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Abstract

In this thesis we study random planar graphs and some of the tools and
techniques used to address some related combinatorial problems. We give
an account of generating function methods, mainly focusing on some an-
alytic aspects of generating functions. Namely, we discuss the so-called
singularity analysis process, a technique that allows the transfer of the sin-
gular behaviour of certain functions to the asymptotic behaviour of their
Taylor coefficients. Furthermore, we collect a set of theorems for the study
of solutions of certain functional equations, which are frequent in combi-
natorial problems.

As an application of random graph theory, we discuss the dynamical
triangulation model and the causal dynamical triangulation model of two-
dimensional quantum gravity.

Finally, we study the Ising model on certain infinite random trees, con-
structed as “thermodynamic” limits of Ising systems on finite random
trees. We give a detailed description of the distribution of infinite spin
configurations. As an application, we study the magnetization properties
of such systems and prove that they exhibit no spontaneous magnetiza-
tion. The basic reason is that the infinite tree has a certain one dimensional
feature despite the fact that we prove its Hausdorff dimension to be 2.
Furthermore, we obtain results on the spectral dimension of the trees.
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Abstract

I denne afhandling vil vi studere plane grafer samt nogle af de metoder
og teknikker, der finder anvendelse i relaterede kombinatoriske proble-
mer. Vi giver en beskrivelse af genererende funktions-metoden, med fokus
hovedsageligt på analytiske aspekter af genererende funktioner, i det vi be-
handler den såkaldte singularites analyse proces, en teknik, der tillader, at
vi kan overføre den singulære opførsel af visse funktioner til den asymp-
totiske opførsel af deres Taylor koefficienter. Yderligere samler vi et antal
sætninger til at studere løsninger tile særlige funktionalligninger, som ofte
optræder i kombinatoriske problemer.

Som en anvendelse af stokastik graf-teori diskuterer vi den dynamiske
trianguleringsmodel og den kausale dynamiske trianguleringsmodel i 2-
dimensional kvantegravitation.

Endeligt studerer vi Ising-modellen på visse vendelige stokastiske trær,
konstrueret som en “termodynamisk” grænse af Ising-systemer på en-
delige stokastiske trær. Vi giver en detaljeret beskrivelse af fordelingen
af vendelige spin-konfigurationer. Som en anvendelse studerer vi magne-
tiseringsegenskaber for sådanne systemer og beviser, at de ikke udviser
spontane magnetiseringer. Grunden hertil er essentielt at det vendelige
træ har ensærlig 1-dimensional egenskab, på trods af, at dets Hausdorff-
dimension kan vises at være 2. Yderligere opnår vi resultater om den
spektrale dimension for det træ.
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Notation

In this note we collect some notational conventions which will be used
throughout the thesis.

Let f , g : M → R (or f , g : M → C), with M ⊆ R (or M ⊆ C). Let
a ∈ M a point in the set M.

Then we have the following asymptotic estimates. We use the notation

f (x) ∼ g(x), (x → a)

to indicate that the function f and g are asymptotic as x approaches a, that
is

lim
x→a

f (x)
g(x)

= 1.

The big-O notation O (·),

f (x) = O (g(x)) , (x → a)

means that there exists a positive constant C such that

| f (x)| ≤ C |g(x)| x ∈ U ∩M,

for some neighborhood U of a.

ix



Notation

We use the little-o notation o (·)

f (x) = o (g(x)) , (x → a)

meaning that

lim
x→a

f (x)
g(x)

= 0.

For all tha above cases, we will often omit to specify what the point a
is, but it should be clear from the context.
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Introduction

The study of planar graphs was initiated in the 1960s by Tutte in a funda-
mental series of paper [84, 85, 86, 87]. Since then, planar graphs have been
extensively studied in different branches of science.

In theoretical physics, they were introduced in a well-known work of
’t Hooft [83] and Brézin et al. [22], in connection with the study of Feyn-
man diagrams of certain field theories. In particular, in [83] the author
showed that, in the large N limit of an SU(N) gauge field theory, only
planar diagrams are relevant.

More recently, planar graphs have been used to model systems pos-
sessing random behaviour, such as social networks [1], membranes, see
e.g. [32], and fluctuating surfaces in two-dimensional quantum gravity [4].

In this thesis we study random planar graphs and some of the tools
and techniques used to address some related combinatorial problems. In
particular, we focus our attention on two models of random planar graphs
in quantum gravity and on a model of a certain class of infinite random
trees coupled with Ising models.

The models of quantum gravity via random graphs discussed here are
the dynamical triangulations (DT) model and the causal dynamical trian-
gulations (CDT) model. The basic idea underlying these two model is to
represent fluctuating geometries in quantum gravity in terms of random
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Introduction

triangulations of the spacetime. The DT model was first introduced in 1985
when it appeared in [2, 31, 60] as a triangulation technique of Euclidean
surfaces. In particular, in [2, 60] it was used as a regularization scheme for
Polyakov string theory.

The CDT model was first proposed in [6] as a model of triangulated
Lorentzian surfaces that includes the notion of causality from the start.
This idea was implemented restricting the class of triangulations of space-
time to those that can be sliced perpendicular to the time direction.

As will be seen, both the DT and CDT model for two-dimensional
surfaces reduces to the combinatorial problem of counting non-equivalent
triangulations of a given surface. In both cases, the problem is analytically
tractable and explicit expressions of partition functions can be produced.

From this point of view, statistical mechanical models on random pla-
nar graphs can be seen as the discrete realization of the coupling between
matter fields and gravity. Probably, one the most well-known of these sys-
tems is the Ising model on planar random lattice. This was studied and
exactly solved by Kazakov et al. in [59, 18, 21], using matrix model tech-
niques.

In this thesis we study the Ising model on certain infinite random trees,
constructed as “thermodynamic” limits of Ising systems on random finite
trees. These are subject to a certain genericity condition for which rea-
son we call them generic Ising trees. Using tools developed in [39, 42] we
prove for such ensembles that spontaneous magnetization is absent. Fur-
thermore, the technique used will allow us to calculate the Hausdorff and
spectral dimension of the underlying tree structures.

The thesis is organized as follows. In the first part of Chapter 1 we con-
centrate on some general aspects of random graphs. In Sec. 1.1 we recall
some basic graph theoretic notions and fix the notation that will be used
throughout the thesis. Then, after giving a definition of random graph, we
will describe the mechanism that will allow us to obtain infinite random
graphs by a limiting procedure on graphs of finite size. One can associate
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to infinite graphs two notions of dimension, the Hausdorff and the spec-
tral dimension, which in some sense give an indication of the geometry of
the graph. Namely, the former is a measure of the volume growth rate of
a geodesic ball on the graph with respect to its radius. The latter is related
to the connectivity of the graph, and will be defined in terms of simple
random walk on graphs. These concepts will be given a precise meaning
in Sec. 1.1.3 and 1.1.4.

In the second part of the chapter, Sec. 1.2, we will collect some explicit
examples of infinite random graphs. A first class of examples consists of
random tree models, namely planar trees, generic trees and labeled trees.
For all of them the infinite size limit is discussed. As will be seen, the other
two examples, the causal triangulation and the planar quadrangulation,
are closely related to the tree models, and some of their properties can be
transported from the latter to the former.

In Chapter 2 we discuss generating function techniques. In Sec. 2.1 we
give the basic notions about generating functions, which we then apply
to an explicit enumeration problem, in Sec. 2.1.3. The remainder of the
chapter is dedicated to the analytic aspects of generating functions. In Sec.
2.2 we discuss the so-called singularity analysis, a technique developed by
Flajolet and Odlyzko in [47]. It consists of a set of theorems that allow
the transfer of the singular behaviour of certain functions to the asymptotic
behaviour of their Taylor coefficients. In Sec. 2.2.2 we collect a set of
theorems about solutions of a certain class of functional equations, which
are frequent in combinatorial problems. In particular, we will see that
solutions of this type of equations often present a square root behaviour
near their singularity points, therefore, under certain conditions, they can
be studied via the singular analysis process.

Chapter 3 is dedicated to the study of two-dimensional quantum grav-
ity models with random graph techniques. The discussion in the first two
sections of this chapter are purely formal and they are intended to give the
reader an idea of the path-integral formalism and its application to two-
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Introduction

dimensional quantum gravity. In Sec. 3.3.1 we outline Regge’s construc-
tion [78] of the discrete version of General Relativity. This is the starting
point for the description of the quantum gravity path-integral in terms of
triangulations of spacetime. The dynamical triangulations model, in Sec
3.3.2, and the causal dynamical triangulations model, in Sec. 3.3.3, are
discussed.

Chapter 4 is mainly based on [44], which is a joint work of the au-
thor with Bergfinnur Durhuus. Here, we study in detail a class of infinite
random trees coupled with Ising models. As will be seen, these trees are
closely related to the generic trees discussed in Ch. 1, being subject to an
analogous genericity condition. For this reason we call them generic Ising
trees. In Sec. 4.3 we give a detailed description of the distribution of infinite
spin configurations. As an application, we study in 4.5 the magnetization
properties of such systems and prove that they exhibit no spontaneous
magnetization. Furthermore, in Sec. 4.4 the values of the Hausdorff and
spectral dimensions of the underlying trees are calculated.

Finally, some concluding remarks on possible future developments are
collected in the conclusion at the end of this thesis.
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Chapter 1
Infinite Random Graphs

In this chapter we want to introduce the reader to a general approach to
the study of infinite random graphs.

The chapter is divided into two sections. The first will be devoted to
the general setting which will be used throughout this thesis. After re-
calling the basic definitions in graph theory, we explain the concept of
random graph and the general mechanism that will allow us to obtain
infinite random graphs and information about their geometry (Hausdorff
and spectral dimension). In physics terms, this can be seen as a way to rig-
orously define statistical mechanical ensembles and their thermodynamic
limits.

In the second section we collect some explicit examples. In particular,
the method described in the first section will be applied to two classes of
trees (generic and labeled trees) which, as will be seen, also provide some
information on two other types of graphs, the so called uniform infinite
causal triangulation and uniform infinite quadrangulation.
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Chapter 1. Infinite Random Graphs
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Figure 1.1: Graph G(V, E) with vertex set V(G) = {v1, . . . , v9} and size
|G| = 5.

1.1 The general method

1.1.1 Basic definitions

A graph G is defined by its vertex set V(G), whose elements will be denoted
by v, w, etc., and its edge set E(G), formed by unordered pairs e = (v, w)

of different vertices1. We shall often use the notation v ∈ G and e ∈ G,
instead of v ∈ V(G) and e ∈ E(G), respectively.

The number σv of edges connecting to a vertex v is called the degree of
v. The size of a graph G is defined as the number of edges in G and is
denoted by |G|, i.e. |G| = ]E(G), where ]M is used to denote the number
of elements in a set M. We will deal with graphs of both finite and infinite
size, but all graphs are assumed to be locally finite, i.e. the degree σv of
each vertex v in G is assumed to be finite.

A path γ in G is a sequence of different edges

γ = {(v0, v1), (v1, v2), . . . , (vk−1, vk)} , (1.1)

1In the literature, these graphs are often referred to as undirected graphs, to be distin-
guished from directed graphs, where edges are given with an orientation. They are often
called simple graphs, whereas multigraphs is used when different edges with same endpoints
and loops are allowed.
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1.1 The general method

where v0 and vk are called the end vertices or end points of the path. If the
end vertices coincide, i.e. v0 = vk, the path is called a circuit originating at
v0. The length |γ| of a path is naturally defined as the number of edges in
γ.

The notion of path in a graph can be used to define some other basic
concepts. A graph G is called connected if there exists a path γ between
any two vertices v, v′ ∈ G, otherwise we call connected component each con-
nected subgraph of G. The graph distance, or geodesic distance, dg between
any two vertices v and v′ ∈ G is then defined as the length of the shortest
path between v and v′, i.e.

dg(v, v′) = min
{
|γ|

∣∣ γ has endpoints v, v′
}

, (1.2)

with the conventions dg(v, v) = 0 and dg(v, v′) = ∞ if v and v′ belong to
different connected components of G. Given a connected graph G, a real
number R ≥ 0 and a vertex v ∈ V(G), we denote by BR(G, v) the closed
ball of radius R centered at v, i.e. BR(G, v) is the subgraph of G spanned
by the vertices at graph distance ≤ R from v, hence its vertex and edge set
are

V(BR(G, v)) =
{

w ∈ V(G)
∣∣ dg(v, w) ≤ R

}
,

E(BR(G, v)) =
{
(w, w′) ∈ E(G)

∣∣ w, w′ ∈ V(BR(G, v))
}

.
(1.3)

A rooted graph is a graph which contains a distinguished oriented edge
e = 〈r, r′〉, called the root edge, whose initial vertex r is called the root vertex,
or simply root. For a rooted graph, the ball BR(G, r) of radius R centered
at the root r will be simply denoted by BR(G).

In this work we will consider planar graphs, i.e. graphs that can be em-
bedded in the plane R2 (or into the 2-sphere) without crossings. More pre-
cisely, a planar graph is a graph G together with an injection φ : V(G) →
R2 and an association ψ to each edge (v, v′) ∈ E(G) of an arc ψ(v, v′)
in R2 connecting φ(v) and φ(v′), such that each arc contains at most the
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Chapter 1. Infinite Random Graphs

Figure 1.2: Rooted planar tree. The empty disk denotes the root vertex and
the bold edges the root edge.

endpoints of another arc.

Two planar graphs are considered identical if one can be continuously
deformed into the other in R2. The faces of a planar graph are the con-
nected components of the complement of the edges.

A tree is a connected graph without circuits. Note that a tree can always
be embedded into the plane (or S2) without crossings, hence it is a planar
graph. On the other hand, a tree admits different embeddings. In the
following, we use the terminology planar tree to indicate a tree together
with an embedding. For instance, two different embeddings of the same
tree define two different planar trees.

Throughout this thesis we will deal mainly with rooted planar trees,
hence we often refer to them simply as trees.

We define the height h(τ) of a finite tree τ as the maximal distance from
the root of one of its vertices, that is

h(τ) = max
{

dg(r, v)
∣∣ v ∈ V(τ)

}
, (1.4)

where r denotes the root vertex of τ.

8



1.1 The general method

1.1.2 Finite and infinite random graphs

A random graph (G, µ) is a set of graphs G equipped with a probability
measure µ.

Let G the set of (finite and infinite) planar rooted graphs and GN the
subset of finite graphs of size N. Denoting with G∞ the set of infinite
graphs, the set G can be decomposed as follows

G =

(
∞⋃

N=1

GN

)
∪ G∞, (1.5)

.

The set G can be equipped with a notion of distance between two
graphs as follows. For two planar rooted graphs G and G′ ∈ G, the dis-
tance between them is given by

d(G, G′) = inf
{

1
1 + R

∣∣ BR(G) = BR(G′)
}

, (1.6)

where BR(G) is defined in (1.3).

Further, we associate to each graph G ∈ GN a weight w(G) ≥ 0, thus a
probability distribution µN(G) on GN is defined as

µN(G) =
1

ZN
w(G), (1.7)

where the normalizing factor ZN , the partition function, is given by

ZN = ∑
G∈GN

w(G). (1.8)

Note that the probability measures µN , N ∈ N, can be naturally re-
garded as probability measures on G, since, for each N,

µN(G \ GN) = 0. (1.9)

9



Chapter 1. Infinite Random Graphs

Infinite random graphs will be defined by a probability measure µ on
G∞, obtained as a limit of a sequence of measures µN , N ∈ N, viewed as
measures on G. More precisely, the measure µ on the set of infinite graphs
G∞ can be obtained as a weak limit on µN for N → ∞, in the sense that

∫

G
f (G) dµN(G)

N→∞−−−→
∫

G
f (G) dµ(G).

for all bounded functions f on G, which are continuous w.r.t. the metric d
in eq. (1.6).

In most of the cases presented here we will make use of the following
result about weak convergence of probability measures, that can be found
in [17]. For our purpose it is most usefully stated as follows. Let νN ,
N ∈ N, a sequence of probability measures on a metric space M and U a
family of both open and closed subsets of M such that

i) any finite intersection of sets in U belongs to U ,

ii) any open subset of M may be written as a finite or countable union of
sets from U

iii) the sequence (νN(A)) is convergent for all sets A ∈ U .

If the sequence (νN) is tight, that is for each ε > 0 there exists a compact
subset C of M such that

νN(M \ C) < ε for all N, (1.10)

then the sequence (νN) is weakly convergent. We refer the reader to [17]
for a proof.

In the following section we define two notions of dimension that can
be associated to infinite graphs, and in some sense, provide an indication
of their geometric properties.

10



1.1 The general method

1.1.3 Hausdorff dimension

Roughly speaking, the Hausdorff dimension of a graph G is a measure of
the volume growth rate of a geodesic ball BR(G) with respect to its radius
R.

More precisely, given an infinite connected graph G, if the limit

dH = lim
R→∞

ln |BR(G, v)|
ln R

(1.11)

exists, we call dH the Hausdorff dimension of G. It is clear that this definition
only makes sense for infinite graphs, dH being always 0 for finite graphs.
It is easily seen that the existence of the limit as well as its value do not
depend on the vertex v. We shall always choose v ≡ r, the root vertex.

For an ensemble of infinite graphs (G∞, µ), we define the annealed Haus-
dorff dimension by

d̄H = lim
R→∞

ln 〈 |BR(G)| 〉µ
ln R

, (1.12)

provided the limit exists, where 〈·〉µ denotes the expectation value w.r.t. µ.

If there exists a subset G0 of G∞ such that µ(G0) = 1 and such that every
G ∈ G0 has Hausdorff dimension dH we say that the Hausdorff dimension
of (G∞, µ) is almost surely (a.s.) dH.

1.1.4 Spectral dimension

There exists another notion of dimension of a graph, which is related to
the connectivity of the graph. It is called spectral dimension, and in order
to define it we first need to introduce the concept of simple random walk
on a graph.

A walk on a graph G is a sequence (v0, v1), (v1, v2), . . . , (vk−1, vk) of (not
necessarily distinct) edges in G. Note that it differs from the previous
definition of path, eq. (1.1), since a walk can self-intersect. We shall denote
such a walk by ω : v0 → vk and call v0 the origin and vk the end of the

11



Chapter 1. Infinite Random Graphs

walk. Moreover, the number k of edges in ω will be denoted by |ω|. To
each such walk ω we associate a weight

πG(ω) =
|ω|−1

∏
i=0

σ−1
ω(i)

where ω(i) is the i’th vertex in ω. Denoting by Πn(G, v0) the set of walks
of length n originating at vertex v0 we have

∑
ω∈Πn(G,v0)

πG(ω) = 1 .

i.e. πG defines a probability distribution on Πn(G, v0). We call πG the
simple random walk on G.

For an infinite connected graph G and v ∈ V(G) we denote by πt(G, v)
the return probability of the simple random walk to v at time t, that is

πt(G, v) = ∑
ω:v→v
|ω|=t

πG(ω) .

If the limit
ds = −2 lim

t→∞

ln πt(G, v)
ln t

(1.13)

exists, we call ds the spectral dimension of G. As before, the definition is
valid only for infinite graphs, since for finite graphs the return probability
is a positive constant for t→ ∞. Again in this case, the existence and value
of the limit are independent of v.

The annealed spectral dimension of an ensemble (G∞, µ) of rooted infi-
nite graphs is defined as

d̄s = −2 lim
t→∞

ln 〈πt(G, r) 〉µ
ln t

(1.14)

provided the limit exists. As above, we say that the spectral dimension
of (G∞, µ) is almost surely ds, if the set of graphs with spectral dimension

12



1.2 Examples of infinite random graphs

different from ds has vanishing µ-measure.

