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Summary

This thesis combines population dynamical models of fish with statistical
models of count data obtained from scientific surveys. The aim is to be able
to draw conclusions about the biological processes driving the population
on basis of observed data. This main problem is addressed using maximum
likelihood-based approaches. As a prerequisite it is necessary to give a re-
alistic description of the random variability in the data. The variation is
treated as a sum of a contribution due to errors in the population model
(system noise) and a contribution caused by errors in the observation pro-
cess (measurement noise) which occurs because the fish are not distributed
uniformly in the sea or because the fish moves.

A length-based population dynamical model is formulated (Section 5.1) and
it is shown that the corresponding system-noise is determined by a Poisson
process and thus is negligible for large populations. Therefore the primary
focus of this thesis is the random variation in the sampling process includ-
ing the variation due to spatial and time heterogeneity and size-dependent
clustering.

The first attempt towards a heterogeneous description of the trawl data is
to model the measurement noise using the negative binomial distribution.
In combination with the population dynamical model a maximume-likelihood
based stock-assessment model is obtained (section 6.3) which allows for for-
mal testing of the underlying biological processes. The statistical model
accounts for over-dispersion of the data but offers no opportunity to de-
scribe present correlations between size classes.

These correlations may explain apparent changes in catchability from year
to year and therefore has major impact on the interpretation of the signal in
the data.

This problem is solved by introducing the log Gaussian Cox process which
allows for incorporation of correlations in the count data (section 7.1). Cor-
relation structures are formulated to describe spatial heterogeneity of fish on
various spatial scales and to deal with the fact that fish of a particular size
tend to school with fish of similar sizes.

The application of the log Gaussian Cox process requires special numerical
attention (section 7.4) for cases involving large amounts of data.

The log Gaussian Cox process is applied as a substitute of the negative bi-
nomial distribution (Section 8.2) in combination with the population model.
A further application use the log Gaussian Cox process to estimate concen-
tration areas of fish (section 8.3).

The above considerations are the starting point of the four articles at the
end of the thesis.



Dansk resumé

Denne afhandling beskaeftiger sig med at kombinere populationsdynamiske
modeller for fisk med statistiske modeller for teelledata opnaet fra videnska-
belige togter. Formélet er at kunne drage konklusioner om de biologiske pro-
cesser der driver bestandens udvikling pa baggrund af observerede data. For
at behandle dette problem gennem maksimum likelihood baserede metoder
er det ngdvendigt at give en realistisk beskrivelse af den tilfeeldige variation
i data. Denne variation kan naturligt opdeles som et bidrag der skyldes fejl
i populations modellen (system-stgj) samt et bidrag der skyldes fejl i ob-
servations processen (male-stgj) der f.eks. opstéar fordi fisk ikke fordeler sig
homogent i havet eller fordi fiskene bevaeger sig.

En lengdebaseret populationsdynamisk model formuleres (sektion 5.1) og
der gores rede for at systemstgjen i denne model er bestemt ved en Poisson
proces og dermed er forsvindende for store populationer. Det primeere fokus
for denne athandling er derfor den tilfseldige variation i sampling processen -
herunder variation der skyldes rumlig og tidslig heterogenitet samt stgrrelses
afheengig klumpning.

Det forste forsgg i retning af en heterogen beskrivelse af trawl data er at
modellere malestgjen ved hjelp af den negative binomial fordeling. I kombi-
nation med populationsmodellen fas herved en maksimum likelihood baseret
bestandsvurderingsmetode (sektion 6.3) som tillader formel testning af de
bagvedliggende biologiske processer. Den statistiske model tager hgjde for
overspredning i data men rummer ikke mulighed for at beskrive tydeligt
forkomne korrelationer mellem stgrrelsesklasser.

Disse korrelationer kan forklare tilsyneladende sndringer i fangbarhed fra ar
til &r og har derfor afggrende indflydelse pa fortolkningen af signalet i data.
Dette problem Igses ved indfgrelse af den log Gaussiske Cox proces der giver
mulighed for at inkorporere korrelationer i taelledata (sektion 7.1). Korrela-
tionsstrukturer formuleres til at tage hgjde for at fiskene fordeler sig klumpet
pa forskellige rumlige skalaer samt at fisk af en given stgrrelse har tendens
til at gruppere sig med fisk af samme stgrrelse i stimer.

Anvendelsen af den log Gaussiske Cox proces kraever seerlige numeriske metoder
(sektion 7.4) for store maengder af data.

Den log Gaussiske Cox proces anvendes som erstatning for den negative bi-
nomial fordeling (sektion 8.2) i kombination med den populationsdynamiske
model. Desuden betragtes en anvendelse af den log Gaussiske Cox proces til
at estimere koncentrationsomréader for fisk (sektion 8.3).

Ovenstaende overvejelser danner udgangspunktet for de fire artikler i slut-
ningen af athandlingen.
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Introduction

1 Background

Stock assessments are made regularly by fisheries research institutes to aide
managers in their regulation of fisheries. Most of the standard assessment
models used for this task are estimation algorithms that do not allow for
statistical inference (e.g. the XSA model (Shepherd, 1999)).

Standard stock assessment rely heavily on commercial catch data which are
samples of the fishermens catches. The quality of these data is doubtful due
to an increasing amount of fish catches being either non-reported or misre-
ported and a number of assessments are for this reason considered unreliable
(ICES., 2005). There is therefore a need to further develop statistical meth-
ods that enables stock assessment to be derived from fishery independent
data, i.e. from scientific bottom trawl surveys.

Stock assessments are typically based on individual age groups where the
aging relies on interpretations of ring structures as otoliths or scales. Marine
animals that lack such ring structures (e.g. crustaceans) can not be aged this
way and for a number of fish stocks poor contrast in the structures impedes
reliable aging. For such cases the interpretation of the age structure must
be based on the length distribution of the animals. There exist a number of
methods that convert length distribution to age (Bhattacharya, 1967; Mac-
donald and Pitcher, 1979) and it is common practice to use the age-data
obtained from these procedures as raw-data in the deterministic XSA-model
disregarding the statistical uncertainties.

More recent methods attempts to incorporate length-information in assess-
ment models more rigorously using dynamical models of the length-distributions
in conjunction with real statistical models of catch observations (Sullivan,
1992; Froysa et al., 2002; Schnute and Fournier, 1980; Fournier et al., 1998).
The first component dynamical length-based population modelling of fish emerge
from the more general ecological discipline of dynamical modelling of struc-
tured populations (Metz and Diekmann, 1986). These models are discretized
versions of the deterministic flow models based on the von Foerster differen-
tial equations (von Foerster, 1959) describing how the size-composition of a
population evolves governed by the fundamental biological properties of the
individuals of the population recruitment, growth and mortality.



The second component statistical modelling of catch observations links ex-
pected catches with the observations through standard distributions such
as the normal (Sullivan, 1992), the log-normal (Frgysa et al., 2002; Fu and
Quinn, 2000) and the multinomial distribution (Schnute and Fournier, 1980;
Smith et al., 1998).

2 Purpose

The overall purpose of the thesis is to improve the statistical interpretation
of trawl-survey data and to demonstrate how the statistical results can be
used to extract biological information from the data. The aim is to combine
a purely length-based population model with a realistic statistical model of
scientific trawl-survey catches.

To this end we find it important to distinguish between system noise and
measurement noise. System noise arise in a population model if stochasticity
is added to the biological processes driving the population. Measurement
noise reflects the variation of samples conditional on the underlying size
distribution of the population.

The key to more realistic statistical description of the measurement noise
in fish abundance data is to view the fish-populations as being spatially
heterogeneous. We try to give a point-process motivation for the applied
distributions even though point-process data are not available. It is a main
criterion that the methods have to be computationally feasible in practice
with the relatively large amount of data which is available.

3 Contributions

Length-based population modelling An individual based model of the
size distribution of fish is conveniently formulated within a point-process
framework. This approach has not been taken elsewhere in the literature.
We show that an individual based model including recruitment, mortality
and stochastic growth leads to a Poisson process of the entire population
(section 5.1) and the intensity is derived. In the special case of deterministic
growth the intensity solves the classical deterministic differential equations
of von Foerster (1959).

Statistical interpretation of trawl-survey data Various statistical dis-
tributions have been applied to describe trawl survey data comprising the
normal (Sullivan, 1992), the log-normal (Frgysa et al., 2002; Fu and Quinn,
2000) and the multinomial distribution (Schnute and Fournier, 1980; Smith
et al., 1998).

The typical large fraction of zeros in trawl survey data has been treated



by extending the log-normal distribution with an atom in zero (Penning-
ton, 1996). Size correlations in trawl survey data have been described by
Dirichlet-multinomial and Gaussian-multinomial distributions (Hrafnkelsson
and Stefansson, 2004).

Our main contribution is to introduce the log Gaussian Cox process (LGCP)
to model spatio-temporal and size correlation in bottom trawl surveys.

We formulate correlation structures to capture relevant heterogeneity.

Numerical methods for the LGCP Numerical methods for statistical
inference for the LGCP are well-established both in a Bayesian an freqgentist
setup through MCMC techniques (Mgller and Waagepetersen, 2004). These
techniques are very general and standard implementations are available e.g.
through the R-package (Baddeley and Turner, 2005).

However MCMC-techniques can be very computational expensive. It is well
recognized that the simulation based approaches are often outperformed by
direct methods such as the Laplace approximation (Skaug and Fournier,
2006) and variants there of (Rue et al., 2007). The approach taken by
Skaug and Fournier (2006) uses the Laplace in combination with reverse
mode automatic differentiation (Griewank, 2000) to perform approximate
ML-estimation. This method is suitable for generalized non-linear mixed
models (GNLMMs) containing a moderate number of fixed effects and ran-
dom effects (= 500 — 1000). In its direct form the Laplace approximation
is unsuitable for GNLMMs with a larger number of random effects because
of the need to factorize a second-order derivative matrix of the same dimen-
sion as the number of random effects. However, for many interesting models
the second-order derivative required by the Laplace approximation contains
mostly zeros. Therefore numerical methods for sparse matrices have been
considered to make the Laplace approximation feasible for problems involv-
ing large data sets (Rue et al., 2007; Rue, 2005; Rue et al., 2004; Bates,
2004). The approach of Bates (2004) implemented in the R-package “lme4”
(Bates et al., 2008) handles GLMMs but is limited to covariance structures
which can be expressed through a (well-designed) formula interface.

Our contribution mixes ideas of the existing numerical methods in order to
handle the LGCP in cases with large amounts of data and non-linear geosta-
tistical covariance structures. Inspired by Rue and Held (2005) we restrict
attention to covariance structures with a sparse inverse - the so-called Gaus-
sian Markov Random fields (GMRFs). Like Bates (2004) our approach uses
an augmented system to take full advantage of sparseness and to gain nu-
merical stability.

We finally develop a quadratic approximation of the LGCP-likelihood which
is cheap to evaluate in practice. The quadratic approximation is used for
fitting and testing non-linear models of the fixed effects of the LGCP.



4 Paper overview

Paper I The simplest step towards an underlying heterogeneous interpre-
tation of the statistical distribution of fish is to apply a distribution which al-
lows for over-dispersion. Can a negative binomial distribution adequately de-
scribe observed size-distribution if it is combined with a length-based model
of a fish stock? This is examined in paper I. The main conclusion is that
it is possible to carry out a length-based stock assessment based on rela-
tively few survey observations even with the high degree of over-dispersion
in the data. However, over-dispersion is not the only problem with the data.
High correlations between the number of fish in neighboring size-classes are
encountered which the negative binomial distribution does not account for.
These issues are the main focus of the following three papers.

Paper IT To deal with the correlations the LGCP is considered. It has
previously been used to describe heterogeneity of e.g. animals and plants in
numerous ecological studies. It is also suitable for statistical modelling of
length-based trawl-survey data because of its ability to model high-dimensional
correlated count data. A correlation structure is formulated in order to cap-
ture the random effect of a large-scale spatio temporal log-abundance sur-
face and small-scale size dependent clustering. An ML-estimation algorithm
based on the Laplace approximation is formulated. The method is aimed
at large sparse precision matrices for which modern sparse matrix solvers
can be used to make the estimation practically possible. It is shown how
the specified correlation structure can be given a formulation for which the
precision matrix is sparse. The method is applied on a single survey in the
North-Sea.

Paper III The length-based model from “paper I” is combined with the
size-space-time-correlated LGCP from “paper II” in order to fix the lack-
ing correlations in the negative binomial distribution. The main question
we wish to answer is whether there are remarkable changes in the conclu-
sion about the biological length-based population model when data is inter-
preted through the more realistic LGCP. It is concluded that the inclusion of
size-space and time correlations generally increase the precision of the size-
spectrum slope while the precision of the overall spectrum level is decreased.
As an important consequence a time-changing catchability is not significant
as opposed to the conclusions of “paper I".

Paper IV A statistical model which accounts for spatial correlation is suit-
able for spatial prediction. It is thus obvious to use the LGCP for spatial
interpolation of fish-abundance surfaces. A prediction method based on a
statistical model is convenient because the statistical model can be validated



as opposed to existing ad hoc methods.

Data of North-Sea cod is considered and the LGCP is fitted with a three-
parameter spatial correlation structure separately for each of three age groups
during the period 1983-2006. The model is accepted using residual-based
goodness of fit assessment.

Time-changes in various concentration measures are examined. In particular
Dgs - the smallest fraction of the area containing 95% of the population -
is considered as a function of the hidden intensity. It is concluded that the
posterior mean of Dgs given the data is unchanged during the period. This
observation contradicts the theory of the ideal free distribution.

5 Length-based population modelling

5.1 Individual based formulation

Size based population models attempts to create the link between biological
knowledge about the single individual and the size distribution of an en-
tire population assuming that individuals share some fundamental biological
properties. Theses issues are known as scaling problems within the biological
field.

It is commonly recognized that the size-distribution of a fish-population is
mainly governed by the fundamental biological processes recruitment, growth
and mortality.

As an example of an individual based biological model of recruitment, growth
and mortality consider the following individual assumptions:

1. An individual is born (recruited) during the small time interval [¢,¢ +
At] with probability r(¢)At + o(At) independent of the past where r
is the recruitment function.

2. An individual of size x dies during the small time interval [t,¢ + At]
with probability z(x,t)At + o(At) independent of the past where z is
the size- and time specific mortality rate.

3. An individual born at time s grow according to a stochastic growth
trajectory Lg(t).

4. Individuals grow and die independently.

The individual model is conveniently visualized (Fig. 1a) by representing
each individual with its growth-curve. The recruitment process then appears
as points on the time-axis while the size-distribution of individuals alive at
time t appears as crossings of the growth-curves with a vertical (dashed)
line. An interrupted growth-curve indicates the death of an individual.

10
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Figure 1: Ilustration of individual based model of growth, mortality and
recruitment. A solid circle on the time axis indicates a recruitment event.
An open circle indicates the death of an individual. Crossings of the verti-
cal dashed line with the growth trajectories are marked with a solid circle
to indicate the individuals alive at time ¢t. (a) Constant recruitment-rate
and deterministic growth-curves. (b) Time-inhomogeneous recruitment and
stochastic growth-curves.

The first assumption characterizes the point-process on the time-axis as be-
ing an inhomogeneous Poisson-process with intensity r. To solve the scal-
ing problem we must find the distribution of the “vertical” point-process
which keeps track of the size-distribution of the individuals alive at time ¢.
Denote by N; this counting process defined by letting N¢(A) be equal to
the number of individuals alive at time ¢ with a size contained in A C R.
To find its distribution note that the remaining assumptions (2-4) sug-
gests an independent random labeling (Mgller and Waagepetersen, 2004)
of the recruitment-process. Indeed for any configuration of disjoint sets
Ay, ..., Ax, C R attach the label A; to a recruitment-point s if the correspond-
ing individual is alive at time ¢t with a size contained in A; - and denote by
P +(A;) the probability of this event. It follows that the recruitment process
split across labels constitutes independent Poisson-processes with intensities
s — r(s)Ps(A;) (Mgller and Waagepetersen, 2004). In turn the random
variables N¢(A1), ..., N;(Ay) becomes independent Poisson distributed with
mean F(Ni(A;)) = fgr(s)P&t(Ai) ds. In conclusion Ny is again an inhomo-
geneous Poisson-process with intensity A(z,t) = % fg 7(s)Ps +([0, x]) ds.

Next consider the probability Ps+([0,z]) that an individual born at time s is
still alive at time ¢ with a size included in the set [0, z]. According to assump-
tion 2 the hazard function of an individual following a fixed growth-trajectory
ls initiated at time s is 7 — z(ls(7), 7). Thus the probability of survival up to

11



time ¢ is exp <— fst z(ls(7),7) dT). To find P, 4+([0, z]) for a general stochastic
growth curve L4(7) initiated at time s we take expectation over the possible

growth-curves P;.([0,z]) = E <exp (— fst 2(Ls(T),7) dT) 1(Ls(t)§z))- Insert
this to get the general expression of the intensity of V;

N(z) = a% / B <exp <— / (L), 7) dT> 1(Ls(t)§x)> ds (1)

—00

The intensity (1) completely specifies the distribution of the population size
composition. The individual based model includes the effect of stochastic
recruitment, mortality and growth (Fig 1b). It may therefore appear some-
what surprising that this biological system creates no more than Poisson
variation in the output-process N;. For a large population the Poisson noise
hardly matters and it is tempting to think of the population size-distribution
as a deterministic process.

5.2 Stochastic von Bertallanfy growth

The particular form of the growth model applied in thesis takes its starting
point in the classical von Bertallanfy growth model (Bertalanffy, 1938):

Ls(t|Loo, ky Lo) = Loo — (Loo — Lo)e F=%) (2)

This equation describes the growth of an individual born at time s. The
growth trajectory approach the asymptotic size Lo, as t tends to infinity.
A stochastic growth-model is obtained by assuming that each individual is
assigned its personal asymptotic size Lo, chosen from a common distribution
with density u on [Lg,00). All individuals are assumed to have the same
growth parameter k.

To find the intensity (1) in this case note first that at time ¢ the individuals
that have size less than x are exactly the ones with an L, belonging to the
set

{Low Llt, Luc) < 2} = L0, G(2) @
where _k(ts)
G(x) = Glalk, 5, L) = 0 8

Now equation (1) becomes

A(z) = %/t r(s)E (exp <_ /:Z(Ls(ﬂLoo),T) dT> 1(Ls(t)§$)> ds

—00

. 6
= [ e (= [ a(balon G0 ds ) o) ds

—00
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5.3 Traditional formulation

Traditional modelling of population size-distributions takes its starting point
in the von Foerster PDE (von Foerster, 1959)

—n(z,t) = ——x(g(x,t)n(x,t)) — z(x, t)n(z,t) (6)

with the boundary condition r(t) = n(0,t)g(0,t) and g(z,t) denotes the
growth-rate of an individual of size x at time t. In this context n(x,t) is
called the “number-density” and has the property that [, n(x,t) dz is the
deterministic number of individuals with size contained in A at time t.

It is straight forward to show that in the case of deterministic growth the
intensity (1) solves (6) and thus the concept of “intensity” and “number-
density” are identical.

The stochastic growth model from the previous section could alternatively
be obtained by treating solutions to the von-Foerster equation as function
of Lo and the mixing all these solutions wrt. the probability density wu.
However, this approach is very inappropriate from a numerical perspective.
The more direct form (5) is easier to handle in practice. A discretization of
the inner integral is known as the method of integration along characteristics
and is a recognized way to solve the differential equations efficiently.

6 The inverse problem

The main issue of interest is to estimate the biological processes recruitment,
mortality and growth based on samples of individual sizes. Having Fig. 1
in mind what can we say about the biological system based on samples of
the vertical point-process? This inverse problem can be formulated within a
maximum likelihood framework if we can specify how the available samples
are collected from the population.

6.1 Data

The data considered in this thesis are obtained from scientific bottom trawl
surveys. The survey is conducted by vessels following a randomized route
covering the population area of interest. At each of the chosen positions a
sample (haul) is taken with the trawl. The duration and speed of the trawl
is approximately the same for all samples and thus a sample is prescribed to
cover a given swept area.

As the spatial positions of the trawl is random any fish must have the same
probability of belonging to the swept area at the time of the sample. Denote
by p this probability given as the ratio of swept area and total population
area. Whether a fish within the swept area is caught obviously depends on
the fish size. A small fish will have a higher chance of escaping through

13
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Figure 2: Average CPUE as function of size for each of nine surveys of
Baltic-cod. Lines indicate von Bertallanfy curves with parameter values
from Bagge et al. (1994).

the meshes than a larger fish. This phenomenon is known as gear selectivity
and can be modelled by a selectivity function s(x) denoting the conditional
probability that a fish of size x gets caught given its presence within the
swept-area.

Note that despite the concrete interpretation of p its value is unknown be-
cause we do not know the extension area of the population. For the same
reason p could be time-dependent.

6.2 The Poisson model

A first (naive) attempt to formulate a statistical model of the samples is to
argue that any fish of size x from the population has probability ps(x) of
ending up in a given sample. Thus a haul can be viewed as an independent
random thinning (Mgller and Waagepetersen, 2004) of the population with
thinning probability ps(z). A sample is then a realization of a Poisson-
process with intensity

AP () = ps(x)Mi(x) (7)
because the population was described through a Poisson-process with inten-
sity (1). The expected number of fish N¢ in a length-class C' is then

E(N¢) = /Cps(x))\t(x) dx (8)

14



Based on these expected values we can in principle write down the corre-
sponding Poisson-likelihood and for given parameterizations of the biological
processes carry out maximum-likelihood estimation.

6.3 The negative binomial model

One of the first practical things to learn about trawl-survey data is that they
are almost all very far from being Poisson distributed. The first attempt to
solve this problem is to replace the Poisson distribution with a distribution
allowing for over-dispersion. This is done in Paper I (page 35) which we
briefly describe in the following.

