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SummaryThis thesis 
ombines population dynami
al models of �sh with statisti
almodels of 
ount data obtained from s
ienti�
 surveys. The aim is to be ableto draw 
on
lusions about the biologi
al pro
esses driving the populationon basis of observed data. This main problem is addressed using maximumlikelihood-based approa
hes. As a prerequisite it is ne
essary to give a re-alisti
 des
ription of the random variability in the data. The variation istreated as a sum of a 
ontribution due to errors in the population model(system noise) and a 
ontribution 
aused by errors in the observation pro-
ess (measurement noise) whi
h o

urs be
ause the �sh are not distributeduniformly in the sea or be
ause the �sh moves.A length-based population dynami
al model is formulated (Se
tion 5.1) andit is shown that the 
orresponding system-noise is determined by a Poissonpro
ess and thus is negligible for large populations. Therefore the primaryfo
us of this thesis is the random variation in the sampling pro
ess in
lud-ing the variation due to spatial and time heterogeneity and size-dependent
lustering.The �rst attempt towards a heterogeneous des
ription of the trawl data isto model the measurement noise using the negative binomial distribution.In 
ombination with the population dynami
al model a maximum-likelihoodbased sto
k-assessment model is obtained (se
tion 6.3) whi
h allows for for-mal testing of the underlying biologi
al pro
esses. The statisti
al modela

ounts for over-dispersion of the data but o�ers no opportunity to de-s
ribe present 
orrelations between size 
lasses.These 
orrelations may explain apparent 
hanges in 
at
hability from yearto year and therefore has major impa
t on the interpretation of the signal inthe data.This problem is solved by introdu
ing the log Gaussian Cox pro
ess whi
hallows for in
orporation of 
orrelations in the 
ount data (se
tion 7.1). Cor-relation stru
tures are formulated to des
ribe spatial heterogeneity of �sh onvarious spatial s
ales and to deal with the fa
t that �sh of a parti
ular sizetend to s
hool with �sh of similar sizes.The appli
ation of the log Gaussian Cox pro
ess requires spe
ial numeri
alattention (se
tion 7.4) for 
ases involving large amounts of data.The log Gaussian Cox pro
ess is applied as a substitute of the negative bi-nomial distribution (Se
tion 8.2) in 
ombination with the population model.A further appli
ation use the log Gaussian Cox pro
ess to estimate 
on
en-tration areas of �sh (se
tion 8.3).The above 
onsiderations are the starting point of the four arti
les at theend of the thesis.
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Dansk resuméDenne afhandling beskæftiger sig med at kombinere populationsdynamiskemodeller for �sk med statistiske modeller for tælledata opnået fra videnska-belige togter. Formålet er at kunne drage konklusioner om de biologiske pro-
esser der driver bestandens udvikling på baggrund af observerede data. Forat behandle dette problem gennem maksimum likelihood baserede metoderer det nødvendigt at give en realistisk beskrivelse af den tilfældige variationi data. Denne variation kan naturligt opdeles som et bidrag der skyldes fejli populations modellen (system-støj) samt et bidrag der skyldes fejl i ob-servations pro
essen (måle-støj) der f.eks. opstår fordi �sk ikke fordeler sighomogent i havet eller fordi �skene bevæger sig.En længdebaseret populationsdynamisk model formuleres (sektion 5.1) ogder gøres rede for at systemstøjen i denne model er bestemt ved en Poissonpro
es og dermed er forsvindende for store populationer. Det primære fokusfor denne afhandling er derfor den tilfældige variation i sampling pro
essen -herunder variation der skyldes rumlig og tidslig heterogenitet samt størrelsesafhængig klumpning.Det første forsøg i retning af en heterogen beskrivelse af trawl data er atmodellere målestøjen ved hjælp af den negative binomial fordeling. I kombi-nation med populationsmodellen fås herved en maksimum likelihood baseretbestandsvurderingsmetode (sektion 6.3) som tillader formel testning af debagvedliggende biologiske pro
esser. Den statistiske model tager højde foroverspredning i data men rummer ikke mulighed for at beskrive tydeligtforkomne korrelationer mellem størrelsesklasser.Disse korrelationer kan forklare tilsyneladende ændringer i fangbarhed fra årtil år og har derfor afgørende ind�ydelse på fortolkningen af signalet i data.Dette problem løses ved indførelse af den log Gaussiske Cox pro
es der givermulighed for at inkorporere korrelationer i tælledata (sektion 7.1). Korrela-tionsstrukturer formuleres til at tage højde for at �skene fordeler sig klumpetpå forskellige rumlige skalaer samt at �sk af en given størrelse har tendenstil at gruppere sig med �sk af samme størrelse i stimer.Anvendelsen af den log Gaussiske Cox pro
es kræver særlige numeriske metoder(sektion 7.4) for store mængder af data.Den log Gaussiske Cox pro
es anvendes som erstatning for den negative bi-nomial fordeling (sektion 8.2) i kombination med den populationsdynamiskemodel. Desuden betragtes en anvendelse af den log Gaussiske Cox pro
es tilat estimere kon
entrationsområder for �sk (sektion 8.3).Ovenstående overvejelser danner udgangspunktet for de �re artikler i slut-ningen af afhandlingen.
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Introdu
tion1 Ba
kgroundSto
k assessments are made regularly by �sheries resear
h institutes to aidemanagers in their regulation of �sheries. Most of the standard assessmentmodels used for this task are estimation algorithms that do not allow forstatisti
al inferen
e (e.g. the XSA model (Shepherd, 1999)).Standard sto
k assessment rely heavily on 
ommer
ial 
at
h data whi
h aresamples of the �shermens 
at
hes. The quality of these data is doubtful dueto an in
reasing amount of �sh 
at
hes being either non-reported or misre-ported and a number of assessments are for this reason 
onsidered unreliable(ICES., 2005). There is therefore a need to further develop statisti
al meth-ods that enables sto
k assessment to be derived from �shery independentdata, i.e. from s
ienti�
 bottom trawl surveys.Sto
k assessments are typi
ally based on individual age groups where theaging relies on interpretations of ring stru
tures as otoliths or s
ales. Marineanimals that la
k su
h ring stru
tures (e.g. 
rusta
eans) 
an not be aged thisway and for a number of �sh sto
ks poor 
ontrast in the stru
tures impedesreliable aging. For su
h 
ases the interpretation of the age stru
ture mustbe based on the length distribution of the animals. There exist a number ofmethods that 
onvert length distribution to age (Bhatta
harya, 1967; Ma
-donald and Pit
her, 1979) and it is 
ommon pra
ti
e to use the age-dataobtained from these pro
edures as raw-data in the deterministi
 XSA-modeldisregarding the statisti
al un
ertainties.More re
ent methods attempts to in
orporate length-information in assess-ment models more rigorously using dynami
al models of the length-distributionsin 
onjun
tion with real statisti
al models of 
at
h observations (Sullivan,1992; Frøysa et al., 2002; S
hnute and Fournier, 1980; Fournier et al., 1998).The �rst 
omponent dynami
al length-based population modelling of �sh emergefrom the more general e
ologi
al dis
ipline of dynami
al modelling of stru
-tured populations (Metz and Diekmann, 1986). These models are dis
retizedversions of the deterministi
 �ow models based on the von Foerster di�eren-tial equations (von Foerster, 1959) des
ribing how the size-
omposition of apopulation evolves governed by the fundamental biologi
al properties of theindividuals of the population re
ruitment, growth and mortality.6



The se
ond 
omponent statisti
al modelling of 
at
h observations links ex-pe
ted 
at
hes with the observations through standard distributions su
has the normal (Sullivan, 1992), the log-normal (Frøysa et al., 2002; Fu andQuinn, 2000) and the multinomial distribution (S
hnute and Fournier, 1980;Smith et al., 1998).2 PurposeThe overall purpose of the thesis is to improve the statisti
al interpretationof trawl-survey data and to demonstrate how the statisti
al results 
an beused to extra
t biologi
al information from the data. The aim is to 
ombinea purely length-based population model with a realisti
 statisti
al model ofs
ienti�
 trawl-survey 
at
hes.To this end we �nd it important to distinguish between system noise andmeasurement noise. System noise arise in a population model if sto
hasti
ityis added to the biologi
al pro
esses driving the population. Measurementnoise re�e
ts the variation of samples 
onditional on the underlying sizedistribution of the population.The key to more realisti
 statisti
al des
ription of the measurement noisein �sh abundan
e data is to view the �sh-populations as being spatiallyheterogeneous. We try to give a point-pro
ess motivation for the applieddistributions even though point-pro
ess data are not available. It is a main
riterion that the methods have to be 
omputationally feasible in pra
ti
ewith the relatively large amount of data whi
h is available.3 ContributionsLength-based population modelling An individual based model of thesize distribution of �sh is 
onveniently formulated within a point-pro
essframework. This approa
h has not been taken elsewhere in the literature.We show that an individual based model in
luding re
ruitment, mortalityand sto
hasti
 growth leads to a Poisson pro
ess of the entire population(se
tion 5.1) and the intensity is derived. In the spe
ial 
ase of deterministi
growth the intensity solves the 
lassi
al deterministi
 di�erential equationsof von Foerster (1959).Statisti
al interpretation of trawl-survey data Various statisti
al dis-tributions have been applied to des
ribe trawl survey data 
omprising thenormal (Sullivan, 1992), the log-normal (Frøysa et al., 2002; Fu and Quinn,2000) and the multinomial distribution (S
hnute and Fournier, 1980; Smithet al., 1998).The typi
al large fra
tion of zeros in trawl survey data has been treated7



by extending the log-normal distribution with an atom in zero (Penning-ton, 1996). Size 
orrelations in trawl survey data have been des
ribed byDiri
hlet-multinomial and Gaussian-multinomial distributions (Hrafnkelssonand Stefansson, 2004).Our main 
ontribution is to introdu
e the log Gaussian Cox pro
ess (LGCP)to model spatio-temporal and size 
orrelation in bottom trawl surveys.We formulate 
orrelation stru
tures to 
apture relevant heterogeneity.Numeri
al methods for the LGCP Numeri
al methods for statisti
alinferen
e for the LGCP are well-established both in a Bayesian an freqentistsetup through MCMC te
hniques (Møller and Waagepetersen, 2004). Thesete
hniques are very general and standard implementations are available e.g.through the R-pa
kage (Baddeley and Turner, 2005).However MCMC-te
hniques 
an be very 
omputational expensive. It is wellre
ognized that the simulation based approa
hes are often outperformed bydire
t methods su
h as the Lapla
e approximation (Skaug and Fournier,2006) and variants there of (Rue et al., 2007). The approa
h taken bySkaug and Fournier (2006) uses the Lapla
e in 
ombination with reversemode automati
 di�erentiation (Griewank, 2000) to perform approximateML-estimation. This method is suitable for generalized non-linear mixedmodels (GNLMMs) 
ontaining a moderate number of �xed e�e
ts and ran-dom e�e
ts (≈ 500 − 1000). In its dire
t form the Lapla
e approximationis unsuitable for GNLMMs with a larger number of random e�e
ts be
auseof the need to fa
torize a se
ond-order derivative matrix of the same dimen-sion as the number of random e�e
ts. However, for many interesting modelsthe se
ond-order derivative required by the Lapla
e approximation 
ontainsmostly zeros. Therefore numeri
al methods for sparse matri
es have been
onsidered to make the Lapla
e approximation feasible for problems involv-ing large data sets (Rue et al., 2007; Rue, 2005; Rue et al., 2004; Bates,2004). The approa
h of Bates (2004) implemented in the R-pa
kage �lme4�(Bates et al., 2008) handles GLMMs but is limited to 
ovarian
e stru
tureswhi
h 
an be expressed through a (well-designed) formula interfa
e.Our 
ontribution mixes ideas of the existing numeri
al methods in order tohandle the LGCP in 
ases with large amounts of data and non-linear geosta-tisti
al 
ovarian
e stru
tures. Inspired by Rue and Held (2005) we restri
tattention to 
ovarian
e stru
tures with a sparse inverse - the so-
alled Gaus-sian Markov Random �elds (GMRFs). Like Bates (2004) our approa
h usesan augmented system to take full advantage of sparseness and to gain nu-meri
al stability.We �nally develop a quadrati
 approximation of the LGCP-likelihood whi
his 
heap to evaluate in pra
ti
e. The quadrati
 approximation is used for�tting and testing non-linear models of the �xed e�e
ts of the LGCP.8



4 Paper overviewPaper I The simplest step towards an underlying heterogeneous interpre-tation of the statisti
al distribution of �sh is to apply a distribution whi
h al-lows for over-dispersion. Can a negative binomial distribution adequately de-s
ribe observed size-distribution if it is 
ombined with a length-based modelof a �sh sto
k? This is examined in paper I. The main 
on
lusion is thatit is possible to 
arry out a length-based sto
k assessment based on rela-tively few survey observations even with the high degree of over-dispersionin the data. However, over-dispersion is not the only problem with the data.High 
orrelations between the number of �sh in neighboring size-
lasses areen
ountered whi
h the negative binomial distribution does not a

ount for.These issues are the main fo
us of the following three papers.Paper II To deal with the 
orrelations the LGCP is 
onsidered. It haspreviously been used to des
ribe heterogeneity of e.g. animals and plants innumerous e
ologi
al studies. It is also suitable for statisti
al modelling oflength-based trawl-survey data be
ause of its ability to model high-dimensional
orrelated 
ount data. A 
orrelation stru
ture is formulated in order to 
ap-ture the random e�e
t of a large-s
ale spatio temporal log-abundan
e sur-fa
e and small-s
ale size dependent 
lustering. An ML-estimation algorithmbased on the Lapla
e approximation is formulated. The method is aimedat large sparse pre
ision matri
es for whi
h modern sparse matrix solvers
an be used to make the estimation pra
ti
ally possible. It is shown howthe spe
i�ed 
orrelation stru
ture 
an be given a formulation for whi
h thepre
ision matrix is sparse. The method is applied on a single survey in theNorth-Sea.Paper III The length-based model from �paper I� is 
ombined with thesize-spa
e-time-
orrelated LGCP from �paper II� in order to �x the la
k-ing 
orrelations in the negative binomial distribution. The main questionwe wish to answer is whether there are remarkable 
hanges in the 
on
lu-sion about the biologi
al length-based population model when data is inter-preted through the more realisti
 LGCP. It is 
on
luded that the in
lusion ofsize-spa
e and time 
orrelations generally in
rease the pre
ision of the size-spe
trum slope while the pre
ision of the overall spe
trum level is de
reased.As an important 
onsequen
e a time-
hanging 
at
hability is not signi�
antas opposed to the 
on
lusions of �paper I�.Paper IV A statisti
al model whi
h a

ounts for spatial 
orrelation is suit-able for spatial predi
tion. It is thus obvious to use the LGCP for spatialinterpolation of �sh-abundan
e surfa
es. A predi
tion method based on astatisti
al model is 
onvenient be
ause the statisti
al model 
an be validated9



as opposed to existing ad ho
 methods.Data of North-Sea 
od is 
onsidered and the LGCP is �tted with a three-parameter spatial 
orrelation stru
ture separately for ea
h of three age groupsduring the period 1983-2006. The model is a

epted using residual-basedgoodness of �t assessment.Time-
hanges in various 
on
entration measures are examined. In parti
ular
D95 - the smallest fra
tion of the area 
ontaining 95% of the population -is 
onsidered as a fun
tion of the hidden intensity. It is 
on
luded that theposterior mean of D95 given the data is un
hanged during the period. Thisobservation 
ontradi
ts the theory of the ideal free distribution.5 Length-based population modelling5.1 Individual based formulationSize based population models attempts to 
reate the link between biologi
alknowledge about the single individual and the size distribution of an en-tire population assuming that individuals share some fundamental biologi
alproperties. Theses issues are known as s
aling problems within the biologi
al�eld.It is 
ommonly re
ognized that the size-distribution of a �sh-population ismainly governed by the fundamental biologi
al pro
esses re
ruitment, growthand mortality.As an example of an individual based biologi
al model of re
ruitment, growthand mortality 
onsider the following individual assumptions:1. An individual is born (re
ruited) during the small time interval [t, t+

∆t] with probability r(t)∆t + o(∆t) independent of the past where ris the re
ruitment fun
tion.2. An individual of size x dies during the small time interval [t, t + ∆t]with probability z(x, t)∆t+ o(∆t) independent of the past where z isthe size- and time spe
i�
 mortality rate.3. An individual born at time s grow a

ording to a sto
hasti
 growthtraje
tory Ls(t).4. Individuals grow and die independently.The individual model is 
onveniently visualized (Fig. 1a) by representingea
h individual with its growth-
urve. The re
ruitment pro
ess then appearsas points on the time-axis while the size-distribution of individuals alive attime t appears as 
rossings of the growth-
urves with a verti
al (dashed)line. An interrupted growth-
urve indi
ates the death of an individual.10
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Figure 1: Illustration of individual based model of growth, mortality andre
ruitment. A solid 
ir
le on the time axis indi
ates a re
ruitment event.An open 
ir
le indi
ates the death of an individual. Crossings of the verti-
al dashed line with the growth traje
tories are marked with a solid 
ir
leto indi
ate the individuals alive at time t. (a) Constant re
ruitment-rateand deterministi
 growth-
urves. (b) Time-inhomogeneous re
ruitment andsto
hasti
 growth-
urves.The �rst assumption 
hara
terizes the point-pro
ess on the time-axis as be-ing an inhomogeneous Poisson-pro
ess with intensity r. To solve the s
al-ing problem we must �nd the distribution of the �verti
al� point-pro
esswhi
h keeps tra
k of the size-distribution of the individuals alive at time t.Denote by Nt this 
ounting pro
ess de�ned by letting Nt(A) be equal tothe number of individuals alive at time t with a size 
ontained in A ⊂ R.To �nd its distribution note that the remaining assumptions (2-4) sug-gests an independent random labeling (Møller and Waagepetersen, 2004)of the re
ruitment-pro
ess. Indeed for any 
on�guration of disjoint sets
A1, ..., Ak ⊂ R atta
h the label Ai to a re
ruitment-point s if the 
orrespond-ing individual is alive at time t with a size 
ontained in Ai - and denote by
Ps,t(Ai) the probability of this event. It follows that the re
ruitment pro
esssplit a
ross labels 
onstitutes independent Poisson-pro
esses with intensities
s → r(s)Ps,t(Ai) (Møller and Waagepetersen, 2004). In turn the randomvariables Nt(A1), ..., Nt(Ak) be
omes independent Poisson distributed withmean E(Nt(Ai)) =

∫ t

0 r(s)Ps,t(Ai) ds. In 
on
lusion Nt is again an inhomo-geneous Poisson-pro
ess with intensity λ(x, t) = ∂
∂x

∫ t

0 r(s)Ps,t([0, x]) ds.Next 
onsider the probability Ps,t([0, x]) that an individual born at time s isstill alive at time t with a size in
luded in the set [0, x]. A

ording to assump-tion 2 the hazard fun
tion of an individual following a �xed growth-traje
tory
ls initiated at time s is τ → z(ls(τ), τ). Thus the probability of survival up to11



time t is exp
(

−
∫ t

s
z(ls(τ), τ) dτ

). To �nd Ps,t([0, x]) for a general sto
hasti
growth 
urve Ls(τ) initiated at time s we take expe
tation over the possiblegrowth-
urves Ps,t([0, x]) = E
(

exp
(

−
∫ t

s
z(Ls(τ), τ) dτ

)

1(Ls(t)≤x)

). Insertthis to get the general expression of the intensity of Nt

λt(x) =
∂

∂x

∫ t

−∞
r(s)E

(

exp

(

−

∫ t

s

z(Ls(τ), τ) dτ

)

1(Ls(t)≤x)

)

ds (1)The intensity (1) 
ompletely spe
i�es the distribution of the population size
omposition. The individual based model in
ludes the e�e
t of sto
hasti
re
ruitment, mortality and growth (Fig 1b). It may therefore appear some-what surprising that this biologi
al system 
reates no more than Poissonvariation in the output-pro
ess Nt. For a large population the Poisson noisehardly matters and it is tempting to think of the population size-distributionas a deterministi
 pro
ess.5.2 Sto
hasti
 von Bertallanfy growthThe parti
ular form of the growth model applied in thesis takes its startingpoint in the 
lassi
al von Bertallanfy growth model (Bertalan�y, 1938):
Ls(t|L∞, k, L0) = L∞ − (L∞ − L0)e

−k(t−s) (2)This equation des
ribes the growth of an individual born at time s. Thegrowth traje
tory approa
h the asymptoti
 size L∞ as t tends to in�nity.A sto
hasti
 growth-model is obtained by assuming that ea
h individual isassigned its personal asymptoti
 size L∞ 
hosen from a 
ommon distributionwith density u on [L0,∞). All individuals are assumed to have the samegrowth parameter k.To �nd the intensity (1) in this 
ase note �rst that at time t the individualsthat have size less than x are exa
tly the ones with an L∞ belonging to theset
{L∞ : L(t, L∞) ≤ x} = [L0, G(x)] (3)where

G(x) = G(x|k, s, L0) =
x− L0e

−k(t−s)

1 − e−k(t−s)
(4)Now equation (1) be
omes

λt(x) =
∂

∂x

∫ t

−∞
r(s)E

(

exp

(

−

∫ t

s

z(Ls(τ |L∞), τ) dτ

)

1(Ls(t)≤x)

)

ds

= ...

