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Preface
This thesis has been prepared in partial fulfillment of the requirements for
the PhD degree at the Department of Mathematical Sciences under the
Faculty of Science at the University of Copenhagen.

The work has been carried out under the supervision of Søren Fiig
Jarner, ATP, and Professor Mogens Steffensen, University of Copenhagen,
in the period 1 April 2007 to 12 May 2010 at ATP and the Department
of Mathematical Sciences at the University of Copenhagen. The project
was funded by ATP and the Danish Agency for Science, Technology and
Innovation under the Industrial PhD Programme.

The five last chapters in this thesis are written as individual academic
papers, and are thus self-contained, and can be read independently. There
are minor overlaps in the contents of the papers in Chapters 2 and 3. Like-
wise there are minor notational overlaps between the different chapters, but
it is unlikely to cause confusion.
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Summary
This thesis consists of five papers within the broad area of Life insurance
mathematics. There is no unifying topic, but the papers can be divided
into three categories as described below.

The first two papers deal with pension scheme design, and are included
as Chapters 2 and 3 respectively. Both take the view of an optimiser,
who takes intergenerational issues into account in the sense that she is
concerned with the benefits of more than one generation in a mutually
owned with–profits pension scheme. To this end she picks strategies for
investment and bonus allotment. One paper discusses optimal design in the
long term, which means that all generations sample the same stationary
benefit distribution, in turn implying that there is no issue of systematic
intergenerational subsidisation. The other paper meanwhile considers the
problem on a shorter horizon. As generations enter at different points in
time they do not receive the same benefits. Hence, there is some degree
of intergenerational redistribution, which should be taken into account in
the design. The distinction between the short– and long–term views gives
rise to problems, which are conceptually somewhat different from each
other (and have correspondingly different solutions). The two papers are
summarised in Section 1.1.

Chapters 4 and 5 contain two papers on the broad topic of mortality.
The first of those papers begins by proposing a deterministic model for
adult mortality based on frailty theory. Next, the paper suggests a general
method for forecasting the (distribution of) mortality of a small population
by linking it to a larger, but similar population, for which mortality can be
projected robustly – in turn ensuring coherent forecasts. As an illustration
the frailty model is estimated for a basket of 19Western countries, while the
coherence method is exemplified by linking Danish mortality development
to the aforementioned prognosis for the larger population. The Danish
forecast, however, could be based on any mortality projection for the larger
population. That is, the two models in the paper are not connected per
se. The other paper summarises the historical development of Danish
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mortality, and suggests a method to disaggregate the vast improvements
in life expectancy that have been observed since data collection started
in 1835 into age–specific contributions. This decomposition reveals that
increases in life expectancy have historically been carried by improvements
among infants and children; gradually moving to the situation today, where
possible life expectancy improvements over the next decades can only be
brought about by decreasing mortality among ages 60–80. The two papers
are summarised in Section 1.2

Finally, Chapter 6 presents a paper, which shows how to extend the
Bellmann equation of stochastic control to a new set of problems concerned
with choosing the optimal investment strategy in order to maximise some
function of terminal wealth. The paper also presents three applications,
which are new, and their solutions: 1) A group utility problem for expo-
nential or power utility, where terminal wealth is shared proportionally
among group members. This is of central importance to pension scheme
designers. 2) Dynamic mean–standard deviation optimisation for a single
agent. 3) Endogenous habit formation with quadratic utility for a single
agent. The paper is summarised in Section 1.3.
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Sammenfatning
Denne afhandling består af fem artikler indenfor det brede felt livsfor-
sikringsmatematik. Afhandlingen har intet forenende tema, men de fem
artikler kan inddeles i tre kategorier som beskrevet nedenfor.

De første to artikler omhandler design af pensionssystemer og er in-
kluderet som afhandlingens Kapitel 2 og Kapitel 3. Begge artikler an-
lægger synsvinklen af en beslutningstager, der tager intergenerationelle
betragtninger med i sine overvejelser – i den forstand at han er interes-
seret i mere end blot een generations pensionsudbetalinger i et kunde-
ejet pensionsselskab, hvis produkt giver ret til bonus. Med henblik på de-
sign af systemet kan han fastlægge investeringsstratgien og reglerne for,
hvornår der udloddes bonus. Den første artikel diskuterer optimalt design
på langt sigt, hvilket indebærer, at alle generationer sampler den samme,
stationære, pensionsudbetalingsfordeling, hvorved systematisk omfordeling
mellem generationer ikke bliver et tema. Den anden artikel beskæftiger sig
imidlertid med problemet på en kortere horisont. Idet de forskellige ge-
nerationer kommer ind i systemet på forskellige tidspunkter kan de ikke
opnå den samme pensionsudbetalingsfordeling. Der er således et element
af systematisk omfordeling mellem generationerne, som designet bør tage
højde for. Sondringen mellem det lange og det korte sigt giver anledning
til problemer, som konceptuelt er ganske forskellige (og som følgeligt har
forskellige løsninger). De to artikler resumeres i Afsnit 1.1.

Kapitlerne 4 og 5 indeholder to artikler om dødelighed. Den første af
disse artikler begynder med at foreslå en deterministisk model for voksnes
dødelighed baseret på frailty teori. Dernæst skitserer artiklen en generel
metode til at fremskrive (fordelingen af) dødelighed i en lille befolkning.
Dette gøres ved at hægte den lille befolkning til en større, men lignende
befolkning, hvis udvikling kan fremskrives robust. Derved opnås koher-
ente fremskrivninger. Som en illustration af modellerne estimeres frailty-
modellen for en kurv bestående af 19 vestlige lande, mens metoden til
koherente fremskrivninger eksemplificeres ved at betragte Danmark som
den lille befolkning og fremskrivningen for de 19 lande som referencepunk-
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tet. Fremskrivningen for Danmark kunne dog være baseret på en vilkårlig
prognose for udviklingen i den større befolkning. Altså: De to modeller i
artiklen er ikke partout forbundne med hinanden. Den anden artikel op-
summerer den historiske udvikling i dødeligheden i Danmark og foreslår
en metode til at disaggregere de enorme forbedringer i levetiden, der er
set siden dataindsamlingen påbegyndtes i 1835, på aldersafhængige bidrag
dertil. Denne dekomposition afslører, at øgede levetider historisk set blev
frembragt af store fald i babyers og børns dødelighed. Gradvist er udvik-
lingen så gået imod situationen i dag, hvor eventuelle levetidsforbedringer
over de næstkommende årtier kun kan frembringes af fald i dødeligheden i
aldergrupperne omkring 60–80 år. Disse to artikler resumeres i Afsnit 1.2.

Endelig præsenterer Kapitel 6 en artikel, som demonstrerer, hvordan
den klassiske Bellmann–ligning fra stokastisk kontrol kan udvides til en ny
familie af problemer, hvor målet er at maksimere en funktion af slutfor-
mue ved at kontrollere investeringsstrategien. Artiklen præsenterer også tre
nye anvendelser og de tilhørende løsninger: 1) Et gruppenytte–problem for
eksponentiel– eller potensnytte, hvori formuen deles proportionalt mellem
gruppens medlemmer. Dette er af central betydning for pensionskasser.
2) Dynamisk middelværdi-standardafvigelses optimering for en enkelt in-
vestor. 3) Endogen habit formation med kvadratisk nytte for en enkelt
investor. Artiklen resumeres i Afsnit 1.3.
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1. Introduction
This chapter gives an overview of the contributions of the thesis as well
as the perspectives for future research. To this end the division into three
separate topics introduced above is maintained. That is, Section 1.1 sum-
marises two papers about pension scheme design, Section 1.2 gives the
main points of two mortality–related papers, while Section 1.3 sums up
the contents of a paper concerned with optimal portfolio selection.

1.1 Pension scheme design

The paper ”Pension fund design under long–term fairness constraints”
(Chapter 2) seeks to answer the question ”What is the optimal long–term
investment strategy for a mutually owned with–profits pension scheme?”
The view taken is that of an altruistic board, or a similar authority, wish-
ing to keep the fund solvent in order to ensure future generations’ access
to the scheme – although this may not be the most desirable outcome for
any subset of members, e.g. the present ones may want to dissolve the
fund altogether. The solvency condition is equivalent to the existence of a
stationary distribution for the funding ratio of the scheme. We note that
this notion of fairness is very different from the one typically applied in
the literature, which is concerned with arbitrage–free pricing of contingent
claims.

The literature on design of fair life insurance products was initiated by
a seminal paper by Briys and de Varenne (1994), which has been succeeded
by a vast number of extensions, e.g. Grosen and Jørgensen (2002); Ballotta
(2005); Bernard et al. (2005); Chen and Suchanecki (2007). Their common
approach is to price a savings contract consisting of a guaranteed return
and an option on terminal non–discretionary bonus. The bonus is paid out
if the return on a fixed portfolio is sufficiently high. On the other hand the
issuing company may go bankrupt under way (if monitored) or upon ex-
piry. In this literature the purpose is to find the set of fair contracts, which
is defined as those with an arbitrage–free net value of zero, by adjusting
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the different elements of the contract. Essentially these models consider
risk–sharing between two parties, i.e. there are no intergenerational ele-
ments. Our paper is inspired by Preisel et al. (2010), who modified the
aforementioned papers in several crucial ways. The most important man-
ners in which they differ from the mainstream is through the investment
strategy, which seeks to protect the solvency (rather than keeping a fixed
allocation), via the presence of multiple bonus allotments, and through a
study of the stationary properties of the company. Preisel et al. (2010)
lays out the framework for our analysis, but their model is extended by
introducing a members’ optimisation criterion, and by discussing how to
choose the optimal bonus policy.

In order to comply with the solvency requirement the set of investment
strategies is restricted to those in the CPPI–class, that is

πt = α
At − Lt

At
,

where π denotes the proportion of total assets, A, allocated to the risky
asset in a Black–Scholes market, and L denotes the market value of the
scheme’s liabilities. The multiplier α > 0 then determines the investment
strategy, and is set by the board. Bonus is allotted by periodically in-
creasing the guaranteed benefits by a fixed rate for all members, if the
funding ratio, F = A/L is above a pre–defined barrier, which is also set
by the board, at the end of the period. In that case the bonus given is the
quantity that takes the funding ratio back down to the barrier. This rule
is inspired by the results in Steffensen (2004). Such a bonus strategy turns
out to imply that in the long term it is superior to have chosen a higher
barrier, and hence this variable must be set exogenously.

By requiring a certain demography we can derive the stationary distri-
bution of the bonus allotted. The goal is then to maximise the stationary
expected power utility of the terminal wealth of a member, who partici-
pates in the scheme for several periods. Although the setting is a complete
market with deterministic liabilities (between bonus allotments) this com-
pleteness does not apply to members’ pension savings, which therefore
cannot be priced with the usual replicating arguments.

We consider two types of contracts. First, simple ones consisting of
only a single contribution, which is converted into a guaranteed benefit
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and a compound bonus option, i.e. a payoff that is proportional to

exp

(
n∑

k=1

bk

)
,

with bk being the bonus allotments in stationarity. In this case approximate
analytical results are derived, and are shown to be accurate. Next we
consider a contract to which members contribute in several periods, so
that the payoff is proportional to

n∑

j=0

exp




n∑

k=j+1

bk


 .

In this case later bonus is more important because it acts on a larger guar-
anteed benefit. Then analytical results are out of scope, but simulations
indicate that the insights from the approximate results carry over to this
case as well – in most cases. Quantitatively, the optimal strategy seems
to consist of investing an amount corresponding to the liabilities in a safe
asset – and follow roughly the same policy as a logarithmic investor in
the classic Merton (1969)–world for the remaining assets, the so–called
bonus reserve. As in his case, our optimal investment strategy also de-
pends on the coefficient of relative risk aversion, but our dependence is far
less pronounced. Therefore it is not nearly as costly to form an investment
collective as in Merton (1969). However, our case is very different from
his: he values the total return on an initial investment, while we value the
payoff from a series of compound options. Consequently, there are other
discrepancies: as opposed to the classical case, horizon matters, though
only to a mild extent. The reason for this phenomenon is the serial depen-
dence between bonuses, which in turn means that aggressive investment
strategies are quite unattractive.

The paper ”Fairness vs. efficiency of pension schemes” (Chapter 3) seeks
to remedy some of the shortcomings of the previous paper: namely the lack
of short–term considerations following from investigating only the station-
ary properties of the system. In particular, the absence of a method for
deriving an optimal bonus barrier. Also, it is possible to analyse systems
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that are not as demographically rigid as was required above. In order to
work with these extensions a finite horizon is considered.

In our model the benefits received by a generation depend on the ini-
tial funding, which is random, and on the investment strategy and bonus
barrier, both of which are controlled. Consequently, each generation has
its own opinion on optimal design – even if their preferences are equal.
We require that the collective, i.e. the generations, must agree on a design
there is some loss of efficiency associated with each choice. At the same
time some designs will induce less differences between the benefits that
different generations receive, than will others. That is, more fairness. In
order to analyse the trade–off two independent, hypothetical generations
with initial funding ratios κ and f ∈ (1, κ) are considered, with the former
being the bonus barrier, and the latter a relatively low funding. We think
of the design decision as being taken via a bargaining between the two, not
knowing their own identities – in the spirit of Rawls (1971). The fairness
measure is defined as the probability that the benefits differ sufficiently
little:

P
(

X (s, κ, f)
X (s, κ, κ)

> 1− δ

)
,

with X(s, κ, ·) denoting the terminal benefits as functions of the investment
strategy (s = ασ), the bonus barrier, and the initial funding level – and
with δ being some maximum acceptable redistribution level (as seen from
the board’s point of view). Each generation has its own efficiency measure
defined by the probability of obtaining a certain benchmark, a fraction of
its certainty equivalent:

P
(

X(s, κ, ·) > (1− β)max
s̄,κ̄

E
{
X(s̄, κ̄, ·)1−γ

} 1
1−γ

)
,

with γ being a coefficient of relative risk aversion, which turns out to be of
minor importance, and with β interpretable as a maximum permitted rela-
tive cost of achieving some fairness criterion. The focus on tail probabilities
stems from the fact that participation in the system under consideration
is assumed compulsory, so that there is no option to walk away from an
unattractive scheme.

With those definitions we can maximise fairness subject to an efficiency
criterion, or reversely. In the paper the measures are merely plotted for
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fixed (β, δ, γ), and it is open which approach is better in which situation.
There is, however, another twist to the problem: To add a further trade–off
we consider the situation where the lower funding ratio, f , depends on the
design, for it is less likely to encounter a future low funding if investments
are cautious or if the barrier is high. In this latter setting, however, higher
barriers always become desirable, so there is only one design parameter.
Conversely, in the case of a fixed f a trade–off between longer period
with inequality on one hand, and higher long–term collective benefits on
the other hand (both arising from a high barrier) is at the heart of the
problem. Unsurprisingly, the results differ substantially – qualitatively
and quantitatively – depending on which approach is taken.

As a consequence of the unsatisfying properties of the standard system
in which the random funding ratio at entry is crucial two other systems
are suggested, both of which turn out to give rise to systems which cost
freely provide less intergenerational subsidisation.

A recent paper that is related to ours is Døskeland and Nordahl (2008a).
They evaluate the life cycle of a pension scheme and show that early gen-
erations subsidise later ones as a consequence of there being no initial
bonus reserve, and no third party to sponsor the scheme at start–up, nor
to inherit the ultimate bonus reserve. The topic of intergenerational redis-
tribution and risk sharing is more mature in macroeconomics and welfare
economics, e.g. Ball and Mankiw (2007); Gollier (2008).

Both papers are implemented with an assumption of annual bonus
allotments, but it is straightforward to let the time between possible bonus
allotments shrink and analyse the consequences thereof. The latter paper
is also suitable to a number of interesting extensions. One obvious idea
is the introduction of undiversifiable insurance and market risk. Another
possible extension is an analysis of the widespread practice of smoothing
bonuses, which would likely result in less redistribution. Finally, other
fairness and efficiency measures may be introduced.
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1.2 Mortality

The paper ”Modelling adult mortality in small populations: The SAINT
model” (Chapter 4, written jointly with Søren Fiig Jarner) proposes a
stochastic model for adult mortality in small populations. The paper
presents two models, which are used interdependently in the paper, but
which are not intrinsically connected. The first model is a theory for adult
mortality based on frailty theory. More specifically, the mortality inten-
sity at time t and age x of an individual with (unobserved) frailty z > 0 is
modelled by the (almost) multiplicative structure

µ(t, x; z) = zµI
s(t, x) + γ(t),

where z comes from a Γ–distribution (although one can readily relax to a
more general distributional assumption, cf. Hougaard (1986)). The quan-
tity µI

s(t, x) > 0 denotes the senescent mortality of an individual with
unit frailty, while γ represents frailty– and age–independent background
mortality. Vaupel et al. (1979) analysed the connection between popula-
tion mortality and individual mortality in the same framework, albeit only
for a single cohort. Even without specifying further one can derive some
nice features about the mortality of a population consisting of individuals
with i.i.d. frailties. (Propositions 4.2–4.4). In order to estimate the model,
however, further assumptions are required. First, we assume that individ-
ual mortality is affected by immediate as well as accumulating factors by
specifying

µI
s(t, x) = κ(t) exp

(∫ x

0
g(u + t− x, u)du

)
.

The term κ−1 can be thought of as the level of treatment and environmental
factors etc. at time t for persons of age x, while g represents a time– and
age–dependent force of aging. The motivation for considering this frailty
model is two–fold. Firstly, structural models produce credible forecasts of
the mortality surface (e.g. monotonous with respect to time and age), and
secondly, we allow for improvements in old–age mortality, where none have
hitherto been observed – as opposed to purely extrapolative models. The
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specification of the frailty model is finalised by putting

g(t, x) = g1 + g2(t− t0) + g3(x− x0),
κ(t) = exp(κ1 + κ2(t− t0)),
γ(t) = exp(γ1 + γ2(t− t0)),

for some x0, t0. We can then derive asymptotic properties of annual
improvements in mortality as well as age–dependent mortality (Propo-
sitions 4.5 and 4.6). As an illustration the model is estimated for a pool
consisting of 19 Western countries over 1933–2005 for ages 20–100, and
both genders separately. To this end a standard Poisson likelihood is ap-
plied, and a discretisation approximation is imposed, since data consists of
annual observations, while the model is phrased in continuous time. One
of the main findings from this estimation is that women are more hetero-
geneous than are men, which in turn implies that the difference between
the genders’ life expectancies is forecasted to widen. Barbi (2003) found
the same phenomenon. Another characteristic of the forecast is that the
mortality of the oldest old will start to decrease in the first half of this cen-
tury, although hardly any improvements have been observed historically.
We note that the projection is essentially deterministic because all uncer-
tainty at the population level stems from the model parameters, which are
extremely precisely determined because of the parsimonious specification.

The second model is based on the observation that realised annual
death rates fluctuate quite a lot in small populations, which renders ran-
dom walk models such as the popular Lee–Carter model (Lee and Carter
(1992); Brouhns et al. (2002)) and its extensions, e.g. Renshaw and Haber-
man (2003); Cairns et al. (2006), unqualified for forecasting in such popu-
lations. The idea is to find a larger population, the mortality development
of which is assumed to be roughly similar to that of the smaller popula-
tion of interest. This has given rise to the name SAINT, an abbreviation of
Spread–Adjusted InterNational Trend. The possible convergence in inter-
national mortality has been examined by e.g. Wilmoth (1998); Tuljapurkar
et al. (2000); Wilson (2001); Li and Lee (2005).

The spread between the two populations’ mortalities is modelled via
the specification of the subpopulation’s mortality

µ̄sub(t, x) = Hθ̂(t, x) exp(y′trx),
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where Hθ̂(t, x) is the (possibly stochastic) mortality forecast for the refer-
ence population, and where y′t = (y0,t, . . . , yn,t) and r′x = (r0,x, . . . , rn,x)
for some n define the age– and time–dependent spread, which is thus not
restricted to adults. Through the specification of the latter terms one can
then control the long–term relationship between the two mortality fore-
casts.

We illustrate this method by letting Hθ̂(t, x) be the (deterministic)
frailty–based projection for the aforementioned group of 19 countries, and
by letting Denmark constitute the subpopulation. Notice, however, that
one could have used any model for the reference population. Denmark’s
spread dynamics is then governed by specifying y as a three–dimensional
VAR(1)–model, and r a set of regressors of orders 0, 1, and 2. As y turns
out to be stationary the ratio between the two forecasts is bounded in
probability, and has stationary median 1. Estimation of the spread model
proceeds via a Poisson likelihood for each gender, as above. The results
indicate that the model’s out–of–sample predictions are superior to those
of the Lee–Carter model.

Our paper has spurred a research project at Cass Business School, and
a paper by Cairns et al. (2010). Further, the model is used to set the
tariff and calculate the technical provisions in ATP. For this implementa-
tion ATP was awarded the 2009 Investment & Pensions silver award for
innovation.

The second mortality–themed paper is ”The evolution of death rates
and life expectancy in Denmark” (Chapter 5, written jointly with Søren
Fiig Jarner and Chresten Dengsøe). This paper seeks to decompose the
substantial improvement in Danish life expectancy observed since 1835
(when data collection began) into age–specific contributions. To this end
the functional derivative of (population) life expectancy, ē0, with respect
to the mortality curve, µ, is calculated:

∂ē0 (µ(1− εδ))
∂ε |ε=0

=
∂

∂ε

∫ ∞

0
e−

∫ x
0 µ(y)(1−εδ(y))dydx|ε=0

=
∫ ∞

0
δ(u)Dµ(u)du,
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where
Dµ(u) = µ(u)F̄ (u)ēu.

is a kernel. That is, improvements’ contributions to changes in life ex-
pectancy are the product of three factors: the instantaneous force of mor-
tality, the survival probability, F̄ , and the remaining life expectancy – in
total amounting to the unconditional average number of lost years. The
life expectancy gains between two mortality tables, µs and µt, can then be
calculated, and under the assumption that the kernel is roughly constant
between times s and t, i.e. Dµu(v) ≈ D̄(v), for some D̄(v), we find the
approximation

ē0(µt)− ē0(µs) ≈
∫ ∞

0
D̄(v) log

µs(v)
µt(v)

dv,

which in turn can be approximated by discretising the integral. This de-
composition thus weighs the improvements in age–specific forces of mortal-
ity by the time–averaged age–specific kernel between the two time points
in question. The main conclusion from the analysis is that improvements
up until about 1950 were driven by improvements in child and infant mor-
tality. Since then, the mortality of those age groups has declined rapidly,
so that recent improvements have been primarily caused by declines in the
mortality rates of age groups 50 to 80 with a clear trend towards higher
ages. Possible future improvements cannot be carried by people under the
age of 60, as their survival rate is almost one (once infancy is survived
anyway), so it is predicted that the older age groups will drive possible
future improvements in Danish longevity.

Although not included in the paper it is easy to see that the method
also works for remaining life expectancy.

1.3 New portfolio problems

The paper ”Some solvable portfolio problems with quadratic and collective
objectives” (Chapter 6, written jointly with Mogens Steffensen) extends the
class of solvable portfolio problems over terminal wealth (as first studied
by Merton (1969)) to those in the form

sup
π

f (t, x,Et,x {g1 (Xπ(T ))} , . . . ,Et,x {gn (Xπ(T ))}) ,
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for some regular functions f and g1, . . . gn – with π being the relative
allocation to risky assets in a Black–Scholes market, and Xπ the induced
wealth. Three illustrative examples are given briefly. As compared with
the classical Bellmann approach (e.g. Björk (2009)) the novelty consists of
the presence of t and x as well as several g functions. Some of the ground
had been broken, though, by Björk and Murgoci (2008), who considered
related, but non–overlapping set of problems.

As examples of the applicability of the technique we solve three port-
folio problems that are, to our knowledge, new. The former two problems
are not covered by the framework of Björk and Murgoci (2008):

First, group utility with proportional sharing, where the criterion is

sup
π

n∑

i=1

u−1
i (Et,x {ui (αiX

π (T ))}) ,

for some utility functions u1, . . . un, and some positive α1, . . . , αn summing
to one, and representing the investors’ (constant) stakes in the collective.
By imposing a sharing rule that is state–independent we disregard optimal
risk sharing and focus on this more realistic way of dividing the wealth of
a collective. When a group of heterogeneous individuals with expected
exponential utility is considered a fully analytic solution is provided:

π∗x = n
Λ
σ

e−r(T−t)

ξ(α)
,

with Λ, σ and r denoting the market price of risk, the volatility, and
the interest rate respectively – and with ξ a weighed average of the in-
dividual coefficients of absolute risk aversion. If all stakes are equal,
α1 = · · · = αn = 1/n, then ξ =

∑n
i=1 ξi/n, the simple average.

In the, perhaps more interesting, case, where all agents have preferences
described by expected power utility, a semi–analytical solution is given

π∗ =
Λ
σ

1
γ (t)

,

where γ(t) is a (time dependent) weighed average of the individual coef-
ficients of relative risk aversion. A system of coupled ordinary differential
equations for the weights forming this average is derived and solved numer-
ically for the particularly simple case with n = 2. In both utility settings
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the loss of certainty equivalent associated with moving from an individ-
ually optimal strategy to one that is decided by the group’s preferences
can be calculated. This provides agents with an assessment of the costs of
joining a collective. The corresponding advantages are not included, but
are obvious in practice, and an extension thereto is straightforward. The
insights obtained from this analysis are not applied in Chapters 2 and 3.

Secondly, we consider dynamic mean–standard deviation optimisation,
where the criterion is

sup
π

(
Et,x {Xπ (T )} − υ (Vt,x {Xπ (T )}) 1

2

)
,

for some penalty parameter υ. In some sense this problem is more natural
than the one arising from the popular mean–variance criterion (which was
recently solved by Basak and Chabakauri (2009b)), because benefit and
cost are measured in the same units. However, the optimal allocation to
risky assets turns out to be zero. This unusual result is caused by the fact
that the penalty term is of magnitude

√
dt, while the mean is of magnitude

dt.
Thirdly, endogenous habit formation with quadratic utility is analysed:

inf
π

(
Et,x

{
1
2

(Xπ (T )− xβ (t))2
})

,

where β − 1 can be interpreted as a required return over the remaining
horizon. In some situations this dynamic version of quadratic utility is
more meaningful than the one typically employed, where the target is
fixed initially, and may thus be obtained under way – leading to possi-
bly counterintuitive investment strategies. For the present problem the
optimal investment strategy solves the partial differential equation

π∗′ = k0(t) + k1(t)π∗(t) + k2π
∗(t)2 + k3π

∗(t)3,

for some coefficients, which are constant in the likely event that the re-
quired rate of return is constant. The optimal strategy that is derived is
also compared to the classic, so–called pre–committed, solution. The pa-
per also discusses the distinction between pre–committed and sophisticated
investors.

Within our framework one can come up with additional interesting
portfolio problems. Also, an extension to other cases as well as to more
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involved financial markets, possibly incomplete, is natural. For a different
direction one could consider intermediate consumption.
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2. Pension fund design under
long-term fairness constraints

Background. This chapter is a modified version of Kryger
(2010c). The paper was presented at the Nordic Finance Network
(NFN) Research Workshop in Bergen, May 2008, and at the 5th

Conference in Actuarial Science & Finance on Samos, September
2008. I am indebted to two anonymous referees, Frederik Lundtofte
and Kristian Miltersen for useful comments and suggestions.

Abstract. We consider optimal portfolio insurance for a mu-
tually owned with–profits pension scheme. First, intergenerational
fairness is imposed by requiring that the pension scheme is driven
towards a steady state. Subject to this condition the optimal as-
set allocation is identified among the class of constant proportion
portfolio insurance (henceforth CPPI) strategies by maximising ex-
pected power utility of the benefit. For a simple contract approx-
imate analytical results are available and accurate, whereas for a
more involved contract Monte Carlo methods must be applied to
pick out the best design. The main insights are i) aggressive in-
vestment strategies are disastrous for the clients, and ii) the results
are far less sensitive to the agent’s risk aversion than in the clas-
sical case of Merton (1969), and as opposed to his results horizon
matters even with constant investment opportunities.

2.1 Introduction

Design of fair pension contracts has received a lot of attention in the aca-
demic literature over the last fifteen years. Traditionally the notion of
fairness concerns the relationship between disjoint stakeholders, namely
(equity) owners and a group of clients. In this line of work the main ref-
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erence is Grosen and Jørgensen (2002) (extending Briys and de Varenne
(1994); Briys and de Varenne (1997)). These models, however, are defined
on a finite horizon and have no intergenerational considerations. Thus, in
essence they are single life models in which risk sharing takes place between
the customer and the owner. In contrast, we consider a pension scheme
on an infinite horizon, in which generations exit and enter – thus allowing
transferring wealth between generations through the bonus reserve. Our
model scheme is owned solely by its members, i.e. there are no separate
equity holders.

The fluctuating bonus reserve will lead to some degree of inequality
between different cohorts. To study the long term properties we therefore
impose stationarity (of the funding ratio) at the outset, and analyse the
company only in its (distant future) invariant condition. This implies that,
as seen from today, (distant) future clients are all treated the same. Given
this restriction, the best such distribution is identified by maximising ex-
pected power utility of the resulting benefit. In turn this yields an optimal
strategy for portfolio insurance (to obtain stationarity it is necessary to
impose an investment rule that guarantees absence of liquidation).

In designing optimal strategies for managing (distributing and invest-
ing) bonus reserves for individual contracts Steffensen (2004) uses the
framework of Hindi and Huang (1993) to find the optimal distribution
rule, which turns out to give rise to so–called local time payments (loosely
speaking the optimal distribution policy consists of giving an infinitesimal
amount of bonus whenever a certain barrier is hit, which happens infinitely
often), and an optimal asset allocation strategy which, at least in a special
case, turns out to be a modified version of the mutual fund separation
theorem. Inspired by the results we impose a discrete time version of his
bonus distribution rule.

The paper by Grosen and Jørgensen (2000) partly remedies the con-
cerns over single life models, and our approach is very much in the spirit
of their work – even if we differ in vital aspects. Also, Preisel et al. (2010)
abandon the single life approach and their model serves as the blueprint
for this paper, albeit slightly modified. Another important contribution
taking the clients’ point of view and integrating the overall pension scheme
dynamics is Døskeland and Nordahl (2008a).

As implied in the preceding paragraphs, we believe that the main short-
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coming in the existing literature on pension scheme design is that it lacks
disentanglement of the individual contracts from the overall financial sta-
tus of the company. Such separation is necessary to fully understand the
complex dynamics of the entire entity. We offer a new approach to op-
timising with–profits pension scheme operation that can supplement the
existing literature on this topic.

As pointed out by Døskeland and Nordahl (2008a) different, even non-
overlapping, generations in a with–profits pension scheme may systemat-
ically subsidise each other because the bonus reserve does not belong to
a specific subset of the collective, but to the collective as a diffuse whole.
One way of partially overcoming this is to price each contract correctly by
adjusting the terms to reflect the scheme’s financial and demographic con-
dition at the time of underwriting. In practice, however, the stipulations
are not adapted to fit the economic situation of the scheme, hence it is
unattractive to enter funds that are poor (and possibly also funds that are
increasing in size because the bonus reserve may be crowded out by new
entrants).

We take the view of an altruistic board of a mutually owned with–
profits pension scheme seeking to treat future generations equally. This
property could be obtained by valuing the bonus option at the time of
underwriting, and charging for it. But that approach is not desirable
since it will compel the scheme to put the bonus option on the balance
sheet. Hence, in the short term, our board accepts that the clients are
not treated equally. One reason for giving the board such influence over
future generations could be that it represents some external party, say a
trade union or a governmental institution, representing the common good
rather than the present owners – and possibly subsidising the scheme at its
foundation. Alternatively the demand for intergenerational fairness may
come from some authority. The point is that in the presence of a positive
bonus reserve it may be in the interest of the present clients as a whole to
dissolve the company rather than leave anything to generations to come.
To avoid that temptation we let some external party design the scheme.

In Section 2.2 the pension scheme, its clients, rules and environment
are introduced along with the general contract that is analysed in the pa-
per. Our notion of fairness is defined in Section 2.2.3. Section 2.3 contains
”approximate analytical” results for the optimal operation of the scheme,
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considering a simple contract, while simulated results are provided in Sec-
tion 2.4. These are partly intended to assess the accuracy of the analyt-
ical approximations of Section 2.3, and partly intended to derive optimal
rules for more complex contracts. Further, the speed at which the scheme
moves towards stationarity is analysed. Finally, Section 2.5 discusses and
summarises the results of the preceding sections, while extensions and lim-
itations are also touched upon.

2.2 Model

The environment in which the pension scheme operates is as follows: Let
(Bt)t≥0 be a Brownian motion on a probability space (Ω,F,P) generating
the filtration (Ft)t≥0 with Ft , σ (Bs, 0 ≤ s ≤ t) ∪ N , (t ≥ 0) – i.e.
augmented by the null sets.

To the pension scheme, but not necessarily to its individual clients,
the financial market is frictionless regarding taxes, divisibility, transaction
costs, liquidity and portfolio restrictions. This market consists of a bank
account with interest intensity r, and a single risky asset (think of a well-
diversified portfolio of risky assets) with volatility σ and market price of
risk Λ. Hence, the joint value process is

dSt = diagSt

[
(rt, rt + Λtσt)>dt + (0, σt)>dBt

]
, (t ≥ 0, S0 > (0, 0)) .

We let rt = r, Λt = Λ > 0, and σt = σ > 0 for all t ≥ 0, i.e. constant
investment opportunities.

The scheme divides its assets, A, between the risky asset and the bank
account with a fraction, π, invested in the former. Liabilities, L, represent-
ing the progressive reserve, changes by the interest rate – hence between
reporting periods indexed by 1, 2, . . .

dAt = At [(r + πtΛσ)dt + πtσdBt] , (t ∈ i + (0, 1), i ∈ N, A0 > 0) .

dLt = Ltrdt, (t ∈ i + (0, 1), i ∈ N, L0 > 0) .

One could allow for additional, non-marketed noise in the processes A and
L, but we impose the simplification that the only source of uncertainty is
B, which is hedgeable. Hence, in line with the mainstream, we focus on
the savings part of the contract, in particular we disregard mortality.
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The pension scheme we consider is a mutual with–profits scheme, i.e.
one that is owned by its clients. Also, entry is not voluntary, but governed
by, say, legislation, and contributions are fixed. Surrender and free policy
options are not available. This ownership structure is non–standard in
the literature and hence our model cannot be directly compared to those
of Briys and de Varenne (1994); Briys and de Varenne (1997); Grosen and
Jørgensen (2000). One could consider ”old” and ”new” clients as disjoint
stakeholders; owners respectively customers, but that approach does not
fit our purpose; nor does it reflect actual with–profits pensions systems.
The compulsory membership may imply that some clients will enter on
unacceptable terms, since it is likely preferable to enter a wealthy scheme.

The funding ratio is defined as

Ft , At

Lt
, (t ≥ 0).

Since avoiding insolvency is an integral part of intergenerational fairness
we require throughout that the scheme is always sufficiently liquid – in
the special sense that F > 1 + c for some c > −1 representing a minimum
acceptable funding ratio (from the point of view of the scheme’s board, but
possibly laid down by some monitoring authority). Hence we denote the
surplus assets A− L(1 + c) the bonus reserve. We let c = 0 – correspond-
ing to liquidation upon insolvency – throughout (except in the sensitivity
analysis in Section 2.4.3). Any initial bonus reserve (F0 > 1 + c) could
have come from anywhere, e.g. as an inheritance from previous generations
or as a subsidy from somewhere else.

In Preisel et al. (2010) the asset process is controlled by choosing the
fraction of wealth invested in the risky asset by optimising one-period
expected power utility of the end-period funding ratio minus one. This
criterion gives rise to a CPPI strategy (to be introduced in Section 2.2.1)
parameterised by the manager’s coefficient of relative risk aversion, γ > 0.
We, on the other hand, impose a parameterised investment strategy at
the outset and take the clients’ point of view as a basis for optimisation.
This disparity is a natural consequence of our objective being completely
different from theirs. For where their aim is to point out the potential
conflict between short- and long viewed stakeholders our ambition is the
study of optimal design as seen from an altruistic standpoint.
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The scheme has a rule of distributing bonus periodically,1 but only
when its funding ratio at the turn of the period exceeds some fixed thresh-
old, κ > 1 + c+, and in that case all funds above the threshold are dis-
tributed to the clients. We refer to κ as the bonus barrier.

At the turn of a reporting period assets and liabilities are Ai− and Li− .
Then new contracts are underwritten with value ΓiLi− , (Γi ≥ 0), and con-
verted into liabilities giΓiLi− . The parameter gi ∈ (0, (Fi− + Γi − 1) /Γi)
measures the proportion of contributions which is converted into liabilities
at time i.2 Due to the presence of a bonus reserve this parameter may
be less than one. Traditionally, this contribution to the (collective) bonus
reserve is not explicit. At the same time contracts mature with market
value ΠiLi− , (Πi ∈ [0, 1]).3 This gives rise to the end year post bonus
funding ratio

Fi+ =
Ai− + Li−(Γi −Πi)
Li− (1 + giΓi −Πi)

∧ κ

=
Fi− + Γi −Πi

1 + giΓi −Πi
∧ κ, (i ∈ N). (2.1)

The bonus, bi, that is in fact allotted such that

Li+ = Li− ((1−Πi) exp (bi) + giΓi) , Ai+ = Ai− + Li− (Γi −Πi exp (bi)) ,

and (2.1) is satisfied, is

bi =

{
log Fi−−Γi(κgi−1)

κ−Πi(κ−1) , Fi− > κ−Πi(κ− 1) + Γi (κgi − 1)

0, otherwise
, (i ∈ N).

We let gi = 1 throughout, and we assume that Γi = Πi max {Fi− , κ, } /κ,
so that net inflow is positive. It is indeed relevant to study schemes that
are not as demographically stable as this one, nor as rigid, but for our
purpose it makes more sense to consider this case of balanced cash flows.
The cash flow restriction implies that new contributions are subsidised by

1As an alternative to increasing future benefits the company could pay out a cash
dividend.

2The proportion 1− gi is intended to pay for the bonus option.
3If Γi = 0 and Πi = 1 the scheme closes, and this case is not taken into account

below.
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the bonus reserve abandoned by benefits paid out, and possibly by the
staying members. From the flow assumption we get the simpler relations

Fi+ = Fi− ∧ κ, and bi =
(

log
Fi−

κ

)+

, (i ∈ N).