The Hausdorff and spectral dimensions do not necessarily agree. In
fact we have examples where they do (as the hyper-cubic lattice Zd where
dH = ds = d) and other where they do not, as in the case studied in [41].

However dH and ds are closely related, and under certain conditions
the inequality

dH ≥ ds ≥
2dH

1 + dH
(1.15)

can be proved [30]. This is for example the case for the random combs [41].
Moreover for some trees, such as the uniform spanning tree on Z2 [11]
and the generic tree [42], one finds that the second inequality is actually
an identity, i.e.

ds =
2dH

1 + dH
. (1.16)

1.2 Examples of infinite random graphs

In this section we collect some explicit examples of infinite random graphs,
defined by the limiting procedure described in Sec. 1.1.2. The following
examples are also intended to illustrate the close relation between certain
types of trees and other planar graphs. In particular, we shall see that
rooted planar trees can be bijectively mapped onto the so-called sliced tri-
angulations, whereas infinite labeled trees can be used to construct infinite
planar quadrangulations. In both cases, the maps between those objects
are obtained as generalizations of the so-called CVS bijection [80].

1.2.1 Uniform infinite planar tree

Let T be the set of both finite and infinite rooted planar trees, with root of
degree 1. We denote by TN the subset of T of trees of size N,

TN =
{

τ ∈ T
∣∣ |τ| = N

}
, (1.17)

13



Chapter 1. Infinite Random Graphs

and by T ′l the set of trees with maximal height equal to l.

According to these definitions we have the decomposition

T =

(
∞⋃

N=1

TN

)
∪ T∞, (1.18)

where T∞ denotes the set of infinite trees.

A probability measure on the set TN is defined setting the weight
w(τ) = 1 for each tree τ ∈ TN . Hence, we have

µN(τ) = C−1
N for τ ∈ TN , µN (T \ TN) = 0, (1.19)

where CN = ]TN is the number of rooted planar trees with vertex of degree
1 and N edges. It is a well-known fact (see e.g. [4]) that the number
CN = ]TN of trees of size N is given by

CN =
(2N − 2)!

N!(N − 1)!
. (1.20)

We will prove this result in Sec. 2.1.3 as an easy application of the gener-
ating function method.

The existence of the limiting measure µ has been proved in [39]. This
result is summarized as follows.

Theorem 1.2.1. The sequence of measures (µN) on T converges weakly as N →
∞ to a Borel probability measure µ concentrated on T∞.

The random tree (T∞, µ), called uniform infinite tree, exhibits some pe-
culiar properties that we now illustrate.

First we note that, setting

A(τ0) =
{

τ ∈ T
∣∣ BR(τ) = τ0

}
, (1.21)

14



1.2 Examples of infinite random graphs

where τ0 ∈ T ′R, the µ-volume of this set turns out to be

µ (A(τ0)) = M 2M+1 4−|τ0|, (1.22)

with M denoting the number of vertices (v1, . . . , vM) in τ0 at maximal dis-
tance R from the root.

More interestingly, choosing a sequence (τ1, . . . , τM) of M trees in T ,
whose root’s neighbor is identified with (v1, . . . , vM), respectively, the con-
ditional probability measure dµ (τ1, . . . , τM|A(τ0)) is given by

dµ(τ1, . . . , τM|A(τ0)) = µ (A(τ0))
−1

M

∑
i=1

dµ(τi)∏
j 6=i

dρ(τj), (1.23)

where ρ is concentrated on finite trees and defined by

ρ(τ) = 4−|τ|. (1.24)

This expression, together with the fact that µ and ρ are concentrated, re-
spectively, on infinite and finite trees, gives us some information about the
shape of the uniform infinite tree. In fact, it turns out that with probability
1 only one tree τi is infinite and that the trees τ1, . . . , τM are independently
distributed. In other words, the limiting measure µ is concentrated on the
set of infinite trees τ containing only one infinite path, called the spine,
originating at the root. Finally, τ is obtained by attaching finite trees, the
branches, at the vertices of the spine, see Fig. 1.3.

The explicit expression (1.22) for the infinite measure µ can be used to
calculate the average number 〈dr〉µ of vertices at distance r from the root,
and accordingly the average volume 〈|Br|〉µ of the ball of radius r centered
at the root (see [39]). We have the following result.

Theorem 1.2.2. For r ≥ 1 we have

〈dr〉µ = 2r− 1 (1.25)

15



Chapter 1. Infinite Random Graphs

r

Figure 1.3: The uniform infinite planar tree, with the spine starting at root
r and finite branches.

and
〈|Br|〉µ = r2, (1.26)

As a consequence, it follows from (1.12) that the annealed Hausdorff
dimension of the uniform infinite tree is d̄H = 2.

The description of the infinite tree emerging in the uniformly dis-
tributed tree case, although surprising, is far from exceptional. In fact,
as we will see in the following examples as well as in the case studied in
chapter 4, a large class of random trees shows the same behaviour in the
infinite size limit.

1.2.2 Generic trees

The uniform infinite planar tree presented in the previous section is a spe-
cial case of a larger class of trees, called generic trees, which we review in
this section.

Let T , TN and T∞ be the sets of trees as defined in the previous section.
We attach to each vertex v ∈ V(τ), except the root r, of a tree τ ∈ T a
non-negative branching weight pσv−1, depending on the degree σv of v.

The weight w(τ) associated to each tree τ ∈ TN is defined as the prod-
uct of the branching weights of τ, i.e. w(τ) ≡ ∏vi∈τ\r pσvi−1 . Hence the

16



1.2 Examples of infinite random graphs

probability measure µN on TN is given by

µN(τ) =
1

ZN
∏

v∈τ\r
pσv−1 τ ∈ TN , (1.27)

and the partition function

ZN = ∑
τ∈TN

∏
v∈τ\r

pσv−1 . (1.28)

We further assume p0 6= 0, since ZN vanishes otherwise, and pn > 0 for
some n ≥ 2, otherwise only linear chains would contribute. It is clear that
the uniform planar tree

Next, we define the generating function for the branching weights as

P(z) =
∞

∑
n=0

pnzn, (1.29)

which we assume to have radius of convergence ρ > 0, and the generating
function for the finite volume partition functions as

Z(x) =
∞

∑
N=1

ZNxN , (1.30)

whose radius of convergence is denoted by x0.

The partition function Z(x) is known (see [42]) to satisfy the functional
equation

Z(x) = x P (Z(x)) , (1.31)

which is sufficient to determine the analytic function Z(x). From this equa-
tion it follows that

Z0 = lim
x↗x0

Z(x) (1.32)

is finite and ≤ ρ.

The genericity assumption that will define the set of generic trees states

17



Chapter 1. Infinite Random Graphs

that
Z0 < ρ. (1.33)

In particular, all sets of branching weights such that ρ = +∞ define an
ensemble of generic trees.

Under the assumption (1.33), the equation (1.31) is sufficient to deter-
mine the singular behaviour of Z(x) in the vicinity of x0:

Z(x) = Z0 −
√

2P(Z0)

x0P′′(Z0)

√
x0 − x + O(x− x0). (1.34)

The expression (1.34) can be further used to determine the asymptotic
behaviour of the partition function ZN for large N, which turns out to be

ZN ∼ N−
3
2 x−N

0 . (1.35)

This result can be explained with a so-called transfer theorem that we
shall discuss in Ch. 2. In general, the transfer theorem allows to relate the
behaviour of a certain class of functions near their singularity points to the
asymptotic behaviour of their coefficients.

The result in eq. (1.35) is the fundamental step to prove the following
theorem.

Theorem 1.2.3. Under the genericity assumption (1.33), the probability measure
µN converges to a probability measure µ on T concentrated on the subset T∞.

Details of the proofs of these results can be found in [42]. We omit them
here, since a similar but slightly more involved case will be considered in
Ch. 4.

The infinite tree defined by the limiting measure µ on T is called an
infinite generic tree. As in the case considered in the previous section, an
infinite generic tree consists of only one spine and finite branches.

The annealed Hausdorff and spectral dimensions of the ensemble (T , µ)

18



1.2 Examples of infinite random graphs

can be computed and are found to be, respectively,

d̄H = 2 and d̄s =
4
3

. (1.36)

Actually this result can be further improved. In fact, using an upper and
lower bound argument [43] on |BR(τ)|, τ ∈ T , one finds that for any
generic random tree

dH = 2 a.s.. (1.37)

Moreover, it can proved that [10]

ds =
4
3

a.s. (1.38)

using a continuous time random walk argument (see also [40]).

It should be stressed that the property of the infinite generic tree to have
only one infinite path is strictly related to the genericity assumption (1.33).
Models in which the genericity condition is not assumed to hold have been
studied in [58] (see also [29, 23] for further results in this direction). In [58]
the authors prove that the so-called nongeneric trees exhibit two different
phases, called critical and subcritical phase, the latter being characterized by
a limiting measure concentrated on the set of trees with exactly one vertex
of infinite degree, provided that the condition of the tree to be locally finite
is dropped.

As mentioned above, the uniform infinite tree is a special case of the
generic tree, obtained by setting pn = 1, for any n ∈ Z≥0. In fact, from
(1.28) one finds

ZN = ]TN = CN (1.39)

where the Catalan numbers CN’s are given in (1.20). This result, together
with eq. (1.30) gives

Z(x) =
∞

∑
N=1

CNxN =
1−
√

1− 4x
2

for x < x0 =
1
4

, (1.40)
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r

r′

S0

S1

S2

Figure 1.4: A sliced triangulation S of the disc with circles containing ver-
tices at distance 1, 2 and 3 from the root. Here S consists of two annuli S1,
S2 and the disc S0 = B1(S). The bold edge indicates the root edge.

whereas the partition function for the branching weights (1.29) reads

P(z) =
∞

∑
n=0

zn =
1

1− z
for z < ρ = 1. (1.41)

Hence, by (1.32) Z0 = 1
2 and the genericity assumption is clearly satisfied.

1.2.3 Uniform infinite causal triangulation (UICT)

In order to define this model we let GN ≡ CN denote the set of sliced
triangulations of the disc with N vertices. Here, a triangulation S of the
disc is said to be sliced if the subgraph of S spanned by vertices at distance
n and n + 1 from the root r, n = 1, . . . , M, is an annulus Sn such that
every triangle in Sn has all vertices in the boundary and not all in the same
boundary component of Sn. For n = 0 we require that B1(S) is a disc (see
Fig.1.4). Moreover, M denotes the maximal distance of vertices in S from
r.
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1.2 Examples of infinite random graphs

In particular, if the boundary components of Sn contain ln and ln+1

edges, respectively, then the total number of vertices, edges and triangles
in S are

|V(S)| = 1 +
M

∑
n=1

ln, |E(S)| = 3
M

∑
n=1

ln − lM, |S| = 2
M

∑
n=1

ln − lM (1.42)

respectively. Here we have assumed M < ∞. However, the definition
of a sliced surface is also valid for infinite triangulations of the plane,
corresponding to M = ∞.

We then define νN to be the uniform distribution on CN , i.e. we set
w(S) = 1 for S ∈ CN . Thus, in this case

ZN = ]CN . (1.43)

We claim that
]CN = ]TN (1.44)

To see this, pick an orientation of the plane and consider S ∈ CN . For any
vertex v at distance n ≥ 1 from r, order the edges in Sn \ ∂Sn emerging from
v from left to right in accordance with the orientation of the plane. Next,
delete from S all edges in

⋃M
n=1 ∂Sn as well as the rightmost edge emerging

from v into Sn for each v as above. Finally, attach a new edge (r0, r) to
the root vertex r. Then the resulting graph is a tree β(S) with a unique
embedding into the plane such that the root edge (r, r′) in S becomes the
rightmost edge emerging from r in β(S) (see Fig.1.5).

It is a fact, as the reader may easily verify, that β : CN → TN is a
bijection which proves (1.44). In fact, β is a particular case of the so-called
Schaeffer (or CVS) bijection applicable for labeled trees [80].

It is easy to check that β extends to the case M = ∞ corresponding to
infinite sliced triangulations:

β : C∞ → T∞.
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r

r′

r0

Figure 1.5: The full lines indicate the edges of the tree β(S) constructed
from the triangulation in Fig.1.4.

Taking this fact into account the following result is an immediate conse-
quence of [39].

Theorem 1.2.4. The probability distributions (µN) defined by

νN(S) = (]CN)
−1, S ∈ CN ,

converge weakly to a probability distribution ν on C∞, which is given by

ν(A) = µ(β(A))

for measurable sets A ⊆ C∞, where µ denotes the distribution of the uniform
infinite tree.

We call the ensemble (C∞, ν) the uniform infinite causal triangulation
(UICT) [43, 62]

Except for the root r0 ∈ β(S), the vertices in S and β(S) are the same
and β preserves the distance from r to v ∈ S. It follows that the Hausdorff
dimensions of the two ensemble (T∞, µ) and (C∞, ν) are identical.
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1.2 Examples of infinite random graphs

Theorem 1.2.5. For the uniform infinite causal triangulation we have

d̄h = 2

and
dH = 2 a.s.

Proof. That d̄h = 2 follows from the remarks above and [39], while the
second statement follows from the corresponding result for generic trees
established in [43].

Clearly, there is no canonical bijective correspondence between walks
in S and in β(S) and hence results on the spectral dimension for the uni-
form tree cannot be carried over to the UICT. A result by Benjamini and
Schramm [16] states that under rather general circumstances a planar ran-
dom graph is recurrent, which means that the simple random walk starting
at r will return to r with probability 1. It is well known that this is the case
if and only if ds ≤ 2. Since the result of [16] presupposes a fixed upper
bound on vertex degrees for the graphs in question it cannot be applied to
the UICT. However, it was shown in [43], by combining the so-called Nash-
Williams criterion for recurrency of graphs [74] with the known structure
of the distribution ν described above, that the UICT is recurrent with prob-
ability 1. Thus we have

Theorem 1.2.6. For the UICT the spectral dimension fulfills ds ≤ 2 almost
surely.

It is generally believed that ds = 2 almost surely. A proof of this is still
missing. To our knowledge the best known lower bound is

ds ≥
4
3

a.s.,

23



Chapter 1. Infinite Random Graphs

1

2

3

2

4

3

2

3

2

1 2

1

5

4

Figure 1.6: A well-labeled tree.

which is obtained by applying the inequality [30]

ds ≥
2dH

dH + 1

to the present situation using Thm.1.2.5.

This finishes our discussion of the UICT. For more details the reader
should consult [43].

1.2.4 Labeled trees

Let T be the set of planar rooted tree with root of order 1. A labeled tree is
a pair (τ, `), with τ ∈ T and ` : V(τ) → Z is a mapping from the vertex
set V(τ) to the integers Z, i.e. to each vertex vi of the tree τ it associates
an integer `i, such that

|`(v)− `(w)| ≤ 1 if (v, w) ∈ E(τ). (1.45)

If we further assume the label of the root r to be `(r) = k and `(v) ≥ 1 for
any vertex v ∈ V(τ), we call (τ, `) a k-labeled tree. 1-labeled trees are often
called well-labeled trees [26, 28], see Fig. 1.6.

We denote by W(k) the set of k-labeled trees. It can be decomposed,
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1.2 Examples of infinite random graphs

according to the decomposition (1.18), as

W(k) =

(
∞⋃

N=1

W(k)
N

)
∪W(k)

∞ , (1.46)

with a similar notation as above.

As in the previous example, the weight w(τ) associated to each k-
labeled tree is set equal to 1. Thus, the uniform probability measure on
the set W(k)

N of k-labeled trees of size N is given by

µ
(k)
N =

1

D(k)
N

, for τ ∈W(k)
N , µ

(k)
N

(
W(k) \W(k)

N

)
= 0, (1.47)

where D(k)
N = ]W(k)

N .

A closed expression for the number D(k)
N of k-labeled trees with N links

is not known for k ≥ 2, whereas the corresponding generating function
R(k)(x) has been proved to be a solution of the recursion relation

R(k) = 1 + x R(k)
(

R(k−1) + R(k) + R(k+1)
)

, k ≥ 1, (1.48)

with the convention R(0) = 0. This relation can be obtained by decompos-
ing a tree according to the degree and the label of the root’s neighbor (see
[25] for details). The solution of eq. (1.48) has been given in a closed form
in [20]. However the general solution contains much more information
than is needed to evaluate the limit µ

(k)
N

N→∞−−−→ µ(k). In fact, the asymp-
totic behaviour of D(k)

N for large N turns out to be sufficient to achieve this
result.

The number of well-labeled trees with N edges can be exactly com-
puted and it is found to be

D(1)
N = 2 · 3N (2N)!

N!(N + 2)!
. (1.49)
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This result can be obtained exploiting a bijection between well-labeled
planar rooted trees and planar quadrangulations of the 2-sphere with a
marked edge [26, 28]. Indeed, it is well-known (see e.g. [69]) that there
exists a natural bijection between planar rooted quadrangulations with N
faces and rooted planar maps with N edges. The enumeration of the latter
was discussed by Tutte in his seminal paper [86], who provided the result
mentioned above.

Using (1.49) and the relation (1.48) together with some generating func-
tion methods (which we will discuss in Ch. 2), it can be proved that

D(k)
N '

2dk√
π

N−
5
2 12N as N → ∞, (1.50)

where, for each k, dk is a positive constant, whose expression we omit (see
[25] for details).

As in the previous section, the existence of the limiting measure µ(k)

can be proved [25].

Theorem 1.2.7. The sequence µ
(k)
N , N ∈ N, converges to a Borel probability

measure µ(k), concentrated on W(k)
∞ .

The uniform probability measure µ(k) on W(k)
∞ defines the so called

uniform infinite k-labeled tree.
Also in this case, µ(k) has a special factorized form, analogous (1.23),

which leads to similar conclusions as before. Indeed, one finds that the
measure is supported on infinite trees with only one infinite path originat-
ing at the root, and the finite branches attached to the spine vertices are
independently distributed.

1.2.5 Uniform Infinite Planar Quadrangulation

A planar quadrangulation is a connected planar graph whose faces are quad-
rangles, that is bounded by polygons with four edges. We denote by Q the
set of all quadrangulations.

26



1.2 Examples of infinite random graphs

The main result that we want to record in this section is the existence of
a probability measure on the set of infinite quadrangulations of the plane.
This is done via a map Q, constructed in [25], between the set of infinite
well-labeled trees and the set of planar quadrangulations, which allows to
transport the measure obtained in the previous section from the former set
to the latter.

The story behind the construction of the map Q goes back to Tutte who
showed in [86], as mentioned above, that the number aN of rooted planar
graphs with N edges is equal to

aN = 2 · 3N (2N)!
N!(N + 2)!

(1.51)

(cf. eq. (1.49)). As already mentioned this is also the number of rooted
planar quadrangulation with N faces.

The method developed by Tutte, called quadratic method, provided a
powerful tool to solve the equations for the generating functions of planar
graphs.

Later, Cori and Vauquelin, gave in [28] an explanation of the formula
(1.51) exploiting a bijection between rooted planar graphs and well-labeled
rooted trees. Their approach was enhanced by Schaeffer in his thesis [80]
(see also [26]), who constructed a bijection, called CVS bijection, between
finite well-labeled rooted trees and quadrangulations, with the following
properties:

i) The vertices in a finite well labeled tree and the vertices in the corre-
sponding quadrangulation, except one marked vertex, can be canoni-
cally identified.

ii) The label of a vertex in a well labeled tree equals the distance in the
corresponding quadrangulation from the vertex to the marked vertex.

