

��

ψ

��

B σ
�� C/
⋃
k Jk

A D-morphism is called weakly semiprojective if for all finite subsets F of A and all ε > 0”
the diagram can be completed to commute up to ε on F . A C∗-algebra A is called (weakly)
semiprojective in D if the identity morphism idA : A→ A is (weakly) semiprojective.

It is well known that if A is separable, then A is semiprojective in the category of all C∗-
algebras if and only if it is in S. If D is the category S, then one drops the reference to D and
simply speaks of (weakly) (semi-)projective C∗-algebras.

A projective C∗-algebra cannot have a unit. For a (separable) C∗-algebra A we get from [3,
Proposition 2.5] (see also [18, Theorem 10.1.9, p. 75]) that the following are equivalent:

(1) A is projective;
(2) Ã is projective in S1.
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The situation for semiprojectivity is even easier. A unital C∗-algebra is semiprojective if
and only if it is semiprojective in S1. Further, for a separable C∗-algebra A we get from [3,
Corollary 2.16] (see also [18, Theorem 14.1.7, p. 108]) that the following are equivalent:

(1) A is semiprojective;
(2) Ã is semiprojective;
(3) Ã is semiprojective in S1.

2.3. Connections between (approximative) absolute (neighbourhood) retracts and ( weakly)
(semi-) projective C∗-algebras

In general, for a C∗-algebra it is easier to be (weakly) (semi-)projective in a smaller full
subcategory, since there are fewer quotients to map into. In particular, if a commutative C∗-
algebra is (weakly) (semi-)projective, then it will be (weakly) (semi-)projective with respect
to SC. If one compares the definitions carefully, then one gets the following equivalences for a
compact, metric space X (see [3, Proposition 2.11]):

(1) C(X) is projective in SC1 ⇔ X is an AR;
(2) C(X) is weakly projective in SC1 ⇔ X is an AAR;
(3) C(X) is semiprojective in SC1 ⇔ X is an ANR;
(4) C(X) is weakly semiprojective in SC1 ⇔ X is an AANR.

Thus, the notion of (weak) (semi-)projectively is a translation of the concept of an
(approximate) absolute (neighbourhood) retract to the world of non-commutative topology.
Let us clearly state a point which is used in the proof of the main theorem: If C(X) is (weakly)
(semi-)projective in SC1, then X is an (approximate) absolute (neighbourhood) retract. As we
will see, the converse is not true in general. We need an assumption on the dimension of X.

2.4. Covering dimension

By dim(X) we denote the covering dimension of a space X. By definition, dim(X) � n if every
finite open cover U of X can be refined by a finite open cover V of X such that ord(V) � n+ 1.
Here ord(V) is the largest number k such that there exists some point x ∈ X that is contained
in k different elements of V.

To an open cover V one can naturally assign an abstract simplicial complex N (V), called
the nerve of the covering. It is defined as the family of finite subsets V ′ ⊂ V with non-empty
intersection, in symbols:

N (V) :=
{
V ′ ⊂ V finite :

⋂
V ′ �= ∅

}
.

Remark. An abstract simplicial complex over a set S is a family C of finite subsets of
S such that X ⊂ Y ∈ C implies X ∈ C. An element X ∈ C with n+ 1 elements is called an
n-simplex (of the abstract simplicial complex).

A n-simplex of N (V) corresponds to a choice of n different elements in the cover that have
non-empty intersection. Given an abstract simplicial complex C, one can naturally associate to
it a space |C|, called the geometric realization of C. The space |C| is a polyhedron, in particular
it is a CW-complex.

Note that ord(V) � n+ 1 if and only if the nerve N (V) of the covering V is an abstract
simplicial set of dimension at most n (the dimension of an abstract simplicial set is the
largest integer k such that it contains a k-simplex), or equivalently the geometric realization
of |N (V)| is a polyhedron of covering dimension at most n. Note that the covering dimension
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of a polyhedron, or more generally a CW complex, is the highest dimension of a cell that was
attached when building the complex.

Let U be a finite open covering of a space X, and {eU : U ∈ U} be a partition of unity that
is subordinate to U . This naturally defines a map α : X → |N (U)| sending a point x ∈ X to
the (unique) point α(x) ∈ |N (U)| that has ‘coordinates’ eU (x).

By locdim(X) we denote the local covering dimension of a space X. By definition
locdim(X) � n if every point x ∈ X has a closed neighbourhood D such that dim(D) � n.
If X is paracompact (for example, if it is compact, or locally compact and σ-compact), then
locdim(X) = dim(X).

See [24] for more details on nerves, polyhedra and the (local) covering dimension of a space.
A particularly nice class of one-dimensional spaces are the so-called dendrites. Before we

look at them, let us recall some notions from continuum theory. A good reference is Nadler’s
book [23].

Remark. We say a space is one-dimensional if dim(X) � 1. So, although it sounds weird,
a one-dimensional space can also be zero-dimensional. It would probably be more precise to
speak of ‘at most one-dimensional’ space, however, the usage of the term ‘one-dimensional
space’ is well established.

A continuum is a compact, connected, metrizable space, and a generalized continuum is
a locally compact, connected, metrizable space. A Peano continuum is a locally connected
continuum, and a generalized Peano continuum is a locally connected generalized continuum.
By a finite graph we mean a graph with finitely many vertices and edges, or equivalently a
compact, one-dimensional CW-complex. By a finite tree we mean a contractible finite graph.

2.5. Dendrites

A dendrite is a Peano continuum that does not contain a simple closed curve (that is, there is
no embedding of the circle S1 into it). There are many other characterizations of a dendrite.
We collect a few and we shall use them without further mentioning.

Let X be a Peano continuum. Then X is a dendrite if and only if one (or equivalently all)
of the following conditions holds:

(1) X is one-dimensional and contractible;
(2) X is tree-like (a (compact, metric) space X is tree-like, if, for every ε > 0, there exists

a finite tree T and a map f : X → T onto T such that diam(f−1(y)) < ε for all y ∈ T );
(3) X is dendritic (a space X is called dendritic, if any two points of X can be separated

by the omission of a third point);
(4) X is hereditarily unicoherent. (A continuum X is called unicoherent if, for each two

subcontinua Y1, Y2 ⊂ X with X = Y1 ∪ Y2 the intersection Y1 ∩ Y2 is a continuum (that
is, connected). A continuum is called hereditarily unicoherent if all its subcontinua are
unicoherent.)

For more information about dendrites , see [9, 16; 23, Chapter 10].

3. One implication of the main theorem: necessity

Proposition 3.1. Let C(X) be a unital, separable C∗-algebra that is semiprojective. Then
X is a compact ANR with dim(X) � 1.
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Proof. Assume that such a C(X) is given. Then X is a compact, metric space. As noted
in Subsection 2.3, semiprojectivity (in S1) implies semiprojectivity in the full subcategory SC1
and this means exactly that X is a (compact) ANR. We are left with showing dim(X) � 1.

Assume otherwise, that is, assume dim(X) � 2. Since X is paracompact, we have
locdim(X) = dim(X) � 2. This means that there exists x0 ∈ X such that dim(D) � 2 for each
closed neighbourhoodD of x0. For each k considerDk := {y ∈ X : d(y, x0) � 1/k}. This defines
a decreasing sequence of closed neighbourhoods around x0 with dim(Dk) � 2.
If X,Y are spaces, then an injective map i : X → Y is called a topological embedding if the

original topology of X is the same as the initial topology induced by the map i. We usually
consider a topologically embedded space as a subset with the subset topology.

It was noted in [11, Proposition 3.1] that a Peano continuum of dimension at least 2 admits
a topological embedding of S1. Indeed, a Peano continuum that contains no simple arc (that
is, in which S1 cannot be embedded) is a dendrite, and therefore at most one-dimensional. It
follows that there are embeddings ϕk : S

1 ↪→ Dk ⊂ X. Putting these together, we get a map
(not necessarily an embedding) ϕ : Y → X where Y is the space of ‘smaller and smaller circles’:

Y = {(0, 0)} ∪
⋃

k�1

S((1/2k, 0), 1/(4 · 2k)) ⊂ R2,

where S(x, r) is the circle of radius r around the point x. We define ϕ as ϕk on the circle
S((1/k, 0), 1/3k). The map ϕ : Y → X induces a morphism ϕ∗ : C(X)→ C(Y ).

Next we construct a C∗-algebra B with a nested sequence of ideals Jk �B, such that C(Y ) =
B/
⋃
k Jk and ϕ∗ : C(X)→ C(Y ) cannot be lifted to some B/Jk. Let T be the Toeplitz algebra

and T1, T2, . . . be a sequence of copies of the Toeplitz algebra, and set

B :=

(⊕

k∈N
Tk
)+

=

⎧
⎨
⎩(b1, b2, . . .) ∈

∏

k�1

T such that (bk)k converges to a scalar multiple of 1T

⎫
⎬
⎭ .

The algebras Tk come with ideals Kk � Tk (each Kk a copy of the algebra of compact
operators K). Define ideals Jk �B as follows:

Jk := K1 ⊕ . . .⊕Kk ⊕ 0⊕ 0⊕ . . .
= {(b1, . . . , bk, 0, 0, . . .) ∈ B : bi ∈ Ki � Ti}.

Note

B/Jk = C(S1)⊕ . . .(k) ⊕ C(S1)⊕

⎛
⎝ ⊕

l�k+1

Tl

⎞
⎠

+

(there are k summands of C(S1)). Also Jk ⊂ Jk+1 and J :=
⋃
k Jk =

⊕
k∈N Kk and B/J =

(
⊕

l�1 C(S
1))+ ∼= C(Y ).

The semiprojectivity of C(X) gives a lift of ϕ∗ : C(X)→ C(Y ) = B/J to some B/Jk.
Consider the projection ρk+1 : B/Jk → Tk+1 onto the (k+1)th coordinate, and similarly
�k+1 : B/J → C(S1). The composition C(X)→ C(Y ) ∼= B/J → C(S1) is ϕ∗

k+1, the morphism
induced by the inclusion ϕk+1 : S

1 ↪→ X. Note that ϕ∗
k+1 is surjective since ϕk+1 is an inclusion.
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The situation is viewed in the following commutative diagram:

B/Jk

��

ρk+1 �� Tk+1

��
C(X)

ϕ∗
k+1

		
ϕ∗

��



�����������������
C(Y )

∼= �� B/J
	k+1 �� C(S1)

The unitary idS1 ∈ C(S1) lifts under ϕ∗
k+1 to a normal element in C(X), but it does not lift

to a normal element in Tk+1. This is a contradiction, and our assumption dim(X) � 2 must
be wrong.

It is well known that C(D2), the C∗-algebra of continuous functions on the two-dimensional
disc D2 = {(x, y) ∈ R2 : x2 + y2 � 1}, is not weakly semiprojective. For completeness we
include the argument that is essentially taken from Loring [18, 17.1, p. 131]; see also [17].

Proposition 3.2. The C∗-algebra C(D2) is not weakly semiprojective.

Proof. The ∗-homomorphisms from C(D2) to a unital C∗-algebra A are in natural
one-to-one correspondence with normal contractions in A. Thus, statements about (weak)
(semi-)projectivity of C(D2) correspond to statements about the (approximate) liftability of
normal elements. For example, that C(D2) is projective would correspond to the (wrong) state-
ment that normal elements lift from quotient C∗-algebras. To disprove weak semiprojectivity
of C(D2), one uses a construction of operators that are approximately normal but do not lift
in the required way due to an index obstruction.

More precisely, define weighted shift operators tn on the separable Hilbert space l2 (with
basis ξ1, ξ2, . . .) as follows:

tn(ξk) =

{
((r + 1)/2n−1)ξk+1 if k = r2n+1 + s, 0 � s < 2n+1,

ξk+1 if k � 4n.

Each tn is a finite-rank perturbation of the unilateral shift. Therefore, the tn lie in the Toeplitz
algebra T and have index −1. The construction of tn is made so that ‖t∗ntn − tnt∗n‖ = 1/2n−1.

Consider the C∗-algebra B =
∏

N T /
⊕

N T . The sequence (t1, t2, . . .) defines an element in∏
N T . Let x = [(t1, t2, . . .)] ∈ B be the equivalence class in B. Then x is a normal element

of B, and we let ϕ : C(D2)→ B be the corresponding morphism. We have the following
lifting problem:

∏
k�N Tk

π

��
C(D2)

ϕ ��

ϕ̄
��

∏
N T /

⊕
N T

Assume that C(D2) is weakly semiprojective. Then the lifting problem can be solved, and
ϕ̄ defines a normal element y = (yN , yN+1, . . .) in

∏
k�N Tk. But the index of each yl is zero,

while the index of each tl is −1, so that the norm-distance between yl and tl is at least 1.
Therefore, the distance of π(y) and x is at least one, which is a contradiction. Thus, C(D2) is
not weakly semiprojective.

Remark 3.3 (Spaces containing a two-dimensional disc). We have seen above that C(D2) is
not weakly semiprojective. Even more is true: Whenever a (compact, metric) space X contains
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a two-dimensional disc, then C(X) is not weakly semiprojective. This was noted by Loring
(private communication). For completeness we include the following argument.

Let D2 ⊂ X be a two-dimensional disc with inclusion map i : D2 → X. Since D2 is an AR,
there exists a retraction r : X → D, that is, r ◦ i = id: D2 → D2. Passing to C∗-algebras, we get
induced momorphisms i∗ : C(X)→ C(D2), r∗ : C(D2)→ C(X) such that i∗ ◦ r∗ is the identity
on C(D2). Assume that C(X) is weakly semiprojective. Then any lifting problem for C(D2)
could be solved as follows: Using the weak semiprojectivity of C(X), the morphism ϕ ◦ i∗
can be lifted. Then σ ◦ r∗ is a lift for ϕ = ϕ ◦ i∗ ◦ r∗. The situation is viewed in the following
commutative diagram:

B/JN

π

��
C(D2)

r∗
�� C(X)

i∗
��

σ

��

C(D2) ϕ
�� B/

⋃
n Jn

This gives a contradiction, as we have shown above that C(D2) is not weakly semiprojective.
However, that a space does not contain a two-dimensional disc is no guarantee that it has

dimension at most 1. These kind of questions are studied in continuum theory, and Bing [1]
gave examples of spaces of arbitrarily high dimension that are hereditarily indecomposable; in
particular they do not contain an arc or a copy of D2.

Remark. A continuum (that is, compact, connected, metric space) is called decomposable
if it can be written as the union of two proper subcontinua. Note that the union is not assumed
to be disjoint. For example, the interval [0, 1] is decomposable as it can be written as the union
of [0, 12 ] and [12 , 1]. A continuum is called hereditarily indecomposable if none of its subcontinua
is decomposable. See [23] for further information.

These pathologies cannot occur if we restrict to ‘nicer’ spaces. For example, if a CW-complex
does not contain a two-dimensional disc, then it has dimension at most 1. What about ANRs?
Bing and Borsuk [2] gave an example of a three-dimensional AR that does not contain a copy
of D2. The question for four-dimensional ARs is still open, that is, it is unknown whether there
exist high-dimensional ARs (or just ANRs) that do not contain a copy of D2.

The point we want to make clear is the following: To prove that an ANR is one-dimensional,
it is not enough to prove that it does not contain a copy of D2.

Remark 3.4 (Spaces contained in ANRs of dimension at least 2). Although an ANR with
dim(X) � 2 might not contain a disc, one can show that it must contain (a copy of) one of the
following three spaces (see Figure 1):

Space 1 The space Y1 of distinct ‘smaller and smaller circles’ as considered in the proof of
Proposition 3.1, that is, Y1 = {(0, 0)} ∪⋃k�1 S((1/2

k, 0), 1/(4 · 2k)) ⊂ R2.
Space 2 The Hawaiian earrings, that is,

Y2 =
⋃
k�1 S((1/2

k, 0), 1/2k) ⊂ R2.
Space 3 A variant of the Hawaiian earrings, where the circles do not just intersect in one

point, but have a segment in common. It is homeomorphic to:
Y3 = {(x, x), (x,−x) : x ∈ [0, 1]} ∪⋃k�1{1/k} × [−1/k, 1/k] ⊂ R2.

To prove this, one uses the same idea as in the proof of Proposition 3.1: If dim(X) � 2, then
there exists a point x0 where the local dimension is at least 2. Then one can embed into X a
sequence of circles that get smaller and smaller and converge to x0. Note that the circles may
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Figure 1. Spaces contained in high-dimensional ANRs. (a) Space Y1, (b) Space Y2, (c)
Space Y3.

intersect or overlap. By passing to subspaces, we can get rid of ‘unnecessary’ intersections and
overlappings, and finally there are only three qualitatively different ways a bunch of ‘smaller
and smaller’ can look like. We skip the details.

We remark that the converse is also true: If an ANR X contains a copy of one of the spaces
Y1, Y2 or Y3, then dim(X) � 2. Assume on the contrary that there is an embedding ι : Yi → X
and dim(X) � 1. It follows from [CC06, Corollary 3.3] that ι induces an injective map on
fundamental groups, i.e., that π(ι) : π(Y i)→ π(X) is injective. This contradicts the fact that
π(Yi) is uncountable, while π(X) is countable.
Note that none of the three spaces Y1, Y2, Y3 are semiprojective. Further, no (compact,

metric) space X that contains a copy of Y1, Y2 or Y3 can be semiprojective. One uses a similar
argument as for an embedded D2. Assume that for some k, there is an inclusion i : Yk ↪→ X.
Since Yk is not an AR, there will in general be no retraction onto it.

Instead, choose an embedding f : Yk ↪→ D2. This map can be extended to a map f̃ : X → D2

on all of X since D2 is an AR .

D2

Yk i
��

f

��

X

f̃




If C(X) is semiprojective, then any lifting problem as shown in the diagram below can
be solved. However, using Toeplitz algebras as in Proposition 3.1, we see that the morphism
f∗ = i∗ ◦ f̃∗ : C(D2)→ C(Yk) is not semiprojective.

B/JN

π

��
C(D2)

f̃∗
�� C(X)

i∗
��

σ

��

C(Yk) ϕ
�� B/

⋃
k�1 Jk

Finally, let us note that the C∗-algebras C(Y1), C(Y2) and C(Y3) are weakly semiprojective.
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4. Structure of compact, one-dimensional ANRs

In this section, we prove structural theorems about compact, one-dimensional ANRs. The
results are used in the next section to show that the C∗-algebra of continuous functions on such
a space is semiprojective. In Section 6, we study the structure on non-compact, one-dimensional
ANRs. We start with some preparatory lemmas. By π(X,x0) we denote the fundamental group
of X based at x0 ∈ X. Statements about the fundamental group often do not depend on the
basepoint, and then we simply write π(X) to mean that any (fixed) basepoint may be chosen.

Lemma 4.1. Let X be a Hausdorff space. Assume that X has a simply connected covering
space. Then every path in X is homotopic (relative endpoints) to a path that is a piecewise
arc.

Proof. Let p : X̃ → X be a simply connected, Hausdorff covering space. Let α : [0, 1]→ X
be a path, and α̃ : [0, 1]→ X̃ be a lift. Then the image of α̃ is a Peano continuum (that is,
a compact, connected, locally connected, metric space), and is therefore arcwise connected.
Choose any arc β : [0, 1]→ X̃ from α̃(0) to α̃(1). The arc may of course be chosen within the
image of α̃. Since X̃ is simply connected, the paths α̃ and β are homotopic (relative endpoints).
Then α = p ◦ α̃ and p ◦ β are homotopic paths in X.
Since p is locally a homeomorphism, p ◦ β is a piecewise arc, that is, there exists a finite

subdivision 0 = t0 < t1 < . . . < tN = 1 such that each restriction p ◦ β|[tj ,tj+1] is an arc.

Lemma 4.2. Let X be a Hausdorff space, and x0 ∈ X. Assume that X has a simply
connected covering space, and π(X,x0) is f.g. Then there exists a finite graph Y ⊂ X with
x0 ∈ Y such that π(Y, x0)→ π(X,x0) is surjective.

Proof. Choose a set of generators g1, . . . , gk for π(X,x0), represented by loops
α1, . . . , αk : S

1 → X. From the above lemma, we can homotope each αj to a loop βj that
is a piecewise arc. Then the image of each βj in X is a finite graph. Consequently, also the
union Y :=

⋃
j im(βj) is a finite graph (containing x0). By construction each gj lies in the

image of the natural map π(Y, x0)→ π(X, y0). Therefore, this map is surjective.

Remark 4.3. LetX be a connected, locally pathwise connected space. ThenX has a simply
connected covering space (also called universal cover) if and only if X is semilocally simply
connected (s.l.s.c.) (a space X is called s.l.s.c. (sometimes also called locally relatively simply
connected) if, for each x0 ∈ X, there exists a neighbourhood U of x0 such that π(U, xo)→
π(X,x0) is zero); see [7, Theorem III.8.4, p. 155].

Proposition 4.4. Let X be an s.l.s.c. Peano continuum and x0 ∈ X. Then there exists a
finite graph Y ⊂ X with x0 ∈ Y such that π(Y, x0)→ π(X,x0) is surjective.

Proof. Peano continua are connected and locally pathwise connected. Therefore, by
Remark 4.3, X has a simply connected covering space. By Cannon and Conner [8, Lemma 7.7],
π(X,x0) is f.g. (even finitely presented). Now we may apply Lemma 4.2.

Remark 4.5. The fundamental group of a finite graph is f.g. and free. Thus, the above
map π(Y, x0)→ π(X,x0) will in general not be injective.
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Even if π(X,x0) is f.g. and free, the constructed map might not be injective. The reason is
simply that the constructed graph could contain ‘unnecessary’ loops (for example, consider a
circle embedded into a disc). However, by restricting to a subgraph, one can get π(Y, x0)→
π(X,x0) to be an isomorphism.
Thus, if X is a Hausdorff space that has a simply connected covering space, and π(X,x0)

is f.g. and free, then there exists a finite graph Y ⊂ X such that π(Y, x0)→ π(X,x0) is an
isomorphism.

Let us consider a one-dimensional space X. This situation is special, since Cannon and
Conner [8, Corollary 3.3] have shown that an inclusion Y ⊂ X of one-dimensional spaces
induces an injective map on the fundamental group. Thus, we get the following proposition.

Proposition 4.6. Let X be a one-dimensional, Hausdorff space, and x0 ∈ X. Assume that
X has a simply connected covering space, and π(X,x0) is f.g. Then there exists a finite graph
Y ⊂ X with x0 ∈ Y such that π(Y, x0)→ π(X,x0) is an isomorphism.

Above we have studied the question: when is there a finite subgraph containing (up to
homotopy) all loops of a space. We now turn to the question: when is there canonical such
subgraph. It is clear that we can only hope for this to happen if the space is one-dimensional.

We will use results from the master thesis of Meilstrup [22] where also the following concept
is introduced. A one-dimensional Peano continuum is called a core continuum if it contains no
proper deformation retracts.

Proposition 4.7 (see [22, Corollary 2.6]). Let X be a one-dimensional Peano continuum.
The following are equivalent:

(1) X is a core;
(2) X has no attached dendrites (an attached dendrite is a dendrite C ⊂ X such that, for

some y ∈ C, there is a strong deformation retract r : X → (X \ C) ∪ {y});
(3) every point of X is on an essential loop that cannot be homotoped off it;
(4) whenever Y ⊂ X is a subset with π(Y )→ π(X) surjective (hence bijective), then Y = X.

Proof. The equivalence of (1)–(3) is proved in [22, Corollary 2.6].
‘(3) ⇒ (4)’: Let Y ⊂ X be a subset with π(Y )→ π(X) surjective. Let x ∈ X be any point.

Then x is on an essential loop, say α, which cannot be homotoped off it. Since [α] ∈ π(Y, x),
there is a loop β with image in Y that is homotopic to α. Therefore, x ∈ Y .
‘(4) ⇒ (1)’: For any subset Y that is a deformation retract of X, the map π(Y )→ π(X)

surjective.

To proceed further and prove that every one-dimensional Peano continuum contains a core,
we need the notion of reduced loop from [8, Definition 3.8]. In fact, we shall slighty generalize
this to the notion of reduced path. This will help to simplify some proofs below.

Definition 4.8 (see [8, Definition 3.8]). A non-constant path α : [0, 1]→ X is called
reducible, if there is an open arc I = (s, t) ⊂ [0, 1] such that f(s) = f(t) and the loop α|[s,t]
based at f(s) is nullhomotpic. A path is called reduced if it is not reducible. A constant path
is also called reduced.



96

Page 14 of 26 ADAM P. W. SØRENSEN AND HANNES THIEL

By Cannon and Conner [8, Theorem 3.9] every loop is homotopic to a reduced loop, and if
the space is one-dimensional, then this reduced loop is even unique (up to re-parametrization
of S1). The analogue for paths is proved in the same way.

Proposition 4.9 (see [8, Theorem 3.9]). Let X be a space, and α : [0, 1]→ X be a path.
Then α is homotopic (relative endpoints) to a reduced path β : [0, 1]→ X and we may assume
that the homotopy takes place inside the image of α, so that also the image of β lies inside the
image of α. If X is one-dimensional, then the reduced path is unique up to the re-parametrizing
of [0, 1].

Proposition 4.10 (see [22, Theorem 2.4]). Let X be a non-contractible, one-dimensional
Peano continuum. Then there exists a unique strong deformation retract C ⊂ X that is a core
continuum. We call it the core of X and denote it by core(X). Further:

(1) core(X) is the smallest strong deformation retract of X;
(2) core(X) is the smallest subset Y ⊂ X such that the map π(Y )→ π(X) is surjective.

Proof. Let core(X) ⊂ X be the union of all essential, reduced loops in X. In the proof
of Meilstrup [22, Theorem 2.4] it is shown that core(X) is a core continuum and a strong
deformation retract of X.

For every strong deformation retract Y ⊂ X the map π(Y )→ π(X) is surjective. Thus, to
prove the two statements, it is enough to show that core(X) is contained in every subset Y ⊂ X
such that the map π(Y )→ π(X) is surjective.

Let Y ⊂ X be any subset such that the map π(Y )→ π(X) is surjective, and let α be an
essential, reduced loop in X. Then α is homotopic to a loop α′ in Y . By the above remark, the
image of α′ contains the image of α. Thus, Y contains all essential, reduced loops in X, and
therefore core(X) ⊂ Y .

Remark 4.11. If X is a contractible, one-dimensional Peano continuum (that is, a
dendrite), then it can be contracted to any of its points. That is why core(X) is not defined in
this situation. However, to simplify the following statements, we consider the core of a dendrite
to be just any fixed point.

If X is a finite graph, then the core is obtained by successively removing all ‘loose’ edges, that
is, vertices that are endpoints and the edge connecting the endpoint to the rest of the graph.

Next, we combine a bunch of known facts with some of our results to obtain a list of equivalent
characterizations of when a one-dimensional Peano continuum is an ANR.

Theorem 4.12. Let X be a one-dimensional Peano continuum. The following are
equivalent:

(1) X is an ANR;
(2) X is locally contractible;
(3) X has a simply connected covering space;
(4) π(X) is f.g.;
(5) there exists a finite graph Y ⊂ X such that π(Y )→ π(X) is an isomorphism;
(6) core(X) is a finite graph.
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Proof. ‘(1) ⇒ (2)’: Every ANR is locally contractible; see [6, V.2.3, p. 101].
‘(2) ⇒ (3)’: By Remark 4.3.
‘(3) ⇒ (4)’: By Cannon and Conner [8, Lemma 7.7].
‘(4) ⇒ (1)’: This follows from [6, V.13.6, p. 138].
‘(3)+(4) ⇒ (5)’: The proof follows from Proposition 4.6.
‘(5) ⇒ (6)’: By Proposition 4.10(2), core(X) ⊂ Y . Then π(core(X))→ π(Y ) is an isomor-

phism, and therefore core(X) = core(Y ). By Remark 4.11 the core of a finite graph is again a
finite graph.

‘(6) ⇒ (4)’: The proof follows since π(core(X))→ π(X) is bijective and the fundamental
group of a finite graph is f.g.

Remark 4.13. Let X be a one-dimensional Peano continuum. In the same way as
Theorem 4.12, one obtains that the following are equivalent:

(1) X is an AR;
(2) X is contractible;
(3) X is simply connected;
(4) π(X,x0) is zero;
(5) there exists a finite tree Y ⊂ X such that π(Y, x0)→ π(X,x0) is an isomorphism (for

any x0 ∈ Y );
(6) core(X) is a point.

Note that X is a dendrite if and only if it is a one-dimensional Peano continuum that satisfies
one (or equivalently all) of the above conditions.

Let us proceed with the study of the internal structure of compact, one-dimensional ANRs.
We give a structure theorem that says that these spaces can be approximated by finite graphs
in a nice way, namely from within. This generalizes a theorem from Nadler’s book [23] about
the structure of dendrites (which are exactly the contractible one-dimensional compact ANRs).
The point is that compact, one-dimensional ANRs can be approximated from within by finite
graphs in exactly the same way as dendrites can be approximated by finite trees (which are
exactly the contractible finite graphs).

Lemma 4.14. Let X be a one-dimensional Peano continuum, and Y be a subcontinuum
with core(X) ⊂ Y . For each x ∈ X \ Y there is a unique point r(x) ∈ Y such that r(x) is a
point of an arc in X from x to any point of Y .

Proof. This is the analogue of Nadler [23, Lemma 10.24, p. 175]. We use ideas from the
proof of Meilstrup [22, Theorem 2.4]. Let X,Y be given, and x ∈ X \ Y .
Pick some point y ∈ Y . Since X is arc-connected, there exists an arc α : [0, 1]→ X starting

at α(0) = x and ending at α(1) = y. Let y0 = α(minα−1(Y )), which is the first point in Y of
the arc (starting from x). Note that y0 ∈ Y since Y is closed.

Assume that there are two arcs α1, α2 : [0, 1]→ X from x to different points y1, y2 ∈ Y such
that αi([0, 1)) ⊂ X \ Y . We show that this leads to a contradiction. Let β be a reduced path
in Y from y1 to y2. Define

t1 := sup{t ∈ [0, 1] : α1(t) ∈ im(α2)},
t2 := sup{t ∈ [0, 1] : α2(t) ∈ im(α1)},
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so that x0 = α1(t1) = α2(t2) is the first point where the arcs α1, α2 meet (looking from y1 and
y2). Connecting (α1)|[t1,1] (from x0 to y1) with β (from y1 to y2) and the inverse of (α1)|[t2,1]
(from y2 to x0), we get a reduced loop containing x0 which contradicts x0 /∈ core(X) ⊂ Y . It
follows that there exists a unique point y ∈ Y with the desired properties.

Definition 4.15 (see [23, Definition 10.26, p. 176]). Let X be a one-dimensional Peano
continuum, and Y be a subcontinuum with core(X) ⊂ Y . Define a map r : X → Y by letting
r(x) as in the Lemma 4.14 if x ∈ X \ Y , and r(x) = x if x ∈ Y . This map is called the first
point map.

The first point map is continuous, and thus a retraction of X onto Y . This is the analogue
of Nadler [23, Lemma 10.25, p. 176] and proved the same way.
But more is true: As in the proof of Meilstrup [22, Theorem 2.4], one can show that Y is a

strong deformation retract of X.

Proposition 4.16. Let X be a one-dimensional Peano continuum, and Y be a subcon-
tinuum with core(X) ⊂ Y . Then the first point map is continuous. Further, there is a strong
deformation retraction to the first point map.

Proof. Let X,Y be given. As in the proof of Meilstrup [22, Theorem 2.4], the complement
X \ Y consist of a collection of attached dendrites {Ci}. That means each Ci ⊂ X is a dendrite
such that Ci ∩ Y consists of exactly one point yi and such that there is a strong deformation
retract ri : X → (X \ Ci) ∪ {yi}. Meilstrup shows that these strong deformation retracts can
be assembled to give a strong deformation retract to the first point map r.

Theorem 4.17. Let X be a one-dimensional Peano continuum. Then there is a sequence
{Yk}∞k=1 such that:

(1) each Yk is a subcontinuum of X;
(2) Yk ⊂ Yk+1;
(3) limk Yk = X;
(4) Y1 = core(X) and, for each k, Yk+1 is obtained from Yk by attaching a line segment at a

point, that is, Yk+1 \ Yk is an arc with an end point pk such that Yk+1 \ Yk ∩ Yk = {pk};
(5) letting rk : X → Yk be the first point map for Yk, we have that {rk}∞k=1 converges

uniformly to the identity map on X.

If X is also ANR, then all Yk are finite graphs. If X is even contractible (that is, is an AR, or
equivalently a dendrite), then core(X) is just some point, and all Yk are finite trees.

Proof. This is the analogue of Nadler [23, Lemma 10.24, p. 175], and the proof goes through
if we use our analogous Lemmas 4.14 and 4.16.

5. The other implication of the main theorem: sufficiency

For this implication we aim to mirror the approach of Chigogidze and Dranishnikov [11]. In
order to do this, we need universal C∗-algebras. We take all our notation and most of the needed
results from [18]. So we shall write C∗(G | R) to mean the universal C∗-algebra generated by
the elements of G subject to the relations R. For instance, C∗({p} | p = p∗ = p2) = C. An
axiomatic approach to C∗-relations and universal C∗-algebras can be found in [20].



Appendix. D 99

SEMIPROJECTIVITY OF COMMUTATIVE C∗-ALGEBRAS Page 17 of 26

We first show how to go from C(X) being a universal C∗-algebra to C(Y ) being one, where
Y is obtained from X by attaching a line segment at one point. This step is not needed in [11],
since they are able to give a general description of the generators and relations of the relevant
spaces. We have not been able to find such generators and relations, and doing so might be of
independent interest.

Lemma 5.1. Suppose that X is a space, that C(X) = C∗〈G | R〉 and that {ĝ | g ∈ G} is a
generating set of C(X) that fulfils R. Let Y be the space formed from X by attaching a line
segment at a point v, and let λg = ĝ(v). Then C(Y ) = C∗〈G ∪ {h} | R′〉, where

R′ = R∪ {gh = λgh and gh = hg | g ∈ G} ∪ {0 � h � 1}.

Proof. Extending the ĝ to Y by letting them be constant on the added line segment and
letting ĥ be the function that is zero on X and grows linearly to one on the line segment
(identifying it with [0, 1]) shows that that there is a generating family in C(Y ) that fulfils R′.

It remains to show that whenever we have a family {g̃ | g ∈ G ∪ {h}} of elements, in some
C∗-algebra A, that fulfils R, we get a ∗-homomorphism from C(Y ) to A sending ĝ to g̃ for all
g ∈ G ∪ {h}. For this, note that we have the following short exact sequence:

0 −→ C0((0, 1]) −→ C(Y ) −→ C(X) −→ 0,

which splits. Since C0((0, 1]) is the universal C∗-algebra for a positive contraction, we get a
morphism φ : C0((0, 1])→ A taking the identity function to h. By assumption C(X) is universal
forR, so we get a morphism ψ : C(X)→ A taking ĝ to g̃ for all g ∈ G. If we let λ : C(X)→ C(Y )
denote the splitting, then one easily checks that

φ(t �−→ t)ψ(ĝ) = φ((t �−→ t)λ(ĝ)),

for all g ∈ G. Standard arguments then show

φ(a)ψ(b) = φ(aλ(b)),

for all a ∈ C0((0, 1]) and all b ∈ C(X). Thus, we get our desired result from [18,
Theorem 7.2.3, p. 53].

We now provide a slightly altered (in both proof and statement) version of Chigogidze and
Dranishnikov [11, Proposition 4.1].

Lemma 5.2. Suppose that X is a one-dimensional finite graph, that C(X) = C∗〈G | R〉,
that {ĝ | g ∈ G} is a generating set of C(X) that fulfilsR and that G is finite. Let Y be the space
formed from X by attaching a line segment at a point v. Suppose that we have a commutative
square

C(X)

ι

��

ψ �� C

π

��
C(Y )

φ
�� C/J

where J is an ideal in the unital C∗-algebra C, π is the quotient morphism, ψ and φ are unital
morphisms, and ι is induced by the retraction from Y onto X, that is, ι takes a function in
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C(X) to the function in C(Y ) given by

ι(f)(x) =

{
f(x), x ∈ X,
f(v), x is in the added line segment.

Then, for every ε > 0, we can find a morphism χ : C(Y )→ C such that π ◦ χ = φ and ‖(χ ◦
ι)(ĝ)− ψ(ĝ)‖ � ε for every g ∈ G.

Proof. Throughout the proof, we use the notation of Lemma 5.1.
Let δ > 0 be given. We shall construct a δ-representation {dg | g ∈ G ∪ {h}} of R′ in C such

that π(dg) = φ(ι(ĝ)) for g ∈ G and π(dh) = φ(ĥ).
Let qκ : X → X be the map that collapses the ball Bκ/2(v), fixes X \Bκ(v) and extends

linearly in between. Since there are only finitely many ĝ, we can find κ0 such that ‖q∗κ0
(ĝ)− ĝ‖ �

δ/2, where q∗κ is the morphism on C(X) induced by qκ. For simpler notation we let q = qκ0
,

and put wg = q∗(ĝ) for all g ∈ G.
Let f0 be a positive function in C(X) of norm 1 that is zero on X \Bκ0/2(v) and 1

at v. Observe that if f ∈ q∗(C0(X \ {v})), then ff0 = 0. Since ĥ � ι(f0) and ψ(f0) is a lift
of φ(ι(f0)), we can, by Loring [18, Corollary 8.2.2, p. 63], find a lift h̄ of φ(ĥ) such that
0 � h̄ � ψ(f0). We now claim that {ψ(ĝ) | g ∈ G} ∪ {h̄} is a δ-representation of R.