The described bonus rule is not widespread in the academic world nor in
practice, where there are tactical, strategical, distributional (intergener-
ational), and political reasons for smoothing bonus distribution. Rather
it is chosen for technical reasons and because of the results of Steffensen
(2004) – and as an approximation to what is in fact practiced.

After settling on a short–term optimisation criterion Preisel et al. (2010)
investigate the properties of the implied stationary distribution of F . Their
aim is to point out the divergence between long- and short viewed stake-
holders. Concerning the objectives of the present study their model has a
few shortcomings, however. First, their optimisation criterion is inappro-
priate for our purpose. Second, they do not discuss the choice of bonus
barrier. And third, their paper does not study the rate at which the sys-
tem converges towards stationarity. The aim of this paper is to remedy
these weaknesses. We address the first of these reservations by introduc-
ing a different, altruistic optimisation criterion in Section 2.3. The second
and third points of criticism turn out to be partially interrelated, and we
discuss those topics in Sections 2.2.3 and 2.4.4.

2.2.1 Investment strategy

An investor with assets, A0, and a, possibly random, ”floor” on wealth
L0 < A0 is said to follow a CPPI strategy (see e.g. Black and Perold
(1992)) with multiplier α > 0, if his portfolio is self-financing and his
absolute allocation to risky assets at time t ≥ 0 is α(At−Lt). The strategy
thus reduces exposure when the cushion, A− L, decreases and vice versa.
In particular, as the cushion approaches zero, the allocation to risky assets
approaches zero. Therefore, if paths are continuous, the strategy ensures
that the cushion is always positive.

As mentioned above, the optimisation criterion of Preisel et al. (2010)
gives rise to a particular CPPI strategy, namely one with multiplier Λ/ (σγ),
with γ being the manager’s coefficient of relative risk aversion. We take a
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different approach and impose a general CPPI strategy at the outset. In
particular we use the family of parameterised investment strategies

πt , α
At − Lt(1 + c)

At
, (t ≥ 0, α > 0). (2.2)

The motivation for choosing this strategy at the outset is that it implies
a zero probability of default in the present model framework.4 Under
condition (2.2) the discrete time funding ratio dynamics between updates
has i.i.d. lognormal innovations:

Proposition 2.1.

log

(
Fi− − (1 + c)

F(i−1)+ − (1 + c)

)
= Zi, (i ≥ 1).

Here (Zi)i∈N is an i.i.d. sequence with Z1 ∼ N(m, s2), (i ∈ N), s , ασ,
and m , s (Λ− s/2).

The main result of Preisel et al. (2010) is their Theorem 4.1, which
states that (Fi+)i∈N admits a stationary distribution if and only if Z1 has
a strictly positive mean. In our case this translates into the condition
s ∈ (0, 2Λ). Note that this requirement is independent of the choice of
barrier, κ. s is the volatility of the bonus reserve, and we therefore refer
to s as ”risk”.

2.2.2 The contract

To fulfill the purpose of the paper, we consider a contract spanning a period
of length n ∈ N, which can be taken to represent the typical savings period
for a pension scheme client. The contract consists of a set of contributions,

4It is not by any means clear that it is optimal for the clients as a whole to impose zero
probability of default. Having fairness as our primary concern it does seem reasonable,
however, to put down this restriction already at the modelling level. An alternative with
that property is to implement an Option Based Portfolio Insurance (OPBI) strategy,
which – like the CPPI – secures a pre-specified lower boundary on portfolio value at the
chosen horizon via a put option on the asset portfolio. For a wholly different approach
we may decide to use a ”free” strategy not protecting the excess assets, instead allowing
for bankruptcy - as does the mainstream in pension scheme design.
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(ξ(t))n
t=0, which are determined at time 0, and a corresponding terminal

benefit, W (n). To ease calculations we assume without losing much realism
that there are no expenses (administrative costs etc.) associated with the
contract. The benefit is

W (t) ,
btc∑

j=0

g(j)ξ(j)er(n−j)e
∑btc

k=j+1 bk , (0 ≤ t ≤ n) . (2.3)

That is, by the terms of the contract, the contribution at time l is trans-
formed into a claim at expiry of g(l)ξ(l) exp (r(n− l)) – and bonus may
be added. Hence, contribution ξ(l) is not awarded bonus until time l + 1.
Since bonus is – in part – intended to reflect the return on the contribu-
tion it is natural to refrain from crediting bonus immediately. Typically,
either ξ(t) = 1(t=0) or ξ(t) = 1(t∈{0,1,...,n}), but it is also possible to have,
say, an increasing contribution plan reflecting inflation. The contract can
obviously be thought of as representing a capital pension. The presence of
a bonus reserve, however, is usually linked to an insurance product, and
we can think of W as a proxy for the value of a whole life annuity bought
at expiry.

Since the guaranteed interest rate equals the market rate, g = 1, and
there is no default risk the contract is an arbitrage. As argued by Døske-
land and Nordahl (2008a) this does not really pose a problem. The fact
that there is certain excess return to be earned is a consequence of the
intergenerational subsidisation that built up a bonus reserve in the past.
In other words, the return on the (random) amount At− −Lt−(1 + c) that
previous generations, or some external party, made available, is handed
over to the generation entering the scheme at time t. And the fact that
they leave a bonus reserve behind upon exit – possibly more than what
they received at entry – does not impair the arbitrage.

For a provocative setting, essentially suggesting no guarantees what-
soever, see Sørensen and Jensen (2001). It seems obvious, however, that
this can be a gateway for managerial malpractice. Also, they are partially
countered by Døskeland and Nordahl (2008b).
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2.2.3 Defining fairness

Our concept of fairness is an intergenerational one. It is based on the
wish that future clients who join the scheme at times when it is funded
differently will get benefits with the same distribution – as seen from today,
regardless of the conditions at the time of underwriting. We therefore say
that the scheme is long–term fair if F admits a stationary distribution.
In our setting this is satisfied for any κ > 1 and for any s ∈ (0, 2Λ). If
no stationary distribution exists the probability of obtaining bonus over
any final horizon will tend to zero. It is not obvious that this is in fact
unsatisfactory to the clients as a whole, but it is clear that it will favour
some generations over others.

2.2.4 Objective

The only control we have at our disposal is the ”risk”, s, since by stochastic
dominance we cannot optimise over κ; for the higher is κ the better off
is any client joining, cf. Proposition 2.2 below. In finite time there is a
trade–off between waiting for an attractive funding ratio distribution (high
κ) on one side, and getting bonus underway while approaching stationarity
quickly (low κ) on the other side, cf. Section 2.4.4. Once stationarity is
attained no such prioritisation has to be made.

We wish to find the stationary distribution of bonus that satisfies fu-
ture clients better. We therefore assume that F0− is distributed according
to its stationary distribution. To the end of finding the optimal design
we maximise expected power utility of the discounted benefit, using a de-
terministic, integrable consumption discounting process (νt)t≥0, i.e. the
maximisation object is




E

{
e−

∫ n
0 νtdt W (n)1−γ

1−γ

}
, γ ∈ [0,∞)\{1}.

E
{

e−
∫ n
0 νtdt log W (n)

}
, γ = 1

, (2.4)

where γ represents the member’s coefficient of relative risk aversion. The
reason for choosing a utility criterion over a financial one is that pension
contracts are usually non–tradeable. The maximisation object we have
chosen is standard, but notice that it implicitly considers the contribution
as sunk cost (otherwise X − 1 is the appropriate object).
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2.3 Analytical results

The stationary distribution of F is not explicitly known, and hence we
study a different Markov chain for which the invariant distribution can be
identified. Following Preisel et al. (2010), we study a variant of F with
Laplace–distributed innovations instead of normally distributed innova-
tions, i.e. the sequence:

F̃i− =
(
F̃(i−1)+ − (1 + c)

)
exp(Z̃i) + 1 + c, (i ≥ 1).

F̃i+ = F̃i− ∧ κ, (i ∈ N).

Now (Z̃i)i∈N an i.i.d. sequence with Z̃1 Laplace–distributed with location
m and scale λ−1 , s/

√
2 (picked to match the variance of the true Z1).

The density of Z̃1 is

λ

2
exp (−λ|x−m|) , (x ∈ R). (2.5)

Similarly, we let

b̃i =

(
log

F̃i−

κ

)+

, (i ∈ N)

denote bonus in the new regime. We are not familiar with any continuous
time stochastic processes for the financial market bringing about this dy-
namics, but we use the approximation nevertheless. The assumption may
be justified by referring to the fact that this Laplace distribution is also
symmetric about its mean and is constructed to have the same variance
as the true one. Considering the tail behaviour, however, some differences
occur because of the fatter tails in (2.5). The 4th central moment is twice
that of the true distribution (corresponding to excess kurtosis of 3), and
the higher order even moments differ even more. Notice however that
such fatter tails comply with some of the criticism of assuming normally
distributed returns.

To study the quantitative properties of bonus we need the funding ratio
prior to bonus distribution, which has the following stationary distribution
function
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Proposition 2.2.

P
(
F̃0− ≤ x

)
=





λ−ρ
λ

(
(x−(1+c))+

κ−(1+c)

)ρ
, x ≤ κem − (1 + c)(em − 1).

1− ρeλm

λ+ρ

(
x−(1+c)
κ−(1+c)

)−λ
, x > κem − (1 + c)(em − 1).

(2.6)

The parameter ρ is the non–zero solution to the non–linear equation
1− (ρ/λ)2 = exp(−ρm). This implies that ρ ∈ (0, λ).

Expression (2.6) differs from that of Preisel et al. (2010) who mix
Laplace and Gaussian distributed innovations to derive an approximation
to the stationary pre-bonus funding ratio distribution.

The distribution is spread out more the higher is s (and the higher is κ).
Since the stationary marginal probability of obtaining bonus is unaffected
by κ the bonus increases in κ. The bonus frequency decreases with s,
but the conditional bonus increases with s. An example of the stationary
funding ratio distribution can be seen in Figure 2.1, which demonstrates
the points just made.

When we consider F̃ the stationary moments of bonus can be de-
rived. They turn out to be expressed in terms of hypergeometric functions
(see Weisstein (2008)), which can be evaluated precisely and quickly.

Proposition 2.3. All moments of b̃0 exist, and for c = 0

E
{

b̃0

}
=

ρ(λ− ρ)
λ

(κ− 1)−ρ [H1 (ρ, (κ− 1)em + 1)−H1 (ρ, κ)]

− λρeλm

λ + ρ
(κ− 1)λH1 (−λ, (κ− 1)em + 1)− ρ

λ
log κ.

E
{

b̃2
0

}
=

ρ(λ− ρ)
λ

(κ− 1)−ρ [H2 (ρ, (κ− 1)em + 1)−H2 (ρ, κ)]

− λρeλm

λ + ρ
(κ− 1)λH2 (−λ, (κ− 1)em + 1)− ρ

λ
(log κ)2

− 2 log κE
{

b̃0

}
.

The functions H1 and H2 can be found in Section 2.6.
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Figure 2.1: Stationary funding ratio distribution. Fixed parameters:
κ = 1.2. Horizontal lines indicate P

(
F̃0− ≤ κ

)
= P

(
b̃0 = 0

)
.

2.3.1 A simple contract

Analytically we can only consider contracts consisting of a single unit of
contribution initially transformed into a benefit at time n of

W̃ (n) = ern exp

(
n∑

k=1

b̃k

)
,

i.e. a contract with ξ(t) = 1(t=0) and g(0) = 1. For the simple contract
maximising (2.4) is equivalent to maximising expected power utility of

X̃ , exp

(
n∑

k=1

b̃k

)
,

i.e. we can disregard ν, r, and the passing of time – and assume that the
compounded bonus, X, is received immediately. This is a special feature
of the utility functions with constant relative risk aversion used here.
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Due to the presence of serially dependent bonuses, X̃ has a compli-
cated distribution that we cannot explicitly derive. Instead we impose two
additional approximations to facilitate a semi–analytical solution. First we
approximate the serial correlation of (b̃i)i≥0 by analysing the unrestricted
underlying random walk with positive drift (Z̃1, Z̃1 + Z̃2, . . . ):

Proposition 2.4. Were
(
b̃i|b̃0b̃i > 0

)
identically distributed for all i ≥ 0,

then

E
{

b̃0b̃1

}
= E

{
b̃0

}2
P1P

(
b̃0 > 0

)−1
.

E
{

b̃0b̃2

}
= E

{
b̃0

}2
(

P2

2
+

P 2
1

2

)
P

(
b̃0 > 0

)−1
.

E
{

b̃0b̃3

}
= E

{
b̃0

}2
(

P3

3
+

P 3
1

6
+

P1P2

2

)
P

(
b̃0 > 0

)−1
,

where Pj , P
(
Z̃1 + · · ·+ Z̃j < 0

)
, (j ≥ 1).

Remark 2.5. To reduce the number of factors in our expressions below
we choose to stop at three moments in Proposition 2.4. If desired one
could include further moments to improve accuracy, cf. Jarner and Kryger
(2009). Also, note that the proposition is valid for the true bonuses as well.

In order to proceed we need to estimate the higher order serial corre-
lations. To this end assume the following decay:

Approximation 2.6.

Corr
{

b̃i; b̃j

}
≈ ρ0,1q

(j−i)−1, (j > i ≥ 0).

ρi,j , Corr {bi; bj} , (i, j ∈ N).

q , ρ0,3

ρ0,2
.

Remark 2.7. For the tail behaviour we used q – the relationship between
step–3 and step–2 covariances. This implies that neither step–2 nor step–3
covariance contribute with our best estimates for them. This simplification
does not matter much, though, and can be easily remedied.
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Proposition 2.8. Under the correlation decay in Approximation 2.6

V̂ (n) , V
{

n∑

i=1

b̃i

}
/n

≈ V
{

b̃0

}(
1 +

2ρ0,1

1− q

(
1− 1− qn

n(1− q)

))
, (n ≥ 1),

which is increasing.

To get an analytical expression for the optimisation problem we also
need a distributional approximation for the aggregated bonus. The com-
putationally convenient choice is the normal distribution, which is also
asymptotically correct by the central limit theorem. For finite horizons,
however, it is flawed by the artificial, negative value space. Nevertheless,

Proposition 2.9. If Approximation 2.6 held, and if
∑n

i=1 b̃i were normally
distributed, then maximising expected discounted power utility (with relative
risk aversion γ ∈ [0,∞)) of the benefit W̃ (n) were equivalent to maximising
the certainty equivalent bonus

b̃CE , E
{

b̃0

}
+

1− γ

2
V̂ (n).

Remark 2.10. If γ = 1 no approximations are required.

2.3.2 Optimisation

Proposition 2.9 is now applied to find the optimal s in various cases and
analyse these. Throughout this section we keep Λ = 1/4 (having periods
of one year in mind). We consider variations in the length of the contract
(n), the bonus barrier (κ), and the coefficient of relative risk aversion (γ).

Power utility

The first observation from Table 2.1 presenting the optimal risk is that
it does not vary much with κ nor with n (except at high levels of risk
aversion). When γ < 1 the increased V̂ (n) that results from a longer
contract implies higher optimal risk – and oppositely if γ > 1. As can be
seen from Proposition 2.9 this is a concavity effect. Similarly, except at
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γ

κ n 0 0.5 1 2 5 10
1.1 1 0.277 0.275 0.273 0.268 0.254 0.231
1.1 10 0.281 0.277 0.273 0.264 0.236 0.194
1.1 30 0.283 0.278 0.273 0.261 0.226 0.178
1.1 50 0.284 0.278 0.273 0.261 0.224 0.175
1.2 1 0.276 0.273 0.269 0.262 0.239 0.201
1.2 10 0.283 0.276 0.269 0.254 0.207 0.150
1.2 30 0.287 0.278 0.269 0.250 0.193 0.133
1.2 50 0.287 0.279 0.269 0.249 0.190 0.130
1.3 1 0.276 0.272 0.267 0.258 0.227 0.181
1.3 10 0.284 0.276 0.267 0.247 0.187 0.125
1.3 30 0.289 0.279 0.267 0.241 0.171 0.110
1.3 50 0.290 0.279 0.267 0.240 0.168 0.107

Table 2.1: Optimal risk (s) based on analytical approximation.

the lowest values of γ, an increase in κ will induce lower optimal risk. In
this case the reason is that lower barriers are associated with relatively less
variable outcomes. As expected the optimal s is decreasing in γ (because
V̂ (n) increases with s, at least over the relevant range).

It is quite remarkable that even risk neutral clients prefer investment
strategies, which are only modestly aggressive, far less than the upper
boundary of 2Λ. Apparently the fat right tail of the stationary bonus
distribution associated with aggressive investment strategies does not suf-
ficiently compensate the lower marginal probability of obtaining bonus.
Across extreme parameterisations γ = 0, c = −0.2, κ = 1.5, n = 100, and
Λ ≤ 0.4 one gets an optimal s less than 0.85 · 2Λ. This modest upper limit
is astonishing, since it easily induces stationarity. In most reasonable cases
we are much further from the upper limit as implied in Table 2.1. Also,
for reasonable values of γ the optimal s is far above zero. But by taking
γ sufficiently high, one can of course get an optimum as close to zero as
desired. Most optima are in the range (0.2, 0.3); implying that for a risky
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Figure 2.2: Certainty equivalent bonus as a function of s for γ = 0.5 (full
line) and γ = 2 (dotted line). Fixed parameters: κ = 1.2, n = 30.

asset volatility, σ, of less than 20%, the bonus reserve should be geared
since then α = s/σ > 1.

The classical Merton (1969)–analogue to s is Λ/γ, which would be ∞,
0.5, 0.25, 0.125, 0.05, and 0.025 respectively in the rightmost columns of
Table 2.1. Also, in the case of Merton (1969) horizon does not matter,
but here n is clearly important (especially at high levels of risk aversion)
because bonus is positively serially dependent, so that V̂ (n) increases with
n. Altogether, except at γ = 1 the difference is enormous. This should
come as no surprise since the problems are very unlike: He considers total
return, while our objective is the payoff from a compound option.

Figure 2.2 shows the mapping s → b̃CE for a certain parametrisation,
but its appearance is quite representative across a broad range of configu-
rations. The main insight is that it is not very steep around its maximum,
implying that it is not overly important to evaluate γ correctly. In the
example from Figure 2.2, when γ = 2, the loss of terminal benefit from
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Figure 2.3: Distribution of log X̃
n . Fixed parameters: κ = 1.2, n = 30.

choosing s = 0.3, rather than the optimal s = 0.25, is far less than 1%
over 30 years.

Seemingly, the choice of barrier, κ, is not so important for low and
moderate levels of risk aversion, since the optimal s varies only little with
this parameter. As regards the implied investment strategy this is true,
of course, but the certainty equivalent bonus differs very markedly across
κ (graph not shown). As discussed in Section 2.1 entry to the pension
scheme provides an arbitrage and therefore the certainty equivalent bonus
is strictly positive.5

Figure 2.3 shows the distribution of the average bonus – demonstrating
how very adverse (as well as very favourable) outcomes are much more
likely as risk increases. Comparison to Figure 2.1 is instructive in clarifying
the effect of bonus’ serial dependence. For a lengthy discussion of this
important concept of being trapped at low funding levels, see Preisel et al.
(2010).

5But when using the normal approximation it needs not be so.
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Mean–variance utility

It may be hard to be very specific as to your choice of utility function. To
this end, as a pedagogical tool, we show in Figure 2.4 the mean–variance
diagram, which provides the set of optimal strategies for any agent with
increasing utility of the mean and decreasing utility of the variance of
aggregated bonus, and preferences over these two quantities only.

One very useful insight conveyed by Figure 2.4 is the existence of in-
vestment strategies inducing stationarity, but which are mean–variance–
inefficient. For as can be seen, as s is increased above a certain limit
(depending on the parameters) the outcome worsens drastically. This phe-
nomenon is also evident with power utility, cf. Figure 2.1. The reason is the
previously mentioned trade–off between frequent and large bonuses, which
was illustrated in Figure 2.1, combined with positive serial dependence,
which also increases with s.

Limitations and accuracy

In Section 2.4 we provide support for the conclusions above by performing
Monte Carlo simulation of the true dynamics. Applying this technique we
also find the optimal risk for a contract with several contributions. Further,
the convergence of the funding ratio is analysed.

2.4 Numerical results

This section begins by demonstrating the precision of the analytical ap-
proximation from above in Section 2.4.1. The simple contract hitherto
analysed has a single contribution only, and is thus quite dissimilar to
real life contracts. We meet this shortcoming by numerically finding the
optimal investment strategy for a contract with several contributions in
Section 2.4.2. Section 2.4.3 briefly touches upon the dependence of the
results upon the choice of model constants c and Λ. The speed at which
the system converges towards stationarity is discussed in Section 2.4.4.

Throughout we impose no approximations, except for using a finite
state space rather than all of Ω. Our preferred tool in this section is
Monte Carlo simulation, which is described briefly in Section 2.4.5.
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2.4.1 Comparison to analytical results

This section assesses the overall accuracy of the analytical approximation
by simulating the true dynamics using Proposition 2.1. First, the optima
are compared, and afterwards, to explain the differences encountered, we
compare the benefit distributions.

Power utility optima

First, in Table 2.2 we provide optima comparable to those in Table 2.1.
The comparison is quite uplifting; the difference in optimal allocations
is less than a few percentage points except at high risk aversion, where
the previous optima were too low. The main cause for this discrepancy
is the fact the value space for X was extended below 1 by matching two
moments only (i.e. probability mass was moved quadratically). Such a
transformation makes aggressive investment strategies appear artificially
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γ

κ n 0 0.5 1 2 5 10
1.1 1 99% 99% 99% 101% 102% 106%
1.1 10 98% 98% 99% 99% 104% 115%
1.1 30 99% 98% 98% 98% 102% 114%
1.1 50 100% 99% 98% 98% 100% 110%
1.2 1 99% 99% 100% 99% 103% 117%
1.2 10 99% 99% 99% 101% 111% 132%
1.2 30 100% 99% 99% 99% 109% 130%
1.2 50 102% 100% 99% 98% 106% 125%
1.3 1 99% 100% 98% 100% 107% 122%
1.3 10 100% 99% 99% 101% 116% 146%
1.3 30 102% 100% 99% 100% 115% 143%
1.3 50 104% 101% 99% 98% 111% 136%

Table 2.2: Optimal risk (s) based on simulation of true process as a per-
centage of the optima in Table 2.1.

unattractive when the utility function is very concave.
Consequently, the true optima differ far less across γ than did those

in Section 2.3, which makes it easier to embrace individuals with different
appetites for risk in a common investment policy.

At the outset it is not obvious if short or long contracts are optimised
more precisely when applying the analytical approximation. The longer
the contract in question the better the normality approximation works.
Oppositely, the correlation approximation is worse for long contracts be-
cause the correlations decay slower than at rate q. From Table 2.2 we
conclude that long–contract–optima are estimated more precisely, i.e. the
normality assumption matters more (at least for the levels of risk aversion
where the errors are more serious).6

The qualitative conclusions from Section 2.3 regarding n, κ, and γ hold
true.

6In making this conclusion we disregard the case n = 1.
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The accuracy of the analytical approximation

In terms of optima we are pleased with the accuracy of the analytical ap-
proximation. The approximations were made at a more primitive level,
however, and in order to explain the deviations encountered our analy-
sis proceeds at that level. To this end consider Figure 2.5 comparing
the true (simulated) distribution of X to that obtained via the analytical
approximation. Clearly, the normality approximation in Proposition 2.9
brings about a rather substantial difference between the two by artificially
extending the support of X below one. In fact, informal experiments in-
dicate that almost the entire difference between the two distributions in
Figure 2.5 stems therefrom, whereas for reasonable horizons, the effect
of the approximation regarding serial correlation (Approximation 2.6) is
much less. This holds in spite of the latter approximation drastically reduc-
ing the true variance of X and thus implying a lighter right tail. Finally,
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the Laplace approximation is rather innocuous – it brings about slightly
fatter tails, thus partially offsetting the aforementioned error.

2.4.2 A complex contract

In this section we will find the optimal risk for a contract with contributions
in every period. This construction implies that later bonuses are more
important than earlier ones because they ”act” on a larger amount. For
simplicity we assume that the contribution vector is

ξ , (1, exp(η + r), . . . , exp ((η + r)n))

for some fixed contribution inflation net of interest, η. Then the terminal
benefit is

W (n) = exp(nr)
n∑

j=0

exp


ηj +

n∑

k=j+1

bk


 .

We perform the same simulations as above and calculate expected power
utility of W (n). For illustrative purposes we use the admittedly high net
contribution inflation η = 0.1, but the qualitative conclusions hold for
η = 0 as well.

The optima are shown, indirectly, in Table 2.3. It turns out that the
consequence of increasing net contribution inflation, η, is similar to the
effect of reducing n: At low risk aversions the optimal s decreases as η
increases, and vice versa. The simple explanation for this is that as η
increases more emphasis is put on the last bonus allotted, and thus on the
marginal properties of F , while the serial dynamics matters less.

Finally, notice two further points about the optima. First, at low levels
of risk aversion the differences between η = −∞ (the simple contract) and
η = 0.1 are small. This is because for such agents it is almost exclusively
the mean bonus that determines expected utility. Consequently the ana-
lytical approximation can be applied with high accuracy to this, somewhat
different, problem as well. Second, because serial correlation is downplayed
with the approximation, the more risk-averse clients’ optima increase sub-
stantially – in turn making it even more ”feasible” to pool individuals with
different attitudes towards risk in a common investment policy. Third, the
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γ

κ n 0 0.5 1 2 5 10
1.1 10 99% 100% 101% 102% 106% 110%
1.1 30 99% 100% 101% 103% 107% 112%
1.1 50 98% 100% 101% 103% 107% 113%
1.2 10 99% 100% 102% 104% 112% 121%
1.2 30 98% 100% 102% 106% 116% 127%
1.2 50 97% 100% 103% 107% 118% 129%
1.3 10 98% 100% 103% 107% 118% 131%
1.3 30 96% 100% 103% 110% 125% 141%
1.3 50 95% 100% 104% 112% 128% 145%

Table 2.3: Optimal risk (s) with net contribution inflation η = 0.1 as
a percentage of the optima with η = −∞ (the simple contract, cf. Ta-
ble 2.2). The optima can be backed out using Tables 2.1 and 2.2. Based
on simulation of true process.

implied loss of certainty equivalent from choosing a slightly suboptimal s
is almost zero because the distribution of X is relatively much narrower
when there are several contributions. This property further assists the
formation of an investment collective.

2.4.3 Sensitivity analysis

The optimisations above were all performed with a fixed market price of
risk, Λ = 1/4. In practice it is not widely agreed what the magnitude of
this quantity might be. Therefore we briefly investigate how the results
depend on that vital parameter. Also, pension funds may exist in regimes
differing w.r.t. liquidation rules. Hence, we also examine how our results
are affected by choosing a non–zero constant for c. As c can probably be
observed for every entity this part of the sensitivity analysis does not relate
to the insecurity in applying the results; rather to the optima’s robustness
towards different environments. We have fixed n = 30, κ = 1.2 in this
section. For simplicity we perform the sensitivity analysis for the simple
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contract only.
As expected the magnitude of the optimal s is very sensitive towards

the return/risk-relationship of the financial market. We do not provide
the full results, but with γ = 0 one gets the optima 0.223, 0.287, 0.356 at
Λ = 0.2, 0.25, 0.3 respectively. Similarly at γ = 10 the optimal s varies
almost as radically, being 0.148, 0.174, 0.199 respectively market prices of
risk Λ = 0.2, 0.25, 0.3. Clearly, as opposed to the classical rule of Merton
(1969), optimal allocation to risky assets is not linear in Λ.

Increasing c corresponds to operating closer to the boundary – all else
equal. Therefore the effect of increasing c is similar to that of lowering
κ. The numbers confirm this conjecture and are available upon request.
Notice, however, that both κ − (1 + c) and (κ − (1 + c))/κ matter, so no
direct translation can be made.

2.4.4 Speed towards stationarity

Assuming that it is desirable to obtain fairness via stationarity it is con-
ceivably also attractive to approach such invariance as quickly as possible.
For if stationarity is approached too slowly, today’s clients will not even
approximately sample the same distribution as will future clients. And in
that case, stationarity is, more or less, in vain (although there is obviously
no connection between a swift approach towards a particular stationary
distribution and the desirability thereof).

Casual experiments suggest that for low initial fundings stationarity is
approached quicker with high values of s, whereas for high values of F0

choosing s low results in the faster move towards the invariant distribution.
The reason for this difference is the upward drift in F .

The simulations also confirm the presupposition that stationarity is
approached faster when (F0+ − 1) / (κ− 1) is not too low, nor too high.
This ratio, however, does not affect the limiting convergence rate, which
is determined by s solely. As an example, see Figure 2.6 showing – at a
certain parametrisation – how the stationary distribution of the funding
ratio is approached rather quickly.

The rate at which a stationary Markov chain moves towards its invari-
ant distribution can in principle be bounded analytically (see e.g. Baxen-
dale (2005)), but the bounds turn out useless in our case.
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2.4.5 Technical description of the Monte Carlo simulation

The simulations were done in the freeware statistical computing package
R. To evaluate the hypergeometric functions we have used the package
hypergeo. The stationary distribution of F̃ (from Proposition 2.2) was
stratified using a trapezoidal method. To get a proxy for the stationary
distribution of F we took 200 Gaussian steps ahead from that stratified
distribution.7 We then simulate F a further n periods ahead to estimate
X.

7For virtually any choice of (s, κ) 200 steps seems to be more than enough – based
on the distance between consecutive (pre-bonus) funding ratio distributions – to get
an invariant distribution. In fact the improvement after 20 steps is negligible for most
parameter sets and 50 steps seems to be enough for almost all reasonable parameter-
isations. Starting from a fixed funding ratio, on the other hand, a comparable result
requires far more time steps.
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Setting the seed manually allows all results to be reproduced. Through-
out we did 100,000 trials. The value space for s was approximated by the
set of equidistant points {0.001, 0.002, . . . , 2Λ− 0.001}.

2.5 Concluding remarks

2.5.1 The bonus option

An important issue is whether or not to include the bonus option on the
liability side of the balance sheet. From a strictly legal point of view one
can absolutely argue in favour of excluding the option, since pension funds
are rarely strictly obliged by law to follow a particular bonus policy, even if
it has been made public. Grosen and Jørgensen (2000) call this a counter
option (held by the company). In addition, rules are subject to change
for legal, political or strategic reasons. However, if the bonus option is
disregarded, the principle of equivalence states that we must have g = 1
for the set of pure savings contracts defined by (2.3). Alternatively, one
could take a more pragmatic approach to accounting to justify the choice
of some g < 1 without explicitly regarding the bonus option. It would
imply that new entrants contribute explicitly to the bonus reserves, even
though they hold no strict statutory claim on it.

If the option is included its value depends on whether or not the scheme
is open to new members or not. If the scheme is closed the value of the
bonus option as a whole equals the bonus reserve, but the total option value
may be disaggregated into different cohorts’ shares thereof. In a scheme
that continues to take in new contributions it is not obvious whether the
value of the present members’ claim on bonus has a larger or smaller value
than the bonus reserve.

2.5.2 Policy implications

To apply the results one must choose a bonus barrier. This choice is a
trade–off between obtaining a desirable stationary distribution (high bar-
rier) and attaining fairness quickly (low barrier). After picking appropriate
values for contract length, relative risk aversion, and possibly net contri-
bution inflation one only needs to estimate the volatility and market price
of risk of a suitable portfolio of risky assets.
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The implied optima from cases with very unlike values of γ are not
very different. Further, the implied difference in utility between quite
different investment strategies is relatively modest, which makes it possible
to embrace such different attitudes towards risk in a common investment
policy. For such an enterprise a proportion around Λσ−1 of the bonus
reserve invested in risky assets seems to work well for almost all cases.
Alternatively, one could set up separate funds for individuals with varying
appetite for risk.

2.6 Proofs

Proof of Proposition 2.1. Apply Itô’s formula to F − (1 + c).

Proof of Proposition 2.2. Let f ∈ (1 + c, κ], x ∈ (1 + c,∞),
and ν(f) = (1 + c) + (f − (1 + c))em.

P
(

F̃1− ≤ x
∣∣∣ F̃0+ = f

)
= P

(
(f − (1 + c))eZ̃0 + (1 + c) ≤ x

)

= P
(

Z̃0 ≤ log
(

x− (1 + c)
f − (1 + c)

))

=
∫ log

(
x−(1+c)
f−(1+c)

)

−∞

λ

2
e−λ|z−m|dz

=





e−λm

2

(
x−(1+c)
f−(1+c)

)λ
, x ≤ ν(f)

1− eλm

2

(
x−(1+c)
f−(1+c)

)−λ
, x > ν(f)
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Equation (20) of Preisel et al. (2010) and integration by parts yields

P
(
F̃1− ≤ x

)

=
∫ κ

1+c
P

(
F̃1− ≤ x

∣∣∣ F̃0+ = f
)

dP
(
F̃0+ ≤ f

)

=
[
P

(
F̃1− ≤ x

∣∣∣ F̃0+ = f
)
P

(
F̃0+ ≤ f

)]κ

1+c

−
∫ κ

1+c
P

(
F̃0+ ≤ f

)
dP

(
F̃1− ≤ x

∣∣∣ F̃0+ = f
)

= P
(

F̃1− ≤ x
∣∣∣ F̃0+ = κ

)
+

λ− ρ

2
(κ− (1 + c))−ρ

[
eλm(x− (1 + c))−λ

∫ (κ−(1+c))∧((x−(1+c))e−m)

0
fρ+λ−1df

+e−λm(x− (1 + c))λ

∫ κ−(1+c)

(κ−(1+c))∧((x−(1+c))e−m)
fρ−λ−1df

]

=





λ−ρ
λ

(
x−(1+c)
κ−(1+c)

)ρ
, x ≤ ν(κ)

1− ρeλm

λ+ρ

(
x−(1+c)
κ−(1+c)

)−λ
, x > ν(κ)

Proof of Proposition 2.3. To see that any moment of b̃0 exists let n ≥ 1,
ε ∈ (0, (1 ∧ λ)/n). Then yε/ε > log y, (y > 0). Hence

lim
x→∞

∫
(x− (1 + c))−λ−1 (log x)n dx ≤ ε−n lim

x→∞

∫
(x− (1 + c))−λ−1xεndx

≤ ε−n lim
x→∞

∫ [
(x− (1 + c))−λ−1

((x− (1 + c))εn + (1 + c)εn)] dx

< ∞ since εn− λ < 0.

To derive the moments define for q 6= 0, j ∈ N, and x > 1

Hj(q, x) ,
∫

(x− 1)q−1 (log x)j dx.
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Then

H1(q, x) =
(x− 1)q

q
log x− xq

q2
F2,1 (−q,−q, 1− q, 1/x) .

→x→∞ 0 for q ∈ (−∞, 0).

H2(q, x) =
2xq

q3
[F3,2 ((−q,−q,−q) , (1− q, 1− q) , 1/x)

−qF2,1 (−q,−q, 1− q, 1/x) log x] +
(x− 1)q

q
(log x)2

→x→∞ 0 for q ∈ (−∞, 0),

where Fi,j denotes the generalised hypergeometric function, cf. Weisstein
(2008).

E
{

b̃0

}
=

∫ ∞

κ
log(x/κ)dP

(
F̃0− ≤ x

)

=
ρ(λ− ρ)

λ
(κ− 1)−ρ

∫ (κ−1)em+1

κ
(x− 1)ρ−1 log xdx

+
λρeλm

λ + ρ
(κ− 1)λ

∫ ∞

(κ−1)em+1
(x− 1)−λ−1 log xdx

− log κP
(
F̃0− ≥ κ

)

=
ρ(λ− ρ)

λ
(κ− 1)−ρ [H1 (ρ, (κ− 1)em + 1)−H1 (ρ, κ)]

− λρeλm

λ + ρ
(κ− 1)λH1 (−λ, (κ− 1)em + 1)− ρ

λ
log κ.
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Similarly,

E
{

b̃2
0

}
=

∫ ∞

κ
(log(x/κ))2 dP

(
F̃0− ≤ x

)

=
∫ ∞

κ

[
(log x)2 + (log κ)2 − 2 log κ log x

]
dP

(
F̃0− ≤ x

)

=
∫ ∞

κ
(log x)2 dP

(
F̃0− ≤ x

)
+

ρ

λ
(log κ)2

− 2 log κ
[
E

{
b̃0

}
+

ρ

λ
log κ

]

=
ρ(λ− ρ)

λ
(κ− 1)−ρ [H2 (ρ, (κ− 1)em + 1)−H2 (ρ, κ)]

− λρeλm

λ + ρ
(κ− 1)λH2 (−λ, (κ− 1)em + 1)

− ρ

λ
(log κ)2 − 2 log κE

{
b̃0

}
.

Proof of Proposition 2.4. Let (Z̃i) be an i.i.d. sequence. For i ∈ N intro-

duce Yi , log
(

κ−1
Fi+−1

)
satisfying the recurrence Yi+1 =

(
Yi + Z̃i+1

)+
.

Define

Sj ,
j∑

i=1

Z̃i, (j ≥ 1).

Pj , P (Sj ≤ 0) , (j ≥ 1).

τj , P (S1 < 0, · · ·, Sj−1 < 0, Sj ≥ 0) , (j ≥ 1).

τ(s) ,
∞∑

j=1

τjs
j , (0 ≤ s ≤ 1).

Pj gives the probability that the underlying, unrestricted random walk,
S, is negative j periods ahead. τj is the probability that the unrestricted
random walk stays negative before time j and goes positive (for the first
time) at time j. Given we start at full funding, F0+ = κ and thus Y0 = 0,
it is also the probability that bonus is awarded at time j, but not at
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times 1, . . . , j− 1. τ(·) is the probability generating function for the (non-
delayed) regeneration time of Y with density (τj)j . By differentiating τ(·)
and evaluating at zero we obtain the well-known relation

τjj! = τ (j)(0), (j ∈ N) .

Further, by Proposition 1 of Feller (1971), p. 413

τ(s) , 1− exp


−

∞∑

j=1

sj

j
Pj


 , (0 ≤ s ≤ 1).

Differentiation of this expression yields

τ (1)(s) = (1− τ(s))
∞∑

j=1

sj−1Pj .