Finally, this result has been extended in [25] to a map Q from infinite
well-labeled trees to infinite quadrangulations, sharing with the CVS bijec-
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Figure 1.7: An infinite well-labeled tree τ (on the left) and the correspond-
ing quadrangulation Q(τ) (on the right). The marked vertex has label 0.

tion the properties listed above, see Fig. 1.7. However, the extended map
has not been proved to be a bijection, namely it is not known whether it is
possible to reconstruct a tree from any infinite quadrangulation.

Let us define the set of infinite well labeled trees with exactly one spine
and with each label occurring finitely many times,

S =
{

τ ∈W(1)
∞
∣∣ ∀k ≥ 1, Nk(τ) < +∞

}
, (1.52)

where Nk is the number of occurrences of the label k. This set has been
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proved to have µ(1)-measure 1 (cf. [25]). The map Q allows to transport
the limiting measure µ(1) from S to the set of infinite quadrangulations.
Thus we define the probability distribution µ̄ on this set as

µ̄(A) = µ(1)
(

Q−1(A)
)

, (1.53)

for any subset A ⊆ Q(S), such that Q−1(A) is measurable in S .
The random object defined by the probability measure µ̄ is called the

uniform infinite planar quadrangulation (UIPQ).
We record a further result about the Hausdorff dimension of the UIPQ.

It can be shown that the number Nk of occurrence of the label k fulfills

〈Nk〉µ(1) ∼ k3, (1.54)

provided it is assumed to be finite.
As a consequence of the property ii) of the map Q, the average value

〈Nk〉µ(1) represents the average value of the number of vertices at distance
k from the marked vertex. It follows that the volume of the ball of radius k
grows as k4. Hence, according to (1.12), the annealed Hausdorff dimension
of the UIPQ is d̄H = 4.

Remark 1.2.8. At the time of the appearance of this result, Krikun [61] proved
the following theorem:

Theorem 1.2.9. The sequence (νN) of uniform probability measures on quadran-
gulations with N faces converges weakly to a probability measure ν with support
on infinite quadrangulations.

Although the random object defined by the probability distribution ν is a priori
different from the infinite quadrangulation obtained by Chassaing and Durhuus
in [25], they have later been proved to be equivalent by Ménard in [68].
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Chapter 2
Generating functions methods

In this chapter we collect a few results about generating functions which
will be used throughout the thesis. In particular, in Sec. 2.1 we give the
basic notions about generating functions and recall the Lagrange inversion
formula. As an application, in Sec. 2.1.3 we give an explicit example,
namely the enumeration of rooted planar trees.

In the second part of the chapter, Sec. 2.2, we examine the case when
generating functions are also analytic functions in some complex domain.
In this situation, many information can be obtained by studying the func-
tion near its singularity points, via a so-called singularity analysis process,
Sec. 2.2.1.

Finally, in Sec. 2.2.2 this analysis scheme is applied to the solution of
a certain type of functional equations, which is frequent in combinatorial
problems.

For further details about the topics presented in this chapter we refer
the reader to [38, 48, 88].
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Chapter 2. Generating functions methods

2.1 An introduction to generating functions

2.1.1 Basic notions

Given a sequence an, n ∈N0, of elements in a commutative ring R (in this
thesis usually R = Q or R), the generating function A(x) of an is the formal
power series1

A(x) =
∞

∑
n=0

anxn. (2.1)

By now, x is just a formal indeterminate, that is we look at power series
as purely algebraic objects, which we will manipulate according to some
set of rules. In particular, in this section we will not be interested in the
analytic properties of the power series, for instance we will not require the
series to be convergent. For example we can define the generating function
for the number of permutations

P(x) =
∞

∑
n=0

n!xn = 1 + x + 2x2 + 6x3 + · · · (2.2)

even though the series’ radius of convergence is 0.

However, later in this chapter, we will look at a generating function as
representing an analytic function for |x| < ρ, with

ρ =

(
lim sup

n→∞
|an|

1
n

)−1

(2.3)

denoting its radius of convergence.

We use the notation
[xn] A(x) = an (2.4)

to extract the coefficient of xn from the generating function A(x).

1In literature generating functions defined in this way are often called ordinary generating
functions to distinguish them from exponential generating functions. We will not need this
distinction in the following.
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We recall that, as formal power series, generating functions can be ma-
nipulated algebraically. Let (an), (bn) be two sequences and A(x), B(x) the
corresponding generating functions. We have the following operations.

Addition A(x)± B(x) =
∞

∑
n=0

(an ± bn)xn, (2.5)

Multiplication A(x)B(x) =
∞

∑
n=0

cnxn, with cn =
n

∑
k=0

akbn−k (2.6)

With these two operations, the set of all formal power series becomes a
commutative ring, usually denoted by R[[x]]. Actually a notion of distance
between formal series can also be defined and R[[x]] can be proved to be a
complete metric space (see e.g. [48] for further details).

Using the multiplication rule we can define the reciprocal of a formal
power series A(x) as the formal series B(x), such that A(x)B(x) = 1. We
have the following result.

Proposition 2.1.1. A formal power series A(x) = ∑∞
n=0 anxn has a reciprocal if

and only if a0 6= 0. In that case it is unique.

Proof. If the reciprocal B(x) = ∑∞
n=0 bnxn exists, we have that

A(x)B(x) =
∞

∑
n=0

n

∑
k=0

akbn−kxn = 1, (2.7)

which gives

a0b0 = 1 (2.8)
n

∑
k=0

akbn−k = 0, n ≥ 1. (2.9)

The first equation tells us that a0 6= 0, the second one that

bn = − 1
a0

n

∑
k=1

akbn−k n ≥ 1 (2.10)
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are uniquely determined by induction.

Assuming a0 6= 0 the equations (2.8), (2.9) determine the bn’s. Hence
the reciprocal is uniquely determined by B(x) = ∑∞

n=0 bnxn.

For a formal power series A(x), we denote its reciprocal by 1/A(x),
provided it exists.

The formal derivative D of a formal power series A(x) = ∑∞
n=0 anxn is

defined as follows

DA(x) = A′(x) =
∞

∑
n=1

n anxn−1 (2.11)

We denote by Dk the kth formal derivative.

Performing operations on the coefficients of a generating function de-
fines operations on the generating function itself. Here we list the basic re-
lations between coefficients and corresponding generating functions. For
A(x) = ∑∞

n=0 anxn we have

Coefficients Generating function

Partial sum ∑n
k=0 ak

A(x)
1− x

Multiplication by P(n) P(n)an P(xD)A(x)

Scaling lnan A(lx)

Shift by h ∈N an+h
A(x)−∑h−1

k=0 akxk

xh

Here by P(n) we mean a polynomial in n and P(xD) denotes the cor-
responding operator, obtained by substituting n with xD; for instance, for
a generic polynomial Pl(n) of degree l we have

Pl(n) =
l

∑
k=0

pknk ←→ Pl(xD) =
l

∑
k=0

pk(xD)k. (2.12)
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2.1 An introduction to generating functions

For our purposes, it is worth noting that the multiplication rule for two
formal power series can be extended to an arbitrary number of them, as
follows. Let (a(1)n ), . . . , (a(k)n ), be k sequences and A(1), . . . , A(k) the corre-
sponding generating functions. We then have

A(1)(x) . . . A(k)(x) =
∞

∑
n=0

∑
|j|=n

a(1)j1
. . . a(k)jk

xn, (2.13)

where the summation is over j = (j1, . . . , jk) ∈ Nk
0 and |j| = j1 + . . . + jk =

n.

The rules listed above can be obtained by simple application of the
addition and multiplication rules mentioned before.

The composition A(B(x)) of the formal power series A(x) and B(x),
with b0 = 0, is defined as

A(B(x)) =
∞

∑
n=0

cnxn, (2.14)

where the coefficients cn’s are given by

c0 = a0 (2.15)

cn = ∑
1≤k≤n
|j|=n

ak

k

∏
i=1

bji , n ≥ 1 (2.16)

with j = (j1, . . . , jk) ∈ Nk and |j| = j1 + . . . + jk. Note that the coefficients
cn’s are given by formally substituting B(x) for x in A(x) = ∑∞

n=0 anxn.
It needs to be stressed that, as formal power series, the composition is
valid only if b0 = 0 or if A(x) is a polynomial. Suppose that we want to
calculate the m-th coefficient of the composition. We note that if b0 = 0,
for any k > m, the term akB(x)k contains only powers of x higher than m,
therefore only the terms ∑m

n=0 anB(x)n will contribute to the coefficient cm.
If b0 6= 0, this would not be true and an infinite number of terms would
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contribute to cm, making the composition rule ill-defined.

For instance, consider the formal power series

ex =
∞

∑
n=0

xn

n!
. (2.17)

According to the above definition, the composition eex−1 is a well-defined
formal series, whereas eex

is not.

Given the formal power series A(x) associated to the sequence (an),
with a0 = 0 and a1 6= 0, we define the inverse power series A−1(x) =

∑∞
n=1 ãnxn by

A(A−1(x)) = A−1(A(x)) = x. (2.18)

Indeed, using the composition rule given above, it follows from (2.18) that
the coefficients ãn’s are recursively determined by

a1 ã1 = 1, (2.19)

a1 ãn + ∑
2≤k≤n
|j|=n

ak

k

∏
i=1

ãji = 0, n ≥ 2. (2.20)

The Lagrange inversion formula provides a useful tool to find the ex-
plicit representation of coefficients of inverse power series.

2.1.2 Lagrange Inversion Formula

Theorem 2.1.2. Let an, n ∈ N0 be a sequence such that a0 = 0 and a1 6= 0. Let
A(x) be the corresponding formal power series, A[−1](x) its inverse and H(x) an
arbitrary formal series. Then the coefficients of H(A−1(x)) are given by

[xn] H(A[−1](x)) =
1
n

[
yn−1

]
H′(y)

(
y

A(y)

)n

n ≥ 1 (2.21)

Note that, choosing a power series ϕ(x) = ∑n≥0 ϕnxn, with ϕ0 6= 0,
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2.1 An introduction to generating functions

and setting A(x) = x/ϕ(x), then the inverse series A−1(x) satisfies the
equation

A−](x) = xϕ(A−1(x)). (2.22)

We can use this fact to reformulate the theorem in the following way.

Theorem 2.1.3. Let ϕ(x) = ∑n≥0 ϕnxn be a formal power series with ϕ0 6= 0.
Then the equation

L(x) = xϕ(L(x)), (2.23)

admits a unique solution L(x) = ∑n≥1 lnxn and for an arbitrary formal series
H(x) = ∑n≥0 hnxn the coefficients of H(L(x)) are given by

[xn] H(L(x)) =
1
n

[
yn−1

]
H′(y)ϕ(y)n. (2.24)

Proof. First we note that eq. (2.23) provides a system of polynomial equa-
tions for {ln} which determines the unique solution L(x), that is

l1 = ϕ0, l2 = ϕ0ϕ1, l3 = ϕ0ϕ2
1 + ϕ2

0ϕ2, . . . (2.25)

Hence, since for fixed n, ln depends only on the coefficients of ϕ up to
order n, we may assume that ϕ is a polynomial, without loss of generality.

Further we assume that, for fixed n, H(x) is a polynomial of degree n.
If the result is true for this polynomial it will remain true for any formal
power series, since the coefficients hk, for k > n, do not contribute to the
formula (2.24).

Since ϕ(0) = ϕ0 6= 0, ϕ(y) stays non-zero in some neighborhood of 0
and function y/ϕ(y) is analytic there. Hence, it follows from eq. (2.23)
that L(x) is an analytic function in a neighborhood of x = 0. Let C denote
a small circle centered at 0 and contained in this neighborhood. Therefore,
setting y = L(x) we have, from the analyticity of L, that C′ = L(C) is still
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a small circle around 0. Hence, we have

[
yn−1

]
H′(y)ϕ(y)n =

1
2πi

∫

C

H′(y) ϕ(y)n

yn dy

=
1

2πi

∫

C′

H′(L(x))ϕ(L(x))nL′(x)
L(x)n dx

=
1

2πi

∫

C′

H′(L(x))L′(x)
xn dx

= [xn] x
d

dx
H(L(x))

= n [xn] H(L(x)).

(2.26)

The first equality is the Cauchy formula, the second is the change of vari-
able y = L(x), the third comes from (2.23). The rest follows easily.

In the next section, we will see how to apply the formula to an enu-
meration problem.

2.1.3 Enumeration of Rooted Planar Trees

In section 1.2.1 we claimed that the number CN of rooted planar trees of
size N with root of degree 1 equals the (N − 1)-th Catalan number. We
prove it using a standard generating function argument.

Theorem 2.1.4. The number CN of rooted planar trees of size N with root of
degree 1 is given by

CN =
(2N − 2)!

N!(N − 1)!
. (2.27)

Proof. Let C(x) be the generating function for the CN’s, that is

C(x) =
∞

∑
N=1

CNxN−1. (2.28)

Decomposing the tree according to the degree of the root’s neighbor
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= + + + · · ·

Figure 2.1: Tree decomposition

(see Fig. 2.1), we have the recurrence relation:

CN+1 = CN + ∑
N1+N2=N

CN1 CN2 + ∑
N1+N2+N3=N

CN1 CN2 CN3 + · · · , (2.29)

which, according to the rules given in Sec. 2.1.1, translates into the follow-
ing functional equation for the generating function C(x)

C(x)− 1 =
∞

∑
k=1

(xC(x))k =
xC(x)

1− xC(x)
. (2.30)

We can apply the Lagrange inversion formula to find the coefficients
CN . First define C̃(x) = xC(x), such that c̃N = CN , for N ≥ 1. We have
that C̃(x) satisfies the equation

C̃(x) = xϕ(C̃(x)), (2.31)

with ϕ(y) = (1− y)−1. Hence, using the formula (2.24) with H(x) = x, we
find

CN = c̃N =
1
N

[
yN−1

] 1
(1− y)N =

1
N

(
2N − 2
N − 1

)
=

(2N − 2)!
N!(N − 1)!

, (2.32)

where we used that

1
(1− y)N =

∞

∑
k=0

(
k + N − 1

k

)
yk. (2.33)
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We get the same result noting that the solution of eq. (2.30), hence the
generating function C(x), is actually an analytic function, namely

C(x) =
1−
√

1− 4x
2x

, (2.34)

which is analytic in the disc |x| < 1
4 .

Expanding the square root around x = 0 using Newton’s generalized
binomial formula

√
1 + y =

∞

∑
k=0

(
2k
k

)
(−1)k+1

4k(2k− 1)
yk, (2.35)

we get

C(x) =
1
2

∞

∑
k=1

(
2k
k

)
xk−1

2k− 1
(2.36)

and finally

CN =

(
2N
N

)
1

2(2N − 1)
=

(2N − 2)!
N!(N − 1)!

. (2.37)

It is easy to see that the number DN of rooted planar trees with N edges
is related to CN by

DN = CN+1, N ≥ 0, (2.38)

where D0 = 1 refers to the tree with only one vertex. Thus we have the
following corollary.

Corollary 2.1.5. The number DN of rooted planar trees with N edges is given by

DN =
(2N)!

(N + 1)!N!
. (2.39)

The asymptotic behaviour of CN for large N can be computed using
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Stirling’s approximation formula

n! ∼
√

2πn
(n

e

)n
. (2.40)

Thus we find
CN ∼

1√
π

N−
3
2 4N . (2.41)

Note that we have a square root singularity in the generating function
(2.34) and in the coefficients of its expansion a behaviour like N−

3
2 x−N

0 , for
N large, x0 being the singularity point ( 1

4 in this case). This is exactly the
same correspondence we found in Sec. 1.2.2, discussing the finite volume
partition functions of the generic trees. As will be seen in the following, the
relation between the behaviour of analytic functions near their singularity
points and the asymptotic behaviour of their Taylor coefficients can be
studied in a systematic way, called singularity analysis.

2.2 Asymptotic Analysis

In this section we consider generating functions as analytic functions. As
pointed out at the beginning of section 2.1.1, a generating function A(x) =

∑n≥0 anxn represents an analytic function whenever the power series has a
radius of convergence ρ, defined by (2.3), greater than 0. In this case A(x)
is analytic in the disc D =

{
x
∣∣ |x| < ρ

}
and we can apply the Cauchy’s

formula to recover the coefficients (an) of the series, i.e.

an =
1

2πi

∫

γ

f (z)
zn+1 dz, n ≥ 0, (2.42)

where γ is a contour in D around 0 with winding number 1.
The first part of the section deals with the basics of the so-called sin-

gularity analysis, a technique developed by Flajolet and Odlyzko in [47]. It
consists of a set of theorems that allow to transfer the singular behaviour of
certain functions to the asymptotic behaviour of their Taylor coefficients,
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which basically relies on a systematic use of the Cauchy’s formula.
At the end of the section we will see how to apply this analysis to

the study of certain types of functional equations which are frequent in
enumeration problems.

2.2.1 Singularity Analysis

In its original formulation, the singularity analysis process is more general
than the version described in this section. On the other hand, all the cases
considered in this thesis can be analyzed within the scheme described be-
low. For a complete study we refer the reader to [48], Ch. VI.

The main result, stated in Thm. 2.2.4, relies essentially on two lemmas.
The first one gives the asympotitc behaviour of the Taylor coefficients of
the function (1− z)−α,

Lemma 2.2.1. Given the function

f (z) = (1− z)−α, (2.43)

with α ∈ C \Z≤0, the coefficient of zn in f (z), for large n, is given by

[zn] f (z) ∼ nα−1

Γ(α)

(
1 +

∞

∑
k=1

pk

nk

)
, (2.44)

where pk is a polynomial in α that is divisible by α(α− 1) · · · (α− k). In partic-
ular

[zn] f (z) ∼ nα−1

Γ(α)

(
1 + O

(
1
n

))
, (2.45)

as n→ ∞.

Sketch of proof. The proof of this result relies, basically, on the Cauchy for-
mula

[zn] f (z) =
1

2πi

∫

γ

(1− z)−α

zn+1 dz (2.46)
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r

1

γ

1
n

1

H

0 0

Figure 2.2: Contour of integration used in Lemma 2.2.1 and a Hankel con-
tour.

where the contour γ is suitably chosen. In particular, consider γ as given
in Fig. 2.2, where the external arc is assumed to have radius r. The integral
along this arc is easily seen to vanish for r → ∞. The remaining path H,
depicted in Fig. 2.2, is called a Hankel contour. It is chosen to pass at
distance 1

n from the real half-line R≥1

Performing a change of variable

z = 1 +
t
n

(2.47)

in eq. (2.46) gives

[zn] f (z) =
nα−1

2πi

∫

γ
(−t)−α

(
1 +

t
n

)−n−1

dt. (2.48)

Formally, the result can be obtained by noting that

(
1 +

t
n

)−n−1

= e−t
(

1 + O
(

1
n

))
. (2.49)

Then, one substitutes this expression in (2.48) and uses the Hankel’s inte-
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gral representation of the gamma function (see e.g. [53]):

1
Γ(α)

= − 1
2πi

∫

H
(−t)−α e−t dt. (2.50)

to get the desired result.
A justification of this formal argument, as well as details of the proof,

can be found in [48].

In order to apply the singularity analysis scheme to a function f (z),
the essential condition that we need is the analyticity of f (z) in a so-called
∆-domain. It is defined as follows.

