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Abstracts

A. Empirical Performance of Models for Barrier Option Val-
uation

Joint with Rolf Poulsen, University of Copenhagen

In this paper the empirical performance of five different models for barrier
option valuation is investigated: the Black-Scholes model, the constant
elasticity of variance model, the Heston stochastic volatility model, the
Merton jump-diffusion model, and the infinite activity Variance Gamma
model. We use time-series data from the USD/EUR exchange rate mar-
ket: standard put and call (plain vanilla) option prices and a unique set
of observed market values of barrier options. The models are calibrated
to plain vanilla option prices, and prediction errors at different horizons
for plain vanilla and barrier option values are investigated. For plain
vanilla options, the Heston and Merton models have similar and superior
performance for prediction horizons up to one week. For barrier options,
the continuous-path models (Black-Scholes, constant elasticity of variance,
and Heston) do almost equally well, while both models with jumps (Mer-
ton and Variance Gamma) perform markedly worse.

B. Constant Proportion Portfolio Insurance: Discrete-time
Trading and Gap Risk Coverage

This paper studies constant proportion portfolio insurance (CPPI) in a
setup that accounts for market frictions. Trading costs, fees and borrowing
restrictions are incorporated, and the assumption of continuous portfolio
rebalancing is relaxed. The main goals are to cover issuer’s gap risk and to
maximize CPPI performance over possible multipliers; the proportionality
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factor that determines the risky exposure of a CPPI. Investment objectives
are described by the Sortino ratio and alternatively by a kinked constant
relative risk aversion utility function. Investors with either objective will
choose a lower multiplier than if CPPI performance is measured by the
expected return. Discrete-time trading requires a portfolio rebalancing
rule, which affects both performance and gap risk. Two commonly applied
strategies, rebalancing at equidistant time steps and rebalancing based on
market movements, are compared to a new rule, which takes trading costs
into account. While the new and the market-based rules deliver similar
CPPI performance, the new rebalancing rule achieves this by fewer trading
interventions. Issuer’s gap risk can be covered by a fee charge, hedging or
by an artificial floor. A new approach for determining the artificial floor is
introduced. Even though all three methods reduce losses from gap events
effectively, the artificial floor and hedging are less costly to the investor.

C. Constant Proportion Debt Obligations (CPDOs): Mod-
elling and Risk Analysis

Joint with Rama Cont, Columbia University

Constant proportion debt obligations (CPDOs) are structured credit deriv-
atives indexed on a portfolio of investment grade debt, which generate
high coupon payments by dynamically leveraging a position in an under-
lying portfolio of index default swaps. CPDO coupons and principal notes
received high initial ratings from the major rating agencies, based on com-
plex models for the joint transition of ratings and spreads for underlying
names. We propose a parsimonious model for analysing the performance
of CPDOs using a top-down approach which captures essential risk fac-
tors of the CPDO. Our analysis allows to compute default probabilities,
loss distributions and other tail risk measures for the CPDO strategy and
to analyse the dependence of these risk measures on parameters describ-
ing the risk factors. Though the probability of the CPDO defaulting on
its coupon payments is found to be small, the ratings obtained strongly
depend on the credit environment. CPDO loss distributions are found
to be bimodal and our results point to a heterogeneous range of tail risk



measures inside a given rating category, suggesting that credit ratings for
such complex leveraged strategies should be complemented by other risk
measures for the purpose of performance analysis. A worst-case scenario
analysis indicates that CPDOs have a high exposure to persistent spread-
widening scenarios. By calculating rating transition probabilities we find
that ratings can be quite unstable during the lifetime of the CPDO.
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1. Introduction

This thesis considers different risk aspects of trading in financial deriva-
tives and structured products.

A financial derivative is an agreement to exchange cash or assets over
time given some condition on the value of an underlying asset. In general,
the purpose of derivatives trading is to transfer risk. Derivatives can be
used for insurance purposes as provided by put options, for speculating in
future market moves and for providing certainty in future cashflows as e.g.
achieved by an interest rate swap. Derivatives are also used for hedging
risky positions: by entering a derivative contract whose value moves in
the opposite direction of the underlying portfolio, part of the risk can be
mitigated.

Structured products are pre-specified trading strategies in an asset or
a financial derivative. These strategies are typically designed to meet spe-
cific investment objectives that are not otherwise achievable by the finan-
cial instruments available in the market. In theory investors could simply
follow the investment strategy themselves, but the costs and transaction
volumes are beyond the scope of many individual investors. Dynamic
trading strategies can provide principal protection, enhanced returns or
reduced risk within an investment. A portfolio insurance strategy is stud-
ied in chapter 3.

The use of complex structured products, and especially credit prod-
ucts, has been criticized for playing a part in the financial crisis. Investors’
demand for high return in the low spread environment prior to the crisis
prompted financial institutions to develop complex structured products.
Some of these involved structuring and repackaging of risky assets that
made it (almost) impossible to track underlying risk factors. The con-
stant proportion debt obligation studied in chapter 4 is a structured credit
product that was created to generate high coupons at a low risk, however
in hindsight the underlying risk factors were not fully understood.

Financial institutions, that issue structured products or act as inter-
mediaries for financial derivatives trading, need efficient risk management



tools. Institutions typically cover their risks by selling (part of) the risk
in the market or by hedging, and require accurate methods for pricing the
derivatives on their books. A range of models for derivatives pricing exist,
nevertheless, they may produce quite different results. In chapter 2 this
problem of model risk for barrier option valuation is considered.

The following sections introduce the three financial products consid-
ered in the thesis: barrier options, constant proportion portfolio insurance
and constant proportion debt obligations. Furthermore, motivation for
studying different risk aspects of pricing, issuing and investing in these
products are provided. Chapters 2-4 contain the papers in their full
length.

1.1 Barrier options

Barrier options belong to a group of financial derivatives called exotic
options. An exotic option is characterized by having a payoff that is
contingent on the path of the underlying asset up to expiry. In contrast,
the payoff of a plain vanilla (put and call) option depends only on the value
of the underlying asset at expiry. A barrier option delivers a payoff of put
or call type and is initiated (knocked-in) or exterminated (knocked-out)
if the value of the underlying asset crosses a pre-specified barrier prior
to expiry. For example, while an ordinary call option on an asset with
value St at expiry T and strike K pays [S7 — K]t := max{S; — K, 0}, the
corresponding down-and-out call option with barrier B pays

{[ST—K]+ if vt <T: S; > B

0 else

I.e. the option is knocked-out if the value of the underlying asset at some
point prior to expiry falls below the barrier. More complex types of bar-
rier options exist (double barrier options, options with time-dependent
barriers, barrier options paying a rebate at knock-out, etc.), however, this
thesis focuses on single barrier options with no rebate.

The barrier events characterizing single barrier options can be divided
into four categories: up-and-in, down-and-in, up-and-out and down-and-
out. Each of these can be combined with a payoff of put or call type
resulting in a total of eight barrier option varieties. Barrier options whose



plain vanilla counterpart is in-the-money, when the barrier event happens
are called reverse barrier options. These are down-and-out puts, up-and-
out calls and their knock-in counterparts.

The path dependency of barrier options makes analytical valuation
complex and in some models even impossible. Therefore, numerical pricing
methods are often used. Accurate approximations can be hard to obtain,
though, especially for reverse barrier options, which have discontinuous
payoff functions. Model risk is another challenge when valuing barrier
options; it has been documented (e.g. by Schoutens, Simons & Tisteart
(2004) and Hirsa, Courtadon & Madan (2002)), that while different models
price plain vanilla options similarly, they may produce markedly different
barrier option prices.

A barrier option can be an attractive alternative to its plain vanilla
counterpart, because it has a lower price due to its payoff being conditioned
on the occurrence of a barrier event. Barrier options are traded over
the counter, which means that buyer and seller negotiate the terms of
the contract directly. Therefore price information for barrier options is
generally not accessible. In comparison, plain vanilla options are exchange
traded derivatives, where price information is publicly available. For this
reason empirical studies of barrier options are scarce.

The valuation of barrier options within different models has previ-
ously been considered by Maruhn, Nalholm & Fengler (2009) and An &
Suo (2009) who study hedge portfolios for barrier options. Yet, actual
market values of barrier options are absent from both studies. Few pa-
pers investigate actual market values of barrier options: Easton, Gerlach,
Graham & Tuyl (2004) and Wilkens & Stoimenov (2007) work solely in
realm of the Black-Scholes model, while the empirical application of Carr
& Crosby (2009) is limited to two specific days.

Paper A Empirical Performance of Models for Barrier Option Valu-
ation is an empirical investigation of how well different models work for
barrier option valuation. The paper employs a unique data-set of val-
ues of barrier options on the USD/EUR exchange rate obtained from the
risk-management department of the largest Danish bank.

We study the issue of model risk by comparing the prices produced
by five different models: the Black-Scholes model, the constant elasticity
of variance model, Heston’s stochastic volatility model, Merton’s jump-
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diffusion model, and the infinite jump activity Variance Gamma model.
These models are commonly used in the literature, and are qualitatively
different: one model with state dependent volatility versus one with sto-
chastic volatility, and a model with low jump activity and large jumps
versus one with high jump activity and small jumps.

We choose an experimental design that reflects market practice: the
models are calibrated to liquid plain vanilla options and the calibrated
models are then used to price barrier options. Closed-form formulas for
barrier option prices exist in the Black-Scholes model, whereas prices in
the other models are found by numerical methods. We test the predictive
qualities of the models over a horizon h by comparing observed option
values to model values using h days old parameters. Such conditional pre-
dictions are important for example in a context where plain vanilla options
are used as hedge instruments to create portfolios that are immunized to
changes in state variables.

For pricing plain vanilla options we find that the Heston and Merton
models have comparable performance, and that this performance is su-
perior to that of the three other models. With respect to barrier option
valuation, the continuous-path models (Black-Scholes, constant elasticity
of variance and Heston) perform similarly, while both models with jumps
(Merton and Variance Gamma) are very inaccurate. General for all the
models is that pricing errors for reverse barrier options are larger than for
the non-reverse. The good behaviour of the Black-Scholes model could
be explained as a self-fulfilling prophesy if market participants use (vari-
ations of) the Black-Scholes model for valuation, however, this cannot be
the only reason, since the results are invariant to the prediction horizon.

1.2 Constant proportion portfolio insurance

Portfolio insurance is a portfolio management technique for ensuring a
lower bound on the portfolio value at a given maturity. Theoretically,
insurance against unfavourable market scenarios for some asset can be
obtained by investing in a put option with strike equal to the desired lower
bound. However, such a put option may not be available in the market, for
example if the investment horizon is long. Still it is possible (if assuming
complete markets) to replicate the payoff of the put option by trading in
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the underlying and a risk free asset. This portfolio insurance technique is
referred to as option based portfolio insurance (OBPI) and dates back to
Leland & Rubinstein (1976) and Brennan & Schwartz (1976).

Another popular portfolio insurance strategy is constant proportion
portfolio insurance (CPPI) introduced by Perold (1986) and Black & Jones
(1987). A CPPI provides a capital guarantee by a dynamical investment
strategy in an underlying risky asset and the risk free asset. The risky
exposure is a constant proportion, called the multiplier, of the excess of
the portfolio value over the present value of the capital guarantee, referred
to as the floor. If the portfolio value falls below the floor, all funds are
invested in risk free assets in order not to jeopardize the guarantee any
further. The main advantages of the CPPI over the OBPI strategy! are
its simplicity, and its flexibility in the choice of multiplier, which can be
specified to accommodate investor’s risk appetite.

The CPPI strategy is widely used in the financial industry (see Pain &
Rand (2008)). Typical buyers are large individual investors and institu-
tional investors such as pension funds. A variety of underlying asset classes
can be employed; stock indices, hedge funds, corporate bonds, property
and credit default swaps. An implication of the CPPI trading rule is that
in a falling market assets are sold at a lower price than they were bought.
Because of this trend-chasing behaviour ("buy high, sell low”), portfolio
insurance strategies were criticized for worsening the stock market decline
in October 1987 (Shiller (2001)), and were also linked to the collapse of
Long-Term Capital Management (LTCM) in 1998 (Pain & Rand (2008)).

The CPPI trading rule ensuring the capital guarantee relies on an as-
sumption of frictionless markets. In a stylized setup analytical tractability
of the strategy is preserved as demonstrated by Cont & Tankov (2009) in
a general Lévy framework. However, when including trading costs in the
setup, continuous portfolio rebalancing becomes too expensive and some
discrete-time trading rule must be employed. This will typically com-
promise the analytical tractability. Furthermore, since the CPPI issuer
has effectively sold a capital guarantee to the investor, this must be hon-
oured even if the portfolio value should fall below the floor. The risk of
such event is referred to as gap risk. A gap event may happen between

!Bertrand & Prigent (2005) provide a comparison of option based and constant
proportion portfolio insurance techniques.



portfolio adjustments or due to jumps in the risky asset.

Paper B Constant Proportion Portfolio Insurance: Discrete-time Trad-
ing and Gap Risk Coverage investigates the CPPI strategy in a setting in-
cluding market frictions. Previous literature (e.g. Black & Perold (1992)
and Paulot & Lacroze (2009)) study the CPPI strategy in a discrete-time
setting, however, the choice of portfolio rebalancing rule has not been con-
sidered explicitly. Too rare rebalancing increases issuer’s gap risk and too
frequent rebalancing imposes high trading costs. In paper B, the choice
of rebalancing rule is considered. I introduce a new rebalancing rule that
depends on trading costs. This is found to be superior to rebalancing at
equidistant time steps (e.g. once a week) and to deliver similar CPPI per-
formance as rebalancing after pre-specified market moves. Yet, the new
rebalancing rule achieves this by fewer trading interventions.

The new trading rule is inspired by results from the barrier option
literature (Whalley & Wilmott (1997) and Poulsen & Siven (2008)). I
establish a useful link to barrier options: future cashflows of a CPPI are
equivalent to those from a position in down-and-out call options.?

Secondly, I compare different approaches for covering the CPPI issuer’s
gap risk. In the financial industry it is common practice to charge a (semi-
) annual fee to cover losses incurred due to a gap event. Alternatively,
gap risk can be hedged by a position in short maturity put options as
suggested by Cont & Tankov (2009). A third approach is to introduce an
artificial floor, which gives a buffer to absorb (part of) the losses. Paper B
provides a theoretical foundation for choosing the buffer size by applying
the results of Broadie, Glasserman & Kou (1997) for pricing discretely
monitored barrier options. Both the artificial floor and hedging reduce
gap risk effectively at a small cost to the investor, although the artificial
floor approach has the advantage of not relying on availability of specific
hedge instruments.

1.3 Constant proportion debt obligations

The benign credit environment in the period 2003-2006 induced financial
institutions to develop structured credit products that offered higher re-

2Since the relation is based on cashflows, model risk as studied in paper A is not an
issue in this context.



turns. One invention was the constant proportion debt obligation (CPDO)
first offered by ABN AMRO in August 2006.

A CPDO is a dynamically leveraged credit trading strategy, which
aims at generating high coupon payments by selling default protection on
a portfolio of investment-grade debt. Exposure is taken in an unfunded
format, which allows the CPDO to obtain high leverage without requiring
additional capital. Main risk factors of this strategy are default risk in the
underlying portfolio and spread risk, since the position in index default
swaps is marked-to-market regularly.

CPDOs appeal not only to investors in search of yield, but also to
investors who demand highly rated products due to the Basel II regula-
tory capital requirements. Both CPDO coupons and principal note were
initially given top ratings by the major rating agencies. The rating caused
controversy in the financial press, since CPDOs are exposed not only to
credit risk, the assessment of which is considered the core competence
of rating agencies, but also to market risk while operating with a high
leverage factor. In hindsight, the market risk was greatly underestimated.
Later, rating agencies have tightened their rating criteria for products
that are highly sensitive to market risk of an underlying portfolio (Basel
Committee on Banking Supervision (2008)).

The CPDO strategy is often compared to a credit CPPI with index
credit default swaps as underlying. Unlike credit CPPIs, CPDOs do not
offer principal protection, and investors are therefore potentially exposed
to a full capital loss. Instead the CPDO delivers a high coupon, although
at the cost of not having an upside potential. The main difference, though,
is in the leverage mechanism; CPDO leverage is reduced when the transac-
tion performs well and increased when losses occur. Thereby, the CPDO
is a "buy low, sell high” strategy, as opposed to the CPPIL.