τ (2)(s) = −τ (1)(s)
∞∑

j=1

sj−1Pj + (1− τ(s))
∞∑

j=2

(j − 1)sj−2Pj .

τ (3)(s) = −τ (2)(s)
∞∑

j=1

sj−1Pj − 2τ (1)(s)
∞∑

j=2

(j − 1)sj−2Pj

+ (1− τ(s))
∞∑

j=3

(j − 1)(j − 2)sj−3Pj .

And evaluating at 0 yields

τ1 = P1.

τ2 =
−P 2

1 + P2

2
.

τ3 =
2P3 + P 3

1 − 3P1P2

6
.

Now consider the convolutions

F ∗j(k) , P (T1 + · · ·+ Tj = k) , (k ≥ j ≥ 1),

where Ti : Ω → N is the ith non-delayed regeneration time for Y , (i ∈ N+).
The Ti are i.i.d. according to (τj)j≥1. Hence F ∗j(k) is the probability that
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the jth regeneration (and thus the jth bonus) occurs at time k. Writing
the convolutions in terms of the τjs gives

F ∗1(k) = τk, (k ≥ 1).

F ∗j(k) =
k∑

i=1

F ∗(j−1)(i)τk−i, (k ≥ j > 1).

In particular,

1∑

j=1

F ∗j(1) = τ1

= P1.

2∑

j=1

F ∗j(2) = τ2 + τ2
1 + 0

=
P2

2
+

P 2
1

2
.

3∑

j=1

F ∗j(3) = τ3 + 2τ1τ2 + F ∗3(3)

= τ3 + 2τ1τ2 + τ3
1

=
P3

3
+

P 3
1

6
+

P1P2

2

Writing the ”joint bonus probability” in terms of the convolutions yields

P
(
b̃0b̃i > 0

)
P

(
b̃0 > 0

)−1
= P

(
F̃0+ = F̃i+ = κ

)
P

(
b̃0 > 0

)−1

= P
(

F̃i+ = κ
∣∣∣ F̃0+ = κ

)

= P (T1 = i) + · · ·+ P (T1 + · · ·+ Ti = i)

=
i∑

j=1

F ∗j(i), (i ≥ 1).
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Finally, use the assumption that ∀i ≥ 0 :
(
b̃i|b̃0b̃i > 0

)
are identically dis-

tributed. For then, since the random variables (b̃0|b̃0b̃i > 0) and (b̃i|b̃0b̃i > 0)
are independent (due to regeneration at b̃0 > 0), we may calculate

E
{

b̃0b̃i

}
= P

(
b̃0b̃i > 0

)
E

{
b̃0b̃i

∣∣∣ b̃0b̃i > 0
}

= P
(
b̃0b̃i > 0

)
E

{
b̃0|b̃0b̃i > 0

}
E

{
b̃i|b̃0b̃i > 0

}

= P
(
b̃0b̃i > 0

)

 E

{
b̃0

}

P
(
b̃0 > 0

)



2

=
i∑

j=1

F ∗j(i)E
{

b̃0

}2
P

(
b̃0 > 0

)−1
, (i ≥ 1).

Proof of Proposition 2.8. By recursion

V





n∑

j=1

b̃j



 = V

{
b̃0

}

n + 2

n−1∑

i=1

n∑

j=i+1

Corr
{

b̃i; b̃j

}

 .

Use Approximation 2.6 and the familiar property of partial sums of geo-
metric series

n∑

i=0

qi =
1− qn+1

1− q
.

to derive

n∑

j=i+1

Corr
{

b̃i; b̃j

}
= ρ0,1q

−i−1




n∑

j=0

qj −
i∑

j=0

qj




= ρ0,1q
−i−1 1− qn+1 − 1 + qi+1

1− q

=
ρ0,1

1− q

(
1− qn−i

)
.
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Finally, use this expression to calculate

n−1∑

i=1

n∑

j=i+1

Corr
{

b̃i; b̃j

}
=

ρ0,1

1− q

n−1∑

i=1

(
1− qn−i

)

=
ρ0,1

1− q

(
n− 1− qn

n−1∑

i=1

q−i

)

=
ρ0,1

1− q

(
n− 1− qn

(
1− q−n

1− q−1
− 1

))

=
ρ0,1

1− q

(
n− 1− qn

1− q−1

(
q−1 − q−n

))

=
ρ0,1

1− q

(
n +

1− qn

q − 1

)
.

Dividing through by n we get

V





n∑

j=1

b̃j



 /n = V

{
b̃0

}(
1 + 2

ρ0,1

1− q

(
1 +

1− qn

n(q − 1)

))
.

Proof of Proposition 2.9. The certainty equivalent of W̃ is

(1− γ)E





[
e−

∫ n
0 δsdsW̃ (n)

]1−γ

1− γ

∣∣∣∣∣∣∣
F0





1/(1−γ)

= e−
∫ n
0 δsdsE

{
exp

(
n∑

k=1

(
r + b̃k

))∣∣∣∣∣F0

}

= e−
∫ n
0 δsds exp

(
nr +

n∑

k=1

(
E

{
b̃0

}
+

1− γ

2
V̂ (n)

))
,

demonstrating that the certainty equivalent bonus is E
{

b̃0

}
+ 1−γ

2 V̂ (n).
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3. Fairness vs. efficiency of pension
schemes

Background. The paper in this chapter is a slightly
updated version of Kryger (2010a). I thank an anonymous
referee for useful comments and suggestions. I am also
indebted to David McCarthy, whose ideas on fairness in-
spired the preliminary reflections in Section 3.3. The paper
was presented at the AFIR / LIFE Colloquium in Munich,
September 2009.

Abstract. The benefits that members of with–profits
pension schemes obtain are determined by the scheme de-
sign and the controlled funding level at the time of entry.
This paper examines efficiency and intergenerational fair-
ness of with–profits pension schemes.

3.1 Introduction

The price of a traded security reacts promptly to changes in the funda-
mental determinants of its value. As opposed to this, in spite of fair value
accounting standards, the price of entering a with–profits pension scheme
is typically fixed, regardless of changes to the financial outlooks for partic-
ipation.

The manifestation of this paradox is that members contribute equally
to the collective bonus reserve – even when their prospects for enjoying
it are vastly different. In particular, the value of the implicit, compound
bonus option that comes with membership depends substantially on the
(random, yet controlled) funding ratio at the time of entry. This difference
is a source for systematic intergenerational redistribution, which may be
seen as unfair.

The aim of this study is to discuss and quantify the loss of efficiency
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associated with imposing bounds on the pension fund’s design (imposed in
order to achieve a certain degree of intergenerational fairness). Or reversely
put: to analyse the loss of fairness stemming from restrictions imposed for
the sake of reaching a specific level of efficiency. This trade–off should be of
utmost importance to any regulator or altruistic board. In order to discuss
the problem we consider a with–profits pension scheme that does take
intergenerational redistribution into account, thereby constraining scheme
design.

In a pension context intergenerational redistribution has – to our knowl-
edge – been addressed mainly by Døskeland and Nordahl (2008a). Their
model, however, is so vastly different from the one presented below that
comparison is futile. They conclude that it is unfavourable to take part
in the accumulation phase of a pension fund, and vice versa. One particu-
lar distinction between Døskeland and Nordahl (2008a) and the model of
the present paper is that they consider overlapping generations explicitly
whereas we deal with disjoint generations. Overlapping or contemporary
generations can easily be studied within this paper’s framework, however.
Hansen and Miltersen (2002) also briefly discuss redistribution between
different generations in the presence of a collective bonus reserve.

There is a rich literature – initiated by Briys and de Varenne (1994)
– on the related problem of constructing contracts that are fair between
owners and policyholders as a whole. That setup could be interpreted as
imposing intergenerational fairness, albeit in a rather different way from
what we have in mind. Also, none of those papers distinguish between
the set of fair contracts (because they value under a unique equivalent
martingale measure this would not make sense).

3.1.1 Outline

Section 3.2 introduces the underlying mathematical model. The measure-
ment of fairness and efficiency is discussed in Section 3.3, where some opti-
misation criteria are subsequently suggested. These criteria are illustrated
through Monte Carlo simulation in Section 3.4, while Section 3.5 considers
an extension of the model, which reduces redistribution markedly. Finally,
Section 3.6 provides a discussion of the preceding modelling and results,
and gives concluding remarks.
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3.2 Model

We consider a pension fund, which is owned by its present members. The
board, which designs the scheme, represents future entrants as well, al-
though these have no formal stakes in the scheme yet. Thus, the board
can be seen as a device for solving the coordination problem that arises in
any intergenerational enterprise. Such fairness motives are non-standard
in the literature, but highly relevant from a practical perspective. Re-
cently, the concept has regained popularity through the book by Akerlof
and Shiller (2009).

Rather than starting from scratch the framework of Kryger (2010c)
is used, but as opposed to that paper the concern is with the finite time
properties of the system. The model is summarised below, and Section 3.5
introduces various extensions that were not dealt with in previous work.

The market values of the scheme’s assets and liabilities at time t ≥ 0 are
denoted At respectively Lt, while the funding ratio is derived as F , A/L.
Between reporting periods, indexed by 0, 1, 2, . . . , the asset value follows
the controlled process

Ai > 0, dAi+t = Ai+t ((r + πi+tΛσ) dt + πi+tσdBi+t) , (i ∈ N0, t ∈ [0, 1)) ,

where r is the constant risk free interest rate, Λ > 0 the constant mar-
ket price of risk, σ > 0 the constant market volatility, and π the time-
varying, controlled proportion of assets allocated to risky assets. B is a
one-dimensional standard Brownian motion on a probability space (Ω,F,P)
driving the financial market, which is frictionless and complete as seen
from the scheme’s point of view. Individuals are assumed, however, to
have limited access to the financial markets. In particular, an individual’s
guaranteed future benefits cannot be sold or pawned.

In order to avoid insolvency it is required that funding is strictly above
one at all times. Hence, we assume that F0 > 1, and that the investment
strategy is Constant Proportion Portfolio Insurance (CPPI), that is

πt = α
At − Lt

At
, (t ≥ 0),

where the so–called multiplier, α > 0, is chosen by the board. Liabilities
develop deterministically between reporting times:

Li > 0, Li+t = Lie
rt (i ∈ N0, t ∈ [0, 1)) .
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Consequently, the funding ratio process follows the discrete time controlled
Markov process

F0+ > 1, Fi− =
(
F(i−1)+ − 1

)
exp(Zi) + 1, (i ∈ N), (3.1)

where (Zi)i∈N is an i.i.d. sequence with Z1 ∼ N
(
sΛ− s2/2, s2

)
, and s ,

ασ is denoted ”risk” as it measures the volatility of the bonus reserve,
A− L.

At the end of each reporting period, between times i− and i+, benefits
fall due, new contributions are paid in, and members are awarded bonus.
This brings about jumps in asset and liability values, and consequently in
the funding ratio. These three types of updates are as follows:

Πi ∈ [0, 1] denotes the proportion of existing liabilities paid out as
benefits (e.g. expiring policies), and similarly, Γi ≥ 0 is the amount of
new contributions (e.g. new underwritings) relative to existing liabilities.1

These contributions are converted into liabilities giΓiLi− for some fac-
tor gi ∈ (0, (Fi− + Γi − 1) /Γi), which is the proportion of the contribution
that buys guaranteed benefits. Hence, 1 − gi is the share that – implic-
itly - buys a compound bonus option. Finally, existing liabilities, Li− , are
increased by a bonus factor exp(bi) ≥ 1, which is determined by using all
assets in excess of κLi− (1 + giΓi −Πi) , for a bonus barrier, κ > 1, to en-
hance guarantees. This barrier is also determined by the board. With the
described approach one arrives at the post bonus funding ratio

Fi+ =
Ai− + Li−(Γi −Πi)
Li− (1 + giΓi −Πi)

∧ κ

=
Fi− + Γi −Πi

1 + giΓi −Πi
∧ κ, (i ∈ N). (3.2)

The bonus, bi, that is in fact allotted such that

Li+ = Li− ((1−Πi) exp (bi) + giΓi) , Ai+ = Ai− + Li− (Γi −Πi exp (bi)) ,

and (3.2) is satisfied, is

bi =

{
log Fi−−Γi(κgi−1)

κ−Πi(κ−1) , Fi− > κ−Πi(κ− 1) + Γi (κgi − 1)

0, otherwise
, (i ∈ N).

(3.3)
1If Γi = 0 and Πi = 1 the scheme closes, and this case is not taken into account

below.
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Note that the new contributions do not earn bonus immediately, whereas
existing contracts are credited. As bonus is, partly, intended to pay for
disposable capital, this is only natural.

In this paper we consider contracts, in which members contribute the
nominal amount ξ(t) = exp ((η + r)t) at time t, for some ”net contribution
inflation”, η. This is converted into a guaranteed benefit at horizon time
n ≥ t of gtξ(t) exp (r(n− t)) with present value gtξ(t) – plus a compound
bonus option. The object of interest is the (to individuals) non-tradeable,
discounted terminal benefit

X , e−nr
n∑

j=0

gjξ(j)er(n−j)e
∑n

k=j+1 bk

=
n∑

j=0

gje
ηje

∑n
k=j+1 bk . (3.4)

If necessary, we will equip X with arguments (s, κ, F0+) representing the
”risk”, the bonus barrier, and the initial funding ratio respectively. In order
to consider intergenerational redistribution we use the rule gi = 1 for all
i in the main part of the paper. Section 3.5 explores the consequences of
applying other rules.

Actual life insurance contracts give rise to interest rate risk, which is
hedgeable in competitive markets, and mortality risk. Also, benefits are
typically not received as a lump sum. While none of those factors are
considered X can be seen as a proxy for the value of a whole life annuity
bought at market terms at time n.

Contributions are compulsory, and there is no free policy option nor
any surrender option. This leaves no scope for speculation (via timing of
contributions or lapses) against the scheme, i.e. the other members. In
Sections 3.2.1 and 3.3 we assume that

Γi = Πi max {Fi− , κ, } /κ,

so that net inflow is positive. This assumption is merely required to get
nicer analytical expressions, and the qualitative conclusions are valid in
much more flexible scenarios. In the analysis in Sections 3.4 and 3.5 this re-
quirement is not necessary either. Administrative costs, transaction costs,
taxes, etc. are disregarded throughout.
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From (3.4) we observe that when g is constant it is the release of
bonus that determines the outcome. Therefore, the properties of bonus
are discussed next.

3.2.1 Properties of bonus

In order to analyse the scheme consider the time until next bonus, as seen
from an arbitrary time i ∈ N,

τ(θ; s) , min {j ≥ 1 : bi+j > 0|Fi+ = (κ− 1)θ + 1}, (θ ∈ (0, 1], s > 0) ,

where θ measures how far the funding ratio is from the bonus barrier.
With this specification the choice of κ does not determine when bonus is
awarded, cf. (3.1) and (3.2). The continuous version of τ is the stopping
time

τ̃(θ, s) , inf
{

t > 0 : Bt ≥ − log θ

s
+ t (s/2− Λ)

}
, (θ ∈ (0, 1), s > 0) .

Due to discrete time sampling of the funding ratio

τ ≥ dτ̃e ≥ τ̃ ,

but the approximation error is fairly small, when the barrier is ”distant”, or
the investment strategy is cautious, i.e. θ or s is low (or if time is measured
in ”small” units).

From e.g. Karatzas and Shreve (2000), p. 197 and Preisel et al. (2010)
the distribution function of τ̃(θ, s) is

Φ
(

log θ

s
√

t
+
√

t(Λ− s/2)
)

+ θ
s−2Λ

s Φ
(

log θ

s
√

t
−
√

t(Λ− s/2)
)

, (t > 0).

For s ≤ 2Λ this is an inverse Gaussian distribution, but otherwise τ̃ is
defective.

A mere focus on the time until the first bonus allotment certainly has
its shortcomings, but it is a nice way of illustrating that cautious strategies
(corresponding to low values of s) are unattractive on short horizons – in
particular if initial funding is low. This is essentially because of the near–
absence of downside risk, i.e. if initial funding is low the best one can
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Figure 3.1: The distribution of the non-delayed regeneration time τ (1; s) .
Fixed parameters: Λ = 0.25.

hope for is to get a single bonus. On longer horizons cautious strategies
are more attractive, precisely because of downside risk. To realise this
one must study τ(1, s), the time between bonus allotments, which exhibits
negative first order stochastic dominance with respect to s, i.e. smaller
values of s are preferable. Its distribution can be calculated exactly via
the method in Jarner and Kryger (2009), and is shown in Figure 3.1 for
four different investment strategies.

A natural supplement to the properties of bonus allotment is the (one-
step) conditional bonus with distribution

P (bi+1 ≤ y |Fi+ = (κ− 1)θ + 1, bi+1 > 0)

= 1−
Φ

(
Λ− s

2 + s−1 log θ − s−1 log κey−1
κ−1

)

Φ
(
Λ− s

2 + s−1 log θ
) , (y > 0) ,

which follows almost immediately from Preisel et al. (2010). The condi-
tional bonus exhibits first order stochastic dominance in s (and κ and θ),
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so that higher values are preferable.
Altogether, cautious investment strategies do not give rise to much

bonus on short horizons, especially if initial funding is low, whereas on
longer horizons the matter is more ambiguous – but with both very cau-
tious and very aggressive strategies inducing only little bonus. As for the
barrier – when initial funding is (κ − 1)θ + 1, higher barriers are always
preferable. The board could, however, encounter a fixed initial funding,
and be asked to set a barrier subsequently, which would complicate mat-
ters. This is because, for short horizons, more bonus would be given with
low barriers, in particular if initial funding is low. But as the horizon
increases higher barriers again become more attractive.

For both design parameters one should also have in mind that in case
of several contributions (η > −∞) the final wealth distribution depends
more on later bonuses than on early ones, cf. (3.4). Therefore, the long-run
properties are more important than this discussion perhaps suggests.

3.3 Fairness and efficiency

In this section we discuss the measurement of fairness and efficiency. Subse-
quently, some tangible measures of these two vague notions are introduced.

3.3.1 Preliminary reflections

Since we consider a compulsory scheme the design should satisfy that al-
most every outcome is acceptable for almost every one. Hence, it is re-
quired that – on the vast majority of paths and for almost all types of
members – the degree of redistribution between different generations is
low, while the outcome must at the same time be satisfactory for almost
everyone. We make the precise materialisation of these ideas clear shortly.

To further approach a decision rule we rely on the original position of
moral philosophy (see Rawls (1971)), which states that any design agreed
upon by agents whose identity is unknown to themselves during the bar-
gaining is fair.

It is clear that not all generations can get the same outcome. And as
hinted above it is probably not desirable to follow a very cautious invest-
ment strategy with the aim of approximating such equality. The ques-

56



tion is then, how the board should evaluate the inherent redistribution
against a possible advantage from investing more aggressively. Although
such trade–offs are acknowledged in most economic analysis, they are typ-
ically disregarded.

In order to pick fairness and efficiency measures we consider a hypo-
thetical bargaining between two members entering the scheme at funding
ratios κ and f ∈ (1, κ] respectively, but with the caveat that they must
design the system without knowing who enters at which funding. f may
depend on the design parameters (s, κ), as will be explained below, but
the notation f is used as a shorthand nevertheless, since the meaning will
always be clear from the context. The generations represented by the two
members are taken to experience identical institutional conditions during
their membership periods, but their financial markets are assumed to be
governed by independent versions of B, and f is taken to be independent
of those. This means that a proper, although not imperative, interpreta-
tion of the setup is that the member with funding f enters first, and then
after at least n years the other member enters at a time with full funding.

As for the actual measurement, the initial dogma of this section and the
idea of the original position guides us. Efficiency of the outcome should
be associated with the distribution of the terminal benefit, which must
overcome some minimum target with a high probability. Fairness ought
to be related to the ratio of the terminal benefits, which we want to be
close to one with a high probability. Non-overlapping generations are com-
pared, and the ratio of the benefits of two such disjoint generations has a
wider distribution than in the case of overlapping generations. Thus, in
this respect the discussion in this paper is ”worst case” in terms of inter-
generational subsidisation.

The two most widely applied measures for evaluating a monetary ran-
dom variable is measuring its arbitrage-free value or its expected utility.
We discard the former approach because of the assumed non-tradeability
of the guarantee, and we discard the latter because we prefer to ensure
attractive outcomes with a high probability.

3.3.2 Two formulations of the problem

Regarding the choice of initial fundings to compare, it is uncontroversial to
use κ as the higher level. As for the lower value one may choose to consider
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a constant. In this case it is meaningful to compare different barriers, for
there is a trade–off between high and low barriers – as discussed above.

Alternatively, we could let f = 1 + (κ − 1)θ for some θ ∈ (0, 1) as in
Section 3.2.1, in which case higher barriers are more attractive for both
parties, so that it is not possible to optimise over κ. Still, to properly
differentiate between candidates for the optimal investment strategy we
let θ depend on s, since a high distance from the barrier is more likely
with more aggressive strategies. To this end, fix an ε ∈ (0, 1), and choose
θ(s) such that P (1 + (κ− 1)θ(s)) = ε in stationarity. From Preisel et al.
(2010) we then get

θ(s) =
(

ε

1− sρ/
√

2

)ρ−1

, (0 < s < 2Λ),

where ρ is the unique non-zero solution to

1− ρ2s2/2 = exp (−ρs(Λ− s/2)) , (0 < s < 2Λ).

For s ≥ 2Λ no stationary distribution exists, therefore we truncate θ at
the value corresponding to the somewhat arbitrary s = 1.99Λ.

The former setting with a fixed f corresponds to an existing scheme
encountering a (low) funding ratio, and wishing to design a fair and efficient
scheme going forward. On the other hand, the latter formulation, where
f depends on s and κ, covers the case of a new scheme with all the good
intentions at the outset, but with an exogenously fixed κ. We refer to the
two settings as ”case A” and ”case B” respectively.

3.3.3 Measuring fairness and efficiency

This section presents our choices for measuring fairness and efficiency. Sub-
sequently the two measures are combined in order to form two different
constrained optimisation problems.

Fairness

To measure intergenerational fairness we focus on a threshold for the ratio
of the respective terminal benefits:
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P
(

X (s, κ, f)
X (s, κ, κ)

> 1− δ

)
, (3.5)

where 0 ≤ δ < 1 measures the maximum permitted redistribution (up
to some probability). If the generations were contemporary the ratio in
question would be bounded by one. Although studying disjoint generations
we use the measure nevertheless, and thus disregard the extent to which
the ratio exceeds one.

Efficiency

The quantification of efficiency follows similar lines as above. As previously
hinted, a target is needed to calculate efficiency. To this end expected
power utility is used as a measure of satisfaction. Since the target will
only be used as an auxiliary we prefer this simple approach, because it
is easy to communicate, and requires one parameter only. The certainty
equivalent of a positive random variable, Y , is then

CE (γ; Y ) ,
{
E

{
Y 1−γ

} 1
1−γ , γ ∈ [0,∞)\{1}

exp (E {log Y }) , γ = 1
, (3.6)

where γ ≥ 0 denotes the coefficient of relative risk aversion. The suggested
efficiency measure for a generation with funding f < κ is

P
(

X(s, κ, f)
maxs̄,κ̄∈S×K CE (γ;X(s̄, κ̄, f))

> 1− β

)
. (3.7)

For the two generations efficiency is measured by merely adding their re-
spective terminal benefits to a single random variable. Due to linearity
of the certainty equivalent, 0 ≤ β < 1, can be interpreted as the maxi-
mum permitted relative cost of obtaining fairness (up to some probability).
S × K ⊆ (0,∞)× (1,∞) is a range of considered design variables.

Constrained optimisation

Combining the criteria (3.5) and (3.7) produces two different constrained
optimisation problems. First, if we maximise efficiency subject to a fairness
side condition we get:
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max
s,κ∈S×K

P
(

X (s, κ, κ) + X (s, κ, f)
maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, κ̄) + X (s̄, κ̄, f))

> 1− β

)

(3.8a)
subject to

P
(

X (s, κ, f)
X (s, κ, κ)

> 1− δ

)
≥ p, (3.8b)

We do not consider values of p for which a Pareto improvement is possible,
i.e. for which both parties can be made better off in terms of (3.7). A
candidate (s, κ) is thus excluded if:
∃(s̃, κ̃) ∈ (S × K)\{(s, κ)} : (3.8c) and (3.8d) are both satisfied, and at
least one of them with strict inequality.

P (X (s, κ, f) > (1− β)maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, f)))
P (X (s̃, κ̃, f) > (1− β)maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, f)))

≤ 1 (3.8c)

P (X (s, κ, κ) > (1− β)maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, κ̄)))
P (X (s̃, κ̃, κ) > (1− β)maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, κ̄)))

≤ 1. (3.8d)

The reverse constrained optimisation is the one where a fairness criterion
is maximised subject to an efficiency threshold condition:

max
s,κ∈S×K

P
(

X (s, κ, f)
X (s, κ, κ)

> 1− δ

)
. (3.9a)

subject to

P
(

X (s, κ, κ) + X (s, κ, f)
maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, κ̄) + X (s̄, κ̄, f))

> 1− β

)
≥ p. (3.9b)

In (3.9) the inclusion of (3.8c)-(3.8d) is not imperative, nor meaningful.
In (3.8b) and (3.9b) p ∈ [0, 1] is a minimum acceptance probability decided
along with β and δ. Before proceeding we warn that for some parameter-
isations one may end up with probabilities of zero or one, in which case
the clever approach is to re-parameterise, unless it was intentional.

Next, we illustrate the suggested criteria through simulations.
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3.4 Simulation-based illustrations

In this section we mainly analyse a ”mature” fund with equal in- and
outflow of Π = Γ = 0.02, net contribution inflation η = 0.02, a horizon of
n = 50, and market price of risk, Λ = 0.25. Following the analysis of the
base case each of the main parameters (Π, Γ, η, n, and Λ) are changed,
and the derived consequences are briefly discussed. Also, the auxiliary
parameters are fixed at β = 0.05, δ = 0.05, γ = 0.5, f = 1.02 (case
A), ε = 0.05 (case B), and κ = 1.3 (case B), but a sensitivity analysis is
conducted in Section 3.4.3. Finally, Section 3.4.4 reviews the simulation
details.

3.4.1 Base case

Figures 3.2 and 3.3 show the trade–off between fairness and efficiency.
In the former graph the bonus barrier and the investment strategy are
both to be optimised over (case A), whereas the latter considers a pre-
specified bonus barrier (case B). The results are qualitatively in line with
the predictions of Section 3.2.1.

In case A, higher barriers yield less fairness (because generations are
more different), but more efficiency. Also, the optimal strategies associated
with higher barrier are more cautious. If one uses the maximum-efficiency
criterion (3.8), a very narrow range of (for this parametrisation) modestly
aggressive strategies are non-dominated. The most cautious as well as
the most aggressive investment strategies are excluded by Pareto inopti-
mality, while others are merely dominated. When the maximum-fairness
criterion (3.9) is imposed instead, all investment strategies above some
threshold are candidates for optimum, because redistribution is less for
more aggressive strategies (bonus becomes rare).

Conversely, in case B, the heritage to future generations is implicitly
considered (through the long-run funding level), which leads to less aggres-
sive strategies being favourable. With a main focus on efficiency, through
criterion (3.8), a range of rather cautious investment strategies are non-
dominated, as in case A, though these values of s are generally much lower
in case B. If fairness is emphasised instead, all strategies below a certain
threshold are potentially optimal, which highlights the difference between
the two cases. In case B, even modestly aggressive investment strategies
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Figure 3.2: Case A: Trade-off between efficiency (3.7) and fairness (3.5) at
different values of s indicated in the diagram. The left curve corresponds
to κ = 1.5, and the right curve represents κ = 1.1. The dashed parts of the
graphs correspond to strategies that were discarded due to (3.8c)-(3.8d).
Fixed parameters: g = 1, Γ = Π = 0.02, η = 0.02, n = 50, Λ = 0.25,
γ = 0.5, β = δ = 0.05, S ⊆ (0, 1], K = {1.1, 1.5}, and f = 1.02.

are penalised severely by a higher initial distance from the barrier – in turn
making them poor candidates for yielding sufficient efficiency.

Altogether, the results show that it is hard to obtain outcomes that are
adequately efficient and fair to a high degree at the same time. One way of
overcoming this is to alter the way in which contributions are transformed
into benefits, which is the topic for Section 3.5.
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Figure 3.3: Case B: Trade-off between efficiency (3.7) and fairness (3.5)
at different values of s indicated in the diagram. The dashed parts of the
graph corresponds to strategies that were discarded due to (3.8c)-(3.8d).
Fixed parameters: κ = 1.3, g = 1, Γ = Π = 0.02, η = 0.02, n = 50,
Λ = 0.25, γ = 0.5, β = δ = 0.05, S ⊆ (0, 1], K = {κ}, and ε = 0.05.

3.4.2 Alternative environments

Demography

When the net outflow is positive (Π > Γ) bonuses are higher and more
frequent than otherwise. Oppositely, of course, in a fund that is in the
process of building up its balance. The aggregate effect on fairness and
efficiency is not clear at the outset. The situation with Π = 0.1, and
Γ = 0.02 is shown in Figure 3.4, which demonstrates that intergenerational
subsidisation is slightly less in such a non-accumulating scheme, without
harming efficiency. In general, the trade–off governing the design decision
is very similar to the base case in Figures 3.2 and 3.3.
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Figure 3.4: Case B: Trade-off between efficiency (3.7) and fairness (3.5)
at different values of s indicated in the diagram. The dashed parts of the
graph corresponds to strategies that were discarded due to (3.8c)-(3.8d).
Fixed parameters: κ = 1.3, g = 1, Γ = 0.02, Π = 0.1, η = 0.02, n = 50,
Λ = 0.25, γ = 0.5, β = δ = 0.05, S ⊆ (0, 1], K = {κ}, and ε = 0.05.

Economy

As net contribution inflation, η, is increased, a higher degree of fairness is
obtained, because – as previously mentioned – later bonus matters more,
and later bonus is more likely to be the same for both generations. Also,
all strategies become more efficient because the terminal distribution is
narrower, i.e. less dependent on bonus.

When the market price, Λ, increases, bonuses are larger and more
frequent. More aggressive investment strategies are, of course, preferable.

The qualitative and quantitative conclusions from the base case are sur-
prisingly insensitive to changes to η and Λ. The only noteworthy effect is
that higher contribution inflation implies slightly more cautious investment
in case A because of the amplified importance of later bonuses.
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Horizon

Extending the horizon, n, makes the system fairer, due to the longer period
with identically distributed bonuses, (n − τ)+. The shapes of the curves
in Figures 3.2 and 3.3 are essentially unaltered, however. Only, in case
A, slightly more cautious investment strategies are preferred on longer
horizons, as the long-run properties become more important. This point
emphasises that when sampling from a fixed (not affected by the controls)
initial distribution (in this case a Dirac distribution), and the terminal
conditions do not matter there is a need for someone, be it the board or
the regulator, to require long-run stability, for otherwise it is tempting to
gradually – or swiftly – exhaust the bonus reserve to the disadvantage of
future generations.

3.4.3 Sensitivity

The choice of β, γ, δ, in case A: f , and in case B: ε and κ matters little as
far as the qualitative conclusion goes.

As for the former two, the reason that the parameters play minor roles
is that the benefit distribution is quite narrow (on most trajectories bonus
is small compared to contributions), and bounded (far) away from zero.
Of course, the higher the values of β and γ, the higher the efficiency.
Therefore it is instructive to use a rather low γ-value, since this ensures
that the efficiency probabilities are not too high for any agent. The choice
of δ affects the level of fairness profoundly – but the shapes of the curves
in Figures 3.2 and 3.3 are unaltered.

In case A higher f implies more fairness and a shift towards slightly
more cautious investment. The tail probability, ε, was introduced to allow
a design-dependent distinction between the two generations, and the extent
to which this differentiation is carried out does not affect the results much
as long as ε is kept reasonably small.

Also, by construction, the choice of κ, in case B, only influences the
conditional bonus, and only so to an extent which hardly affects the opti-
mal choice of s.
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3.4.4 Simulation details

The simulations were done in the freeware statistical computing package
R. In all cases 100,000 paths were simulated. The seed was set manually
to allow all results to be reproduced, and reused across experiments. It
is particularly important to ensure that disjoint generations experience
independent market innovations. Oppositely, if contemporary generations
were considered, it would be equally important that they sampled the same
financial market. Distribution functions are estimated by their sample
counterparts.

3.5 Extensions

The previous section showed that although some designs are superior to
others it is not possible to obtain high levels of fairness and efficiency at
the same time, when the entire contribution is transformed into guaran-
teed future benefits, i.e. g = 1. It is straightforward, however, to design
rules that take the differing conditions into account, and hence – partly
– overcome systematic intergenerational redistribution. Below we present
two such rules.

3.5.1 A solidary rule

When a policy expires its accrued guarantees (including bonus) are paid
out, but the free reserve stays in the fund. Therefore, the funding ratio
increases as a result of an expiry. This gain is split between existing mem-
bers and new contributions according to some rule. In the standard case,
g = 1, new money always benefits from entering in the sense that the
value of their guarantee can be approximated by giFi+ , which is greater
than one, but highly dependent on the random timing of entry

Instead, the way in which contributions are transformed into guaran-
teed future benefits may be based on the solidary point of view that giFi+

should be the same for all generations, that is

gi

(
Fi− + Γi −Πi

1 + giΓi −Πi
∧ κ

)
= Ci, (3.10)
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for some positive Ci < (1 + Γi −Πi) /Γi, which - for the natural choice
Ci = 1 – is solved by the solidary rule

gi =
1−Πi

Fi− −Πi
∨ κ−1, (i ≥ 1) (3.11a)

g0 =
1

F0+

(3.11b)

In general Ci could depend on e.g. demographics forecasts and time to
expiry.

Because g < 1 the funding ratio gets a boost upwards, so that bonuses
are larger and more frequent (in return for lower guarantees). As in the
case of positive net inflow the combined effect on fairness is ambiguous,
depending on the horizon, among others. For the base case it turns out
that fairness is enhanced slightly. The fairness measure (3.5) is ill–suited,
however, since it focuses exclusively on one–sided deviations. As a matter
of fact the generations can be made approximately equally well off when
using the solidary rule (in the sense that the density of the ratio between
the benefits is much more balanced around 1), which is a major advance
over the results obtained with g = 1.

3.5.2 An indemnifying rule

As another example we present the indemnifying rule

Fi− + Γi −Πi

1 + giΓi −Πi
∧ κ = Fi− ∧ κ,

which gives staying members the same funding ratio regardless of the
amount of new entrants and exits. This rule yields

giΓi = Πi +
Γi −Πi

Fi−
, (i ≥ 1) (3.12a)

g0Γ0 = Π0 +
Γ0 −Π0

F0−
, (3.12b)

the latter assuming F0− is known. The indemnifying rule enhances fairness
still more the higher the ratio of inflow to outflow, precisely because an
accumulating scheme releases relatively little bonus reserve, and thus the
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higher the pre-bonus reserve the less the new entrants will receive (in terms
of g). The neutralising effect of the solidary rule is only achieved if there
is no outflow, however – in which case the two rules are almost identical.

3.6 Discussion and conclusion

This section discusses the insights gained from the paper’s model. Also,
limitations and possible alternatives approaches are described. Policy im-
plications are touched upon, and finally, concluding remarks are given.

One of the main lessons that can be derived from the paper stems from
the vast difference between cases A and B. In the former situation both
investment strategy and bonus barrier are optimisation variables, and the
trade–off is that lower barriers induce less efficient systems that are fairer;
and the same effect follows from using very cautious or very aggressive
investment strategies. Conversely, in case B higher barriers are always
preferable.

If efficiency is the maximisation object and fairness the side condition
there is a narrow range of non-dominated strategies in either case (though
those ranges are substantially different the cases between). But if fairness
is maximised subject to an efficiency constraint the two cases differ more
markedly. In case A cautious strategies are dominated, but in case B ag-
gressive strategies are dominated because they imply low initial funding
and thus low fairness. These qualitative conclusions are stable under dif-
ferent parameterisations, but are likely sensitive to different formulations
of the objective.

Another important insight comes from realising how redistribution can
be lessened substantially at no cost – by introducing new ways of trans-
forming contributions into guaranteed future benefits.

A third outcome is the ability to exclude certain investment strategies
based on dominance arguments.

3.6.1 Limitations and alternatives

Obviously the evaluation of intergenerational fairness is much broader than
what can be covered here. For instance, one could argue that by facing
identical rules generations are treated fairly in that the economic condi-
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tions they face are not explicitly controlled by other generations. Also,
even within the present paradigm, redistribution and efficiency could be
measured quite differently.

The alternative rules that were presented do not aim at converting
each contribution into benefits in a fair manner. That is, the value of the
compound bonus option does not equal its implicit price, as the former
depends on time to maturity and forecasts of demographics etc. Instead,
it is assumed that all members have identical contribution plans, so there
is no heterogeneity nor any free policy or surrender options.

Default is precluded by construction in the present setting. To over-
come this weakness one could allow for default by fixing the portfolio only
at the beginning of each period. This would mimic real life investment be-
haviour more closely than the often employed constant allocation to stocks,
while still allowing for bankruptcy. Within the realm of no–default one
could change the asset allocation in some non-linear way, while maintain-
ing limFt→1+ π(Ft) = 0+, e.g. through an Option Based Portfolio Insurance
(OBPI) strategy.

Another way of introducing default is to allow for non-marketed shocks
to the value of liabilities – interpreted as unanticipated changes in mortal-
ity, statute, or the like. Such jumps could occur periodically or at random
points in time.

Instead of distributing all excess funding as bonus, some authors argue
in favour of smoothing bonus allotment over time precisely with the aim of
reducing the effect of random entry time funding levels. This would reduce
subsidisation slightly. Another widespread alternative consists of basing
the bonus on the past year’s financial performance exclusively, which re-
duces intergenerational redistribution, but enhances solvency problems (if
the members do not participate in the downside).

Finally, as previously mentioned one could consider perfectly contem-
porary generations sampling the same market. Then the interpretation of
fairness would be somewhat different, namely related to joining schemes
with different initial funding, but which are operated identically. This ap-
pears somewhat less interesting from a designer’s point of view, but can
be very useful in other settings.
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3.6.2 Policy implications

A regulator overseeing scheme design, or an altruistic designer should dis-
cuss the weighing between short– and long–term objectives as well as the
trade–off between fairness and efficiency. In order to use the analysis in
the framework laid out here to make an informed decision they must also
choose whether case A or B is more appropriate for their purpose.