Let N;; denote the observation matrix of counts of ith haul and jth length-
group. Associate with ¢ the corresponding survey survey;. As the hauls
within a given survey are taken within a relatively short time-interval it
is reasonable to assume that the size distribution of the fish-population is
unchanged during the survey. Thus our main model states that

E[Ni,j] = MUsurvey;,j (9)

where the parameter matrix of 1 ; holds the size-composition of survey .
We do not impose any restrictions on the variance of the counts and associate
with each mean-value parameter a free variance parameter
2
V[Ni,j] = Osurvey;,j (10)

Assuming the counts follows a negative binomial distribution and that all
counts are independent the likelihood is

+ Vi, ]) Vt;,j N;j
L((1.9). IIIIFW N e A )™ ()
)
;5 “? j
where 7y, ; = =% and size parameter v, ; = —w—=2—. To reduce the
irJ Ut . isJ Ut T Ht

number of parameters in the main model we state the variance structure
hypothesis
2 by A

Otj = Qthyj + [, (12)
This a more flexible structure than the common assumption of a fixed v-
parameter across groups corresponding to the special case of by = 2 in (12).
The variance structure (12) is a submodel of the un-restricted variance model
(10) and can thus be formally tested with a likelihood-ratio test.
Likewise the length-based population model (1) can be treated as a sub-
model of the general un-restricted mean-value model (9):

s = [ psolaa(e. ) da (13)

J
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where C represents the jth size-interval. Both the gear-selectivity and inten-
sity now depends on an unknown parameter vector € which is to be estimated.
The chosen parametric form of the biological processes is

1. The recrutiment ry(t) is a linear combination of yearly varying Gaus-
sian peaks (3 parameters per year).

2. The distribution of L, is chosen to be normal (2 parameters).

3. The size-specific mortality is a sum of a constant natural mortality
and sigmoid size-dependent fishing mortality with a yearly varying
asymptotic level (3 parameters plus one parameter per year).

4. Survey selectivity sg(z) is chosen as a sigmoid function of fish-size (2
parameters).

For more details about the parameterization we refer to Paper L.

Insertion of (13) and (12) in the likelihood (11) yields the likelihood under
the hypothesis of the corresponding size-structured population model. It is
not obvious whether parameter-estimation is possible in this model. First
thing to notice is that if p and ry(t) are multiplied and divided respectively
with the same constant then the likelihood is unchanged. This fact just
reflects that it is only possible to estimate the recruitment relatively. A so-
lution is to fix the recruitment for one of the years.

It is shown in Paper I by extensive simulation studies that it is possible
to re-estimate known parameters from simulated data-sets and that stan-
dard asymptotic likelihood theory applies for this estimation problem. The
method is applied on a collection of nine surveys in the Baltic (Fig. 2).
Based on this relatively small data-set it is possible to estimate the param-
eters even with the substantial level of over-dispersion in the data.

It is an important strength of the likelihood approach that it permits formal
testing of the validity of the length-based population model and sub-models.
For instance it is relevant from a management point of view to be able to
judge whether there is a significant change in fishing-mortality from one
year to the next. However, formal testing requires a valid statistical model.
While the negative binomial distribution describes the marginals nicely it is
pointed out that there are clear signs of correlations in the data which are
not accounted for. Empirical correlations between neighboring length-classes
within the same survey are higher than 90% and the correlation range ap-
pears to span more that 15-20 cm (Fig. 3).

The tests must be considered as unreliable as the model ignores the correla-
tions.

These issues are considered in Paper II and Paper III.

16
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Figure 3: Image of empirical correlation matrix of the autumn 2001 survey
of cod in the Baltic in which a total of 8610 fish were caught in 33 hauls.

7 Incorporating correlations in the observation model

Clearly there is a need to introduce correlations in the statistical distribution
of trawl-survey data. Instead of just choosing an arbitrary distribution we
find it convenient to seek inspiration in existing point-process models be-
cause our sampling problem has a natural point-process interpretation. A
fish population may be thought of as a heterogeneous spatial point pattern
changing dynamically in time. Each point is given an “attribute” in terms of
the fish size (Fig. 4). Fish samples taken with a trawl can be thought of as
a size-dependent random thinning of the point pattern within a rectangular
region.

We restrict attention to the so-called Cox-processes

7.1 Log Gaussian Cox-process

The log-Gaussian-cox process (LGCP) is a Cox-process with random log-
intensity following a Gaussian process (Mgller et al., 1998). We give a for-
mulation suitable for spatio-temporal modeling of the size-composition of
fish. Let n(s,x,t) denote a Gaussian random field indexed by size, space and
time respectively. For any point in time ¢ let Ny be a Poisson-process with
intensity (exp(1(s,,t)))(z.s)er2xr, - Then for any haul-rectangle H C R?
and size-class C' C R4 the conditional distribution of the number of points
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Figure 4: Illustration of size-dependent clustering. Fictive positions of
individual fish in a point-process setup where the points are marked with
the individual sizes (only two sizes are considered for simplicity) and nine
fictive haul-rectangles.

ina H x C given 7 is

Ni(H x C)|n ~ Pois (/ / ensmt) g dx) (14)
HJC

This equation specifies the distribution of the number of points within a
rectangle for the various size-classes (Fig. 4). Size-selectivity was previ-
ously introduced as the conditional probability that a fish is caught given its
presence within the haul-rectangle. Denote by ¢(s) this probability. After
a random thinning the observed number of points within the rectangle is
(Mgller and Waagepetersen, 2004)

NP (H x C)|n ~ Pois ( / / q(s)e">™) ds dm) (15)
HJC

From a large-scale perspective it is reasonable to assume the intensity is ap-
proximately constant within the haul-rectangle leading to the approximation

NP (H x C)ln ~ Pois (a(s)e"9|H||C]) (16)

for some (z,s) € H x C. This distribution is just a multivariate Poisson
distribution with a multivariate log-normal intensity.

7.2 LGCP likelihood

Likelihood inference for the model along with the computational issues will
be discussed in the following.
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Let
n~ N(u, )
Nn ~ ®i_ Pois(n;)
The full negative log-likelihood where both 1 and IV are observed is given by

n n
| 1 1 .
Lran(9, pln, N) = ; e — ;Nim — 5 logdet Qo + 5 (1 — 1)'Qo(n — ) +
where Qg = 29_1 is the precision and ¢ = §log(2m) + > log I'(V; + 1).
The marginal likelihood - for unobserved 7 - is

1(0,u|N) = —log </R" exp(—lruu (8, pn, N)) d77> (17)

The integral is difficult to evaluate numerically. In the following we go
through a standard method - the Laplace approximation - for approximat-
ing high dimensional integrals based on a Gaussian approximation of the
conditional distribution of n|N.

7.3 Laplace approximation

Several authors have good experience with the Laplace approximation be-
cause its level of accuracy is often high compared to the computational cost
(Rue et al., 2007; Skaug and Fournier, 2006). The Laplace approximation has
become the standard method for fitting GLMMs in R (Bates et al., 2008).
In the following a brief description of the Laplace approximation is given.
With starting point in (17) consider the problem of approximating an inte-
gral of the form

—log/exp(—f(&n)) dn

i.e. the negative log-likelihood of a mixed model with random parameters n
where f(0,1) = luu(0]x,n) is the negative log-likelihood of the full model
where the random parameters are observed.

Let 7y be the argument of minimum of f for fixed

VO f(0,1) =0 (18)

A Taylor-expansion gives:

F(6.m) = F,1i0) + 50— ) F (6. 76) (n — )

and the integral may be approximated by

/eXp(—f(& 1)) dn ~ exp(—f(0,7s)) /exp (—%(77 —10)" fon (0700) (1 — ﬁe)) dn

(2m)}

= exp(—f(0, 7)) —————=
det f7,(6,70)
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where n is the dimension of the random parameter space. Hence we have
the negative log marginal likelihood approximated by.

. n 1 .
—log/exp(—f(e,n)) dn ~ [(0,79) — 5 log 2 + 5 log det fy,,(6,7) ~ (19)

The gradient can be useful for efficient optimization of (19). Taking deriva-
tive of (18) wrt. 6 gives:

. v d d - .
Tr(0-00) + L3y (0:00) 250 = 0 == —5iip = = F1,(0:729) ™" Frip(0:730)  (20)

Define 1
n
h(0,m) = f(0,n) — 3 log 2m + 5 log det fom(0,1)

Then the desired gradient is given by

d "

@hw,ﬁa) = hiy(8,719) — 1, (0,709) f (0, 516) " f1ig(8, 729) (21)

This formula is also stated in Skaug and Fournier (2006).
Returning now to the case of the LGCP likelihood the formulas for computing
the Laplace approximation and its gradient are:

f(0,m) = e’ = N+ Qo(n — )
f.(0,m) = —Qo(n — 1)
4,0.m) = —51r(Q5 Q) + 3 (0 — 1) Qoly — )

fim(0,m) = diag(e") + Qp

This 2nd order derivative is everywhere positive definite which implies strictly
convexity. So the inner likelihood has a unique minimum.

Fon(0.m) = —Qo

Fro,(0,m) = Qo(n — 1)
The h-function:

A0, 1) = (6, ) + 5 log et (diag(e”) + Qo)

has derivatives:
1. _
hay(0:m) = £i/0,m) + Sle™ (£, (0,m) )]

h,(0,m) = £,,(0,n)
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B (0,) = 13(6.m) + 5 r(Qo (diag(e”) + Qo) )]

These expressions are what we need to compute (21).

Some computational remarks are worth noticing when dealing with the above
formulas in practice. The computational complexity can be reduced a lot
if Qp is assumed to be sparse. For instance consider the computational
complexity of tr(Qg (diag(e”) + Qg)~'). The trace of matrix product is the
sum of the pointwise product of the matrices so the inverse (diag(e") + Qg) "
is only needed on the non-zero pattern of Qg (which is smaller than or equal
to the pattern of Qy). An existing algorithm known as the inverse-subset
algorithm is designed to handle this problem (Rue, 2005).

To perform estimation of the fixed effects in practice we have good experience
with the following approach:

e Handle the outer non-linear optimization problem of the fixed effects
(0, 1) by the BFGS-method.
e Perform the inner convex optimization problem with an ordinary New-

ton method.

The Newton method is of course only recommended because the second-order
derivative Qg + diag(e") of the inner likelihood wrt. 7 is assumed sparse.

7.4 An augmented system

The special case of a linear mean-value structure p = Ag for a full rank
design matrix A is sometimes referred to as a generalized linear geostatistical
model (GLGMs) (Diggle and Ribeiro, 2006). The LGCP-likelihood is

n n

. 1
Lpan (0, B|n, ) = D €™ = wim —  log det Qg
i=1 1=1

+ %(77 — AB)'Qo(n — AB) + ¢

with marginal likelihood

10, 8|z) = — log/e_l(e’ﬁln’x) dn (22)

We shall now see that for this special linear model the fixed effect 5 can be
moved from the outer optimization to the inner optimization.
The exact score of (22) wrt (3 is

Vsl(8,0) = —A'Qo(E g)[nla] — AB) (23)
The Gaussian posterior approximation suggests replacing Egg[n|x] by 7(x).

Thus (7, 3) can be found simultaneously by solving
e’ —x+Qp(n—AB) =0 (24)
A'Qo(n—AB) =0 (25)
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through the corresponding Newton iterations

<77k+1> _ <77k>
Br+1 Br
_ <Q0 + diag(e™) —Q0A> ! <€”’c — x4+ Qo(m — Aﬁ))
—A'Qy AlQgA —A'Qo(ni, — AB)

This approach has the interpretation of treating the augmented vector (7, 3)
as a random effect with (improper) precision

Qo —QpA
(-Ath AQpA 27)
corresponding to the hierarchical model where (§ is drawn from a diffuse prior

and 5|3 ~ N(AB,Q,").
Even though (27) is only positive semi-definite it is easy to show (using that
A has full rank) that the matrix

Qo + diag(e”) —QoA
< —Ath AtQ9A> (28)

(26)

is positive definite for any 7. This means that in practice the Newton itera-
tions (26) defines a stable optimization problem.

Another important remark is that (28) inherits the sparseness of QQy and
A allowing the Newton iterations (26) to be carried out efficiently for large
problems.

But is it really necessary to consider an augmented system? - why not just
substitute the solution of (25) wrt. 3 into (24) and then solving the reduced
system which only involves ? The answer to this question is that the re-
duced system is no longer sparse and thus considering the augmented system
really is a good idea for computational reasons.

To summarize the above procedure - referred to as the inner optimization
problem - we have found the posterior mode 7y and ML-estimate Bg jointly
for any given 6. By inserting 7y and 3y in the Laplace approximation (19)
of (22) we thus obtain an approximate likelihood profile wrt.

Loros (07) = Lrunn(0, Boliig, ) + %bg det <Qe + diag@e(@)) (29)

Optimization of this profile wrt. 6 - the outer optimization - is suitable
for the BFGS algorithm (Fletcher, 1970) because the objective function is
non-linear in € and because 6 usually is a relatively short vector. Standard
implementations of the BFGS (e.g. “optim” (R Development Core Team,
2008)) finds the Hessian VZ2[,,,¢(6|z) as a by-product of the optimization.
This Hessian is the approximate precision of 6. However, we actually need
the joint precision of the entire fixed effect vector (@, é) Denote by

<Z§Z H09> (30)
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this matrix. The block-matrix Hgg can be found by noting that the Hessian
of the profile likelihood defines the marginal precision of (30) (Pawitan, 2001)
Hyrop = Hopp — HopH g, Heﬁ

so that the full precision (30) becomes

H
o g (31)
Hgﬁ Hpmf + HeﬁHBﬁHGB

The first block-column is found directly from (23) by differentiation wrt. 3
and 6 respectively.

Hgg = V31(8,9) (32)
Hop = VoVpl(3,0) (33)

We prefer a further rewriting of (31). Recall that the definition of 35 is given
implicitly through the equation (23) with the conditional mean replaced by
the posterior mode:

—A'Qo(i(p.0) — ABy) =0 (34)
A chain-rule argument similar to (20) then gives the identity

Vol = —H ;3 Hag

which suggests rewriting (31) as

(L&t o) (35)

—G'Hgg Hprop + G'HggG

where G := V@B@. The expressions required to compute (35) are given by
Hgg = A'QA — A'Q(Q + diag(e”)) ™' QA

and - using the same chain-rule argument on (7, B)

0 (1) = (2 @A) (G- Y
3 —A'Qp  A'QpA AQy(i) — AB)

Lets illustrate the usefulness of formula (35) in practice. For the cases con-

sidered in this thesis the dimension of 3 ranges from 60 to 500 while € has

dimension 6. For these applications the only time-consuming part of com-

puting (35) is to calculate the small 6 by 6 matrix Hp.,r. The rest of the

calculations takes less than the time of a single likelihood evaluation.
Besides allowing for construction of confidence regions around (f3, ) formula
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(35) can be used to obtain a quadrAatAic approximation of the LGCP-likelihood
(22) in a neighborhood around (83, 6):

At ~
- 1(3-p Hgg —HpsG p-8
16 — (0 = ~ ~
( ,ﬂ|$) ( ,ﬁ|$) 2<0_0> <_GtHﬁ6 Hprof+GtHBﬁG 0_0
(37)
Denote by ¢(3,0) the right hand side of this display. Relying on standard

asymptotic theory one would expect the approximation being accurate within
a confidence-region of the form

O = {(5.0) : 24(8.0) < F 2}, (95%))

where n is the dimension of the vector (3,0). Thus the quadratic approx-
imation can be used to fit and test sub-models independent of numerical
integration required by the true LGCP-likelihood (17).

Consider for instance a non-linear submodel of the form § = (a). Then
the ML-estimate is approximately

D>

) &~ arg min q(¢(«), 0)

&,
( (a,0)

This non-linear optimization is easier carried out in practice through the
B-profile of (37):
a = arg moi{n Qprof(w(a))

where
Gprof () = inf q(8,0) = (8—0)' (Hpp—(HpsG (Hprop+G* HppG)G' Hyp)) (B 1)

which is obtained from the formula of the marginal precision.
We will consider an application of this technique in Paper III (page 57).

7.5 Goodness of fit

Consider a realization from the LGCP given by an observation x and hidden
log-intensity 7. If we knew the un-observed random variables n we would
be able to validate the model in two steps: (1) Check that the distribution
of nis N(u,X). (2) Check that the conditional distribution of x given 7 is
Pois(e").

As we do not observe 7 in practice it is natural to base goodness of fit
assessment on the predictions 7(x).

The Gaussian posterior approximation is

l ~ Nig 5(z). (Qo + diag(R(x))) ) (38)
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where g 5(z) = argmin, [(, B|n, z) and Ag(z) = exp(ij(x)). If approxima-
tion (38) is true then the variance of 7(z) must be

VIi(@)] = Q"' — E |(Qp + diag(Me(2))) ™!

By “removing the expectation” we thus obtain an unbiased estimate of V'[1(z)]
by Q, " — (Qp + diag(Mg(x)))~" and an approximate standardized residual
can be constructed by

1
ri=(Q5" = (Qu+ diag(h (@)™ * (@) - p) (39)
We can avoid removing Athe expectation by drawing an auxiliary variable
ulz ~ N(0,(Qg + diag(Mg(z)))™1). Then the (un-conditional) variance of
f(x) + u is

V(o) +u] = Qg

suggesting the standardized residual

ry = Q3 (A(x) +u — ) (40)

Personal simulation studies have shown that 7"57"2 is closer to the theoretical
x2-distribution than r{r;. Note that f(x) +wu — u is actually an approximate
sample from the distribution of n|z and therefore assessing the goodness of
fit based on rg follows the line of Waagepetersen (2006). Paper II (page 48)
provides a simulation experiment of the distribution of 7y on a test case of
dimension 6000. The x? approximation appears to suffice for this example.
If the x? approximation fails an obvious possibility is to simulate the distri-
bution of ry or ro directly. This is actually possible even in high dimension
because 19 can be calculated using only sparse matrix operations if @ is
sparse (Paper II (page 48)).

7.6 Power

Does the previously introduced standardized residuals have sufficient power
to be used for goodness of fit assessment for the LGCP? In this section
we consider a small simulation experiment of the spatial LGCP with an
exponential correlation structure. The particular case study is based on the
model applied in Paper IV (page 67) introduced later in this thesis. Five
different goodness of fit tests are compared through power simulations.

The test case is specified on a regular n x n-lattice I,, = {1,...,n}? equipped
with the euclidean distance. The covariance of the hidden random field
n is chosen as ¥ = (ae~®i=Il);c; ey, and a constant mean-log-intensity
1 is imposed at each location. The observation vector x thus have mean
Ez; = ¢"72% and we refer to log(Ex;) = p+ 3a as the intercept. The
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parameters of the model are 6 = (u + %a,log a,logb). We choose “true”
parameters as
6o = (3,1,-1)

on a regular 20 x 20-lattice. These values are inspired by a typical North-Sea
case consisting of samples from a 400 locations with an estimated charac-
teristic distance b~1 of & 10 — 20% of the diameter of the area (see Paper
V).

For each type of residual-vector r1 (39) and o (40) we consider a x2-statistic
rir as well as a Kolmogorov-Smirnov statistic K.S(r) given by the uniform
distance between the empirical distribution function of r and the standard
normal. We also consider using the Laplace approximation of the LGCP-
density (22) to measure goodness of fit. The goodness of fit tests are sum-

marized by
1. Chi-square of residuals riry.
2. Chi-square of simulation based residuals rirs.
3. Kolmogorov-Smirnov of residuals K.S(ry).
4. Kolmogorov-Smirnov of simulation based residuals K.S(rz).
5. Laplace approximation of negative log-likelihood 1LFCF (6y).

Lets now describe how to calculate power functions of the goodness of fit
statistics. Note first that each statistic S is a function of the data x and the
parameter 6. Moreover the simulation based statistics depends on random
draws of auxiliary variables u. This means that the critical region of a given
statistic in the most general setting has the form

K(0) = {(z,u) : S(z,u,0) > c}

where c is the 1 — a-quantile of the Py,-distribution of S(x,u, ) in the case
of a one-sided test on level a.. Recall that the power function is given by
v(0) = Py(K(0y)). Practical computation of v(6) proceeds as follows:

1. Compute c¢ as the empirical quantile of S(x,u,6p) by simulating 100
draws of data and auxiliary variables (z, u) from the null-model PGI?)GCP .

LGCP
PG

2. For each alternative # simulate 100 draws of (x,u) from and

calculate () as the empirical probability that S(z,u,0) > c.

In this study we only consider alternatives within the model structure though
the last step could of course be performed for any alternative. For each of
the three parameters alternative models are considered by varying the given
parameter around its true value keeping the remaining parameters fixed at
their true values. Both one-sided and two-sided tests are considered making
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Figure 5: Simulation of power function () for each of five goodness of
fit statistics for the spatial LGCP on a 20 x 20-lattice with an exponential

covariance structure.
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a total of 6 panels (Fig. 5).

The first thing to observe is that three out of the five statistics does not work
in the one-sided version namely the y2-statistics and the likelihood-statistic.
Not surprisingly, the y?-statistics are unable to reveal under-dispersion with
only large values being critical. This suggests using two-sided versions of the
three statistics. In their two-sided versions the y2-statistics are superior to
the other statistics when it comes to revealing deviations of the covariance-
parameters loga and logb. However, these statistics appears to have very
little power as function of the intercept parameter - especially the simulation
based x2-statistic.

The two-sided likelihood-statistic appears to have most power among all five
statistics as function of the intercept-parameter but seems rather useless for
revealing deviations of the covariance parameters.

Finally the Kolmogorov-Smirnov statistics appears to work very generally
both one-sided and two-sided, however the performance is not impressive.
For instance a change in log b of i% - corresponding to a 65%-change in the
correlation range - is revealed by the Kolmogorov-Smirnov statistics with
less than 50% probability. For comparison the two-sided y2-statistic reveals
this change with a probability close to one.

8 LGCP applications

8.1 Space-time modelling of length-frequency data

Computational complexity really is an issue when it comes to applying the
LGCP on length-based trawl-survey data. For instance a typical survey of
cod in the North Sea consists of 400 hauls and 60 length-classes of interest
making a total of 24000 random effects. Matrices of this dimension cannot
be handled in practice without imposing some special structure.