=

∫ t

−∞
r(s) exp

(

−

∫ t

s

z(Ls(s,Gs(x)), s) ds

)

u(Gs(x))G
′
s(x) ds

(5)
12



5.3 Traditional formulationTraditional modelling of population size-distributions takes its starting pointin the von Foerster PDE (von Foerster, 1959)
∂

∂t
n(x, t) = −

∂

∂x
(g(x, t)n(x, t)) − z(x, t)n(x, t) (6)with the boundary 
ondition r(t) = n(0, t)g(0, t) and g(x, t) denotes thegrowth-rate of an individual of size x at time t. In this 
ontext n(x, t) is
alled the �number-density� and has the property that ∫

A
n(x, t) dx is thedeterministi
 number of individuals with size 
ontained in A at time t.It is straight forward to show that in the 
ase of deterministi
 growth theintensity (1) solves (6) and thus the 
on
ept of �intensity� and �number-density� are identi
al.The sto
hasti
 growth model from the previous se
tion 
ould alternativelybe obtained by treating solutions to the von-Foerster equation as fun
tionof L∞ and the mixing all these solutions wrt. the probability density u.However, this approa
h is very inappropriate from a numeri
al perspe
tive.The more dire
t form (5) is easier to handle in pra
ti
e. A dis
retization ofthe inner integral is known as the method of integration along 
hara
teristi
sand is a re
ognized way to solve the di�erential equations e�
iently.6 The inverse problemThe main issue of interest is to estimate the biologi
al pro
esses re
ruitment,mortality and growth based on samples of individual sizes. Having Fig. 1in mind what 
an we say about the biologi
al system based on samples ofthe verti
al point-pro
ess? This inverse problem 
an be formulated within amaximum likelihood framework if we 
an spe
ify how the available samplesare 
olle
ted from the population.6.1 DataThe data 
onsidered in this thesis are obtained from s
ienti�
 bottom trawlsurveys. The survey is 
ondu
ted by vessels following a randomized route
overing the population area of interest. At ea
h of the 
hosen positions asample (haul) is taken with the trawl. The duration and speed of the trawlis approximately the same for all samples and thus a sample is pres
ribed to
over a given swept area.As the spatial positions of the trawl is random any �sh must have the sameprobability of belonging to the swept area at the time of the sample. Denoteby p this probability given as the ratio of swept area and total populationarea. Whether a �sh within the swept area is 
aught obviously depends onthe �sh size. A small �sh will have a higher 
han
e of es
aping through13
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Figure 2: Average CPUE as fun
tion of size for ea
h of nine surveys ofBalti
-
od. Lines indi
ate von Bertallanfy 
urves with parameter valuesfrom Bagge et al. (1994).the meshes than a larger �sh. This phenomenon is known as gear sele
tivityand 
an be modelled by a sele
tivity fun
tion s(x) denoting the 
onditionalprobability that a �sh of size x gets 
aught given its presen
e within theswept-area.Note that despite the 
on
rete interpretation of p its value is unknown be-
ause we do not know the extension area of the population. For the samereason p 
ould be time-dependent.6.2 The Poisson modelA �rst (naive) attempt to formulate a statisti
al model of the samples is toargue that any �sh of size x from the population has probability ps(x) ofending up in a given sample. Thus a haul 
an be viewed as an independentrandom thinning (Møller and Waagepetersen, 2004) of the population withthinning probability ps(x). A sample is then a realization of a Poisson-pro
ess with intensity
λobs

t (x) = ps(x)λt(x) (7)be
ause the population was des
ribed through a Poisson-pro
ess with inten-sity (1). The expe
ted number of �sh NC in a length-
lass C is then
E(NC) =

∫

C

ps(x)λt(x) dx (8)14



Based on these expe
ted values we 
an in prin
iple write down the 
orre-sponding Poisson-likelihood and for given parameterizations of the biologi
alpro
esses 
arry out maximum-likelihood estimation.6.3 The negative binomial modelOne of the �rst pra
ti
al things to learn about trawl-survey data is that theyare almost all very far from being Poisson distributed. The �rst attempt tosolve this problem is to repla
e the Poisson distribution with a distributionallowing for over-dispersion. This is done in Paper I (page 35) whi
h webrie�y des
ribe in the following.Let Nij denote the observation matrix of 
ounts of ith haul and jth length-group. Asso
iate with i the 
orresponding survey surveyi. As the haulswithin a given survey are taken within a relatively short time-interval itis reasonable to assume that the size distribution of the �sh-population isun
hanged during the survey. Thus our main model states that
E[Ni,j ] = µsurveyi,j (9)where the parameter matrix of µt,j holds the size-
omposition of survey t.We do not impose any restri
tions on the varian
e of the 
ounts and asso
iatewith ea
h mean-value parameter a free varian
e parameter
V [Ni,j ] = σ2

surveyi,j
(10)Assuming the 
ounts follows a negative binomial distribution and that all
ounts are independent the likelihood is

L((µt,j), (σ
2
t,j)) =

∏

i

∏

j

Γ(Nij + νti,j)

Γ(νti,j)Γ(Nij + 1)
π

νti,j

ti,j
(1 − πti,j)

Nij (11)where πti,j =
µti,j

σ2
ti,j

and size parameter νti,j =
µ2

ti,j

σ2
ti,j−µti,j

. To redu
e thenumber of parameters in the main model we state the varian
e stru
turehypothesis
σ2

t,j = atµ
bt

t,j + µt,j (12)This a more �exible stru
ture than the 
ommon assumption of a �xed ν-parameter a
ross groups 
orresponding to the spe
ial 
ase of bt = 2 in (12).The varian
e stru
ture (12) is a submodel of the un-restri
ted varian
e model(10) and 
an thus be formally tested with a likelihood-ratio test.Likewise the length-based population model (1) 
an be treated as a sub-model of the general un-restri
ted mean-value model (9):
µtj =

∫

Cj

psθ(x)λθ(x, t) dx (13)15



where Cj represents the jth size-interval. Both the gear-sele
tivity and inten-sity now depends on an unknown parameter ve
tor θ whi
h is to be estimated.The 
hosen parametri
 form of the biologi
al pro
esses is1. The re
rutiment rθ(t) is a linear 
ombination of yearly varying Gaus-sian peaks (3 parameters per year).2. The distribution of L∞ is 
hosen to be normal (2 parameters).3. The size-spe
i�
 mortality is a sum of a 
onstant natural mortalityand sigmoid size-dependent �shing mortality with a yearly varyingasymptoti
 level (3 parameters plus one parameter per year).4. Survey sele
tivity sθ(x) is 
hosen as a sigmoid fun
tion of �sh-size (2parameters).For more details about the parameterization we refer to Paper I.Insertion of (13) and (12) in the likelihood (11) yields the likelihood underthe hypothesis of the 
orresponding size-stru
tured population model. It isnot obvious whether parameter-estimation is possible in this model. Firstthing to noti
e is that if p and rθ(t) are multiplied and divided respe
tivelywith the same 
onstant then the likelihood is un
hanged. This fa
t justre�e
ts that it is only possible to estimate the re
ruitment relatively. A so-lution is to �x the re
ruitment for one of the years.It is shown in Paper I by extensive simulation studies that it is possibleto re-estimate known parameters from simulated data-sets and that stan-dard asymptoti
 likelihood theory applies for this estimation problem. Themethod is applied on a 
olle
tion of nine surveys in the Balti
 (Fig. 2).Based on this relatively small data-set it is possible to estimate the param-eters even with the substantial level of over-dispersion in the data.It is an important strength of the likelihood approa
h that it permits formaltesting of the validity of the length-based population model and sub-models.For instan
e it is relevant from a management point of view to be able tojudge whether there is a signi�
ant 
hange in �shing-mortality from oneyear to the next. However, formal testing requires a valid statisti
al model.While the negative binomial distribution des
ribes the marginals ni
ely it ispointed out that there are 
lear signs of 
orrelations in the data whi
h arenot a

ounted for. Empiri
al 
orrelations between neighboring length-
lasseswithin the same survey are higher than 90% and the 
orrelation range ap-pears to span more that 15-20 
m (Fig. 3).The tests must be 
onsidered as unreliable as the model ignores the 
orrela-tions.These issues are 
onsidered in Paper II and Paper III.
16
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Figure 3: Image of empiri
al 
orrelation matrix of the autumn 2001 surveyof 
od in the Balti
 in whi
h a total of 8610 �sh were 
aught in 33 hauls.7 In
orporating 
orrelations in the observation modelClearly there is a need to introdu
e 
orrelations in the statisti
al distributionof trawl-survey data. Instead of just 
hoosing an arbitrary distribution we�nd it 
onvenient to seek inspiration in existing point-pro
ess models be-
ause our sampling problem has a natural point-pro
ess interpretation. A�sh population may be thought of as a heterogeneous spatial point pattern
hanging dynami
ally in time. Ea
h point is given an �attribute� in terms ofthe �sh size (Fig. 4). Fish samples taken with a trawl 
an be thought of asa size-dependent random thinning of the point pattern within a re
tangularregion.We restri
t attention to the so-
alled Cox-pro
esses7.1 Log Gaussian Cox-pro
essThe log-Gaussian-
ox pro
ess (LGCP) is a Cox-pro
ess with random log-intensity following a Gaussian pro
ess (Møller et al., 1998). We give a for-mulation suitable for spatio-temporal modeling of the size-
omposition of�sh. Let η(s, x, t) denote a Gaussian random �eld indexed by size, spa
e andtime respe
tively. For any point in time t let Nt be a Poisson-pro
ess withintensity (exp(η(s, x, t)))(x,s)∈R2×R+
. Then for any haul-re
tangle H ⊂ R2and size-
lass C ⊂ R+ the 
onditional distribution of the number of points17
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Figure 4: Illustration of size-dependent 
lustering. Fi
tive positions ofindividual �sh in a point-pro
ess setup where the points are marked withthe individual sizes (only two sizes are 
onsidered for simpli
ity) and nine�
tive haul-re
tangles.in a H × C given η is
Nt(H × C)|η ∼ Pois

(
∫

H

∫

C

eη(s,x,t) ds dx

) (14)This equation spe
i�es the distribution of the number of points within are
tangle for the various size-
lasses (Fig. 4). Size-sele
tivity was previ-ously introdu
ed as the 
onditional probability that a �sh is 
aught given itspresen
e within the haul-re
tangle. Denote by q(s) this probability. Aftera random thinning the observed number of points within the re
tangle is(Møller and Waagepetersen, 2004)
Nobs

t (H × C)|η ∼ Pois

(
∫

H

∫

C

q(s)eη(s,x,t) ds dx

) (15)From a large-s
ale perspe
tive it is reasonable to assume the intensity is ap-proximately 
onstant within the haul-re
tangle leading to the approximation
Nobs

t (H × C)|η ∼ Pois
(

q(s)eη(s,x,t)|H||C|
) (16)for some (x, s) ∈ H × C. This distribution is just a multivariate Poissondistribution with a multivariate log-normal intensity.7.2 LGCP likelihoodLikelihood inferen
e for the model along with the 
omputational issues willbe dis
ussed in the following. 18



Let
η ∼ N(µ,Σθ)

N |η ∼ ⊗n
i=1Pois(ηi)The full negative log-likelihood where both η and N are observed is given by

lfull(θ, µ|η,N) =
n

∑

i=1

eηi −
n

∑

i=1

Niηi −
1

2
log detQθ +

1

2
(η − µ)tQθ(η − µ) + cwhere Qθ = Σ−1

θ is the pre
ision and c = n
2 log(2π) +

∑n
i=1 log Γ(Ni + 1).The marginal likelihood - for unobserved η - is

l(θ, µ|N) = − log

(
∫

Rn

exp(−lfull(θ, µ|η,N)) dη

) (17)The integral is di�
ult to evaluate numeri
ally. In the following we gothrough a standard method - the Lapla
e approximation - for approximat-ing high dimensional integrals based on a Gaussian approximation of the
onditional distribution of η|N .7.3 Lapla
e approximationSeveral authors have good experien
e with the Lapla
e approximation be-
ause its level of a

ura
y is often high 
ompared to the 
omputational 
ost(Rue et al., 2007; Skaug and Fournier, 2006). The Lapla
e approximation hasbe
ome the standard method for �tting GLMMs in R (Bates et al., 2008).In the following a brief des
ription of the Lapla
e approximation is given.With starting point in (17) 
onsider the problem of approximating an inte-gral of the form
− log

∫

exp(−f(θ, η)) dηi.e. the negative log-likelihood of a mixed model with random parameters ηwhere f(θ, η) = lfull(θ|x, η) is the negative log-likelihood of the full modelwhere the random parameters are observed.Let η̂θ be the argument of minimum of f for �xed θ
∀θ f ′η(θ, η̂θ) = 0 (18)A Taylor-expansion gives:

f(θ, η) ≈ f(θ, η̂θ) +
1

2
(η − η̂θ)

tf ′′ηη(θ, η̂θ)(η − η̂θ)and the integral may be approximated by
∫

exp(−f(θ, η)) dη ≈ exp(−f(θ, η̂θ))

∫

exp

(

−
1

2
(η − η̂θ)

tf ′′ηη(θ, η̂θ)(η − η̂θ)

)

dη

= exp(−f(θ, η̂θ))
(2π)

n
2

√

det f ′′ηη(θ, η̂θ)19



where n is the dimension of the random parameter spa
e. Hen
e we havethe negative log marginal likelihood approximated by.
− log

∫

exp(−f(θ, η)) dη ≈ f(θ, η̂θ) −
n

2
log 2π +

1

2
log det f ′′ηη(θ, η̂θ) (19)The gradient 
an be useful for e�
ient optimization of (19). Taking deriva-tive of (18) wrt. θ gives:

f ′′ηθ(θ, η̂θ) + f ′′ηη(θ, η̂θ)
d

dθ
η̂θ = 0 =⇒

d

dθ
η̂θ = −f ′′ηη(θ, η̂θ)

−1f ′′ηθ(θ, η̂θ) (20)De�ne
h(θ, η) = f(θ, η) −

n

2
log 2π +

1

2
log det f ′′ηη(θ, η)Then the desired gradient is given by

d

dθ
h(θ, η̂θ) = h′θ(θ, η̂θ) − h′η(θ, η̂θ)f

′′
ηη(θ, η̂θ)

−1f ′′ηθ(θ, η̂θ) (21)This formula is also stated in Skaug and Fournier (2006).Returning now to the 
ase of the LGCP likelihood the formulas for 
omputingthe Lapla
e approximation and its gradient are:
f ′η(θ, η) = eη −N +Qθ(η − µ)

f ′µ(θ, η) = −Qθ(η − µ)

f ′θi
(θ, η) = −

1

2
tr(Q−1

θ Q̇θ) +
1

2
(η − µ)tQ̇θ(η − µ)

f ′′ηη(θ, η) = diag(eη) +QθThis 2nd order derivative is everywhere positive de�nite whi
h implies stri
tly
onvexity. So the inner likelihood has a unique minimum.
f ′′ηµ(θ, η) = −Qθ

f ′′ηθv
(θ, η) = Q̇θ(η − µ)The h-fun
tion:

h(θ, η) = f(θ, η) +
1

2
log det (diag(eη) +Qθ)has derivatives:

h′η(θ, η) = f ′η(θ, η) +
1

2
[eηi(f ′′ηη(θ, η)

−1)ii]

h′µ(θ, η) = f ′µ(θ, η)20



h′θi
(θ, η) = f ′θ(θ, η) + [

1

2
tr(Q̇θ (diag(eη) +Qθ)

−1)]These expressions are what we need to 
ompute (21).Some 
omputational remarks are worth noti
ing when dealing with the aboveformulas in pra
ti
e. The 
omputational 
omplexity 
an be redu
ed a lotif Qθ is assumed to be sparse. For instan
e 
onsider the 
omputational
omplexity of tr(Q̇θ (diag(eη) +Qθ)
−1). The tra
e of matrix produ
t is thesum of the pointwise produ
t of the matri
es so the inverse (diag(eη) +Qθ)

−1is only needed on the non-zero pattern of Q̇θ (whi
h is smaller than or equalto the pattern of Qθ). An existing algorithm known as the inverse-subsetalgorithm is designed to handle this problem (Rue, 2005).To perform estimation of the �xed e�e
ts in pra
ti
e we have good experien
ewith the following approa
h:
• Handle the outer non-linear optimization problem of the �xed e�e
ts

(θ, µ) by the BFGS-method.
• Perform the inner 
onvex optimization problem with an ordinary New-ton method.The Newton method is of 
ourse only re
ommended be
ause the se
ond-orderderivative Qθ + diag(eη) of the inner likelihood wrt. η is assumed sparse.7.4 An augmented systemThe spe
ial 
ase of a linear mean-value stru
ture µ = Aβ for a full rankdesign matrix A is sometimes referred to as a generalized linear geostatisti
almodel (GLGMs) (Diggle and Ribeiro, 2006). The LGCP-likelihood is

lfull(θ, β|η, x) =
n

∑

i=1

eηi −
n

∑

i=1

xiηi −
1

2
log detQθ

+
1

2
(η −Aβ)tQθ(η −Aβ) + cwith marginal likelihood

l(θ, β|x) = − log

∫

e−l(θ,β|η,x) dη (22)We shall now see that for this spe
ial linear model the �xed e�e
t β 
an bemoved from the outer optimization to the inner optimization.The exa
t s
ore of (22) wrt β is
∇βl(β, θ) = −AtQθ(E(β,θ)[η|x] −Aβ) (23)The Gaussian posterior approximation suggests repla
ing Eβ,θ[η|x] by η̂(x).Thus (η̂, β̂) 
an be found simultaneously by solving

eη − x+Qθ(η −Aβ) = 0 (24)
AtQθ(η −Aβ) = 0 (25)21



through the 
orresponding Newton iterations
(

ηk+1

βk+1

)

=

(

ηk

βk

)

−

(

Qθ + diag(eηk ) −QθA

−AtQθ AtQθA

)−1 (

eηk − x+Qθ(ηk −Aβ)
−AtQθ(ηk −Aβ)

)

(26)This approa
h has the interpretation of treating the augmented ve
tor (η, β)as a random e�e
t with (improper) pre
ision
(

Qθ −QθA

−AtQθ AtQθA

) (27)
orresponding to the hierar
hi
al model where β is drawn from a di�use priorand η|β ∼ N(Aβ,Q−1
θ ).Even though (27) is only positive semi-de�nite it is easy to show (using that

A has full rank) that the matrix
(

Qθ + diag(eη) −QθA

−AtQθ AtQθA

) (28)is positive de�nite for any η. This means that in pra
ti
e the Newton itera-tions (26) de�nes a stable optimization problem.Another important remark is that (28) inherits the sparseness of Qθ and
A allowing the Newton iterations (26) to be 
arried out e�
iently for largeproblems.But is it really ne
essary to 
onsider an augmented system? - why not justsubstitute the solution of (25) wrt. β into (24) and then solving the redu
edsystem whi
h only involves η? The answer to this question is that the re-du
ed system is no longer sparse and thus 
onsidering the augmented systemreally is a good idea for 
omputational reasons.To summarize the above pro
edure - referred to as the inner optimizationproblem - we have found the posterior mode η̂θ and ML-estimate β̂θ jointlyfor any given θ. By inserting η̂θ and β̂θ in the Lapla
e approximation (19)of (22) we thus obtain an approximate likelihood pro�le wrt. θ

lprof(θ|x) ≈ lfull(θ, β̂θ|η̂θ, x) +
1

2
log det

(

Qθ + diag(λ̂θ(x))
) (29)Optimization of this pro�le wrt. θ - the outer optimization - is suitablefor the BFGS algorithm (Flet
her, 1970) be
ause the obje
tive fun
tion isnon-linear in θ and be
ause θ usually is a relatively short ve
tor. Standardimplementations of the BFGS (e.g. �optim� (R Development Core Team,2008)) �nds the Hessian ∇2lprof (θ|x) as a by-produ
t of the optimization.This Hessian is the approximate pre
ision of θ̂. However, we a
tually needthe joint pre
ision of the entire �xed e�e
t ve
tor (β̂, θ̂). Denote by

(

Hββ

Hθβ Hθθ

) (30)22



this matrix. The blo
k-matrix Hθθ 
an be found by noting that the Hessianof the pro�le likelihood de�nes the marginal pre
ision of (30) (Pawitan, 2001)
Hprof = Hθθ −HθβH

−1
ββH

t
θβso that the full pre
ision (30) be
omes

(

Hββ

Hθβ Hprof +HθβH
−1
ββH

t
θβ

) (31)The �rst blo
k-
olumn is found dire
tly from (23) by di�erentiation wrt. βand θ respe
tively.
Hββ = ∇2

βl(β, θ) (32)
Hθβ = ∇θ∇βl(β, θ) (33)We prefer a further rewriting of (31). Re
all that the de�nition of β̂θ is givenimpli
itly through the equation (23) with the 
onditional mean repla
ed bythe posterior mode:
−AtQθ(η̂(β,θ) −Aβ̂θ) = 0 (34)A 
hain-rule argument similar to (20) then gives the identity

∇θβ̂θ = −H−1
ββHβθwhi
h suggests rewriting (31) as

(

Hββ

−GtHββ Hprof +GtHββG

) (35)where G := ∇θβ̂θ. The expressions required to 
ompute (35) are given by
Hββ = AtQA−AtQ(Q+ diag(eη̂))−1QAand - using the same 
hain-rule argument on (η̂, β̂)

∇θ

(

η̂

β̂

)

= −

(

Qθ +Dη̂ −QθA

−AtQθ AtQθA

)−1 (

Q̇θ(η̂ −Aβ̂)

−AtQ̇θ(η̂ −Aβ̂)

) (36)Lets illustrate the usefulness of formula (35) in pra
ti
e. For the 
ases 
on-sidered in this thesis the dimension of β ranges from 60 to 500 while θ hasdimension 6. For these appli
ations the only time-
onsuming part of 
om-puting (35) is to 
al
ulate the small 6 by 6 matrix Hprof . The rest of the
al
ulations takes less than the time of a single likelihood evaluation.Besides allowing for 
onstru
tion of 
on�den
e regions around (β̂, θ̂) formula23



(35) 
an be used to obtain a quadrati
 approximation of the LGCP-likelihood(22) in a neighborhood around (β̂, θ̂):
l(θ, β|x) − l(θ̂, β̂|x) ≈

1

2

(

β − β̂

θ − θ̂

)t (

Hββ −HββG

−GtHββ Hprof +GtHββG

)(

β − β̂

θ − θ̂

)(37)Denote by q(β, θ) the right hand side of this display. Relying on standardasymptoti
 theory one would expe
t the approximation being a

urate withina 
on�den
e-region of the form
C = {(β, θ) : 2q(β, θ) < F−1

χ2(n)
(95%)}where n is the dimension of the ve
tor (β, θ). Thus the quadrati
 approx-imation 
an be used to �t and test sub-models independent of numeri
alintegration required by the true LGCP-likelihood (17).Consider for instan
e a non-linear submodel of the form β = ψ(α). Thenthe ML-estimate is approximately

(α̂, θ̂) ≈ arg min
(α,θ)

q(ψ(α), θ)This non-linear optimization is easier 
arried out in pra
ti
e through the
β-pro�le of (37):

α̂ = arg min
α
qprof(ψ(α))where

qprof(β) = inf
θ
q(β, θ) = (β−β̂)t(Hββ−(HββG(Hprof+GtHββG)GtHββ))(β−β̂)whi
h is obtained from the formula of the marginal pre
ision.We will 
onsider an appli
ation of this te
hnique in Paper III (page 57).7.5 Goodness of �tConsider a realization from the LGCP given by an observation x and hiddenlog-intensity η. If we knew the un-observed random variables η we wouldbe able to validate the model in two steps: (1) Che
k that the distributionof η is N(µ,Σ). (2) Che
k that the 
onditional distribution of x given η is

Pois(eη).As we do not observe η in pra
ti
e it is natural to base goodness of �tassessment on the predi
tions η̂(x).The Gaussian posterior approximation is
η|x ∼ N(η̂θ,β(x),

(

Qθ + diag(λ̂θ(x))
)−1

) (38)24



where η̂θ,β(x) = arg minη l(θ, β|η, x) and λ̂θ(x) = exp(η̂(x)). If approxima-tion (38) is true then the varian
e of η̂(x) must be
V [η̂(x)] = Q−1

θ − E
[

(Qθ + diag(λ̂θ(x)))
−1

]By �removing the expe
tation� we thus obtain an unbiased estimate of V [η̂(x)]by Q−1
θ − (Qθ + diag(λ̂θ(x)))

−1 and an approximate standardized residual
an be 
onstru
ted by
r1 =

(

Q−1
θ − (Qθ + diag(λ̂θ(x)))

−1
)− 1

2

(η̂(x) − µ) (39)We 
an avoid removing the expe
tation by drawing an auxiliary variable
u|x ∼ N(0, (Qθ + diag(λ̂θ(x)))

−1). Then the (un-
onditional) varian
e of
η̂(x) + u is

V [η̂(x) + u] = Q−1
θsuggesting the standardized residual

r2 = Q
1

2

θ (η̂(x) + u− µ) (40)Personal simulation studies have shown that rt
2r2 is 
loser to the theoreti
al

χ2-distribution than rt
1r1. Note that η̂(x)+u−µ is a
tually an approximatesample from the distribution of η|x and therefore assessing the goodness of�t based on r2 follows the line of Waagepetersen (2006). Paper II (page 48)provides a simulation experiment of the distribution of rt

2r2 on a test 
ase ofdimension 6000. The χ2 approximation appears to su�
e for this example.If the χ2 approximation fails an obvious possibility is to simulate the distri-bution of r1 or r2 dire
tly. This is a
tually possible even in high dimensionbe
ause r2 
an be 
al
ulated using only sparse matrix operations if Q issparse (Paper II (page 48)).7.6 PowerDoes the previously introdu
ed standardized residuals have su�
ient powerto be used for goodness of �t assessment for the LGCP? In this se
tionwe 
onsider a small simulation experiment of the spatial LGCP with anexponential 
orrelation stru
ture. The parti
ular 
ase study is based on themodel applied in Paper IV (page 67) introdu
ed later in this thesis. Fivedi�erent goodness of �t tests are 
ompared through power simulations.The test 
ase is spe
i�ed on a regular n×n-latti
e In = {1, ..., n}2 equippedwith the eu
lidean distan
e. The 
ovarian
e of the hidden random �eld
η is 
hosen as Σ = (ae−b|i−j|)i∈In,j∈In and a 
onstant mean-log-intensity
µ is imposed at ea
h lo
ation. The observation ve
tor x thus have mean
Exi = eµ+ 1

2
a and we refer to log(Exi) = µ + 1

2a as the inter
ept. The25



parameters of the model are θ = (µ + 1
2a, log a, log b). We 
hoose �true�parameters as

θ0 = (3, 1,−1)on a regular 20×20-latti
e. These values are inspired by a typi
al North-Sea
ase 
onsisting of samples from ≈ 400 lo
ations with an estimated 
hara
-teristi
 distan
e b−1 of ≈ 10 − 20% of the diameter of the area (see PaperIV ).For ea
h type of residual-ve
tor r1 (39) and r2 (40) we 
onsider a χ2-statisti

rtr as well as a Kolmogorov-Smirnov statisti
 KS(r) given by the uniformdistan
e between the empiri
al distribution fun
tion of r and the standardnormal. We also 
onsider using the Lapla
e approximation of the LGCP-density (22) to measure goodness of �t. The goodness of �t tests are sum-marized by1. Chi-square of residuals rt