The most important recommendation stems from noting how fairness
can be enhanced greatly at no cost by following the suggestions in Sec-
tion 3.5.

3.6.3 Concluding remarks

This paper discusses the trade–off between fair and efficient design of with–
profits pension schemes. More specifically, strategies for investment and
bonus allotment are treated. As in many other cases in social science an
important, but often neglected, feature of the problem is the crucial choice
of measure for the intangible quantities fairness and efficiency. We have
suggested a set of criteria and sketched the characteristics of an optimal
design in two situations. First, one where only the present generation is
considered, and second the case where the long–term properties (i.e. the
heritage to future generations) are implicitly taken into account. It turns
out that the optima are very different – quite precisely representing the
different approaches. Finally, as a consequence of the somewhat dismal
results of that analysis, different ways of converting contributions into
guarantees are suggested and shown to yield a substantial improvement.
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4. Modelling adult mortality in
small populations: The SAINT
model

Background. The paper in this chapter is written jointly with
Søren Fiig Jarner. It appeared as Jarner and Kryger (2008), and
in a more lightweight edition as Kryger (2010b). The paper was
presented at a mortality course for the Danish Actuarial Society,
December 2008, at a Department Seminar at Dept. of Statistics,
London School of Economics, December 2008, and at the 13th IME
Congress in Istanbul, May 2009. It has also been presented on a
number of occasions by Søren Fiig Jarner. Since 2007 it has formed
part of the syllabus for the annual mortality risk training course by
Life & Pensions.

Abstract. The mortality evolution of small populations often
exhibits substantial variability and irregular improvement patterns
making it hard to identify underlying trends and produce plausi-
ble projections. We propose a methodology for robust forecasting
based on the existence of a larger reference population sharing the
same long–term trend as the population of interest. The reference
population is used to estimate the parameters in a frailty model for
the underlying intensity surface. A multivariate time series model
describing the deviations of the small population mortality from
the underlying mortality is then fitted and forecasted. Coherent
long–term forecasts are ensured by the underlying frailty model
while the size and variability of short- to medium–term deviations
are quantified by the time series model. The frailty model is partic-
ularly well suited to describe the changing improvement patterns
in old age mortality. We apply the method to Danish mortality
data with a pooled international data set as reference population.
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4.1 Introduction

Mortality projections are of great importance for public financing deci-
sions, health care planning and the pension industry. A large number of
forecasts are being produced on a regular basis by government agencies
and pension funds for various populations of interest. In many situations
the population of interest is quite small, e.g. the population of a small re-
gion or the members of a specific pension scheme, and historic data shows
substantial variability and irregular patterns. Also, historic data may be
available only for a relatively short period of time.

The prevailing methodology for making mortality projections is the
method proposed by Lee and Carter (1992). The model describes the
evolution in age-specific death rates (ASDRs) by a single time-varying
index together with age-specific responses to the index. The structure
implies that all ASDRs move up and down together, although not by the
same amounts. The method has gained widespread popularity due to
its simplicity and ease of interpretation and there has been a wealth of
applications, see e.g. Tuljapurkar et al. (2000); Booth et al. (2006) and
references therein. A number of extensions and improvements have been
proposed, e.g. Brouhns et al. (2002); Lee and Miller (2001); Renshaw and
Haberman (2006); Renshaw and Haberman (2003); de Jong and Tickle
(2006); Currie et al. (2004); Cairns et al. (2006), but the original Lee–
Carter method still serves as the point of reference.

4.1.1 Small population mortality

The structure of the Lee–Carter model makes it well suited to extrapolate
regular patterns with constant improvement rates over time. However,
while the mortality experience of large populations often conforms with
this pattern the mortality evolution of small populations is generally much
more irregular. Lack of fit of the Lee–Carter model for small populations,
including the Nordic countries, was reported by Booth et al. (2006) in
a comparative study. In Denmark, for instance, improvement rates have
varied considerably over time within age groups and there has been peri-
ods with improvements in some age groups and stagnation or even slight
increases in other age groups violating the Lee–Carter assumptions; see
Jarner et al. (2008); Andreev (2002) for detailed accounts of the evolution
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of Danish mortality.
The characteristics of small population mortality makes forecasting

based on past trends problematic and very sensitive to the fitting period.
Naive extrapolation of historic trends in ASDRs is likely to lead to implau-
sible projections and unrealistic age-profiles, e.g. old age mortality drop-
ping below that of younger ages. Often, however, the population under
study can be regarded as a subpopulation of a (larger) reference popula-
tion obeying a more regular pattern of improvement, e.g. a region within
a country, or a small country in a larger geographical area etc. Further-
more, it will often be reasonable to assume that the study and reference
populations will share the same long–term trend.

In this paper we propose a methodology for robust small population
mortality projection based on the identification of a reference population.
The method consists of two steps: First, the reference population is used
to estimate a parametric, underlying intensity surface which determines
the long-term trend. Second, a multivariate, stationary time series model
describing the deviations of the small population mortality from the trend
is fitted. Projections are obtained by combining extrapolations of the
parametric surface with forecasts of the time series model for deviations.
Coherent long–term mortality profiles are guaranteed by the parametric
surface while the purpose of the time series is to quantify the short– to
medium–term variability in improvement rates of the small population.

It is common to base mortality forecasts on time series models. Typi-
cally, parameters describing the evolution of period life tables are estimated
assuming either a parametric or non-parametric age-profile. A time series
model, often a random-walk with drift, is then fitted and forecasted for
each of the parameters. The role of the time series in these methods is
to capture both the trend in parameters and their uncertain evolvement
around the trend. The structure implies that large short–term variabil-
ity invariably lead to even larger long–term variability. In contrast, the
proposed method by treating deviations from the trend as stationary al-
lows for substantial short–term variability without inflating the long–term
uncertainty.
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4.1.2 Old age mortality

The modelling of old age mortality presents perhaps the most challenging
part of mortality modelling. The historic development in Danish old age
mortality, say age 70 and above, shows very modest improvement rates,
far below those observed for the younger ages. However, over the last
decade or so improvement rates have picked up and currently 70–year–
olds experience improvement rates equalling those of younger ages. The
picture is the same in most developed countries: old age mortality has
historically improved at a slower pace than young and middle age mortality,
but recently improvements rates have gradually risen.

The fact that old age improvement rates increase over time cause
forecasts based on the Lee–Carter methodology to systematically under-
predict the gains in old age mortality, cf. Lee and Miller (2001). As a
consequence it has been recommended to use a shorter fitting period over
which data conforms better with the assumptions of time-invariant im-
provement rates, see e.g. Lee and Miller (2001); Tuljapurkar et al. (2000);
Booth et al. (2002). Although this approach clearly forecasts higher im-
provement rates in old age mortality it seems somewhat ad-hoc and not
entirely satisfying. In this paper we take a different route.

Our ambition is to derive a simple model for the population dynam-
ics in which changing mortality patterns naturally arise. This will allow
us to characterise how mortality improvements change over time and to
make predictions for future improvements in old and oldest-old mortal-
ity. Inspired by frailty theory we assume that the population consists of
a heterogeneous group of individuals with varying degrees of frailty. Frail
individuals have a tendency to die first causing a concentration of robust
individuals at high ages. Taken this selection mechanism into account and
assuming continued improvements over time a model for the entire inten-
sity surface of the population over time can be derived. We will use the
resulting parametric surface to describe the development of the reference
population.

The frailty model offers an explanation to the observed lack of im-
provement in old age mortality. The mortality for a given age group at
a given time is influenced by two factors: the current level of health and
the average frailty. Over time the level of health improves but so does the
average frailty. In effect, as mortality improves the selection mechanism
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to reach a given age weakens causing healthier but more frail individuals
to become old. In the transition from high to low selection the two effects
partly offset each other such that the aggregate mortality for the age group
is almost constant. Eventually the health effect will dominate the selec-
tion effect and improvements will be seen. We will explore these effects
in some detail and derive the asymptotic improvement pattern implied by
the model.

For two reasons we focus on adult mortality only in our modelling,
i.e. mortality for age 20 and above. First, the nature of infant and child
mortality is rather different from adult mortality and more complexity
will have to be added to the model to fit the historic evolution adequately.
Second, current levels of infant and child mortality are so low that their
future course has very little impact on life expectancy and other aggregate
measures. Hence, from a forecasting perspective not much is gained by
the added complexity. In fact, with current mortality levels already very
low up to age 60, say, future life expectancy gains will be driven almost
exclusively by the development in old age mortality. However, by modelling
the full adult mortality surface we are able to extract information about the
general nature of improvement patterns and to predict when improvements
will start to occur for age groups where none have been seen historically.

4.1.3 Outline

The rest of the paper is organised as follows: in Section 4.2.1 we present the
proposed methodology for small population mortality modelling consisting
of a separation of trends and deviations; in Section 4.2.2 we derive a para-
metric, frailty model for the underlying intensity surface and study some
implications and asymptotic properties; and Section 4.2.3 contains a de-
scription of the time series model for deviations. In Section 4.3 we give an
application to Danish data taken a large international data set as reference
population, Section 4.4 contains a study of the fit and forecasting perfor-
mance of the model, and in Section 4.5 we offer some concluding remarks
and indicate further lines of research. All proofs are in Section 4.6.2.
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4.2 The model

4.2.1 Methodology

In the following we suggest a methodology for robust forecasting of small
population mortality. The evolution of small population mortality is char-
acterised by being more volatile and having less regular improvement pat-
terns compared to what is observed in larger populations. These features
make simple projection methodologies very sensitive to the choice of fitting
period and lead to very uncertain long–term forecasts. The fundamental
idea in the proposed method is to use a large population to estimate the
underlying long–term trend and use the small population to estimate the
deviations from the trend.

We distinguish between unsystematic and systematic variability. Un-
systematic variability refers to the variability associated with the random-
ness of the time of deaths in a population with a known mortality inten-
sity, while systematic variability refers to the variability of the mortality
intensity itself. Since the populations we are interested in are small by
assumption we expect noticeable unsystematic variability. For instance,
we do not expect crude (i.e. unsmoothed) death rates, constructed from
the mortality experience of a single year, to be strictly increasing with age
although we believe it to hold for the underlying intensity (at least from
some age).

However, even taken the larger unsystematic variability into account it
appears that small populations also have a greater systematic variability
than larger populations. Presumably small populations are more homoge-
neous and thereby more influenced by specific effects. There are a number
of reasons why this might be. Consider for instance the members of an
occupational pension scheme. The members have the same or similar edu-
cation and job, and probably also to some extent similar economic status
and life style compared to the population at large. Similarly, the popula-
tion in a specific country is influenced by common factors, e.g. the health
care system and social habits such as smoking. The homogeneity implies
that specific changes in e.g. socioeconomic conditions will have a greater
impact on the mortality in a small population compared to a large popu-
lation with greater diversity in background factors.

We will assume that the population under study can be regarded as a
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subpopulation of a larger population, e.g. the population of a province is a
subpopulation of the national population, and a national population can be
regarded a subpopulation of the total population of a larger geographical
region, or of similarly developed countries. We will refer to the small
population as the subpopulation and the large population as the reference
population. Although both unsystematic and systematic variability will be
greater in the subpopulation it is reasonable to assume that the sub- and
reference populations will share the same long–term trends in mortality
decline, even in the presence of substantial deviations in current mortality
levels. The alternative is diverging levels of mortality which in the long
run seems highly unlikely for related populations. Wilson (2001); Wilmoth
(1998) provide evidence for convergence in global mortality levels due to
convergence of social and economic factors.

Data

We will assume that data consists of death counts, {D(t, x)}, and corre-
sponding exposures, {E(t, x)}, for a range of years t and ages x. Data is
assumed to be available for both the sub- and reference population (distin-
guished by subscript sub and ref, respectively), but not necessarily for the
same ranges of years and ages. Data will typically also be gender specific,
but it does not have to be. Since it is of no importance for the formula-
tion of the model we will suppress a potential gender dependence in the
notation.

D(t, x) denotes the number of deaths occurring in calender year t
among people aged [x, x + 1), and E(t, x) denotes the total number of
years lived during calender year t by people of age [x, x + 1). For readers
familiar with the Lexis diagram, D(t, x) counts the number of deaths in
the square [t, t + 1)× [x, x + 1) of the Lexis diagram and E(t, x) gives the
corresponding exposure, i.e. we work with so–called A-groups.

Model structure

From the death counts and exposures we can form the (crude) death rates

m(t, x) =
D(t, x)
E(t, x)

, (4.1)
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which are estimates of the underlying intensity, or force of mortality,
µ̄(t, x).1

In order to proceed we assume that we have a family of intensity sur-
faces Hθ(t, x) parameterised by θ, and we consider the model where death
counts are independent with

Dref(t, x) ∼ Poisson (µ̄ref(t, x)Eref(t, x)) , (4.2)

and µ̄ref(t, x) = Hθ(t, x). Based on this model we find the maximum
likelihood estimate (MLE) for θ, denoted by θ̂. In principle we could use a
Lee–Carter specification of µ̄ in which case the model is the one proposed
in Brouhns et al. (2002). However, by assumption the evolution of the
reference population is smooth which allows us to get a good fit with a
more parsimonious specification. In Section 4.2.2 we will develop a specific
family of intensity surfaces, which will be shown to provide a very good fit
to the reference data in our application. The use of a parametric model
also offers insights into the dynamics of improvement rates over time.

The next step is to model the deviations of the subpopulation from the
reference population. We will refer to the deviations as the spread and we
propose to use a model of the form

Dsub(t, x) ∼ Poisson (µ̄sub(t, x)Esub(t, x)) , (4.3)

with
µ̄sub(t, x) = Hθ̂(t, x) exp(y′trx) (4.4)

where y′t = (y0,t, . . . , yn,t) and r′x = (r0,x, . . . , rn,x) for some n. Again, this
does in fact allow a Lee–Carter specification of the deviations. However,
we will consider the situation in which the coordinates in r are fixed regres-
sors and only the coordinates in y are estimated (by maximum likelihood
estimation). Note, that in this case the estimates of yt only depend on
data from period t. In Section 4.2.3 we will propose a specific model with
three regressors corresponding to level, slope and curvature of the spread.

The last step is to fit a time-series model for the multivariate time-
series yt. We will use a VAR(1)–model for which standard fitting routines

1We use µ̄ to indicate an intensity surface which is constant over calender years
and over integer ages. We reserve the use of µ, which will later be used to denote a
continuous intensity surface.
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exist. If the assumptions behind the modelling approach are fulfilled the
time-series should not display drift but rather fluctuate around some level
(which may be different from zero). In other words, we expect yt to be
stationary.

Forecasts are readily produced by combining trend forecasts with time-
series forecasts of the spread. Assuming independence between trend and
spread we have, with a slight abuse of notation,2 the following variance
decomposition

V {log µ̄sub(t, x)} = V
{
log Hθ̂(t, x)

}
+ V

{
y′trx

}
. (4.5)

We see that there are two sources of (systematic) variability: the trend
and the spread. For most specifications of Hθ the variance will increase
with the forecasting horizon. The variance of the spread, however, will
only increase up to a given level under the assumed stationarity of yt. The
model does not forecast the mortality of the subpopulation to convergence
in an absolute sense to that of the reference population, but the spread
will be bounded (in probability).

In the following sections we develop a specific model which falls within
the framework described above. The model will subsequently be used
in an application to Danish mortality taking an international data set
as reference population. With this application in mind the model has
been dubbed SAINT as an abbreviation for Spread Adjusted InterNational
Trend.

4.2.2 Trend modelling

A great number of functional forms have been suggested as models for adult
mortality, see e.g. Chapter 2 of Gavrilov and Gavrilova (1991). Classical
forms include the ones associated with the name of Gompertz

µ(x) = α exp(βx), (4.6)

and Makeham
µ(x) = α exp(βx) + γ. (4.7)

2In equation (4.5) θ̂ is considered as an estimator with a distribution rather than a
fixed number.
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Both of these capture the approximate exponential increase in intensity
observed for adult mortality. The Makeham form also includes an age-
independent contribution which can interpreted as a rate of accidents.
The additional term, referred to as background mortality, improves the fit
at young ages.

Old age mortality, however, is generally overestimated by the assumed
exponential increase. Empirical data typically shows decreasing acceler-
ation in mortality at old ages, or even a late-life mortality plateau. A
functional form that captures both the (approximate) exponential growth
rate seen in adult mortality and the subsequent sub-exponential increase
at old ages is the logistic family

µ(x) =
α exp(βx)

1 + α exp(βx)
+ γ. (4.8)

This form has been proposed as the basis for mortality modelling by several
authors, e.g. Cairns et al. (2006), Bongaarts (2005), Thatcher (1999), and
it has been shown to fit empiric data very well in a number of applications.3

Selection and frailty

Various theories have been proposed trying to explain why the increase in
the force of mortality slows down at old ages, see e.g. Thatcher (1999)
and references therein. In this paper we will focus on frailty theory as it
provides a flexible and mathematically tractable framework for modelling
mortality.

The theory assumes that the population is heterogeneous with each
person having an individual level of susceptibility, or frailty. Frail individ-
uals have a tendency to die earlier than more robust individuals and this
selection causes the frailty composition of the cohort to gradually change
over time. The continued concentration of robust individuals in effect
slows down the mortality of the cohort and causes the cohort intensity to
increase less rapidly than the individual intensities. The following example
illustrates the idea.

3Cairns et al. (2006) use the logistic form to describe one-year death probabilities
qx, while we use it as model for the underlying intensity. The two quantities are related
by qx = 1− exp(− ∫ x

x−1
µ(y)dt) ≈ µ(x).
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Example 4.1 (Gamma-Makeham model). Assume that the ith person of
a cohort has his own Makeham intensity:

µ(x; zi) = ziα exp(βx) + γ, (4.9)

where zi is an individual frailty parameter, while α, β and γ are shared by
all persons in the cohort. Assume furthermore that Z follows a (scaled)
Γ-distribution with mean 1 and variance Σ2. The force of mortality for the
cohort then becomes

µ(x) = E {Z|x}α exp(βx) + γ =
α exp(βx)

1 + Σ2α(exp(βx)− 1)/β
+ γ, (4.10)

where E {Z|x} denotes the conditional mean frailty of the cohort at age x.
The cohort intensity in this model is of logistic form with an asymptotic
value of β/Σ2 + γ as x tends to infinity. Hence, although each individual
intensity is exponentially increasing the selection mechanism is so strong
that the cohort intensity levels off at a finite value.4

The multiplicative frailty model

The ideas of selection and frailty can be generalised to describe the evolu-
tion in mortality rates over time for a whole population. In the following
we assume the existence of a smooth intensity surface, µ(t, x), which rep-
resents the instantaneous rate of dying for a person aged x at time t,
i.e. the probability that the person will die between time t and t + dt is
approximately µ(t, x)dt for small dt.

We start by considering a general, multiplicative frailty model where
the mortality intensity for an individual with frailty z has the form

µ(t, x; z) = zµI
s(t, x) + γ(t). (4.11)

Hence, individual intensities have a senescent (age-dependent) component,
zµI

s(t, x), and a background (age-independent) component, γ(t). Frailty is
assumed to affect the senescent component only and its effect is assumed

4In fact, if Σ2 > β/α the level of heterogeneity is so large, and the selection effect
thereby so strong that the cohort intensity is decreasing with age. . . For Σ2 = β/α
the cohort intensity is constant, while for smaller values of Σ2 the cohort intensity is
increasing as expected.
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to be multiplicative. Thus z measures the excess (senescent) mortality
relative to the mortality of an individual with frailty 1. This multiplicative
structure is crucial for the following developments. Vaupel et al. (1979)
consider the multiplicative frailty model for a single cohort and state results
similar to ours.

Proposition 4.2. Assuming (4.11) the population mortality surface is
given by

µ(t, x) = E {Z|t, x}µI
s(t, x) + γ(t), (4.12)

where E {Z|t, x} denotes the conditional mean frailty at time t for persons
of age x.

We will denote the senescent component of the population intensity
by µs(t, x), i.e. µs(t, x) = E {Z|t, x}µI

s(t, x). The result of Proposition 4.2
holds true regardless of the assumed frailty distribution at birth. However,
in order to obtain an analytically tractable model we will assume that
frailties at birth follow a scaled Γ-distribution with mean 1 and variance
Σ2. Under this assumption the conditional frailty distributions are also Γ-
distributed and explicit expressions for the conditional mean and variance
can be derived. Let Z|(t, x) denote the conditional frailty distribution at
time t for persons of age x.

Proposition 4.3. Assuming (4.11) and Z ∼ Γ with mean 1 and variance
Σ2 then Z|(t, x) ∼ Γ with mean and variance given by

E {Z|t, x} =
(
1 + Σ2I(t, x)

)−1
, (4.13)

V {Z|t, x} = Σ2E {Z|t, x}2 , (4.14)

where I(t, x) =
∫ x
0 µI

s(u + t− x, u)du.

Proposition 4.3 characterises how the frailty composition of a given
birth-cohort changes over time. At early ages where the integrated inten-
sity I(t, x) is small the selection is modest and the conditional mean and
variance are close to the unconditional values of 1 and Σ2. As the intensity
increases so does I(t, x) and the conditional mean and variance decrease
towards 0. Thus, over time the frailty distribution gets more and more
concentrated around 0.

The following proposition shows that the conditional mean frailty can
also be expressed in terms of the senescent population mortality.
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Proposition 4.4. Under the assumptions of Proposition 4.3

E {Z|t, x} = exp
(−Σ2H(t, x)

)
, (4.15)

where H(t, x) =
∫ x
0 µs(u + t− x, u)du.

As an immediate consequence of Proposition 4.4 we have the following
inversion formula,

µI
s(t, x) = µs(t, x) exp

(
Σ2H(t, x)

)
, (4.16)

which allows us to recover the individual intensities from the population
intensity and the level of heterogeneity, Σ2. The existence of such a formula
implies that any population mortality surface can be described by a frailty
model with a given level of heterogeneity.

When discussing improvement rates it is most illuminating to focus on
the senescent part of the mortality. The background mortality component
is primarily included for the purpose of improving the fit among young
adults and, relative to the senescent part, its contribution to mortality is
negligible for older age groups. Following the notation of Bongaarts (2005)
we define the rate of improvement in senescent mortality as

ρs(t, x) , −∂ log µs(t, x)
∂t

= −∂ logE {Z|t, x}
∂t

− ∂ log µI
s(t, x)

∂t
. (4.17)

Generally, healthier conditions and other improvements in individual sur-
vival will mean that the contribution from the last term is positive. How-
ever, higher survival rates imply less selection and the average frailty of
persons of age x will therefore increase to 1, the average frailty at birth,
over time. Thus the contribution from the first term is negative. For old
age groups with strong selection the changing frailty composition can sub-
stantially offset the general improvements but eventually the effect dies
out and improvements occur.

To capture the idea that the mortality of an individual is affected by
both accumulating and non-accumulating factors we will write the (base-
line) individual intensity in the form

µI
s(t, x) = κ(t, x) exp

(∫ x

0
g(u + t− x, u)du

)
. (4.18)
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We think of κ as representing the current level of treatment/health at
time t for persons of age x, while the accumulating factor g represents
the aging process. The idea is that g(t, x) represents the increase in (log)
mortality caused by aging at time t for persons of age x. Hence, to get the
accumulated effect of aging one needs to integrate from age 0 at the time
of birth, t− x, to the current age x at time t.

Specification

We will consider the following specialisation of the model given by (4.11)
and (4.18):

g(t, x) = g1 + g2(t− t0) + g3(x− x0), (4.19)
κ(t) = exp(κ1 + κ2(t− t0)), (4.20)
γ(t) = exp(γ1 + γ2(t− t0)), (4.21)

with x0 = 60 and t0 = 2000. The substraction of (year) 2000 in the
specification of g, κ and γ and 60 in g is done for interpretability reasons
only. Thus g(2000, 60) = g1 is the ”aging” of a 60-year old in year 2000,
g2 is the additional aging across ages for each calender year, and g3 is the
additional biological aging for each year of age. Similarly, κ(2000) = κ1

and γ(2000) = γ1 while κ2 and γ2 give the annual rates of change. Notice,
that κ depends only on time since the obvious ”missing” term, κ3(x− x0),
is already present through g1. The model has a total of 8 parameters; the
7 parameters appearing in the specification of g, κ and γ together with
the variance of the frailty distribution, Σ2. As we will later demonstrate
the model is able to capture the main characteristics of the data very well
despite its parsimonious structure.

From a computational perspective it is convenient to think of the in-
tensities as functions of birth year, rather than calender year, and age. By
use of Propositions 4.2 and 4.3 we can write µ as

µ(t, x) =
K(t− x, x)

1 + Σ2
∫ x
0 K(t− x, y)dy

+ γ(t), (4.22)

where K(b, x) = µI
s(b + x, x). This representation highlights the fact that

the integral in the denominator relates to a given birth-cohort.
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For the model above we have

K(b, x) = κ(b) exp
(
(g(b, 0) + κ2)x + (g2 + g3)x2/2

)
. (4.23)

That is, K(b, x) is log-quadratic in x (for fixed b). When g2 + g3 < 0
the integral in the denominator can be expressed in terms of the cdf of a
normal distribution, while this is not possible when the sum is positive. In
either case, it is easy to evaluate the integral numerically.

The model allows us to derive the current and asymptotic improvement
patterns in age-specific death rates.

Proposition 4.5. Assume κ2 < 0. If κ2 + g2x < 0 then

ρs(t, x) = −∂ logE {Z|t, x}
∂t

−(κ2+g2x) → −(κ2+g2x) for t →∞. (4.24)

The conditions of the proposition imply that all age groups up to age
x experience improvements. Note, however, that g2 may be either positive
or negative. Thus the model allows for (asymptotic) improvement rates
in senescent mortality to be either increasing or decreasing with age. The
presence of the first term means that improvement rates can be substan-
tially lower for a long time before eventually approaching their long–run
level. In extreme cases the first term may even dominate the second term,
representing general improvements, in which case ASDRs will increase for
a period before starting to decrease. Some people have indeed argued that
this may happen in old-age mortality. However, we do not find support
for increasing ASDRs in the data analysed in this paper.

The model can be viewed as a generalisation of the Gamma-Makeham
model of Section 4.2.2. Indeed, that model is obtained by letting all of g, κ
and γ be constant (if only g is constant we obtain the model proposed by
Vaupel (1999)). However, unlike the Gamma-Makeham model the cohort
mortality profiles of our model will generally not have finite asymptotes.

Proposition 4.6. Assume Σ2 > 0. The limit cohort mortality is given by

lim
x→∞µs(b + x, x) =





∞ if g2 + g3 > 0,
g(b,0)+κ2

Σ2 ifg2 + g3 = 0 and g(b, 0) + κ2 > 0,

0 else.
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The cohort mortality profile is the result of two opposite effects: the
increase in individual mortality pushes the cohort mortality upwards, while
the selection mechanism pushes it downwards. For Γ-distributed frailties
and exponential individual intensities the two effects balance each other
in such a way that an old-age mortality plateau occurs. This is the case
in the Gamma-Makeham model and in the second case of Proposition 4.6.
However, when individual intensities increase faster than exponential the
individual effect dominates and the cohort mortality converges to infinity
(although at a slower pace than the individual intensities). Conversely, for
sub-exponential individual intensities the selection effect dominates and
the cohort mortality goes to zero. These two situations correspond to the
first and third case, respectively, of Proposition 4.6.5 In the application
later in the paper the estimates of g2 and g3 are both positive. Hence we
find ourselves in the first case. That individual intensities increase faster
than exponential was also found by Yashin and Iachine (1997).

Estimation

We next want to estimate the parameters of model (4.19)–(4.21) using the
reference data. Since the intensity surface is a continuous function of time
and age, while data is aggregated over calender years and one year age
groups, we define, for integer values of t and x,

µ̄ref(t, x) =
1
4

(µ(t, x) + µ(t, x + 1) + µ(t + 1, x) + µ(t + 1, x + 1)) (4.25)

to represent the average intensity over the square [t, t + 1) × [x, x + 1) of
the Lexis diagram.6 We will use the Poisson–model in (4.2) with µ̄ref(t, x)
given by (4.25) to find the MLE, θ̂, of the parameters

θ = (Σ, g1, g2, g3, κ1, κ2, γ1, γ2).
5The third case of Proposition 4.6 is an extreme case of sub-exponential growth in

which the individual intensities are in fact decreasing with age, at least from some age.
However, the result holds for any sub-exponential intensity, e.g. polynomial.

6There are other possibilities for defining µ̄ref(t, x). For instance, µ̄ref(t, x) = µ(t +
1/2, x + 1/2), or µ̄ref(t, x) =

∫ 1

0

∫ 1

0
µ(t + s, x + u)dsdu. If the exposure is uniform over

the square one may argue in favor of the latter definition, but it is cumbersome to
implement and unlikely to yield any substantial differences.
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This is achieved by maximising the log–likelihood function

l(θ) =
∑
t,x

Dref(t, x) log(µ̄ref(t, x)Eref(t, x))− log(Dref(t, x)!)

− µ̄ref(t, x)Eref(t, x)

=
∑
t,x

Dref(t, x) log(µ̄ref(t, x))− µ̄ref(t, x)Eref(t, x) + constant,

where the last term does not depend on θ and hence need not be included
in the maximisation. It is straightforward to implement the log-likelihood
function and to maximise it by standard numeric optimisation routines.
We have used the optim method in the freeware statistical computing
package R for our application.

Generally, maximum likelihood estimates are (under certain regularity
conditions) asymptotically normally distributed with variance matrix given
by the inverse Fisher information7 evaluated at the true parameter. As an
estimate of the variance-covariance matrix we will use

Ĉov
{

θ̂
}

= −D2
θ l(θ̂)

−1, (4.26)

which can be computed numerically once θ̂ has been obtained. Using the
variance estimates and the approximate normality (approximate) 95%-
confidence intervals for the parameters can be computed as θ̂±1.96V̂

{
θ̂
}
,

where V̂
{

θ̂
}

denotes the diagonal of Ĉov
{

θ̂
}
.

Bootstrapping constitutes an alternate approach to assessing the pa-
rameter uncertainty which does not rely on asymptotic properties, see e.g.
Efron and Tibshirani (1993); Koissi et al. (2006). In short, the method
consists of simulating a number of new data sets, i.e. new death counts,
given the observed exposures and the estimated intensities and calculate
the MLE for each data set. The resulting (bootstrap) distribution reflects
the uncertainty in the parameter estimates. Although simple in theory
the computational burden is in our case substantial as each maximisation
takes several minutes.

7The Fisher information is defined as minus the expected value of the second deriva-
tive of the log-likelihood function, I(θ) = −E{

D2
θ l(θ)|θ}

.
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4.2.3 Spread modelling

The fundamental assumption behind the proposed method for modelling
small population mortality is the existence of an underlying (smooth) mor-
tality surface, the trend, around which the small population mortality
evolves. In this section we focus on modelling and estimating the devia-
tions of the small population mortality from the trend.

Spread

For given underlying trend, µ̄ref , we will assume that subpopulation death
counts are independent and distributed according to

Dsub(t, x) ∼ Poisson (µ̄sub(t, x)Esub(t, x)) , (4.27)

where
µ̄sub(t, x) = µ̄ref(t, x) exp(y′trx) (4.28)

with y′t = (y0,t, . . . , yn,t) and r′x = (r0,x, . . . , rn,x) for some n. The spread
between the mortality of the subpopulation and the trend is modelled by
the last term in (4.28). The regressors r0, . . . , rn determine the possible
age-profiles of the (log) spread, while y0, . . . , yn describe the evolution over
time of the corresponding components of the spread. We will refer to the
coordinates of y as the spread parameters.

As opposed to the elaborate trend model we have chosen to use a
rather simple log-linear parametrisation of the spread. We do this for two
reasons. First, assuming the trend model captures the main features of
the mortality surface we expect there to be only little structure left in
the spread. Introducing a complex functional form for the spread there-
fore seems fruitless. Second, a complicated spread model would to some
extent counter the idea of the model. The spread is supposed to model
only the random, but potentially time-persistent, fluctuations around the
underlying mortality evolution.

Regarding the choice of dimensionality, n, we are faced with the usual
trade–off. A high number of regressors can fit the spread evolution very
precisely, but there is a risk of overfitting thereby impairing forecasting
ability. Also, a high number of spread parameters are harder to model and
will, typically, increase forecasting uncertainty. A low number of regres-
sors, on the other hand, will fit the spreads less well and can be expected
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to capture only the overall shape. However, a low number of spread pa-
rameters are easier to model and, generally, provides more robust and less
uncertain forecasts.

For a given number of regressors there are essentially two ways to
proceed. Either, the regressors are specified directly and only the spread
parameters are estimated, or both regressors and spread parameters are
estimated simultaneously from the data. We prefer the former method due
to ease of interpretability of the spread parameters and presumed better
forecasting ability; although we recognise that the latter method provides
a better (with-in sample) fit.

Specifically, we propose to parameterise the spread by the three regres-
sors

r0,x = 1, (4.29)
r1,x = (x− 60)/40, (4.30)

r2,x = (x2 − 120x + 9160/3)/1000, (4.31)

which describe, respectively, the level, slope and curvature of the spread.
For ease of interpretability the regressors are chosen orthogonal and they
are normalised to (about) unity at ages 20 and 100.8 The number of
regressors reflects a compromise between fit and ease of modelling which
appears to work well in our application.

Due to the assumed independence of death counts the MLE of the
spread parameters for year t depends only on data for that year. For each
year of subpopulation data we obtain the MLE for yt by maximising the
log-likelihood function

l(yt) =
∑

x

Dsub(t, x)y′trx − µ̄ref(t, x) exp(y′trx)Esub(t, x) + constant,

where µ̄ref(t, x) is calculated with the maximum likelihood estimates from
Section 4.2.2 inserted. Note that the parametric form of the underlying
trend ensures that we can calculate µ̄ref(t, x) for all x and t. Thus the age

8In the application we use mortality data for ages 20 to 100, i.e. 81 one-year age
groups. Seen as vectors the three regressors are orthogonal w.r.t. the usual inner product
in R81. The regressors are normalised such that r2,20 = −1 and r2,100 = 1, while
r3,20 = r3,100 = 1.053. If desired we can obtain r3,20 = r3,100 = 1 by changing the
normalisation constant from 1000 to 3160/3 in the definition of r3.
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and time windows for which we have data for the sub- and reference popu-
lation need not coincide, or even overlap. In practice, of course, we expect
there to be at least a partial overlap. For example, if the subpopulation is
the current and former members of a specific pension scheme, or a specific
occupational or ethnic group, we might have only a relatively short history
of data, while we might have a considerably longer history of national data
which we might want to use as reference data.

Time dynamics

The multivariate series of spread parameters describe the evolution in
excess mortality in the subpopulation relative to the reference popula-
tion. Over time we expect the two populations to experience similar im-
provements and we therefore believe the spread to be stationary rather
than showing systematic drift. We also expect the spread to show time-
persistence. If at a given point in time the mortality of the subpopulation
is substantially higher or lower than the reference mortality we expect it to
stay higher or lower for some time thereafter. Finally, we expect the spread
parameters to be dependent rather than independent. The regressors are
chosen to have a clear interpretation, but we do not expect, e.g. the level
and the slope of the spread to develop independently of each other over
time.

The simplest model meeting these requirements is the vector autore-
gressive (VAR) model which we will adopt as spread parameter model.
Specifically we suggest to use the Gaussian VAR(1)–model

yt = Ayt−1 + εt, (4.32)

where A is a three by three matrix of autoregression parameters and the
errors εt are three-dimensional i.i.d. normally distributed variates with
mean zero and covariance matrix Ω, i.e. εt ∼ N3(0, Ω).

By not including a mean term in the model we implicitly assume that
the spread will converge to zero (in expectation) over time. We believe
this is a natural condition to impose for the application to Danish data
with an international reference data set considered in this paper. Indeed,
it is hard to justify the opposite, that Danish mortality should deviate
systematically from international levels indefinitely – even if historic data
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were to suggest it. For other applications one may wish to include a mean
term in the model and thereby allow for systematic deviations. Similarly,
one may wish to consider more general VAR–models with additional lags
to capture more complex time-dependence patterns.

The parameters A and Ω of model (4.32) can be estimated by the ar
routine in R treating the time series of estimated spread parameters, yt,
as observed variables. The routine offers various estimation methods. It
would have been in the spirit of this paper to use maximum likelihood es-
timation, but unfortunately this option is only implemented for univariate
time series. Instead we use Yule-Walker estimation which obtains esti-
mates by solving the Yule-Walker equations, cf. e.g. Brockwell and Davis
(1991). In our application the estimated A defines a stationary time series,
i.e. the modulus of A’s eigenvalues is smaller than one, for both men and
women. However, in general there is no guarantee for this. As with all
statistical analysis where data contradicts modelling assumptions one will
then have to propose a more suitable model, e.g. introduce a mean term
or additional lags, and reiterate the analysis.

Forecast

Forecasting in the VAR–model (4.32) is based on the conditional distribu-
tion of the future values of the spread given the observed values. Assuming
year T to be the last year of observation and h to be the forecasting hori-
zon we need to find the conditional distribution of yT+h given the observed
values. Due to the Markov property of the VAR(1)–model this distribu-
tion depends on the last observed value, yT , only. Expanding the data
generating equation we obtain for h ≥ 1

yT+h|yT ∼ N(mh, Vh),

where mh and Vh are given by

mh = AhyT , Vh =
h−1∑

i=0

AiΩ(Ai)′.

From these expressions forecasted values for future spread parameters and
corresponding two sided (pointwise) 95%-confidence intervals are easily
obtained as

CI95%(yT+h) = mh ± 1.96
√

diag(Vh).

91



Note that due to stationarity the forecasting uncertainty will increase to-
wards a finite limit as the forecasting horizon increases. Thus the devi-
ations of the subpopulation from the reference population are bound (in
probability) over time. By use of equation (4.28) we further have

CI95% (log µ̄sub(T + h, x)) = log µ̄ref(T + h, x) + m′
hrx ± 1.96

√
r′xVhrx.

The stated confidence intervals only reflect the stochasticity of the VAR–
model itself without taking the parameter uncertainty into account. They
are therefore, in a sense, the ”narrowest” possible confidence intervals. Con-
fidence intervals incorporating parameter uncertainty of both the trend and
the spread model can be constructed by bootstrap, but we will not pursue
that point further. Cairns (2000) also considers model uncertainty, i.e.
the uncertainty associated with determining the underlying model, and he
discusses how all three types of uncertainty can be assessed coherently in
a Bayesian framework.