As previously mentioned the assumption of a sparse precision matrix reduces
the computational cost of the Laplace approximation a lot. Rue and Held
(2005) establishes the link between sparse precision matrices and Gaussian
Markov Random Fields (GMRFs). Can we formulate such GMRF-models to
capture relevant heterogeneity of length-based trawl survey data and still ob-
taining sufficiently sparseness to allow practical application of the method?
These are the motivating questions of Paper II (page 48).

With focus on a large North-Sea Cod survey we start by formulating a cor-
relation structure inspired by the following considerations

1. Some random parts of the North Sea are more populated than others
(large scale spatial correlation)

2. The high and low populated areas may change dynamically - even
within a survey (large scale time correlation).
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3. Fish swim in small batches with a spatial extension possibly smaller
than the dimensions of the trawl and batches have a narrow size com-
position (small scale size correlation).

4. The trawl is size-selective (size-dependent random thinning).

Assuming separability of “size” and “space-time” we propose the correlation
structure

p(AS, ”Axuv At) = psize(AS)Pspattemp(HA«'E”7 At) (41)
pspattemp(|AT ]|, At) = (1 — v)e lI8ele=0280 4 y1 o aim)  (42)

of the hidden log-intensity 7(s,x,t). Here ||Az| and At denotes the space
and time distance between two samples and As denotes the separation be-
tween two size-classes from each of the samples.

We now turn to the goal of achieving a sparse formulation of the precision.
Since all size-classes are represented in each of the samples the covariance
takes the form of a Kronecker product.

= Esize & E8]0attem]0

The Kronecker product is inverted by inverting each factors thus the precision
matrix becomes

Q = Qsize ® Qspattemp

If one (or both) of the factors have a high proportion of zeros then this will
also be the case for ). A simple way to achieve sparseness of (Qg.e iS to
choose Qg;.e as a band-matrix. For our purpose the precision of a stationary
AR(2)-process (z; = ¢12¢_1 + ¢pox_o + &1, € ~ N(0,k71)) appears to be
sufficiently flexible.

1 —¢1 —¢2
—¢1 1 +1 P12 — P1 —¢2
—¢2 ¢1d2—¢1 P2+ +1  Pigo — o1 —¢2
Qsize = K : .
—2 P12 — P11 P2+ P2 +1 Pigr—d1  —¢2
—2 P12 — P1 #3+1 —¢1
— 2 —¢1 1
(43)
where k = dp—1 This precision is defined for (¢1, ¢2)

 $3—93+(—97—1)d2—03+1
within the triangular region {(¢1,¢2) : ¢2 > —1, ¢p2 < 1+ @1, P2 < 1 —
¢1}. Further sparseness of @) could be obtained by replacing Qspattemp by
a 3-dimensional GMRF. This is however somewhat involved because usual
constructions of stationary GMRFs are made on regular domains such as the
torus or the lattice (Rue and Held, 2005). The highly irregular locations of
our space-time coordinates would have to be embedded on a regular 3D-grid
e.g. by assigning each coordinate to the nearest grid point (see Rue and
Held (2005) page 200). This introduces a new issue of how fine the regular
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grid should be. A too rough grid could potentially introduce bias. On the
other hand a very fine grid introduces a large number of auxiliary variables
(corresponding to the ns for which no observation is available) making the
sparse formulation less beneficial.

8.2 Combining LGCP with population model

Section 5.1 provided a mechanistic model of a size-structured population
governed by growth, mortality and recruitment. The model was linked to
trawl-survey observations through the negative binomial distribution (Paper
I). The goal of Paper III (page 57) is to replace the negative binomial distri-
bution with the LGCP. How does this change affect the information about
the population model?

Considering the same data as Paper I we start by considering the LGCP
with a mean value structure given by (9) and a covariance structure given
by (41). This type of model can be fitted using the the methods of section
7.4. Our estimation approach consists of three steps

1. Find approximate ML-estimates (3,8) of the likelihood (22) using the
method described in section 7.4.

2. Construct a second-order expansion g¢(f3, 0) of —log L(B,6) around
(8,0) using (37).

3. Fit the size-structured sub-model (13) using the quadratic approxima-
tion by writing the sub-model on the form § = ¢(«) and optimizing

~

q(¢¥(a),0) wrt. (a,0) and obtain the estimate (&, 6p).

Step 3 replaces the LGCP-likelihood with a quadratic approximation around
(@, é) and has the computational benefit that further model fitting and test-
ing can be carried out without the high-dimensional integrals appearing in
the true likelihood function.

The overall conclusion is that temporal changes of the level of the size-
spectrum becomes less significant. In particular the catchability can be
tested constant which is a major difference compared to Paper I.

8.3 Applying LGCP to predict abundance surface

Our final application of the LGCP is to predict the abundundance surface
of fish. Most prediction methods are based on underlying - more or less
transparent assumptions - about the statistical properties of the data un-
der consideration. A correct specification of the statistical model used for
predictions is crucial in order to obtain meaningful predictions with realistic
uncertainty-estimates. Therefore it seems mandatory to statistically validate
the underlying statistical assumptions before applying a given prediction-
method.
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This is why the LGCP provides an interesting basis for prediction of the
log-abundance surface of fish. As a genuine statistical model it allows for
validation. Approximate ML-inference can be carried out using the previ-
ously described Laplace method. If a given datset passes the goodness of fit
validation it makes sense to further apply the statistical model for predic-
tion /interpolation.

Paper IV (page 67) is an application of this general approach. Trawl sur-
vey data of North Sea cod 1983-2004 are considered. The data constitutes
21 surveys with three age-groups under consideration. A stationary spatial
Gaussian random field n is applied to describe the hidden log-abundance
surface of fish separately for each age-group and survey. The random field is
defined by a constant mean p and a covariance model given as an exponential
structure with a nugget effect:

V(Az) = aexp(=bl|Az]) + dl(ag=0)

This model thus have four parameters 6 = (a, b, d, ).

The first important conclusion of Paper IV is that the LGCP with the pro-
posed covariance structure adequately describes the spatial heterogeneity of
the data as the goodness of fit tests based on the standardized residuals (40)
are accepted for all surveys.

Assuming independence between surveys it is further concluded that for any
fixed age group the parameters of the covariance (a, b, d) does not change sig-
nificantly during the entire period. This is remarkable because it means that
some basic properties of the local behaviour of the log-abundance surface are
invariant.
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How to validate a length-based model of
single-species fish stock dynamics

Kasper Kristensen, Peter Lewy, and Jan E. Beyer

Abstract: This paper validates a new length-based model of the dynamics of fish stocks or crustaceans by hierarchically
testing statistical hypotheses and thereby investigating model complexity. The approach is based entirely on scientific
survey data and on determination of the statistical distributions of the number of fish caught per haul in each length class.
In our example, the negative binomial distribution is statistically accepted and linked to the population level through the
new length-based model. The model is derived from the characteristics of continuous recruitment, individually based
growth, and continuous, length-dependent mortality rates. Continuous recruitment with annually varying recruitment peaks
and individually based growth was crucial for obtaining a model that could be statistically accepted. Natural mortality was
estimated as well by the model. The model was applied to survey data for Atlantic cod (Gadus morhua) in the Baltic. Its
simple generic nature, as well as the validation procedure, is useful in studying and understanding life history and stock
dynamics.

Résumé : Notre travail valide un nouveau modele de la dynamique des stocks de poissons basé sur les longueurs en
testant des hypotheses statistiques de maniere hiérarchique ; il examine ainsi la complexité du modele. La méthode se base
entierement sur des données d’inventaire scientifique et sur la détermination des distributions statistiques des nombres

de poissons capturés par trait de récolte dans chacune des classes de longueur. Nous acceptons dans notre exemple une
distribution binémiale n égative et nous la relions au niveau de la population a ’aide du nouveau modele basé sur les
longueurs. Le modele est dérivé des caractéristiques du recrutement continu, de la croissance individuelle et des taux

de mortalité continus en fonction de la longueur. Le recrutement continu avec des pics de recrutement qui varient d’une
année a |’autre et la croissance basée sur les individus sont de grande importance pour 1’élaboration d’un modele qui soit
statistiquement acceptable. Le modele estime aussi la mortalité naturelle. Nous avons appliqu é le modele a des données
d’inventaire de la morue franche (Gadus morhua) de la Baltique. La nature générique simple et la procédure de validation

du modele le rendent utile pour 1’étude et la compréhension des cycles biologiques et de la dynamique des stocks.

[Traduit par la Rédaction]

Introduction

Validation is a vital part of the modelling process, since it
is here the model is confronted with reality. How to make this
confrontation in an objective way has often been neglected in
studies of fish stock dynamics. In this paper, we present a statis-
tical validation of a new length-based model of the dynamics of
fish or crustacean stocks. We restrict attention to a single-species
approach that is based entirely on scientific survey data.

The motivation for the study is to increase our ability to make
reliable predictions of fish stock dynamics. As a prerequisite,
the objective of our modelling is to understand the essence of
the information on survey catchability and the vital rates of
growth, mortality, and recruitment that is contained in data by
validating models of differing complexity. If we can test for
model complexity and obtain estimates of vital parameters with
confidence limits, then our approach has a promising potential.
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The validation of model complexity is done by testing statis-
tical, hierarchical hypotheses. The basic hypothesis to be tested
concerns the statistical distribution of the observed catch per
unit of effort (CPUE) by length. Can a Poisson model for ran-
dom encounters adequately describe the observations, or must
we use an overdispersed distribution, such as the negative bi-
nomial (NB)? Choosing an adequate distribution is crucial be-
cause an inadequate distribution may seriously affect test results
and parameter estimates. These problems will be pinpointed.
Results of testing have not been reported in previous studies,
where the stochastic variations in CPUE by length have been de-
scribed by the normal (Sullivan 1992), the log-normal (Frgysa
et al. 2002; Fu and Quinn 2000), or the conditional multino-
mial (Frgysa et al. 2002; Schnute and Fournier 1980; Smith et
al. 1998) distributions. When a statistical distribution has been
accepted, the next step in the hierarchical testing of hypotheses
is to test if a comprehensive stock dynamics model can be ac-
cepted. If the comprehensive model is accepted, more simple
submodels can be tested. To our knowledge, nobody has statis-
tically tested model complexity of the stock dynamics model
used.

Available models of length-based stock dynamics applying
statistical methods are usually age-length structured. Frgysa
et al. (2002) and Schnute and Fournier (1980) combined stan-
dard, age-structured stock dynamics models with growth mod-
els and applied the derived models to length-based catch ob-
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servations, while Sullivan (1992) applied a purely length-based
state—space model. Sullivan (1992) and Frgysa et al. (2002)
approximated the discrete probabilities that fish either do not
grow or grow into the neighbor length intervals for each length
group. Other authors directly estimated the parameters of the
von Bertalanffy growth equation (VBGE) assuming that mean
length-at-age follows a specified distribution around a VBGE
curve (Schnute and Fournier 1980; Fournier et al. 1998; Fu and
Quinn 2000). These age—length structured approaches include
both recruitment and temporal dynamics and are discrete in
length and time. However, recruitment is assumed to take place
instantaneously the same time each year, disregarding the fact
that recruitment generally occurs continuously over time with
an annually varying peak. Furthermore, the discretization im-
plies some limitation in model assumptions. For instance, Sul-
livan (1992) and Frgysa et al. (2002) assumed that the probabil-
ities of growing into neighboring length intervals were constant
over time. Even if fish growth remains unchanged, this assump-
tion is violated if the length-specific mortality varies over time.
Smith et al. (1998) avoided the problems of discretization by
using a continuous, statistically based spectrum model with in-
dividual variability in growth and length-dependent mortality.
Their approach, however, assumed the stock to be in steady
state and was therefore unable to consider temporal changes in
mortality and recruitment.

There are two reasons why we developed a new approach to
modelling the length-based fish stock dynamics. First, to pro-
duce a generic model platform we want to avoid possible bias of
discretization (Xiao 2005) by formulating a time- and length-
continuous model. Second, we want to include continuous re-
cruitment, individual-based growth, and temporal changes of
survey catchability because we want to test the importance
of these processes. Such requirements are conveniently dealt
within a time- and size-continuous approach (i.e., a size-
spectrum model).

In the present paper, model complexity is tested by the like-
lihood ratio test. Regarding the continuous recruitment model,
the timing of the recruitment peak and its variation is allowed
to change by year and is estimated by the model. Individual
growth is modelled using the VBGE assuming that each in-
dividual has its own von Bertalanffy asymptotic size (Lo).
Length-structured models for survey catchability and fishing
and particularly natural mortality are also included. The es-
timability of the parameters is examined by Monte Carlo sim-
ulation. Only data from scientific surveys are applied, while
fishery data are not included in the analysis. One reason for
this is that testing whether a specified distribution adequately
describes data requires that several independent observations
are available following the same distribution in question. Such
observations are only provided from surveys conducted within
a short time range and selecting individual hauls randomly in an
area. The use of survey data is further relevant when the quality
of catch data is poor or when such data are not available. Finally,
only length-based data are used, which is especially relevant
when the age determination is uncertain. The present length-
based model is applied to research survey data for Atlantic cod
(Gadus morhua) in the eastern Baltic for which both problems
apply (Reeves 2003). Survey-based but age-structured meth-
ods have also been considered by Cook (1997) and Beare et al.
(2005).
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Modelling the number density of a
population

In the present model, the life history of an individual is deter-
mined by growth and mortality. Each individual is assumed to
follow its own growth pattern, while the mortality depends on
the size of the individual and the time. Recruitment is assumed
to take place continuously in time. However, first we derive the
number density in case of discrete recruitment. (Refer to the
List of symbols for an explanation of all symbols used.)

Let Ry denote a number of individuals recruited at the same
time 7o with the same size Lg. The fish growth is modelled using
the VBGE. All individuals are assumed to have the same growth
parameter k, while L, varies individually following a common
distribution with density u on (Lg, 00). For an individual fish
with a given L, the length at time 7 is
(1) L(t, Leo) = L(t, Loolk, t0, Lo)

= Loo — (Lo — Lo) exp[—k(t — 19)]

At time ¢ the individuals that have size less than x are exactly
the ones with an L, belonging to the set

@ Lo L(t, Loo) < x} = [Lo, G)]
where
@) G = Gxlk 1y, L) =~ LA~ 0]

1 — exp[—k(r — 19)]

Let z(x, 1) denote the size- and time-dependent total mortality.
Then the number of survivors with size contained in the interval
(Lo, x) at time 7 is given by

G(x)
Ro [
Lo

By differentiation with respect to x of this expression, we obtain
the number density n based on a group of individuals recruited
at the same time:

t
exp {—/ zZ[L(s, Loo), 5] ds] U(Loo)dLoso
fo

t
n(x,t) = Rpexp <7/ zZ{L[s, G(x)], s} ds)
fo
x u[G(x)]G(x)

It should be kept in mind that both L and G depend on k, #o, and
Ly. To find the n based on a continuously recruited population,
we simply add the corresponding number densities. Let r(f)
denote the recruitment rate. Then 7 at time ¢ is

t

@ nx,0) :/

—00

t

r (o) exp (—f Z{Lzo[s,Gro(X)],S]dS>
)

X u[ G, (x)1Gy, (x) dio

It may be noted that eq. 4 alternatively could have been derived
directly from solutions n(x, t, L) to the size-structured von
Foerster equation (von Foerster 1959) for a given value of Ly,
and then mixing all these solutions with respect to the proba-
bility density u(L). We shall refer to eq. 4 as a size-spectrum
model.
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Statistical model

Formulation

The ns from the previous section are now used to formulate a
statistical model for catch data from hauls at random positions.
The individual hauls are numbered by i € I and the time of
the ith haul is denoted #;. The set of sampling times is given
by T = {t; : i € I}. It is assumed that for each ¢ € T the
set {i € I : t; = t} has at least two elements (i.e., for each
sampling time, we have at least two hauls).

Within each haul, individual fish are measured with an ar-
bitrary accuracy and associated with a corresponding length
group C;. Data can be summarized by a matrix N;; of counts
for the jth length group at the ith haul.

We consider a simple statistical model with a corresponding
hierarchy of hypotheses (Hyp D H; D H, D H3).

Hy

In our main statistical model, N;; are assumed to have an
independent, NB distribution with identical parameters within
each sampling time (+ € T') and length group (j) (i.e., the ran-
dom variables {N;; : t; = t} are identically distributed with
mean (y,; and variance 012,/' (Ufj > i47,5)). To be able to esti-
mate parameters in this model, we need at least two hauls for
each sampling time.

The likelihood function is given by

L[(r,5), (”;2,/')] = 1_”_[
i

T(Nij + vy.5)
C(v, )T (N;j + 1)
x5 (1=, )
in terms of the density function of the NB distribution with
probability parameter 7y, ; = Wy, j / ‘7:?, i and size parameter
V= “tz,,j/(“r?,j - ,u,,,j). Note that for a given sampling
time 7, the maximum likelihood estimate fi;,; is just the group
average, while &rz_ ; can not be written on closed form.

H;
To reduce the number of parameters in the main model, we
state the variance structure hypothesis:

(5)

This variance structure is mainly proposed from empirical in-
vestigations (even though we can give a mechanistic argumen-
tation in the case of b, = 2, which is out of the scope of
this paper). Note that the additional u;, ; term ensures that
> B which is required by the NB distribution.

by
V(Ni,j) = 0,?,1- = ﬂx,-Ml,/,'j + Wy j

%,
Hy

The size-spectrum model with time-dependent catchability is
simply a mean value hypothesis in the previous models obtained
by assuming the variance structure (eq. 5) and expressing the
expected CPUE in terms of catchability and number densities:

©)  EWNij) =y =/ qo(x, 1i)ng(x, 1;) dx

C!
The relevance of letting the catchability be time-dependent will
be justified.

38

2533

Hj
Finally we may consider the time-independent catchability
model by assuming that g(x, t) = g(x) in Ha:

M :/ qg(x)ng(x, 1;) dx
Cj

Setting up a hierarchy of hypotheses like this has several
benefits. First of all it enables successive statistical tests to val-
idate the spectra models. But more importantly it helps us to
localize model problems. For example, the model H> includes
three different assumptions regarding the statistical distribution,
a variance structure, and a mean value structure. If the H> hy-
pothesis has problems fitting the data, it will be possible to find
out which of the three assumptions are critical by considering
successive likelihood ratios.

To validate the main model (Hy) we use the randomization
technique described in Appendix A because the random vari-
ables N;; have a discrete distribution (and thus, transforming
with its distribution function, does not produce a uniform dis-
tribution). To test the hypotheses Hj,H,, and H3, we use like-
lihood ratio testing for composite hypotheses (Rao 1965).

Parametrization
The catchability function is chosen as a symmetric sigmoid
curve multiplied by a fishing power p;.

Pt

) T
1 + exp[—o; (x — LSO)]

qo(x, 1) =
Both p; and «; depend on the time ¢ of the survey. «; thus
describes changes in the selection pattern over time, while p;
models changes in the overall catch efficiency in the survey.

The mortality z is split into two components: the natural mor-
tality and the fishing mortality:

z(x, 1) = Mo+ f(x,1)

where My is an assumed unknown constant, and f is assumed
to split into the product of a piecewise constant function of time
and a sigmoid function of size

n

ZFO(:))I(U—]<’<W)

i=1

1

fo = —————————
I+ expl—B(x — L]

For the distribution of L, (#) we use a normal distribution with
mean pp,,, and standard deviation o7 . When there are almost
no observed fish larger than ~ 1/2p;  (actually 50 cm in our
case), it is impossible to estimate y7,, and k simultaneously.
Therefore, it is assumed that 117, is known and a value from
Bagge et al. (1994) is used.

New individuals are recruited to the size of L( continuously
in time. It is assumed that the recruitment period for a year class
is normally distributed. Hence the recruitment rate is a linear
combination of normal components:

®)  r()=) Ryduperope (o)
yeY '

where ¢, is the normal density with mean p and standard
deviation 0. The mean recruitment time for cohort y is param-
eterized as a year y plus a date Aty (i.e., ity =y + Aty).

© 2006 NRC Canada



2534

Weuse Lo = 1 cmand Y = {1997, ..., 2003} in the present
case.

)

k, uzx =135,01,,

An asterisk (*) indicates that the parameter is fixed.

Identifiability

Some care is needed to avoid that the spectra models Hj
and H3 get overparameterized. Since the statistical models are
determined by the mean values (eq. 6), we need to dispel all
obvious parameter bands appearing here. First of all, by insert-
ing eq. 4 in eq. 6, notice the band between the parameter vector
(pr) and the vector of recruitment sizes (Ry); if we multiply and
divide the two vectors, respectively, with the same constant, the
model is unchanged. This is taken care of by fixing one of the
recruitments to 1 (e.g., Roooo = 1). With this convention, it
is possible to estimate the parameters in both statistical models
based on the parametrization given in the previous section. This
claim has been verified by re-estimating known parameters in
simulated data sets.

However these Monte Carlo experiments showed that a large
number of the parameters in the model were highly corre-
lated, indicating the need for a reparametrization. Especially
high correlations occurred between a and b from the variance
structure and among (p;) from the catchability. The transfor-
mation (a,b) = (loga + b : logu,b) made a and b al-
most uncorrelated. Furthermore, it appeared that the variables
log py,, log ps, —log py,, log ps; —log py,, etc. were much less
correlated than the vector (log p;). Also the choice of refer-
ence year class had a major impact on the range of correlations
between the parameter estimates.

With the new parametrization, a Monte Carlo re-estimation
experiment was carried out. All parameter estimates were plot-
ted in pairs to determine deviations from the asymptotic normal
distribution. The plots showed regular ellipses, indicating that
the normal approximation applies.