Like with portfolio insurance, the CPDO strategy has been criticized
for its impact on the market, in this case the index default swap mar-
ket (Parker & Perzanowki (2008)). When CPDOs first appeared in the
low spread environment, they sold large amounts of protection, and thus
potentially drove index spreads further down. In contrast to the CPPI
strategy, when CPDOs are first issued they tend to dampen volatility by
buying back protection if spreads narrow, and vice versa. An important
caveat, though, is that a spread widening may cause CPDOs to default
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and unwind all positions. The spread widening during the financial crisis
caused the first CPDO to default in November 2007, see Wood (2007).
By the end of 2008 the majority of CPDOs had defaulted or were bought
back by issuers. The forced termination of massive amounts of default
protection allegedly caused spreads to widening faster than they other-
wise would have (Parker & Perzanowki (2008) and Basel Committee on
Banking Supervision (2008)).

The CPDO strategy has mainly been studied by rating agencies (Wong,
Chandler, Polizu, McCabe, Landschoot, Venus, Ding & Watson (2007),
Linden, Neugebauer, Bund, Schiavetta, Zelter & Hardee (2007) and Jobst,
Xuan, Zarya, Sandstrom & Gilkes (2007)) and by issuing entities (Varloot,
Charpin & Charalampidou (2007)). The credit ratings given by the major
rating agencies were based on complex models for the joint transition of
ratings and spreads for all names in the underlying portfolio. In paper
C Constant Proportion Debt Obligations (CPDOs): Modelling and Risk
Analysis we present a parsimonious model for analysing the performance
and risks of CPDO strategies. We model the index default intensity by a
one factor top-down approach. This captures the risk features of a CPDO
in a meaningful yet simple way, and allows us to study credit ratings,
default probabilities, loss distributions and different tail risk measures.

Though the probability of the CPDO defaulting on its coupon pay-
ments is found to be small, the ratings obtained strongly depend on the
credit environment. CPDOs are found to be less sensitive to default risk
than to movements of spreads, and behave in this respect more like path-
dependent derivatives on the index spread. Our scenario analysis clearly
indicates that the worst case scenario for a CPDO manager is that of a
sustained period of spread widening; the scenario that precisely happened
during the financial crisis and resulted in the forced unwinding of many
CPDOs as predicted by our analysis.

We find that over the lifetime of a CPDO its high parameter sensitivity
leads to higher variability of the rating compared to standard top-rated
products and is one of the main criticisms of CPDOs receiving a top rating.
Furthermore, our analysis shows that within a given rating category a wide
range of expected shortfalls may be observed. This leads us to conclude
that for such complex products ratings tend to be misleading and cannot
replace a detailed risk analysis.
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Models for Barrier Option
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Abstract: In this paper the empirical performance of five different
models for barrier option valuation is investigated: the Black-Scholes
model, the constant elasticity of variance model, the Heston sto-
chastic volatility model, the Merton jump-diffusion model, and the
infinite activity Variance Gamma model. We use time-series data
from the USD/EUR exchange rate market: standard put and call
(plain vanilla) option prices and a unique set of observed market
values of barrier options. The models are calibrated to plain vanilla
option prices, and prediction errors at different horizons for plain
vanilla and barrier option values are investigated. For plain vanilla
options, the Heston and Merton models have similar and superior
performance for prediction horizons up to one week. For barrier op-
tions, the continuous-path models (Black-Scholes, constant elasticity
of variance, and Heston) do almost equally well, while both models
with jumps (Merton and Variance Gamma) perform markedly worse.

Keywords: Barrier option valuation, empirical performance

!We are deeply indebted to Morten Nalholm for his help cleaning and organizing the
barrier option data, and to Fiodar Kilin for his help calibrating the Bates and VG-CIR
models.
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2.1 Introduction

This paper is an empirical investigation of how well different models work
for barrier option valuation. The study is performed using a unique data-
set of exchange rate barrier option values.

If we were bold, we would add the qualifiers “first” and “truly” to
the word “empirical” in the opening paragraph. That, however, would be
pushing the envelope as empirical studies of barrier options are not com-
pletely absent from the literature. The performance of “held-until-expiry”
hedge portfolios for barrier options on the German DAX index is tested by
Maruhn et al. (2009), and An & Suo (2009) investigate hedge portfolios for
USD/EUR exchange rate barrier options by “marking-to-model”. Actual
market values of barrier options are, though, absent from both studies. We
know of three previous papers that look at market values of barrier op-
tions. Easton et al. (2004) investigate Australian exchange traded index
barrier options, and Wilkens & Stoimenov (2007) study the embedded
barrier option in the German Turbo Certificates. But these both work
solely in realm of the Black-Scholes model. Carr & Crosby (2009) offer an
ingenious model construction that allows for efficient pricing of barrier op-
tions but their empirical application is limited to illustrative calibrations
for two specific days.

A variety of empirical designs can be used when investigating model
performance across time and markets (underlying, plain vanilla across
strikes and expiry-dates, and exotics). We use one that resembles how
the models are used by market participants without violating the basic
premise of what constitutes a model. Parametric models are calibrated to
liquid plain vanilla options and then used to value exotic options. While
this (re-)calibration practice is almost impossible to justify theoretically,
a model that does not get the basic contracts about right does not come
across as trustworthy when it comes to valuing more advanced products.
More specifically, our experimental design is this: on any given day in the
sample, say t, each model’s parameters are chosen to obtain the best fit
of that day’s plain vanilla option prices across strikes and expiry-dates.
We calculate within-that-day (“horizon-0”) pricing errors by comparing
observed option values to model values. This is done separately for plain
vanilla (“in-sample”) and for barrier options (“out-of-sample” or more
tellingly “out-of-market”). We then test the predictive qualities of the
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models over the horizon h by keeping the time-t calibrated parameters
fixed, updating state variables (underlying and possibly volatility) and
options (plain vanilla and barrier) to their time-(¢t + h) values, and reg-
istering the discrepancies between model and market values. Some may
frown at our use of the word “prediction” and say that we should at least
add “conditionally on state variables”, or better yet say that we test “pa-
rameter stability”. That is a matter of taste, but what is not is that such
conditional predictions are exactly what matter in a context where plain
vanilla options are used as hedge instruments where the idea is to create
portfolios that are immunized to changes in state variables.

We work with five popular, yet qualitatively different parametric mod-
els: the Black-Scholes model, the constant elasticity of variance model, the
Heston stochastic volatility model, the Merton jump-diffusion model, and
the infinite activity Variance Gamma model.

For the plain vanilla options we find that the Heston and Merton mod-
els have similar performance, and that this performance is superior to the
three other models’ at horizons of up to five days.

For the barrier options, the performance of the continuous-path models
(Black-Scholes, constant elasticity of variance and Heston) is quite similar,
and better than those in the few reported previous studies, which all deal
with equity markets. And as a general rule, the performance is “half
an order of magnitude” worse than for plain vanilla options; more for
barrier options whose plain vanilla counterpart is in-the-money when the
barrier event happens, less in the opposite case. Both models with jumps
(Merton and Variance Gamma) fail miserably for barrier options. These
results hold not only at horizon-0, which could be seen as a self-fulfilling
prophesy if market participants use Black-Scholes’ish models for valuation,
but for predictions at all horizons.

The rest of the paper is organized as follows. Section 2.2 describes
the data-sets in detail, section 2.3 reviews the different models and option
pricing techniques, section 2.4 reports the results of the empirical analysis,
and section 2.5 briefly concludes and outlines topics for future research.
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2.2 Data

Our study combines data from two independent sources.? Plain vanilla
option prices on the USD/EUR exchange rate come from British Bankers’
Association.?

For each day, we have observations of options with expiries in 1 week,
1 month, 3 months, 6 months, 1 year and 2 years; for the 1 month, 3
months and 1 year expiries we further have prices of options with strikes
(roughly) 5% under and 5% over the current exchange rate. In all, 12
plain vanilla option prices are observed each day.

Figure 2.1 shows the data, with option prices being expressed through
their implied volatilities. Implied volatility is not constant across time
(it decreases throughout our sample), expiry (it increases with time to ex-
piry), or strike (it increases as strike moves away from spot). Compared to
equity options, these implied volatilities display a fairly symmetric smile
across strikes on average, but there is a randomly varying asymmetry as
measured by the skew, i.e. the difference between high- and low-strike im-
plied volatilities.? The British Bankers’ Association data does not give
information about bid/ask-spreads, but according to Wystup (2007) a
multiplicative spread on volatilities of 1-2% is (or: was at that time) com-
mon for at-the-money options in the Interbank market. Or in numerical
terms: a typical at-the-money option is sold at 0.101, bought at 0.099.

The exchange rate barrier option data-set stems from the risk-manage-
ment department of Danske Bank; the largest Danish bank. Every day the
department calls (or: sends a spreadsheet to) the bank’s foreign exchange
trading desk asking for valuations of all the exchange rate barrier options
that the bank currently has on its books. We see no indications in the
data that the trading desk is not “doing its job properly”® — such as stale

2To be entirely precise: three independent sources. To further enhance the data
quality, we cross-checked exchange and interest rates against the FED Release H.15.

3Historic data on so-called benchmark exchange rate option volatility can be found
at http://www.bba.org.uk/bba/jsp/polopoly. jsp?d=129&a=799. This admirable free
service was discontinued in early 2008 — possibly not completely surprising as the data
quality had deteriorated noticeably throughout 2007.

“Others have noticed this and proposed stochastic skew models; Carr & Wu (2007)
do it in a Levy setting and in unpublished work Nicole Branger and co-authors use a
diffusion framework. We leave the investigation of these models to future work.

5The fact that the life-span of the barrier options is much shorter than the “bonus
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Figure 2.1: The plain vanilla data from British Bankers’ Association. The top left
graph is the USD/EUR exchange rate, i.e. the number of US dollars one has to pay to
get 1 Euro. The top right panel is the implied volatility of at-the-money options with
one week (gray), one month (black), three months (red), one year (green) and two years
(blue) to expiry. The “smiles” in the bottom right panel are the time-averages of implied
volatilities (connected) across strikes for expiries of 1 month (lower), 3 months (middle)
and 1 year (upper). The dotted red curves around the 1 month smile indicate typical
Interbank market bid/ask-spreads. The “skew” depicted in the bottom left graph is the
time-series behaviour of the difference between the right and left end-points of the 1
month implied volatility curve.

quotes or suspiciously consistent over- or undervaluations of particular
trades. The data-set contains values and characteristics for USD/EUR
barrier options, but all proprietary information such as counter-party, size
and direction of position, and initial price at which the option was sold to
(or bought from, but it seems a safe bet that the bank is mostly short in
barrier options) the counter-party has been removed. This would of course
make for interesting reading and research, but on the plus-side the lack of
sensitive information means that the data has been released for research

horizon” should alleviate moral hazard.
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without “strings attached”. More specifically, the data-set consists of
daily observations of continuously monitored zero-rebate barrier contracts
covering the period January 2, 2004 to September 27, 2005. We consider
only single barrier options and disregard options with values lower than
1075 and/or less than 7 days to expiry (thus staying within the expiry-
range of the plain vanilla calibration instruments). This leaves us with a
total of 3,108 observations on 156 individual contracts. These are broken
down by characteristics in table 2.1.

#contracts #obs To 7. B/Xo K/Xo

Total ‘ 156 3,108 69 70

Reverse

up-and-out call 38 535 44 40 1.041 1.003
up-and-in call 17 309 8 94 1.051 0.997
down-and-out put 16 105 31 25 0964 1.000
down-and-in put 42 909 69 65 0954 1.009
Straight

down-and-out call 33 1,069 93 76 0.969 1.019
down-and-in call 5 52 29 21 0978 0.991
up-and-out put 5 139 210 177 1.020 0.992
up-and-in put 0 0 - - - -

Table 2.1: Descriptive statistics of the barrier option data-set; option type, frequency,
(calendar) time to expiry, (relative) strike and barrier. A ’0’ indicates ’at initiation of a
particular contract’, so the 4th, 6th, and 7th column are averages of contracts at their
initiation days of, respectively, time to expiry (measured in calendar days), barrier level
(B) relative to spot (Xo), and strike (K) relative to spot. The 7; ’s denote times to
expiry averaged over all observations (so having 7; > 75 is not an error).

We see that the strikes are mostly set very close to the exchange-rate
at contract initiation (i.e. the corresponding plain vanilla option is at-the-
money), that the typical time to expiry is 70 (calendar) days, and that it is
common to have the barrier 2-5% away from initial spot. This means that
the barrier options fit nicely into the range (expiry and moneyness-wise)
of our plain vanilla calibration instruments. Another important feature of
a barrier option is whether it is reverse or not (which we term straight;
non-reverse is too awkward). A barrier option is of reverse (a.k.a. live-out)
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type if the corresponding plain vanilla option is in-the-money when the
barrier event (knock-in or knock-out) happens. This means that values of
reverse barrier options change very rapidly in the vicinity of the barrier;
there is a big difference between just crossing, and not crossing; exploding
Greeks and gap risk are other terms used to describe this phenomenon.
This makes them hard to hedge — be that statically or dynamically, see
Nalholm & Poulsen (2006, Table 2) for instance. The reverse barrier
options are the down-and-out put and the up-and-out call and their knock-
in counterparts. From table 2.1 we see that the data-set is fairly balanced;
in general reverse-type options are more common (73% of contracts, 59%
of observations), but the single-most observed contract is the (straight)
down-and-out call.

implied volatility
0.10 0.11 0.12 0.13 0.14
L L L L L

0.09
I

0.08
I

T
2004.0 2004.5 2005.0 2005.5

year

Figure 2.2: The barrier option data from Danske Bank. Each gray circle represents
a barrier option data point in terms of an “implied” volatility. The fully drawn curve
is the implied volatility of the 1 month, at-the-money plain vanilla option.

A final sanity check of the barrier option data is given in figure 2.2. It

P

shows (all) the barrier options’ “implied” volatilities as expressed by the
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bank.% We see that barrier option volatilities line up reasonably closely to
the implied volatilities of the plain vanilla options.

2.3 Model selection and pricing methods

We consider five alternative models for the exchange rate. The model
selection aims at including models with different features: a model with
state dependent volatility versus one with stochastic volatility and a model
with low jump activity and large jumps versus one with high jump activ-
ity and small jumps. One requirement though is the existence of reason-
able methods for pricing barrier options either analytically or numerically.
Under these criteria we have chosen the following models, which are fre-
quently encountered in the literature: the constant elasticity of variance
model (CEV), the stochastic volatility model of Heston, the Merton jump-
diffusion model and the infinite activity Variance Gamma model (VG).
Our benchmark model is that of Black-Scholes.

All models have the Black-Scholes model as a special or limiting case,
but apart from that they are as non-nested as can be, thus covering a
large range of qualitatively different (and popular) models. The models
and pricing methods “at a glance” are shown in table 2.2; more detailed
descriptions are given in the following subsections.

5The reason for the quotes and the disclaimer is that even in the Black-Scholes
model barrier option values are not monotone functions of volatility. Hence, given
an observed barrier option value there may be multiple sensible input volatilities that
match the observation, and thus implied volatility is not uniquely defined. The bank’s
data-set contains both “implied” volatilities and actual prices; we use the former only
for graphical purposes.
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Model Plain Vanilla Barriers
Black- Closed-form. Closed-form portmanteau formula-
Scholes tion in Rubinstein & Reiner (1991).
Constant Closed-form ala Schroder (1989) Collocation ala
elasticity with Ding’s algorithm for the Nalhom & Poulsen (2006). Inversion
of variance | non-central x2-distribution. ala Davydov & Linetsky (2001).
Heston Fourier inversion using the Simulation ala Andersen (2008) with
stochastic | formulation in Lipton (2002). bridge and control. PDE solution
volatility ala Kluge (2002). Perturbation
expansion ala Wong & Chan (2008).
Merton The original formula by Simulation ala Joshi & Leung (2007)
jump- Merton (1976) is found more and Metwally & Atiya (2002).
diffusion efficient than Fourier inversion.
Variance Fourier inversion with tricks from | Simulation ala Glasserman (2004)
Gamma Lee (2004) and Jaimungal (2004). | with tricks from Avramidis (2004).