We have concentrated on assessing the uncertainty of a single ASDR
at a future point in time. Since the conditional distribution of the entire
future {yT+1, . . .} given yT is readily available we can also derive simultane-
ous confidence intervals for any collection of ASDRs by the same method.
In principle, it is therefore possible to derive analytic confidence intervals
for any functional of the intensity surface. In practice, however, most
quantities of interest, e.g. remaining life expectancy, are too complicated
to allow analytic derivations. Instead it is necessary to resort to Monte
Carlo methods to assess forecasting uncertainty of any but the simplest
quantities. Fortunately, this is straightforward to implement. We simply
simulate a large number of realisations from the VAR–model (4.32) and
calculate the corresponding intensity surface by (4.28). For each surface
we calculate the quantity of interest and we thereby obtain (samples from)
the forecasting distribution. This is illustrated in Section 4.3.4.

4.3 Application

To demonstrate the model in action we consider the case that gave rise to
the name SAINT, namely Denmark as the (sub)population of interest and
a basket of developed countries as the reference population. The model is
applied to each sex separately.
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4.3.1 Data

Data for this study originates from the Human Mortality Database,9 which
offers free access to updated records on death counts and exposure data
for a long list of countries. The database is maintained by University of
California, Berkeley, United States and Max Planck Institute for Demo-
graphics Research, Germany.

We will use both Danish data and a pooled international data set con-
sisting of data for the following 19 countries: USA, Japan, West Germany,
UK, France, Italy, Spain, Australia, Canada, Holland, Portugal, Austria,
Belgium, Switzerland, Sweden, Norway, Denmark, Finland and Iceland.
This set is chosen among the 34 countries represented in the Human Mor-
tality Database because of their similarity to Denmark with respect to
past and presumed future mortality. Table 4.6 in Section 4.7 contains a
summary of the data.

The subsequent analysis uses data from the years 1933 to 2005 and
ages 20 to 100. As far as the time dimension is concerned the cut points
are determined by the availability of US data. Concerning the age span
the analysis could in principle be based on all ages from 0 to 110, which
are all available in the Human Mortality Database. However, since the
prime focus is adult mortality and since the mortality pattern at young
ages differs markedly from adult mortality all ages below 20 have been
excluded. For very high ages the quality of data is poor and sometimes
based on disaggregated quantities and for this reason all ages above 100
have also been excluded.10

The international data set is constructed as the aggregate of the 19
national data sets. For each year from 1933 to 2005 and each age from 20
to 100 the international death count and international exposure consists
of, respectively, the total death count and total exposure of those of the 19
countries for which data exists for that year. Measured in terms of death
counts and exposures the international data set is more than 100 times
larger than the Danish data set.

9See www.mortality.org
10In some countries and some years data for ages younger than 100 years is also based

on disaggregated quantities, but we suspect this to be of minor importance.
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Figure 4.1: Danish (dashed line) and international (solid line) development
in female death rates from 1933 to 2005 for selected ages.

4.3.2 Trend

To illustrate the data we have plotted Danish and international female
death rates for ages 40, 60 and 80 years in Figure 4.1. Compared to Den-
mark the international development in death rates has been quite stable
with only slowly changing annual rates of improvement. The Danish mor-
tality evolution, on the other hand, shows a much more erratic behavior
with large year-to-year variation in improvement rates. The Danish level
seems to follow that of the international community in the long run, but
there are extended periods with substantial deviations. The most strik-
ing of these is the excess mortality of Danish females around age 60 which
emerged in 1980, peaked more than a decade later and is still present today
although less pronounced. From Figure 4.1 and similar plots it seems rea-
sonable to think of Danish mortality rates as fluctuating around a stable
international trend.

We have used the international data set to estimate the trend model de-
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Para- Women Men
meter Estimate 95%-CI Estimate 95%-CI

Σ 4.2860 · 10−1 ±1.6 · 10−4 2.6243 · 10−1 ±2.3 · 10−4

g1 9.8965 · 10−2 ±2.3 · 10−6 1.0551 · 10−1 ±2.2 · 10−6

g2 4.7856 · 10−6 ±5.1 · 10−8 8.3744 · 10−5 ±3.7 · 10−8

g3 1.3103 · 10−3 ±1.0 · 10−7 5.5903 · 10−5 ±8.6 · 10−8

κ1 −8.7819 · 100 ±1.7 · 10−4 −1.0576 · 101 ±1.6 · 10−4

κ2 −1.8510 · 10−2 ±5.8 · 10−6 −1.7827 · 10−2 ±5.0 · 10−6

γ1 −1.1810 · 101 ±1.9 · 10−3 −7.5222 · 100 ±8.4 · 10−4

γ2 −8.9038 · 10−2 ±3.2 · 10−5 −2.5005 · 10−2 ±2.0 · 10−5

Table 4.1: Maximum likelihood estimates and 95% confidence intervals
for the trend model given in Section 4.3.2. The estimation is based on
international mortality data from 1933 to 2005 for ages 20 to 100 years.

scribed in Section 4.2.2. Table 4.1 contains maximum likelihood estimates
of the eight parameters and corresponding two sided 95% confidence inter-
vals. The narrow width of the confidence intervals reflects the fact that,
relative to the amount of data, we have a very parsimonious model. Using a
similar model Barbi (2003) reports standard errors of the same magnitude
in an application to Italian data. The small standard errors indicate that
the parameters are well determined, but this does not necessarily imply a
good fit. The fit of the model can be assessed graphically on Figure 4.2
which shows international female mortality rates together with the esti-
mated trend. Overall, it appears that the model does a remarkably good
job at describing the data. There are appreciable deviations only for the
very youngest and very highest ages. For now we settle with this informal
graphical inspection of goodness-of-fit, but we will return to the issue more
formally in Section 4.4.

The model has three parameters to describe three different types of
improvement in mortality over time. The parameters g2 and κ2 affect the
improvement in senescent mortality, while the reduction in background
mortality is determined by γ2. By Proposition 4.5 we know that the limit-
ing rate of improvement in senescent mortality is given by −(κ2 + g2x) for
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Figure 4.2: Historic development (dashed line) in international female
death rate from 1933 to 2005 for the age groups 20, 40, . . . , 100. Model es-
timate of trend with parameters given in Table 4.1 is superimposed (solid
line).

ages x for which this quantity is positive.11 Since g2 is positive for both
sexes the (limiting) rate of improvement is decreasing in age as expected.
Due to frailty we also have that the limiting improvement rate is achieved
more slowly for higher ages than for lower ages. This further ”steepens”
the age-profile of improvement rates and causes it to change shape over
time as illustrated in Figure 4.3. Note in particular how the improvement
rate for 100–year–olds is projected to double over the next century. The
projected increase in improvement rates can also be observed from the
curved projection in Figure 4.2 for this age group (the effect is also present
for the younger age groups but much less pronounced).

The value of κ2 is estimated to about −1.8% for both women and men.
11With the estimated parameter values this is satisfied up to age 213 for men and

3870 years for women, i.e. for all ages of practical relevance.
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Figure 4.3: Rate of improvement, ρs(t, x), in female senescent mortality.
Based on parameter values from Table 4.1.

The value of g2, however, is almost 20 times larger for men than for women.
This implies that whereas the limiting age-profile of improvement rates is
almost flat for women the age-profile will remain steep for men. Thus
100–year–olds females will eventually experience the same annual rate of
improvement as the younger age groups, while old men will continue to
have lower improvement rates than younger men.

The improvement rate of background mortality is estimated to about
9% for women and about 2.5% for men. The large value for women is due
to the dramatic decrease in mortality among the 20 to 30–year–olds in the
beginning of the observation period, cf. Figure 4.2. However, since female
background mortality is now negligible compared to senescent mortality
further reductions will have virtually no effect on (total) mortality even at
young ages. For men, on the other hand, background mortality is much
higher (as can be seen by the difference in the values of γ1) and future
reductions will have a substantial effect on young age mortality.
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The estimated level of heterogeneity, Σ, is higher for women than for
men. Since the Σ parameter controls the ”delay” in achieving the asymp-
totic rate of improvement, i.e. the first term in (4.24) of Proposition 4.5,
this implies that the asymptotic rate is approached slower for women than
for men. It is not clear why this is the case, but a gender difference of the
same magnitude was found by Barbi (2003).

The remaining parameters control the age profile of (senescent) mortal-
ity. As expected the parameter for the overall level, κ1, and the parameter
for first-order age dependence, g1, are both estimated to be smaller for
women than for men. Only the second-order age dependence parameter,
g3, is higher, albeit still small, for women than for men. The parameter is
positive for both sexes implying that aging is accelerating with age. Thus
for all ages of practical relevance female mortality is estimated to be lower
than male mortality, but for very advanced ages female mortality will in
fact exceed male mortality.

4.3.3 Spread

We will apply the three factor spread model of Section 4.2.3 to describe the
Danish fluctuations around the international level. The estimated spread
series for women are shown in Figure 4.4, where the excess mortality of
Danish women from around 1980 onwards is clearly visible. Note that
simultaneously with the increase of the level the curvature has decreased.
This means that only women around age 60 experience excess mortality
while the mortality of very young and very old Danish women is similar
to the international level.

In 2005 the estimated spread parameters were (0.17, 0.06,−0.16) for
women and (−0.01, 0.15, 0.08) for men. This in fact implies an excess
mortality of more than 25% for Danish women of age 60, but only 6%
at age 100. Danish men, on the hand, are very much in line with the
international level having an excess mortality of 3% at age 60.

The parameter estimates of the VAR(1)–model, which describes the
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dynamics of the spread series, are

A =




0.6861 −0.1907 −0.2739
−0.1423 0.8724 −0.1558
−0.2422 −0.1035 0.5179


 ,

Ω = 10−3




2.0449 −0.7341 0.3012
−0.7341 2.9779 −0.7376

0.3012 −0.7376 1.3278


 ,

for women and

A =




0.7885 −0.1714 −0.1283
−0.2485 0.6387 0.0477
−0.0650 −0.0792 0.9130


 ,

Ω = 10−3




1.4840 −0.3818 0.3646
−0.3818 3.0056 −1.1880

0.3646 −1.1880 3.4158


 ,

for men. In both cases the A matrix give rise to stationary series. Note
that diagonal and off-diagonal elements of A are of the same magnitude
because of the high interdependence between the three spread components.
Also the errors are highly correlated.

Figure 4.4 shows the mean forecast for the spread parameters for women
with 95% confidence intervals. Due to stationarity all three spread com-
ponents are forecasted to converge to zero. However, due to the structure
of A the convergence is not necessarily monotone. The slope, for instance,
starts out positive but is forecasted to become negative before approaching
zero.

The width of the confidence intervals reflects the observed variation in
the spread over the estimation period. The confidence intervals expand
quite rapidly to their stationary values indicating that substantial devia-
tions can build up or disappear in a matter of decades. The confidence
intervals do not include parameter uncertainty, but only the uncertainty
induced by the error term of the VAR–model. Incorporating parameter,
or indeed model, uncertainty will most likely lead to even wider confidence
intervals.
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Figure 4.4: Estimated and forecasted spread parameters for Danish women
with two sided pointwise 95% confidence intervals.
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4.3.4 Forecasting life expectancy

Life expectancies are an intuitively appealing way to summarise a mortal-
ity surface. Letting µ̄ denote an intensity surface which is constant over
Lexis squares, cf. Section 4.2.1, and letting t and x be integers we get
the following approximation for the cohort mean remaining life time of
individuals born at t− x (at time t)

ēc(t, x) = E {T − x|T ≥ x}

=
∫ ∞

0
exp

(
−

∫ s

0
µ̄(t + v, x + v)dv

)
ds

≈
M∑

j=0

exp

(
−

j−1∑

i=0

µ̄(t + i, x + i)

)
1− exp (−µ̄(t + j, x + j))

µ̄(t + j, x + j)

(4.33)

for some large M . Similarly, the period mean remaining life time is

ēp(t, x) ≈
M∑

j=0

exp

(
−

j−1∑

i=0

µ̄(t, x + i)

)
1− exp (−µ̄(t, x + j))

µ̄(t, x + j)
. (4.34)

The cohort life expectancy is calculated from the ASDRs of a specific
cohort, i.e. along a diagonal of the Lexis diagram, while the period life
expectancy is calculated from the ASDRs at a given point in time, i.e.
along a vertical line of the Lexis diagram. The cohort life expectancy
represents the actual life expectancy of a cohort taking the future evolution
of ASDRs into account. The period life expectancy, on the other hand, is
the life expectancy assuming no future changes in ASDRs. For this reason
the cohort life expectancy is (substantially) higher than the corresponding
period life expectancy.

In Table 4.2 we have shown selected cohort and period life expectancies
for women based on point estimates of the intensities (obtained from the
mean forecast of the spread). Period life expectancies based on observed
death rates for 2005 are also shown. We note that they correspond very
well with the model estimates indicating a good fit of the model in the
jump–off year.

The table contains period life expectancy forecasts up to year 2105
while cohort life expectancies are forecasted only up to year 2025. In prin-
ciple, we can calculate cohort life expectancies for 2105 also. However,
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International Denmark
Age Age

Year 20 60 70 80 20 60 70 80

2005 71.67 27.37 17.88 10.17 71.67 27.05 17.41 9.66
2025 74.96 30.27 20.36 11.98 74.96 30.26 20.34 11.96

International Denmark
Age Age

Year 20 60 70 80 20 60 70 80

2005 62.92 24.85 16.54 9.64 60.89 23.10 15.11 8.68
(62.84) (25.12) (16.83) (9.70) (60.89) (23.11) (15.19) (8.84)

2025 65.98 27.43 18.75 11.28 65.91 27.36 18.69 11.24
2045 68.94 30.02 21.04 13.08 68.94 30.02 21.04 13.08
2105 77.27 37.70 28.15 19.13 77.27 37.70 28.15 19.13

Table 4.2: Upper panel: Cohort remaining life expectancy in years for
women. The numbers are based on model forecasts and calculated using
(4.33) with M = 120. Lower panel: Period remaining life expectancy in
years for women. The numbers are based on model forecasts and calculated
using (4.34) with M = 120. The period remaining life expectancy based on
observed death rates for year 2005 (with M = 110) is shown in brackets.

assuming a maximal age of 120 years this would require that we project
ASDRs to year 2205. No matter how good a model, we cannot give cre-
dence to quantities based on projections 200 years into the future and we
have therefore chosen to omit the numbers.

The current excess mortality for Danish women can be seen as lower
period life expectancies in 2005. The Danish cohort life expectancies are
also lower than the international levels but the differences are smaller due
to future convergence of Danish rates to the international trend. After 20
years the differences between Danish and international life expectancies
have virtually disappeared.

The forecasting uncertainty of complicated functionals such as life ex-
pectancy can be assessed by Monte Carlo methods as described in Sec-
tion 4.2.3. As an illustration of this approach we show in Figure 4.5 the
forecasting distribution for the cohort life expectancy of a 60-year-old Dan-
ish women in 2005, ēc(2005, 60), based on 100,000 simulations. The em-
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Figure 4.5: Forecasting distribution of the cohort remaining life expectancy
ēc(2005, 60) for Danish women. The mean and median (vertical line) are
both 27.06, and the standard deviation is 0.32. Based on 100,000 simula-
tions.

pirical mean is 27.06 which is very close to the point estimate of 27.05
in Table 4.2. Note that this need not necessarily be true in general for
non-linear functionals. Confidence intervals can be obtained using either
the empirical standard deviation of 0.32 and a normal approximation, or
the percentiles of interest can be calculated directly from the sample.

4.4 Goodness-of-fit

Evaluation of a statistical model’s performance is of uttermost importance,
and hence we devote this section to investigating the fit of the SAINT
model. To this end we evaluate the model’s fit within-sample as well as
out-of-sample. Having applications in mind we emphasise the latter. Our
benchmark is the widespread ”Poisson version” of the Lee–Carter (LC)
model, cf. Brouhns et al. (2002). This model assumes that

D(t, x) ∼ Poisson (µ̄(t, x)E(t, x)) with µ̄(t, x) = exp(αx + βxκt), (4.35)
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where the parameters are subject to the constraints
∑

t κt = 0 and
∑

x βx =
1 to ensure identifiability.

To assess the performance we measure the cellwise errors in death
counts, i.e. the deviation from the expectation in the hypothesised Poisson
distribution. We then sum these, their absolute values or their squares.
For comparison and interpretation we normalise by the total number of
deaths in the two former cases. Thus we consider

G1 =
∑
t,x

(D(t, x)− µ̄(t, x)E(t, x))

/∑
t,x

D(t, x)

=1−
∑
t,x

µ̄(t, x)E(t, x)

/∑
t,x

D(t, x) , (4.36)

G2 =
∑
t,x

|D(t, x)− µ̄(t, x)E(t, x)|
/∑

t,x

D(t, x) , (4.37)

G3 =
∑
t,x

(D(t, x)− µ̄(t, x)E(t, x))2 , (4.38)

where µ̄ is either fitted or forecasted. The forecasted values for the SAINT
model (LC model) are based on the mean forecast of the spread (κ-index).

Notice that G1 is the weighted (by actual deaths) average of 1 −
µ̄(t, x)/m(t, x) ≈ log (m(t, x)/µ̄(t, x)). The weighted average of the latter
therefore being a comparable measure of fit. In comparing some versions
of the LC method Booth et al. (2006) calculated the unweighed averages of
log (m(t, x)/µ̄(t, x)) and its absolute value. Modulo a log approximation
this corresponds to weighing by (µ̄(t, x)E(t, x))−1 in (4.36), which seems
unreasonable considering the likelihood. Apart from these suggestions,
most mortality models we have encountered base their evaluation of fit on
graphical inspection.

G2 and G3 evaluate the fit in two different ways and we will use both
measures. As a supplement we also use G1 to measure overall bias. Al-
ternatively, one could evaluate how well key figures such as annuity values
and remaining life expectancy match, but we do not pursue that here.
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Women Men
Estimation period SAINT Lee–Carter SAINT Lee–Carter

1933–1950 5.08 5.38 5.30 5.91
1933–1970 5.02 5.55 5.39 6.09
1933–1990 6.00 6.55 5.00 5.78
1933–2005 6.25 6.31 4.89 5.96

Table 4.3: Within-sample error measured by G2 (as percentages). Danish
data.

4.4.1 Within-sample performance

Within-sample both models perform well with an absolute relative error of
about 6%. Table 4.3 reveals that there is not much to choose between the
two, but it is encouraging that the more sparsely parameterised SAINT
model fits at least as good over any subperiod considered. We choose to
use G2 because it is comparable across sexes and periods, but G3 gives
the same conclusion. Recently, Dowd et al. (2008b) came up with some
statistically testable suggestions to measure goodness–of–fit for mortality
models, which we shall not go into – partly because we are somewhat
skeptical of the underlying independence and dispersion assumptions.

4.4.2 Out-of-sample performance

The papers we are aware of are to a large extent silent regarding the out-of-
sample performance of their respective models. Two exceptions are Booth
et al. (2006) as mentioned above, and Dowd et al. (2008a), whose ideas
are appealing. For sake of brevity we shall not perform any of their four
suggested inspections in depth here.

In essence we believe that a good mortality forecast must fulfill two
equally important criteria. First, the model should provide accurate fore-
casts over short and long horizons. And secondly, using different input
data the mortality forecasts ought to be as little sensitive towards the
choice of estimation period as possible, i.e. robust.
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Forecast period length
10 15 20

Estimation period SAINT LC SAINT LC SAINT LC
1933–1950 0.69 0.43 0.93 0.69 1.34 1.31
1933–1970 1.48 2.32 2.39 4.27 3.50 6.96

Forecast period length
25 30 35

Estimation period SAINT LC SAINT LC SAINT LC
1933–1950 2.43 2.81 4.26 5.34 6.44 8.58
1933–1970 4.82 9.70 6.22 13.0 7.27 15.7

Table 4.4: Out-of-sample error for different estimation periods and differ-
ent forecast periods measured by G3 (normalised by 106). Danish women.

Accuracy

To evaluate the accuracy we will calculate G3 for forecast horizons ranging
from 10 to 35 years for two different, but overlapping, estimation peri-
ods. The results are displayed in Table 4.4 from which we conclude (albeit
based on limited evidence and overlapping estimation periods) that the
LC method predicts slightly more accurately over short forecast periods,
whereas on long horizons the SAINT model’s performance is superior. Fur-
ther analysis has indicated that the tipping point lies between about five
and 15 years’ forecast.

At the cost of potentially even worse long run forecasts it has been
suggested to improve the short run accuracy by calibrating the Lee–Carter
model to the latest observed death rates. This would likely reinforce the
difference between the two models.

Very short term forecasts (not shown) are quite accurate in both cases—
because of short term smoothness of data and the relatively dense paramet-
risation. All conclusions above apply to men as well.

For the same estimation and forecast periods we have calculated G1

as a measure of bias. The results are shown in Table 4.5. Note that
negative values imply upward bias of death rates, i.e. projected death rates

106



Forecast period length
Estimation 10 15 20
period SAINT LC SAINT LC SAINT LC
1933-1950 -7.97 -1.64 -6.84 -0.62 -6.36 -0.33
1933-1970 -4.86 -3.28 -3.64 -2.35 -2.10 -1.21

Forecast period length
Estimation 25 30 35
period SAINT LC SAINT LC SAINT LC
1933-1950 -6.82 -1.04 -6.97 -1.51 -6.49 -1.39
1933-1970 +0.33 +0.80 +1.83 +1.93 +2.78 +2.53

Table 4.5: Out-of-sample error for different estimation periods and differ-
ent forecast periods measured by G1 (as percentages). Danish women.

are higher than realised death rates. For the short estimation period the
SAINT model has a higher bias than LC, while the bias of the two models
is essentially the same for the long estimation period.

Examining the contributions of G1 more thoroughly (numbers not
shown) reveals that there is a seemingly systematical pattern in the er-
rors of the SAINT model with most of the upward bias concentrated at
ages below 40. Death rates for ages 40–60 are in fact slightly downward
biased, while death rates for ages above 60 are essentially unbiased. Due
to its structure the LC model suffers no such systematic age bias.

Dowd et al. (2008a) point out that most mortality forecasts are upward
biased. We find the same, but of course this is not an intrinsic feature of
the models.

Robustness

We will check robustness in two ways—by examining the stability of fore-
casts towards the inclusion of additional years in each end of the data
window. This serves two distinct purposes. Adding extra years in the
”left” side of the interval we examine the sensitivity towards the otherwise
arbitrary choice of left end point of the input data. On the other hand
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adding years in the ”right” side allows analysis of the desired feature that
forecasts do not change substantially when the model is calibrated using
new data. Of course these two tests are closely linked. For the sake of
brevity we will provide graphical indications only but obviously a version
of the G3 measure, or something similar, should be considered as well to
assess how close forecasts based on different data are.

For the former analysis see Figure 4.6. This graphical inspection clearly
indicates that the SAINT model is more ”backward robust”. The particular
evidence is based on two scenarios only, but in fact the conclusion applies
to other ages and periods and to Danish men as well.

Finally, we consider the stability towards including new data. This is
essentially no different from the preceding analysis, and the conclusion is
repeated from above. Figure 4.7 compares mortality intensity forecasts
at two key ages and suggests that the SAINT model is slightly more ”for-
ward robust”. This conclusion is also representative across sexes, ages, and
estimation periods.

We do not believe in the existence of an intrinsically optimal length
for the sample period. Hence, we do not investigate this. Instead we have
faith in the underlying model and use as much data as possible whenever
it is deemed being of an acceptable quality.

As a closing remark we note that any full evaluation of the out-of-
sample performance should take the entire fitted and forecasted distribu-
tion into account, cf. Dowd et al. (2008a). At first glance our model seems
to provide reasonably wide distributions on both short and long horizons,
thus nicely accompanying the reasonable forecasts. Presently we do not,
however, elaborate further on this.
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Figure 4.6: Mortality intensity forecasts based on two different estimation
periods. Upper panel: SAINT model. Lower panel: Lee–Carter model.
Danish women.
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Figure 4.7: Mortality intensity forecasts based on four different estimation
periods. Upper panel: SAINT model. Lower panel: Lee–Carter model.
Danish women.
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4.5 Concluding remarks

The mainstream in mortality modelling builds on linear time series of unob-
served underlying random processes. This typically works very well when
the population in question is sufficiently large that realised death rates are
smooth, in particular over relatively short forecast horizons. Over longer
horizons, and for small populations on the other hand the performance of
these models is less convincing, and the estimates may be very sensitive to
the choice of input data. We therefore developed a two-step approach—
modelling first the mortality of a larger reference population, then the
mortality spread between the two populations.

We have left the choice of reference population a subjective one. The
reference population should be related to the population of interest as we
have to believe that the two populations share the same long term trend.
Observing this, we recommend to choose it as large as possible for best
identification of the trend. The analysis obviously depends on the choice of
reference population, but in this respect the choice of reference population
is no different from the choice of estimation window, or indeed the choice
of model.

In the presented model we have focused on forecasting a single pop-
ulation. However, the methodology can easily be extended to produce
coherent, i.e. non-diverging, forecasts for a group of related populations
by using the group as reference population and treat each population as a
subpopulation of the group. Similarly, we could consider men and women
as subpopulations of the same population rather than estimate separate
models for each gender as done in the application. Using common and in-
dividual components to produce coherent forecasts for related populations
in the Lee–Carter framework has been suggested by Li and Lee (2005).

We have used a two-stage estimation routine in which we first estimate
the trend parameters and then estimate the spread parameters with the
trend kept fixed. This approach can be justified when the reference popu-
lation is substantially larger than the subpopulation, as in case of Danish
and international data. For applications in which the reference and sub-
population are of comparable size one might consider to estimate the trend
and the spread jointly. It is straightforward to write down the likelihood
function so in principle this is possible, but it is numerically involved due
to the large number of parameters involved.
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The trend component of the SAINT model imposes structure on how
mortality can evolve over time and across ages. The parametric form pro-
vides insight into the improvement patterns and it guarantees biologically
plausible forecasts. Compared to the Lee–Carter model the structure of
the SAINT model lead to more precise long–term forecasts at the price of
higher bias. The higher bias was primarily for young ages which is not
surprising as the focus of our modelling has been on old age mortality.
The bias at young ages could undoubtedly be reduced by more careful
modelling of these age groups if so desired.

We have concentrated on the uncertainty generated by the stochastic
term of the spread model, and only briefly mentioned the possibility of
including parameter uncertainty. In the case of the trend, however, the
latter source of uncertainty would be negligible since the trend parame-
ters are so well-determined. Another possibility which might better reflect
the uncertainty of the trend would be to introduce stochastic terms in the
trend model also, thus treating both the trend and the spread as stochastic
processes. This however is not straightforward since we wish to preserve
the overall structure of the trend. We believe that constructing confidence
intervals which properly reflect the intrinsic uncertainty of mortality pro-
jections is an important topic which calls for more attention than so far
received.

4.6 Background and proofs

4.6.1 Background

Recall that the density of the Γ-distribution with shape parameter λ > 0
and scale parameter β > 0 is given by

f(z) =
β−λ

Γ(λ)
zλ−1 exp (−z/β) , (z ≥ 0). (4.39)

This distribution has mean βλ and variance β2λ. Letting λ = β−1 = Σ−2

we obtain a Γ-distribution with mean 1 and variance Σ2.
The survival function, F̄ (t, x), denotes the proportion of the cohort

born at time t− x still alive at time t (at age x). Similarly, the individual
survival function, F̄ (t, x; z), denotes the probability that a person with
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frailty z born at time t− x is still alive at time t. If f denotes the density
of the frailty distribution at birth we have

F̄ (t, x) =
∫ ∞

0
F̄ (t, x; z)f(z)dz, (4.40)

while the conditional frailty density at time t for persons of age x is given
by

f(z|t, x) =
f(z)F̄ (t, x; z)

F̄ (t, x)
. (4.41)

The survival function can be expressed in terms of the force of mortality
as

F̄ (t, x) = exp
(
−

∫ x

0
µ(u + t− x, u)du

)
, (4.42)

and, conversely,

µ(t, x) =
[
− d

dδ
log F̄ (t + δ, x + δ)

]

|δ=0

. (4.43)

The same relationships hold for F̄ (t, x; z) and µ(t, x; z).

4.6.2 Proofs

Proof of Example 4.1. The first equality in (4.10) follows from Proposi-
tion 4.2 with µI

s(t, x) = α exp(βx) and γ(t) = γ, and the second equality
follows from Proposition 4.3.

Proof of Proposition 4.2. By (4.43), (4.40), (4.41) and (4.11) the popula-
tion mortality satisfies

µ(t, x) =

[− d
dδ F̄ (t + δ, x + δ)

]
|δ=0

F̄ (t, x)

=

∫∞
0 f(z)

[− d
dδ F̄ (t + δ, x + δ; z)

]
|δ=0

dz

F̄ (t, x)

=

∫∞
0 f(z)F̄ (t, x; z)µ(t, x; z)dz

F̄ (t, x)

=
∫ ∞

0
f(z|t, x)

(
zµI

s(t, x) + γ(t)
)
dz

= E {Z|t, x}µI
s(t, x) + γ(t).
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Proof of Proposition 4.3. Using (4.11), the individual survival function can
be written

F̄ (t, x; z) = exp (−zI(t, x)−G(t, x)) , (4.44)

where I(t, x) =
∫ x
0 µI

s(u + t − x, u)du and G(t, x) =
∫ x
0 γ(t − x + u)du.

Inserting (4.44) in (4.40) with f given by (4.39) for λ = β−1 = Σ−2 we get

F̄ (t, x) =
λλ

Γ(λ)

∫ ∞

0
exp (−z [λ + I(t, x)]) zλ−1dz exp (−G(t, x))

=
(

1
1 + Σ2I(t, x)

)1/Σ2

exp (−G(t, x)) . (4.45)

Finally, inserting (4.44) and (4.45) in (4.41) with f as above we obtain

f(z|t, x) =

(
Σ−2 + I(t, x)

)Σ−2

Γ (Σ−2)
zΣ−2−1e−z(Σ−2+I(t,x)),

which we recognise as a Γ-density with λ = Σ−2 and β−1 = Σ−2 + I(t, x).

Proof of Proposition 4.4. First note that in the notation of Proposition 4.3
we have (

∂

∂t
+

∂

∂x

)
I(t, x) = µI

s(t, x),

and thereby
(

∂

∂t
+

∂

∂x

)
logE {Z|t, x} = −

(
∂

∂t
+

∂

∂x

)
log

(
1 + Σ2I(t, x)

)

= − Σ2µI
s(t, x)

1 + Σ2I(t, x)

= −Σ2µI
s(t, x)E {Z|t, x}

= −Σ2µs(t, x),
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where the last equality follows from Proposition 4.2. Using E {Z|t− x, 0} =
1 we then get

logE {Z|t, x} =
∫ x

0

(
∂

∂t
+

∂

∂x

)
logE {Z|t− x + u, u} du

= −Σ2

∫ x

0
µs(t− x + u, u)du.

Proof of Proposition 4.5. The equality in (4.24) follows from (4.17) and
the specification of µI

s. To show convergence we first use Proposition 4.3
to write

∂ logE {Z|t, x}
∂t

= −Σ2 ∂
∂tI(t, x)

1 + I(t, x)
, (4.46)

where I(t, x) =
∫ x
0 K(t − x, y)dy. By (4.23) and dominated convergence

we have

I(t, x) =
∫ x

0
exp ((κ2 + g2y)t) K(−x, y)dy → 0 for t →∞,

since κ2 + g2y < 0 for all 0 ≤ y ≤ x by assumption. Similarly,

∂

∂t
I(t, x) =

∫ x

0
exp ((κ2 + g2y)t) (κ2 + g2y)K(−x, y)dy → 0 for t →∞,

and we conclude that (4.46) also converges to zero.

Proof of Proposition 4.6. First case follows by applying l’Hôpital’s rule to
(4.22), second case is the Gamma-Makehammodel, and third case is trivial.
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4.7 Data summary

Male Female
Country Period Deaths Exposure Deaths Exposure
Australia 1933-2004 3656554 298774817 3050957 304038560
Austria 1947-2005 2362681 146948386 2544281 172938922
Belgium 1933-2005 3959202 237960436 3655934 254715105
Canada 1933-2005 5818067 501315204 4711059 510104624
Denmark 1933-2005 1736235 118573885 1651576 124503893
England & Wales 1933-2005 18790451 1155893702 18906239 1301265668
Finland 1933-2005 1649803 105805700 1493332 118540078
France 1933-2005 19554792 1197266420 18601741 1332188094
Iceland 1933-2005 50595 4531626 46223 4597037
Italy 1933-2004 17840263 1231244196 16616547 1360392086
Japan 1947-2005 22944373 2115001379 19852118 2274227259
Netherlands 1933-2005 3785909 304422103 3442716 316942482
Norway 1933-2005 1326283 94013584 1240955 98579501
Portugal 1940-2005 2859456 189334582 2769074 216359565
Spain 1933-2005 10815395 785643871 9940870 862709017
Sweden 1933-2005 2969115 202088902 2792398 209883920
Switzerland 1933-2005 1949244 145118601 1888688 159060151
USA 1933-2005 67513137 4756496475 58192508 5127612213
West Germany 1956-2005 16193960 1081937335 17307798 1227848814

Table 4.6: Summary of deaths and exposures for ages 20–100 over the
period 1933–2005 for the countries included in the international data set.
Source: The Human Mortality Database (www.mortality.org).
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5. The evolution of death rates and
life expectancy in Denmark
Background. The paper in this chapter is written jointly with Søren
Fiig Jarner and Chresten Dengsøe. It was initiated by invitation from the
Scandinavian Actuarial Journal, and appeared as Jarner et al. (2008) as
part of a special longevity issue of the journal. The paper has been pre-
sented on various occasions, including the mortality risk course arranged
by the Danish Actuarial Society in December 2008 held in Copenhagen.

Abstract. From 1835 till today Denmark has experienced an increase
in life expectancy at birth of about 40 years for both sexes. Over the
course of the last 170 years life expectancy at birth has increased from 40
years to 80 years for women, and from 36 years to 76 years for men, and
it continues to rise.
Using a new methodology we show that about half of the total historic
increase can be attributed to the sharp decline in infant and young age
death rates up to 1950. Life expectancy gains from 1950 till today can,
on the other hand, primarily be attributed to improvements in the age–
specific death rates for the age group from 50 to 80, although there is also
a noticeable contribution from the further decline in infant mortality over
this period. With age–specific death rates up to age 60 now at a very
low absolute level substantial future life expectancy improvements must
necessarily arise from improvements in age–specific death rates for ages 60
and above. Using the developed methodology we quantify the impact of
further reductions in age–specific mortality.
Despite being one of countries with the highest life expectancy at the be-
ginning of the 20th century and despite the spectacular historic increase in
life expectancy since then Denmark, in fact, is lacking behind compared
to many other countries, notably the other Nordic countries. The main
reason being an alarming excess mortality for cause–specific death rates
related to ischaemic heart diseases and, in particular, a number of cancer
diseases. Age–specific death rates continue to improve in most countries,
and a likely scenario is that Denmark in the future will experience improve-
ment rates at the international level or perhaps even higher as a result of
a catch–up effect.
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5.1 Introduction

Death is, if not defeated, then on retreat and has been so for a very long
time indeed. The most striking feature of the evolution of death rates in
Denmark, and many other countries, is the constant improvement over at
least the last two hundred years for which we have reliable data. Moreover,
there is no sign of mortality rates levelling out or improvement rates even
slowing down in any near future.

The continuing mortality improvements have far–reaching consequences
for pension funds and the future financing of public health care and state
pension system. Being tax–paid the challenges for public financing are
aggravated by low fertility rates causing the ratio between old people and
young people to increase over time. In Denmark this development has not
gone unnoticed and the heavy implications for the future financing of the
so–called Danish welfare system are analysed in Danish Welfare Commis-
sion (2004), which also provides recommendations for easing the future
financing burden. The analysis rests, among other things, on a mortality
forecast based on the Lee–Carter methodology which predicts a very mod-
est increase in life expectancy of about 4 years for both sexes over the next
50 years, Haldrup (2004).

One of the recommendations of the Danish Welfare Commission has
recently been implemented. The state pension retirement age will in the
future follow the development in life expectancy. The current retirement
age of 65 will be in effect till 2023 and then increase with six months each
year to 67 in 2027. From then on future life expectancy gains will be
reflected in a similar increase in the retirement age.

The majority of Danish pension plans consists of funded systems. These
pension funds are facing two distinct problems in relation to falling mor-
tality rates. The first problem concerns providing adequate reserves for
annuity contracts already entered. In most contracts currently in effect the
terms, including mortality assumptions, cannot be changed over the course
of the contract. Many of these contracts are based on the, at the time,
conservative technical basis G82 which has an assumed life expectancy of
about 77 years for women and about 73 years for men. As reality has
overtaken these assumptions a funding problem has arisen.

The second problem concerns assessing the future mortality pattern in
order to base new contracts on more robust mortality assumptions. From

118



the point of view of the pension industry this problem can to some extent
be handled through securitisation. There has been some academic progress
in this area, see e.g. Dahl et al. (2008); Cairns et al. (2005); Lin and Cox
(2005), but the market for longevity bonds and related products is still in
its infancy. Another popular approach is to avoid the problem altogether
by changing the products into ”mortality free” savings products, or into
annuities in which the mortality assumptions can be changed. However,
the basic problem of assessing the future length of the retirement period
still persists.

Despite the overall picture of constantly declining mortality rates there
has been periods with no improvements or even slight increases in mortality
for certain age groups. One such period lasted from around 1980 to 1995
during which life expectancy rose by only about 1 year. This period with
almost stagnation in life expectancy was also observed to some extent in
other countries but it was more pronounced in Denmark. In fact, the slower
Danish pace of improvement called for political action and in 1992 the Life
Expectancy Commission was formed by the Danish Ministry of Health. In
a series of reports they documented Danish excess mortality for a number
of heart and cancer diseases, see e.g. Life Expectancy Commission (1998).
For related work see the very comprehensive, descriptive analysis of the
evolution of Danish mortality in Andreev (2002) and the discussion in
Hansen et al. (2006).