Given two numbers ϑ, R with R > 1 and 0 < ϑ < π
2 , the open domain

∆(θ, R) is defined as (see Fig. 2.3)

∆(θ, R) =
{

z
∣∣ |z| < R, z 6= 1, | arg(z− 1)| > θ

}
. (2.51)

A domain is a ∆-domain if it is of the form ∆(θ, R) for some R and ϑ. For a
complex number z0, we denote by z0∆ the image by the mapping z 7→ z0z
of a ∆-domain. We say that a function f is ∆-analytic, if f is analytic in a
∆-domain.

Lemma 2.2.2 (Error terms transfer). Let a ∈ R be an arbitrary real number
and f (z) a ∆-analytic function such that

f (z) = O
(
(1− z)−a) , as z→ 1, z ∈ ∆, (2.52)

then
[zn] f (z) = O

(
na−1

)
. (2.53)

The same is true replacing O (·) with o (·).

Sketch of proof. We use the Cauchy formula

[zn] f (z) =
1

2πi

∫

γ

f (z)
zn+1 dz (2.54)
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0 1

R

θ

Figure 2.3: ∆-domain ∆(θ, R)

with path of integration γ =
⋃4

i=1 γi given by (see Fig. 2.4)

γ1 =

{
z
∣∣ |z− 1| = 1

n
, | arg(z− 1)| ≥ φ

}
, (2.55)

γ2 =

{
z
∣∣ |z− 1| ≥ 1

n
, |z| ≤ r, arg(z− 1) = φ

}
, (2.56)

γ3 =
{

z
∣∣ |z| = r, | arg(z− 1)| ≥ φ

}
, (2.57)

γ4 =

{
z
∣∣ |z− 1| ≥ 1

n
, |z| ≤ r, arg(z− 1) = −φ

}
. (2.58)

If the ∆-domain is ∆(θ, R), r and φ have to be chosen in such a way that
γ ∈ ∆, that is 1 < r < R and θ < φ < π

2 . The result is then obtained using
the bound | f (z)| ≤ C|1− z|−α, for some positive constant C, to bound the
absolute value of (2.54).

Details of the proof can be found in [48].

From these two lemmas a corollary immediately follows.
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0 1

rR

1
n φ

Figure 2.4: Delta domain and integration contour

Corollary 2.2.3. Assume that f (z) is ∆-analytic and

f (z) ∼ (1− z)−α, z→ 1, z ∈ ∆ (2.59)

with α ∈ C \Z≤0. Then

[zn] f (z) ∼ nα−1

Γ(α)
. (2.60)

Proof. We have that f (z) ∼ (1 − z)−α if and only if f (z) = (1 − z)−α +

o ((1− z)−α), then the result follows applying Lemma 2.2.1 to the first
term and Lemma 2.2.2 to the error term.

We are now ready to state the main result of this section.

Theorem 2.2.4 (Singularity analysis). Let f (z) be a function with a singularity
at z0 and analytic in a ∆-domain ∆0 = z0∆. Assume that, for some constant C,
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f (z) admits an expansion of the form

f (z) = C
(

1− z
z0

)−α

+ O

((
1− z

z0

)−a
)

, (2.61)

as z→ z0, z ∈ ∆0, with a < Re (α), α ∈ C \Z≤0. Then

[zn] f (z) = C
nα−1

Γ(α)
z−n

0 + O
(

z−n
0 nmax{Re (α)−2,a−1}

)
(2.62)

Proof. The theorem is an immediate consequence of lemmas 2.2.1 and 2.2.2,
once we note that g(z) = f (z0z) is singular at 1, and by the scaling rule of
the Taylor expansion

[zn] f (z) = z−n
0 [zn] f (z0z) = z−n

0 [zn] g(z). (2.63)

Remark 2.2.5. As mentioned above, the singularity analysis process has a broader
range of application than the functions described in Thm. 2.2.4. In particular,
defining

S =
{
(1− z)−αλ(z)β

∣∣ α, β ∈ C
}

, λ(z) =
1
z

log
1

1− z
, (2.64)

the transfer theorems can be proved for any function f (z) such that

f (z) = σ(z/z0) + O (τ(z/z0)) as z→ z0, z ∈ z0∆, (2.65)

where σ(z) is a finite linear combination of functions in S and τ(z) ∈ S .
Further, the theorem can be extended to functions that have finitely many

singularities on the boundary of their disc of convergence. Roughly speaking, in
this case the asymptotic behaviour of the coefficients is given by adding up the
contributions from each singularity, obtained by the basic singularity analysis
process.

47



Chapter 2. Generating functions methods

The interested reader should consult [48], where these cases are studied in
detail.

2.2.2 Functional equations

Generating functions associated to graphs are often seen to be solutions
of functional equations of the type y = F(x, y). These equations arise
naturally in combinatorics, e.g. enumeration problems, since they mirror
the recursive nature of graphs.

As we will see in the following, even if an explicit solution of the func-
tional equation is not known, under some rather general circumstances,
it is possible to know the behaviour of the solution near its singularities.
Early studies in this direction go back to Bender [13], Canfield [24] and
Meir and Moon [67].

Single functional equation The next theorem shows that solutions of a
functional equation of the type mentioned above usually possess a square-
root singularity and can be analytically extended to a ∆-domain, hence
they are amenable to the singularity analysis process . We refer the reader
to [38] for a proof.

Theorem 2.2.6. Let F(x, y) be a function satisfying the following conditions.

(C1) F(x, y) is analytic in x, y around x = y = 0 and

F(0, y) = 0, [xnym] F(x, y) ≥ 0. (2.66)

for n, m ≥ 0.

(C2) Within the domain of analyticity of F(x, y) the system





y = F(x, y)

1 = Fy(x, y)
(2.67)
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admits a positive solution (x0, y0), with Fx(x0, y0) 6= 0 and Fyy(x0, y0) 6=
0.

Then there exists a unique analytic solution y = y(x) of the functional equation

y = F(x, y) (2.68)

with y(0) = 0, [xn] y(x) ≥ 0 and domain of analyticity |x| < x0.

Moreover, there exist functions g(x) and h(x) that are analytic around x =

x0, such that y(x) near x0 is of the form

y(x) = g(x)− h(x)
√

1− x
x0

(2.69)

with

g(x0) = y(x0), h(x0) =

√
2x0Fx(x0, y0)

Fyy(x0, y0)
. (2.70)

The expression (2.69) provides an analytic continuation of y(x) for arg(x− x0) 6=
0.

Furthermore, if there exists an n0 such that [xn] y(x) > 0 for n ≥ n0, then
y(x) admits an analytic continuation in a ∆-domain x0∆, and

[xn] y(x) =

√
x0Fx(x0, y0)

2πFyy(x0, y0)
x−n

0 n−3/2
(

1 + O
(

1
n

))
. (2.71)

The conditions (C1) ensure that the inversion problem is well defined
around 0, that is we have a non trivial unique solution y(x). Non-negativity
of the coefficients is naturally satisfied in enumeration problems or, for in-
stance, when they are partition functions, as in the cases studied in Sec.
1.2. However, this condition implies non-negativity of the coefficients of
y(x) around 0, therefore if y(x) is analytic at a real positive x′, then y(x) is
analytic for |x| ≤ x′, by Pringsheim’s Theorem (see e.g. [48], Thm. IV.6).

Note that, setting F(x, y) = xϕ(y) the theorem reduces to Thm. VI.6
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(Singular Inversion) in [48], where the aperiodicity condition of ϕ is ensured
in our case by [xn] y(x) > 0, for n > n0 (see [48], Definition IV.5 for the
notion of periodicity of a generating function). In both cases, the require-
ment are needed to ensure that x0 is the only singularity on the circle of
convergence of y(x).

Systems of functional equations The result of Thm. 2.2.6 can be gener-
alized to systems of equations of the type (2.68). The assumptions that we
will need are similar to the assumptions (C1), (C2) of the single equation
case. We only need to impose a condition on the dependency graph for
the system of functional equations. This is defined as follows.

Let F(x, y) = (F1(x, y), . . . , FN(x, y)) be a vector of functions Fi(x, y),
1 ≤ i ≤ N, of complex variables x, y = (y1, . . . , yN). The dependency graph
GF(V, E) for the system of equations y = F(x, y) is a directed graph whose
vertex set V is given by V = {y1, . . . , yN}, whereas an oriented edge (yi, yj)

is contained in E if and only if Fi(x, y) really depends on yj.

We say that a dependency graph is strongly connected if every pair of
vertices is connected by an oriented path, or equivalently, if the jacobian
matrix Fy(x, y) =

(
∂Fi
∂xj

)
is irreducible (see e.g. [70]).

In the following we denote by I the N × N identity matrix and by At

the transpose of a matrix A.

Theorem 2.2.7. Let F(x, y) = (F1(x, y), . . . , FN(x, y)) be a vector of functions
satisfying the following conditions.

(D1) F(x, y) is analytic around x = 0, y = 0 and

F(0, y) = 0, F(x, 0) 6= 0, x 6= 0 (2.72)

and with non-negative Taylor coefficients.
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(D2) Within the domain of analyticity of F(x, y) the system





y = F(x, y)

0 = det
(
I− Fy(x, y)

) (2.73)

admits a positive solutions (x0, y0). Further, assume that Fx(x0, y0) 6= 0
and that the dependency graph GF is strongly connected.

Then the system of equations
y = F(x, y) (2.74)

admits an analytic solution

y = y(x) = (y1(x), . . . , yN(x)) (2.75)

with y(0) = 0 and radius of convergence x0 (common for all yi(x)). Further, for
each 1 ≤ i ≤ N, there exist analytic functions gi(x) 6= 0, hi(x) 6= 0, such that
yi(x) has a representation

yi(x) = gi(x)− hi(x)
√

1− x
x0

, (2.76)

locally near x0 but | arg(x− x0)| 6= 0, where gi(x0) = yi(x0) = y0.
Assuming that there exists an n1 such that [xn] yi(x) > 0 for n ≥ n1, 1 ≤

i ≤ N, then the yi(x)’s admit an analytic continuation in a ∆-domain x0∆ and

[xn] yi(x) =
|ai|√

4π
x−n

0 n−
3
2

(
1 + O

(
1
n

))
. (2.77)

where a = (a1, . . . , aN), is a solution of

(
I− Fy(x0, y0)

)
at = 0 (2.78)

a Fyy(x0, y0) at = −2Fx(x0, y0) (2.79)

This theorem relies on more general results due to Drmota [37, 38].
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Chapter 2. Generating functions methods

Possible remarks about the assumptions are similar to those previously
made for the single equation case. We only want to stress that the assump-
tion of strong connectivity is needed to avoid that, informally speaking, a
subsystem of (2.74) is solved prior to the whole system of equations.

Infinite systems of functional equations For the sake of completeness,
we conclude this chapter recording a result due to Morgenbesser [72],
about the singular behaviour of the solutions of infinite systems of func-
tional equations of the type (2.68).

Before we state the next theorem, we give some definitions from func-
tional analysis. All the definitions not explicitly stated here can be found
e.g. in [79]. We also refer the reader to [34], Sec. 7.7, for details about
differentiability in Banach spaces.

Let B be a Banach space with norm ‖ · ‖, a function F : B → B is
called Fréchet differentiable at x0 if there exists a bounded linear operator
(∂F/∂x)(x0) on B such that

lim
h→0

‖F(x0 + h)− F(x0)− ∂F
∂x (x0)h‖

‖h‖ = 0. (2.80)

The operator (∂F/∂x)(x0) is called Fréchet derivative of F at x0. If B is a
complex vector space and (2.80) holds for all h, then F is said to be analytic
at x0. F is analytic in V ⊆ B, if it is analytic for all x0 ∈ V.

When B ≡ `p, where `p, 1 ≤ p < ∞, is the Banach space of all complex
valued sequences an, n ∈ N, the Fréchet derivative is also called the Jaco-
bian operator. We say that a function F : C× `p → `p is positive in a domain
U ×V ∈ C× `p if there exist non-negative real numbers fij,k such that

Fk(x, y) = ∑
i,j

fij,kxiyj, for all (x, y) ∈ U ×V, k ≥ 1, (2.81)

where j = (j1, j2, . . .), ji ∈N, with only finitely many nonzero components,
and yj = yj1

1 yj2
2 · · · .
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Recalling that any bounded linear operator A on an `p space is uniquely
determined by an infinite dimensional matrix (Aij)1≤i,j<∞, A is called posi-
tive if Ai,j ≥ 0 for all i, j ∈ N. A positive operator A is said to be irreducible
if for every i, j there exist n such that (An)ij > 0.

Theorem 2.2.8. Let 1 ≤ p < ∞ and F : C× `p → `p, (x, y) 7→ F(x, y) a
function satisfying the following conditions.

(E1) F(x, y) is an analytic and positive function defined in an open neighborhood
U ×V of (0, 0) and

F(0, y) = 0 for all y ∈ V, F(x, 0) 6= 0 in U \ {0} . (2.82)

(E2) Fy(x, y) is a compact operator on `p for all (x, y) ∈ U×V and irreducible
for strictly positive (x, y) ∈ U ×V. Further, the system





y = F(x, y)

1 = R
(
Fy(x, y)

)
,

(2.83)

admits a positive solution (x0, y0) ∈ U × V, where R(Fy(x, y)) denotes
the spectral radius of the Jacobian operator.

Then there exists an analytic solution y(x) of

y = F(x, y), (2.84)

with y(0) = 0. Further, there exist analytic functions g(x) and h(x) such that
such that y(x) has a representation

y(x) = g(x)− h(x)
√

1− x
x0

, (2.85)

locally near x0 but | arg(x− x0)| 6= 0.
Moreover, if there exist two integers n2 and n3 that are relatively prime such

that [xn2 ] y1(x) > 0 and [xn3 ] y1(x) > 0, then x0 is the only singularity of y(x)
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Chapter 2. Generating functions methods

on the circle |x| = x0 and we obtain for every i ≥ 1

[xn] yi(x) ∼ ci x−n
0 n−

3
2 , (2.86)

where ci is a positive constant.
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Chapter 3
Random graphs as Quantum
Gravity models

In this chapter we give an account of two dimensional quantum gravity
models described in terms of random graphs.

After a brief introduction to the path integral formalism in Sec. 3.1,
we review the path-integral formulation of quantum gravity in Sec. 3.2.
In Sec. 3.3 we restrict the discussion to the two dimensional case. In
particular, we describe in Sec. 3.3.1 the discretization procedure known as
Regge calculus, which will be the applied to the definition of the dynamical
triangulation model in Sec 3.3.2, and the causal dynamical triangulation
model in Sec. 3.3.3.

Most of the basic notions from quantum field theory and general rela-
tivity are omitted. We refer the reader to [55] for the former and [75] for
the latter.

3.1 Introduction

The discussion in this section is purely formal and it is intended to give
the reader an idea of the path-integral formalism.
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Chapter 3. Random graphs as Quantum Gravity models

The path integral approach as a quantization scheme of classical sys-
tems was first introduced by Feynman in his Ph.d. thesis [46], inspired by
an early work by Dirac [35]. First applied in the context of non-relativistic
quantum mechanics, later it became a powerful tool for the study of quan-
tum field theories and provided an interpretation of quantum systems as
statistical mechanical models.

For ordinary quantum mechanics, the central result of the path integral
formalism can be summarized saying that the probability amplitude for a
particle to travel from a point xi at time ti to a point x f at time t f can be
obtained by integrating a phase factor eiS[x(t)], assigned to each path x(t)
connecting (xi, ti) and (x f , t f ), over all such paths. Here S[x(t)] denotes
the functional action describing the evolution of a classical system, given
by

S[x(t)] =
∫ t f

ti

dtL(x(t), ẋ(t)). (3.1)

and we consider the case where the Lagrangian L(x(t), ẋ(t)) is of the form

L(x(t), ẋ(t)) =
1
2

mẋ(t)2 −V(x(t)), (3.2)

with m denoting the mass of the particle and V the potential.

Thus, the probability amplitude, usually called propagator, or Green’s
function, is formally given by

G(xi, ti; x f , t f ) =
∫

P(xi ,x f )
D [x(t)] eiS[x(t)], (3.3)

where P(xi, x f ) indicates the space of all paths between (xi, ti) and (x f , t f )

and D [x(t)] is a formal measure on such space.

The formal expression (3.3) of the non-relativistic propagator can be
given a precise mathematical sense by the following procedure. First,
subdivide the time interval |t f − ti| in n + 1 small intervals |tj − tj−1|,
j = 0, 1 . . . , n + 1, of size ε = |t f − ti|/(n + 1), with t0 = ti, tn+1 = t f .
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3.1 Introduction

Then, defining x = (x0, . . . , xn+1), with xj = x(tj), the amplitude is given
by

G(xi, ti; x f , t f ) = lim
n→∞

∫ +∞

−∞

n

∏
j=1

dxj√
2πiε/m

eiSn[x] (3.4)

with

Sn[x] =
n+1

∑
j=1

ε

[
1
2

m
(

xj − xj−1

ε

)2

−V
(

xj + xj−1

2

)]
. (3.5)

We refer the reader to [55] for further details.

Extending the integral in eq. (3.3) to the space of all closed paths, i.e.
with xi = x(ti) = x(t f ) = x f , and integrating over all xi, one obtains a
quantity, called partition function, which is formally written as

Z =
∫

D [x(t)] eiS[x(t)]. (3.6)

The path-integral defining the propagator (3.3) and the partition func-
tion (3.6) can be generalized to the relativistic case, when one considers
field configurations instead of particle positions and the integration is per-
formed on suitable spaces of fields. For instance, consider a massive scalar
field φ propagating in a 4-dimensional Minkowski spacetime (i.e. with
metric ηµν with signature (−+++)), with action S[φ] given by

SSF[φ] =
∫

d4xL(φ, φ̇), (3.7)

where the Lagrangian is

L(φ, φ̇) = −1
2

ηµν∂µφ∂νφ− 1
2

m2φ2. (3.8)

Here we used the sum over repeated index convention.

Then, the probability amplitude for φ to propagate from a configura-
tion φi at time ti to a configuration φ f at time t f , is formally given by the
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Chapter 3. Random graphs as Quantum Gravity models

path integral

GSF(φi, ti; φ f , t f ) =
∫

F (φi ,φ f )
D [φ] eiS[φ], (3.9)

whereas the partition function is

ZSF =
∫

D [φ] eiS[φ]. (3.10)

Here F (φi, φ f ) is the space of fields with initial configuration φi at time
ti and final configuration φ f at time t f , whereas the integral in eq. (3.10)
is performed over all fields with periodic boundary conditions in the time
coordinate.

Generally, to make sense of the integral in eqs. (3.9) and (3.10) one
can still perform a discretization analogous to the non-relativistic case and
perform a Wick rotation, that is an analitic continuation of the action to
imaginary time. This can be explained using the scalar field example.
Indeed, the Wick rotation modifies the volume integration in the action
(3.7) of a factor i, hence the partition function becomes

ZSF =
∫

D [φ] e−Ŝ[φ], (3.11)

where Ŝ[φ] = −iS[φ]. For real fields φ, the Euclidean action Ŝ[φ] is non-
negative, therefore after a proper regularization the integral (3.11) should
eventually converge.

Hence, the idea is to perform all the calculations in the Euclidean sector
and only at the end rotate the time axis to restore the Lorentzian signature
of the spacetime. This procedure can be made mathematically precise,
for a certain class of field theories, by means of the Osterwalder-Schrader
axioms [77].