Model predictions

Once we have obtained the estimate é, we can compute
model predictions of, for example, the relative biomass and
length distribution of the commercial catches. Assuming iso-
metric growth (i.e. W = q0L3) for some condition factor go,
the total biomass in the system at time 7 is given by
oo

x3n(x, t) dx
0

10 B :%/
L

Recall that since Rappp = 1 is fixed, n(x, ) is only known up to
a multiplicative constant. Therefore, eq. 10 can only be used to

0= (R1997, R1998, R1999, R3990 = 1, Rooo1, R2002, R2003, At1997, ..., At2003, 01657, ---» 02003+ Ps
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The parameters of the statistical model H, are summarized
in the vector :

survey

survey  survey
LY ey,

fishery ,fisher: (<2001) £(2001-2002) £(2002—2003) £(>2003)
Ly, plishery | p (52000 p2 . Fg L FGP9 p,

variance structure bvariance structure
a; Yt

predict the relative biomass in the system, and for that purpose
qo is not needed. We may compute the number density of the
fishery catch during the time period / by the formula

an CI(X):/f(x,t)n(x,t)dt
1

This formula makes it possible to compare the catches for a
given length group between different time periods.

To compare results with those from age-based models, it is
useful to convert length-specific mortalities to age-specific mor-
talities. For a given cohort, the overall mortality at time ¢ is given
by Zeohort () = —N'(t)/N(t), where N (¢) is the total number
of individuals in the cohort at time 7. Hence

o0
fLo 2(x, Dncohort (x, 1) dx

0
fLo Neohort (%, 1) dx

(12) Zeohort () =

This equation also applies when replacing z by m or f.

Data

Our data consist of cod catches from 299 selected hauls ob-
tained from the Baltic International Trawl Survey. Only posi-
tions inside the International Council for the Exploration of the
Sea (ICES) division 25 are considered. All the hauls are taken
with TVL-trawl by the Danish vessel DANA. The duration of a
haul is ~ 30 min.

The survey is performed twice a year — the spring survey,
which takes place around 1 March, and the autumn survey,
which takes place around 1 November. The actual haul times
are distributed over a 1-month interval around these dates, and
we associate an average date with each survey — the so-called
sampling time.

A brief overview of the data is given in Table 1. The length
of each fish has been measured to an accuracy of 1 cm and a
length range from 5 to 60 cm is considered. We define the mean
CPUE for a given 1 cm length group as the average number of
fish caught at a given time for that given length group in a haul.
The mean CPUESs per length group are illustrated (Fig. 1), and
von Bertalanffy growth curves are also shown (with parame-
ters given in the caption) in order to follow the cohorts through
time. The positions of the peaks in the length distributions are
reasonably well described by the growth curves. The growth
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Fig. 1. Catch per unit of effort (CPUE) per 1 cm length group at the nine sampling times and Bertalanfty curves with initial size
Lo =1 cm at 1 August. Each Bertalanffy curve is marked with the two-digit year classes from 1995 to 2003. Except for the initial time
f, all curves have the same parameters k = 0.12 year~! and L, = 135 cm.

60

Length (cm)

Mar. 2000 —
Nov. 2000 —|
Mar. 2001 —

Table 1. Number of hauls and fish caught by

survey.
Survey No. of hauls  No. of fish caught
Mar. 2000 8 1920
Nov. 2000 29 6300
Mar. 2001 50 13658
Nov. 2001 33 8610
Mar. 2002 41 14733
Nov. 2002 35 16796
Mar. 2003 41 7467
Nov. 2003 24 5870
Mar. 2004 38 10857

curves also indicate the extent it is possible to estimate recruit-
ment. It is impossible to estimate the 95 and 96 year classes, as
virtually no fish older than 3 years are caught. The year class
with the clearest data signal is the 2000 year class; hence it is
natural to use the 2000 year class as a reference. All other year
classes will be estimated.

Results

Validating the main statistical model

The model Hy includes both a distributional assumption and
an assumption about independence. These are considered sep-
arately. For each of the nine surveys and 55 cm length groups,
the maximum likelihood estimates (MLEs) [;, and &,% have
been obtained. By transforming with the estimated distribution
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Nov. 2001 —
Mar. 2002 —
Nov. 2002
Mar. 2003 —
Nov. 2003
Mar. 2004 —

o
o
T

function — and randomizing as described in Appendix A —
we obtained 299 x 55 residuals (U;;), which should follow a
uniform distribution on the unit interval. A quantile-quantile
(Q-Q) plot indicates that this holds true (Fig. 2a). The same
residuals (U;;) were also plotted against u;, (Fig. 2b), showing
no systematic patterns.

To demonstrate the importance of choosing a distribution
with over-dispersion, the same plots were made with the NB
distribution replaced by the Poisson distribution (Figs. 2¢ and
2d). The Poisson distribution obviously did not meet the crite-
rion of uniformity.

The model Hy assumes independence between length groups.
To validate this assumption, the empirical correlations between
length groups were examined, and it appeared that strong cor-
relations existed between neighboring length groups.

In the light of the length group dependencies, it did not make
sense to perform a formal Kolmogorov—Smirnov test on the
randomized residuals (U; ;) to test whether these residuals fol-
lowed a uniform distribution. Instead we chose to partition the
residuals into corresponding 1 cm length groups (i.e., consider-
ing U;; for fixed j) and performed the statistical test for each of
the length groups in order to test the distributional assumption.
Indeed, this lead to acceptance for every group.

We will ignore the length group dependencies throughout
this study.

Examining the variance structure
To reduce the number of parameters in the main model (Hy),
the variance structure proposed in H; is suggested, which al-
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Fig. 2. (a) Q-Q plot for the negative binomial (NB) distribution. The observed randomized quantiles are plotted against the theoretical
quantiles. (b) The observed randomized quantiles for the NB distribution as a function of the estimated mean value parameter. (c) Q-Q
plot for the randomized quantiles based on the Poisson distribution. (d) The observed randomized quantiles for the Poisson distribution as
a function of the estimated mean value parameter in the Poisson distribution.
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most eliminates half of the parameters. The reasonability of this
hypothesis is justified (Fig. 3), showing nine independent anal-
yses — one for each sampling time. The parameter estimates
(ﬁ,t,j and &,%j) from the full statistical model (Ho) are plotted

for each sampling time together with the curve o2 = &, u? + p,

where a, and l;, are the MLESs from the variance structure model
(Hp) at time .

Despite the convincing fits on Fig. 3, the likelihood ratio test
of H\ against Hy is rejected. It turns out that the points above
the curves generally correspond to fish smaller than 20 cm,
while points below the curves correspond to fish larger than 20
cm. This motivates an extension H]’ of H; with two variance
structures for each survey — one for fish smaller than and one
for fish larger than 20 cm. It is later shown that H| is accepted
under Hj (Table 2).

Spectrum model inference

Assuming the hypothesis H{, we now consider the size-
spectrum model (H>) with time-dependent catchability. It was
assumed that the mean date and the standard deviation of the
recruitment process was the same for all year classes earlier
than the first sampling time, i.e.:
1y o = ol = ol

Aty997 = Ati998 = At1999

I
1.0

41

Expected values

The MLE 6 for @ (eq. 9) was obtained, and the Hessian matrix
was checked to be positive definite. Based on 6, the expected
CPUEs py;,; were computed and compared with the observed
mean CPUE:s (Fig. 4). We conclude that the model H; describes
the CPUEs well. Moreover, H, was accepted by a formal like-
lihood ratio test (Table 2).

Assuming constant catchability (i.e., time-independent o,
and p;) over time, we estimated parameters based on H3 and
obtained a plot equivalent to Fig. 4, which showed that it was im-
possible for the reduced model to explain the increasing CPUE
for the 2000 cohort during year 2002.

To overcome this problem, we also considered a compromise
(Hé) between H, and H3 with time-independent «; and time-
dependent p,. The visual fit was improved compared with H3.
However both H3 and H3’ were rejected by the likelihood ratio
test (Table 2).

It became apparent that no simple reduction of H, was pos-
sible (Fig. 5). To arrive at a final model, the estimates from H»
were inspected, and the ones that did not differ significantly
were collected to form a final hypothesis (H,):

P4 = D5 = Pe

o] =) =04 = As, o3 = 0 = a7, Ol8=0l9=0
(14) recr __ __recr __ _recr
92000 = 92001 = 92002

At1997 = At1998 = At1999 = At2000

recr recr recr
01997 = 91998 = 01999+
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Fig. 3. Maximum likelihood estimates (MLEs; circles) 6,-2 vs fi; from the main model (H,). Solid lines indicate the function

o2 =a, ,U.[;’ + w, where @, and 5, are the MLEs from the variance structure model (/) at time 7.
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Table 2. (i) Successive asymptotic likelihood ratio tests. (if)
Sequential tests under H, of Hj (time-independent catchability)
and Hj (time-independent ¢, in catchability).

—logL  —2logQ No.of df P
parameters

(i) Hy 343200 — 990 — —
H{ 345653 490.7 531 459 0.15
H, 34779.6 4286 80 451 0.77
(ii) Hs 350405 521.7 64 16 <0.01
H; 348239  88.6 72 8 <0.01
H, 347892 19.3 68 12 0.08

The likelihood ratio test of Hj against H, was accepted (Ta-
ble 2). Also the likelihood ratio test of Hj against Ho supported
this conclusion with p = 0.35. To validate the applied x? ap-
proximation, a simulation study was carried out: 100 data sets
were randomly generated from Hj, and the the likelihood ratio
test of H; under Hy was computed. The simulated distribution
agreed perfectly with the theoretical x? distribution with 922
(990 — 68) degrees of freedom.

The final model Hz’ had 68 parameters, of which 36 described
the variance structure and 32 described the expected CPUEs. A
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plot of the expected CPUESs did not produce any visible changes
from Fig. 4.

The highest absolute parameter correlations in the reduced
model were found to be 0.93. However, those correlations in-
volving the mean value parameters were all below 0.90.

The parameters with the highest coefficient of variation (CV)
were CV(Mo) = 0.66, CV(B) = 0.33, and CV(log Ro) =
0.36. Almost all other parameters had CV < 0.20.

To test the significance of continuous recruitment versus in-
stantaneous recruitment, the confidence intervals of o-)r,e”, y =
1997, ..., 2003 were considered. It appeared that none of these
included 0. Also, the standard deviation on Lo, was signifi-
cantly greater than 0, showing that a model assuming identical
growth trajectories for all individuals would be rejected even if
individual variability in the spawning time was included.

Spectra model predictions

From the parameter estimates based on Hy, different kinds of
model characteristics were computed — namely the estimated
biomass, mortality, and recruitment. Furthermore, the predicted
commercial landings were compared with the observed ones.

The biomass relative to year 2002 (i.e., B(t)/ B(2002), where
B(t) is computed by eq. 10) is shown (Fig. 6¢). The increasing
trend during 2002-2003 was mainly caused by the strong 2000
year class (Fig. 6b).
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Fig. 4. Observed catch per unit of effort (CPUE) and expected CPUE per 1 cm length group at each sampling time obtained from model

H,.
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Fig. 5. Hypothesis hierarchy. Hj, main statistical model without
mean and variance assumptions; H,, variance structure model;
H/, extended variance structure model; H,, size-spectrum model
with multiplicative time-dependent catchability; Hs, time-constant
catchability; Hj, time variability in catchability caused by fishing
power alone; Hj, final accepted hypothesis obtained by collecting
parameters in H,.

Hy —— H;

N

/4>H24>H3

\

Hy

No information on the commercial landings has been utilized
for model estimation, but catch compositions are available from
2000 until ultimo 2003. The predicted length probability distri-
butions of the yearly commercial landings in that period were
computed by eq. 11 and compared with the observed distribu-
tions (Fig. 6d). The predictions fit the observations quite well
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for all years. However, when considering the absolute commer-
cial landings over the same period, there is a clear decreasing
trend that is not replicated by the model (not shown).

The age-specific fishing mortalities were computed (Table 3)
based on eq. 12. These mortalities were slightly lower than the
size-specific mortalities (Fig. 6a). The reason for this is that only
the fraction consisting of the fastest growing individuals of an
age group is exposed to the high size-specific mortalities. This
phenomenon is maintained by the increasing size dispersion
within a cohort implied by the underlying stochastic growth
model.

Another consequence of the extreme size-selective mortality
is the emergent property that old individuals grow very slowly.
This is illustrated by showing the mean of the single cohorts
as a function of time (Fig. 7). From this illustration we can
conclude that for the typical length distribution of fish within a
given survey — which consists of three peaks — the first and
second peaks consist primarily of the 0-group and 1-group, re-
spectively, while the third peak consists of all other age groups.

Discussion

This paper validates a new length-structured model of stock
dynamics by testing hierarchically classified hypotheses. Hence,
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Fig. 6. (a) Estimated fishery mortality (solid lines) and 95% confidence limits (broken lines) by fish size. (b) Estimated recruitment R,
by year and 95% confidence limits. (c) Estimated relative biomass and 95% confidence limits. (d) Observed relative length distributions
for the commercial catches (circles) and predicted relative length distributions for the fishery based on the spectrum model (solid line).
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the approach makes it possible to investigate model complex-
ity, a necessary prerequisite for determining stock dynamics,
which is particularly crucial for complex, nonlinear models.
Only survey data have been used. Testing hypotheses requires
that the applied statistical distribution adequately describes the
variation of the observations, and the correspondence between
the observations and the distribution should be investigated ei-
ther graphically or by a formal test. This has been done for
observations in the case study here, where the hypothesis of an
NB distribution with a specified variance-mean structure was
accepted. Testing the significance of a statistical distribution is
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only possible if several independent, identically distributed ob-
servations are available and analysed without prior aggregation
as done in the present approach. The NB distribution with an
unspecified mean and with the specified variance structure was
subsequently used as a general model against which submodels
of interest have been tested. The present size-spectrum model
is such a submodel specifying the mean of the NB distribution.
The spectrum model has been tested against the basic NB model
and was accepted. To our knowledge, no previous stock dynam-
ics or assessment approach has formally tested the significance
of the model applied.
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Fig. 7. Estimated mean of the individual cohorts (solid lines) and von Bertalanffy curves from Fig. 1 (broken lines).
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Table 3. Age-specific fishing mortality.
Age (years)
Date o 1 2 3 4 5 6
Mar.2000 0 0 021 062 075 — —
Nov.2000 0 0 0.08 053 072 077 —
Mar.2001 0 0 051 175 217 228 —
Nov.2001 O O 0.18 123 189 216 225
Mar.2002 0 0 028 081 1.04 1.14 118
Nov.2002 0 0 0.09 075 104 111 115
Mar.2003 0 0 0.67 222 278 290 298
Nov.2003 0 O 0.18 151 223 254 259
Mar.2004 0 0 0.60 179 219 234 233

The stock dynamics model developed combines the char-
acteristics of continuous recruitment in time, individual based
growth, and continuous, size-dependent mortality rates.As re-
cruitment is assumed to take place continuously, it is possible to
test the simpler model of instantaneous recruitment. The model
with instantaneous recruitment (with estimation of the optimum
time of recruitment) resulted in problems with the interpretation
of growth parameters, as the probability of obtaining unrealis-
tic small L (e.g., < 20 cm) was non-negligible. This problem
arose because the standard deviation of L« (o7.,) would com-
pensate for the lack of spawning variation, resulting in too large
estimates of o7 . These problems were the main reason for the
statistical rejection of the spectrum model with instantaneous
recruitment. In contrast, the model assuming continuous re-
cruitment did not encounter any of these problems. First, the
continuous recruitment model was accepted, and secondly, the
distribution of L, can be described by the normal distribution,
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with negligible possibility of negative values of Lo and with
a reasonable estimate of k. An additional advantage of mod-
elling and estimating recruitment continuously over time by
the annual timing of the peak and its temporal variation is the
possibility of investigating and studying recruitment processes.

For the model Hz’, it was possible to estimate a constant nat-
ural mortality, My. The estimability of My is in agreement with
Fu and Quinn (2000), suggesting that (in another length-based
model for Pandalus borealis) constant My can be estimated
together with a survey catchability varying over time. Assum-
ing, however, that m(x, t) is constant for all fish sizes is of
course incorrect, as m(x, t) increases for the smaller fish (ICES
2005a).We therefore formulated an alternative, more biologi-
cally realistic model by expressing m(x, t) as a size-dependent
function, m(x) = 23 exp(—x + 1) + M, which is equal to 23
for fish of length 1 cm, decreases to M, when the fish length in-
creases, and is close to M, for x larger than 5 cm. The mortality
rate of 23 corresponds to the value used by Bradford (1992) as
late cod larvae daily mortality of 0.063. For this model, M, was
estimated to 0.16, which is close to and not significantly differ-
ent from 0.18 previously estimated. The estimates of biomass,
recruitment, and fishing mortality are likewise very similar for
the two m(x, t) assumptions. Neither did reducing the mortality
rate of larval cod by 50% change the results. This suggests that
natural mortality can be assumed constant for all sizes when
estimating relative biomass, recruitment, and fishing mortality
in the size-structured stock dynamics model.

The suggested model considers the individual growth of each
fish. The assumption of individual growth patterns was formu-
lated assuming that each fish has its own L, and that the indi-
vidual values originate from a normal distribution with a mean
of 135 cm and a variance to be estimated. The estimated stan-
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dard deviation of L, is significantly larger than zero, indicating
that the individual growth model is a major improvement com-
pared with a growth model where all fish have the same growth.
Individual variability could also be associated with k instead of
L, but results of Swain et al. (2003) suggest that for Atlantic
cod the model implemented here fits better than the model with
varying k.

The model is continuous in time and size, which has the
advantage that the stock dynamics model is formulated inde-
pendently of any discretization. Furthermore, observations can
be used as a basis for estimation irrespective of the timing,
which makes it possible to include additional catch or survey
information collected at other times of the year.

The NB distribution was accepted adequately to describe data
and was applied further in the calculations. To illustrate conse-
quences of applying a wrong distribution, the Poisson distribu-
tion was applied, for which we know that the variance will be
underestimated. The MLEs were calculated and the tests of Hy
and H3 were carried out. The result was (not surprisingly) that
both tests were rejected wrongly, indicating that the spectrum
model does not adequately describe stock dynamics. For the
H, model, the MLEs were significantly different from those
obtained using the NB distribution.

High correlations were encountered between the number of
fish caught per haul in adjacent length groups. Therefore, a mul-
tivariate NB distribution should have been used. Unfortunately,
such a distribution does not exist. Intuitively, the high corre-
lations should reduce the information in the data, resulting in
more uncertain estimates. If the model was able to account for
the correlations, we would expect higher test probabilities in
general. This could potentially cause simpler model structures
to be accepted.

The biomass and mortality estimates of the first 2 years of
data are based primarily on assumptions on recruitment, its tem-
poral distribution, and mortality rates for the years prior to the
first data year. However, since the stock estimates for the first 2
years are sensitive to the assumptions made, these estimates are
more uncertain than those of the following years, an uncertainty
that is not reflected in the confidence limits shown. For cases
with several years included, this is not so much a problem as it
is for the present case, where only few years are included. It is
actually surprising that the analysis can be performed based on
data for only 5 years.

Estimated fishing mortality for fish larger than 45 cm and fish
older than 3 years is very high (F ranges from 1 to 4) compared
with the values of ~ 1 estimated by ICES (2005b). However,
very high mortality rates are supported by the fact that only
very few fish larger than 50 cm were caught in the surveys in
2000-2004. To assure that large fish are absent, mortality rates
higher than 1 are required. The very high fishing mortality for
fish larger than 45 cm, combined with a size selection close to
knife-edge selection, results in a mature stock consisting mainly
of slow-growing individuals, which have not yet reached a size
of about 45 cm. This was indicated by showing that the mean
length at age does not increase for fish older than 4 years. It
is an open question whether this has led to long-term genetic
stock changes.

In conclusion, the present model applied to size-structured
scientific survey data is a promising tool to describe and criti-
cally examine stock dynamics of a stock for which age determi-
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nation is uncertain and the quality of catch data is poor. Model
complexity can be investigated by testing statistical hypotheses,
where different spectra models can be tested thoroughly against
a set of probability density distributions describing CPUE by
length and haul for each survey. A spectrum model was statisti-
cally accepted for which natural mortality and fishing mortality
rates, relative biomass and recruitment, and growth were esti-
mated. It is remarkable that the approach reasonably reproduces
the relative length distribution of the commercial landings with-
out using these data. The model estimates of fishing mortality
could potentially be improved by including commercial catch
data by length. This may further enable the estimation of time-
varying natural mortality rates.
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List of symbols
x  General notation for size
t  General notation for time
k  von Bertalanffy growth parameter
Ly Recruitment size
L  von Bertalanffy asymptotic size
L(x,L.) von Bertalanffy growth trajectory
u(Lo) Density function describing the probability that
an individual is assigned a given L, at the
time of recruitment
L, Mean value of L
01,  Standard deviation of Ly
z(x,t)  Total mortality as function of size and time
m(x,r) Natural mortality as function of size and time
M, Parameter in natural mortality
f(x,t) Fishing mortality as function of size and time
Fs  Parameter vector in fishing mortality
B Parameter in fishing mortality
L§0 Parameter in fishing mortality
7 Vector determining the piecewise constant levels
in fishing mortality as a function of time
r(t)  Recruitment rate with the property that r(z) dt
is the approximate number of individuals
recruited to the minimum size L, during the
time interval (¢, t + dt)
n(x,t) Number density function with the property that
the number of individuals with size in (x, x;)
at time  is given by [* n(x, 1) dx
0  Vector containing all model parameters in a
given model. Used as subscript (e.g., ng(x, 1))
to indicate that the function n(x, t) contains
unknown parameters
1 Set of haul indices
T  Set of sampling times
Y  Set of recruitment year classes
N;;  Matrix of observed number of fish for haul
index i € I and size group j € J
ii,;  Expected number of fish in length group j in a
haul taken at survey time t € T
o} ' Variance of the number of fish in length group j
in a haul taken at survey time t € T
a, Variance structure parameters indexed by survey

timetreT
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b, Variance structure parameters indexed by survey
timer e T
R, Total recruitment for year class y
" Mean recruitment time for year class y
At,  Date of the mean recruitment time for year class
y (e, Aty = ' —y)
o Standard deviation of the recruitment rate for
year class y
g(x,t) Catchability function
p.  Catchability parameter for t € T
«, Catchability parameter for t € T
Appendix A.
Randomization

Let N be a discrete random variable on Ny with distribution
function F and let the conditional distribution U|N = n be
uniform on the interval [F(n — 1), F (n)]. Then the distribution
of U is uniform on [0,1].