1r1.2. Chi-square of simulation based residuals rt
2r2.3. Kolmogorov-Smirnov of residuals KS(r1).4. Kolmogorov-Smirnov of simulation based residuals KS(r2).5. Lapla
e approximation of negative log-likelihood lLGCP

x (θ0).Lets now des
ribe how to 
al
ulate power fun
tions of the goodness of �tstatisti
s. Note �rst that ea
h statisti
 S is a fun
tion of the data x and theparameter θ0. Moreover the simulation based statisti
s depends on randomdraws of auxiliary variables u. This means that the 
riti
al region of a givenstatisti
 in the most general setting has the form
K(θ0) = {(x, u) : S(x, u, θ0) > c}where c is the 1−α-quantile of the Pθ0

-distribution of S(x, u, θ0) in the 
aseof a one-sided test on level α. Re
all that the power fun
tion is given by
γ(θ) = Pθ(K(θ0)). Pra
ti
al 
omputation of γ(θ) pro
eeds as follows:1. Compute c as the empiri
al quantile of S(x, u, θ0) by simulating 100draws of data and auxiliary variables (x, u) from the null-model PLGCP

θ0
.2. For ea
h alternative θ simulate 100 draws of (x, u) from PLGCP

θ and
al
ulate γ(θ) as the empiri
al probability that S(x, u, θ0) > c.In this study we only 
onsider alternatives within the model stru
ture thoughthe last step 
ould of 
ourse be performed for any alternative. For ea
h ofthe three parameters alternative models are 
onsidered by varying the givenparameter around its true value keeping the remaining parameters �xed attheir true values. Both one-sided and two-sided tests are 
onsidered making26
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Figure 5: Simulation of power fun
tion γ(θ) for ea
h of �ve goodness of�t statisti
s for the spatial LGCP on a 20 × 20-latti
e with an exponential
ovarian
e stru
ture.
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a total of 6 panels (Fig. 5).The �rst thing to observe is that three out of the �ve statisti
s does not workin the one-sided version namely the χ2-statisti
s and the likelihood-statisti
.Not surprisingly, the χ2-statisti
s are unable to reveal under-dispersion withonly large values being 
riti
al. This suggests using two-sided versions of thethree statisti
s. In their two-sided versions the χ2-statisti
s are superior tothe other statisti
s when it 
omes to revealing deviations of the 
ovarian
e-parameters log a and log b. However, these statisti
s appears to have verylittle power as fun
tion of the inter
ept parameter - espe
ially the simulationbased χ2-statisti
.The two-sided likelihood-statisti
 appears to have most power among all �vestatisti
s as fun
tion of the inter
ept-parameter but seems rather useless forrevealing deviations of the 
ovarian
e parameters.Finally the Kolmogorov-Smirnov statisti
s appears to work very generallyboth one-sided and two-sided, however the performan
e is not impressive.For instan
e a 
hange in log b of ±1
2 - 
orresponding to a 65%-
hange in the
orrelation range - is revealed by the Kolmogorov-Smirnov statisti
s withless than 50% probability. For 
omparison the two-sided χ2-statisti
 revealsthis 
hange with a probability 
lose to one.8 LGCP appli
ations8.1 Spa
e-time modelling of length-frequen
y dataComputational 
omplexity really is an issue when it 
omes to applying theLGCP on length-based trawl-survey data. For instan
e a typi
al survey of
od in the North Sea 
onsists of 400 hauls and 60 length-
lasses of interestmaking a total of 24000 random e�e
ts. Matri
es of this dimension 
annotbe handled in pra
ti
e without imposing some spe
ial stru
ture.As previously mentioned the assumption of a sparse pre
ision matrix redu
esthe 
omputational 
ost of the Lapla
e approximation a lot. Rue and Held(2005) establishes the link between sparse pre
ision matri
es and GaussianMarkov Random Fields (GMRFs). Can we formulate su
h GMRF-models to
apture relevant heterogeneity of length-based trawl survey data and still ob-taining su�
iently sparseness to allow pra
ti
al appli
ation of the method?These are the motivating questions of Paper II (page 48).With fo
us on a large North-Sea Cod survey we start by formulating a 
or-relation stru
ture inspired by the following 
onsiderations1. Some random parts of the North Sea are more populated than others(large s
ale spatial 
orrelation)2. The high and low populated areas may 
hange dynami
ally - evenwithin a survey (large s
ale time 
orrelation).28



3. Fish swim in small bat
hes with a spatial extension possibly smallerthan the dimensions of the trawl and bat
hes have a narrow size 
om-position (small s
ale size 
orrelation).4. The trawl is size-sele
tive (size-dependent random thinning).Assuming separability of �size� and �spa
e-time� we propose the 
orrelationstru
ture
ρ(∆s, ‖∆x‖,∆t) = ρsize(∆s)ρspattemp(‖∆x‖,∆t) (41)

ρspattemp(‖∆x‖,∆t) = (1 − ν)e−b1‖∆x‖e−b2∆t + ν1(‖∆x‖=0,∆t=0) (42)of the hidden log-intensity η(s, x, t). Here ‖∆x‖ and ∆t denotes the spa
eand time distan
e between two samples and ∆s denotes the separation be-tween two size-
lasses from ea
h of the samples.We now turn to the goal of a
hieving a sparse formulation of the pre
ision.Sin
e all size-
lasses are represented in ea
h of the samples the 
ovarian
etakes the form of a Krone
ker produ
t.
Σ = Σsize ⊗ ΣspattempThe Krone
ker produ
t is inverted by inverting ea
h fa
tors thus the pre
isionmatrix be
omes
Q = Qsize ⊗QspattempIf one (or both) of the fa
tors have a high proportion of zeros then this willalso be the 
ase for Q. A simple way to a
hieve sparseness of Qsize is to
hoose Qsize as a band-matrix. For our purpose the pre
ision of a stationaryAR(2)-pro
ess (xt = φ1xt−1 + φ2xt−2 + εt, εt ∼ N(0, κ−1)) appears to besu�
iently �exible.
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This pre
ision is de�ned for (φ1, φ2)within the triangular region {(φ1, φ2) : φ2 > −1, φ2 < 1 + φ1, φ2 < 1 −
φ1}. Further sparseness of Q 
ould be obtained by repla
ing Qspattemp bya 3-dimensional GMRF. This is however somewhat involved be
ause usual
onstru
tions of stationary GMRFs are made on regular domains su
h as thetorus or the latti
e (Rue and Held, 2005). The highly irregular lo
ations ofour spa
e-time 
oordinates would have to be embedded on a regular 3D-gride.g. by assigning ea
h 
oordinate to the nearest grid point (see Rue andHeld (2005) page 200). This introdu
es a new issue of how �ne the regular29



grid should be. A too rough grid 
ould potentially introdu
e bias. On theother hand a very �ne grid introdu
es a large number of auxiliary variables(
orresponding to the ηs for whi
h no observation is available) making thesparse formulation less bene�
ial.8.2 Combining LGCP with population modelSe
tion 5.1 provided a me
hanisti
 model of a size-stru
tured populationgoverned by growth, mortality and re
ruitment. The model was linked totrawl-survey observations through the negative binomial distribution (PaperI ). The goal of Paper III (page 57) is to repla
e the negative binomial distri-bution with the LGCP. How does this 
hange a�e
t the information aboutthe population model?Considering the same data as Paper I we start by 
onsidering the LGCPwith a mean value stru
ture given by (9) and a 
ovarian
e stru
ture givenby (41). This type of model 
an be �tted using the the methods of se
tion7.4. Our estimation approa
h 
onsists of three steps1. Find approximate ML-estimates (β̂, θ̂) of the likelihood (22) using themethod des
ribed in se
tion 7.4.2. Constru
t a se
ond-order expansion q(β, θ) of − logL(β, θ) around
(β̂, θ̂) using (37).3. Fit the size-stru
tured sub-model (13) using the quadrati
 approxima-tion by writing the sub-model on the form β = ψ(α) and optimizing
q(ψ(α), θ) wrt. (α, θ) and obtain the estimate (α̂, θ̂0).Step 3 repla
es the LGCP-likelihood with a quadrati
 approximation around

(β̂, θ̂) and has the 
omputational bene�t that further model �tting and test-ing 
an be 
arried out without the high-dimensional integrals appearing inthe true likelihood fun
tion.The overall 
on
lusion is that temporal 
hanges of the level of the size-spe
trum be
omes less signi�
ant. In parti
ular the 
at
hability 
an betested 
onstant whi
h is a major di�eren
e 
ompared to Paper I.8.3 Applying LGCP to predi
t abundan
e surfa
eOur �nal appli
ation of the LGCP is to predi
t the abundundan
e surfa
eof �sh. Most predi
tion methods are based on underlying - more or lesstransparent assumptions - about the statisti
al properties of the data un-der 
onsideration. A 
orre
t spe
i�
ation of the statisti
al model used forpredi
tions is 
ru
ial in order to obtain meaningful predi
tions with realisti
un
ertainty-estimates. Therefore it seems mandatory to statisti
ally validatethe underlying statisti
al assumptions before applying a given predi
tion-method. 30



This is why the LGCP provides an interesting basis for predi
tion of thelog-abundan
e surfa
e of �sh. As a genuine statisti
al model it allows forvalidation. Approximate ML-inferen
e 
an be 
arried out using the previ-ously des
ribed Lapla
e method. If a given datset passes the goodness of �tvalidation it makes sense to further apply the statisti
al model for predi
-tion/interpolation.Paper IV (page 67) is an appli
ation of this general approa
h. Trawl sur-vey data of North Sea 
od 1983-2004 are 
onsidered. The data 
onstitutes21 surveys with three age-groups under 
onsideration. A stationary spatialGaussian random �eld η is applied to des
ribe the hidden log-abundan
esurfa
e of �sh separately for ea
h age-group and survey. The random �eld isde�ned by a 
onstant mean µ and a 
ovarian
e model given as an exponentialstru
ture with a nugget e�e
t:
γ(∆x) = a exp(−b‖∆x‖) + d1(∆x=0)This model thus have four parameters θ = (a, b, d, µ).The �rst important 
on
lusion of Paper IV is that the LGCP with the pro-posed 
ovarian
e stru
ture adequately des
ribes the spatial heterogeneity ofthe data as the goodness of �t tests based on the standardized residuals (40)are a

epted for all surveys.Assuming independen
e between surveys it is further 
on
luded that for any�xed age group the parameters of the 
ovarian
e (a, b, d) does not 
hange sig-ni�
antly during the entire period. This is remarkable be
ause it means thatsome basi
 properties of the lo
al behaviour of the log-abundan
e surfa
e areinvariant.

31



BibliographyBaddeley, A. and Turner, R. (2005). Spatstat: an R pa
kage for analyzingspatial point patterns. Journal of Statisti
al Software, 12(6):1�42. ISSN1548-7660.Bagge, O., Thurow, F., Ste�ensen, E., and Bay, J. (1994). The Balti
 
od.Dana, 10:1�28.Bates, D. (2004). Sparse Matrix Representations of Linear Mixed Models.J. of Computational and Graphi
al Statisti
s.Bates, D., Mae
hler, M., and Dai, B. (2008). lme4: Linear mixed-e�e
tsmodels using S4 
lasses. R pa
kage version 0.999375-26.Bertalan�y, L. (1938). A quantitative theory of organi
 growth (Inquiries ongrowth laws. II). Human Biology, 10(2):181�213.Bhatta
harya, C. G. (1967). A simple method of resolution of a distributioninto Gaussian 
omponents. Biometri
s, 23:115�135.Diggle, P. J. and Ribeiro, P. J. (2006). Model-based Geostatisti
s. Springer.ISBN 0-387-32907-2.Flet
her, R. (1970). A new approa
h to variable metri
 algorithms. TheComputer Journal, 13(3):317�322.Fournier, D., Hampton, J., and Sibert, J. (1998). MULTIFAN-CL: a lengthbased, age-stru
tured model for �sheries sto
k assessment, with appli
a-tion to south pa
i�
 alba
ore, thunnus alalunga. Can. J. Fish. Aquat. S
i.,55:2105�2116.Frøysa, K., Bogstad, B., and Skagen, D. (2002). Fleksibest - an age-lengthstru
tured �sh sto
k assessment model. Fish. Res., 55:87�101.Fu, C. and Quinn, T. (2000). Estimability of natural mortality and otherpopulation parameters in a length-based model: Pandalus borealis inka
hemak bay, alaska. Can. J. Fish. Aquat. S
i., 57:2420�2432.32



Griewank, A. (2000). Evaluating Derivatives: Prin
iples and Te
hniques ofAlgorithmi
 Di�erentiation. So
iety for Industrial Mathemati
s.Hrafnkelsson, B. and Stefansson, G. (2004). A model for 
ategori
al lengthdata from ground�sh surveys. Canadian Journal of Fisheries and Aquati
S
ien
es, 61(7):1135�1142.ICES. (2005). Report of the balti
 �sheries assessment working group. CM2005/ACFM:19.Ma
donald, P. and Pit
her, T. (1979). Age-groups from size-frequen
y data:a versatile and e�
ient method of analyzing distribution mixtures. Journalof the Fisheries Resear
h Board of Canada, 36:987�1001.Metz, J. and Diekmann, O. (1986). The dynami
s of physiologi
ally stru
-tured populations. Le
ture notes in biomathemati
s, 68.Møller, J., Syversveen, A., and Waagepetersen, R. (1998). Log Gaussian Coxpro
esses. S
and. J. Stat., 25:451�482.Møller, J. andWaagepetersen, R. (2004). Statisti
al Inferen
e and Simulationfor Spatial Point Pro
esses. Chapman & Hall/CRC.Pawitan, Y. (2001). In All Likelihood: Statisti
al Modelling and Inferen
eUsing Likelihood. Oxford University Press.Pennington, M. (1996). Estimating the mean and varian
e from highlyskewed marine data. Fishery Bulletin, 94(3):498�505.R Development Core Team (2008). R: A Language and Environment forStatisti
al Computing. R Foundation for Statisti
al Computing, Vienna,Austria. ISBN 3-900051-07-0.Rue, H. (2005). Marginal varian
es for Gaussian Markov random �elds.NTNU Statisti
s Report.Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theoryand Appli
ations, volume 104 of Monographs on Statisti
s and AppliedProbability. Chapman & Hall, London.Rue, H., Martino, S., and Chopin, N. (2007). Approximate Bayesian infer-en
e for latent Gaussian models using integrated nested Lapla
e approxi-mations. Preprint Statisti
s.Rue, H., Steinsland, I., and Erland, S. (2004). Approximating hidden Gaus-sian Markov random �elds. Journal of the Royal Statisti
al So
iety SeriesB(Statisti
al Methodology), 66(4):877�892.33



S
hnute, J. and Fournier, D. (1980). A new approa
h to length frequen
yanalysis: growth stru
ture. Can. J. Fish. Aquat. S
i., 37:1337�1351.Shepherd, J. G. (1999). Extended survivors analysis: An improved methodfor the analysis af 
at
h-at-age data and abundan
e indi
es. ICES Journalof Marine S
ien
es, 56:584�591.Skaug, H. and Fournier, D. (2006). Automati
 approximation of the marginallikelihood in non-Gaussian hierar
hi
al models. Computational Statisti
sand Data Analysis, 51(2):699�709.Smith, B., Botsford, L., and Wing, S. (1998). Estimation of growth and mor-tality parameters from size frequen
y distributions la
king age patterns:the red sea ur
hin (Stronggylo
entrotus fran
is
anus) as an example. Can.J. Fish. Aquat. S
i., 55:1236�1247.Sullivan, P. (1992). A Kalman Filter Approa
h to Cat
h-at-length Analysis.Biometri
s, 48:237�257.von Foerster, H. (1959). The kineti
s of 
ellular proliferation., 
hapter Someremarks on 
hanging populations., pages 382�407. Grune and Stratton,New York, USA.Waagepetersen, R. (2006). A Simulation-based Goodness-of-�t Test for Ran-dom E�e
ts in Generalized Linear Mixed Models. S
andinavian Journalof Statisti
s, 33(4):721�731.

34



Paper I

35



2531

How to validate a length-based model of

single-species fish stock dynamics

Kasper Kristensen, Peter Lewy, and Jan E. Beyer

Abstract: This paper validates a new length-based model of the dynamics of fish stocks or crustaceans by hierarchically

testing statistical hypotheses and thereby investigating model complexity. The approach is based entirely on scientific

survey data and on determination of the statistical distributions of the number of fish caught per haul in each length class.

In our example, the negative binomial distribution is statistically accepted and linked to the population level through the

new length-based model. The model is derived from the characteristics of continuous recruitment, individually based

growth, and continuous, length-dependent mortality rates. Continuous recruitment with annually varying recruitment peaks

and individually based growth was crucial for obtaining a model that could be statistically accepted. Natural mortality was

estimated as well by the model. The model was applied to survey data for Atlantic cod (Gadus morhua) in the Baltic. Its

simple generic nature, as well as the validation procedure, is useful in studying and understanding life history and stock

dynamics.

Résumé : Notre travail valide un nouveau modèle de la dynamique des stocks de poissons basé sur les longueurs en

testant des hypothèses statistiques de manière hiérarchique ; il examine ainsi la complexité du modèle. La méthode se base

entièrement sur des données d’inventaire scientifique et sur la détermination des distributions statistiques des nombres

de poissons capturés par trait de récolte dans chacune des classes de longueur. Nous acceptons dans notre exemple une

distribution binômiale n égative et nous la relions au niveau de la population à l’aide du nouveau modèle basé sur les

longueurs. Le modèle est dérivé des caractéristiques du recrutement continu, de la croissance individuelle et des taux

de mortalité continus en fonction de la longueur. Le recrutement continu avec des pics de recrutement qui varient d’une

année à l’autre et la croissance basée sur les individus sont de grande importance pour l’élaboration d’un modèle qui soit

statistiquement acceptable. Le modèle estime aussi la mortalité naturelle. Nous avons appliqu é le modèle à des données

d’inventaire de la morue franche (Gadus morhua) de la Baltique. La nature générique simple et la procédure de validation

du modèle le rendent utile pour l’étude et la compréhension des cycles biologiques et de la dynamique des stocks.

[Traduit par la Rédaction]

Introduction

Validation is a vital part of the modelling process, since it
is here the model is confronted with reality. How to make this
confrontation in an objective way has often been neglected in
studies of fish stock dynamics. In this paper, we present a statis-
tical validation of a new length-based model of the dynamics of
fish or crustacean stocks.We restrict attention to a single-species
approach that is based entirely on scientific survey data.

The motivation for the study is to increase our ability to make
reliable predictions of fish stock dynamics. As a prerequisite,
the objective of our modelling is to understand the essence of
the information on survey catchability and the vital rates of
growth, mortality, and recruitment that is contained in data by
validating models of differing complexity. If we can test for
model complexity and obtain estimates of vital parameters with
confidence limits, then our approach has a promising potential.

Received 19 December 2005. Accepted 27 June 2006. Published
on the NRC Research Press Web site at http://cjfas.nrc.ca/ on
27 October 2006.
J19066

K. Kristensen,1 P. Lewy, and J.E. Beyer. Danish Institute for
Fisheries Research, Charlottenlund Castle, DK-2920 Charlotten-
lund, Denmark.

1 Corresponding author (e-mail: kkr@dfu.min.dk).

The validation of model complexity is done by testing statis-
tical, hierarchical hypotheses. The basic hypothesis to be tested
concerns the statistical distribution of the observed catch per
unit of effort (CPUE) by length. Can a Poisson model for ran-
dom encounters adequately describe the observations, or must
we use an overdispersed distribution, such as the negative bi-
nomial (NB)? Choosing an adequate distribution is crucial be-
cause an inadequate distribution may seriously affect test results
and parameter estimates. These problems will be pinpointed.
Results of testing have not been reported in previous studies,
where the stochastic variations in CPUE by length have been de-
scribed by the normal (Sullivan 1992), the log-normal (Frøysa
et al. 2002; Fu and Quinn 2000), or the conditional multino-
mial (Frøysa et al. 2002; Schnute and Fournier 1980; Smith et
al. 1998) distributions. When a statistical distribution has been
accepted, the next step in the hierarchical testing of hypotheses
is to test if a comprehensive stock dynamics model can be ac-
cepted. If the comprehensive model is accepted, more simple
submodels can be tested. To our knowledge, nobody has statis-
tically tested model complexity of the stock dynamics model
used.

Available models of length-based stock dynamics applying
statistical methods are usually age–length structured. Frøysa
et al. (2002) and Schnute and Fournier (1980) combined stan-
dard, age-structured stock dynamics models with growth mod-
els and applied the derived models to length-based catch ob-

Can. J. Fish. Aquat. Sci. 63: 2531–2542 (2006) doi: 10.1139/F06-135 © 2006 NRC Canada36
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servations, while Sullivan (1992) applied a purely length-based
state–space model. Sullivan (1992) and Frøysa et al. (2002)
approximated the discrete probabilities that fish either do not
grow or grow into the neighbor length intervals for each length
group. Other authors directly estimated the parameters of the
von Bertalanffy growth equation (VBGE) assuming that mean
length-at-age follows a specified distribution around a VBGE
curve (Schnute and Fournier 1980; Fournier et al. 1998; Fu and
Quinn 2000). These age–length structured approaches include
both recruitment and temporal dynamics and are discrete in
length and time. However, recruitment is assumed to take place
instantaneously the same time each year, disregarding the fact
that recruitment generally occurs continuously over time with
an annually varying peak. Furthermore, the discretization im-
plies some limitation in model assumptions. For instance, Sul-
livan (1992) and Frøysa et al. (2002) assumed that the probabil-
ities of growing into neighboring length intervals were constant
over time. Even if fish growth remains unchanged, this assump-
tion is violated if the length-specific mortality varies over time.
Smith et al. (1998) avoided the problems of discretization by
using a continuous, statistically based spectrum model with in-
dividual variability in growth and length-dependent mortality.
Their approach, however, assumed the stock to be in steady
state and was therefore unable to consider temporal changes in
mortality and recruitment.

There are two reasons why we developed a new approach to
modelling the length-based fish stock dynamics. First, to pro-
duce a generic model platform we want to avoid possible bias of
discretization (Xiao 2005) by formulating a time- and length-
continuous model. Second, we want to include continuous re-
cruitment, individual-based growth, and temporal changes of
survey catchability because we want to test the importance
of these processes. Such requirements are conveniently dealt
within a time- and size-continuous approach (i.e., a size-
spectrum model).

In the present paper, model complexity is tested by the like-
lihood ratio test. Regarding the continuous recruitment model,
the timing of the recruitment peak and its variation is allowed
to change by year and is estimated by the model. Individual
growth is modelled using the VBGE assuming that each in-
dividual has its own von Bertalanffy asymptotic size (L∞).
Length-structured models for survey catchability and fishing
and particularly natural mortality are also included. The es-
timability of the parameters is examined by Monte Carlo sim-
ulation. Only data from scientific surveys are applied, while
fishery data are not included in the analysis. One reason for
this is that testing whether a specified distribution adequately
describes data requires that several independent observations
are available following the same distribution in question. Such
observations are only provided from surveys conducted within
a short time range and selecting individual hauls randomly in an
area. The use of survey data is further relevant when the quality
of catch data is poor or when such data are not available. Finally,
only length-based data are used, which is especially relevant
when the age determination is uncertain. The present length-
based model is applied to research survey data for Atlantic cod
(Gadus morhua) in the eastern Baltic for which both problems
apply (Reeves 2003). Survey-based but age-structured meth-
ods have also been considered by Cook (1997) and Beare et al.
(2005).

Modelling the number density of a
population

In the present model, the life history of an individual is deter-
mined by growth and mortality. Each individual is assumed to
follow its own growth pattern, while the mortality depends on
the size of the individual and the time. Recruitment is assumed
to take place continuously in time. However, first we derive the
number density in case of discrete recruitment. (Refer to the
List of symbols for an explanation of all symbols used.)