However, a detailed discussion of the path integral formulation goes
far beyond the scope of this thesis. We refer the interested reader to e.g.
[55] for further details. Our aim is to show how it eventually translates
in a statistical mechanical problem in terms of random graphs, when it is
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3.2 Lorentzian and Euclidean path-integral for gravity

applied as a quantization scheme for general relativity.

3.2 Lorentzian and Euclidean path-integral for
gravity

In order to apply the path integral formalism to the gravitational field,
the partition function Z for pure gravity (i.e. without matter fields) is
formally obtained as follows. First, to a given metric g on a closed, compact
d-dimensional Lorentzian manifold M we associate a phase factor eiSEH ,
where SEH is the Einstein-Hilbert action defined as

SEH(g; G, Λ) = Λ
∫

M
ddx

√
|det g| − 1

2πG

∫

M
ddx

√
|det g| R, (3.12)

for d ≥ 2. Here G denotes Newton’s constant, Λ the cosmological constant
and R the scalar curvature (or Ricci scalar) associated to g.

The gravitational Lorentzian partition function is formally defined as

Z(G, Λ) = ∑
M

∫

Geom(M)
D [g] eiSEH(g;G,Λ), (3.13)

where Geom(M) = Metric(M)/ Diff(M) is the so-called space of geome-
tries of the manifold M. Here Metric(M) is the space of Lorentzian metrics
on M and Diff(M) the diffeomorphism group of M. The definition of the
space of geometries keeps track of the diffeomorphism invariance of gen-
eral relativity. The “sum” ∑M indicates a formal sum over diffeomorphism
classes of manifolds and [g] ∈ Geom(M) the equivalence class of metrics
which are isometric to g.

There are several problems when one tries to give a precise mathemat-
ical description of the gravitational path-integral (3.13). For instance, it is
not known how to unambiguously define the measure D [g] (see e.g. [49]).

A different approach is to start directly from the Euclidean partition
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Chapter 3. Random graphs as Quantum Gravity models

function
Ẑ(G, Λ) = ∑̂

M

∫

Geom((M̂)
D [ĝ] e−SEH(ĝ;G,Λ). (3.14)

where we use the notationˆto denote Euclidean quantities. Here, the action
is defined by the same expression as in eq. (3.12), except for the fact that in
this case the integration is over the manifold M̂ equipped with Riemannian
metric ĝ.

Even in this case some problems arise. To mention some of them:

i) In dimension d ≥ 3 no classification of diffeomorphism classes of
manifolds is known (in dimension d = 2, orientable compact mani-
folds are characterized by their Euler characteristic). Thus the sum

∑M is far from being tractable.

ii) There are no known analogs of the Osterwalder-Schrader axioms for
quantum gravity.

iii) Unboundedness from below of the Einstein-Hilbert action (see e.g.
[4]).

Further discussions about Euclidean quantum gravity can be found in
[52, 4].

In the remainder of this chapter we will focus on the two-dimensional
theory. In the next section we shall see how to deal with these problems
introducing certain regularization procedures called dynamical triangulation
(DT) for the Euclidean case and causal dynamical triangulation (CDT) for
Lorentzian manifolds.

3.3 Two-dimensional quantum gravity

We start discussing the Euclidean partition function (3.14). In two dimen-
sions the path-integral in eqs. (3.14) extremely simplifies, due to the Gauss-
Bonnet theorem. This states that, for a compact closed oriented Rieman-
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3.3 Two-dimensional quantum gravity

nian manifold M̂h, with h handles, one has
∫

M̂h

d2x
√

det ĝ R̂ = 4πχ(h), (3.15)

where the Euler characteristic χ(h) of M̂h is given by χ(h) = 2− 2h,

Therefore, the two-dimensional Euclidean Einstein-Hilbert action re-
duces to

SEH(ĝ; G, Λ) = ΛVĝ,h −
χ(h)

G
. (3.16)

Vĝ,h denotes the volume of M̂h,

Vĝ,h =
∫

M̂h

d2x
√

det ĝ. (3.17)

Further, the diffeomorphism classes for closed oriented manifolds with
genus h are completely determined by the Euler characteristic. Therefore,
the sum over diffeomorphism classes in (3.14) reduces to a sum over the
genus of the manifold. Hence from (3.14) and (3.16) we get

Ẑ(Λ, G) =
∞

∑
h=0

eχ(h)/GẐh(Λ) (3.18)

where the partition function Ẑh(Λ) of fixed topology h is defined as

Ẑh(Λ, G) =
∫

Geom(M̂h)
D [ĝ] e−Λ Vĝ,h , (3.19)

In the following we shall consider only manifolds with fixed topol-
ogy of S2 (possibly with boundaries), hence we will consider the partition
function

Ẑ(Λ) ≡ Ẑ0(Λ) =
∫

Geom(Ŝ2)
D [ĝ] e−SEH(ĝ;Λ) (3.20)

where
SEH(ĝ; Λ) = Λ Vĝ, (3.21)
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with Vĝ = Vĝ,0.

When b boundary components are present, the action (3.21) get also a
boundary term

SEH(ĝ; Λ, λ1, . . . , λb) = Λ Vĝ +
b

∑
i=1

λiLĝ,i (3.22)

where Lĝ,i denotes the length of the ith boundary component with respect
to the metric ĝ and λi the associated boundary cosmological constant.

The Gauss-Bonnet formula has an analog for Lorentzian manifolds [8,
27]. Also in this case the contribution from the curvature term in the
action is a topological quantity and can be omitted fixing the topology
(see also [63, 15, 66]). We also note that in two dimensions the vacuum
Einstein equations are trivially satisfied and it is rather natural to drop the
curvature term in the action, see [56].

Therefore, in the 2-dimensional Lorentzian case the partition function
is defined as

Z(Λ) =
∫

Geom(M)
D [g] eiSEH(g;Λ), (3.23)

where M is a compact 2-dimensional Lorentzian manifold and

SEH(g; Λ) = ΛVM. (3.24)

Next step to properly define the path-integrals above is to introduce a
regularization technique, which would make sense of the integration over
metrics. Following the idea used for the non-relativistic case of integrating
on piecewise linear segments, this procedure uses a suitable discretization
of two-dimensional surfaces.

3.3.1 Triangulations and Regge action

The first attempt to find a discrete analog of the Einstein theory of gen-
eral relativity is due to Regge [78]. The central idea of this approach is
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3.3 Two-dimensional quantum gravity

to approximate the 4-dimensional spacetime with piecewise flat building
blocks, four-simplices, such that the metric tensor, the dynamical variable
of the continuum theory, becomes a function of the edge lengths of the
four-simplices.

In the following we outline Regge’s construction for an Euclidean 2-
dimensional surface. However, it can be equivalently applied to Lorentzian
manifolds [78].

In two dimensions the spacetime is regarded as a piecewise linear sur-
face, whose fundamental blocks are triangles. We consider such a surface
embedded in RD, for sufficiently high D. The triangles are glued together
to form a triangulation T satisfying the following constraints:

i) The identification of two edges implies identification of their end-
points.

ii) For any two triangles there exists a sequence of adjacent triangles con-
necting them.

iii) Closed paths of edges of length one and two are not allowed.

Two triangulations are said to be isomorfic if there is a bijective map
between links and vertices which preserves the incidence relations.

Now we see how the geometry is encoded in a triangulation. To each
vertex v one associates a deficit angle εv defined by

εv = 2π −∑
t3 v

θv(t), (3.25)

where θv(t) denotes the angles at v of the triangle t to which v belongs,
see Fig. 3.1. Note that on Lorentzian manifolds, the deficit angles might
be imaginary, depending on the nature of the edges, i.e. whether they are
timelike, spacelike or null, see [78, 81].

As will be seen in a moment the deficit angles εv encode the geometric
properties of the curvature. First, recall [64] that on a smooth manifold, the
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v
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Figure 3.1: Deficit angle

easiest way to reveal the curvature of the manifold is to parallel transport
a vector around a closed loop. For a curve enclosing an infinitesimal area
dV, a vector parallel transported along such curve undergoes a rotation of
an angle dθ = 1

2 R dV. On a piecewise linear 2-manifold parallel transport-
ing a vector around a vertex v, rotates the vector of an angle εv. Hence,
according to the continuum formalism we define the curvature Rv at the
vertex v as

Rv =
2εv

Vv
, (3.26)

where Vv denotes the barycentric area at the vertex v, i.e.

Vv =
1
3 ∑

t3 v
Vt, (3.27)

with Vt being the area of the triangle to which v belongs.

With these definitions we have that the discretized counterpart of the
curvature term in the two-dimensional Einstein-Hilbert action (3.12) is
given by

∑
v∈T

εv, (3.28)
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and discrete volume term by

∑
v∈T

Vv (3.29)

where T is a given triangulation. Hence the so-called Regge action SRegge(T)
is defined as

SRegge(T) = ∑
v∈ T

(
Λ Vv −

εv

G

)
, (3.30)

The above construction can be extended to higher dimension, see [78]
and [71], Ch.42.

We stress that in this formulation edge lengths are allowed to vary,
indeed they are the new dynamical variables, whereas the connectivity of
the edges, i.e. the incidence matrix of the triangulation, is kept fixed.

As will be seen in the next section, this point of view will need to be
reversed when applying Regge calculus to the Euclidean gravitational path
integral.

3.3.2 Dynamical Triangulations

As discussed above, the triangulation contains all the informations about
the geometry of the discretized manifold, via the edge lengths of the trian-
gles. It is then a rather natural ansatz to define the discretized counterpart
of the integral over the space of metrics with a sum over triangulation
weighted by the Regge action.

A problem with this ansatz is that, as pointed out in the previous sec-
tion, the edge lengths of the triangulation are allowed to vary continuously,
hence the sum would include also equivalent triangulations, i.e. that can
be continuously deformed into each other. Further, as in the quantum
mechanics example discussed at the beginning of this chapter, we need
a cut-off parameter (ε in that case) which might possibly be sent to 0 to
recover the continuum theory.

A possible solution is to consider only triangulations made of equilat-
eral triangles with same squared edge length L2

a = a2. The study of this
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model, called dynamical triangulation, goes back to 1985 when it appeared
in [2, 31, 60]. In particular, in [2, 60] it was used as a regularization tech-
nique for Polyakov string theory. Shortly after, the first numerical results
appeared [3, 19]. We refer the reader to [4] for details.

It should be noted that even fixing the edges length new problems arise,
such as the loss of the diffeomorphism invariance since deformations of the
triangulations are not allowed (see [33] for a discussion).

Denoting by T the set of triangulations of S2, we define the discretized
counterpart of the partition function (3.20) for closed surfaces of genus
h = 0 as

Ẑ(Λ) = ∑
T∈T

1
CT

e−S(T,Λ), (3.31)

where CT is a symmetry factor equal to the order of the automorphism
group of T. Here the action S(T, Λ) is given by eq. (3.30) dropping the
constant curvature term, that is

S(T, Λ) = Λ NT, (3.32)

with NT denoting the number of triangles in the triangulation T. A factor√
3

4 a2 coming from the area of a single triangle has been absorbed in Λ.

Defining the set
Tk =

{
T ∈ T

∣∣ NT = k
}

(3.33)

eq. (3.31) can be written as

Ẑ(g) =
∞

∑
k=0

gkẐ(k) (3.34)

where the fugacity of triangles g is defined by

g = e−Λ, (3.35)
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and
Ẑ(k) = ∑

T∈Tk

1
CT

. (3.36)

Hence, the partition function (3.31) is the generating function for the
number Ẑ(k) of non-isomorfic triangulations of S2.

In analogy to the continuum theory (cf. eq. (3.22)), the discrete action
in the presence of a number b of boundary components is given by

S(T, Λ, λ1, . . . , λb) = Λ NT +
b

∑
i=1

λili, (3.37)

where li denotes the numbers of edges in the ith boundary component.
A factor a from the length of a single edge has been absorbed in λi, for
i = 1, . . . , b.

Denoting by T (l1, . . . , lb) the set of triangulations with b boundary
components of length l1, . . . , lb, the partition function associated to the ac-
tion (3.37) is defined by

W(Λ, λ1, . . . , λb) = ∑
l1,...,lb

∑
T∈T (l1,...,lb)

e−S(T,Λ,λ1,...,λb) (3.38)

It follows from eq. (3.37) that this expression can be written as

W(Λ, λ1, . . . , λb) = ∑
l1,...,lb

w(Λ, l1, . . . , lb)
b

∏
i=1

e−λi li (3.39)

where the Hartle-Hawking wave functionals (see [51, 4] for their continuum
counterpart) w(Λ, l1, . . . , lb) are defined by

w(Λ, l1, . . . , lb) = ∑
T∈T (l1,...,lb)

e−S(T,Λ). (3.40)
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Figure 3.2: Regular triangulation

Setting

Tk(l1, . . . , lb) =
{

T ∈ T (l1, . . . , lb)
∣∣ NT = k

}
, (3.41)

eq. (3.40) can be written as

w(Λ, l1, . . . , lb) =
∞

∑
k=0

e−Λkwk,l1,...,lb (3.42)

where
wk,l1,...,lb = ]Tk(l1, . . . , lb), (3.43)

i.e. the number of triangulations with k triangles and boundary lengths
l1, . . . , lb.

Thus, also in this case the partition function (3.38) is the generating
function for the number wk,l1,...,lb of non-equivalent triangulations of S2

with b boundaries.

Finally, the problem of evaluating the partition function of 2-dimen-
sional quantum gravity is translated into the problem of counting the num-
ber of triangulations of the 2-sphere (possibly with boundaries).
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3.3 Two-dimensional quantum gravity

Figure 3.3: Unrestricted triangulation

Two classes of triangulations are usually considered (see [4]). The first
class consists of triangulations obtained from the triangulations defined
in the previous section further requiring that no two vertices in the same
boundary component can be connected by an interior link, see Fig. 3.2.
These triangulations are called regular triangulations.

Triangulations of the second class, called unrestricted triangulations, are
constructed gluing together triangles and double edges, considered as in-
finitesimally narrow strips, see Fig. 3.3.

The combinatorial problem associated to the regular triangulations was
first studied by Tutte in his seminal paper [85], and we refer the reader to
that paper for details.

On the other hand, the unrestricted triangulation case can also be
solved. However a complete discussion of the general case of a triangula-
tion with an arbitrary number of boundaries is rather involved and we do
not discuss it here. We refer the interested reader to [4].

Instead, in the following we study the simplest case of unrestricted
triangulations with one boundary component and one marked edge on
the boundary.

69



Chapter 3. Random graphs as Quantum Gravity models

= +

Figure 3.4: Unrestricted triangulation decomposition

We define the generating function for this type of triangulations as

W(g, z) =
∞

∑
k=0

∞

∑
l=0

wk,l gkz−(l+1), (3.44)

where g is defined in (3.35) and z is defined by

z = eλ. (3.45)

Here z−1 is the fugacity of a boundary edge. The quantity wk,l denotes the
number of unrestricted triangulations with k triangles and one boundary
component with l edges. Note that eq. (3.44) includes the contribution of
a triangulation with just one vertex, that is w0,0 = 1.

This function satisfies the equation

W(g, z) = gzW(g, z) +
1
z

W2(g, z)− gW1(g) + gz
z

+
1
z

(3.46)

where

Wl(g) =
∞

∑
k=0

wk,l gk, for l ≥ 0. (3.47)

In the literature, eq. (3.46) is usually called the loop equation. It can be
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obtained considering the decomposition of an unrestricted triangulation
schematically depicted in Fig. 3.4. The meaning of the picture is the fol-
lowing. Removing a triangle with one boundary edge produces two new
boundary edges, whereas removing a triangle with two boundary edges
produces a double-edge. In both cases the number of triangles (the power
of g in W(g, z)) decreases by one and the number of edges (the power of z)
increases by one. This correspond to the first term in the rhs of eq. (3.46).
If a double link is removed from the boundary, we get a decreasing of two
in the length of the boundary and two triangulations. This corresponds
to the second term. The remaining terms are added to cancel contribution
coming from triangulations with boundaries of length 0 and 1 (third term),
and in order to make the equation valid for the single vertex triangulation
(fourth term).

Setting

A(g, z) = z− gz2 B(z, g) = 1− gW1(g)− gz, (3.48)

the second order equation (3.46) can be solved and we obtain

W(g, z) =
1
2

(
A(g, z)−

√
A(g, z)2 − 4B(g, z)

)
, (3.49)

where the sign in front of the square root is chosen in accordance with the
expansion W(g, z) = 1/z + O

(
1/z2) for large z (since w0,0 = 1).

For g = 0 there are no triangles in the triangulation, that is we are
counting unrestricted triangulations made only of double edges with one
marked edge. These are usually called rooted branched polymers, see Fig.
3.5.

A rooted branched polymer with a marked edge can be seen as a rooted
planar tree, whose number, for given finite size of the tree, as been calcu-
lated in 2.1.3 and is given by the Catalan numbers. Thus, we expect the
same result also in this case.
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Figure 3.5: Rooted branched polymer

To make this argument precise, note that for g = 0 eq. (3.49) reduces to

W(0, z) =
z−
√

z2 − 4
2

. (3.50)

Expanding in power of 1/z we get

W(0, z) =
∞

∑
l=0

w2l

z2l+1 (3.51)

where
W2l =

(2l)!
(l + 1)!l!

, (3.52)

as expected.

The general solution of (3.46) has been obtained in [4],

W(g, z) =
1
2

(
z− gz2 + (gz− c)

√
(z− c+)(z− c−)

)
(3.53)

where c, c+ and c− can be obtained by requiring again that W(g, z) =

1/z + O
(
1/z2).
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t

t+ 1

t− 1

Figure 3.6: Causal triangulation

3.3.3 Causal Dynamical Triangulation

The causal dynamical triangulation (CDT) model was first studied in [6]
to introduce the notion of time in the dynamical triangulation, discussed
in the previous section. The basic idea is to approximate a Lorentzian
manifold with a piecewise linear manifold, whose building blocks now
include the notion of time orientation.

In the following for simplicity we discuss the CDT model for a two-
dimensional Euclidean surface with fixed topology of S1 × [0, 1]. For such
a surface a causal triangulation is constructed as follows. We refer to [6]
where the Lorentzian case id discussed.

First, assume that at each fixed time t the spatial slice is a loop, which
is approximated by a piecewise linear curve with kt edges (and vertices).
As for dynamical triangulations, the squared edge length is fixed to L2

s =

a2. Likewise, the time direction is discretized, setting the time to assume
discrete values t ∈N.

Finally, the vertices on a spatial slice at time t are connected to the
vertices on the consecutive slice at t+ 1 by timelike edges of squared length
L2

t = a2, such that in the resulting graph all faces are triangles, see Fig. 3.6.
We denote by T the set of all such triangulations.

Note that, according to the above construction, each triangle is made
of one spacelike edge and two timelike edges. The volume of a triangle is
given by V =

√
3

4 a2.
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We denote by Tl1,l2 the set of causal triangulations with boundaries
(spatial slices) with l1 and l2 edges. Further, Tl1,l2,n denotes the subset of
Tl1,l2 of triangulations with n spatial slices between the boundaries.

We have that the volume of T ∈ Tl1,l2,n is given by

VT =

√
3

4
a2

n+1

∑
i=1

NT(i) (3.54)

where the number NT(i) of triangles between two consecutive spatial slices
at t = i and t = i + 1 is given by

NT(i) = ki + ki+1, (3.55)

with k1 = l1 and kn+2 = l2.