To prove this, let g be the density of U. The conditional
density of U|N = n is given by

guln) = uelF(n—1), Fm)1}

_
P(N =n)

Hence the unconditional density is

o0
gy =) gulm)P(N =n)
n=0
o0
Z LuelFn—1), Fm))
n=0
=1
for any u €[0,1].
Thus to test whether N has distribution function F', we should
simulate a random variable U with a uniform distribution on
[F(N —1), F(N)] and then test whether U is uniform on [0,1].

Computational methods

All computations have been carried out using R (R Develop-
ment Core Team 2005). An open source R package has been
developed for the purpose (available by contacting the authors).
The package calls external C++ code, which takes advantage
of the free package CppAD (Bell 2005) to evaluate analytical
first- and second-order derivatives efficiently.
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Spatio-temporal modelling of population size-composition with the log Gaussian Cox

process using trawl survey data
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SUMMARY: The Log Gaussian Cox Process (LGCP) is a natural and consistent modelling platform to
describe spatial point patterns of fish. Most fishery data comes from bottom trawl surveys which may be
viewed as random thinnings within rectangular observation windows of a spatial point pattern where only
the total number of points within a window is observed.

In this paper the LGCP is considered within the framework of generalized linear geostatistical models
(GLGMs). It is described how to perform approximate ML-estimation for models containing a large number
of random effects and fixed effects assuming that a sparse formulation of the inverse covariance is feasible.
The approach is applied on a bottom-trawl survey in the North-Sea. A covariance structure is formulated in
order to capture the effect of large-scale space-time heterogeneity and small scale size-dependent clustering.

Simulation experiments are conducted to test the method.

KEY WORDS:

Multivariate Poisson log-normal distribution; Laplace approximation; Log Gaussian Cox

Process; Size-correlation; Sparse precision; Spatio temporal modelling.

1. Introduction

Modelling of size or age distributions is a key to understanding
the population dynamics of fish. Scientific bottom-trawl sur-
veys are conducted to get a snapshot of the size-distribution
twice a year in the North-Sea. The statistical interpretation
of such data is complicated for several reasons. Typical data
are characterized by being over-dispersed multivariate count
data with a high proportion of zeros. Heterogeneity on various
spatial scales caused by fish schooling and large-scale move-
ment generates patterns in the data. The patterns occur as
correlations which - if not accounted for - can lead to over-
interpretation and wrong judgement of the uncertainty of the
population size-distribution.

The log Gaussian Cox process is a Cox process with ran-
dom log-intensity following a Gaussian process (Mgller et al.,
1998). It has successfully been used to model clustering of
point patterns caused by environmental heterogeneity. Many
ecological models within e.g. forestry or animal breeding are
based on point processes (Mgller and Waagepetersen, 2004).
A point-process point of view may also be taken for fish popu-
lation modelling. It is natural to think of a fish population as
a heterogeneous spatial point pattern changing dynamically
in time. Each point would have an “attribute” in terms of the
fish size. Fish samples taken with a trawl would be thought
of as a size-dependent random thinning of the point pattern
within a rectangular region.

When using the LGCP in practice it is common to discretize
the observation window so that the number of points in the
discretization cells becomes independent Poisson distributed
conditional on a multivariate Gaussian log-intensity (Rue
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et al., 2007; Brix and Diggle, 2001). This way the LGCP can
be put in a context of generalized linear geostatistical models
(GLGMs) (Diggle and Ribeiro, 2006).

For trawl-survey data we can treat the haul-rectangles as
discretization cells assuming that the log-intensity is approx-
imately constant within a haul-rectangle. This is reasonable
from a large scale perspective because the haul-rectangles are
small compared to the entire study region.

Various methods have been applied to perform inference for
the LGCP comprising Bayesian inference based on MCMC
(Mgller et al., 1998), Monte carlo maximum likelihood estima-
tion (Mgller and Waagepetersen, 2004) and Moment estima-
tion (Brix and Diggle, 2001). Skaug and Fournier (2006) used
the Laplace approximation in combination with automatic
differentiation to perform approximate ML-estimation. Rue
et al. (2007) showed that the Gaussian posterior approxima-
tion was sufficiently accurate for inference in many random
effects models including the LGCP.

The purpose of the present paper is to describe how to perform
approximate ML-estimation for the LGCP within the GLGM
setup in cases where the covariance structure has a sparse
inverse. The motivation is to be able to handle models with
a very large number of random and fixed effects which is
necessary in order to apply the model on fishery data.

The approach is illustrated on a single bottom-trawl survey
in the North sea by formulating a correlation structure con-
taining the effect of large scale spatio-temporal heterogeneity
and small scale size-dependent clustering.

We test the method by simulation and consider goodness of
fit assessment.
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2. Model

2.1 Approzimate log Gaussian Cox process likelihood

In a GLGM context the log Gaussian Cox process is defined as
a vector of Poisson counts with a latent log-intensity following
a multivariate normal distribution. To write down the joint
model of random effects and observations let n € R™ denote
the latent Gaussian random field with mean A3 being a linear
function of a parameter 8 € R* where A is the design matrix.
The covariance matrix is assumed to be a non-linear function
of a parameter vector 6:

n~ N(AB,Ze)
The unobserved intensity is
A= (e, ..., ™)t

Conditional on the intensity the observations are assumed
independent Poisson distributed:

|\ ~ ®j—1 Pois()\;)

In terms of the precision Q, = )3;1 the full negative log-
likelihood is given by

o .
1(B,6ln,@) =3 e = wini — 5 log|Qy|
i=1 i=1 (1)

51— AB)'Qy(n - AB) +c

with entire parameter vector (3,0) and c 5 log(2m) +
>oiilogP(x; + 1). The negative log-likelihood for the ob-
servation vector @ is obtained by integrating out n

1B 0le) = ~ g [ 1@ an @

The Laplace approximation of this integral is based on a
Gaussian posterior approximation (GPA) and has been shown
to be sufficiently accurate for many random effects models
(Rue et al., 2007; Skaug and Fournier, 2006). For the present
case the GPA exists and is unique because the second order
derivative of the full negative log-likelihood is everywhere
positive definite. It is given by

+ =

nle ~ N o(w), (Qo +diagrsn@)) ) (3)

where 75 o(x) = argmin, I(3,0|n, ). Before applying the
Laplace approximation it is worth applying the GPA on the
score function wrt. 8. Replacing E[n|z] by 71 ¢(z) in (A.1)
gives

Vpl(B,6) = —A'Qolilp o (z) — AB) (4)

Then 7 and 3 can be found simultaneously by
e’ —x+ Qo) — AB) =0 (5)
A'Qu(7 — AB) =0 ()

using the Newton iterations
Mk

(5:2)= ()

_ Q9 + D"lk
—A'Qe

—QoA
APQo A

€™ — 1z + Qo(ny, — AB)
*AtQé’("lk - AB)
)

)
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where D, = diag(e"). Each Newton iteration consists of
solving a sparse positive definite linear system provided @
and possibly A are sparse. The efficient numerical tool to do
this is the sparse Cholesky factorization (Davis, 2006a).
Inserting the corresponding 3 in the Laplace approximation
of (2) gives an approximate profile likelihood wrt. @ (up to an
additive constant)

Lpror (812) ~ 10, Bl o (@), ) + 5 108 |Qq + diag(Ag o(2))
®)

This profile can be optimized by using a standard algorithm
for non-linear optimization e.g. the BFGS method (Fletcher,
1970). Assuming standard asymptotics for the fixed effects
(8, 0) the approximate precision of 0 is given by the Hessian
Valyroy of the profile (8). Simultaneous confidence regions of
(8, ) can be found by taking derivatives of (4) wrt. (3, 0) and
using that the hessian of the profile determines the marginal

precision of 0:

Prec (

where Hg = V31(8,6) , G = Vo and Hpror = Vilyror. The
gradient G can be found using the implicit function theorem
(A.4). The full precision (9) can be used to construct a second-
order expansion of the likelihood function (2) around (3, )

G e () w

00

which may be used to fit and test sub-models about 8 and
0 independent of numerical integration provided that the
second-order expansion is sufficiently accurate.

As we need to deal with cases with a high number of hyper
parameters we have provided the gradient of (8) in Appendix
(4). Apparently the derivative of the log-determinant requires
the entire inverse of the precision matrix. However it turns
out that the inverse is only needed on the non-zero pattern
of the precision. An existing recursive algorithm handles this
situation (Rue, 2005; Dahl et al., 2005).

8 Hg
—G'Hg

—HgG
Hyrop + GLHﬁG

)

0

1(B,0]x) *l(,[)\i., é\z) ~ %

2.2 Goodness of fit

Our approach to goodness of fit assessment follows the general
idea of Waagepetersen (2006). Knowing the pair of random
effect and observation (n, ) it would be easy to validate the
model by checking normal and Poisson assumptions sepa-
rately. By making a single draw n* from the posterior dis-
tribution n|a then the pair (n*, ) has the same distribution
as (1, z). Hence model validation may be based on (n*,x).
Accurate posterior samples can be very difficult to obtain.
In this application we use an approximate posterior sample
drawn from the GPA (3). An approximate set of standardized
residuals u can be obtained using only sparse matrix opera-
tions:

e Draw n*|x from (3).
e Let LL' = Q and put
u=L'(n" - AB) (11)

The vector u can be used to visually asses the goodness of fit
by plotting against covariates.

)
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count

size (om)

Figure 1. Illustration of the small-scale variability in the
data: Two samples taken the same day 10 km apart.

3. Example: Trawl survey data

3.1 Modelling the correlation in time, space, and size
Bottom trawl surveys in the North sea are conducted twice
a year. A typical survey collects fish-samples from approxi-
mately 400 different locations covering the entire area. Each
fish-sample is a vector of counts representing the number of
fish caught in 1 cm size intervals. The samples are taken by 8
different vessels along predetermined routes with approx 10-
50 km between successive positions. A survey usually takes
1-2 months.

The purpose of this case study is to apply and validate
the LGCP on one survey. Our modelling of the hidden log-
intensity is based on the following considerations:

(1) Some random parts of the North Sea are more populated
than others (large scale spatial correlation)

The high and low populated areas may change dynami-
cally - even within a survey (large scale time correlation).
Fish swim in small batches with a spatial extension
possibly smaller than the dimensions of the trawl and
batches have a narrow size composition (small scale size
correlation).

The trawl is size-selective (size-dependent random thin-
ning).

@

=

®3)

(4

=

The hidden log-intensity is modelled by a Gaussian process
n(s,z,t) indexed by size, space and time where “size” is dis-
crete while “space” and “time” are continuous. It is reasonable
to assume that the population size-distribution is unchanged
during the relatively short time-period of the survey leading
to the assumption that the process should have a size-specific
mean B; = E(n(s,z,t)) which defines the design matrix A.
Thus B has the interpretation of the log-size-distribution of
the entire fish-population.

Size-selectivity is easy to model consistently with the LGCP.
The correct way to think of size selectivity is as size-dependent
random thinning of a point pattern. For a Poisson process this
has the effect of downscaling the intensity (prop. 3.7 of Mgller
and Waagepetersen (2004)) and this can be accomplished by
introducing an additive effect to the mean of the log-intensity.
In this presentation we do not attempt to explicitly model the
size-specific random thinning but just assume that 3 includes

o1

Figure 2. [Illustration of non-zero pattern of the precision
(A.6) (identical to the incidence matrix of the conditional
independence graph). A matrix with this pattern must be
factorized in each Newton iteration (7).

this effect.
The residual process (s, z,t) — (s is modelled as a stationary
Gaussian process with correlation

p(As, ||Az||, At) = corr(n(s + As,x + Az, t + At),n(s,z,t))

where ||Az|| denotes distance in km.

First we attempt to model the spatio temporal Gaussian
intensity-landscape for a fized size-class. For simplicity we use
a Markovian structure obtained as a product of exponential
correlations e~ *1114%lle=b24t " Op top of that process we add
Gaussian white noise to model the small scale variability. This
has the effect of adding a so called “nugget effect” to the
correlation function so that the resulting correlation has the
form

/’spallcmp(”Am”w At) = (1*17)84)1”AI”67b2At+p1(HAzH:o,At:U)

for p € [0,1].
According to Fig. 1 extension of this structure to multiple
size-classes should require continuity over size of the sample
paths which can be achieved by letting

P(As, [|Az]], At) = psize(As)pspattemp (|| Az], At) — (12)
Finally we need to choose psize. As our data has the same
size-classes represented for each point in space and time the
covariance matrix takes the form of a Kronecker product

Y = Sgize @ Bspattemp

The Kronecker product is inverted by inverting each factor
thus the precision matrix becomes

Q = Qs'Lze ® Qspu.tternp

Choosing psize such that Q- is a sparse matrix reduces
the computational cost of the Newton iterations (7) dramat-
ically. A sufficiently flexible correlation structure of “size” is
obtained by choosing Qsize as the precision of a stationary
AR(2)-process x: = ¢p12¢—1 + Ppaxt—2 + £1:



4 Biometrics, In preparation

1 —y —¢2
-1 PP+l d1¢2 — @1 —¢2
—¢2 prpo— b1 B3+ PTH1 ida— —p2
Qsize = K - (13)
—¢2 Proa— 1 P+ Pi+1 pipa—d1 —oo
—2 d192 — P1 di+1 -
—p2 —¢1 1
where Kk = m and e, ~ N(0,x71).

This precision is defined for (¢1,¢2) within the triangular
region {(#1,¢2) : p2 > —1, ¢p2 <1+ 1, 2 <1—¢1}.

A preliminary study of the flexibility of the AR(2)-correlation
structure showed that only a small part of the triangle gave
relevant correlation functions for our applications - more
precisely the strip close to the right boundary psize(1) =
125.2 ~ 1. This is due to the obviously high correlation
between neighboring size classes (Fig. 1). Reparameterizing to
log-distance-to-boundary log(1 — ¢1 — ¢2) and position-along-
boundary ¢1 —¢2 makes the outer optimization problem much
easier for the BFGS-algorithm.

For the present choice of precision matrix @ the non-zero
pattern of the system matrix entering in the Newton iterations
(7) is shown in Fig. 2. Note that the pattern consists of small
dense squares of dimension 400 x 400 making the super-nodal
variant of the Cholesky factorization suitable (Davis, 2006a).
We end this section by summarizing the parameter vector
after convenient changes to the parametrization:

0 = (log(1 — ¢1 — ¢2), p1 — p2,1og by, log bz,
logo®,log(p™" — 1))

(14)

3.2 Simulation experiment

Our approach for fitting and validating the LGCP relies
on a Gaussian posterior approximation in combination with
standard asymptotics. A simulation study is required to test
these approximations. The study was based on 100 simulated
datasets with “realistic” parameters (actually those obtained
by fitting the model to real data (Table 1)). The simulated
datasets were based on 200 randomly chosen positions in
space and time and 30 size classes.

Coverage of simultaneous confidence regions based on (9)

N t N
was examined by comparing (g:g) Prec (’g) (g:g)

with the approximate x?(36)-distribution (Fig 3a). A similar
experiment is shown in (Fig 3b) where B is estimated for the
true 0 now using the conditional precision Hy from (9) and
comparing (ﬁfﬁ)Hﬁ(ﬁAfﬁ) with the x?(30)-distribution (Fig
3b). Also the coverage of the confidence regions based on the
profile likelihood was investigated by comparing 2(Ipros () —
lp,.of(é)) with the theoretical x2(6)-distribution. All three
comparisons gave a non-significant Kolmogorov-Smirnov p-
value. Pairwise plots of parameter estimates looked ellipse-
shaped and visualization of 3 and #-parameters showed no
sign of bias.

The experiments indicated that (1) Parameters are iden-
tifiable (2) The Laplace approximation is sufficiently
accurate (3) Standard asymptotics applies with the

02

relatively small amount of data. (4) The parametrization of 6
is suitable.

For each of the simulated datasets we considered the approx-
imate standardized residual-vector u (11) based on the true
parameters (3,6). The sum of squares u'u were compared
with the approximating x?(6000)-distribution (Fig. 3d). We
also considered the simulated likelihood ratio statistic for
the “pure” Laplace method where 8 and B are both treated
as fixed effects as opposed to (7). The distribution did not
agree well with the x?(36)-distribution (not shown). The only
difference between the to methods is that the “pure” Laplace
method has an extra additive term on the score function
(4) which appears when taking the derivative of the Laplace
approximation (appendix).

3.3 Application on real data

‘We apply the method on the North Sea Cod IBTS survey 1st
quarter 2002. The number of samples is 410 and the 1 cm
size-classes under consideration are 10-69 cm making a total
of 24600 random effects. The dimension of the 3-vector is 60.
Estimates of (8, é) were obtained following the described ML-
procedure along with the posterior sample n* and standard-
ized residual vector u (11).

The model was validated by plotting residuals against longi-
tude, latitude, size and time (Fig. 4). No obvious patterns
were revealed. A qqg-plot of residuals agreed with normal
distribution (Fig. 5).

Finally we looked for over-dispersion compared to the Pois-

Sample Quaniles

T T T T T
4 -2 o 2 4

‘Theoretical Quanties

Figure 5.
(11)

qqg-plot of standardized residuals obtained by

son assumption by plotting the observation vector against
e” (not shown). The standard-deviation appeared to ap-
proach the mean for large counts consistent with the Poisson-
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Figure 3. 100 simulations. (a) simultaneous deviation of (,@, é) from their true values measured in the inner product given by
the hessian (9) (histogram) and approximating x?(36)-distribution (line). (b) (ﬁfﬁ)Hi3 (8—0) (histogram) and approximating

x2(30)-distribution (line). (¢) 2(lpros(0) — lpros(0)) (histogram) and corresponding x?(6)-approximation (line). (d) u‘u (11)

(histogram) and corresponding x*(6000)-approximation (line).

assumption.
Estimated covariance parameters and uncertainties are ob-
tained from the profile likelihood (Table 1).

The corresponding estimates and uncertainties of the size,
space and time correlation functions are found using the
d-method (Fig. 6). It appears from Fig. 6¢ that the time-
correlation is approximately constant over a time range of 2
months. This means that the large scale intensity landscape
changes rather slowly. A likelihood ratio-test of b = 0 gives
a p-value of 0.047.

Uncertainties of the log-size composition B is obtained
from the information matrix (9) (Fig. 7). Small scale size-
correlation is inherited to the information about population
size distribution [9 which is not surprising in view of from
formula (A.5).

We carried out the exact same analysis for 1st quarter 2001
data. The parameter estimates and uncertainties of correla-
tion parameters were virtually identical to the corresponding
results of 2002 indicating robustness of the method. Under
a model assuming independence between the two surveys
an approximate likelihood ratio test of @2001 = 02002 could
be constructed based on a quadratic approximation of the
likelihood-profile (8) for each survey giving a p-value of 0.40.

93

size (om)

Figure 7. Estimated population log-size-composition (8-
parameter) with marginal 95%-confidence intervals.

4. Discussion

This paper provides a general procedure for approximate
ML-inference for the discretized LGCP put in the context
of a generalized linear geostatistical model. The approach is
designed for cases involving a large number of observations
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Figure 4. Standardized residuals obtained by (11) plotted against (a) size. (b) Longitude. (c¢) Time. (d) Latitude.

Table 1

Estimated parameters, standard deviations and parameter-correlations.
Description Parameter Estimate Sd  Corr
Size correlation log(1 — ¢1 — ¢2) -4.52  0.12  1.00
Size correlation b1 — P2 2.56 0.06 -0.64 1.00
Variance log o 1.83 0.16 -039 025 1.00
Spatial correlation  log by -5.57 030 0.03 -0.10 -0.71 1.00
Time correlation log b2 0.01 0.80 -0.05 -0.03 -0.26 0.33 1.00
Nugget effect log(p~* — 1) 134 024 -031 022 0.65 -0.18 0.04 1.00

and random effects. The joint maximization of random and
fixed effects has the interpretation of assigning a flat prior
to B (appendix) and is thus similar to REML estimation for
linear mixed effects models (Jiang, 2006).

To achieve computational speed for large models the approach
requires that the covariance has a sparse precision, or equiv-
alently that the latent log-intensity is a Gaussian Markov
Random Field (GMRF) (Rue and Held, 2005). Whether this
is feasible depends on the application of interest and it is not
generally obvious how to achieve this. If the data locations
are a subset of a regular grid one can directly apply GMRFs.
This was the case for our application on fish-samples from
the North Sea. First a covariance structure was formulated
to capture relevant heterogeneity caused by large-scale move-
ment and small-scale size-dependent patchiness. Secondly an
AR(2)-representation of the size-precision was adopted to

54

obtain the required sparseness.

The space-time precision could have been chosen sparse as
well by introducing auxiliary variables (Rue and Held (2005)
page 200). It is however not a good idea for the present case
where space and time points are highly irregular and relatively
few (= 400). Thus the present formulation does not make any
assumptions on the structure of the space time correlation. An
exponential covariance with a nugget was chosen for simplicity
but more flexible correlations could be tried without much
effort like for instance the Matern family (Diggle and Ribeiro,
2006).

Larger and more interesting case-studies would attempt to
model many more surveys at once and for such problems
a sparse formulation of the space-time precision would be
necessary e.g. by using a GMRF on the 3D-torus (Rue and
Held (2005) 2.6) and interpolate to irregular grid .
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Plots of estimated correlation function (12) (line) and 95%-confidence intervals (dashed line) for (a) Az = 0,

At = 0 as function of As. (b) As =0, At = 0 as function of Az. (c) As = 0,Az = 0 as function of At

Unfortunately when combining the 3D-torus with the AR(2)
structure of the size precision we get a 4-dimensional graph
for which it is less beneficial to apply the sparse Cholesky
factorization (Davis, 2006a).

It was shown that the first order Taylor expansion of the
scorefunction wrt (3,6) was quite accurate. For non-linear
modelling of B it seems obvious to simply replace the likeli-
hood by a quadratic approximation.