Since the ḡ fulfil the relations R and h̄ is a positive contraction, we only need to check that
ψ(ĝ) and h̄ almost commute, and that ψ(ĝ)h̄ is almost λgh̄.

First we note that since 0 � h̄ � ψ(f0) for any f ∈ q∗(C0(X \ {v})), we have

‖ψ(f)h̄1/2‖2 = ‖ψ(f)h̄ψ(f)∗‖ � ‖ψ(f)ψ(f0)ψ(f)∗‖ = 0.

Thus, ψ(f)h̄ = 0. In particular, we have

ψ(wg − λg)h̄ = 0.

Now we have

‖ψ(ĝ)h̄− h̄ψ(ĝ)‖ = ‖ψ(ĝ)h̄− ψ(wg − λg)h̄− h̄ψ(ĝ) + h̄ψ(wg − λg)‖
= ‖ψ(ĝ − wg)h̄+ λgh̄− h̄(ψ(ĝ − wg))− λgh̄‖
� ‖h̄‖(‖ψ(ĝ − wg)‖+ ‖ψ(ĝ − wg)‖)
� 2‖ĝ − wg‖ � 2 · δ/2 = δ,

for all g ∈ G. Likewise we have

‖ψ(ĝ)h̄− λgh̄‖ = ‖ψ(ĝ)h̄− λgh̄− ψ(wg − λg)h̄‖
= ‖ψ(ĝ − wg)h̄+ λgh̄− λgh̄‖
= ‖ψ(ĝ − wg)h̄‖ � ‖ĝ − wg‖ � δ/2 � δ,

for all g ∈ G. So {ψ(g) | g ∈ G} ∪ {h̄} is indeed a δ-representation of R′. Further, we have that
π(ψ(ĝ)) = φ(ι(ĝ)) and that π(h̄) = φ(h).

Since X is a one-dimensional finite graph, Y is also a one-dimensional finite graph, so C(Y ) is
semiprojective by Loring [18, Proposition 16.2.1, p. 125]. By Loring [18, Theorem 14.1.4, p. 106]
the relations R′ are then stable. So the fact that we can find a δ-representation for all δ implies
that we can find a morphism χ : C(Y )→ C such that π ◦ χ = φ and ‖χ(ι(ĝ))− ψ(ĝ)‖ � ε for
all g ∈ G.

We are now ready to show that some inductive limits have good lifting properties. In
particular, if we have an initial lift, then we can lift all that follows.
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Proposition 5.3. Suppose that X is a compact space such that C(X) can be written
as an inductive limit lim−→n

C(Yn) = C(X), where each Yn is a finite graph, Yn+1 is just Yn
with a line segment attached at a point (as in Lemma 5.2), and the bonding morphisms
ιn,n+1 : C(Yn)→ C(Yn+1) are as the morphism in Lemma 5.2, that is, induced by retracting
the attached interval to the attaching point.

If there is a unital morphism φ : C(X)→ C/J, where J is an ideal in a unital C∗-algebra
C, and a unital morphism ψ1 : C(Y1)→ C such that π ◦ ψ1 = φ ◦ ι1,∞, then there is a unital
morphism ψ̄ : C(X)→ C such that π ◦ ψ̄ = φ.

Proof. We have the following situation:

C

π

��
C(Y1) ι1,∞

��

ψ1



������������������
C(X)

φ
��

ψ̄

��

C/J

As Y1 is a finite graph, C(Y1) is f.g. Thus, C(Y1) is a universal C∗-algebra for some finite
set of generators and relations, C(Y1) = C∗〈G1 | R1〉, say. In view of Lemma 5.1, we can now
assume that C(Yn) = C∗〈Gn | Rn〉, where G1 ⊆ G2 . . ., and likewise for the Rn. We also get
from Lemma 5.1 that all the Gn and Rn are finite.

Since we are given ψ1, we can, using Lemma 5.2 inductively, for any sequence of positive
numbers (εn) find morphisms ψn : C(Yn)→ C for each n > 1 such that π ◦ ψn = φ ◦ ιn,∞ and
such that ‖ψn(ĝ)− ψn−1(ĝ)‖ � εn for the generators ĝ of C(Yn).

We now wish to define new morphisms χn : C(Yn)→ C such that π ◦ χn = φ ◦ ιn,∞ and χn+1

extends χn. To this end, we define, for each n ∈ N, elements {ḡn | g ∈ Gn} by
ḡn = lim

k
ψn+k(ĝ).

We will assume that
∑
εn <∞, so the sequence (ψn+k(ĝ)) becomes Cauchy. We claim that,

for any n ∈ N, the elements {ḡn | g ∈ Gn} in C fulfil Rn. By Loring [18, Lemma 13.2.3, p. 103]
the set {ḡn | g ∈ Gn} is an ε-representation of Rn for all ε > 0 since {ψn+k(ĝ) | g ∈ Gn} is a
representation of Rn for all k. Thus, {ḡn | g ∈ Gn} is a representation of Rn. Observe that if
m � n, then ḡm = ḡn. Thus, we will drop the subscripts, and simply say that we have elements
{ḡ | g ∈ ⋃Gn} such that, for any n ∈ N, the set {ḡ | g ∈ Gn} fulfils Rn. Now we can define the
χn. We put χn(ĝ) = ḡ for g ∈ Gn, and this extends to a morphism since C(Yn) ∼= C∗〈Gn | Rn〉.
We get χn1

◦ ιn,n+1 = χn and π ◦ χn = φ ◦ ι by universality, since it holds on generators.
By the universal property of an inductive limit, we get a morphism χ : C(X)→ C such that

π ◦ χ = φ.

Remark 5.4. Using the structure theorem for dendrites [23, Theorem 10.27, p. 176] (see
Theorem 4.17) and Proposition 5.3, we may deduce that for a dendrite X the C∗-algebra
C(X) is projective in S1 (the category of unital C∗-algebras; see Subsection 2.2). Thus, we
recover the implication ‘(1) ⇒ (2)’ of Chigogidze and Dranishnikov [11, Theorem 4.3].

To elaborate: Each dendrite X can be approximated from within by finite trees, that is,
C(X) ∼= lim−→C(Yk) where Y1 is just a single point and the trees Yk are obtained by successive
attaching of line segments. Since C(Y1) = C is projective in S1, we obtain from Proposition 5.3
that morphisms from C(X) into a quotients can be lifted, that is, C(X) is projective in S1.

We are now ready to prove our main theorem.
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Proof of Theorem 1.2. The implication ‘(I)⇒ (II) ’ is Proposition 3.1.
Let us prove ‘(II)⇒ (I) ’: So assume that X is a compact ANR with dim(X) � 1. Note

that X can have at most finitely many components Xi. If we can show that each C(Xi)
is semiprojective, then C(X) =

⊕
i C(Xi) will be semiprojective (since semiprojectivity is

preserved by finite direct sums; see [18, Theorem 14.2.1, p. 110]). So we may assume that
X is connected.

Then Theorem 4.17 applies, and we may find an increasing sequence Y1 ⊂ Y2 ⊂ . . . ⊂ X of
finite subgraphs such that

(1) limk Yk = X, that is,
⋃
k Yk = X and

(2) Yk+1 is obtained from Yk by attaching a line segment at a point.

Then C(X) = lim−→k
C(Yk) where each bonding morphism ιk,k+1 : C(Yk)→ C(Yk+1) is induced

by the retraction from Yk+1 to Yk that contracts Yk+1 \ Yk to the point Yk+1 \ Yk ∩ Yk. Suppose
now that we are given a unital C∗-algebra C, an increasing sequence of ideals J1 � J2 � . . .� C
and a unital morphism σ : C(X)→ C/

⋃
k Jk. We need to find a lift σ̄ : C(X)→ C/Jl for some l.

Consider the unital morphism σ ◦ ι1,∞ : C(Y1)→ C/
⋃
k Jk. By Loring [18, Proposi-

tion 16.2.1, p. 125], the initial C∗-algebra C(Y1) is semiprojective. Therefore, we can find
an index l and a unital morphism α : C(Y1)→ C/Jl such that πl ◦ α = σ ◦ ι1,∞. This is viewed
in the following commutative diagram:

C

��
C/Jl

πl

��
C(Y1) ι1,2

��

α

��

C(Y2) �� . . . �� C(X)
σ

�� C/
⋃
k Jk

Now we can apply Proposition 5.3 to find a unital morphism σ̄ : C(X)→ C/Jl such that
πl ◦ σ̄ = σ. This shows that C(X) is semiprojective.

6. Applications

In this section, we give applications of our findings. First, we characterize semiprojectivity
of non-unital, separable commutative C∗-algebras. Building on this, we are able to confirm a
conjecture of Loring in the particular case of commutative C∗-algebras. Then we will study the
semiprojectivity of C∗-algebras of the form C0(X,Mk). Finally, we will give a partial solution
to the problem when a commutative C∗-algebra is weakly (semi-)projective. To keep this article
short, we omit most of the proofs in this sections.

To characterize semiprojectivity of non-unital commutative C∗-algebras, we have to study
the structure of non-compact, one-dimensional ANRs. We are particularly interested in the
one-point compactifications of such spaces. The motivation are the following results: If X is

a locally compact, Hausdorff space, then naturally C̃0(X) ∼= C(αX), where αX is the one-
point compactification of X. Further, a C∗-algebra A is semiprojective if and only if Ã is
semiprojective. Thus, C0(X) is semiprojective if and only if C(αX) is semiprojective. By our
main result Theorem 1.2 this happens precisely if αX is a one-dimensional ANR.

The following result gives a topological characterization of such spaces. We derive a
characterization of semiprojectivity for non-unital, separable commutative C∗-algebras; see
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Corollary 6.2. We also show that αX is a one-dimensional ANR if and only if every finite-point
compactification of X is a one-dimensional ANR. Using this, we can confirm a conjecture about
the semiprojective extensions in the commutative case; see Corollaries 6.3 and 6.4.

Remark. A compactification of a space X is a pair (Y, ιY ) where Y is a compact space,
ι : X → Y is an embedding and ι(X) is dense in Y . Usually the embedding is understood and
one denotes a compactification just by the space Y . A compactification γ(X) of X is called a
finite-point compactification if the remainder γ(X) \X is finite.

Theorem 6.1. Let X be a one-dimensional, locally compact, separable, metric ANR. The
following are equivalent.

(1) The one-point compactification αX is an ANR.
(2) The space X has only finitely many compact components and also only finitely many

components C ⊂ X such that αC is not a dendrite .
(3) Every finite-point compactification of X is an ANR.
(4) Some finite-point compactification of X is an ANR.

Corollary 6.2. Let X be a locally compact, separable , metric space. Then the following
are equivalent:

(1) C0(X) is semiprojective;
(2) X is a one-dimensional ANR that has only finitely many compact components, and X

has also only finitely many components C ⊂ X such that αC is not a dendrite.

Corollary 6.3. Let A be a separable, commutative C∗-algebra, and I �A be an ideal.
Assume that A/I is finite-dimensional, that is, A/I ∼= Ck for some k. Then A is semiprojective
if and only if I is semiprojective.

Proof. Let A = C0(X) for a locally compact, separable metric space X. Then I = C0(Y )
for an open subset Y ⊂ X. Since A/I is finite-dimensional, X \ Y is finite. It follows that
also αX \ Y is finite, and so the closure Ȳ ⊂ αX is a finite-point compactification of Y . Set
F := αX \ Ȳ (which is also finite). Note that Ȳ ⊂ αX is a component, so that αX = Ȳ � F . It
follows that αX is an ANR if and only Ȳ is. Then we argue as follows:

A = C0(X) is semiprojective

⇔ Ã = C(αX) is semiprojective
⇔ αX is a one-dimensional ANR [by Theorem 1.2]
⇔ Ȳ ⊂ αX is a one-dimensional ANR [since αX = Ȳ � F ]
⇔ αY is a one-dimensional ANR

[by Theorem 6.1 since Ȳ is a
finite-point compactification of Y ]

⇔ Ĩ = C(αY ) is semiprojective [by Theorem 1.2]
⇔ I = C0(Y ) is semiprojective

Remark 6.4. Let A be a separable C∗-algebra, and I �A be an ideal so that the quotient
is finite-dimensional. We get a short exact sequence:

0 �� I �� A �� F �� 0.
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It was conjectured by Blackadar [4, Conjecture 4.5] that, in this situation, A is semiprojective
if and only if I is semiprojective. One implication was recently proved by Enders (private
communication) who showed that semiprojectivity passes to ideals when the quotient is finite-
dimensional.

Our above result, Corollary 6.3, confirms this conjecture in the case where A is commutative.

Let us now study the semiprojectivity of C∗-algebras of the form C0(X,Mk).

Lemma 6.5. LetX be a locally compact metric space and let k ∈ N. If φ : C0(X,Mk)→Mk

is a morphism, then there is a unitary u ∈Mk and a unique point x ∈ αX such that

φ = Adu ◦ ev
x
.

Proposition 6.6. Let X be a locally compact, separable, metric space and let k ∈ N. If
C0(X,Mk) is projective, then αX is an AR.

Proof. Suppose that we are given a compact metric space Y with an embedding ι : αX → Y .
Dualizing and embedding C0(X) into C(αX), we get the following diagram:

C0(Y )

ι∗

��
C0(X) �� C(αX)

Tensoring everything by the k by k matrices Mk, we get

C0(Y,Mk)

(ι∗)k
��

C0(X,Mk) �� C(αX,Mk)

Since C0(X,Mk) is projective, there is a morphism ψ : C0(X,Mk)→ C0(Y,Mk) such that
(ι∗)k ◦ ψ is the inclusion of C0(X,Mk) into C(αX,Mk).

For each y ∈ Y Lemma 6.5 tells us that the morphism evy ◦ψ has the form Aduy
◦ evxy

for
some unitary uy ∈Mk and some unique xy ∈ αX. Hence, we can define a function λ : Y → αX
such that

ev
y
◦ψ = Aduy

◦ ev
λ(y)

.

This map λ is continuous.
For each x ∈ αX we have the following commutative diagram:

C0(Y,Mk)

(ι∗)k
��

evι(x)�� Mk

C0(X,Mk) ��

ψ
�������������

C(αX,Mk)
evx �� Mk
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From this diagram, it follows that if x ∈ αX, then

Aduι(x)
◦ ev
λ(ι(x))

= ev
ι(x)
◦ψ = ev

x
◦(ι∗)k ◦ ψ = ev

x
.

So, for any function g ∈ C0(X), we get

ev
λ(ι(x))

⎛
⎜⎝
g

. . .

g

⎞
⎟⎠ = (Aduι(x)

◦ ev
λ(ι(x))

)

⎛
⎜⎝
g

. . .

g

⎞
⎟⎠ = ev

x

⎛
⎜⎝
g

. . .

g

⎞
⎟⎠ .

Hence, we must have λ(ι(x)) = x.
All in all, we have found a continuous map λ : Y → αX such that λ ◦ ι = id, that is, the

embedded space αX ⊂ Y is a retract. As the embedding was arbitrary, αX is an AR.

The proof can be modified to show the following proposition.

Proposition 6.7. Let X be a locally compact, separable , metric space and let k ∈ N. If
C0(X,Mk) is semiprojective, then αX is an ANR.

Using the idea of the proof of Proposition 3.1, one can show the following proposition.

Proposition 6.8. Let X be a locally compact, separable , metric space, and let k ∈ N. If
C0(X,Mk) is semiprojective, then dim(X) � 1.

Corollary 6.9. Let A be a separable, commutative C∗-algebra, and let k ∈ N. If A⊗Mk

is projective, then so is A. Analogously, if A⊗Mk is semiprojective, then so is A.

Proof. Let A = C0(X) for a locally compact, separable metric space X.
First, assume that A⊗Mk is semiprojective. By Proposition 6.8, dim(X) � 1. This implies

that the dimension of αX is at most 1. By Proposition 6.7, αX is an ANR. Then our main
Theorem 1.2 shows that C(αX) is semiprojective. Since C(αX) is the unitization of C0(X), we
also have that C0(X) is semiprojective.

Assume now that A⊗Mk is projective. It follows that A cannot be unital, for otherwise
A⊗Mk would be unital and that is impossible for projective C∗-algebras. As in the
semiprojective case, we deduce dim(αX) � 1. By Proposition 6.6, αX is an AR. It follows
from [11, Theorem 4.3] (see also Theorem 1.3) that the C(αX) is projective in S1. It follows
that C0(X) is projective; see Subsection 2.2.

We now turn to the question: when is a unital, commutative C∗-algebra weakly
(semi-)projective in S1? The analogue of a weakly (semi-)projective C∗-algebra in the
commutative world is an approximative absolute (neighbourhood) retract (abbreviated as AAR
and AANR). As mentioned in Subsection 2.3, if C(X) is weakly (semi-)projective, then X is
an AA(N)R. We will show below that for one-dimensional spaces the converse is also true.

6.10. Approximation from within

Let X be a compact metric space. Consider the following conditions:

(1) for each ε > 0 there exists a map f : X → Y ⊂ X such that Y is an AR (an ANR), and
d(f) � ε and

(2) The space X is an AAR (an AANR).



106

Page 24 of 26 ADAM P. W. SØRENSEN AND HANNES THIEL

Here, by d(f) < ε we mean that the distance of x and f(x) is less than ε for all x ∈ X, that
is, d(x, f(x)) < ε for all x ∈ X. The first condition means that X can be approximated from
within by ARs (by ANRs). As shown by Clapp [12, Theorem 2.3] (see also [10, Proposition
2.2(a)]) the implication ‘(1) ⇒ (2)’ holds in general.

It was asked by Charatonik and Prajs [10, Question 5.3] whether the converse also holds
(at least for continua). They showed that this is indeed the case for hereditarily unicoherent
continua [10, Observation 5.4]. In Theorem 6.15, we show that the two conditions are also
equivalent for one-dimensional, compact metric spaces.

The following is a standard result from continuum theory.

Proposition 6.11. Let X be a one-dimensional Peano continuum, and let ε > 0. Then
there exists a finite subgraph Y ⊂ X and a surjective map f : X → Y ⊂ X such that d(f) < ε.

Corollary 6.12. Every one-dimensional Peano continuum is an AANR.

Proof. Let X be a one-dimensional Peano continuum. By Proposition 6.11, X can be
approximated from within by finite subgraphs. A finite graph is an ANR. It follows from
[12, Theorem 2.3] (see Subsection 6.10) that X is an AANR.

The following lemma is a direct translation of Loring [19, Lemma 5.5] to the commutative
setting.

Lemma 6.13 (see [19, Lemma 5.5]). Let X be an compact AAR, and D be any ANR. Then
every map f : X → D is inessential, that is, homotopic to a constant map.

Corollary 6.14. Every one-dimensional, compact AAR is tree-like.

Proof. Let X be a one-dimensional, compact AAR. Then X is connected and thus a
continuum. In [9, Theorem 1], tree-like continua are characterized as one-dimensional continua
such that every map into a finite graph is inessential. Thus, we need to show that every map
from X into a finite graph is inessential. This follows from the above lemma since every finite
graph is an ANR.

Theorem 6.15. Let X be a one-dimensional, compact , metric space. Then the following
are equivalent.

(1) For each ε > 0 there exists a map f : X → Y ⊂ X such that Y is a finite tree (a finite
graph), and d(f) � ε.

(2) For each ε > 0 there exists a map f : X → Y ⊂ X such that Y is an AR (an ANR), and
d(f) � ε.

(3) The space X is an AAR (an AANR).

Moreover, in (1) and (2) the map f may be assumed to be surjective.

Proof. ‘(1) ⇒ (2)’ is clear, and ‘(2) ⇒ (3)’ follows from [12, Theorem 2.3]; see
Subsection 6.10.

‘(3)⇒ (1)’: It was shown by Clapp [12, Theorem 4.5] that, for each embedding of a compact
AANRX in the Hilbert cube Q and δ > 0, there exists a compact polyhedron P ⊂ Q with maps
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f : X → P and g : P → X such that d(f) < δ and d(g) < δ. Note that g maps each component
of P onto a Peano subcontinuum of X. Thus, the image Y := g(P ) ⊂ X is a finite union of
Peano subcontinua. Moreover, the map g ◦ f : X → Y ⊂ X satisfies d(f) < 2δ.
Assume that X is a one-dimensional, compact AANR and fix some ε > 0. We apply the

result of Clapp for δ = ε/4 and obtain a compact subspace Y ⊂ X that is the (disjoint) union of
finitely many Peano continua, together with a surjective map f : X → Y such that d(f) < ε/2.
Since Y ⊂ X is closed, dim(Y ) � dim(X) � 1. Applying Proposition 6.11 to each component
of Y and ε/2, we obtain a finite subgraph Z ⊂ Y and a surjective map g : Y → Z such that
d(g) < ε/2.

We may consider Z as a finite subgraph of X. The map h := g ◦ f : X → Z ⊂ X is surjective
and satisfies d(h) < ε. So we have shown the implication for the case where X is an AANR.
Assume additionally that X is an AAR. We have already shown that X can be approximated

from within by finite subgraphs. We need to show that the same is true with finite trees.
By Corollary 6.14, X is tree-like. By Lelek [16, 2.2 and 2.3], every tree-like continuum

is hereditarily unicoherent. A coherent finite graph is a finite tree. It follows that every finite
subgraph Z ⊂ X is a finite tree, and so X can be approximated from within by finite subgraphs
which automatically are finite trees.

Corollary 6.16. LetX be a compact metric space. Then the following implications hold.

(1) If X is an AANR and dim(X) � 1, then C(X) is weakly semiprojective S1.
(2) If X is an AAR and dim(X) � 1, then C(X) is weakly projective in S1.

Proof. Let X be a one-dimensional, compact AAR (AANR). By Theorem 6.15, X can be
approximated from within by finite trees (finite graphs), that is, for each n � 1, there exists a
finite tree (graph) Yn ⊂ X and a surjective map fn : X → Yn with d(fn) < 1/n. We desire to
use [19, Theorem 4.7] to show C(X) is weakly (semi-)projective in S1.

The surjective maps fn induce injective morphisms f∗n : C(Yn)→ C(X). Consider also
the inclusion map ιn : Yn ↪→ X and the dual morphism ι∗n : C(X)→ C(Yn). Set θn := f∗n ◦
ι∗n : C(X)→ C(X).

Since d(fn) tends to zero, the morphisms θn converge (pointwise) to the identity morphism.
Further, the image of θn is equal to the image of f∗n, and therefore isomorphic to C(Yn).

As shown by Loring [18, Proposition 16.2.1, p. 125], C(Y ) is semiprojective (in S1) if Y
is a finite graph. Similarly, C(Y ) is projective in S1 if Y is a finite tree Y (see also [11]).
Now, it follows from [19, Theorem 4.7] (and the analogous result for weakly semiprojective
C∗-algebras) that C(X) is weakly (semi-)projective in S1.

Remark 6.17. We remark that the converse implications of Corollary 6.16 also hold. As
explained in Subsection 2.3, if C(X) is weakly (semi-)projective in S1, then X is necessarily an
approximative absolute (neighbourhood) retract. The dimension condition was recently shown
by Enders (private communication).

Thus, C(X) is (weakly) (semi-)projective in S1 if and only if X is a compact (approximative)
absolute (neighbourhood) retract with dim(X) � 1.

Acknowledgements. We thank Dominic Enders for his comments and inspiring suggestions
that helped to improve some of the results in Section 6. We thank Søren Eilers for his valuable
comments on the first draft of this paper.
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ABSTRACT. We show that a C∗-algebra is an inductive limits of projective C∗-algebras if
and only if it has trivial shape, i.e., is shape equivalent to the zero C∗-algebra. In particular,
every contractible C∗-algebra is an inductive limit of projectives, and one may assume that
the connecting morphisms are surjective. Interestingly, an example of Dadarlat shows that
trivial shape does not pass to full hereditary sub-C∗-algebras. It then follows that the same
fails for projectivity.

To obtain these results, we develop criteria for inductive limit decompositions, and we
discuss the relation with different concepts of approximation.

As a main application of our findings we show that a C∗-algebra is (weakly) projective if
and only if it is (weakly) semiprojective and has trivial shape. It follows that a C∗-algebra
is projective if and only if it is contractible and semiprojective. This confirms a conjecture of
Loring.

1. INTRODUCTION

Shape theory and homotopy theory are tools to study global properties of spaces. How-
ever, homotopy theory gives useful results mainly for spaces with good local behavior
(spaces without singularities). For such well-behaved spaces both theories agree, and one
usually employs homotopy theory which is easier to compute. To study more general
spaces with possible singularities, one uses shape theory. The idea is to abstract from the
local behavior of a space, and focus on its global behavior, its ‘shape’.

One way of doing this, is to approximate a space by nicer spaces, the building blocks.
In the commutative world the building blocks are the so-called absolute neighborhood
retracts (ANRs). The approximation is organized in an inverse limit structure, and instead
of looking at the original space one studies an associated inverse system of ANRs.

After shape theory was successfully used to study spaces, it was introduced to the study
of noncommutative spaces (i.e., C∗-algebras) by Effros and Kaminker, [EK86], and shortly
after developed to its modern form by Blackadar, [Bla85]. Shape theory works best when
restricted to metrizable spaces, and similarly for noncommutative shape theory one re-
stricts attention to separable C∗-algebras.

The building blocks of noncommutative shape theory are the semiprojective C∗-algebras,
which are defined in analogy to ANRs. Since the category of commutative C∗-algebras is
dual to the category of spaces, the approximation by an inverse system for spaces is turned
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2010 Mathematics Subject Classification. Primary 46L05, 46L85, 46M10 ; Secondary 46M20, 46M40, 54C56,

55P55 .
Key words and phrases. C∗-algebras, non-commutative shape theory, projectivity, contractible C∗-algebras.
This research was supported by the Marie Curie Research Training Network EU-NCG and by the Danish
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into an approximation by an inductive system for C∗-algebras. Then, approximating a
C∗-algebra by ‘nice’ C∗-algebras means to write it as an inductive limit of semiprojective
C∗-algebras.

This raises the natural question of whether there are enough building blocks to approx-
imate every space. This is true in the commutative world, as every metric space is an
inverse limit of ANRs. The analog for C∗-algebras is still an open problem, first asked by
Blackadar:

Question 1.1 (Blackadar, [Bla85, 4.4]). Are all separable C∗-algebras inductive limits of
semiprojective C∗-algebras?

In this paper we study the related question of which C∗-algebras are inductive limits of
projective C∗-algebras. A necessary condition is that such a C∗-algebra has trivial shape,
i.e., is shape equivalent to the zero C∗-algebra, since this holds for projective C∗-algebras
and is preserved by inductive limits. We will show that the converse is also true, i.e., that
a separable C∗-algebra is an inductive limit of projective C∗-algebras if and only if it has
trivial shape, see Theorem 4.4. This also gives a positive answer to Question 1.1 for C∗-
algebras with trivial shape, a class class which is quite large since it contains for instance
all contractible C∗-algebras.

This paper proceeds as follows:

In Section 2 we remind the reader of the basic notions of noncommutative shape theory, in
particular the notion of (weak) semiprojectivity and (weak) projectivity.

In Section 3 we discuss different concepts of how a C∗-algebra can be ‘approximated’ by
other C∗-algebras, for instance as an inductive limit. If C is a class of C∗-algebras, then an
inductive limit of algebras in C is called an AC-algebra. We suggest to use the formulation
that A is ‘C-like’ if it can be approximated by sub-C∗-algebras from C, see Definition 3.2
and Proposition 3.4.

Building on a one-sided approximate intertwining argument, due to Elliott in [Ell93,
2.1, 2.3], see Proposition 3.5, we give two criteria to show that a given C∗-algebra is an
AC-algebra. We assume that the class C of building blocks consists of weakly semiprojec-
tive C∗-algebras. Then every separable AC-like C∗-algebra is already an AC-algebra, see
Theorem 3.9, and every AAC-algebra is already an AC-algebra, see Theorem 3.12.

In Section 4 we study the class of C∗-algebras with trivial shape. We show that these are
exactly the C∗-algebras that are inductive limits of projective C∗-algebras, see Theorem 4.4.
Moreover, one may assume that the connecting morphisms are surjective, since we show
in Proposition 4.9 that every inductive system can be changed so that the connecting mor-
phisms become surjective while the limit is unchanged.

As a corollary, we obtain that every separable, contractible C∗-algebra is an inductive
limit of projective C∗-algebras, see Corollary 4.5. We discuss permanence properties of
trivial shape, see Theorem 4.6. It follows from an example of Dadarlat that trivial shape
does not pass to full hereditary sub-C∗-algebras, see Remark 4.11. We deduce that also
projectivity does not pass to full hereditary sub-C∗-algebras, see Proposition 4.12.
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In Section 5 we show some non-commutative analogs of results in commutative shape
theory. We prove that a C∗-algebra is (weakly) projective if and only if is is (weakly)
semiprojective and has trivial shape, see Theorem 5.6. It follows that a C∗-algebra is pro-
jective if and only if it is is semiprojective and contractible, see Corollary 5.7. This confirms
a conjecture of Loring.

2. PRELIMINARIES

By a morphism between C∗-algebras we mean a ∗-homomorphism. All considered C∗-
algebras are assumed to be separable. By ideals we mean closed, two-sided ideals. We use
the symbol ‘≃’ to denote homotopy equivalence, both for objects and morphisms.

We use the following notations. For ε > 0, a subset F of a C∗-algebra A is said to be
ε-contained in another subset G, denoted by F ⊂ε G, if for every x ∈ F there exists some
y ∈ G such that ‖x− y‖ < ε.

Given two morphisms ϕ, ψ : A → B between C∗-algebras and a subset F ⊂ A we say ϕ
and ψ agree on F , denoted ϕ =F ψ, if ϕ(x) = ψ(x) for all x ∈ F . If, moreover, ε > 0 is
given, then we say ϕ and ψ agree on F up to ε, denoted ϕ =F

ε ψ, if ‖ϕ(x) − ψ(x)‖ < ε for
all x ∈ F .

We warn the reader that one sometimes defines the above notions of ‘ε-containment’
and ‘agreement up to ε’ for the condition that the norm is at most ε (instead of strictly less
than ε), e.g. writing F ⊂e G if for every x ∈ F there exists some y ∈ G such that only
‖x − y‖ ≤ ε. The difference of notions could be healed by a simple reparametrization,
since we always assume ε > 0.

2.1. We consider shape theory for separable C∗-algebra in the sense of Blackadar, see
[Bla85]. In this paragraph, which is a shortened version of [ST11, 2.2], we recall the main
notions:

A morphism ϕ : A → B is called (weakly) projective if
for any C∗-algebra C and any morphism σ : B → C/J to
some quotient (and ε > 0, and finite subset F ⊂ A), there
exists a morphism ψ : A → C such that π ◦ ψ = σ ◦ ϕ (resp.
π◦ψ =F

ε σ◦ϕ), where π : C → C/J is the quotient morphism.
This means that the diagram on the right can be completed
to commute (up to ε on F ).

C

π
��

A ϕ
//

ψ

77

B σ
// C/J

A C∗-algebra A is called (weakly) projective if the identity morphism idA : A → A is
(weakly) projective.

A morphism ϕ : A→ B is called (weakly) semiprojective
if for any C∗-algebra C, any increasing sequence of ideals

J1 � J2 � · · ·� C and any morphism σ : B → C/
⋃
k Jk (and

ε > 0, and finite subset F ⊂ A), there exist an index k and
a morphism ψ : A → C/Jk such that πk ◦ ψ = σ ◦ ϕ (resp.

πk ◦ ψ =F
ε σ ◦ ϕ), where πk : C/Jk → C/

⋃
k Jk is the quotient

morphism. This means that the diagram on the right can be
completed to commute (up to ε on F ).

C

��
C/Jk

πk
��

A ϕ
//

ψ
66

B σ
// C/

⋃
k Jk

A C∗-algebra A is called (weakly) semiprojective if the identity morphism idA : A → A
is (weakly) semiprojective.
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2.2. By an inductive system we mean a sequence A1, A2, . . . of C∗-algebras together with
morphisms γk : Ak → Ak+1 for each k. We will denote such a system by A = (Ak, γk). If
k < l, then we let γl,k := γl−1◦· · ·◦γk+1◦γk : Ak → Al denote the composition of connecting
morphisms. By lim−→A or lim−→Ak we denote the inductive limit of an inductive system, and
by γ∞,k : Ak → lim−→Ak we denote the canonical morphism into the inductive limit.

2.3. A shape system for A is an inductive system (Ak, γk) such that A ∼= lim−→Ak and such
that the connecting morphisms γk : Ak → Ak+1 are semiprojective. Blackadar, [Bla85, The-
orem 4.3], shows that every separable C∗-algebra has a shape system consisting of finitely
generated C∗-algebras.

Two inductive systems A = (Ak, γk) and B = (Bn, θn) are called (shape) equivalent,
denoted A ∼ B, if there exist an increasing sequences of indices k1 < n1 < k2 < n2 < . . .
and morphisms αi : Aki → Bni

and βi : Bni
→ Aki+1

such that βi◦αi ≃ γki+1,ki and αi+1◦βi ≃
θni+1,ni

for all i. The situation is shown in the following diagram which commutes up to
homotopy.

Ak1
γk2,k1 //

α1 !!D
DD

DD
DD

D
Ak2

γk3,k2 //

α2 !!D
DD

DD
DD

D
Ak3 //

α3 !!D
DD

DD
DD

D
. . . // A

Bn1 θn2,n1

//

β1
==zzzzzzzz

Bn2 θn3,n2

//

β2
==zzzzzzzz

Bn3
// . . . // B

If we have αi, βi as above with only βi ◦ αi ≃ γki+1,ki for all i, then we say A is (shape)
dominated by B, denoted A - B. Of course A ∼ B implies A - B and B - A, but the
converse is false. Nevertheless ∼ is an equivalence relation, and - is transitive.

Any two shape systems of a C∗-algebra are equivalent. Given two C∗-algebras A and B
we say A is shape equivalent to B, denoted A ∼Sh B, if they have some shape systems
that are equivalent. We say A is shape dominated by B, denoted A -Sh B, if some shape
system of A is dominated by some shape system of B.

Shape is coarser than homotopy in the following sense: IfA and B are homotopy equiv-
alent (denoted A ≃ B), then A ∼Sh B. Moreover, if A is homotopy dominated by B, then
A -Sh B.

Theorem 2.4 (Effros, Kaminker, [EK86, 3.2], also Blackadar, [Bla85, Theorem 3.1, 3.3]). Let
ϕ : A→ B be a semiprojective morphism, and (Ck, γk) an inductive system with limit C. Then:

(1) Let σ : B → C be a morphism. Then for k large enough
there exist morphisms ψk : A → Ck such that γ∞,k ◦ ψk ≃
σ ◦ϕ and such that γ∞,k ◦ ψk converges pointwise to σ ◦ϕ.
This means that the diagram on the right can be completed
to commute up to homotopy.

A
ϕ //

ψk

��

B

σ
��

Ck γ∞,k

// C

(2) Let σ1, σ2 : B → Ck be two morphisms with γ∞,k ◦ σ1 ≃
γ∞,k ◦ σ2. Then for n ≥ k large enough, already the mor-
phisms γn,k ◦ σ1 ◦ ϕ and γn,k ◦ σ2 ◦ ϕ are homotopic. The
situation is shown in the the diagram on the right.

A
ϕ // B

σ1}}||
||
||
||σ2

}}||
||
||
||

Ck γn,k

// Cn // C

Remark 2.5. Let us see what the above Theorem 2.4 means for a semiprojective C∗-algebra
A. Let (Ck, γk) be an inductive system with limit C. Consider the homotopy classes of
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morphisms from A to Ck, denoted by [A,Ck]. The connecting morphism γk : Ck → Ck+1

induces a map (γk)∗ : [A,Ck] → [A,Ck+1], and the morphism γ∞,k : Ck → C induces a map
(γ∞,k)∗ : [A,Ck] → [A,C].

Note that (γ∞,k)∗ = (γ∞,k+1)∗ ◦ (γk)∗, so that we get a natural map

Φ : lim−→[A,Ck] → [A, lim−→Ck] = [A,C].

Statement (1) of the above Theorem 2.4 means that Φ is surjective, while statement (2)
means exactly that Φ is injective.

Theorem 2.4 is proved using a mapping telescope construction, due to L.G. Brown. The
same proof gives the following partial analog of the above result for weakly semiprojective
morphisms:

Proposition 2.6. Let ϕ : A → B be a weakly semiprojective morphism, and (Ck, γk) an inductive
system with limit C. Let further be given a morphism σ : B → C, ε > 0 and a finite set F ⊂ A.
Then there exist an index k and a morphism ψ : A→ Ck such that γ∞,k ◦ ψ =F

ε σ ◦ ϕ.

Remark 2.7. Recall from 2.1 that a morphism ϕ : A→ B is called weakly semiprojective if
the following holds:

(1) Let C be C∗-algebra, and J1�J2� · · ·�C an increasing sequence of ideals. Let further

be given a morphism σ : B → C/
⋃
k Jk, ε > 0, and a finite subset F ⊂ A. Then there

exist an index k and a morphism ψ : A→ C/Jk that approximately lifts σ ◦ϕ, i.e., such

that πk ◦ ψ =F
ε σ ◦ ϕ, where πk : C/Jk → C/

⋃
k Jk is the quotient morphism. This is

shown in the left part of the diagram below.