Let R0 denote a number of individuals recruited at the same
time t0 with the same size L0. The fish growth is modelled using
theVBGE.All individuals are assumed to have the same growth
parameter k, while L∞ varies individually following a common
distribution with density u on (L0, ∞). For an individual fish
with a given L∞, the length at time t is

L(t, L∞) = L(t, L∞|k, t0, L0)(1)

= L∞ − (L∞ − L0) exp[−k(t − t0)]

At time t the individuals that have size less than x are exactly
the ones with an L∞ belonging to the set

(2) {L∞ : L(t, L∞) ≤ x} = [L0, G(x)]

where

(3) G(x) = G(x|k, t0, L0) =
x − L0 exp[−k(t − t0)]

1 − exp[−k(t − t0)]

Let z(x, t) denote the size- and time-dependent total mortality.
Then the number of survivors with size contained in the interval
(L0, x) at time t is given by

R0

∫ G(x)

L0

exp

{

−

∫ t

t0

z[L(s, L∞), s] ds

}

u(L∞) dL∞

By differentiation with respect to x of this expression, we obtain
the number density n based on a group of individuals recruited
at the same time:

n(x, t) = R0 exp

(

−

∫ t

t0

z{L[s, G(x)], s} ds

)

× u[G(x)]G′(x)

It should be kept in mind that both L and G depend on k, t0, and
L0. To find the n based on a continuously recruited population,
we simply add the corresponding number densities. Let r(t)

denote the recruitment rate. Then n at time t is

(4) n(x, t) =

∫ t

−∞

r(t0) exp

(

−

∫ t

t0

z{Lt0 [s, Gt0(x)], s} ds

)

× u[Gt0(x)]G′
t0
(x) dt0

It may be noted that eq. 4 alternatively could have been derived
directly from solutions n(x, t, L∞) to the size-structured von
Foerster equation (von Foerster 1959) for a given value of L∞

and then mixing all these solutions with respect to the proba-
bility density u(L∞). We shall refer to eq. 4 as a size-spectrum
model.

© 2006 NRC Canada37
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Statistical model

Formulation

The ns from the previous section are now used to formulate a
statistical model for catch data from hauls at random positions.
The individual hauls are numbered by i ∈ I and the time of
the ith haul is denoted ti . The set of sampling times is given
by T = {ti : i ∈ I }. It is assumed that for each t ∈ T the
set {i ∈ I : ti = t} has at least two elements (i.e., for each
sampling time, we have at least two hauls).

Within each haul, individual fish are measured with an ar-
bitrary accuracy and associated with a corresponding length
group Cj . Data can be summarized by a matrix Nij of counts
for the j th length group at the ith haul.

We consider a simple statistical model with a corresponding
hierarchy of hypotheses (H0 ⊃ H1 ⊃ H2 ⊃ H3).

H0

In our main statistical model, Nij are assumed to have an
independent, NB distribution with identical parameters within
each sampling time (t ∈ T ) and length group (j ) (i.e., the ran-
dom variables {Nij : ti = t} are identically distributed with

mean µt,j and variance σ 2
t,j (σ 2

t,j > µt,j )). To be able to esti-

mate parameters in this model, we need at least two hauls for
each sampling time.

The likelihood function is given by

L[(µt,j ), (σ
2
t,j )] =

∏

i

∏

j

Ŵ(Nij + νti ,j )

Ŵ(νti ,j )Ŵ(Nij + 1)

× π
νti ,j

ti ,j
(1 − πti ,j )

Nij

in terms of the density function of the NB distribution with
probability parameter πti ,j = µti ,j

/

σ 2
ti ,j

and size parameter

νti ,j = µ2
ti ,j

/(

σ 2
ti ,j

− µti ,j

)

. Note that for a given sampling

time t , the maximum likelihood estimate µ̂t,j is just the group

average, while σ̂ 2
t,j can not be written on closed form.

H1

To reduce the number of parameters in the main model, we
state the variance structure hypothesis:

(5) V (Ni,j ) = σ 2
ti ,j

= ati µ
bti

ti ,j
+ µti ,j

This variance structure is mainly proposed from empirical in-
vestigations (even though we can give a mechanistic argumen-
tation in the case of bti = 2, which is out of the scope of
this paper). Note that the additional µti ,j term ensures that

σ 2
ti ,j

> µti ,j , which is required by the NB distribution.

H2

The size-spectrum model with time-dependent catchability is
simply a mean value hypothesis in the previous models obtained
by assuming the variance structure (eq. 5) and expressing the
expected CPUE in terms of catchability and number densities:

(6) E(Ni,j ) = µti ,j =

∫

Cj

qθ (x, ti)nθ (x, ti) dx

The relevance of letting the catchability be time-dependent will
be justified.

H3

Finally we may consider the time-independent catchability
model by assuming that q(x, t) = q(x) in H2:

µti ,j =

∫

Cj

qθ (x)nθ (x, ti) dx

Setting up a hierarchy of hypotheses like this has several
benefits. First of all it enables successive statistical tests to val-
idate the spectra models. But more importantly it helps us to
localize model problems. For example, the model H2 includes
three different assumptions regarding the statistical distribution,
a variance structure, and a mean value structure. If the H2 hy-
pothesis has problems fitting the data, it will be possible to find
out which of the three assumptions are critical by considering
successive likelihood ratios.

To validate the main model (H0) we use the randomization
technique described in Appendix A because the random vari-
ables Nij have a discrete distribution (and thus, transforming
with its distribution function, does not produce a uniform dis-
tribution). To test the hypotheses H1,H2, and H3, we use like-
lihood ratio testing for composite hypotheses (Rao 1965).

Parametrization

The catchability function is chosen as a symmetric sigmoid
curve multiplied by a fishing power pt .

(7) qθ (x, t) =
pt

1 + exp[−αt (x − Ls
50)]

Both pt and αt depend on the time t of the survey. αt thus
describes changes in the selection pattern over time, while pt

models changes in the overall catch efficiency in the survey.
The mortality z is split into two components: the natural mor-

tality and the fishing mortality:

z(x, t) = M0 + f (x, t)

where M0 is an assumed unknown constant, and f is assumed
to split into the product of a piecewise constant function of time
and a sigmoid function of size

f (x, t) =
1

1 + exp[−β(x − L
f

50)]

n
∑

i=1

F (i)
∞ 1(τi−1<t<τi )

For the distribution of L∞ (u) we use a normal distribution with
mean µL∞ and standard deviation σL∞ . When there are almost
no observed fish larger than ∼ 1/2µL∞ (actually 50 cm in our
case), it is impossible to estimate µL∞ and k simultaneously.
Therefore, it is assumed that µL∞ is known and a value from
Bagge et al. (1994) is used.

New individuals are recruited to the size of L0 continuously
in time. It is assumed that the recruitment period for a year class
is normally distributed. Hence the recruitment rate is a linear
combination of normal components:

(8) r(t) =
∑

y∈Y

Ryφµrecr
y ,σ recr

y
(t)

where φµ,σ is the normal density with mean µ and standard
deviation σ . The mean recruitment time for cohort y is param-
eterized as a year y plus a date 	ty (i.e., µy = y + 	ty).
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We use L0 = 1 cm and Y = {1997, ..., 2003} in the present
case.

The parameters of the statistical model H2 are summarized
in the vector θ :

(9) θ =
(

R1997, R1998, R1999, R
∗
2000 = 1, R2001, R2002, R2003, 	t1997, ..., 	t2003, σ

recr
1997, ..., σ

recr
2003, p

survey
t , L

survey

50 , α
survey
t ,

k, µ∗
L∞

= 135, σL∞ , L
fishery

50 , βfishery, F (<2001)
∞ , F (2001−2002)

∞ , F (2002−2003)
∞ , F (>2003)

∞ , M0,

avariance structure
t , bvariance structure

t

)

An asterisk (*) indicates that the parameter is fixed.

Identifiability
Some care is needed to avoid that the spectra models H2

and H3 get overparameterized. Since the statistical models are
determined by the mean values (eq. 6), we need to dispel all
obvious parameter bands appearing here. First of all, by insert-
ing eq. 4 in eq. 6, notice the band between the parameter vector
(pt ) and the vector of recruitment sizes (Ry); if we multiply and
divide the two vectors, respectively, with the same constant, the
model is unchanged. This is taken care of by fixing one of the
recruitments to 1 (e.g., R2000 = 1). With this convention, it
is possible to estimate the parameters in both statistical models
based on the parametrization given in the previous section. This
claim has been verified by re-estimating known parameters in
simulated data sets.

However these Monte Carlo experiments showed that a large
number of the parameters in the model were highly corre-
lated, indicating the need for a reparametrization. Especially
high correlations occurred between a and b from the variance
structure and among (pt ) from the catchability. The transfor-

mation (ã, b̃) = (log a + b : log µ, b) made ã and b̃ al-
most uncorrelated. Furthermore, it appeared that the variables
log pt1 , log pt2 − log pt1 , log pt3 − log pt2 , etc. were much less
correlated than the vector (log pt ). Also the choice of refer-
ence year class had a major impact on the range of correlations
between the parameter estimates.

With the new parametrization, a Monte Carlo re-estimation
experiment was carried out. All parameter estimates were plot-
ted in pairs to determine deviations from the asymptotic normal
distribution. The plots showed regular ellipses, indicating that
the normal approximation applies.

Model predictions

Once we have obtained the estimate θ̂ , we can compute
model predictions of, for example, the relative biomass and
length distribution of the commercial catches. Assuming iso-
metric growth (i.e. W = q0L

3) for some condition factor q0,
the total biomass in the system at time t is given by

(10) B(t) = q0

∫ ∞

L0

x3n(x, t) dx

Recall that since R2000 = 1 is fixed, n(x, t) is only known up to
a multiplicative constant. Therefore, eq. 10 can only be used to

predict the relative biomass in the system, and for that purpose
q0 is not needed. We may compute the number density of the
fishery catch during the time period I by the formula

(11) cI (x) =

∫

I

f (x, t)n(x, t) dt

This formula makes it possible to compare the catches for a
given length group between different time periods.

To compare results with those from age-based models, it is
useful to convert length-specific mortalities to age-specific mor-
talities. For a given cohort, the overall mortality at time t is given
by zcohort(t) = −N ′(t)/N(t), where N(t) is the total number
of individuals in the cohort at time t . Hence

(12) zcohort(t) =

∫ ∞
L0

z(x, t)ncohort(x, t) dx
∫ ∞
L0

ncohort(x, t) dx

This equation also applies when replacing z by m or f .

Data

Our data consist of cod catches from 299 selected hauls ob-
tained from the Baltic International Trawl Survey. Only posi-
tions inside the International Council for the Exploration of the
Sea (ICES) division 25 are considered. All the hauls are taken
with TVL-trawl by the Danish vessel DANA. The duration of a
haul is ∼ 30 min.

The survey is performed twice a year — the spring survey,
which takes place around 1 March, and the autumn survey,
which takes place around 1 November. The actual haul times
are distributed over a 1-month interval around these dates, and
we associate an average date with each survey — the so-called
sampling time.

A brief overview of the data is given in Table 1. The length
of each fish has been measured to an accuracy of 1 cm and a
length range from 5 to 60 cm is considered. We define the mean
CPUE for a given 1 cm length group as the average number of
fish caught at a given time for that given length group in a haul.
The mean CPUEs per length group are illustrated (Fig. 1), and
von Bertalanffy growth curves are also shown (with parame-
ters given in the caption) in order to follow the cohorts through
time. The positions of the peaks in the length distributions are
reasonably well described by the growth curves. The growth
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Fig. 1. Catch per unit of effort (CPUE) per 1 cm length group at the nine sampling times and Bertalanffy curves with initial size

L0 = 1 cm at 1 August. Each Bertalanffy curve is marked with the two-digit year classes from 1995 to 2003. Except for the initial time

t0, all curves have the same parameters k = 0.12 year−1 and L∞ = 135 cm.

Table 1. Number of hauls and fish caught by

survey.

Survey No. of hauls No. of fish caught

Mar. 2000 8 1 920

Nov. 2000 29 6 300

Mar. 2001 50 13 658

Nov. 2001 33 8 610

Mar. 2002 41 14 733

Nov. 2002 35 16 796

Mar. 2003 41 7 467

Nov. 2003 24 5 870

Mar. 2004 38 10 857

curves also indicate the extent it is possible to estimate recruit-
ment. It is impossible to estimate the 95 and 96 year classes, as
virtually no fish older than 3 years are caught. The year class
with the clearest data signal is the 2000 year class; hence it is
natural to use the 2000 year class as a reference. All other year
classes will be estimated.

Results

Validating the main statistical model
The model H0 includes both a distributional assumption and

an assumption about independence. These are considered sep-
arately. For each of the nine surveys and 55 cm length groups,
the maximum likelihood estimates (MLEs) µ̂ti and σ̂ 2

ti
have

been obtained. By transforming with the estimated distribution

function — and randomizing as described in Appendix A —
we obtained 299 × 55 residuals (Uij ), which should follow a
uniform distribution on the unit interval. A quantile-quantile
(Q-Q) plot indicates that this holds true (Fig. 2a). The same
residuals (Uij ) were also plotted against µti (Fig. 2b), showing
no systematic patterns.

To demonstrate the importance of choosing a distribution
with over-dispersion, the same plots were made with the NB
distribution replaced by the Poisson distribution (Figs. 2c and
2d). The Poisson distribution obviously did not meet the crite-
rion of uniformity.

The modelH0 assumes independence between length groups.
To validate this assumption, the empirical correlations between
length groups were examined, and it appeared that strong cor-
relations existed between neighboring length groups.

In the light of the length group dependencies, it did not make
sense to perform a formal Kolmogorov–Smirnov test on the
randomized residuals (Ui,j ) to test whether these residuals fol-
lowed a uniform distribution. Instead we chose to partition the
residuals into corresponding 1 cm length groups (i.e., consider-
ing Uij for fixed j ) and performed the statistical test for each of
the length groups in order to test the distributional assumption.
Indeed, this lead to acceptance for every group.

We will ignore the length group dependencies throughout
this study.

Examining the variance structure
To reduce the number of parameters in the main model (H0),

the variance structure proposed in H1 is suggested, which al-
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Fig. 2. (a) Q-Q plot for the negative binomial (NB) distribution. The observed randomized quantiles are plotted against the theoretical

quantiles. (b) The observed randomized quantiles for the NB distribution as a function of the estimated mean value parameter. (c) Q-Q

plot for the randomized quantiles based on the Poisson distribution. (d) The observed randomized quantiles for the Poisson distribution as

a function of the estimated mean value parameter in the Poisson distribution.

most eliminates half of the parameters. The reasonability of this
hypothesis is justified (Fig. 3), showing nine independent anal-
yses — one for each sampling time. The parameter estimates
(µ̂t,j and σ̂ 2

t,j ) from the full statistical model (H0) are plotted

for each sampling time together with the curve σ 2 = âtµ
b̂t +µ,

where ât and b̂t are the MLEs from the variance structure model
(H1) at time t .

Despite the convincing fits on Fig. 3, the likelihood ratio test
of H1 against H0 is rejected. It turns out that the points above
the curves generally correspond to fish smaller than 20 cm,
while points below the curves correspond to fish larger than 20
cm. This motivates an extension H ′

1 of H1 with two variance
structures for each survey — one for fish smaller than and one
for fish larger than 20 cm. It is later shown that H ′

1 is accepted
under H0 (Table 2).

Spectrum model inference
Assuming the hypothesis H ′

1, we now consider the size-
spectrum model (H2) with time-dependent catchability. It was
assumed that the mean date and the standard deviation of the
recruitment process was the same for all year classes earlier
than the first sampling time, i.e.:

(13)
σ recr

1997 = σ recr
1998 = σ recr

1999

	t1997 = 	t1998 = 	t1999

The MLE θ̂ for θ (eq. 9) was obtained, and the Hessian matrix

was checked to be positive definite. Based on θ̂ , the expected
CPUEs µti ,j were computed and compared with the observed
mean CPUEs (Fig. 4). We conclude that the model H2 describes
the CPUEs well. Moreover, H2 was accepted by a formal like-
lihood ratio test (Table 2).

Assuming constant catchability (i.e., time-independent αt

and pt ) over time, we estimated parameters based on H3 and
obtained a plot equivalent to Fig. 4, which showed that it was im-
possible for the reduced model to explain the increasing CPUE
for the 2000 cohort during year 2002.

To overcome this problem, we also considered a compromise
(H ′

3) between H2 and H3 with time-independent αt and time-
dependent pt . The visual fit was improved compared with H3.
However both H3 and H ′

3 were rejected by the likelihood ratio
test (Table 2).

It became apparent that no simple reduction of H2 was pos-
sible (Fig. 5). To arrive at a final model, the estimates from H2

were inspected, and the ones that did not differ significantly
were collected to form a final hypothesis (H ′

2):

(14)

p4 = p5 = p6

α1 = α2 = α4 = α5, α3 = α6 = α7, α8 = α9 = 0

σ recr
1997 = σ recr

1998 = σ recr
1999, σ recr

2000 = σ recr
2001 = σ recr

2002

	t1997 = 	t1998 = 	t1999 = 	t2000
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Fig. 3. Maximum likelihood estimates (MLEs; circles) σ̂ 2
i vs µ̂i from the main model (H0). Solid lines indicate the function

σ 2 = âtµ
b̂t + µ, where ât and b̂t are the MLEs from the variance structure model (H1) at time t .

σ µ µ
2 2.13

= 1.02 + σ µ µ
2 1.86

= 1.88 + σ µ µ
2 2.33

= 1.43 +

σ µ µ
2 2.29

= 2.48 +

σ µ µ
2 1.51

= 2.06 +

σ µ µ
2 1.82

= 2.40 + σ µ µ
2 1.71

= 3.12 +

σ µ µ
2 2.12

= 1.68 + σ µ µ
2 2.27

= 1.20 +

Mar. 2000 Mar. 2001

Mar. 2002

Mar. 2003 Mar. 2004

Nov. 2002

Nov. 2000

Nov. 2001

Nov. 2003

Table 2. (i) Successive asymptotic likelihood ratio tests. (ii)

Sequential tests under H2 of H3 (time-independent catchability)

and H ′
3 (time-independent αt in catchability).

− log L −2 log Q No. of df p

parameters

(i) H0 34 320.0 — 990 — —

H ′
1 34 565.3 490.7 531 459 0.15

H2 34 779.6 428.6 80 451 0.77

(ii) H3 35 040.5 521.7 64 16 < 0.01

H ′
3 34 823.9 88.6 72 8 < 0.01

H ′
2 34 789.2 19.3 68 12 0.08

The likelihood ratio test of H ′
2 against H2 was accepted (Ta-

ble 2). Also the likelihood ratio test of H ′
2 against H0 supported

this conclusion with p = 0.35. To validate the applied χ2 ap-
proximation, a simulation study was carried out: 100 data sets
were randomly generated from H ′

2, and the the likelihood ratio
test of H ′

2 under H0 was computed. The simulated distribution

agreed perfectly with the theoretical χ2 distribution with 922
(990 − 68) degrees of freedom.

The final model H ′
2 had 68 parameters, of which 36 described

the variance structure and 32 described the expected CPUEs. A

plot of the expected CPUEs did not produce any visible changes
from Fig. 4.

The highest absolute parameter correlations in the reduced
model were found to be 0.93. However, those correlations in-
volving the mean value parameters were all below 0.90.

The parameters with the highest coefficient of variation (CV)

were CV(M̂0) = 0.66, CV(β̂) = 0.33, and CV(l̂og R9) =

0.36. Almost all other parameters had CV < 0.20.
To test the significance of continuous recruitment versus in-

stantaneous recruitment, the confidence intervals of σ recr
y , y =

1997, ..., 2003 were considered. It appeared that none of these
included 0. Also, the standard deviation on L∞ was signifi-
cantly greater than 0, showing that a model assuming identical
growth trajectories for all individuals would be rejected even if
individual variability in the spawning time was included.

Spectra model predictions
From the parameter estimates based on H2, different kinds of

model characteristics were computed — namely the estimated
biomass, mortality, and recruitment. Furthermore, the predicted
commercial landings were compared with the observed ones.

The biomass relative to year 2002 (i.e., B(t)/B(2002), where
B(t) is computed by eq. 10) is shown (Fig. 6c). The increasing
trend during 2002–2003 was mainly caused by the strong 2000
year class (Fig. 6b).
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Fig. 4. Observed catch per unit of effort (CPUE) and expected CPUE per 1 cm length group at each sampling time obtained from model

H2.

Fig. 5. Hypothesis hierarchy. H0, main statistical model without

mean and variance assumptions; H1, variance structure model;

H
′

1, extended variance structure model; H2, size-spectrum model

with multiplicative time-dependent catchability; H3, time-constant

catchability; H
′

3, time variability in catchability caused by fishing

power alone; H
′

2, final accepted hypothesis obtained by collecting

parameters in H2.

No information on the commercial landings has been utilized
for model estimation, but catch compositions are available from
2000 until ultimo 2003. The predicted length probability distri-
butions of the yearly commercial landings in that period were
computed by eq. 11 and compared with the observed distribu-
tions (Fig. 6d). The predictions fit the observations quite well

for all years. However, when considering the absolute commer-
cial landings over the same period, there is a clear decreasing
trend that is not replicated by the model (not shown).

The age-specific fishing mortalities were computed (Table 3)
based on eq. 12. These mortalities were slightly lower than the
size-specific mortalities (Fig. 6a). The reason for this is that only
the fraction consisting of the fastest growing individuals of an
age group is exposed to the high size-specific mortalities. This
phenomenon is maintained by the increasing size dispersion
within a cohort implied by the underlying stochastic growth
model.

Another consequence of the extreme size-selective mortality
is the emergent property that old individuals grow very slowly.
This is illustrated by showing the mean of the single cohorts
as a function of time (Fig. 7). From this illustration we can
conclude that for the typical length distribution of fish within a
given survey — which consists of three peaks — the first and
second peaks consist primarily of the 0-group and 1-group, re-
spectively, while the third peak consists of all other age groups.

Discussion

This paper validates a new length-structured model of stock
dynamics by testing hierarchically classified hypotheses. Hence,
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Fig. 6. (a) Estimated fishery mortality (solid lines) and 95% confidence limits (broken lines) by fish size. (b) Estimated recruitment Rt

by year and 95% confidence limits. (c) Estimated relative biomass and 95% confidence limits. (d) Observed relative length distributions

for the commercial catches (circles) and predicted relative length distributions for the fishery based on the spectrum model (solid line).

the approach makes it possible to investigate model complex-
ity, a necessary prerequisite for determining stock dynamics,
which is particularly crucial for complex, nonlinear models.
Only survey data have been used. Testing hypotheses requires
that the applied statistical distribution adequately describes the
variation of the observations, and the correspondence between
the observations and the distribution should be investigated ei-
ther graphically or by a formal test. This has been done for
observations in the case study here, where the hypothesis of an
NB distribution with a specified variance–mean structure was
accepted. Testing the significance of a statistical distribution is

only possible if several independent, identically distributed ob-
servations are available and analysed without prior aggregation
as done in the present approach. The NB distribution with an
unspecified mean and with the specified variance structure was
subsequently used as a general model against which submodels
of interest have been tested. The present size-spectrum model
is such a submodel specifying the mean of the NB distribution.
The spectrum model has been tested against the basic NB model
and was accepted. To our knowledge, no previous stock dynam-
ics or assessment approach has formally tested the significance
of the model applied.
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Fig. 7. Estimated mean of the individual cohorts (solid lines) and von Bertalanffy curves from Fig. 1 (broken lines).

Table 3. Age-specific fishing mortality.

Age (years)

Date 0 1 2 3 4 5 6

Mar. 2000 0 0 0.21 0.62 0.75 — —

Nov. 2000 0 0 0.08 0.53 0.72 0.77 —

Mar. 2001 0 0 0.51 1.75 2.17 2.28 —

Nov. 2001 0 0 0.18 1.23 1.89 2.16 2.25

Mar. 2002 0 0 0.28 0.81 1.04 1.14 1.18

Nov. 2002 0 0 0.09 0.75 1.04 1.11 1.15

Mar. 2003 0 0 0.67 2.22 2.78 2.90 2.98

Nov. 2003 0 0 0.18 1.51 2.23 2.54 2.59

Mar. 2004 0 0 0.60 1.79 2.19 2.34 2.33

The stock dynamics model developed combines the char-
acteristics of continuous recruitment in time, individual based
growth, and continuous, size-dependent mortality rates.As re-
cruitment is assumed to take place continuously, it is possible to
test the simpler model of instantaneous recruitment. The model
with instantaneous recruitment (with estimation of the optimum
time of recruitment) resulted in problems with the interpretation
of growth parameters, as the probability of obtaining unrealis-
tic small L∞ (e.g., < 20 cm) was non-negligible. This problem
arose because the standard deviation of L∞ (σL∞

) would com-
pensate for the lack of spawning variation, resulting in too large
estimates of σL∞

. These problems were the main reason for the
statistical rejection of the spectrum model with instantaneous
recruitment. In contrast, the model assuming continuous re-
cruitment did not encounter any of these problems. First, the
continuous recruitment model was accepted, and secondly, the
distribution of L∞ can be described by the normal distribution,

with negligible possibility of negative values of L∞ and with
a reasonable estimate of k. An additional advantage of mod-
elling and estimating recruitment continuously over time by
the annual timing of the peak and its temporal variation is the
possibility of investigating and studying recruitment processes.

