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Abstract

In this thesis we study the multiplicative character of A. Connes and M. Karoubi. Our first
achievement is a comparison result. We show that the multiplicative character on the second
algebraic K-group agrees with a determinant invariant defined by L. G. Brown. As a byproduct
we get a K-theoretic proof of the classical Helton-Howe identity

(1) det(edePe 4e B) = Tr[A, B] € C/(2mi)Z [A,B] € LY(H)

Our second result can be interpreted as a multivariate version of (1). We show that the
evaluation of the odd multiplicative character on higher Loday symbols is given in terms of the
higher Helton-Howe trace form. To be precise, we get that

1
Mp(e® s ... xe® 1) = ——'Tr( Z sgn(s)Paso)P - ... Pas@ap-1)P) € C/(2mi)PZ
P!

SGEQP

On our way we investigate the multiplicative structure on relative K-theory and the multiplica-
tive properties of the relative Chern character.

Resumé

I denne afhandling studerer vi A. Connes og M. Karoubis multiplikative karakter. Vores forste
resultat er et sammenlignings resultat. Vi viser at den multiplikative karakter pa den anden
algebraiske K-gruppe stemmer overens med en determinant invariant defineret af L. G. Brown.
Som et biprodukt far vi et K-teoretisk bevis for den klassiske Helton-Howe identitet

(2) det(eteBe4e=B) = Tr[A, B] € C/(27i)Z [A,B] € LY(H)

Vores andet resultat kan fortolkes som en multivariabel udgave af (2). Vi viser at evalueringen
af den ulige multiplikative karakter pa hgjere Loday symboler er givet ved den hgjere Helton-
Howe sporform. Mere praecist far vi at

1
Mp(e® % ... xe®r 1) = ——‘Tr( Z sgn(s)Payo)P - ... Payoy-1P) € C/(27i)PZ
P!

5€X9p

Pa vores vej undersgger vi den multiplikative struktur i relativ K -teori og den relative Chern
karakters multiplikative egenskaber.
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1. INTRODUCTION

Let us consider a bounded operator T € L(H) on a separable Hilbert space of infinite dimension.
We would like to extract information from this data. For example, let us suppose that the
operator is essentially normal. This means that the commutator between T and its adjoint T
is a compact operator, [T,7*] € K(H). We let ¢ : L(H) — L(H)/K(H) denote the quotient
map from the C*-algebra of bounded operators to the calkin algebra. Let £ C £(H) denote the
smallest unital C*-algebra generated by 7' and the compact operators. We thus have a short
exact sequence of C*-algebras.

(3) 0 —— KH) —4— E —2 ¢(B) —— 0

The quotient C*-algebra is commutative and identifies by the Gelfand transform with the
continuous functions on the essential spectrum of T,

q(E) = C(2) Z = Sp(q(T))

Let us take an invertible continuous function on the essential spectrum, f : F — C*. This data
determines an element in the topological K-theory of C(Z), [f] € K°*(C(Z)). Furthermore,
the short exact sequence (3) provides us with a boundary map

91 K™ (C(2)) — Ko(K(H)) = Z

in topological K-theory. In particular, we can associate the integer J[f] € Z to the function
f. This integer carries a lot of information. For example, to any A\ ¢ Z = Sp(q(7T')) we can
associate the number O]\ — Id] € Z which is precisely the index of the Fredholm operator
A—T € L(H), see |15, Example 4.8.8]. By the work of L. G. Brown, R. G. Douglas and P.
A. Fillmore, the essential spectrum together with these indices characterize essentially normal
operators up to essential unitary equivalence. See for example, [15, Theorem 2.4.8]. From the
definition of the first topological K-group it follows that the function

9g:C—-—2Z2 -7
g: A— IN=1d]=Ind(A—T)
= Dim(Ker(X — T)) — Dim(Ker(\ — T%))

is locally constant. In particular, it is constant on the connected components of C—~2. We could
now ask the question, if we can extend this invariant to the whole complex plane extracting even
more information about the operator T' € L£(H)? Let us assume that the commutator [T, 7]
satisfies a more restrictive growth condition than merely compactness. Namely, we assume that
the singular values are 1-summable, that is to say, the additive commutator is of trace class,
[T,T*] € LY(H) C K(H). The trace ideal £L'(H) comes equipped with a tracial continuous
linear functional

Tr: LY (H) — C Tr(S) = >.07  {en, Sen)

n=1
called the operator trace. Thus, we can associate a complex number Tr([7,7%]) € C to the
above data. But we have even more. Let us write T' = X + ¢Y where X is the real part and
Y is the imaginary part of 7. We then have [T,T*] = —2i[X,Y]| € L'(H). The selfadjoint
operators X and Y thus form what is called an almost commuting pair. Now, for any complex
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polynomial in two variables

p= Z Anmx"y™ € Clz, y]

n,m

we let p(X,Y) € L(H) denote the operator

PLY) =D AymX Y™

n,m

For any two polynomials p,q € C[xz,y] the commutator [p(X,Y),q(X,Y)] € L}(H) is then of
trace class. In particular, we get a bilinear form

(+,+) : Cla,y] x Clz,y] — C (p,q) = Tr([p(X,Y),q(X,Y)])

This bilinear form extends to C*°(R?) and can be calculated by a result of J. W. Helton, R. E.
Howe, R. W. Carey and J. D. Pincus. See for example [14, 4, 5].

Theorem 1.1. Let T € L(H) be a completely non-normal bounded operator with trace class
selfcommutator, [T, T*] € LY(H). Then there exists a summable function g : R> — R such that

(1) For any pair of smooth functions f1, fo € C®(R?) the pairing (f1, fo) € C is given by
the formula

Frofo) = == [ T(h. (e, y)dudy

27 R2

Here J(f1, f2) = %%%—J;? - %%—g € C°°(R?) denotes the Jacobian of f1 and fs.
(2) For each A € C—Z in the complement of the essential spectrum of T = X +1iY we have

the identity
g(Re(N), Im(\)) = Ind(A =T

The function g : R? — R is called the principal function of the almost commuting pair
Re(T),Im(T') € L(H).

The above theorem implies that traces of commutators carry all the information on the indices
of the Fredholm operators (A—1"), A € C—Z and possibly a lot of extra information. We could
thus understand it as a refinement of the Fredholm index invariant of topological K-theory. We
will adopt this point of view. It immediately rises the question: What are traces of commutators
an invariant of? We could start by expressing these quantities as values of homomorphisms
defined on cyclic homology. To do so, we will have to settle ourselves in a slightly different
scenario. Namely, suppose that we have a short exact sequence of Banach algebras

X:0 — LYH) N SN BN 0
which satisfies the following conditions:

(1) The Banach algebra £ is unital and equipped with a continuous unital algebra homo-
morphism 7 : £ — L(H) which restricts to the inclusion on £'(H).

(2) There is a continuous linear split s : B — £ and the quotient, B, is unital and commu-
tative.
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Here we could think of £ as some appropriate completion of the x-algebra generated by T €
L(H) and the operators of trace class. The assumption on the commutator [T, T*] € L*(H)
then ensures us that the quotient £/L'(H) = B is commutative. We will think of B as some
algebra of differentiable functions on the essential spectrum of 7'. The continuous linear section
is then given by some ordered functional calculus extending the above formula for polynomials.
Note however that the passage from the operator 7' with trace class selfcommutator to the
(smooth) extension scenario is far from uncomplicated in general. We can then exhibit traces
of commutators in the following homological fashion:

Theorem 1.2. The operator trace determines a well defined map on the zeroth continuous
relative cyclic homology group

Tr: HCy(LY(H),E) — C
Furthermore, any pair of elements f,g € B determines a class in the first continuous cyclic
homology group, g f € HC(B). This class maps to the trace of the commutator Tr([A, B]) € C
under the composition

—Tr

(4) HCY(B) —Z HCo(LN(H),E) —= C
Here A, B € £ are any lifts of f,g € B.

For a proof of this result we refer to Section 3.3. Let us spell out the connection with the work
of A. Connes at this point. Thus, consider an odd 2-summable Fredholm module (F, H) over a
commutative unital Banach algebra A. This amounts to the following data:

(1) A separable Hilbert space H.
(2) A selfadjoint unitary operator F' € L(H).
(3) A unital algebra homomorphism 7 : A —L (H).

The different components are related by the commutator condition
[F,m(a)] € L2(H) aceA

Here L£?*(H) denotes the ideal of Hilbert-Schmidt operators on H. We will assume that the
Fredholm module is continuous in the sense that

Im(a)lloo < lall and |[[F; x(a)]]l2 < [lal]

for all a € A. Here the notation || - ||, : LP(H) — [0,00) refers to the norms on the Schatten
ideals. Each such Fredholm module gives rise to a character on the first continuous cyclic
homology group,

(5) r: HC (A) — C ap ® aj — —%Tr(F[F, aol[F, a1])

This important result is due to A. Connes, see |7, I 7. Lemma 2|. We would like to relate
this Chern character with traces of commutators, in particular, with the homomorphism (4) of
Theorem 1.2. To this end we form the C-algebra

T, =1{(S,a) € L(IPH) x A|S — PaP € L'(PH)}
which, when equipped with the norm,
105, a)ll = [ISllee + IS = PaPlly + [lall + [P, a2
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becomes a unital Banach algebra. Here P = % denotes the projection onto the eigenvectors
for F' with eigenvalue 1. We can then write down a short exact sequence of Banach algebras

Tp:0 — LY(PH) —— T} —2- A 0

which satisfies the conditions (1) and (2). The result of Theorem 1.2 thus supplies us with a
homomorphism

a —1ir
HCy(A) —5 HCo(LY(H),T}) —— C
It is possible to prove that this character agrees with the Chern character of the Fredholm
module, thus

(6) TF — (—Tr) o GTF

See |9, Théoréme 5.6 and [16, Theorem 4.2]. Tt follows that the evaluation of the Chern
character on the class ay ® a1 € HC}(A) is given by

Tr(ap ® a1) = —Tr([PaoP, Pa, P))

In particular, suppose that the operators m(ap),m(a1) € L(H) are selfadjoint and that the
operator T" = Pr(ag)P + iPn(a;)P € L(PH) is completely non-normal. Then for any two
polynomials p, ¢ € C[z,y| we get that

7r(p(ao, a1) ® q(ag, a1)) = L /RQ J(p, q)g(x, y)dxdy

- 2mi
Here g : R? — R is the principal function associated with T'€ L(PH). It is perhaps worth to
notice that the above integral formula looks like the Hochschild character of some appropriate
spectral triple constructed out of the almost commuting pair, Pm(ag)P, Pm(a,)P € L(PH).
We haven’t yet found occasion to pursue this track very far. For some further details on these
matters we refer to the books [8] and [11]|. Let us return to the main discussion.

We have seen that for any suitable short exact sequence of Banach algebras

X:0 — LY(H) — & 2> B 0

with commutative quotient, we could express the traces of commutators in £ in a homological
fashion. Furthermore, we have related this homological expression with Chern characters of
2-summable Fredholm modules. We are not really satisfied yet. The Fredholm indices were
described in terms of a homomorphism from the first topological K-group Ind : K|°*(C(Z)) —
Z. We would like to understand traces of commutators as an extension of this invariant. That is,
the origin of these quantities should not only be cyclic homology but rather some appropriate
K-group. It should be noted at this point that the trace class commutator property of the
unital Banach algebra & is not preserved if we pass to the closure of £ in the operator norm.
This is simply due to the fact that the trace ideal is non-closed in the C*-algebra of bounded
operators. Since topological K-theory is almost insensitive to this kind of operations we will in
general need a finer K-theoretic functor to explain the traces of commutators. In this respect
it was noticed by L. G. Brown in [3] that the origin of Fredholm determinants of multiplicative
commutators was algebraic K-theory. Let us explain this result. Departing from the exact
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sequence X, L. G. Brown constructs a determinant invariant on the second algebraic K-group
of the quotient B. This invariant is given by the following composition of homomorphisms

doxm) : Ka(B) = K (L1(H),€) —"— Ki(L!(H), L(H)) = €
Here the K-groups are all algebraic and the last map is induced by the Fredholm determinant
det : GL(L'(H)) — C*. Now, for any pair of invertible elements in the quotient f,g € B* there
is a Steinberg symbol {f, g} € K3(B) in the second algebraic K-group, see for example [29].
Assuming the existence of invertible lifts

A Beé&* q(A)=f,qB)=g

it was then proved that
dxm({f.g}) = det(ABA™'B™")

Notice that the commutativity condition on the quotient implies that the above Fredholm
determinant makes sense. In particular, for any elements f, g € B with lifts A, B € £ we have
the identity

(7) d(X,ﬂ)({ef, e9}) = det(e?ePe e B) = o TrA,B]

For a proof of the last identity we refer to [2]. Thus, at least modulo the additive subgroup
2miZ C C the trace of the commutator Tr[A, B] € C arises as the value of an invariant on
algebraic K-theory. Before we continue, we would like to remark that the existence of invertible
lifts is not a necessary condition for a concrete calculation of the determinant invariant on
Steinberg symbols to apply. In this respect see |6]. Furthermore, notice that the existence of
invertible lifts implies the vanishing of the boundary map in topological K-theory. Or stated in
another way, the elements f, g € B have trivial "winding numbers". The formula (7) suggests
that the determinant theory should be interpretted as a parallel theory to the trace theory.
To be slightly more precise: The determinants of multiplicative commutators are paralleled by
traces of additive commutators. One of the main attempts of the first part of this thesis, thus
the sections 2, 3, 4 is to understand what lies behind this statement. These sections are also
related to the first article at the end of the thesis, [16]. So, what is it we are going to do? First
of all, we will express the trace of an additive commutator by means of a K-theoretic invariant.
That is, out of the exact sequence of Banach algebras X we will construct a trace invariant on
the second relative K-group of the quotient. It is given by the composition

—Tr

rom  KE(B) -2 HCy(B) —2 HOV(LY(H), €) —2

Here the homomorphism ch™ : K*(B) — HC,(B) is the second relative Chern character
as introduced by M. Karoubi in [20]. Let us fix two elements f,g € B. Furthermore, let
a :[0,1] — [0,1] be a smooth maps with «(1) = 1 and which vanishes on a neighborhood of
the origin. From this data we are then able to associate a specific element

{efa-f’efa-g}rel c K;el(B)

in the second relative K-group of the quotient B. The application of the trace invariant to this
relative Steinberg symbol is then the trace of the commutator

(8) T ({e™* 7, e79}™) = Ti([A, B]) € C
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Here A, B € £ are any lifts of f, g € B, see Theorem 3.21. Understanding the relation between
traces of additive commutators and determinants of multiplicative commutators thus amounts
to understanding the relation between the trace invariant and the determinant invariant. That
is, we look for a general comparison result. Now, the domain of the trace invariant is relative
K-theory and the domain of the determinant invariant is algebraic K-theory. The link between
these two domains is given by an explicit homomorphism,

0 : K3 (B) — Ky(B)
This homomorphism essentially associates the values at the vertices to each continuous map
o:A* — GL(B). As an example, we have the following equality
O({e™ >, e 9}) = {e!, e%}
for the application of 6 to the relative Steinberg symbol. The comparison result can now be

stated in the form of a commutative diagram

K3 (B) —'— [Ky(B)

T(X,m) l d(x,) J

c = ¢
See Theorem 3.22. This is thus a general framework in which identities in two variables between
determinants and traces can be analyzed. For example, we get a new proof of the well known
equality

9) det(eteBe~Ae™B) = M(AB]) A Beé&
for almost commuting operators. Indeed, it is a consequence of the following calculation
det(e?ePe e B) = d(XJr)({ef, e’})
= (dexm 0 O)({e™, em ™o}

= (exp OT(X,W))({Bia'f, efa'g}rel)
_ 6Tr([A,B])

The main goal of this thesis is to find a higher dimensional analogue of the identity (9). Let
us explain what we mean by this sentence. The most desirable thing to do, would be to begin
with the raw data consisting of, say, 2p selfadjoint operators Ay, ..., As, € L(H) with additive
commutators [A;, A;] € LP(H) in the p'™ Schatten ideal. To this general information J. W.
Helton and R. E. Howe associates a fundamental trace form

(oo, ) 1 E%P = C T1 Q... ®Tap = Tr(Y e, S80(0)T0o(1) « - - - " To(2p))

Here £ C L(H) denotes the smallest #-algebra which contains the p-almost commuting oper-
ators Ao, ..., Aq1 € L(H), see [14]. Note that the above sum over the permutations on 2p
letters is of trace class since

> sgn(0)To0) - Ty = Y, S80(8) 1), Ta)] - [Batzp-1), Toiop)

CTEEQP SESEQP

Here SEs, C ¥, denotes the subset of permutations with s(2i—1) < s(2¢) foralli € {1,...,p}.
Following the above scheme, we should then construct a trace invariant which, when applied
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to appropriate higher relative Steinberg symbols produces values of the above fundamental
trace form. Furthermore, the trace theory which lives on the higher relative K-groups should
be paralleled by a determinant theory living on the higher algebraic K-groups. At last, the
application of the higher determinant invariant to appropriate higher Steinberg symbols should
be calculizable and expressed in terms of the fundamental trace form. This general program
might suffer from technical problems. Even in the 1-dimensional case we used a suitable short
exact sequence of Banach algebras to construct our trace invariant. The passage from the
raw p-almost commuting tuple (A4, ..., As,) to an appropriate "smooth" extension is far from
uncomplicated. We could thus limit ourselves to the setup consisting of a short exact sequence
of Banach algebras

X:0 — LP(H) —— & 15 B 0

with properties similar to (1) and (2). But again, we face some obstacles. Indeed, our trace
invariant was defined by means of a character on the first continuous cyclic homology group
of the quotient, B. This character had the operator trace on the relative continuous cyclic
homology group of the pair (L'(H),£) as an important component. There is however no
immediate generalization of the operator trace to the higher relative continuous cyclic homology
groups of the pair (LP(H),E). For example, the continuous cyclic homology groups do not
satisfy excision in general. We should notice at this point that it is possible to construct a
continuous cyclic cocycle merely from the data consisting of a continuous linear map s : B —
L(H) which is multiplicative modulo £P(H) in a continuous sense, |7, I 7. Theorem 5. We
haven’t yet found occasion to pursue the implications of this observation further. Instead we
have fixed ourselves in the slightly less general framework of odd finitely summable Fredholm
modules. Thus, we consider the following data:

(1) A separable Hilbert space H and a unital commutative Banach algebra A.
(2) A selfadjoint unitary operator F' € L(H).
(3) A unital algebra homomorphism 7 : A —L (H).

The different components are related by the commutator condition
[F,m(a)] € L?(H) aeA

Here £%(H) denotes the 2p'" Schatten ideal. We will assume that the Fredholm module is
continuous in the sense that

[7(a)lloe < llall and ||[F, 7(a)]l|2p < [lall
for all a € A. In this context there is a character on continuous cyclic homology
(]_0) TF - HCZp_]_(A) — C ao®...®a2p_l — —mTr(F[F,aO] [F,agp_l])

This is the higher dimensional analogue of (5) which is also due to A. Connes, |7, I 7. Lemma
2|. The fundamental trace form of J. W. Helton and R. E. Howe can be expressed by means of
the above homomorphism. Indeed, it follows from the results in [7, I 7.] that

1
(11) 75 ( Z sgn(s)ag ® as) @ ... @ Gg2p-1)) = —H<PQOP, ..., Pagy_1P)

SEX2p_1
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See also |17, Theorem 5.3|. In the article [9] it is then shown that the above higher cyclic
cocycle gives rise to a homomorphism

Ap : K§(A) — C Ap = 1p o ch™

which we call the additive character of the Fredholm module. Here K3¢'(A) denotes the higher

relative K-theory as constructed by M. Karoubi in [20]. The notation ch™ refers to the relative
Chern character. This is a natural homomorphism of degree minus one with values in continuous
cyclic homology,

ch™ : K5(A) — HCyy 1 (A)
It was originally constructed by M. Karoubi in a differential geometric context, see [20]. The
additive character is a good higher dimensional replacement for our trace invariant. Indeed, it
follows immediately by (6) that

.AF = Tp O Chrel = (_TI") © aTF © Chrel = N(Trm) - ngl(’A) —C

Thus, in the one dimensional case, the additive character of the Fredholm module agrees with
the trace invariant of the Fredholm module. Here the notation T refers to the extension
Tr:0 — LYH) —— T} 1= A 0

constructed from the odd continuous 2-summable Fredholm module. As mentioned above, we
are interested in computing the additive character on some higher dimensional analogue of the
relative Steinberg symbol. This is one of the achievements of the second article [17] which is
attached at the end of this thesis. Let us briefly explain the general scheme of the calculation.
A more detailed introduction is given in Section 5 and Section 6. First of all we need to find
the correct replacement for the relative Steinberg symbols on higher relative K-theory. Recall
that we assume our unital Banach algebra to be commutative. In the article [25] it is shown by
J.-L. Loday that the Steinberg symbols in the second algebraic K-group are special instances
of a general product in algebraic K-theory. Following his ideas, we construct a rather explicit
interior product on relative K-theory,

crel . K:lel(.A) « K:rfl(.A) _ K:ilkm(A)

Equipped with this structure, the relative K-theory of a unital Banach algebra becomes a
graded commutative ring. Furthermore, the group homomorphism

: K*(A) — K,(A)

which links the different K-theories becomes a homomorphism of graded commutative rings.
These results are proved in [17, Section 3|. Finally, in analogy with the algebraic result, the
relative Steinberg symbol, which is given by an explicit homology class, can be expressed in
terms of the general relative product. This identification is carried out in Section 5.4. We are
therefore interested in the application of the additive character

Ap K;;l(.A) — C Ap = 75 o ch™
to a higher relative Steinberg symbol of the form
(12) V] = o]+ " [ypa] € K3 (A)

Here (F, H) is a continuous odd 2p-summable Fredholm module over the commutative uni-
tal Banach algebra A. Note at this point that the classes in the first relative K-group are
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represented by smooth maps o : [0,1] — GL(A) with ¢(0) = 1. Thus each of the elements

[vi] € Ki®'(A) is given by a smooth path of invertibles which begins at the identity. Having the

calculation in the 1-dimensional case in mind we will assume that our paths are of the form
it et a; € A

See 8. Now, instead of continuing directly with the computation of the additive character we
will make a detour. Namely, we will explore the behaviour of the relative Chern character

ch™ : K A) — HC,(A)[1]

with respect to the multiplicative structure on the relative K-groups. Note that this natural
homomorphism is a part of the additive character. To be more precise, there should exist a
product in cyclic homology which corresponds to the relative product in K-theory. We remark
that such a product must have degree one, since the relative Chern character has degree minus
one. In this respect there is a natural candidate given by the shifted shuffle product,

x: HC, (A) x HC,,(A) — HCpymy1(A) rxy=u1x X (sNy)

When equipped with this multiplicative structure the shifted cyclic homology theory HC,(.A)[1]
becomes a graded commutative ring. See for example [26, Section 4.4]. We prove in [17, Section
4] that the relative Chern character becomes a homomorphism of graded commutative rings.
Thus, we have the equality

ch™([o] #™ [7]) = ch™([o]) * ch™([r])

for any [0] € K'(A) and [r] € K'(A). This effectively reduces the calculation of the relative
Chern character on the higher relative Steinberg symbol