Table 2.2: Annotated taxonomy of pricing.

2.3.1 Black-Scholes model

In the Black-Scholes model the foreign exchange rate X follows a geometric
Brownian motion under the risk-neutral pricing measure:”

dXt = (T‘d — ’I"f)Xtdt + O'Xtth,

where rq and 7y denote the assumed-constant domestic (US) and foreign
(Euro) interest rates. In this setup, closed-form formulas for both plain
vanilla and barrier option prices exist and will be used for pricing. It
is well-known that the one-parameter Black-Scholes model is not the best
model to describe observed option prices — especially not for a wider range
of strikes and maturities simultaneously. However, it may still turn out to
be the preferred model choice for pricing barrier options due to its fast,
stable and easily implementable pricing procedure.

"By construction the price calibration estimates the pricing measure used by the
market, thus all parameters are under the/a risk-neutral pricing measure; say Q. For our
price analysis, this is not a restriction; if we were to study construction and performance
of hedge portfolios both the risk-neutral pricing measure and the real-world measure
would matter — though possibly less so in practice than in theory, see Poulsen, Schenk-
Hoppé & Ewald (2009) and Siven & Poulsen (2009, Table 4).
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2.3.2 Constant elasticity of variance model

A minimal extension of the Black-Scholes model is the constant elasticity
of variance model, in which the foreign exchange rate has the risk neutral
dynamics

dXt = (T‘d — T’f)Xtdt + O'Xtath,

where « denotes the so-called elasticity of variance. In this model there are
two parameters, a and o, to be estimated. For a < 1 volatility increases
as the exchange rate falls; vice versa for a > 1 .

For pricing plain vanilla options we use the closed-form formula of
Schroder (1989). Several methods for pricing barrier options exist. Nu-
merical techniques such as the finite difference method and Monte Carlo
simulation can be applied. Alternatively, as we have chosen to do here,
barrier option prices may be found via collocation as demonstrated in
Nalhom & Poulsen (2006). Analytical formulas for barrier option prices
based on inversion techniques do exist (see Davydov & Linetsky (2001)),
however, these are rather involved and in our experience there is no real
gain with respect to computation time compared to the direct numerical
approaches.

2.3.3 Heston’s stochastic volatility model

For the stochastic volatility model we have chosen the Heston model, where
the exchange rate and its instantaneous variance follow

dX; = (ra—rp)Xedt + /o X dW}
dvi = k(0 —vg)dt + nyordWE.

0 is the long term level of variance, x is the speed of mean reversion, 7 is
referred to as the volatility of volatility, and the driving Brownian motions
have correlation p, leading to a skew in implied volatilities. In the Heston
model there are four parameters, k, 6, n and p, plus one state variable, v, to
be estimated. The (conditional) characteristic function of X can be found
in closed form (this was first done in Heston (1993)), and means that plain
vanilla option pricing becomes a question of one-dimensional numerical
integration; inverting a transform. There is a sizeable literature on this,
see Lee (2004). We prefer the quadratic denominator formula of Lipton
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(2002). Closed-form solutions for barrier options exist (see Lipton (2001))
in the case where domestic and foreign short rates are equal and correlation
is zero, but Faulhaber (2002) shows that there is no simple way to relax
those assumptions, which are unrealistic to impose on our data. During
the sample period the US short rate r4 decreases from approximately 4%
to 1%, while the European short rate r¢ is more or less constant at 2.1%,
and since we do see an implied skew in our data, fixing p = 0 is also too
restrictive. Alternatives are the PDE method described by Kluge (2002)
or Monte Carlo simulation using a quadratic exponential discretization
scheme for the volatility process developed by Andersen (2008). We use
the latter and combine it with a Black-Scholes model control variate.

2.3.4 Merton’s jump-diffusion model

The Black-Scholes model can also be extended to include jumps in the
exchange rate as done by Merton:

dXy = (ra — 15 — \E9(Z, — 1)) Xydt + o Xy dW; + X4(Z; — 1)d Ny,

where N is a Poisson process with intensity A, and log Z; ~ N (uz,07) de-
scribes the relative jump size as being normally distributed with mean pz
and variance oyz. The Merton model has four parameters to be estimated:
o, bz, oz and .

Pricing plain vanilla options in this model can be done by Fourier
inversion techniques or, in our experience more efficiently, by using the
formula provided by Merton (1976). Barrier option prices are found by
Monte Carlo simulation methods as suggested by Metwally & Atiya (2002)
and Joshi & Leung (2007) via the use of importance sampling.

2.3.5 Variance Gamma model

Another class of jump models are models exhibiting infinite jump activity
as e.g. the Variance Gamma (VG) model proposed by Madan & Seneta
(1990). The foreign exchange rate under the risk neutral measure in the
VG model is of the form

X = Xoexp{(rq —rp)t + VY +wt},
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where Y;VG = 0GY +0W (GY) is a variance gamma process; a time changed
Brownian motion with drift, 0t + cW;, using a gamma process G¥ with
volatility v as the stochastic clock. The martingale correction term w =
%ln (1 —0v — %021/) ensures that the expected rate of return on assets
equals the risk-neutral rate rqy — ry. The parameter v controls for excess
kurtosis and 6 for skewness. The limit when v — 0 (in which case the
influence from 6 also disappears) is the Black-Scholes model. Figure 2.3
shows some simulated paths of VG processes, and illustrates that for small
v-values, the process looks diffusion’ish, while high v gives a more Poisson-
jump-like appearance.

l1

Figure 2.3: Simulated paths of Variance Gamma processes. The parameter values are
o =0.1, 9 =0.0085, and v = 0.01 (top), 0.1 (middle), 1 (bottom).

Plain vanilla option prices can be found by Fourier inversion, as done
in Jaimungal (2004) or Lee (2004). Barrier option prices can be found
by simulation methods as presented in Glasserman (2004) or the double-
gamma bridge sampling algorithm by Avramidis (2004).

24



2.4 Empirical results

2.4.1 Calibration and plain vanilla option valuation

On any specific date (¢) and for any model j (naturally indexed by {BS,
CEV, H, M, VG}), we estimate the parameter, ¥;(t), by minimizing the
sum of absolute differences between the observed implied volatilities (IV)
and the model’s implied volatilities. Or with symbols:

~

9.(1) = . I obs . rnodelj-,ﬁ
() afgngn,mz)_t' V(i) — Tvmodeld(i; )|,

where the notational philosophy is that i denotes observations, and t(-)
maps an observation to its date.

Implied volatilities put option prices in a comparable scale across
strikes and expiries. Minimizing differences to raw prices does not al-
ter our results but makes the numbers harder to relate to. One could also
minimize differences to relative prices but in our experience that tends to
put too much weight on out-of-the-money options.®

Sample characteristics of estimators are given in table 2.3. The cal-
ibrated parameters are not constant over the sample period, but they
are more stable than the meta-analysis for S&P500 that is reported in
Gatheral (2006, Table 5.4) indicating that exchange rate markets are more
benign than equity markets. Only the dangerously naive observer would
claim that a price outside the bid/ask-spread is an arbitrage opportu-
nity, but it is nonetheless a sensible yardstick. On that count the models
separate into two categories; Merton and Heston hit about two-thirds of
bid /ask-spreads, and the rest about 40%. Other remarks:

e The difference between the average instantaneous variance, vy, and
the Heston model’s (risk-adjusted parameter) € reflects the typically
increasing term structure of volatility.

8To illustrate: An implied volatility difference of 0.001 gives a 1% relative price
difference for the at-the-money option, but 2% for the out-of-the-money option. A
variety of weighting schemes have been suggested in the literature; to every man his
own. An interesting point is made by Cont & Tankov (2004, p. 349) that calibration
to squared price differences corresponds (to a first-order approximation) to using a
vega-weighted average of implied volatility differences.
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e In the Merton model most (75%) of the variance of daily returns is
caused by the diffusion component.

e The sample mean of the VG estimates were used to generate the
middle path in figure 2.3; the paths have a visible, but not extreme,
non-diffusive character.
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A particular model may perform well on the data that it is calibrated
to, but have poor predictive qualities (think of fitting a high-order polyno-
mial to “a straight line with noise”). To investigate this, figure 2.4 shows
the five models’ prediction errors at different (business day) horizons. The
fully drawn, differently coloured curves show the models’ average absolute
implied volatility differences for increasing horizons, i.e.

1 1 obs model j/:. 9
4tobs. dates — h > Hilt(i) =t D [IVERS (i) — TV (i, ).
t ilt(i)=t

Implied volatility errors as fct. of horizon h

0.0045
|
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Heston

Merton
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EV|
0.0030 0.0035 0.0040
|

0.0025

0.0020

0.0015
1

Figure 2.4: Prediction errors for plain vanilla options at different horizons.

It is only for the Variance Gamma model that the ordering is changed
when we look at predictions; it is (slightly) better than Black-Scholes at
horizon 0, but worse at longer horizons. The errors of the Merton model
are marginally lower than those of the Heston model at all horizons, and
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the differences are statistically significant (at a 5% level) at horizons of two
days or more. As a rule-of-thumb-quantification of how much better the
Heston and Merton models perform, we can look at the horizons where
their prediction errors match the horizon-0 errors of the others models,
i.e. the points, say h;, on the abscissa where the red and blue curves cross
the dash-dotted horizontal lines. A way to interpret these numbers is to
say: “Using model j with ’freshly estimated’ parameters is (on average)
as good as using a Heston or Merton model with h; day old parameters”.
We see that the Heston and Merton models are caught up with by the
other models after about one week.

Combining stochastic volatility and jumps; the Bates model

One may suspect a combination of the Heston and Merton models to
perform even better. A stochastic volatility model including Poisson jumps
in the exchange rate (also known as a Bates model following Bates (1996))
has the dynamics

dX; = (rq—r;p— AE(Z — 1)) Xydt + Jor XedW} + Xo(Zy — 1)d N,
d’l)t = E(Q — ’Ut)dt + T]\/EdWE,

with pdt = cor(dW;},dW2). The Bates model has a total of seven para-
meters, k, 0, n, p, A\, itz and oz, plus one state variable, vg. Calibration
of this model is a numerically delicate matter but can be carried out as
suggested by Kilin (2007).

For the plain vanilla data the Bates model’s average absolute implied
volatility error is up to two significant digits (and no statistical signifi-
cance) identical to the Merton and Heston models’.

Combining Levy-models and stochastic volatility; the VG-CIR
model

A way to introduce stochastic volatility into pure jump models such as
the Variance Gamma is to subject the driving process to a random time-
change, i.e. to work with YZ\Z G where Z; is an increasing stochastic process.
Carr, Geman, Madan & Yor (2003) show how characteristic functions in
some cases can be expressed by composition of the Laplace-transform of
the time change process and the characteristic function of the original
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model. A convenient choice of time-change process is an integrated Cox-
Ingersoll-Ross process (independent of the original YVG—process), whose
Laplace-transform is part of the interest rate theory vocabulary. Again,
calibration of this six-parameter (and one more or less latent state variable;
the current value of the subordinator) VG-CIR model is a delicate matter
for which we refer to Kilin (2007).

The cross-sectional average implied volatility error for the model is
0.23%; lower than the VG model’s error, but not as good as the Heston
and Merton models.
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% Black-Scholes CEV Heston
h split £ps €55 £CEV [ 3 €]
0 all 2.71 8.27"* 0.13% 8.50 -3.48 7.82
(rev. , str.) (4.12 , 0.617) (11.17* , 4.0") | (-0.37F,0.88)  (11.1™*, 4.68) (-4.61,-1.80)  (10.4 , 3.89)
(up , down) || (-0.37%,4.13) (6.35 , 9.16) (-1.47 ,0.87")  (7.66"" , 8.94) (-4.09 ,-3.20)  (7.83,7.81)
1 all 2.75 8.33** 0.075% 8.69™* -3.09 8.22
(rev. , str.) (4.18 ,0.617)  (11.2**,4.02**) | (-0.55% , 1.00) (11.4* | 4.59) (-4.61,-1.68)  (10.5,3.78)
(up , down) || (-0.50% , 4.25) (6.33 , 9.26%) (-1.75, 0.92%)  (7.63"* ,9.19"*) | (-4.21,-2.57)  (7.84, 8.39)
5 all 3.60 10.6* 0.91 10.3** -2.31 10.1
(rev. , str.) (5.16 , 1.23) (14.0** | 5.49) (0.30* , 1.83) (13.2** , 6.02) (-3.03,-1.23)  (13.6 , 4.83)
(up , down) || (-0.010% , 5.26) (8.38 , 11.6) (-1.39,1.98)  (9.36" ,10.8") | (-3.87,-1.59)  (9.50 , 10.3)
% Merton VG
h_ spilt M 1M &ve 1€ve]
0 all -22.5 29.3 66.7 79.5
(rev. , str.) (-21.1,-24.7)  (31.7,25.7) | (106,8.39) (123, 14.4)
(up , down) || (-8.91,-28.8)  (26.3,30.7) | (49.6,74.7)  (65.5, 86.0)
1 all -22.5 29.3 63.4 76.0
(rev. , str.) (-21.1,-24.7)  (31.7,25.6) | (100, 8.39) (118, 14.1)
(up , down) || (-9.01,-28.7) (27.0,30.8) | (48.1,70.5) (63.6,81.7)
5 all -21.3 30.3 68.0 78.1
(rev. , str.) (-19.6 ,-23.9)  (33.5,25.6) | (102,10.1) (119, 15.9)
(up , down) || (-7.82,-27.6) (29.3,30.8) | (44.5,75.1) (60.4, 86.3)

Table 2.5: Relative pricing errors for barrier options in %.



2.4.2 Barrier option valuation

We now turn to the main question: How well do the different models
perform when it comes to valuing barrier options? Implied volatilities
for barrier options are not well-defined and their raw prices differ several
orders of magnitude. Therefore we will report relative price errors for the
barrier options. To fix notation, the relative error for the i’th observation
for the j'th model at horizon h is

. B™odel 5 (5:49,(t(i) — h)) — BPS(i)
ih BObS(i) ’

where the notational philosophy is as before, and the B'(;-)’s denote val-
ues of barrier options with the appropriate characteristics. For comparison
we report relative errors of plain vanilla options too. These are defined
analogously and denoted by e, .

For plain vanilla options, the estimation procedure ensures that each
model’s average errors are small.” Thus plain vanilla comparisons should
be made based on some measure of dispersion such as standard or mean
absolute deviation. For barrier options both average errors and their dis-
persion are relevant measures of a model’s quality. Therefore our tables
(Table 2.5 for barrier options, Table 2.4 for plain vanilla) report sample
averages of both errors and absolute errors. For the errors, 1 and I indicate
that there is no significant difference from 0 at, respectively, the 1% and
5% levels. For the absolute errors, * and ** indicate that errors are not
significantly different than those of the Heston model; this is the result of
a paired test based on absolute error differences.

In table 2.4 we have sub-divided the relative plain vanilla option pric-
ing errors into out-of-the-money (OTM) and at-the-money (ATM) errors.
General for all five models (except Heston’s errors at horizon 0), is that
they produce larger relative pricing errors for options out-of-the-money.
This is in line with the previous observation that a given implied volatility
error corresponds to a larger relative price error for an out-of-the-money
option than for an option at-the-money.

From table 2.5 we see that the three continuous-path models (Black-
Scholes, CEV and Heston) have quite similar behaviour when it comes

9We minimize averages of absolute differences of implied volatilities. Therefore av-
erage errors (raw and particularly relative) are not ezactly zero.
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to barrier option valuation. The CEV model is most accurate with re-
gards to average price errors (0.1% vs. -3.5% for Heston and 2.7% for
Black-Scholes), while the Heston model has the lowest dispersion (average
absolute error of 7.8% vs. 8.2% for Black-Scholes and 8.5% for CEV). One
could explain the good behaviour of the Black-Scholes model as a self-
fulfilling prophesy; market participants use Black-Scholes(’ish) formulas
because that is what is on their computers. But if that were the only
reason, we would expect to see rapid deterioration in the Black-Scholes
model’s predictive quality. We do not; conclusions are invariant to the
prediction horizon. Looking at the plain vanilla benchmark in table 2.4 we
see that the continuous-path models’ error dispersions for barrier options
are two to five times larger than for plain vanilla options. Or differently
put, barrier options are half an order of magnitude harder to price.