For the model H ′

2, it was possible to estimate a constant nat-
ural mortality, M0. The estimability of M0 is in agreement with
Fu and Quinn (2000), suggesting that (in another length-based
model for Pandalus borealis) constant M0 can be estimated
together with a survey catchability varying over time. Assum-
ing, however, that m(x, t) is constant for all fish sizes is of
course incorrect, as m(x, t) increases for the smaller fish (ICES
2005a).We therefore formulated an alternative, more biologi-
cally realistic model by expressing m(x, t) as a size-dependent
function, m(x) = 23 exp(−x + 1) + M∞, which is equal to 23
for fish of length 1 cm, decreases to M∞ when the fish length in-
creases, and is close to M∞ for x larger than 5 cm. The mortality
rate of 23 corresponds to the value used by Bradford (1992) as
late cod larvae daily mortality of 0.063. For this model, M∞ was
estimated to 0.16, which is close to and not significantly differ-
ent from 0.18 previously estimated. The estimates of biomass,
recruitment, and fishing mortality are likewise very similar for
the two m(x, t) assumptions. Neither did reducing the mortality
rate of larval cod by 50% change the results. This suggests that
natural mortality can be assumed constant for all sizes when
estimating relative biomass, recruitment, and fishing mortality
in the size-structured stock dynamics model.

The suggested model considers the individual growth of each
fish. The assumption of individual growth patterns was formu-
lated assuming that each fish has its own L∞ and that the indi-
vidual values originate from a normal distribution with a mean
of 135 cm and a variance to be estimated. The estimated stan-
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dard deviation of L∞ is significantly larger than zero, indicating
that the individual growth model is a major improvement com-
pared with a growth model where all fish have the same growth.
Individual variability could also be associated with k instead of
L∞, but results of Swain et al. (2003) suggest that for Atlantic
cod the model implemented here fits better than the model with
varying k.

The model is continuous in time and size, which has the
advantage that the stock dynamics model is formulated inde-
pendently of any discretization. Furthermore, observations can
be used as a basis for estimation irrespective of the timing,
which makes it possible to include additional catch or survey
information collected at other times of the year.

The NB distribution was accepted adequately to describe data
and was applied further in the calculations. To illustrate conse-
quences of applying a wrong distribution, the Poisson distribu-
tion was applied, for which we know that the variance will be
underestimated. The MLEs were calculated and the tests of H2

and H3 were carried out. The result was (not surprisingly) that
both tests were rejected wrongly, indicating that the spectrum
model does not adequately describe stock dynamics. For the
H2 model, the MLEs were significantly different from those
obtained using the NB distribution.

High correlations were encountered between the number of
fish caught per haul in adjacent length groups. Therefore, a mul-
tivariate NB distribution should have been used. Unfortunately,
such a distribution does not exist. Intuitively, the high corre-
lations should reduce the information in the data, resulting in
more uncertain estimates. If the model was able to account for
the correlations, we would expect higher test probabilities in
general. This could potentially cause simpler model structures
to be accepted.

The biomass and mortality estimates of the first 2 years of
data are based primarily on assumptions on recruitment, its tem-
poral distribution, and mortality rates for the years prior to the
first data year. However, since the stock estimates for the first 2
years are sensitive to the assumptions made, these estimates are
more uncertain than those of the following years, an uncertainty
that is not reflected in the confidence limits shown. For cases
with several years included, this is not so much a problem as it
is for the present case, where only few years are included. It is
actually surprising that the analysis can be performed based on
data for only 5 years.

Estimated fishing mortality for fish larger than 45 cm and fish
older than 3 years is very high (F ranges from 1 to 4) compared
with the values of ∼ 1 estimated by ICES (2005b). However,
very high mortality rates are supported by the fact that only
very few fish larger than 50 cm were caught in the surveys in
2000–2004. To assure that large fish are absent, mortality rates
higher than 1 are required. The very high fishing mortality for
fish larger than 45 cm, combined with a size selection close to
knife-edge selection, results in a mature stock consisting mainly
of slow-growing individuals, which have not yet reached a size
of about 45 cm. This was indicated by showing that the mean
length at age does not increase for fish older than 4 years. It
is an open question whether this has led to long-term genetic
stock changes.

In conclusion, the present model applied to size-structured
scientific survey data is a promising tool to describe and criti-
cally examine stock dynamics of a stock for which age determi-

nation is uncertain and the quality of catch data is poor. Model
complexity can be investigated by testing statistical hypotheses,
where different spectra models can be tested thoroughly against
a set of probability density distributions describing CPUE by
length and haul for each survey. A spectrum model was statisti-
cally accepted for which natural mortality and fishing mortality
rates, relative biomass and recruitment, and growth were esti-
mated. It is remarkable that the approach reasonably reproduces
the relative length distribution of the commercial landings with-
out using these data. The model estimates of fishing mortality
could potentially be improved by including commercial catch
data by length. This may further enable the estimation of time-
varying natural mortality rates.
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List of symbols

x General notation for size

t General notation for time

k von Bertalanffy growth parameter

L0 Recruitment size

L∞ von Bertalanffy asymptotic size

L(x, L∞) von Bertalanffy growth trajectory

u(L∞) Density function describing the probability that

an individual is assigned a given L∞ at the

time of recruitment

µL∞
Mean value of L∞

σL∞
Standard deviation of L∞

z(x, t) Total mortality as function of size and time

m(x, t) Natural mortality as function of size and time

M0 Parameter in natural mortality

f (x, t) Fishing mortality as function of size and time

F∞ Parameter vector in fishing mortality

β Parameter in fishing mortality

L
f

50 Parameter in fishing mortality

τ Vector determining the piecewise constant levels

in fishing mortality as a function of time

r(t) Recruitment rate with the property that r(t) dt

is the approximate number of individuals

recruited to the minimum size L0 during the

time interval (t, t + dt)

n(x, t) Number density function with the property that

the number of individuals with size in (x1, x2)

at time t is given by
∫ x2

x1
n(x, t) dx

θ Vector containing all model parameters in a

given model. Used as subscript (e.g., nθ (x, t))

to indicate that the function n(x, t) contains

unknown parameters

I Set of haul indices

T Set of sampling times

Y Set of recruitment year classes

Nij Matrix of observed number of fish for haul

index i ∈ I and size group j ∈ J

µt,j Expected number of fish in length group j in a

haul taken at survey time t ∈ T

σ 2
t,j Variance of the number of fish in length group j

in a haul taken at survey time t ∈ T

at Variance structure parameters indexed by survey

time t ∈ T

bt Variance structure parameters indexed by survey

time t ∈ T

Ry Total recruitment for year class y

µrecr
y Mean recruitment time for year class y

	ty Date of the mean recruitment time for year class

y (i.e., 	ty = µrecr
y − y)

σ recr
y Standard deviation of the recruitment rate for

year class y

q(x, t) Catchability function

pt Catchability parameter for t ∈ T

αt Catchability parameter for t ∈ T

Appendix A.

Randomization
Let N be a discrete random variable on N0 with distribution

function F and let the conditional distribution U |N = n be
uniform on the interval [F(n−1), F (n)]. Then the distribution
of U is uniform on [0,1].

To prove this, let g be the density of U . The conditional
density of U |N = n is given by

g(u|n) =
1

P(N = n)
1{u∈[F(n−1),F (n)]}

Hence the unconditional density is

g(u) =

∞∑

n=0

g(u|n)P (N = n)

=

∞∑

n=0

1{u∈[F(n−1),F (n)]}

= 1

for any u ∈[0,1].
Thus to test whether N has distribution function F , we should

simulate a random variable U with a uniform distribution on
[F(N −1), F (N)] and then test whether U is uniform on [0,1].

Computational methods
All computations have been carried out using R (R Develop-

ment Core Team 2005). An open source R package has been
developed for the purpose (available by contacting the authors).
The package calls external C++ code, which takes advantage
of the free package CppAD (Bell 2005) to evaluate analytical
first- and second-order derivatives efficiently.
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Summary: The Log Gaussian Cox Process (LGCP) is a natural and consistent modelling platform to
describe spatial point patterns of fish. Most fishery data comes from bottom trawl surveys which may be
viewed as random thinnings within rectangular observation windows of a spatial point pattern where only
the total number of points within a window is observed.
In this paper the LGCP is considered within the framework of generalized linear geostatistical models
(GLGMs). It is described how to perform approximate ML-estimation for models containing a large number
of random effects and fixed effects assuming that a sparse formulation of the inverse covariance is feasible.
The approach is applied on a bottom-trawl survey in the North-Sea. A covariance structure is formulated in
order to capture the effect of large-scale space-time heterogeneity and small scale size-dependent clustering.
Simulation experiments are conducted to test the method.

Key words: Multivariate Poisson log-normal distribution; Laplace approximation; Log Gaussian Cox
Process; Size-correlation; Sparse precision; Spatio temporal modelling.

1. Introduction

Modelling of size or age distributions is a key to understanding
the population dynamics of fish. Scientific bottom-trawl sur-
veys are conducted to get a snapshot of the size-distribution
twice a year in the North-Sea. The statistical interpretation
of such data is complicated for several reasons. Typical data
are characterized by being over-dispersed multivariate count
data with a high proportion of zeros. Heterogeneity on various
spatial scales caused by fish schooling and large-scale move-
ment generates patterns in the data. The patterns occur as
correlations which - if not accounted for - can lead to over-
interpretation and wrong judgement of the uncertainty of the
population size-distribution.
The log Gaussian Cox process is a Cox process with ran-
dom log-intensity following a Gaussian process (Møller et al.,
1998). It has successfully been used to model clustering of
point patterns caused by environmental heterogeneity. Many
ecological models within e.g. forestry or animal breeding are
based on point processes (Møller and Waagepetersen, 2004).
A point-process point of view may also be taken for fish popu-
lation modelling. It is natural to think of a fish population as
a heterogeneous spatial point pattern changing dynamically
in time. Each point would have an “attribute” in terms of the
fish size. Fish samples taken with a trawl would be thought
of as a size-dependent random thinning of the point pattern
within a rectangular region.
When using the LGCP in practice it is common to discretize
the observation window so that the number of points in the
discretization cells becomes independent Poisson distributed
conditional on a multivariate Gaussian log-intensity (Rue

et al., 2007; Brix and Diggle, 2001). This way the LGCP can
be put in a context of generalized linear geostatistical models
(GLGMs) (Diggle and Ribeiro, 2006).
For trawl-survey data we can treat the haul-rectangles as
discretization cells assuming that the log-intensity is approx-
imately constant within a haul-rectangle. This is reasonable
from a large scale perspective because the haul-rectangles are
small compared to the entire study region.
Various methods have been applied to perform inference for
the LGCP comprising Bayesian inference based on MCMC
(Møller et al., 1998), Monte carlo maximum likelihood estima-
tion (Møller and Waagepetersen, 2004) and Moment estima-
tion (Brix and Diggle, 2001). Skaug and Fournier (2006) used
the Laplace approximation in combination with automatic
differentiation to perform approximate ML-estimation. Rue
et al. (2007) showed that the Gaussian posterior approxima-
tion was sufficiently accurate for inference in many random
effects models including the LGCP.
The purpose of the present paper is to describe how to perform
approximate ML-estimation for the LGCP within the GLGM
setup in cases where the covariance structure has a sparse
inverse. The motivation is to be able to handle models with
a very large number of random and fixed effects which is
necessary in order to apply the model on fishery data.

The approach is illustrated on a single bottom-trawl survey
in the North sea by formulating a correlation structure con-
taining the effect of large scale spatio-temporal heterogeneity
and small scale size-dependent clustering.
We test the method by simulation and consider goodness of
fit assessment.

149



2 Biometrics, In preparation

2. Model

2.1 Approximate log Gaussian Cox process likelihood

In a GLGM context the log Gaussian Cox process is defined as
a vector of Poisson counts with a latent log-intensity following
a multivariate normal distribution. To write down the joint
model of random effects and observations let η ∈ R

n denote
the latent Gaussian random field with mean Aβ being a linear
function of a parameter β ∈ Rk where A is the design matrix.
The covariance matrix is assumed to be a non-linear function
of a parameter vector θ:

η ∼ N(Aβ,Σθ)

The unobserved intensity is

λ = (eη1 , ..., e
ηn)t

Conditional on the intensity the observations are assumed
independent Poisson distributed:

x|λ ∼ ⊗n
i=1Pois(λi)

In terms of the precision Qθ = Σ−1
θ the full negative log-

likelihood is given by

l(β, θ|η, x) =
n

X

i=1

e
ηi −

n
X

i=1

xiηi −
1

2
log |Qθ|

+
1

2
(η − Aβ)t

Qθ(η − Aβ) + c

(1)

with entire parameter vector (β, θ) and c = n
2

log(2π) +
Pn

i=1 log Γ(xi + 1). The negative log-likelihood for the ob-
servation vector x is obtained by integrating out η

l(β, θ|x) = − log

Z

e
−l(β,θ|η,x)

dη (2)

The Laplace approximation of this integral is based on a
Gaussian posterior approximation (GPA) and has been shown
to be sufficiently accurate for many random effects models
(Rue et al., 2007; Skaug and Fournier, 2006). For the present
case the GPA exists and is unique because the second order
derivative of the full negative log-likelihood is everywhere
positive definite. It is given by

η|x ∼ N(η̂β,θ(x),
“

Qθ + diag(λ̂β,θ(x))
”−1

) (3)

where η̂β,θ(x) = arg minη l(β, θ|η, x). Before applying the
Laplace approximation it is worth applying the GPA on the
score function wrt. β. Replacing E[η|x] by η̂β,θ(x) in (A.1)
gives

∇β l(β, θ) ≈ −A
t
Qθ(η̂β,θ(x) − Aβ) (4)

Then η̂ and β̂ can be found simultaneously by

e
η̂ − x + Qθ(η̂ − Aβ̂) = 0 (5)

A
t
Qθ(η̂ − Aβ̂) = 0 (6)

using the Newton iterations
„

ηk+1

βk+1

«

=

„

ηk

βk

«

−

„

Qθ + Dηk
−QθA

−AtQθ AtQθA

«−1 „

eηk − x + Qθ(ηk − Aβ)
−AtQθ(ηk − Aβ)

«

(7)

where Dη = diag(eη). Each Newton iteration consists of
solving a sparse positive definite linear system provided Q

and possibly A are sparse. The efficient numerical tool to do
this is the sparse Cholesky factorization (Davis, 2006a).
Inserting the corresponding β̂ in the Laplace approximation
of (2) gives an approximate profile likelihood wrt. θ (up to an
additive constant)

lprof (θ|x) ≈ l(θ, β̂|η̂β̂,θ(x), x) +
1

2
log

˛

˛

˛Qθ + diag(λ̂β̂,θ(x))
˛

˛

˛

(8)

This profile can be optimized by using a standard algorithm
for non-linear optimization e.g. the BFGS method (Fletcher,
1970). Assuming standard asymptotics for the fixed effects
(β, θ) the approximate precision of θ̂ is given by the Hessian
∇2

θlprof of the profile (8). Simultaneous confidence regions of
(β, θ) can be found by taking derivatives of (4) wrt. (β, θ) and
using that the hessian of the profile determines the marginal
precision of θ:

Prec

„

β̂

θ̂

«

=

„

Hβ −HβG

−GtHβ Hprof + GtHβG

«

(9)

where Hβ = ∇2
β l(β, θ) , G = ∇θβ̂ and Hprof = ∇2

θlprof . The
gradient G can be found using the implicit function theorem
(A.4). The full precision (9) can be used to construct a second-
order expansion of the likelihood function (2) around (β̂, θ̂)

l(β, θ|x)− l(β̂, θ̂|x) ≈
1

2

„

β − β̂

θ − θ̂

«t

Prec

„

β̂

θ̂

« „

β − β̂

θ − θ̂

«

(10)

which may be used to fit and test sub-models about β and
θ independent of numerical integration provided that the
second-order expansion is sufficiently accurate.
As we need to deal with cases with a high number of hyper
parameters we have provided the gradient of (8) in Appendix
(4). Apparently the derivative of the log-determinant requires
the entire inverse of the precision matrix. However it turns
out that the inverse is only needed on the non-zero pattern
of the precision. An existing recursive algorithm handles this
situation (Rue, 2005; Dahl et al., 2005).

2.2 Goodness of fit

Our approach to goodness of fit assessment follows the general
idea of Waagepetersen (2006). Knowing the pair of random
effect and observation (η, x) it would be easy to validate the
model by checking normal and Poisson assumptions sepa-
rately. By making a single draw η∗ from the posterior dis-
tribution η|x then the pair (η∗, x) has the same distribution
as (η, x). Hence model validation may be based on (η∗, x).
Accurate posterior samples can be very difficult to obtain.
In this application we use an approximate posterior sample
drawn from the GPA (3). An approximate set of standardized
residuals u can be obtained using only sparse matrix opera-
tions:

• Draw η∗|x from (3).
• Let LLt = Q and put

u = L
t(η∗ − Aβ) (11)

The vector u can be used to visually asses the goodness of fit
by plotting against covariates.50
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Figure 1. Illustration of the small-scale variability in the
data: Two samples taken the same day 10 km apart.

3. Example: Trawl survey data

3.1 Modelling the correlation in time, space, and size

Bottom trawl surveys in the North sea are conducted twice
a year. A typical survey collects fish-samples from approxi-
mately 400 different locations covering the entire area. Each
fish-sample is a vector of counts representing the number of
fish caught in 1 cm size intervals. The samples are taken by 8
different vessels along predetermined routes with approx 10-
50 km between successive positions. A survey usually takes
1-2 months.
The purpose of this case study is to apply and validate
the LGCP on one survey. Our modelling of the hidden log-
intensity is based on the following considerations:

(1) Some random parts of the North Sea are more populated
than others (large scale spatial correlation)

(2) The high and low populated areas may change dynami-
cally - even within a survey (large scale time correlation).

(3) Fish swim in small batches with a spatial extension
possibly smaller than the dimensions of the trawl and
batches have a narrow size composition (small scale size
correlation).

(4) The trawl is size-selective (size-dependent random thin-
ning).

The hidden log-intensity is modelled by a Gaussian process
η(s, x, t) indexed by size, space and time where “size” is dis-
crete while “space” and “time” are continuous. It is reasonable
to assume that the population size-distribution is unchanged
during the relatively short time-period of the survey leading
to the assumption that the process should have a size-specific
mean βs = E(η(s, x, t)) which defines the design matrix A.
Thus β has the interpretation of the log-size-distribution of
the entire fish-population.
Size-selectivity is easy to model consistently with the LGCP.
The correct way to think of size selectivity is as size-dependent
random thinning of a point pattern. For a Poisson process this
has the effect of downscaling the intensity (prop. 3.7 of Møller
and Waagepetersen (2004)) and this can be accomplished by
introducing an additive effect to the mean of the log-intensity.
In this presentation we do not attempt to explicitly model the
size-specific random thinning but just assume that β includes

ηη ββ

ββ

ηη

Figure 2. Illustration of non-zero pattern of the precision
(A.6) (identical to the incidence matrix of the conditional
independence graph). A matrix with this pattern must be
factorized in each Newton iteration (7).

this effect.
The residual process η(s, x, t)−βs is modelled as a stationary
Gaussian process with correlation

ρ(∆s, ‖∆x‖, ∆t) = corr(η(s + ∆s, x + ∆x, t + ∆t), η(s, x, t))

where ‖∆x‖ denotes distance in km.
First we attempt to model the spatio temporal Gaussian
intensity-landscape for a fixed size-class. For simplicity we use
a Markovian structure obtained as a product of exponential
correlations e−b1‖∆x‖e−b2∆t. On top of that process we add
Gaussian white noise to model the small scale variability. This
has the effect of adding a so called “nugget effect” to the
correlation function so that the resulting correlation has the
form

ρspattemp(‖∆x‖, ∆t) = (1−p)e−b1‖∆x‖
e
−b2∆t+p1(‖∆x‖=0,∆t=0)

for p ∈ [0, 1].
According to Fig. 1 extension of this structure to multiple
size-classes should require continuity over size of the sample
paths which can be achieved by letting

ρ(∆s, ‖∆x‖, ∆t) = ρsize(∆s)ρspattemp(‖∆x‖, ∆t) (12)

Finally we need to choose ρsize. As our data has the same
size-classes represented for each point in space and time the
covariance matrix takes the form of a Kronecker product

Σ = Σsize ⊗ Σspattemp

The Kronecker product is inverted by inverting each factor
thus the precision matrix becomes

Q = Qsize ⊗ Qspattemp

Choosing ρsize such that Qsize is a sparse matrix reduces
the computational cost of the Newton iterations (7) dramat-
ically. A sufficiently flexible correlation structure of “size” is
obtained by choosing Qsize as the precision of a stationary
AR(2)-process xt = φ1xt−1 + φ2xt−2 + εt:51
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where κ = 1−φ2

φ3

2
−φ2

2
−(φ2

1
+1)φ2−φ2

1
+1

and εt ∼ N(0, κ−1).

This precision is defined for (φ1, φ2) within the triangular
region {(φ1, φ2) : φ2 > −1, φ2 < 1 + φ1, φ2 < 1 − φ1}.
A preliminary study of the flexibility of the AR(2)-correlation
structure showed that only a small part of the triangle gave
relevant correlation functions for our applications - more
precisely the strip close to the right boundary ρsize(1) =

φ1

1−φ2
≈ 1. This is due to the obviously high correlation

between neighboring size classes (Fig. 1). Reparameterizing to
log-distance-to-boundary log(1−φ1−φ2) and position-along-
boundary φ1−φ2 makes the outer optimization problem much
easier for the BFGS-algorithm.
For the present choice of precision matrix Q the non-zero
pattern of the system matrix entering in the Newton iterations
(7) is shown in Fig. 2. Note that the pattern consists of small
dense squares of dimension 400×400 making the super-nodal
variant of the Cholesky factorization suitable (Davis, 2006a).
We end this section by summarizing the parameter vector
after convenient changes to the parametrization:

θ = ( log(1 − φ1 − φ2), φ1 − φ2, log b1, log b2,

log σ
2
, log(p−1 − 1))

(14)

3.2 Simulation experiment

Our approach for fitting and validating the LGCP relies
on a Gaussian posterior approximation in combination with
standard asymptotics. A simulation study is required to test
these approximations. The study was based on 100 simulated
datasets with “realistic” parameters (actually those obtained
by fitting the model to real data (Table 1)). The simulated
datasets were based on 200 randomly chosen positions in
space and time and 30 size classes.
Coverage of simultaneous confidence regions based on (9)

was examined by comparing

„

β̂ − β

θ̂ − θ

«t

Prec

„

β̂

θ̂

« „

β̂ − β

θ̂ − θ

«

with the approximate χ2(36)-distribution (Fig 3a). A similar
experiment is shown in (Fig 3b) where β̂ is estimated for the
true θ now using the conditional precision Hβ̂ from (9) and

comparing (β̂−β)Hβ̂(β̂−β) with the χ2(30)-distribution (Fig
3b). Also the coverage of the confidence regions based on the
profile likelihood was investigated by comparing 2(lprof (θ) −
lprof(θ̂)) with the theoretical χ2(6)-distribution. All three
comparisons gave a non-significant Kolmogorov-Smirnov p-
value. Pairwise plots of parameter estimates looked ellipse-
shaped and visualization of β and θ-parameters showed no
sign of bias.
The experiments indicated that (1) Parameters are iden-
tifiable (2) The Laplace approximation is sufficiently
accurate (3) Standard asymptotics applies with the

relatively small amount of data. (4) The parametrization of θ̂

is suitable.
For each of the simulated datasets we considered the approx-
imate standardized residual-vector u (11) based on the true
parameters (β, θ). The sum of squares utu were compared
with the approximating χ2(6000)-distribution (Fig. 3d). We
also considered the simulated likelihood ratio statistic for
the “pure” Laplace method where θ and β are both treated
as fixed effects as opposed to (7). The distribution did not
agree well with the χ2(36)-distribution (not shown). The only
difference between the to methods is that the “pure” Laplace
method has an extra additive term on the score function
(4) which appears when taking the derivative of the Laplace
approximation (appendix).