] =[] # " [rpa] € B3/ (A)

to a calculation of the relative Chern character on the individual terms. This is by no means a
complicated thing to do. Indeed, for ~; : t — e~ we have that

1 —ta;
Chrel([’yib = / Metaidt = —a; € HCO(.A)
0

dt
By the multiplicative properties of the relative Chern character we deduce that
(13) () = Y sen($)a® a © . ® axepr) € HOyppr(A)
SEX9p_1

We therefore arrive at a concrete formula for the additive character on higher relative Steinberg
symbol. Furthermore, we obtain an expression in terms of the fundamental trace form of J. W.
Helton and R. E. Howe. To be precise, from 13 and 11 we get that

1
(14) Ar([v]) = Z sgn(s)Tr(ao @ ag1) @ ... @ Gg(2p-1)) = —H(Paop, ..., Pagy 1 P)

8622p71

Some supplementary discussion of this result is given in Section 6.3. We can proceed even
further. As mentioned earlier in this introduction we would like to dispose over a determinant
theory which parallels the trace theory given by the additive character. This desire is inspired by
the one dimensional case where we did possess a determinant invariant on the second algebraic
K-group. This invariant could be calculated by means of the trace invariant. Indeed these
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two characters were intimately connected. In the higher dimensional setup we will replace the
determinant invariant by the odd multiplicative character of A. Connes and M. Karoubi, see
[9]. This replacement is motivated by the following result:

Theorem 1.3. Let (F, H) be an odd 2-summable Fredholm module over a unital C-algebra A.
We then have a commutative diagram of group homomorphisms

K> (A)

NG

C/(2mi)Z — C*

exp

Here My : K3(A) — C/(2mi)Z denotes the multiplicative character of the Fredholm module.
Furthermore, dp : K5(A) — C* denotes the determinant invariant of the short exact sequence
of C-algebras

0 — LYH) —— T} —1— A 0

A proof can be found in [16], see also [9] and Section 4. The interpretation of Theorem 1.3 is
clear: For odd 2-summable Fredholm modules, the multiplicative character coincides with the
determinant invariant. The advantage of the multiplicative character is that it generalizes to
the higher K-groups. Indeed, to any odd 2p-summable Fredholm (F, H) over any C-algebra A,
A. Connes and M. Karoubi associate a homomorphism

MF : Kgp(.A) - C/(Qm)pZ

which they call the multiplicative character of the Fredholm module. Suppose now that A is a
unital Banach algebra and that the Fredholm module is continuous. Let 0(y) € K5,(.A) be an
element in the image of the homomorphism

0: K32 (A) — Ky(A) 0(c) = (c(0)o(1)7,...,0(m—1)o(n)™})

The application of the multiplicative character to the element 0(y) is described in terms of the
additive character. Indeed, by definition

Mp(0(y)) = [Ar(y)] € C/(2mi)"Z

Here [-] : C — C/(2mi)PZ denotes the quotient map. The multiplicative character is thus
intimately related to the additive character. That is, the higher dimensional determinant
theory is explicable in terms of the higher dimensional trace theory. In particular, the above
calculation of the additive character entails a corresponding calculation of the multiplicative
character. This is the main achievement of the article [17] to be found at the end of the present
thesis. Let us give some details on this result. We need the additional assumption that our
unital Banach algebra A is commutative. This is really required since we need the above interior
Loday products in order to construct our K-theory classes. These products only exist in the
commutative setup. Let us choose 2p elements ag, ..., a1 € A. By an application of the
exponential function we get the invertibles e® ... e®-1 € A*. Each of those determine a class
in the first algebraic K-group and we can thus form their interior Loday product,

[z] = [€%°] % ... % [e**1] € Ky,(A)
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Our aim is to get a concrete formula for the application of the multiplicative character to this
higher Steinberg symbol. Notice that this is possible in the one dimensional case. Indeed,
as mentioned earlier, the Loday product on algebraic K-theory identifies with the algebraic
Steinberg symbol. To be precise we have that

[e®]  [e"] = {e™, €™}

Furthermore, by Theorem 1.3 the multiplicative character agrees with the determinant invari-
ant. Thus, we need to calculate the quantity

(expoMp){e®, e®} = dp{e™, e®}
By (7) this is the determinant of a multiplicative commutator, namely

dF{em 7 6ao} — det(ePalpePaoPe—Palpe—PaoP> _ eTr[PalP,PaOP]

Here the last identity is taken from (9). We have thus proved that
Mple®] * [e"] = —[Tr[PaoP, P, P]| € C/(2mi)"Z

Let us return to the general case. We start by showing that [x] € K3,(.A) is in the image of 0 :
K3e'(A) — Kap(A). This is immediate from the multiplicative properties of this homomorphism.

Indeed, with [y] € K2 (A) defined by an iterated relative Loday product as in 12 we get that
0([v]) = (1)) - % O[r2p-1]) = [r0(1) T 5 [y (1) 7] = [a]

The multiplicative character of [z] € K5,(A) is now expressed in terms of the additive character
of the lift [y] € K5¢/(A). But we already calculated this quantity in 14. In particular, we get
that

(15) Me([2]) = [Ar(])] = — [$<paop, .., Pay, 1P)] € C/2mip'Z.

We give a rather detailed discussion of this result in Section 6.3. We will thus limit ourselves to
one single comment at this point: The left hand side of (15) only depends on the exponentials
e® € A* whereas the right hand side is expressed in terms of the fundamental trace form of
the logarithms a;. This supports our point of view, that the multiplicative character should
be understood as a higher determinant invariant. Let us finish this general introduction by
recapitulating the achievements of the thesis:

(1) We have understood that the higher dimensional generalization of the determinant in-
variant should be the multiplicative character of A. Connes and M. Karoubi.

(2) We have argued that the correspondence between the trace invariant and the determi-
nant invariant is generalized to a relationship between a higher additive character and
the multiplicative character.

(3) We have seen that the framework given by the additive character and the multiplicative
character allows us to produce identities between determinants of multiplicative com-
mutators and traces of additive commutators. Indeed, we were able to give a concrete
formula for the application of the multiplicative character to higher Steinberg symbols.
This calculation was accomplished by means of a calculation of the corresponding ad-
ditive character. The final result could be expressed by the fundamental trace form of
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J. W. Helton and R. E. Howe,

Mp([e™] % ... x [e®1]) = —[%(Paop, ..., Pay,_P)| € C/(2mi)"Z

This result can be interpreted as a multivariate version of the classical identity

det(el*PeFPP = PaP o =FbPy — (Tr([PaP,PbP))

(& = e

We will now briefly go through the organization of the material in the present thesis.

In Section 2 we give an account of the Fredholm determinant from a K-theoretic point of
view. This part is quite basic and also serves to introduce the reader to some of the ideas and
techniques which we apply later in the thesis.

In Section 3 we introduce the determinant invariant and the trace invariant. We calculate these
homomorphisms on relative and algebraic Steinberg symbols. At last we prove our comparison
result which explicits the precise relation between these two invariants. This part is still rather
basic in so far that we only use homological descriptions of the involved K-groups. There
is a very close connection to the first article [16] which is attached at the end of the thesis.
The methods applied there are however slightly different. We feel that the exposition given in
Section 3 is both more clear and more conceptual.

We continue by an examination of the relationship between determinant invariants and the
multiplicative characters of A. Connes and M. Karoubi. This is related to the material in |9,
Section 5| and in the article [16]. The tools which we have evolved during Section 3 allow
us to prove a refinement of [9, Théoréme 5.6|. Namely, in the universal case, we show that
the multiplicative character factorizes through the second algebraic K-group of the Calkin
algebra, L(H)/L'(H). The refinement is also contained in [16]. This ends the study of the low
dimensional case.

In Section 5 we expose the general results on the multiplicative structure in relative K-theory.
We also indicate how the relative Loday product relates to the algebraic Loday product. This
part can be understood as a survey of some of the material which can be found in the second
article attached at the end of the thesis, [17]. We end the section by showing that the relative
Steinberg symbol is a special instance of the relative Loday product.

In Section 6 we go through the main results of the article [17]. Namely, we expose the con-
crete calculations of the additive and multiplicative characters of Fredholm modules. The raw
description of these results is supplied by a detailed discussion of some immediate implications.

The final section is devoted to a concrete example. Namely, we consider the case of a torus of
odd dimension. In this setup we show that the application of the multiplicative character to
higher Steinberg symbols is given by an integral formula. To be precise, we get that

(16) MF([GfO] X ...k [€f2p_1]) = [C/ fodf1 VANPRAN dfgp_l} € (C/(Q’]TZ)pZ

T2p—1
where C' € C is an appropriate constant. In view of the above considerations, this result is
by no means surprising. Indeed, our Fredholm module arises from a spectral triple and we
essentially need to evaluate the character

TF - HC2p_1(Cp+2(T2pil)) —C
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on a Hochschild cycle. Tt is well known that this quantity can be expressed in terms of an
integral over the torus. By the same method we could also have found formulas similar to (16)
in a more general context. For example, the odd dimensional torus could be replaced by a spin
manifold of odd dimension, see [8] and [11]. For the sake of simplicity we have limited ourselves
to this specific setup.
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2. THE FREDHOLM DETERMINANT

We will give an account of the classical Fredholm determinant from the point of view of algebraic
K-theory. In particular, we will give homological arguments for the main properties of the
Fredholm determinant. The present approach will thus be rather different from the usual one,
that is, we will only use a very limited amount of operator theory. We hope that this will serve
two purposes: First of all, the reader will get an introduction to the techniques which will be
used throughout the thesis, secondly, he or she might get a feeling of the power of algebraic
K-theory in dealing with certain operator theoretic questions.

2.1. The Schatten ideals and the operator trace. We will briefly introduce the Schatten
ideals. They are generated by selfadjoint compact operators with some extra conditions on the
decay of the eigenvalues. We will then introduce the operator trace which is a generalization of
the usual trace on the algebra of complex matrices. For a more detailed introduction to these
matters we refer to [33].

Let H be a separable Hilbert space. Let L£(H) denote the C*-algebra of bounded operators
on H and let K(H) C L(H) denote the C*-algebra of compact operators. Recall that each
compact operator 7' € K(H) has a sequence so(7") > s1(T) > so(T) > ... of singular values
associated to it. The entrances are the eigenvalues of the absolute value, |T| = (T*T)"/2, when
counted with multiplicities.

Definition 2.1. Let p € [1,00). By the p* Schatten ideal we will understand the subset of
compact operators defined by

T e LP(H) < (T € K(H) and i|3n(T)|p < 00)
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Thus, for each operator T € LP(H) C K(H), the associated sequence of singular values is
p-summable.

Let p,q € [1,00). The Schatten ideals satisfy the following properties:

(1) The p* Schatten ideal, LP(H), is an ideal in £(H) which is closed under adjoints.
(2) For each T' € LP(H) and S € L9(H) the product T'S € L"(H) is in the v Schatten
ideal, whenever % = 110 + %.

(3) The application || -|| , : LP(H) — [0,00) given by |T], = (Yo, |sn(T)|p)1/p defines a
Banach *-algebra norm on L£P(H). The p'™ Schatten ideal is complete in this norm.
(4) Whenever T' € LP(H) and S, R € L(H) we have the inequalities

ISTRIp < [[Slloc - ITlp - [ Rlloe and | T]loc < T,
Here || +|| oo : L(H) — [0, 00) denotes the operator norm.

The first Schatten ideal £'(H) comes equipped with an important continuous linear functional
called the operator trace

Tr: LY(H) — C Tr(T) =0 o(Ten, en)

Here (e,)2%, is any orthonormal basis for the separable Hilbert space H. The operator trace
satisfies the tracial property Tr(7'S) = Tr(ST) whenever the product T'S € L!(H) is of trace
class.

The Fredholm determinant, which we will soon define, is to be understood as a multiplicative
analogue of the operator trace.

2.2. The first relative K-group of Banach algebras and their ideals. A unital Banach
algebra admits two well studied K-theories, a topological K-theory and an algebraic K-theory.
These two K-theories are related by a group homomorphism and the difference between them
is measured by a third K-theory which is called relative K-theory. We will introduce the first
relative K-group and see how it relates to its algebraic and topological counterparts. A reference
for this part is certainly the book of M. Karoubi where the relative K-theory is introduced for
the first time, [20]. We will then continue by defining the first relative K-group of an ideal in
a Banach algebra. In fact, we will have to construct the relative K-theory when the ideal is
non-closed but satisfies some milder conditions. Our main example is the Schatten ideals sitting
inside the bounded operators. We shall see later that these "relative-relative" considerations
can be used to define a "trace part" of the Fredholm determinant.

Let A be a unital Banach algebra. We let GL(A) denote the topological group of invertible
matrices over A. As a group this is the algebraic inductive limit of the general linear groups
over A

GL(A) := lim GL,(A)

The topology is given by considering GL(A) as a subspace of the normed inductive limit of
matrices over A

GL(A) C lim M,(A)

n—oo
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Note for this, that each of the matrix algebras M,,(A) becomes a Banach algebra when equipped
with the norm ||(a;;)|| = 3=, ; [lai;||, for example. The inclusions M, (A) — M, x(A) are then
isometries.

Now, let R(A); denote the group of continuous maps o : [0,1] — GL(A) with ¢(0) = 1.
The group structure is given by the pointwise product. We will then say that two elements
o,7 € R(A), are equivalent if there is a continuous map H : [0,1] x [0,1] — GL(A) such that
H(0,t) = o(t) H(1,t) = 7(t)
H(s,1) =0o(1) H(s,0)=1

This determines an equivalence relation on R(A); which we call homotopy with fized endpoints,
it is denoted by ~. We let F'(A); denote the smallest subgroup of R(A); which contains all
multiplicative commutators. The image of this subgroup under the quotient map R(A); —
R(A);/ ~ will then be denoted by F(A);/ ~. Note that F(A); is automatically normal in
R(A);.

Definition 2.2. By the first relative K-group of the unital Banach algebra A we will understand
the quotient group

Ki*(A) := (R(A)1/ ~)/(F(A)q/ ~)
When equipped with the pointwise product this is clearly an abelian group.

FEach continuous unital algebra homomorphism ¢ : A — B induces a group homomorphism
0, K*¥(A) — K*Y(B) in a functorial way.

Let us see how the first relative K-group relates to algebraic K-theory and topological K-
theory. We will recall the relevant definitions. Some good references for topological K-theory
are [1, 21]. A good reference for algebraic K-theory is [32].

Definition 2.3. By the first topological K-group of the unital Banach algebra A we will un-
derstand the quotient group

K™ (A) i= GL(A)/GLo(A)
Here GLy(A) is the path component of the identity in the topological group of invertible matrices
GL(A). The first topological K-group is an abelian group.

By the second topological K-group of the unital Banach algebra A we will understand the
fundamental group of the invertible matrices over A, GL(A). Thus, by definition

KYP(A) = m(GL(A))
The basepoint is the unit 1 € GL(A). The group structure coincides with the pointwise product

of loops. This makes the second topological K-group into an abelian group.

FEach continuous unital algebra homomorphism ¢ : A — B induces a group homomorphism
i 2 KI°P(A) — K°P(B) in a functorial way.

Definition 2.4. By the first algebraic K-group of the unital ring R we will understand the
quotient group

Ky(R) := GL(R)/E(R)
Here E(R) C GL(R) denotes the subgroup of elementary matrices in GL(R). To be precise,
E(R) is generated by the matrices, e;;(r), with 1 on the diagonal and r € R in position (i, j)
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with i # j. This identifies with the smallest subgroup of G L(R) which contains all commutators.
Note that E(R) is automatically normal in GL(R).

Fach unital ring homomorphism ¢ : R — S induces a group homomorphism ¢, : Ki(R) —
K;(S) in a functorial way. The first algebraic K-group is clearly abelian.

We observe that the first algebraic K-group is defined for any unital ring R whereas the first
topological K-group takes the topology of the unital Banach algebra A into account. Indeed,
the topology is needed to define the path component of the identity in GL(A). We note that
the first algebraic K-group and the first topological K-group are non-isomorphic in general.
For example, K;(C) = C* and K}°’(C) = {0}.

Let A be a unital Banach algebra. We have the following group homomorphisms between the
K-groups:

(1) The group of elementary matrices is a subgroup of the connected component of the iden-
tity, E(A) C GLy(A), we therefore have a quotient map ¢ : K;(A) = GL(A)/E(A) —
GL(A)/GLy(A) = KI(A4).

(2) There is a group homomorphism 6 : KI*(A) — K;(A) which on generators o € R(A);
is given by 6(c) = o(1)~!. Note that o(1)"' € E(A) whenever o € F(A);.

(3) There is a group homomorphism 0 : K3**(A) — Ki°'(A) which on generators v : S —
GL(A) is given by 9(v)(t) = y(e*™).

We leave it to the reader to check that these maps are well defined and that they are group ho-
momorphisms. The relation between the K-groups can now be expressed by an exact sequence.

Theorem 2.5. For any unital Banach algebra A there is an exact sequence of abelian groups

Kir(A) —2 Krel(A) —2 s Ki(A) —2s K'P(A) —— 0

Proof. The proof is similar to the proof of Theorem 2.9 and is therefore omitted. 0

2.2.1. The first relative K-groups of Banach algebras and their ideals. We will now introduce
the relative K-theory of an ideal J sitting inside a Banach algebra A. It will thus be relative
in two ways. Firstly, it compares the topological and algebraic K-theory of the ideal inside the
Banach algebra. Secondly, it compares the relative K-theory of the whole Banach algebra and
the relative K-theory of the quotient algebra when this is defined. In order to treat the example
of the Schatten ideals sitting inside the bounded operators we will need to work with non-closed
ideals. This has the disadvantage that the quotient algebra A/.J is not a Banach algebra. We
will put some conditions on the pair (J, A) to get a sensible definition in this general situation.

Let A be a unital Banach algebra and let J C A be an ideal, satisfying the following conditions:

(1) There is a norm, || || y : J — [0, 00), which makes the ideal J into a Banach algebra.

(2) For each j € J and x,y € A we have the inequality ||zjy||; < ||z||lall7llslly]|a. Here
| Il 4 : A—[0,00) denotes the norm on A.

(3) For each j € J we have the inequality ||j]|a < ||7].-
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These properties are also satisfied when we pass to the matrix Banach algebras. Notice that
we do not require the ideal J to be closed in A. However, if the ideal is closed, the pair (J, A)
certainly satisfies the above conditions.

Let J* = J @ C denote the unitalization of J. We let GL(J) C GL(J") denote the subgroup
of invertible matrices over J* given by

geGL(J) & (ge GL(J) and g — 1 € M (J))

Here M, (J) denotes the normed inductive limit of the matrices over J. The group GL(.J)
becomes a topological group when given the topology induced by the metric d(g,h) = ||g —
| M () -
Now, let R(J); denote the group of continuous maps o : [0,1] — GL(J) with ¢(0) = 1. The
group structure is given by the pointwise product. As in section 2.2 we will say that two
elements 0,7 € R(J); are equivalent if there is a continuous map H : [0,1] x [0,1] — GL(J)
such that

H(0,t) = o(t) H(1,t) =7(t)

H(s,1)=0(1) H(s,0)=1
This determines an equivalence relation on R(.J); which we call homotopy with fized endpoints,
it is denoted by ~. We let F'(J, A); denote the smallest subgroup of R(.J); such that

orolr7t € F(J,A); forall o€ R(A); and 7 € R(J);

The notation (F(J,A);/ ~ ) C R(J);/ ~ will then refer to the image of F(J, A); under the
quotient map. Note that F'(J, A); is automatically normal in both R(A); and R(J);.

Definition 2.6. By the first relative K-group of the pair (J, A) we will understand the quotient
group

K(J, A) := (R(J)l/ ~ )/(F(J, A)y/ N)
FEach continuous unital algebra homomorphism ¢ : A — B which restricts to a continuous al-
gebra homomorphism |y : J — I induces a group homomorphism o, : K&(J, A) — K*(I, B)
in a functorial way. The first relative K-group of the pair (J, A) is clearly and abelian group.

Note that the above definition depends on the enveloping Banach algebra A. We can not expect
these relative relative K-groups to satisfy excision.

As above we would like to relate the different K-groups arising from the pair (J, A). Let us
recall the relevant definitions.

Definition 2.7. By the first topological K-group of the ideal J C A we will understand the
quotient group

Ky (J) = GL(J)/GLo(J)

Here GL(J) denotes the path component of the identity in GL(J). The first topological K -group
of the ideal is an abelian group.

By the second topological K-group of the ideal J C A we will understand the fundamental
group of the invertible matrices GL(J), thus

Ky (J) = m(GL(J))
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The basepoint is given by the identity in 1 € GL(J). The group structure coincides with the
pointwise product. This makes the second topological K -group of the ideal into an abelian group.

Each continuous algebra homomorphism ¢ : J — I induces a group homomorphism ¢, :
K!P(J) — K°P(I) in a functorial way.

Note that the definition of topological K-theory is independent of the unital Banach algebra
A. This is due to the excision property of the topological K-groups, |1, Theorem 5.4.2].

Definition 2.8. By the first relative algebraic K-group of an ideal I in a unital ring R we will
understand the quotient group

Ky(I,R) = GL(I)/|[GL(R),GL(I)]
Here [GL(R), GL(I)] denotes the smallest subgroup of GL(R) such that
ghg™'h™' € [GL(R),GL(I)] whenever g€ GL(R) and h € GL(I)
The group [GL(R),GL(I)] is automatically normal in GL(R).

Clearly, the first relative algebraic K-group is an abelian group. Each unital ring homomorphism
@ : R — S which restricts to a ring homomorphism ¢ : I — J induces a group homomorphism
v« K1(I, R) — K1(J,S) in a functorial way.

Note that the definition of the relative algebraic K-theory depends on the enveloping unital
ring R. The algebraic K-groups do not satisfy excision in general.

We can now express the relations between the relative K-groups of the pair (J, A) by an exact
sequence:

Theorem 2.9. Let A be a unital Banach algebra. For any ideal J C A which satisfies the
conditions (1), (2) and (3) there is an exact sequence of abelian groups

KyP(J) —— Ki(J,A) —— Ki(].A) —— KP(J) — 0
The definition of the group homomorphisms is analogous to the non-relative case detailed out
i section 2.2.

Proof. We will only prove exactness at K (J, A). Clearly §od = 0. Thus, suppose that f[o] = 0
for some o € R(J);. This means that o(1)~! € [GL(A), GL(J)]. By a standard K-theoretic

argument we may assume that

n

o)™ = [[(gihigi ' h ")
i=1
with ¢; € GLo(A) and h; € GLo(J). We can therefore choose elements v, € R(A); and
7, € R(J); such that
vi(l) =g; and 7(1) =h;
We define the element 3 € F(J, A); by the product

8= ')
=1
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It follows that [o] = [0 - 3] in KT (J, A) and that (¢3)(1) = 1. This proves the Theorem. [

As stated in the beginning of this section, the first relative K-group also compares the relative
K-theory of the whole Banach algebra and the relative K-theory of the quotient Banach algebra
when this is defined. This statement is clarified by the next Theorem.

Theorem 2.10. Let J C A be a closed ideal in a unital Banach algebra A. Suppose that there
exists a continuous linear map s : AJJ — A such that qos =1d4,;. Hereq: A — A/J denotes
the quotient map. We then have an exact sequence of abelian groups

K\ (J, A) —— K{(A) —2— K{(A)J) —— 0

The group homomorphisms are induced by the inclusion i : J — A and the quotient map
q: A— AJJ.