Note that the C∗-algebras C/Jk form an induc-

tive system with inductive limit C/
⋃
k Jk. The

connecting morphisms C/Jk → C/Jk+1 are quo-
tient morphisms and therefore surjective.

Conversely, every inductive system (Dk, γk)
with surjective connecting morphisms γk : Dk →
Dk+1 is of the above form. Just set C := D1

and Jk := ker(γk,1). Then C/Jk ∼= Dk, and

C/
⋃
k Jk

∼= lim−→k
Dk. This is shown in the right

part of the diagram.

C/Jk

��

∼= Dk

γk��
...

��

...

��
A ϕ

//

ψ

>>

B σ
// C/

⋃
k Jk

∼= lim−→Dk

Thus, the definition of weak semiprojectivity of ϕ can be reformulated as follows:

(2) Let (Dk, γk) an inductive system with surjective connecting morphisms. Let further be
given a morphism σ : B → lim−→Dk, ε > 0 and a finite set F ⊂ A. Then there exist
an index k and a morphism ψ : A → Dk that approximately lifts σ ◦ ϕ, i.e., such that
γ∞,k ◦ ψ =F

ε σ ◦ ϕ.

Thus, for the definition of weak semiprojectivity, we consider morphisms into the limit
of an inductive system with surjective connecting morphisms, and we ask for approximate
lifts. Proposition 2.6 says that one may drop the condition that the connecting morphisms
of the inductive system are surjective.

2.8 (Generators for C∗-algebras). Let A be a C∗-algebra. A subset S ⊂ Asa of self-adjoint
elements is said to generate A, denoted A = C∗(S), if A is the smallest sub-C∗-algebra of
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A containing S. The generating rank for A, denoted by gen(A), is the smallest number
n ∈ {1, 2, 3, . . . ,∞} such that A contains a generating set S of n self-adjoint elements.

Note that the generators are assumed to be self-adjoint. If g, h are two self-adjoint ele-
ments, then {g, h} generates the same sub-C∗-algebra as the element g + ih. That is why a
C∗-algebra is said to be singly generated if gen(A) ≤ 2.

For more details on the generator rank and its behaviour with respect to operations, we
refer the reader to Nagisa, [Nag04].

Remark 2.9 (Finitely generated = finitely presented). While it is rather clear what it means
that a C∗-algebra is finitely generated, it is not so obvious what it should mean that it is
finitely presented. To speak of finite presentation, one needs a theory of universal C∗-
algebras defined by generators and relations.

Depending on which relations one considers, one gets different notions of finite pre-
sentability. In [Bla85], for instance, only polynomial relations are considered. With this
definition, not every finitely generated C∗-algebra is finitely presented.

More generally, one can define a relation to be an element of the universal C∗-algebra
generated by a countable number of contractions

F∞ := C∗(x1, x2, . . . | ‖xi‖ ≤ 1).

This definition is used in [Lor97], and it is flexible enough to show that every finitely
generated C∗-algebra is already finitely presented, see [ELP98, Lemma 2.2.5].

Thus, in the results of [Lor97] we may replace the assumption of finite presentation by
finite generation, e.g. in [Lor97, Lemma 15.2.1, 15.2.2, p.118f]. This can be improved even
further, as was shown to the author by Chigogidze and Loring, [CL11]: One may give a
version of [Lor97, Lemma 15.2.1, p.118] which does not require theC∗-algebra to be finitely
generated, see Lemma 3.8. It follows that [Lor97, Lemma 15.2.2, p.119] remains true if one
drops the assumption of finite generation (or presentation) completely, see Corollary 3.10.

3. APPROXIMATION AND CRITERIA FOR INDUCTIVE LIMITS

In this section we will give criteria that allow one to write a C∗-algebra A as an inductive
limit of other C∗-algebras that approximate A in a nice way. We start by reviewing the
various ways a C∗-algebra can be ‘approximated’ by other C∗-algebras, see 3.1. If C is
a class of C∗-algebras, then an inductive limit of algebras in C is called an AC-algebra.
We suggest to use the formulation that A is ‘C-like’ if it can be approximated by sub-C∗-
algebras from the class C, see Definition 3.2 and Proposition 3.4.

As a basic tool to construct an inductive limit decomposition we use one-sided approx-
imate intertwinings, see Proposition 3.5. These were introduced by Elliott in [Ell93, 2.1,
2.3] and they turned out to be very important in the classification of C∗-algebras, see also
chapter 2.3 of Rørdam’s book, [Rør02].

Assuming that the class C consists of weakly semiprojective C∗-algebras, we deduce
other criteria to write a C∗-algebra as an inductive limit of building blocks in C. In partic-
ular, every AC-like C∗-algebra is an AC-algebras, see Theorem 3.9, and every AAC-algebra
is already an AC-algebra, see Theorem 3.12. The latter statement gives a criterion when an
‘inductive limit of inductive limits is an inductive limit’.

For example, let C be the class of finite direct sums of matrices over the circle algebra
C(T). Then the mentioned result means that an inductive limit of AT-algebras is itself an
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AT-algebra. This is a well-known result, see e.g. [LR95, Proposition 2] which is based on
[Ell93, Theorem 4.3].

3.1 (Approximation). The term ‘approximation’ is used in various contexts. For instance,
if P is some property that C∗-algebras might enjoy, then a C∗-algebra is usually called ap-
proximately P , or an AP-algebra, if it can be written as an inductive limit of C∗-algebras
with property P . In this sense one speaks of ‘approximately homogeneous’ and ‘approxi-
mately subhomogeneous’ C∗-algebras.

Another concept is approximation by subalgebras. Given a C∗-algebra A, a family B
of sub-C∗-algebras is said to approximate A if for every ε > 0 and finite subset F ⊂
A there exists some algebra B ∈ B such that F ⊂ε B. In the literature there appears
also the terminology ‘B locally approximates A’. Similarly, if P is some property of C∗-
algebras, then a C∗-algebra A that can be approximated by sub-C∗-algebras with property
P is sometimes called ‘locally P’. In this sense one speaks of ‘locally (sub)homogeneous’
C∗-algebras.

However, sometimes the word ‘local’ might lead to confusion: Consider for instance the
property of being contractible. We will show below, see Corollary 4.7, that aC∗-algebra has
trivial shape if it is approximated by contractible sub-C∗-algebras. One could phrase this
as ‘locally contractible C∗-algebras have trivial shape’, but this would be in contradiction
with the terminology used for spaces. Many locally contractible1 spaces have non-trivial
shape.

The confusion is due to the contravariant duality between spaces and C∗-algebras. If
we consider for instance a commutative C∗-algebra C(X), then the elements f ∈ C(X)
are almost constant around each point x ∈ X . Therefore, an approximation of C(X) by
sub-C∗-algebras does not captures the local structure of X , it rather captures the global
structure of X , its shape. To prevent confusion, we suggest the following definition:

Definition 3.2. If P is some property that C∗-algebras might enjoy, then a C∗-algebra is
called P-like if it can be approximated by sub-C∗-algebras with property P .

Remark 3.3 (P-likeness). Using the above definition, Corollary 4.7 would read as: ‘A
contractible-like C∗-algebra has trivial shape’. This might sound cumbersome, but it is
motivated by the concept of P-likeness for spaces, as defined by Mardesic and J. Segal,
[MS63, Definition 1], and further developed by Mardešić and Matijević, [MM92]. In Propo-
sition 3.4 we will show that for commutative C∗-algebras both concepts agree.

For a space X , we let Cov(X) denote the collection of finite, open covers of X . Given
U1,U1 ∈ Cov(X), we write U1 ≤ U2 if the cover U1 refines the cover U2, i.e., for every U ∈ U1

there exists some U ′ ∈ U2 such that U ⊂ U ′. We refer the reader to chapter 2 of Nagami’s
book [Nag70] for details.

We are working in the category of pointed spaces and pointed maps since it is the natural
setting to study non-unital commutative C∗-algebras, as pointed out in [Bla06, II.2.2.7,
p.61]. If we include basepoints and restrict to compact spaces, then the definition of P-
likeness from [MM92, Definition 1.2] becomes: Let P be a non-empty class of pointed,
compact, Hausdorff spaces. A pointed, compact, Hausdorff space X is said to be P-like

1A space X is called locally contractible if for each point x ∈ X and every neighborhood U of x there
exists a neighborhood V of x such that V ⊂ U and V is contractible (in itself).
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if for every U ∈ Cov(X) there exists a pointed map f : X → Y onto some Y ∈ P and
V ∈ Cov(Y ) such that f−1(V) ≤ U , where f−1(V) = {f−1(V ) | V ∈ V}.

If X and all space in P are pointed, compact, metric spaces, then one can show that X is
P-like if and only if for every ε > 0 there exists a pointed map f : X → Y onto some Y ∈ P
such that the sets f−1(y) have diameter < ε (for all y ∈ Y ). This equivalent formulation is
the original definition of P-likeness for compact, metric spaces, [MS63, Definition 1].

Note that we have used P to denote both a class of spaces and a property that spaces
might enjoy. These are just different viewpoints, as we can naturally assign to a property
the class of spaces with that property, and vice versa to each class of spaces the property
of lying in that class.

Let us use the following notation for the next result: If (X, x∞) is a pointed space, then
C0(X, x∞) = {a : X → C | a(x∞) = 0} denotes the C∗-algebra of continuous functions on
X vanishing at the basepoint.

Proposition 3.4. Let X be a pointed, compact, Hausdorff space, and let P be a class of pointed,
compact, Hausdorff spaces. Then the following are equivalent:

(a) X is P-like.
(b) C0(X, x∞) can be approximated by sub-C∗-algebras C0(Y, y∞) with (Y, y∞) ∈ P .

Proof. ‘(a) ⇒ (b)’: Assume we are given ε > 0 and a finite subset F ⊂ C0(X, x∞). Since
X is compact, there exists a finite, open cover U ∈ Cov(X) such that ‖a(x) − a(x′)‖ < ε
whenever a ∈ F and x, x′ lie in some set U ∈ U . By assumption, there is a pointed map
f : X → Y onto some space Y ∈ P and V ∈ Cov(Y ) such that f−1(V) ≤ U . Note that f
induces an inclusion f ∗ : C0(Y, y∞) → C0(X, x∞).

Choose a partition of unity {eV }V ∈V in Y that is subordinate to V . For each V ∈ V ,
choose a point xV ∈ f−1(V ) such that xV = x∞ if y∞ ∈ V . Given a ∈ F , let us show
that a ∈ε f ∗(C0(Y, y∞)) ⊂ C0(X, x∞). Set b :=

∑
V a(xV )eV , and note that b(y∞) = 0 since

a(xV ) = 0 whenever eV (y∞) 6= 0. For x ∈ X we compute:

‖a(x)− f ∗(b)(x)‖ = ‖a(x)−
∑

V

a(xV )eV (f(x))‖

= ‖
∑

V

(a(x)− a(xV ))eV (f(x))‖

< ε · ‖
∑

V

eV (f(x))‖

= ε.

To see that the inequality in the computation above holds, note that eV (f(x)) 6= 0 only
if f(x) ∈ V , but then x, xV ∈ f−1(V ) which is contained in some set U ∈ U , and so
‖a(x)− a(xV )‖ < ε.

We get F ⊂ε f
∗(C0(Y, y∞)). Since ε and F were arbitrary, this shows that C0(X, x∞) is

approximated by sub-C∗-algebras from P , as desired.
‘(b) ⇒ (a)’: Let U = {Uα} ∈ Cov(X) be a finite, open cover of X . We need to find a

space Y ∈ P together with a pointed, surjective map f : X → Y and V ∈ Cov(V ) such that
f−1(V) ≤ U .
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By passing to a refinement, we may assume that x∞ is contained in just one Uα, call it
U∞. Since X is a normal space, we may find open sets Vα ⊂ X such that Vα ⊂ Vα ⊂ Uα
and such that {Vα} is a cover of X . By Urysohn’s lemma, there are continuous functions
aα : X → C that are 1 on Vα and zero on X \Uα. Note that aα vanishes on x∞ for α 6= ∞, so
that aα ∈ C0(X, x∞) for α 6= ∞.

From (b) we get a sub-C∗-algebra C0(Y, y∞) of C0(X, x∞) that contains the aα (α 6= ∞) up
to 1/2 and such that (Y, y∞) ∈ P . The embedding corresponds to a pointed, surjective map
f : (X, x∞) → (Y, y∞). For α 6= ∞, let bα ∈ C0(Y, y∞) be elements such that ‖aα − f ∗(bα)‖ <
1/2.

Define sets Wα ⊂ Y via:

Wα := {y ∈ Y | ‖bα(y)‖ > 1/2} ( for α 6= ∞ ) , W∞ := Y \ f(
⋃

α6=∞
Vα).

We compute:

f−1(Wα) = {x ∈ X | ‖bα(f(x))‖ > 1/2} ( for α 6= ∞ )

⊂ {x ∈ X | ‖aα(x)‖ > 0} ⊂ Uα

f−1(W∞) ⊂ X \
⋃

α6=∞
Vα ⊂ U∞

f−1(Wα) ⊃ {x ∈ X | ‖aα(x)‖ ≥ 1} ⊃ Vα ( for α 6= ∞ )

It follows f−1(
⋃
α6=∞Wα) ⊃ ⋃

α6=∞ Vα, and so
⋃
α6=∞Wα ⊃ f(

⋃
α6=∞ Vα) = Y \ W∞. This

shows that W := {Wα} is a cover of Y and that f−1(W) ≤ U , as desired. �

The following result formalizes the construction of a (special) one-sided approximate in-
tertwining. The idea goes back to Elliott, [Ell93, 2.3,2.4], see also chapter 2.3 of Rørdam’s
book, [Rør02]. Note that the version given here does not appear in the literature so far. In
particular, we do not require any ordering on the index set of approximating algebras.

Proposition 3.5 (One-sided approximate intertwining). Let A be a separable C∗-algebra, and
Ai (i ∈ I) a collection of separable C∗-algebras together with morphisms ϕi : Ai → A.

Assume that the following holds: For every index i ∈ I , and ε > 0, and for every finite subsets
F ⊂ Ai, E ⊂ ker(ϕi) and H ⊂ A, there exists some index j ∈ I and a morphism ψ : Ai → Aj
such that:

(A1) ϕj ◦ ψ =F
ε ϕi,

(A2) ψ =E
ε 0,

(A3) H ⊂ε im(ϕj) = ϕj(Aj) ⊂ A.

Then A is isomorphic to an inductive limit of some of the algebras Ai. More precisely, there exist
indices i(1), i(2), . . . ∈ I and morphisms ψk : Ai(k) → Ai(k+1) such that A ∼= lim−→k

(Ai(k), ψk).

Proof. By induction, we will construct a one-sided approximate intertwining as shown in
the following diagram. This diagram does not commute, but it ‘approximately commutes’.
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Ai(1)
ψ1 //

ϕi(1)

��

Ai(2)
ψ2 //

ϕi(2)

��

Ai(2) //

ϕi(3)

��

. . . // B

ω

��
A // A // A // . . . // A

Property (A1) is the essential requirement for constructing the one-sided approximate
intertwining, i.e., to align some of the algebras Ai into an inductive system with limit B
together with a canonical morphism ω : lim−→B → A. Property (A2) is used to get ω injective,
and (A3) is used to ensure ω is surjective.

More precisely, we proceed as follows: Let {x1, x2 . . .} ⊂ A be a dense sequence in A
with x1 = 0. We will construct the following:

• indices i(k) ∈ I , for k ∈ N,
• morphisms ψk : Ai(k) → Ai(k+1), for k ∈ N,
• finite subsets F 1

k ⊂ F 2
k ⊂ . . . ⊂ Ai(k), for k ∈ N,

• finite sets E ′
k ⊂ ker(ϕi(k)), for k ∈ N,

such that:

(a) ψk(F
l
k) ⊂ F l

k+1, for all k, l ≥ 1,
(b)

⋃
l F

l
k is dense in Ai(k), for each k,

(c) E ′
k contains Ek := {x ∈ F k

k : ‖ϕi(k)(x)‖ < 1/2k−1} up to 1/2k−1, for each k,

(d) ϕi(k+1) ◦ ψk =F k
k

1/2k
ϕi(k), for each k,

(e) ψk =
E′

k

1/2k
0, for each k,

(f) {x1, . . . , xk} ⊂1/2k ϕi(k)(F
k
k ), for each k.

Let us start with any i(1), e.g. i(1) = 1. Since x1 = 0, (f) is satisfied. We may find sets F i
1

and E ′
1 to fulfill properties (a), (b) and (c).

Let us manufacture the induction step from k to k + 1. We consider the index i(k), the
tolerance 1/2k+1, and the finite sets F k

k ⊂ Ai(k), E
′
k ⊂ ker(ϕi(k)), and {x1, . . . , xk+1} ⊂ A.

By assumption, there is an index i(k + 1), and a morphism ψk : Ai(k) → Ai(k+1) satisfying
conditions (d), (e) and (f). Then construct sets F l

k+1 and E ′
k+1 to fulfill properties (a), (b)

and (c).
Set B := lim−→k

(Ai(k), ψk). We want to define morphisms ωk : Ai(k) → A as

ωk(a) := lim
s
ϕi(s) ◦ ψs,k(a).

This makes sense since ϕi(s) ◦ψs,k(a) is a Cauchy sequence (when running over s), which
may be checked using properties (b) and (d).

Note that ωl ◦ ψl,k = ωk for any l ≤ k. Thus, the morphisms ωk fit together to define a
morphism ω : B → A.

Injectivity of ω: Given any k, and an element a ∈ F k
k , one computes ‖ωk(a)−ϕi(k)(a)‖ ≤

1/2k−1, using property (d). The construction was made in such a way that we can distin-
guish two different cases:

• Case 1: ‖ϕi(k)(a)‖ ≥ 1/2k−1. In that case ωk(a) 6= 0, since above we computed
‖ωk(a)− ϕi(k)(a)‖ < 1/2k−1.
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• Case 2: ‖ϕi(k)(a)‖ < 1/2k−1. In that case, by (c), there exists some e ∈ E ′
k with

‖a − e‖ < 1/2k−1. From (e) we get ‖ψk(e)‖ < 1/2k. We compute: ‖ψk(a)‖ =
‖ψk(a− e+ e)‖ ≤ 1/2i−k + 1/2k ≤ 1/2k−2.

This means: either the given a ∈ F k
k has non-zero image in A under the morphism

ωk, or otherwise it has a small image in B under the morphism ψ∞,k = ψ∞,k+1 ◦ ψk. By
considering ψl,k(a) ∈ F l

l for all l ≥ k we derive that either ωk(a) = ωl(ψl,k(a)) 6= 0 or
‖ψ∞,k(a)‖ = ‖ψ∞,l ◦ ψl,k(a)‖ ≤ 1/2k−2 for all k ≥ l. We get that for any a ∈ F k

k we have
a ∈ ker(ωk) if and only if a ∈ ker(ψ∞,k).

Next we consider a ∈ F l
k for l ≥ k. Then with b := ψl,k(a) ∈ F l

l we deduce:

a ∈ ker(ωk) ⇔ b ∈ ker(ωl) ⇔ b ∈ ker(ψ∞,l) ⇔ a ∈ ker(ψ∞,k)

Since
⋃
l F

l
k is dense in Ai(k), we get ker(ωk) = ker(ψ∞,k). Then ker(ω) =

⋃
k ψ∞,k(ωk) =⋃

k 0 = 0, and so ω is injective.
Surjectivity of ω: Let a ∈ A and ε > 0. We want to check that a ∈ε im(ω). Since the

sequence x1, x2, . . . is dense in A, there exists some l with ‖a − xl‖ < ε/4. Let k ≥ l be a

number with 1/2k−1 < ε/4. We have seen above that ωk =
F k
k

1/2k−1 ϕi(k). Then:

a ∈ε/4 {x1, . . . , xk} ⊂1/2k ϕi(k)(F
k
k ) ⊂1/2k−1 ωk(F

k
k ) ⊂ im(ω).

Together, a lies in im(ω) up to ε/4+1/2i+1/2k−1 < ε. Since ε > 0 was arbitrary, we deduce
a ∈ im(ω), and so ω is surjective. �
3.6. Let us consider a weaker approximation than in Proposition 3.5, where we relax con-
dition (A3). Let us assume the following situation is given:

Let A be a separable C∗-algebra, and {Ai}i∈I a collection of separable C∗-algebras to-
gether with morphisms ϕi : Ai → A, such that the following holds: For every index i ∈ I ,
and ε > 0, and for every finite subsets F ⊂ Ai and E ⊂ ker(ϕi), there exists some index j
and a morphism ψ : Ai → Aj such that:

(A1) ϕj ◦ ψ =F
ε ϕi,

(A2) ψ =E
ε 0,

and moreover, the following condition holds:

(A3’) the collection of sub-C∗-algebras im(ϕk) = ϕk(Ak) ⊂ A approximates A

Condition (A3) of 3.5 is a statement about the morphism ψ. It roughly says that ψ has
‘large’ image. The above condition (A3’) is independent of the morphism ψ. It just requires
that the collection of all sub-C∗-algebras im(ϕk) is ‘large’.

Adopting the proof of Proposition 3.5, we may construct one-sided approximate inter-
twinings to get the following result: For every γ > 0 and every finite H ⊂ A, there exists
a sub-C∗-algebra B ⊂ A such that H ⊂γ B and B is an inductive limit of some of the
algebras Ai.

If we denote by C = {Ai | i ∈ I} the class of approximating algebras, then this means
precisely that A is AC-like, i.e., A is approximated by sub-C∗-algebras that are inductive
limits of algebras in C.

In general, this does not imply thatA is anAC-algebra, i.e., an inductive limit of algebras
in C. In fact, not even a C-like C∗-algebra need to be an AC-algebra, as can be seen by the
following example.
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Example 3.7 (Dadarlat, Eilers, [Dad99]). Let us denote by H the class of (direct sums of)
homogeneousC∗-algebras. An inductive limit ofC∗-algebras inH is called anAH-algebra.
In [Dad99], Dadarlat and Eilers construct a C∗-algebra A = lim−→k

Ak that is an inductive

limit of AH-algebras Ak (so A is an AAH-algebra) but such that A is not an AH-algebra
itself. Thus, an AAC-algebra in general need not be an AC-algebra.

Since quotients of homogeneous algebras are again homogeneous, the C∗-algebra A is
also H-like. Thus, the example also shows that a C-like algebra in general need not be an
AC-algebra.

In the example of Dadarlat and Eilers, each Ak is an inductive limit, lim−→n
Ank , of C∗-

algebras Ank that have the form
⊕d

i=1Mdi(C(Xi)) with each Xi a three-dimensional CW-
complex. It is well-known that C(Xi) is not weakly semiprojective if Xi contains a copy of
the two-dimensional disc, see, e.g., [ST11, Remark 3.3]. It follows that the algebras Ank are
not weakly semiprojective. This is the crucial point, as will be shown in Theorem 3.9 and
Theorem 3.12.

The following Lemma 3.8 is a variant of [Lor97, Lemma 15.2.1, p.118] that avoids the as-
sumption of finite generation, see Remark 2.9. It was shown to the author by Chigogidze
and Loring, [CL11]. The result is used in the proof of Theorem 3.9 to ‘twist’ morphisms
from weakly semiprojective C∗-algebras.

We note that Theorem 3.12 and all results in Section 4 and Section 5 can be proved using
the original [Lor97, Lemma 15.2.1, p.118] instead of Lemma 3.8.

Lemma 3.8 (Chigogidze and Loring, [CL11], see also Loring, [Lor97, Lemma 15.2.1, p.118]).
Suppose A is a weakly semiprojective C∗-algebra. Then for every ε > 0, and every finite subset
F ⊂ A, there exists δ > 0 and a finite subset G ⊂ A such that the following holds: Whenever
ϕ : A → B is a morphism, and C ⊂ B is a sub-C∗-algebra that contains ϕ(G) up to δ, then there
exists a morphism ψ : A→ C such that ψ =F

ε ϕ.

Theorem 3.9. Let C be a class of weakly semiprojective C∗-algebras. Then every separable AC-like
C∗-algebra is already an AC-algebra.

Proof. Assume A is an AC-like C∗-algebra. We want to apply the one-sided approximate
intertwining, Proposition 3.5, to show that A is an AC-algebra. For this we consider the
collection of all morphisms ϕ : C → A where C is a C∗-algebra from C (we may think of
this collection as being indexed over

∐
C∈C Hom(C,A)).

We need to check the requirements for Proposition 3.5. So assume the following data is
given: A morphism ϕ : C → A with C ∈ C, a tolerance ε > 0, and finite subsets F ⊂ C,
E ⊂ ker(ϕ) and H ⊂ A. We may assume that F contains E. We need to find a C∗-algebra
C ′ ∈ C together with a morphism ϕ′ : C ′ → A, and a morphism ψ : C → C ′ such that (A1),
(A2), and (A3) are satisfied.

Applying the above variant of [Lor97, Lemma 15.2.1, p.118], see Lemma 3.8, to the
weakly semiprojective C∗-algebra C for ε/3 and F ⊂ C, we obtain a δ > 0 and a finite
subset G ⊂ C such that any morphism out of C that maps G up to δ into a given sub-C∗-
algebra can be twisted to map exactly into that sub-C∗-algebra while moving F at most by
ε. We may assume that δ ≤ ε/3.

Set H ′ := H ∪ ϕ(G), which is a finite subset of A. By assumption, there exists a sub-
C∗-algebra B ⊂ A that contains H ′ up to δ and which is an AC-algebra, say B = lim−→k

Ck
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with connecting morphisms γk : Ck → Ck+1. Since ϕ(G) ⊂δ B, there exists a morphism
α : C → B such that ϕ =F

ε/3 α.

By Proposition 2.6, the morphism α : C → B = lim−→k
Ck

has an approximate lift, i.e., there exists an index k1 and a
morphism α̃ : C → Ck1 such that α =F

ε/3 γ∞,k1 ◦ α̃. Then

ϕ =F
2ε/3 γ∞,k1 ◦ α̃.

Upon going further down in the inductive limit, we can
guarantee properties we need to check. This is shown in the
diagram on the right.

Step 1 (in order to guarantee (A2)): We consider E. Since
ϕ =F

2ε/3 γ∞,k1 ◦ α̃ and E ⊂ F , we have γ∞,k1 ◦ α̃ =E
2ε/3 ϕ =E 0.

Thus, we may find k2 ≥ k1 such that γk2,k1 ◦ α̃ =E
ε 0.

Step 2 (in order to guarantee (A3)): Since H ⊂δ B = lim−→k
Ck,

we may find k3 ≥ k2 such that H ⊂2δ im(γ∞,k3).
Setting C ′ := Ck2 , ϕ′ := γ∞,k3 and ψ := γk3,k1 ◦ α̃ : C → C ′ =

Ck3 , it is easy to check that (A1), (A2), and (A3) are satisfied.

Ck1

γk2,k1
��

Ck2

γk3,k2
��

Ck3 = C ′

γ∞,k2

��
C

α //

α̃

HH

ϕ
$$JJ

JJJ
JJJ

JJJ

ψ
::

B� _

��
A

�

Corollary 3.10 (Loring, [Lor97, Lemma 15.2.2, p.119]). Let C be a class of weakly semiprojective
C∗-algebras. Then every C-like C∗-algebra is an AC-algebra.

Remark 3.11. Let C be a class of weakly semiprojective C∗-algebras. If C is closed under
quotients, then every AC-like C∗-algebra is also C-like, and similarly every AAC-algebra is
C-like. Then Theorem 3.9 and Theorem 3.12 follow from Loring’s local test for inductive
limits, [Lor97, Lemma 15.2.2, p.119], see Corollary 3.10.

However, in Section 4 we will consider the class P of projective C∗-algebras, and this
class is not closed under quotients. There even exist AP-like C∗-algebras that are not P-
like: Consider for example the commutative C∗-algebra A = C0([0, 1]

2 \ {(0, 0)}), which
is contractible and hence AP-like (even an AP-algebra) by Corollary 4.5. Every sub-C∗-
algebra of A is commutative, and it was shown by Chigogidze and Dranishnikov, [CD10],
that every commutative projective C∗-algebra has one-dimensional spectrum. In particu-
lar, every commutative projective C∗-algebra has stable rank one, and if A was approxi-
mated by such sub-C∗-algebras, then A would have stable rank one as well, which contra-
dicts the fact that the stable rank of A is two.

Therefore, in order to obtain Theorem 4.6 (2) and (3), it is crucial that Theorem 3.12 and
Theorem 3.9 also hold for classes C that are not necessarily closed under quotients.

Theorem 3.12. Let C be a class of weakly semiprojective C∗-algebras. Then every AAC-algebra is
already an AC-algebra.

Proof. Assume A ∼= lim−→k
Ak and ̺nk : A

n
k → An+1

k for algebras Ank ∈ C. Let us denote the

connecting morphisms by γk : Ak → Ak+1 and ̺nk : A
n
k → An+1

k . We are given the following
situation:
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Ank

̺nk
��

Ank+1

̺nk+1

��

Ank+2

̺nk+2

��

An+1
k

̺∞,n+1
k

��

An+1
k+1

̺∞,n+1
k+1

��

An+1
k+2

̺∞,n+1
k+2

��
Ak γk

// Ak+1 γk+1

// Ak+2
//

γ∞,k+2

99. . . // A

We want to use the one-sided approximate intertwining, Proposition 3.5, and we consider
the collection of C∗-algebras Ank together with morphisms ϕk,n := γ∞,k ◦ ̺∞,n

k : Ank → A (we
may think of this collection as being indexed over N × N).

Assume some indices k, n are given together with ε > 0, and with finite sets F ⊂ Ank ,
E ⊂ ker(ϕk,n) and H ⊂ A. We may assume E ⊂ F . We need to find k′, n′ and a morphism
ψ : Ank → An

′
k′ that satisfy (A1) and (A2) and (A3).

Since A = lim−→k
Ak and ϕk,n = γ∞,k ◦ ̺∞,n

k =E 0,

there exists some k′ ≥ k such that γk′,k ◦ ̺∞,n
k =E

ε/3 0.

We can also ensure that H ⊂ε/2 im(γ∞,k′), by further
increasing k′, if necessary.

Since Ank is weakly semiprojective, we may lift the
morphism γk′,k ◦ ̺∞,n

k : Ank → Ak′ = lim−→n
Ank′ to some

α : Ank → An1

k′ (for some n1) such that ̺∞,n1

k′ ◦ α =F
ε/3

γk′,k ◦ ̺∞,n
k . This is shown in the diagram on the right.

An1
k′

̺
n′,n1
k′��

Ank

̺∞,n
k

��

α
>>

ψ // An
′
k′

̺∞,n′
k′
��

Ak γk′,k
// Ak′ γ∞,k′

// A

We have ̺∞,n1

k′ ◦ α =E
ε/3 γk′,k ◦ ̺∞,n

k =E
ε/3 0. As in the proof of Theorem 3.9, by going

further down in the inductive limit we may find n′ ≥ n1 such that ̺n
′,n1

k′ ◦ α =E
ε 0 and

H ⊂ε im(γ∞,k′ ◦ ̺∞,n′

k′ ). Set ψ := ̺n
′,n1

k′ ◦ α : Ank → An
′
k′ . It is easy to check that (A1), (A2), and

(A3) are satisfied. �

3.13. Let B be a separable C∗-algebra, and C a class of separable C∗-algebras. The above
results give us connections between the four conditions that B is C-like, or AC-like, or
an AC-algebra, or an AAC-algebra. This is shown in the diagram below. A dotted arrow
indicates that the implication holds under the additional assumption that the algebras in
C are weakly semiprojective. The dashed arrow with (∗) indicates that the implication
holds if each quotient of an algebra in C is an AC-algebra, while the dashed arrow with
(∗∗) indicates that the implication holds if C is closed under quotients, see also 3.11.
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B is AC

rz mmm
mmm

mmm
mmm

mmm
mmm

mmm
mmm

��

(∗∗) ((Q
QQQQQQ

B is AAC
(∗)

((Q
QQQQQ

3.12 //

B is C-like

rz mmm
mmm

mmm
mmm

mmm
mmm

mmm
mmm

Loring, see 3.10oo

B is AC-like

3.9

DD

4. TRIVIAL SHAPE

In this section we study C∗-algebras that are shape equivalent to the zero C∗-algebra. Such
algebras are said to have trivial shape. We will show in Theorem 4.4 that having trivial
shape is equivalent to several other natural conditions, most importantly to being an in-
ductive limit of projective C∗-algebras. One may further obtain that the connecting mor-
phisms in such an inductive limit are surjective, see Proposition 4.9.

We prove some natural permanence properties of trivial shape, see Theorem 4.6. How-
ever, building on an example of Dadarlat, [Dad11], see 4.11, we show that trivial shape
does not necessarily pass to full hereditary sub-C∗-algebras. It follows that also projectiv-
ity does not pass to full hereditary sub-C∗-algebras, see Proposition 4.12.
Note that A -Sh 0 implies A ∼Sh 0, i.e., A is shape dominated by 0 if and only if it is shape
equivalent to 0. The following recent result of Loring and Shulman was the inspiration for
the main result Theorem 4.4 below. For the definition of the generator rank gen(A), see 2.8.

Theorem 4.1 (Loring, Shulman, [LS10, Theorem 7.4]). Let A be a C∗-algebra. Then the cone
CA = C0((0, 1])⊗ A is an inductive limit, lim−→k

Pk, of projective C∗-algebras, Pk, with surjective

connecting morphisms Pk → Pk+1 and gen(Pk) ≤ gen(A) + 1.

Lemma 4.2. Let ϕ : A→ B be a projective morphism. Then ϕ ≃ 0.

Proof.
This is a variant of the standard argument for showing that a pro-
jective C∗-algebra is contractible. We include it for completeness.
Let ev1 : CB → B be the evaluation morphism at 1. The projec-
tivity of ϕ gives us a lift ψ : A→ CB such that ev1 ◦ψ = ϕ. This is
indicated in the commutative diagram on the right.

CB

ev1����
A

ϕ //

ψ
==

B

We have idCB ≃ 0 since CB is contractible. Then ϕ = ev1 ◦ idCB ◦ψ ≃ 0, as desired. �

Lemma 4.3. Let (Ak, γk) a shape system with inductive limit A := lim−→Ak. Assume that every
semiprojective morphism D → A (from any C∗-algebra D) is null-homotopic. Then for each k
there exists k′ ≥ k such that γk′,k ≃ 0.

Proof.
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We are given some index k. Note that γk+1,k

is semiprojective. Define two morphisms
σ1, σ2 : Ak+1 → Ak+2 as σ1 = γk+2,k+1 and
σ2 = 0. The morphism γ∞,k+2 ◦ σ1 = γ∞,k+1 is
semiprojective, and therefore null-homotopic
by assumption. Thus γ∞,k+2◦σ1 ≃ 0 = γ∞,k+2◦
σ2.

Ak
γk+1,k// Ak+1

σ2
��

σ1
��

Ak+2γk′,k+2

// Ak′ γ∞,k′
// A

Using the semiprojectivity of γk+1,k it follows from [EK86, 3.2], see Theorem 2.4, that
there exists k′ ≥ k + 2 such that γk′,k = γk′,k+2 ◦ σ1 ◦ γk+1,k ≃ γk′,k+2 ◦ σ2 ◦ γk+1,k = 0. The
situation is shown in the diagram on the right. �

Theorem 4.4. Let A be a separable C∗-algebra. Then the following are equivalent:

(a) A ∼Sh 0,
(b) every semiprojective morphism D → A (from any C∗-algebra D) is null-homotopic,
(c) A is an inductive limit, lim−→Ak, with projective connecting morphisms Ak → Ak+1,
(d) A is an inductive limit, lim−→Ak, with null-homotopic connecting morphisms Ak → Ak+1,
(e) A is an inductive limit of finitely generated, projective C∗-algebras,
(f) A is an inductive limit of finitely generated cones,
(g) A is an inductive limit of contractible C∗-algebras.

Moreover, in conditions (c)-(g), if A is an inductive limit, lim−→Ak, then we may further assume
gen(Ak) ≤ gen(A) + 1.

Proof. Note that 0 has a natural shape system consisting of the zeroC∗-algebra at each step.
Therefore, A ∼Sh 0 means that there exists a shape system (Ak, γk) for A and morphisms
αk : Ak → 0 and βk : 0 → Ak+1 such that βk+1 ◦ αk ≃ γk. This is shown in the following
diagram, which homotopy commutes:

A1
γ1 //

α1
��@

@@
@@

@@
@

A2
γ2 //

α2
��@

@@
@@

@@
@

A3
//

α3
��@

@@
@@

@@
@

. . . // A

0 //

β1
??~~~~~~~~

0 //

β2
??~~~~~~~~

0 // 0 // 0

‘(a) ⇒ (d)’: AssumeA ∼Sh 0. We have just noted that this implies thatA has a shape system
(Ak) with connecting morphisms γk : Ak → Ak+1 that are null-homotopic since they factor
through 0 up to homotopy.
‘(d) ⇒ (a)’: Assume there is an inductive system A = (Ak, γk) with A ∼= lim−→A and null-
homotopic connecting morphisms γk. Let αk : Ak → 0 and βk : 0 → Ak+1 be the zero
morphisms. Then βk+1 ◦ αk = 0 ≃ γk. Conversely also βk ◦ αk = 0, so that the inductive
systems A and (0 → 0 → . . .) are shape equivalent. This does not show A ∼Sh 0 right
away since the inductive system A need not be a shape system. However, thanks to [Bla85,
Theorem 4.8], whenever two inductive systems are shape equivalent, then their inductive
limit C∗-algebras are shape equivalent.
‘(d) ⇒ (b)’: Assume there is an inductive system A = (Ak, γk) with A ∼= lim−→A and null-
homotopic connecting morphisms γk. Let ϕ : D → A be any semiprojective morphism. By
[Bla85, Theorem 3.1], see Theorem 2.4, there exists k and a morphism ψ : D → Ak such that
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ϕ ≃ γ∞,k ◦ ψ. However, γ∞,k has a factorization as γ∞,k = γ∞,k+1 ◦ γk+1,k and is therefore
null-homotopic. Then ϕ is null-homotopic as well.
‘(b) ⇒ (f)’: By Blackadar, [Bla85, Theorem 4.3], see Lemma 2.3, A has a shape system
(Ak, γk) with finitely generated algebrasAk and such that gen(Ak) ≤ gen(A). We may apply
Lemma 4.3 inductively to this shape system, and after passing to a suitable subsystem
we see that there exists a shape system (Ak, γk) of finitely generated C∗-algebras Ak with
gen(Ak) ≤ gen(A) and null-homotopic connecting morphisms γk such that A ∼= lim−→A.