Model validation was performed using approximate samples
from the posterior distribution n|z. Attempts were made
to improve sampling from the GPA. Metropolis Hastings
algorithm was applied with a random walk proposal on the
target distribution rescaled to having the identity matrix as
second order derivative. After 10° steps the chain had still not
converged. The posterior distribution have natural majorizing
densities such as the log-gamma distribution and the normal
prior distribution. None of these work in practice for rejection
sampling in high dimension. It remains an open question
how to draw accurate posterior samples for problems of this
dimension.
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SUPPLEMENTARY MATERIALS

The implementation of the estimation method has been imple-
mented as an R-package (R Development Core Team, 2008)
using the sparse matrix library CHOLMOD (Davis, 2006b;
Bates and Maechler, 2008). The R-package is available on
request.
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APPENDIX

Computational details
Here we provide some more details on the calculations of
section 2.1. The derivatives of the negative log-likelihood (2)
are given by

Vl(B.6)

—A'Qo(Es[n|z] — AB) (A1)

and
Vo l(B,0) =~ Lr(Qe@s") + 4ir(QoV ()

: _ (A2)
+ 5 (B(le) — AB)'Qo(E(nlz) — AB)

where Qg denotes the elementwise derivative of Qg wrt. 0;.
The joint vector &g = (ga of random and fixed effects was

0
defined implicitly through the augmented system (5) and (6)
of the form

fe(€q,0) =0

where f(£,0) is given as the full negative log-likelihood (1).
A chain-rule argument on the previous display yields (see also
Skaug and Fournier (2006))

Voly = —fée (€9, 0) " éo (6. 0) (A.3)
which for the present case translates to
Vo (ﬁ) _ (Qe + Dy —Q6A>7 ( Qo — AB) )
‘\B —A'Qy  A'QeA —A'Qo(7) — AB)
(A4)

used to calculate (9). Taking derivative of (4) gives the
remaining part of (9)

Hy = V5l(8,0) = A'QA—-A'Q(Q+Dy) QA (A5)
Gradient of Laplace approzimation

It is sometimes convenient to give an alternative representa-

tion of the model in terms of the augmented vector £. Consider

for some small § > 0 the augmented positive definite precision

matrix

mo= (o

with determinant |Rg| = 6*|Q,| and consider the LGCP with
& ~ N(0, Ry) and no counts associated with the last k entries.

(A.6)

—QoA
A'QpA + 01

" n . .
1(6]€. ) = e =Y wiki — log |Ro| + 56" Ro& (AT)
i=1 i=1
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Then when ¢ approach zero the corresponding full negative
log-likelihood (A.7) converge towards (1) except for an addi-
tive term %log 6. In conclusion, we can find the gradient of
the profile (8) as Vgl(0|€,z). Defining

hE,0) = 1(€,6) + 5 log | fe(€,0)]

the likelihood profile (8) is h(ég,H) and the gradient wrt. 6
is found using the chain-rule (see also Skaug and Fournier
(2006))

Voh(€q,0) = hy(&9,0) + hi(€9,0) Vol

The derivative Vgée is given by (A.4). The remaining
derivatives are now considered. To adapt the notation to the
missing Poisson terms of (A.7) corresponding to the last k
entries define the intensity and data-vector to be zero for the
missing entries i.e. \; = €S for i < m and \; = z; = 0 when
i > n. Moreover let D = diag()\). Then the derivatives are
given by

(A.8)

he(€,0) =X —x + Rk + %[/\z((Rs +D) Ha] (A9)

Ko, (€,0) = —3tr(Ry" Ro) + 1€ Ro + Str(Ra (Ro + D))
(A.10)

‘When evaluating expressions like these under the assumption
that Rg is sparse it is a common trick to note that the
inverses R;l and (Re 4+ D)~' are only required on the non-
zero pattern of Re (Rue, 2005; Dahl et al., 2005; Neumaier
and Groeneveld, 1998).
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Incorporation of size, space and time correlation
into a model of single species fish stock dynamics

Kasper Kristensen and Peter Lewy

Abstract: This paper improves the statistical interpretation of trawl-survey data by combining the log Gaussian Cox
process (LGCP) with a length-based model of single species fish stock dynamics (LBM). The LGCP is suitable for
statistical modelling of trawl survey data because of its ability to handle over-dispersed count data with arbitrary
correlation structures. A correlation structure is formulated to give a realistic description of the random variation of trawl
data caused by spatio-temporal heterogeneity and small scale size-dependent clustering.

‘We analyze a case study of nine surveys in the Baltic based on the LGCP including size, space and time correlations.
The LGCP, fitted following a maximum-likelihood approach, is validated and the biological LBM is statistically accepted
as a sub-model. Inclusion of correlations generally results in an information-loss of the size-spectrum level and temporal
variations of biological processes becomes less significant. In particular it is shown that by including size, space and time
correlations we can statistically accept a hypothesis of constant catchability. The same hypothesis is strongly rejected by a

model which ignores the correlations. The interpretation of catchability is crucial for biomass estimates.

1. Introduction

Bottom trawl survey data provides statistical information
about population dynamics in the sea. Combining a biological
length based model with a statistical model of the count data
obtained from the survey makes it possible to estimate param-
eters in the biological model. However the choice of statistical
model may greatly affect the outcome of the biological model
both in terms of parameter estimates and parameter uncertain-
ties (Deriso et al. 2007) . Also the final choice of complexity of
the biological model will depend on the statistical distribution
of choice. Therefore it is important to critically validate the
statistical distribution before applying it in combination with a
biological model.

A recent case study (Kristensen et al. 2006) has shown that by
using a negative binomial distribution for the counts obtained
from the surveys it is possible to fit a size-based population
model surprisingly well based on a fairly small amount of data
assuming independence between length-groups. The negative
binomial distribution was statistically accepted for each sepa-
rate length-group. However it was pointed out that the study
completely ignored possible dependencies in the data and that
this could potentially lead to wrong conclusions.

It is well known that spatial heterogeneity induces dependen-
cies in abundance data. Hence a realistic statistical model should
take its starting point by considering the space-time compo-
nent. In the literature two ways to deal with space-time mod-
elling of fish have been considered: the mechanistic approach
(Sibert et al. 1999) which attempts to model movement of the
individual fish and then scale to population level as opposed to
the geostatistical approach (Jardim and Ribeiro 2007; Petitgas
2001) which models variations of fish abundance directly on
population level by imposing a suitable correlation of the log-
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abundance surface.

In this paper we follow the geostatistical approach because we
are not interested in the spatial component but only in the en-
tire population size-distribution.

A suitable choice of correlation structure makes it possible
to account for the fact that the spatial abundance surface of
fish changes randomly in both space and time (Petitgas 2001)
(spatio-temporal correlation) and at the same time take into
account that fish swim in batches of a narrow fish-size compo-
sition within batches (small scale size correlation).
Geostatistical modelling of survey data is not straight-forward
because survey data are notoriously count data while standard
geostatistical models are aimed at normally distributed data.
This is why we consider the log Gaussian Cox process (LGCP)
(Mgller et al. 1998) which is suitable for statistical modelling
of over-dispersed count data and at the same time allowing the
incorporation of arbitrary correlation structures.

The objective of the present paper is to replace the statistical
model applied in Kristensen et al. (2006) with the more realis-
tic LGCP model and to study the biological consequences.

In particular we study catchability assumptions. If a year-class
appears to increase from one survey to the next it is common to
assume that this is caused by increased catchability. A statisti-
cal model which includes space and size-correlations can ex-
plain apparent changes in catchability. We illustrate this claim
by fitting a size-spectrum model with and without correlations.
The likelihood ratio-test of constant catchability is accepted
for the model which includes space, time and size-correlations
while the same hypothesis is strongly rejected under a statisti-
cal model which ignores the correlations.

2. Theory

2.1. Biological model

The biological model describes the expected size-distribution
of a fish population - a so-called size spectrum model. It is ob-
tained by imposing a growth pattern and size dependent mor-
tality to the individuals and then scaling to the population level.
Assuming that
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1. The growth pattern of an individual follows a von Berta-
lanffy growth curve (Bertalanffy 1938) with individually
varying L, following a probability distribution u.

2. Individuals are recruited to the size Lo with recruitment-
rate r(t).

3. Each individual is exposed to a size (s) and time-specific
(t) total mortality z(s, t).

it has been shown (Kristensen et al. 2006; Wang and Ellis
2005) that the individual based model scales to the number
density

n(s,t) = /joo r(to) exp (— /t 2(Liy (1, Gy (8)),7) d7'>

to

WGy (5)) Gy (5) dto

[1]
where
s — Loe—k(t—t”)
Guols) = T 2]
and
Lio(t7Loo) =L — (Loc — Lo)e_k“_tﬂ) 131

For a complete specification of the spectrum model [1] the
parametric forms of the functions r,z and u must be stated.

Table 1. Parameters occurring in [1].

Symbol  Explanation

k von Bertalanffy growth parameter.

Koo Mean value of L.

0L Standard deviation of L.

My Parameter in natural mortality

FY Yearly varying asymptotic level of fishing
mortality.

8! Parameter in fishing mortality.

Léo Parameter in fishing mortality.

R, Total recruitment for year-class y.

" Mean recruitment time for year-class y.

o, Standard deviation of the recruitment rate for

year-class y.

We use the same as Kristensen et al. (2006). The recruit-
ment rate 7 is chosen as a yearly varying input of Gaussian-
shaped peaks . The total mortality z as a sigmoid function of
size with a yearly varying asymptote plus an additive level M
(Appendix [13]) . Finally the distribution of L., was chosen
as a normal distribution. All parameters of the size-spectrum
model are summarized in Table. 1.

2.2. Random intensities

The previously introduced size-spectrum model describes
the size-distribution of an entire population. It does not explic-
itly model where the fish are located. Our approach for dis-
tributing the fish in the sea is purely statistical and is based

29

Can. J. Fish. Aquat. Sci. Vol. In prep., 2008

on some rather weak assumptions about the local properties of
fish abundance surface: If the abundance is above average at
a given location we expect it to be above average at locations
nearby. Correspondingly, if a number of fish in one size class is
observed to be above average we expect the neighboring size-
classes in the same sample to be above average because fish
swim in small batches of narrow size-composition.

To meet these requirements let 7)(s, z, t) be a Gaussian stochas-
tic process describing the log-intensity of fish of size s at po-
sition x at time ¢. Denote by p(As, Az, At) the correlation
corr(n(s + As,z + Az, t + At),n(s, z,t)) assumed only to
depend on (As, Az, At). The correlation of a Gaussian pro-
cess is related to the local deviations of the process from its
mean because

Em(&+ Agn(6)) =
Em(E+ AQ) + p(A)(n(E) — EM(S)))

with the notation £ = (s, z,t).
‘We apply the structure introduced in Kristensen (2008) given
by

p(As, Az, At) =

(1 —v)e " 87e™ 28 4 Y1 A ,o, At—0)) Psize(As)

[4]

[5]

where As, Az and At denotes the size, space and time-distance
between two samples measured in cm, km and year respec-
tively. The parameter v € (0, 1) here denotes the nugget-effect
and pgi.. is chosen as the correlation of a stationary AR(2)-
process with parameters ¢; and ¢, (Appendix 6.2).

To understand [5] it is useful to consider the expression when
some of the distances are zero. If e.g. Az = 0 and At = 0 it
means that we are considering a pair of log-intensities corre-
sponding to the same position in space at the same time. The
expression reduces to p;..(As) which means that pg;,. has
the interpretation of small scale size correlation.

Conversely if As = 0 then it means that we are considering a
fixed size-class. The expression reduce to (1—v)e P18tz Al
v1(Az=0,At=0) Which is the correlation of a space time Markov
random field modified by adding white noise to model small
scale variability.

2.3. The LGCP

Length-based survey observations may be organized in a
vector of counts N;. With each count NN; is associated a sam-
pling time ¢;, a position z;, a size s; and a survey survey;.
The LGCP assumes that the counts are independent Poisson
distributed conditional on a hidden random log-intensity 7;:

Ni|n ~ Pois(exp(n;))

where the hidden log-intensity 7 is assumed to follow a mul-
tivariate Gaussian distribution

n~ N(u,%)

We obtain our statistical model by defining 3 in terms of the
correlation from the latter paragraph ; ; = o2p(s; — s, 2; —
xj,t; —t;) and by assuming that the log-intensities have a size
and survey specific mean

[6]

i = Bsize;, survey;
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The statistical model states that the size-composition of the en-
tire fish-population is unchanged during the survey. This is rea-
sonable as long as the survey duration is short compared to the
growth and mortality rates.

2.4. Spectrum-model hypothesis

The biological size-based population model is treated as a
mean-value hypothesis in the LGCP-model just like in Kris-
tensen et al. (2006)

E(N;) = /c psel(s)n(s) ds [71

where sel(s) is an s-shaped size-selectivity function (Appendix
[12]) taking values in the interval (0, 1) and p denotes the fishing-
power.

For the LGCP [7] is equivalent to a sub-model of [6] given by

1
gsiz(z,survey = 10% </ p sel(s)n(s, tsurvey) dS) - 502
Csize

[8]

because EN; = exp(u; + 502) (Aitchison and Ho 1989). It
is convenient to apply the reparameterization logp = logp —
%02. Then there is no overlap between parameters describing
1o and those describing 3.

Kristensen et al. (2006) found it necessary to model p as be-
ing survey dependent pgyryey in order to explain apparently
increasing cohorts between surveys. A likely explanation of
this phenomenon is that the survey positions (Fig. 1) are con-
centrated on areas with abundance above average some years
and below average other years. It is therefore relevant to test
the constant catchability hypothesis under a statistical model
which accounts for size, space and time correlations in the ob-
servations.

All parameters in the size-spectrum model are summarized in
the vector «v given by

Rig97, Riggs, R1999, R3990 = 1, R2001, R2002, R2003,
recr recr

H19975 -+> 42003

o155t - OB,

- (survey) 7 (survey)

Dy *LSO ,y(survey)7

a=(

kol = 135,01,
L(fishery)’ (S(fishe?“y)7
FO(O<2001)’F£00172002)7 [7(2002-2003)

Mo )

F(502003<)

)

[9]

containing both the parameters of Table 1 and the catchability
parameters. A fixed value of py,__ is used and the recruitment
for for year 2000 is fixed to obtain estimability (Kristensen
et al. 2006).

2.5. Approximate likelihood inference

The likelihood function of the LGCP-model is obtained as a
product of a multivariate normal pdf and a Poisson pdf summed
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over all possible combinations of the un-observed random in-
tensity:

Ni Vi

n N,
—1 —Em-AB)E; (n—AB) e —e'i
L(ﬁ,e)a/Rng\ FeTz AR E—Ni,c dn
[10]

Here A denotes the design-matrix corresponding to [6] writ-
ten on vector form p = Af. All covariance parameters are
contained in the vector § = (02, by, by, 1, ¢2, v). Kristensen
(2008) provided an efficient method for estimation in this model
which utilizes the fact that X, ' and A are sparse matrices
(Davis 2006a,b). The method is based on a Gaussian approxi-
mation of the distribution of 1| N to compute the integral and
is thus similar to the method described in Skaug and Fournier
(2006). However we cannot directly apply their approach be-
cause of the large number of random effects and fixed effects
in our application.

Our estimation approach consists of three steps

1. Find approximate ML-estimates (£, ) of the likelihood
[10] applying a Gaussian posterior approximation as de-
scribed in Kristensen (2008).

2. Construct a second-order expansion ¢(3, 6) of — log L(3,6)
around (83, 0).

3. Fit the size-spectrum model using the quadratic approx-
imation by writing [8] on the form § = 9 («a) and op-
timizing ¢(¢ (), 0) wrt. (o, 0) and obtain the estimate
(&, 6p).

The approximations applied in step 1 and 2 were investigated
by simulation in Kristensen (2008). It was concluded that the
likelihood function based on a Gaussian posterior approxima-
tion was sufficiently accurate to consistently estimate 6 and 3
without any visible bias. Furthermore the distribution of ¢(3, 8)—
q(B,0) was very close to the theoretical y2-distribution indi-
cating that the second order approximation of the likelihood
was quite accurate. These conclusions justifies the quadratic
approximation applied in step 3. Step 3 replaces the likelihood
[10] with a quadratic approximation around (/3, §) and has the
computational benefit that further model fitting and testing can
be carried out without the high-dimensional integrals appear-
ing in the true likelihood function. One should have in mind
that the quadratic approximation only holds in a neighborhood
around (3, é) and thus a parameter estimate & obtained using
the quadratic approximation can be very different from the true
maximum-likelihood estimate if the corresponding (&) lies
outside the neighborhood. However in this case the sub-model
would be rejected by a likelihood ratio test and we would dis-
card the estimate anyway.

Confidence regions of parameter estimates are obtained from
the observed information matrix (the Hessian) assuming stan-
dard asymptotics.

Tests of the spectra-model hypothesis against the unparame-
terized model are based on the approximate likelihood ratio
statistic

a(w(&),80) — (B, 0) ~ x*(df) (11
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Fig. 1. Haul positions of BITS for all 9 surveys (points). The
surveys are distinguished by the different colors. A line joins two
points if the corresponding hauls are chronological neighbors.

where df is the difference between the dimension of 3 and «.
To validate the model we follow the simulation based approach
from Kristensen (2008) : Draw a (high-dimensional) sample n*
from the approximate distribution of the random effect ) given
the data N. If the model is true then the pair (n*, N) has the
same distribution as (1, V). So we can asses the goodness of fit
of the random effect by checking that n* is normal with mean
v and covariance X.

3. Data

We consider the same data as Kristensen et al. (2006) in or-

der to compare the results of the different approaches. Data
consists of 299 hauls from the Baltic International Trawl Sur-
vey (BITS) where only positions within ICES subdivision 25
are considered (Fig. 1). Surveys are conducted twice a year
during spring and autumn and the duration of a survey is ~ 1
month. The present data set includes the 9 surveys from spring
2000 until spring 2004.
The measurement of consideration is the number of fish caught
in 59 size-groups in the individual hauls. For each measure-
ment (count) N; the following co-variates are used: haul iden-
tification, longitude, latitude, haul-initialization-time.

4. Results

The raw statistical model without any biological assump-
tions on the mean-value structure [6] was fitted by optimiz-
ing the described approximation to [10] with the correlation-
structure [5]. Following the simulation based goodness of fit
approach we obtained a set of standardized residuals. A qg-plot
of the residuals (Fig. 2) agreed with the normal distribution.
Plotting the residuals against the covariates size,time, latitude
and longitude (Fig. 3) did not reveal any systematic trends.
The ML-estimates of the model are (3, 0) where 3 represents
the un-parameterized log-size-distribution and 6 contains the
correlation parameters. Estimates, standard deviations and cor-
relations of the f-parameters (transformed as in Kristensen (2008)
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Fig. 2. qq-plot of standardized residuals against normal
distribution.

to improve the normal approximation of the likelihood func-
tion) are given in table 2 indicating that there was no problem
with parameter-identification in this model.

The corresponding correlation functions are shown with (point-
wise) confidence limits (Fig. 4). The size-correlation (Fig. 4a)
is estimated to be greater than 50% for size-differences less
than 20 cm and the effective range - defined as the lag for
which the correlation has decreased to 5% - is estimated to
be 78 cm (CV=8%). Space and time correlations (Fig. 4b and
4c) are substantial as well with estimated effective ranges of
200 km (CV=16%) and 0.33 year (CV=21%). For comparison
the largest spatial distance between two samples is ~ 500 km.
As the effective range of the time correlation is smaller than
0.5 year there is almost no correlation between two succes-
sive surveys. Approximate likelihood ratio tests of (1) ignor-
ing size-correlation (¢1 = ¢2 = 0) (2) ignoring space-time
correlation (by = by = v = 0) were both strongly rejected
(p < 107%).

A Wald test of using the AR(1)-process to model size-correlation
versus the alternative AR(2)-process (g2 = 0) was also re-
jected (p < 107).

The estimated parameter-vector ﬁ is illustrated with 95%-con-
fidence intervals (Fig. 5). To better understand how the correla-
tion model affects the precision of the 3-parameter we consid-
ered a pair of length groups 20 cm and 21 cm for the spring
2001 survey (the survey with the largest number of hauls).
95%-confidence ellipses of the parameter pair (31, 32) were
constructed (Fig. 6) on basis of the observed information ma-
trix for the different combinations of correlation-model. The
model assuming independence between all observations has
the red circle as confidence band of (1, 2). Adding space-
time correlation (but no size-correlation) results in wider con-
fidence bands (blue circle). However when either of these mod-
els are extended to include size-correlation the confidence re-
gions are squeezed to ellipses. It appears from Fig. 6 that the
inclusion of size-correlation increases the uncertainty in the di-
rection y = x while the uncertainty in the orthogonal direction
is reduced. This observation also holds for other size-classes
and generally means that by including size-correlation we in-
crease the information about the log-size-spectrum slope while
the information about the overall level of the spectrum is re-
duced.
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Fig. 3. Standardized residuals plotted against (a) size. (b) Longitude. (c) Time. (d) Latitude.
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Fig. 4. Plots of estimated correlation function [5] (line) and 95%-confidence intervals (dashed line) for (a) Az = 0, At = 0 as function
of As. (b) As =0, At =0 as function of Az. (¢) As = 0,Az = 0 as function of At
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Table 2. Estimated parameters and parameter-correlations.

Description Parameter Estimate Sd  Corr

Size correlation log(1 — ¢1 — ¢2) -433  0.07 1.00

Size correlation b1 — P2 231 004 -0.30 1.00

Variance log o 143 0.09 -0.69 0.22 1.00

Spatial correlation  log by 424 0.18 0.11 -0.06 -0.57 1.00

Time correlation log b2 215 0.23 0.01 -0.00 -0.19 0.19 1.00
Nugget effect log(v™! —1) 1.06 0.16 -020 023 033 020 003 1.00

Fig. 6. 95%-confidence ellipsis of the pair of 3-parameters
corresponding to the neighbor size-classes 20 cm and 21 cm for
the spring 2001 survey fitted under different correlation models:
No correlation (red). Only space-time correlation (blue). Only
size-correlation (green). Both size and space-time correlation
(black).