Proof. We will only prove exactness at K (A). Clearly, the composition ¢, o i, = 0. Thus,
suppose that ¢.[c] = 0 for some ¢ € R(A);. We thus have a homotopy H : [0, 1] x [0,1] —
GL(A/J) with fixed endpoints between goo and some commutator 7 € F(A/J);. The existence
of the continuous linear section s : A/J — A together with |1, Corollary 3.4.4] ensure us that
we can find a homotopy with fized endpoints H : [0,1] x [0,1] — GL(A) such that

qoH=H and H(t,0)=o(t) for all t € 0, 1]

By a similar argument we can find a lift of the commutator 7 € F(A/J); to a commutator
7 € F(A);. In particular, we can represent the class [0] € K1®/(A) by the continuous map

t— H(t,1) - 771)
The proof ends by noticing that

q(H(t,1)-771(t)) =1 forall te[0,1]
U

2.3. The first relative Chern character of an ideal in a Banach algebra. We will
consider the setup of an ideal J in a unital Banach algebra A. The pair (J, A) is assumed to
satisfy the conditions of section 2.2.1, (1), (2) and (3). We will then construct the first relative
Chern character. It is going to be a homomorphism of degree minus one

ch™ : KT°(J, A) — HCy(J, A)

from relative K-theory to relative continuous cyclic homology. In the case where J = L1(H) C
A = L(H) this will be an essential ingredient in our K-theoretic definition of the Fredholm
determinant. In fact, as we shall see, the relative Chern character will behave as a logarithm
and it will help us define the "trace part" of the Fredholm determinant.

The relative Chern character was originally introduced on relative K-theory by M. Karoubi,
[20]. The formula which we use was found by A. Connes and M. Karoubi in [9]. One should
also notice the work by U. Tillmann, [35]. However, all results are limited to the non-relative
case.
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For any two Banach algebras A and B we let A®, B denote the projective tensorproduct of A
and B. Now, let J C A be an ideal which satisfies the conditions of section 2.2.1, (1), (2) and
(3). We will then define a norm

|l (gay 1 J ®c A+ A®c J — [0,00)
on the vector space J ®@c A + A ®c J. Namely, we let

1l 2y == EY S Csills - laslla + 0illa - el T2 = (55 @ ai + b @ )}
i=1 i=1
We let J ®, A+ A®, J denote the corresponding completion of J ®c A+ A ®c J. Note that
the product determines a continuous map

m:J R, A+AR,J —J m(s@a+bxt)=sa+ bt

We are now ready to make the appropriate definitions.

Definition 2.11. By the zeroth relative continuous cyclic homology group of the pair (J, A)
we will understand the quotient space

HCy(J, A) = J/Im(b)
Hereb: J®, A+ A®, J — J extends from the Hochschild boundary
b:s®@a+b®1t+— sa—as+ bt —1b

Note that the topological vector space HCy(J, A) is non-Hausdorff in general. That is, the image
of the Hochschild boundary is not necessarily closed in J.

Definition 2.12. By the first relative Chern character of the pair (J, A) we will understand
the homomorphism

ch™ - Ki(J, A) = (R(J)1/ ~)/(F(J, A)1/ ~) = HCy(J, A) = J/Tm(b)
which s induced by the application

(17) ch™ : R(J), — J o TR( 01 ‘fl—‘z . a‘ldt)

Here TR : M (J) — J is the generalized trace given by the sum over the diagonal.

The next lemmas will certify that the application in (17) yields a well defined homomorphism
on the first relative K-group of the pair (J, A). We will however bypass at least one technical
subtlety: The definitions in Section 2.2 only concern continuous maps. None the less the above
definition uses derivatives. This is by no means a problem. We can always assume that our
classes are represented by smooth maps and that our homotopies are likewise smooth. The
reader who is still feeling uncomfortable about this should consult the result [17, Lemma 3.2]
which is to be found at the end of the thesis.

Lemma 2.13. Let 79,71 : [0,1] — GL(J) be two smooth maps. Suppose that there exists
a smooth homotopy with fized endpoints between o and ~,. Then the difference chrel(’yl) —
ch™ (o) € Im(b) is contained in the image of b: J @, A+ A®, J — J. In particular we get a
well defined map

ch™ : (R(J)1/ ~) — HCy(J, A)
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Proof. To ease the exposition we will suppose that v,71 : [0,1] — GLy(J) are smooth maps
with values in GL;(J). Likewise we will assume that the smooth homotopy with fixed endpoints
H :[0,1] x [0,1] — GLy(J) takes values in GL1(J). Now, we let L(H) € J®, A+ A®, J be

given by the formula
/ / O e 2 g gras
85

We claim that b(L(H)) = ch™ () — ch™ (7).

Since b: A®, J+ J®, A— Jis continuous and linear we have

Y YroH | OH
—// G H Ly H Y duds

Then, using some properties of the partial differential operators 2 % and we get that

t
0 ,0H ., 0 ,0H OH OH
ot ( O0s H ) O0s ( ot

CHY=[Z"F - H'— . H
) [ ot " Os ]
The fundamental theorem of analysis then allows us to conclude that
oH oH
b(L(H)) = / (= - HN)(t,1)dt — / (= - H ")(t,0)dt
o Ot o Ot

- [ G s [ O 0.0

0
By the assumptions on H this implies the identity

! dy ! dryo
b(L(H)) = LN — = At
( ( )) 0 dt ,}/1 0 dt 70
But this is the desired result. O

Lemma 2.14. The relative Chern character of Definition 2.12 is a well defined homomorphism.

Proof. We will start by proving that ch™ : (R(J)i1/ ~ ) — HCy(J, A) is a homomorphism.
Thus, let 7o : [0,1] — GL(J) and 7 : [0,1] — GL(J) be two smooth maps with vanishing
derivatives at 0 and 1 and with v,(0) = 71(0) = 1. Let vy * 71 : [0,1] — GL(J) be the smooth
map which is given by

o(2t for t€10,1/2
(o *71)(t) = { 70(1%1((22— 1) for tg {1/2,/1%

We can then construct a smooth homotopy with fixed endpoints between the pointwise product
o1 ¢ [0,1] — GL(J) and the composition product v * vy, : [0,1] — GL(J). It follows that

Chrel (7071) — Chrel (70 % 71)

by an application of Lemma 2.13. However, it is not hard to check that
ch™ (yo % 71) = ch™(70) + ch™!(71)

This proves that the relative Chern character is a homomorphism.
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Now, let 0 € R(A); and let 7 € R(J);. We can then construct a smooth homotopy with fixed
endpoints between the elements oo~ € R(J); and o(1)70(1)~! € R(J);. Tt follows that

Chrel(UTO'_l) = Chrel(O'(l)TU(l)_l)
by an application of Lemma 2.13. Furthermore, we clearly have
b(o(1)eh™ (r) @ 0= (1)) = ch™ (o (1)ro (1)) — ch(r)

We can thus conclude that ch™ (o70~1) = ch™ (7). It now follows easily that ch™(3) = 0 for
each 0 € F(J, A);/ ~. This proves the desired result. O

Remark 2.15. In the case of a unital Banach algebra A, the relative Chern character is given
by the same formula. Indeed, we have

ch™ : K1¥(A) — HCy(A) ch™ (o) = TR( [ % - o~ 1dt)

0 dt
We will not consider this homomorphism in detail at this place, however, we shall find occasion
to introduce it in a more general fashion in Section 6.1.

2.4. A K-theoretic definition of the Fredholm determinant. At this point we have
introduced a sufficient amount of general structure to give our K-theoretic definition of the
Fredholm determinant. We will see that the main properties of the determinant function will
follow immediately from the corresponding properties of the K-groups. This is of course an
advantage. However, as we shall see later, the main concern of this thesis is to find a concrete
higher dimensional analogue of the Fredholm determinant. We therefore hope that the reader
will notice one important thing: The Fredholm determinant is defined by means of an additive
character of a lift in relative K-theory. We will interpret the Fredholm determinant as a
multiplicative analogue of this additive character. Instead of trying to generalize the Fredholm
determinant directly, one might try to find a generalization via a generalized additive character.
In some cases this turns out to be possible. But how does one find a concrete formula for such
a map? We will leave this question open for a while and continue the exposition.

Let us consider the case where A = L(H) is the unital Banach algebra of operators on a
separable Hilbert space and J = LY(H) C A = L(H) is the operators of trace class. By
the considerations in section 2.1 this ideal satisfies the conditions in section 2.2.1 (1), (2) and
(3). Furthermore, recall that the operator trace Tr : L'(H) — C is continuous and linear
and satisfies the tracial property Tr(T'S) = Tr(ST) whenever T'S € L!(H). In particular the
composition
Trob: LY(H)®, L(H) + L(H) ®, L'(H) — C

vanishes identically. It follows that the operator trace descends to a homomorphism

Tr: HCo(LY(H),L(H)) — C Tr[T] = Tr(T)
on the zeroth continuous cyclic homology of the ideal £'(H) C L(H).

Definition 2.16. By the additive character on the first relative K-group K™(LY(H), L(H))
we will understand the homomorphism given by the composition

7= (=Tr) och™ : KLY (H),L(H)) — C

of the relative Chern character and minus the operator trace on the zeroth continuous cyclic
homology of the ideal L'(H) C L(H).
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As mentioned above, this is the main ingredient in our definition of the Fredholm determinant.
To continue we recall some results on the topological K-theory of the Banach algebra £(H).

Theorem 2.17. We have the following isomorphisms in topological K -theory
Ky (CH(H)) = {0} Ky (L (H)) = Z
The isomorphism 7 — Ky**(LY(H)) is given by

—_ z—zpp+1—p, for n>0
22", +1—=p, for n<O0

Here, for each n € Z, the element p, € LY(H) is a (finite rank) projection with trace Tr(p,) =
|n|. This isomorphism uses Bott-periodicity in topological K-theory. See for example |21, 111
Theorem 1.11]

Lemma 2.18. We have the following commutative diagram of abelian groups

KyP(LY(H)) —2— K{N(CN(H), L(H))

—2mi-
Z — C
The boundary map 0 is defined in section 2.2.1.
Proof. Let n € N and let p, € L'(H) be a projection with Tr(p,) = n. We need to check that
T(t = ppe®™ +1—p,) = —2mi-n
However, by definition of the additive character we have

1 2mit
: d
0

This proves the desired result. [l

e*™dt) = —Tr(p,)2mi

Combining this result with the exact sequence of Theorem 2.9 and the calculation of the topo-
logical K-group K[°(L'(H)) = {0} we get the following commutative diagram of abelian
groups

0 —— KyP(CY(H)) —2— K9 (LNH), L(H)) —— K(LNH),L(H)) — 0

7 —27- (C
The top row is a short exact sequence. We can thus make the following definition:

Definition 2.19. By the Fredholm determinant we will understand the group homomorphism
det : Ki(L'(H),L(H)) — C/(2mi)Z = C*

induced by the above commutative diagram. To be precise, for any [v] € Ki(L'(H), L(H)) we
let

det([z]) = (exp o7)[0]
where o € R(LY(H)), is any element with 0([o]) = [z].
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As promised, we obtain the main properties of the Fredholm determinant as easy consequences
of this definition.

Corollary 2.20. For each g,h € GL(L'(H)) and each X € GL(L(H)) we have
det([gh]) = det([g])det([n]) det([XgX™1]) = det([q])
For each T € L'(H) we have
det([e]) = ™D
In particular our definition of the Fredholm determinant agrees with the usual definition. See
for example [39, 8. Corollary 2].

Proof. Let us prove that det([e?]) = ™) for each T € L'(H). We let y(t) = e~'T for all
t € [0,1]. It follows that v € R(L'(H)); determines a class in the first relative K-group.
Furthermore, we clearly have

() = ()] = [¢"]

By definition of the Fredholm determinant we thus get that
det([e"]) = exp(7[])

The following calculation then proves the desired result
1 d(e—tT)
Tlv] = —Tr(/ —etTdt) = Tr(T)
o dt
O

Corollary 2.21. Let g € GL(L'(H)) then the Fredholm determinant of g can be calculated
using the following formula

1 dﬁ)/
o dt
where v : [0,1] — GL(L'(H)) is any smooth map with v(1)™* = g and v(0) = 1.

det(g) = (expoTr)( — v~ ldt)

3. DETERMINANTS AND TRACES OF MULTIPLICATIVE AND ADDITIVE COMMUTATORS

Let A,B € L(H) be two operators and suppose that their addititive commutator [A, B] €
LY(H) is of trace class. We will refer to this data as an almost commuting pair of operators. Note
that we do not assume our operators to be selfadjoint. Now, applying the exponential function
to A and B we get two invertible elements e, e® € L(H)*. The multiplicative commutator

etePe e P € GL (LY (H))
of these invertibles is then of determinant class. It is well known that the Fredholm determinant
of this element can be expressed by the operator trace of an additive commutator, that is
(18) det(etePe e B) = T(ABD

A possible proof runs by the Campbell-Baker-Hausdorff formula, see for example [2, §3. Lemma
2 and 3|. In this section we will give a new K-theoretic proof of this identity. The techniques
which we apply are related to the material in the articles at the end of the thesis. In fact, we are
going to see that the determinant of a multiplicative commutator is the value of an invariant of
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the second algebraic K-group. The relevant element in algebraic K-theory is an example of a
Steinberg symbol. This result was first discovered by L. G. Brown in [3]. Furthermore, we shall
see that the trace of a commutator is the value of an invariant of the second relative K-group.
The relevant element in relative K-theory is an example of a relative Steinberg symbol. The
desired identity will then follow from a general comparison result which expresses the relation
between these two invariants. The proof which we are going to present of the identity (18) is by
no means easier than the usual proofs. However, it places this formula in a framework which is
of far greater generality.

3.1. Noncommutative and commutative C*-functions in two variables. Let A, B ¢
L(H) be an almost commuting pair of operators, thus, the additive commutator [A, B] € L'(H)
is of trace class. We would like to extract information out of the commutativity of the operators
in the Calkin algebra, L(H)/L'(H), versus their noncommutativity in the algebra of bounded
operators, L(H). Our proof of the identity (18) will rely on the different K-theories associated to
a unital Banach algebra. We therefore immediately face a technical problem: The trace ideal is
not closed in the operator norm, so the quotient, £L(H)/L'(H), is not a Banach algebra. In this
section we will therefore set up a formal framework which encaptures the required information,
namely the difference between commutativity and noncommutativity of two variables.

Let us consider two unital C-algebras C(X,Y’) and C[z,y]. The first one consists of noncom-
mutative polynomials in the formal variables X and Y with coefficients in C. The second one
consists of commutative polynomials in the formal variables x and y with coefficients in C.

Let us think of the variables z,y, X, Y as having radius » > 0. We can then equip the C-algebra
Clz, y] with a C*-norm

|| H 2r : C[l’,y] - [07 OO)
given on monomials by
(XY™ 20 = [ A (P + (0 + m)r™™ + (n+m)(n 4+ m — 1)r"+m?)

We extend this linearly to the whole C-algebra. We denote the completion by C?[z, y]. Tt is the
unital Banach algebra of formal commutative C?-functions in the variables z and y of radius
r > 0.

For each k£ € Ny we define the index set N, = Ng x N x ... x N. We can then associate a
N———

k
noncommutative monomial in C(X,Y) to each o € Ny, namely

. Xmoymxne. L YmmoiXme  for  k=2m
(X7 Y) - { Xnoyanﬂz . Yan—SXan—ZYan—l for k — 2m _ 1

These monomials generate C(X,Y) as a vector space over C. By the degree of v € N, we will
understand the sum || = Zf:o ng. We can equip the C-algebra C(X,Y) with a C?-norm

[ 2. - C(X,Y) — [0, 00)
On monomials it is given by the formula

N (XY )20 = [Aal (1T + lafr®™ + ol (o] — 1)ri*=2)
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We extend this linearly to the whole C-algebra. The completion will be denoted by C*(X,Y).
It is the unital Banach algebra of formal noncommutative C*-functions in the variables X and
Y of radius R > 0.

Lemma 3.1. There is a short exact sequence of Banach algebra
0 —— J, —— CHX)Y) —— C?z,y] —— 0

Here the homomorphism of unital Banach algebras q : C*(X,Y) — C?[x,y] is given by X — x
and Y w y. The ideal J, is the smallest closed ideal in C*(X,Y) which contains the additive
commutator [X,Y] € C*(X,Y). The short exact sequence (3.1) has a continuous linear section
s: C?[x,y] — C3(X,Y) given by

S Am@ Y = Ay XY™
Proof. We leave the proof to the reader. O

Now, let us consider two almost commuting operators A, B € L(H). We can assume that their
operator norm is dominated by some constant r > 0, thus ||Al|«, || Bllcc < 7. We therefore have
a continuous unital algebra homomorphism

7B CHX,Y) — L(H) A B(X)=A A B(Y) =B

We want to study the behaviour of the restriction of the representation 747 to the ideal .J,.
To do so we will need the following lemma.

Lemma 3.2. For each index oo = (ng,nq,...,n;) € Ny we have the inequality
I(A, B)* — Al B < Jax]ay] - [I[A, B][lr*=
Here |ax| € Ny denotes the X -degree and |ay| € Ny denotes the Y -degree of o € Nj.

Proof. For simplicity we will assume that k = 2m is even. We then have

I(A, B)* — AlexBlavl],

[z
N
%
3
S
3
g
NS
oy
3
I
N
M
[
3
&
oy
M
[
¥
S
;

1

H [ani_17 AXi=i n2j] || ITZEZ)Z ni+3 00 1 n2i—1

I
'Msﬁk

1

(2

nai1 (D> may)|[A, Bl[lar!* =

<X
i=1 j=i
< lax|lay| - [|[4, B][lr'*=2
This is the desired inequality. 0

The above lemma certifies that the C?-norm on .J, controls the 1-norm on £'(H). We will make
this statement explicit in the next lemma.
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Lemma 3.3. The restriction of the representation 7P : C2(X|Y) — L(H) to the closed ideal
J, factorizes through the operators of trace class. The norm of the restriction 8 : J, — LY(H)
is dominated by the 1-norm of the commutator, |75 < ||[4, B]||;.

Proof. Let J8 denote the kernel of the algebraic quotient map ¢ : C(X,Y) — Clz,y]. The
existence of the continuous linear section s : Clz,y] — C(X,Y’) ensures that the kernel of
q: C*(X,Y) — C?[z,y| is the closure of J5 in C*(X,Y). Since the commutator [A, B] € L!(H)
is of trace class, the restriction 748 : J38 — L(H) takes values in the trace ideal £!(H).
Therefore we will only need to show that 748 : J3& — L£1(H) is continuous.

Let (n,m) € Ny x Ny be fixed. We will consider a noncommutative polynomial

p= > A(XY)eCX,Y)

a€ENn.m

with ZaeNﬂ,,m Ao = 0. Here N, ,, denotes the set of indices o with X-degree and Y-degree

equal to n and m respectively. Polynomials of the above type generates J2# as a vectorspace.
Now, by the assumption on p € J*8 we have

=2 @) = P ) = > AaA™ B

DleNn,m

By Lemma 3.2 we then get that
I P @)l < Y Pallaxlay] - 1A, Bl =2 < [lpllo, I[A, Bl

OéeNn,'m

This proves the desired result. O

3.2. The determinant invariant and determinants of multiplicative commutators.
As mentioned in the beginning of this section we would like to understand the determinant of
a multiplicative commutator in a K-theoretic framework. To do so, we will need to introduce
a couple of K-theoretic concepts. First of all, we will define the second algebraic K-group of
a unital ring. Next, considering an ideal in a unital ring we construct the associated boundary
map 0 : Ky(R/I) — K,(I,R). Using the interpretation of the Fredholm determinant as an
invariant of relative algebraic K-theory we are then able to associate a determinant invariant
to each short exact sequence satisfying certain conditions. In particular, we show that the data
consisting of the almost commuting pair of operators A, B € L(H) gives rise to a determinant
invariant d4 p : Ko(C?[x,y]) — C*. At last, we will construct a concrete element in the second
algebraic K-group, Ks(C?[z,y|), and calculate its determinant invariant. The result of this
evaluation is the determinant of the desired multiplicative commutator

daple”, e’} = det(etePete™P)

The determinant invariant which we consider in this section is a generalization of the invariant
originally introduced by L. G. Brown. We remove the assumption of commutativity of the
quotient ring. Furthermore, we do not need the kernel to consist of all the operators of trace
class. We replace this condition by a milder set of restrictions. We need these straight forward
generalizations for the later applications which we have in mind.
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3.2.1. The second algebraic K-group, boundary maps and determinant invariants. We will use
a homological picture of the second algebraic K-group. Let G be any group and let us consider
the following chain complex

0 — ZI[G] PR Z|G" 1 — Z|G" —

Here the boundary d : Z|G"] — Z[G™ '] is given by

-1
d(gi,- - 9n) = (92,1 9n) + (=1)" (g1, -, gn—1) + (_1)i(91a e 3 Gifit1s -+ 5 Gn)
i=1

We leave it to the reader to verify that d? = 0.

Definition 3.4. By the group homology of G with integer coefficient we will understand the
homology of the above chain complex. Thus,

H,(G) := Zy(G)/Ba(G)
Here Z,(G) = Ker(d : Z|G"| — Z|G"']) are the cycles in degree n and B,(G) := Im(d :
Z|G"| — Z|G™]) are the boundaries in degree n.

The above construction is functorial in the group GG. Thus, each group homomorphism ¢ : G —
H induces a homomorphism of abelian groups ¢, : H.(G) — H.(H).

Let R be a unital ring. Recall that the elementary matrices over R is the smallest subgroup of
GL(R) which contains all multiplicative commutators, E(R) = [GL(R),GL(R)] C GL(R).

Definition 3.5. By the second algebraic K-group of the unital ring R we will understand the
second homology group of the group of elementary matrices over R, thus

K3 (R) := Hy(E(R))
The second algebraic K-groups are functorial in the unital ring R.
Let I C R be an ideal in a unital ring R. We can then form the quotient ring R/I which

is again a unital ring. The relations between the three rings are expressed in the short exact
sequence

0 I >R -2 R/] ——0
From this data we would like to construct a boundary map
0: Ky(R/I) — Ky(I,R)

on the algebraic K-groups. To do so, we note that the quotient map ¢ : R — R/I induces a
surjective group homomorphism on the level of elementary matrices, E(q) : E(R) — E(R/I). In
particular, to each element y € Z[E(R/I)?] there is a lift x € Z[F(R)?] such that E(q).(z) = y.
Now, suppose that y € Zy(E(R/I)) is a cycle. Tt follows that

(E(q)«d)(x) = (d2E(q)+)(x) = 0

Using some combinatorial considerations we then get that d(z) € Z[E(R)] must be of the form
d(x) = 321 (9: — i) E(q)(9:) = E(q)(hi)
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By the boundary map of y € Zy(E(R/I)) we will then understand the quantity
o) = [[(e:hi") € K1, R) = GL(1)/[GL(I), GL(R)]
i=1
A priori the element d(y) € K,(I, R) depends on the lift x € Z[FE(R)?] and of the decomposition
d(x) =>"1" (9;: — h;). This ambiguity is resolved by the next lemma.