A homotopy γk ≃ 0 induces a natural morphism Γk : Ak → CAk+1 such that γk has a
factorization γk = ev1 ◦Γk, where CAk+1 is the cone over Ak+1 and ev1 is evaluation at 1.

Set ωk := Γk ◦ ev1 : CAk → CAk+1. Consider the inductive system B = (CAk, ωk). It
follows from [LS10, Lemma 7.1] that gen(CAk) ≤ gen(Ak) + 1, so that CAk is finitely gen-
erated and gen(CAk) ≤ gen(A) + 1. The systems A and B are intertwined, which implies
that their inductive limits are isomorphic, so that A is isomorphic to an inductive limit of
the finitely generated conesCAk. The intertwining is shown in the following commutative
diagram.

A1

Γ1   B
BB

BB
BB

BB

γ1 // A2

Γ2   B
BB

BB
BB

BB

γ2 // A3
// . . . // lim−→k

Ak

∼=
��

CA1

ev1

>>|||||||||

ω1

// CA2

ev1

>>|||||||||

ω2

// CA3

ev1

>>|||||||||
// . . . // lim−→k

CAk

∼=
OO

‘(f) ⇒ (e)’: Assume A ∼= lim−→CAk with each Ak finitely generated and gen(Ak) ≤ gen(A).
By the result of Loring and Shulmann, [LS10, Theorem 7.4], see Theorem 4.1, for each k, the
cone CAk can be written as an inductive limit of finitely generated projective C∗-algebras
with generator rank at most gen(Ak) + 1. Note that gen(Ak) + 1 ≤ gen(A) + 1 for all k. It
follows from Theorem 3.12 that A is isomorphic to an inductive limit of finitely generated,
projective C∗-algebras with generator rank at most gen(A) + 1.
‘(e) ⇒ (c)’, ‘(e) ⇒ (g)’ and ‘(g) ⇒ (d)’ are clear. ‘(c) ⇒ (d)’ follows from Lemma 4.2. �
Corollary 4.5. Every separable, contractible C∗-algebra is an inductive limit of projective C∗-
algebras.

Theorem 4.6. The class of separable C∗-algebras with trivial shape is closed under:

(1) countable direct sums
(2) inductive limits
(3) approximation by sub-C∗-algebras (i.e., likeness, see Definition 3.2)
(4) taking maximal tensor products with any other (separable) C∗-algebra, i.e., A ⊗max B has

trivial shape when A has trivial shape

Proof. (1): AssumeA1, A2, . . . have trivial shape. By condition (g) of the above Theorem 4.4,
each Ak can be written as inductive limit of contractible C∗-algebras. Note that countable
direct sums of contractible C∗-algebras are again contractible. Hence,

⊕
k Ak is an induc-

tive limit of contractible C∗-algebras and thus has trivial shape by (g) of Theorem 4.4.
(2): Assume A ∼= lim−→Ak with each Ak having trivial shape. By Theorem 4.4, each Ak

is an inductive limit of projective C∗-algebras. It follows from Theorem 3.12 that A is an
inductive limit of projective C∗-algebras, and so it has trivial shape using Theorem 4.4
again.
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(3): Assume a C∗-algebra A is approximated by sub-C∗-algebras Ai ⊂ A. By Theo-
rem 4.4, each Ai is an inductive limit of projective C∗-algebras. This means that A is AP-
like for the class P of projective C∗-algebras. It follows from Theorem 3.9 that A is an
AP-algebra, i.e., and inductive limit of projective C∗-algebras, and so A has trivial shape
by Theorem 4.4.

(4): Let A be a C∗-algebra with trivial shape, and B any other (separable) C∗-algebra.
By condition (f) of Theorem 4.4, we can write A as an inductive limit of cones CAk =
C0((0, 1]) ⊗ Ak. As noted by Blackadar, [Bla06, II.9.6.5, p.188], maximal tensor products
commute with arbitrary inductive limits (while minimal tensor products only commute
with inductive limits with injective connecting morphisms). Thus,A⊗maxB is the inductive
limit ofCAk⊗maxB = C0((0, 1])⊗Ak⊗maxB = C(Ak⊗B). Using condition (f) of Theorem 4.4
again, we deduce that A⊗max B has trivial shape. �
We derive two corollaries. Using the notation from 3.1 and Definition 3.2, they state that a
contractible-like C∗-algebra has trivial shape and is approximately contractible, see Corol-
lary 4.7 resp. Corollary 4.8.

Corollary 4.7. Let A be a separable C∗-algebra that is approximated by contractible sub-C∗-
algebras. Then A has trivial shape.

Corollary 4.8. Let A be a separable C∗-algebra that is approximated by contractible sub-C∗-
algebras. Then A is an inductive limit of contractible C∗-algebras.

Proposition 4.9. Let (Ak, γk) be an inductive system of separable C∗-algebras. Then there exists
an inductive system (Bk, δk) with surjective connecting morphisms and such that lim−→Ak ∼= lim−→Bk.
Moreover, we may assume Bk = Ak ∗ F∞ (the free product), where

F∞ := C∗(x1, x2, . . . | ‖xi‖ ≤ 1)

is the universal C∗-algebra generated by a countable number of contractive generators. If Ak is
(semi-)projective, then so is Ak ∗ F∞.

Proof. The algebras Ak are separable. Thus, for each k there exists a surjective morphism
ϕk : F∞ → Ak. Consider the universal C∗-algebra G := C∗(xi,j | i, j ∈ N, ‖xi,j‖ ≤ 1).
The only difference between G and F∞ is in the enumeration of generators, and therefore
G ∼= F∞.

Set Bk := Ak ∗ G and define a morphism ψk : G → Bk+1 via ψk(x1,j) := ϕk+1(xj), and
ψk(xi,j) := xi−1,j if i ≥ 2. Define a morphism δk : Bk → Bk+1 as δk := γk ∗ ψk. It is easy to
check that δk is surjective.

For each i, the elements xi,1, xi,2, . . . ∈ G generate a copy of F∞. In this way, we may
think of G as a countable free product of copies of F∞. Then, the map δk looks as follows:

Bk :=

δk
��

Ak ∗

γk
��

F∞ ∗
ϕk

||xx
xx
xx
xx

F∞ ∗
∼=
}}zz
zz
zz
zz

F∞ ∗
∼=
}}zz
zz
zz
zz

. . .

Bk+1 := Ak+1 ∗ F∞ ∗ F∞ ∗ F∞ ∗ . . .

The natural inclusions ιk : Ak → Bk intertwine the connecting morphisms γk and δk, i.e.,
δk ◦ ιk = ιk+1 ◦ γk. Thus, the morphisms ιk define a natural morphism ι : A = lim−→Ak →
B := lim−→Bk. Since each ιk is injective, so is ι.
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Let us check that ι is also surjective. Let b ∈ B and ε > 0 be given. We need to find some
a ∈ A with b =ε ι(a), i.e., ‖b− ι(a)‖ < ε. First, we may find an index k and b′ ∈ Bk such that
δ∞,k(b

′) =ε/2 b. By definition, Bk = Ak ∗ G. This implies that every element of Bk can be
approximated by finite polynomials involving the elements of A and the generators xi,j .
Actually, we only need that b′ is approximated up to ε/2 by an element b′′ in the sub-C∗-
algebra Ak ∗C∗(xi,j | i ∈ {1, 2, . . . , l}, j ∈ N, ‖xi,j‖ ≤ 1). Note that δk+l,k(b

′′) lies in the image
of ιk+l, say δk+l,k(b

′′) = ιk+l(x) for x ∈ Ak+l. Then a = γ∞,k+l(x) ∈ A satisfies b =ε ι(a),
which completes the proof of surjectivity.

Note that F∞ is projective. It follows from [Bla85, Proposition 2.6, 2.31] that Ak ∗ F∞ is
(semi-)projective, if Ak is so. �

Corollary 4.10. If a separableC∗-algebra has trivial shape, then it is an inductive limit of projective
C∗-algebra with surjective connecting morphisms.

Remark 4.11 (Dadarlat, [Dad11]). Dadarlat gives an example of a commutative C∗-algebra
A = C0(X, x0) such thatA⊗K is contractible (in particular has trivial shape), whileA is not
contractible. In fact, X is a two-dimensional CW-complex with non-trivial fundamental
group, so that (X, x0) does not have trivial shape (in the pointed, commutative category).
It follows from [Bla85, Proposition 2.9] that C0(X, x0) also does not have trivial shape (as
a C∗-algebra).

Thus, while A⊗ K has trivial shape, the full hereditary sub-C∗-algebra A ⊂ A⊗ K does
not. This shows that trivial shape does not pass to full hereditary sub-C∗-algebras. From
this we may deduce the following result.

Proposition 4.12. Projectivity does not pass to full hereditary sub-C∗-algebras.

Proof. Let A be Dadarlat’s example of a C∗-algebra with A ⊗ K ≃ 0 while A ≁Sh 0, see
[Dad11] and 4.11. By Corollary 4.10, A ⊗ K is an inductive limit of projective C∗-algebra
Pk with surjective connecting morphisms γk : Pk → Pk+1. Consider the pre-images Qk :=
γ−1
∞,k(A) ⊂ Pk. Since A ⊂ A⊗ K is a full hereditary sub-C∗-algebra, so is Qk ⊂ Pk.
Note thatA ∼= lim−→Qk. If all algebrasQk were projective, then Awould have trivial shape

by Theorem 4.4. Since this is not the case, some algebras Qk are not projective. �

Remark 4.13. It was recently shown by Eilers and Katsura, [ET11], that also semiprojec-
tivity does not pass to full hereditary sub-C∗-algebras.

5. RELATIONS AMONG THE CLASSES OF (WEAKLY) (SEMI-)PROJECTIVE C∗-ALGEBRAS

In this section we will study the relation among the four classes of (weakly) semipro-
jective C∗-algebras and (weakly) projective C∗-algebras. As it turns out, the situation is
completely analogous to the commutative setting.

Lemma 5.1. Let A be a C∗-algebra, P a projective C∗-algebra and α : A → P , β : P → A two
morphisms with β ◦ α = idA. Then A is projective.

Proof. Let B be any C∗-algebra, J � B an ideal, and ϕ : A→ B/J a morphism. We need to
find a lift ψ : A→ B.
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Since P is projective, there exists a morphism
ω : P → B that lifts ϕ ◦ β : P → B/J , i.e., π ◦ ω =
ϕ ◦ β. Set ψ := ω ◦ α : A → B. Then π ◦ ψ =
π ◦ ω ◦ α = ϕ ◦ β ◦ α = ϕ ◦ idA. The situation is
shown in the diagram on the right.

B

π
����

A α
//

idA

;;P
β
//

ω

77

A ϕ
// B/J

�
Theorem 5.2. Let A be a semiprojective C∗-algebra of trivial shape. Then A is projective.

Proof. By Corollary 4.10, A is an inductive limit of projective C∗-algebra Pk with surjective
connecting morphisms γk : Pk → Pk+1.

The semiprojectivity of A gives an index k and a lift
α : A → Pk such that γ∞,k ◦ α = idA. It follows from
Lemma 5.1 that A is projective. The situation is shown in
the diagram on the right.

Pk

����
γ∞,k
����

A
idA

//

α
>>

A

�
Since every projective C∗-algebra is contractible, we get the following corollary:

Corollary 5.3. Let A be a semiprojective C∗-algebra of trivial shape. Then A is contractible.

Loring, [Lor09, Lemma 5.5], shows that for a weakly projective C∗-algebra A and a semi-
projective C∗-algebra D the set [D,A] of homotopy classes of morphisms from D to A is
trivial. A variant of this proof shows condition (b) in Theorem 4.4, so that we get the
following:

Proposition 5.4 (Loring, [Lor09, Lemma 5.5]). Every weakly projective C∗-algebra has trivial
shape.

This result of Loring shows that a weakly projective C∗-algebra is weakly semiprojective
and has trivial shape. We will now show that the converse is also true.

Theorem 5.5. Let A be a weakly semiprojective C∗-algebra of trivial shape. Then A is weakly
projective.

Proof. LetB be aC∗-algebra, let J�B be an ideal, and π : B → B/J the quotient morphism.
Let ϕ : A→ B/J be a morphism. Let F ⊂ A be a finite set, and ε > 0. We need to find a lift
ψ : A→ B such that π ◦ ψ =F

ε ϕ.
From Theorem 4.4 we get an inductive system (Pk, γk) of

projective C∗-algebras Pk with inductive limit A. Consider-
ing the identity morphism idA : A → A ∼= lim−→Pk we get from
Proposition 2.6 an index k and a morphism α : A → Pk such
that γ∞,k ◦ α =F

ε idA. Consider the morphism ϕ ◦ γ∞,k : Pk →
B/J . The projectivity of Pk gives us a lift β : Pk → B such that
π ◦ β = ϕ ◦ γ∞,k. The situation is shown in the diagram on the
right.

B

π
��

Pk γ∞,k

//

β

66

A
ψ

==

ϕ
//

α

\\ B/J

Set ψ := β ◦ α. Then π ◦ ψ = π ◦ β ◦ α = ϕ ◦ γ∞,k ◦ α =F
ε ϕ as desired. �

We summarize the results as follows:
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Theorem 5.6. Let A be a C∗-algebra. Then the following are equivalent:

(a) A is (weakly) projective
(b) A is (weakly) semiprojective and has trivial shape

Corollary 5.7. Let A be a C∗-algebra. Then the following are equivalent:

(a) A is projective
(b) A is semiprojective and weakly projective
(c) A is semiprojective and contractible
(d) A is semiprojective and has trivial shape

5.8. Corollary 5.7 confirms a conjecture of Loring. We note that the results in Theorem 5.2,
Corollary 5.3, Proposition 5.4 (see [Lor09, Lemma 5.5]), Theorem 5.5, Theorem 5.6 and
Corollary 5.7 are in exact analogy with results in commutative shape theory, as shown in
the table below.

A (weakly) projective C∗-algebra is the non-commutative analog of an (approximate)
absolute retract, and a (weakly) semiprojective C∗-algebra is the non-commutative analog
of an (approximate) absolute neighborhood retract. The analogies are shown in the table
below. We refer the reader to [ST11, 2.1, 2.2, 2.3] and the references therein for definitions
and further discussion.
commutative world noncommutative world
(for a compact, metric space X): (for a separable C∗-algebra A):

analogy of notions

• X is an absolute retract (AR) • A is projective (P)

• X is an approximate absolute retract (AAR) • A is weakly projective (WP)

• X is an absolute neighborhood retract (ANR) • A is semiprojective (SP)

• X is an approximative absolute neighborhood • A is weakly semiprojective (WSP)
retract (AANR)

analogy of results

• X is AR ⇔ X is ANR and X ≃ pt • A is P ⇔ A is SP and A ≃ 0
(see [Bor67, IV.9.1]) (see Theorem 5.2)

• X is AAR ⇔ X is AANR and X ∼Sh pt • A is WP ⇔ A is WSP and A ∼Sh 0
(see [Gmu71] and [Bog75]) (see [Lor09] and Theorem 5.5)

• if X is ANR, then: X ∼Sh pt ⇔ X ≃ pt • if A is SP, then: A ∼Sh 0 ⇔ A ≃ 0
(see [Bor67]) (see Corollary 5.3)

6. QUESTIONS

Question 6.1. Assume A has trivial shape. Is A an inductive limit, lim−→Ak, with surjective
connecting morphisms of projective C∗-algebras Ak with gen(Ak) ≤ gen(A) + 1?

The result of Loring and Shulmann, [LS10, Theorem 7.4], see Theorem 4.1, shows that
Question 6.1 has a positive answer for cones. Furthermore, it follows from Theorem 4.4
that A is an inductive limit, lim−→Ak, of projective C∗-algebras Ak with gen(Ak) ≤ gen(A)+1,
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but the connecting morphisms may not be surjective. Using Proposition 4.9, we can always
arrange that the connecting morphisms are surjective, but the approximating algebras are
replaced by Ak ∗ F∞, which have gen(Ak ∗ F∞) = ∞.
Say A has property (∗) if [D,A] = pt for every semiprojective C∗-algebra D. This means
that for each (fixed) semiprojective D, all morphisms from D to A are homotopic. Every
C∗-algebra of trivial shape has property (∗). We ask if the converse is true:

Question 6.2. Assume A has property (∗). Does A have trivial shape?

IfA is an inductive limit of semiprojective C∗-algebras, then property (∗) forA implies that
A has trivial shape. As mentioned in Question 1.1, see [Bla85, 4.4], it is however an open
question whether every C∗-algebra is an inductive limit of semiprojective C∗-algebras.

ACKNOWLEDGMENTS

I thank Eduard Ortega and Mikael Rørdam for their valuable comments, and especially
for their careful reading of all the technical details. I thank Tatiana Shulman and Leonel
Robert for discussions and feedback on this paper. I thank George Elliott for interesting
discussions on approximate intertwinings.

REFERENCES

[Bla85] B. Blackadar, Shape theory for C∗-algebras, Math. Scand. 56 (1985), 249–275.
[Bla06] , Operator algebras. Theory of C∗-algebras and von Neumann algebras, Encyclopaedia of Mathe-

matical Sciences 122. Operator Algebras and Non-Commutative Geometry 3. Berlin: Springer. xx,
517 p. , 2006.

[Bog75] S.A. Bogatyi, Approximative and fundamental retracts, Math. USSR, Sb. 22 (1975), 91–103.
[Bor67] K. Borsuk, Theory of retracts, Monografie Matematyczne. 44. Warszawa: PWN - Polish Scientific

Publishers. 251 p. , 1967.
[CD10] A. Chigogidze and A.N. Dranishnikov, Which compacta are noncommutative ARs?, Topology Appl.

157 (2010), no. 4, 774–778.
[CL11] A. Chigogidze and T.A. Loring, Private communication, 2011.
[Dad99] Dadarlat, M. and Eilers, S., Approximate homogeneity is not a local property, J. Reine Angew. Math. 507

(1999), 1–13.
[Dad11] Dadarlat, M., A stably contractible C∗-algebra which is not contractible, preprint, 2011.
[EK86] E.G. Effros and J. Kaminker, Homotopy continuity and shape theory for C∗-algebras, Geometric methods

in operator algebras, Proc. US-Jap. Semin., Kyoto/Jap. 1983, Pitman Res. Notes Math. Ser. 123, 152-
180, 1986.

[Ell93] G.A. Elliott, On the classification of C∗-algebras of real rank zero, J. Reine Angew. Math. 443 (1993),
179–219.

[ELP98] S. Eilers, T.A. Loring, and G.K. Pedersen, Stability of anticommutation relations: An application of
noncommutative CW complexes, J. Reine Angew. Math. 499 (1998), 101–143.

[ET11] S. Eilers and Katsura T., Private communication, 2011.
[Gmu71] A. Gmurczyk, Approximative retracts and fundamental retracts, Colloq. Math. 23 (1971), 61–63.
[Lor97] T.A. Loring, Lifting solutions to perturbing problems in C∗-algebras, Fields Institute Monographs 8.

Providence, RI: American Mathematical Society. ix, 165 p. , 1997.
[Lor09] , Weakly Projective C∗-algebras, preprint, arXiv:0905.1520, 2009.
[LR95] H. Lin and M. Rørdam, Extensions of inductive limits of circle algebras, J. Lond. Math. Soc., II. Ser. 51

(1995), no. 3, 603–613.
[LS10] T.A. Loring and T. Shulman, Noncommutative Semialgebraic sets and Associated Lifting Problems,

preprint, arXiv:0907.2618, 2010.



Appendix. E 131

INDUCTIVE LIMITS OF PROJECTIVE C∗-ALGEBRAS 23
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[MS63] S. Mardešić and J. Segal, ǫ-mappings onto polyhedra, Trans. Am. Math. Soc. 109 (1963), 146–164.
[Nag70] K. Nagami, Dimension theory. With an appendix by Yukihiro Kodama, Pure and Applied Mathematics.

Vol. 37. New York-London: Akademic Press 1970. XI,256 p. , 1970.
[Nag04] M. Nagisa, Single generation and rank of C∗-algebras, Kosaki, Hideki (ed.), Operator algebras and

applications. Proceedings of the US-Japan seminar held at Kyushu University, Fukuoka, Japan,
June 7–11, 1999. Tokyo: Mathematical Society of Japan. Advanced Studies in Pure Mathematics 38,
135-143, 2004.

[Rør02] M. Rørdam, Classification of nuclear, simple C∗-algebras, Entropy in operator algebras. Berlin:
Springer. Encycl. Math. Sci. 126(VII), pp 1–145. , 2002.

[ST11] A.P.W. Sørensen and H. Thiel, A characterization of semiprojectivity for commutative C∗-algebras,
preprint, arXiv:1101.1856, 2011.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF COPENHAGEN, UNIVERSITETSPARKEN 5,
DK-2100, COPENHAGEN Ø, DENMARK

E-mail address: thiel@math.ku.dk



132



Appendix. F 133

SEMIPROJECTIVITY WITH AND WITHOUT A GROUP

ACTION

N. CHRISTOPHER PHILLIPS, ADAM P. W. SØRENSEN, AND HANNES THIEL

Abstract. The equivariant version of semiprojectivity was recently intro-
duced by the first author. We study properties of this notion, in particular its

relation to ordinary semiprojectivity of the crossed product and of the algebra

itself.
We show that equivariant semiprojectivity is preserved when the action

is restricted to a cocompact subgroup. Thus, if a second countable compact

group acts semiprojectively on a C∗-algebra A, then A must be semiprojective.
This fails for noncompact groups: we construct a semiprojective action of Z
on a nonsemiprojective C∗-algebra.

We also study equivariant projectivity and obtain analogous results, how-
ever with fewer restrictions on the subgroup. For example, if a discrete group

acts projectively on a C∗-algebra A, then A must be projective. This is in

contrast to the semiprojective case.
We show that the crossed product by a semiprojective action of a finite

group on a unital C∗-algebra is a semiprojective C∗-algebra. We give examples

to show that this does not generalize to all compact groups.

Equivariant semiprojectivity was introduced in [Phi12], by applying the usual
definition of semiprojectivity to the category of unital G-algebras (C∗-algebras with
actions of the group G) with unital G-equivariant ∗-homomorphisms. See Defini-
tion 1.1 below. The purpose of [Phi12] was to show that certain actions of compact
groups on various specific C∗-algebras are semiprojective. In particular, it is shown
that any action of a second countable compact group on a finite dimensional C∗-
algebra is semiprojective, and that for n <∞, quasifree actions of second countable
compact groups on the Cuntz algebras On are semiprojective.

In this paper we study equivariant semiprojectivity more abstractly. We also
introduce equivariant projectivity and carry out a parallel study of it. We extend
the definition to allow actions by general locally compact groups, and we consider
the nonunital version of equivariant semiprojectivity.

From the work in [Phi12], it is not even clear whether a semiprojective action of
a noncompact group could exist. One reason for being skeptical was that the trivial
action of Z on C is not semiprojective, as was shown by Blackadar ([Bla12]). We
give a wide reaching generalization of this result in Corollary 6.5, by showing that
if the trivial action of a group on a (nonzero) C∗-algebra is semiprojective then the
group must be compact.
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There are, however, many nontrivial semiprojective (and even projective) actions
of noncompact groups. Indeed, given a countable discrete group G and a semipro-
jective C∗-algebra A, we show in Proposition 2.4 that the free Bernoulli shift action
of G on the free product ∗g∈GA is equivariantly semiprojective.

Our main motivation was to understand how equivariant semiprojectivity (with
group action) is related to semiprojectivity (without group action). The following
question naturally occurs:

Question 0.1. Assume that (G,A, α) is an equivariantly semiprojective G-algebra
(Definition 1.1 below). Is A semiprojective in the usual sense?

We give a positive answer in Corollary 3.11 under the assumption that the group
G is compact. If we drop this assumption, then the answer to the question may be
negative. Indeed, in Example 3.12 we construct a semiprojective action of Z on a
nonsemiprojective C∗-algebra.

Question 0.1 is a special case of a more natural question:

Question 0.2. Assume that (G,A, α) is a G-algebra that is equivariantly semipro-
jective (equivariantly projective), and let H 6 G be a closed subgroup. Is the
restricted H-algebra (H,A, α|H) equivariantly semiprojective (equivariantly pro-
jective)?

The two main results of this paper answer this question positively under certain
natural assumptions on the factor space G/H. In the semiprojective case, we get
a positive answer (Theorem 3.10) if H is cocompact, that is, if G/H is compact.
In the projective case, we get a positive answer if G/H is uniformly finitistic. See
Theorem 4.19. This condition on G/H is much less restrictive than compactness.

This paper is organized as follows. In Section 1 we give the definition of equi-
variant semiprojectivity, Definition 1.1. We also introduce equivariant projectivity
(Definition 1.2), and we investigate the relation between the unital and nonunital
versions of these definitions (Lemma 1.5, Lemma 1.6, and Proposition 1.7).

In Section 2 we introduce free Bernoulli shifts, and we show in Proposition 2.4
that these provide examples of semiprojective actions of countable discrete groups.
We also study the orthogonal Bernoulli shift ofG on

⊕
GA = C0(G,A) for (semi)pro-

jective C∗-algebras A. It turns out to be a much harder problem to determine when
this action is semiprojective, and we give a positive answer only for finite cyclic
groups of order 2n. See Proposition 2.10.

In Section 3 we study Question 0.2 in the semiprojective case. We give a positive
answer (Theorem 3.10) when G/H is compact. It follows (Corollary 3.11) that a
second countable compact group can only act semiprojectively on a C∗-algebra that
is semiprojective in the usual sense. We show that this is not true in general, by
constructing in Example 3.12 a semiprojective action of Z on a nonsemiprojective
C∗-algebra. The main ingredient to obtain the results of this section is the induction
functor (Definition 3.1), which assigns to each H-algebra an induced G-algebra. We
show that this functor is exact (Proposition 3.6) and continuous (Proposition 3.7).

In Section 4 we study Question 0.2 in the projective case. The main result is
Theorem 4.19, which gives a positive answer to the question when G/H is right
uniformly finitistic in the sense of Definition 4.5 and the left and right uniformities
on G agree. The class of uniformly finitistic spaces includes both compact and
discrete spaces. We know of no example of a locally compact group that is not
uniformly finitistic.

The main technique to obtain the results of this section is an induction functor
which uses uniformly continuous functions; see Definition 4.14. In Theorem 4.16,
we show that this functor is exact when G/H is right uniformly finitistic and the
left and right uniformities on G agree. To prove this, we need conditions under



Appendix. F 135

SEMIPROJECTIVITY WITH AND WITHOUT A GROUP ACTION 3

which uniformly continuous functions into a quotient C∗-algebra can be lifted to
uniformly continuous functions, and in Theorem 4.8 we provide a satisfying answer
that might also be of independent interest.

In Section 5, we study semiprojectivity of crossed products. In Theorem 5.1, we
show that for a discrete group G whose group C∗-algebra is semiprojective, semipro-
jectivity of an action α : G → Aut(A) on a unital C∗-algebra implies semipro-
jectivity of the crossed product AoαG. Example 5.2 shows that this can fail when
the group is compact but not finite. At the end of Section 5, we give counterex-
amples to several other plausible relations between equivariant semiprojectivity for
finite groups and semiprojectivity, and state further open problems.

In Section 6, we study semiprojectivity of fixed point algebras. We show that for
a saturated, semiprojective action of a finite group G on a unital C∗-algebra A, the
fixed point algebra AG is semiprojective (Proposition 6.2). We show in Example 6.1
that this does not generalize to compact groups. In the case that a noncompact
group G acts semiprojectively, we show in Theorem 6.4 that the fixed point algebra
is trivial. Thus, the trivial action of a noncompact group on a nonzero C∗-algebra
is never semiprojective. We therefore obtain a precise characterization when the
trivial action of a group is (semi)projective (Corollary 6.5).

We use the following terminology and notation in this paper. By a topological
group we understand a group G together with a Hausdorff topology such that the
map (s, t) 7→ s · t−1 is jointly continuous. We mainly consider locally compact
topological groups. For such a group, we denote its Haar measure by µ. By the
Birkhoff-Kakutani theorem (see for instance Theorem 1.22 of [MZ55]), G is metriz-
able if and only if it is first countable. Moreover, in that case, the metric d may
be chosen to be left invariant, that is, d(rs, rt) = d(s, t) for all r, s, t ∈ G. We will
always take our metrics to be left invariant. We usually require G to be second
countable.

For a topological group G, by a G-algebra we understand a triple (G,A, α) in
which A is a C∗-algebra and α : G → Aut(A) is a continuous action of G on A.
Continuity means that for each a ∈ A the map s 7→ αs(a) is continuous. (Such an
action is also called strongly continuous.)

By a G-morphism between two G-algebras (G,A, α) and (G,B, β) we mean a
G-equivariant ∗-homomorphism, that is, a ∗-homomorphism ϕ : A → B such that
βs ◦ ϕ = ϕ ◦ αs for each s ∈ G. We say that a G-algebra (G,A, α) is separable if A
is a separable C∗-algebra and G is second countable (hence also metrizable).

Given a G-algebra (G,A, α), we denote by AG its fixed point algebra

AG =
{
a ∈ A : αs(a) = a for all s ∈ G

}

(even when G is not compact), and by A oα G the (maximal) crossed product of
(G,A, α).

If A is a C∗-algebra, we denote by A+ its unitization (adding a new identity

even if A already has an identity). We let Ã be A+ when A is not unital and be A

when A is unital. If A is a G-algebra, then A+ and Ã are both G-algebras in an
obvious way.

Subalgebras of C∗-algebras are always assumed to be C∗-subalgebras, and ideals
are always closed and two sided.

We use the convention N = {1, 2, . . .}.

1. Equivariant semiprojectivity and equivariant projectivity

In this section we recall the definition of equivariant semiprojectivity. We also
give a nonunital version, and we will see in Lemma 1.5, in Lemma 1.6, and in
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Proposition 1.7 how the two variants are related. We also introduce equivariant
projectivity.

The unital case of the following definition is [Phi12, Definition 1.1].

Definition 1.1. A separable G-algebra (G,A, α) is called equivariantly semipro-
jective if whenever (G,C, γ) is a G-algebra, J1 ⊂ J2 ⊂ · · · is an increasing sequence

of G-invariant ideals in C, J =
⋃∞
n=1 Jn, πn : C/Jn → C/J is the quotient ∗-homo-

morphism for n ∈ N, and ϕ : A → C/J is a G-morphism, then there exist n ∈ N
and a G-morphism ψ : A→ C/Jn such that πn ◦ ψ = ϕ.

When no confusion can arise, we say that A is equivariantly semiprojective, or
that α is semiprojective.

We say that a unital G-algebra (G,A, α) is equivariantly semiprojective in the
unital category if the same condition holds, but under the additional assumption
that C and ϕ are unital, and the additional requirement that one can choose ψ to
be unital.

The lifting problem of the definition means that in the right diagram that appears
below Definition 1.2, the solid arrows are given, and n and ψ are supposed to exist
which make the diagram commute.

Definition 1.2. A separable (G,A, α) is called equivariantly projective if whenever
(G,C, γ) is a G-algebra, whenever J is a G-invariant ideal in C with quotient ∗-
homomorphism π : C → C/J , and whenever ϕ : A → C/J is a G-morphism, then
there exists a G-morphism ψ : A→ C such that π ◦ ψ = ϕ.

When no confusion can arise, we say that A is equivariantly projective, or that
α is projective.

We say that a unital G-algebra is equivariantly projective in the unital category
if the same condition holds, but under the additional assumption that C and ϕ are
unital, and the additional requirement that one can choose ψ to be unital.

The lifting problem of the definition
means that the left diagram on the right
can be completed. Again, the solid ar-
rows are given, and ψ is supposed to ex-
ist which makes the diagram commute.

When working with semiprojectivity
and projectivity, it is often convenient,
in the notation of Definition 1.1 and De-
finition 1.2, to require that the map ϕ
be an isomorphism.

C

π

��
A ϕ

//

ψ

=={
{

{
{

{
C/J.

C

��
C/Jn

πn

��
A ϕ

//

ψ
=={

{
{

{
C/J.

This can also be done in the equivariant case. The proof follows that of [Bla04,
Proposition 2.2]. We give the proof since [Bla04] is a survey article and its proof
skips some details.

Lemma 1.3. Let A be a C∗-algebra, let B ⊂ A be a C∗-subalgebra, and let I1 ⊂
I2 ⊂ · · · ⊂ A be ideals. Then B ∩⋃∞

n=1 In =
⋃∞
n=1(B ∩ In).

Proof. We have
⋃∞
n=1(B ∩ In) ⊂ B ∩

⋃∞
n=1 In, so

⋃∞
n=1(B ∩ In) ⊂ B ∩

⋃∞
n=1 In.

For the reverse, let b ∈ B and suppose that b 6∈ ⋃∞
n=1(B ∩ In). Let ρ be the

norm of the image of b in B
/⋃∞

n=1(B ∩ In). For n ∈ N, let κn : B → B/(B ∩ In)
and πn : A → A/In be the quotient maps. Then ‖κn(b)‖ ≥ ρ for all n ∈ N. The
inclusion ι : B → A induces injective ∗-homomorphisms ιn : B/(B ∩ In) → A/In
such that πn ◦ ι = ιn ◦ κn. Since ιn is isometric, we have

‖(πn ◦ ι)(b)‖ = ‖ιn(κn(b))‖ = ‖κn(b)‖ ≥ ρ,
whence dist(b, In) ≥ ρ. This is true for all n ∈ N, so b 6∈ ⋃∞

n=1 In. �
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Proposition 1.4. Let (G,A, α) be a separable G-algebra. Like for usual (semi)pro-
jectivity, the definitions of equivariant semiprojectivity (Definition 1.1) and of equi-
variant projectivity (Definition 1.2) for (G,A, α), in both the unital and nonunital
categories, are unchanged if, in the notation of these definitions, we require one or
both of the following:

(1) ϕ is injective.
(2) ϕ is surjective.

Proof. We give the proof for equivariant semiprojectivity in the unital category.
The other cases are similar but slightly simpler.

Throughout, let the notation be as in Definition 1.1.
We first prove the result for the restriction (1). So assume that C, J1 ⊂ J2 ⊂

· · · ⊂ C, J , quotient maps πn : C/Jn → C/J , and ϕ : A → C/J , all as in Defi-
nition 1.1, are given. The following diagram shows the algebras and maps to be
constructed:

A⊕ C ρ //

��

C

��
A⊕ C/Jn

ρn //

idA ⊕πn

��

C/Jn

πn

��
A

µ //

ν

;;v
v

v
v

v

ϕ

77A⊕ C/J ρ∞ // C/J.

Equip A⊕C, A⊕C/Jn for n ∈ N, and A⊕C/J with the direct sum actions of G. Let
ρ : A⊕C → C, ρn : A⊕C/Jn → C/Jn for n ∈ N, and ρ∞ : A⊕C/J → C/J be the
projections on the second summand. Define µ : A → A⊕ C/J by µ(a) = (a, ϕ(a))
for a ∈ A. Then µ is a unital injective G-morphism such that ρ∞ ◦ µ = ϕ. By
hypothesis, there are n ∈ N and a unital G-morphism ν : A→ A⊕C/Jn such that
κn ◦ ν = µ. Then the map ψ = ρn ◦ ν is a unital G-morphism such that πn ◦ ν = ϕ.
This completes the proof of (1).

We now prove that the condition is equivalent when both restrictions (2) and (1)
are applied. It follows that the condition is also equivalent when only (2) is applied.

So let the notation be as before, and assume in addition that ϕ is injective. The
following diagram shows the algebras and maps to be constructed:

D
ρ //

��

C

��
D/In

ρn //

κn

��

C/Jn

πn

��
A

µ //

ν

=={
{

{
{

ϕ

88
D/I

ρ∞ // C/J.

Set D = π−1(ϕ(A)) and I = D ∩ J . For n ∈ N set In = D ∩ Jn. Then⋃∞
n=1 In = I by Lemma 1.3.
Let ρ : D → C be the inclusion. Then ρ drops to a ∗-homomorphism ρn : D/In →

C/Jn for every n ∈ N, and to a ∗-homomorphism ρ∞ : D/I → C/J . All these maps
are injective. Clearly the range of ϕ is contained in ρ∞(D/I), so there is a ∗-homo-
morphism µ : A → D/I such that ρ∞ ◦ µ = ϕ. This ∗-homomorphism is injective
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because ϕ is and surjective by the definition of D. The hypothesis implies that
there are n ∈ N and ν : A→ D/In such that κn ◦ ν = µ. Then the map ψ = ρn ◦ ν
satisfies πn ◦ ν = ϕ. �

It is a standard result in the theory of semiprojectivity (contained in Lemma
14.1.6 and Theorem 14.1.7 of [Lor97b]) that for a nonunital C∗-algebra A the fol-
lowing are equivalent:

(1) A is semiprojective.