For the jump-models (Merton and Variance Gamma), the story is quite
different. The Merton model is bad (dispersion of 29%; about four times
that of the continuous-path models), and the Variance Gamma model is
worse (dispersion of 79%; a ten-fold increase). Again, this holds at all
horizons. One could argue that “that is because continuous-path mod-
els systematically underestimate knock-out probabilities. You should still
use models with jumps.” But that fails to explain why the Merton model
undervalues the barrier options (by 23% on average) and the Variance
Gamma model overvalues them (by 67% on average). For plain vanilla op-
tions, the Merton model was arguably one of the best performing models,
and Variance Gamma was on par with Black-Scholes and CEV. Thus their
poor ability to explain barrier option values again emphasizes the model
risk aspect pointed out by Schoutens et al. (2004), Hirsa et al. (2002),
Detlefsen & Hérdle (2007) and numerous other papers: models may pro-
duce very similar prices of plain vanilla options yet differ markedly for
exotic options.

To understand the models’ pricing performance for barrier options
we have analysed inter-model differences; we simply changed “observed
values” to “Black-Scholes values” in the definition of relative errors. This
reveals that the Black-Scholes and CEV model values typically are closer
to each other, than they each are to data (the average absolute CEV-to-
Black-Scholes error is 4.8% compared to about 8% for each model with
observed values as reference point), while the average absolute Heston-to-
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Black-Scholes error is 8.4%.

To further detect patterns, we have sub-divided errors according to
different criteria: reverse vs. straight and up vs. down. Results are also
reported in table 2.5; the numbers in parentheses. First, we see that
error dispersions are markedly larger for reverse barrier options than for
the straight ones; sample averages of absolute errors are 2-3 times higher.
Given the difficulties in hedging the reverse options due to their exploding
Greeks, this increased dispersion between market and model values may
be understandable, but it should be noted that there is no clear pattern
for the average hedge errors from the reverse-straight stratification. There
is little effect from the up-down split which we interpret as more evidence
that exchange rate markets are reasonably symmetric.

With respect to barrier option pricing, the Bates model performs better
than the Merton and VG models but significantly worse than the Heston
model with average absolute errors of 24.7% (h = 0) and 25.6% (h = 5).
So adding jumps to the Heston model merely worsens the model’s barrier
option valuation abilities. The same is true when introducing stochastic
volatility into the VG model as in the VG-CIR model.

2.5 Conclusion

We investigated empirical barrier option values, and found that in general
the continuous-path models did equally well in explaining the market data,
while models with jumps turned out to be quite inaccurate, this despite
the jump-diffusion model being — arguably — the best performing model
for plain vanilla options.

A logical next step is to investigate how well the barrier options can be
hedged, dynamically, statically or by some hybrid hereof. A particularly
interesting question, that the barrier option data-set allows us to shed
(some) light on, is the benefit of applying a portfolio, rather that “each
option on its own”, approach to hedging.
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Abstract: This paper studies constant proportion portfolio insur-
ance (CPPI) in a setup that accounts for market frictions. Trading
costs, fees and borrowing restrictions are incorporated, and the as-
sumption of continuous portfolio rebalancing is relaxed. The main
goals are to cover issuer’s gap risk and to maximize CPPI perfor-
mance over possible multipliers; the proportionality factor that de-
termines the risky exposure of a CPPI. Investment objectives are
described by the Sortino ratio and alternatively by a kinked constant
relative risk aversion utility function. Investors with either objective
will choose a lower multiplier than if CPPI performance is measured
by the expected return. Discrete-time trading requires a portfolio
rebalancing rule, which affects both performance and gap risk. Two
commonly applied strategies, rebalancing at equidistant time steps
and rebalancing based on market movements, are compared to a
new rule, which takes trading costs into account. While the new
and the market-based rules deliver similar CPPI performance, the
new rebalancing rule achieves this by fewer trading interventions.
Issuer’s gap risk can be covered by a fee charge, hedging or by an
artificial floor. A new approach for determining the artificial floor is
introduced. Even though all three methods reduce losses from gap
events effectively, the artificial floor and hedging are less costly to
the investor.

Keywords: Gap risk, discrete rebalancing, Sortino ratio, kinked CRRA utility

T thank Rolf Poulsen for helpful comments.
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3.1 Introduction

Portfolio insurance techniques will appeal to investors with fear of large
losses as recently experienced on the financial markets. A popular portfolio
insurance strategy is constant proportion portfolio insurance (CPPI), see
Black & Perold (1992) and the references therein. A CPPI provides a
capital guarantee by dynamically allocating wealth between two assets: a
risky asset, which gives the investor an upside potential, and a risk free
asset. The relative portfolio weight of risky assets is determined by a
multiplier m > 1. If the portfolio value falls below the floor, defined as
the present value of the capital guarantee, all funds are invested in the risk
free asset in order not to jeopardize the guarantee any further. A CPPI
hereby allows investors with a lower risk appetite to invest in alternative
asset classes and still benefit from favourable market scenarios.

Existing CPPI-literature often make the assumption of continuous time
trading to preserve analytical tractability. In a general Lévy framework
Cont & Tankov (2009) provide analytical expressions for quantities de-
scribing gap risk: the risk of the portfolio value breaking the floor such
that the guarantee cannot be fully honoured. When market frictions such
as trading costs are introduced, the assumption of continuous trading must
be relaxed, thereby possibly compromising analytical tractability.

The CPPI strategy has been studied in a setup including trading costs
and discrete-time trading in a number of papers; among these are Black &
Perold (1992), Boulier & Kanniganti (1995), Hamidi, Jurczenko & Mail-
let (2009), Balder, Brandl & Mahayni (2009), Constantinou & Khuman
(2009) and Paulot & Lacroze (2009). However, none of these consider the
choice of portfolio rebalancing rule explicitly. Yet, the rebalancing rule is
important since too rare rebalancing increases issuer’s gap risk and too
frequent trading imposes high trading costs. In this paper I provide a first
attempt to address this problem. I compare weekly portfolio rebalancing
to two customized trading strategies which take movements in underly-
ing variables into account. One strategy is simply to rebalance when the
change in the risky asset value exceeds a carefully chosen tolerance level.
Secondly, I introduce a new trading rule known from option replication
(Whalley & Wilmott (1997)), which can be applied in a CPPI context after
a useful link between the CPPI portfolio and a position in down-and-out
barrier options is established. While both customized trading strategies

42



are found to outperform weekly rebalancing, the new trading rule has
the advantages that it avoids the delicate choice of tolerance levels and
requires fewer trading interventions.

The issuer’s risk? when managing a CPPI deal is the gap risk; a gap
event implies a loss to the issuer, since the capital guarantee issued in
the CPPI contract must still be honoured. Therefore the issuer will take
actions to cover or reduce this risk. One approach suggested by Cont &
Tankov (2009) is to hedge gap risk using short maturity put options or
gap options. A second approach typically used in actual CPPT issuances,
and to my knowledge not previously studied in academic literature, is to
cover losses due to gap events by charging a fee. The size of the fee is
chosen based on a risk analysis of the issuer’s exposure. A third way to
handle gap risk is to introduce an artificial floor above the true floor, which
gives the CPPI manager a buffer to absorb potential losses. To determine
the buffer size, I apply a result for pricing discretely monitored barrier
options by Broadie et al. (1997). The artificial floor approach is compared
to coverage by hedging and charging a fee, and while all three methods
reduce losses due to gap events effectively, covering gap risk by the two
former approaches are less costly with respect to expected CPPI return.

Once the issuing entity has covered its risks and administration costs
the CPPI multiplier can be chosen to accommodate the CPPI investor’s
risk/return profile. Assuming risk averse investors, I consider two mea-
sures for the CPPI performance. The Sortino ratio advocated by Pedersen
& Satchell (2002) measures the upside potential of an investment relative
to its downside risk. An alternative is to maximize investor’s expected
utility, here described by a kinked constant relative risk aversion utility
function as suggested by Sharpe (2006) for protected investment prod-
ucts. I find that the two performance measures lead to similar choices
of multiplier, and lower than the multiplier maximizing expected CPPI
return.

Capital restrictions are important to include in a CPPI analysis, since
banks are often reluctant to provide additional capital for gearing a risky
position and if doing so typically charge a spread above the risk free rate.
I find that borrowing restrictions improve CPPI performance, because

2Counterparty risk, i.e. the risk that the issuing entity cannot meet its obligations,
will not be considered.
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trading costs and costs of capital exceed the increase in return obtained
from higher risky exposure.

Finally, I investigate the effects of adding a profit lock in feature to the
CPPI strategy. Profit lock in (also known as ratcheting) ensures part of
the investor’s return in a favourable market situation by raising the floor.
Profit lock in has previously been included in e.g. the studies of Paulot
& Lacroze (2009), Boulier & Kanniganti (1995) and MKaouar & Prigent
(2007a). I find that in a setup with market frictions, the investor does not
benefit from locking in profits, neither with respect to expected return,
utility or Sortino ratio.

The rest of the paper is organized as follows. The next section describes
the CPPI investment strategy and incorporates market frictions. Special
attention is paid to gap risk coverage and discrete portfolio rebalancing.
Section 3.3 describes the models for the underlying asset and for investor’s
preferences. In section 3.4, numerical experiments are conducted to study
the effects of market frictions, especially what consequences the choices of
discrete portfolio rebalancing rule and gap risk coverage approach have.
Section 3.5 sums up.

3.2 CPPI strategy incorporating market frictions

Trading costs, fees and capital restrictions are unavoidable in an actual
implementation of a CPPI. This section considers adjustments in the styl-
ized strategy, which are necessary when incorporating market frictions.

3.2.1 Stylized CPPI

A CPPIis an investment strategy that guarantees a fixed amount of capital
G at expiration T. Let I denote the initial investment. The guarantee
must satisfy G < Ip(0,T), where p(s,t) denotes the time s price of a
zero-coupon bond maturing at time t. The value Gp(¢,T) is referred to
as the floor and is the smallest amount that will guarantee a portfolio
value of G at expiry. For simplicity, assume G = I and normalize the
initial investment to I = 1. Let (V;);co,r] denote the CPPI portfolio
value process and (St)te[o,T] the value of the underlying risky asset. At
initiation ¢ = 0, Vo = I > p(0,T) if interest rates are positive. As long as
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Vi > p(t,T), the stylized CPPI trading strategy will maintain the exposure,
e, to the risky asset equal to

e = mCy = m(Vt — p(t,T)). (3.1)

C' is referred to as the cushion and m > 1 the pre-specified, constant
multiplier. If the floor is broken at time 7 € [0,7], V; < p(r,T), the
entire portfolio value must be invested in zero-coupon bonds in order not
to jeopardize the capital guarantee any further. This position is held until
expiry: e, = 0 for t € (7,7]. The stylized CPPI is self financing: any
dividends or coupons are assumed reinvested in the CPPI portfolio.

3.2.2 Capital restrictions

In case mCy > V; the portfolio value does not cover the funds required to
invest in the risky asset. The issuer may be reluctant to provide additional
liquidity and set a borrowing limit b, which restricts exposure to e; =
min{mCy, bV;}. Furthermore, the cost of additional capital is typically a
spread d above the risk free rate.

3.2.3 Trading costs

Trading costs are also introduced; assume a proportional cost of ¢ per
dollar risky asset traded. The magnitude of & reflects the liquidity of the
underlying asset. When adjusting the CPPI portfolio, the new exposure,
depending on the portfolio value according to (3.1), is computed ex-post
trading costs. In case the position in risky assets is increased, e;— < mC},
the portfolio value is

Vi = Vie —e(mCy—ei—) = Ve —e(m(Vy — p(t,T)) — e;-) =

1
Vi = T me (Vt_ +mep(t,T) + set_).

If e, > mCY, the expression holds with opposite sign on ¢.

3.2.4 Discrete-time rebalancing strategies

The assumption of continuous portfolio rebalancing must be relaxed when
introducing trading costs, and a rebalancing rule is therefore required. A
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simple strategy is to rebalance daily, weekly or monthly as done in e.g.
Balder et al. (2009) and Cesari & Cremonini (2003). However, CPPI
performance can be improved significantly, as will be verified in section
3.4.2, by employing a trading strategy that takes movements in underlying
variables into account. Two such strategies are introduced here.

Rebalancing depending on movements in the underlying asset

Boulier & Kanniganti (1995) and Black & Perold (1992) suggest rebalanc-
ing the CPPI portfolio whenever the underlying asset has moved a fixed
percentage. Others, e.g. Paulot & Lacroze (2009), Hamidi et al. (2009)
and MKaouar & Prigent (2007b), apply a rebalancing rule that depends
on divergence of actual exposure e; from target exposure mC;. If ignoring
interest accruals, the two approaches are in fact equivalent as stated by
Black & Perold (1992): a relative move of a in S is equivalent to a change
of — (TJ:N}LLO‘ in % This statement is proved here in order to clarify where
approximations are made.

Suppose S; = (1 + «)Ss, where s < t is the latest rebalancing date
prior to time ¢, i.e. s = mCs. This implies e; = (1 4+ a)es. The relative
change in the cushion is approximately ma;, since

Co = Vi—pt.T)=e+ (Vi —e) —p(t,T)
= (14 a)e, + (Vs —eg)els = p(s, Tels rede
~ Cs+ aes = (14 ma)Cs, (3.2)

where (Tt)te[oj] is the risk free interest rate process. Precision of the
approximation relies on a small interest rate such that changes in the floor,
p(t,T), and in the risk free asset, V; — e;, between portfolio adjustments
are small. If the position in risk free assets is positive, interest earned
by the risk free investment will to some extent cancel the increase in the

floor. The relative movement in g—’; is then, as claimed

e _ (+ajes _ <1— <m_1)a> = (3.3)

C, (1+ma)C, L+ma ) Cy

A CPPI rebalancing rule {ay, ag} gives upper and lower bounds on
relative changes in the underlying asset that do not require an adjustment
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of the CPPI portfolio. In other words, adjust the risky exposure e; to
equal target exposure mC} if

Sy & [(1— ag)Se, (1 + 0)Ss].

Bertrand & Prigent (2002) show that the maximum drop in the underlying
asset value the CPPI portfolio value can sustain without hitting the floor is
%. Thus, for a given multiplier m the restrictions oy € (0, %), ay € (0, 00)
are imposed.

This rebalancing rule is equivalent to a rule {7,, 74} that sets upper

and lower bounds on actual exposure’s e; divergence from target exposure
mCt

et ¢ [(1 = 1a)mCh, (1 + 7,)mC], (3.4)
where 74 = (TJF_WIL)OZ“ and 7, = (T_jl)ozd are found by applying (3.3). Re-
strictions on oy and «,, translate to 74 € (O, 1-— %), Tu € (0, 00).

The strategy (3.4) will be referred to as the market-based rebalancing
rule.

Rebalancing strategy depending on cushion size

A new rebalancing rule that takes the cushion size into account is intro-
duced here. The market-based strategy has the potential weakness that
the tolerance levels 74, 7, do not depend on the cushion size. Thus, this
rule does not allow for more frequent downward adjustments of exposure
when the portfolio value is close to the floor. This issue is recognized
from barrier option replication, where frequent rebalancing of the hedge
portfolio is needed when the underlying is close to the barrier.

Observe that locally, i.e. until next rebalancing, the risky part of the
CPPI portfolio is equivalent to a position in barrier options: let n; be the
number of underlying shares held in the CPPI portfolio at time ¢, then the
risky CPPI exposure is equivalent to 7; down-and-out call options on the
underlying asset S with expiry 7', strike equal to zero and time dependent
rebate R, and barrier B, given by R, = B, = %(p(u,T) —by), u > t.