Lemma 3.6. The homomorphism 0 : Ker(d) — Ki(I,R) is well defined and descends to a
boundary homomorphism
0 Ka(R/I) = Hy(E(R/I)) — Ki(I, R) = GL(I)/[GL(I), GL(R)]

Proof. We refer to the article [16, Theorem 2.1] which is attached at the end of the thesis. See
also |32, Theorem 4.3.1]. O

Let us consider the ideal of trace class operators, L!(H) C L(H). We then have the short exact
sequence

0 —— LY(H) —— £(H) — £(H)/LYH) —— 0
of rings. We have introduced the relevant concepts to make the following,
Definition 3.7. By the universal determinant invariant we will understand the homomorphism
d: Ky(L(H)/LYH)) — C* d=detod
given by the composition of the boundary map 0 : Ko(L(H)/LY(H)) — Ki(LY(H),L(H)) and
the determinant homomorphism det : K{(L'(H), L(H)) — C*.

Let us justify the word "universal" in the above definition. Namely, let I C R be some ideal in
a unital ring R. We thus have a short exact sequence of rings

X:0 I R -2V R/ —0

We suppose that there exists a unital ring homomorphism = : R — L(H) such that the
restriction to I factorizes through the ideal of trace class operators, 7 : [ — L'(H).

Definition 3.8. By the determinant invariant of the pair (X, ) we will understand the homo-
morphism

d(X’ﬂ-) KQ(R/I) — C* d(X,w) :doﬁ*
given by the composition of the homomorphism w. : Ky(R/I) — Ky(L(H)/LY(H)) obtained
fromm: R/I — L(H)/LY(H) by functoriality of the second algebraic K -groups and the universal
determinant invariant, d : Ko(L(H)/LY(H)) — C*.

In particular, to each almost commuting pair of operators A, B € L(H) with ||Al|sc, || Bllcc < 7
we associate the determinant invariant

dap : Ky(CHlz,y]) — C*
given by the short exact sequence
0 —— J, —— CAX,Y) —1 C?[z,y] —— 0

and the representation 745 : C2(X,Y) — L(H).
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3.2.2. The determinant invariant of a Steinberg symbol. We are interested in the application of
the determinant invariant

dap: Ko(C?[z,y]) — C* dap =detodoniB

to a particular element in K5(C?[x,y]). This element is an example of a Steinberg symbol.
Later on we will see that the Steinberg symbols can be described using an interior product
x : K1(C%z,y]) x K1(C?*[z,y]) — Ko(C?[z,y|). This discovery was made by J. -L. Loday in
[25]. The point of view will be important in our attempt to generalize the determinants of
multiplicative commutators. The calculations carried out in the present section can be found
in a slightly different form in [3]. See also [32, Theorem 4.4.22|. We present them here for the
sake of completeness.

Let R be a unital ring.
Definition 3.9. To each pair of invertible and commuting elements g,h € R* we associate a

Steinberg symbol in the second algebraic K-group, {g,h} € Ky(R). It is given by the commu-
tator

{9, h} = (213(h), 212(9)) = (12(9), 213(h)) € Ha(E(R))
Here x15(g), z13(h) € E(R) are the elementary matrices

g 0 0 ho o0
r12(g) =1 0 gt 0 and xi3(h)= 0 1 0
0 0 1 0 0 At

Let I C R be an ideal in a unital ring. Let ¢ : R — R/I denote the quotient map. The next
lemma describes the application of the boundary map 0 : Ky(R/I) — Ki(I, R) to a Steinberg
symbol by an explicit formula.

Lemma 3.10. Let g,h € (R/I)* be a pair of invertible and commuting elements in the quotient
ring R/1. Suppose that there exist invertible elements G, H € R* with q(G) = g and q(H) = h.
The boundary map of the Steinberg symbol, {g,h} € Ko(R/I) is then given by the multiplicative
commutator,

0({g,h}) =GHG'H ' € K\(I,R)

Proof. We have that
E(q)+((z13(H), 212(G)) = (212(G), 213(H))) = (213(h), 712(9)) — (212(9), 213(h))
Furthermore, the application of the differential d : Z[FE(R)?| — Z[E(R)] to the lift
(213(H), 212(G)) — (212(G), 213(H)) € Z[E(R)?]
yields the element

GH 0 0 HG 0 0
d(($13(H)7[L'12(G)) - (ZL’lg(G),ﬂflg(H))) = 0 G_l 0 - 0 G_l 0
0 0 H! 0 0 H!

Now, since ¢(GH) = q(HG) we get that
o({g.h}) = (GH)(HG) ™" € Ki(I, R)
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as desired. n

Let us return to the particular case of an almost commuting pair of operators, A, B € L(H) with
|A]loo; [|Blloc < 7 € (0,00). Applying the exponential function to the generators z,y € C?[z, y]
we get two invertible and commuting elements e*, ¥ € C?[x, y]*. We can thus form the Steinberg
symbol {e,e?} € Ko(C?[z,y]). Recall that the determinant invariant of the almost commuting
pair is given by the composition

dap: Ko(CPz,y]) — C* dap=detodontP

Theorem 3.11. Let A, B € L(H) be two operators with trace class commutator, [A, B] €
LY(H). Let r > 0 be a constant with r > ||A||, | Bl|. The determinant invariant of the Steinberg
symbol {e®, e’} € Ko(C?[z,y]) is then given by the Fredholm determinant of a multiplicative
commutator

daple®, e’} = det(etePete™P)

Proof. From Lemma 3.10 we get that
o({e”,e¥}) = eXe¥eXe™ € Ki(J,C3HX,Y))
Since the homomorphism 78 . K;(J,C*(X,Y)) — K,(LY(H),L(H)) simply replaces the

*

formal variables X and Y with the operators A and B we get that

(det o 7 B)(eXe¥e X ™) = det(e?ePe e P)

*

This proves the desired result. U

3.3. The trace invariant and traces of additive commutators. Our goal is now to de-
scribe the trace of an additive commutator as a special value of a K-theoretic invariant. Again
we will need to introduce a couple of K-theoretic concepts. Firstly, we will define the second
relative K-group of a unital Banach algebra. In analogy with our approach in the algebraic
case we will use a homological picture of these abelian groups. We proceed by describing the
second relative Chern character which relates the second relative K-groups with continuous
cyclic homology. Having accomplished this, we associate a trace invariant to each short exact
sequence satisfying certain conditions. In particular, we show that each almost commuting
pair of operators A, B € L(H) gives rise to a trace invariant 74 : K3*(C?[z,y]) — C. The
application of this invariant to a certain relative Steinberg symbol is precisely the trace of the
commutator Tr[A, B] € C.

3.3.1. The second relative K-groups. Let A be a unital Banach algebra. For each n € N, let
A™ C R"™ denote the standard simplex

A" ={(tr,....ta) |t €0,1], ) t; <1}
1=1

The vertices, 0,...,n € A" of the n'" standard simplex are then given by

- 0,...,0,1,0,...,0) for i€ {l,...,n}
N 0,...,0) for i=0
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Here the vertex i has the number 1 in position i. Note that this model for the standard simplex
does not agree precisely with the usual one. We have chosen this picture in order to emphasize
the special role of the basepoint 0 € A™ and the zeroth face. We let R(A), denote the set of
continuous maps o : A" — GL(A) such that o(0) = 1. The sets R(A),, can be equipped with
the following face operators

di : R(A), — R(A)p_s

‘ B U(tl,...,ti_1,07ti,...7tn_1) for iE{l,...,n}
dz(O’)(tlu NN 7tn—1) - { 0.(1 _ Z?:l tita, ... 7tn) . 0.(]_)71 for i=0

We would like the reader to remark the (extra) factor o(1)~'. This ensures that the zeroth
face has the value 1 € GL(A) at the zeroth vertex. These face operators satisfy the simplicial
relations

didj = dj—ldi forall 0<i< j <n

Now, recall that F'(A); denotes the smallest subgroup of R(A); which contains all multiplicative
commutators. For each n € N we will then let F(A), denote the subset of R(A), defined
recursively by

(1) F(A) == F(A)

(2) 0 € F(A)pi1 < (0 € R(A)ns1 and di(0) € F(A), for each i € {0,1,...,n+1})

For each n € N there is a boundary operator d : Z[F(A),1] — Z[F(A),] defined as the sum of

face operators d = Y71 (—1)’d;. We then have the following chain complex :
0 —— Z[F(A)] — ZIF(A)p_] — ZIF(A),] —

We leave it to the reader to verify that d? = 0.

Definition 3.12. By the second relative K-group of the unital Banach algebra A we will
understand the second homology group of the chain complex (Z[F(A).],d). Thus, by definition

K3'(A) = Hy(F(A))

Remark 3.13. In the book [20] of M. Karoubi, the second relative K-group is defined as a
homotopy group of a certain space related to the simplicial set GL(A.)/GL(A) introduced by J.
Milnor. We prove in |17, Corollary 3.8| that the above homological definition agrees with the
original definition.

The second relative K-group comes equipped with a homomorphism 6 : KX (A) — Ky(A). It is
induced by the application which sends each o € F(A), to the element (o(1)71,0(1)0(2)71) €
E(A)2. Note that the vertices o(1) and o(2) are elementary matrices by definition of the set
F(A)y. We are particularly interested in constructing lifts under this homomorphism. Indeed,
recall from Section 2.4 how we proved the formula

det(eT) = ™™ T e LY(H)

for the Fredholm determinant. We found a concrete element [y] € K(LY(H),L(H)) with
0([y]) = [e']. Afterwards, we applied a trace invariant to this lift. Therefore, we might hope
to calculate the determinant invariant da p : Ko(C?[z,y]) — C* of some element by finding
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an appropriate lift in KI®(C?[x,y]) and then apply a higher trace invariant to this lift. Let us
start by a discussion of the addititive character which parallels the determinant invariant. The
main ingredient is given by the second relative Chern character, which we will now introduce.

3.3.2. The relative Chern character. Let A be a unital Banach algebra. The second relative
Chern character is a homomorphism from the second relative K-group to the first continuous
cyclic homology group. Therefore, let us begin with a description of the continuous cyclic
homology groups of a unital Banach algebra. The cyclic theory was discovered from different
perspectives by several people, |7, 24, 36]. One should also mention the work of M. karoubi on

noncommutative de Rham homology, see for example [20]. A good general reference is certainly
the book of J. -L. Loday, [26].

For each n € Ny we let C,(A) = A ®, A®™ denote the projective tensorproduct with (n + 1)

factors of A. Thus, C,(A) is a Banach space. The cyclic operator on C,,(A) is given by
t:Ch(A) = Ch(A)

(D", ®ag®...Qa,, for n>1

t(a0®a1®...®an)={ ao for n=20

Furthermore, we define the Hochschild boundary maps
b:Chi1(A) — C,(A)
biag®a1® ... R e — (1) " Map100®@01® ... Qa, +b(ag®@a; @ ... 3 apyy)
Here v/ : C,11(A) — C,(A) denotes the differential in the bar complex. It is given by the

formula

b’:ao><a1®...®an+1r—>Z(—l)i%@...®ai.ai+1®...®an+1
i=0

We then have the following,

Lemma 3.14. The image of (1 —t) : C,(A) — C,(A) is closed for each n € Ny. The
Hochschild boundaries satisfy the equality b> = 0. The Hochschild boundary preserves the image
of (1 —1t): Ci(A) — Ci(A).

Proof. We will only prove that the image of (1 —t) : C,,(A) — C,(A) is closed. Let n € N. Let
N=1+t+...+t": Cy(A) — C,(A) denote the norm operator. We prove that Im(1 —¢) =
Ker(N). We clearly have N(1 —¢) = 0, thus assume that N(y) = 0 for some y € C,(A). We
then note that

n—1 n

1 , 1 , 1
1-O)1+t+...+1t") = — 1 - =y — N
;nﬂ( YL+t 4t ;er( )W) =y - —N)
This proves the claim. We refer the reader to [26] for proofs of the other results. U

For each n € Ny we let C)(A) = C,,(A)/Im(1—t) denote the quotient Banach space. The above
lemma ensures us that we have a chain complex

0 —— CHA) — ... CA(A) —— O

b n+1

(A) e

of Banach spaces.
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Definition 3.15. By the continuous cyclic homology of the unital Banach algebra A we will
understand the homology of the above chain complexr. The n'™ continuous cyclic homology
group will be denoted by HC,,(A). This is non-Hausdorff in general. That is, the image of the
Hochschild boundary is not necessarily closed.

For each p € N and each n € N there is a generalized trace homomorphism on continuous cyclic
homology
TR : HC,(M,(A)) — HC,(A)
it is induced by the continuous linear map
TR : upag @ uia Q ...  Upay, — TR(uguy ... up)ag @ a1 @ ... ay,

Here a; € A and u; € M,(C) for all : € {0,1,...,n}. For details we refer to |26, Section 1.2].
Having introduced the relevant concepts, we make the following,

Definition 3.16. By the second relative Chern character of the unital Banach algebra A we
will understand the homomorphism

ch™ . KI*(A) = Hy(F(A)) — HC,(A)

which s induced by the homomorphism

ch™ : Z[F(A)y] — CMA) o TR( [; [T (0) ® Ta(0)dt dts)
Here we have used the notation
Fio) = 22071 A2 — Mog(4)

oo

This leaves some unproved claims. However, instead of considering them at this place we prefer
to continue with the definition of the trace invariant. The interested reader can find the relevant
arguments in the article of U. Tillmann [35]. Notice again that we pass between continuous and
smooth maps at the level of homology without further notice, cf. the remark after Definition
2.12.

3.3.3. The trace invariant. Let J C A be a closed ideal in a unital Banach algebra A. The
quotient A/.J is then a unital Banach algebra when equipped with the quotient norm. We thus
have a short exact sequence of Banach algebras

X:0 J 1 A1 A)J — 0
We will always assume that X comes equipped with a continuous linear section
s:A/J— A gos=1Ida;

Let us see how this data gives rise to a boundary map in continuous cyclic homology. By
continuity and linearity of the section s : A/J — A there is an induced map

s, CMA)T) — CHA) Se(o @ 1) = s(29) @ s(xq)

We let 0 : CM(A/J) — C)(A) denote the composition O = bo s,. Now, suppose that y €
Z}MA/J) is a cyclic cycle, thus b(y) = 0. We then have

(g0 0)(y) = (bog. 0 s.)(y) = by) =0
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This means that d(y) € J. In fact, we have even more,

Lemma 3.17. The continuous linear map 0 : C}A/J) — Ci(A) descends to a boundary
homomorphism in continuous cyclic homology

0:HC(A)J) — HCy(J,A):=J/Im(b: J R, A+ AR, J — J)
Proof. We leave the proof to the reader. O]

Now, assume that X comes equipped with a continuous algebra homomorphism 7 : A — L(H)
such that the restriction to the ideal J determines a continuous algebra homomorphism with
trace class values, m : J — L!(H). We will associate a trace invariant to each such pair (X, ).
This is going to be a character on the second relative K-group of the quotient,

T K3'(A)T) — C

We shall see that it is intimately related to the determinant invariant which we considered in
Section 3.2. Furthermore, we shall see that typical values of this trace invariant are traces of
commutators.

Note that the assumption on the representation 7 : A — L(H) is sufficient to get an induced
homomorphism on the relative continuous cyclic homology groups

7, HOo(J, A) — HCo(LY(H), L(H))

Definition 3.18. By the trace invariant of the pair (X, 7) we will understand the homomor-
phism

Txm : K5(A)J) — C Txm = (—Tr) om0 9 o ch™

given by the composition of the second relative Chern character, the boundary map, the repre-
sentation and minus the operator trace.

In particular, let A, B € L(H) be an almost commuting pair of operators with || A/« || Bllcc < 7
for some r € (0,00). We then have the trace invariant

Tap K5 (CYlr,y]) — C

given by the short exact sequence

%

0 J, CHX,Y) —— C?[z,y] —— 0

and the representation
B CHX)Y) — L(H) 74P X— A, Y — B

In the next section we shall see an example of a calculation of this invariant.
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3.3.4. The relative Steinberg symbols and traces of commutators. We are interested in the ap-
plication of the trace invariant

Tap KGN (Cllzy]) = C

to a particular element in the second relative K-group, Ki(C?x,y]). This element is an
example of a relative Steinberg symbol. Later on, we shall relate the construction to an interior
product ™ : KT(A) x K'*(A) — KI'(A) on the relative K-groups. However, let us start by
defining the relative Steinberg symbol.

Let A be a unital Banach algebra. For each continuous map o : [0, 1] — GL,(A) with ¢(0) = 1,
we let so(0), s1(0) : A? — GL,(A) denote the continuous maps given by

SO(U)(tl,tQ) = O'(tg) 81(0)(t1,t2) = O'(tl + tg)

for each (t,,) € A2 Note that so(c)(0) = 1 = s1(0)(0). Furthermore, we let z15(0), z13(0) :
[0,1] — G'L3,(A) denote the continuous maps

o 0 0 o 0 0
$12(0'> = 0 O'_1 0 $13(O'> = 0 1 0
0 0 1 0 0 ot

It is then possible to prove that z15(0), z13(0) € F(A); are products of multiplicative commu-
tators whenever there exists an € > 0 with

o(t)y=1 forall te€l0,¢)

This result follows by a slight modification of the argument to be found in [32, Corollary 2.1.3|,
for example.

Definition 3.19. Let A be a unital and commutative Banach algebra. Let o,7 : [0,1] — A* be
a pair of continuous maps with values in the group of invertibles and with o(t) = 7(t) = 1 for

all t € [0,€). By the relative Steinberg symbol of o and T we will then understand the element
{o, 7} € KI(A) represented by

s0(712(0)) - s1(213(7)) — 81(712(0)) - s0(w13(7)) € Z[F(A)2]

We are particularly interested in the pair of smooth maps v,,7, : [0,1] — C?[z, y|* given by
W) =0 () = e

Here « : [0,1] — [0, 1] is some smooth function which vanish on a neigborhood of 0 and sends
1 to 1. Since C?[x,y] is a unital and commutative Banach algebra we can form the relative
Steinberg symbol, {7, v, }'™ € Ki(C?x,y]). Let us apply the second relative Chern character
to this element.

Lemma 3.20. We have the following formula
b ({72, }') = y @ 2 € HCL(CP[, y))

for the application of the second relative Chern character to the relative Steinberg symbol
(Ve Wt € K5H(CY [z, 9)).
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Proof. Let ¥,9 € M3(C?[x,y]) denote the matrices

x 0 0 y 0 0
T = 0 —x O and gy = 00 O
0O 0 O 0 0 —y
We then have the identities
Ty (s0(212(72))s1(213(7))) = —s1() - 9
s (so(z12(72))s1(z13(7y))) = —so(a’) - T — s1(e) - §
1 (s1(z12(72))s0(213(7y))) = —s1(a) - &
o (s1(212(72))s0(213(7y))) = —s0(@) - § — s1(a’) - &

Here the notation I';(0) refers to the smooth map

Fi(a):g—g~0*1 : A7 — M (A) i=1,2

for any smooth map o : A? — GL(A).

By definition of the relative Chern character we thus have

Chrel ({7507 ,_yy}rel

—TR / /1 § s1(0")j ® (51(a”)§ + so(a')F )dtldt2>
TR / / (0)E @ (s1(0)F + so()5)dirdhs

—2TR //1 § ()i ®xdt1dt2)

—2/ /1 ) (a')y @ x dtydty

A straight forward calculation shows that

1—to
/ / (o) dtydts = 1

This proves the Lemma. 0

We remark that the value of the relative Chern character on the relative Steinberg symbol is
independent of our choice of smooth function, « : [0,1] — [0,1]. We will see later why this is
the case. Indeed, we shall see that the relative Steinberg symbol {o, 7}* only depends on the
classes of the continuous maps o, 7 : [0, 1] — A* in the first relative K-group. In particular, the
relative Steinberg symbol is independent of homotopies with fixed endpoints of the terms. More
generally, we shall see that the relative Steinberg symbol agrees up to a sign with an interior
product on relative K-theory. Furthermore, we will describe the class © @ y € HC,(C%|x,y])
as the result of an interior product of degree one in continuous cyclic homology. The result of
Lemma 3.20 will then be a consequence of the general multiplicative properties of the relative
Chern character. For now, however, let us calm down a bit and continue with the exposition.
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Let A, B € L(H) be an almost commuting pair of operators with ||Al|s, || B|lec < 7 for some
r € (0,00). We recall that the associated trace invariant is given by the composition

Tap: K(C?ax,y]) — C Tap = (—Tr) o8 0 9o ch™
Here 0 : HC,(C?[z,y]) — HCy(Jg, C%(X,Y)) is the boundary map associated with the short
exact sequence
0 — J, —— CX,Y) —— C?z,y] —— 0
Note that our continuous linear section s : C?[z,y] — C*(X,Y) is given by s(z"y™) = X"Y™.
The homomorphism 7% : HCy(J,, C*(X,Y)) — HCo(L*(H), L(H)) is induced by the repre-
sentation
7B CHX)Y) — L(H) X—A Y—DB
Using the above Lemma and the definitions of the involved homomorphisms, we then get that
Ta5({7e, % 1) = —(TromF 0 9)(y ® 2) = —(Tro ) (VX — XY) = Tr([A, B])
We have thus proved the following,

Theorem 3.21. The image of the relative Steinberg symbol {v.,7,}™ € K5(C?[x,y]) under
the trace invariant of the almost commuting pair of operators A, B € L(H) is the trace of the
commutator, Tr([A, B]) € C. That is,

TA,B({%a Vy}rel> = Tr([Av B])

3.4. The relation between the trace invariant and the determinant invariant. In the
last two sections we saw that the determinant of a multiplicative commutator and the trace of
an additive commutator were both the results of K-theoretic invariants. We are thus attacking
the identity

(19) det(eteBe e B) = ¢THAB]

from a general K-theoretic point of view. Likewise, the proof which we have in mind will be
the result of a more general K-theoretic consideration. Indeed, we will now find the precise
relation between the trace invariant and the determinant invariant. The identity (19) will then
be a consequence of this comparison result.

Let us fix a short exact sequence of Banach algebras
X:0 J— A1 Al —— 0

with a continuous linear split, s : A/J — A. Furthermore, we suppose that there exists a
continuous unital algebra homomorphism 7 : A — L(H) such that the restriction to the ideal
determines a continuous algebra homomorphism 7 : J — £L!(H) with values in the trace ideal.

We can then associate two invariants to the pair (X, 7). The first one is the determinant
invariant

d(X,rr) : KQ(A/J) — C* d(X,ﬂ-) :detoéow*
The second one is the trace invariant

Txm : K5(A)J) — C Tixm = (—Tr) om0 9 o ch™
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Let us recall that the link between the second relative K-group and the second algebraic K-
group is established by the natural homomorphism

0: KiY(A/J) — Ky(A/)J) 0(c) = (c(1) 1, 0(1)0(2)71)

Here o0 € F(A/J)2. This homomorphism allows us to compare the determinant invariant and
the the trace invariant. Indeed, we have the following,

Theorem 3.22. The diagram
KF(A)T) —— Ky(A)T)

7'(an)l d(x,w)l

C =,

15 commutative.