Thus, we find that, for T ∈ Tl1,l2 , the discrete two dimensional action
can be written

S(Λ, λ1, λ2; T) = ΛVT + λ1l1 + λ2l2, (3.56)

where λ1l1 and λ2l2 are the boundary contributions and λ1, λ2 are the
boundary cosmological constants. Here the constants coming from the
area of the triangles and from the length of the edges have been absorbed
in the cosmological constants.

The partition function for CDT reads

Z = ∑
T∈T

e−S(Λ,λ1,λ2,T), (3.57)

The sum over the set T can be decomposed into the sum over triangu-
lations with fixed boundaries and a finite number of slices, that is

Z(Λ, λ1, λ2) =
∞

∑
n=0
Z(Λ, λ1, λ2, n) (3.58)
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where
Z(Λ, λ1, λ2, n) = ∑

l1,l2
∑

T∈Tl1,l2,n

e−S(Λ,λ1,λ2,T). (3.59)

As for the DT model, we define

g = e−Λ, x = e−λ1 , y = e−λ2 (3.60)

thus eq. (3.59) can be written as, using (3.56),

Z(g, x, y, n) = ∑
ki≥1

n+2≥i≥1

n+1

∏
j=1

(
k j + k j+1 − 1

k j − 1

)
(gx)k1(gy)kn+2 g2(k2+···+kn+1).

(3.61)
Here the binomial coefficient counts the number of ways of connecting k j

vertices on a spatial slice to k j+1 vertices on the consecutive slice. Moreover,
one of the edges on the boundary has been marked, in order to cancel
factors due to possibly rotational symmetries.

Summing repeatedly over k1, . . . , kn+2 we find

Z(g, x, y, n) =

(
n

∏
i=1

Fi(x)
1− Fi(x)

)
g2xy

(1− gx)(1− Fn(x)− gy)
(3.62)

where

Fi(x) =
g2

1− Fi−1(x)
, F1(x) = gx. (3.63)

One can use a standard fixed point technique to obtain the solution of eq.
(3.63), which reads

Fi(x) = F
g− xF + (F/g)2i−3(gx− F)
g− xF + (F/g)2i−1(gx− F)

, (3.64)

where F is the fixed point of eq. (3.63),

F(g) =
1−

√
1− 4g2

2
, |g| < 1

2
. (3.65)
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Finally, eq. (3.64) can be substituted in (3.62) to obtain the explicit
expression of the partition function Z(g, x, y, n).

This conclude our study of the CDT model. The interested reader
should consult ([6, 43]) for further details.

3.3.4 Gravity and matter

In this final section we discuss the idea of coupling matter fields to two-
dimensional quantum gravity. At discrete level this coupling can be im-
plemented defining a statistical mechanical model on a triangulated space-
time [4]. From the point of view explained above, triangulations are re-
garded as dynamical variables, hence the coupling between the statistical
mechanical system and the random triangulations is realized by defining
a copy of the same statistical system for each different triangulation.

Let S be a statistical model and T an ensemble of triangulations. Let
us denote by Tk a triangulation in T and by Sk a copy of the model S
defined on Tk. Further, we denote by {σk

i } the dynamical variables of Sk

and by Sk({σk
i }) the corresponding action. Then, the partition funcition of

the coupled system is defined by

Z = ∑
k

wkZk, (3.66)

where wk denotes the weight of the statistical system Sk and Zk is the
partition function of the single model Sk, that is

Zk = ∑
{σk

i }
e−Sk({σk

i }). (3.67)

A well-known example of such a model is the Ising model on planar
random lattice. This was studied and exactly solved by Kazakov et al. in
[59, 18, 21]. In particular, in [59] the author considered the Ising model on
a random planar graph with all the vertices of degree 4.
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Let us discuss this example in more detail. Let Gn be the set of pla-
nar lattices with n vertex, where each vertex has degree 4. The partition
function of the Ising model at inverse temperature β on a graph G ∈ Gn

reads

Z(G, β) = ∑
{s}

exp


β ∑

〈i,j〉
sisj


 , (3.68)

where si = ±1 are Ising spins and the notation 〈i, j〉 means that the sum
is over neighbouring spins. Here, the first summation is over all the spin
configurations on G. Therefore, according to the above discussion the par-
tition function of the coupled system is given by

Zn(β) = ∑
G∈Gn

∑
{s}

exp


β ∑

〈i,j〉
sisj


 . (3.69)

The model was solved considering the generating function for Zn(β),
that is

Z (c, g) =
∞

∑
n=1

( −4gc
(1− c2)2

)n

Zn(β), (3.70)

with c = e−2β, and proving that it is equal to the free energy of an exactly
solvable matrix model. In particular, the author gives an exact expression
of the partition function Zn(β) in the thermodynamical limit n→ ∞. From
this, it was found that the system undergoes a third-order phase transition
at finite temperature Tc = 1/ log 2.

In the following chapter we study the Ising model with external field
on a certain class of random trees. As will be seen, we are able to give
a detailed description of this system in the infinite size limit, and of its
magnetization properties.
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4.1 Introduction

Since its appearance, the Ising model has been considered in various ge-
ometrical backgrounds. Most familiar are the regular lattices, where it is
well known that in dimension d = 1, originally considered by Ising and
Lenz [54, 65], there is no phase transition as opposed to dimension d ≥ 2,
where spontaneous magnetization occurs at sufficiently low temperature
[76, 82].

The Ising model on a Cayley tree turns out to be exactly solvable
[36, 45, 73]. Despite the fact that the free energy, in this case, is an an-
alytic function of the temperature at vanishing magnetic field, the model
does have a phase transition and exhibits spontaneous magnetization at a
central vertex. One may attribute this unusual behavior to the large size of
the boundary of a ball in the tree as compared to its volume.

Studies of the Ising model on non-regular graphs are generally non-
tractable from an analytic point of view. For numerical studies see e.g.
[9]. See also [14], where the Ising model with external field coupled to
the causal dynamical triangulation model is studied via high- and low-
temperature expansion techniques. In [5] a grand canonical ensemble of
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Ising models on random finite trees was considered, motivated by stud-
ies in two dimensional quantum gravity [4]. It was argued in [5] that the
model does not exhibit spontaneous magnetization at values of the fugac-
ity where the mean size of the trees diverges.

In the present chapter we study the Ising model on certain infinite
random trees, constructed as “thermodynamic” limits of Ising systems on
random finite trees. These are subject to a certain genericity condition for
which reason we call them generic Ising trees. Using tools developed in
[39, 42] we prove for such ensembles that spontaneous magnetization is
absent. The basic reason is that the generic infinite tree has a certain one
dimensional feature despite the fact that we prove its Hausdorff dimension
to be 2. Furthermore, we obtain results on the spectral dimension of the
generic Ising trees.

This chapter is organized as follows. In Section 4.2 we define the finite
size systems whose infinite size limits are our main object of study. The
remainder of Section 4.2 is devoted to an overview of the main results, in-
cluding the existence and detailed description of the infinite size limit, the
magnetization properties and the determination of the annealed Hausdorff
and spectral dimensions of the generic Ising trees.

The next two sections provide detailed proofs and, in some cases, more
precise statements of those results. Under the genericity assumption men-
tioned above we determine, in Section 4.3, the asymptotic behavior of the
partition functions of ensembles of spin systems on finite trees of large size.
This allows a construction of the limiting distribution on infinite trees and
also leads to a precise description of the limit. In Section 4.4 we exploit the
latter characterization to determine the annealed Hausdorff and spectral
dimensions of the generic Ising trees, whereafter we establish absence of
magnetization in Section 4.5.

This chapter is mainly based on a joint work with Bergfinnur Durhuus
[44].
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4.2 Definition of the models and main results

4.2.1 The models and the thermodynamic limit

The statistical mechanical models considered in this chapter are defined in
terms of planar trees as follows. Let ΛN be the set of rooted planar trees
of size N decorated with Ising spin configurations,

ΛN =
{

s : V(τ)→ {±1}
∣∣ τ ∈ TN

}
, (4.1)

and set

Λ =

(
∞⋃

N=1

ΛN

)
∪Λ∞, (4.2)

where Λ∞ denotes the set of infinite decorated trees. In the following we
will often denote by τs a generic element of Λ, in particular when stressing
the underlying tree structure τ of the spin configuration s. Furthermore,
we shall use both sv and s(v) to denote the value of the spin at vertex v.

The set Λ is a metric space with metric d defined by

d(τs, τ′s′) = inf
{

1
R + 1

∣∣ BR(τ) = BR(τ
′), s|BR(τ) = s′|BR(τ′)

}
, (4.3)

as a generalization of (1.6).

We define a probability measure µN on ΛN by

µN(τs) =
1

ZN
e−H(τs)ρ(τ), τs ∈ ΛN , (4.4)

where the Hamiltonian H(τs), describing the interaction of each spin with
its neighbors and with the constant external magnetic field h at inverse
temperature β, is given by

H(τs) = −β ∑
(vi ,vj)∈E(τ)

svi svj − h ∑
vi∈V(τ)\r

svi . (4.5)
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The weight function ρ(τ) is defined in terms of the branching weights pσv−1

associated to vertices v ∈ V(τ) \ r, and is given by

ρ(τ) = ∏
v∈V(τ)\r

pσv−1. (4.6)

Here (pn)n≥0 is a sequence of non-negative numbers such that p0 6= 0 and
pn 6= 0 for some n ≥ 2 (otherwise only linear chains would contribute). We
will further assume the branching weights to satisfy a genericity condition
explained below in (4.28), and which defines the generic Ising tree ensembles
considered in this chapter (see also [42]). Finally, the partition function ZN

in (4.4) is given by

ZN(β, h) = ∑
τ∈TN

∑
s∈Sτ

e−H(τs)ρ(τ), (4.7)

where Sτ = {±1}V(τ).

Our first result (see Sec. 4.3) is to establish the existence of the thermo-
dynamic limit of this model, in the sense that we prove the existence of a
limiting probability measure µ = µ(β,h) = limN→∞ µN defined on the set
of trees of infinite size decorated with spin configurations. Here, the limit
should be understood in the weak sense, that is

∫

Λ
f (τs) dµN(τs)

N→∞−−−→
∫

Λ
f (τs) dµ(τs) (4.8)

for all bounded continuous functions f on Λ (cf. Sec. 1.1.2). In particular,
we find that, as in the cases discussed in Sec. 1.2, the measure µ is con-
centrated on the set of infinite trees with a single infinite path, the spine,
starting at the root r, and with finite trees attached to the spine vertices,
the branches.

As will be shown, the limiting distribution µ can be expressed in ex-
plicit terms in such a way that a number of its characteristics, such as the
Hausdorff dimension, the spectral dimension, as well as the magnetization
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properties of the spins, can be analyzed in some detail. For the reader’s
convenience we now give a brief account of those results.

4.2.2 Magnetization properties

As a first result we show that the generic Ising tree exhibits no single site
spontaneous magnetization at the root r or at any other spine vertex, i. e.

lim
h→0

µ(β,h)(
{

τs
∣∣ s(v) = +1

}
) =

1
2

, (4.9)

for any vertex v on the spine and all β ∈ R. Details of this result can be
found in Theorem 4.5.2.

The fact that the measure µ is supported on trees with a single spine
gives rise to an analogy with the one-dimensional Ising model. In fact, we
show that the spin distribution on the spine equals that of the Ising model
on the half-line at the same temperature but in a modified external mag-
netic field. As a consequence, we find that also the mean magnetization of
the spine vanishes for h→ 0.

A different and perhaps more relevant result concerns the the total
mean magnetization, which may be stated as follows. First, let us define
the mean magnetization in the ball of radius R around the root by

MR(β, h) = 〈|BR(τ)|〉−1
β,h

〈
∑

v∈BR(τ)

sv

〉

β,h

(4.10)

and the mean magnetization on the full infinite tree as

M(β, h) = lim sup
R→∞

MR(β, h). (4.11)

For the generic Ising tree, we prove in Theorem 4.5.4 that this quantity
satisfies

lim
h→0

M(β, h) = 0, β ∈ R . (4.12)
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4.2.3 Hausdorff and spectral dimension

We show in Theorem 4.4.1 that the annealed Hausdorff dimension of a
generic Ising tree can be evaluated and equals that of generic random trees
as introduced in [42], i.e.

d̄H = 2 . (4.13)

Furthermore, we show in Theorem 4.4.6 that the annealed spectral di-
mension of a generic Ising tree is

d̄s =
4
3

. (4.14)

The values of the Hausdorff dimension and the spectral dimension of
generic Ising trees are thus found to coincide with those of generic random
trees [42] (see Sec. 1.2.2). This indicates that the geometric structure of the
underlying trees is not significantly influenced by the coupling to the Ising
model as long as the model is generic.

4.3 Ensembles of infinite trees

In this section we establish the existence of the measure µ(β,h) on the set
of infinite trees for values of β, h that will be specified below. Our starting
point is the Ising model on finite but large trees. We first consider the
dependence of its partition function on the size of trees.

4.3.1 Asymptotic behavior of partition functions

Let the branching weights (pn)n≥0 be given as above and consider the
generating functions

ϕ(z) =
∞

∑
n=0

pnzn, (4.15)
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which we assume to have radius of convergence ξ > 0, and

Z(β, h, g) =
∞

∑
N=0

ZN(β, h)gN , (4.16)

where ZN is given by (4.7).

Decomposing the set Sτ into the two disjoint sets

S±τ =
{

s ∈ Sτ

∣∣ s(r) = ±1
}

, (4.17)

gives rise to the decompositions

ΛN = ΛN+ ∪ΛN− (4.18)

and
Λ = Λ+ ∪Λ−. (4.19)

Correspondingly, we get

Z(β, h, g) = Z+(β, h, g) + Z−(β, h, g), (4.20)

where the generating functions Z±(β, h, g) are given by

Z±(β, h, g) =
∞

∑
N=0

ZN±(β, h)gN , (4.21)

and ZN± are defined by restricting the second sum in (4.7) to S±τ .

Decomposing the tree as in Fig.4.1, it is easy to see that the functions
Z±(g) are determined by the system of equations





Z+ = g(a ϕ(Z+) + a−1 ϕ(Z−))

Z− = g(b ϕ(Z+) + b−1 ϕ(Z−))
(4.22)
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+ + +

=
∞∑

k=0

pk

−+
+

ga ga−1

k k

∞∑

k=0

pk

Figure 4.1: Decomposition of a tree of with s(r) = +1. The tree is decom-
posed according to the spin and the degree of the root’s neighbor.

where
a = eβ+h, b = e−β+h. (4.23)

Let us define F : {|z| < ξ}2 ×C→ C2 by

F(Z+, Z−, g) = Z − g Φ(Z+, Z−), (4.24)

where,

Z ≡
(

Z+

Z−

)
, Φ(Z+, Z−) ≡

(
a ϕ(Z+) + a−1 ϕ(Z−)
b ϕ(Z+) + b−1 ϕ(Z−)

)
. (4.25)

With the assumption ξ > 0, we have

∂F
∂Z = 1− g

∂Φ
∂Z = 1− g

(
a ϕ′(Z+) a−1 ϕ′(Z−)
b ϕ′(Z+) b−1 ϕ′(Z−)

)
, (4.26)

and in particular, F(0, 0, 0) = 0 and ∂F
∂Z (0, 0, 0) = 1. The holomorphic

implicit function theorem (see e.g. [48], Appendix B.5 and refs. therein)
implies that the fixpoint equation (4.22) has a unique holomorphic solution
Z±(g) in a neighborhood of g = 0. Let g0 be the radius of convergence of
the Taylor series of Z+(g). Since the Taylor coefficients of Z+ are non-
negative, g = g0 is a singularity of Z+(g) by Pringsheim’s Theorem ([48]
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Thm.IV.6). Setting
Z+(g0) = lim

g↗g0
Z+(g) (4.27)

we have that Z+(g0) < +∞. In fact, if ξ = ∞ this follows from (4.22), since
ϕ(Z+) increases faster than linearly at +∞, assuming that pn > 0 for some
n ≥ 2. If ξ < +∞ we must have Z±(g0) ≤ ξ, because otherwise there
would exist 0 < g1 < g0 such that Z+(g1) = ξ and Z−(g1) ≤ ξ (or vice
versa), contradicting (4.22) (the LHS would be analytic at g1 and the RHS
not). In particular, we also have g0 < +∞ and that g0 equals the radius of
convergence for the Taylor series of Z−(g) by (4.22).

The genericity assumption mentioned above states that

Z±(g0) < ξ , (4.28)

which we shall henceforth assume is valid.

Remark 4.3.1. It should be noted that, in the absence of an external magnetic
field, i. e. for h = 0, one has Z+(β, 0, g) = Z−(β, 0, g) ≡ Z̄(β, g) and the sys-
tem (4.22) determining Z± reduces to the single equation Z̄ = 2g cosh β ϕ(Z̄).
On the other hand, this equation characterizes the random tree models considered
in [42] except for a rescaling of the coupling constant g by the factor 2 cosh β. It
follows that the condition (4.28) can be considered as a generalization of the gener-
icity condition introduced in [42]. For this reason, the results on the Hausdorff
dimension and the spectral dimension established in this chapter follow from [42]
in case h = 0.

Under the assumption (4.28), the implicit function theorem gives

det
(
1− g0 Φ′0

)
= 0, (4.29)

where

Φ′0 = Φ′(Z0
+, Z0

−) =

(
a ϕ′(Z0

+) a−1 ϕ′(Z0
−)

b ϕ′(Z0
+) b−1 ϕ′(Z0

−)

)
, (4.30)
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with Z0
± = Z±(g0). Expanding (4.22) around Z0

± we get

∆Z = ∆g Φ0 + g0 Φ′0 ∆Z +
g0

2
Φ′′0 ∆Z2 + O(∆Z3, ∆g ∆Z) , (4.31)

where

∆Zn =

(
(∆Z+)n

(∆Z−)n

)
=

(
(Z+ − Z0

+)
n

(Z− − Z0
−)

n

)
, ∆g = g− g0, (4.32)

Φ′′0 =

(
a ϕ′′(Z0

+) a−1 ϕ′′(Z0
−)

b ϕ′′(Z0
+) b−1 ϕ′′(Z0

−)

)
. (4.33)

By (4.29), we have (
c1 c2

) (
1− g0 Φ′0

)
= 0, (4.34)

where
c1 = g0 b ϕ′(Z0

+), c2 = 1− g0 a ϕ′(Z0
+). (4.35)

Hence, multiplying (4.31) on the left by c = (c1 c2) gives

∆g c Φ0 +
g0

2
c Φ′′0 ∆Z2 + O(∆Z3, ∆g ∆Z) = 0. (4.36)

This equation, together with (4.31), gives

(∆Z±)2 = −K± ∆g + o(∆g), (4.37)

where the constants K± (depending only on β and h) are given by

K+ = α2K− (4.38)

with

α ≡ g0 a−1 ϕ′(Z0
−)

1− g0 a ϕ′(Z0
+)

=
1− g0 b−1 ϕ′(Z0

−)
g0 b ϕ′(Z0

+)
, (4.39)
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where the identity follows from (4.29), and

K− ≡
2
g0

α a ϕ(Z0
+) + b−1 ϕ(Z0

−)
α3 a ϕ′′(Z0

+) + b−1 ϕ′′(Z0
−)

. (4.40)

This proves that Z±(g) has a square root branch point at g = g0 in the disc{
g
∣∣ |g| ≤ g0

}
.