Here, b, := (Vt —ntSt)eftu 7sd5 is the value of the position in risk free assets.
Whalley & Wilmott (1997) consider replication of plain vanilla options
in a Black Scholes model extended to include transaction costs. Poulsen
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& Siven (2008) apply these results to barrier options. If trading costs
are present, the A-hedge portfolio derived in a frictionless market setting
is shown to be suboptimal to adjust, while the number of shares A lies
within the following no-trading band:

1
31-\25 —r(t—s) \ 3
(A= &, A1+ &) for &i=e3 (tt;w : (3.5)
I, = %2;2’5 = g—%tt is the gamma of the derivative with value V; to be
t

hedged, and s is the latest portfolio rebalancing time prior to time t. The
parameter w controls the trade-off between aversion to costs and to the risk
of deviating from the replicating strategy in a frictionless market. If w < 1
the aversion to costs dominates. Whalley & Wilmott (1997) argue that
if the boundary of the no-trading band is crossed, the minimum number
of risky shares necessary to bring the position back to the edge of the
no-trading band should be bought or sold.

The derivation of this portfolio rebalancing rule rests on Black-Scholes
assumptions. These affect both the expression for the bandwidth £ and the
calculation of the barrier option greeks. The rule (3.5) will be implemented
as a rebalancing rule for the CPPI portfolio, even though the setting in
the analysis to come not necessarily is that of Black-Scholes. Thereby, it
cannot be claimed that (3.5) is an optimal rebalancing strategy for the
CPPI portfolio, yet it is a reasonable simplification.

For a continuously adjusted CPPI portfolio, A and T" can be calculated.
A is merely the number of shares held in the stylized version: A; = ms—?t
In the present setup A; # 7, since the process (7;) is piecewise constant
with jumps only at rebalancing dates. Furthermore

oAy Sta(gg?) - mct% ~ mmCy mCy  Ay(m —1)
0S8y S? S S s? Sy ’
The trading strategy (3.5) is referred to as the bandwidth rebalancing rule,
and states to adjust the number of shares to equal A; =&, if n, 2 Ay £&;.
The bandwidth rebalancing rule implies more frequent portfolio adjust-
ments when the cushion is small, because the I' of a CPPI is an increasing
function of the cushion. If the floor is stochastic (as would be the case with
stochastic interest rates) having a cushion dependent rebalancing strategy
appears crucial.

T, =
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3.2.5 Gap risk coverage

The CPPI issuer will charge certain fees for managing the CPPI deal.
An upfront fee f, can be deducted from the initial investment thereby
lowering the highest possible capital guarantee to G < I(1 — f,)p(0,T).
In the following, a potential upfront fee is assumed to cover administration
costs. The issuer may also impose modifications of the CPPI strategy to
cover or reduce gap risk. Three approaches for covering losses from gap
events are studied in this section.

Covering gap risk by fee charge

As compensation for losses arising from potential gap events, the issuer
may simply charge a running fee f,. Let the fee be given as a percentage
of initial investment and suppose the size depends on the multiplier m.
The value of the issuer’s engagement Fpr at expiry T is the sum of fee
payments at dates t; < to < --- < t, < T as long as no gap event has
occurred, plus the value of the cushion if a gap event occurs:

n T
Fr = Z 1{ti<7}fr(m)effz‘ T“du+1{T<T}C’TefTT mdu = inf {t < T|Cy < 0}.
i=1

The upfront fee payment is excluded in this calculation since it is supposed
to cover only administration costs. The determination of the fee f, at
initiation of the CPPI deal is based on some risk measure of the issuer’s
engagement. Popular risk measures are expected loss given a loss occurs
E[Fr|Fr < 0], probability of loss P[Fp < 0], Value at Risk (VaR) and
expected shortfall (ES):

VaR.[Fr] = sup{l eR|P[Fp <l]<1—a}:=qq_q

1

BSalPr] = 17— (ElFrlrr<q, o)+ d0-oPIPr = 4a-o) - @).

q(1-q) is the lower (1 — a)’th quantile in the distribution of Fr. The
running fee f.(m) is chosen as the smallest fee charge that fulfils the
issuer’s risk management requirement. A possible condition is that the
expected shortfall is above some lower bound.
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Hedging gap risk

Gap risk can be hedged using gap options (studied in Tankov (2008))
or short maturity put options as suggested by Cont & Tankov (2009).
In practice this hedging approach requires that such derivatives on the
underlying asset are liquidly traded. Here, put options are chosen as hedge
instruments, since these are more commonly available than gap options.

Consider the hedge position entered at time t, and let At denote the
length of the hedge intervals. Assuming the floor has not been broken, a
new put position expiring at time ¢ + At is entered as the existing hedge
portfolio expires. The strike K must be chosen such that the put options
are in the money, K > Sy1 Ay, if the floor is broken, Cyyay < 0. When At is
small, it is reasonable to assume that no trading takes place between time ¢
and t + At. If the CPPI portfolio is rebalanced when new hedge-positions
are entered (i.e. at equidistant time steps t + hAt, h = 1,2,..), K can
be found by applying equation (3.2) as done in Cont & Tankov (2009).
However, if the portfolio is rebalanced more rarely, one must allow for
e+ # mCy when determining the strike price:

0> Cipne = Var —p(t + At,T) = Vi + (Sieae — Se)ne — p(t,T)
1
& Sipar < E(p(t’T) — Vt) + 5;.

Investing in 7; put options with strike K = i(p(t, T) —V;) + St (almost)
eliminates gap risk in the period [t,t + At]. Hedging costs are deducted
from the CPPI portfolio value. A small cushion or a large position in risky
assets, 1, increases the cost of hedging gap risk. Tankov (2008) finds that
(next to continuous re-hedging) this hedge strategy performs best if the
hedge position is unwound immediately after a gap event. Hedging cannot
eliminate gap risk completely due to approximations in the calculations
above and due to market frictions not considered in the construction of
the hedge.

Artificial floor

Gap risk can also be reduced by introducing an artificial floor above the
true floor, such that the risky exposure is unwound if the artificial floor
is broken. The true floor is otherwise applied for determining the risky
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exposure. This gives the issuer a buffer to absorb potential losses. The
artificial floor approach has an indirect cost; it eliminates the chance of
the CPPI recovering in scenarios where the artificial floor is broken but
the true floor is not.

Paulot & Lacroze (2009) compare the reduction in gap risk from four
arbitrarily chosen buffer sizes. Inspiration for applying an appropriate
buffer can be found in the barrier option literature. In a Black-Scholes
setup, Broadie et al. (1997) provide a price approximation for discretely
monitored barrier options, where the regular barrier option pricing formula
is used with an adjusted barrier. In particular, they find that for down-
and-out call options the first monitoring instant, where the underlying
asset value is observed below the barrier B, the expected difference is
B(1 — e‘ﬂ‘”/&); this difference is referred to as the asset’s undershoot
of the barrier. o is the Black-Scholes volatility, At is the time between

—¢(L
monitoring instants and 3 is a constant § = % ~ 0.5826, where (

denotes the Riemann zeta function.

The barrier level of the down-and-out call position equivalent to the
CPPI portfolio is By = % (p(t, T)— bt). By applying the results of Broadie
et al. (1997), the CPPI issuer can avoid the average loss in a gap event if
employing the artificial barrier B = B(2 — e*ﬁ"m), which corresponds
to an artificial floor at

b+ By = by + (p(t, T) — by) (2 _ e*ﬂ”@) > p(t,T). (3.6)

The average undershoot found by Broadie et al. (1997) is relevant for pric-
ing purposes, however, for the risk management purpose considered here,
the issuer should preferably cover losses arising in case of the maximum (or
some higher quantile) undershoot of the barrier. Furthermore, the results
of Broadie et al. (1997) rely on Black-Scholes assumptions, which are not
necessary the assumptions in the forthcoming analysis. An application of
(3.6) for an underlying asset with heavier tails in the return distribution
will therefore possibly underestimate the average undershoot of the bar-
rier. These issues are considered further in section 3.4.3, but for now it is
merely noted that gap risk is not completely eliminated by employing the
artificial floor given in (3.6).
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3.2.6 Extending the strategy by profit lock in

Profit lock in is an additional feature which can be added to the CPPI
strategy to secure part of the return against future depreciations in the
underlying asset. If at time 71 € [0,7] the portfolio value reaches some
level (1 4 6y)Vy, a part of the profit is locked in by raising the floor to
(14 6p)p(71,T). Profit may be locked in several times: if at time 7; the
portfolio value crosses (1 + 6y)V,,_, = (1 + 6y)'Vj, the floor is raised to
(1 +0p)'p(7:, T).

Whereas the original floor is equal to the present value of the capital
guarantee covered by the issuer, the higher floor following a profit lock
in event is only a temporary floor intended to secure returns and is not
considered a new guarantee in this analysis.

3.3 Model setup

3.3.1 The underlying risky asset

Consider an arbitrage-free model represented by a filtered probability
space (2, F,F, P), where P denotes the real-world probability measure
of market scenarios. By the assumption of no arbitrage, there exists
some pricing measure (Q ~ P. The risk free asset has the dynamics
dR; = r¢Rydt. In the following, the interest rate process r is assumed
to be constant, although this is by no means necessary.

The underlying asset is modelled as a stochastic volatility process with
jumps in asset value. This process allows for heavier tails in the return
distribution than the geometric Brownian motion, and has this as a special
case. Under the real-world probability measure P the dynamics of S is
given by

as,
St
dvy = k(0 —v)dt + f\/EthQ,

= pdt + o dW}! 4 (Z; — 1)dN; (3.7)

where W1, W? are Brownian motions with correlation p and N is a Poisson
process with intensity A and independent of W', W?2. The relative jump
size log Zy ~ N(p J,O'?]) is assumed normally distributed with mean puj
and volatility 0%. Cont & Tankov (2009) argue that it is important for
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an assessment of gap risk to include jumps in the model because gap risk
due to jumps cannot be eliminated even by continuous rebalancing.

3.3.2 CPPI investor

The investor’s optimal portfolio choice is here restricted to a search among
CPPI portfolios; i.e. consider the CPPI investor’s problem of choosing an
optimal multiplier m. Two approaches for describing the investment ob-
jectives are considered: by means of a utility function and by a risk/return
profile.

Utility function

A commonly employed utility function U describing the preferences of
an agent as a function of wealth w is the constant relative risk aversion
(CRRA) utility function?

1—

pCRRA(y =W =L (3.9)
L=

Black & Perold (1992) and El Karoui, Jeanblanc & Lacoste (2005) study

optimal portfolio choice problems for CPPIs and for general portfolios with

a capital guarantee, respectively, using a CRRA utility function under a

minimum consumption constraint.

The notion of risk aversion concerns any deviation, positive and nega-
tive, from the expected wealth. Work in behavioural finance suggests that
simple utility functions such as (3.8) do not fully capture investors’ be-
haviour. In their seminal studies, Kahneman & Tversky (1992) find that
decisions are more driven by loss aversion and the prospect of terminal
wealth being lower than the current.

Maringer (2008) suggests that loss aversion can be introduced as a
kink in the utility function by placing more emphasis on losses in form of
a loss aversion parameter. This way, the utility curve becomes steeper to
the left of the initial level of wealth. Sharpe (2006) equips agents, who in-
vest in protected investment products, with a CRRA utility function with
two kinks, which arise from applying different risk aversion parameters in

3The nominator is modified by subtracting a constant compared to the standard
form to give a well-defined limit as v — 1.
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different wealth regions. Here, a CRRA utility function with a kink at the
initial wealth level (equal to the capital guarantee G) is applied

UkCRRA (w) —

=m 3.9
G <w (3.9)

wl=72-1

{1“ﬂ*+c w< G
1—2

where 0 < v < 9 are the risk aversion coefficients and C' is a constant,
which ensures a continuous utility function. The intuition is that investors
have a higher risk aversion once the desired level of wealth is obtained.
This type of kinked CRRA utility is also applied by Jessen & Jgrgensen
(2009) for investments in structured bonds. The utility functions (3.8)
and (3.9) are shown in figure 3.1.

CRRA vs. kinked CRRA utility functions
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Figure 3.1: Kinked CRRA utility with 41 = 1.2, 72 = 1.3 compared to CRRA utility
with y = 1.2.

The objective of the CPPI investor is to maximize expected utility of
terminal wealth over possible multipliers m > 1 given the set of conditions
®(m) in the CPPI contract. The issuer sets the fees f,, f.(m), borrowing
limit b, spread ¢ charged for providing additional capital, rebalancing rule
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RR € {E, M, B} (rebalancing at equidistant time steps, market-based or
bandwidth rebalancing) and the approach for gap risk coverage GRC' €
{FC,H,AF} (fee charge, hedging or artificial floor). Trading costs &
reflects the liquidity of the risky asset. The utility maximization problem
of the investor is

max Eo[U(Wr(m))]  given  @(m) = {RR,GRC, fu, f,(m),6,b,e},

where Wp(m) is the wealth at time T from investing in a CPPI with
multiplier m, assuming this investment is held until expiry 7.

Risk/return profile

An alternative to the utility maximization approach is to evaluate an
investment by its risk-adjusted return, i.e. by measuring expected return
relative to some risk measure. A well-known example is the Sharpe ratio,
which measures expected excess return relative to its standard deviation.
However, standard deviation as risk measure can be misleading, since it
punishes large losses and gains equally. This is avoided by the Sortino
ratio, which measures expected excess return relative to the square root of
the second lower partial moment (also known as semi-standard deviation).
Denote by rCFPI the T-year logarithmic return of a CPPI, and let the
excess return be given over a T-year risk free investment. Then the Sortino
ratio SR is given by

E[TCPPI] —rT

SR, = .
\/E[(TCPPI)2|TCPPI < 2

(3.10)

Pedersen & Satchell (2002) gives the Sortino ratio a theoretical foundation
as a performance measure by relating it to the so-called maximum prin-
ciple. The capital guarantee of a CPPI ensures r“F1 > 0, so the choice
x = 0 implies SRy = oo. Instead, setting x = rT (referred to as modified
Sortino ratio by Pedersen & Satchell (2002)) reflects the investor’s expec-
tation that the CPPI will outperform the risk free investment. By using
the semi-standard deviation as risk measure, the Sortino ratio is sensitive
to asymmetric return distributions as e.g. the CPPI’s. The Sortino ra-
tio has been applied as CPPI performance measure by Constantinou &
Khuman (2009) and Cesari & Cremonini (2003).
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Like in the utility maximization approach, an investor with this risk/re-
turn profile seeks to maximize the Sortino ratio of the CPPI investment
over possible multipliers m > 1.

3.4 Numerical experiments

The performance of the CPPI strategy is analysed by Monte Carlo simu-
lations. The aim is to investigate implications of introducing market fric-
tions into the setup, and in particular to compare the rebalancing rules
and the three approaches for gap risk coverage. Expected values, risk
measures, etc. reported here are based on 100 000 simulations.

3.4.1 Base case

The risky asset dynamics is simulated using the following set of parameters
reported by Eraker (2004), who estimates S&P 500 index return data over
a 3-year period:

[ =0066 p=-058 A=0.504 p;=-0004 o;=0.066
vo=0.042 0=0.042 k=4.788 ¢=0.512 r=0.02

The base case is a CPPI contract with 7' = 5 years to expiry. An
upfront fee f, = 1% of initial investment is assumed, cost of capital is § =
1% and a borrowing limit at b = 2 is imposed. Proportional transaction
cost for trading in the underlying asset is set to € = 0.5%. The portfolio
is evaluated once a day, but only rebalanced so that e; = mC} according
to the market-based strategy (3.4), for which the choices of 7, and 74 are
discussed in section 3.4.2. No means to cover gap risk are taken yet.

The top panel in figure 3.2 shows that a pure index investment out-
performs the CPPI with respect to expected return. The CPPI investor
indirectly pays a cost of insurance: the cost of forfeiting higher returns
from a direct investment in the underlying index. The cost of insurance
over the 5-year period ranges from 18-24 percentage points. As anticipated
the CPPI gives a higher return than the risk free investment. The highest
CPPI return is accomplished for multipliers m € (4,6). In contrast, in a
frictionless Black-Scholes model the expected return of a CPPI portfolio
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Expected returns as function of multiplier

— CPPI
—— Index
—— Bond

refum
010 015 020 025 030 035

multiplier

Sortino ratio as function of multiplier

SR

— cPPI
—— Index

-15 -10 =05 00 05 10

multiplier

Figure 3.2: Top: Expected returns of underlying stock index, risk free investment and
CPPI with market-based rebalancing as function of the multiplier. Bottom: Sortino

ratio of index and CPPI investments.

can be increased indefinitely by choosing a high enough multiplier (shown
in e.g. Cont & Tankov (2009)).