Proof. We will only give a sketch of the proof. In analogy with the construction of the boundary
map in algebraic K-theory it is possible to construct a boundary map in relative K-theory,

0: K A)J) — K'(J, A)

This homomorphism makes the following diagrams commute

K3(A)T) —2— K¥(J, A) K3(A)T) —2— K(J, A)
GJ( Ql and ChI‘EI l Chrel J/
Ky(A)T) —2= Kyi(J,A) HCy(A)) —2—= HCy(J, A)

In particular, we get that
dixyo0 =detodom, 00 =detofom, 00
However, from Section 2.4 we know that the homomorphism
detof: KI*(LY(H),L(H)) — C*
agrees with the homomorphism
exp o(—Tr) o ch™ : KI*(LY(H), L(H)) — C*

It follows that
detofom, 00 =expo(—Tr)om, 000 ch™

But this is precisely the composition of the trace invariant and the exponential function. [

We have now finished setting up a general framework in which the identity
det(eteBe e B) = ¢11AB]

can be verified. Here A, B € L(H) is a pair of operators with trace class commutator. Let us
choose some r > 0 such that || A, ||B|| < r we then have the short exact sequence of Banach
algebras

0 —— J, —— CAX,Y) —1— C?[z,y] —— 0
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with representation 742 : C2(X|Y) — L(H) sending X to A and Y to B. Furthermore, we
know from Lemma 3.3 that the restriction of 7% to the ideal J, determines a continuous
algebra homomorphism with trace class values. We can thus apply the comparison result to
the invariants

dap: Ko(Clla,y]) — C* and 745 : K3 (C}z,y]) — C

Theorem 3.23. For each pair of operators A, B € L(H) with trace class commutator [A, B] €
LY(H) we have the formula

det(eteBe e P) = e TTAB]

for the determinant of the multiplicative commutator e“ePe e 8 € GL, (L (H)).

Proof. From Theorem 3.21 and Theorem 3.11 we have the identities
Tas({Ve, W }') = Tr([A, B]) and dap({e” e’}) = det(e’eBe1e™B)
Furthermore, by Theorem 3.22 we have that
exporgp =dapol
Therefore, we will only need to check the equality
0({7e, W) = {e", ¢’}

However, this follows immediately since

(s0(7)s1 (7)) (1) = e (s0(7)s1(3))(2) = e~
(51(72)s0(y))(1) = €77 —

O

The main goal of this thesis is to find a concrete generalization of the determinant invariant
(GA, eB) N 6TY[A,B]

As this first part of the introduction suggests this will be accomplished by the use of K-theoretic
methods.

4. DETERMINANT INVARIANTS AND MULTIPLICATIVE CHARACTERS OF FREDHOLM
MODULES

In their paper [9] A. Connes and M. Karoubi associate a multiplicative character on algebraic
K-theory to each finitely summable Fredholm module. In particular, they show that every odd
2-summable Fredholm module (F, H) over a unital C-algebra A yields a homomorphism

Mg Ky(A) — C/(2mi)Z

In this section we will explore the relation between this invariant and the determinant invariant
which we constructed in Section 3.2. This brings us to the core of the article [16] which can be
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found at the end of the thesis. That is, we will explain our main result which is given by the
commutativity of the following diagram

Ky(A) I gy (B)

C/(2mi)z =2 C*
Here Rr : A —B is a surjective unital algebra homomorphism and dr : Ky(B) — C* is a
determinant invariant. They are both constructed from the odd 2-summable Fredholm module
(F,H) over A. Our result implies in particular that the multiplicative character factorizes
through the second algebraic K-group of the Calkin algebra, Ky(L(H)/L'(H)). Let us start
with the construction of the multiplicative character.

4.1. The multiplicative character on the second algebraic K-group. Let H be a fixed
separable Hilbert space of infinite dimension. We let M! denote the C-algebra consisting of
operators on the direct sum H @& H with antidiagonal in the second Schatten ideal. Thus, the
elements © = (x;;) € M! are precisely the bounded operators on H & H which in their matrix
representation have x5, 191 € L3(H). The C-algebra M! can be equipped with the Banach
algebra norm || -|| : M' — [0, 00) given by

2]l = [zl + llz12ll2 + [[221[l2

This turns M? into a Banach algebra. The importance of M! comes from its interpretation as
a universal Fredholm algebra. Let us explain ourselves.

Definition 4.1. Let A be a unital C-algebra. By an odd 2-summable Fredholm module (F, H)
over A we will understand a separable Hilbert space H, a unital algebra homomorphism m :
A —L (H) and a bounded operator F € L(H) such that

(1) F = F*
(2) 72 =1
(3) [F,m(a)] € L*(H) for all a € A.

When A is a unital Banach algebra we will say that the Fredholm module (F, H) is continuous
when the maps

7: A—L (H) and a— [F,7(a)] € L*(H)
are both continuous.

We will always assume that the Hilbert spaces PH and (1 — P)H are infinite dimensional. Here
P = (F+1)/2 denotes the projection associated with the selfadjoint unitary operator F' € L(H).

We let Fy € L(H & H) denote the selfadjoint unitary given by the matrix

10
(o h)

Furthermore we have a representation m : M! — L(H @& H) given by inclusion. The pair
(Fy, H & H) then becomes a continuous odd 2-summable Fredholm module over M'. Tt is
universal in the following sense.
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Let (F,H) denote any odd 2-summable Fredholm module over the C-algebra 4. Since the
Hilbert space PH and (1 — P)H are infinite dimensional we can identify both of them with the
"universal" Hilbert space H. In this way we obtain an algebra homomorphism

mr A—L (HoH)

which is well defined up to conjugation by unitary operators. The condition on the commutator
[F,m(a)] € L%(H) ensures that the representation 7 : A —L (H @& H) factorizes through the
Banach algebra M'. Furthermore, whenever the Fredholm module (F, H) is continuous the
associated unital algebra homomorphism

1
Tp . .A —>M
is continuous as well.

In analogy with the K-theoretic construction of the Fredholm determinant which we gave in
Section 2.4 we will use an additive character

m och™: K3(M!') — C
to construct the multiplicative character. As we saw in Section 3.3 the relative Chern character
ch™ : K3 MY) — HC (M)

is a homomorphism of degree minus one from relative K-theory to continuous cyclic homology.
The homomorphism

T1 - HCl(Ml) — C

comes from a low dimensional case of a theorem by A. Connes.

Theorem 4.2. |7, 1 7. Lemma 2| Let (F, H) denote a continuous odd 2-summable Fredholm
module over a unital Banach algebra A. The bilinear map given by

1
7 (a%a') — —ZTr(F[F, a’|[F,a"])
then determines a character Tp : HC1(A) — C on the first continuous cyclic homology group.

The rational constant —i is chosen in such a way that the multiplicative character which we

are going to define agrees with the one defined in [9)].

We let 7, : HC{(M?) — C denote the character associated with the universal odd continuous
2-summable Fredholm module (Fy;,H & H) over M!. For any odd continuous 2-summable
Fredholm module (F, H) over a unital Banach algebra A we then get the following commutative
diagram

HOV(A) T goymy)

C — C

As announced above, these homomorphisms and the relative Chern character constitute the
additive character.
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Definition 4.3. By the universal additive character we will understand the homomorphism
Ay« K" (MY — C A= och™

given by the composition of the second relative Chern character and the character associated
with the universal odd 2-summable Fredholm module.

Definition 4.4. Let (F,H) be a continuous odd 2-summable Fredholm module over a unital
Banach algebra A. By the additive character of the Fredholm module we will understand the
homomorphism

Ar : K3(A) — C Tr =Ty © (TF)«

giwen by the composition of the homomorphism induced by the continuous unital algebra homo-
morphism tp : A =M and the universal additive character.

Note that the naturality of the relative Chern character and the commutativity of the diagram
(4.1) entail the identities

Ap = Ay o (mp), = 1y 0ch™ o (7p), = 7p o ch™

In the paper [9] it is proved that the homomorphism
01 K3 (M) — Ka(M?)
is surjective. Furthermore, it is shown that there is a well defined homomorphism
My : Ky(MY) — C/(2mi)Z

given by
My (0(y)) = [Av(y)]

Here [-] : C — C/(27i)Z denotes the quotient map. This homomorphism is called the universal
multiplicative character.

For any odd 2-summable Fredholm module (F, H) over a C-algebra A we then define
MF . KQ(A) — C/(QWZ)Z MF = MU @) (/)F)*

This is the multiplicative character of the Fredholm module.

4.2. Comparison of the multiplicative character and the determinant invariant. We
will now give an interpretation of the multiplicative character as a determinant invariant. This
brings us to the heart of the article [16] which is attached at the end of this thesis. The work
is also related to the picture of the multiplicative character on the second algebraic K-group
given by A. Connes and M. Karoubi in [9]. There the invariant is exhibited by means of a
certain determinant central extension. In fact, one could understand part of our main result as
a rephrasing of |9, Théoréme 5.6]. However, the tools which we have been developing during the
last sections allows us to improve and clarify this result. At last, let us mention that the proof
of the main result given in [16] relies on a slightly different approach. That is, it uses a certain
cokernel complex instead of the relative K-groups of pairs which we have been introducing
earlier in this text. We will not give further comment on the cokernel construction here. Let
us begin the exposition.
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Let H be a separable infinite dimensional Hilbert space. Let 7! denote the C-algebra consisting
of pairs (S,z) € L(H) x M" such that S — zy; € LY(H). We can equip this C-algebra with a
Banach algebra norm || || : 7' — [0, c0) given by

105, @)l = [lzlloo + [[S = znals

This turns 7! into a Banach algebra. It comes equipped with two continuous surjective algebra
homomorphisms

m T LH) m(S,z)=8 and m:T' > M m(S,z)==z

The kernel of 7, is the trace ideal, £L'(H). In particular we have a short exact sequence

T:0 — LY(H) —— T' -2 M! 0
It has a continuous linear split given by
s M — Tt s(x) = (z11, )

The restriction to the trace ideal of the representation my, m|cisy : L1(H) — LY(H) is the
identity homorphism. We therefore have an associated trace invariant and an associated deter-
minant invariant

T(T,m) : Kéel(Ml) - C d(T,m) . KQ(Ml) — (C*
By Theorem 3.22 the relation between these invariants is expressed by the commutative diagram
K3(MY) —— Kx(M")
(20) T(T,m)l d(T,wl)J/
C =P, C*

To proceed we will have to relate the trace invariant of the pair (T, m) with the universal
additive character. The main link is established by the next lemma.

Lemma 4.5. We have the identity
7 = (=Tr) o (m). 0 Op : HOy(M') — C

Thus the character of the universal Fredholm module coincides with the composition of the
boundary map in continuous cyclic homology of the short exact sequence T, the map induced
by the representation and the operator trace on the zeroth relative cyclic homology group.

Proof. A variant of this result has been carefully proved in [16, Theorem 4.2|, see also the proof
of |9, Théoréme 5.6]. O

Corollary 4.6. The universal additive character coincides with the trace invariant of the pair
(T, m). Thus,
AU = T(T,m) * Kéel(./\/ll) —C
Proof. We recall that the trace invariant of the pair (T, ;) is given by the composition
Trm) = (=Tr) o (m1)s 0 Op 0 ch™ : K (M) — C

The desired result is now a consequence of Lemma 4.5. 0
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The description of the multiplicative character as a determinant invariant now follows immedi-
ately.

Corollary 4.7. The composition of the universal multiplicative character and the exponential
function coincides with the determinant invariant of the pair (T, 7). To be precise, we have a
commutative diagram

Ky(M') ——= Ky(M?')

MUJ/ d(T,ml

c/(2ri)z =2 C*
Proof. This follows from Corollary 4.6 and the commutativity of the diagram (20). O

As mentioned in the introduction to this section, we can understand the above corollary as a
rephrasing of |9, Théoréme 5.6]. However, the detailed exposition which we have given actually
yields a refinement of Corollary 4.7. This refinement is the main result of the first article
attached at the end of the thesis. Let us give some details.

We consider the algebra homomorphism

a: M — L(H)/LY(H) a(z) = q(zn)
Here q : L(H) — L(H)/L'(H) denotes the quotient map. This coincides with the algebra
homomorphism induced by the representation 7 : 7' — L(H). By the functoriality of the
second algebraic K-groups we get an induced group homomorphism

.t Ky(MY) — Ka(L(H) /L (H))

By definition of the determinant invariant of the pair (T, ;) we have

dt ) Ko(M) — C* d(rm) = do a,
Here d : Ko(L(H)/LY(H)) — C* denotes the universal determinant invariant.
We have thus really proved the following

Theorem 4.8. [16] The homomorphisms exp o(My) : Ko(M') — C* and d o v, : Ko( M) —
C* coincide. That is, the uniwwersal multiplicative character agrees with the universal determi-
nant nvariant up to a canonical homomorphism. In particular, the universal multiplicative
character only depends on the second algebraic K-group of the Calkin algebra L(H)/L'(H).

Suppose now, that we are given an odd 2-summable Fredholm module (F, H) over a C-algebra
A. Let us fix an algebra homomorphism 7 : A — M. Let &€ C L(H) denote the C-algebra
defined by

&= {T+ (’ﬂ'F(CL))n | ac Aand T € EI(H)}
Letting B denote the image of £ in the Calkin algebra L(H)/L'(H) we get a short exact
sequence

Xp:0 — LYH) —— & 2 B 0
and a representation p : € — L(H) given by inclusion. We therefore have an associated
determinant invariant

dFKQ(B)—)C* dF:dOp>,<
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Furthermore, we have an algebra homomorphism Rp : A —B given by Rr(a) = q(7r(a)11).

Corollary 4.9. |[16] The multiplicative character and the determinant invariant of the odd 2-
summable Fredholm module (F, H) coincides up to the homomorphism Rr : A — B. To be
precise, the diagram

Kay(A) 2 gy (B)

MF\L dpl
C/(2mi)Z =2 C*
18 commautative.

Proof. This follows from Theorem 4.8 since the unital algebra homomorphisms
poRp: A—L (H)/LY(H) and aomp: A—L (H)/LYH)

coincide. 0

Let us end this section by a concrete calculation of the multiplicative character on the second
algebraic K-group. Let (F, H) denote a continuous odd 2-summable Fredholm module over a
commutative unital Banach algebra A. Let us choose two elements a,b € A and apply the
exponential function to them. In this way we obtain the invertible elements e, e® € A*. We
can thus form their Steinberg symbol

{e®, e’} € Ky(A)
and ask ourselves of the value of the multiplicative character
Mg Ky(A) — C/(2mi)Z

on this element. Let mp : A — M! denote the continuous unital algebra homomorphism
associated with the Fredholm module. By the result of Theorem 4.8 we then have

(expoMp){e®, e’} = (doa, o (mF).){e" "}
= d{g(e™), q(e™)}

In the second line we have suppressed the homomorphism 77 : A — M!. Following the proof
of Theorem 3.11 we get that

d{q(eau), Q(ebn)} = det(ea“eblle*anefbu)
The identity of Theorem 3.23 thus entails that
(21) (exp OMF){ea, eb} — 6Tr[a11,b11] _ eTr[PaP,PbP]

Here P = (F' 4 1)/2 denotes the projection associated with the Fredholm module (F, H). We
have suppressed the representation 7 : A —L (H).

In the following sections we will obtain a multivariate version of the identity (21). This is the
main result of the second article attached at the end of the thesis. To expose our calculations
properly we will have to make the reader acquainted with some further K-theoretic concepts.
This is the primary goal of the next section.
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5. RELATIVE K-THEORY AND PRODUCTS OF CONTRACTIONS

In this section we will introduce the higher algebraic K-groups of unital rings and the higher
relative K-groups of unital Banach algebras. We will then express the relation between these two
K-theories and topological K-theory by means of a long exact sequence. Having accomplished
this we will turn to the description of the exterior and interior Loday products on relative and
algebraic K-theory. We shall see at last, that the relative Steinberg symbol, which we introduced
in Section 3.3, is nothing but a special instance of the interior relative Loday product. The
algebraic K-theory was originally invented by D. Quillen, see [31]. The relative K-theory was
constructed by M. Karoubi who also proved the existence of the long exact sequence K-groups,
see [20]. The Loday product on algebraic K-theory was found by J.-L. Loday in [25]. It was
later generalized by J. P. May, see [28]. We will use the original approach of Loday to construct
our product on the relative K-groups. This is accomplished in details in the article [17] which
is attached at the end of the thesis. It is possible that this relative product can be viewed as a
special case of May’s general theory as well. We have not pursued this direction further.

5.1. Preliminaries on simplicial sets. We start out with a presentation of some basic results
from the theory of simplicial sets which we will make us of in the sequel. Our main reference
is the monograph by J. P. May, [27].

Definition 5.1. By a simplicial set we will understand a sequence of sets (X,,)n>0 Such that
for each n € N there are maps
di:XnHanl fO’f' 26{0,1,,77,}
Sj:Xn,1—>Xn fO’f' ]6{071,,71—1}
such that
didj = dj—ldi for 1 <j
5i8; = 5415 for 1<
Sj—ldi for 1< ]
disj = ld fOI‘ Z:],]—I—l
dei—l for > j +1
The maps d; : X,, — X,,_1 are called face operators. The maps s; : X,,_1 — X,, are called
degeneracy operators.

By a map of simplicial sets we will understand a map of degree zero f : X — Y which commutes
with the face and degeneracy operators.

There exists a family of simplicial sets which behave in a particularly nice way. For example,
they admit a sequence of homotopy groups which parallels the homotopy groups of a topological
space.

Definition 5.2. By a Kan complex we will understand a simplicial set X = (X,,)n>0 which
satisfies the following extension property: For each n elements xg, ..., Tk_1, ki1, -, Tn € Xp_1
which satisfy the compatibility relation

diZL‘j = dj_lllfi for each 1,] € {0, . ,n} —{ ]f} with 1 < J
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there exists an x € X, such that d;j(x) = x; for all j € {0,...,n} —{ k}.

We will give two examples of Kan complexes. Let A be a unital Banach algebra and let GL(A)
denote the topological group of invertible matrices. Also, let R be a unital ring and let GL(R)
denote the group of invertible matrices. Recall that A" denotes the n'" standard simplex

A" ={(tr, ... t)|t; €0,1], ) t; <1}
=1

The zeroth standard simplex consists of a single point, A° = {0}. The vertices of the n'®
standard simplex are denoted by 0,...,n € A”. Thus,

- (0,...,0) for i =0
1 (0,...,1,...,0) for i#0
where the number 1 is in position 7. We have chosen this model in order to emphasize the
special role of the zeroth vertex and the zeroth face in the Kan complex R(A) below.

(1) Let BGL(R) = (GL(R)")n>0- The face and degeneracy operators are given by

(925 --+9n) for i=0
di(g1,- -, qn) = (91,9941, -+, 9n) for ie{l,....,n—l}
(gla s 797171) for 1=n

sj(gl,...,gn,l):{ (g15---+95-1,1,9j, .., gn—1) for je{0,...,n—1}

The identity in degree zero will play the role of a basepoint.
(2) Let R(A) = (R(A),). Here R(A), denotes the set of continuous maps o : A" — GL(A)
with 0(0) = 1. The face and degeneracy are given by

o(1=S""1tity, ... taq)o(1)™" for i =0
di(o)(t1,...,th_1) = g=1 %30 Py e .
(0)( 1 3 1) { O'(tl,...7ti_1,07ti,...7tn_1) fOI' 1€ {].,,TL}
' B o(te, ... t,) for j=0
8](0)<t17...7tn)_{ U(tl,...,tj+tj+1,...,tn) fOI' ]G{l,,n—l}

Notice the "extra factor" o(1)~! in the formula for the zeroth face operator. The identity
1 € R(A)p will play the role of a basepoint. See also Section 3.3.

Note that each unital ring homomorphism ¢ : R — S induces a simplicial map ¢ : BGL(R) —
BGL(S) in a functorial way. Likewise, each continuous unital algebra homomorphism ¢ : A —
B induces a simplicial map ¢ : R(A) — R(B) in a functorial way.

Remark 5.3. The simplicial set R(A) is isomorphic to the simplicial set GL(A.)/GL(A) which
is used in [20| for the definition of relative K-theory. The isomorphism maps the class of a
continuous map o : A" — GL(A) to o-0(0)~! € R(A).

The two Kan complexes (1) and (2) are linked by the simplicial map
6: R(A) — BGL(A) 0(c) = (c(0)o(1)7!,...,0(n—1)o(n)™)

Let us continue by a presentation of the homotopy groups of a pointed Kan complex.
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Definition 5.4. Let X = (X,),>0 be a pointed Kan complex with basepoint x € Xy. By the
n'™ homotopy group of X we will understand the set

m(X) :={z € X,,|djx =x for all i € {0,...,n}}/ ~
Here the equivalence relation ~ is defined by

r~ysdze X, dyz=1u,dy12 =y and d;z = * Vie {0,1,...,n—1}

The word "group" in the above definition is justified by the following lemma.

Lemma 5.5. Let X = (X,,)n>0 be a pointed Kan complex. For eachn > 1 there is a well defined
group structure on the homotopy group m,(X). The composition * : m,(X) X m,(X) — m,(X)
15 given by

Here z € X, is any (n + 1)-simplex with d,,_1(z) = z, dpi1(2)

=y and d;(z) = % for
i€{0,1,...,n—2}. The homotopy groups are commutative for all n > 2.

~—

Let us calculate the homotopy groups of the Kan complexes (1) and (2

Lemma 5.6. The homotopy groups of BGL(R) are given by

GL(R) for n=1

T,(BGL(R)) = { 0 for n>2

The homotopy groups of R(A) are given by

R(A);/ ~ for n=1
mna) = { el o,

n+1
In both cases the group structure is induced by the product of invertible matrices.

To each Kan complex, X, we can also associate a sequence of abelian groups which are analogues
of the singular homology groups of a topological space. To do this, we note that the simplicial
relation d;d; = d;_1d; for all ¢ < j ensures that the operators

d= i(—l)idi D 2[X,) — Z[X -]

satisfy the equality d?> = 0. In particular, the complex
is a chain complex.
Definition 5.7. By the homology of the simplicial set X we will understand the homology of

the above chain complez.

There is a functorial construction which associates a pointed C'W-complex to each pointed Kan
complex. This functor is called the geometric realization and is denoted by |- |. We will need
a precise description of this space later on, so let us introduce it properly.
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Definition 5.8. Let X be a pointed Kan complex. By the geometric realization of X we will
understand the quotient space

|X| =] A" x X,/ ~

n>0

Here each X, is equipped with the discrete topology. The equivalence relation ~ s given by

(6't,x) ~ (t,d;z) for each t€ A" xe X,
(7t z) ~ (t,s;2) for each te A" ze X,

Here §; : A"t — A" and r/ : A"t — A" are dual to the face and degeneracy operators defined
in (2).

Let us state some of the properties of the geometric realization.

Theorem 5.9. Let X be a pointed Kan complex and let |X| denote its geometric realization.
There is then a natural isomorphism between the homotopy groups of the pointed Kan complexr X
and the homotopy groups of the pointed space | X|. Furthermore, there is a natural isomorphism
between the homology of the simplicial set X and the singular homology of the topological space
| X|.

We will think of Kan complexes as combinatorial analogues of topological spaces.

5.2. The plus construction and higher K-theory. The higher algebraic and relative K-
theories are defined by means of the plus construction of D. Quillen, [31]. Loosely said, this
is a way to abelianize the fundamental group of certain topological spaces without changing
the singular homology. In this section we will describe the main properties of this procedure.
We will then introduce the higher algebraic and relative K-groups and describe the connection
between them and with topological K-theory. We refer the reader to the book of J. Rosenberg
for a detailed account on algebraic K-theory, [32].

Definition 5.10. A group G 1is said to be perfect if it equals its own commutator subgroup.
That is, the smallest subgroup of G which contains all commutators coincides with G. Note
that the commutator subgroup of a group is automatically normal.