The purpose of the present paper is to provide an overview of the
evolution of age–specific death rates and to explore the link between im-
provements in age–specific death rates and life expectancy gains. Life
expectancy (at birth) is a much used statistic used to summarise a given
life table in a succinct way. Normally, this quantity is calculated for a
given period life table, i.e. the mortality pattern of a population in a given
calender year, and used in this way it conveys information about the gen-
eral level of mortality in the population at that instant in time. It does
not, however, correspond to the expected life time of a newborn, except in
the hypothetical situation with no future improvements in death rates.

We develop a new sensitivity measure which relates improvements in
age–specific death rates to life expectancy gains (the measure corresponds
to the functional derivative of life expectancy with respect to the mortality
curve). Using this tool we can quantify the historic and future contribu-
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tions to life expectancy gains by the different age groups and quantify
statements like ”life expectancy gains used to be caused by falling infant
mortality, but are now due to improvements in old–age mortality”.

We will also contrast the evolution of Danish mortality with the in-
ternational development and compare cause–specific mortality rates for
selected countries.

5.2 Data and notation

Data used in the paper originate from the Human Mortality Database1

(HMD), which offers free access to updated records on death counts and
exposure data for a long list of countries. The database is maintained by
University of California, Berkeley, United States and Max Planck Institute
for Demographic Research, Germany.

The data consists of gender specific death counts, D(t, x), and the
corresponding exposures, E(t, x), for a range of years t and ages x. More
precisely, D(t, x) counts the number of deaths occurring in calender year t
among people aged x last birthday, and E(t, x) gives the total number of
years lived during calender year t by people of age x. For readers familiar
with the Lexis diagram, D(t, x) counts the number of deaths in the square
[t, t + 1)× [x, x + 1) of the Lexis diagram and E(t, x) is the corresponding
exposure.

For Denmark we are fortunate to have data from 1835 onwards making
the Danish series one of the longest data series available in HMD. Recent
population data for Denmark is of a very high quality being based on the
Central Population Register (CPR). The register was introduced in 1968
and used for the first time in the 1976 census. Before that time censuses
were held every five years with varying levels of detail in the recording
of ages. The pre–1976 data is therefore based on interpolation in both
the time and age dimension and also extrapolation at high ages, since
the maximal age recorded has varied over time. The interested reader is
referred to Andreev (2002) and Wilmoth et al. (2005) for a detailed account
of the structure of the underlying data and the methods used to create the
HMD data series.

1See www.mortality.org
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From the death counts and exposures we form the (crude) death rates

m(t, x) =
D(t, x)
E(t, x)

for t = 1835, . . . , 2006, x = 0, . . . , 99, (5.1)

which will form the basis of our analysis. Death counts and exposures are
available also for ages 100, . . . , 109, 110+, where the last age is an open–
ended interval covering age 110 and above. However, as these data are
very noisy and, for the early part of the series, constructed from age 100+
data we choose to ignore these also for more recent years. Hence, we let
”m(t, x) = ∞” for x ≥ 100 and all t, meaning that the highest attainable
age is 100 years. Life expectancy at birth is only marginally influenced by
this assumption even in recent years, but the life expectancy at very old
ages will be slightly underestimated.

5.2.1 Force of mortality

The original data is aggregated over calender years and age groups of one
year. However, it turns out to be convenient to work with a continuous
formulation, in particular, when discussing the sensitivity of life expectancy
to changes in mortality.

For an individual with (continuous) life time T the survival function is
defined as F̄ (x) = P(T > x), i.e. the probability that the person will live
longer than x years. The force of mortality, also called the intensity or the
hazard, is defined as

µ(x) = − d

dx
log F̄ (x) =

f(x)
F̄ (x)

, (5.2)

where f denotes the density of the life time distribution. The force of
mortality can be interpreted as the instantaneous death rate immediately
after age x given survival to age x.

The survival function and the conditional survival functions given sur-
vival to age y can be expressed in terms of the intensity as

F̄ (x|y) = P(T > y + x|T > y) = e−
∫ y+x

y µ(u)du,

and the expected remaining life time for an y–year–old can be expressed
as

ēy = E {T − y|T > y} =
∫ ∞

0
F̄ (x|y)dx =

∫ ∞

0
e−

∫ y+x
y µ(u)dudx.
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Of particular interest to us is the quantity ē0, life expectancy at birth.
We shall be using these formulas when calculating survival probabilities

and expected life times for period life tables, {m(t, y)}y=0,...,100, and in
order to do so we define an intensity function by µt(x) = m(t, y) for x ∈
[y, y + 1), and base the calculations on µt. Thus when speaking of the life
expectancy at year t we mean the quantity ē0(µt), and similarly for other
summary statistics related to year t.

All reported life expectancies in the paper are calculated using this pro-
cedure based on period life tables calculated from HMD data truncated at
age 100. Our life expectancies might therefore deviate slightly from num-
bers published by the various national bureaus of statistics, e.g. Statistics
Denmark.

5.3 Death rates

By and large death rates have been constantly improving in the historic
period considered, see Figure 5.1. However, looking at the evolution of
age–specific death rates in more detail reveals a more subtle structure with
great variability in both the pace of improvements over time and the age
groups affected. In the following we will give an account of the age–specific
improvements and we will relate these to life expectancy gains using the
decomposition technique developed in Section 5.4.

5.3.1 Infant and child mortality

In 1835 infant mortality was about 19% for girls and 24% for boys; thus
only four out of five babies survived their first year of living. Young age
mortality was also very high and life expectancy at birth at that time was
only about 40 years for women and 36 years for men. During the late 19th
century infant mortality declined somewhat but it still remained very high.
At the turn of the century infant mortality had fallen to 13% for girls and
16% for boys. At the same time life expectancy had risen to 53 years for
women and 50 years for men. However, this life expectancy gain can be
contributed mainly to the decline in child mortality (between age 1 and
10) which dropped by 70% from 1835 to 1900.

Figure 5.2 shows that the reduction in child mortality contributed with
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Figure 5.1: Development in Danish female (top) and male (bottom) age–
specific death rates from 1835 till 2006 for ages 0, 10, . . . , 90. The line
starting out as the second highest and crossing several others is the death
rate for 0–year–olds. The other lines represent ages 10 to 90 in increasing
order.
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about twice as much as the reduction in infant mortality to the life ex-
pectancy gain over the period. The reader is referred to Section 5.4 for a
thorough description of how the age–specific life expectancy contributions
in Figure 5.2 are calculated.

The turn of the century marked the beginning of uninterrupted im-
provements in infant mortality. From 1900 onwards infant mortality has
been declining with about 3% each year. In 1950 infant mortality had
dropped to 3% for girls and 4% for boys. During the first half of the 20th
century life expectancy rose to 72 years for women and 69 years for men;
about one third of the increase can be attributed to the reduction in infant
mortality. The improvements in infant mortality continued after 1950 and
in 2006 infant mortality had been further reduced to 0.3% for girls and
0.4% for boys. The life expectancy in 2006 was 80 years for women and 76
years for men. However, only a smaller part of the life expectancy increase
after 1950 was due to reductions in infant mortality.

The historic development in infant mortality has been truly remarkable.
Coming from a level in 1835 corresponding to the death rate of an 80–year–
old the level has been dramatically reduced in both absolute and relative
terms. In 2006 infant mortality was at the same level as the mortality of
an 50–year–old. Infant mortality seems to continue to fall, however, being
now at a low absolute level future reductions will not have a great impact
on life expectancy.

The evolution of child mortality is very similar to the development
in infant mortality with respect to the timing and size of improvement
rates. This can be seen from Figure 5.1 where the curves for infant and
10–year–old’s mortality have developed almost in parallel. However, the
improvements in child mortality started already around 1870, some 30
years before infant mortality began to decrease.

Child mortality in 1835 ranged from 6% for 1–year–old boys and girls
to 1% for 10–year–old boys and girls. By 1900 these death rates had been
reduced to about 2% for 1–year–olds and 0.3% for 10–year–olds. About
half of the life expectancy gain over this period can be attributed to this
reduction. Apart from the fall in infant mortality from 1900 to 1950 the
reduction in child mortality in the late 19th century is the single most
important contribution to the increase in life expectancy from 1835 to
2006.
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Figure 5.2: Decomposition of the life expectancy gain from 1836 to 2006
for Danish females (top) and males (bottom). The plot shows the life
expectancy gain attributable to age groups 0, 1–10, 11–20, . . . , 91–100 over
the three periods 1835–1900 (bottom boxes), 1900–1950 (middle boxes)
and 1950–2006 (top boxes); see Section 5.4.2 for details.
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From 1900 onwards child mortality steadily declined to below 0.3% in
1950 for both boys and girls and further down to below 0.04% in 2006.
The fall from 1900 to 1950 had an appreciable effect on life expectancy of
about 3 years, while the impact in terms of life expectancy gains of the
fall in the second half of the 20th century has been minimal. As for infant
mortality child mortality is now at a very low level and further reductions
will have only marginal effects on life expectancy.

In combination more than half of the 40 years gain in life expectancy
since 1835 can be attributed to improvements in infant and child mortality.

5.3.2 Young and middle age mortality

The evolution of young (ages 11 to 30) and middle age (ages 31 to 60)
mortality exhibits considerably variation between the sexes and across dif-
ferent time periods and ages. Whereas the evolution of infant and child
mortality shows a fairly regular pattern with a steady decrease of the same
magnitude for both sexes since the late 19th century, the improvement in
young and middle age mortality is characterised by periods with high rates
of improvement and periods with virtually no improvements.

Generally, the improvement rate is decreasing with age. Even for the
periods with high rates of improvement in young and middle age mortality
these rates are below those observed for infant and child mortality. This
also holds true for old age (above age 60) mortality which has had the
lowest rates of improvement of all age groups; a point to which we shall
return below.

We have informally, i.e. not based on any objective measure apart from
our judgement, divided the historic period into six subperiods (indicated by
the vertical lines in Figure 5.1) in which the age–specific rates of improve-
ment appear approximately constant. Since the death rates are plotted
on a logarithmic scale this corresponds to the death rates approximately
following straight lines with age–specific slopes within each subperiod.

We mention in passing that the age–specific log–linear structure within
each subperiod is the assumption underlying the popular Lee–Carter model,
Lee and Carter (1992). It is quite clear, however, that in case of Danish
mortality estimates and forecasts based on this methodology will be very
sensitive to the chosen data window as the improvement rates vary con-
siderably over time, cf. Hansen et al. (2006) for a quantification of this
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Females Males
Period 0 10 30 60 99 0 10 30 60 99

1835–1870 1.0 1.1 0.5 0.6 -0.1 1.0 1.3 0.7 0.8 0.1
1870–1900 0.2 2.6 1.1 0.8 -0.2 0.2 2.4 0.5 0.4 -0.2
1900–1950 3.1 4.4 4.0 1.8 0.5 2.9 3.8 3.0 1.8 0.7
1950–1980 4.1 3.3 1.4 0.7 1.5 4.5 2.9 0.2 -0.1 0.2
1980–1995 3.3 2.0 2.2 0.8 0.1 3.3 3.2 1.1 1.0 0.4
1995–2006 2.4 3.9 5.3 3.4 1.7 2.5 6.5 3.3 2.2 2.2

1835–2006 2.3 2.9 2.1 1.2 0.5 2.3 2.8 1.5 1.1 0.4

Table 5.1: Median annual rates of improvements (in percentages) for se-
lected periods and age groups: 0, 1–10, 11–30, 31–60, 61–99.

effect.
For each age x and each subperiod the constant, annual rate of im-

provement has been calculated, i.e. the number rx such that m(t, x) =
m(s, x)(1− rx)t−s for the period from s to t. Within each subperiod and
within each of the age groups 0, 1–10, 11–30, 31–60, 61–99 the median rate
of improvement across ages was then calculated. The results are shown in
Table 5.1. The last row contains the median rate of improvement within
each age group for the whole period. We chose to use the median rather
than the mean to get more robust results less sensitive to outlying rates of
improvement at specific ages. As for infant mortality the rates of reduc-
tion in young and middle age mortality were relatively modest during the
19th century. The annual rate of improvement was somewhat below 1%
for most age groups. Still, from 1835 to 1900 even this low rate of improve-
ment gave rise to mortality rates being reduced by about 50%. However,
the combined impact of this reduction for the ages 11 to 60 on the gain in
life expectancy over this period was only 4 years or 2 years less than the
effect of the decrease in child mortality alone, cf. Figure 5.2. The reason
the effect was not more pronounced is that the level of infant and child
mortality was still very high in 1900. More than 20% died before the age
of 20 and these people did not benefit from the improved mortality rates
at higher ages.
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The first half of the 20th century was a period with unprecedented
mortality improvements across ages. Infant and child mortality fell sharply
and young age mortality also fell rapidly at a pace of 3% or more a year,
with female mortality declining slightly more than male mortality. From
1900 to 1950 mortality rates were reduced by 80% or more. Also middle
age mortality fell noticeably at a rate of just below 2% a year. The effect
on life expectancy over this period was an impressive increase of 18 years
for women and 19 years for men; life expectancy rose from 53.4 years to
71.5 years for women and from 50.1 years to 69.1 years for men. Of this
gain about 7 years can be attributed to the reduction in young and middle
age mortality.

The period from 1900 to 1950 saw the largest general increase in mor-
tality, but it also witnessed some of the greatest disasters in human history.
The influenza pandemic known as the Spanish Flu in the aftermath of the
World War I killed somewhere between 20 and 40 million worldwide in the
years 1918–1919. The effect of the influenza was particularly devastating
because of its high morbidity for the ages 20 to 40, while influenza nor-
mally is most deadly for children and elderly people. The impact of the
influenza is clearly visible on Figure 5.1 (the cholera epidemic in 1853 can
also be identified on the plot, although, much less prominent).

The other tragic event of the period was World War II. The effect of
the war can be seen as spikes in the death rates for ages 20 to 40 around
1945. Both these events caused a period with high excess mortality in
young age groups, but death rates quickly fell back to previous levels from
where they continued to decline. Therefore neither of the events affect the
mortality improvements when measuring from 1900 to 1950.

After the strong decline in mortality for both sexes up to 1950 came
a period of about 30 years in which improvement rates for young and
middle age mortality diverged for females and males. Female mortality
continued to decline although at a slower pace, while male mortality ceased
to improve. In fact, from 1950 to 1980 male death rates slightly increased
for ages 50 to 75.

The life expectancy gap between women and men was 3 years in 1950.
A difference which had been roughly constant since 1835. As a consequence
of the stagnation in male mortality improvements and the continuing fe-
male improvements this gap widened to 6 years from 1950 to 1980; over
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the course of the 30 years life expectancy rose from 71.5 years to 77.2 years
for women and from 69.1 years to 71.2 years for men.

Like Denmark many other developed countries also experienced a decel-
eration in life expectancy gains from 1950 to 1980. In Denmark, however,
the slow increase was followed by almost stagnation in life expectancy,
particularly for women, from 1980 to 1995, while in most other countries
life expectancy improvements began to pick up again around 1980. Danish
women had a life expectancy improvement of only 0.6 years over these 15
years, while male life expectancy rose by 1.6 years. The life expectancy
gap between women and men thereby narrowed by 1 year to about 5 years.

Looking at Figure 5.1 and Table 5.1 we see that improvements in infant,
child and young age mortality in fact persisted throughout the period, but
the effect on life expectancy was hardly noticeable since death rates at
these ages were already very low.

From 1995 to the time of writing Denmark has again experienced high
rates of improvements, and for the first time in history death rates are
improving simultaneously for all age groups including the oldest ages. The
improvements, particularly in middle and old age mortality, have caused
a life expectancy increase of 2.7 years for women and 3.2 years for men.
Over the last decade the life expectancy gap between women and men has
thus been further reduced by half a year. The life expectancy in 2006 was
80.5 years for women and 75.9 for men.

The current rate of improvement in death rates and life expectancy is
historically high, only exceeded by the improvements observed from 1900
to 1950. Since 1995 there has been an average, annual increase in life
expectancy of 0.24 years for women and 0.29 years for men. In compar-
ison, there has been an average, annual increase over the whole period
of about 0.23 years for both sexes. This average, of course, includes the
spectacular period from 1900 to 1950 during which there was an average,
annual increase of about 0.37 years for both sexes. Thus, apart from this
period the average, annual increase has been considerable lower and in this
perspective the current level of improvement is indeed very high.

5.3.3 Old age mortality

As mortality rates decline and life times increase the perception of ”old age”
also gradually changes. In 1835 with less than 40% of newborns reaching
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the age of 60, cf. Figure 5.3, this was certainly considered a very old age.
Nowadays, with about 90% reaching age 60 a person of this age is no longer
”old”, but merely an adult. However, for the sake of this paper we take
old age to mean ages 61 and above as a compromise reflecting the historic
period as a whole.

Through the 19th century death rates for 70–year–olds did not improve,
while for even older age groups they actually increased. We should, of
course, treat this finding with caution as we must consider data from this
early period less reliable and to some extent prone to age misreporting, in
particular, at high ages.

During the first half of the 20th century old age mortality started to
improve but at a rate of less than 1% a year for males and even lower for
females. These rates were much lower than those observed for the younger
ages. Of the historic increase in life expectancy of about 19 years from
1900 to 1950, less than 2 years can be attributed to improvements in old
age mortality, cf. Figure 5.2.

The pattern of no improvement in male mortality and continued im-
provement in female mortality seen from 1950 to 1980 at ages below 60
is also seen in old age mortality to an even wider degree. In this period
female death rates for age 70 and 80 declined with almost 2% a year and
with 1% for age 90. At the same time, male death rates for the old ages
decreased only marginally or, in the case, of the 70–year–olds increased
slightly.

As for the younger ages the period from 1980 to 1995 saw hardly any
improvements in old age mortality. However, since 1995 old age death rates
have been steadily declining and the current rate of about 2% a year is the
highest in history. Of the life expectancy gain of about 13 years for both
sexes from 1950 to 2006 reductions in old age mortality has contributed
with about 4.5 years for women and about 2.5 years for men.

From the start of the data period till today old age mortality has in
general improved at a slower pace than the younger age groups and the im-
provements have occurred later in time. Also the effect on life expectancy
has been moderate compared to, in particular, the reductions in infant
and child mortality. However, with death rates now at quite low levels up
to age 60 future life expectancy gains will come almost exclusively from
improvements in old age mortality.
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Figure 5.3: Life time distribution of Danish females (top) and males (bot-
tom) at selected years. Each column shows the probability of dying before
the age of 20, 40, 60, 70, 80, 90 and 100 based on the period life table for
that year.
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5.3.4 Life time distributions

Another perspective on the aggregated effect of the evolution of death
rates can be obtained from looking at the life time distributions implied by
period life tables. As for life expectancy calculations life time distributions
based on period life tables do not represent the actual distribution of the
life length of newborns (unless no further improvements occur). Still the
distributions give a useful snapshot of the current mortality pattern of the
population.

Figure 5.3 depicts life time distributions at selected years corresponding
to the endpoints of the subperiods identified above. These years represent
structural breaks in (close to) constant improvement regimes. For each
year the plot shows the probability of dying before the age of 20, 40, 60,
70, 80, 90 and 100, i.e. the cumulative distribution function of life length
evaluated at these ages.

The combined effect of declining death rates for infants and children is
clearly visible. In 1835 the probability of dying before the age of 20 was
about 40%. Over the next 115 years this probability decreased rapidly to
below 2% in 1950, and further down to less than 1% in 2006. In fact, in
2006 the probability for females to die before age 40 was less than 1.5%,
and about 2.5% for males.

Over the period all age–specific death rates have improved. However,
the rate of improvement has not been uniform across ages. Generally, the
younger ages have had the largest rates of improvements, the older ages
the lowest, and the oldest–old almost no improvements at all. The effect
can be seen on Figure 5.1 where the death rates are much more spread out
in 2006 than they were in 1835.

The life time distributions provide information about the aggregate
effect of improvements in age–specific death rates up to a given age. For
instance, the probability of reaching age 80 in 1835 was only about 10%
for women and 7% for men2. In 2006 these numbers had increased to
60% and 46%, respectively. The probability of reaching the age of 90 has
also increased considerably over the period although far less, while the
probability of becoming a centenarian has only improved from 0.2% to
1.6% for women and from 0.03% to 0.4% for men.

2Figure 5.3 gives the probability of dying before a given age and the numbers are
thus obtained as 100% minus the values in the figure.
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Historically male death rates have been about 10% higher than female
death rates (plots not shown). In the period from 1950 to 1980 where male
death rates stagnated while female death rates continued to decline this
gap widened to an excess male mortality of about 70%. Currently, male
death rates are about 50% higher than female death rates for most age
groups, with the exception of young male mortality (ages 20 to 40) which
is more than twice as high as female mortality. This gender difference give
rise to substantially lower probabilities for males to attain high ages as
seen on Figure 5.3.

Improvements in age–specific death rates have caused people to die at
still higher ages. However, the probability of attaining a very high age
of 100, say, has not improved by much. This phenomenon is sometimes
referred to as rectangularisation. The term refers to period survival func-
tions looking increasingly ”rectangular” staying close to 1 up to high ages
and then dropping to 0 over a short age span at very high ages. In 2006
about 60% of female deaths occurred between ages 80 and 100, a span of
only 20 years, while in 1835 the same percentage of deaths was spread out
between ages 25 and 100.

The nature of oldest–old mortality and how it will develop in the future
is the object of an interesting, but somewhat speculative, debate. Some
argue that there is a biological highest age for the human body. This would
imply that medical and other advances can improve death rates only up
to a certain age and people will tend to die in a still more narrow age
span just below the highest possible age. Others argue that no such upper
limit exists and that mortality of the oldest–old will indeed improve in
the future and still higher ages will be attained. The interested reader is
referred to Thatcher (1999); Rose and Mueller (2000); Yashin and Iachine
(1997) and references therein.

One should keep in mind that the development of oldest–old mortality
is largely of academic interest. The practical and economic implications of
even a drastic improvement among the oldest–old will be limited as this
group is quite small and will continue to be so for a long time.
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5.4 Life expectancy

Life expectancy at birth, or simply life expectancy, is the usual way of
summarising the age–specific death rates of a population at a given point
in time. It is also the measure of choice when describing the effect of
improvements in death rates over time and when comparing ”the state of
mortality” in different countries; in the present paper we make use of it for
both purposes.

We stress again that despite the intuitive appeal of the name, the life
expectancy calculated from a period life table does not represent the ex-
pected life time of a newborn. The latter quantity, the so–called cohort
life expectancy, is generally, substantially higher since newborns will typ-
ically experience age–specific death rates lower than the current level due
to future improvements. However, for a cohort still alive the calculation
of its life expectancy must necessarily be partly subjective and based on a
specific model for the as yet unknown future death rates; only for extinct
cohorts can life expectancies be calculated from observed death rates only.

The main advantage of period life expectancies over cohort life ex-
pectancies is that they are objective summaries of observed death rates
and for this reason we focus on the former in the present descriptive study,
although, cohort life expectancies are arguably of more interest in some
situations.

The life expectancy at birth depends on all age–specific death rates
from age 0 to the highest attainable age which, in this paper, is set to age
100. Similarly, one can calculate the remaining life time given survival to
a given age. These quantities depend on the age–specific death rates from
the conditioning age onwards and they provide information about the tail
of the life time distribution.

Figure 5.4 shows the total expected life time for females and males
given survival to a given age for selected period life tables. The height of
the first box indicates the life expectancy at birth, the combined height
of the first and second box indicates the expected total life time given
survival to age 20, and so on for ages 40, 60, 70, 80 and 90. Thus the
height of the second box represents the increase in total life expectancy
when surviving from age 0 to age 20, the height of the third box represents
the increase when surviving from age 20 to age 40, and so on for the
higher ages. Note that the expected remaining life time at a given age
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can be obtained from the graph as the expected total life time minus the
conditioning age. Two features of Figure 5.4 stand out. The first is the
sharp increase in life expectancy at birth from 1835 to 1950 (and the more
moderate increase hereafter). The second is the absence of substantial
improvements in expected total life time given survival to high ages.

As already noted the increase in life expectancy at birth from 1835 to
1950 was primarily due to a marked reduction in infant and child mortal-
ity over the period. The very high level of infant and child mortality in
the 19th century can indirectly be seen on Figure 5.4. In 1835 male life
expectancy at birth was 36 years, while the expected total life length given
survival to age 20 was 59 years. Thus surviving the first 20 years gave you
an expected gain in total life time of 23 years. . . A discrepancy of that size
implies that the chance of surviving to age 20 must have been rather small.
In fact, as can be seen from Figure 5.3 about 40% of newborn males died
before age 20. Hence the high level of infant and child mortality manifests
itself as large total life expectancy gains from surviving the first 20 years,
i.e. in the large size of the second box.

After 1950 we see a very different pattern in which life expectancy at
birth is almost the same as the expected total life length given survival to
age 20 and 40. The additional expected total life time given survival to age
60 and 70 is also quite small. The new pattern that has arisen is caused
by all age–specific death rates up to age 40, say, now being at a very low
level. The almost collapse of expected total life time given survival up to
age 60 means that future gains in life expectancy at birth will be mirrored
almost one to one in gains in expected life time of 60–year–olds.

The second striking feature of Figure 5.4 is that the remaining expected
life time for 90–year–olds has been almost constant at a level of about 4
years throughout the period (of course the picture is slightly exaggerated
by our setting the death rate at age 100 to 1). Gains in expected remaining
life time for 80–year–olds have also been modest. It has increased from 5
years in 1835 to 7 in 2006 for males and from 6 years to 9 years for females.
Even the expected remaining life time for 60–year–olds has increased with
only 7 years for males and 8 years females over the period from 1835 to
2006. However, the increase since 1995 has been about 2 years. Over-
all, the aggregate effect of improvements in old age mortality have been
fairly modest and the gains in terms of expected remaining life time have
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Figure 5.4: Expected total life times for Danish females (top) and males
(bottom) at selected years. Each column shows the expected total life time
at birth (first box) and given survival to age 20, 40, 60, 70, 80 and 90 based
on the period life table for that year.
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occurred quite recently.
The purpose of the rest of this section on life expectancy is to develop a

sensitivity measure which relates improvements in age–specific death rates
to increases in life expectancy and to use this to decompose historic life
expectancy gains into age–specific contributions. A tool which we have
already used in Section 5.3.

5.4.1 Sensitivity measure

Life expectancy is a complicated function of the entire intensity curve and
it is not easy a priori to say how it will respond to changes in (part of)
the curve. Apart from infant and child mortality the force of mortality
is increasing with age and reaches very high levels at old ages. This,
however, does not imply that improvements in old age mortality will have
an appreciable effect on life expectancy since only few people will benefit
from the improvements.

For any age x we can express life expectancy at birth as a term related
to those dying before age x and a term related to those surviving to age
x. Using the notation introduced in Section 5.2 we have

ē0 = E {T |T ≤ x}P(T ≤ x) + E {T |T > x}P(T > x).

Changing the intensity for ages higher than x will affect the expected
total life time given survival to age x, E {T |T > x}, but the effect on life
expectancy at birth, ē0, will be dampened by the probability of surviving
to age x, P(T > x).

Note that the probability of surviving to, or dying before, a given age
depends only on the part of the intensity curve before that age, while the
expected remaining life time, or the expected total life time, given survival
to a given age depends only on the part of the intensity curve after that age.
In that sense the life time distribution and the expected total life times,
Figures 5.3 and 5.4, are dual representations of the same information.

The formula above is valid for one age at a time and can be used
to derive a sensitivity measure for changes above a given age. However,
to understand the simultaneous impact of changes to the entire curve we
will form the (functional) derivative which measures the rate with which
life expectancy will change when changing the intensity curve in a given
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direction. We will consider age–specific relative improvements of rate δ of
the intensity curve µ and thus calculate the following derivative

∂ē0 (µ(1− εδ))
∂ε |ε=0

=
∂

∂ε

∫ ∞

0
e−

∫ x
0 µ(y)(1−εδ(y))dydx|ε=0

=
∫ ∞

0

∫ x

0
µ(u)δ(u)e−

∫ x
0 µ(y)dydudx

=
∫ ∞

0

∫ ∞

u
µ(u)δ(u)e−

∫ x
0 µ(y)dydxdu

=
∫ ∞

0
δ(u)Dµ(u)du,

where the kernel is given by

Dµ(u) = µ(u)
∫ ∞

u
e−

∫ x
0 µ(y)dydx = µ(u)F̄ (u)ēu = f(u)ēu. (5.3)

The kernel measures the (marginal) effect of a relative improvement of
the intensity at a given age, u, and is equal to the fraction of people dying at
that age, measured by the density f(u), times the expected remaining life
time ēu. The result is very intuitive but could hardly have been anticipated
in advance. Note that since working in a continuous framework one has
to integrate over all the age–specific improvements using the kernel as a
weight function to get the aggregate effect, and that improvements at one
age only has no effect.

For all years from 1835 to 2006 we have calculated the kernel using
formula (5.3) and subsequently computed the average over the periods
1835–1899, 1900–1949 and 1950–2006. The result is shown in Figure 5.5.
In the 19th century the sensitivity of life expectancy to improvements in
age–specific mortality was almost monotone decreasing in age, apart from
the hump for young males. This was to be expected due to the high level
of infant and child mortality and the low fraction of people reaching high
ages. In the first half of the 20th century with infant and child mortality
much reduced the highest sensitivity is now to be found for ages 50 to 80,
although life expectancy gains from improvements in young age mortality
is still substantial. The kernel has a value of about 0.13 for females between
age 20 and 40, which means that a simultaneous improvement of 10%, say,
of the intensity for this age group would increase life expectancy at birth
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Figure 5.5: Sensitivity of expected life time at birth to improvements in
age–specific death rates for Danish females (top) and males (bottom). The
plot shows the average kernel, D, over the periods 1835–1899, 1900–1949
and 1950–2006; see Section 5.4.1 for the definition and interpretation of
D. The value at age 0 for the three periods is 6.9, 4.6 and 0.8 for females
and 8.0, 5.7 and 1.1 for males.
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with approximately 0.26 (= 0.13 · 10% · 20) years. The same reduction for
the age group from 60 to 80 would have an effect almost twice as high.

Apart from the peak at age 0 the sensitivity curve for the last period is
shifted further towards the high ages and has a well–defined hump around
age 75 for women and age 70 for men. As opposed to the previous periods
improvements in the mortality at very high ages will now have an appre-
ciable effect on life expectancy at birth. For females the sensitivity at age
85 is about the same as at age 50 and the same relative improvement in
the two age–specific death rates will therefore have the same impact on
life expectancy at birth.

5.4.2 Decomposing life expectancy gains

The decline in age–specific mortality rates over time causes life expectancy
to rise and it is illuminating to study how the different age groups have
contributed to the increase. Below we suggest a way to decompose life
expectancy gains, a tool which we have already used repeatedly throughout
Section 5.3.

Generally all age–specific death rates will be different when comparing
two life tables and a first attempt of decomposing the life expectancy
difference could be to decide on an order, e.g. from the lowest age to the
highest age, in which to change the death rates from one table to the other
and assign the change in life expectancy after each change to that age. The
result of this procedure, however, will depend on the chosen order and one
would arrive at a different result when changing the updating scheme.

Having access to only two period life tables at time s and time t, say,
there is no unique way to obtain the desired decomposition. However,
imagine the idealised situation in which we could observe each of the age–
specific intensities at any time u between s and t, µu(y), and assume that
the transition from µs(y) to µt(y) is smooth. Under these assumption we
can calculate the time derivative of life expectancy using a similar line of
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reasoning as in the previous section

∂

∂u
ē0(µu) =

∫ ∞

0

∂

∂u
e−

∫ x
0 µu(y)dydx

= −
∫ ∞

0

∫ x

0
µ′u(v)e−

∫ x
0 µu(y)dydvdx

= −
∫ ∞

0

∫ ∞

v
µ′u(v)e−

∫ x
0 µu(y)dydxdv

= −
∫ ∞

0

µ′u(v)
µu(v)

Dµu(v)dv,

where the kernel, Dµu(v), is defined in (5.3). The change in life expectancy
from time s to time t, ē0(µt)− ē0(µs), can then be written as

ē0(µt)− ē0(µs) =
∫ t

s

∂

∂u
ē0(µu)du

= −
∫ t

s

∫ ∞

0

µ′u(v)
µu(v)

Dµu(v)dvdu

= −
∫ ∞

0

∫ t

s

∂

∂u
{log µu(v)}Dµu(v)dudv.

The inner integral in the last formula can be interpreted as (the density
of) the age–specific contribution to the life expectancy gain over the period
related to age u, which is precisely what we are after. Note, however, that
to calculate this expression we would have to make an assumption about
the value of µu(v) for non–integer values of u, e.g. linear or exponential
between the observed values at the neighbouring integers.

In order to obtain a simpler formula we will instead make the assump-
tion that the kernel, Dµu(v), exhibits only a weak dependence on time, i.e.
Dµu(v) ≈ D̄(v), for some D̄(v). Under this assumption we get the relation

ē0(µt)− ē0(µs) ≈
∫ ∞

0
D̄(v) log

µs(v)
µt(v)

dv, (5.4)

which expresses the increase in life expectancy in terms of improvements
in the age–specific log mortality rates and the previously introduced ker-
nel. Note that only the intensities at time s and t are needed under this
assumption.
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In Figure 5.2 we have used formula (5.4) to decompose the life ex-
pectancy gains for each of the periods 1835–1900, 1900–1950 and 1950–
2006 into contributions from different age groups. For each of three peri-
ods we have used the average kernel over the period, shown in Figure 5.5,
as D̄ and for each age v between 0 and 100 we have then calculated its
contribution to the life expectancy gain as D̄(v) log[µs(v)/µt(v)]. To make
the age–specific contributions sum to the observed life expectancy gain
over the period we have scaled them by a common factor. Finally, we have
grouped the contributions into the age groups 0, 1–10, 11-20, . . . , 91–100,
and stacked the contributions for each period on top of each other.

The plot shows three distinct improvement patterns. In the first period
life expectancy gains were driven mainly by reductions in child, and to
some extent infant, mortality. Over the second period a wide range of age
groups contributed to the increase in life expectancy, with the reduction
in infant mortality being the single most important. While in the most
recent period life expectancy gains have come mainly from improvements
in high age mortality but also to some degree from further reductions in
infant mortality.

5.5 Denmark and the World

Mortality improvements is by no means an isolated Danish phenomenon.
The evolution of Danish mortality which has resulted in an increase of 40
years in life expectancy from 1835 to 2006 is certainly remarkable, but
many developed countries have seen even larger improvements over that
period. In fact, the evolution in large parts of the developed world has
surpassed the Danish evolution to such an extent that over the course of
the last century Denmark has moved from being a top–ranking country
with respect to life expectancy to currently being in the bottom half. This
development has caused concern not least because other Nordic countries,
e.g. Sweden and Norway, have been able to maintain their position as
world–leading countries with respect to life expectancy.

All countries have had their own unique mortality history depending
on national characteristics. Therefore, to put the Danish development into
an international perspective without going into country–specific details we
have constructed a single, international death rate based on data for 18
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Country 1900 1950 1980 1995 2004
Denmark 53.4 (3) 71.5 (3) 77.2 (6) 77.8 (7) 79.8 (7)
Sweden 53.6 (2) 72.4 (2) 78.8 (2) 80.8 (4) 82.6 (3)
Norway 55.1 (1) 73.2 (1) 79.1 (1) 81.4 (3) 82.3 (4)
France 46.7 (5) 69.2 (6) 78.4 (4) 81.9 (2) 83.8 (2)
UK 48.1 (4) 71.3 (4) 76.7 (7) 79.4 (5) 80.7 (5)
US 71.0 (5) 77.4 (5) 79.1 (6) 80.2 (6)
Japan 60.9 (7) 78.7 (3) 82.8 (1) 85.4 (1)

Table 5.2: Female life expectancy at birth for selected countries and years
(rank in parenthesis). For UK last year available is 2003.

developed countries3.
Data is extracted from the Human Mortality Database and for each

country it consists of gender specific death counts and exposures in the
format described in Section 5.2. From these we have constructed an in-
ternational death rate as the ratio between the total death count and the
total exposure in all of the countries for which data exists for the given
year. To ensure that most of the larger countries are represented each year
we consider only the time period from 1900 to 2004.

Tables 5.2–5.3 show life expectancies for selected countries and years.
And the plots in Figure 5.6 compare Danish and international death rates
for adult ages.

At the start of the 20th century Danish death rates were about 15%
lower than the international level for both females and males. The Dan-
ish life expectancy was comparable to the life expectancy in Sweden and
Norway, and substantially higher than in France and UK.

In the first half of the 20th century mortality rates declined substan-
3The 18 countries with the time range of available data in parenthesis are: Aus-

tralia (1921–2004), Austria (1947–2005), Belgium (1841–2005), Canada (1921–2004),
UK, Civilian Population (1841–2003), Finland (1878–2005), France, Civilian Popula-
tion (1899–2005), West Germany (1956–2004), Iceland (1838–2005), Italy (1872–2003),
Japan (1947–2005), Netherlands (1850–2004), Norway (1846–2006), Portugal (1940–
2005), Spain (1908–2005), Sweden (1751–2006), Switzerland (1876–2005), US (1933–
2004).
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Country 1900 1950 1980 1995 2004
Denmark 50.1 (3) 69.1 (3) 71.2 (4) 72.7 (6) 75.1 (7)
Sweden 50.7 (2) 69.8 (2) 72.8 (2) 74.8 (3) 78.3 (2)
Norway 51.7 (1) 69.9 (1) 72.3 (3) 76.2 (2) 77.5 (3)
France 43.0 (5) 63.4 (6) 70.2 (6) 73.8 (5) 76.7 (4)
UK 44.1 (4) 66.5 (4) 70.7 (5) 74.2 (4) 76.4 (5)
US 65.4 (5) 70.0 (7) 72.7 (7) 75.2 (6)
Japan 57.5 (7) 73.4 (1) 76.5 (1) 78.7 (1)

Table 5.3: Male life expectancy at birth for selected countries and years
(rank in parenthesis). For UK last year available is 2003.

tially in many developed countries. The Danish life expectancy rose by
almost 19 years for both females and males and Denmark was, at that
time, still one of the countries with highest life expectancy in the world.
However, life expectancy rose by even more in France and UK so although
Denmark remained its relative position the gap had already narrowed,
particulary for women.

From 1950 to 1980 Danish female mortality continued to improve al-
though at a lower pace than in the previous period. However, improve-
ments in international death rates did not slow down as much and as a
result Denmark was no longer a leading country with respect to life ex-
pectancy at the end of the period. Of the seven countries listed in Table 5.2
only UK women had a lower life expectancy than Danish women in 1980.