(2) Ã is semiprojective in the unital category.

(3) Ã is semiprojective.

In the equivariant case, the equivalence of all three conditions holds when the
group G is compact. The proof of the analog of the implications from (1) to (3)
and from (2) to (3) breaks down when the trivial action of G on C is not semipro-
jective in the nonunital category, but the remaining implications hold in general.
The trivial action on C is always semiprojective in the unital category, but we will
show in Corollary 6.5 that it is semiprojective in the nonunital category only if G
is compact.

Lemma 1.5. Let (G,A, α) be a separable G-algebra, with A nonunital. Then A is

equivariantly (semi)projective if and only if Ã is equivariantly (semi)projective in
the unital category.

Proof. We give the proof for equivariant semiprojectivity. The proof for equivariant
semiprojectivity is similar but easier. We use the notation of Definition 1.1.

Since A is nonunital, we have Ã = A+.
First assume that A is equivariantly semiprojective, and that C and ϕ : A+ →

C/J are unital. By equivariant semiprojectivity of A, there are n ∈ N and ψ0 : A→
C/Jn such that πn ◦ψ0 = ϕ|A. Then the formula ψ(a+λ ·1A+) = ψ0(a)+λ ·1C/Jn ,
for a ∈ A and λ ∈ C, defines a G-morphism ψ : A+ → C/J such that πn ◦ ψ = ϕ.

We have shown that Ã is equivariantly semiprojective in the unital category.
Now assume that A+ is equivariantly semiprojective in the unital category, and in

the notation of Definition 1.1 take C and ϕ : A→ C/J to be not necessarily unital.
We have obvious isomorphisms C+/Jn ∼= (C/Jn)

+ for n ∈ N and C+/J ∼= (C/J)+.
(We add a new unit even if C is already unital.) Let νn : C

+/Jn → C for n ∈ N,
and ν∞ : C+/J → C, be the maps associated with the unitizations. Define a unital
G-morphism ϕ+ : A+ → C+/J by ϕ+((a + λ · 1A+) = ϕ(a) + λ · 1C+/J for a ∈ A
and λ ∈ C. For n ∈ N, similarly define π+

n : C+/Jn → C+/J , giving ν∞ ◦ π+
n = νn.

By hypothesis, there are n ∈ N and ψ0 : A
+ → C+/Jn such that π+

n ◦ ψ0 = ϕ+.
We claim that ψ0(A) ⊂ C/Jn. We have

νn ◦ ψ0 = ν∞ ◦ π+
n ◦ ψ0 = ν∞ ◦ ϕ+,

which vanishes on A. The claim follows. So ψ = ψ0|A : A→ C/Jn is a G-morphism
such that πn ◦ ψ = ϕ. �

Lemma 1.6. Let (G,A, α) be a separable G-algebra, with A unital. If A is equivari-
antly semiprojective, then A is equivariantly semiprojective in the unital category.
If G is compact, then the converse also holds.

Proof. The proof is essentially the same as that of Lemma 14.1.6 of [Lor97b]. In
the first paragraph of the proof there, Bl should be Cl and it is 1 − ϕl(1), not
ϕl(1)− 1, that is a projection. In the second paragraph of the proof there, we need
the equivariant version of Lemma 14.1.5 of [Lor97b]; it follows from Corollary 1.9
of [Phi12]. �
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For compact groups, we now obtain the analog of the equivalence of the first two
parts in [Lor97b, Theorem 14.1.7].

Proposition 1.7. Let G be a second countable compact group, and let A be a

separable G-algebra. Then A is equivariantly semiprojective if and only if Ã is.

Proof. Combine Lemma 1.5 and Lemma 1.6. �

The paper [Phi12] contains many examples of equivariantly semiprojective C∗-
algebras. In particular, it is shown that for a semiprojective C∗-algebra A and a
second countable compact group G, the trivial action of G on A is semiprojective
[Phi12, Corollary 1.9]. In the same way one may prove the analog for the projective
case, and we include the short argument for completeness. The following lemma is
an immediate consequence of [Phi12, Lemma 1.6].

Lemma 1.8. Let G be a second countable compact group and let π : A → B be a
surjective G-morphism of G-algebras. Then the restriction of π to the fixed point
algebras is surjective, that is, π(AG) = BG.

Lemma 1.9. Let G be a second countable compact group, let A be a projective C∗-
algebra, and let ι : G→ Aut(A) be the trivial action. Then (G,A, ι) is equivariantly
projective.

Proof. By Proposition 1.4, it is enough to show that any surjective G-morphism
π : C → A has an equivariant right inverse. Since G acts trivially on A, we have
AG = A, and then π(CG) = A by Lemma 1.8. We can now use the projectivity
of A to get a ∗-homomorphism γ : A → CG such that π ◦ γ = id. Let ψ be the
composition of γ with the inclusion of CG in C. Then ψ is the desired equivariant
right inverse of π. �

Remark 1.10. The statement of Lemma 1.8 does not necessarily hold if G is not
compact. In fact, for every (second countable) noncompact group G, we construct
in the proof of Theorem 6.4 a surjective G-morphism π : A→ B such that π(AG) 6=
BG.

So far, we have only seen semiprojective actions of compact groups. In the next
section we will show that every countable discrete group even admits projective
actions.

2. Free and orthogonal Bernoulli shifts

In this section, we introduce for every countable discrete group G and C∗-
algebra A a natural action, called the free Bernoulli shift, of G on the full free
product ∗g∈GA. We show (Proposition 2.4) that this action is (semi)projective if
A is (nonequivariantly) semiprojective.

We also investigate the orthogonal Bernoulli shift of G on
⊕

g∈GA, that is, the
translation action of G on C0(G,A). It seems to be much more difficult to determine
when this action is (semi)projective. In Proposition 2.10 we give a positive answer
for the special case that G is finite cyclic of order 2n.

We use the following notation, roughly as before Remark 3.1.2 of [Lor97b], for
the universal C∗-algebra on countably many contractions.

Notation 2.1. Set

F∞ = C∗〈z1, z2, . . . | ‖zj‖ ≤ 1 for j ∈ N
〉
,

the universal C∗-algebra on generators z1, z2, . . . with relations ‖zj‖ ≤ 1 for j ∈ N.
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Let G be a countable discrete group. Set PG = ∗g∈GF∞. For s ∈ G let
ιs : F∞ → ∗g∈GF∞ be the map which sends F∞ to the copy of F∞ in PG indexed
by s. We identify PG with

C∗〈{zs,k : s ∈ G and k ∈ N} | ‖zs,k‖ ≤ 1 for s ∈ G and k ∈ N
〉
,

in such a way that ιs(zk) = zs,k for s ∈ G and k ∈ N.

Any separable C∗-algebra A is a quotient of F∞. This is just the fact that A
contains a countable set of contractive generators. Similarly, for any countable
discrete group G, every separable G-algebra A is an equivariant quotient of PG.

Lemma 2.2. Let A be a C∗-algebra and let G be a discrete group. For s ∈ G
let ιA,s : A → ∗g∈GA be the map which sends A to the copy of A in ∗g∈GA in-
dexed by s. Then there exists a unique action τA : G → Aut

(∗g∈GA) such that

τAg (ιA,s(a)) = ιA,gs(a) for all g, s ∈ G and a ∈ A. Moreover, for every ∗-homomor-
phism ϕ : A→ B between C∗-algebras A and B, the corresponding ∗-homomorphism
∗g∈G ϕ : ∗g∈GA→ ∗g∈GB is equivariant.

Proof. This is immediate. �

Definition 2.3. Let A be a separable C∗-algebra and let G be a countable discrete
group. The action τA of Lemma 2.2 is called the free Bernoulli shift based on A.
If A = F∞, so that ∗g∈GA = PG, we call it the universal free Bernoulli shift , and
denote it by τ .

Following Notation 2.1, we have τs(zt,k) = zst,k for s, t ∈ G and k ∈ N.
The action τ : G → Aut(PG) is universal for all G-actions, that is, for every

separable G-algebra A there exists a surjective G-morphism PG → A.

Proposition 2.4. Let A be a separable C∗-algebra and let G be a countable discrete
group. If A is (semi)projective, then the free Bernoulli shift of G based on A is
(semi)projective.

Proof. We give the proof when A is projective. The semiprojective case is very
similar, but has bigger diagrams.

Let (G,B, β) and (G,D, δ) be G-algebras, let π : B → D be a surjective G-
morphism, and let ϕ : ∗g∈GA → D be a G-morphism. We prove that there is a
G-morphism ψ : ∗g∈GA→ B such that π ◦ ψ = ϕ.

Since A is projective, we can find a ∗-homomorphism ψ0 : A → B such that
π◦ψ0 = ϕ◦ι1. By universality of ∗g∈GA, there is a ∗-homomorphism ψ : ∗g∈GA→
B such that ψ ◦ ιA,s = βs ◦ ψ0 for all s ∈ G. The following diagram shows some of
the maps:

B

π

��
A ι1

//

ψ0

00

∗g∈GA ϕ
//

ψ

;;w
w

w
w

w
D.

It remains to show that π ◦ ψ = ϕ and that ψ is G-equivariant.
Let t ∈ G. Using equivariance of π at the second step and equivariance of ϕ at

the fourth step, we get

π ◦ ψ ◦ ιA,t = π ◦ βt ◦ ψ0 = δt ◦ π ◦ ψ0 = δt ◦ ϕ ◦ ι1 = ϕ ◦ τt ◦ ι1 = ϕ ◦ ιA,t.
Since this is true for all t ∈ G, and since

⋃
t∈G ιA,t(A) generates ∗g∈GA, it follows

that π ◦ ψ = ϕ.
To see that ψ is equivariant, let s, t ∈ G. We compute:

βs ◦ ψ ◦ ιA,t = βs ◦ βt ◦ ψ0 = βst ◦ ψ0 = ψ ◦ ιA,st = ψ ◦ τs ◦ ιA,t.
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For the same reason as in the previous paragraph, it follows that βs ◦ ψ = ψ ◦ τs,
and so ψ is G-equivariant. �

Remark 2.5. Let G be countable discrete group. The universal G-algebra PG is
(nonequivariantly) projective, since it is isomorphic to F∞. We can use this to show
that if α : G→ Aut(A) is a projective action, then A must be projective. This is a
special case of Corollary 4.21.

Using the universal property of PG and separability of A, we can find a surjective
G-morphism ρ : PG → A. Since α is equivariantly projective, we can find a G-
morphism λ : A → PG such that ρ ◦ λ = idA. If now ϕ : A → C/J is a ∗-homo-
morphism, there is a ∗-homomorphism ψ : PG → C which lifts ϕ ◦ ρ. Then ψ ◦ λ
lifts ϕ.

A more involved argument, which we do not give here, gives a similar result for
finite groups and semiprojectivity.

We now turn to what we call the orthogonal Bernoulli shift.

Definition 2.6. Let A be a separable C∗-algebra and let G be a countable dis-
crete group. The orthogonal Bernoulli shift based on A is the action σA : G →
Aut(C0(G,A)) given by σAs (a)(t) = a(s−1t) for a ∈ C0(G,A) and s, t ∈ G.

We think of C0(G,A) as
⊕

g∈GA. Then the automorphism σAs sends the sum-
mand indexed by t ∈ G to the summand indexed by st.

By analogy with equivariant semiprojectivity of actions of compact groups on fi-
nite dimensional C∗-algebras (Theorem 2.6 of [Phi12]) and projectivity of C0((0, 1]),
it seems reasonable to hope that the orthogonal Bernoulli shift based on C0((0, 1]) is
projective whenever G is finite. This seems difficult to prove; we have been able to
do so only for G = Z2n , the finite cyclic group of order 2n. (See Proposition 2.10.)
We start with some lemmas.

Lemma 2.7. Let n ∈ N. Let B be a C∗-algebra, let β ∈ Aut(B) satisfy β2n = idB,
let I be a β-invariant ideal in B, let π : B → B/I be the quotient map, and let
α ∈ Aut(B/I) be the induced automorphism. If x ∈ B/I is selfadjoint and satisfies
α(x) = −x, then there is a selfadjoint element y ∈ B such that β(y) = −y and
π(y) = x.

Proof. First lift x to a selfadjoint element b ∈ B. Put

y =
1

2n
[
b− β(b) + β2(b)− β3(b) + · · · − β2n−1(b)

]
.

Then y is selfadjoint, β(y) = −y, and y is a lift of x. �

Lemma 2.8. Let n ∈ N. Let B be a C∗-algebra, let β ∈ Aut(B) satisfy β2n = idB,
let I be a β-invariant ideal in B, let π : B → B/I be the quotient map, and let α ∈
Aut(B/I) be the induced automorphism. Let h1, h2 ∈ B/I be positive orthogonal
elements such that α(h1) = h2 and α(h2) = h1. Then there exist positive orthogonal
elements k1, k2 ∈ B such that

π(k1) = h1, π(k2) = h2, β(k1) = k2, and β(k2) = k1.

Proof. Put x = h1 − h2. Since x is selfadjoint and α(x) = −x, we can, by Lem-
ma 2.7, lift it to a selfadjoint element y ∈ B with β(y) = −y. Let k1 be the positive
part of y, that is, k1 = 1

2 (y + |y|). Then π(k1) = 1
2 (x+ |x|) = h1. Put k2 = β(k1).

Routine calculations show that k2 is the negative part of y, and thus orthogonal
to k1. Essentially the same calculations show that β2(k1) = k1. It is clear that
π(k2) = h2. �
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Proposition 2.9. Let n ∈ N. Let B be a C∗-algebra, let β ∈ Aut(B) satisfy
β2n = idB, let I be a β-invariant ideal in B, let π : B → B/I be the quotient map,
and let α ∈ Aut(B/I) be the induced automorphism. Let h1, h2, . . . , h2n ∈ B/I
be orthogonal positive elements such that α(hm) = hm+1 for m = 1, 2, . . . , 2n − 1,
and such that α(h2n) = h1. Then they can be lifted to orthogonal positive elements
km ∈ B for m = 1, 2, . . . , 2n such that β(km) = km+1 for m = 1, 2, . . . , 2n − 1 and
such that β(k2n) = k1. Moreover, if ‖hm‖ ≤ 1 for m = 1, 2, . . . , 2n, then we can
require that ‖km‖ ≤ 1 for m = 1, 2, . . . , 2n.

Proof. The proof (except for the last statement) is by induction on n. The case
n = 1 is Lemma 2.8. Let n > 1, suppose that we have shown the statement to hold
for all natural numbers l < n and all choices of B, β, I, and h1, h2, . . . , h2l , and let
B, β, I, and h1, h2, . . . , h2n be as in the statement.

Set
a1 = h1 + h3 + · · ·+ h2n−1 and a2 = h2 + h4 + · · ·+ h2n .

Then α(a1) = a2, α(a2) = a1, and a1a2 = 0. So, by Lemma 2.8, we can lift a1 and
a2 to orthogonal positive elements b1, b2 such that β(b1) = b2 and β(b2) = b1.

The hereditary subalgebra b1Bb1 ⊂ B is β2-invariant and it is easy to check that
π
(
b1Bb1

)
= a1(B/J)a1. Apply the induction hypothesis with b1Bb1 in place of B,

with β2 in place of β, with b1Bb1 ∩ I in place of I, and with h1, h3, . . . , h2n−1 in
place of h1, h2, . . . , h2n . We obtain orthogonal positive elements k1, k3, . . . , k2n−1 ∈
b1Bb1 such that π(km) = hm and β2(km) = km+2 for m = 1, 3, 5, . . . , 2n − 1, and
such that β2(k2n−1 = k1. Set km = β(km−1) ∈ b2Bb2 for m = 2, 4, 6, . . . , 2n.
Then π(km) = hm also for m = 2, 4, 6, . . . , 2n. It is clear that β(km) = km+1

for m = 1, 2, . . . , 2n − 1 and that β(k2n) = k1. It only remains to check that the
elements km are orthogonal for m = 1, 2, . . . , 2n. The only case needing work is kl
and km when one of l and m is even and the other is odd. But then one of kl and
km is in b1Bb1 and the other is in b2Bb2, so the desired conclusion follows from
b1b2 = 0.

It remains to prove the last statement. Let x1, x2, . . . , x2n ∈ B be the elements
produced in the first part. Let f : [0,∞) → [0, 1] be the function f(t) = min(t, 1)
for t ≥ 0. Then set km = f(xm) for m = 1, 2, . . . , 2n. �
Proposition 2.10. Let A be a separable (semi)projective C∗-algebra, let n ∈ N,
and let σ : Zn → Aut

(⊕n
m=1A

)
be the orthogonal Bernoulli shift of Definition 2.6.

If n is a power of 2, then σ is (semi)projective.

Proof. We give the proof when A is projective. The semiprojective case is analo-
gous, but requires Lemma 1.3.

By Proposition 1.4, it is enough to show that for every G-algebra (G,B, β)
and every surjective G-morphism π : B → ⊕n

m=1A, there exists a G-morphism
ψ :
⊕n

m=1A→ B such that π ◦ ψ = ϕ.
Let α = σ1, the automorphism corresponding to the generator 1 ∈ Zn, and sim-

ilarly let γ = β1 ∈ Aut(B). For m = 1, 2, . . . , n, let ιm : A→⊕n
m=1A be the map

that sends A to the summand A in
⊕n

m=1A indexed bym, and let ρm :
⊕n

m=1A→
A be the surjection onto them-th summand. Then a =

∑n
m=1(ιm◦ρm)(a) for every

a ∈⊕n
m=1A.

Let h be a strictly positive element of A. For m = 1, 2, . . . , n, set hm = ιm(h).
Then h1, h2, . . . , hn are orthogonal positive elements such that α(hm) = hm+1 for
m = 1, 2, . . . , n − 1, and such that α(hn) = h1. By Proposition 2.9, they can
be lifted to orthogonal positive elements km ∈ B for m = 1, 2, . . . , 2n such that
γ(km) = km+1 for m = 1, 2, . . . , n− 1 and such that γ(kn) = k1.

Let D be the hereditary subalgebra D = k1Bk1. Then π(D) = ι1(A). Since A
is projective, there exists a ∗-homomorphism ψ1 : A → D such that π ◦ ψ1 = ι1.
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Define ψ :
⊕n

m=1A→ B by

ψ(a) =
n∑

m=1

(
γm−1 ◦ ψ1 ◦ ρm

)
(a).

It is easily checked that ψ has the desired properties. �

Question 2.11. Consider the orthogonal Bernoulli shift G→ Aut
(⊕

G C0((0, 1])
)

of Definition 2.6. For which groups is this action projective?
In particular, is it projective for G = Zn for all n ∈ N? Is it projective for

G = Z?

3. Equivariant semiprojectivity of restrictions to subgroups

Let α : G → Aut(A) be a semiprojective action. In this section we investigate
semiprojectivity of the restriction of α to a subgroup H 6 G. In Theorem 3.10, we
obtain a positive result when H is cocompact. It follows (Corollary 3.11) that a
second countable compact group can only act semiprojectively on a C∗-algebra that
is semiprojective in the usual sense. Some condition onH is necessary. For instance,
in Example 3.12 we construct a semiprojective action of Z on a nonsemiprojective
C∗-algebra.

To obtain these results, we use the induction functor, which assigns in a natural
way to each H-algebra an induced G-algebra. We will show that this functor
preserves exact sequences (Proposition 3.6) and behaves well with respect to direct
limits (Proposition 3.7).

We begin by recalling the definition of the induction functor, from the beginning
of Section 2 of [KW99] or the beginning of Section 6 of [Ech10]. In the following

definition, one easily checks that the action defined on the algebra IndGH(A) is

continuous, so that
(
G, IndGH(A), IndGH(α)

)
is in fact a G-algebra, and that IndGH

really is a functor.

Definition 3.1. For a locally compact group G, we let CG denote the category
whose objects are G-algebras and whose morphisms are G-equivariant ∗-homomor-
phisms (also called G-morphisms).

Now let H 6 G be a closed subgroup, and let (H,A, α) be an object in CH . We

define an object
(
G, IndGH(A), IndGH(α)

)
in CG as follows. We take

IndGH(A) =

{
f ∈ Cb(G,A) :

αh(f(sh)) = f(s) for all s ∈ G and h ∈ H
and sH 7→ ‖f(s)‖ is in C0(G/H)

}
.

The induced action IndGH(α) : G→ Aut
(
IndGH(A)

)
is given by

(
IndGH(α)

)
s
(f)(t) = f(s−1t)

for f ∈ IndGH(A) and s, t ∈ G. If A and B are H-algebras and ϕ : A→ B is an H-

morphism, then the induced G-morphism IndGH(ϕ) : IndGH(A) → IndGH(B) is given
by

IndGH(ϕ)(f)(s) = ϕ(f(s))

for f ∈ IndGH(A) and s ∈ G.
The induction functor is often defined on a different category than that con-

sidered here. The objects are still G-algebras, but the morphisms are equivariant
Hilbert bimodules. We refer to Section 6 of [Ech10] and to [EKQR00] for more
details.

We next recall the definition of a C0(X)-algebra. See Section 4.5 of [Phi87],
Definition 1.5 of [Kas88], or Definition 2.6 of [Bln96]. We recall that if A is a
C∗-algebra, then M(A) is its multiplier algebra and Z(A) is its center.
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Definition 3.2. Let X be a locally compact Hausdorff space. A C0(X)-algebra
is a C∗-algebra A together with a ∗-homomorphism η : C0(X)→ Z(M(A)), called
the structure map, such that

{
η(f)a : f ∈ C0(X) and a ∈ A

}

is dense in A.
We will usually write fa or f · a instead of η(f)a for the product of a function

f ∈ C0(X) and an element a ∈ A. For an open set U ⊂ X, we set

A(U) =
{
fa : f ∈ C0(U) and a ∈ A

}
,

which is an ideal of A. (See Proposition 3.3(2).) For a closed subset Y ⊂ X, we
denote by A(Y ) the quotient A/A(X \ Y ).

For x ∈ X we write A(x) for A({x}), and this C∗-algebra is called the fiber of
A at x. Given a ∈ A, we denote its image in the fiber A(x) by a(x), and we define
ǎ : X → [0,∞) by ǎ(x) = ‖a(x)‖ for x ∈ X. We call A a continuous C0(X)-algebra
if ǎ is continuous for each a ∈ A.

If A and B are C0(X)-algebras and ϕ : A→ B is a ∗-homomorphism, then ϕ is
said to be a C0(X)-morphism if ϕ(f · a) = f · ϕ(a) for all f ∈ C0(X) and a ∈ A.

We recall the following facts about C0(X)-algebras.

Proposition 3.3. Let X be a locally compact Hausdorff space and let A be a
C0(X)-algebra with structure map η : C0(X)→ Z(M(A)). Then:

(1) A =
{
η(f)a : f ∈ C0(X) and a ∈ A

}
.

(2) If U ⊂ A is open then A(U) is an ideal in A.
(3) For a ∈ A, the function ǎ is an upper semicontinuous function on X which

vanishes at infinity.
(4) For a ∈ A, we have ‖a‖ = supx∈X ǎ(x).

Proof. Part (1) is Proposition 1.8 of [Bln96]. (This is essentially the Cohen Factor-
ization Theorem.)

For (2), it follows from Corollary 1.9 of [Bln96] that A(U) is a closed C0(X)-
submodule of A. It now easily follows that A(U) is an ideal.

Part (3) is [Rie89, Proposition 1.2].
Part (4) is Proposition 2.8 of [Bln96]. �

We refer to Section 2 of [Bln96] for more details on C0(X)-algebras.

Proposition 3.4. Let G be a locally compact group, let H 6 G be a closed subgroup,
and let (H,A, α) be an H-algebra. Define η : C0(G/H)→ Z(M(IndGH(A))) by

(η(g)f)(s) = g(sH) · f(s)
for g ∈ C0(G/H), f ∈ IndGH(A), and s ∈ G. This map makes IndGH(A) a continuous
C0(G/H)-algebra. Moreover:

(1) If (H,B, β) is a second H-algebra, and ϕ : A→ B is an H-morphism, then

IndGH(ϕ) is a morphism of C0(G/H)-algebras.

(2) For every x ∈ G, the map evx : IndGH(A) → A, which evaluates a function

in IndGH(A) at x, defines an isomorphism from IndGH(A)(xH) to A.

In particular, the fibers of IndGH(A) as a C0(G/H)-algebra are all isomorphic toA.
However, the isomorphism is not canonical. In the proof below, the isomorphism
for the fiber at xH ∈ G/H depends on the choice of the coset representative x.

Proof of Proposition 3.4. It is easy to check that η makes IndGH(A) a continuous
C0(G/H)-algebra, and we omit the details. The proof of (1) is immediate. It

remains to prove (2). We abbreviate IndGH(A) to Ind(A).
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Let x ∈ G. We show that evx is surjective. It is immediate that

ker(evx) = Ind(A)(G/H \ {xH}),

so this will complete the proof.
Since evx is a

∗-homomorphism, it is enough to show that it has dense image in A.
So let a ∈ A and let ε > 0. We want to find f ∈ IndGH(A) such that ‖f(x)−a‖ < ε.
Let µ denote the Haar measure of H. Since the action is continuous, there exists
an open neighborhood U ⊂ H of the identity element 1 ∈ H, with compact closure,
such that ‖αs(a)− a‖ ≤ ε

2 for all s ∈ U . Let χ : G→ [0, 1] be a nonzero continuous

function with supp(χ) ⊂ U . By scaling, we may assume
∫
H
χdµ = 1. We define a

function f : G→ A by

f(s) =

∫

H

χ(x−1st) · αt(a) dµ(t)

for s ∈ G. The integral exists for all s, since the integrand is continuous and has
compact support. We will now check that f has the desired properties.

For s ∈ G and h ∈ H we have, using left invariance of µ at the last step,

αh(f(sh)) = αh

(∫

H

χ(x−1sht) · αt(a) dµ(t)
)

=

∫

H

χ(x−1sht)·αht(a) dµ(t) = f(s).

The function sH 7→ ‖f(s)‖ has compact support, so f ∈ Ind(A). Moreover,

‖f(x)− a‖ =
∥∥∥∥
∫

H

χ(t) · αt(a) dµ(t)−
∫

H

χ(t) · a dµ(t)
∥∥∥∥

≤
∫

H

χ(t)‖αt(a)− a‖ dµ(t) ≤
ε

2
< ε.

This completes the proof that evx is surjective. �

The following result is similar to Lemma 3.2 of [TW12]. It is Lemma 2.1(iii)
of [Dad09], but the proof given there assumes that X is compact.

Lemma 3.5. Let A be a C0(X)-algebra with structure map η : C0(X)→ Z(M(A)).
Assume B ⊂ A is a C∗-subalgebra satisfying the following two conditions:

(1) For each x ∈ X, the set {b(x) : b ∈ B} exhausts the fiber A(x).
(2) η(C0(X))B ⊂ B, that is, B is invariant under multiplication by functions

in C0(X).

Then A = B.

Proof. It suffices to show that B is dense in A. Let a ∈ A and let ε > 0. Using
Proposition 3.3(1), choose f ∈ C0(X) and a0 ∈ A such that fa0 = a. Choose
g ∈ Cc(X) such that ‖f − g‖ < ε/(2‖a0‖). Then ‖ga0 − a‖ < ε

2 and (ga0)(x) = 0
for x ∈ X \ supp(g).

For each point x ∈ supp(g), choose bx ∈ B such that bx(x) = (ga0)(x). By
Proposition 3.3(3), there is an open set Ux ⊂ X with x ∈ Ux such that for all
y ∈ Ux we have ‖bx(y) − (ga0)(y)‖ < ε

2 . Choose x1, x2, . . . , xn ∈ supp(g) such
that the sets Ux1 , Ux2 , . . . , Uxn cover supp(g). Choose h1, h2, . . . , hn ∈ Cc(X) such
that for k = 1, 2, . . . , n we have supp(hk) ⊂ Uxk

and 0 ≤ hk ≤ 1, and such that∑n
k=1 hk ≤ 1 and is equal to 1 on supp(g). Set b =

∑n
k=1 hkbxk

. Then b ∈ B. We
claim that ‖b−ga0‖ ≤ ε

2 . This will imply that ‖b−a‖ < ε, and complete the proof.
It suffices to show that ‖b(y)− (ga0)(y)‖ ≤ ε

2 for y ∈ X. Set h0 = 1−∑n
k=1 hk.

Then ga0 =
∑n
k=0 hkga0. Set bk = bxk

and Uk = Uxk
for k = 1, 2, . . . , n, and set

b0 = 0 and U0 = X \supp(g). Then for k = 0, 1, . . . , n, we have ‖bk(y)−(ga0)(y)‖ <
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ε
2 whenever hk(y) 6= 0. Using this fact at the second step, we have

‖b(y)− (ga0)(y)‖ ≤
n∑

k=0

hk(y)‖bk(y)− (ga0)(y)‖ ≤
n∑

k=0

hk(y) ·
ε

2
≤ ε

2
.

This proves the claim, and completes the proof. �

The following result is Lemma 3.8 of [KW99], but the proof given in [KW99]

does not address surjectivity of IndGH(π).

Proposition 3.6. Let G be a locally compact group, and let H 6 G be a closed
subgroup. Then the induction functor IndGH : CH → CG is exact, that is, given an
H-equivariant short exact sequence of H-algebras

0 −→ I
ι−→ A

π−→ B −→ 0,

the induced G-equivariant sequence of G-algebras

0 // IndGH(I)
IndG

H(ι) // IndGH(A)
IndG

H(π) // IndGH(B) // 0

is also exact.

Proof. To simplify notation, we abbreviate IndGH to Ind.
We may think of I as an H-invariant ideal in A, so that ι is just the inclusion.

It follows that Ind(I) may be considered as an ideal in Ind(A), and then Ind(ι) is
also just the inclusion morphism.

It is straightforward to check that the sequence is exact in the middle, that is,
ker(Ind(π)) = Ind(I) ⊂ Ind(A). Thus, it remains to check that Ind(π) is surjective.
Following Proposition 3.4, we consider Ind(A) and Ind(B) as C0(G/H)-algebras.
We want to apply Lemma 3.5.

Condition (2) of Lemma 3.5 follows immediately from Proposition 3.4(1).
Let us verify condition (1). For x ∈ G, let evAx : Ind(A)→ A and evBx : Ind(B)→

B be the evaluation maps at x. By Proposition 3.4(2), these maps are surjective
and implement the isomorphisms Ind(A)(xH) ∼= A and Ind(B)(xH) ∼= B. We have
evBx ◦ Ind(π) = π ◦ evAx , that is, the following diagram commutes:

Ind(A)

Ind(π)

��

evA
x // A

π

��
Ind(B)

evB
x // B.

Since evAx and π are surjective, it follows that the image of Ind(π) exhausts each fiber
of Ind(B). This verifies condition (1) of Lemma 3.5. So Ind(π) is surjective. �

Proposition 3.7. Let G be a locally compact group, and let H 6 G be a closed
subgroup. Then the induction functor IndGH : CH → CG is continuous, that is, given
an H-equivariant direct system

A1 −→ A2 −→ A3 −→ · · · ,
there is a natural isomorphism

IndGH
(
lim−→Ak

) ∼= lim−→ IndGH(Ak).

Proof. To simplify notation, we abbreviate IndGH to Ind. Following Proposition 3.4,
we consider the induced algebras as C0(G/H)-algebras.

Denote the connecting H-morphisms by ϕnm : Am → An for m ≤ n. Let A =
lim−→Ak, and denote the H-morphisms into the direct limit by ϕ∞

m : Am → A. Denote
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the induced G-morphisms by θnm : Ind(Am) → Ind(An), and let B = lim−→ Ind(Ak),

together with G-morphisms θ∞m : Ind(Am)→ B.
The maps ϕ∞

k induce G-morphisms Ind(ϕ∞
k ) : Ind(Ak) → Ind(A), and these

induce a G-morphism from the direct limit ψ : B → Ind(A). The situation is shown
in the following commutative diagram:

Ind(A1)
θ21 //

Ind(ϕ∞
1 ) //

Ind(A2) //

Ind(ϕ∞
2 )

--

. . . // lim−→ Ind(Ak) = B

ψ

��
Ind(A).

To show that ψ is surjective, we apply Lemma 3.5.
To verify condition (2) of Lemma 3.5, let b ∈ B and f ∈ C0(G/H) be given. We

will show that for every ε > 0 there exists c ∈ B such that ‖f · ψ(b) − ψ(c)‖ < ε.
Fix ε > 0. By properties of the direct limit, there exist an index k and a ∈ Ind(Ak)
such that ‖b − θ∞k (a)‖ < ε/‖f‖. One checks that c = θ∞k (f · a) has the desired
properties.

To verify condition (1) of Lemma 3.5, we need to show that every fiber of
Ind(A) is exhausted by the image of ψ. We denote by evkx : Ind(Ak) → Ak and
ev∞x : Ind(A) → A the evaluation maps at x ∈ G. Then it is enough to show that
ev∞x ◦ψ is surjective for every x ∈ G.

For each k ∈ N, we have

ev∞x ◦ψ ◦ θ∞k = ev∞x ◦ Ind(ϕ∞
k ) = ϕ∞

k ◦ evkx .

Since evkx : Ind(Ak)→ Ak is surjective (by Proposition 3.4(2)), the image of ev∞x ◦ψ
contains the image of ϕ∞

k . Thus, the image of ev∞x ◦ψ contains
⋃∞
k=1 ran(ϕ

∞
k ),

which is dense in A by properties of the direct limit. It follows that the image of ψ
exhausts each fiber of Ind(A). This verifies Lemma 3.5(1), so ψ is surjective.

To show that ψ is injective, let b ∈ B, and suppose that ψ(b) = 0. Let ε > 0;
we show that ‖b‖ < ε. By properties of B as a direct limit, there exist an index
k ∈ N and a ∈ Ind(Ak) such that ‖b − θ∞k (a)‖ < ε

3 . For n ≥ k, let fn ∈ C0(G/H)
be defined by fn(sH) = ‖θnk (a)(sH)‖. One checks that (fn)n∈N is a nonincreasing
sequence of functions such that limn→∞ fn(sH) < ε

3 for each s ∈ G. For n ∈
N, define a continuous function gn on the one point compactification (G/H)+ by
gn(sH) = max

(
fn(sH), ε3

)
for s ∈ G and gn(∞) = ε

3 . The functions gn decrease
pointwise to the constant function with value ε

3 . Since (G/H)+ is compact, Dini’s
Theorem (Proposition 11 in Chapter 9 of [Roy88]) implies that the convergence is
uniform. So there exists n ≥ k such that ‖fn‖ < 2ε

3 . Then ‖θnk (a)‖ = ‖fn‖ < 2ε
3 by

Proposition 3.3(4), and thus also ‖θ∞k (a)‖ < 2ε
3 . It follows that ‖b‖ < ε, as desired.

This completes the proof that ψ is an isomorphism. �

Lemma 3.8. Let G be a locally compact group, and let H 6 G be a closed subgroup.
For any H-algebra A, let evA1 : IndGH(A) → A be the map evA1 (f) = f(1) that
evaluates a function at the identity element 1 ∈ G. Then evA1 is an H-morphism,
and is natural in A.

Proof. We need only check equivariance. Let α : H → Aut(A) denote the action

on A. Let γ = IndGH(α) be the induced action of G on IndGH(A). For f ∈ IndGH(A)

and h ∈ H, we have, using the definition of IndGH(A) at the third step,

evA1 (γh(f)) = (γh(f))(1) = f(h−1) = αh(f(1)) = αh(ev
A
1 (f)),

as desired. �
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Lemma 3.9. Let G be a locally compact group, and let H 6 G be a closed subgroup
such that G/H is compact. Let α : G → Aut(A) be an action of G on a C∗-
algebra A, and let β : H → Aut(B) be an action of H on a C∗-algebra B. Let

ϕ : A→ B be an H-morphism. Then there is a G-morphism η : A→ IndGH(B) such
that η(a)(s) = ϕ

(
α−1
s (a)

)
for all a ∈ A and s ∈ G.

Proof. We only have to prove that the formula for η(a) defines an element of

IndGH(B) and that the resulting map from A to IndGH(B) is G-equivariant. Let
a ∈ A.

For the first, since G/H is compact, the function sH 7→ ‖η(a)(s)‖ is obviously
in C0(G/H). Let s ∈ G and h ∈ H. Then

βh
(
η(a)(sh)

)
= βh

(
ϕ
(
α−1
sh (a)

))
= ϕ

(
αh ◦ αh−1s−1(a)

)
= η(a)(s),

as desired.
For the second, let γ = IndGH(α) be the action of G on IndGH(B). Let s, t ∈ G.

Then
γs(η(a))(t) = η(a)(s−1t) = ϕ

(
αt−1(αs(a))

)
= η(αs(a))(t),

as desired. �

Theorem 3.10. Let G be a locally compact group, and let H 6 G be a closed
subgroup such that G/H is compact. Let α : G → Aut(A) be an action of G on
a C∗-algebra A. If α is equivariantly semiprojective, then α|H is equivariantly
semiprojective.