Theorem 5.11. Let X be a connected C'W -complex. Let N be a perfect normal subgroup of the
fundamental group of X. There exists a connected CW -complex X together with an injective
map i: X — X1 such that

(1) The fundamental group of X' equals the quotient group 71 (X)/N and the induced map
iy : T (X) — 7 (XT) is the quotient map.

(2) The reduced singular homology of the homotopy fiber of the inclusion i : X — X7
vanishes.

The connected CW -complex X is called the plus construction of X relative to N C m(X).

The plus construction of a space satisfies the following universal property:
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Theorem 5.12. Let X be a connected CW -complex and let X be the plus construction of
X relative to some perfect normal subgroup N of m(X). Let Y be a connected CW -complex.
Suppose that f : X — Y is a continuous map such that the induced map on the fundamental
groups f. @ m(X) — m(Y) vanishes on N C m(X). Then there exists a continuous map
fT: Xt =Y which is unique up to homotopy and which makes the diagram

X - x+t

e

commute up to homotopy.

We are now ready for the definition of the higher K-groups. We are going to apply the plus
construction to the geometric realizations of the Kan complexes (1) and (2) of Section 5.1.
In both cases the perfect normal subgroups are going to be the commutator subgroups of the
fundamental groups.

Lemma 5.13. Let R be a unital ring and let A be a unital Banach algebra. The commutator
subgroups of the fundamental groups

E(R) = [GL(R),GL(R)] € GL(R) = m(BGL(R)) and

L(R
(F(A)1/ ~) = [R(Ap/ ~ R(A)1/ ~] C (R(A)1/ ~ ) = m(R(A))

are both perfect.

Proof. The perfectness of the elementary matrices is a standard result which is carefully proved
in [32, Proposition 2.1.4]. The perfectness of the group F'(A);/ ~ follows by a slight modification
of the same argument. 0

Definition 5.14. Let R be a unital ring. By the algebraic K-theory of R we will understand the
homotopy groups of the pointed, connected CW -complex, |BGL(R)|*. The plus construction is
carried out with respect to the commutator subgroup E(R) C m(|BGL(R)|). Thus, by definition

Ko (R) = m(|BGL(R)[T)

It follows from the universal property of the plus construction that the algebraic K-groups
are functorial in the unital ring R. Indeed, each unital ring homomorphism ¢ : R — S gives
rise to a continuous map |¢| : [BGL(R)| —| BGL(S)| which coincides with the induced group
homomorphism ¢ : GL(R) — GL(S) on the fundamental groups. In particular, we get a con-
tinuous map |p|" : [BGL(S)|t — |BGL(R)|* which is uniquely defined up to homotopy. The
corresponding group homomorphism between the homotopy groups is the desired application.

Definition 5.15. Let A be a unital Banach algebra. By the relative K-theory of A we will
understand the homotopy groups of the pointed, connected CW -complex, |R(A)|*. The plus
construction is carried out with respect to the commutator subgroup (F(A)1/ ~) C m(|R(A)|).
Thus, by definition

K (A) = m(|R(A)[F)
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It follows from the universal property of the plus construction that each continuous unital
algebra homomorphism induces a homomorphism between the relative K-groups. The argument
is similar to the one presented above. This makes the relative K-groups into covariant functors.

The connection between the algebraic and relative K-theories is established by the simplicial
map

0: R(A) — BGL(A) 6(c) = (c(0)e(1)!,...,0(n—1)o(n)™")
which we have already mentioned in Section 5.1. By functoriality of the geometric realization
we get a continuous map 0| : |[R(A)| — |BGL(A)| which induces the group homomorphism

(R(A)1/ ~) — GL(A) [o] = o (1)~
on the fundamental groups. From the universal property of the plus construction we thus get
a continuous map
0]+ [R(A)" — [BGL(A)["
which is uniquely defined up to homotopy. In particular, there is a group homomorphism
0: K*A) — K,(A) foreach neN

at the level of K-theory. It is then a theorem of M. Karoubi that this link is part of long exact
sequence of K-groups, see |20, Proposition 6.17].

Theorem 5.16. There is a long exact sequence of abelian groups
S KPP (A) — KM(A) s K, (A) —— K'P(A) — .
As we shall see later, the above result provides us with an important tool for the construction

of secondary invariants.

5.3. The Loday product in algebraic and relative K-theory. The concern of this section
is the algebraic structure on the different K-groups. We will thus describe the Loday product
on algebraic K-theory and then show how similar constructions apply to the relative K-groups.
As expected, the homomorphism 0 : K*(A) — K, (A) preserves these multiplicative structures.
The main references are the article of J.-L. Loday, [25], and the second article attached at the
end of the thesis, [17].

Let us start by describing the addition on the different K-theories in terms of an additive
structure at the level of spaces. To be more precise we will indicate how the connected C'W -
complexes |BGL(R)|" and |R(A)|T can be equipped with a commutative H-group structure.
Thus, these spaces admit a composition which satisfy all the usual properties of an abelian
group up to homotopy. For details on H-groups we refer to [34], for example.

Let R be a unital ring. Let us consider the "direct sum" group homomorphism, @ : GL(R) X
GL(R) — GL(R) given by

g for 1=2k—-1,7=20-1
(g h)ij = hy, for i =2k, j =2l
0 elsewhere

This homomorphism gives rise to a continuous map

&' : [BGL(R) x BGL(R)|" — |BGL(R)|*
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Now, by |25, Proposition 1.1.4| the projections onto each factor in BGL(R) x BGL(R) yield a
homotopy equivalence

k:|BGL(R) x BGL(R)|T — |BGL(R)|" x |BGL(R)|*
Let us choose an inverse up to homotopy of this map

k~':|BGL(R)|" x |BGL(R)|" — |BGL(R) x BGL(R)|*
The addition on |BGL(R)|* is then given by the composition

+ =@ ok |BGL(R)|" x |BGL(R)|" — |BGL(R)|"
The following result can then be found as [25, Théoréme 1.2.6]. See also [37, Proposition 1.2].

Theorem 5.17. The application + : |[BGL(R)|* x|BGL(R)|" — |BGL(R)|* and the basepoint
1 € |BGL(R)|" determines a commutative H-group structure on the space | BGL(R)|™.

It is a general result from the theory of H-groups (or even H-spaces) that the composition on the
homotopy groups arising from the space level composition agrees with the usual composition.
In particular, we get that the addition in K, (R) can be identified as

1+ 19l = [+0o(f,9)] fig:5" = |BGL(R)[*

Now, let A be a unital Banach algebra. We define the direct sum of continuous maps o, 7 :
A" — GL(A) as a pointwise direct sum. Namely, we let

@ : R(A) x R(A) — R(A)
be the simplicial map given by
(cd7)(t)=0(t)®7(t) foreach o,7€ R(A), and t € A"
The composition on |R(A)| is then given by
+e [R(A)[T < [R(A)[F — [R(A)[F el =T o k™!
Here the map k7' : |R(A)|" x |R(A)|t — |R(A) x R(A)|" has the same description as above.
The following result can then be found as [17, Theorem 3.12 and Theorem 3.13].

Theorem 5.18. The application +™ : |R(A)|T x |R(A)|* — |R(A)|* and the basepoint 1 €
|R(A)|T determines a commutative H-group structure on the space |R(A)|T. The continuous
map 0|7 1 |R(A)|T — |BGL(A)|* becomes an H-map, that is, it respects the compositions up
to homotopy.

Again the above H-group composition induces the composition on the relative K-groups. To
be precise,

[+ [g] = [+ o (£, 9)] frg:8" = |R(A)T

Let us turn to the description of the Loday product in algebrac and relative K-theory. We
begin with the algebraic case. Thus, let R and S be two unital rings. For each p,q € N let us
choose an isomorphism

o B? @y 57 — (R @y S)
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of (R ®z S)-bimodules. We then have associated group homomorphisms
®yp : GLy(R) X GLy(S) = GLyy(R®7z S) C GL(R ®z S)
which depend on the choices made above.
Now, for each p,q > 3 we let
®pq o IBGL,(R)[T x |[BGLy(S)|" — |[BGL(R®z S)|*  ®,;,=®F o k1
denote the composition of the homotopy equivalence
E~' | BGL,(R)|T x |BGL,(S)|T — |BGL,(R) x BGL,(S)|"
and the continuous map which is functorially induced by
®y 1 GL,(R) X GLy(S) — GL(R ®z S)
The maps ®;, only depend on the choices of (R®z S)-bimodule isomorphisms up to homotopy.
See [25, Section 2.1.1].

The raw tensor products above do not behave well with respect to the identity elements so we
need to change them slightly. To be precise, we define the modified tensor products
You : |BOL,(R)[* x |BGL,(S)|* — |BGL(R @z S)|*
by the formulas
Toa(®,Y) = @y 4(2,y) — @, 4 (Lp, y) — @, (2, 1)
Here the subtraction comes from the H-group structure on |[BGL(R®zS)|". See Theorem 5.17.
The above modifications allow us to glue the tensor products together to obtain a continuous
map
v : |BGL(R)|* x |BGL(S)|* — |BGL(R @7 S)|*
However, the choices involved in the construction of this extension imply that we only get a
map which is well defined up to weak homotopies. Here we say that two continuous maps
f,9: X — Y are weakly homotopic if the induced maps f. = g. : [K, X]| — [K,Y] agree for
any compact space K. The same construction can be carried out with the cartesian product
replaced by the smash product. We summarize the obtained results in the next theorem which
is due to J.-L. Loday, see |25, Proposition 2.1.8]. Note that the algebraic properties are really

consequences of the corresponding properties for the tensor product of invertible matrices. We
use the notation

i:|BGL,(R)|" x |BGL,(S)|" — |BGL(R)|" x |BGL(S)|* and
p: |BGL(R)|" x |BGL(S)|" — |BGL(R)|" A |BGL(S)|*"
for the inclusion and the quotient map.

Theorem 5.19. There exists a map 7 : |[BGL(R)|t A |BGL(S)|" — |BGL(R ®z S)|* which
15 unique up to weak homotopy and which makes the diagram

|BGL,(R)|* x |BGL,(S)|* 2 |BGL(R)|* A|BGL(S)|*

vl al

IBGL(R ©3 S)|f  ——  |BGL(R®y S)|*
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commute up to homotopy. Furthermore, it s natural, bilinear, associative and commutative up
to weak homotopies. We refer to |25] for details on these properties.

The above application allows us to define the exterior Loday product on the algebraic K-groups.
Note that it is independent of the choices made for the construction of 4 by compactness of the
spheres.

Definition 5.20. By the exterior Loday product we will understand the map
% Kp(R) X Kip(S) = Ko (R®z S)
giwen by the formula
frg=F0(fAg):S"AS™=2S" — |IBGL(R ®z S)|"
on representatives f : S™ — |BGL(R)|" and g : S™ — |BGL(S)|*.

The algebraic properties of the map 7 imply the corresponding properties of the Loday product.

Theorem 5.21. The exterior Loday product is natural in the unital rings R and S, bilinear
and associative. It is also graded commutative in the following sense: For each x € K,,(R) and
y € K, (S) we have

(=)"x*xy =T.(y * )
Here T, : Kpim(R®z S) — Kuim(S ®z R) is the homomorphism induced by the flip T :
R ®Z S — S ®Z R.

In the case where the ring R is commutative the multiplication m : R ®z R — R is a ring
homomorphism. There is thus an induced map on algebraic K-theory, m, : K,(R ®z R) —
K,.(R).

Definition 5.22. By the interior Loday product we will understand the composition
my 0% @ K, (R) X Kpp(R) — Kpim(R)
This product will also be denoted by .

The following theorem is then a consequence of Theorem 5.21.

Theorem 5.23. For each commutative unital ring R the addition and the interior Loday product
equip the algebraic K-theory with the structure of a graded commutative ring.

Let us consider the case of relative K-theory. Thus, let A and B be two unital Banach algebras.
For each p,q € N let us choose an isomorphism

v : AP ®7 BT — (A ®z B)P?
of (A ®z B)-bimodules. As above we get the corresponding group homomorphisms
(22) ®yp 1 GLy(A) x GLy(B) — GLy(A®z B)

Now, let A®, B denote the projective tensor product of A and B. We then have the "identity"

homomorphism
1:A®; B — A®, B

We will extend the group homomorphisms (22) to a pointwise version.
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Definition 5.24. Let 0 : A" — GL,(A) and 7 : A™ — GLy(B) be continuous maps. By the
pointwise tensor product of o and T we will understand the continuous map
0®,T: A" - GL(A®, B)
given by
(0 ®, 7)(t) = u(o(t) ®, 7(t))
The pointwise tensor products of continuous maps induce simplicial maps
@y : Ry(A) x Ry(B) = Ry(A®, B) C R(A®, B)
These maps are at the core of the relative Loday product.
Now, let p,q > 3. In analogy with the algebraic case, we define the map
Sy IB(A* x |R(B)* — [RA, BIIF  ®f,=afok
Here, as usually, k7! : |R,(A)|" X |Ry(B)|T — |R,(A) x R,(B)|" denotes some inverse of the

homotopy equivalence given by the projection onto each factor. By [17, Section 3.3| this space
level tensor product only depends on the choice of bimodule isomorphism up to homotopy.

We modify the above tensor products by subtracting the base point problem. Thus we define
the maps
Toa  1Rp(A)T X [Re(B)|" — |R(A®x B)[
by the formulas
’an(‘r’ y) = ®1—;q($a y) - ®;q<1pv y) - ®;q($’ 1(1)
Here the subtraction comes from the H-group structure on |R(A ®, B)|*. See Theorem 5.18.

The modified tensor products behave well with respect to stabilization and smash products.
To be precise:

Theorem 5.25. There exists a map 7 : |R(A)|* A |R(B)|" — |R(A ®, B)|t which is well
defined up to weak homotopy and which makes the following diagram commute up to homotopy

[Ry(A)I* x |Ry(B)[* == [R(A)[* A|R(B)|*

’Yp,ql ﬁrell
|R(A ®, B)|* —— |R(A®, B)|*

Furthermore, this map is natural, bilinear, associative and commutative up to weak homotopies.

For a proof of the above result we refer to [17, Section 3.3].
We can now make a sensible definition of an exterior product on the relative K-groups.
Definition 5.26. By the exterior relative Loday product we will understand the map
s K(A) X KE(B) — K, (A e, B)
giwen by the formula
falg=70(fAg): S"AS™ =S o |R(A®, B)|*
on representatives f : S™ — |R(A)|* and g : S™ — |R(B)|*.
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The algebraic properties of the map 7™ entail corresponding properties for the exterior relative
Loday product.

Theorem 5.27. The exterior relative Loday product is natural in A and B, associative and
bilinear. It is also graded commutative in the following sense: For each v € K™(A) and
y € K'(B) we have

(1) #y) = T (y ' 2)
HereT : AQ,B — B®,A denotes the continuous unital algebra homorphism which interchanges
the factors.

Assume that the unital Banach algebra A is commutative. The product then define a continuous
unital algebra homomorphism m : A®,; A — A. This allows us to make the following definition:

Definition 5.28. By the interior relative Loday product we will understand the composition
m, o % K (A) x KiXW(A) — Kl (A)

n+m
of the exterior relative Loday product and the homomorphism induced by the product. The
interior relative Loday product is also denoted by *™.

The next result is then a consequence of Theorem 5.27.

Theorem 5.29. Let A be a commutative unital Banach algebra. The relative K -theory becomes
a graded commutative ring when equipped with the interior relative Loday product and the usual
addition.

Let us investigate the relation between the two Loday products. In order to do this properly
we need a modification of the usual Loday product on algebraic K-theory. This variant takes
the topology of the unital Banach algebras into account.

Definition 5.30. By the completed exterior Loday product we will understand the composition
% Ky (A) X Kpp(B) — Kyym(A®, B) k= Ly 0%
of the exterior Loday product and the homomorphism induced by the "identity” homomorphism

1: ARz B — AR, B.

As expected, the map 6 : K'(A) — K, (A) respects the exterior product structures. This
statement is made precise in the following,

Theorem 5.31. We have the identity
Oz +" y) = 6(2)30(y)
for each v € K*(A) and y € K*(B). In fact, the diagram
[R(A* ARB)IT % [BGL(A)[* A |BGL(B)[*

:y\reIJ/ ‘L|+Of}7l

R(A®, B —- |IBGL(A ®, B)|*

15 commutative up to weak homotopy.
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We refer to |17, Theorem 3.17] for a proof of the above result.

Returning to the commutative setup we can combine the results of Theorem 5.27 and Theorem
5.31.

Theorem 5.32. Lel A be a commutative, unital Banach algebra. The map 0 : K™ (A) — K, (A)
is a homomorphism of graded commutative rings.

5.4. The relative Loday product and the relative Steinberg symbol. We are now going
to see that the relative Steinberg symbol can be identified as a special instance of the relative
Loday product. We will start by explaining the homological description of the second relative
K-group which we used in Section 3.3. The identification of the relative Steinberg symbol as a
relative Loday product should be compared with the identification of the Steinberg symbol as
a Loday product, see [25, Proposition 2.2.3|. Furthermore, the homological description of the
second relative K-group should be compared with the homological description of the second
algebraic K-group, see for example |25, Proposition 1.2.1].

Let A be a unital Banach algebra. Recall from Section 3.3 that F'(A),, is defined recursively by

(1) F(A)1 :=[R(A), R(A)]
(2) 0 € F(A)py1 < (0 € R(A)py1 and djo € F(A),, 1 € {0,...,n+1})

These sets form a Kan complex F'(A) when equipped with the face and degeneracy operators
given by restriction of the face and degeneracy operators on R(A). Let |F(A)| denote the
geometric realization of this Kan complex. The fundamental group of |F(A)| is then given
by the image of F'(A); in R(A);/ ~ under the quotient map. This group was denoted by
F(A)1/ ~ in Section 2.2. It is a perfect group by Lemma 5.13 and we can thus apply the plus
construction to |F(A)| with respect to its fundamental group. We obtain a simply connected
CW-complex |F(A)|". Furthermore, the inclusion i : F(A) — R(A) induces a continuous map
li|* : |[F(A)|T — |R(A)|". The following result can then be found as [17, Corollary 3.7].

Theorem 5.33. The map |i|" : |F(A)|" — |R(A)|" induces an isomorphism on the homotopy
groups of dimension greater than 2. To be precise,

il (| FA) = m([R(A)F) = K(A)

*

15 an tsomorphism for all n > 2.

The next theorem is then a consequence of the Hurewicz isomorphism theorem, see for example
[13, Theorem 4.3.2].

Theorem 5.34. The Hurewicz homomorphism hy : mo(|F(A)|T) — Hy(|F(A)|T) & Hy(F(A))
15 an 1somorphism. In particular, the second relative K-group is isomorphic to the second
homology group of the Kan complex F(A).

This shows that the different definitions of relative K-theory given in Definition 3.12 and
Definition 5.15 agree up to isomorphism.

Assume that A is a commutative and unital Banach algebra. Let us fix two continuous maps
0,7 :[0,1] — A* with values in the group of invertibles and with o(t) = 1 = 7(¢) for all ¢t € [0, €).
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Each of the two elements will then define a class in the first relative K-group, [o],[7] € KI'(A)
and we can thus form their interior relative Loday product,

o]+ [7] € K3(A)
However, we can also form the relative Steinberg symbol of the continuous maps,
{0, 7} € Hy(F(A))

Our aim is to show that these two elements coincide up to a sign under the isomorphism
K3(A) = Hy(F(A)) which we have just described.

Let X be a pointed space. Let us start by recalling the definition of the Hurewicz homomor-
phism, hy : m(X) — Hy(X). We know that the singular homology of the sphere is given by
the integers Ho(S?) = Z and we can thus fix a generator [17] € Hy(S?). Now, since singular
homology is homotopy invariant we can define the Hurewicz homomorphism by the formula

half] = f[lz] [/] € ma(X)

We can choose an explicit cycle for the generator [1z] € Hy(S?), namely, we let
lz =m Ano—10Am € Z[Sy(S?)]

Here 1o (t1, 1) = e2™2 € S and 0, (1, 1) = e?™iitt2) ¢ ST,

Next, note that the elements [o], [1] € KT (A) = 7, (|]R(A)|") can be described as the following
loops

Vo (e¥™) = (t,0) € |R(A)| CIR(A)[T and . (e*™) = (t,7) € [R(A)| C [R(A)[*
Here t € [0, 1].

Now, the geometric realization of the Kan complex BZ is homotopy equivalent to the circle.
The homotopy equivalence is given by the continuous map

v : ST — |BZ| a(e*™) = (t,1)
Let us use this identification to describe the maps
7o and 7, : 51 2 [BZ| — |R(A)| C |R(A)|*
by means of simplicial maps. Namely, we let
a, and «a, : BZ — R(A)

be the simplicial maps given by

Qg in, . in) = [[(sn-1--Sj1- - 50)(0¥)

j=1
n
(i, ...y iy) = H(Sn_1 81 80)(TY)
j=1

Here the ~ signifies that the term is omitted. We then have the identities

Yo =laglom and ;= lar[oy o ST — [R(A)F
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Next, the torus S* x S! is homotopy equivalent to the classifying space of Z x Z through the
homotopy equivalences

1 x 7 : St x S — |BZ| x| BZ| = |B(Z x 7))

Here the last homotopy equivalence is given by the inverse of the projections onto the factors.
Up to homotopy the continuous map

Yo x 771 §1x S1— [R(A)T x [R(A)T = [R(A) x R(A)*
is thus induced by the map of simplicial sets

Qs X a : BZ x BZ — R(A) x R(A)

Finally, let z12(0), 213(7) € F(A); denote the diagonal matrices
r19(0) = d(o,071,1) and mz3(7) =d(1,1,77)
We then get a well defined map
dy.r| : S* x S' = |BZ x BZ| — |F(A)| C |F(A)|*
induced by the simplicial map
dg.r : BZ x BZ — F(A) (1,J) = Qaa(o) (1) * Oayy(r) ()

At this point the commutativity assumption on the unital Banach algebra A is important.

We let m : A®, A — A denote the continuous unital algebra homomorphism given by multi-
plication.

Lemma 5.35. For any p > 3 the applications
Im|t oqpp0 (o X 7) and it o|dy.| : ST x ST — |R(A)|*

are homotopic. Here we are thinking of v, X v, as taking values in the product |R,(A)|t x
|R,(A)|*. Recall that ,, denotes the modified tensor product introduced in Section 5.5.

Proof. The proof is analoguous to [25, Proposition 2.2.3| and will not be repeated here. 0

We are now in position to identify the relative interior Loday product with the relative Steinberg
symbol.

Theorem 5.36. The interior relative Loday product
[o] +! [7] € K3(A)
coincides with the relative Steinberg symbol
{r.o}™ € Hy(F(A))
under the identification Hy(F(A)) = Ki(A). Note that the order of the factors is reversed.
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Proof. From Lemma 5.35 and the definition of the interior relative Loday product we get that
the diagram

Stx St L Stast

i*o\d0.7|l J{[a]*rel[r]
|R(A)|" —= |R(A)[*

commutes up to homotopy. In particular, letting (i7)~! : |[R(A)|* — |F(A)|* denote some
inverse of the homotopy equivalence it : |[F(A)|T — |R(A)|" we get that the diagram

Stx gt 2 STAS!