If the investor is risk averse, (s)he will care not only about expected
returns of an investment but also about higher moments of the return
distribution. A higher CPPI multiplier implies higher risky exposure,
and thereby an increased variance in CPPI returns. With the fairly low
borrowing restriction imposed here, variance of the returns of a CPPI
with m = 9 is still slightly lower than the variance in pure index returns.
However, without the borrowing restriction the variance of CPPI returns
(and the expected CPPI return) is much higher. Furthermore, since CPPI
returns are bounded below the return distribution will have a positive
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skew.

By applying the semi-standard deviation as risk measure, the Sortino
ratio (3.10) is sensitive to the asymmetry in the CPPI return distribution.
The bottom panel in figure 3.2 shows that investors with a risk/return
profile described by the Sortino ratio will prefer a CPPI with multiplier
m € (3,4). Even though such investors favour the downside protection
provided by a CPPI, they would choose the uninsured index investment
over a CPPI with m > 6.

Expected kinked CRRA utility as function of multiplier
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Figure 3.3: Top: Investor’s expected kinked CRRA utility with 41 = 1.2 and 72 = 1.3
from investing in a CPPI, the underlying index and the risk free investment. Bottom:
Expected CRRA utility with risk aversion parameter v = 1.25 from investing in a CPPI,

the underlying index and the risk free investment.

Figure 3.3 illustrates the ranking of the index, bond and CPPIs with
different multipliers when a utility maximization approach is taken. The
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top panel shows expected kinked CRRA utility (3.9) with risk aversion pa-
rameters y; = 1.2 and 9 = 1.3. An investor with such preferences would
choose a CPPI with multiplier m = 3 and prefer the uninsured index
investment to a CPPI with multiplier m > 4. Other risk aversion para-
meters will alter the investor’s ranking of the three investments, however
the shape of the CPPI expected utility curve as a function of multipliers
will remain more or less unchanged.

A quantification of the difference in expected utility obtained from two
investments can be given in terms of the certainty equivalent: the risk free
amount one investment should be compensated by on average to obtain
the same expected utility as the other investment. With kinked CRRA
preferences the pure index investor should be compensated by 1.2% of
initial investment and the risk free investor by 3.4% to be as well off as an
investor in a CPPI with m = 3.

The bottom panel in figure 3.3 shows the expected CRRA utility (3.8)
with risk aversion parameter v = %(’h +72) = 1.25 for the CPPI, index and
risk free investments. For this risk aversion parameter a CPPI investment
is not preferred to the uninsured index for any multiplier. A more risk
averse investor would invest in a CPPI; equipped with a risk aversion
parameter v > 1.9, the investor would choose a CPPI with the smallest
possible multiplier m = 2.

Since the CPPI investment chosen based on the Sortino ratio and
kinked CRRA preferences are similar, the former will be applied hence-
forth. Applying the utility maximization approach with kinked CRRA
utility would not alter the overall conclusions.

3.4.2 Comparing rebalancing strategies

Now consider the two rebalancing strategies, market-based (base case) and
bandwidth rebalancing, suggested in section 3.2.4. These are compared
to weekly rebalancing, where the CPPI portfolio is adjusted once a week
irrespectively of changes in underlying variables. For all three strategies
the risky portfolio is unwound as soon as the floor is observed broken.
An implementation of the market-based strategy (3.4) requires a choice
of tolerance levels for the divergence of exposure, e, from its target, mC.
Based on numerical experiments seeking to maximize expected CPPI re-
turn the tolerance levels 74 = 0.04 and 7, = 0.5 are applied. For m = 5
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this corresponds to the following tolerance levels for movements in the
index: a,, = 1.1% and oy = 7.2%.* Note that the condition 75 < 1 — %
given in section 3.2.4 is satisfied for all m. 74 controlls the buy region
where risky exposure is increased, and the fact that 74 < 7, implies more
frequent portfolio adjustments in rising markets than in falling markets.
This is a natural consequence of choosing tolerance levels based on ex-
pected returns, without taking gap risk into consideration.

Bandwidth rebalancing (3.5) is employed with w = 0.25. This risk
versus cost aversion w was found experimentally to give the highest ex-
pected return among the range of values tried. Recall that in this respect
the notion of risk refers to deviation from the stylized CPPI strategy. A
choice of w < 1, which reflects a higher aversion to costs, is therefore not
surprising. At initiation of a CPPI with m = 5, w = 0.25 corresponds to a
no-trading band of £9.4% around A;. This translates to a +9.4% move in
the underlying index, although this number will change as the underlying
variables change.

The expected return and Sortino ratio of a CPPI with weekly, market-
based and bandwidth rebalancing are shown in figure 3.4. Weekly rebal-
ancing cannot compete with the two customized strategies.> With respect
to expected return the market-based strategy perform slightly better than
bandwidth rebalancing for the low range of multipliers, while the oppo-
site is true for multipliers m > 5. When performance is measured by the
Sortino ratio bandwidth rebalancing is preferred.

CPPI investors with kinked CRRA preferences would arrive at a rank-
ing of the three rebalancing strategies for different multipliers almost iden-
tical to that of the Sortino ratio. In terms of certainty equivalents, an
investor in a CPPI employing market-based rebalancing should be com-
pensated by -0.36% of initial investment for m = 2 and by 1.6% for m = 9
to be as well off as if employing bandwidth rebalancing. Correspondingly,
a CPPI investment with weekly rebalancing needs 0.78-1.9% compensa-
tion to provide the same utility as with bandwidth rebalancing.

With respect to trading interventions, the cushion dependence of band-

“For given 7y, 74, both au(:) and aq(-) are decreasing in m.

5Daily rebalancing results in even lower expected returns. Monthly rebalancing is
a competitor to the two customized strategies with respect to expected CPPI returns,
although at the cost of large losses to the issuer. These alternatives are therefore
disregarded.
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Effect of rebalancing strategy on expected returns
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Figure 3.4: CPPI investor’s expected return and Sortino ratio for CPPIs with port-

folios adjusted according to market-based, bandwidth and weekly rebalancing rules.

width rebalancing makes this strategy more efficient than market-based
rebalancing. The market-based strategy requires 16250 trading interven-
tions (increasing in m) over the 5-year period, whereas bandwidth rebal-
ancing achieves comparable results by only 16-33 trades. If trading costs
were introduced as a fixed cost per trade or a combination of fixed and
proportional trading costs, bandwidth rebalancing would be advantageous.

3.4.3 Covering gap risk

Figure 3.5 shows risk measures of the issuer’s engagement when managing
a CPPI portfolio adjusted according to the market-based, bandwidth and
weekly rebalancing strategies. Weekly rebalancing is not only more expen-
sive to the investor but also to the issuer in terms of higher losses. This
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Effect of rebalancing strategy on exp. shortfall (95% level)
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Figure 3.5: CPPI issuer’s expected shortfall and probability of loss when the CPPI
portfolio is adjusted according to market-based, bandwidth and weekly rebalancing.

result is not surprising since weekly rebalancing does not allow for rapid
reduction of exposure during downside market moves. Although the prob-
ability of loss (bottom panel) is higher for bandwidth rebalancing than
for market-based, the expected shortfall produced by the two strategies
are comparable. Due to its previously observed efficiency with respect to
number of trading interventions, bandwidth rebalancing will be employed
henceforth.

The three approaches for reducing issuer’s gap risk suggested in sec-
tion 3.2.5 are now implemented. First, the issuer can charge a semi-annual
running fee as compensation for potential losses. The fee size is here set
such that the expected shortfall at the 95% level of the issuer’s engage-
ment is positive: min f,(m) subject to ESgsq[Fr] > 0. The fee charge is
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determined based on numerical experiments and the results are reported
in table 3.1.9

m |2]3] 4 | 5 | 6 | 7 [8]09
fr (%) | 0]0]0.002 ] 0.003 ] 0.005 | 0.01 | 0.7 | 1.0

Table 3.1: Semi-annual running fee.

Alternatively, the issuer can reduce gap risk by introducing the artifi-
cial floor given in (3.6) with volatility parameter o = ,/v;. Broadie et al.
(1997) notice that the approximation works poorly close to the barrier; i.e.
when the CPPI exposure is close to zero. Therefore a multiplier dependent
lower bound on exposure é; = max{m,e;} is applied in the expression for
the risk free holdings, b; = V; — &;, when calculating the artificial barrier
of the down-and-out call position.

The third possibility introduced is to hedge gap risk using put options
— here options with two weeks to expiry are used. Trading costs on deriva-
tives g4 are typically higher than on the underlying, and therefore ¢4 = 2¢
is assumed.” Implementation of the hedging strategy requires hedge in-
struments to be priced. Eraker (2004) also estimates the dynamics of the
underlying asset under the pricing measure ) used by the market, and
reports the following Q)-parameters:

KO =2772 69=0269° u9=-0020 pu9=r— Y =0.050.

Figure 3.6 illustrates expected return and issuer’s expected shortfall of
CPPI investments incorporating the three approaches for gap risk reduc-
tion. The top panel shows that investor’s expected return will be low-
ered only marginally, if the issuer chooses to reduce gap risk by hedging
and even less if choosing an artificial floor. In a market where deriva-
tives are less liquidly traded and trading costs are higher, the hedging
approach would be more expensive. Covering potential losses by a run-
ning fee charge is seen to be both costly and ineffective for high multipliers.

5For such an analysis of tail events Monte Carlo simulation is not the best tool, and
the results in table 3.1 should only be considered a crude approximation of the optimal
solution to the minimization problem.

"This corresponds to a bid/ask spread of £0.002 on implied volatility for at-the-
money-options.
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Effect of gap risk coverage approach on expected returns
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Figure 3.6: CPPI investor’s expected return and issuer’s expected shortfall when gap
risk is covered by fee charge, hedging and artificial floor.

Another problem in covering gap risk by a fee charge is the cumbersome
determination of the appropriate fee size: the procedure is not automatic
and the fee size must be re-calculated for a different CPPI issuance.

The effectiveness of the three approaches for gap risk coverage is stud-
ied in the bottom panel in figure 3.6.° For multipliers m > 7 none of
the three approaches are able to eliminate issuer’s risk completely. Both
hedging and the artificial floor approach reduce the losses significantly.
Furthermore, a numerical investigation shows that the artificial floor is
capable of practically eliminating issuer’s risk at a small additional cost

8The expected shortfall, when covering gap risk by a fee charge, is positive for the
middle section of multipliers due to inaccuracy in the numerical approximation.
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to the investor, if placing an extra margin® in the floor. This supports the
conjecture in section 3.2.5 that this approach can be improved by apply-
ing a buffer, that covers more than the average undershoot, as given in
equation (3.6).

In the following the bandwidth rebalancing strategy with gap risk cov-
ered by an artificial floor is adapted as a reference case. By choosing this
approach, concerns about whether the required short maturity put options
for hedging gap risk are available can be ignored.

3.4.4 Effects of market frictions

This section explores the direct effects of introducing market frictions such
as trading costs and capital restrictions in form of borrowing constraint
and cost of capital.

Capital restrictions

The effects of capital restrictions imposed by the CPPI issuer on expected
return and Sortino ratio are illustrated in figure 3.7. More precisely, the
situations where an issuer provides no borrowing facility (b = 1), unlimited
borrowing (b = oo0) and imposes no capital restrictions at all (b = oo,
9 = 0) are compared.

Figure 3.7 shows that the borrowing restrictions have a considerable
influence on the CPPI performance. While removing the borrowing facility
completely has no visible effect on expected CPPI return, investors with
a risk/return profile described by the Sortino ratio would actually prefer
not to have any additional capital available. The reason is that without
additional capital, exposure will be kept at a moderate level even for higher
multipliers. There is even a minor improvement in the Sortino ratio from
investing in a CPPI with a high multiplier relative to a small, whereas the
opposite is true in the reference case.

If the issuer facilitates unlimited additional capital, the exposure is
allowed to become extremely high, which implies possibly high returns.
Since a consequence of higher exposure is higher variance in returns, the
CPPI portfolio value hits the floor in the majority of scenarios (80% for
m = 9). Therefore the expected CPPI return is lower than in the reference

9For m = 9 an artificial floor at 1.015p(t, T') will practically eliminate gap risk.
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Effect of capital restrictions on expected returns
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Figure 3.7: Effects of capital restrictions on expected return and Sortino ratio.

case for m > 4. If the issuer also removes the cost of capital, 6 = 0,
there is a clear positive effect on expected CPPI return, although a poorer
performance than in the reference case is still reported.

Trading costs also play an important role for the observation that
investors are better off without the borrowing facility. This role is inves-
tigated next.

Trading costs and continuous rebalancing

The most common simplification in analyses of the CPPI strategy is to
ignore trading costs'® and allow for continuous rebalancing of the portfo-

0The importance of including trading costs in a CPPI analysis is also considered by
MKaouar & Prigent (2007b).
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lio. With € = 0 the bandwidth trading strategy automatically rebalances
the portfolio daily, which is a natural consequence of frictionless trading.
The effects of this simplification on expected CPPI return and issuer’s
expected shortfall are investigated in figure 3.8. Two cases are considered:
frictionless trading with the borrowing constraint at b = 2 reintroduced
and frictionless trading combined with frictionless capital markets (b = oo,

Effect of trading costs on expected returns
= - -
Reference case P
5o No trading costs Phe
No trading costs, no capital restrictions e
<« _| Index -
=1 - -
£ ] -7
= e -
=] _-
- | -
= ——
- | -
3 -
T
P
T T T T T T T
2 3 4 5 6 7 8 E]
multiplier
Effect of trading costs on exp. shortfall (95% level)
1=
g
=]
5 o
£ P=
8 2 7
= < Reference case
= No trading costs
- - No trading costs, no capital restrictions
I
S
e
T T T T T T T T
2 3 4 5 6 7 8 ]
multiplier
Figure 3.8: Effects of trading costs on investor’s expected return and issuer’s expected
shortfall.

If trading in the underlying index was costless, the solid red curve in the
top panel shows that expected CPPI return would improve significantly
(notice the scale on the ordinate axis). If further assuming frictionless cap-
ital markets the CPPI would even outperform the pure index investment,
when measured by expected return.
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The bottom panel shows that daily portfolio rebalancing reduces gap
risk significantly, since exposure is kept closer to its target level. If capital
restrictions are removed, the high of exposure is seen to cause higher
losses, although still significantly lower than the expected shortfall in the
reference case.

3.4.5 Model risk

A popular choice of model setup preserving analytical tractability in the
CPPI analysis is that of Black-Scholes. The effects of choosing this simpler
model specification for the underlying asset is studied in figure 3.9. The
volatility parameter of the geometric Brownian motion reported by Eraker
(2004), ogpm = 0.202, is employed.

Index return distribution’s effect on expected returns

017 018
| |

retumn

0.16
|
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—— Black—Scholes setup

015
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T T T T T T T T
2 3 4 5 6 7 8 9

multiplier

Index return distribution’s effect on exp. shortfall (95% level)

0.0000
|

-0.0010
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-0.0020

multiplier

Figure 3.9: Effects on expected return and issuer’s expected shortfall when modelling

the underlying asset as a geometric Brownian motion.

68



The top panel shows that the lighter right tail of the return distri-
bution in a Black-Scholes setup implies a lower CPPI return compared
to the reference case. Furthermore, the underlying asset dynamics has a
crucial effect on gap risk: with log-normally distributed returns the gap
risk is essentially zero (even if removing gap risk coverage, not shown in
figure 3.9), and consequently, a CPPI analysis in a Black-Scholes setup
will possibly underestimate the true risk facing the issuer.

3.4.6 Profit lock in

The profit lock in feature is now added to the standard CPPI strategy.
The effects of two choices of lock-in levels 9‘1, = 10%, 9}7 = 2% and 62 =
50%, 9% = 10% are investigated, where the first gives frequent profit lock
in events and the second more rare.