In the same period Danish males experienced an almost stagnation in
death rates and life expectancy. International death rates, on the other
hand, continued to decline and at the end of period they had essentially
caught up with the Danish level. Danish male life expectancy in 1980
was still in the high end, but the gap to the other countries had shrunk
substantially.

When discussing life expectancy evolution Japan stands out. In 1950
the Japanese life expectancy trailed many other developed countries by
almost 10 years for both males and females. However, over a period of
only 30 years they came to have one of the highest life expectancies in the
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Figure 5.6: Development in Danish and international female (top) and
male (bottom) age–specific death rates from 1900 to 2004 for ages 40,
50, . . . , 90. Danish rates are shown with thin lines and international rates
with thick lines. Top lines represent 90–year–olds and the other ages follow
below in decreasing order.
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world. From 1950 to 1980 life expectancy rose with 16 years for men and
18 years for women corresponding to an annual increase of over half a year.
In comparison, the Danish life expectancy increased with only 2 years for
men and 6 years for women.

The following 15 years from 1980 to 1995 saw a stagnation in Danish
female mortality. The international level continued to fall over the period
and a large gap between the Danish and the international level was es-
tablished. At the end of the period the excess mortality in Denmark for
women aged 50 to 70 was more than 50% compared to the international
level. In 1995 Danish female life expectancy was the lowest of the seven
countries in Table 5.2 more than one year behind US as the second lowest.

Danish males was also overtaken by the international development from
1980 to 1995, but the excess Danish male mortality at the end of the period
was far less than for females. Still, in 1995 Danish male life expectancy
was at almost the same level as that of US and together they ranked lowest
of the seven countries in Table 5.3.

In Japan life expectancy continued to rise at a high rate from 1980
to 1995, and at the end of the period they ranked number one for both
females and males. Hence, it took Japan less than half a century to move
from the bottom of the list to the top. Truly a remarkable achievement.
During the same period Denmark fell from the top to the bottom.

Since 1995 Denmark has again experienced substantial life expectancy
gains. From 1995 to 2004 life expectancy rose with about 2 years for
women and about 2 and a half years for men. However, most other devel-
oped countries had similar gains and the ranking of the seven countries in
Tables 5.2–5.3 in 1995 and in 2004 is therefore almost identical.

In 2004 Denmark was still the lowest ranking country, while Japan,
France, Sweden and Norway constituted the top half. The gap between
Denmark and the two other Nordic countries was between 2 and 3 years.
Compared to Japan, however, the life expectancy gap was about 2 and a
half years for males and about 5 and a half years for females.

Throughout the period life expectancy gains for women have been
largest in Japan. Japanese women were already the longest living in 1995
but even so Japan experienced the largest increase from 1995 to 2004
among the seven countries in Table 5.2. This is fascinating in its own
right but it also shows that large increases can occur in countries where
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life expectancy is already high. Hence, further, substantial increases in life
expectancy can be expected for both Sweden and Norway. In Denmark
we can hope for a future reduction in excess mortality, particularly for
women, with the effect of even higher future increases in life expectancy
as Denmark catches up.

5.5.1 The big why

There is no agreed upon explanation as to why the mortality progress
in Denmark from 1950 to 1995 was so much slower than in most other
developed countries. It is a fact, though, that this period which had the
largest economic progress in history and during which the so–called Welfare
State was founded with a large public health sector saw relatively modest
mortality improvements.

Many explanations have been put forward trying to explain this para-
dox including increased female labour market participation rates in the
1960s; increased consumption of tobacco and alcohol; changes in diet and
other life style changes; lack of physical exercise and increased obesity; and
less efficient screening programs and treatments, particularly for cancer.
None of these explanations is entirely satisfying on its own, however, since
most developed countries have had a development similar to Denmark in
many of these areas.

Some light can be shed on the Danish excess mortality by looking at
cause–specific mortality rates. For the seven countries previously compared
Table 5.4 shows age–standardised death rates for all causes, cancer and
circulatory diseases. The latter two being the major death causes in the
developed world. The reported death rates are computed as a weighted
average of age–specific death rates using (the age composition of) the same
standard population as weights. This is done to take account of differences
in age structure of the populations being compared. Data is extracted from
OECD Health Data 2007 which contains statistics on health and health
care systems in OECD countries from 1960 to 20064. However, for reasons
of comparison we have chosen to use data from 2001 as this is the latest
year for which death rates for all of the selected countries are available
(the restricting country being Denmark). The excess mortality of Danish

4See www.sourceoecd.org
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Country Females Males
All M.n. C.d. All M.n. C.d.

Denmark 593 (7) 186 (7) 184 (5) 871 (7) 245 (6) 308 (6)
Sweden 460 (3) 134 (3) 182 (4) 705 (2) 180 (1) 303 (5)
Norway 481 (4) 140 (4) 171 (3) 783 (4) 208 (3) 299 (4)
France 411 (2) 116 (2) 116 (2) 774 (3) 252 (7) 203 (2)
UK 536 (5) 155 (6) 194 (6) 804 (5) 225 (5) 314 (7)
US 554 (6) 142 (5) 198 (7) 826 (6) 207 (2) 297 (3)
Japan 329 (1) 102 (1) 103 (1) 638 (1) 215 (4) 174 (1)

Table 5.4: Standardised death rates per 100,000 population based on data
for 2001 (rank in parenthesis). ”All” is all causes, ”M.n.” stands for malig-
nant neoplasms (cancer), and ”C.d.” abbreviates circulatory diseases.

women is indeed alarming and much of it can be attributed to excess
mortality related to cancer (malignant neoplasms). Compared to Sweden
and Norway the Danish women have a cancer related excess mortality
of more than 30%, while the level of mortality related to heart diseases
(circulatory diseases) is comparable in the three countries. Even when
comparing with UK, which has the second highest cancer related death
rate, the Danish women have an excess mortality of 20%. Once again
the Japanese (and the French) women stand out by having cause–specific
death rates much lower than the women in any other country.

The picture for males is less clear. First of all, the variation between
the seven populations is smaller for men than for women. For both males
and females Japan has the lowest all–cause death rate and Denmark the
highest. However, whereas Danish women have an all–cause excess mortal-
ity of 80% compared with Japan the Danish men have an all–cause excess
mortality of ”only” 37%. The two cause–specific death rates for Danish
males are both high, but neither of them stands out. For cancer there is
an excess mortality compared to Sweden and Norway, but the Danish level
is comparable to that of France and UK. For heart diseases, of which is-
chaemic heart diseases count the most (numbers not shown), the countries
can be divided in two groups: Japan and France in the top and the five
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other countries at a comparable level at the bottom.
Looking at the pattern of cause–specific death rates across countries

it seems reasonable to conclude that diet and smoking habits must be at
least part of the explanation of the observed differences between countries.
Undoubtedly, numerous other factors are also important and the question
of why the Danish excess mortality is so high must still be considered
largely unresolved.

5.6 Concluding remarks

The story of mortality evolution is one of continued improvements. Whet-
her age–specific death rates can decline indefinitely and life expectancy
continue to rise or whether there exists an unsurmountable biological bar-
rier for human life spans is a question of philosophical nature. However, it
seems almost certain that we will witness appreciable mortality improve-
ments in the foreseeable future, in particular for countries like Denmark
which is lacking behind other developed countries. Here a reduction in
excess mortality will in itself give rise to substantial life expectancy gains.

Going back in history one can point at a number of factors behind
the observed reductions in death rates: improvements in nutrition and
sanitary conditions, higher standards of living, better housing and working
conditions, public health measures, better hygiene in hospitals, medical
advances etc. Over the course of history these changes have led to death
causes changing from infectious diseases such as tuberculosis, diphtheria
and cholera to degenerative diseases such as cancer and heart diseases.

Detailed knowledge of causality is valuable for understanding the past
but it is of limited value when trying to predict the future. The mecha-
nism governing death rates is too complex and the impact of future medical
inventions, economic development, demographic changes etc. cannot pos-
sibly be foreseen. Consequently, most mortality projections are based on
purely statistical models extrapolating past trends.

The most widely used model for mortality projections is still the one
proposed by Lee and Carter (1992) although numerous extensions and
other model types have been proposed since then, see e.g. Brouhns et al.
(2002); Lee and Miller (2001); Renshaw and Haberman (2006); de Jong
and Tickle (2006); Currie et al. (2004); Cairns et al. (2006). For recent
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comparisons of selected models see Cairns et al. (2007) and Booth et al.
(2006).

All these models provide more or less structured projections of age–
specific death rates and their main strength is their ability to extrapolate
regular improvement patterns. Changes in improvement rates are con-
sidered as structural breaks and data before the last structural break is
often disregarded. Large populations, like the US, do indeed show regular
patterns with near constant annual rates of improvement over long peri-
ods and this approach, although hardly optimal, is feasible. However, for
small regions, like Denmark, the mortality evolution has been much more
erratic with many periods with very different improvement patterns and
basing a possibly long–term projection on the last regular period is neither
robust nor trustworthy. Despite the wealth of models in existence we feel
there is a need for developing a methodology which can make convincing
projections from volatile mortality rates making proper use of all available
data. In a forthcoming paper we propose a new model for small region
mortality projections.
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6. Some solvable portfolio problems
with quadratic and collective
objectives

Background. The paper in this chapter is written jointly with
Mogens Steffensen. The chapter is a slightly updated version of
Kryger and Steffensen (2010).

Abstract. We present a verification result for a general class
of portfolio problems, where the standard dynamic programming
principle does not hold. Explicit solutions to a series of cases are
provided. They include dynamic mean–standard deviation, endoge-
nous habit formation for quadratic utility, and group utility. The
latter is defined by adding up the certainty equivalents of the group
members, and the problem is solved for exponential and power util-
ity.

6.1 Introduction

For decades the class of Hamilton–Jacobi–Bellmann–solvable dynamic as-
set allocation problems over terminal wealth, X(T ), has been limited to
those in the form

sup
π
Et,x {F (X(T ))} ,

for some function F , with π being an allocation control. Björk and Murgoci
(2008) extended this class to those in the form

sup
π

[Et,x {F (t, x, X(T ))}+ G (t, x,Et,x {X(T )})] , (6.1)

for some function G, which allowed them to calculate the optimal time
consistent investment strategy for a mean–variance investor. This result
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was first published by Basak and Chabakauri (2009b) in a quite general
incomplete market framework. Basak and Chabakauri (2009a) also use
their methodology to calculate the optimal time consistent strategy for a
variance–minimising investor holding a non–tradeable asset.

The novelty of Björk and Murgoci (2008) is, apart from working in a
general Markovian financial market, the dependence on (t, x) in their F
as well as the mere presence of a G that is not affine in the conditional
expectation of terminal wealth. Furthermore they allow for consumption,
skipped in (6.1). The dependence on (t, x) and the non-affine G rule out
the use of the classical dynamic programming–technique based on iterated
expectations, and, consequently, they refer to such problems as time incon-
sistent. Equivalently, the definition of time inconsistent solutions in Basak
and Chabakauri (2009b) is ”policies, from which the investor has [an] in-
centive to deviate”.

The aim of the present paper is to study the class of problems in the
form

sup
π

f (t, x,Et,x {g1 (X(T ))} , . . . ,Et,x {gn (X(T ))}) ,

for some integer n, and where f is allowed to be non-affine in the g-
functions. Our main application is a group utility problem, where a group
of investors seek to maximise a specific notion of group utility, where in-
vestors share terminal wealth equally. Whereas utility maximisation for
a single investor may be considered a classic problem it is not clear how
to formalise the preferences of a group of heterogeneous agents. We sug-
gest to maximise the sum of certainty equivalents, and thereby form the
objective

n∑

i=1

u−1
i (Et,x {ui (αiX

π (T ))}) ,

for individual utility functions u1, . . . , un. Note that due to monotonicity
of u1 this problem is equivalent to the standard problem in the single
investor case. The positive constant αi indicate the proportion of total
wealth that agent i is entitled to.

A different problem of interest that is contained in our general objective
is mean–standard deviation optimisation.

Both problems call on our general objective, and are not special cases
of Björk and Murgoci (2008). On the other hand, due to the presence of
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t, x in their F–function they can deal with problems that we cannot treat.
The concept of time–inconsistency was first treated formally by Strotz

(1956), who considered a so–called ”Cake–Eating Problem” (i.e. one of
allocating an endowment between different points in time). He showed that
the optimal solution is time consistent only for exponential discounting.
Strotz (1956) described three different types of agents, and Pollak (1968)
contributed further to the understanding and naming of them: 1) the pre–
committed agent does not revise his initially decided strategy even if that
makes his strategy time–inconsistent; 2) the naive agent revises his strategy
without taking future revisions into account even if that makes his strategy
time–inconsistent; 3) the sophisticated agent takes possible future revisions
into account, thereby making his strategy time consistent. Which type is
more relevant depends on the entire framework of the decision in question.
Here, we focus on the pre–committed and sophisticated agents and pay
no attention to the naive agent. Strotz (1956) suggests that, although (in
some sense) optimal, it may be difficult to pre–commit.

In recent years the concept of non-exponential (e.g. hyperbolic) dis-
counting has received a lot of attention as a prime example of a time in-
consistent problem. Solano and Navas (2010) give an overview over which
strategies the three different types of agents should use.

A proposition, which characterises the solution (in a Black–Scholes
market) to our class of problems is provided in Section 6.2, while Sec-
tions 6.3 and 6.4 present applications, some of which are - to our knowledge
- new. Finally, Section 6.5 wraps up the findings and provides an outlook
on further work within this area.

6.2 The main result

We consider a Black–Scholes market consisting of a bank account with
interest intensity r, and a stock with dynamics given by

dS (t) = (r + Λσ) S (t) dt + σS (t) dB (t) , S (0) > 0,

with market price of risk Λ and volatility σ > 0. B is a standard Brow-
nian motion on an abstract probability space (Ω,F,P) equipped with a
filtration F = (Ft)t≥0 satisfying the usual conditions; and with each
Ft ⊇ σ {B(s), 0 ≤ s ≤ t}.
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We consider an investor, who places the proportion π (t) of his wealth
in the stock at time t. Denoting by Xπ (t) his wealth at time t given the
investment strategy π, the dynamics of his wealth becomes

dXπ (t) = (r + π (t) Λσ) Xπ (t) dt + π (t) σXπ (t) dB (t) , (6.2)
Xπ (0) = x0 > 0,

where x0 is the initial wealth. The strategy is self-financing in the sense
that we disregard consumption and injection of capital.

Before introducing the objectives we introduce two conditional expec-
tations

yπ (t, x) = Et,x {g (Xπ (T ))} ,

zπ (t, x) = Et,x {h (Xπ (T ))} ,

for functions g and h. The subscript t, x denotes conditioning on the event
Xπ(t) = x.

The objective of the investor is to find

V (t, x) = sup
π

V π (t, x) = sup
π

f (t, x, yπ (t, x) , zπ (t, x)) , (6.3)

for a given regular function f ∈ C1,2,2,2, and to find the corresponding
optimal investment strategy, π∗.

As opposed to Björk and Murgoci (2008) we only treat problems over
terminal wealth. Also, we restrict ourselves to a (one–dimensional) Black–
Scholes market.

The portfolio problem presented in (6.3) is, in general, not a clas-
sical portfolio problem. If f does not depend on (t, x) and is affine in
(yπ (t, x) , zπ (t, x)), the problem can be written in a classical way,

V (t, x) ∝ sup
π
Et,x

{
F̂ (Xπ (T ))

}
(6.4)

for some F̂ . The problem (6.3) is, at first glance, just a mathematical
abstract generalisation of the problem (6.4). However, as we argue below,
there are examples of this generalisation that make good economic sense.
Truly, there are also examples of (6.3) that make no economic sense. But
this is not an argument against solving (6.3) in its generality, as long as we
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have some interesting and useful applications in mind. Here we present a
list of five such examples, which we solve for in Sections 6.3 and 6.4. The
first four examples are based on the specifications g (x) = x and h (x) = x2.
In the fifth example, g and h are utility functions, and y and z are also
modified – and so–called group utility is maximised.

1. Mean–variance optimisation with pre–commitment

This is a classical quadratic utility optimisation problem correspond-
ing to

f (t, x, y, z) = ay + bz + c (6.5)

When studying this example in detail in Section 6.3.4, we explain how
this choice of f can deal with both mean–variance utility maximisa-
tion and variance minimisation under minimum return constraints.
Essentially, we do not need the generalisation (6.3) for this problem.
This relates to the fact that f does not depend on (t, x) and is affine
in (y, z), so the problem is on the form (6.4).

2. Mean–variance optimisation without pre–commitment

f (t, x, y, z) = y − υ(t, x)
2

(
z − y2

)

If υ does not depend on (t, x), then f does not depend on (t, x).
But the non–affinity in y makes the problem non–standard. For
υ constant, this is the problem treated by Basak and Chabakauri
(2009b) in an incomplete market framework. It is studied as a special
(the simplest) case by Björk and Murgoci (2008). The case of υ(x) =
υ/x is investigated by Björk et al. (2009).

3. Mean–standard deviation optimisation

f (t, x, y, z) = y − υ
(
z − y2

) 1
2

Due to the non–affinity of f in (y, z), this case is not covered by
Björk and Murgoci (2008)).

4. Quadratic utility with endogenous habit formation

f (t, x, y, z) = −
(

1
2
z +

1
2
x2β2 (t)− xβ (t) y

)
,
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for some time–dependent required return, β. We provide the full
solution to this problem although the case can also be solved using
Björk and Murgoci (2008).

5. Collective of heterogeneous investors

f (t, x, y, z) = g−1 (y) + h−1 (z)
yπ (t, x) = Et,x {g (αXπ (T ))}
zπ (t, x) = Et,x {h ((1− α)Xπ (T ))} ,

where g and h are utility functions. e.g. for power utility

g (x) = x1−γ1/(1− γ1),

h (x) = x1−γ2/(1− γ2),

f (t, x, y, z) = ((1− γ1)y)(1−γ1)−1

+ ((1− γ2)z)(1−γ2)−1

= αEt,x

{
Xπ (T )1−γ1

} 1
1−γ1

+ (1− α)Et,x

{
Xπ (T )1−γ2

} 1
1−γ2 .

The functions g and h form the utility of terminal wealth, whereas
the function f adds up the so–called certainty equivalents of the two
investors. Whereas it may make no economic sense to add up the
indirect utility from each investor (e.g. that would add up currency
unit in different power), it makes good economic sense to add up cer-
tainty equivalents (at least that would add up linear currency units).
However, the transition into certainty equivalents before adding up
makes the problem non-standard due to the non-linearity of g−1 and
h−1. In order to extend to more than two agents, f needs more
arguments, of course. To our knowledge this problem is new.

One can come up with several other interesting examples, but these are
the ones we study in the present paper.

The result that facilitates the solution of this new class of problems is
the following proposition.

Proposition 6.1. Let f : [0, T ] × R3 → R be a function from C1,2,2,2.
Let g and h be real functions. The set of admissible strategies are those,
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for which the stochastic integrals in (6.49) and (6.54) are martingales, and
for which the partial differential equations (6.46)-(6.47) and (6.50)-(6.51)
have solutions. Note that admissibility depends on the choice of g, h.

Define V (t, x) = supπ f (t, x, yπ (t, x) , zπ (t, x)) with the supremum
taken over all admissible strategies, and with

yπ (t, x) = Et,x {g (Xπ (T ))} ,

zπ (t, x) = Et,x {h (Xπ (T ))} .

If there exist functions F, G, H such that

Ft − ft = inf
π

[
− (r + Λσπ) x (Fx − fx)− 1

2
(σπ)2 x2 (Fxx − U)

]
, (6.6)

F (T, x) = f (T, x, g (x) , h (x)) , (6.7)

Gt = − (r + Λσπ∗) xGx − 1
2

(σπ∗)2 x2Gxx, (6.8)

G (T, x) = g (x) ,

Ht = − (r + Λσπ∗) xHx − 1
2

(σπ∗)2 x2Hxx, (6.9)

H (T, x) = h (x) ,

where

U (f, y, z) = fxx + 2fxyyx + 2fxzzx + fyyy
2
x + 2fyzyxzx + fzzz

2
x, (6.10)

and

π∗ = arg inf
π

[
− (r + Λσπ) x (Fx − fx)− 1

2
(σπ)2 x2 (Fxx − U) + ft

]

Then

V (t, x) = F (t, x) , yπ∗ (t, x) = G (t, x) , zπ∗ (t, x) = H (t, x) ,

and the optimal investment strategy is given by π∗.

We find the optimising investment strategy in terms of the value func-
tion by differentiating with respect to π inside the square brackets of (6.6)
and get

π∗ = − Λ
σx

Fx − fx

Fxx − U (f, y, z)
(6.11)
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(provided U > Fxx). Feeding this control process back into the Bellman–
like equation we get the following system of partial differential equations
(PDEs) that we need to solve:

Ft = −rx (Fx − fx) +
1
2

Λ2 (Fx − fx)2

Fxx − U (f,G, H)
+ ft, (6.12)

Gt = −
(

rx− Λ2(Fx − fx)
Fxx − U (f, G,H)

)
Gx − 1

2

(
Λ(Fx − fx)

Fxx − U (f, G,H)

)2

Gxx,

(6.13)

Ht = −
(

rx− Λ2(Fx − fx)
Fxx − U (f, G,H)

)
Hx − 1

2

(
Λ(Fx − fx)

Fxx − U (f, G,H)

)2

Hxx,

(6.14)

with boundary conditions

F (T, x) = f (T, x, g (x) , h (x)) ,

G (T, x) = g (x) ,

H (T, x) = h (x) .

We also present the system in terms of π∗, since this is sometimes conve-
nient to work with:

Ft = −rx (Fx − fx)− 1
2
Λσπ∗ (Fx − fx) x + ft, (6.15)

Gt = − (r + Λσπ∗) xGx − 1
2

(σπ∗)2 x2Gxx, (6.16)

Ht = − (r + Λσπ∗) xHx − 1
2

(σπ∗)2 x2Hxx, (6.17)

(with unchanged boundary conditions).

Remark 6.2. The proposition can easily be extended to cover more than
two transformations of terminal wealth:

V (t, x) = sup
π

f (t, x, yπ
1 (t, x), . . . , yπ

n(t, x)) ,

in which case

U(f, y1, . . . , yn) =
∂2f

∂x2
+ 2

n∑

i=1

∂2f

∂xyi

∂yi

∂x
+

n∑

i=1

n∑

j=1

∂2f

∂yiyj

∂yi

∂x

∂yj

∂x
,

for yπ
i = Et,x {gi (Xπ (T ))}.
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Remark 6.3. The standard case can be formalised by

f (t, x, yπ (t, x) , zπ (t, x)) = yπ (t, x)

Then the result collapses into a standard Bellman equation. This is seen
by realising that

ft = fx = U = 0. (6.18)

In this case F = G and the differential equation for G (and also for H of
course, since f does not depend on z) is redundant in the proposition.

Also the proof collapses into a standard proof for the Bellman equation.

In the next two sections we solve the five problems listed above and
variations thereof.

6.3 Quadratic objectives

This section analyses the first four problems from the list in Section 6.2,
albeit in a different order.

6.3.1 Mean–variance without pre–commitment

In this section we consider the optimisation problem

V (t, x) = sup
π

(
Et,x {Xπ (T )} − υ(t, x)

2
Vt,x {Xπ (T )}

)
.

When υ(t, x) = υ the solution to this problem was found by Basak and
Chabakauri (2009b) in a relatively general incomplete market. Björk and
Murgoci (2008) also give the solution as the example of their rather general
method.

For constant υ the function f is given by

f (t, x, y, z) = y − υ

2
(
z − y2

)
, (6.19)

fy = 1 + υy, fyy = υ, fz = −υ

2
,

ft = fx = fxx = fzz = fxy = fxz = fyz = 0.
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From (6.10) we can now derive

U = υG2
x.

Plugging ft = fx = 0 and U into (6.11) and (6.12) we get the following
optimal investment candidate and PDE that we need to solve together
with (6.16),

π∗ = − Λ
σx

Fx

Fxx − υG2
x

(6.20)

Ft = −rxFx +
1
2
Λ2 F 2

x

Fxx − υG2
x

, (6.21)

F (T, x) = x.

In this particular case the PDE for F involves G but not H and therefore
we do not need to pay attention to the PDE for H. After having derived the
solution to (6.21), this is plugged into (6.20) to form the optimal investment
strategy as a function of (t, x). Plugging this strategy into (6.9) results in
a PDE characterising H. However we do not need this characterisation in
order to find the optimal investment and the value function.

We now search for a solution in the form

F (t, x) = p (t) x + q (t) , G (t, x) = a (t) x + b (t) .

Note that, for such a solution we can immediately derive from (6.19) that

H (t, x) = (ax + b)2 +
2
υ

(ax + b− px− q) .

The partial derivatives are

Ft = p′ (t) x + q′ (t) , Fx = p (t) , Fxx = 0,

Gt = a′ (t) x + b′ (t) , Gx = a (t) , Gxx = 0,

such that the optimal investment candidate (6.20) becomes

π∗ =
Λ

υσx

p (t)
a2 (t)

.
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Plugging this strategy and the partial derivatives into (6.21) and (6.16)
gives the system

p′ (t) x + q′ (t) = −rxp (t)− 1
2
Λ2 p (t)2

υa (t)2
,

a′ (t) x + b′ (t) = −rxa (t)− Λ2 p (t)
υa (t)

.

Collecting terms with and without x gives

p′ (t) = −rp (t) , p (T ) = 1,

q′ (t) = −1
2
Λ2 p (t)2

υa (t)2
, q (T ) = 0,

a′ (t) = −ra (t) , a (T ) = 1,

b′ (t) = −Λ2

υ

p(t)
a(t)

, b (T ) = 0,

with solutions

p (t) = er(T−t),

a (t) = er(T−t).

Also,

q(t) = b(t)/2 =
Λ2

2υ
(T − t).

The optimal investment strategy finally becomes

π∗ (t, x) x =
Λ
υσ

e−r(T−t).

This verifies the result of Basak and Chabakauri (2009b) and Björk and
Murgoci (2008).

The optimal strategy consists of putting a nominally increasing dollar
amount in the risky asset - on most paths corresponding to a decreasing
relative allocation.

A constant υ is not an obvious model choice in that this penalty pa-
rameter must necessarily be estimated from the time–0 distribution of
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terminal wealth, which in turn depends on time to maturity (and thus cal-
endar time) as well as present wealth. Therefore it could also be updated
dynamically as the terminal wealth distribution changes as a result of mar-
ket dynamics (and deterministically changing time to maturity). That is,
υ could depend on x, and possibly on t. In the case treated above the
agent pre–commits to υ but not to the target in the quadratic deviation
forming the variance, cf. Section 6.3.4. Section 6.3.4 describes the classical
case with pre–commitment to both quantities. Within the framework of
the present section Björk et al. (2009) found a solution for the special case
υ(x) = υ/x, where the investor does not pre–commit to any of the two.

6.3.2 Mean–standard deviation

Inspired by the discussion in the preceding section it is natural to modify
the problem, seemingly slightly, to penalise with standard deviation instead
of variance. In single–period models it is well–known that mean–variance
and mean–standard deviation are equivalent – in the sense that the set
of risk aversions maps into the same set of controls. As it turns out, this
equivalence does not carry over to the dynamic model.

The optimisation problem considered in this section is thus

sup
π

(
Et,x {X (T )} − υ (Vt,x {X (T )}) 1

2

)
.

To our knowledge this problem has not been studied before, but our ex-
tension of Björk and Murgoci (2008) makes it open to investigation.

The problem corresponds to the function f given by

f (t, x, y, z) = y − υ
(
z − y2

) 1
2 , (6.22)
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with

ft = fx = fxx = fxy = fxz = 0,

fy = 1 + yυ
(
z − y2

)− 1
2 ,

fyy = υ
(
z − y2

)− 1
2 + y2υ

(
z − y2

)− 3
2 ,

= υz(z − y2)−
3
2 ,

fz = −1
2
υ

(
z − y2

)− 1
2 ,

fzz =
1
4
υ

(
z − y2

)− 3
2 ,

fyz = −1
2
yυ

(
z − y2

)− 3
2 .

From (6.10) we can now derive

U =
1
4
υ

(
H −G2

)− 3
2 H2

x +
(
υ

(
H −G2

)− 1
2 + G2υ

(
H −G2

)− 3
2

)
G2

x

−Gυ
(
H −G2

)− 3
2 GxHx

= υ
(
H −G2

)− 1
2

(
1
4

(
H −G2

)−1 (Hx − 2GGx)2 + G2
x

)

= υ(H −G2)−
3
2
(
HG2

x −GGxHx + H2
x/4

)
.

Plugging ft = fx = 0 and U into (6.11) and (6.12) we get the following
optimal investment candidate and PDE that we need to solve together
with (6.16) and (6.17),

π∗ = − Λ
σx

Fx

Fxx − υ (H −G2)−
1
2

(
1
4 (H −G2)−1 (Hx − 2GGx)2 + G2

x

) ,

(6.23)

Ft = −rxFx +
Λ2F 2

x/2

Fxx − υ (H −G2)−
1
2

(
1
4 (H −G2)−1 (Hx − 2GGx)2 + G2

x

) ,

and F (T, x) = x. We now search for a solution in the form

F (t, x) = p (t) x,G (t, x) = a (t) x,H (t, x) = c (t) x2,
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with c ≥ a2. We know immediately from (6.22) that the following relation
must hold

p (t) = a (t)− υ
(
c (t)− a2 (t)

) 1
2 .

The partial derivatives are

Ft = p′ (t) x, Fx = p (t) , Fxx = 0,

Gt = a′ (t) x,Gx = a (t) , Gxx = 0,

Ht = c′ (t) x2,Hx = 2c (t) x,Hxx = 2c (t) ,

such that the function U and optimal investment candidate (6.23) become

U (t, x) =
υ

(
c (t)− a2 (t)

)− 1
2 c (t)

x
,

π∗ =
Λ
υσ

p (t)

(c (t)− a2 (t))−
1
2 c (t)

.

Plugging this strategy and the partial derivatives into (6.15), (6.16), and
(6.17) (and (6.12), (6.13), and (6.14) for the boundary conditions) gives
the system

p′ = −
(

r +
1
2
Λσπ∗

)
p, p (T ) = 1,

a′ = − (r + Λσπ∗) a, a (T ) = 1,

c′ = −
(
2 (r + Λσπ∗) + (σπ∗)2

)
c, c (T ) = 1.

Surprisingly, the solution is π∗ = 0 via c = a2. Note that for this solution,
actually U is infinite. However, since π∗U is finite, the solution is valid.
For this solution,

p′ = −rp, p (T ) = 1,

a′ = −ra, a (T ) = 1,
c′ = −2rc, (T ) = 1,

such that

p = a = er(T−t),

c = e2r(T−t).
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This can also be seen from deriving a differential equation for π which
gives a DE in the form

(π∗)′ = k1 (t) π∗ + k2 (π∗)2 + k3 (π∗)3

π∗ (T ) = 0,

with solution
π∗ = 0.

This of course makes the case less interesting, although even this is an
important insight.

The intuition behind this result is as follows: When the magnitude of
the deviations from the mean is smaller than unity, standard deviation
punishes these deviations more than does variance. Over an infinitesimal
time interval, dt, standard deviation is of order

√
dt, which means that the

punishment is so hard that any risk taking is unattractive.

6.3.3 Endogenous habit formation

In this section we consider the optimisation problem

inf
π

(
Et,x

{
1
2

(Xπ (T )− xβ (t))2
})

.

This setup is relevant when investors have a time dependent return target,
β. To our knowledge the result is new.

The problem corresponds to the function f given by

f (t, x, y, z) = −1
2
z − 1

2
x2β2 + xβy (6.24)

ft = −x2ββ′ + xyβ′,

fx = −xβ2 + βy, fxx = −β2,

fy = xβ, fxy = β,

fyz = fyy = fxz = fzz = 0.

From (6.10) we can now derive

U = 2βGx − β2.
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Plugging U into (6.11) and (6.12) we get the following optimal investment
candidate and PDE that we need to solve together with (6.16) and (6.17),

π∗ = − Λ
σx

Fx + xβ2 − βG

Fxx + β2 − 2βGx
, (6.25)

Ft = −rx
(
Fx + β2x− βG

)
+

Λ2

2

(
Fx + β2x− βG

)2

Fxx + β2 − 2βGx
− x2ββ′ + xβ′G,

and F (T, x) = −x2

2 (1− β (T ))2 . We now search for a solution in the form

F (t, x) =
1
2
p (t) x2, G (t, x) = a (t) x,H (t, x) = c (t) x2,

with p < 2aβ − β2, and a(T ) = c(T ) = 1. We know immediately
from (6.24) that the following relation must hold

p (t) = 2β (t) a (t)− c (t)− β2 (t) , (6.26)

for c > 0. The partial derivatives are

Ft =
1
2
p′ (t) x2, Fx = p (t) x, Fxx = p (t) ,

Gt = a′ (t) x,Gx = a (t) , Gxx = 0,

Ht = c′ (t) x2,Hx = 2c (t) x,Hxx = 2c (t) ,

such that the function U and optimal investment candidate (6.25) becomes,
using (6.17),

U (t, x) = 2β (t) a (t)− β2 (t) ,

π∗ (t) = −Λ
σ

p (t)− β2 (t) + β (t) a (t)
p (t)− β2 (t) + 2β (t) a (t)

=
Λ
σ

β (t) a (t)− c (t)
c (t)

,

where, in the last equation we use (6.26).
Plugging this strategy and the partial derivatives into (6.15), (6.16),

and (6.17) gives the system
1
2
p′ = − (r + Λσπ∗/2) (aβ − c) + β′(a− β),

a′ = − (r + Λσπ∗) a,

c′ = −
(
2 (r + Λσπ∗) + (σπ∗)2

)
c.
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We can derive the following ODE for π. This is important because then
we do not have to calculate a and c in order to derive π∗.

π∗′ =
Λ
σ

c (β′a + βa′ − c′)− c′ (βa− c)
c2

=
Λ
σ

β′a + βa′ − c′
c βa

c

=
Λ
σ

(
β′

β
+ r + Λσπ∗ + (σπ∗)2

)
βa

c

=
Λ
σ

(
β′

β
+ r + Λσπ∗ + (σπ∗)2

) (
π∗ (t)

σ

Λ
+ 1

)

=
(

β′

β
+ r + Λσπ∗ + (σπ∗)2

)(
π∗ (t) +

Λ
σ

)

= k0(t) + k1(t)π∗(t) + k2π
∗(t)2 + k3π

∗(t)3,

with k0(t) = (β′/β +r)Λ/σ, k1(t) = β′/β +r+Λ2, k2 = 2Λσ, and k3 = σ2.
The boundary condition is π∗(T ) = Λ (β(T )− 1) /σ.

Because of the terms (β′/β + r) Λ/σ the solution is not zero, although
π∗ (T ) = 0 for β (T ) = 1, which is the more meaningful value for β(T ).
The quantity −β′/β represents the the target rate of return of the investor.
Therefore it is reasonable to let −β′/β be a constant larger than r. If
−β′/β = r, then the optimal strategy is zero, precisely because this target
can be obtained via a full allocation to the bank account.

An example of the optimal strategy can be seen in Figure 6.1, which
assumes a required rate of return of r+2%. For comparison, the optimal
control in the corresponding pre–commitment case (formalised by (6.27)
below with β = x0 exp ((0.02 + r)T )) is (for T = 50, Λ = σ) initially
π∗(0, x0) =

(
e0.02T − 1

)
Λ/σ ≈ 172%, but (otherwise) path–dependent.

e.g. the optimal allocation tends to zero if performance is good, and vice
versa – in contrast to the case presented here.

6.3.4 Mean–variance optimisation with pre–commitment

In this section we consider the optimisation problem formalised by

V (t, x) = sup
π
Et,x

{
−1

2
(Xπ (T )− β)2

}
(6.27)
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Figure 6.1: Optimal allocation to risky assets for an investor with endoge-
nous habit formation and quadratic utility with required return −β′/β =
r + 0.02. The market is (Λ, σ) = (0.2, 0.2)

for a constant β.
We start out by explaining how this problem is the ’first step’ in solv-

ing a variation of mean–variance utility optimisation, namely ’with pre–
commitment’. Consider the problem

V (0, x0) = sup
π

(
E {Xπ (T )} − υ

2
V {Xπ (T )}

)
. (6.28)

The term pre–commitment refers to the target given implicitly by consid-
ering the variance as the quadratic deviation from the target E {Xπ (T )}.
One possibility is to actually update this target with (t, x) on the construc-
tion of V (t, x). In Section 6.3.1 we updated the target to Et,x {Xπ (T )}
in order to formalise the mean–variance optimisation problem without
pre–commitment. An alternative is to refrain from updating the tar-
get at all. Therefore we say that we pre–commit ourselves to the target
E0,x0 {Xπ (T )} determined at time 0, and we speak of the problem ’with
pre–commitment’. This is what we study in this section.

168



First we write the value function of the problem (6.28) with pre–
commitment, i.e. without updating the target

V (t, x) = sup
π
Et,x

{
Xπ (T )− υ

2
(Xπ (T )− E0,x0 {Xπ (T )})2

}
. (6.29)

This can be rewritten as

V (t, x) = sup
π,K:E0,x0{Xπ(K)(T )}=K

Et,x

{
Xπ (T )− υ

2
(Xπ (T )−K)2

}

= sup
π,K:E0,x0{Xπ(K)(T )}=K

Et,x

{
−υ

2
Xπ (T )2 + (1 + υK) Xπ (T )

−υ

2
K2

}
. (6.30)

The optimisation over π and K can be decomposed in two steps: One solves
the optimisation problem for a general K and finds the optimal strategy
π∗ (K). Then one calculates E0,x0

{
Xπ∗(K) (T )

}
and determines the opti-

mal K∗ as the solution to the nonlinear equation E0,x0

{
Xπ∗(K∗) (T )

}
=

K∗. The solution (π∗,K∗) solves the problem formalised by (6.29).
Rewriting

V (t, x) = υ sup
π,K:E0,x0{Xπ(K)(T )}=K

Et,x

{
−1

2

(
Xπ (T )−

(
1
υ

+ K

))2
}

(6.31)

+
1
2υ

+ K

= υ sup
π,β:E0,x0{Xπ(β)(T )}=β− 1

υ

Et,x

{
−1

2
(Xπ (T )− β)2

}
+ β − 1

2υ
,

gives us that solving (6.27) is the first step of solving (6.29). The second
step is to solve

E0,x0

{
Xπ(β) (T )

}
= β − 1

υ
(6.32)

for β and plug the solution β∗ back into π∗. The problem (6.27) corre-
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sponds to the function f given by

f (t, x, y, z) = −
(

1
2
z +

1
2
β2 − βy

)
,

fy = β, fz = −1
2
,

ft = fx = fxx = fyy = fzz = fxy = fxz = fyz = 0.