Idmll l(ﬁ)‘lO([O]*“l[TD

[F(A)" == [F(AI
commutes up to homotopy.

By homotopy invariance of singular homology it follows that the Hurewicz homomorphism of
the element (it)~! o ([o] ¥ []) coincides with the class

|do.r| 0 (1,m0) = |dor] © (110, m1) € Ha(|F(A)[T)

It is not hard to see that this element coincides with the desired relative Steinberg symbol under
the identification Hy(F(A)) = Ho(|F(A)|T). Indeed, the class

(m,70) — (o, ) € Hy(S* x ST

coincides with the class
((1,0),(0,1)) = ((0,1),(1,0)) € Hy(BZ x BZ)
under the identification Hy(S* x S') = Hy(|BZ x BZ|) = Ho(BZ x BZ). But this last class is
mapped to the class
s1(212(0)) - so(213(7)) — s0(w12(0)) - s1(213(7)) € Ha(F(A))
under the simplicial map which represents the continuous map
dy.r| : ST x St — |F(A)|T

This proves the desired result. 0

6. THE HIGHER DETERMINANT OF A FINITELY SUMMABLE FREDHOLM MODULE

The explorations of the multiplicative structures in K-theory which we carried out in the last
section shed new light on the calculation of the determinant invariant by means of the trace
invariant. Let us explain ourselves. Our calculation of the determinant invariant followed a
certain scheme: We found a lift in relative K-theory of the Steinberg symbol and applied the
trace invariant to this lift. By the comparison result for the determinant invariant and the trace
invariant, Theorem 3.22, we were then able to obtain the identity

(23) det(e?ePe e P) = e T4, Bl
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Here A, B € L(H) was an almost commuting pair of operators. In the last section, we identified
our lift, that is the relative Steinberg symbol, as a special instance of a general relative Loday
product on relative K-theory, see Theorem 5.36. The Steinberg symbol in algebraic K-theory
also identifies with the algebraic Loday product, see |25, Proposition 2.2.3|. There is therefore
nothing mysterious in our choice of lift. What we did was simply to lift each of the invert-
ibles [e”],[e¥] € K1(C?[z,y]) to the contractions [v.], [v,] € Ki®(C?[z,y]). The relative Loday
product

[y] +°! (V2] = {7m77y}rel S K;d(CQ[xa yl)
should then be a lift of the algebraic Loday product

[e"] * [e"] = {e", "} € Ka(C?[z, y])
This is indeed true since the map
0: Ki‘ﬂ(CZ[xvy]) - K*<C2[$,y])

is a homomorphism of graded rings, see Theorem 5.32. In this section, we are going to apply
this idea to obtain a higher dimensional analogue of the identity (23). We will of course need a
higher dimensional version of the determinant invariant. However, the multiplicative character
of A. Connes and M. Karoubi which we examined in Section 4 extends to the higher K-groups,
see [9]. This seems to be an appropriate generalization since the two invariants coincide on the
second algebraic K-group. We have explained this result in details in Section 4. See also the
paper [16] at the end of the thesis. Let us start by introducing the multiplicative character on
the higher K-groups.

6.1. The multiplicative character of a finitely summable Fredholm module. In gen-
eral, the multiplicative character is a homomorphism

Mg K, (A) — C/(2rmi) 21z

associated with an n-summable Fredholm module over a C-algebra A. It was originally defined
by A. Connes and M. Karoubi in [9]. We will briefly review their construction in the case
where n = 2p is even. Notice that there are other ways of introducing this invariant. For
example, one could, I believe, use the multiplicative K-groups of M. Karoubi together with the
homomorphisms in multiplicative K-theory of D. Perrot induced by finitely summable Fredholm
modules. In this respect, see [22] and [30].

Let H be a fixed separable infinite dimensional Hilbert space. We let M?*~! denote the C-
algebra consisting of operators on the direct sum H @ H with antidiagonal in the 2p'" Schatten
ideal. Thus, the elements x = (x;;) € M! are precisely the bounded operators on H & H which
in their matrix representation have xq9, x9; € EQP(H). The C-algebra M?~! can be equipped
with the Banach algebra norm || -|| : M?*~! — [0, c0) given by

2] = [|2]loo + [|212]]2p + [|721]|2p

This turns M?~! into a Banach algebra. We can interpret M?*~! as a universal odd 2p-
summable Fredholm algebra. Let us explain ourselves.

Definition 6.1. Let A be a unital C-algebra. By an odd 2p-summable Fredholm module
(F, H) over A we will understand a separable Hilbert space H, a unital algebra homomorphism
m:A— L(H) and a bounded operator F' € L(H) such that
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(1) F = F*
(2) F2=1
(3) [F,m(a)] € L*(H) for all a € A.

When A is a unital Banach algebra we will say that the Fredholm module (F, H) is continuous
when the maps

7:A— LH) and aw [F,m(a)] € L?(H)
are both continuous.

We will always assume that the Hilbert spaces PH and (1 — P)H are infinite dimensional. Here
P = (F+1)/2 denotes the projection associated with the selfadjoint unitary operator F € L(H).

We let Fy € L(H @ H) denote the selfadjoint unitary given by the matrix

1 0
(o h)

Furthermore, we have a representation m : M*~! — L(H & H) given by inclusion. The pair
(Fyr, H @ H) then becomes a continuous odd 2p-summable Fredholm module over M*~1. Tt is
universal in the following sense.

Let (F, H) denote any odd 2p-summable Fredholm module over the C-algebra A. Since the
Hilbert space PH and (1 — P)H are infinite dimensional we can identify both of them with the
"universal" Hilbert space H. In this way we obtain an algebra homomorphism

A= L(HBH)

which is well defined up to conjugation by unitary operators. The condition on the commutator
[F,m(a)] € L?(H) ensures that the representation 7 : A — L(H & H) factorizes through the
Banach algebra M?*~1. Furthermore, whenever the Fredholm module (F, H) is continuous the
associated algebra homomorphism

T A— M
is continuous as well.

By a theorem of A. Connes each continuous odd 2p-summable Fredholm module gives rise to a
homomorphism on continuous cyclic homology.

Theorem 6.2. |7, 1 7. Lemma 2| Let (F, H) denote a continuous odd 2p-summable Fredholm
module over a unital Banach algebra A. The multilinear map given by

1
220 . (p—1)!

then determines a character Tp : HC5,_1(A) — C on continuous cyclic homology.

1 2p—1)

:(a®a, ... a Tr(F[F,d°|[F,a'] -...-[F,a*™!])

The rational constant — i 1s chosen in such a way that the multiplicative character which

1
2%r-(p—1)

we are going to define agrees with the one defined in [9]. The extra factor m is due to the

different definitions of the relative Chern character, compare [35, Section 3| and Definition 6.3.

We let 19,1 : HC’gp,l(/\/ﬁp—l) — C denote the character associated with the universal odd

continuous 2p-summable Fredholm module (Fy;, H @ H) over M?*~1. For any odd continuous
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2p-summable Fredholm module (F, H) over a unital Banach algebra A we then get the following
commutative diagram

HCyy 1(A) T2 HOy, (M2

(24) TFl szfll

C C

The above characters are important to us because of their connection with K-theory. The link
between K-theory and cyclic homology is established by Chern characters. We will concentrate
on the relative Chern character

ch™ : K*A) — HC,_,(A)

This natural homomorphism was originally introduced by M. Karoubi in a differential geometric
context, see [21]. We will use the simplicial version of the relative Chern character which can
be found in [9]. We should mention that there exists at least one more equivalent definition of
this homomorphism due to M. Karoubi, see [22, Section 4.2]. In this respect one should also
mention the article [40] by C. Weibel.

Let us fix a unital Banach algebra A. Recall that the relative K-theory is the homotopy groups
of the pointed, connected CW-complex |R(A)|*. We thus have a Hurewicz homomorphism

T 2 K (A) = ma(|R(A)T) — Ha(IR(A)[Y) = Ho(R(A))
with values in the homology of the simplicial set R(A).

The connection between the homology of the simplicial set R(A) and cyclic homology is given
by a chain map of degree minus one,

L: Ry(A), — Cp_y(M,,(A))

1
L(O_) = ﬁ Z SgH(S) /An Fs(l)(a) ®...® Fs(n)(g)dtl c. dtn

$€Tn
See [35]. Here we have use the notation
0o
= o
for any smooth map o : A" — GL,,(A). Note that the above chain map only makes sense
for smooth elements in R,,(A),. This is not a problem, since at the level of homology we can

choose to work only with smooth maps. See [17, Lemma 3.2|. By the logarithm we will refer
to the induced homomorphism

L+ Hy(R(A) = lim HC, (M (A)

[i(o0) ol A" — M, (A)

The direct limit is taken over the continuous algebra homomorphisms 7" +— T' & 0.

The generalized trace brings us from the continuous cyclic homology of the matrices to the
continuous cyclic homology of the unital Banach algebra,

TR : lim HC,_1(My(A)) — HC,_1(A)
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This homomorphism is given by the formula
TR : wpag @ ... @ Up_1ap_1+— Tr(ug ... Up_1)ag @ ... R ay_1
for any ag,...,a,-1 € A and uy, ..., u,1 € M,,(C). See for example, |26, Section 1.2]|.

We can thus make the following definition.

Definition 6.3. Let A be a unital Banach algebra. By the relative Chern character we will
understand the homomorphism

ch™ : K'(A) — HC,_1(A) ch™ =TRoLoh,

giwen by the composition of the Hurewicz homomorphism, the logarithm and the generalized
trace.

Disposing over a continuous odd 2p-summable Fredholm module (F, H) over the unital Banach
algebra A we can form an invariant of relative K-theory.

Definition 6.4. By the additive character of the continuous odd 2p-summable Fredholm module
(F, H) over the unital Banach algebra A we will understand the homomorphism

Ap : K§(A) — C Ap = 7p o ch™

By naturality of the relative Chern character and the commutativity of the diagram (24) we
get the commutative diagram

re (TF )« re —
K2p1(A) — K2pl<M2p 1)

Apl A2p71J(

C J— C
Here Ay, @ K5f'(M*™!) — C denotes the additive character associated with the universal
Fredholm module (Fy, L(H & H)) over M?P~1,

In [9, Théoréme 2.8] the topological K-groups of the unital Banach algebra M?*~! are com-
puted.

Lemma 6.5. For any p € N the topological K-theory of M?P™1 is given by
Ky (M) = {0} K (M) =2

In the case of the unital Banach algebra M?P~! the long exact sequence of K-groups from
Theorem 5.16 then reads

s Ky (MPY) Z —— Ki(M>) 0 Ky (M@ —— 0

In particular, the homomorphism 6 : K3%/(M?*~!) — Ky,(M?*~') is surjective. Furthermore,
since both the boundary map and the universal additive character are homomorphisms we get
that

Im(Ay,_10v)=cZCC
where ¢ € C is some constant. In [9] this constant is calculated to be ¢ = (27i)P. These results
allows us to define the multiplicative character.
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Definition 6.6. By the universal odd 2p-summable multiplicative character we will understand
the homomorphism
sz_l . KQP(M2p_1> - C/(Qm)pZ
given by
Mop-1(0(y)) = [Azp-1(y)]
Here [-]: C — C/(2mi)PZ denotes the quotient map.

In particular, let (F, H) be an odd 2p-summable Fredholm module over a C-algebra A. By the
multiplicative character of the Fredholm module we will understand the homomorphism

MF . K2p<14) — C/(Qm)pZ MF = sz,1 o) (WF)*

Here (7). : Kop(A) — Ko,(M?*7) denotes the homomorphism on algebraic K-theory induced
by the representation mp : A — M*P~1,

In the following we will address the question of calculating this homomorphism on the higher
K-groups. This brings us to the heart of the second article attached at the end of the thesis.

6.2. The multiplicative properties of the relative Chern character. Let A and B be
unital Banach algebras. We saw in Section 5.3 that the relative K-theory could be equipped
with an exterior Loday product

L KE(A) x Ki(B) = K7, (A e B)

Furthermore, we saw in the last section that the relative K-theory was related to continuous
cyclic homology by means of a relative Chern character

ch™ : K*A) — HC,_,(A)

It is natural to ask for an exterior product on continuous cyclic homology which corresponds to
the exterior relative Loday product. Since the relative Chern character has degree minus one
such a product should have degree plus one. Such a product does indeed exist and it is the
correct analogue of the relative Loday product. The main concern of this section is to expose
this multiplicative result. We start by reviewing some results concerning the product of degree
one in cyclic homology. We refer to [26] for further details on these matters.

Let A be a unital Banach algebra. Recall that C,.(A) denotes the completed Hochschild chains.
We let
X" Cph(A) @c Crp(A) = Cram(A)
denote the map given by
(ag®@ a1 @ ... 0 a,) X (bg @ apy1 R ... R Apym) = Z sgn(s)agby ® as1y @ ... @ As(nm)
SEZn,m

Here X, denotes the set of (n,m)-shuffles. To be precise, s € ¥,,,, is an (n,m)-shuffle
precisely when the associated map s: {1,...,n+m} —{ 1,...,n+m} is strictly increasing on
each of the subsets {1,...,n} and {n +1,...,n+ m}.

Now, let B denote another unital Banach algebra. We then have the chain maps
la®-:Ci(B) = Ci(A®, B) and -®1p:C,(A) — C.(A®, B)
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given by the formulas
1a®by®...0b,) =(1a®0b) ®...0 (14 ®by) and
(A ®...0a,)R@1p=(ap®1p)®...® (a, ® 1p)

Definition 6.7. Let A and B be unital Banach algebras. By the completed exterior shuffle
product we will understand the application

%+ C(A) ®¢ C(B) — Copm(A @y B) x=x"o((®1p)@(1s1®")

The Hochschild boundary is a graded derivation with respect to the exterior shuffle product.
Lemma 6.8. |26, Proposition 4.2.2] We have the identity
bx xy)="blx) xy+ (—=1)"x x b(y)
for any x € C,(A) and y € C,,(B).
This exterior shuffle product does not behave nicely with respect to the cyclic operator. There-

fore, it will not descend to the level of cyclic homology. We can however modify the exterior
shuffle product in the following way. We will make use of the following operators

N :C,(A) — C.(A) s:Cu(A) = Ciy1(A)

called the norm operator and the extra degeneracy respectively. In degree n € NU{0} they are
given by the formulas

N=1+t+...+t" s(ap®...0a,) =1Ra®...R®a,
Here t : C.(A) — C.(A) denotes the cyclic operator. See Section 3.3.2.

Definition 6.9. By the completed exterior product of degree one on cyclic homology we will
understand the bilinear map

1 Cp(A) @c O (B) — Cﬁ\+m+1(A ®r B)
gien by
rxy=2x X (sNy)
Jor each x € C)(A) and y € C)\(B).

The exterior product of degree one is a well defined map by [26, Theorem 4.4.2], see also [17,
Section 2.3]. Let us investigate its behaviour with respect to the Hochschild boundary.

Lemma 6.10. For each x € C)(A) and each y € C)\(B) we have the identity
b(x*y) =b(x) xy+ (—=1)" 1z x b(y)
The Hochschild boundary is thus a (shifted) graded derivation with respect to the product of
degree one.
Proof. We start by noting the identities
bs=1—t—sb and VN = Nb
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Here V' : C,,(A) — C,_1(A) denotes the differential in the continuous bar complex, see Section
3.3.2. It now follows from Lemma 6.8 that

b(x*y) = b(x x (sNy)) =b(x) *y + (—1)"2 x b(sNy) = b(x) xy + (=1)"z % b(y)

This proves the Lemma. O]

In particular, we get an induced map on cyclic homology
x: HC,(A) @c HC,(B) — HC i1 (A ®, B)

This is the multiplicative structure which we are interested in. Before we proceed, we should
note that the exterior product of degree one is natural in A and B, bilinear, associative and
graded commutative at the level of complezes. See |26, Section 4.4.5] and [17, Section 2.3]. We
can now state the main result of this section.

Theorem 6.11. The relative Chern character respects the exterior products. That is, we have
the identity

Chrel(ZL’ *rel y) — Chrel(x) % Chrd(y)
for each x € K'*(A) and each y € K*(B).

Proof. This result is carefully proved in [17, Section 4]. O

Suppose that we have a commutative unital Banach algebra, A. In this case the product yields
a continuous unital algebra homomorphism m : A ®, A — A. We can thus form the interior
product of degree one

my 0% : HC,(A) @c HC(A) — HCyimyi1(A)
The interior product of degree one is also denoted by .

Corollary 6.12. Let A be a commutative unital Banach algebra. The relative Chern character
s a homomorphism of graded commutative rings,

ch™ : K*'(A) — HC,(A)[1]
Proof. This follows by naturality of the relative Chern character and Theorem 6.11. U

6.3. A calculation of the multiplicative character. We are interested in the following
scenario. Assume that (F, H) is a continuous odd 2p-summable Fredholm module (F, H) over
a commutative unital Banach algebra A. Let us take 2p elements in the path component of the
identity, go, 91, -.,92p-1 € GLo(A). We will then give an explicit formula for the application
of the multiplicative character

My : Kop(A) — C/ (20T

to the interior Loday product of the invertibles, [x] = [go] * ... * [gop—1] € K2,(A). This is
possible for the following reasons:
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(1) We can find an explicit element [y] € K35%/(A) such that 0[y] = [z] € Ky,(A). Namely,
by Theorem 5.32 we can choose the lift as an interior relative Loday product of lifts of
the invertibles go, ..., g2p—1 € GLo(A). Each of the individual lifts is given by a path ; :
[0,1] — GL(A) with v;(0) = 1 and v;(1) = g; . Thus, we let [y] = [yo] ¥ .. . %" [y9,_1].
It follows that

Oly] = Oy * ... * 9[72p—1] = [go] * ... * [92p—1] = [z]

(2) We can calculate the relative Chern character of the lift [y] € K™(A4). Namely, by
Theorem 6.12 this is a question of applying the relative Chern character to each of the
contractions 7, : [0,1] — GL(A). The desirable cycle in cyclic homology is then found
by taking interior products at the level of cyclic homology.

What is left is then only to apply the homomorphism [7z] : HC,_1(A) — C/(2mi)PZ to the
relevant cycle. Let us see what we get...

We start by defining the form
(i) Mo(A)AN ... ANM(A) — C

by the assignment

(ag,...,a9p-1)F = — ! Z sgn(s)

(p - 1)' 5€S2p—1
Tr([PTR(ao) P, PTR(as))P] - ... - [PTR(as@p-2)) P, PTR(as2p-1))P))

Here P = % denotes the projection associated with the Fredholm module. Furthermore,
Sop—1 denotes the subset of permutations s € Yo, ;1 which satisfy s(2¢) < s(2¢ + 1) for all
ie€{l,...,p—1}. We would like the reader to notice that the commutator

[PTR(a)P, PTR(b)P] € LP(H)

is in the p'® Schatten ideal for any a,b € M (A). This follows from the commutator condition
on the Fredholm module (F, H) and the commutativity assumption on A. Indeed,

[PTR(a) P, PTR(b)P] = PTR(a)[P, TR(b)]P + PTR(b)[TR(a), P]P
= [P, TR(a)|[P, TR(b)]P — [P, TR(D)][P, TR(a)| P
€ LP(H)

Now, for each smooth path v : [0,1] — GL(A) with v(0) = 1 we let I(y) € My (A) denote the
matrix
1 d”y
I(y)= [ —-~7'dt
(7) N

Furthermore, for each a € M (A) we let v, € [0,1] — GL(A) denote the smooth path

’)/a(t) — e—ta
We then have the important identity
[(Va) = —a
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Recall that the additive character of the continuous Fredholm module is given by
Ap : K§(A) — C Ap = 7p o ch™
We can calculate this invariant explicitly on relative Loday products. Indeed, the following

theorem is a consequence of [17, Theorem 5.1| and [17, Theorem 5.3].

Theorem 6.13. Let A be a commutative unital Banach algebra and suppose that (F,H) is a
continuous odd 2p-summable Fredholm module over A. Let ~o,...,Yop-1 : [0,1] — GL(A) be
smooth paths with v;(0) = 1. We then have the formula

Ap([yo] # . # [yapa]) = (L(90), - -, Lvap-1)) F

for the application of the additive character to the interior relative Loday product of the classes
Yol, - -+ s [yep—1] € K3 (A). In particular, for ag,...,as,1 € My (A) we get that

AF([’YGO] el cee ! [’71121;71]) = <a0, s 7a2p—1>F

Using the above theorem we get a couple of desirable properties for the form
(yooy)p s Moo (A)N ... AN My (A) — C
directly from the corresponding properties of the relative Loday product and the relative K-

groups.

Corollary 6.14. Let vo,...,vop-1,7 : [0,1] — GL(A) be smooth paths with ~;(0) = 1 = 7(0)
and let s € Yy, be a permutation. We then have the identities
<l(%(0))> e :l(%(Qp—l)»F
=sgn(s){{(70),-- -, 1(12p-1)) F
(vo)s - Ui 7)o, l(72p—1)>p
= (1(0), - 1(Vi)s - U(v2p1)) e + (L(v0)s -+ U(T)s o L (Y2p-1)) P

in the complexr numbers.

Proof. This follows directly from the multilinearity and graded commutativity of the relative
Loday product. See Theorem 5.29. O

Corollary 6.15. Let 7o, ...,7v2p-1,7 : [0,1] = GL(A) be smooth paths with v;(0) = 1 = 7(0).
Suppose that there exists an element o € F(A) = [R(A), R(A)] such that v; - 0 ~ 7. Here ~
denotes the equivalence relation given by homotopies with fized endpoints. We then have the
wdentity

<l(70)7 cee 7l(’7i)7 R l(’72p—1)>F = <l(/70)7 SR l(T)’ s 7l(72p—1)>F
in the complex numbers.

Proof. This follows immediately since the quantity

<l<70)7 ey l(’%)v s 7l(72p—1)>F
only depends on the classes of 7, ..., 72,1 in the first relative K-group. 0
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Recall that the multiplicative character is given by the formula
Mp(0ly]) = [Arlyl] € C/(2mi)"Z

on the image of 6 : Ki'(A) — Ky,(A). Here [-] : C — C/(27i)PZ denotes the quotient map.
We can calculate this invariant explicitly on Loday products.