Proof. Let β : H → Aut(C) be an action of H on a C∗-algebra C. To simplify

notation, we abbreviate IndGH to Ind. The maps to be introduced are shown in the

diagram below. Let J0 ⊂ J1 ⊂ · · · be H-invariant ideals in C, let J =
⋃∞
n=0 Jn, let

κ : C → C/J, κn : C → C/Jn, and πn : C/Jn → C/J

be the quotient maps, and let ϕ : A→ C/J be an H-morphism. Then

Ind(J) =
∞⋃

n=0

Ind(Jn)

by Proposition 3.7. Moreover, Proposition 3.6 allows us to identify the quotients
Ind(C)/ Ind(Jn) with Ind(C/Jn) and Ind(C)/ Ind(J) with Ind(C/J), with quotient
maps

Ind(κ) : Ind(C)→ Ind(C)/ Ind(J),

Ind(κn) : Ind(C)→ Ind(C)/ Ind(Jn),

and
Ind(πn) : Ind(C)/ Ind(Jn)→ Ind(C)/ Ind(J).

Let η : A→ Ind(C)/ Ind(J) be as in Lemma 3.9. Since α is equivariantly semipro-
jective, there exist n ∈ N and a G-morphism λ : A → Ind(C)/ Ind(Jn) such that
Ind(πn) ◦ λ = η. We now have the following commutative diagram, with the hori-
zontal maps on the right being as in Lemma 3.8:

Ind(C)

Ind(κn)

��

evC
1 // C

κn

��
κ

��

Ind(C)/ Ind(Jn)

Ind(πn)

��

ev
C/Jn
1 // C/Jn

πn

��
A η

//

λ

55llllllllllllllll
Ind(C)/ Ind(J)

ev
C/J
1 // C/J.
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It is easy to check that ev
C/J
1 ◦η = ϕ. Therefore the map ψ = ev

C/Jn
1 ◦λ is an

H-morphism from A to C/Jn such that πn ◦ ψ = ϕ. �

Corollary 3.11. Let G be a second countable compact group, and let A be a G-
algebra that is equivariantly semiprojective. Then A is (nonequivariantly) semipro-
jective.

In Theorem 3.10, some condition on G/H is necessary, as the following example
shows.

Example 3.12. Let A = C(S1) be the universal C∗-algebra generated by a unitary,
and consider the free Bernoulli shift τ : Z→ Aut

(∗Z C(S1)
)
of Definition 2.3. This

action is semiprojective by Proposition 2.4, but its restriction to the trivial subgroup
is not.

Thus, Z can act semiprojectively on nonsemiprojective C∗-algebras. This is in
contrast to the projective case, discussed in Remark 4.23. An analogous example
can be constructed for any infinite countable discrete group in place of Z.

4. Equivariant projectivity of restrictions to subgroups

In this section we study the projective analog of the question of Section 3. Given
a projective action α : G→ Aut(A), we show in Theorem 4.19 that the restriction of
α to a subgroup H 6 G is also projective in considerable generality. The condition
we have to put on H is that the factor space G/H is uniformly finitistic; see Defini-
tion 4.5. The class of uniformly finitistic spaces includes both compact and discrete
spaces.

To obtain the results in this section, we use a different induction functor that
considers uniformly continuous functions; see Definition 4.14. To show that this
functor is exact, we need a criterion for when uniformly continuous functions into
quotient C∗-algebras can be lifted to uniformly continuous functions. In Theo-
rem 4.8, we solve this problem in some generality, and we think that this might
also be of independent interest.

There are several equivalent ways to define a uniform space. We will mostly
use the concept of a uniform cover to define a uniformity on a set. We refer to
Isbell’s book [Isb64] for the theory of uniform spaces. The basic definitions are in
Chapter I. The definition of a uniformity is before item 6 in Chapter I of [Isb64].

If U and V are covers of a space X, we write V ≤ U to mean that V refines U .

Definition 4.1. Let (X, d) be a metric space. For ε > 0 and x ∈ X, define
Uε(x) = {y ∈ X : d(x, y) < ε}. The basic uniform covers of X are the collections

B(ε) = {Uε(x) : x ∈ X}
for ε > 0. A cover U of X is called uniform if there exists ε > 0 such that B(ε) ≤ U .

The proof of the following result is essentially contained in items 1–3 in Chap-
ter I of [Isb64]. One should note that if (X, d) is a metric space, ε1, ε2 > 0, and U1
and U2 are covers of X such that B(ε1) ≤ U1 and B(ε2) ≤ U2, then B

(
min(ε1, ε2)

)

refines both U1 and U2, so that the collection of uniform covers in Definition 4.1 is
downwards directed. Uniformly continuous functions are defined after Theorem 11
in Chapter I of [Isb64], and equiuniformly continuous families of functions are de-
fined before item 19 in Chapter III of [Isb64]. The usual notion for functions on
metric spaces is just that a family F of functions from (X1, d1) to (X2, d2) is equiu-
niformly continuous if for every ε > 0 there is δ > 0 such that whenever x, y ∈ X1

satisfy d1(x, y) < δ, then for all f ∈ F we have d2(f(x), f(y)) < ε.
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Proposition 4.2. Let (X, d) be a metric space. Then the collection of uniform
covers in Definition 4.1 is a uniform structure on X. Moreover, for any two metric
spaces (X1, d1) and (X2, d2), the uniformly continuous functions and the equiuni-
formly continuous families of functions from X1 to X2 are the uniformly continuous
functions and the equiuniformly continuous families as traditionally defined in terms
of the metrics.

The following theorem is the key result. We warn that the term “subordinate”
is used in [Isb64] with a meaning inconsistent with its standard meaning in the
context of ordinary partitions of unity.

Theorem 4.3 (Theorem 11 in Chapter IV of [Isb64]). Let X be a uniform space
and let U be a uniform cover of X. Then there is an equiuniformly continuous (but
not necessarily locally finite) partition of unity (hU )U∈U such that hU (x) = 0 for
all U ∈ U and x ∈ X \ U .

We recall the following standard definition.

Definition 4.4. Let X be a set, and let U be a cover of X. The order of U , denoted
ord(U), is the least number n ∈ N∪{0} such that whenever U0, U1, . . . , Un ∈ U are
distinct, then U0 ∩ U1 ∩ . . . ∩ Un = ∅. We take ord(U) =∞ if no such n exists.

Equivalently, ord(U) is the largest number n such that n distinct elements of U
have nonempty intersection.

The first part of following definition is found at the very beginning of Chap-
ter V of [Isb64], where the term “large dimension” is used. The second part is
Definition 1.7 of [SSG93].

Definition 4.5. Let X be a uniform space. Then the large uniform dimension of
X, denoted ∆d(X), is the least n ∈ {−1, 0, 1, 2, . . . ,∞} such that every uniform
open cover of X can be refined by a uniform open cover of order at most n + 1.
(We take ∆d(∅) = −1.)

We say that X is uniformly finitistic if every uniform open cover of X can be
refined by a uniform open cover of finite order.

An equivalent condition for being uniformly finitistic is that there exists a base
for the uniformity consisting of uniform covers of finite order.

If a uniform space X is locally compact and paracompact (in the induced topol-
ogy), then its covering dimension is bounded by its large uniform dimension, that
is, dim(X) ≤ ∆d(X). To see this, first note that, with locdim(X) being the local
covering dimension of X, Proposition 5.3.4 in [Pea75] gives dim(X) = locdim(X).
For a locally compact Hausdorff space X, with X+ denoting the one point compact-
ification of X, it is a standard result that locdim(X) = dim(X+); for instance, this
is easily deduced from Proposition 3.5.6 in [Pea75]. It follows from Theorem V.5
and VI.2 in [Isb64] that dim(γX) ≤ ∆d(X) for every compactification γX of X.
Thus, if X is locally compact and paracompact, we may combine these results to
obtain

dim(X) = locdim(X) = dim(X+) ≤ ∆d(X),

as desired.
The concept of being finitistic was first defined for topological spaces, where

it means that every open cover can be refined by an open cover of finite order.
This definition is implicit in [Swa59], although the term “finitistic” was only later
introduced by Bredon on page 133 of his book [Bre72].

In general, for a uniform space there is no connection between being finitistic and
uniformly finitistic. Example (d) after Definition 1.7 of [SSG93] gives a uniformly
finitistic space which is not finitistic. Example 2.4 of [Isb59] gives a discrete uniform
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space, hence obviously finitistic, with a uniform open cover having no uniform open
refinement of finite order, thus not uniformly finitistic.

Notation 4.6. Let X be a topological space and let A be a C∗-algebra. We denote
by Cb(X,A) the C

∗-algebra of all bounded continuous functions from X to A, with
the supremum norm. If X is a uniform space, we let Cu(X,A) ⊂ Cb(X,A) denote
the C∗-subalgebra consisting of all bounded uniformly continuous functions from
X to A.

Proposition 4.7. Let X be a uniform space and let A be a C∗-algebra. Then
Cu(X,A) is a C∗-algebra.

Proof. It is easy to check that Cu(X,A) is closed under the algebraic operations.
That it is norm closed in Cb(X,A) follows from Corollary 32 in Chapter III of [Isb64].

�

The following theorem is in some sense a dual version of Theorem 1 of [Vid69],
on the problem of extending uniformly continuous maps from subspaces. We do
not know whether it is necessary that X be uniformly finitistic.

Theorem 4.8. Let π : A → B be a surjective ∗-homomorphism between two C∗-
algebras, and let X be a uniformly finitistic space. Then the induced ∗-homomor-
phism κ : Cu(X,A)→ Cu(X,B) is surjective.

Proof. It is enough to show that κ has dense range.
Given b ∈ Cu(X,B) and ε > 0, we will construct a ∈ Cu(X,A) such that

‖π ◦ a − b‖ < ε. Let U be a uniform cover of X such that whenever U ∈ U and
x, y ∈ U , then ‖b(x)− b(y)‖ < ε

2 . Since X is uniformly finitistic, we may assume U
has finite order. Set n = ord(U).

Let (hU )U∈U be an equiuniformly continuous partition of unity for U as in The-
orem 4.3. Equiuniform continuity in our situation means that for every ρ > 0 there
exists a uniform open cover V of X such that whenever V ∈ V and x, y ∈ V , then
for all U ∈ U we have |hU (x)− hU (y)| < ρ.

For each U ∈ U choose a point xU ∈ U , and let aU ∈ A be a lift of b(xU ) with
‖aU‖ = ‖b(xU )‖. For x ∈ X, there are at most n sets U ∈ U such that x ∈ U ,
and hU (x) can be nonzero only for these sets. Therefore the sum in the following
definition of a function a : X → A is finite at each point:

a(x) =
∑

U∈U
hU (x) · aU

for x ∈ X. Since
∑
U∈U hU (x) = 1, it further follows that ‖a‖ ≤ ‖b‖, so that a is

bounded.
We claim that a is uniformly continuous. We follow an argument in the proof of

Theorem 1 of [Vid69]. Let ρ > 0. We must find a uniform open cover V of X such
that whenever V ∈ V and x, y ∈ V , we have ‖a(x) − a(y)‖ < ρ. We may assume
b 6= 0. (Otherwise, just take a = 0.) Set ρ0 = ρ/(2n‖b‖). Let V be a uniform open
cover which witnesses equiuniform continuity of (hU )U∈U as above, but with ρ0 in
place of ρ. Let V ∈ V and let x, y ∈ V . Set

U0 =
{
U ∈ U : x ∈ U or y ∈ U

}
.

Then card(U0) ≤ 2n. Therefore

‖a(x)− a(y)‖ =
∥∥∥∥∥
∑

U∈U0

(
hU (x)− hU (y)

)
· aU

∥∥∥∥∥
≤ 2n · ‖b‖ · max

U∈U0

|hU (x)− hU (y)| < 2n‖b‖ρ0 = ρ.
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The claim is proved.
It remains to prove that ‖π ◦ a− b‖ < ε. Let x ∈ X. Then ‖π(aU )− b(x)‖ < ε

2
whenever hU (x) 6= 0. Therefore

‖(π◦a)(x)−b(x)‖ =
∥∥∥∥∥
∑

U∈U
hU (x)

(
π(aU )− b(x)

)
∥∥∥∥∥ ≤

∑

U∈U
hU (x) ‖π(aU )− b(x)‖ <

ε

2
.

So ‖π ◦ a− b‖ ≤ ε
2 < ε, as desired. �

Remark 4.9. The proof of Theorem 4.8 can easily be adopted to the case of
bounded continuous maps. More precisely, if π : A → B is a surjective ∗-homo-
morphism of C∗-algebras, and X is a paracompact space, then the method of
proof shows that the induced ∗-homomorphism Cb(X,A)→ Cb(X,B) is surjective.
This is a C∗-algebraic version of the Bartle-Graves Selection Theorem, Theorem 4
of [BG52], which treats the general case in which A and B are Banach spaces. The
C∗-algebraic version is much easier to prove since the image of a ∗-homomorphism
is always closed.

Since a C∗-algebra is paracompact, one may also formulate the theorem as fol-
lows. Let π : A → B be a surjective ∗-homomorphism between C∗-algebras. Then
there exists a continuous function σ : B → A (not necessarily linear) such that
π ◦ σ = idB (that is, σ is a section), and such that there is a constant M such that
‖σ(a)‖ ≤M · ‖a‖ for all a ∈ A. This also appears in [Lor97a, Theorem 2].

Definition 4.10. Let G be a locally compact group, and let H 6 G be a closed
subgroup. Let q : G → G/H be the quotient map. For a nonempty open subset
U ⊂ G with 1 ∈ U , define BG,H(U) = {q(Us) : s ∈ G}, the open cover of G/H
by the images in G/H of the right translates of U . Define the right uniformity on
G/H to consist of all open covers U of G/H such that there is a nonempty open
subset U ⊂ G with 1 ∈ U for which BG,H(U) ≤ U , and call such covers the right
uniform covers.

We define the left uniformity on G/H and left uniform covers of G/H analo-
gously, using the covers by the images in G/H of the left translates {sU : s ∈ G}
for nonempty open subsets U ⊂ G with 1 ∈ U .

Taking H = {1}, we see that the inversion map s 7→ s−1 is uniformly continuous
if and only if the right and left uniformities on G agree. However, for fixed t ∈ G,
both the left translation map s 7→ ts and the right translation map s 7→ st are
uniformly continuous in the right uniformity (and also in the left uniformity).

Uniform structures on topological groups are discussed on pages 20–22 of [HR79],
but from the point of view of neighborhoods of the diagonal rather than uniform
open covers.

Clearly the map q : G→ G/H is uniformly continuous when both sets are given
the right uniformity. In fact, the right uniformity onG/H is the quotient uniformity,
as defined before item 5 in Chapter II of [Isb64], of the right uniformity on G. We
do not need this fact, so we omit the proof.

Let G be a metrizable topological group. Then G has a left invariant metric
determining its topology, by Theorem 1.22 of [MZ55], and analogously it also has
right invariant metric. It is easy to check that the uniformity induced by any such
metric (as in Proposition 4.2) is equal to the right uniformity of Definition 4.10.

Notation 4.11. Let G be a topological group and let A be a C∗-algebra. We
denote by Cru(G,A) the C∗-algebra of bounded functions f : G → A which are
right uniformly continuous. This is just Cu(G,A) as in Notation 4.6 when G is
equipped with the right uniformity. We further let λ : G → Aut(Cb(G,A)) be the
(not necessarily continuous) action given by λs(f)(t) = f(s−1t) for f ∈ Cb(G,A)
and s, t ∈ G.
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Left translation is continuous on the right uniformly continuous functions, not
the left uniformly continuous functions. The proof is known and not difficult; we
give it here primarily to convince the reader that the statement is correct. We start
with a preparatory lemma, which we also need for the left uniformity.

Lemma 4.12. Let the notation be as in Notation 4.11. Let f ∈ Cb(G,A). Then
f ∈ Cru(G,A) if and only if for every ε > 0 there is an open set V ⊂ G with 1 ∈ V
such that whenever s, t ∈ G satisfy st−1 ∈ V , then ‖f(s) − f(t)‖ < ε. Also, f is
left uniformly continuous if and only if for every ε > 0 there is an open set V ⊂ G
with 1 ∈ V such that whenever s, t ∈ G satisfy t−1s ∈ V , then ‖f(s)− f(t)‖ < ε.

Proof. The proofs of the two statements are the same, and we do only the first.
First assume f is right uniformly continuous. Then there is a nonempty open

set V ⊂ G with 1 ∈ V such that whenever s, t, g ∈ G satisfy s, t ∈ V g, then
‖f(s)− f(t)‖ < ε. If now s, t ∈ G satisfy st−1 ∈ V , then s ∈ V t and, since 1 ∈ V ,
also t ∈ V t. Taking g = t above, we get ‖f(s)− f(t)‖ < ε.

Now assume that f satisfies the condition of the lemma. Let ε > 0, and choose
V ⊂ G as in this condition. Choose an open subset U ⊂ G such that 1 ∈ U and
s, t ∈ U implies st−1 ∈ V . Let s, t, g ∈ G satisfy s, t ∈ Ug. Then sg−1, tg−1 ∈ U ,
so st−1 = (sg−1)(tg−1)−1 ∈ V . Therefore ‖f(s)− f(t)‖ < ε. �

Lemma 4.13. Let the notation be as in Notation 4.11. Let f ∈ Cb(G,A). Then
s 7→ λs(f) is continuous if and only if f ∈ Cru(G,A).

Proof. First assume f is right uniformly continuous. Let ε > 0. It suffices to find
an open subset V ⊂ G such that 1 ∈ V and whenever s ∈ V and t ∈ G, then
‖λts(f) − λt(f)‖ < ε. Choose an open subset V ⊂ G as in Lemma 4.12 with ε

2 in

place of ε. Let s ∈ V and t ∈ G. Then for g ∈ G we have (t−1g)(s−1t−1g)−1 = s ∈
V , so

‖λts(f)(g)− λt(f)(g)‖ = ‖f(s−1t−1g)− f(t−1g)‖ < ε

2
.

Taking the supremum over g ∈ G, we get ‖λts(f)− λt(f)‖ ≤ ε
2 < ε.

For the converse, assume that s 7→ λs(f) is continuous. We verify the criterion
of Lemma 4.12. Let ε > 0. Choose an open subset V ⊂ G such that 1 ∈ V and
whenever s ∈ V then ‖λs(f)− f‖ < ε. Let s, t ∈ G satisfy st−1 ∈ V . Then

‖f(s)− f(t)‖ = ‖f(s)− λst−1(f)(s)‖ ≤ ‖f − λst−1(f)‖ < ε.

This completes the proof. �

We now give a definition which is very similar to Definition 3.1, but which uses
bounded uniformly continuous functions instead of functions vanishing at infinity.

Definition 4.14. Let G be a locally compact group, and letH 6 G be a closed sub-
group. Let α : H → Aut(A) be an action of H on a C∗-algebra A. We define a C∗-
algebra FGH (A), with not necessarily continuous action FGH (α) : G→ Aut

(
FGH (A)

)
,

by

FGH (A) =
{
f ∈ Cb(G,A) : αh(f(sh)) = f(s) for all s ∈ G and h ∈ H

}

and (
FGH (α)

)
s
(f)(t) = f(s−1t)

for f ∈ FGH (A) and s, t ∈ G. We further define a subalgebra UIndGH(A) ⊂ FGH (A)
by

UIndGH(A) =
{
f ∈ FGH (A) : s 7→

(
FGH (α)

)
s
(f) is continuous

}
,

and we take UIndGH(α) to be the restriction of FGH (α) to this subalgebra.
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If A and B are H-algebras and ϕ : A→ B is an H-morphism, then the induced
G-morphisms

FGH (ϕ) : FGH (A)→ FGH (B) and UIndGH(ϕ) : UIndGH(A)→ UIndGH(B)

are defined by sending f in FGH (A) or UIndGH(A) as appropriate to the function
s 7→ ϕ(f(s)) for s ∈ G.

We call UIndGH the right uniform induction functor .

Lemma 4.15. Let G be a locally compact group, and let H 6 G be a closed sub-
group. Let the notation be as in Definition 4.14. Then:

(1) UIndGH(A) = FGH (A) ∩ Cru(G,A).
(2) FGH is a functor from the category CH of H-algebras to the category of C∗-

algebras with not necessarily continuous actions of G.
(3) UIndGH is a functor from CH to CG.
(4) If G/H is compact, then UIndGH = FGH = IndGH .

Proof. Part (1) follows from Lemma 4.13. Part (2) is an algebraic calculation.
Part (3) follows from part (1), part (2), and the fact that the formula for FGH (ϕ)
preserves uniform continuity. Part (4) follows from the observation that the condi-
tion in Definition 3.1, that sH 7→ ‖f(s)‖ be in C0(G/H), is automatic when G/H

is compact, and the fact that left translation is continuous on IndGH(A). �

Theorem 4.16. Let G be a locally compact group and let H 6 G be a closed
subgroup. Assume that the left and right uniformities on G agree, and that G/H
is right uniformly finitistic (using the right uniformity of Definition 4.10). Then

the right uniform induction functor UIndGH : CH → CG is exact, that is, given an
H-equivariant short exact sequence of H-algebras

0 −→ I
ι−→ A

π−→ B −→ 0,

the induced G-equivariant sequence of G-algebras

0 // UIndGH(I)
UIndG

H(ι) // UIndGH(A)
UIndG

H(π) // UIndGH(B) // 0

is also exact.

We need two further lemmas for the proof.

Lemma 4.17. Let G be a locally compact group such that the left and right uni-
formities on G agree. Let f ∈ Cc(G). Then for every ε > 0 there is an open set
U ⊂ G such that 1 ∈ U and such that whenever g, h, s, t ∈ G satisfy s−1t ∈ U , then
|f(gsh)− f(gth)| < ε.

Proof. We first claim that there is an open set V ⊂ G such that 1 ∈ V and such
that whenever s, t ∈ G satisfy s−1t ∈ U , then |f(s) − f(t)| < ε. (By Lemma 4.12,
this is just left uniform continuity of f .)

Set K = supp(f). Let ε > 0. For every t ∈ K, use continuity of f to choose an
open neighborhood Z(t) of 1 such that s ∈ tZ(t) implies |f(s)− f(t)| < ε

2 . Further
choose an open neighborhood V (t) of 1 such that x, y ∈ V (t) implies xy ∈ Z(t) and
also such that x ∈ V (t) implies x−1 ∈ V (t). Choose t1, t2, . . . , tn ∈ K such that the
sets t1V (t1), t2V (t2), . . . , tnV (tn) cover K. Set V =

⋂n
j=1 V (tj).

Now suppose s, t ∈ G satisfy t−1s ∈ V . We show that |f(s) − f(t)| < ε. If
s, t 6∈ K, then f(s) = f(t) = 0, so this is immediate. If t ∈ K, then there is j ∈
{1, 2, . . . , n} such that t ∈ tjV (tj). Then t

−1s, t−1
j t ∈ V (tj), so s = tj(t

−1
j t)(t−1s) ∈

tjZ(tj). Therefore

|f(s)− f(t)| ≤ |f(s)− f(tj)|+ |f(tj)− f(t)| <
ε

2
+
ε

2
= ε,
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as desired. Finally, if s ∈ K, use the definition of V to get s−1t ∈ V , choose j such
that s ∈ tjV (tj), and proceed as before. The completes the proof of the claim.

Now we prove the statement of the lemma. By 4.14(g) in Chapter II of [HR79],
equality of the left and right uniformities on G implies that there is an open set
U ⊂ G such that 1 ∈ U and such that whenever g ∈ G, then gUg−1 ⊂ V . Now let
g, h, s, t ∈ G satisfy s−1t ∈ U . Then (gsh)−1(gth) = h−1s−1th ∈ h−1Uh ⊂ V , so
that |f(gsh)− f(gth)| < ε. �

Lemma 4.18. Let G be a locally compact group, let H 6 G be a closed subgroup, let
µ be a left Haar measure on H, and let L ⊂ G be compact. Then sups∈G µ(sL∩H)
is finite.

Proof. Let q : G → G/H be the quotient map. Choose a continuous function
f : G → [0, 1] with compact support and such that f = 1 on L. For s ∈ G de-
fine

g(s) =

∫

H

f(sh) dµ(h).

Then g is continuous and satisfies g(sk) = g(s) for all s ∈ G and k ∈ H. Therefore
g drops to a continuous function g on G/H. If s 6∈ supp(f)H, then g(s) = 0.
Therefore supp(g) ⊂ q(supp(f)), and so is compact. Now

sup
s∈G

µ(sL ∩H) ≤ sup
s∈G

∫

H

f(s−1h) dµ(h) = sup
x∈G/H

g(x) <∞.

This completes the proof. �

Proof of Theorem 4.16. To simplify the notation, we abbreviate the functor UIndGH
to UInd. As in the proof of Proposition 3.6, it is easy to check that the induced
sequence is exact at the right and in the middle. Thus, it remains to check that
UInd(π) : UInd(A) → UInd(B) is surjective. Let α : H → Aut(A) and β : H →
Aut(B) denote the actions of G.

Let q : G→ G/H denote the quotient map.
Let b ∈ UInd(B) and let ε > 0. We construct a ∈ UInd(A) such that ‖π◦a−b‖ <

ε. The function b is right uniformly continuous by Lemma 4.15(1). The hypothesis
on G implies that b is left uniformly continuous. So Lemma 4.12 provides an open
neighborhood U of 1 ∈ G such that t−1s ∈ G implies ‖b(s)− b(t)‖ < ε

2 . Since G is

locally compact, we may assume that U is compact.
Let V0 be an open neighborhood of 1 such that V0 ⊂ U .
We claim that there is a continuous function f : G→ [0,∞) such that supp(f) ⊂

U and such that for every s ∈ V0H we have

(4.1)

∫

H

f(sh) dµ(h) = 1.

By left invariance of µ, it suffices to find f such that (4.1) holds for every s ∈ V0.
Choose an open set Z ⊂ G with V0 ⊂ Z ⊂ Z ⊂ U , and choose f0 ∈ Cc(G) such

that

0 ≤ f0 ≤ 1, supp(f0) ⊂ U, and f0|Z = 1.

Since q
(
V0
)
is compact, q(Z) is open, and q

(
V0
)
⊂ q(Z), there exists f1 ∈ Cc(G/H)

such that

0 ≤ f1 ≤ 1, supp(f1) ⊂ q(Z), and f1|q(V0)
= 1.

Define a continuous function k : G→ [0,∞) by

k(s) =

∫

H

f0(sh) dµ(h)
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for s ∈ G. For s ∈ Z, the integrand is equal to 1 on the open set H ∩ s−1Z ⊂ H.
This set contains 1, so is nonempty, whence k(s) 6= 0. Since also k(sh) = k(s) for
all s ∈ G and h ∈ H, we see that k(s) 6= 0 for all s ∈ ZH. Therefore the definition

f(s) =

{
f1(sH)f0(s)k(s)

−1 s ∈ ZH
0 s ∈ G \ q−1(supp(f1))

is consistent and gives a continuous function f : G → [0,∞) as required in the
claim.

Use the hypothesis on G and 4.14(g) in Chapter II of [HR79] to find an open
neighborhood V1 of 1 such that sV1s

−1 ⊂ V0 for all s ∈ G. This implies, in
particular, that

(4.2) HV1H ⊂ V0H.
Now choose an open neighborhood V of 1 such that s, t ∈ V implies s−1t ∈ V1.

Consider the left uniform cover V = {sV : s ∈ G} of G, and its image q(V) =
{(sV H)/H : s ∈ G} in G/H. Since the left and right uniformities on G agree, V
is a right uniform cover of G, so that q(V) is a right uniform cover of G/H. Since
G/H is assumed to be right uniformly finitistic, there exists a uniform cover W of
G/H which refines q(V) and has finite order n. Let (lW )W∈W be an equiuniformly
continuous partition of unity on G/H forW as in Theorem 4.3. Then the functions
lW ◦q define an equiuniformly continuous partition of unity on G such that lW (x) =
0 whenever W ∈ W and x ∈ G \ q−1(W ).

For each W ∈ W, choose a point xW ∈ q−1(W ), and let aW ∈ A be a lift of
b(xW ) with ‖aW ‖ = ‖b(xW )‖. Define a continuous function gW : G→ [0,∞) by

gW (s) = lW (sH) · f(x−1
W s).

This function vanishes outside the set xWU ∩ q−1(W ). In particular, supp(gW ) is
contained in the compact set xWU .

We claim that for every s ∈ G and W ∈ W, we have

(4.3)

∫

H

gW (sh) dµ(h) = lW (sH).

If s 6∈ q−1(W ), then both sides of (4.3) are zero. To prove the claim, we therefore
assume s ∈ q−1(W ). Choose t ∈ G such that q−1(W ) ⊂ tV H. Then s, xW ∈ tV H,
so there exist h, k ∈ H such that t−1sh, t−1xW k ∈ V . So k−1x−1

W sh ∈ V1. It follows
from (4.2) that x−1

W s ∈ V H, and from the choice of f that
∫

H

f(x−1
W sh) dµ(h) = 1.

The claim is proved.
We next claim that there is a function a : G→ A defined by

(4.4) a(s) =
∑

W∈W

∫

H

gW (sh) · αh(aW ) dµ(h)

for s ∈ G. For each W ∈ W, the integral exists because the integrand is continuous
and has compact support. Moreover, for every s ∈ G, from (4.3) we get

(4.5)

∥∥∥∥
∫

H

gW (sh) · αh(aW ) dµ(h)

∥∥∥∥ ≤ lW (sH) · ‖aW ‖ ≤ lW (sH) · ‖b‖.

It follows that for each s ∈ G at most n summands in (4.4) are nonzero. The claim
follows. Moreover, ‖a(s)‖ ≤ ‖b‖ for all s ∈ G.

We claim that a is right uniformly continuous. Since the left and right unifor-
mities agree, it suffices to prove that a is left uniformly continuous. Let ρ > 0. By
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Lemma 4.18, there is M > 0 such that µ
(
tU ∩H

)
≤M for all t ∈ G. Using equiu-

niform continuity of (lW ◦ q)W∈W and Lemma 4.17, choose an open neighborhood
Z of 1 which is so small that for every W ∈ W and s, t ∈ G with t−1s ∈ Z, we have

|lW (sH)− lW (tH)| < ρ

4n‖b‖+ 1
,

and also whenever g, h, s, t ∈ G satisfy s−1t ∈ Z, then

(4.6) |f(gsh)− f(gth)| < ρ

4M‖b‖+ 1
.

Now let s, t ∈ G satisfy t−1s ∈ Z. Then, using ‖aW ‖ ≤ ‖b‖ for all W ∈ W,

‖a(s)− a(t)‖ =
∥∥∥∥∥
∑

W∈W

(∫

H

lW (sH)f(x−1
W sh)αh(aW ) dµ(h)

−
∫

H

lW (tH)f(x−1
W th)αh(aW ) dµ(h)

)∥∥∥∥∥

≤ ‖b‖
∑

W∈W
|lW (sH)− lW (tH)|

∫

H

f(x−1
W sh) dµ(h)

+ ‖b‖
∑

W∈W
lW (tH)

∫

H

|f(x−1
W sh)− f(x−1

W th)| dµ(h).

In the first term of the last expression, as in the proof of Theorem 4.8, for any fixed
s, t ∈ G, at most 2n of the terms are nonzero. Therefore this term is dominated by

‖b‖ · 2n
(

ρ

4n‖b‖+ 1

)(
sup
W∈W

∫

H

f(x−1
W sh) dµ(h)

)
≤
(

2n‖b‖ρ
4n‖b‖+ 1

)
· 1 < ρ

2
.

Using
∑
W∈W lW (tH) = 1, ‖aW ‖ ≤ ‖b‖, the choice of M , and (4.6), we see that

the second term is dominated by
(

ρ

4M‖b‖+ 1

)[
µ
(
s−1xWU ∩H

)
+ µ

(
t−1xWU ∩H

)]
‖b‖ ≤ 2M‖b‖ρ

4M‖b‖+ 1
<
ρ

2
.

So ‖a(s)− a(t)‖ < ρ. This completes the proof of the claim.
We now claim that a ∈ UInd(A). Let s ∈ G and let h ∈ H. Using left invariance

of µ at the last step, we get

αh(a(sh)) = αs

( ∑

W∈W

∫

H

gW (shk) · αk(aW ) dµ(k)

)

=
∑

W∈W

∫

H

gW (shk) · αhk(aW ) dµ(k) = a(s).

The claim is proved.
It remains to show that ‖π◦a−b‖ < ε. Let s ∈ G and let h ∈ H. ForW ∈ W, we

have constructed gW such that if s ∈ G, h ∈ H, and gW (sh) 6= 0, then sh ∈ xWU .
For such s and h we have ‖b(xW ) − b(sh)‖ < ε

2 by the choice of U . Using H-
equivariance of π for the first equality and b ∈ UInd(B) for the third equality, we
then get

‖π(αh(aW ))− b(s)‖ = ‖βh(b(xW ))− b(s)‖ = ‖b(xW )− βh−1(b(s))‖
= ‖b(xW )− b(sh)‖ < ε

2
.
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Therefore, using (4.3) and
∑
W∈W lW (sH) = 1 at the first and last steps,

‖π(a(s))− b(s)‖ =
∥∥∥∥∥
∑

W∈W

∫

H

gW (sh)
(
π(αh(aW ))− b(s)

)
dµ(h)

∥∥∥∥∥

≤ ε

2

∑

W∈W

∫

H

gW (sh) dµ(h) < ε,

as desired. �

Theorem 4.19. Let G be a locally compact group, and let H 6 G be a closed
subgroup. Suppose that whenever ϕ : A → B is a surjective H-morphism of C∗-
algebras, then UIndGH(ϕ) is also surjective. Let α be a projective action of G. Then
α|H is also projective.

Proof. Let β : H → Aut(B) be an action of H on a C∗-algebra B. The maps to be
introduced are shown in the diagram below. Let J be anH-invariant ideal in B, and
let κ : B → B/J be the quotient map. Let ϕ : A→ B/J be an H-morphism. Then

UIndGH(κ) : UIndGH(B) → UIndGH(B/J) is surjective by hypothesis. We can still

define η : A→ UIndGH(B) by the same formula as in Lemma 3.9, and it is still a G-
morphism. It is easy to check that its range, which a priori is in FGH (B), is actually

in UIndGH(B). Since α is projective, there is a G-morphism λ : A→ UIndGH(B) such

that IGH(κ) ◦ λ = η. We still have H-equivariant maps evB1 : UIndGH(B) → B and

ev
B/J
1 : UIndGH(B/J)→ B/J , given by the same formulas as in Lemma 3.8, which

give the following commutative diagram:

UIndGH(B)

UIndG
H(κ)

��

evB
1 // B

κ

��
A η

//

λ

66mmmmmmmmmmmmmmm
UIndGH(B/J)

ev
B/J
1 // B/J.

It is easy to check that ev
B/J
1 ◦η = ϕ. Therefore the map ψ = evB1 ◦λ is a H-

morphism from A to B such that κ ◦ ψ = ϕ. This completes the proof that α|H is
projective. �

Theorem 4.20. Let G be a locally compact group, and let H 6 G be a closed
subgroup. Assume that the left and right uniformities on G agree, and that G/H
is right uniformly finitistic. Let α be a projective action of G. Then α|H is also
projective.

Proof. Combine Theorem 4.16 and Theorem 4.19. �

Corollary 4.21. Let G be a right uniformly finitistic locally compact group. As-
sume that the left and right uniformities on G agree. Let A be a G-algebra which
is equivariantly projective. Then A is (nonequivariantly) projective.

Corollary 4.22. Let G be a locally compact group, and let H 6 G be a closed
subgroup. Under any of the following conditions, if (G,A, α) is an equivariantly
projective G-algebra, then α|H is also projective:

(1) G/H is compact.
(2) G is discrete.
(3) G is abelian and G/H is uniformly finitistic.
(4) G = Rn.
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Proof. Part (1) follows from Theorem 4.19, Lemma 4.15(4), and Proposition 3.6.
For part (2), it is clear that the cover of G by its one element subsets is both right

and left uniform. Therefore the left and right uniformities on G agree. Furthermore,
the cover of G/H by its one element subsets is right uniform. So G/H is obviously
right uniformly finitistic.

Part (3) follows from equality of the left and right uniformities on an abelian
group.

For part (4), it is now only necessary to show that G/H is uniformly finitistic.
We know that there exist k, l ∈ N∪{0} such that G/H ∼= Rk× (S1)l, and it is easy
to see that the uniformity on G/H comes from any of the standard product metrics
on Rk × (S1)l. It is very easy, using covers by open sets obtained as products of
open intervals and arcs of a fixed sufficiently small length, to see that every uniform
open cover of Rk × (S1)l has a uniform refinement of order at most 2k+l. �

In part (4), the true uniform dimension is, of course, k + l, but we don’t need
this.

Remark 4.23. Corollary 4.22(2) implies that there is no projective action of
a countable discrete group on a nonprojective C∗-algebra, in contrast to Exam-
ple 3.12, where it is shown that the discrete group Z can act semiprojectively on a
C∗-algebra which is not semiprojective in the usual sense.

Remark 4.24. The proof of Theorem 4.19 cannot be generalized to cover semipro-
jectivity. This is clear from Example 3.12. The problem is that there is no analog
of Proposition 3.7 for the left uniform induction functor.

Let N+ = {1, 2, . . . ,∞} be the one point compactification of N. Set B = C(N+),
and for n ∈ N set

Jn =
{
b ∈ B : b(k) = 0 for k ∈ {n+ 1, n+ 2, . . . ,∞}

}
.