3.3 Application on real data

We apply the method on the North Sea Cod IBTS survey 1st
quarter 2002. The number of samples is 410 and the 1 cm
size-classes under consideration are 10-69 cm making a total
of 24600 random effects. The dimension of the β-vector is 60.
Estimates of (β̂, θ̂) were obtained following the described ML-
procedure along with the posterior sample η∗ and standard-
ized residual vector u (11).
The model was validated by plotting residuals against longi-
tude, latitude, size and time (Fig. 4). No obvious patterns
were revealed. A qq-plot of residuals agreed with normal
distribution (Fig. 5).
Finally we looked for over-dispersion compared to the Pois-
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Figure 5. qq-plot of standardized residuals obtained by
(11)

son assumption by plotting the observation vector against
eη∗ (not shown). The standard-deviation appeared to ap-
proach the mean for large counts consistent with the Poisson-52
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Figure 3. 100 simulations. (a) simultaneous deviation of (β̂, θ̂) from their true values measured in the inner product given by
the hessian (9) (histogram) and approximating χ2(36)-distribution (line). (b) (β̂−β)Hβ̂(β̂−β) (histogram) and approximating

χ2(30)-distribution (line). (c) 2(lprof (θ) − lprof(θ̂)) (histogram) and corresponding χ2(6)-approximation (line). (d) utu (11)
(histogram) and corresponding χ2(6000)-approximation (line).

assumption.
Estimated covariance parameters and uncertainties are ob-
tained from the profile likelihood (Table 1).

The corresponding estimates and uncertainties of the size,
space and time correlation functions are found using the
δ-method (Fig. 6). It appears from Fig. 6c that the time-
correlation is approximately constant over a time range of 2
months. This means that the large scale intensity landscape
changes rather slowly. A likelihood ratio-test of b2 = 0 gives
a p-value of 0.047.
Uncertainties of the log-size composition β̂ is obtained
from the information matrix (9) (Fig. 7). Small scale size-
correlation is inherited to the information about population
size distribution β̂ which is not surprising in view of from
formula (A.5).
We carried out the exact same analysis for 1st quarter 2001
data. The parameter estimates and uncertainties of correla-
tion parameters were virtually identical to the corresponding
results of 2002 indicating robustness of the method. Under
a model assuming independence between the two surveys
an approximate likelihood ratio test of θ2001 = θ2002 could
be constructed based on a quadratic approximation of the
likelihood-profile (8) for each survey giving a p-value of 0.40.
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Figure 7. Estimated population log-size-composition (β-
parameter) with marginal 95%-confidence intervals.

4. Discussion

This paper provides a general procedure for approximate
ML-inference for the discretized LGCP put in the context
of a generalized linear geostatistical model. The approach is
designed for cases involving a large number of observations53
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Table 1

Estimated parameters, standard deviations and parameter-correlations.

Description Parameter Estimate Sd Corr

Size correlation log(1 − φ1 − φ2) -4.52 0.12 1.00
Size correlation φ1 − φ2 2.56 0.06 -0.64 1.00
Variance log σ2 1.83 0.16 -0.39 0.25 1.00
Spatial correlation log b1 -5.57 0.30 0.03 -0.10 -0.71 1.00
Time correlation log b2 0.01 0.80 -0.05 -0.03 -0.26 0.33 1.00
Nugget effect log(p−1 − 1) 1.34 0.24 -0.31 0.22 0.65 -0.18 0.04 1.00

and random effects. The joint maximization of random and
fixed effects has the interpretation of assigning a flat prior
to β (appendix) and is thus similar to REML estimation for
linear mixed effects models (Jiang, 2006).
To achieve computational speed for large models the approach
requires that the covariance has a sparse precision, or equiv-
alently that the latent log-intensity is a Gaussian Markov
Random Field (GMRF) (Rue and Held, 2005). Whether this
is feasible depends on the application of interest and it is not
generally obvious how to achieve this. If the data locations
are a subset of a regular grid one can directly apply GMRFs.
This was the case for our application on fish-samples from
the North Sea. First a covariance structure was formulated
to capture relevant heterogeneity caused by large-scale move-
ment and small-scale size-dependent patchiness. Secondly an
AR(2)-representation of the size-precision was adopted to

obtain the required sparseness.
The space-time precision could have been chosen sparse as
well by introducing auxiliary variables (Rue and Held (2005)
page 200). It is however not a good idea for the present case
where space and time points are highly irregular and relatively
few (≈ 400). Thus the present formulation does not make any
assumptions on the structure of the space time correlation. An
exponential covariance with a nugget was chosen for simplicity
but more flexible correlations could be tried without much
effort like for instance the Matern family (Diggle and Ribeiro,
2006).
Larger and more interesting case-studies would attempt to
model many more surveys at once and for such problems
a sparse formulation of the space-time precision would be
necessary e.g. by using a GMRF on the 3D-torus (Rue and
Held (2005) 2.6) and interpolate to irregular grid .54
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Unfortunately when combining the 3D-torus with the AR(2)
structure of the size precision we get a 4-dimensional graph
for which it is less beneficial to apply the sparse Cholesky
factorization (Davis, 2006a).
It was shown that the first order Taylor expansion of the
scorefunction wrt (β, θ) was quite accurate. For non-linear
modelling of β it seems obvious to simply replace the likeli-
hood by a quadratic approximation.
Model validation was performed using approximate samples
from the posterior distribution η|x. Attempts were made
to improve sampling from the GPA. Metropolis Hastings
algorithm was applied with a random walk proposal on the
target distribution rescaled to having the identity matrix as
second order derivative. After 106 steps the chain had still not
converged. The posterior distribution have natural majorizing
densities such as the log-gamma distribution and the normal
prior distribution. None of these work in practice for rejection
sampling in high dimension. It remains an open question
how to draw accurate posterior samples for problems of this
dimension.
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Supplementary Materials

The implementation of the estimation method has been imple-
mented as an R-package (R Development Core Team, 2008)
using the sparse matrix library CHOLMOD (Davis, 2006b;
Bates and Maechler, 2008). The R-package is available on
request.
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Appendix

Computational details

Here we provide some more details on the calculations of
section 2.1. The derivatives of the negative log-likelihood (2)
are given by

∇β l(β, θ) = −A
t
Qθ(Eθ[η|x] − Aβ) (A.1)

and

∇θi
l(β, θ) = −

1

2
tr(Q̇θQ

−1
θ ) +

1

2
tr(Q̇θV (η|x))

+
1

2
(E(η|x) − Aβ)t

Q̇θ(E(η|x) − Aβ)

(A.2)

where Q̇θ denotes the elementwise derivative of Qθ wrt. θi.

The joint vector ξ̂θ =

„

η̂θ

β̂θ

«

of random and fixed effects was

defined implicitly through the augmented system (5) and (6)
of the form

f
′
ξ(ξ̂θ , θ) = 0

where f(ξ, θ) is given as the full negative log-likelihood (1).
A chain-rule argument on the previous display yields (see also
Skaug and Fournier (2006))

∇θ ξ̂θ = −f
′′
ξξ(ξ̂θ , θ)−1

f
′′
ξθ(ξ̂θ, θ) (A.3)

which for the present case translates to

∇θi

„

η̂

β̂

«

= −

„

Qθ + Dη̂ −QθA

−AtQθ AtQθA

«−1 „

Q̇θ(η̂ − Aβ̂)

−AtQ̇θ(η̂ − Aβ̂)

«

(A.4)

used to calculate (9). Taking derivative of (4) gives the
remaining part of (9)

Hβ = ∇2
βl(β, θ) = A

t
QA − A

t
Q(Q + Dη̂)−1

QA (A.5)

Gradient of Laplace approximation

It is sometimes convenient to give an alternative representa-
tion of the model in terms of the augmented vector ξ. Consider
for some small δ > 0 the augmented positive definite precision
matrix

Rθ =

„

Qθ −QθA

−AtQθ AtQθA + δI

«

(A.6)

with determinant |Rθ | = δk|Qθ | and consider the LGCP with
ξ ∼ N(0, Rθ) and no counts associated with the last k entries.

l(θ|ξ, x) =
n

X

i=1

e
ξi −

n
X

i=1

xiξi −
1

2
log |Rθ| +

1

2
ξ

t
Rθξ (A.7)

Then when δ approach zero the corresponding full negative
log-likelihood (A.7) converge towards (1) except for an addi-
tive term k

2
log δ. In conclusion, we can find the gradient of

the profile (8) as ∇θ l(θ|ξ̂θ , x). Defining

h(ξ, θ) = f(ξ, θ) +
1

2
log

˛

˛f
′′
ξξ(ξ, θ)

˛

˛

the likelihood profile (8) is h(ξ̂θ , θ) and the gradient wrt. θ

is found using the chain-rule (see also Skaug and Fournier
(2006))

∇θh(ξ̂θ , θ) = h
′
θ(ξ̂θ , θ) + h

′
ξ(ξ̂θ , θ)∇θ ξ̂θ (A.8)

The derivative ∇θ ξ̂θ is given by (A.4). The remaining
derivatives are now considered. To adapt the notation to the
missing Poisson terms of (A.7) corresponding to the last k

entries define the intensity and data-vector to be zero for the
missing entries i.e. λi = eξi for i 6 n and λi = xi = 0 when
i > n. Moreover let D = diag(λ). Then the derivatives are
given by

h
′
ξ(ξ, θ) = λ − x + Rθξ +

1

2
[λi((Rθ + D)−1)ii] (A.9)

h
′
θi

(ξ, θ) = −
1

2
tr(R−1

θ Ṙθ) +
1

2
ξ

t
Ṙθξ +

1

2
tr(Ṙθ (Rθ + D)−1)

(A.10)

When evaluating expressions like these under the assumption
that Rθ is sparse it is a common trick to note that the
inverses R−1

θ and (Rθ + D)−1 are only required on the non-
zero pattern of Rθ (Rue, 2005; Dahl et al., 2005; Neumaier
and Groeneveld, 1998).
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Incorporation of size, space and time correlation

into a model of single species fish stock dynamics

Kasper Kristensen and Peter Lewy

Abstract: This paper improves the statistical interpretation of trawl-survey data by combining the log Gaussian Cox

process (LGCP) with a length-based model of single species fish stock dynamics (LBM). The LGCP is suitable for

statistical modelling of trawl survey data because of its ability to handle over-dispersed count data with arbitrary

correlation structures. A correlation structure is formulated to give a realistic description of the random variation of trawl

data caused by spatio-temporal heterogeneity and small scale size-dependent clustering.

We analyze a case study of nine surveys in the Baltic based on the LGCP including size, space and time correlations.

The LGCP, fitted following a maximum-likelihood approach, is validated and the biological LBM is statistically accepted

as a sub-model. Inclusion of correlations generally results in an information-loss of the size-spectrum level and temporal

variations of biological processes becomes less significant. In particular it is shown that by including size, space and time

correlations we can statistically accept a hypothesis of constant catchability. The same hypothesis is strongly rejected by a

model which ignores the correlations. The interpretation of catchability is crucial for biomass estimates.

1. Introduction

Bottom trawl survey data provides statistical information
about population dynamics in the sea. Combining a biological
length based model with a statistical model of the count data
obtained from the survey makes it possible to estimate param-
eters in the biological model. However the choice of statistical
model may greatly affect the outcome of the biological model
both in terms of parameter estimates and parameter uncertain-
ties (Deriso et al. 2007) . Also the final choice of complexity of
the biological model will depend on the statistical distribution
of choice. Therefore it is important to critically validate the
statistical distribution before applying it in combination with a
biological model.
A recent case study (Kristensen et al. 2006) has shown that by
using a negative binomial distribution for the counts obtained
from the surveys it is possible to fit a size-based population
model surprisingly well based on a fairly small amount of data
assuming independence between length-groups. The negative
binomial distribution was statistically accepted for each sepa-
rate length-group. However it was pointed out that the study
completely ignored possible dependencies in the data and that
this could potentially lead to wrong conclusions.
It is well known that spatial heterogeneity induces dependen-
cies in abundance data. Hence a realistic statistical model should
take its starting point by considering the space-time compo-
nent. In the literature two ways to deal with space-time mod-
elling of fish have been considered: the mechanistic approach
(Sibert et al. 1999) which attempts to model movement of the
individual fish and then scale to population level as opposed to
the geostatistical approach (Jardim and Ribeiro 2007; Petitgas
2001) which models variations of fish abundance directly on
population level by imposing a suitable correlation of the log-

K. Kristensen. Danish Institute for Aquatic Resources, Charlot-
tenlund Castle, DK-2920 Charlottenlund, Denmark
P. Lewy. Danish Institute for Aquatic Resources, Charlottenlund
Castle, DK-2920 Charlottenlund, Denmark

abundance surface.
In this paper we follow the geostatistical approach because we
are not interested in the spatial component but only in the en-
tire population size-distribution.
A suitable choice of correlation structure makes it possible
to account for the fact that the spatial abundance surface of
fish changes randomly in both space and time (Petitgas 2001)
(spatio-temporal correlation) and at the same time take into
account that fish swim in batches of a narrow fish-size compo-
sition within batches (small scale size correlation).
Geostatistical modelling of survey data is not straight-forward
because survey data are notoriously count data while standard
geostatistical models are aimed at normally distributed data.
This is why we consider the log Gaussian Cox process (LGCP)
(Møller et al. 1998) which is suitable for statistical modelling
of over-dispersed count data and at the same time allowing the
incorporation of arbitrary correlation structures.
The objective of the present paper is to replace the statistical
model applied in Kristensen et al. (2006) with the more realis-
tic LGCP model and to study the biological consequences.
In particular we study catchability assumptions. If a year-class
appears to increase from one survey to the next it is common to
assume that this is caused by increased catchability. A statisti-
cal model which includes space and size-correlations can ex-
plain apparent changes in catchability. We illustrate this claim
by fitting a size-spectrum model with and without correlations.
The likelihood ratio-test of constant catchability is accepted
for the model which includes space, time and size-correlations
while the same hypothesis is strongly rejected under a statisti-
cal model which ignores the correlations.

2. Theory

2.1. Biological model
The biological model describes the expected size-distribution

of a fish population - a so-called size spectrum model. It is ob-
tained by imposing a growth pattern and size dependent mor-
tality to the individuals and then scaling to the population level.
Assuming that

Can. J. Fish. Aquat. Sci. In prep.: 1–9 (2008) DOI: 10.1139/Zxx-xxx c© NRC Canada58
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1. The growth pattern of an individual follows a von Berta-
lanffy growth curve (Bertalanffy 1938) with individually
varying L∞ following a probability distribution u.

2. Individuals are recruited to the size L0 with recruitment-
rate r(t).

3. Each individual is exposed to a size (s) and time-specific
(t) total mortality z(s, t).

it has been shown (Kristensen et al. 2006; Wang and Ellis
2005) that the individual based model scales to the number
density

n(s, t) =

∫ t

−∞

r(t0) exp

(

−

∫ t

t0

z(Lt0(τ,Gt0(s)), τ) dτ

)

u(Gt0(s))G
′

t0
(s) dt0

[1]

where

Gt0(s) =
s− L0e

−k(t−t0)

1 − e−k(t−t0)
[2]

and

Lt0(t, L∞) = L∞ − (L∞ − L0)e
−k(t−t0) [3]

For a complete specification of the spectrum model [1] the
parametric forms of the functions r,z and u must be stated.

Table 1. Parameters occurring in [1].

Symbol Explanation

k von Bertalanffy growth parameter.

µL∞
Mean value of L∞.

σL∞
Standard deviation of L∞.

M0 Parameter in natural mortality

F y
∞

Yearly varying asymptotic level of fishing

mortality.

βf Parameter in fishing mortality.

L
f
50

Parameter in fishing mortality.

Ry Total recruitment for year-class y.

µrecr
y Mean recruitment time for year-class y.

σrecr
y Standard deviation of the recruitment rate for

year-class y.

We use the same as Kristensen et al. (2006). The recruit-
ment rate r is chosen as a yearly varying input of Gaussian-
shaped peaks . The total mortality z as a sigmoid function of
size with a yearly varying asymptote plus an additive level M0

(Appendix [13]) . Finally the distribution of L∞ was chosen
as a normal distribution. All parameters of the size-spectrum
model are summarized in Table. 1.

2.2. Random intensities
The previously introduced size-spectrum model describes

the size-distribution of an entire population. It does not explic-
itly model where the fish are located. Our approach for dis-
tributing the fish in the sea is purely statistical and is based

on some rather weak assumptions about the local properties of
fish abundance surface: If the abundance is above average at
a given location we expect it to be above average at locations
nearby. Correspondingly, if a number of fish in one size class is
observed to be above average we expect the neighboring size-
classes in the same sample to be above average because fish
swim in small batches of narrow size-composition.
To meet these requirements let η(s, x, t) be a Gaussian stochas-
tic process describing the log-intensity of fish of size s at po-
sition x at time t. Denote by ρ(∆s,∆x,∆t) the correlation
corr(η(s + ∆s, x + ∆x, t + ∆t), η(s, x, t)) assumed only to
depend on (∆s,∆x,∆t). The correlation of a Gaussian pro-
cess is related to the local deviations of the process from its
mean because

E(η(ξ + ∆ξ|η(ξ)) =

E(η(ξ + ∆ξ)) + ρ(∆ξ)(η(ξ) − E(η(ξ)))
[4]

with the notation ξ = (s, x, t).
We apply the structure introduced in Kristensen (2008) given
by

ρ(∆s,∆x,∆t) =
(

(1 − ν)e−b1∆xe−b2∆t + ν1(∆x=0,∆t=0)

)

ρsize(∆s)
[5]

where ∆s, ∆x and ∆t denotes the size, space and time-distance
between two samples measured in cm, km and year respec-
tively. The parameter ν ∈ (0, 1) here denotes the nugget-effect
and ρsize is chosen as the correlation of a stationary AR(2)-
process with parameters φ1 and φ2 (Appendix 6.2).
To understand [5] it is useful to consider the expression when
some of the distances are zero. If e.g. ∆x = 0 and ∆t = 0 it
means that we are considering a pair of log-intensities corre-
sponding to the same position in space at the same time. The
expression reduces to ρsize(∆s) which means that ρsize has
the interpretation of small scale size correlation.
Conversely if ∆s = 0 then it means that we are considering a
fixed size-class. The expression reduce to (1−ν)e−b1∆xe−b2∆t+
ν1(∆x=0,∆t=0) which is the correlation of a space time Markov
random field modified by adding white noise to model small
scale variability.

2.3. The LGCP
Length-based survey observations may be organized in a

vector of counts Ni. With each count Ni is associated a sam-
pling time ti, a position xi, a size si and a survey surveyi.
The LGCP assumes that the counts are independent Poisson
distributed conditional on a hidden random log-intensity ηi:

Ni|η ∼ Pois(exp(ηi))

where the hidden log-intensity η is assumed to follow a mul-
tivariate Gaussian distribution

η ∼ N(µ,Σ)

We obtain our statistical model by defining Σ in terms of the
correlation from the latter paragraph Σi,j = σ2ρ(si − sj , xi −
xj , ti − tj) and by assuming that the log-intensities have a size
and survey specific mean

µi = βsizei,surveyi
[6]

c© NRC Canada59
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The statistical model states that the size-composition of the en-
tire fish-population is unchanged during the survey. This is rea-
sonable as long as the survey duration is short compared to the
growth and mortality rates.

2.4. Spectrum-model hypothesis

The biological size-based population model is treated as a
mean-value hypothesis in the LGCP-model just like in Kris-
tensen et al. (2006)

E(Ni) =

∫

Ci

p sel(s)n(s) ds [7]

where sel(s) is an s-shaped size-selectivity function (Appendix
[12]) taking values in the interval (0, 1) and p denotes the fishing-
power.
For the LGCP [7] is equivalent to a sub-model of [6] given by

βsize,survey = log

(
∫

Csize

p sel(s)n(s, tsurvey) ds

)

−
1

2
σ2

[8]

because ENi = exp(µi + 1
2σ

2) (Aitchison and Ho 1989). It
is convenient to apply the reparameterization log p̃ = log p −
1
2σ

2. Then there is no overlap between parameters describing
µ and those describing Σ.
Kristensen et al. (2006) found it necessary to model p as be-
ing survey dependent psurvey in order to explain apparently
increasing cohorts between surveys. A likely explanation of
this phenomenon is that the survey positions (Fig. 1) are con-
centrated on areas with abundance above average some years
and below average other years. It is therefore relevant to test
the constant catchability hypothesis under a statistical model
which accounts for size, space and time correlations in the ob-
servations.
All parameters in the size-spectrum model are summarized in
the vector α given by

α = ( R1997, R1998, R1999, R
∗

2000 = 1, R2001, R2002, R2003,
µrecr

1997, ..., µ
recr
2003,

σrecr
1997, ..., σ

recr
2003,

p
(survey)
t , L

(survey)
50 , γ(survey),

k, µ∗

L∞

= 135, σL∞
,

L
(fishery)
50 , δ(fishery),

F
(<2001)
∞ , F

(2001−2002)
∞ , F

(2002−2003)
∞ , F

(2003<)
∞ ,

M0 )

[9]

containing both the parameters of Table 1 and the catchability
parameters. A fixed value of µL∞

is used and the recruitment
for for year 2000 is fixed to obtain estimability (Kristensen
et al. 2006).

2.5. Approximate likelihood inference

The likelihood function of the LGCP-model is obtained as a
product of a multivariate normal pdf and a Poisson pdf summed

over all possible combinations of the un-observed random in-
tensity:

L(β, θ) ∝

∫

Rn

|Σθ|
−

1

2 e−
1

2
(η−Aβ)Σ−1

θ
(η−Aβ)

n
∏

i=1

eηiNi

Ni!
e−eηi

dη

[10]

Here A denotes the design-matrix corresponding to [6] writ-
ten on vector form µ = Aβ. All covariance parameters are
contained in the vector θ = (σ2, b1, b2, φ1, φ2, ν). Kristensen
(2008) provided an efficient method for estimation in this model
which utilizes the fact that Σ−1

θ and A are sparse matrices
(Davis 2006a,b). The method is based on a Gaussian approxi-
mation of the distribution of η|N to compute the integral and
is thus similar to the method described in Skaug and Fournier
(2006). However we cannot directly apply their approach be-
cause of the large number of random effects and fixed effects
in our application.
Our estimation approach consists of three steps

1. Find approximate ML-estimates (β̂, θ̂) of the likelihood
[10] applying a Gaussian posterior approximation as de-
scribed in Kristensen (2008).

2. Construct a second-order expansion q(β, θ) of− logL(β, θ)

around (β̂, θ̂).

3. Fit the size-spectrum model using the quadratic approx-
imation by writing [8] on the form β = ψ(α) and op-
timizing q(ψ(α), θ) wrt. (α, θ) and obtain the estimate

(α̂, θ̂0).

The approximations applied in step 1 and 2 were investigated
by simulation in Kristensen (2008). It was concluded that the
likelihood function based on a Gaussian posterior approxima-
tion was sufficiently accurate to consistently estimate θ and β
without any visible bias. Furthermore the distribution of q(β, θ)−

q(β̂, θ̂) was very close to the theoretical χ2-distribution indi-
cating that the second order approximation of the likelihood
was quite accurate. These conclusions justifies the quadratic
approximation applied in step 3. Step 3 replaces the likelihood

[10] with a quadratic approximation around (β̂, θ̂) and has the
computational benefit that further model fitting and testing can
be carried out without the high-dimensional integrals appear-
ing in the true likelihood function. One should have in mind
that the quadratic approximation only holds in a neighborhood

around (β̂, θ̂) and thus a parameter estimate α̂ obtained using
the quadratic approximation can be very different from the true
maximum-likelihood estimate if the corresponding ψ(α̂) lies
outside the neighborhood. However in this case the sub-model
would be rejected by a likelihood ratio test and we would dis-
card the estimate anyway.
Confidence regions of parameter estimates are obtained from
the observed information matrix (the Hessian) assuming stan-
dard asymptotics.
Tests of the spectra-model hypothesis against the unparame-
terized model are based on the approximate likelihood ratio
statistic

q(ψ(α̂), θ̂0) − q(β̂, θ̂) ∼ χ2(df) [11]
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Fig. 1. Haul positions of BITS for all 9 surveys (points). The

surveys are distinguished by the different colors. A line joins two

points if the corresponding hauls are chronological neighbors.

where df is the difference between the dimension of β and α.
To validate the model we follow the simulation based approach
from Kristensen (2008) : Draw a (high-dimensional) sample η∗

from the approximate distribution of the random effect η given
the data N . If the model is true then the pair (η∗, N) has the
same distribution as (η,N). So we can asses the goodness of fit
of the random effect by checking that η∗ is normal with mean
µ and covariance Σ.