Effect of profit lock in on expected returns

—— Reference case
’ —— Rare profit lock in
- - - Frequent profit lock in

refum
014 015 016 017 018
|

T T T T T T T T
2 3 4 5 6 7 8 9

multiplier

Effect of profit lock in on Sortino ratio

SR
0

—— Reference case
—— Rare profit lock in
- - - Frequent profit lock in

multiplier

Figure 3.10: Effects of profit lock in on expected CPPI return and Sortino ratio.
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Figure 3.10 depicts expected return and the Sortino ratio of CPPIs
with profit lock in compared to a regular CPPI. For 9%, = 10%, 9}; = 2%,
profits are locked in at least once in 70-47% (decreasing in m) of the
scenarios. For the rare profit lock in, where the barrier is higher, the port-
folio value of CPPIs with small multipliers will have a lower probability
of reaching this level: profit is locked in for 4-17% (increasing in m) of
scenarios. Figure 3.10 shows that neither expected return nor Sortino ra-
tio are improved from this extension of the regular CPPI strategy; both
measures indicate poorer performance. The rare profit lock in performs
slightly better than frequent lock in. In a scenario where the borrowing
constraint is not binding,'! a profit lock in event will reduce exposure to
the underlying. Based on the poorer performance observed in figure 3.10,
this effect does not seem desirable to the CPPI investor.

Yet, profit lock in is commonly encountered in the CPPI literature and
in actual implementations. In a more volatile market (e.g. for 6 = vy =
0.09), the rare profit lock in would indeed give better performance than
the regular CPPI when measured by the Sortino ratio — although not with
respect to expected return or kinked CRRA utility.

3.5 Summary

This paper studied the CPPI strategy in a setting taking market fric-
tions into account. Trading costs, fees and borrowing restrictions were
introduced, and most importantly the assumption of continuous portfolio
rebalancing was relaxed.

The choice of discrete-time rebalancing rule was shown to play an im-
portant role for the expected return delivered by the CPPI strategy. I
found that market-based and bandwidth rebalancing resulted in similar
CPPI performance, although bandwidth rebalancing achieved this with
fewer trading interventions. Moreover, the cushion-dependence of the
bandwidth rebalancing rule may give this a further advantage over the
marked-based rule if the floor is stochastic, e.g. in a setup with stochastic
interest rates. An investigation of this is left for future research.

"1f the borrowing constraint is binding, actual exposure will be lower than target
exposure. In this situation, a profit lock in event will typically only reduce the difference,
but have no direct effect on actual exposure.
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From the perspective of a CPPI issuer the main objective is to limit
gap risk. I found that hedging using short maturity put options and
introduction of an artificial floor reduce gap risk effectively at a small cost
to the investor. The artificial floor approach has the advantage that it does
not depend on specific hedge instruments being available. Gap risk could
possibly be further reduced by the artificial floor approach if applying a
higher quantile instead of the mean of the risky asset’s undershoot of the
barrier. Future research also includes an investigation of the implications
of applying the barrier option results for a Black-Scholes model in the
stochastic volatility model with jumps.

Given the conditions in a CPPI contract imposed by the issuer, the
investor will choose the CPPI multiplier according to his/her investment
objectives. With expected return as performance measure, I found that
the multipliers m € (4,6) provided the best performance. Furthermore,
risk averse investors with kinked CRRA preferences and investors with a
risk/return profile given by the Sortino ratio had similar CPPI investment
objectives. Both investor types would choose a multiplier m € (3,4).
This is well below the upper bound on multipliers m € (10,17) found
by Bertrand & Prigent (2002) and similar to the time and risk dependent
multiplier found by Hamidi et al. (2009).!? Since CPPI investors are found
to prefer fairly low multipliers, the problems involved with covering gap
risk for higher multipliers become less relevant.

In a setup that includes trading costs and cost of capital, I found that
investors would prefer a CPPI with no additional capital available, both
when measuring performance by expected returns and by the Sortino ratio.
Such a restriction is also desirable for the issuer, since it reduces gap risk.

Finally, I studied the effects of extending the CPPI strategy by a profit
lock in feature. In the setup considered here, the investor did not benefit
from this extension neither with respect to expected return or Sortino
ratio. However, profit lock in could be preferable to some investors in a
more volatile market. Therefore, if profit lock in is provided, it should be
carefully designed to meet specific investor demands in the given market
scenario.

12To my knowledge these are the only papers considering the choice of CPPI multi-
plier. For illustration purposes Balder et al. (2009), Cont & Tankov (2009), Paulot &
Lacroze (2009) and Boulier & Kanniganti (1995) apply multipliers m € (2, 10).
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Abstract: Constant proportion debt obligations (CPDOs) are struc-
tured credit derivatives indexed on a portfolio of investment grade
debt, which generate high coupon payments by dynamically lever-
aging a position in an underlying portfolio of index default swaps.
CPDO coupons and principal notes received high initial ratings from
the major rating agencies, based on complex models for the joint
transition of ratings and spreads for underlying names. We propose
a parsimonious model for analysing the performance of CPDOs us-
ing a top-down approach which captures essential risk factors of the
CPDO. Our analysis allows to compute default probabilities, loss
distributions and other tail risk measures for the CPDO strategy
and to analyse the dependence of these risk measures on parameters
describing the risk factors. Though the probability of the CPDO
defaulting on its coupon payments is found to be small, the ratings
obtained strongly depend on the credit environment. CPDO loss
distributions are found to be bimodal and our results point to a het-
erogeneous range of tail risk measures inside a given rating category,
suggesting that credit ratings for such complex leveraged strategies
should be complemented by other risk measures for the purpose of
performance analysis. A worst-case scenario analysis indicates that
CPDOs have a high exposure to persistent spread-widening scenar-
ios. By calculating rating transition probabilities we find that ratings
can be quite unstable during the lifetime of the CPDO.

Keywords: CPDO, credit risk, credit derivatives, top-down models

1We thank William Morokoff, William Dellal and Eric Raiten for helpful comments.
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4.1 Introduction

Constant Proportion Debt Obligations (CPDOs) are leveraged credit in-
vestment strategies which appeared in the low credit spread environment
of 2006 with the aim of generating high coupons while investing in invest-
ment grade credit. The asset side of the CPDO contains two positions:
a money market account and leveraged credit exposure via index default
swaps on indices of corporate names, typically the [ITRAXX and DJ CDX.
The dynamically adjusted risky exposure is chosen such as to ensure that
the CPDO generates enough income to meet its promised liabilities and
also to cover for fees, expenses and credit losses due to defaults in the
reference portfolio and mark-to-market losses linked to the fair value of
the index default swap contract.

The CPDO strategy involves high initial leverage but reduces its risky
exposure as the gap between portfolio value and present value of liabilities
narrows. In case losses are incurred leverage is increased in order to regain
some of the lost capital. With this leverage rule a CPDO has no upside
potential but it has an added ability to recover from negative positions
at the cost of not having principal protection as for example the CPPI
strategy. The ”constant proportion” in the name CPDO refers to the fact
that it operates with a piecewise constant leverage rule.

The first CPDO launched by ABN AMRO paid coupons at 100bp
above Euribor and later versions of the CPDO have paid up to a 200bp
spread. Yet CPDO coupons and principal notes initially received top
ratings from the major rating agencies. This top rating gave rise to an
intense discussion among market participants, because standard top-rated
products such as treasury bonds pay significantly lower coupons and also
because the pool of corporate names on which the CPDO sells protection
has significantly lower average rating.

When first issued, there were several studies on the risk and perfor-
mance of CPDOs conducted by rating agencies (Wong et al. (2007) and
Jobst et al. (2007)) and by issuers (Varloot et al. (2007)). The sensitivity
analysis conducted in these studies suggested that the CPDO strategy is
fairly robust and could overcome most historical credit stresses prior to
the 2007-2008 financial crisis with low default rates (Lucas, Goodman &
Fabozzi (2007)). However, one concern of agencies which chose not to
rate this product was the potentially high level of model risk involved in
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the analysis of the CPDO strategy, given the large number of factors and
parameters in these models. Another major concern was the limited ex-
tent of historical data for backtesting the strategy: spread data for the
ITRAXX and CDX indices are only a few years in length (only a fraction
of the risk horizon of CPDOs) and in this period credit markets had not
been under serious stress. In hindsight this was a serious drawback since
the 2007 credit crunch hit the markets quite suddenly and the following
steep increase in ITRAXX and CDX spreads caused heavy CPDO losses.
The continued market distress has forced many structures to unwind.

Rating agencies (Linden et al. (2007), Wong et al. (2007) and Mo-
rokoff (2007)) have analysed CPDOs using high-dimensional models for
co-movements of ratings and spreads for all names in the reference port-
folio. Defaults in the underlying index are generated through a detailed
modelling of rating migrations of the underlying names and the index
spread is modelled as a stochastic process depending on the average rat-
ing of the names in the index. This modelling approach leads to hundreds
of state variables and is not accessible to entities other than rating agencies
due to lack of historical data on ratings.

We argue that such a complex framework may not be necessary. We
show that the main risk and performance drivers can be parsimoniously
modelled using a top-down approach where the underlying credit portfolio
is modelled in terms of its aggregate default loss. We model the rate of
occurrence of defaults in the underlying index using a default intensity
process and thereby arrive at a description of the cumulative loss process
of the portfolio. This setting allows to study the key risk factors associated
with CPDOs, while keeping estimation and simulation of the model at a
simple level and enabling a meaningful sensitivity analysis. Our analysis
allows an independent assessment of the credit ratings assigned by agen-
cies, allows to compute default probabilities, loss distributions and other
tail risk measures for the CPDO strategy.

The paper is organized as follows. Section 4.2 describes the CPDO
strategy and the cash flows involved. Risk factors influencing these cash
flows are analysed in section 4.3 and based on this we setup a one factor
top-down model for the default intensity. We analyse the performance of
CPDOs in a Monte Carlo framework in section 4.4 by studying ratings
and risk measures in different credit market environments, by conducting
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a sensitivity analysis and evaluating transition probabilities for ratings.
Section 4.5 summarizes our results and discusses some implications of our
analysis.

4.2 The CPDO strategy

A CPDO is a dynamically leveraged credit trading strategy which aims at
generating high coupon payments (typically 100-200bp above LIBOR rate)
by selling default protection on a portfolio of investment-grade obligors
with low default probabilities. The idea is to achieve this objective by
dynamically adjusting a leveraged exposure to a credit index.

4.2.1 Description

An investor in a CPDO provides initial capital (normalized to 1 in the
sequel) and receives periodic coupon payments of a contractual spread
above the LIBOR rate until expiry 71" of the deal. The CPDO manager
sells protection on some credit index via index default swaps on the no-
tional which is leveraged up with respect to initial placement. The CPDO
portfolio is composed of two positions: a short term investment, such as
a money market account, denoted (At)o<;<7 and a position in a T-year
index default swap (typically the 5-year index default swap). The sum of
the value of the swap contracts and the money market account is denoted
by (Vi)iepo,1)-

Initially, the notional paid by the investor, minus an eventual arrange-
ment fee (~ 1%) is invested in the money market account: Ay = 0.99.
The money market account earns interest at the LIBOR rate: we denote
L(t, s) the spot LIBOR rate quoted at ¢ for maturity s > t.

The investor receives coupons at dates CD = {t; < T'|l = 1,2,...}.
CPDO coupons are paid out as a spread ¢ over LIBOR

e, = A) [L(ti—1, tr) + 6],

where A(t) = t — max{t; € CD|#; < t} is the time elapsed since last
coupon payment date. The present value of these liabilities is called the
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target value:

T% = B(t7 T) + Z EQ |:Ctl€7 fttl rsds }ft] 7
tZGCDﬂ[t,T]

where B(t,u) = E® [e‘ Ji'rsds | £, | is the discount factor associated with

some short rate process r and F; is the market information at time ¢. If
Vi > TV, then the CPDO manager can meet her obligations by simply
investing (part of) the fund in the money market.

To be able to meet the coupon payments, the CPDO manager sells
protection on a reference credit index (ITRAXX, CDX,..) by maintaining
a position in index default swaps on the investor’s notional that is lever-
aged by a factor m (the leverage ratio). This position generates income for
the CPDO by earning a periodic spread, denoted S(t,T7) for the spread
observed at time t of a swap expiring at time 7. We denote by P, the
present value of these spread payments; i.e. P; is equal to the present value
of the premium leg of the index default swap at time .

If a name in the underlying index defaults, the CPDO manager incurs
a loss, which is magnified through leverage. We denote by DT = {1} <
7o < ... < 7p,} the set of default times in the index: 7; represents the
date of the i-th default event, N denotes the number of names in the
underlying index (N! = 250 for a CPDO referencing the ITRAXX and

CDX), and Ny = ZiNzﬁ 1(r,<s is the number of defaults in the index up
to time t.

The CPDO is said to cash in if the portfolio value reaches a value suf-
ficient to meet future liabilities, i.e. V; > T'V;. In this event all swap con-
tracts are liquidated and the CPDO portfolio consists only of the money
market account.

If, on the other hand, the value falls below a threshold k, V; <k (e.g.
k = 10% of the investor’s initial placement) the CPDO is said to cash
out. In this case the CPDO unwinds all its risky exposures, ends coupon
payments and returns the remaining funds to the investor.

A CPDO can default on its payments either by cashing out and thereby
defaulting on both remaining coupon payments and principal note, or by
simply failing to repay par to investor at maturity, in which case it defaults
on its principal note. Default clustering in the reference portfolio or sudden
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spread-widening may result in a cash out event where the money market
account is not sufficient to settle the swap contracts. This loss is covered
by the CPDO issuer and the risk of such a scenario (known as “gap risk”)
is reduced by setting the cash out threshold strictly above zero.

Until expiry, a cash-in or a cash-out event occurs, the manager read-
justs the leveraged position in index default swaps in order to ensure that
she can meet future coupon payments. We will now describe the rule used
for adjusting the leverage.

4.2.2 Leverage rule

At initiation there is a shortfall between the net value of assets, V4, and
the target value TV;: TVy > Vy. To close this shortfall, target leverage
my is chosen such that the income generated by the swap, P, equals the
shortfall:

TV, = Vi

5 (4.1)

my = 3
0 denotes a gearing factor that controls the aggressiveness of strategy.
A more aggressive strategy can alternatively be achieved by including a
cushion p, such that the shortfall applied is TV; + u — V4.

The actual leverage factor is not adjusted continuously as this would
involve significant trading costs in practice. The underlying index rolls
into new indices every six months and it is therefore natural to update
actual leverage (mi)i=1,27.- to equal target leverage on index roll dates
RD:

mi(t):mt’ for teRD:{Tj|Tj:‘;,j=1,...,2T},

where i(t) € N denotes the leverage factor index employed at time t. The
leverage factor is also adjusted if it differs more than e (usually ¢ = 25%)
from target leverage:

@ = me, it m O ¢ [(1 = )my, (1+ €)my).

The set of these dates rebalancing dates (excluding roll dates) will be
denoted RBD. The actual leverage factor is automatically adjusted on
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default dates as the number of names in the underlying index is reduced
by one until next roll date:

NT - Ny _ i(t)—1

i) = NN -1,
NI — N,_

for te DT.
The leverage factor is capped at a maximum level M in order to reduce
the overall possible loss (usually M = 15).

By this strategy, the leverage factor employed by a CPDO is piecewise
constant, hence the name “constant proportion” debt obligations. The
leverage adjustment rule leads to an increase in leverage if losses occur
in the index, and a decrease in leverage if the shortfall is reduced. It is
therefore a “buy low, sell high” strategy as opposed, for instance, to more
popular CPPI strategies (Cont & Tankov (2009)), which lead to a ”"buy
high, sell low” strategy.

4.2.3 Cash flow structure

Spread income generated by the CPDO is determined by the average
spread on the swap contracts held. Contracted spread changes every time
the CPDO enters new swap contracts and is thereby a piecewise constant
process denoted (S%);—12_.. Initially, contracted spread is equal to ob-
served spread: S° = S(0,77). On index roll dates existing swap contracts
on the off-the-run index are liquidated and new on-the-run contracts are

entered, i.e. '
S = S(t,t+T7) for teRD.

At rebalancing dates on which the leverage factor is increased, the new
contracts entered contribute to the contracted spread. For ¢t € RBD

i) Sit)-1, i) < mit)—1
{ wS =1 4 (1 — w)S(t,Tjpy +T), m'

) > pi)-1>
where w = % is the relative weight of old contracts in the swap
portfolio after releveraging, and T} ;) denotes the latest roll date prior to
time t: j(t) := max{j |T; < t, T; € RD}.