Remark 4.3.2. The transpose of the matrix g0Φ′0 has positive entries and eigen-
values 1 and λ, with

λ = det g0Φ′(Z0
+, Z0

−) = g2
0(ab−1 − a−1b)ϕ′(Z0

+)ϕ′(Z0
−). (4.41)

In particular, we have λ < 1 by construction and λ > −1 since

1 + λ = g0(aϕ′(Z0
+) + b−1ϕ′(Z0

−)) > 0. (4.42)

Hence 1 is the Perron-Frobenius eigenvalue of the transpose of g0Φ′0 (cf. [48] and
refs. therein) and we have c1, c2 > 0 and accordingly α > 0.

Making further use of the implicit function theorem we next show that
Z±(g) have extensions to a so-called ∆-domain (cf. [48]), as described by
the following proposition.

Proposition 4.3.3. Suppose the greatest common divisor of
{

n
∣∣ pn > 0

}
is 1.

Then the functions Z±(g) can be analytically extended to a domain

Dε,ϑ = {z | |z| < g0 + ε, z 6= g0, | arg(z− g0)| > ϑ} (4.43)

and (4.37) holds in Dε,ϑ, for some ε > 0 and 0 ≤ ϑ < π
2 .

Proof. From det(1− gΦ′(Z+, Z−))|g=g0 = 0 and det(1− gΦ′(Z+, Z−))|g=0 =

1, we have

det(1− gΦ′(Z+, Z−)) > 0, 0 ≤ g < g0. (4.44)
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Hence

|det(1− gΦ′(Z+, Z−))| ≥ det
(
1− |g|Φ′(Z+(|g|), Z−(|g|))

)
> 0 (4.45)

for |g| < g0, where we have used that ϕ and Z± have positive Taylor
coefficients. Moreover, in the limiting case |g| = g0 we get that det(1−
gΦ′(Z+, Z−)) = 0 if and only if

gϕ′(Z±(g)) = g0ϕ′(Z±(g0)). (4.46)

In particular, |ϕ′(Z±(g))| = ϕ′(Z±(g0)) which implies

|Z±(g)| = Z±(g0). (4.47)

By the definition of ZN±(β, h) we have that ZN±(β, h) > 0 for all N of the
form

N = 1 + n1 + n2 + · · ·+ ns, (4.48)

where ni are such that pni > 0, i = 1, . . . , s. Hence, eq. (4.47) implies

gN = eiθ gN
0 (4.49)

for some fixed θ ∈ R and all such N. By the assumption on (pn) this
implies g = g0. This proves that the functions Z±(g) can be analytically
extended beyond the boundary of the disc

{
g
∣∣ |g| ≤ g0

}
, except at g0.

It remains to show that

det(1− gΦ′(Z+, Z−)) 6= 0 (4.50)

for 0 < |g− g0| < ε for some ε > 0, since this together with the implicit

90



4.3 Ensembles of infinite trees

function theorem proves the claim with ϑ = 0. By (4.37) it suffices to show

∂

∂Z+
det(1− gΦ′(Z+, Z−))

∣∣∣∣
Z0
±

√
K+

+
∂

∂Z−
det(1− gΦ′(Z+, Z−))

∣∣∣∣
Z0
±

√
K− 6= 0.

(4.51)

The LHS equals

[
− g0aϕ′′(Z0

+) (1− g0b−1ϕ′(Z0
−))− g2

0a−1bϕ′′(Z0
+)ϕ′(Z0

−)
]√

K+

+

[
− g0b−1ϕ′′(Z0

−) (1− g0aϕ′(Z0
+))− g2

0a−1bϕ′(Z0
+)ϕ′′(Z0

−)
]√

K−

(4.52)

which obviously is < 0. The reader may also consult [38] for a general
theorem on the asymptotic behavior of solutions to systems of functional
equations of the type considered here (see 2.2.2).

The above result allows us to use a standard transfer theorem [48],
discussed in Sec. 2.2.1, to determine the asymptotic behavior of ZN±(β, h)
for N → ∞. We state it as follows.

Corollary 4.3.4. Under the assumptions of Proposition 4.3.3, we have

ZN±(β, h) =
1
2

√
g0K±

π
g−N

0 N−3/2(1 + o(1)) (4.53)

for N → ∞, where g0, K± > 0 are determined by (4.22), (4.29), and (4.37)-(4.40).
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4.3.2 The limiting measure

For 1 ≤ N < ∞ and fixed β, h ∈ R we define the probability distributions
µN± on ΛN± ⊂ Λ by

µN±(τs) =
1

ZN±
e−H(τs)ρ(τ), (4.54)

such that
µN =

ZN+

ZN
µN+ +

ZN−
ZN

µN−. (4.55)

We shall need the following proposition, that can be obtained by a
slight modification of the proof of Proposition 3.2 in [39], and whose details
we omit.

Proposition 4.3.5. Let KR, R ∈ N, be a sequence of positive numbers. Then the
subset

C =
∞⋂

r=1

{
τs ∈ Λ

∣∣ |BR(τ)| ≤ KR
}

(4.56)

of Λ is compact.

We are now ready to prove the following main result of this section.

Theorem 4.3.6. Let β, h ∈ R and assume that the genericity condition (4.28)
holds and that the greatest common divisor of

{
n
∣∣ pn > 0

}
is 1. Then the weak

limits
µ± = lim

N→∞
µN± and µ = lim

N→∞
µN (4.57)

exist as probability measures on Λ and

µ =
α

1 + α
µ+ +

1
1 + α

µ−, (4.58)

where α is given by (4.39).

Proof. The identity (4.58) follows immediately from (4.55), Corollary 4.3.4
and (4.38), provided µ± exist. Hence it suffices to show that µ+ exists
(since existence of µ− follows by identical arguments).
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According to [39] (see Sec. 1.1.2), it is sufficient to prove that the se-
quence (µN+) satisfies a certain tightness condition (see e.g. [17] for a defi-
nition) and that the sequence

µN+(
{

τs
∣∣ BR(τ) = τ̂, s|V(τ̂) = ŝ

}
) (4.59)

is convergent in R as N → ∞, for each finite tree τ̂ ∈ T and fixed spin
configuration ŝ.

Tightness of (µN+): As a consequence of Proposition 4.3.5, this condition
holds if we show that for each ε > 0 and R ∈ N there exists KR > 0 such
that

µN+(
{

τs
∣∣ |BR(τ)| > KR

}
) < ε, N ∈N. (4.60)

For R = 1 this is trivial. For R = 2, k ≥ 1 we have

µN+(
{

τs
∣∣ |B2(τ)| = k + 1

}
)

= Z−1
N+ ∑

N1+···+Nk=N−1

[
a

k

∏
i=1

ZNi+ + a−1
k

∏
i=1

ZNi−

]
pk

≤ k ∑
N1+···+Nk=N−1

N1≥(N−1)/k

Z−1
N+

[
a

k

∏
i=1

ZNi+ + a−1
k

∏
i=1

ZNi−

]
pk

≤ cst. k5/2
[

Z+(g0)
k−1 + Z−(g0)

k−1
]

pk ,

(4.61)

where we have used (4.53). The last expression tends to zero for k→ ∞ as
a consequence of (4.28). This proves (4.60) for R = 2.

For R > 2 it is sufficient to show

µN+(
{

τs
∣∣ |BR+1(τ)| > K, BR(τ) = τ̂, s|V(τ̂) = ŝ

}
)→ 0 (4.62)

uniformly in N for k → ∞, for fixed τ̂ of height R and fixed ŝ ∈ {±1}V(τ̂),
as well as fixed K > 0. Let L denote the number of vertices in τ̂ at maximal
height R. Any τ ∈ Λ with BR(τ) = τ̂ is obtained by attaching a sequence
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of trees τ1, . . . , τS in Λ such that the root vertex of τi is identified with a
vertex at maximal height in τ̂. We must then have

|τ1|+ · · ·+ |τS| = |τ| − |τ̂| (4.63)

and
k1 + · · ·+ kL = S, (4.64)

where ki ≥ 0 denotes the number of trees attached to vertex vi in τ̂, i =
1, . . . , L. For fixed k1, . . . , kL we get a contribution to (4.62) equal to

Z−1
N+ ∑

N1+···+NS=N−|τ̂|

(
L

∏
i=1

(ZNi ŝvi
)ki pki

)
e−H(τ̂ŝ) ∏

v∈V(τ̂)\{r,v1,...,vL}
pσv−1

≤ cst.
L

∏
i=1

(max Z0
±)

ki pki (ki + 1)5/2

(4.65)

where the inequality is obtained as above for R = 2 and the constant is
independent of k1, . . . , kL.

Since
|BR+1(τ)| = |τ̂|+ k1 + · · ·+ kL > K (4.66)

and the number of choices of k1, . . . , kL ≥ 0 for fixed k = k1 + · · · + kL

equals (
k + L− 1

L− 1

)
≤ kL−1

(L− 1)!
(4.67)

the claim (4.62) follows from (4.28) and (4.65).

Convergence of µN+(
{

τs
∣∣ BR(τ) = τ̂, s|V(τ̂) = ŝ

}
): Using the decomposi-

tion of τ into τ̂ with branches described above and using the arguments
in the last part of the proof of Theorem 3.3 in [39] we get, with notation as
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above, that

µN±(
{

τs
∣∣ BR(τ) = τ̂, s|V(τ̂) = ŝ

}
)

N→∞−−−→ g|τ̂|0√
K±

e−H(τ̂ŝ)
L

∑
i=1

√
Kŝ(vi)ϕ′(Z0

ŝ(vi)
)∏

j 6=i
ϕ(Z0

ŝ(vj)
),

(4.68)

provided ŝ(r) = ±1 (if ŝ(r) = ∓1 the limit is trivially 0).

Introducing the notation

A(ŝ) =
{

τs
∣∣ BR(τ) = τ̂, s|V(τ̂) = ŝ

}
, (4.69)

where τ̂ is a finite tree of height R with spin configuration ŝ, and using
(4.38), it follows from (4.68) that the µ±-volumes of this set are given by

µ±(A(ŝ)) = g|τ̂|0 e−H(τ̂ŝ)
L

∑
i=1

α(ŝ(vi)∓1)/2 ϕ′(Z0
ŝ(vi)

)∏
j 6=i

ϕ(Z0
ŝ(vj)

), (4.70)

if ŝ(r) = ±1 and where v1, . . . , vL are the vertices at maximal distance from
the root r in τ̂.

The above calculations show, by similar arguments as in [39, 25], that
the limiting measures µ± are concentrated on trees with a single infinite
path starting at r, called the spine, and attached to each spine vertex ui,
i = 1, 2, 3 . . . , is a finite number ki of finite trees, called branches, some of
which are attached to the left and some to the right as seen from the root,
cf. Fig.4.2.

The following corollary provides a complete description of the limiting
measures µ±.

Corollary 4.3.7. The measures µ± are concentrated on the sets

Λ̄± =
{

τs ∈ Λ±
∣∣ τ has a single spine

}
, (4.71)
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r = u0 u1 u2 u3 u4

Figure 4.2: Example of an infinite tree, consisting of a spine and left and
right branches.

respectively, and can be described as follows:

i) The probability that the spine vertices u0 = r, u1, u2, . . . , uN have k′1, . . . , k′N
left branches and k′′1 , . . . , k′′N right branches and spin values s0 = ±1, s1, s2,
. . . , sN , respectively, equals

ρs0
k′1,...,k′N ,k′′1 ,...,k′′N

(s0, . . . , sN)

= gN
0 e−HN

(
N

∏
i=1

(Z0
si
)k′i+k′′i pk′i+k′′i +1

)
α(sN−s0)/2,

(4.72)

with

HN = −β
N

∑
i=1

si−isi − h
N

∑
i=1

si. (4.73)

ii) The conditional probability distribution of any finite branch τs at a fixed ui,
1 ≤ i ≤ N, given k′1, . . . , k′N , k′′1 , . . . , k′′N , s0, . . . , sN as above, is given by

νsi(τs) = (Z0
si
)−1 g|τ|0 e−H(τs) ∏

v∈V(τ)\ui

pσv−1 (4.74)

for s(ui) = si, and 0 otherwise.

iii) The conditional distribution of the infinite branch at uN , given k′1, . . . , k′N ,
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k′′1 , . . . , k′′N , s0, . . . , sN , equals µsN .

4.4 Hausdorff and spectral dimensions

In this section we determine the values of the Hausdorff and spectral di-
mensions of the ensemble of trees (T , µ̄) obtained from (Λ, µ) by integrat-
ing over the spin degrees of freedom, that is

µ̄(A) = µ(
{

τs
∣∣ τ ∈ A

}
) (4.75)

for A ⊆ T . Note that the mapping τs → τ from Λ to T is a contraction
w. r. t. the metric (4.3) and the metric on T defined by (1.6).

Most of the arguments in this section are based on the methods of [42],
and we shall mainly focus on the novel ingredients that are needed and
otherwise refer to [42] for additional details.

4.4.1 The annealed Hausdorff dimension

Theorem 4.4.1. Under the assumptions of Theorem 4.3.6 the annealed Hausdorff
dimension of µ̄ is 2 for all β, h:

d̄H = lim
R→∞

ln 〈|BR|〉µ̄
ln R

= 2 . (4.76)

Proof. Consider the probability distribution ν± on
{

τs
∣∣ τ is finite

}
given

by (4.74) and denote by DR(τ) the set of vertices at distance R from the
root in τ. For a fixed branch T, we set

f±R = 〈|DR|〉ν± Z0
±. (4.77)

where 〈·〉ν± denotes the expectation value w.r.t. ν±. Arguing as in the
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derivation of (4.22), we find




f+R = g0
(
a ϕ′(Z0

+) f+R−1 + a−1 ϕ′(Z0
−) f−R−1

)

f−R = g0
(
b ϕ′(Z0

+) f+R−1 + b−1 ϕ′(Z0
−) f−R−1

)
,

(4.78)

for R ≥ 2, and f±1 = Z0
±. Using that c, given by (4.35), is a left eigenvector

of g0Φ′0 with eigenvalue 1, this implies

c1 f+R + c2 f−R = c1 f+R−1 + c2 f−R−1 = . . .

= c1 f+1 + c2 f−1 = c1 Z0
+ + c2 Z0

− .
(4.79)

Since c1, c2, Z0
±, f±R > 0, we conclude that

k1 ≤ 〈|DR|〉ν± ≤ k2, R ≥ 1 , (4.80)

where k1, k2 are positive constants (depending on β, h). Using

〈|BR|〉ν± =
R

∑
R′=0
〈|DR′ |〉ν± (4.81)

we then obtain
1 + k1 R ≤ 〈|BR|〉ν± ≤ 1 + k2 R, (4.82)

Finally, it follows from (4.72) that

1 + R + k1
1
2

R(R + 1) ≤ 〈|BR|〉µ ≤ 1 + R + k2
1
2

R(R + 1) , (4.83)

which proves the claim.

Remark 4.4.2. By a more elaborate argument, using the methods of [42, 43], one
can show that the Hausdorff dimension dH defined by (1.11) exists and equals 2
almost surely, that is for all trees τ ∈ T except for a set of vanishing µ̄-measure.
We shall not make use of this result below and refrain from giving further details.
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4.4.2 The annealed spectral dimension

In this section we first establish two results needed for determining the
spectral dimension. The first one is a version of a classical result, proven
by Kolmogorov for Galton-Watson trees [50], on survival probabilities for
ν±.

Proposition 4.4.3. The measures ν± defined by (4.74) fulfill

k−
R
≤ ν±(

{
τs ∈ Λ

∣∣ DR(τ) 6= ∅
}
) ≤ k+

R
, R ≥ 1, (4.84)

where k± > 0 are constants depending on β, h.

Proof. Let H±R (w) be the generating function for the distribution of |DR|
w.r.t. ν±,

H±R (w) = Z0
±

∞

∑
n=0

ν±(
{

τs
∣∣ |DR(τ)| = n

}
)wn. (4.85)

Arguing as in the proof of (4.22), we have





H+
R = g0

(
a ϕ(H+

R−1) + a−1 ϕ(H−R−1)
)

H−R = g0

(
b ϕ(H+

R−1) + b−1 ϕ(H−R−1)
)

,
(4.86)

for R ≥ 2, and H±1 = Z0
± w.

Note that

Z0
± ν±(

{
τs ∈ Λ

∣∣ DR(τ) 6= ∅
}
) = Z0

± − H±R (0), (4.87)

and that the radius of convergence for H±R is ≥ 1. Also, (H±R (0))R≥1 is an
increasing sequence. In fact, H±1 (0) = 0 and so H±2 (0) > 0 by (4.86). Since
ϕ is positive and increasing on [0, ξ), it then follows by induction from
(4.86) that (H±R (0))R≥1 is increasing. Hence, we conclude from (4.86) and
(4.22) that

H±R (0)↗ Z0
± for R→ ∞. (4.88)
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Taking R large enough and expanding ϕ(H±R (0)) around Z0
± we obtain, in

matrix form,

∆R = g0 Φ′0 ∆R−1 −
g0

2
Φ′′0 ∆2

R−1 + O(∆3
R−1) , (4.89)

where

∆n
R =

(
(∆+

R )
n

(∆−R )
n

)
=

(
(Z0

+ − H+
R (0))

n

(Z0
+ − H+

R (0))
n

)
, (4.90)

and where Φ′0, Φ′′0 are given by (4.30) and (4.33). Setting LR = c ∆R, eq.
(4.89) gives

LR = LR−1 −
g0

2
c Φ′′0 ∆2

R−1 + O(∆3
R−1) . (4.91)

From this we deduce that there exists R0 > 0 such that

LR−1 − A−L2
R−1 ≤ LR ≤ LR−1 − A+L2

R−1, R ≥ R0, (4.92)

where A± = A±(β, h) are constants. Hence, it follows that

1
LR−1

+ B− ≤
1

LR−1

1
1− A−LR−1

≤ 1
LR
≤ 1

LR−1

1
1− A+LR−1

≤ 1
LR−1

+ B+,

(4.93)
for R ≥ R0, where B± > 0 are constants. This implies

B−R + C− ≤
1

LR
≤ B+R + C+ (4.94)

for suitable constants C±. Evidently, this proves that

D−
R
≤ Z0

± − H±R (0) ≤
D+

R
, R ≥ 1, (4.95)

where D± > 0 are constants, which together with (4.87) proves the claim.

We also note the following generalization of Lemma 4 in [42].
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Lemma 4.4.4. Suppose u : Λ → C is a bounded function depending only on
τs ∈ Λ through the ball BR(τ) and the spins in BR(τ), except those on its bound-
ary, for some R ≥ 1. Moreover, define the function ER : Λ→ R by

ER(τs) = ∑
v∈DR(τ)

√
Ksv

Z0
sv

, (4.96)

with the convention ER(τs) = 0 if DR(τ) = ∅. Then

∫

Λ
u(τs)dµ±(τs) =

Z0
±√
K±

∫

Λ
u(τs)ER(τs)dν±(τs). (4.97)

Proof. Using (4.72-4.74) we may evaluate the LHS of (4.97) and get

∑
τs∈Λ(R)

u(τs) g|τ|0 e−H(τs) α(s(vR)−s0)/2 ∏
v∈V(τ)\r

pσv−1 , (4.98)

where Λ(R) denotes the set of finite rooted trees in Λ with one marked
vertex wR of degree 1 at distance R from the root, and vR is the neighbor
of wR.