3. Data

We consider the same data as Kristensen et al. (2006) in or-
der to compare the results of the different approaches. Data
consists of 299 hauls from the Baltic International Trawl Sur-
vey (BITS) where only positions within ICES subdivision 25
are considered (Fig. 1). Surveys are conducted twice a year
during spring and autumn and the duration of a survey is ≈ 1
month. The present data set includes the 9 surveys from spring
2000 until spring 2004.
The measurement of consideration is the number of fish caught
in 59 size-groups in the individual hauls. For each measure-
ment (count) Ni the following co-variates are used: haul iden-
tification, longitude, latitude, haul-initialization-time.

4. Results

The raw statistical model without any biological assump-
tions on the mean-value structure [6] was fitted by optimiz-
ing the described approximation to [10] with the correlation-
structure [5]. Following the simulation based goodness of fit
approach we obtained a set of standardized residuals. A qq-plot
of the residuals (Fig. 2) agreed with the normal distribution.
Plotting the residuals against the covariates size,time, latitude
and longitude (Fig. 3) did not reveal any systematic trends.

The ML-estimates of the model are (β̂, θ̂) where β̂ represents

the un-parameterized log-size-distribution and θ̂ contains the
correlation parameters. Estimates, standard deviations and cor-
relations of the θ-parameters (transformed as in Kristensen (2008)

−4 −2 0 2 4

−4

−2

0

2

4

Fig. 2. qq-plot of standardized residuals against normal

distribution.

to improve the normal approximation of the likelihood func-
tion) are given in table 2 indicating that there was no problem
with parameter-identification in this model.

The corresponding correlation functions are shown with (point-
wise) confidence limits (Fig. 4). The size-correlation (Fig. 4a)
is estimated to be greater than 50% for size-differences less
than 20 cm and the effective range - defined as the lag for
which the correlation has decreased to 5% - is estimated to
be 78 cm (CV=8%). Space and time correlations (Fig. 4b and
4c) are substantial as well with estimated effective ranges of
200 km (CV=16%) and 0.33 year (CV=21%). For comparison
the largest spatial distance between two samples is ∼ 500 km.
As the effective range of the time correlation is smaller than
0.5 year there is almost no correlation between two succes-
sive surveys. Approximate likelihood ratio tests of (1) ignor-
ing size-correlation (φ1 = φ2 = 0) (2) ignoring space-time
correlation (b1 = b2 = ν = 0) were both strongly rejected
(p < 10−4).
A Wald test of using the AR(1)-process to model size-correlation
versus the alternative AR(2)-process (φ2 = 0) was also re-
jected (p < 10−4).

The estimated parameter-vector β̂ is illustrated with 95%-con-
fidence intervals (Fig. 5). To better understand how the correla-
tion model affects the precision of the β-parameter we consid-
ered a pair of length groups 20 cm and 21 cm for the spring
2001 survey (the survey with the largest number of hauls).
95%-confidence ellipses of the parameter pair (β1, β2) were
constructed (Fig. 6) on basis of the observed information ma-
trix for the different combinations of correlation-model. The
model assuming independence between all observations has
the red circle as confidence band of (β1, β2). Adding space-
time correlation (but no size-correlation) results in wider con-
fidence bands (blue circle). However when either of these mod-
els are extended to include size-correlation the confidence re-
gions are squeezed to ellipses. It appears from Fig. 6 that the
inclusion of size-correlation increases the uncertainty in the di-
rection y = x while the uncertainty in the orthogonal direction
is reduced. This observation also holds for other size-classes
and generally means that by including size-correlation we in-
crease the information about the log-size-spectrum slope while
the information about the overall level of the spectrum is re-
duced.
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Table 2. Estimated parameters and parameter-correlations.

Description Parameter Estimate Sd Corr

Size correlation log(1 − φ1 − φ2) -4.33 0.07 1.00

Size correlation φ1 − φ2 2.31 0.04 -0.30 1.00

Variance log σ2 1.43 0.09 -0.69 0.22 1.00

Spatial correlation log b1 -4.24 0.18 0.11 -0.06 -0.57 1.00

Time correlation log b2 2.15 0.23 0.01 -0.00 -0.19 0.19 1.00

Nugget effect log(ν−1
− 1) 1.06 0.16 -0.20 0.23 0.33 0.20 0.03 1.00
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Fig. 6. 95%-confidence ellipsis of the pair of β-parameters

corresponding to the neighbor size-classes 20 cm and 21 cm for

the spring 2001 survey fitted under different correlation models:

No correlation (red). Only space-time correlation (blue). Only

size-correlation (green). Both size and space-time correlation

(black).

These considerations explains the wide marginal confidence
bands around the β-parameters (Fig. 5). The increased preci-
sion of the spectrum-slope is not visible from that figure but
would require a different plot (not shown).
After having analysed the main statistical model we can pro-
ceed by considering the size-spectrum model hypothesis [8]
with parameters α given by [9]. The spectrum model was fit-
ted to data using the quadratic approximation of the LGCP-

likelihood around (β̂, θ̂). The likelihood ratio test of this model
against the un-parametrized model was rejected using [11].
Plots of the spectrum model revealed that the rejection was
due to wrong position and wideness of the recruitment peak
of 2003. This could be seen because the corresponding part
of the size-spectrum went outside the confidence bands of the
β-parameters (not shown). By imposing an individual mean-
spawning date and wideness for the year in question the size-
spectrum model was accepted (p=0.34). The log-size-spectrum
of the accepted model lies within the confidence bands of the
β-parameters from the main model (Fig 5).
A further simplification of the model was obtained by test-
ing the asymptotic level of the mortality rate (F∞) as constant
against the alternative of a yearly varying level (p=0.12). A test
for no size-selectivity in the total mortality was also accepted
(p=0.81).
The resulting spectrum-model has 16 parameters and thus rep-
resents a major reduction in complexity compared to the final
model of Kristensen et al. (2006) which had 32 parameters.

Recruitment and biomass estimates of the final model are shown
in Fig 7. The biomass does not change significantly during the
period.
The fact that the LGCP-model accepts the constant catchabil-
ity hypothesis is an important difference compared to the neg-
ative binomial model applied in Kristensen et al. (2006). Tests
of constant catchability vs variable catchability is related to
the precision of the β-parameters (Fig. 6). Inclusion of both
size and space-time correlation greatly reduces the informa-
tion about the overall level of the size-spectrum and makes a
time variable catchability non-significant. Conversely any of
the simpler correlation structures over-estimates the precision
of the overall level and therefore rejects the constant catchabil-
ity hypothesis (Table 3).

Table 3. Likelihood ratio test of time-constant catchability

hypothesis under different null-models

Null.model LR.statistic p.value

No correlation at all 400.27 0.00

Size correlation, no space-time-correlation 33.90 0.00

Space-time-correlation, no size-correlation 185.82 0.00

Size, space and time-correlation 3.95 0.86

5. Discussion

The statistical interpretation of trawl-survey data must ac-
count for heterogeneity in order to give valid conclusions about
an underlying biological assessment model. A statistical model
which correctly describes heterogeneity provides more realis-
tic estimates of the uncertainty associated with biological pa-
rameters and predictions.
Complex biological phenomena like Spatio-temporal size-dependent
clustering of fish are difficult to explain from first-principles
but can relatively easily be modelled on population-level through
a correlation function. This geostatistical approach is useful for
population dynamical analysis where the main interest is the
size- or age distribution of an entire population. Heterogeneity
is treated as nuisance but the implications of the heterogeneity
are reflected in both biological estimates and in the interpreta-
tion of the model.
The present paper follows this idea by combining the log Gaus-
sian Cox process with an existing population model of a single
species fish stock. It is thereby investigated how different cor-
relation assumptions affects the final biological conclusions.
The study focused on the random effect of a time changing
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large scale intensity landscape and the effect of small-scale
size-dependent patchiness. Considering a case study of nine
bottom trawl surveys in the Baltic it was found that the corre-
lation structure was necessary to adequately describe the data.
Both the effect of a time changing large scale intensity land-
scape and the effect of small scale size correlation were signif-
icant.
Whether the correlations has an impact on the population anal-
ysis generally depends on the ranges of the correlations com-
pared to the scale of the study region. For the present case
the spatial correlation range constituted 40% of the largest dis-
tance between two samples. Similarly the range of the small-
scale size correlation constituted more than 100% of the en-
tire length-range. It is thus not surprising that the inclusion of
space-time and size correlations turned out to play an impor-
tant role in the statistical interpretation of the observed size-
spectrum.
Generally inclusion of size-correlation increase the precision
about the spectrum-slope while decreasing the information about
the overall level of the spectrum. The effect of space-time cor-
relation on the precision of the size-spectrum depends on the
spatio-temporal coverage of the survey. For the present case
the inclusion of space-time correlation decreased the informa-
tion about the size-spectrum - both the slope and the level.
The implications of a poorly identified level of the size-spectrum
for the individual surveys is immediate. Temporal changes of
catchability and mortality becomes less significant meaning
that statistical tests of time-independence tend to be accepted.
This generally leads to biological models with fewer param-
eters. However, when the number of biological parameters is
reduced it generally increases the precision of the remaining
parameters. In the end we do not necessarily loose biologi-
cal information about e.g. biomass but get completely different
conclusions.
For the present case a constant catchability hypothesis could
be accepted which is a major difference compared with Kris-
tensen et al. (2006) who analysed the same data material with
a negative binomial model ignoring the correlations. Most of
the biological effects which were significantly time-dependent
in the previous study could be tested constant with the new
model. The final biological model had only half as many pa-
rameters as the final accepted model in Kristensen et al. (2006).
The predicted biomass during the period 2002-2004 does not
change significantly according to the new model as opposed to
the corresponding predictions of Kristensen et al. (2006).
There are many possible explanations of catchability variations
(see Harley and Myers 2001) which can roughly be catego-
rized as factors related to the gear and factors related to spatial
heterogeneity. The present work attempted to explain apparent
temporal catchability variations as an indirect consequence of
large-scale spatial heterogeneity and schooling. Other authors
(Fryer et al. 2003; Trenkel and Skaug 2005) have modelled be-
tween haul variations of catchability directly considering the
gear-selection as a stochastic process.
Other statistical distributions for multivariate count data has
been applied to bottom trawl surveys in order to capture depen-
dence between size-classes comprising the Dirichlet-multinomial
and Gaussian-multinomial models (Hrafnkelsson and Stefans-
son 2004).
Performing size-based population analysis without accounting

for correlations in the data can be dangerous. We have provided
a statistical model which consistently deals with correlations
caused by various kinds of heterogeneity and shown how to
combine it with a length-based population model. The compu-
tational requirements of the method is outweighed by a number
of advantages. Significance tests for relevant biological com-
plexity are improved compared to previous models and confi-
dence intervals are more reliable. This is because the method
automatically accounts for possibly poor spatio-temporal cov-
erage of the survey when calculating confidence intervals. The
approach provides an alternative way to model catchability. In-
stead of treating catchability as a systematic effect to explain
catch-variability a similar effect can be obtained through the
space, time and size-correlation.
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6. Appendix

6.1. Parametrization

The parametric forms of the biological processes are ob-
tained from (Kristensen et al. 2006). The survey size-selection
is chosen as

sel(s) =
1

1 + exp(−γ(s− L
survey
50 ))

[12]

Total mortality is given by

z(s, t) = M0 + f(s, t) [13]

where M0 is an unknown constant and the fishing mortality
f is assumed to split into the product of a piecewise constant
function of time and a sigmoid function of size

f(s, t) =
1

1 + exp(−δ(s− L
fishery
50 ))

n
∑

i=1

F (i)
∞

1(τi−1<t<τi)

For the distribution of L∞ (u) we use a normal-distribution
with mean µL∞

and standard deviation σL∞
.

r(t) =
∑

y∈Y

Ryφµrecr
y ,σrecr

y
(t) [14]

where φµ,σ is the normal density with mean µ and standard
deviation σ. The mean recruitment time for cohort y is param-
eterized as a year y plus a date ∆ty i.e. µy = y + ∆ty .

6.2. Stationary AR(2)-process
The AR(2)-process is defined through the recursion

xt = φ1xt−1 + φ2xt−2 + ǫt

where (ǫt) are independent with distribution N(0, σ2). When
(φ1, φ2) belongs to the triangular region

{(φ1, φ2) : φ2 > −1, φ2 < 1 + φ1, φ2 < 1 − φ1}

it is well known that xt has a stationary initial distribution
π(x1, x2). The correlation function can be found by the so-
called Youle-Walker equations:

ρsize(0) = 1, ρsize(1) =
φ1

1 − φ2

ρsize(∆s) = φ1ρsize(∆s− 1) + φ2ρsize(∆s− 2), ∆s ≥ 2

6.3. Implementation
The computational methods of this paper are implemented

as R-packages (R Development Core Team 2008) available on
request.
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Abstract 

 

The spatial distribution of cod in the North Sea and the Skagerrak was analysed over a 24 year pe-

riod using the Log Gaussian Cox Process (LGCP). In contrast to other spatial models of the distri-

bution of fish LGCP avoids roblems with zero observations and includes the spatial correlation be-

tween observations. It is therefore possible to predict and interpolate unobserved densities at any 

location in the area. This is important for obtaining unbiased estimates of stock concentration and 

other measures depending on the distribution in the entire area. Results show that the spatial corre-

lation and dispersion of cod catches remained unchanged during winter throughout the period in 

spite of a drastically decline in stock abundance and a movement of the centre of gravity of the dis-

tribution towards north east in the same period. For the age groups considered the concentration of 

the stock was found to be constant or declining in the period. This means that cod does not follow 

the theory of density-dependent habitat selection as the concentration of the stock does not increase 

when stock abundance decreases. 

 

Introduction 

 

Knowledge of the spatial distribution of fish and the temporal changes are important for the fishery, 

fishery management and for understanding the mechanisms of fish behaviour. The distribution of 

cod has been analysed in several studies (Rindorf and Lewy 2006; Perry et al. 2005).These analyses 

used a single point, the centre of gravity, as an overall measure to describe changes in the spatial 

distribution. However, if we want to study the spatial distribution of stock abundance in the entire 

area another type of modelling is required. 

 

Previously fishery scientific survey data have been analysed assuming that observations are inde-

pendent irrespective of trawl position and distributed according to either extensions of the log nor-

mal (Stefánsson 1996) or the negative binomial distributions (O’Neill and Faddy 2003, Kristensen 

et al. 2006) . Hrafnkelsson and Stefánsson (2004) presented extensions of the multinomial distribu-

tion to account for dispersion and correlation in length measurements samples. To avoid the as-

sumptions of independent observations other authors used kriging to account for spatial correlation 

in the analysis of trawl and acoustic survey data (Stelzenmüller et al 2005; Rivorard et al. 2000). 

Kriging methods, however, require that data follows a multivariate normal distribution, an assump-

tion which usually is not fulfilled at least not when part of data consists of zero’s. The 

log(catch+constant) transformation is often applied to avoid this problem, a solution which is prob-

lematic, because the results heavily depends on the choice of the constant. Here model we instead 

use a counting model to describe the discrete catch in number observations (including the zero catch 

observations) and to account for the spatial correlation between catches. The model, the so-called 

Log-Gaussian Cox Process, LGCP (Kristensen in prep.; Møller et al. 1998, Diggle and Ribeiro Jr. 

2007), is also known as the multivariate Poisson-log normal distribution (Aitchison and Ho 1989) 

and is a mixture of Poisson distributed observations with mean intensities following a multivariate 

lognormal distribution. The Poisson process can be regarded as the sampling process generated by 

the fishing process. The spatial correlation is included by assuming correlation between intensities 

to be a decreasing function of the distance between them. 

  

The focus of Kristensen in prep. was to develop methods for and implement of ML estimation of 

the parameters in the LGCP, which hitherto has been estimated by MCMC (Møller et al. 2004). 

Aspects of predictions and interpolation were not included. These aspects are crucial when estimat-
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ing total biomass or the biomass in specified areas, a prerequisite to evaluating the effects of spatial 

closures and temporal changes of stock concentration. 

 

The objective of this paper is to develop ML based methods for predicting the unobserved intensi-

ties at any point in space and to enable goodness-of-fit tests. 

 

The use of the model was illustrated by an analysis of the distribution of North Sea and Skagerrak 

cod in 1983-2006. The temporal change in the dispersion and spatial correlation was examined and 

the effect of a range of local hydrographical parameters investigated. Contour plots of the spatial 

distribution of age group 1 were produced by interpolation. The theory of Density Dependant Habi-

tat Selection as formulated by MacCall (1990) was investigated, i.e.  if the spatial distribution of a 

stock contracts/expands when stock abundance decreases/increases. The analysis will be based on 

the measure of concentration, D95 (Swain and Sinclair 1994) calculated from interpolations of in-

tensities. 

 

Statistical model 

 

Let be the catch in number from haul i with a known position, letiX iO be the unknown, true inten-

sity at the same position, let  and d be dispersion parameters and finally letb be a spatial correla-

tion parameter. Further, let X  be the vector of n catch samples covering the area, and 

let  be the corresponding true intensities, where t denotes the transposed of a matrix. 

It is assumed that the duration of the hauls are the same.  

a

 t

nXX ),...,( 1

t

n ),...,1 OO(O  

 

The model considered is a compound Poisson distribution where the conditional distribution of the 

catch, , given the intensity, iX iO , are independent Poisson distributed variables and where � follows 

a multivariate lognormal distribution: 
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The variance/covariance matrix  is defined by 6
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The covariance between two intensities is assumed to be a decreasing function of distance between 

the haul positions such that it approaches zero when distance increases:  
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where I is the indicator function and  denotes the distance in kilometres on the surface of an 

sphere between position i and j. The relationship between the distance between two points in kilo-

metre and the corresponding longitudes and latitudes (lon and lat) is:  
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where 180/S c . 

  

The correlation between log intensities is 
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If d is zero the correlation is  independent of a. ),(* jidistb
e
�

 

The model contains the four parameters }and,,{ dbaPT  and the unobserved random effects in-

tensities, K . 

 

Differences in the duration of the hauls have been ignored and are implicitly included in the small 

scale, nugget effect, see below. 

 

The interpretation of the model is: 

 

1. 

The observed numbers caught in a haul given the intensity is assumed to follow a Poisson distribu-

tion. This process is interpreted as the fishery sampling process for instance due to variation of the 

behaviour of the trawl or fish movements. 

 

2.  

The intensities in the sea are assumed to follow a multivariate lognormal distribution where the cor-

relation between intensities is a decreasing function of distance between them. The mean and vari-

ance of observations in the LGCP is 
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If the variance of log intensities, a+d, is positive the variance of X is greater than the variance of the 

Poisson process. Hence a+d can be regarded as overdispersion parameters relative to the Poisson 

process.  

 

The variance-mean relation of LGCP corresponds to that of the negative binomial distribution, for 

which .  2*constant EEV � 
 

3. 

The covariance defined in equation (2) consists of a sum of the two terms, which respectively can 

be considered as a large scale and a small scale component of the process. The large scale compo-

nent include the large scale variance a and the parameter b ( ) measuring the strength of the spa-

tial correlation: When b is small the large scale correlation between intensities is high and vice 

versa. The scaling of the correlation is measured by

0t

b
1 , which is the distance for which the spatial 

correlation is 0.37 (if d = 0). The small scale variance is d, which corresponds to the so called “nug-

get” effect in geostatistics, may for instance be arise due to fish movements. Fig. 1 illustrates the 

clear large scale variation due to “spatial” correlation for the case where the “nugget” effect is ex-

cluded (solid line) and the superimposed small scale variation due the “nugget” effect (dashed line) 

blurring the large scale effect. 

 

Predictions of unobserved intensities at positions with observations available 
 

The likelihood function of X of the LGCP expressed as of function of the parameters,T , is 
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),,( KTXl is the negative log likelihood of ),( KX . 

 

Laplace approximations have been used to calculate )(TL in equation (4) for ML estimation of 

and testing hypotheses (Kristensen 2008). T̂
 

For the positions, where the observations are available, estimates, )(ˆ XTK , of log intensities X|K  

for given observations X can be obtained by maximizing ),,( KTXl  defined by equation (4) i.e. 

),,(maxarg)(ˆ KTK
K

T XlX  . As indicated the estimate depends on T and X. As estimate of K  we use 

)(ˆ)(ˆ
ˆ XX
T

KK  . 

 

Let  denote the likelihood of ),ˆ,()|( KTK XlXl  X|K .The distribution of X|K  is now approxi-

mated by the normal distribution with mean )(ˆ XK  using a Taylor expansion of )X|(l K : 
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I.e. the distribution of X|K is approximated by the quadratic approximation 
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Calculations using “realistic” parameters indicate that this is a good approximation to the true dis-

tribution. 

 

Assuming that the approximation holds the estimator )(ˆ XK  equals )|( XE K , which is the posterior 

minimum variance unbiased estimator of K  for given X. 

 

Using that 
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we find that 
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Spatial interpolation 
 

By analogy to the kriging method the LGCP can be used to spatially interpolate the intensity at po-

sitions where no observations exist. The best unbiased prediction of any function of the unobserved 

intensity is the conditional mean given the observations. In the analyses below we assume that the 

formulas of the conditional means and variances are based on the true value of the parameters. In 

practice the true values are replaced by the MLE’s.  

 

Assume that we want to predict the intensities, , for m new positions 

without observations. First the log intensities are predicted: 

tt
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According to eq. (1) the combined set of K  and newK  are distributed as 
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where and where  are defined similarly as 
����
 m

new ),...,( PPP  126 6 . 

 

We know that the conditional distribution of KK |new is normal with mean and variance 
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By analogy with the predictions of X|K  we want to use )|( XE newK for spatially interpolation: 

 

From the definition of the LGCP the conditional distribution of KK ,| newX  only depends on the in-

tensities in the points with observations,K .  According to Brémaud (1991) p. 12 this implies that 

newK  and X are conditionally independent given K  and hence ).|(),|( KKKK newE new XE  This im-

plies that 
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Having determined log intensity )(XnewK  the interpolated values of the inten-

sity )|()( XEX newnew OO   can be approximated using a Gaussian posterior approximation based on 

equations (9) and (10): 

 

)2/))|(()|(exp()|( XVdiagXEXE newnewnew KKO �      (11) 

 

We also wish to predict non-linear functions of )(XnewO  such as the measure of stock concentration, 

D95, defined below.  and the variance is calculated by simulation 

by drawing 100 times from the Gaussian posterior approximation based on equations (9) and (10) 

and calculating the mean and variance of simulated values of . 

)|) Xnew(()|)(( ) efEXfE new

KO  
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K

 

The spatial interpolation is performed on a regular fine scaled grid. The scale should be chosen suf-

ficiently fine to obtain a good approximation to the continuous random field.  
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Other distribution measures 
 

The ability of the LGCP to perform spatial interpolations of the (unobserved) population intensities 

makes it possible to obtain unbiased estimates of stock characteristics based on intensities in the 

entire space. A measure of stock concentration is considered: The measure, Dx, introduced by 

Swain and Sinclair (1994) is defined as the proportion of the minimum area containing x% of the 

stock, i.e D95true (say) is:  
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where E indicates the entire area in consideration and A any sub-area of E. 

If the area is divided into n equally sized sub-areas and iO represent the intensity in sub-area i then 

D95 can be approximated by 
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, where m fulfil that )1(95.0)( �dd mzmz and where )(iO  i=1,…,n 

are the intensities sorted in descending order. 

 

D95 is greater than zero and less than 0.95. D95 is conversely proportional the stock concentration, 

i.e. the concentration of a stock increases when D95 decreases. D95 approaches zero when concen-

tration increases and it equals 0.95 if the intensity is constant in the entire space, i.e. when the con-

centration is minimal. 