These considerations explains the wide marginal confidence
bands around the [3-parameters (Fig. 5). The increased preci-
sion of the spectrum-slope is not visible from that figure but
would require a different plot (not shown).

After having analysed the main statistical model we can pro-
ceed by considering the size-spectrum model hypothesis [8]
with parameters « given by [9]. The spectrum model was fit-
ted to data using the quadratic approximation of the LGCP-
likelihood around (3, ). The likelihood ratio test of this model
against the un-parametrized model was rejected using [11].
Plots of the spectrum model revealed that the rejection was
due to wrong position and wideness of the recruitment peak
of 2003. This could be seen because the corresponding part
of the size-spectrum went outside the confidence bands of the
[-parameters (not shown). By imposing an individual mean-
spawning date and wideness for the year in question the size-
spectrum model was accepted (p=0.34). The log-size-spectrum
of the accepted model lies within the confidence bands of the
(B-parameters from the main model (Fig 5).

A further simplification of the model was obtained by test-
ing the asymptotic level of the mortality rate (F,) as constant
against the alternative of a yearly varying level (p=0.12). A test
for no size-selectivity in the total mortality was also accepted
(p=0.81).

The resulting spectrum-model has 16 parameters and thus rep-
resents a major reduction in complexity compared to the final
model of Kristensen et al. (2006) which had 32 parameters.

64

Recruitment and biomass estimates of the final model are shown
in Fig 7. The biomass does not change significantly during the
period.

The fact that the LGCP-model accepts the constant catchabil-
ity hypothesis is an important difference compared to the neg-
ative binomial model applied in Kristensen et al. (2006). Tests
of constant catchability vs variable catchability is related to
the precision of the (-parameters (Fig. 6). Inclusion of both
size and space-time correlation greatly reduces the informa-
tion about the overall level of the size-spectrum and makes a
time variable catchability non-significant. Conversely any of
the simpler correlation structures over-estimates the precision
of the overall level and therefore rejects the constant catchabil-
ity hypothesis (Table 3).

Table 3. Likelihood ratio test of time-constant catchability
hypothesis under different null-models

Null.model LR.statistic ~ p.value
No correlation at all 400.27 0.00
Size correlation, no space-time-correlation 33.90 0.00
Space-time-correlation, no size-correlation 185.82 0.00
Size, space and time-correlation 3.95 0.86

5. Discussion

The statistical interpretation of trawl-survey data must ac-
count for heterogeneity in order to give valid conclusions about
an underlying biological assessment model. A statistical model
which correctly describes heterogeneity provides more realis-
tic estimates of the uncertainty associated with biological pa-
rameters and predictions.

Complex biological phenomena like Spatio-temporal size-dependent

clustering of fish are difficult to explain from first-principles
but can relatively easily be modelled on population-level through
a correlation function. This geostatistical approach is useful for
population dynamical analysis where the main interest is the
size- or age distribution of an entire population. Heterogeneity
is treated as nuisance but the implications of the heterogeneity
are reflected in both biological estimates and in the interpreta-
tion of the model.

The present paper follows this idea by combining the log Gaus-
sian Cox process with an existing population model of a single
species fish stock. It is thereby investigated how different cor-
relation assumptions affects the final biological conclusions.
The study focused on the random effect of a time changing
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large scale intensity landscape and the effect of small-scale
size-dependent patchiness. Considering a case study of nine
bottom trawl surveys in the Baltic it was found that the corre-
lation structure was necessary to adequately describe the data.
Both the effect of a time changing large scale intensity land-
scape and the effect of small scale size correlation were signif-
icant.

Whether the correlations has an impact on the population anal-
ysis generally depends on the ranges of the correlations com-
pared to the scale of the study region. For the present case
the spatial correlation range constituted 40% of the largest dis-
tance between two samples. Similarly the range of the small-
scale size correlation constituted more than 100% of the en-
tire length-range. It is thus not surprising that the inclusion of
space-time and size correlations turned out to play an impor-
tant role in the statistical interpretation of the observed size-
spectrum.

Generally inclusion of size-correlation increase the precision
about the spectrum-slope while decreasing the information about
the overall level of the spectrum. The effect of space-time cor-
relation on the precision of the size-spectrum depends on the
spatio-temporal coverage of the survey. For the present case
the inclusion of space-time correlation decreased the informa-
tion about the size-spectrum - both the slope and the level.
The implications of a poorly identified level of the size-spectrum
for the individual surveys is immediate. Temporal changes of
catchability and mortality becomes less significant meaning
that statistical tests of time-independence tend to be accepted.
This generally leads to biological models with fewer param-
eters. However, when the number of biological parameters is
reduced it generally increases the precision of the remaining
parameters. In the end we do not necessarily loose biologi-
cal information about e.g. biomass but get completely different
conclusions.

For the present case a constant catchability hypothesis could
be accepted which is a major difference compared with Kris-
tensen et al. (2006) who analysed the same data material with
a negative binomial model ignoring the correlations. Most of
the biological effects which were significantly time-dependent
in the previous study could be tested constant with the new
model. The final biological model had only half as many pa-
rameters as the final accepted model in Kristensen et al. (2006).
The predicted biomass during the period 2002-2004 does not
change significantly according to the new model as opposed to
the corresponding predictions of Kristensen et al. (2006).
There are many possible explanations of catchability variations
(see Harley and Myers 2001) which can roughly be catego-
rized as factors related to the gear and factors related to spatial
heterogeneity. The present work attempted to explain apparent
temporal catchability variations as an indirect consequence of
large-scale spatial heterogeneity and schooling. Other authors
(Fryer et al. 2003; Trenkel and Skaug 2005) have modelled be-
tween haul variations of catchability directly considering the
gear-selection as a stochastic process.

Other statistical distributions for multivariate count data has
been applied to bottom trawl surveys in order to capture depen-
dence between size-classes comprising the Dirichlet-multinomial
and Gaussian-multinomial models (Hrafnkelsson and Stefans-
son 2004).

Performing size-based population analysis without accounting
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for correlations in the data can be dangerous. We have provided
a statistical model which consistently deals with correlations
caused by various kinds of heterogeneity and shown how to
combine it with a length-based population model. The compu-
tational requirements of the method is outweighed by a number
of advantages. Significance tests for relevant biological com-
plexity are improved compared to previous models and confi-
dence intervals are more reliable. This is because the method
automatically accounts for possibly poor spatio-temporal cov-
erage of the survey when calculating confidence intervals. The
approach provides an alternative way to model catchability. In-
stead of treating catchability as a systematic effect to explain
catch-variability a similar effect can be obtained through the
space, time and size-correlation.
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6. Appendix

6.1. Parametrization

The parametric forms of the biological processes are ob-
tained from (Kristensen et al. 2006). The survey size-selection
is chosen as

1

sel(s) = —— 12
el = 17 exp(—y(s — L5 ")) el
Total mortality is given by

2(s,t) = Mo+ f(s,t) [13]

where M, is an unknown constant and the fishing mortality
f is assumed to split into the product of a piecewise constant
function of time and a sigmoid function of size

1

fe.t) = 1+ exp(—d(s

n
— Lﬁshery)) ZFo(é)l(n—1<t<n)
50 i=1

For the distribution of L., (u) we use a normal-distribution
with mean p7,__ and standard deviation o, __.

7(t) = Y Ryber oyeer (1)

yey

[14]

where ¢,, » is the normal density with mean p and standard
deviation o. The mean recruitment time for cohort y is param-
eterized as a year y plus a date At i.e. ju, =y + At,.
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6.2. Stationary AR(2)-process
The AR(2)-process is defined through the recursion

Ty = Q1241 + P22 + €

where (e;) are independent with distribution N (0, o%). When
(¢1, ¢2) belongs to the triangular region

{(1,02) : p2 > =1, p2a <1+ ¢y, o <1—¢1}

it is well known that x; has a stationary initial distribution
m(x1,x2). The correlation function can be found by the so-
called Youle-Walker equations:

¢1

size (0 :17 size(l) =
ize0) = 1 puize1) = T2

Psize(AS) = P1psize(As — 1) + Papsize(As — 2), As > 2

6.3. Implementation

The computational methods of this paper are implemented
as R-packages (R Development Core Team 2008) available on
request.

© NRC Canada
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Abstract

The spatial distribution of cod in the North Sea and the Skagerrak was analysed over a 24 year pe-
riod using the Log Gaussian Cox Process (LGCP). In contrast to other spatial models of the distri-
bution of fish LGCP avoids roblems with zero observations and includes the spatial correlation be-
tween observations. It is therefore possible to predict and interpolate unobserved densities at any
location in the area. This is important for obtaining unbiased estimates of stock concentration and
other measures depending on the distribution in the entire area. Results show that the spatial corre-
lation and dispersion of cod catches remained unchanged during winter throughout the period in
spite of a drastically decline in stock abundance and a movement of the centre of gravity of the dis-
tribution towards north east in the same period. For the age groups considered the concentration of
the stock was found to be constant or declining in the period. This means that cod does not follow
the theory of density-dependent habitat selection as the concentration of the stock does not increase
when stock abundance decreases.

Introduction

Knowledge of the spatial distribution of fish and the temporal changes are important for the fishery,
fishery management and for understanding the mechanisms of fish behaviour. The distribution of
cod has been analysed in several studies (Rindorf and Lewy 2006; Perry et al. 2005).These analyses
used a single point, the centre of gravity, as an overall measure to describe changes in the spatial
distribution. However, if we want to study the spatial distribution of stock abundance in the entire
area another type of modelling is required.

Previously fishery scientific survey data have been analysed assuming that observations are inde-
pendent irrespective of trawl position and distributed according to either extensions of the log nor-
mal (Stefdnsson 1996) or the negative binomial distributions (O’Neill and Faddy 2003, Kristensen
et al. 2006) . Hrafnkelsson and Stefansson (2004) presented extensions of the multinomial distribu-
tion to account for dispersion and correlation in length measurements samples. To avoid the as-
sumptions of independent observations other authors used kriging to account for spatial correlation
in the analysis of trawl and acoustic survey data (Stelzenmiiller et al 2005; Rivorard et al. 2000).
Kriging methods, however, require that data follows a multivariate normal distribution, an assump-
tion which usually is not fulfilled at least not when part of data consists of zero’s. The
log(catch+constant) transformation is often applied to avoid this problem, a solution which is prob-
lematic, because the results heavily depends on the choice of the constant. Here model we instead
use a counting model to describe the discrete catch in number observations (including the zero catch
observations) and to account for the spatial correlation between catches. The model, the so-called
Log-Gaussian Cox Process, LGCP (Kristensen in prep.; Mgller et al. 1998, Diggle and Ribeiro Jr.
2007), is also known as the multivariate Poisson-log normal distribution (Aitchison and Ho 1989)
and is a mixture of Poisson distributed observations with mean intensities following a multivariate
lognormal distribution. The Poisson process can be regarded as the sampling process generated by
the fishing process. The spatial correlation is included by assuming correlation between intensities
to be a decreasing function of the distance between them.

The focus of Kristensen in prep. was to develop methods for and implement of ML estimation of

the parameters in the LGCP, which hitherto has been estimated by MCMC (Mgller et al. 2004).
Aspects of predictions and interpolation were not included. These aspects are crucial when estimat-
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ing total biomass or the biomass in specified areas, a prerequisite to evaluating the effects of spatial
closures and temporal changes of stock concentration.

The objective of this paper is to develop ML based methods for predicting the unobserved intensi-
ties at any point in space and to enable goodness-of-fit tests.

The use of the model was illustrated by an analysis of the distribution of North Sea and Skagerrak
cod in 1983-2006. The temporal change in the dispersion and spatial correlation was examined and
the effect of a range of local hydrographical parameters investigated. Contour plots of the spatial
distribution of age group 1 were produced by interpolation. The theory of Density Dependant Habi-
tat Selection as formulated by MacCall (1990) was investigated, i.e. if the spatial distribution of a
stock contracts/expands when stock abundance decreases/increases. The analysis will be based on
the measure of concentration, D95 (Swain and Sinclair 1994) calculated from interpolations of in-
tensities.

Statistical model

Let X, be the catch in number from haul i with a known position, let 4, be the unknown, true inten-
sity at the same position, leta and d be dispersion parameters and finally letb be a spatial correla-
tion parameter. Further, let X=(X,,..., X,)" be the vector of n catch samples covering the area, and
letA =(4,....4,)" be the corresponding true intensities, where 7 denotes the transposed of a matrix.
It is assumed that the duration of the hauls are the same.

The model considered is a compound Poisson distribution where the conditional distribution of the
catch, X, , given the intensity, 4,, are independent Poisson distributed variables and where 4 follows

a multivariate lognormal distribution:

72 In(4,)
X. |4 ~ Poisson(4) n=| . |= .|~ N2 (1
n,) \in(2,)
where
—_—
1= pd)!

The variance/covariance matrix X is defined by
X, =VAR(n)=a+d a=20 A d=0
where a+d is the dispersion of the model.

This implies that E(4,) = et dI2 o1 p
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The covariance between two intensities is assumed to be a decreasing function of distance between
the haul positions such that it approaches zero when distance increases:

X, =COV(n,m;)=a* e D 4 g s o 2

where / is the indicator function and dist(i,j) denotes the distance in kilometres on the surface of an
sphere between position i and j. The relationship between the distance between two points in kilo-

metre and the corresponding longitudes and latitudes (lon and laf) is:
disi(i,j) = dist(lon, lat,lon,lat;) =

63781*acos ( sin(lat, *¢) *sin(at; * c) +cos(at, *c) *cos(at; * ¢) *cos({on-lon;) * c))
where ¢ =7/180.

The correlation between log intensities is

COR(y ) =——e ") iz j 3)
a+d

—b*dist (i, )

If d is zero the correlation is e independent of a.

The model contains the four parameters 6 ={u,a,bandd}and the unobserved random effects in-
tensities, 7.

Differences in the duration of the hauls have been ignored and are implicitly included in the small
scale, nugget effect, see below.

The interpretation of the model is:

1.

The observed numbers caught in a haul given the intensity is assumed to follow a Poisson distribu-
tion. This process is interpreted as the fishery sampling process for instance due to variation of the
behaviour of the trawl or fish movements.

2.

The intensities in the sea are assumed to follow a multivariate lognormal distribution where the cor-
relation between intensities is a decreasing function of distance between them. The mean and vari-
ance of observations in the LGCP is

E :E(X‘) = E(l{) :e#+(ll+d)/2
\% :V(Xt) ZV(X[. |/1,)+V(/1[) :E+(ea+d _1)E2
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If the variance of log intensities, a+d, is positive the variance of X is greater than the variance of the
Poisson process. Hence a+d can be regarded as overdispersion parameters relative to the Poisson
process.

The variance-mean relation of LGCP corresponds to that of the negative binomial distribution, for
which V = E + constant * E*.

3.

The covariance defined in equation (2) consists of a sum of the two terms, which respectively can
be considered as a large scale and a small scale component of the process. The large scale compo-
nent include the large scale variance a and the parameter b (> 0 ) measuring the strength of the spa-
tial correlation: When b is small the large scale correlation between intensities is high and vice
versa. The scaling of the correlation is measured by, which is the distance for which the spatial

correlation is 0.37 (if d = 0). The small scale variance is d, which corresponds to the so called “nug-
get” effect in geostatistics, may for instance be arise due to fish movements. Fig. 1 illustrates the
clear large scale variation due to “spatial” correlation for the case where the “nugget” effect is ex-
cluded (solid line) and the superimposed small scale variation due the “nugget” effect (dashed line)
blurring the large scale effect.

Predictions of unobserved intensities at positions with observations available

The likelihood function of X of the LGCP expressed as of function of the parameters, &, is

L) = [ P(X,0.m)dn = [ ™" dn
where “4)

i’l, n 1 1 o1 n n
(X.0,n)=e" =Y X7 + Eln(det(Z)) + E(77 -M)YZ -+ Eln(27r) + E o In(X,!)
i=1 =

[(X,0,n) is the negative log likelihood of (X,7).

Laplace approximations have been used to calculate L(#)in equation (4) for ML estimation of
Hand testing hypotheses (Kristensen 2008).

For the positions, where the observations are available, estimates,7j,(X), of log intensities 71X
for given observations X can be obtained by maximizing /(X,6,7) defined by equation (4) i.e.

7,(X)=argmax/(X,6,7). As indicated the estimate depends on &and X. As estimate of 77 we use
n

AX) =7,(X).

Let (71 X)=U(X ,é,r]) denote the likelihood of 7| X .The distribution of 771X is now approxi-
mated by the normal distribution with mean 7(X) using a Taylor expansion of /(771 X):
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-1
2
a’(”'x)j (17— A(X))

I(n| X)—-1(7(X)) =0.5*(n —ﬁ(X))i[
onon;

n=A(X)

=0.5%(—H(X)) ™ + Dy —H(X))
where
6’71 (X) 0

D,

AX)

0 eﬁ,‘(X)
I.e. the distribution of 771 X is approximated by the quadratic approximation
N1 X ~ N@HX), (™" + Dy )7 (5)

Calculations using “realistic”” parameters indicate that this is a good approximation to the true dis-
tribution.

Assuming that the approximation holds the estimator7(X) equals E(771 X), which is the posterior
minimum variance unbiased estimator of 7 for given X.

Using that
L=V =V(E@I X))+EVaI X)=V@HX))+EE" +Dyy) )
we find that

VAN =Z-E" + D) =22, =, + D, ) ©6)

Spatial interpolation

By analogy to the kriging method the LGCP can be used to spatially interpolate the intensity at po-
sitions where no observations exist. The best unbiased prediction of any function of the unobserved
intensity is the conditional mean given the observations. In the analyses below we assume that the
formulas of the conditional means and variances are based on the true value of the parameters. In
practice the true values are replaced by the MLE’s.

Assume that we want to predict the intensities, 4

new

=(Aes ) = (M,...,e™)", for m new positions

without observations. First the log intensities 7,,, =log(4,,,) = (#,.....,17,,)" are predicted:

new
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According to eq. (1) the combined set of 77 and 77,,, are distributed as

W

m

—
where u,,, = (u,..., 1) and where X, are defined similarly as .

We know that the conditional distribution of 7,,, |77is normal with mean and variance

E(1]0, 11) = Hy + Z0iZ 7 (7 = 1) )
V(o I =25 2,278, ®)
By analogy with the predictions of 71 X we want to use E(7,,, | X) for spatially interpolation:

From the definition of the LGCP the conditional distribution of X |7,,,,7 only depends on the in-
tensities in the points with observations,7. According to Brémaud (1991) p. 12 this implies that
1,., and X are conditionally independent given 7 and hence E(7,,, 177, X) = E(7,,, | 77). This im-
plies that

E@,., | X)=EE®,, |n.X)|X)=EE®m,, | M X)=EM,,, +2,Z"' (7-M)| X) ©)

=M, +Z,Z(E@IX)-M)=M,,, +2, 2" (H(X)-M)

V(1,0 | X)=V(E®,,, |MIX)+EV@,,, ) X) 22,2 V@I X)Z,2"+2, -2,27'S, (10)
22,2+ Dy )2, + 2, —E,27E

Having determined log intensity 17,,(X) the interpolated values of the inten-

sity 4, (X) = E(4,,

equations (9) and (10):

| X) can be approximated using a Gaussian posterior approximation based on

E(A

new

| X)=exp(E@™,,, | X)+diag(V(n,,, 1 X))/2) (11)

We also wish to predict non-linear functions of 4, (X) such as the measure of stock concentration,

new

by drawing 100 times from the Gaussian posterior approximation based on equations (9) and (10)
and calculating the mean and variance of simulated values of f(e™).

The spatial interpolation is performed on a regular fine scaled grid. The scale should be chosen suf-
ficiently fine to obtain a good approximation to the continuous random field.
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Other distribution measures

The ability of the LGCP to perform spatial interpolations of the (unobserved) population intensities
makes it possible to obtain unbiased estimates of stock characteristics based on intensities in the
entire space. A measure of stock concentration is considered: The measure, Dx, introduced by
Swain and Sinclair (1994) is defined as the proportion of the minimum area containing x% of the
stock, i.e D95y (say) is:

1Al J, A0y 0

D95, =in :
AELET [ A(y)dy

true

where E indicates the entire area in consideration and A any sub-area of E.
If the area is divided into n equally sized sub-areas and A represent the intensity in sub-area i then

D95 can be approximated by

0.95-z(m)
D95 — Z(m+ 1)_Z(m)
n
Z’lm
where z(m) =2 , m<n, where m fulfil that z(m)<0.95<z(m+1)and where 4, i=1,....,n

>4
i=1

are the intensities sorted in descending order.

D95 is greater than zero and less than 0.95. D95 is conversely proportional the stock concentration,
i.e. the concentration of a stock increases when D95 decreases. D95 approaches zero when concen-
tration increases and it equals 0.95 if the intensity is constant in the entire space, i.e. when the con-
centration is minimal.

The validity of the theory of Density Dependant Habitat Selection was investigated by comparing
the relation between D95 and stock abundance for 1983-2006, for which the abundance drastically
was reduced. According to the theory formulated by MacCall (1990) individuals first occupy habi-
tats with the highest suitability, but as realized suitability of these habitats declines due to increasing
population density other previously less suitable unoccupied habitat become colonized. Hence the
distribution is characterized by spatially equal realized suitability. If the theory holds D95 should
increase when the stock abundance increases.

Calculation of D95 has been based on predicted intensities performed on the regular 50 times 50
grid consisting of 808 points as described above. This procedure ensures that an unbiased estimate

of D95 is obtained, see the Appendix.