On the other hand, the integral on the RHS can be written as

1
Z0
±

∑
τs∈Λ(R)

u(τs) g|τ|0 e−H(τs)

√
Ks(vR)

Z0
s(vR)

Z0
s(vR) ∏

v∈V(τ)\r
pσv−1. (4.99)

By comparing the two expressions the identity (4.97) follows.

As a consequence of this result we have the following lemma.

Lemma 4.4.5. There exist constants c± > 0 such that

〈
|BR|−1

〉
µ±
≤ c±R−2 (4.100)
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Proof. Define, for fixed R ≥ 1, the function

u(τ) =




|DR(τ)|−1 if DR(τ) 6= ∅

0 otherwise.
(4.101)

Then u(τ) fulfills the assumptions of Lemma 4.4.4 for this value of R.
Hence

〈
|DR(τ)|−1

〉
µ±

=
Z0
±√
K±

∑
τs :DR(τ) 6=∅

|DR(τ)|−1 E(τs) e−H(τs) ∏
v∈V(τ)\r

pσv−1

≤ c′± ∑
τs :DR(τ) 6=∅

e−H(τs) ∏
v∈V(τ)\r

pσv−1 ≤
c′′±
R

,

(4.102)

where Proposition 4.4.3 is used in the last step. Combining this fact with
Jensen’s inequality, we obtain

〈
|BR|−1

〉
µ±

=

〈
1

|D1|+ · · ·+ |DR|

〉

µ±

≤ R−1
〈
(|D1||D2| · · · |DR|)−1/R

〉
µ±

≤ R−1
R

∏
i=1

〈
|Di|−1

〉1/R

µ±

≤ c′′±(R!)−1/R ≤ c±R−2.

(4.103)

Returning to the spectral dimension, let us define, with the notation
of subsection 1.1.4, the generating function for return probabilities of the
simple random walk on a tree τ by

Qτ(x) =
∞

∑
t=0

(1− x)
t
2 πt(τ, r) , (4.104)
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and set
Q(x) = 〈Qτ(x)〉µ̄ . (4.105)

The annealed spectral dimension as defined by (1.14) is related to the sin-
gular behavior of the function Q(x) as follows. First, note that if d̄s exists,
we have

〈πt(τ, r)〉µ̄ ∼ t−
d̄s
2 , t→ ∞ . (4.106)

For d̄s < 2, this implies that Q(x) diverges as

Q(x) ∼ x−γ, as x → 0, (4.107)

where

γ = 1− d̄s

2
. (4.108)

We shall take (4.107) and (4.108) as the definition of d̄s and prove (4.107)
with γ = 1

3 by establishing the estimates

c x−1/3 ≤ Q(x) ≤ c̄ x−1/3 (4.109)

for x sufficiently small, where c and c̄ are positive constants, that may
depend on β, h.

Theorem 4.4.6. Under the assumptions of Theorem 4.3.6, the annealed spectral
dimension of (T , µ̄) is

d̄s =
4
3

. (4.110)

Proof. We first prove the lower bound in (4.109).

Let R ≥ 1 be fixed and consider the spine vertices u0, u1, . . . , uR with
given spin values s0, . . . , sR and branching numbers k′1, . . . , k′R, k′′1 , . . . , k′′R ≥
0 as in Corollary 4.3.7. The conditional probability that a given branch
at uj has length ≥ R is bounded by c

R by Proposition 4.4.3. Hence, the
conditional probability that at least one of the k′j + k′′j branches at uj has
height ≥ R is bounded by (k′j + k′′j )

c
R . Using Corollary 4.3.7 and summing
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over k′1, . . . , k′R, k′′1 , . . . , k′′R, we get that the conditional probability qR that at
least one branch at uj is of height ≥ R, given s0, . . . , sR, is bounded by

1
1 + α

gR
0 e−HR

R

∏
i=1
i 6=j

ϕ′(Z0
si
) ϕ′′(Z0

sj
)α(sR+1)/2 c

R
≤ c′

R
. (4.111)

Using that the distributions of the branches at different spine vertices
are independent for given s0, . . . , sR, it follows that the conditional prob-
ability that no branch at u1, . . . , uR has length ≥ R, for given s0, . . . , sR, is
bounded from below by

(1− qR)
R ≥

(
1− c′

R

)R

≥ e−c′+O(R−1). (4.112)

Denoting this conditioned event by AR, it follows from Lemmas 6 and 7 in
[42] that the conditional expectation of Qτ(x), given s0, s1, . . . , sR, is

≥ ec′+O(R−1)

〈(
1
R
+ Rx + ∑R

T⊂τ

x |T|
)−1〉

R

≥ ec′+O(R−1)

(
1
R
+ Rx + x

〈
∑R

T⊂τ

|T|
〉

R

)−1

.

(4.113)

Here 〈·〉R denotes the conditional expectation value w.r.t. µ on AR and

∑R
T⊂τ

the sum over all branches T of τ attached to vertices on the spine
at distance ≤ R from the root. We have

〈
∑R

T⊂τ

|T|
〉

R

=
R

∑
i=1

〈
|Bi

R(τ)|
〉

R

≤
R

∑
i=1

µ(AR
∣∣ s0, . . . , sR)

−1
〈
|Bi

R|
〉

µ

≤ ec′+O(R−1)
R

∑
i=1
〈|BR|〉νsi

≤ C R2,

(4.114)
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where (4.82) is used in the last step.
This bound being independent of s0, . . . , sR we have proven that

Q(x) ≥ cst.
(

1
R
+ Rx + CR2x

)−1

(4.115)

and consequently, choosing R ∼ x−
1
3 , it follows that

Q(x) ≥ c x−
1
3 . (4.116)

As concerns the upper bound in (4.109), it follows by an argument
identical to the one in [42] on p.1245–50 by using Lemma 4.4.5.

4.5 Absence of spontaneous magnetization

Using the characterization of the measure µ(β,h) established in Section 4.3
and that d̄H = 2, we are now in a position to discuss the magnetization
properties of generic Ising trees in some detail. In view of the fact that
the trees have a single spine, we distinguish between the magnetization on
the spine and the bulk magnetization. In subsection 4.5.1 we show that
the former can be expressed in terms of an effective Ising model on the
half-line {0, 1, 2, . . .}. The bulk magnetization is discussed in subsection
4.5.2

4.5.1 Magnetization on the spine

The following result is crucial for the subsequent discussion.

Proposition 4.5.1. Under the assumptions of Theorem 4.3.6, the functions Z0
±

are smooth functions of β, h.

Proof. In Section 4.3.1 we have shown that Z±(β, h, g) is a solution to the
equation

F(Z+, Z−, g) = 0
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where F is defined in (4.24), and that

Z0
±(β, h) = Z±(g0(β, h), β, h) (4.117)

is a solution to 



F(Z0
+, Z0

−, g0) = 0

det(1− g0Φ′(Z0
+, Z0

−)) = 0 ,
(4.118)

considered as three equations determining (Z0
+, Z0

−, g0) implicitly as func-
tions of (β, h). Hence, defining G : (−R, R)2 ×R3 → R3 by

G(Z0
+, Z0

−, g0, β, h) =

(
F(Z0

+, Z0
−, g0)

det(1− g0Φ′(Z0
+, Z0

−))

)

it suffices to show that its Jacobian J with respect to (Z0
+, Z0

−, g0) is regular
at (Z0

+(β, h), Z0
−(β, h), g0(β, h)). We have

J =

(
1− g0Φ′(Z0

+, Z0
−) −Φ(Z0

+, Z0
−)

A+ A− B

)
,

where

A± =
∂

∂Z0
±

det(1− g0Φ′(Z0
+, Z0

−)) , B =
∂

∂g0
det(1− g0Φ′(Z0

+, Z0
−))

are readily calculated and equal

A+ = −g0 a ϕ′′(Z0
+) (1− g0 b−1ϕ′(Z0

−))− g2
0 a−1 b ϕ′′(Z0

+)ϕ′(Z0
−) , (4.119)

A− = −g0 b−1 ϕ′′(Z0
−) (1− g0 aϕ′(Z0

+))− g2
0 a−1 b ϕ′(Z0

+)ϕ′′(Z0
−) , (4.120)

and

B = −aϕ′(Z0
+)− b−1ϕ′(Z0

−) + 2g0 (ab−1 − a−1b) ϕ′(Z0
+)ϕ′(Z0

−) . (4.121)
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Using eqs. (4.118) and (4.39), we get

det J = (Z0
+ b ϕ′(Z0

+) + g−1
0 Z0

− (1− g0aϕ′(Z0
+)))

∣∣∣∣∣
1 −α

A+ A−

∣∣∣∣∣ < 0 ,

since clearly A± < 0 and α > 0 by Remark 4.3.2. This proves the claim.

We can now establish the following result for the single site magneti-
zation on the spine.

Theorem 4.5.2. Under the assumptions of Theorem 4.3.6, the probability
µ(β,h)({sv = +1}) is a smooth function of β, h for any spine vertex v. In par-
ticular, there is no spontaneous magnetization in the sense that

lim
h→0

µ(β,h)({sv = +1}) = 1
2

. (4.122)

Proof. For the root vertex r, we have by eq. (4.58) that

µ(β,h)({s(r) = +1}) = α(β, h)
1 + α(β, h)

, (4.123)

where α(β, h) is given by (4.39) and is a smooth function of β, h by Propo-
sition 4.5.1. Hence, to verify (4.122) for v = r it suffices to note that
α(β, 0) = 1, since a = b−1 and Z0

+ = Z0
− for h = 0.

Now, assume v = uN is at distance N from the root, and define

pij = µi({sv = j}) α
1+i

2

1 + α
, (4.124)

for i, j ∈ {±1}, where we use ±1 and ± interchangeably. From eq. (4.72)
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follows that

µs0({sv = sN}) = ∑
k′i ,k
′′
i ≥0

s1,...,sN−1

ρs0
k′1,...,k′N ,k′′1 ,...,k′′N

(s0, . . . , sN)

= ∑
s1,...,sN−1

N

∏
i=1

g0[Φ′(Z0
+, Z0

−)]si−1si α
sN−s0

2

= [(g0 Φ′(Z0
+, Z0

−))
N ]s0sN α

sN−s0
2 ,

(4.125)

where we have used that the matrix elements of Φ′(Z0
+, Z0

−) are given by

[Φ′(Z0
+, Z0

−)]si−1si = eβsi−isi+hsi ϕ′(Z0
si
) . (4.126)

Hence, substituting into (4.124) we have

pij =
[
(g0Φ′(Z0

+, Z0
−))

N
]

ij

α
1+j

2

1 + α
. (4.127)

By Proposition 4.5.1, all factors on the RHS of (4.127) are smooth functions
of β, h, and by (4.58) we have

µ(β,h)({sv = j}) = p+j + p−j . (4.128)

Eq. (4.122) is now obtained from (4.127) by noting again that for h = 0 we
have α = 1 and hence c1 = c2, which by (4.34) gives

p+j + p−j =
[
(1 1)(g0 Φ′(Z0, Z0))N

]
j

1
2

= (1 1)j
1
2
=

1
2

.
(4.129)

The preceding proof together with (4.72) shows that the distribution of
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spin variables s0, . . . , sN on the spine can be written in the form

ρ(s0, . . . , sN) = e−H′N(s0,...,sN)
(

g2
0 ϕ′(Z0

+)ϕ′(Z0
−)
)N/2

√
α

1 + α
(4.130)

where

H′N(s0, . . . , sN) = −β
N

∑
i=1

si−1si − h′
N

∑
i=1

si −
sN

2
log α (4.131)

and

h′ = h +
1
2

ln
ϕ′(Z0

+)

ϕ′(Z0
−)

. (4.132)

Since ρ(s0, . . . , sN) is normalized, the expectation value w.r.t. µ of a func-
tion f (s0, . . . , sN−1) hence coincides with the expectation value w. r. t. the
Gibbs measure of the Ising chain on [0, N], with Hamiltonian given by
(4.131) and (4.132). In particular, we have that the mean magnetization on
the spine vanishes in the absence of an external magnetic field, since h′ is
a smooth function of h, by Proposition 4.5.1, and vanishes for h = 0 (see
e.g. [12] for details about the 1d Ising model).

We state this result as follows.

Corollary 4.5.3. Under the assumptions of Theorem 4.3.6, the mean magnetiza-
tion on the spine vanishes as h→ 0, i.e.

lim
h→0

lim
N→∞

〈
s0 + · · ·+ sN−1

N

〉

β,h
= 0. (4.133)

4.5.2 Mean magnetization

For the mean magnetization on the full infinite tree, defined in Sec. 4.2.2,
we have the following result, which requires some additional estimates in
combination with Proposition 4.5.1.
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Theorem 4.5.4. Under the assumptions of Theorem 4.3.6, the mean magnetiza-
tion vanishes for h→ 0, i.e.

lim
h→0

M(β, h) = 0 , β ∈ R , (4.134)

where M(β, h) is defined by (4.10)-(4.11).

Proof. Consider the measure ν± given by (4.74) and, for a given finite
branch T, let SR(T) denote the sum of spins at distance R from the root of
T. Setting

m±R = Z0
± 〈SR〉ν± (4.135)

it follows, by decomposing T according to the spin and the degree of the
vertex closest to the root, that





m+
R = g0

(
a ϕ′(Z0

+)m+
R−1 + a−1 ϕ′(Z0

−)m−R−1

)

m−R = g0
(
b ϕ′(Z0

+)m+
R−1 + b−1 ϕ′(Z0

−)m−R−1

)
,

(4.136)

for R ≥ 1, and m±0 = ±Z0
±. In matrix notation these recursion relations

read
mR = g0Φ′0 mR−1, (4.137)

which, upon multiplication by the left eigenvector c of g0Φ′0, leads to

c mR = g0 c Φ′0 mR−1 = c mR−1, (4.138)

and hence
c1 m+

R + c2 m−R = c1 Z0
+ − c2 Z0

−, R ≥ 0 . (4.139)

Now, fix N ≥ 1 and let UR,N denote the sum of all spins at distance
R ≥ 1 from the N’th spine vertex uN in the branches attached to uN .
The conditional expectation of UR,N , given s0, s1, . . . , sN , then only depends
on sN , and its value is obtained from Corollary 4.3.7 by summing over
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k′N , k′′N ≥ 0, which yields

(
∞

∑
k=0

(Z0
sN
)k(k + 1)pk+1

)−1 ∞

∑
k=0

(Z0
sN
)k−1 pk+1k(k + 1)msN

R

= ϕ′(Z0
sN
)−1ϕ′′(Z0

sN
)msN

R ≡ dsN
R .

(4.140)

Using the matrix representation (4.127) for pij, this gives

〈UR,N〉β,h =
1

1 + α
(1 1) (g0Φ′(Z0

+, Z0
−))

N

(
α d+R
d−R

)
. (4.141)

As pointed out in Remark 4.3.2, the matrix g0Φ′0 has a second left eigen-
value λ such that |λ| < 1. Let (e1, e2) be a smooth choice of eigenvectors
corresponding to λ as a function of (β, h), e.g.

(
e1

e2

)
=

(
g0bϕ′(Z0

−)

g0b−1ϕ′(Z0
−)− 1

)
, (4.142)

and write (
1
1

)
= A

(
c1

c2

)
+ B

(
e1

e2

)
. (4.143)

From (4.141) we then have

〈UR,N〉β,h =
1

1 + α

(
A(c1 c2) + BλN(e1 e2)

)(α d+R
d−R

)

=
A

1 + α
(c1αd+R + c2d−R ) + λN B

1 + α
(e1αd+R + e2d−R ) ,

(4.144)

and from (the proof of) Theorem 4.5.2 it follows that A → c̃−1 and B → 0
for h→ 0, where c̃ = c1(β, 0) = c2(β, 0).

Next, note that |d±R |, R ≥ 1, are bounded by a constant C1 = C1(β, h) as
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a consequence of (4.80), and that

〈MR(β, h)〉β,h ≤ 〈|BR|〉−1
β,h ∑

R′,N≤R

∣∣∣〈UR′,N〉β,h

∣∣∣

≤ C2R−2 ∑
R′,N≤R

∣∣∣〈UR′,N〉β,h

∣∣∣
(4.145)

for some constant C2 = C2(β, h) by (4.83). It now follows from (4.144) that

∣∣∣〈MR(β, h)〉β,h

∣∣∣ ≤ A C2

R(1 + α)

R

∑
R′=1

(c1αd+R + c2d−R ) + R−1 B C1 C2 max{e1, e2}.
(4.146)

Obviously, the second term on the RHS vanishes in the limit R → ∞.
Rewriting the summand in the first term on the RHS as

c1αd+R + c2d−R = c1 α m+
R ϕ′(Z0

+)
−1ϕ′′(Z0

+) + c2 m−R ϕ′(Z0
−)
−1ϕ′′(Z0

−)

= (c1m+
R + c2m−R ) ϕ′(Z0)−1ϕ′′(Z0)

+ c1m+
R

[
αϕ′(Z0

+)
−1ϕ′′(Z0

+)− ϕ′(Z0)−1ϕ′′(Z0)
]

+ c2m−R
[

ϕ′(Z0
−)
−1ϕ′′(Z0

−)− ϕ′(Z0)−1ϕ′′(Z0)
]

,

(4.147)

we see the last two terms in this expression tend to 0 uniformly in R as
h → 0 by continuity of Z0

±, g0 and boundedness of |m±R |, and the same
holds for the first term as a consequence of (4.139) and continuity of c1, c2,
Z0
± and g0. In conclusion, given ε > 0 there exists δ > 0 such that

∣∣∣〈MR(β, h)〉µ
∣∣∣ ≤ ε

A C2

1 + α
+ C′ R−1 , (4.148)

if |h| < δ, where C′ is a constant. This completes the proof of the theorem.

Remark 4.5.5. A natural alternative to the mean magnetization as defined by
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(4.10)-(4.11) is the quantity

M̄(β, h) = lim sup
R→∞

M̄R(β, h) , (4.149)

where

MR(β, h) =

〈
|BR(τ)|−1 ∑

v∈BR(τ)

sv

〉

β,h

. (4.150)

It is natural to conjecture that limh→0 M̄(β, h) = 0 holds for generic Ising trees.
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Conclusions

The statistical mechanical models on random graphs considered in Ch. 4
chapter possess two simplifying features, beyond being Ising models, the
first being that the graphs are restricted to be trees and the second that they
are generic, in the sense of (4.28). Relaxing the latter condition might be a
way of producing models with different magnetization properties from the
ones considered here. Infinite non-generic trees having a single vertex of
infinite degree have been investigated in [57, 58], but it is unclear whether
a non-trivial coupling to the Ising model is possible. A different question
is whether validity of the genericity condition (4.28) for h = 0 implies
its validity for all h ∈ R. The arguments presented in Section 4.3.1 only
show that the domain of genericity in the (β, h)-plane is an open subset
containing the β-axis, and thus leaves open the possibility of a transition
to non-generic behavior at the boundary of this set.

Coupling the Ising model to other ensembles of infinite graphs rep-
resents a natural object of future study. In particular, models of planar
graphs may be tractable. The so-called uniform infinite causal triangula-
tions of the plane are known to be closely related to planar trees [43, 62],
and a quenched version of this model coupled to the Ising model with-
out external field has been considered in [62], and found to have a phase
transition. Analysis of the non-quenched version, analogous to the models
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considered in the present chapter, seem to require developing new tech-
niques. Surely, this is also the case for other planar graph models such as
the uniform infinite planar triangulation [7] or quadrangulation [25].
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