  

The validity of the theory of Density Dependant Habitat Selection was investigated by comparing 

the relation between D95 and stock abundance for 1983-2006, for which the abundance drastically 

was reduced. According to the theory formulated by MacCall (1990) individuals first occupy habi-

tats with the highest suitability, but as realized suitability of these habitats declines due to increasing 

population density other previously less suitable unoccupied habitat become colonized. Hence the 

distribution is characterized by spatially equal realized suitability. If the theory holds D95 should 

increase when the stock abundance increases.  

 

Calculation of D95 has been based on predicted intensities performed on the regular 50 times 50 

grid consisting of 808 points as described above. This procedure ensures that an unbiased estimate 

of D95 is obtained, see the Appendix. 

 

Analysis of residuals and goodness of fit tests 
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The residuals can be calculated as . Maximizing the log likelihood )(ˆ X
eX
K� ),,( KTXl  (eq. (4)) with 

respect to K  shows that  and hence the quantity )))(ˆ PK �� eX
X (ˆ(1 K6 �

X ))(ˆ( PK � XR  is linear 

transformed residuals scaled by log intensity. We prefer to apply these transformed residuals, which 

expresses the deviation predicted log intensity and the mean. To obtain standardized residuals of R 

the variance of R is needed: 
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As the last term in the expression of the variance is not known, we instead use , where 

 and for which  as modified residuals to circumvent this prob-

lem. We now assume that  and accordingly  is used as normal, standard-

ized and independent residuals, where is the lower Choleski triangle of 
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Now assume that we want to examine if residuals are independent of some specified spatial charac-

teristics, for instance the longitude and latitude. We know that R
*
 is related to the longitude, while 

U
*
 is not. However, if  is decreasing when the distance between the points i and j increases, 

then a specific element of U* only depends on the residuals close to the specified 

observation. This implies that the residuals may be considered as area specific residuals, which has 

been applied to examine model deviations according to the longitude and latitude.  

ijL )( 1�

 iU
* ¦ �

j

jij RL
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Goodness of fit tests for validation of the model have been based on the estimated values of log 

intensity,K̂ , and the MLE of the other parameters, . Two tests were considered: T̂
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where the variance/covariance matrix is determined by equation (6). 

 

The second test is based on the Kolmogorov-Smirnov test quantity and the quantity 

 )ˆˆ(1

)ˆ( 0� � KKVLU

 

x

xNxFT U |)()(|max2 � 
 

where is the lower Choleski triangle of )ˆ(KVL )ˆ(KV ,  is the empirical distribution function of U 

and N is the distribution function of the normal distribution: 

UF

 

 

If log intensity, )(XK , for given observations, X, is normal distributed i.e. ))ˆ(,ˆ(~| KKK VNX  then 

T1 and T2 respectively follow the and the Kolmogorov distributions. Even that the assumption of 

normality probably is reasonable implying that the two distributions may be used as test probabili-

ties we instead simulate the exact distributions of T1 and T2: 

2F

 

1. Estimate the parameters in the model and calculate and . 1T 2T

 976



2. Simulate new sets of parameters from the normal distribution  100 times using the pa-

rameters estimated. 

)ˆ,ˆ( 6TN

3. Calculate and  for each of the 100 repetitions. 1T 2T

 

The first test should be two-sided and the second one-sided. Hence, the test probabilities 

and )( ,111 obsTTPp ! )1.min(*2 222 qqp � ,where )( ,222 obsTTPq t ,were calculated. The model 

is accepted if p is greater that 0.05.  

 

The likelihood ratio test was applied to test successive hypotheses regarding the parameters.  

 

Application 
 

The LGCP was applied to cod catch rates from the International Bottom Trawl Survey (IBTS) in the 

North Sea and the Skagerrak in February 1983-2006. IBTS is coordinated by the International 

Council for Exploration of the Sea (ICES) and data is available on www.ices.dk/datacentre/datras/ 

public.asp. The area is confined within 4ºW and 13ºE longitude and 50ºN and 62ºN latitude. The 

period 1983 and onwards was chosen because the coverage and the survey gear standardization was 

better compared to previous years. For the 1. quarter survey the annual number of hauls lies be-

tween 322 and 534 with a mean of 390. The area contains 186 statistical rectangles (1º longitude by 

0.5º latitude), which were covered twice or more. The gear used is a bottom trawl and the haul posi-

tions within the rectangles are random selected among trawlable areas. The haul duration is on av-

erage 30 minutes, but in 12% of the hauls taken before 1999 the duration was about 1 hour, which 

may introduce a bias. 

  

The length of the cod caught was recorded and used to determine the age using age length keys. The 

spatial distribution using LGCP was studied for each of the age groups 1, 2 and 3 years and older.  

 

The hydrographical data, Depth, bottom temperature and salinity by haul, were provided by ICES’ 

hydrographical database. Data for the stock numbers by year and age were obtained from the ICES 

working group report (ICES 2006). 

   

Results 
 

The model was used separately for each combination of the age group 1, 2 and 3
+
 and the years 

1983-2006 i.e. for 3*24 = 72 combinations. 

  

First the model LGCP has been used to investigate if the position, the depth, the temperature and 

the salinity can describe the variation of the cpue, i.e. for given age and year it is assumed that 

 

)2,()2,(

)2,()2,()2,())(ln(

,,,,

,,,,,,,,

iyearageiyearage

iyearageiyearageiyearageiyearage

salpolytpoly

depthpolylatpolylonpolyXE

�

���� D
 (12) 

where i denotes sample number for a given age and year, lon  the longitude, lat the latitude, depth 

the bottom depth in meter, t the temperature in Celsius, sal the salinity in ppm, poly(.,2) a second 

degree polynomial andD a parameter. The reason why the covariates enter the right hand side of eq. 

(10) as a second degree polynomial is that this enables the existence of for instance a preferred tem-
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perature with a decreasing preference when moving away from the optimum. The assumption of a 

log linear mean structure was made to ensure that mean cpue remains positive. 

 

MLE’s of the parameters in eq. (12) and their confidence intervals obtained from the Hessian matrix 

were used to test the significance of the parameters. For all years and age groups and parameters the 

confidence intervals contained zero. One more run with model where the second degree terms were 

removed gave the same result. Hence for all age groups and years it was concluded that none of the 

effects associated with the covariates were found to be significant, i.e. log of the expected value,P , 

is constant throughout the area independent of any of the explaining covariates. For this model and 

for all ages and years the four parameters dba and,,P  have been estimated.   

 

Regarding the residual analysis the elements of the inverse Choleski, , have been plotted 

against the distance between points for all three age groups and all 24 years. For all 72 plots the 

functional relation between the inverse Choleski and the distance is very similar. As an example age 

group 1 in the middle of the period of 1983-2006, 1994 has been selected. The result is given in the 

upper panel of Fig. 2, which shows that the inverse Choleski elements actually decrease when the 

distance increases. It appears that outside a circle of 100 kilometres the corresponding residuals, R* 

can be neglected indicating that only residuals U* within the circles are correlated. 

ijL )( 1�

 

The residuals U* were plotted against longitude and latitude. For none of the residual plots any 

trend or systematic pattern was found. Plots again for age group 1 in 1994 are shown in the middle 

and lower panels of Fig. 2.  

 

The validity of the model has been tested using both the goodness-of-fit test statistics and . 

Both tests resulted in that the model was accepted for all age groups and years using a level of sig-

nificance of 5 percent. 

1T 2T

 

For each age group separately we tested the hypothesis that the parameters remain con-

stant over years. The likelihood ratio test was used for that in the following way: Let 

dba and,

))(log()( TT yy Ll � 

yyy HH
TT ˆ,

ˆ
 

 

 denote the likelihood function for year y, the MLE of the parameters and 

 the estimated Hessian matrix. For each year we approximate the likelihood function 

with the second order approximation, i.e. 

yT̂

 

)ˆ(ˆ)ˆ()ˆ()( yyy

t

yyyyyy Hll TTTTTT ��#�  

 

Using this approximation the simultaneous likelihood function including all years can be approxi-

mated by 

 

)ˆ(ˆ)ˆ()ˆ()( TTTTTT ��#� Hll
t                            (13) 

 

where 
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For the likelihood function approximated in equation (13) linear hypotheses of the form ET A can 

be tested by the likelihood ratio test and using that . The homogeneity of the 

parameters over years i.e 

TE ˆˆ)ˆ(ˆ 1
HAAHA

tt � 

TT  y  for all y was tested by setting . t)A ,...,( TT 

 

For age group 1 a, b and d were accepted to be constant for all years using a likelihood ratio test 

(p=0.29). For age group 2 a and b were accepted to be constant for all years except for 1999, 2001 

and 2005. The analyses of age group 1 and 2 are the most important because main part of the data 

consists of positive catches. This is in contrast to age 3
+
 for which the zero proportion is in large as 

it increases from of level of about 40% to about 60%. Hence, the results for these age groups should 

treated with caution. For age 3
+ 

1983 clearly was an outlier,which was excluded from the analysis. 

For the remaining years two levels of the parameter d appear to divide the years into two groups: 

1984, 1988, 1994, 2001 and 2005 for which the nugget effect, d, was not significantly different 

from zero and the remaining 18 years for which d is larger than 0.07. For the latter 18 years a and b 

were accepted to be constant (p=0.86). The results are summarized in table 1. 

 

 

Table 1 shows that both the characteristic distance, 1/b , the large scale a and the small  scale varia-

tion d, are decreasing by increasing age indicating that both the spatial correlation and the overdis-

persion or patchiness declines for increasing age. 

 

Contour plots and D95 was calculated based on interpolated values of stock intensity for a regular 

50 times 50 grid covering the North Sea and Skagerrak was chosen (confined within 4ºW and 13ºE 

longitude and 50ºN and 62ºN latitude). This corresponds to areas of about 27 times 24 km. The ar-

eas covering land have been removed, which leaves us with a total of 808 positions for which the 

intensities should be predicted compared to the average of 390 observations available for each of 

the years 1983-2006. We also tried the finer 70 times 70 grids. The deviations between the two 

cases with respect to both the mean intensity and the measure of concentration mentioned below 

were les than 2% indicating that the 50 times 50 grids results in reliable estimates functions of newO . 

 

Contour plots are given for age 1 in Fig. 3. The 1-group was until 1997 mainly situated in the 

southern North Sea and the Skagerrak but has since changed such that a major part is situated in the 

Skagerrak. It should be noted that this geographical change of distribution is not in contradiction 

with that the concentration measured using D95 is unchanged. This may for instance take place if 

high density areas geographically change place. Similarly for 2-group the high density area before 

2002 was the northern North Sea and the Skagerrak and hereafter mainly the Skagerrak. 

 

The validity of the theory of density-dependent habitat selection  
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Plots of D95 and the 95% confidence limits vs. abundance and year are shown for the age groups 1, 

2 and 3
+
 (Fig.4). For age 1 linear regression analysis indicates that D95 is independent of stock 

abundance while D95 seems to decline with increasing abundance for age 2 and older. This means 

that even that stock abundance is decreasing drastically during the period the concentration remains 

unaffected or decreases and accordingly the theory of density-dependent habitat selection for cod in 

the North Sea in February/March does not hold. 

 

Discussion 
 

The LGCP applied to analyse the spatial distribution of fishery survey data is a flexible counting 

model, which was able to describe the spatial distribution of cod in the North Sea and Skagerrak. 

The model does not assume that observations are independent, but accounts for possible spatial cor-

relation and enables modelling of separate small and large scale variations. Problems with zero 

catches are avoided due to the discreteness of LGCP. A method for calculating residuals related to 

latitude and longitude enabling graphical validation of the model has been developed, which makes 

it possible to examine possible geographical deviations from the model. Finally, two simulated ex-

act tests have been formulated and implemented to perform goodness-of-fit tests. 

 

One of the most important features of the LGCP introduced is the ability to predict and interpolate 

unobserved intensities at any location in the area independent of the sampling locations. This ability 

is important because it makes it possible to obtain unbiased estimates of for instance the stock con-

centration in the area (see the appendix) or the total sum of individuals or biomass. The expected 

value of the posterior distribution )|( XE newK is used as basis for interpolation of the spatial distri-

bution of the intensities as it is a minimum variance estimator of newK (Diggle and Ribeiro Jr. 2007). 

Many authors (e.g. Møller et al. 1998) have used MCMC to simulate the posterior mean, which has 

the advantage that the estimates are unbiased. In the present paper we have instead used a Gaussian 

approximation to the posterior distribution to estimate posterior means analytically. Simulations 

indicate that this assumption is reasonable (Kristensen, Submitted). The analytical approach has the 

advantage that the convergence problems with MCMC for high dimensional data are avoided and 

the computer time is reduced. The interpolation by sampling from the posterior distribution tech-

nique may further be improved using fast Fourier transform and conditioning by kriging (Rue and 

Held 2005). 

 

The spatial correlation and the large scale variation of the cod distribution did not change in 1983-

2006. This is remarkable as the conditions of the stock in the same period drastically changed as 

cod abundance declined with about 75 % (ICES 2006), centre of gravity of the North Sea compo-

nent of the stock moved north east about 200 kilometres (Rindorf and Lewy 2006). This indicates 

that the spatial correlation and variance for cod in the North Sea and Skagerrak seems to be insensi-

tive to major stock changes in the period. 

 

The stability also applies to the concentration of the stock, which is either unchanged over time (age 

group 1) or declines a bit (age 2 and older). This implies that the theory of Density Dependent Habi-

tat Selection or other density dependent theories do not apply to cod in the North Sea and Skagerrak 

in wintertime. This result is in contrast to the results of Blanchard et al. (2004) who analysed data 

from the English Groundfish Survey in the summer (August/September). The conflicting results 

may be due to differences in the behaviour of cod in the winter and summer or it could be caused by 
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bias in the estimation of D95 using raw or smoothed data especially for small mean catch rates, see 

the appendix.  

 

From the point of view of fishery management it is crucial that the concentration does not increase 

with declining abundance. Other things being equal this means that the mean catch rates will not be 

retained in the commercial fishery when cod abundance declines. If a concentration took place it 

could lead to an overestimation of the stock size as was the case for cod off Newfoundland (Atkin-

son et al. 1997, Hutchings 1996). 

 

Analyses of possible relations between local cod occurrence and local hydrographical parameters 

such as temperature, salinity, depth, latitude and longitude etc. showed that none of the variables 

affected the cod distribution. Especially, this means that there was no evidence that adult cod lo-

cally move to avoid high or low temperature in the winter for which the range of temperature is 

to . This is in agreement with the results of (Rindorf and Lewy 2006) that the centre of grav-

ity for adult fish was not affected of the average temperature and wind. 

$1� $9

  

The effect of the spatial distribution of the fishery on distribution of the stock is not included in the 

analyses because of lack of data. If by-catch and discard of the 1-group is limited the effect is of 

minor importance as the fishing mortality rate for trawl and gill net fishery in relation to the total 

mortality is small (the proportion is about 0.35 in the period). For the two year old fish and older the 

effect may be important as the proportion is greater than .6 in the period (ICES 2006). 

 

The interpolated intensities indicate that the 1-group shifted from mainly to be located in the south-

ern North Sea and the Skagerrak to mainly to be situated in the Skagerrak only. This indication of 

temporal correlation would be valuable to incorporate into the model. If such a model with positive 

temporal correlation was accepted it would enable annual or seasonal predictions of the spatial dis-

tribution of fish stocks.   

 

In conclusion, LGCP is a flexible model of the spatial distribution of fish accounting for spatial 

correlation between densities and avoiding problems with zero observations. It is therefore possible 

to interpolate the densities at any location in the area, which for instance could be used in connec-

tions with evaluation of the effects of closed areas. The model can be used to test the significance of 

relations between fish occurrence and hydrographical or climatic factors. 
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Appendix 

 

When calculating the index related to stock concentration, D95, one has to ensure that the estimate 

is non-biased. The biasness of D95 will be examined here assuming that data follow the LGCP and 

that the estimation of D95 is based on the estimated LGCP parameters and interpolation onto a 50 

times 50 grid. It will further be shown that using the raw or smoothed observations as basis for es-

timating D95 may result in biased estimates for small values of the mean catch rate. Finally, it will 

be demonstrated that D95 is closely related to the dispersion and the spatial correlation of data. The 

simulation experiments are performed in the following way: 

 

A. Estimation of D95 

 

1. D95 estimated based on LGCP predictions 

 

An area confined by longitudes  to and by latitudes to has been considered for which 

the maximum distance between the corners is 1280 km. For a regular 51*51( = 2601) grid with lon-

gitudes  and latitudes one realization of the intensities, 

, for the 2601 gridpoints has been simulated assuming that they follow a LGCP 

with known parameters 

o0 o10

(

o50

)o

o60

)10,....,2.0,0( ooo

t),..., 2601O
50,....,2.50,50 oo

( 1OO  

P  (the common log intensity), a (the overdispersion) and b (the spatial cor-

relation parameter). A nugget effect is not included. The simulations are performed by first calculat-

ing the distances between the 2601 points and – based on that – the variance/covariance matrix, 6 , 

ing the known parameters a and b and equation (2). Then the 2601 log intensi-

ties, , are simulated by randomly drawing from the multivariate normal distribution, 

  

us

K  
,( 6MN

t),...,( 26011 KK
)

where   (A1) 
����� ������ �
 2601

)2/)log(,...2/)(log( aa
t �� 0 PP

 

The intensities,O , are then  for whicht
eee ),...,( 26011 KKKO   PO  )( iE , i=1,…2601. Based on the 

2601 values of O  D95 has been calculated. For the selected values of the parameters it has been 

shown that a 51*51 grid is sufficient to obtain an estimate of the true D95, for which the error is 

less than 0.01. Hence we consider this estimate, , as the true D95 for the realized distribution 

of intensities.  

true95D

 

We now simulate the catches on the 11*11 = 121 grid with longitudes 

 and latitudes  which is a regular subset of the 51*51 grid. This grid 

approximately corresponds to that one haul is taken in 60 times 60 nautical miles statistical square, 

which is a rough grid with a poor covering of the area considered.  The catches are simulated by 

randomly drawing from the independent Poisson distributions with means equal to the correspond-

ing subset, 

t
XXX ),...,( 1211 

)60,....,51 oo
)10,....,1,0( ooo

*11

,50( o

11O , ofO .From the simulated catches, X, the estimates of the parameters, P̂ ,  and  

have been obtained by ML and based on that the predictions on the 51*51 grid of the log intensi-

ties

â b̂

),..., ˆ
26011̂(ˆ KKK  predicted  and the variance have been calculated using equations (9) and (10). In 

principle an estimate of  could be obtained, but as this may be seri-

ously biased (Aitchinson and Brown 1976) we instead simulate an unbiased estimate by 1. Drawing 

from the multivariate normal distribution

)ˆ 2/ˆˆexp( apredicted � K

ˆ
sim

predictedO

))ˆ(,ˆ( predictedpredicted VARN KKK   2. Calculating 
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))ˆ(exp(9595ˆ
simsim DD K 

simD95ˆ

catch005.05.1   

 3. Repeating 1. and 2. 1000 times and calculating the the mean 

of . The possible bias of  has been calculated as . 

 LGCD95ˆ

1�

rate)ln(catch

LGCD95ˆ

(0.25,0.4, 

95/95ˆ
trueLGC DD

 i.e.5,7,8,10)  

 

2. D95 estimates based on the observations 

 

As some authors use the observations or smoothed value of these as basis for estimating D95 

(Swain and Sinclair 1994, Atkinson et al. 1997, Blanchard et al. 2004) we also examine the possible 

bias by calculating D95observations(X) based on the (raw) 121 observations and two alternatives based 

on smoothed values of. The first estimate, D9581(X), based on smoothed observations is obtained by 

dividing the intervals [0,10] and [50,60] defining the area considered  into 9 intervals and calculat-

ing the mean of the observations in each of the 9*9 = 81 rectangles defined. Correspondingly, 

D9525(X) is obtained by dividing into 5 intervals. 

 

B. The relationship between D95 and the spatial correlation and the dispersion 

 

To examine the above relationship D95true has been calculated for a range values of 1/b with fixed 

dispersion a and vice versa. 

 

Results 

 

A. Estimation of D95 

 

To examine the effect of varying mean catch rate the following sets of simulations have been per-

formed for fixed values of a and b for the following values of the catch rate: 

 

 1,1.5,2,3,0.50,0.75,rates Pba  

 

For b = 0.005 the characteristic spatial correlation distance 1/b = 200 km which is the distance for 

which the spatial correlation equals 0.37. For the case considered the proportion of the points for 

which the distance is less than 200 km is about 10% indicating that observations are available for 

estimating the parameters in the model. The coefficient of variation of the intensitiesO  is 

 5.1 1.22. 

 

The results of the simulations are given in Fig. A1 showing the relationship between the relative 

bias of estimates of D95 and the mean catch rate. The Figure shows that in general  is the 

least biased estimator of D95 and that the bias is less than 5% for mean catch rates larger than 1. 

For mean catch rates less than 1 the relative bias is less than 15%. The smoothed estimate, D9581 is 

the second best estimator for which the relative bias is less than 10% for mean catch rates larger 

than 2. For mean catch rates less than 2, however, the relative bias is tremendous, up to about – 

60%. The bias of D9525 in general seems to be positive, up to 20%. For small values of mean catch 

rates the bias is still limited, below10%. D95observations is negatively biased and especially for small 

values of the mean catch rate the bias huge (up to - 60%). 

LGCD95ˆ

 

We conclude that the LGCP estimator, , is the best estimator. Smoothing of the observa-

tions may lead to satisfactory D95 estimates for mean catch rates larger than 1 or 2. Raw observa-

tions should not be used for estimation of D95. 

LGCPD95ˆ

 1885



 

B. The relationship between D95 and the spatial correlation and the dispersion 

 

The results are shown in Fig, A2. The upper panel shows the relationship between D95 and 1/b for 

fixed values of the mean catch rate of 10 and of a = 1.5, while the lower panel shows relationship 

between D95 and a for a mean catch rate of 10 and b = 0.02. The figure shows that D95 depends 

both on the spatial correlation the dispersion and of the log intensities. Hence, changes in the con-

centration of a stock (1-D95/0.95) may be caused either by changes in the dispersion or the spatial 

correlation or changes in both stock characteristics. The quantity 95.0/951 D�  is measure of the 

concentration which lies between zero and 1. 
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Figure captions 

 

Fig. 1. Simulation of a LGCP without a  “nugget”, small scale variation effect (solid line) and the 

same process including a positive “nugget” effect (dashed line). 

 

Fig. 2. Plot of the relationship between the elements of the inverse, lower Choleski triangle, L
-1

, and 

the distance between corresponding points (upper panel) and residuals plotted against the longitude 

(middle panel) and the latitude (lower panel) for age group 1 in 1994. See text. 

 

Fig. 3. Contour plots for 1 year old cod in the North Sea and Skagerrak 1983-2006 based on inter-

polation onto a 50 times 50 grid. 

 

Fig.4. Minimum area occupied by 95% of the stock, D95, by age plotted against stock number for 

cod in the North Sea and Skagerrak 1983-2006 (solid line) and 95% confidence limits (dashed 

lines). The straight lines indicate linear regression lines. 

 

Fig. A1. Relative bias of estimated D95 versus mean catch rate. Thick solid line: Estimates based 

on predictions using the LGCP. Solid line: Estimates based on raw catch observations. Dashed and 

dotted lines:  Estimates based on smoothed catch observations. See text in the appendix. 

 

Fig. A2. The relationship between D95 and 1/b (upper panel) and the variance of log intensity a 

(lower panel). 
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Tables 

Table 1. Estimated parameters and the 95% confidence limits (L95% and U95%) by age 

 

 Age 1 
2
Age 2

 3
Age 3

+
 

 L95% Mean U95% L95% Mean U95% L95% Mean U95% 
4
1/b 

 
179.1 242.0 327.0 66.2 87.2 114.5 44.8 58.9 77.3 

a 4.08 4.98 6.07 2.11 2.41 2.75 0.98 1.12 1.27 

d 1.26 1.42 1.58  1.02
1 

  0.71
1 

 
1

))log(exp( d  
2
 1999, 2001, 2005 excluded 

3
 1983, 1984, 1988, 1994, 2001, 2005 excluded 

4
 1/b, the characteristic distance, is the distance in kilometre for which the correlation between log 

intensities is 0.37. 
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