Then
⋃∞
n=1 Jn = C0(N) ⊂ B. Call this ideal J . For l ∈ N, define bl ∈ B by

bl(j) =

{
1 j = l

0 j 6= l,

and define a ∈ Cb(Z, B) by a(n) = bn for n ∈ N and a(n) = 0 for n ∈ Z \ N.
Then a ∈ Cb(Z, J), but the distance from a to any element of

⋃∞
n=1 Cb(Z, Jn) is at

least 1, so a 6∈ ⋃∞
n=1 Cb(Z, Jn).

We have written everything in terms of bounded continuous functions, but on Z
all continuous functions are uniformly continuous.

5. Semiprojectivity of the crossed product algebra

If (G,A, α) is an equivariantly semiprojective C∗-algebra, can we deduce that
the crossed product algebra A oα G is semiprojective? We show in Theorem 5.1
that the answer is positive when G is finite and A is unital, and in Example 5.2
that the answer can be negative when G is compact. We then provide examples to
show that the converses of both Theorem 5.1 and Corollary 3.11 are false. We end
the section with further open problems.

Theorem 5.1. Let G be a discrete group such that C∗(G) is semiprojective, and
let (G,A, α) be an equivariantly semiprojective unital G-algebra. Then A oα G is
semiprojective (in the usual sense).

Proof. Lemma 1.6 implies that (G,A, α) is equivariantly semiprojective in the uni-
tal category. We will show that A oα G is semiprojective in the unital category.
Applying Lemma 1.6 again, this time with the group being trivial, we will conclude
that Aoα G is semiprojective.
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We regard A as a subalgebra of Aoα G. Also, for s ∈ G let us ∈ Aoα G be the
standard implementing unitary, so that usau

∗
s = αs(a) for all a ∈ A. The unitaries

us induce a ∗-homomorphism ω : C∗(G)→ Aoα G.
By assumption, C∗(G) is semiprojective. Thus, Lemma 1.4 of [Phi12] shows that

it suffices to prove that ω is relatively semiprojective in the sense of Definition 1.2
of [Phi12] (but with the group being trivial). Accordingly, let C be a unital C∗-
algebra, let J1 ⊂ J2 ⊂ · · · be ideals in C, let J =

⋃∞
n=1 Jn, let

κ : C → C/J, κn : C → C/Jn, and πn : C/Jn → C/J

be the quotient maps, and let λ : C∗(G) → C and ϕ : A oα G → C/J be unital
∗-homomorphisms such that κ ◦ λ = ϕ ◦ ω.

Define an action γ : G→ Aut(C) by γs(c) = λ(us)cλ(us)
∗ for c ∈ C and s ∈ G.

Then (G,C, γ) is a unital G-algebra, and the ideals Jn are G-invariant.
One checks that ϕ|A : A→ C/J is G-equivariant. Since (G,A, α) is equivariantly

semiprojective (in the unital category), there exists n ∈ N and a unital G-morphism
ψ0 : A→ C/Jn such that πn ◦ ψ0 = ϕ|A. Define vs = (κn ◦ λ)(us) for s ∈ G. Then
(v, ψ0) is a covariant representation of (G,A, α) in C/Jn, so there exists a unique
∗-homomorphism ψ : Aoα G→ C/Jn such that ψ(us) = vs and ψ|A = ψ0. This

∗-
homomorphism is the one required by the definition of relative semiprojectivity. �

The basic examples of countable discrete groups G that satisfy the hypothesis
of Theorem 5.1, that is, such that C∗(G) is semiprojective, are finite groups, Z,
and the finitely generated free groups. There is no known characterization of those
groups G for which C∗(G) is semiprojective.

In Theorem 5.1, some restriction on G is necessary. Even compactness is not
enough.

Example 5.2. Let G be an infinite compact group. It follows from Corollary 1.9
of [Phi12] that the trivial action of G on C is semiprojective. However, the crossed
product is C o G = C∗(G), which is an infinite direct sum of matrix algebras, so
not semiprojective by [Bla04, Corollary 2.10].

Theorem 5.1 gives us an easy way of proving that many actions by Z are not
equivariantly semiprojective.

Example 5.3. Let θ ∈ R. Let α : Z → Aut(C(S1)) be the action generated by
rotation by exp(2πiθ). Then α is never semiprojective, for any value of θ.

If θ 6∈ Q, then the crossed product is a simple AT-algebra, and therefore not
semiprojective, for example by [Bla04, Corollary 2.14].

If θ ∈ Q, then A = C(S1)oα Z is Morita equivalent to C
(
(S1)2

)
. Since both A

and C
(
(S1)2

)
are unital and C

(
(S1)2

)
is not semiprojective, it follows from [Bla85,

Corollary 2.29] that A is not semiprojective.
In both cases, it follows from Theorem 5.1 that α is not equivariantly semipro-

jective.

There are versions of Theorem 5.1 in which one takes the crossed product by
only part of the action. As an easy example, consider an action of a product of
two groups, and take the crossed product by one of them. We will not explore the
possibilities further here.

We end this section with two examples that show that the converses of both
Theorem 5.1 and Corollary 3.11 are false, and we give more open problems.

Example 5.4. There is an action α of Z2 on O2 such that the crossed product
B = O2 oα Z2 is not semiprojective. It follows from Theorem 5.1 that this action
is not equivariantly semiprojective. Thus, the converse of Corollary 3.11 fails.
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We follow [Izu04]; also see Section 6 of [Bla04]. Take α to be as in Lemma 4.7
of [Izu04] or, more generally, as in Theorem 4.8(3) of [Izu04] with the groups Γ0

and Γ1 chosen so that at least one of them is not finitely generated, and also such
that O2 oα Z2 satisfies the Universal Coefficient Theorem. The action α is outer,
so B is simple by [Kis81, Theorem 3.1] and purely infinite by [JO98, Corollary 4.6].
Therefore it is a Kirchberg algebra (a separable purely infinite simple nuclear C∗-
algebra). It does not have finitely generated K-theory, so B is not semiprojective
by [Bla04, Corollary 2.11].

Example 5.5. Let α̂ : Z2 → Aut(B) be the dual of the action α of Example 5.4.
Then

B obα Z2
∼=M2 ⊗O2

∼= O2,

which is semiprojective. However, B was shown in Example 5.4 not to be semipro-
jective. So Corollary 3.11 implies that α̂ is not equivariantly semiprojective. This
shows that the converse of Theorem 5.1 fails.

Example 5.4 also shows if A is semiprojective and α : G → Aut(A) is an action
of a finite group on A, then (G,A, α) need not be equivariantly semiprojective.
However, we have neither a proof nor a counterexample for the following question.

Question 5.6. Let G be a finite group, let A be a unital C∗-algebra, and let
α : G → Aut(A) be an action of G on A. Suppose that A and A oα G are both
semiprojective. Does it follow that (G,A, α) is equivariantly semiprojective?

If α : G → Aut(A) is semiprojective, then Theorem 3.10 implies that for any
subgroup H 6 G, the action α|H is also semiprojective. Thus, by Theorem 5.1, the
crossed product Aoα|H H is also semiprojective. Therefore, if G is not simple, one
must probably also consider these intermediate crossed product algebras.

At a conference in August 2010, George Elliott asked if there is a relation between
equivariant semiprojectivity and the Rokhlin property. The following question ad-
dresses what seems to be a plausible connection.

Question 5.7. Let G be a finite group, and let (G,A, α) be a unital G-algebra.
Suppose that A is (nonequivariantly) semiprojective and α has the Rokhlin prop-
erty. Does it follow that (G,A, α) is equivariantly semiprojective?

Even if this is false in general, it might be true if A is simple, or using an
equivariant version of a weak form of semiprojectivity.

6. Semiprojectivity of the fixed point algebra

In this section we study the analog of the question of Section 5 for the fixed
point algebra. That is, given an equivariantly semiprojective C∗-algebra (G,A, α),
can we deduce that the fixed point algebra AG is semiprojective?

In Proposition 6.2, we give a positive answer when G is finite, A is unital, and
the action is saturated. It is unknown whether one can drop the conditions that A
be unital or that the action be saturated.

Some conditions are necessary. In Example 6.1 we give a semiprojective action
of a compact (but not finite) group on a unital C∗-algebra such that the fixed point
algebra is not semiprojective.

In Theorem 6.4, we show that the fixed point algebra is trivial if a noncompact
group acts semiprojectively. This gives a positive answer to the question, but more
interestingly it shows that the trivial action of a noncompact group is never semipro-
jective. We can therefore give a precise characterization when the trivial action of
a group is (semi)projective (Corollary 6.5).

Let G be a second countable compact group and let α : G → Aut(A) be a
semiprojective action. Example 5.2 shows that the crossed product A oα G need
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not be semiprojective, but in that example the fixed point algebra is semiprojective.
In general, though, the fixed point algebra also need not be semiprojective.

Example 6.1. Let α : S1 → Aut(O2) be the gauge action on the Cuntz algebra O2,
defined on the standard generators s1 and s2 by αζ(sj) = ζsj for ζ ∈ S1 and j = 1, 2.
This action is equivariantly semiprojective by [Phi12, Corollary 3.12]. However, the
fixed point algebra is the 2∞ UHF algebra, which is not semiprojective, for example
by [Bla04, Corollary 2.14].

We obtain a positive result when the group is finite and the action is saturated in
the sense of Definition 7.1.4 of [Phi87]. Saturation is a quite weak noncommutative
analog of freeness; see the discussion at the beginning of Section 5.2 of [Phi09].

Proposition 6.2. Let G be a finite group, let A be a unital, separable C∗-algebra,
and let α : G → Aut(A) be a saturated action of G on A. If α is semiprojective,
then AG is semiprojective.

Proof. By definition, saturation implies that AG is strongly Morita equivalent to
AoαG. Theorem 5.1 tells us that AoαG is semiprojective, so AG is semiprojective
by [Bla85, Corollary 2.29]. �

Finiteness is needed, since the gauge action in Example 6.1 is saturated. (In fact,
it follows from Theorem 5.11 of [Phi09] that this action is hereditarily saturated.)
However, we don’t know whether saturation is needed.

Question 6.3. Let G be a finite group, let A be a unital C∗-algebra, and let
α : G → Aut(A) be an arbitrary semiprojective action of G on A. Does it follow
that AG is semiprojective?

If G is compact and A unital, then AG is isomorphic to a unital corner in AoαG,
for example by [Bla06, Theorem II.10.4.18]. If we knew that semiprojectivity passes
to arbitrary unital corners (an open problem), we would get a positive answer to
Question 6.3.

Theorem 6.4. Let (G,A, α) be a separable, equivariantly semiprojective G-algebra,
and assume G is noncompact. Then the fixed point algebra is trivial, that is, AG =
{0}.
Proof. Assume G is a noncompact second countable locally compact group. The
action α : G→ Aut(A) induces an action α : G→ Aut(M2 ⊗A) by acting trivially
on M2, that is, αs(x⊗ a) = x⊗ αs(a) for x ∈M2, a ∈ A, and s ∈ G.

Recall that a metric is called proper if every closed bounded set is compact. By
the main theorem of [Str74], there is a proper left invariant metric d which generates
the topology of G. We manufacture an equivariant lifting problem in several steps.

Step 1: Let (ej,k)j,k=1,2 be the standard system of matrix units for M2. Let
λ 7→ uλ ∈ M2, for λ ∈ [0, 1], be a continuously differentiable path of unitaries
from the identity u0 = ( 1 0

0 1 ) to u1 = ( 0 1
1 0 ). Continuous differentiability is required

for convenience; it gives us M ∈ [0,∞) such that for all λ1, λ2 ∈ [0, 1] we have
‖uλ1

− uλ2
‖ ≤ M |λ1 − λ2|. For λ ∈ [0, 1] define ϕλ : A → M2 ⊗ A by ϕλ(a) =

uλe1,1u
∗
λ⊗a for a ∈ A. Thus ϕ0(a) = e1,1⊗a and ϕ1(a) = e2,2⊗a for a ∈ A. Also,

for λ1, λ2 ∈ [0, 1] and a ∈ A, we have

(6.1) ‖ϕλ1(a)− ϕλ2(a)‖ ≤ 2‖uλ1 − uλ2‖ · ‖a‖ ≤ 2M |λ1 − λ2| · ‖a‖.
It is immediate that

(6.2) αs ◦ ϕλ = ϕλ ◦ αs.
for s ∈ G and λ ∈ [0, 1].
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Step 2: Let G+ = G ∪ {∞} denote the one point compactification of G. Let D
be the C∗-algebra

D =
{
f ∈ C(G+, M2 ⊗A) : f(∞) ∈ Ce2,2 ⊗A

}
.

For s ∈ G, we take s ·∞ =∞. This gives a extension of the action of G on itself by
translation to a continuous action of G on G+. We define an action β of G on D by
βs(f)(t) = αs(f(s

−1t)) for f ∈ D, s ∈ G, and t ∈ G+. Since G is not compact, the
fixed point algebra of this action consists of the constant functions taking values in
Ce2,2 ⊗AG.

Step 3: For k = 1, 2, . . ., define “stretching” maps σk : [0,∞)→ [0, 1] by

σk(λ) = min(λ/k, 1)

for λ ∈ [0,∞). We may extend these to maps from [0,∞] by setting σk(∞) = 1 for
k ∈ N. For λ1, λ2 ∈ [0,∞), we have

(6.3) |σk(λ1)− σk(λ2)| ≤
|λ1 − λ2|

k
.

Step 4: For t ∈ G let d0(t) = d(t, 1) denote the distance from t to the unit
element 1 ∈ G, and extend this function to G+ by setting d0(∞) = ∞. Since d is
proper, the map d0 : G

+ → [0,∞] is continuous.
Using left invariance of d, for s, t ∈ G we get |d0(s−1t)−d0(t)| ≤ d0(s). Therefore,

for k ∈ N,

(6.4)
∣∣σk(d0(s−1t))− σk(d0(t))

∣∣ ≤ d0(s)

k
.

For k ∈ N, we define a ∗-homomorphism ωk : A→ D by

ωk(a)(t) = ϕσk(d0(t))(a)

for a ∈ A and t ∈ G+. Then for s ∈ G we have, using density of G in G+ and
(6.2) at the second step, (6.1) at the third step, and (6.4) at the fourth step,

‖βs(ωk(a))− ωk(αs(a))‖ = sup
t∈G+

‖αs(ϕσk(d0(s−1t))(a))− ϕσk(d0(t))(αs(a))‖

= sup
t∈G
‖ϕσk(d0(s−1t))(αs(a)))− ϕσk(d0(t))(αs(a))‖

≤ sup
t∈G

2M
∣∣σk(d0(s−1t))− σk(d0(t))

∣∣ · ‖αs(a)|

≤ 2M‖a‖d0(s)
k

,

that is,

(6.5) ‖βs(ωk(a))− ωk(αs(a))‖ ≤
2M‖a‖d0(s)

k
.

In particular, we have

(6.6) lim
k→∞

‖βs(ωk(a))− ωk(αs(a))‖ = 0.

Moreover, for k ∈ N and a ∈ A, we have ωk(a)(1) = e1,1 ⊗ a, so, using Step 2,

dist(ωk(a), D
G) ≥ inf

b∈A
‖e1,1 ⊗ a− e2,2 ⊗ b‖(6.7)

≥ inf
b∈A
‖(e1,1 ⊗ 1)(e1,1 ⊗ a− e2,2 ⊗ b)‖ = ‖a‖.

Step 5: Consider the sequence algebra E = l∞(N, D) and for n ∈ N the ideals
Jn C E defined by

Jn =
{
(xk)k∈N ∈ E : xk = 0 for k ≥ n

}
.
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Then J1 ⊂ J2 ⊂ · · · is an increasing sequence of invariant ideals, and the ideal

J =
⋃∞
n=1 Jn is equal to C0(N, D) ⊂ l∞(N, D).

Let γ : G → Aut(E) denote the (not necessarily continuous) coordinatewise
action of G on E, that is, for s ∈ G and (xk)k∈N ∈ E we set γs((xk)k∈N) =
(βs(xk))k∈N. We let F ⊂ E be the C∗-subalgebra on which γ is continuous, that
is,

F =
{
x ∈ E : s 7→ γs(x) is continuous

}
.

Then F is γ-invariant, and we also use γ to denote the restricted action γ : G →
Aut(F ). By construction, this action is continuous.

Clearly J ⊂ F . Moreover, Jn is G-invariant for all n ∈ N, so the action of
G on F drops to F/Jn. Similarly J is G-invariant and the action drops to F/J .
For n ∈ N, let πn : F/Jn → F/J be the natural quotient G-morphism. We have
FG = l∞(N, DG), and one checks by direct computation that the fixed point algebra
of F/Jn is (F/Jn)

G = FG/JGn , which we identify with l∞
(
{n+1, n+2, . . .}, DG

)
.

Step 6: For each a ∈ A, consider the sequence ω(a) = (ω1(a), ω2(a), . . .) ∈ E
constructed in Step 4. We claim that ω(a) ∈ F . To see this, let a ∈ A and let
s, t ∈ G. Then, using (6.5) and ‖ωk‖ = 1 at the third step,

‖γs(ω(a))− γt(ω(a))‖ = sup
k∈N
‖βs(ωk(a))− βt(ωk(a))‖

= sup
k∈N
‖βt−1s(ωk(a))− ωk(αt−1s(a)) + ωk(αt−1s(a)− a)‖

≤ sup
k∈N

2M‖a‖d0(t−1s)

k
+ ‖αt−1s(a)− a‖

= 2M‖a‖d(s, t) + ‖αs(a)− αt(a)‖.
Since α is a continuous action, this proves the claim.

Step 7: Define a ∗-homomorphism ω : A → F/J by sending a ∈ A to the image
of ω(a) in the quotient F/J . It follows from (6.6) that ω is a G-morphism.

Suppose now that A is equivariantly semiprojective. Then there are n ∈ N and
a G-morphism ψ : A→ F/Jn such that πn ◦ ψ = ω.

Fix an element a ∈ AG. We want to show a = 0. Since ψ is G-equivariant,
ψ(a) ∈ (F/Jn)

G.
Identify (F/Jn)

G with l∞
(
{n+ 1, n+ 2, . . .}, DG

)
as at the end of Step 5, and

write ψ(a) = (ψn+1(a), ψn+2(a), . . .). Then, using (6.7) at the last step,

‖πn(ψ(a))− ω(a)‖ =
∥∥πn

(
(ψn+1(a), ψn+2(a), . . .)− (ωn+1(a), ωn+2(a), . . .)

)∥∥
= lim inf

k→∞
‖ψk(a)− ωk(a)‖

≥ inf
k∈{n+1, n+2, ...}

dist(ωk(a), D
G) ≥ ‖a‖.

For a 6= 0 this contradicts πn(ψ(a)) = ω(a). Thus AG = {0}. �

We now address the question of when the trivial action of a group G on a C∗-
algebra A is (semi)projective.

If G is compact, then it follows from Corollary 4.21 and Corollary 3.11 that A is
(semi)projective in the usual sense. Conversely, if A is (semi)projective in the usual
sense, then it follows from [Phi12, Corollary 1.9] and Lemma 1.9 that the trivial
action of G on A is (semi)projective.

If G is noncompact, then the trivial action on a (non-zero) C∗-algebra is never
semiprojective. Indeed, if (G,A, α) is equivariantly semiprojective, and α is trivial,
then Theorem 6.4 above shows that A = AG = {0}.

We thus obtain the following precise characterization when the trivial action of
a group is (semi)projective.



Appendix. F 165

SEMIPROJECTIVITY WITH AND WITHOUT A GROUP ACTION 33

Corollary 6.5. Let A be separable C∗-algebra, and let G be a second countable
locally compact group. Then the trivial action of G on A is (semi)projective if and
only if A is (semi)projective and G is compact.
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1. Introduction

There is a well-known bijective correspondence between hereditary sub-C∗-algebras of a C∗-
algebra and open projections in its bidual. Thus to every positive element a in a C∗-algebra A

one can associate the open projection pa in A∗∗ corresponding to the hereditary sub-C∗-algebra
Aa = aAa. Any comparison relation between positive elements in a C∗-algebra that is invariant
under the relation a ∼= b, defined by a ∼= b ⇔ Aa = Ab , can in this way be translated into a
comparison relation between open projections in the bidual. Vice versa, any comparison relation
between open projections corresponds to a comparison relation (which respects ∼=) on positive
elements of the underlying C∗-algebra.

Peligrad and Zsidó defined in [19] an equivalence relation (and also a sub-equivalence rela-
tion) on open projections in the bidual of a C∗-algebra as Murray–von Neumann equivalence
with the extra assumption that the partial isometry that implements the equivalence gives an iso-
morphism between the corresponding hereditary sub-C∗-algebras of the given C∗-algebra. Very
recently, Lin [17], noted that the Peligrad–Zsidó (sub-)equivalence of open projections corre-
sponds to a comparison relation of positive elements considered by Blackadar in [6].

The Blackadar comparison relation of positive elements is stronger than the Cuntz compar-
ison relation of positive elements that is used to define the Cuntz semigroup of a C∗-algebra.
The Cuntz semigroup has recently come to play an influential role in the classification of C∗-
algebras. We show that Cuntz comparison of positive elements corresponds to a natural relation
on open projections, that we also call Cuntz comparison. It is defined in terms of—and is
weaker than—the Peligrad–Zsidó comparison. It follows from results of Coward, Elliott, and
Ivanescu [10], and from our results, that the Blackadar comparison relation is equivalent to Cuntz
comparison of positive elements when the C∗-algebra is separable and has stable rank one, and
consequently that Peligrad–Zsidó comparison is equivalent to our notion of Cuntz comparison of
open projections in this case.

The best known and most natural comparison relation for projections in a von Neumann al-
gebra is the one introduced by Murray and von Neumann. It is weaker than the Cuntz and the
Peligrad–Zsidó comparison relations. We show that Murray–von Neumann (sub-)equivalence
of open projections in the bidual in the separable case is equivalent to tracial comparison of
the corresponding positive elements of the C∗-algebra. Tracial comparison is defined in terms
of dimension functions arising from lower semicontinuous tracial weights on the C∗-algebra.
The proof of this equivalence builds on two results on von Neumann algebras that may have
independent interest, and which probably are known to experts: One says that Murray–von Neu-
mann comparison of projections in any von Neumann algebra which is not too big (in the sense
of Tomiyama—see Section 5 for details) is completely determined by normal tracial weights on
the von Neumann algebra. The other result states that every lower semicontinuous tracial weight
on a C∗-algebra extends (not necessarily uniquely) to a normal tracial weight on the bidual of
the C∗-algebra.

We use results of Elliott, Robert, and Santiago [11], to show that tracial comparison of positive
elements in a C∗-algebra is equivalent to Cuntz comparison if the C∗-algebra is separable and
exact, its Cuntz semigroup is weakly unperforated, and the involved positive elements are purely
non-compact.

We also relate comparison of positive elements and of open projections to comparison of the
associated right Hilbert A-modules. The Hilbert A-module corresponding to a positive element a

in A is the right ideal aA. We show that Blackadar equivalence of positive elements is equivalent
to isomorphism of the corresponding Hilbert A-modules, and we recall that Cuntz comparison of
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positive elements is equivalent to the notion of Cuntz comparison of the corresponding Hilbert
A-modules introduced in [10].

2. Comparison of positive elements in a C∗-algebra

We remind the reader about some, mostly well-known, notions of comparison of positive
elements in a C∗-algebra. If a is a positive element in a C∗-algebra A, then let Aa denote the
hereditary sub-C∗-algebra generated by a, i.e., Aa = aAa. The Pedersen equivalence relation
on positive elements in a C∗-algebra A is defined by a ∼ b if a = x∗x and b = xx∗ for some
x ∈ A, where a, b ∈ A+, and it was shown by Pedersen, that this indeed defines an equivalence
relation. Write a ∼= b if Aa = Ab . The equivalence relation generated by these two relations was
considered by Blackadar in [5, Definition 6.1.2]:

Definition 2.1 (Blackadar comparison). Let a and b be positive elements in a C∗-algebra A.
Write a ∼s b if there exists x ∈ A such that a ∼= x∗x and b ∼= xx∗, and write a �s b if there exists
a′ ∈ A+

b with a ∼s a′.

(It follows from Lemma 4.2 below that ∼s is an equivalence relation.) Note that �s is not an
order relation on A+/∼s since in general a �s b �s a does not imply a ∼s b (see [16, Theo-
rem 9]). If p and q are projections, then p ∼s q agrees with the usual notion of equivalence of
projections defined by Murray and von Neumann, denoted by p ∼ q .

The relation defining the Cuntz semigroup that currently is of importance in the classification
program for C∗-algebras is defined as follows:

Definition 2.2 (Cuntz comparison of positive elements). Let a and b be positive elements in a
C∗-algebra A. Write a � b if there exists a sequence {xn} in A such that x∗

nbxn → a. Write a ≈ b

if a � b and b � a.

2.3 (The Cuntz semigroup). Let us briefly remind the reader about the ordered Cuntz semigroup
W(A) associated to a C∗-algebra A. Let M∞(A)+ denote the disjoint union

⋃∞
n=1 Mn(A)+. For

a ∈ Mn(A)+ and b ∈ Mm(A)+ set a ⊕ b = diag(a, b) ∈ Mn+m(A)+, and write a � b if there
exists a sequence {xk} in Mm,n(A) such that x∗

k bxk → a. Write a ≈ b if a � b and b � a. Put
W(A) = M∞(A)+/≈, and let 〈a〉 ∈ W(A) be the equivalence class containing a. Let us denote
by Cu(A) the completion of W(A) with respect to countable suprema, i.e., Cu(A) := W(A⊗K).

Lastly we define comparison by traces. We shall here denote by T (A) the set of (norm) lower
semicontinuous tracial weights on a C∗-algebra A. We remind the reader that a tracial weight
on A is an additive function τ : A+ → [0,∞] satisfying τ(λa) = λτ(a) and τ(x∗x) = τ(xx∗)
for all a ∈ A+, x ∈ A, and λ ∈ R+. That τ is lower semicontinuous means that τ(a) = lim τ(ai)

whenever {ai} is a norm-convergent increasing sequence (or net) with limit a. Each τ ∈ T (A)

gives rise to a lower semicontinuous dimension function dτ : A+ → [0,∞] given by dτ (a) =
supε>0 τ(fε(a)), where fε : R+ → R+ is the continuous function that is 0 on 0, 1 on [ε,∞), and
linear on [0, ε]. Any dimension function gives rise to an additive order preserving state on the
Cuntz semigroup, and in particular it preserves the Cuntz relation �.

Definition 2.4 (Comparison by traces). Let a and b be positive elements in a C∗-algebra A.
Write a ∼tr b and a �tr b if dτ (a) = dτ (b), respectively, dτ (a) � dτ (b), for all τ ∈ T (A).
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Remark 2.5. Observe that

a �s b ⇒ a � b ⇒ a �tr b, a ∼s b ⇒ a ≈ b ⇒ a ∼tr b

for all positive elements a and b in any C∗-algebra A. In Section 6 we discuss under which
conditions these implications can be reversed.

3. Open projections

The bidual A∗∗ of a C∗-algebra A can be identified with the von Neumann algebra arising
as the weak closure of the image of A under the universal representation πu : A → B(Hu) of A.
Following Akemann [1, Definition II.1], and Pedersen [18, Proposition 3.11.9, p. 77], a projection
p in A∗∗ is said to be open if it is the strong limit of an increasing sequence of positive elements
from A, or, equivalently, if it belongs to the strong closure of the hereditary sub-C∗-algebra
pA∗∗p ∩ A of A. We shall denote this hereditary sub-C∗-algebra of A by Ap . (This agrees with
the previous definition of Ap if p is a projection in A.) The map p �→ Ap furnishes a bijective
correspondence between open projections in A∗∗ and hereditary sub-C∗-algebras of A. The open
projection corresponding to a hereditary sub-C∗-algebra B of A is the projection onto the closure
of the subspace πu(B)Hu of Hu. Let Po(A

∗∗) denote the set of open projections in A∗∗.
A projection in A∗∗ is closed if its complement is open.
For each positive element a in A we let pa denote the open projection in A∗∗ corresponding to

the hereditary sub-C∗-algebra Aa of A. Equivalently, pa is equal to the range projection of πu(a),
and if a is a contraction, then pa is equal to the strong limit of the increasing sequence {a1/n}.
Notice that pa = pb if and only if Aa = Ab if and only if a ∼= b. If A is separable, then each
hereditary sub-C∗-algebra of A contains a strictly positive element and hence is of the form Aa

for some a. It follows that every open projection in A∗∗ is of the form pa for some positive
element a in A, whence there is a bijective correspondence between open projections in A∗∗ and
positive elements in A modulo the equivalence relation ∼=.

3.1 (Closure of a projection). If K ⊆ Po(A
∗∗) is a family of open projections, then their supre-

mum
∨

K is again open. Dually, the infimum of a family of closed projections is again closed.
Therefore, if we are given any projection p, then we can define its closure p as

p :=
∧{

q ∈ P
(
A∗∗): q is closed, p � q

}
.

We shall consider various notions of comparisons and equivalences of open projections in
A∗∗ that, via the correspondence a �→ pa , match the notions of comparison and equivalences of
positive elements in a C∗-algebra considered in the previous section. First of all we have Murray–
von Neumann equivalence ∼ and subequivalence � of projections in any von Neumann algebra.
We shall show in Section 5 that they correspond to tracial comparison. Peligrad and Zsidó made
the following definition:

Definition 3.2 (PZ-equivalence). (See [19, Definition 1.1].) Let A be a C∗-algebra, and let p

and q be open projections in A∗∗. Then p,q are equivalent in the sense of Peligrad and Zsidó
(PZ-equivalent, for short), denoted by p ∼PZ q , if there exists a partial isometry v ∈ A∗∗ such
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that

p = v∗v, q = vv∗, vAp ⊆ A, v∗Aq ⊆ A.

Say that p �PZ q if there exists p′ ∈ Po(A
∗∗) such that p ∼PZ p′ � q .

PZ-equivalence is stronger than Murray–von Neumann equivalence. We will see in Section 6
that it is in general strictly stronger, but the two equivalences do agree for some C∗-algebras and
for some classes of projections.

We will now turn to the question of PZ-equivalence of left and right support projections.
Peligrad and Zsidó proved in [19, Theorem 1.4] that pxx∗ ∼PZ px∗x for every x ∈ A (and even for
every x in the multiplier algebra of A). One can ask whether the converse is true. The following
result gives a satisfactory answer.

Proposition 3.3. Let p,q ∈ Po(A
∗∗) be two open projections with p ∼PZ q . If p is the support

projection of some element in A, then so is q , and in this case p = pxx∗ and q = px∗x for some
x ∈ A.

Proof. There is a partial isometry v in A∗∗ with p = v∗v, vv∗ = q , and vAp ⊆ A. This implies
that vApv∗ ⊆ A, so the map x �→ vxv∗ defines a ∗-isomorphism from Ap onto Aq . By assump-
tion, p = pa for some positive element a in A. Upon replacing a by ‖a‖−1a we can assume that
a is a contraction. Put b := vav∗ ∈ A+. Then

pb = sup
n

(
vav∗)1/n = sup

n
va1/nv∗ = vpav

∗ = q.

Hence q is a support projection, and moreover for x := va1/2 ∈ A we have a = x∗x and
xx∗ = b. �
Remark 3.4. As noted above, every open projection in the bidual of a separable C∗-algebra is
realized as a support projection, so that PZ-equivalence of two open projections means precisely
that they are the left and right support projections of some element in A.

3.5 (Compact and closed projections). We define below an equivalence relation and an order
relation on open projections that we shall show to match Cuntz comparison of positive elements
(under the correspondence a �→ pa). To this end we need to define the concept of compact con-
tainment, which is inspired by the notion of a compact (and closed) projection developed by
Akemann.

The idea first appeared in [1], although it was not given a name there, and it was later termed
in the slightly different context of the atomic enveloping von Neumann algebra in [2, Defini-
tion II.1]. Later again, it was studied by Akemann, Anderson, and Pedersen in the context of the
universal enveloping von Neumann algebra (see [3, after Lemma 2.4]).

A closed projection p ∈ A∗∗ is called compact if there exists a ∈ A+ of norm one such that
pa = p. See [3, Lemma 2.4] for equivalent conditions. Note that a compact, closed projection
p ∈ A∗∗ must be dominated by some positive element of A (since pa = p implies p = apa �
a2 ∈ A). The converse also holds (this follows from the result [2, Theorem II.5] transferred to
the context of the universal enveloping von Neumann algebra).
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Definition 3.6 (Compact containment). Let A be a C∗-algebra, and let p,q ∈ Po(A
∗∗) be open

projections. We say that p is compactly contained in q (denoted p � q) if p is a compact pro-
jection in Aq , i.e., if there exists a positive element a in Aq with ‖a‖ = 1 and pa = p.

Further, let us say that an open projection p is compact if it is compactly contained in itself,
i.e., if p � p.

Proposition 3.7. An open projection in A∗∗ is compact if and only if it belongs to A.

Proof. Every projection in A is clearly compact.
If p is open and compact, then by definition there exists a ∈ (Ap)+ such that pa = p. This

implies that p � p � a � p, whence p = a ∈ A. �
Remark 3.8. Note that compactness was originally defined only for closed projections in A∗∗
(see 3.5). In Definition 3.6 above we also defined a notion of compactness for open projections
in A∗∗ by assuming it to be compactly contained in itself. This should cause no confusion since,
by Proposition 3.7, a compact, open projection is automatically closed as well as compact in the
sense defined for closed projections in 3.5.

Now we can give a definition of (sub-)equivalence for open projections that we term
Cuntz (sub-)equivalence, and which in the next section will be shown to agree with Cuntz
(sub-)equivalence for positive elements and Hilbert modules in a C∗-algebra. We warn the reader
that our definition of Cuntz equivalence (below) does not agree with the notion carrying the same
name defined by Lin in [17]. The latter was the one already studied by Peligrad and Zsidó that
we (in Definition 3.2) have chosen to call Peligrad–Zsidó equivalence (or PZ-equivalence). Our
definition below of Cuntz equivalence for open projections turns out to match the notion of Cuntz
equivalence for positive elements, also when the C∗-algebra does not have stable rank one.

Definition 3.9 (Cuntz comparison of open projections). Let A be a C∗-algebra, and let p and q

be open projections in A∗∗. We say that p is Cuntz subequivalent to q , written p �Cu q , if for
every open projection p′ � p there exists an open projection q ′ with p′ ∼PZ q ′ � q . If p �Cu q

and q �Cu p hold, then we say that p and q are Cuntz equivalent, which we write as p ∼Cu q .

4. Comparison of positive elements and the corresponding relation on open projections

We show in this section that the Cuntz comparison relation on positive elements corresponds
to the Cuntz relation on the corresponding open projections. We also show that the Blackadar re-
lation on positive elements, the Peligrad–Zsidó relation on their corresponding open projections,
and isometric isomorphism of the corresponding Hilbert modules are equivalent.

4.1 (Hilbert modules). See [4] for a good introduction to Hilbert A-modules. Throughout this
note all Hilbert modules are assumed to be right modules and countably generated. Let A be
a general C∗-algebra. We will denote by H(A) the set of isomorphism classes of Hilbert A-
modules. Every closed, right ideal in A is in a natural way a Hilbert A-module. In particular,
Ea := aA is a Hilbert A-module for every element a in A. The assignment a �→ Ea defines a
natural map from the set of positive elements of A to H(A).
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If E and F are Hilbert A-modules, then E is said to be compactly contained in F , written
E � F , if there exists a positive element x in K(F ), the compact operators of L(F ), such that
xe = e for all e ∈ E.

For two Hilbert A-modules E,F we say that E �Cu F (E is Cuntz subequivalent to F ) if for
every Hilbert A-submodule E′ � E there exists F ′ � F with E′ ∼= F ′ (isometric isomorphism).
Further declare E ≈ F (Cuntz equivalence) if E �Cu F and F �Cu E.

Before relating the Blackadar relation with the Peligrad–Zsidó relation we prove the following
lemma restating the Blackadar relation:

Lemma 4.2. Let A be a C∗-algebra, and let a and b be positive elements in A. The following
conditions are equivalent:

(i) a ∼s b,
(ii) there exist a′, b′ ∈ A+ with a ∼= a′ ∼ b′ ∼= b,

(iii) there exists x ∈ A such that Aa = Ax∗x and Ab = Axx∗ ,
(iv) there exists b′ ∈ A+ with a ∼ b′ ∼= b,
(v) there exists a′ ∈ A+ with a ∼= a′ ∼ b.

Proof. (ii) is just a reformulation of (i), and (iii) is a reformulation of (ii) keeping in mind that
Ac = Ad if and only if c ∼= d .

(iv) ⇒ (ii) and (v) ⇒ (ii) are trivial.
(iii) ⇒ (v): Take x ∈ A such that Aa = Ax∗x and Ab = Axx∗ . Let x = v|x| be the polar de-

composition for x (with v a partial isometry in A∗∗). Then c �→ v∗cv defines an isomorphism
from Axx∗ = Ab onto Ax∗x = Aa . This isomorphism maps the strictly positive element b of Ab

onto a strictly positive element a′ = v∗bv of Aa . Hence b ∼ a′ ∼= a as desired.
The proof of (iii) ⇒ (iv) is similar. �
The equivalence of (i) and (iv) in the proposition below was noted to hold in Lin’s recent

paper [17]. We include a short proof of this equivalence for completeness.

Proposition 4.3. Let A be a C∗-algebra, and let a and b be positive elements in A. The following
conditions are equivalent:

(i) a ∼s b,
(ii) Ea and Eb are isomorphic as Hilbert A-modules,

(iii) there exists x ∈ A such that Ea = Ex∗x and Eb = Exx∗ ,
(iv) pa ∼PZ pb.