Analysis of residuals and goodness of fit tests
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The residuals can be calculated as X — e . Maximizing the log likelihood I(X,8,7) (eq. (4)) with
respect to 7 shows that X —e"® =37 (4(X) - u) and hence the quantity R = ((X)— ) is linear
transformed residuals scaled by log intensity. We prefer to apply these transformed residuals, which

expresses the deviation predicted log intensity and the mean. To obtain standardized residuals of R
the variance of R is needed:

V(R) =V(H(X) =) =T~ E(Z™" + Dyx)) ™)

As the last term in the expression of the variance is not known, we instead use R* = R +u , where
u~N©OC"+ D, X))") and for whichV(R") =% as modified residuals to circumvent this prob-

lem. We now assume that R* ~ N(0,X) and accordingly U = L"'R" is used as normal, standard-
ized and independent residuals, where L is the lower Choleski triangle of X.

Now assume that we want to examine if residuals are independent of some specified spatial charac-
. . . . . * . . .
teristics, for instance the longitude and latitude. We know that R is related to the longitude, while

U" is not. However, if (L'l),j is decreasing when the distance between the points i and j increases,

then a specific elementU; = Z(L")ij Rj of U* only depends on the residuals close to the specified
j

observation. This implies that the residuals may be considered as area specific residuals, which has
been applied to examine model deviations according to the longitude and latitude.

Goodness of fit tests for validation of the model have been based on the estimated values of log
intensity, 77, and the MLE of the other parameters, 6. Two tests were considered:

T, = ((X) =)'V X )™ (7(X) — f1)

where the variance/covariance matrix is determined by equation (6).

The second test is based on the Kolmogorov-Smirnov test quantity and the quantity
U =Ly, (= M)

T, =max | F,(x) = N(x)|
X
where L, , is the lower Choleski triangle of V(77), F, is the empirical distribution function of U

and N is the distribution function of the normal distribution:

If log intensity,77(X), for given observations, X, is normal distributed i.e.n7| X ~ N(7,V (7)) then
T, and T, respectively follow the y*and the Kolmogorov distributions. Even that the assumption of

normality probably is reasonable implying that the two distributions may be used as test probabili-
ties we instead simulate the exact distributions of 7' and T»:

1. Estimate the parameters in the model and calculate 7, and 7, .
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2. Simulate new sets of parameters from the normal distribution N (é,i) 100 times using the pa-
rameters estimated.
3. Calculate 7, and 7, for each of the 100 repetitions.

The first test should be two-sided and the second one-sided. Hence, the test probabilities
p, =P >T ,)and p,=2%*min(g,.1-gq,) ,whereq, = P(T, 2T, ,, ) ,were calculated. The model

is accepted if p is greater that 0.05.

obs .0bs

The likelihood ratio test was applied to test successive hypotheses regarding the parameters.
Application

The LGCP was applied to cod catch rates from the International Bottom Trawl Survey (IBTS) in the
North Sea and the Skagerrak in February 1983-2006. IBTS is coordinated by the International
Council for Exploration of the Sea (ICES) and data is available on www.ices.dk/datacentre/datras/
public.asp. The area is confined within 4°W and 13°E longitude and 50°N and 62°N latitude. The
period 1983 and onwards was chosen because the coverage and the survey gear standardization was
better compared to previous years. For the 1. quarter survey the annual number of hauls lies be-
tween 322 and 534 with a mean of 390. The area contains 186 statistical rectangles (1° longitude by
0.5° latitude), which were covered twice or more. The gear used is a bottom trawl and the haul posi-
tions within the rectangles are random selected among trawlable areas. The haul duration is on av-
erage 30 minutes, but in 12% of the hauls taken before 1999 the duration was about 1 hour, which
may introduce a bias.

The length of the cod caught was recorded and used to determine the age using age length keys. The
spatial distribution using LGCP was studied for each of the age groups 1, 2 and 3 years and older.

The hydrographical data, Depth, bottom temperature and salinity by haul, were provided by ICES’
hydrographical database. Data for the stock numbers by year and age were obtained from the ICES
working group report (ICES 2006).

Results

The model was used separately for each combination of the age group 1, 2 and 3" and the years
1983-2006 i.e. for 3*24 = 72 combinations.

First the model LGCP has been used to investigate if the position, the depth, the temperature and
the salinity can describe the variation of the cpue, i.e. for given age and year it is assumed that

ln(E(Xuge‘yeur,i )) =a+ p()ly(lonnge.year,i ’2) + p()ly( latage,year,i ’2) + p()ly(depthage.ymr,i ’2) +

(12)
poly(t, geyeari ,2) + poly(sal, geyeari ,2)

where i denotes sample number for a given age and year, lon the longitude, lat the latitude, depth

the bottom depth in meter, ¢ the temperature in Celsius, sal the salinity in ppm, poly(.,2) a second

degree polynomial and r a parameter. The reason why the covariates enter the right hand side of eq.

(10) as a second degree polynomial is that this enables the existence of for instance a preferred tem-

10
7



perature with a decreasing preference when moving away from the optimum. The assumption of a
log linear mean structure was made to ensure that mean cpue remains positive.

MLE’s of the parameters in eq. (12) and their confidence intervals obtained from the Hessian matrix
were used to test the significance of the parameters. For all years and age groups and parameters the
confidence intervals contained zero. One more run with model where the second degree terms were
removed gave the same result. Hence for all age groups and years it was concluded that none of the
effects associated with the covariates were found to be significant, i.e. log of the expected value, z,

is constant throughout the area independent of any of the explaining covariates. For this model and
for all ages and years the four parameters ,a,b and d have been estimated.

Regarding the residual analysis the elements of the inverse Choleski, (L"),.j, have been plotted

against the distance between points for all three age groups and all 24 years. For all 72 plots the
functional relation between the inverse Choleski and the distance is very similar. As an example age
group 1 in the middle of the period of 1983-2006, 1994 has been selected. The result is given in the
upper panel of Fig. 2, which shows that the inverse Choleski elements actually decrease when the
distance increases. It appears that outside a circle of 100 kilometres the corresponding residuals, R*
can be neglected indicating that only residuals U* within the circles are correlated.

The residuals U* were plotted against longitude and latitude. For none of the residual plots any
trend or systematic pattern was found. Plots again for age group 1 in 1994 are shown in the middle
and lower panels of Fig. 2.

The validity of the model has been tested using both the goodness-of-fit test statistics 7;and T, .

Both tests resulted in that the model was accepted for all age groups and years using a level of sig-
nificance of 5 percent.

For each age group separately we tested the hypothesis that the parameters a,b and d remain con-
stant over years. The likelihood ratio test was used for that in the following way: Let
1,(0)= —log(L, (0)) denote the likelihood function for year y, éy the MLE of the parameters and

H y=H , ; the estimated Hessian matrix. For each year we approximate the likelihood function

9,
with the second order approximation, i.e.

1,00,)-1,0,)=©0,-6,)yH 6,-6)

Using this approximation the simultaneous likelihood function including all years can be approxi-
mated by

1(0)-1(0)=(0-0)H(©O-0) (13)

where

11
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H = ) (14)

and 6=(6,,....0,)

For the likelihood function approximated in equation (13) linear hypotheses of the form 8 = Af can
be tested by the likelihood ratio test and using that 2 = (A'HA)"' A'H@ . The homogeneity of the

parameters over years i.e 6, =@ for all y was tested by setting A = (6,...,6)".

For age group 1 a, b and d were accepted to be constant for all years using a likelihood ratio test
(p=0.29). For age group 2 a and b were accepted to be constant for all years except for 1999, 2001
and 2005. The analyses of age group 1 and 2 are the most important because main part of the data
consists of positive catches. This is in contrast to age 3" for which the zero proportion is in large as
it increases from of level of about 40% to about 60%. Hence, the results for these age groups should
treated with caution. For age 3% 1983 clearly was an outlier,which was excluded from the analysis.
For the remaining years two levels of the parameter d appear to divide the years into two groups:
1984, 1988, 1994, 2001 and 2005 for which the nugget effect, d, was not significantly different
from zero and the remaining 18 years for which d is larger than 0.07. For the latter 18 years a and b
were accepted to be constant (p=0.86). The results are summarized in table 1.

Table 1 shows that both the characteristic distance, 1/b , the large scale a and the small scale varia-
tion d, are decreasing by increasing age indicating that both the spatial correlation and the overdis-
persion or patchiness declines for increasing age.

Contour plots and D95 was calculated based on interpolated values of stock intensity for a regular
50 times 50 grid covering the North Sea and Skagerrak was chosen (confined within 4°W and 13°E
longitude and 50°N and 62°N latitude). This corresponds to areas of about 27 times 24 km. The ar-
eas covering land have been removed, which leaves us with a total of 808 positions for which the
intensities should be predicted compared to the average of 390 observations available for each of
the years 1983-2006. We also tried the finer 70 times 70 grids. The deviations between the two
cases with respect to both the mean intensity and the measure of concentration mentioned below
were les than 2% indicating that the 50 times 50 grids results in reliable estimates functions of A,

new *

Contour plots are given for age 1 in Fig. 3. The 1-group was until 1997 mainly situated in the
southern North Sea and the Skagerrak but has since changed such that a major part is situated in the
Skagerrak. It should be noted that this geographical change of distribution is not in contradiction
with that the concentration measured using D95 is unchanged. This may for instance take place if
high density areas geographically change place. Similarly for 2-group the high density area before
2002 was the northern North Sea and the Skagerrak and hereafter mainly the Skagerrak.

The validity of the theory of density-dependent habitat selection

12
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Plots of D95 and the 95% confidence limits vs. abundance and year are shown for the age groups 1,
2 and 3% (Fig.4). For age 1 linear regression analysis indicates that D95 is independent of stock
abundance while D95 seems to decline with increasing abundance for age 2 and older. This means
that even that stock abundance is decreasing drastically during the period the concentration remains
unaffected or decreases and accordingly the theory of density-dependent habitat selection for cod in
the North Sea in February/March does not hold.

Discussion

The LGCP applied to analyse the spatial distribution of fishery survey data is a flexible counting
model, which was able to describe the spatial distribution of cod in the North Sea and Skagerrak.
The model does not assume that observations are independent, but accounts for possible spatial cor-
relation and enables modelling of separate small and large scale variations. Problems with zero
catches are avoided due to the discreteness of LGCP. A method for calculating residuals related to
latitude and longitude enabling graphical validation of the model has been developed, which makes
it possible to examine possible geographical deviations from the model. Finally, two simulated ex-
act tests have been formulated and implemented to perform goodness-of-fit tests.

One of the most important features of the LGCP introduced is the ability to predict and interpolate
unobserved intensities at any location in the area independent of the sampling locations. This ability
is important because it makes it possible to obtain unbiased estimates of for instance the stock con-
centration in the area (see the appendix) or the total sum of individuals or biomass. The expected
value of the posterior distribution E(7,,,, | X)is used as basis for interpolation of the spatial distri-

bution of the intensities as it is a minimum variance estimator of 7,,, (Diggle and Ribeiro Jr. 2007).

Many authors (e.g. Mgller et al. 1998) have used MCMC to simulate the posterior mean, which has
the advantage that the estimates are unbiased. In the present paper we have instead used a Gaussian
approximation to the posterior distribution to estimate posterior means analytically. Simulations
indicate that this assumption is reasonable (Kristensen, Submitted). The analytical approach has the
advantage that the convergence problems with MCMC for high dimensional data are avoided and
the computer time is reduced. The interpolation by sampling from the posterior distribution tech-
nique may further be improved using fast Fourier transform and conditioning by kriging (Rue and
Held 2005).

The spatial correlation and the large scale variation of the cod distribution did not change in 1983-
2006. This is remarkable as the conditions of the stock in the same period drastically changed as
cod abundance declined with about 75 % (ICES 2006), centre of gravity of the North Sea compo-
nent of the stock moved north east about 200 kilometres (Rindorf and Lewy 2006). This indicates
that the spatial correlation and variance for cod in the North Sea and Skagerrak seems to be insensi-
tive to major stock changes in the period.

The stability also applies to the concentration of the stock, which is either unchanged over time (age
group 1) or declines a bit (age 2 and older). This implies that the theory of Density Dependent Habi-
tat Selection or other density dependent theories do not apply to cod in the North Sea and Skagerrak
in wintertime. This result is in contrast to the results of Blanchard et al. (2004) who analysed data
from the English Groundfish Survey in the summer (August/September). The conflicting results
may be due to differences in the behaviour of cod in the winter and summer or it could be caused by
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bias in the estimation of D95 using raw or smoothed data especially for small mean catch rates, see
the appendix.

From the point of view of fishery management it is crucial that the concentration does not increase
with declining abundance. Other things being equal this means that the mean catch rates will not be
retained in the commercial fishery when cod abundance declines. If a concentration took place it
could lead to an overestimation of the stock size as was the case for cod off Newfoundland (Atkin-
son et al. 1997, Hutchings 1996).

Analyses of possible relations between local cod occurrence and local hydrographical parameters
such as temperature, salinity, depth, latitude and longitude etc. showed that none of the variables
affected the cod distribution. Especially, this means that there was no evidence that adult cod lo-
cally move to avoid high or low temperature in the winter for which the range of temperature is
—1°to 9°. This is in agreement with the results of (Rindorf and Lewy 2006) that the centre of grav-
ity for adult fish was not affected of the average temperature and wind.

The effect of the spatial distribution of the fishery on distribution of the stock is not included in the
analyses because of lack of data. If by-catch and discard of the 1-group is limited the effect is of
minor importance as the fishing mortality rate for trawl and gill net fishery in relation to the total
mortality is small (the proportion is about 0.35 in the period). For the two year old fish and older the
effect may be important as the proportion is greater than .6 in the period (ICES 2006).

The interpolated intensities indicate that the 1-group shifted from mainly to be located in the south-
ern North Sea and the Skagerrak to mainly to be situated in the Skagerrak only. This indication of
temporal correlation would be valuable to incorporate into the model. If such a model with positive
temporal correlation was accepted it would enable annual or seasonal predictions of the spatial dis-
tribution of fish stocks.

In conclusion, LGCP is a flexible model of the spatial distribution of fish accounting for spatial
correlation between densities and avoiding problems with zero observations. It is therefore possible
to interpolate the densities at any location in the area, which for instance could be used in connec-
tions with evaluation of the effects of closed areas. The model can be used to test the significance of
relations between fish occurrence and hydrographical or climatic factors.
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Appendix

When calculating the index related to stock concentration, D95, one has to ensure that the estimate
is non-biased. The biasness of D95 will be examined here assuming that data follow the LGCP and
that the estimation of D95 is based on the estimated LGCP parameters and interpolation onto a 50
times 50 grid. It will further be shown that using the raw or smoothed observations as basis for es-
timating D95 may result in biased estimates for small values of the mean catch rate. Finally, it will
be demonstrated that D95 is closely related to the dispersion and the spatial correlation of data. The
simulation experiments are performed in the following way:

A. Estimation of D95

1. D95 estimated based on LGCP predictions

An area confined by longitudes 0° to 10° and by latitudes 50° to 60° has been considered for which
the maximum distance between the corners is 1280 km. For a regular 51*51( = 2601) grid with lon-
gitudes (0°,0.2°,....,10°) and latitudes(50°,50.2°,....,50°) one realization of the intensities,
A =(Aypeees Aygy)' » for the 2601 gridpoints has been simulated assuming that they follow a LGCP
with known parameters y (the common log intensity), a (the overdispersion) and b (the spatial cor-
relation parameter). A nugget effect is not included. The simulations are performed by first calculat-
ing the distances between the 2601 points and — based on that — the variance/covariance matrix, X,
using the known parameters a and b and equation (2). Then the 2601 log intensi-
ties, 77 = (17;---s Moy ) » are simulated by randomly drawing from the multivariate normal distribution,
N(M, %)
2601

where M’ = (log(u) —a/?2,...log(x)—al?2) (Al)

The intensities, A, are then A =e” = (e”,...,e™" )" for whichE(4,) = i, i=1,...2601. Based on the
2601 values of 4 D95 has been calculated. For the selected values of the parameters it has been
shown that a 51*51 grid is sufficient to obtain an estimate of the true D95, for which the error is
less than 0.01. Hence we consider this estimate, D95 as the true D95 for the realized distribution

true >

of intensities.

We now simulate the catches X =(X,,...,X,)'on the 11*¥11 = 121 grid with longitudes

(0°,1°,....,10°) and latitudes (50°,51°,....,60°) which is a regular subset of the 51*51 grid. This grid
approximately corresponds to that one haul is taken in 60 times 60 nautical miles statistical square,
which is a rough grid with a poor covering of the area considered. The catches are simulated by
randomly drawing from the independent Poisson distributions with means equal to the correspond-
ing subset, A,.,,, of A.From the simulated catches, X, the estimates of the parameters, 22, @ and b
have been obtained by ML and based on that the predictions on the 51*51 grid of the log intensi-
11887 ogicrea = (Fy5+++sTaey) and the variance have been calculated using equations (9) and (10). In

principle an estimate of y) = eXP( yegiciea +@/2) could be obtained, but as this may be seri-

predicted
ously biased (Aitchinson and Brown 1976) we instead simulate an unbiased estimate by 1. Drawing
from the multivariate normal distribution?,,, = N(7,.sicreas VAR pregica)) 2. Calculating
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= D95(exp(1,,,)) 3. Repeating 1. and 2. 1000 times and calculating the D95 1cc =the mean
- 1.

1395 sim
of D95, . The possible bias of D95, has been calculated as D95, . / D95

true
2. D95 estimates based on the observations

As some authors use the observations or smoothed value of these as basis for estimating D95
(Swain and Sinclair 1994, Atkinson et al. 1997, Blanchard et al. 2004) we also examine the possible
bias by calculating D95 ,pservations(X) based on the (raw) 121 observations and two alternatives based
on smoothed values of. The first estimate, D953;(X), based on smoothed observations is obtained by
dividing the intervals [0,10] and [50,60] defining the area considered into 9 intervals and calculat-
ing the mean of the observations in each of the 9*9 = 81 rectangles defined. Correspondingly,
D95,5(X) is obtained by dividing into 5 intervals.

B. The relationship between D95 and the spatial correlation and the dispersion

To examine the above relationship D95 has been calculated for a range values of 1/b with fixed
dispersion a and vice versa.

Results
A. Estimation of D95

To examine the effect of varying mean catch rate the following sets of simulations have been per-
formed for fixed values of a and b for the following values of the catch rate:

a=1.5 b=0.005 catchrates =(0.25,0.4,0.50,0.75,1,1.5,2,3,5,7,8,10) i.e. 4 = In(catch rate)

For b = 0.005 the characteristic spatial correlation distance 1/b = 200 km which is the distance for
which the spatial correlation equals 0.37. For the case considered the proportion of the points for
which the distance is less than 200 km is about 10% indicating that observations are available for
estimating the parameters in the model. The coefficient of variation of the intensitiesA is

V1.5 =1.22.

The results of the simulations are given in Fig. A1 showing the relationship between the relative
bias of estimates of D95 and the mean catch rate. The Figure shows that in general D95 16c 15 the
least biased estimator of D95 and that the bias is less than 5% for mean catch rates larger than 1.
For mean catch rates less than 1 the relative bias is less than 15%. The smoothed estimate, D953 is
the second best estimator for which the relative bias is less than 10% for mean catch rates larger
than 2. For mean catch rates less than 2, however, the relative bias is tremendous, up to about —
60%. The bias of D955 in general seems to be positive, up to 20%. For small values of mean catch
rates the bias is still limited, below10%. D95gpservations 1S negatively biased and especially for small
values of the mean catch rate the bias huge (up to - 60%).

We conclude that the LGCP estimator, D95, , is the best estimator. Smoothing of the observa-

tions may lead to satisfactory D95 estimates for mean catch rates larger than 1 or 2. Raw observa-
tions should not be used for estimation of D95.
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B. The relationship between D95 and the spatial correlation and the dispersion

The results are shown in Fig, A2. The upper panel shows the relationship between D95 and 1/b for
fixed values of the mean catch rate of 10 and of a = 1.5, while the lower panel shows relationship
between D95 and a for a mean catch rate of 10 and b = 0.02. The figure shows that D95 depends
both on the spatial correlation the dispersion and of the log intensities. Hence, changes in the con-
centration of a stock (1-D95/0.95) may be caused either by changes in the dispersion or the spatial
correlation or changes in both stock characteristics. The quantity 1—-D95/0.95 is measure of the
concentration which lies between zero and 1.

19
86



Figure captions

Fig. 1. Simulation of a LGCP without a “nugget”, small scale variation effect (solid line) and the
same process including a positive “nugget” effect (dashed line).

Fig. 2. Plot of the relationship between the elements of the inverse, lower Choleski triangle, L™, and
the distance between corresponding points (upper panel) and residuals plotted against the longitude
(middle panel) and the latitude (lower panel) for age group 1 in 1994. See text.

Fig. 3. Contour plots for 1 year old cod in the North Sea and Skagerrak 1983-2006 based on inter-
polation onto a 50 times 50 grid.

Fig.4. Minimum area occupied by 95% of the stock, D95, by age plotted against stock number for
cod in the North Sea and Skagerrak 1983-2006 (solid line) and 95% confidence limits (dashed
lines). The straight lines indicate linear regression lines.

Fig. Al. Relative bias of estimated D95 versus mean catch rate. Thick solid line: Estimates based
on predictions using the LGCP. Solid line: Estimates based on raw catch observations. Dashed and

dotted lines: Estimates based on smoothed catch observations. See text in the appendix.

Fig. A2. The relationship between D95 and 1/b (upper panel) and the variance of log intensity a
(lower panel).

20
87



Tables
Table 1. Estimated parameters and the 95% confidence limits (L95% and U95%) by age

Age 1 “Age 2 Age 3°

L95% | Mean | U95% | L.95% | Mean | U95% | L95% | Mean | U95%

/b [ 1791 [242.0 ] 3270 [66.2 [87.2 [114.5 [448 [589 [77.3

a | 408 | 498 | 6.07 |2.11 [241 |275 [098 |1.12 |1.27

d | 126 | 142 | 1.58 1.02! 0.71"

'exp(log(d))

21999, 2001, 2005 excluded

31983, 1984, 1988, 1994, 2001, 2005 excluded

4 1/b, the characteristic distance, is the distance in kilometre for which the correlation between log
intensities is 0.37.
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