Theorem 6.16. [17, Theorem 5.4| Let A be a commutative unital Banach algebra and suppose
that (F,H) is a continuous odd 2p-summable Fredholm module over A. Let go,...,Ggap-1 €
GLo(A) be invertibles in the path component of the identity. Let vy, ..., Y2p—1: [0,1] — GL(A)
denote some smooth paths with v;(0) = 1 and v;(1) = g;*. We then have the formula

M ([g0] * - .- * [gap-1]) = [(L(70), -+ - 1(Y2p—1)) F ]

for the application of the multiplicative character to the interior Loday product of the classes
[90], - - -+ [92p—1] € K1(A). In particular, for ag, ..., a1 € M (A) we get that

(25) Mp([e™] ... x [e"r1]) = [<a07 e 7a2p—1>F]

Let us stop for a moment and discuss the above result. We would like to mention a couple of
things which we find interesting. Let us begin by underlining the similarity with the identity

(26) det(eteBe e B) = ¢11AB]

Here A, B € L(H) are operators with trace class commutator. In Section 3.2 we identified the
left hand side of (26) as the application of the determinant invariant ds p : Ko(C?[z,y]) — C*
to the Steinberg symbol {e®, e¥} € Ky(C?[x,y]). That is

daple®, e’} = det(etePete™P)

Furthermore, we identified the trace of the commutator as the value of a trace invariant 74 p :
K3(C?[z,y]) — C on a relative Steinberg symbol, {7,,7,}™ € K (C?[z,y]). That is

TA,B{’va ’Yy}rel = TI'[A, B]

By the comparison result, Theorem 3.22, and the fact that 6{~,,,}"™ = {e%, €Y} we could
then obtain the identity (26). In Section 4 we were then establishing the link between the
determinant invariant and the multiplicative character. That is, we were able to associate a
determinant invariant dp : K3(B) — C* and a surjective algebra homomorphism Rp : A — B
to each odd 2-summable Fredholm module over the C-algebra A. We could then prove the
commutativity of the diagram

Ko(A) B k,(B)

Mpl dFl
Cc/(2mi)z =25 C*

See Corollary 4.9. In company with the comparison theorem this was essentially done by
showing the coincidence of a universal trace invariant and a universal additive character of
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2-summable Fredholm modules. In particular, assuming that (F, H) is a continuous odd 2-
summable Fredholm module over a commutative Banach algebra A we get the identity

(expoMp){e®, e’} = (dp o (Rp),){e®, e’}
= dp{q(Pr(c")P),q(Pr(e")P)}
= exp (Tr[Pr(a) P, Pr(b)P))
Or equivalently, Mp{e?®, e’} = Tr[Pr(a)P, Pr(b)P] € C/(2mi)Z. Finally, since the Steinberg
symbol is a special instance of the interior Loday product we get the identity
Mp([e"] % [e]) = Tr[Pr(a) P, Pr(b)P] € C/(2mi)Z

This is precisely the result of Theorem 6.16 when p = 1. This seems to justify the interpretation
of the formula (25) as a higher dimensional analogue of the formula (26). Furthermore, the odd
multiplicative character could be seen as a generalization of the determinant invariant to the
higher algebraic K-groups.

Let us continue our investigation of the result in Theorem 6.16. Remark that the left hand
side of equation (25) only depends on the exponentials e®, ... e%-1 € GLy(A). However, the
right hand side only depends on the logarithms ay, . ..,as-1 € My (A). Therefore, suppose
that b; € M, (A) is another matrix over A with e% = e%. We then get that the difference

<a0, ey Qe 7a2p_1>F - <(l0, coybiy ,agp_1>F € (QWZ)pZ

is contained in the additive subgroup (27¢)P?Z C C of the complex numbers. Actually we have
an even stronger invariance results.

Corollary 6.17. Let vy, ...,Yop-1 : [0,1] — GL(A) be smooth paths with v;(0) = 1. Suppose
that 7; : [0,1] — GL(A) is a smooth path with 7;(0) = 1 and 7;,(1) = v;(1)h where h € E(A) is
some elementary matriz. The difference

<l<70)7 R l(72)7 ce 7l(72p*1)> - <l(70)7 SR l<7—i)7 s 7l<72p71>> € (27‘(@)7’2

is then contained in the additive subgroup (2mi)PZ C C of the complex numbers.

Proof. This follows from Theorem 6.16, and the fact that the multiplicative character only
depends on the classes of the endpoints v;(1)™! € GLo(A) in the first algebraic K-group. O
We feel that we have justified the following definition.

Definition 6.18. Let (F, H) be an odd 2p-summable Fredholm module over some commutative
unital C-algebra A. By the higher determinant of (F, H) we will understand the map

detr : GL(A)* — C/(2mi)'Z
given by
detr(go, - -, g2p—1) = Mr([go] * ... * [g2p—1])

We then get a couple of desirable properties for the higher determinant straight from the
corresponding properties of the Loday product and the first algebraic K-group.
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Corollary 6.19. Let gy, ..., g2p-1,h € GL(A), let s € ¥y, be a permutation and let e € E(A)
be some elementary matriz. We then have the identities

detF(.gS(O)y s 798(2p71)) = Sgn(s)detF(go, s a92p—1)
detF(.q(b -y i h7 .. '92])—1) - detF(gO? vy Giy e 7g2p—1) + detF(gOJ ceey h7 s 792]7—1)
detr(go, ..., g€ ..., 92p—1) = detp(go, . - ., gop—1)

Now, let A be a commutative unital Banach algebra and let (F, H) be a continuous 2p-summable
Fredholm module over A. It follows from the last corollary and Theorem 6.16 that the higher
determinant is calculizable on the path component of the identity. This is due to the fact that
each element in GLy(A) can be obtained as a product of exponentials, see |1, Proposition 3.4.3].
In the next section we will consider a concrete example and thus make the explicit formula for
the determinant even more tangible.

7. THE DETERMINANT OF AN ODD DIMENSIONAL TORUS

As mentioned above we will now consider a very concrete example, namely the case of an odd
dimensional torus, T?~!. We will construct a continuous odd 2p-summable Fredholm module
(F, H) over the unital Banach algebra CP*2(T?~!) which arises from the geometry of the torus.
We will then see that the evaluation of the associated character

TF - HC’gp,l(Cp“(sz*l)) — C
on the Hochschild cycle
T = Z Jo® fsy®@...®@ f(s2p—1)) = fox...* fop
s€Xo2p-1

is given by the integral
TF(.T) = C/ fodfl VAN df2p—1
T2p—1
Here fo, ..., fop-1 € CPT2(T*71) are any CP"2-functions on the torus and

Q,  (=9)!(2p 1)
nmr 2t (p 1) nmep
is a constant. It follows that the higher determinant of the above Fredholm module is given by
the formula

detp(el, ... ef» 1) = [tp(fox ... x fop1)] = [C/ fodfi A ... N dfsp_i1] € C/(2m0)PZ

T2p—1

Here [-] : C — C/(2mi)PZ denotes the quotient map. In particular the higher determinant is
surjective in this case. In order to perform this calculation (in an understandable way) we will
need to introduce the reader to some concepts and results from noncommutative geometry. We
will use [8] and [11] as our main references. We should note that the above calculation of the
Chern character over the torus is by no means new. See for example [23]. Furthermore, there
should be no problems in replacing this specific manifold by any odd dimensional compact spin
manifold without boundary. We would in this general case obtain a similar formula. See the
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remark after |11, Theorem 10.32]. We have chosen the case of a torus to keep things as simple
as possible.

7.1. Preliminaries from noncommutative geometry.

7.1.1. The Dixmier trace. Let H be a separable Hilbert space. The Dixmier trace is a trace
defined on a certain ideal, £1*(H), in the bounded operators, £(H). In general, the Dixmier
trace of an operator will depend on the choice of a limiting procedure. In noncommutative
geometry it is considered as a noncommutative integral. We will need it for our calculation of
the higher determinant.

Definition 7.1. By the Dixmier trace ideal we will understand the subset of the compact
operators given by

LT(H)={T € K(H)| sup {2;((77;3 < oo}

Here 0,(T) = so(T) + ... + s,—1(T') denotes a partial sum of the singular values of T

We recall the well known inequalities
on(T+95) < 0,(T)+0,(S) and 0, (ATB) < ||Allocon(T)|| Bl

which are valid for any compact operators T',S € K(H) and bounded operators A, B € L(H).
These inequalities ensure us that the Dixmier trace ideal is really an ideal in £(H). Furthermore,
it becomes a Banach x-algebra when equipped with the norm

Il £ () = [0, 00) Iy = sup, g 222

Note that the Dixmier trace ideal is closed under adjoints since T' € K(H) and T* € K(H) have
the same sequence of singular values.

In many examples we get operators which are not in the Dixmier trace ideal but in a larger
ideal.

Definition 7.2. Let 1 < p < co. By the p' Dixmier ideal we will understand the ideal in L(H)
given by

LPH(H)={T € K(H) | sup on(T) < oo}

nlfl/p
As it is the case for the Dixmier trace ideal, the p'" Dixmier ideal is really an ideal in £L(H).
Furthermore, it becomes a Banach x-algebra when equipped with the norm
on(T
11l p4 : £77(H) — [0, 00) IT I+ = sup,en Z45%
We then have the following result.

Lemma 7.3. |11, Lemma 7.37| Let A € LPT(H) be a positive operator. The p™ power of A is
then contained in the Dizmier ideal. That is

AP e LYT(H)
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Let us turn to the description of the Dixmier trace. Let T' € K(H). For each A\ € [1,00) we
define the number

oA(T) = (1= )0u(T) + tos (T)
Here n = | A] is the integer part of A and ¢ = A —n. We can then consider the Cesaro mean of
the function A — o,(T")/log(\). That is

1 A ou(T) d
T = log(\) /3 log(u) u

Clearly, whenever T € L (H) the function A — 7,(T) is bounded. In general, however,
nothing assures that the limit of 7,(7") exists for A\ — oo. Instead, for positive operators in the
Dixmier ideal, the value of the Dixmier trace is a generalized limit of this function. The limiting
procedure will depend on the choice of a state on the quotient C*-algebra Cy([3, 00))/Co([3, 00)).
Let us thus fix such a state

w: Cp([3,00))/Co([3,0)) — C

Definition 7.4. Let T € L'T(H) be a positive operator in the Dizmier ideal. By the Dizmier
trace of T we will understand the positive number

Try,(T) = w(A(T))

The Dixmier trace extends to all of £'*(H) by noting that each T' € L' (H) can be written as
a linear combination of positive operators. Indeed, for T € L' (H) we have
T+T* i(T*=T)
2 T
and for each selfadjoint element 7' € LT (H) we have

T —

T = (T + (7))~ (1T~ T)

We then define the Dixmier trace using this decomposition.

Theorem 7.5. /|8, IV.2. Proposition 3| For each choice of state w : Cy([3,00))/Co([3,00)) — C
the Dizmier trace 1s continuous and linear
Tr, : L' (H) — C
Furthermore, it satisfies the tracial property
Tr,(TS) = Tr,(ST)
for each T € LY (H) and S € L(H).

We say that an operator T' € L1 (H) is measurable when its Dixmier trace is independent of
the choice of state. For measurable operators we denote the common value of their Dixmier
traces by Tr, (T') € C. As an example, take any postive operator of trace class, T € L'(H). In
this case we get that

(™) _ 1Tl

log(n) ~ log(n)
It follows that the Dixmier trace of 1" is zero no matter how we choose the state. In particular
we get the following result.

— 0
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Theorem 7.6. |8, IV.2. Proposition 3| All operators of trace class are measurable and the
Dizmier trace vanishes identically on L'(H).

There are however many measurable operators with nonvanishing Dixmier trace. Let us look
at a very general example of this phenomena. This will also explain the interpretation of the
Dixmier trace as a noncommutative integral. Namely, let M be a compact, n-dimensional,
orientable Riemannian manifold without boundary. We then have the Riemannian volume
form v, € A"(M,R) and the scalar Laplacian

A:C®(M) — C=(M) A= —(*dxd)

Here d : A*(M) — AF*L(M) denotes the exterior differential and x : A¥(M) — A" k(M)
denotes the Hodge star operator associated with the orientation. See [38, p.149-150], for exam-
ple. The scalar Laplacian is a positive elliptic differential operator of order two. In particular,
we can make sense of the operator, A~"/2, as an elliptic pseudodifferential operator of order
—n. It extends to a bounded operator on the Hilbert space, H := L?(M), of square integrable
functions on M. In fact, A="/2 € L'*(H), is an element of the first Dixmier ideal. Tts Dixmier
trace can be computed by the following trace theorem of A. Connes. We let the continuous
function on M act by multiplication on the Hilbert space L?(M).

Theorem 7.7. [11, Corollary 7.22] The operator fA™™% € L1*(H) is measurable for any
continuous function f € C(M) and we have the identity

Mo v (ra) = [ g,

between the Dizxmier trace and the integral of functions against the Riemannian volume form.
27r”/2

Here Q,, = T is the standard volume of the sphere S™~1.
2

7.1.2. The Hochschild character formula of A. Connes. In this section we will expose another
result of A. Connes which we will use for the calculation of the higher determinant. We will
consider the case where a finitely summable Fredholm module arises from a spectral triple. In
this context it is possible to compute the Hochschild class of the Chern character by means
of a Dixmier trace. In the case of an orientable compact Riemannian manifold it is therefore
essentially given by the integral of some function. This is due to the result of A. Connes which
we stated in the last section, see Theorem 7.7. We will briefly review the theory needed for the
statement of the desired computational result.

Definition 7.8. Let A be a unital C-algebra represented by a unital representation m : A —
L(H) on a separable Hilbert space H. Let D be an unbounded selfadjoint operator on H. We
say that the triple (A, H, D) is an odd unital spectral triple when the conditions

(1) a(Dom(D)) € Dom(D) and [D,a] extends to a bounded operator on H.
(2) The resolvent (A + D)™' is compact for all X € C — R.

are satisfied for all a € A.

We will need some extra conditions on our spectral triples in order for the computational result
to apply. We will both require a regularity condition and a stronger decay condition for the
resolvent.
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Definition 7.9. Let n € [1,00). We say that an odd unital spectral triple is (n+)-summable
when the resolvent (A + D)~' € L™ (H) is actually contained in the n'® Dirmier ideal for each
AeC—-R.

By the functional calculus for unbounded selfadjoint operators we can form the positive operator
|D|. We will then consider the derivation § : T+ [|D|,T]. The domain of ¢ consists of the
bounded operators T' € L(H) such that

T(Dom(|D]|)) € Dom(|D|) and [|D],T] extends to a bounded operator on H
We let Ap denote the smallest subalgebra of £(H) such that
a€ Ap and [D,a] € Ap forall ac A

Definition 7.10. Let k € N. We say that a spectral triple (A, H, D) is QC* when the algebra
Ap is contained in the domain of the derivation 6™ for each 1 < m < k.

We will now outline how to construct Fredholm modules from spectral triples. So, let (A, H, D)
be a spectral triple. We let P = 1jg (D) denote the spectral projection of D associated with

the subset [0,00) C R. We can then form the selfadjoint unitary F' = 2P — 1 € L(H). The
next result is a consequence of |11, Lemma 10.18|.

Theorem 7.11. Let ¢ > 0 and let n € [1,00). If (A, H,D) is an odd unital (n+)-summable
unital spectral triple then the pair (F, H) is an odd (n + €)-summable Fredholm module over
A. Furthermore, if A is a unital Banach algebra and both the representation and the linear

map a +— [D,a] are continuous, then the Fredholm module (F, H) is continuous as well. See
Definition 6.1.

We will need one more ingredient for the statement of the Hochschild character formula. Let
A be some C-algebra. For each n € Ny we let C¥8(A) = A ®c A®" denote the vector space
of algebraic Hochschild chains. By an algebraic Hochschild cycle we will then understand an
element = € C8(A) with b(z) = 0. Here

b: CHE5(A) — C%,(A)
n—1
blag®a; ®...Qa,) = (—1)"a,a0 Q... @ ap_q1 + Z(—l)iao R ... ® i D ... R ay,
i=0

denotes the Hochschild boundary. Clearly, each Hochschild cycle gives rise to an algebraic cyclic
cycle by means of the quotient map

I:0Y(A) — C¥8(A)/Tm(1 — 1)

Now, by the formula of Theorem 6.2 each odd 2p-summable Fredholm module (F, H) over a
unital C-algebra A gives rise to a homomorphism

7 C5% (A)/Im(1 —t) — C
We could try to investigate this homomorphism on the image of the quotient map

1:C5% (A) — C3% (A)/Im(1 —t)
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The character formula of A. Connes deals with this question in the case where the Fredholm
module comes from a spectral triple.

Let n = 2p — 1 € N be and odd number. Let (A, H,D) be an odd unital (n+)-summable
spectral triple. We can then make sense of the operator |D|~! on the Hilbert space Ker(D)=*.

The bounded operator |D|™' € L(H) is then given by the matrix

(D0
o= (P

with respect to the decomposition H = Ker(D)* @ Ker(D). The (n+)-summability of the
spectral triple ensures us that |[D|™* € £""(H) is in the n'" Dixmier ideal as well. In particular,
it follows by Lemma 7.3 that |D|™ € £ (H) is of Dixmier trace class. We thus have a linear
map
#h: Copia(A) = C

given by

QO%(CLO &® aq ®X...Q agp_l) = TI‘w<CLO[D, al] ot [D, agp_l]’D‘i%)Jrl)
for any choice of state w : Cy([3,00))/Co([3,00)) — C. The character formula of A. Connes can
then be stated as follows:

Theorem 7.12. [11, Theorem 10.32] Let n = 2p — 1 € N be an odd number. Let (A, H, D)
be an odd unital QC?* (n+)-summable spectral triple. Let (F, H) be the associated 2p-summable

Fredholm module over A. Suppose that x € CS;%l(A) s an algebraic Hochschild cycle. We then
have the formula

Tr(I(z)) = —m%(m)

for the evaluation of the Chern character on I(x) € C¥8(A)/Im(1 — t).

7.2. An integral formula for the higher determinant of a torus. We are now ready to
prove the computational result which we promised at the end of Section 6.3. We will consider
the concrete example of an odd dimensional torus, T?~!. In this setting there is a spectral
triple T?P~1 = (CP*2(T?~1'), H, D) which satisfies the sufficient conditions for the Hochschild
character theorem to apply. The square of the selfadjoint operator D agrees with the scalar
Laplacian. On Hochschild cycles we can thus express the Chern character of the associated
Fredholm module by means of integration over the torus. Combining this with the calculation
of the multiplicative character which we carried out in the last sections we are then able to
prove the following result.

Theorem 7.13. Let n = 2p — 1 be an odd number. There is a higher determinant
dety : GL(CPT*(T?*~1))* — C/(2mi)PZ
satisfying the properties stated in Corollary 6.19. For any 2p-tuple of matrices
fos- -y fop1 € My(CPT2(T?71))

it s given by the integral

detp(e, ... .ef»1) = [C / TR(fo)dTR(f1) A ... AdTR(fap-1)]

T2p—1
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over the torus. Here
(—0)P(2p —1)! Q,
v+l (p—1)! n2m)"

2rn/2

(%)

C = eC

is the standard volume of the sphere S™~1.

18 a constant. Recall that €, =

Let us start by constructing the appropriate spectral triple, T?~! = (CP™2(T?*~1) H, D). We
will thus explain the terms. The unital C-algebra is the unital Banach algebra of CP*2-functions
on the torus of dimension (2p — 1), CP™2(T?~1). The Hilbert space will be a direct sum of
square integrable functions on the torus
H:=C""®LX(1"")

The representation is the unital continuous algebra homomorphism

7 CPT2(T") — L(H) 7 f = 1o @ m(f)
given by multiplication on the factor L*(T?~!). To define the unbounded operator D on H we
need a bit more structure.
For each j € {1,...,2p—1} let 9; := —z'a%j denote the unbounded operator on L?*(T?*~1) given

by differentiation with respect to arclength in the j*" copy of the circle. Furthermore, we define
the two by two matrices

(10 (01 (0 =i
=0 1) M7 1o0) ®Ti o0
For each j € {1,...,2p — 1} we then define a matrix ¢; € My-1(C) by the formula

AWR.. RV ®1I®...®1 for j=2k—1
—_———

k—1
AWR.. RV R¥I®...®1 for =2k
—_———

k—1

Cj =

Here we have used an identification
(27) Y My(C) ®c ... ®@c Ma(C) = My-1(C)
arising from an isomorphism of vector spaces

(CoC)&c...0c (CaC)=C?

This determines a representation of the complex Clifford algebra over R2~1 on C¥'. Indeed,
the matrices ¢; € Map-1(C) satisfy the relations

cjc, = —cpe; for 1<j<k<2p—-1
cjc; =1 for je{1,...,2p—1}

The unbounded operator D on H = C?"" ® L*(T%~') can then be written as the sum
D=ci®h+...+ cop-1 @ Ogp1

This unbounded operator extends to a selfadjoint operator with domain equal to a direct sum of
the first Sobolev space on the torus. This operator will also be denoted by D. The data which
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we have just defined combines to a spectral triple with the right properties for the Hochschild
character formula to apply.

Theorem 7.14. Let n = 2p — 1 € N be an odd number. The triple T" = (CP™2(T"), H, D) is
an odd QC? (n+)-summable unital spectral triple. Furthermore the linear map f — [D, f] is
continuous on CPT2(T").

Proof. We leave the proof to the reader. 0

Let us fix a state
w : Cy([3,00))/Co([3,00)) — C
and try to compute the quantity

p(fo® ... @ fop1) = Tro(folD, fi] - ... - [D7f2pf1”D‘72pH)
Here fo, ..., fap_1 € CPT2(T?~1) are CP*2-functions on the torus.
We start by noting that the commutator
(D, fl= =i e ® 5 f e Crr2 (T 1)

is given by Clifford multiplication and multiplication by the partial derivatives of f. Further-
more, we can calculate the square of the unbounded operator D

2p—1

_D2 — 121771 ® ( Z 832) — ]_prl ® A

J=1

Here A : C(T?~1) — C°°(T*~!) denotes the scalar Laplacian associated with the Riemannian
volume form v, = df; A ... Adfy,—y € AP~H(T?1 R).

To proceed we will need the following general lemma on Dixmier traces over matrices.

Lemma 7.15. Let H be a separable Hilbert space and let A € My(LYF(H)) C L(H*) be a
matriz with Dizmier trace class entrances. The Dizmier trace of A is then given by the Dizmier
trace of the diagonal. Thus,

Tr,(A) = Z Tro(Ay)

We also note that the trace TR : Ma-1(C) — C can be computed on a tensor product by the
formula

TR(Y(A ® ... ® Ay_1)) = TR(A,) -...  TR(A,_y)

Here ¢ denotes the identification of (27) and A,..., 4,1 € My(C). Combining this result
with the above lemma we get that

Tro((cj, - ¢5) @ fID[7) =0
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for any continuous function f and any subset 1 < j; <... <, <2p—1with1 <k <2p—1.
Letting n = 2p — 1 we can thus compute as follows

Gp(fo@ .. ® o) = ()P Trs(er . s @ foddet(Jp)| DI
= (=0)"2" " Tr, (fodet(Jy)| D|~*1)

(28) o
= (—i)P2r!—"— _
( Z) n(27r)" /]1*2731 defl A A df2p 1
Here J; € M, 1(CPT(T#71)) denotes the Jacobian
ofi
(Jp)is = 20,

For the last identity we have used the trace formula of Theorem 7.7.

We can now prove the theorem announced at the beginning of this section. We let (F, H)
denote the Fredholm module over CP*2(T?~1) which we get from Theorem 7.11. We note that
(F, H) is odd 2p-summable and continuous. In particular we have the higher determinant

detp : GL(CPT2(T?P~1))? — C/(2mi)PZ detr(go, -y gap—1) = Mp([go] * - . * [g2p-1])

By the calculation of the multiplicative character given in Theorem [17, Theorem 5.4| it is given
by the concrete formula

detF(ef()? e ’€f2p_1) = [tr(fo* ... * f2p71)]
But the product
fo [ 3 f2p71 c C;;gil(CerQ(Tprl)) g 02p71(0p+2(v]r2p—1>>

is actually an algebraic Hochschild cycle. It therefore follows from Theorem 7.12 and the
calculation in (28) that

Tr(fo* ... % fap_1)

1
= w1 1>!80°13(f0 * ok fopo)
(=i)P(2p—1)!

T2 - 20 /T fodfu ... Ndfapy € C/(2mi)'Z

This proves Theorem 7.13.
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