Proof. (i) ⇒ (iv): As remarked earlier, it was shown in [19, Theorem 1.4] that px∗x ∼PZ pxx∗
for all x ∈ A. In other words, a ∼ b implies pa ∼PZ pb . Recall also that pa = pb when a ∼= b.
These facts prove the implication.

(iv) ⇒ (i): If pa ∼PZ pb, then by Proposition 3.3, there exist positive elements a′ and b′ in A

such that pa = pa′ , pb = pb′ , and a′ ∼ b′. Now, pa = pa′ and pb = pb′ imply that a ∼= a′ and
b ∼= b′, whence (i) follows (see also Lemma 4.2).

(ii) ⇒ (iii): Let Φ : Ea → Eb be an isomorphism of Hilbert A-modules, i.e., a bijective A-
linear map preserving the inner product. Set x := Φ(a) ∈ Eb. Then
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xA = Φ(a)A = Φ(aA) = Eb,

whence Eb = Ex = Exx∗ . Since Φ preserves the inner product,

a2 = 〈a, a〉Ea = 〈
Φ(a),Φ(a)

〉
Eb

= x∗x.

Hence Ea = Ea2 = Ex∗x and Eb = Exx∗ .
(iii) ⇒ (ii): Let x = v|x| be the polar decomposition of x in A∗∗. Note that E|x| = Ex∗x and

Exx∗ = E|x∗|. Define an isomorphism E|x| → E|x∗| by z �→ vz.
(i) ⇔ (iii): This follows from the one-to-one correspondence between hereditary sub-C∗-

algebras and right ideals: A hereditary sub-C∗-algebra B corresponds to the right ideal BA, and,
conversely, a right ideal R corresponds the hereditary algebra R∗R. In particular, Ea = AaA and
Aa = E∗

aEa .
If (i) holds, then, by Lemma 4.2, Aa = Ax∗x and Axx∗ = Ab for some x ∈ A. This shows that

Ea = AaA = Ax∗xA = Ex∗x and, similarly, Eb = Exx∗ .
In the other direction, if Ea = Ex∗x and Exx∗ = Eb for some x ∈ A, then Aa = E∗

aEa =
E∗

x∗xEx∗x = Ax∗x and, similarly, Ab = Axx∗ , whence a ∼s b. �
4.4. It follows from the proof of (ii) ⇒ (iii) of the proposition above that if a is a positive ele-
ment in a C∗-algebra A and if F is a Hilbert A-module such that Ea

∼= F , then F = Eb for some
positive element b in A. In fact, if Φ : Ea → F is an isometric isomorphism, then we can take b

to be Φ(a) as in the before mentioned proof.

4.5. For any pair of positive elements a and b in a C∗-algebra A we have the following equiva-
lences:

a ∈ Ab ⇔ Aa ⊆ Ab ⇔ Ea ⊆ Eb ⇔ pa � pb,

as well as the following equivalences:

a ∈ Ab and b ∈ Aa ⇔ a ∼= b ⇔ Aa = Ab ⇔ Ea = Eb ⇔ pa = pb.

As a consequence of Proposition 4.3, Lemma 4.2, and the remark above we obtain the follow-
ing proposition:

Proposition 4.6. Let A be a C∗-algebra, and let a and b be positive elements in A. The following
conditions are equivalent:

(i) a �s b,
(ii) there exists a Hilbert A-module E′ such that Ea

∼= E′ ⊆ Eb ,
(iii) there exists x ∈ A with Ea = Ex∗x and Exx∗ ⊆ Eb ,
(iv) pa �PZ pb .

Lemma 4.7. Let a and e be positive elements in a C∗-algebra A and assume that e is a contrac-
tion. Then the following equivalences hold

ae = a ⇔ pae = pa ⇔ pae = pa.
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Proof. The two “⇐”-implications are trivial. Suppose that ae = a. Let χ be indicator function
for the singleton {1}, and put q = χ(e) ∈ A∗∗. Then qe = q and q is the largest projection in
A∗∗ with this property. Moreover, q is the projection onto the kernel of 1 − e, hence 1 − q is the
projection onto the range of 1− e, i.e., 1−q = p1−e . This shows that q is a closed projection. As
a and 1−e are orthogonal so are their range projections pa and p1−e , whence pa � 1−p1−e = q .
Thus pa � q . This shows that pae = pa . �
Lemma 4.8. Let A be a C∗-algebra, and let e and a be positive elements in A. If ae = a, then
pa � pe .

Proof. Upon replacing e with f (e), where f : R+ → R+ is given by f (t) = max{t,1}, we may
assume that e is a contraction. If ae = a, then pae = pa by Lemma 4.7, and this implies that
pa � pe . �

We show below that the two previously defined notions of compact containment agree. To do
so we introduce a third notion of compact containment:

Definition 4.9. Let a and b be positive elements in a C∗-algebra. Then a is said to be compactly
contained in b, written a � b, if and only if there exists a positive element e in Ab such that
ea = a.

Following the proof of Lemma 4.8, the element e above can be assumed to be a contraction.

Proposition 4.10. Let A be a C∗-algebra, let b be a positive element in A, and let a be a positive
element in Ab . Then the following statements are equivalent:

(i) Ea � Eb ,
(ii) a � b,

(iii) pa � pb ,
(iv) pa � pb and pa is compact in A.

Proof. (i) ⇔ (ii): By definition, (i) holds if and only if there exists a positive element e in K(Eb),
such that e acts as the identity on Ea . We can identify K(Eb) with Ab , as elements of the latter
act on Eb by left-multiplication. Thus (i) is equivalent to the existence of a positive element e in
Ab such that ex = x for all x ∈ Ea = aA. The latter condition is fulfilled precisely if ea = a.

(ii) ⇔ (iii): (iii) holds if and only if there exists a positive element e in Ab such that pae = pa ;
and (ii) holds if and only if there exists a positive element e in Ab such that ae = a. In both cases
e can be taken to be a contraction, cf. the proof of Lemma 4.8. The bi-implication now follows
from Lemma 4.7.

(ii) and (iii) ⇒ (iv): If a � b, then there is a positive contraction e in Ab such that ae = a. By
Lemma 4.8 this implies that pa � pe � pb . From (iii) we have that pa is compact in Ab which
entails that pa also is compact in A.

(iv) ⇒ (iii): This is [3, Lemma 2.5]. �
Remark 4.11. In many cases it is automatic that p is compact, and then p � q is equivalent to
the condition p � q . For example, if A is unital, then all closed projections in A∗∗ are compact.
More generally, if a ∈ A+ sits in some corner qAq for a projection q ∈ A, then pa is compact.
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Lemma 4.12. Let a be a positive element in a C∗-algebra A.

(i) If E′ is a Hilbert A-module that is compactly contained in Ea , then E′ ⊆ E(e−ε)+ for some
positive element e ∈ Aa and some ε > 0.

(ii) If q, q ′ are open projections in A∗∗ such that q ′ is compactly contained in q , then q ′ �
p(e−ε)+ for some positive element e ∈ Aq and some ε > 0.

Proof. (i): By definition there is a positive element e in K(Ea) = Aa such that ex = x for all
x ∈ E′. This implies that (e − 1/2)+x = 1

2x for all x ∈ E′, whence E′ ⊆ E(e−1/2)+ .
(ii): If q ′ is compactly contained in q , then there is a positive element e in Aq such that

q ′e = q ′ (in fact such that q ′e = q ′). It follows that q ′(e − 1/2)+ = 1
2q ′, and hence that q ′ �

p(e−1/2)+ . �
Proposition 4.13. Let a and b be positive elements in a C∗-algebra A. Then the following state-
ments are equivalent:

(i) a � b.
(ii) Ea �Cu Eb.

(iii) pa �Cu pb .

Proof. The equivalence of (i) and (ii) was first shown in [10, Appendix], see also [4, Theo-
rem 4.33].

(ii) ⇒ (iii): Suppose that Ea �Cu Eb , and let p′ be an arbitrary open projection in A∗∗ which
is compactly contained in pa . Then, by Lemma 4.12, p′ � p(e−ε)+ for some positive element e

in Aa and some ε > 0. Notice that (e − ε)+ � a. It follows from Proposition 4.10 that E(e−ε)+
is compactly contained in Ea . Accordingly, E(e−ε)+ ∼= F ′ for some Hilbert A-module F ′ that is
compactly contained in Eb. By 4.4, F ′ = Ec for some positive element c in A. It now follows
from Proposition 4.10 and from Proposition 4.3 that

p′ � p(e−ε)+ ∼PZ pc � pb.

This shows that pa �Cu pb .
(iii) ⇒ (ii): Suppose that pa �Cu pb , and let E′ be an arbitrary Hilbert A-module which is

compactly contained in Ea . Then, by Lemma 4.12, E′ ⊆ E(e−ε)+ for some positive element e

in Aa and some ε > 0. It follows from Proposition 4.10 that p(e−ε)+ is compactly contained
in pa . Accordingly, p(e−ε)+ ∼PZ q ′ for some open projection q ′ in A∗∗ that is compactly con-
tained in pb . By Proposition 3.3, q ′ = pc for some positive element c in A. It now follows from
Proposition 4.10 and from Proposition 4.3 that

E′ ⊆ E(e−ε)+ ∼= Ec � Eb.

This shows that Ea �Cu Eb. �
By the definition of Cuntz equivalence of positive elements, Hilbert A-modules, and of open

projections, the proposition above immediately implies the following:
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Corollary 4.14. For every pair of positive elements a and b in a C∗-algebra A we have the
following equivalences:

a ≈ b ⇔ Ea ≈ Eb ⇔ pa ∼Cu pb.

We conclude this section by remarking that the pre-order �PZ on the open projections is not
algebraic (unlike the situation for Murray–von Neumann subequivalence). Indeed, if p and q

are open projections A∗∗ with p � q , then q − p need not be an open projection. For the same
reason, �Cu is not an algebraic order. However, Cuntz comparison is approximately algebraic in
the following sense.

Proposition 4.15. Let A be a C∗-algebra, and let p,p′, q ∈ A∗∗ be open projections with p′ �
p �Cu q . Then there exists an open projection r ∈ A∗∗ such that p′ ⊕ r �Cu q �Cu p ⊕ r .

Proof. By Lemma 4.12 (ii) there exists an open projection p′′ with p′ � p′′ � p (take p′′ to
be p(a−ε/2)+ in that lemma). By the definition of Cuntz sub-equivalence there exists an open
projection q ′′ such that p′′ ∼PZ q ′′ � q . Since p′′ ∼PZ q ′′ implies p′′ ∼Cu q ′′, there exists an
open projection q ′ with p′ ∼PZ q ′ � q ′′. Then r := q − q ′ is an open projection.

Since q ′ � q ′′ implies q ′ � q ′′, and q ′ � q ′, we get

p′ ⊕ r ∼PZ q ′ ⊕ r �PZ q = q ′ + r �Cu q ′′ ⊕ r ∼PZ p′′ ⊕ r � p ⊕ r

as desired. �
Translated, this result says that for positive elements a′, a, b in A with a′ � a � b there exists

a positive element c such that a′ ⊕ c � b � a ⊕ c.
To formulate the result in the ordered Cuntz semigroup, we recall that an element α ∈ Cu(A)

is called way-below β ∈ Cu(A), denoted α � β , if for every increasing sequence {βk} in Cu(A)

with β � supk βk there exists l ∈ N such that already α � βl . Consequently, in the Cuntz semi-
group we get the following almost algebraic order:

Corollary 4.16 (Almost algebraic order in the Cuntz semigroup). Let A be a C∗-algebra, and let
α′, α,β in Cu(A) be such that α′ � α � β . Then there exists γ ∈ Cu(A) such that α′ + γ � β �
α + γ .

5. Comparison of projections by traces

In this section we show that Murray–von Neumann (sub-)equivalence of open projections in
the bidual of a separable C∗-algebra is equivalent to tracial comparison of the corresponding
positive elements of the C∗-algebra. For the proof we need to show that every lower semicon-
tinuous tracial weight on a C∗-algebra extends (not necessarily uniquely) to a normal tracial
weight on its bidual and that Murray–von Neumann comparison of projections in any von Neu-
mann algebra “that is not too big” is determined by tracial weights. We expect those two results
to be known to experts, but in lack of a reference and for completeness we have included their
proofs.

Recall that a weight ϕ on a C∗-algebra A is an additive map ϕ : A+ → [0,∞] satisfying
ϕ(λa) = λϕ(a) for all a ∈ A+ and all λ ∈ R+. We say that ϕ is densely defined if the set
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{a ∈ A+: ϕ(a) < ∞} is dense in A+. Recall from Section 2 that the set of (norm) lower semi-
continuous tracial weights on A in this paper is denoted by T (A).

If M is a von Neumann algebra, then let W(M) denote the set of normal weights on M , and let
Wtr(M) denote the set of normal tracial weights on M , i.e., weights ϕ for which ϕ(x∗x) = ϕ(xx∗)
for all x ∈ M . The standard trace on B(H) is an example of a normal tracial weight.

For the extension of weights on a C∗-algebra to its universal enveloping von Neumann alge-
bra, we use the result below from [9, Proposition 4.1 and Proposition 4.4]. For every f in the
dual A∗ of a C∗-algebra A, let f̃ denote the unique normal extension of f to A∗∗. (One can
equivalently obtain f̃ via the natural pairing: f̃ (z) = 〈f, z〉 for z ∈ A∗∗.)

Proposition 5.1. (See Combes [9].) Let A be a C∗-algebra, let ϕ : A+ → [0,∞] be a densely
defined lower semicontinuous weight. Define a map ϕ̃ : (A∗∗)+ → [0,∞] by

ϕ̃(z) := sup
{
f̃ (z): f ∈ A∗, 0 � f � ϕ

}
, z ∈ (

A∗∗)+
.

Then ϕ̃ is a normal weight on A∗∗ extending ϕ. Moreover, if ϕ is tracial, then ϕ̃ is the unique
extension of ϕ to a normal weight on A∗∗.

Combes did not address the question whether the (unique) normal weight on A∗∗ that ex-
tends a densely defined lower semicontinuous tracial weight on A is itself a trace. An affirmative
answer to this question is included in the proposition below.

Proposition 5.2. Let A be a C∗-algebra, and let ϕ be a lower semicontinuous tracial weight
on A. Then there exists a normal, tracial weight on A∗∗ that extends ϕ.

Proof. The closure of the linear span of the set {a ∈ A+: ϕ(a) < ∞} is a closed two-sided
ideal in A. Denote it by Iϕ . The restriction of ϕ to Iϕ is a densely defined tracial weight, which
therefore, by Combes’ extension result (Proposition 5.1), extends (uniquely) to a normal weight
ϕ̂ on I ∗∗

ϕ . The ideal Iϕ corresponds to an open central projection p in A∗∗ via the identification
Iϕ = A∗∗p ∩ A, and I ∗∗

ϕ = A∗∗p. In other words, I ∗∗
ϕ is a central summand in A∗∗. Extend ϕ to

a normal weight ϕ̃ on the positive elements in A∗∗ by the formula

ϕ̃(z) =
{

ϕ̂(z), if z ∈ I ∗∗
ϕ ,

∞, otherwise.

It is easily checked that ϕ̃ is a normal weight that extends ϕ, and that ϕ̃ is tracial if we knew
that ϕ̂ is tracial. To show the latter, upon replacing A with Iϕ , we can assume that ϕ is densely
defined.

We proceed to show that ϕ̃ is tracial under the assumption that ϕ is densely defined. To this end
it suffices to show that ϕ̃ is unitarily invariant, i.e., that ϕ̃(uzu∗) = ϕ̃(z) for all unitaries u in A∗∗
and all positive elements z in A∗∗. We first check this when the unitary u lies in Ã, the unitization
of A, which we view as a unital sub-C∗-algebra of A∗∗, and for an arbitrary positive element z

in A∗∗. For each f in A∗ let u.f denote the functional in A∗ given by (u.f )(a) = f (uau∗)
for a ∈ A. By the trace property of ϕ we see that if f ∈ A∗ is such that 0 � f � ϕ, then also
0 � u.f � ϕ, and vice versa since f = u∗.(u.f ). It follows that



Appendix. G 179

3486 E. Ortega et al. / Journal of Functional Analysis 260 (2011) 3474–3493

ϕ̃
(
uzu∗) = sup

{
f̃

(
uzu∗): f ∈ A∗, 0 � f � ϕ

} = sup
{
ũ.f (z): f ∈ A∗, 0 � f � ϕ

}
= sup

{
f̃ (z): f ∈ A∗, 0 � f � ϕ

} = ϕ̃(z).

For the general case we use Kaplansky’s density theorem (see [18, Theorem 2.3.3, p. 25]),
which says that the unitary group U(Ã) is σ -strongly dense in U(A∗∗). Thus, given u in U(A∗∗)
we can find a net (uλ) in U(Ã) converging σ -strongly to u. It follows that (uλzu

∗
λ) converges

σ -strongly (and hence σ -weakly) to uzu∗. As ϕ̃ is σ -weakly lower semicontinuous (see [6,
III.2.2.18, p. 253]), we get

ϕ̃
(
uzu∗) = ϕ̃

(
lim
λ

uλzu
∗
λ

)
� lim

λ
ϕ̃
(
uλzu

∗
λ

) = ϕ̃(z).

The same argument shows that ϕ̃(z) = ϕ̃(u∗(uzu∗)u) � ϕ̃(uzu∗). This proves that ϕ̃(uzu∗) =
ϕ̃(z) as desired. �

The extension ϕ̃ in Proposition 5.2 need not be unique if ϕ is not densely defined. Take for
example the trivial trace ϕ on the Cuntz algebra O2 (that is zero on zero and infinite elsewhere).
Then every normal tracial weight on O∗∗

2 that is infinite on every (non-zero) properly infinite
element is an extension of ϕ, and there are many such normal tracial weights arising from the
type I∞ and type II∞ representations of O2. On the other hand, every densely defined lower
semicontinuous tracial weight on a C∗-algebra extends uniquely to a normal tracial weight on its
bidual by Combes’ result (Proposition 5.1) and by Proposition 5.2.

Remark 5.3. Given a C∗-algebra A equipped with a lower semicontinuous tracial weight τ

and a positive element a in A. Then we can associate to τ a dimension function dτ on A (as
above Definition 2.4). Let τ̃ be (any) extension of τ to a normal tracial weight on A∗∗ (cf.
Proposition 5.2). Then dτ (a) = τ̃ (pa). To see this, assume without loss of generality that a is a
contraction. Then pa is the strong operator limit of the increasing sequence {a1/n}, whence

dτ (a) = lim
n→∞ τ

(
a1/n

) = lim
n→∞ τ̃

(
a1/n

) = τ̃ (pa)

by normality of τ̃ .

Corollary 5.4. Let a and b be positive elements in a C∗-algebra A. If pa � pb in A∗∗, then
a �tr b in A; and if pa ∼ pb in A∗∗, then a ∼tr b in A.

Proof. Suppose that pa � pb in A∗∗. Then ω(pa) � ω(pb) for every tracial weight ω

on A∗∗.
Now let τ ∈ T (A) be any lower semicontinuous tracial weight, and let dτ be the corresponding

dimension function. By Proposition 5.2, τ extends to a tracial, normal weight τ̃ on A∗∗. Using
the remark above, it follows that dτ (a) = τ̃ (pa) � τ̃ (pb) = dτ (b). This proves that a �tr b.
The second statement in the corollary follows from the first statement. �

We will now show that the converse of Corollary 5.4 is true for separable C∗-algebras. First we
need to recall some facts about the dimension theory of (projections in) von Neumann algebras.
A good reference is the recent paper [23] of David Sherman.
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Definition 5.5. (Tomiyama [24, Definition 1], see also [23, Definition 2.3].) Let M be a von Neu-
mann algebra, p ∈ P(M) a non-zero projection, and κ a cardinal. Say that p is κ-homogeneous
if p is the sum of κ mutually equivalent projections, each of which is the sum of centrally or-
thogonal σ -finite projections. Set

κM := sup{κ: M contains a κ-homogeneous element}.

A projection can be κ-homogeneous for at most one κ � ℵ0; and if κ � ℵ0, then two κ-
homogeneous projections are equivalent if they have identical central support (see [24,23]). We
shall use these facts in the proof of Proposition 5.7.

But first we show that the enveloping von Neumann algebra A∗∗ of a separable C∗-algebra A

has κA∗∗ � ℵ0, a property that has various equivalent formulations and consequences (see [23,
Propositions 3.8 and 5.1]). This property is useful, since it means that there are no issues about
different “infinities”. For instance, the set of projections up to Murray–von Neumann equivalence
in an arbitrary II∞ factor M (not necessarily with separable predual) can be identified with
[0,∞)∪{κ: ℵ0 � κ � κM }, see [23, Corollary 2.8]. Thus, tracial weights on M need not separate
projections up to equivalence. However, if κM � ℵ0, then normal, tracial weights on M do in fact
separate projections up to Murray–von Neumann equivalence.

Lemma 5.6. Let A be a separable C∗-algebra. Then κA∗∗ � ℵ0.

Proof. We show the stronger statement that whenever {pi}i∈I is a family of non-zero pairwise
equivalent and orthogonal projections in A∗∗, then card(I ) � ℵ0. The universal representation
πu of A is given as πu = ⊕

ϕ∈S(A) πϕ , where S(A) denotes the set of states on A, and where
πϕ : A → B(Hϕ) denotes the GNS-representation corresponding to the state ϕ. It follows that

A∗∗ = πu(A)
′′ ⊆

⊕
ϕ∈S(A)

B(Hϕ).

The projections {pi}i∈I are non-zero in at least one summand B(Hϕ); but then I must be count-
able because each Hϕ is separable. �
Proposition 5.7. Let M be a von Neumann algebra with κM � ℵ0, and let p,q ∈ P(M) be two
projections. Then p � q if and only if ω(p) � ω(q) for all normal tracial weights ω on M .

Proof. The “only if” part is obvious. We prove the “if” part and assume accordingly that
ω(p) � ω(q) for all normal tracial weights ω on M , and we must show that p � q . We show
first that it suffices to consider the case where q � p.

There is a central projection z in M such that zp � zq and (1 − z)p � (1 − z)q . We are done
if we can show that (1 − z)p � (1 − z)q . Every normal tracial weight on (1 − z)M extends
to a normal tracial weight on M (for example by setting it equal to zero on zM), whence our
assumptions imply that ω((1 − z)p) � ω((1 − z)q) for all tracial weights ω on (1 − z)M . Upon
replacing M by (1 − z)M , and p and q by (1 − z)p and (1 − z)q , respectively, we can assume
that p � q , i.e., that q ∼ q ′ � p for some projection q ′ in M . Upon replacing q by q ′ we can
further assume that q � p as desired.
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There is a central projection z in M such that zq is finite and (1 − z)q is properly infinite (see
[14, 6.3.7, p. 414]). Arguing as above it therefore suffices to consider the two cases where q is
finite and where q is properly infinite.

Assume first that q is finite. We show that p = q . Suppose, to reach a contradiction, that
p − q �= 0. Then there would be a normal tracial weight ω on M such that ω(q) = 1 and
ω(p − q) > 0. But that would entail that ω(p) > ω(q) in contradiction with our assumptions. To
see that ω exists, consider first the case where q and p − q are not centrally orthogonal, i.e., that
cqcp−q �= 0. Then there are non-zero projections e � q and f � p −q such that e ∼ f . Choose a
normal tracial state τ on the finite von Neumann algebra qMq such that τ(e) > 0. Then τ extends
uniquely to a normal tracial weight ω0 on Mcq and further to a normal tracial weight ω on M by
the recipe ω(x) = ω0(xcq). Then ω(q) = τ(q) = 1 and ω(p − q) � ω0(f ) = ω0(e) = τ(e) > 0.
In the case where q and p − q are centrally orthogonal, take a normal tracial weight ω0 (for
example as above) such that ω0(q) = 1 and extend ω0 to a normal tracial weight ω on M by the
recipe ω(x) = ω0(x) for all positive elements x ∈ Mcq and ω(x) = ∞ whenever x is a positive
element in M that does not belong to Mcq . Then ω(q) = 1 and ω(p − q) = ∞.

Assume next that q is properly infinite. Every properly infinite projection can uniquely be
written as a central sum of homogeneous projections (see [24, Theorem 1], see also [23, Theo-
rem 2.5] and the references cited there). By the assumption that κM � ℵ0 we get that every prop-
erly infinite projection is ℵ0-homogeneous. Therefore q is ℵ0-homogeneous and hence equiva-
lent to its central support projection cq . Let ω be the normal tracial weight on M which is zero on
Mcq and equal to ∞ on every positive element that does not lie in Mcq . Then ω(p) � ω(q) = 0,
which shows that p ∈ Mcq , and hence cp � cq . It now follows that p � cp � cq ∼ q , and so
p � q as desired. �

We can now show that Murray–von Neumann (sub-)equivalence of open projections in the
bidual of a C∗-algebra is equivalent to tracial (sub-)equivalence of the corresponding positive
elements in the C∗-algebra.

Theorem 5.8. Let a and b be positive elements in a separable C∗-algebra A. Then pa � pb in
A∗∗ if and only if a �tr b in A; and pa ∼ pb in A∗∗ if and only if a ∼tr b in A.

Proof. The “only if parts” have already been proved in Corollary 5.4. Suppose that a �tr b. Let
ω be a normal tracial weight on A∗∗, and denote by ω0 its restriction to A. Then ω0 is a norm
lower semicontinuous tracial weight on A, whence

ω(pa) = dω0(a) � dω0(b) = ω(pb),

cf. Remark 5.3. As ω was arbitrary we can now conclude from Lemma 5.6 and Proposition 5.7
that pa � pb .

The second part of the theorem follows easily from the first part. �
Corollary 5.9. Let A be a separable C∗-algebra, and p and q be two open projections in A∗∗.
Then

p �PZ q ⇒ p �Cu q ⇒ p � q, p ∼PZ q ⇒ p ∼Cu q ⇒ p ∼ q.

The first implication in each of the two strings holds without assuming A to be separable.
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Proof. Since A is separable there are positive elements a and b such that p = pa and q = pb.
The corollary now follows from Remark 2.5, Proposition 4.3, Proposition 4.13, and Theo-
rem 5.8. �

It should be remarked, that one can prove the corollary above more directly without invoking
Remark 2.5.

Remark 5.10. There is a certain similarity of our main results with the following result recently
obtained by Robert in [21, Theorem 1]: If a, b are positive elements of a C∗-algebra A, then the
following are equivalent:

(i) τ(a) = τ(b) for all norm lower semicontinuous tracial weights on A,
(ii) a and b are Cuntz–Pedersen equivalent, i.e., there exists a sequence {xk} in A such that

a = ∑∞
k=1 xkx

∗
k and b = ∑∞

k=1 x∗
k xk (the sums are norm-convergent).

It is known that Cuntz–Pedersen equivalence and Murray–von Neumann equivalence agree
for projections in a von Neumann algebra (see [13, Theorem 4.1]), but they are different for
projections in a C∗-algebra.

6. Summary and applications

In the previous sections we have established equivalences and implications between different
types of comparison of positive elements and their corresponding open projections and Hilbert
modules. The results we have obtained can be summarized as follows. Given two positive ele-
ments a and b in a (separable) C∗-algebra A with corresponding open projections pa and pb in
A∗∗ and Hilbert A-modules Ea and Eb, then:

(∗)

a �s b pa �PZ pb

a � b pa �Cu pb

a �tr b pa � pb

a ∼s b pa ∼PZ pb Ea
∼= Eb

a ≈ b pa ∼Cu pb Ea ∼Cu Eb

a ∼tr b pa ∼ pb

We shall discuss below to what extend the reverse (upwards) implications hold. First we re-
mark how the middle bi-implications yield an isomorphism between the Cuntz semigroup and a
semigroup of open projections modulo Cuntz equivalence.

6.1 (The semigroup of open projections). Given a C∗-algebra A. We wish to show that its Cuntz
semigroup Cu(A) can be identified with an ordered semigroup of open projections in (A⊗K)∗∗.
More specifically, we show Po((A ⊗ K)∗∗)/∼Cu is an ordered abelian semigroup which is iso-
morphic to Cu(A).
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First we note how addition is defined on the set Po((A ⊗K)∗∗)/∼Cu. Note that

A ⊗ B
(
�2) ⊆ M(A ⊗K) ⊆ (A ⊗K)∗∗.

Choose two isometries s1 and s2 in B(�2) satisfying the Cuntz relation 1 = s1s
∗
1 + s2s

∗
2 , and

consider the isometries t1 = 1 ⊗ s1 and t2 = 1 ⊗ s2 in M(A ⊗ K) ⊆ (A ⊗ K)∗∗. For every
positive element a in A⊗K and for every isometry t in M(A⊗K) we have a ∼s tat∗ in A⊗K
and pa ∼PZ tpat

∗ = ptat∗ in (A⊗K)∗∗. We can therefore define addition in Po((A⊗K)∗∗)/∼Cu
by

(∗∗) [p]Cu + [q]Cu := [
t1pt∗1 + t2qt∗2

]
Cu, p, q ∈ Po

(
(A ⊗K)∗∗).

The relation �Cu yields an order relation on Po((A⊗K)∗∗)/∼Cu, which thus becomes an ordered
abelian semigroup.

Proposition 4.13 and Corollary 4.14 applied to the C∗-algebra A ⊗K yield that the mapping
〈a〉 �→ [pa]Cu, for a ∈ (A ⊗K)+, defines an isomorphism

Cu(A) ∼= Po
(
(A ⊗K)∗∗)/∼Cu

of ordered abelian semigroups whenever A is a separable C∗-algebra. In more detail, Proposi-
tion 4.13 and Corollary 4.14 imply that the map 〈a〉 �→ [pa]Cu is well defined, injective, and
order preserving. Surjectivity follows from the assumption that A (and hence A ⊗ K) are sepa-
rable, whence all open projections in (A ⊗ K)∗∗ are of the form pa for some positive element
a ∈ A ⊗ K. Additivity of the map follows from the definition of addition defined in (∗∗) above
and the fact that 〈a〉 + 〈b〉 = 〈t1at∗1 + t2bt∗2 〉 in Cu(A).

6.2 (The stable rank one case). It was shown by Coward, Elliott, and Ivanescu in [10, Theorem 3]
that in the case when A is a separable C∗-algebra with stable rank one, then two Hilbert A-
modules are isometrically isomorphic if and only if they are Cuntz equivalent, and that the order
structure given by Cuntz subequivalence is equivalent to the one generated by inclusion of Hilbert
modules together with isometric isomorphism (see also [4, Theorem 4.29]). Combining those
results with Proposition 4.3, Proposition 4.6, Proposition 4.13 and Corollary 4.14 shows that the
following holds for all a, b ∈ A+ and for all p,q ∈ Po(A

∗∗):

(1) a � b ⇔ a �s b, and a ≈ b ⇔ a ∼s b.
(1)′ p �Cu q ⇔ p �PZ q , and p ∼Cu q ⇔ p ∼PZ q .
(2) If a �s b and b �s a, then a ∼s b.
(2)′ If p �PZ q and q �PZ p, then p ∼PZ q .

Hence the vertical implications between the first and the second row of (∗) can be reversed when
A is separable and of stable rank one.

The right-implications in (1) and (2) (and hence in (1)′ and (2)′) above do not hold in general.
Counterexamples were given by Lin in [16, Theorem 9], by Perera in [20, before Corollary 2.4],
and by Brown and Ciuperca in [8, Section 4]. For one such example take non-zero projections p

and q in a simple, purely infinite C∗-algebra. Then, automatically, p � q , p �s q , q �s p, and
p ≈ q; but p ∼ q and p ∼s q hold (if and) only if p and q define the same K0-class (which they
do not always do).
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It is unknown whether (1)–(2)′ hold for residually stably finite C∗-algebras, and in particular
whether they hold for stably finite simple C∗-algebras.

6.3 (Almost unperforated Cuntz semigroup). We discuss here when the vertical implications be-
tween the second and the third row of (∗) can be reversed. This requires both a rather restrictive
assumption on the C∗-algebra A, and also an assumption on the positive elements a and b. To
define the latter, we remind the reader of the notion of purely non-compact elements from [11, be-
fore Proposition 6.4]: The quotient map πI : A → A/I induces a morphism Cu(A) → Cu(A/I)

whenever I is an ideal in A. An element 〈a〉 in Cu(A) is purely non-compact if whenever 〈πI (a)〉
is compact for some ideal I , it is properly infinite, i.e., 2〈πI (a)〉 = 〈πI (a)〉 in Cu(A/I). Recall
that an element α in the Cuntz semigroup Cu(B) of a C∗-algebra B is called compact if it is
way-below itself, i.e., α � α (see the end of Section 4 for the definition).

It is shown in [11, Theorem 6.6] that if Cu(A) is almost unperforated and if a and b are
positive elements in A⊗K such that 〈a〉 is purely non-compact in Cu(A), then 〈̂a〉 � 〈̂b〉 implies
that 〈a〉 � 〈b〉 in Cu(A). In the notation of [11], and using [11, Proposition 4.2], 〈̂a〉 � 〈̂b〉 means
that dτ (a) � dτ (b) for every (lower semicontinuous, possibly unbounded) 2-quasitrace on A.
In the case where A is exact it is known that all such 2-quasitraces are traces by Haagerup’s
theorem [12] (extended to the non-unital case by Kirchberg [15], and Blanchard and Kirchberg
[7, Remark 2.29(i)]) so it follows that 〈̂a〉 � 〈̂b〉 if and only if a �tr b. We can thus rephrase [11,
Theorem 6.6] (see also [22, Corollary 4.6 and Corollary 4.7]) as follows: Suppose that A is an
exact, separable C∗-algebra with Cu(A) almost unperforated. Then the following holds for all
positive elements a, b in A ⊗K:

(3) If 〈a〉 ∈ Cu(A) is purely non-compact, then a �tr b ⇔ a � b.
(4) If 〈a〉, 〈b〉 ∈ Cu(A) are purely non-compact, then a ∼tr b ⇔ a ≈ b.

We wish to rephrase (3) and (4) above for open projections. We must first deal with the prob-
lem of choosing which kind of compactness of open projection to be invoked. Compactness of
an open projection p ∈ A∗∗ as in Definition 3.6 means that p ∈ A (see Proposition 3.7). On the
other hand, compactness for an element of the Cuntz semigroup Cu(A) is defined in terms of its
ordering. Compactness of pa implies compactness of 〈a〉 ∈ Cu(A) for every positive element a

in A ⊗ K. Brown and Ciuperca have shown that the converse holds in stably finite C∗-algebras
[8, Corollary 3.3]. Recall that a C∗-algebra is called stably finite if its stabilization contains no
infinite projections.

From now on, we restrict our attention to the residually stably finite case, which means that
all quotients of the C∗-algebra are stably finite. We define an open projection p in A∗∗ to be
residually non-compact if there is no closed, central projection z ∈ A∗∗ such that pz is a non-
zero, compact (open) projection in A∗∗z. Here, we identify A∗∗z with the bidual of the quotient
A/I , where I is the ideal corresponding to the open, central projection 1 − z, i.e., I = A1−z =
(1 − z)A∗∗(1 − z) ∩ A.

It follows from Proposition 3.7 that an open projection p ∈ A∗∗ is residually non-compact if
and only if there is no closed, central projection z ∈ A∗∗ such that pz is non-zero and belongs
to Az. Applying [8, Corollary 3.3] to each quotient of A, we get that 〈a〉 ∈ Cu(A) is purely
non-compact if and only if pa is residually non-compact whenever a is a positive element in
A ⊗K.

Thus, for open projections p,q in the bidual of a separable, exact, residually stably finite
C∗-algebra A with Cu(A) almost unperforated, the following hold:
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(3)′ If p is residually non-compact, then p � q ⇔ p �Cu q .
(4)′ If p and q are residually non-compact, then p ∼ q ⇔ p ∼Cu q .

If, in addition, A is assumed to be simple, then an open projection p in A∗∗ is residually
non-compact if and only if it is not compact, i.e., if and only if p /∈ A, thus:

(3)′′ If p /∈ A, then p � q ⇔ p �Cu q .
(4)′′ If p,q /∈ A, then p ∼ q ⇔ p ∼Cu q .

If A is stably finite, and p,q are two Cuntz equivalent open projections in A∗∗, then p is
compact if and only if q is compact (see [8, Corollary 3.4]). Together with (3)′′ and (4)′′ this
gives the following new picture of the Cuntz semigroup: Let A be a separable, simple, exact,
stably finite C∗-algebra with Cu(A) almost unperforated. Then

Cu(A) = V (A) � (
Po

(
(A ⊗K)∗∗) \P(A ⊗K)

)
/∼ .

In other words, the Cuntz semigroup can be decomposed into the monoid V (A) (of Murray–
von Neumann equivalence classes of projections in A⊗K) and the non-compact open projections
modulo Murray–von Neumann equivalence in (A ⊗K)∗∗.

In conclusion, let us note that the vertical implications between the second and the third row
of (∗) cannot be reversed in general. Actually, these implications will fail whenever Cu(A) is not
almost unperforated, which tends to happen when A has “high dimension”. These implications
can also fail for projections in very nice C∗-algebras. Indeed, if p and q are projections, then
p ∼tr q simply means that τ(p) = τ(q) for all traces τ . It is well known that the latter does
not imply Murray–von Neumann or Cuntz equivalence even for simple AF-algebras, if their K0
groups have non-zero infinitesimal elements.
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