Since all the double derivatives of f are zero we get from (6.10) that U = 0.
Plugging ft = fx = U = 0 into (6.11) and (6.12) we get the following
optimal investment candidate (and corresponding PDE that we need to
solve),

π∗ = − Λ
σx

Fx

Fxx
, (6.33)

Ft = −rxFx +
1
2
Λ2 F 2

x

Fxx
, (6.34)

F (T, x) = −1
2

(x− β)2 .

In this particular case the PDE for F does not involve G and H and
therefore we do not need to pay attention to the PDEs for G and H.
After having derived the solution to (6.34), this is plugged into (6.33) to
form the optimal investment strategy as a function of (t, x). Plugging
this strategy into (6.16) and (6.17) results in PDEs characterising G and
H. However, we do not need these characterisations in order to find the
optimal investment and the value function.

We now search for a solution in the form

F (t, x) =
1
2
p (t) (x− q (t))2

The partial derivatives are

Ft =
1
2
p′ (t) (x− q (t))2 − q′ (t) p (t) (x− q (t)) ,

Fx = p (t) (x− q (t)) ,

Fxx = p (t) ,
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such that the optimal investment candidate (6.33) becomes

π∗x =
Λ
σ

(q (t)− x) . (6.35)

Plugging the partial derivatives into (6.34) gives

1
2
p′ (t) (x− q (t))2 − q′ (t) p (t) (x− q (t))

= −p (t) (x− q (t))2 r − q (t) p (t) (x− q (t)) r +
1
2
Λ2p (t) (x− q (t))2 .

Collecting terms with (x− q (t))2 and (x− q (t)) gives

p′ (t) =
(−2r + Λ2

)
p (t) , p (T ) = −1,

q′ (t) = rq (t) , q (T ) = β.

This system has the solutions

p (t) = −e(2r−Λ2)(T−t),

q (t) = e−r(T−t)β.

The full solution can be found by plugging the control (6.35) into (6.16)
and (6.17) and guessing a linear and quadratic solution in x to G and H.
One finds that

G(t, x) = β
(
1− e−Λ2(T−t)

)
+ xe(r−Λ2)(T−t),

H(t, x) = β2
(
1− e−Λ2(T−t)

)
+ x2e(2r−Λ2)(T−t).

This is the full solution to the problem without any further specification of
β. If we want to solve the mean variance optimisation problem with pre–
commitment, what remains is to determine β in accordance with (6.32),

G (0, x0) = β − 1
υ
⇔

β =
1
υ

eΛ2T + x0e
rT ⇒

q (t) = ert

(
x0 +

1
υ

e(Λ
2−r)T

)
.
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With this representation of q we can now express the optimal wealth and
the optimal strategy in terms of the diffusion B. First we note that q−Xπ

follows a geometric Brownian motion,

d
(
q (t)−Xπ∗ (t)

)
=

(
r − Λ2

) (
q (t)−Xπ∗ (t)

)
dt

− Λ
(
q (t)−Xπ∗ (t)

)
dB (t) .

The solution is

q (t)−Xπ∗ (t) = (q (0)− x0) e(r−Λ2− 1
2
Λ2)t−ΛB(t)

=
1
υ

e(Λ
2−r)(T−t)e−

1
2
Λ2t−ΛB(t),

such that

Xπ∗ (t) = q (t)− 1
υ

e(Λ
2−r)(T−t)e−

1
2
Λ2t−ΛB(t)

= x0e
rt +

1
υ

(
eΛ2T e−r(T−t) − e(Λ

2−r)(T−t)e−
1
2
Λ2t−ΛB(t)

)
.

Specifically,

Xπ∗ (T ) = x0e
rT +

1
υ

(
eΛ2T − e−

1
2
Λ2T−ΛB(T )

)
. (6.36)

In continuation,

π∗Xπ∗ (t) =
Λ
σ

(
q (t)−Xπ∗ (t)

)

=
Λ
σ

(
1
υ

e(Λ
2−r)(T−t)e−

1
2
Λ2t−ΛB(t)

)
. (6.37)

The exponential terms in (6.36) and (6.37) containing the Brownian motion
are recognised as as the state price density process times ert, we can of
course express the optimal terminal wealth and the optimal strategy in
terms of this process instead. Then the solution in (6.37) is recognised
as the classical solution, see e.g. Basak and Chabakauri (2009b), their
formulas (37) and (38). The state price representation comes out directly
when using the martingale method. In our solution the optimal wealth
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process can be rewritten only after recognising the connection between
these processes.

The presence of the Brownian motion, or equivalently x0, in π∗Xπ∗ (t)
shows that the solution is time–inconsistent.

It is easily verified from (6.35) that both the optimal proportion and
the optimal amount invested in stocks is decreasing in wealth. This is a
well–known feature and one of the main arguments for not being convinced
about the objective concerning practical applications. Actually, this prob-
lematic feature is one of the reasons for hunting for alternatives like we did
in the preceding sections.

We conclude by a remark on the mean–variance optimisation problem
formalised by

inf
π:E{Xπ(T )}≥K

V {Xπ (T )} .

We argue that this problem is equivalent to the problem studied above.
By rewriting the problem in terms of a Lagrange multiplier,

V (0, x0) = inf
π,λ:E{Xπ(T )}=K

E
{

(Xπ (T )− E {Xπ (T )})2 − λXπ (T )
}

= inf
π,λ:E{Xπ(T )}=K

E
{

(Xπ (T )−K)2 − λXπ (T )
}

= inf
π,λ:E{Xπ(T )}=K

E
{

Xπ (T )2 − (2K + λ)Xπ (T ) + K2
}

.

Now we form the value function with pre–commitment,

V (t, x) = inf
π,λ:E{Xπ(T )}=K

Et,x

{
Xπ (T )2 − (2K + λ)Xπ (T ) + K2

}
,

where the term pre–commitment refers to the fact that the target K equals
E {Xπ (T )} rather than Et,x {Xπ (T )}. This problem is essentially equiv-
alent to the problem formalised by

V (t, x) = sup
π,λ:E{Xπ(T )}=K

Et,x

{
−1

2
(Xπ (T )− (K + λ/2))2

}
. (6.38)

But this problem is equivalent to the problem (6.31). In (6.31) the param-
eter υ is fixed and the target K is subject to the constraint. In (6.38) the
target K is fixed and the parameter λ is subject to the constraint. So, the
optimal portfolios arising from different values of υ in (6.31) correspond
to the optimal portfolios arising from different values of K in (6.38).
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6.4 Collective objectives

In this section we apply Proposition 6.1 to a new set of problems that
arise for a collective of heterogenous investors. We think of a group of n
investors who, despite their different attitudes towards risk, invest in the
same mutual fund. The task is to form an optimal investment strategy
for this mutual fund. Such a study is e.g. relevant for compulsory pension
schemes.

For simplicity we assume that all investors participate in the fund over
the same period. Also, they share the same beliefs about the financial mar-
ket. At the end of the optimisation horizon the terminal wealth Xπ (T ) is
distributed such that investor i receives αiX

π (T ). The constant αi ∈ (0, 1)
represent his relative stake in the collective. Agents may be entitled to
unequal proportions (e.g. due to different contributions). Thus, the risk
sharing is fixed and is not subject to optimisation. However, the aggregate
wealth Xπ (T ) is not fixed and is subject to optimisation via the invest-
ment strategy π. It is important to understand that we are considering the
problem of optimal investment for a group of investors which is marginal
to the total number of investors in the economy. Therefore, there is no
equilibrium theory or asset price formation taking place here. Equilibrium
asset prices are given and this marginal group of investors with heteroge-
nous risk aversions plays the investment game together for one reason or
another (e.g. in order to save on transaction costs (widely defined) or be-
cause they are forced to).

The question is now, what is the objective of the group. A first naive
idea is to add up the indirect utility from each investor to achieve the value
function.

sup
π

n∑

i=1

Et,x {ui (αiX
π (T ))} = sup

π
Et,x

{
n∑

i=1

ui (αiX
π (T ))

}
. (6.39)

This problem can in principle be solved via standard techniques, but it
suffers from serious drawbacks: There is no economic point in adding up
different utility functions. For each investor, the utility function expresses
his preferences, but it is merely ordinal. Thus, since the utility functions
are not comparable, they tell nothing about preferences across the group of
investors. A simple check of economic reasonability is the unit of the terms
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in the sum. For heterogenous investors we are adding up different functions
of the currency unit, and this is also a warning that the formulation (6.39)
is completely useless.

The idea that we will introduce here is to align each investor’s indirect
utility before summation by calculating his certainty equivalent. Thus, we
propose instead the formalisation

sup
π

n∑

i=1

u−1
i (Et,x {ui (αiX

π (T ))}) . (6.40)

This makes economic sense: At time t we are adding up certain time t-
amounts which are definitely comparable. From a mathematical point of
view, though, the problem (6.40) seems more challenging, due to the non-
linearity of the utility functions, but our Proposition 6.1 is able to cope
with that.

We re–emphasise that the proportional division of terminal wealth is
pre-imposed, so it is not possible to increase group utility by assigning
all wealth to the more risk-tolerant agent. There may exist more optimal
risk sharing rules - especially should one know more about the agents’
endowments. Still, the simple rule that we have outlined is highly relevant
from a practical perspective.

6.4.1 A collective of exponential utility investors

For exponential utility with coefficients of absolute risk aversion ξi > 0,
n = 2, and α1 = α2 = 1/2, the problem (6.40) is

sup
π

(−1
ξ1

logE
{

e−ξ1Xπ(T )/2
}

+
−1
ξ2

logE
{

e−ξ2Xπ(T )/2
})

.

This corresponds to the function f given by

f (y, z) = − log y

ξ1
− log z

ξ2
,

ft = fx = fxx = fxy = fxz = fyz = 0,

fy = − 1
ξ1y

, fyy =
1

ξ1y2
,

fz = − 1
ξ2z

, fzz =
1

ξ2z2
.
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From (6.10) we can now derive

U =
1
ξ1

(
Gx

G

)2

+
1
ξ2

(
Hx

H

)2

.

Plugging ft = fx = 0 and U into (6.11) we get the following optimal
candidate,

π∗ = − Λ
σx

Fx

Fxx − 1
ξ1

(
Gx
G

)2 − 1
ξ2

(
Hx
H

)2 . (6.41)

With this specification of π∗ we now search for a solution to (6.15), (6.16),
and (6.17) in the form

F (t, x) = p (t) x + q (t) , G (t, x) = eg1(t)x+g2(t),H (t, x) = eh1(t)x+h2(t).

The partial derivatives are

Ft = p′ (t) x + q′ (t) , Fx = p (t) , Fxx = 0,

Gt = eg1(t)x+g2(t)
(
g′1 (t) x + g′2 (t)

)
,

Gx = eg1(t)x+g2(t)g1 (t) , Gxx = eg1(t)x+g2(t)g2
1 (t) ,

Ht = eh1(t)x+h2(t)
(
h′1 (t) x + h′2 (t)

)
,

Hx = eh1(t)x+h2(t)h1 (t) ,Hxx = eh1(t)x+h2(t)h2
1 (t) ,

such that the optimal investment candidate (6.41) becomes

π∗x =
Λ
σ

p (t)
1
ξ1

g2
1 (t) + 1

ξ2
h2

1 (t)
. (6.42)

Plugging this strategy into (6.15), (6.16), and (6.17), leads to ordinary
differential equations (ODEs) for p, g1, and h1, with terminal conditions
and solutions

p′ (t) = −rp (t) ; p (T ) = 1 : p(t) = er(T−t),

g′1 (t) = −rg1 (t) ; g1 (T ) = −ξ1

2
: g1 (t) = −ξ1

2
er(T−t),

h′1 (t) = −rh1 (t) ;h1 (T ) = −ξ2

2
: h1(t) = −ξ2

2
er(T−t).
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Plugging these into (6.42) yields

π∗x = 2
Λ
σ

e−r(T−t)

ξ̄
,

with ξ̄ =
∑n

i=1 ξi/n defining the average risk aversion.
This strategy may be compared to the classical solution for a single

investor with risk aversion ξ who invests optimally the amount

Λ
σ

e−r(T−t)

ξ
.

We see that the collective of investors calculates an average absolute risk
aversion coefficient ξ̄, and then invests two times the amount that such an
average investor would, i.e. one (time) for each participant. Notice that
this strategy is not the simple average of individually optimal strategies.

For the full solution we also solve the ODEs for q, g2, and h2, and get

q (t) =
nΛ2

2ξ̄
(T − t) ,

g2 (t) = −Λ2(T − t)ξ1

2ξ̄2

(
2ξ̄ − ξ1

)

h2 (t) = −Λ2(T − t)ξ2

2ξ̄2

(
2ξ̄ − ξ2

)
.

The group–optimal discounted certainty equivalent is thus

e−r(T−t)F (t, x) = n

(
x

n
+ e−r(T−t) Λ

2

2ξ̄
(T − t)

)

= e−r(T−t)
n∑

i=1

−1
ξi

[−ξi

n
er(T−t)x− Λ2(T − t)ξi

2ξ̄2

(
2ξ̄ − ξi

)]

=
n∑

i=1

[
x

n
+ e−r(T−t) Λ

2(T − t)
2ξ̄2

(
2ξ̄ − ξi

)]
,

with the individual terms in the sum corresponding to the ith individual’s
certainty equivalent. On the other hand, if each individual invests on his
own, he obtains the comparable optimal discounted certainty equivalent

x

n
+ e−r(T−t) Λ2

2ξi
(T − t) ,
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such that his relative loss (of discounted certainty equivalent after subtrac-
tion of x/n) from entering the collective is

1−
e−r(T−t)ξ−1

i
Λ2(T−t)ξi

2ξ̄2

(
2ξ̄ − ξi

)

e−r(T−t) Λ2

2ξi
(T − t)

=
(

1− ξi

ξ̄

)2

,

which could be compared to the estimated gains from economies of scale.
These losses are – unsurprisingly – independent of initial wealth. In the
present case of two investors they both lose the same proportion, but the
formulae actually hold when there are more agents. Then some can be
hit substantially harder than others (and some may not suffer at all, of
course).

The results above can easily be extended to the case of n investors with
coefficients ξ1, . . . ξn, who put up proportions α1, . . . , αn (with all αi > 0,
and

∑n
i=1 αi = 1). The optimal strategy is

π∗x = n
Λ
σ

e−r(T−t)

∑n
i=1 nα2

i ξi

= n
Λ
σ

e−r(T−t)

ξ̄

∑n
i=1 ξi∑n

i=1(nαi)2ξi
,

where the former expression shows that a ”representative” agent has risk
aversion

∑n
i=1 nα2

i ξi, and the latter expression demonstrates how the stan-
dard solution is to be multiplied by a correction factor, which depends on
how different the stakes are.

As in the mean–variance case (Section 6.3.1) it is relevant to let the
coefficients of absolute risk aversion depend on t, x. However, our method-
ology cannot cope with this setting. For a single investor the example is a
special case of Björk and Murgoci (2008).

6.4.2 A collective of power utility investors

As another, and perhaps more interesting, example consider a collective
of power utility investors with strictly positive coefficients of relative risk
aversion γi. For illustration we consider a small collective with n = 2, and
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with equal proportions α1 = α2 = 1/2. Then the problem (6.40) is1

sup
π

1
2

[(
Et,x

{
(Xπ (T ))1−γ1

})(1−γ1)−1

+
(
Et,x

{
(Xπ (T ))1−γ2

})(1−γ2)−1
]

.

This corresponds to the function f given by

f (y, z) =
1
2

(
y(1−γ1)−1

+ z(1−γ2)−1
)

, (6.43)

ft = fx = fxx = fxy = fxz = fyz = 0,

fy =
1
2
(1− γ1)−1y

γ1
1−γ1 , fyy =

1
2

γ1

(1− γ1)2
y

2γ1−1
1−γ1 ,

fz =
1
2
(1− γ2)−1z

γ2
1−γ2 , fzz =

1
2

γ2

(1− γ2)2
z

2γ2−1
1−γ2 .

From (6.10) we can now derive

U =
1
2

γ1

(1− γ1)2
G(1−γ1)−1

(
Gx

G

)2

+
1
2

γ2

(1− γ2)2
H(1−γ2)−1

(
Hx

H

)2

.

Plugging ft = fx = 0 and U into (6.11) we get the following optimal
candidate,

π∗ = − Λ
σx

Fx

Fxx − 1
2

(
γ1

(1−γ1)2
G(1−γ1)−1

(
Gx
G

)2
+ γ2

(1−γ2)2
H(1−γ2)−1

(
Hx
H

)2
) .

(6.44)
With this specification of π∗ we now search for a solution to (6.15), (6.16),
and (6.17) in the form

F (t, x) = p (t) x,G (t, x) = a1−γ1 (t)x1−γ1 , H (t, x) = c1−γ2 (t)x1−γ2 ,

The partial derivatives are

Ft = p′ (t) x, Fx = p (t) , Fxx = 0,

Gt = (1− γ1)a−γ1 (t) a′ (t)x1−γ1 ,

Gx = (1− γ1)a1−γ1 (t) x−γ1 , Gxx = −γ1(1− γ1)a1−γ1 (t) x−γ1−1,

Ht = (1− γ2)c−γ2 (t) c′ (t) x1−γ2 ,

Hx = (1− γ2)c1−γ2 (t) x−γ2 ,Hxx = −γ2(1− γ2)c1−γ2 (t) x−γ2−1,

1Allowing for γ = 1 (logarithmic utility) is notationally cumbersome, so we do not
treat it formally.
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and p = (a + c)/2, such that the optimal candidate (6.44) becomes

π∗ =
Λ
σ

a (t) + c (t)
a (t) γ1 + c (t) γ2

=
Λ
σ

1
γ (t)

,

with γ (t) defined as a weighted average of the underlying coefficients of
relative risk aversion – with time–dependent weights,

γ (t) =
a (t) γ1 + c (t) γ2

a (t) + c (t)
.

This formulation means that (in contrary to the exponential case) there
can never be an agent, who can be taken to be representative for the
collective over the entire period.

Plugging this strategy into (6.15), (6.16), and (6.17), leads to a sys-
tem of ODEs for p, a, and c, with terminal conditions. The differential
equations for a and c can be solved isolated from p and are sufficient for
determination of π. We find the following representation in terms of γ,

a′ (t) = −
(

r +
Λ2

γ(t)
− Λ2

2
γ1

γ(t)2

)
a(t); a (T ) = 1,

c′ (t) = −
(

r +
Λ2

γ(t)
− Λ2

2
γ2

γ(t)2

)
c(t); c (T ) = 1.

We have no explicit solution to the two-dimensional system of ODEs. We
can however characterise the solution a bit further by calculating an ODE
for the quantity w = a/(a+ c), which is the weight on agent 1’s coefficient
of relative risk aversion in the formation of the group’s ditto:

w′ = w(1− w)(γ1 − γ2)
Λ2

2
[γ2 + w(γ1 − γ2)]

−2 , w(T ) = 1/2,

with the property that for γ1 < γ2, w is a decreasing function of time (and
thus an increasing function of time to expiry) so that the more risk tolerant
agent has the larger weight. For w > γ2/(γ1 + γ2), the weight on agent
1’s individually optimal strategy is larger than a half. This is equivalent
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Figure 6.2: Group–optimal allocation to risky assets for a collective formed
by two investors with γ1 = 0.5, γ2 = 3. The market is (Λ, σ) = (0.2, 0.2).
The two would prefer 200% respectively 33.3% allocated to risky assets.

to local concavity of w which will occur for sufficiently long time horizons,
because w ∈ (0, 1).

For n investors n differential equations can be reduced to n − 1 using
this technique, but the advantage is not nearly as obvious.

When participating in the group, the discounted certainty equivalent
of individual 1 is xa(t) exp (−r(T − t)), while as an individual he would be
indifferent between participating in the lottery and receiving the amount
x exp

(
Λ2(T − t)/(2γ1)

)
. Depending on the measurement of loss one or the

other investor is worst off.
An illustration of the development over time of the optimal strategy

for the group can be seen in Figure 6.2, whereas Table 6.1 shows the corre-
sponding certainty equivalents, and contrasts them to those of the individ-
uals forming the collective. The figure reveals that the collective’s optimal
strategy changes rather slowly over time – except during a relatively short
transition phase.
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individual group
Agent 1 1.492 1.223
Agent 2 1.069 1.028

Table 6.1: Discounted optimal certainty equivalents (normalised by
wealth) with ten years to expiry for agents with relative risk aversions
γ1 = 0.5, γ2 = 3. The second row gives the certainty equivalents obtain-
able by individuals, and the third row shows the corresponding figures,
when the group formed by the two decides the optimal strategy. The
market is (Λ, σ) = (0.2, 0.2).

If agents put up different proportions, say α ∈ (0, 1), and 1 − α, the
only modification is that the appropriate average becomes

γ (t) =
αa (t) γ1 + (1− α)c (t) γ2

αa (t) + (1− α)c (t)
.

6.4.3 A collective of mean–variance utility investors with-
out pre–commitment

We paid a lot of attention to the mean–variance utility investor in the
previous section. Let us see what happens if we apply our certainty equiv-
alent approach to a group of heterogenous mean–variance utility investors.
This becomes particularly simple in the case without pre–commitment,
since the utility inversion just becomes the identity function. We therefore
study the problem

sup
π

n∑

i=1

(
Et,x

{
Xπ (T )

n

}
− υi

2
Vt,x

{
Xπ (T )

n

})

= sup
π

(
Et,x {Xπ (T )} − ῡ/n

2
Vt,x {Xπ (T )}

)
,

with ῡ =
∑n

i=1 υi/n defining the average risk aversion. But this problem
is equivalent to the problem of a single investor with wealth x and risk
aversion ῡ/n. The optimal investment strategy then becomes

π∗x = n
Λ
σ

e−r(T−t)

ῡ
.
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This should be compared with the solution for a single investor with risk
aversion υ, who invests optimally the amount

π∗x =
Λ
σ

e−r(T−t)

υ
.

As was the case for exponential utility collectives, we find that the group-
optimal amount invested in stocks is found by using the average risk aver-
sion ῡ, and then investing this amount for each of the n participants.

Since mean–variance is not a real utility function there need not be
a loss associated with joining a group. An individual investor, i, has an
optimal discounted certainty equivalent of

x

n
+ e−r(T−t) Λ

2(T − t)
υi

,

while as a group member his corresponding ”indifference amount” is

x

n
+ e−r(T−t) Λ

2(T − t)
ῡ

,

so that he incurs a loss (again, in certainty–equivalent terms) by joining
the group iff υi < ῡ, i.e if he is less cautious than the group as a whole.

6.4.4 A collective of mean–variance utility investors with
pre–commitment

We can also consider the mean–variance utility with pre–commitment for
a collective. Here it becomes important in which order we implement the
different arguments. Does each investors realise that the utility inversion
of a mean–variance utility is the identity function before he decides to pre–
commit himself to his time 0-target? Or does he pre–commit to his time
0-target for thereafter to realise that the utility inversion is no longer just
the identity function?
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If we implement the identity utility inversion, we get the problem

sup
π

n∑

i=1

(
Et,x

{
Xπ (T )

n

}
− υi

2
Et,x

{
Xπ (T )

n
− E0,x0

{
Xπ (T )

n

}}2
)

= sup
π:E0,x0{Xπ(T )}=K

n∑

i=1

(
Et,x

{
Xπ (T )

n

}
− υi

2
Et,x

{
Xπ (T )

n
− K

n

}2
)

= sup
π:E0,x0{Xπ(T )}=K

(
Et,x {Xπ (T )} − ῡ

2n
Et,x {Xπ (T )−K}2

)

= sup
π,h:E0,x0{Xπ(h)(T )}=h−n

ῡ

Et,x

{
−1

2
(Xπ (T )− h)2

}

with ῡ =
∑n

i=1 υi/n defining the average risk aversion. But this problem
is equivalent to the problem of a single investor with wealth x and risk
aversion ῡ/n. The optimal investment strategy then becomes

π∗x =
Λ
σ

(q (t)− x)

with
q (t) = ert

(
x0 +

n

ῡ
e(Λ

2−r)T
)

.

This can be compared to the solution for a single investor with risk aversion
υi and initial wealth x0/n, who invests optimally the amount

π∗x/n = Λ(qi (t)− x/n) /σ

with
qi (t) = exp(rt)

(
x0/n + exp

((
Λ2 − r

)
T

)
/υi

)
.

We see that the collective of investors calculates an average target process
q̄ based on the average aversion ῡ,

q̄ (t) = exp(rt)
(
x0/n + exp

((
Λ2 − r

)
T

)
/ῡ

)
,

and then invests n times this amount, that is

π∗x = n
Λ
σ

(q̄ (t)− x/n) =
Λ
σ

(q (t)− x) .
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The alternative is to start with the pre–commitment such that objective
of investor i, before starting the investment collective, is

Vi (t, x) = sup
π,βi:E

{
Xπ(βi)(T )

}
=βi− 1

υi

Et,x

{
−1

2
(Xπ (T )− βi)

2

}
.

Now the utility inversion is no longer the identity function, and dealing
with the case turns out to be surprisingly difficult. First we have to assume
that Xπ/n ≤ βi a.s. for all i. Then the collective of investors faces the
problem

V (t, x) = sup

π,βi:E
{

X
π(βi)(T )

n

}
=βi− 1

υi

n∑

i=1


βi +

√√√√Et,x

{(
Xπ (T )

n
− βi

)2
}

 ,

which seems intractable.

6.5 Concluding remarks

Björk and Murgoci (2008) point out that to any non-standard problem
within their set of study corresponds a standard problem. Here we argue
that this also hold in our case. Rearranging the terms of (6.6) yields

Ft = inf
π

[
− (r + Λσπ) xFx − 1

2
(σπ)2 x2Fxx

+ft + (r + Λσπ) xfx +
1
2

(σπ)2 x2U

]
.

One can recognise this as the standard Hamilton–Jacobi–Bellmann (HJB)
equation to the problem

sup
π
Et,x

{
− ∫ T

t

(
fs + (r + Λσπ) X (s) fx + 1

2 (σπX (s))2 U (f, y, z)
)

ds

+f (T, X (T ) , g (X (T )) , h (X (T )))

}

(6.45)
with appropriate arguments. Björk and Murgoci (2008) calculated specifi-
cally the equivalent standard problem for the mean–variance case and their
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result can be recognised in (6.45). Formalising the ”extra” terms in (6.6)
as ”utility of consumption” is straightforward here (although nothing is
actually consumed), and probably in cases much more involved than ours
likewise. However, it is of only marginal interest since we do not know any
examples where the standard problem induced by a non-standard problem
has a meaningful economic interpretation in its own respect.

In this paper we have concentrated on the pure investment problem.
In Björk and Murgoci (2008), consumption is also taken into account.
Their preferences over consumption contribute to the inconsistency only
via dependence on wealth (like endogenous habit formation). More gen-
erally, inconsistency could also arise from taking a non-linear function of
the expected utility of consumption. This is a natural subject for further
research.

We have completely accepted the non-standard problem as meaningful.
The game theoretical foundations for interpretation of the non-standard
problem are taken as given in our presentation and we refer to Björk and
Murgoci (2008) for theoretical considerations in this regard. Once having
accepted the problem as meaningful we are allowed to attack it directly in
continuous time with more or less standard control theoretical techniques.
Therefore the generalised HJB equation and the examples of its solution
stand out as the primary contribution of our paper.

6.6 Proof

Proof of Proposition 6.1. Consider an arbitrary admissible strategy π, and
let Uπ = U (f, Y π, Zπ).

1. First we argue that if there exists a function Y π (t, x) such that

Y π
t = − (r + Λσπ) xY π

x − 1
2

(σπ)2 x2Y π
xx, (6.46)

Y π (T, x) = g (x) , (6.47)

then
Y π (t, x) = yπ (t, x) . (6.48)
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Namely,

Y π (t,X (t)) = −
∫ T

t
dY π (s,Xπ (s)) + Y π (T,Xπ (T ))

= −
∫ T

t




Y π
s (s,Xπ (s)) ds

+Y π
x (s,Xπ (s))

(
(r + Λσπ (s))Xπ (s) ds

+σπ (s) Xπ (s) dB (s)

)

+1
2Y π

xx (s, Xπ (s)) (σπ(s))2 Xπ (s)2 ds




+ Y π (T, Xπ (T )) .

Inserting (6.46) and (6.47) gives

Y π (t,X (t)) = −
∫ T

t
σπ (s)Xπ (s) dB (s) + g (Xπ (T )) . (6.49)

Now, taking conditional expectation on both sides gives

Y π (t, x) = Et,x {g (Xπ (T ))} = yπ (t, x) .

From similar arguments (replace y and Y by z and Z) we get that if
there exists a function Zπ (t, x) such that

Zπ
t = − (r + Λσπ) xZπ

x −
1
2

(σπ)2 x2Zπ
xx, (6.50)

Zπ (T, x) = h (x) , (6.51)

then
Zπ (t, x) = zπ (t, x) . (6.52)

2. Second we obtain an expression for

f (t,Xπ (t) , yπ (t,Xπ (t)) , zπ (t,Xπ (t))) .

From (6.48) and (6.52) we have that this equals

f (t,Xπ (t) , Y π (t,Xπ (t)) , Zπ (t,Xπ (t))) .
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Since f is sufficiently differentiable, then by Itô’s formula

f (t,Xπ (t) , yπ (t,Xπ (t)) , zπ (t,Xπ (t)))

= −
∫ T

t
df (s,Xπ (s) , Y π (s,Xπ (s)) , Zπ (s,Xπ (s)))

+ f (T, Xπ (T ) , Y π (T, Xπ (T )) , Zπ (T, Xπ (T )))

= −
∫ T

t




(fs + fyY
π
s + fzZ

π
s ) ds

+(fx + fyY
π
x + fzZ

π
x ) dXπ (s)

+1
2




fxx + 2fxyY
π
x + 2fxzZ

π
x

+fyY
π
xx + fzZ

π
xx + fyy (Y π

x )2

+2fyzY
π
x Zπ

x + fzz (Zπ
x )2


 (σπ(s))2 Xπ (s)2 ds




+ f (T, Xπ (T ) , Y π (T, Xπ (T )) , Zπ (T, Xπ (T ))) ,

where we have skipped some arguments under the integral. Insert-
ing (6.46), (6.47), (6.50), (6.51) and (6.2) we have that

f (t,Xπ (t) , yπ (t,Xπ (t)) , zπ (t,Xπ (t)))

= −
∫ T

t





 fs + fy

(
− (r + Λσπ(s))xY π

x − 1
2 (σπ(s))2 x2Y π

xx

)

+fz

(
− (r + Λσπ(s))xZπ

x − 1
2 (σπ(s))2 x2Zπ

xx

)

 ds

+(fx + fyY
π
x + fzZ

π
x )

(
(r + Λσπ (s))Xπ (s) dt

+σπ (s) Xπ (s) dB (s)

)

+1
2




fxx + 2fxyY
π
x + 2fxzZ

π
x

+fyY
π
xx + fzZ

π
xx + fyy (Y π

x )2

+2fyzY
π
x Zπ

x + fzz (Zπ
x )2


 (σπ(s))2 Xπ (s)2 ds




+ f (T,Xπ (T ) , g (Xπ (T )) , h (Xπ (T ))) .

Abbreviating and inserting (6.10) we get

f (t,Xπ (t) , yπ (t,Xπ (t)) , zπ (t, Xπ (t)))

= −
∫ T

t




fsds + fx (r + Λσπ (s))Xπ (s) ds

+(fx + fyY
π
x + fzZ

π
x ) σπ (s) Xπ (s) dB (s)

+1
2Uπ (σπ(s))2 Xπ (s)2 ds


 (6.53)

+ f (T, Xπ (T ) , g (Xπ (T )) , h (Xπ (T ))) .
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3. Third, we establish on the basis of (6.53) that

F (t, x) ≥ sup
π

f (t, x, yπ (t, x) , zπ (t, x)) .

An Itô calculation on F gives that

F (t,Xπ (t)) = −
∫ T

t
dF (s,Xπ (s)) + F (T,Xπ (T ))

= −
∫ T

t

(
Fsds + FxdXπ (s) +

1
2
Fxx (σπ(s))2 Xπ (s)2 ds

)

+ F (T, Xπ (T )) .

Inserting (6.6) which for an arbitrary strategy π means that

Ft ≤ ft − (r + Λσπ) x (Fx − fx)− 1
2

(σπ)2 x2 (Fxx − Uπ) ,

with x = Xπ (s), and inserting (6.7) and (6.2) we get that

F (t,Xπ (t)) ≥ f (T, Xπ (T ) , g (Xπ (T )) , h (Xπ (T )))

−
∫ T

t




(
fs − (r + Λσπ(s))Xπ (s) (Fx − fx)
−1

2 (σπ(s))2 Xπ (s)2 (Fxx − Uπ)

)
ds

+Fx (r + Λσπ (s))Xπ (s) ds

+Fxσπ (s) Xπ (s) dB (s)
+1

2Fxx (σπ(s))2 Xπ (s)2 ds




.

Abbreviation gives

F (t,Xπ (t)) ≥ −
∫ T

t




(
fs + fx (r + π(s)Λσ) Xπ (s)
+1

2 (σπ(s))2 Xπ (s)2 Uπ

)
ds

+Fxσπ (s) Xπ (s) dB (s)




+ f (T,Xπ (T ) , g (Xπ (T )) , h (Xπ (T ))) .

Inserting (6.53) we get that

F (t,Xπ (t)) ≥ f (t, Xπ (t) , yπ (t,Xπ (t)) , zπ (t, Xπ (t)))

+
∫ T

t
(fx + fyY

π
x + fzZ

π
x − Fx)σπ (s) Xπ (s) dB (s) .

(6.54)
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Now, due to sufficient integrability, taking conditional expectation
on both sides and thereafter supremum over π on both sides finally
gives

F (t, x) ≥ sup
π

f (t, x, yπ (t, x) , zπ (t, x)) . (6.55)

Consider the specific strategy π∗, and let Uπ∗ = U
(
f, Y π∗ , Zπ∗).

1. First, since G (t, x) = Y π∗ (t, x) and H (t, x) = Zπ∗ (t, x) we have
from (6.48) and (6.52) that

G (t, x) = yπ∗ (t, x) ,

H (t, x) = zπ∗ (t, x) .

2. Second, also for this specific strategy we have that

f
(
t,Xπ∗ (t) , yπ∗

(
t,Xπ∗ (t)

)
, zπ∗

(
t,Xπ∗ (t)

))

= −
∫ T

t




fsds + fx (r + Λσπ∗ (s))Xπ∗ (s) ds

+
(
fx + fyY

π∗
x + fzZ

π∗
x

)
σπ∗ (s) Xπ∗ (s) dB (s)

+1
2Uπ∗ (σπ∗ (s))2 Xπ∗ (s)2 ds




(6.56)

+ f
(
T, Xπ∗ (T ) , g

(
Xπ∗ (T )

)
, h

(
Xπ∗ (T )

))
.

3. Third, we establish on the basis of (6.56) that

F (t, x) ≥ sup
π

f (t, x, yπ (t, x) , zπ (t, x)) .

An Itô calculation on F gives that

F
(
t,Xπ∗ (t)

)
= −

∫ T

t
dF

(
s,Xπ∗ (s)

)
+ F

(
T,Xπ∗ (T )

)

= −
∫ T

t

(
Fsds + FxdXπ∗ (s)

+
1
2
Fxx (σπ∗ (s))2 Xπ∗ (s)2 ds

)

+ F
(
T, Xπ∗ (T )

)
.

190



Inserting (6.6) which for the strategy π∗ means that

Ft = ft − (r + Λσπ∗) x (Fx − fx)− 1
2

(σπ∗)2 x2
(
Fxx − Uπ∗

)
,

with x = Xπ∗ (s), and inserting (6.7) and (6.2) with the strategy π∗

we get that

F
(
t,Xπ∗ (t)

)
= f

(
T,Xπ∗ (T ) , g

(
Xπ∗ (T )

)
, h

(
Xπ∗ (T )

))

−
∫ T

t




(
fs − (r + Λσπ∗(s))Xπ∗ (s) (Fx − fx)
−1

2 (σπ∗(s))2 Xπ∗ (s)2
(
Fxx − Uπ∗)

)
ds

+Fx

(
(r + Λσπ∗ (s))Xπ∗ (s) ds

+σπ∗ (s) Xπ∗ (s) dB (s)

)

+1
2Fxx (σπ∗ (s))2 Xπ∗ (s)2 ds




Abbreviation gives

F
(
t,Xπ∗ (t)

)
= f

(
T,Xπ∗ (T ) , g

(
Xπ∗ (T )

)
, h

(
Xπ∗ (T )

))

−
∫ T

t




(
fs + fx (r + Λσπ∗(s))Xπ∗ (s)
+1

2 (σπ∗(s))2 Xπ∗ (s)2 Uπ∗

)
ds

+Fxσπ∗ (s)Xπ∗ (s) dB (s)


 .

Inserting (6.56) we get that

F
(
t,Xπ∗ (t)

)
= f

(
t,Xπ∗ (t) , yπ∗

(
t,Xπ∗ (t)

)
, zπ∗

(
t,Xπ∗ (t)

))

+
∫ T

t

(
fx + fyY

π∗
x + fzZ

π∗
x − Fx

)
σπ∗ (s) Xπ∗ (s) dB (s) .

Now, assuming sufficient integrability, taking conditional expectation
on both sides finally gives

F (t, x) = f
(
t, x, yπ∗ (t, x) , zπ∗ (t, x)

)
(6.57)

≤ sup
π

f (t, x, yπ (t, x) , zπ (t, x)) .
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(6.55) together with (6.57) gives that

F (t, x) = sup
π

f (t, x, yπ (t, x) , zπ (t, x)) .

From the arguments above we learn that this supremum is obtained
by the strategy π∗.
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