A change in the observed index default swap spread implies a change in
the mark-to-market value, denoted MtM;, of the swap contracts. Mark-
to-market is the value of entering an offsetting swap with the same expiry
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and coupon dates:
MtM,; = (S — S(t, Ty + TT)) D™,

where

t EQ[N, | F
D =EY | 3 e lirtAm) (1_ [Ntfl’ t]>
t,eCDN[t,T1]

is the duration of the swap contract. The value of the CPDO portfolio
is given as the sum of the money market account and the value of swap
contracts: V; = Ay + MtM;.

Liquidating (part of) the position in swap contracts leads to a profit
or loss which is balanced by the money market account. On roll dates the
entire position of swap contracts is liquidated and the profit/loss is

i) (Si(t) — S(t, Ty + TI))Diwapv t € RD.

Note that on roll date ¢ € RD the spread at which protection on the
off-the-run is bought back is S(t,t + T7 — %), whereas the spread of new
on-the-run contracts is S(t,t 4+ T!); new contracts have six months longer
to expiry.

At rebalancing dates on which the leverage factor is decreased (¢ €
RBD N {m; < m)~1}) a part of the swap contracts are liquidated giving
the following profit/loss to the money market account:

(WO ) (gz‘(t) — S(t, Ty + TI)>D§wap.

In summary the cash flows of a CPDO can be decomposed into:

1. Interest payments t € [0,7]: A;_aAL(t — A,t)A, where A is time
between interest payment dates.

2. Coupon payments t; € CD: —c¢;,.

3. Spread income t; € CD: m*(®) St A(t;) (assuming spread pre-
miums are paid on the same dates as CPDO coupons).
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4. Default loss 7 € DT: —mni(" (1];?)7 where R is the recovery rate
on a single default event.

5. Liquidation of swap contracts:
WO (10— S(t, Ty + T1) ) D" 1rp (1

+(mi(t)71 - mt) (Si(t) - S(tv Tj(t) + TI))Dzwapl(RBDm{mt<mi(tJ*1})(t)-

Given that the value of the money market account and the CPDO portfolio
is known up to but not at time ¢, A; and V; can be calculated in the
following way:

A = A a(l+L{E—A1)A) + (mi(t)gi“m(t)_ct) lep(t) (4.2)

) 1—R ; = SW.
—m'® (Nil)lDT(t) + m'® (S““ — S(t,Tj) + T’))D;E P1ep(t)

+(mi(t)71 - mt) (Si(t) - S(t7 Tj(t) + TI))Diwapl(RBDm{mei(ﬂ—l})(t)
Vi = A+ MtM,. (4.3)

4.2.4 Risk factors

Based on the description above we can identify the following risk factors
influencing the cash flows of the CPDO strategy:

e Spread risk
The main determinant of the CPDO cash flows is the index default
swap spread. With a deterministic spread, the target leverage rule
is designed such that the CPDO is certain to cash in prior to expiry,
given that there are no further defaults in the underlying portfolio.
Therefore a stochastic model for the swap spread is essential for
capturing the spread risk of the strategy.

The swap spread evolution not only affects the swap premium income
but also the profits/losses on roll and rebalancing dates. A sudden
spread change will give rise to a single cash flow on roll dates, but
it will have long term effects on the spread income; which of these
effects that will dominate is not immediate clear.
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The index roll will typically result in a downward jump in the swap
spread since the downgraded names that are removed contribute
with higher spreads than the investment grade names they are re-
placed by. On average this negative jump implies a mark-to-market
loss on roll dates.

Default risk
The default rate in the underlying portfolio determines the average
number of defaults during the lifetime of the CPDO. A higher default
rate is negative for the CPDO performance due to higher expected
credit losses.

The recovery level affects the size of credit losses incurred at default
dates although this is to some extent offset by its effect on the spread
income, since lower recovery level implies higher swap spread and
thereby higher spread premium income to the CPDO. Since recovery
data is sparse a constant recovery level R = 0.4 is chosen.

Interest rates

The term structure of interest rates has two main effects on the cash
flows. First, higher LIBOR rates imply higher coupon payments to
the investor but this effect will more or less be offset by the higher
interest accruing to the money market account. The interest rate
also influences present value calculations via the discount factor, for
example when determining the target value. The stochastic evolu-
tion of the interest rate can easily be incorporated in our framework
but in the remainder of the paper we will focus on a constant term
structure since the effect is of second order with respect to the credit
spreads and their volatility.

Liquidity risk

The liquidity of the index default swaps also affects the cash flows via
the bid/ask spread of the index. Note however that most CPDOs
reference the most liquid indices, ITRAXX and DJ CDX. In the
following we do not explicitly model liquidity risk though this can
be done by introducing a bid/ask spread of the index at roll dates.
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Rating of a CPDO structure

A CPDO is a structured product with leverage effects, and it is not
straightforward to assign a credit rating to it. Ratings have been assigned
to CPDOs by major rating agencies by comparing the default probabil-
ity or the expected loss of the structure to thresholds which are typically
adjusted versions of bond default probabilities (Linden et al. (2007) and
Wong et al. (2007)). These ratings follow similar procedures adopted for
CDO tranches (Cont & Moussa (2008)) and share many of their draw-
backs. As will become clear in the sequel, we do not necessarily condone
the use of such ‘ratings’ as an appropriate metric for a complex product
such as a CPDO. However, given their widespread use, we will compute
sample ratings in various examples and examine their properties in the
case of CPDOs.

Separate ratings are assigned to the coupons and the principal note
of a CPDO. In the sequel we will focus on the approach based on default
probabilities.

The rating on the coupon note is based on the probability of the CPDO
cashing out. This probability can be found by Monte Carlo simulations
and is translated into a rating according to the ratingthresholds, an exam-
ple of which is given in table 4.1. Both cash out scenarios and scenarios
in which the CPDO survives until expiry but is unable to repay par in
full will result in default on principal note and the probability of this is
likewise found by Monte Carlo simulations. Thresholds in table 4.1 are
used to translate the probability of default on principal into a rating.

% AAA AA+  AA AA- A+ A A-
10 year PD 0.73 1.01 1.49 1.88 229 272 3.56
BBB+ BBB BBB- BB+ BB BB- B+
10 year PD 4.78 7.10 12.31  14.63 19.94 26.18 32.76

Table 4.1: Standard & Poor’s CDO rating thresholds in terms of default probabilities.
Source: Gilkes et al. (2005).

Major rating agencies (Linden et al. (2007), Wong et al. (2007) and
Morokoff (2007)) have analysed CPDOs using high-dimensional models
for co-movements of ratings and spreads for all names in the reference
portfolio. In such models the defaults in the underlying index are gener-
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ated through a detailed modelling of rating migrations of the underlying
names, and the index spread is modelled as a stochastic process depending
on the average rating of names in the index. Such detailed joint modelling
of rating and spread movements is not accessible to entities other than
rating agencies due to lack of historical data on ratings. We will argue
below that in fact such a complex framework may not be necessary: the
main features of CPDOs can be captured with a low-dimensional model,
which can be more readily estimated, simulated and analysed.

4.3 Top-down modelling of CPDOs

The above considerations show that the risk and performance of a CPDO
strategy mainly depend on

e the behaviour of the index default swap spread
e the number of defaults/the total loss in the reference portfolio
e index roll effects

CPDO cashflows do not depend directly on features such as individual
name ratings, the identity of the defaulting entities, the spreads of indi-
vidual names, etc. This suggests that the risk of CPDOs can be parsi-
moniously modelled by describing defaults at the portfolio level using a
top-down model.

We consider an arbitrage-free market model represented by a filtered
probability space (2, F,F, P) where P denotes the real-world probability
of market scenarios (statistical measure). We consider as numeraire the
zero-coupon bond B(t,T) and denote by Q ~ P the forward measure
associated with this numeraire (Geman, El-Karoui & Rochet (1995)). The
spot yield curve s +— R(t,s) at date t is defined by

B(t,s) = exp[—(s — t)R(t, s)]

_1 4
and the LIBOR rates at date ¢ are given by L(t,s) = £ — In the
examples we shall use a flat term structure B(t,s) = e~"(*=) but this is

by Nno means necessary.
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Denote by Ny the number of defaults in the underlying portfolio up
to time t < T (Nt)te[o,T] is a point process. As we shall see below,
we need to model the dynamics of Ny under P and (). These dynamics
will be described by specifying an intensity for N; under each probability
measure.

The T!-year index default swap spread is determined such that the
risk-neutral expected value of the default leg of the swap is equal to the
expected value of the premium leg. Denote by (Lt)te[o,T] the loss process.
Assuming a constant recovery level R across all names in the underlying

index, we have L; = (1];?) N;. The default leg of the index default swap
is a stream of payments that cover the portfolio losses as they occur. At

time ¢t < T the cumulative discounted losses are given by

TI
D, = EQ/ B(t,s)dL|F;
t
—R(t,s)B(t,s)
7! ’0 ™
= B(t,THE®? [LT1|.7-'t]—Lt—/ %B(t,s) EQ[L.|F]ds
t

1-R TI
_ | NT ) (B(t,T’)EQ [Np:|Fi) = Ny +

R(t,s)B(t, s)E? [N,|F) ds) .

The value of the premium leg at time ¢ as a function of the index default
swap spread S is

EQ[N, | F
P(S) = S Y. Bltt)At) (1—[NI'])
t,eCDN[¢t,T1]
= S D}V,

Finally, the swap spread contracted at time ¢ for a swap expiring at 77 is

I
U_R) (B(t,TI)EQ (N7t |F) — Ny + [ R(t,5)B(t, s)EQ [N,| 7] ds)

S(ta TI) = Di‘.wap

4.3.1 Modelling default risk

The main ingredient to the model is the dynamics of the number of defaults
N;. We propose here two reduced-form approaches for modelling N;. In
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the first approach, V; is modelled as a Cox process: conditionally on some
underlying market factor (X¢);e(o,77, IVt follows an inhomogeneous Poisson
process with intensity (A(X¢)):ejo,m-

In the second approach, the occurrence of defaults is specified via the
aggregate default intensity, defined as the conditional probability per unit
time of a default in the portfolio. This intensity-based approach has been
used in the recent literature to model portfolio credit risk by Cont & Minca
(2008) and Giesecke & Kim (2007).

The choice of dynamics for the risk-neutral default intensity and/or
hazard rate determines the slope of the term structure of credit spreads.
This influences the CPDO performance via the profit/loss from liquidation
of swap contracts on roll dates, since at these dates the CPDO manager
buys back protection of a (T — %)—tenor swap, protection that was initially
sold with a T'-year tenor. An upward (downward) sloping term structure
will on average imply a profit (loss) on roll dates. Empirically, we typically

observe an upward sloping term structure.

In both approaches, it is crucial to be able to compute the default
swap spread in an efficient manner in the simulations and cash flow com-
putations. As noted above, the expression for the swap spread requires
computation of the expected number of defaults and/or the survival prob-
abilities efficiently. These computations, especially the computation of the
T!-year swap spread, will be made tractable by choosing affine processes
for the hazard rate (in the first approach) or the intensity (in the second
approach) under Q.

Under an equivalent probability measure P ~ @, the point process
(N¢) will in general have a different intensity process (Brémaud (1981,
Theorem VI.2.)) of the form )\? = AP, where 9 is a strictly positive
predictable process which characterizes the risk premium for the uncer-
tainty associated with the timing of defaults. In accordance with empirical
observations that suggest a roughly constant ratio between historical and
risk neutral default rates (Berndt, Douglas, Duffie, Ferguson & Schranz
(2005)), we assume that the statistical default intensity is proportional to
the risk neutral intensity: A = lA? where ¢ is a risk premium parameter.
We typically expect 9 > 1.
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4.3.2 Hazard rates and Cox processes

A common approach in reduced-form modelling is to model the default
counting process N as a Cox process (Lando (1998)). Let X be a Markov
process on a probability space (2, F,F, P) designating a risk factor and
define G; = 0{X;|s < t}. We model the hazard rate by \; := A(X;) where
A:R” — R, is a non-negative function. We assume

t
Ay = / Asds < oo almost surely t €1[0,7).
0

Let N be a standard unit rate Poisson process independent of G;. A Cox
process N with intensity (\;) can be constructed as

Nt = NAt'

We may interpret the hazard rate )\; as the conditional probability per
unit time of the next default event given the evolution of the risk factor:

1
= 1 —_— = — 1 .
= i, P = i 10)

It is straightforward to check that N; — f(f Asds is a Gi-martingale and
thereby (A;) is a Gi-intensity for N;. Default times can then be simu-
lated /generated successively as

t
7; = inf {t>’7’i_1’/ )\stZEz}
Ti—1

where (E;);—; n1 is a sequence of independent, identically distributed
standard exponential variables.

Conditions for preserving the Cox setting under an equivalent change
of measure and computing the hazard rate under the new measure are
provided by Duffie (2005). We assume here that the risk-adjusted dynam-
ics of Ny under @ is also described by a Cox process with hazard rate
)\? = Y )\; under @. In our case, the risk neutral portfolio hazard rate can
be interpreted as the short-term spread for protection against the next
default in the portfolio.

91



Closed-form expressions for the swap spread may be readily obtained
by assuming that the risk neutral default intensity ()\,f2 ) is an affine process:

dA? = p(AQ)dt + o (AL)dW, + ndZ,, (4.4)

where the coefficients ju(-), 02(-) and the intensity of the jump process
Z are affine functions of \. Transform methods can be applied to give
an explicit expression for the swap spread as done in Errais, Giesecke &
Goldberg (2009). To compute E?[N,|G;] for s €]t,T!] consider the 2-
dimensional process Y; = ()\tQ ,N¢)'. Y is of the general affine form (4.4)
and the drift function can be written Ky + K1Y}, the volatility Hy + H1Y;
and the jump intensity of the 2-dimensional jump process Ag+A1Y;. Define
the Laplace transform 0 : C> — C of v by

O(c) = /R2 e“Fdv(z).

In affine models (Duffie, Pan & Singleton (2000)) the conditional expec-
tation of the number of defaults can be expressed as an affine function of
the state variable

EC[N,|G] = E?W'Y,|G] = A(t) + BH)Y:

for v = (0 1)/, where A : [0,5] — R and B : [0,s] — R? are determined
by the following differential equations

B(t) = —K|B(t)— AV nB(t) (4.5)
QA(t) = —Ko- B(t) — AgV6(0) - B (%)

with terminal conditions A(s) = 0 and B(s) = v. These expressions can
in turn be used to compute

EC[N,| 7] = EQ[EC[N,IGI|F] = A(t) + B®H)Y:.

In special cases (4.5)-(4.6) can be solved analytically, providing an analytic
expression for EQ[N,|G;] and thereby for the swap spread.

Example 4.3.1 (A Cox process with CIR hazard rate) Let the risk-
neutral hazard rate (i.e. under Q) be defined by the CIR dynamics:

dA® = k(0 — \2)dt + a\/Eth, A9 > 0. (4.7)
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This model leads to a mean-reverting and non-negative short term spread
if 260 > o2. For calculating the swap spread, we make use of the affine
property of the CIR process which implies a closed form expression for the
expected number of defaults: For B(t) = (Bi(t), Ba(t)), Ba(t) =1 and

Bi(t) = —l(e_“(TI_t)—l)

KR

T 0
Alt) = / kOB (s)ds = — (e_“(TI_t) - 1) o1 — ),
t K

we have EQ[Ny1|Gi] = A(t) + By (t))\tQ + Ny and thereby an analytic ex-
pression for the T!-year swap spread.

Another choice of hazard rate is the exponential OU process:

Example 4.3.2 (Exponential Ornstein-Uhlenbeck process) In this
model the hazard rate is assumed to follow

ANy Q
5 =a(f —In)\7)dt + EdW,. (4.8)

This process is mean-reverting and non-negative, which are desirable qual-
ities for a hazard rate process, it has a log-normal distribution and is sta-
tionary for long time horizons. The exponential OU process produces heav-
ier tails in the distribution of the default intensity than the CIR model, for
which increments follow a x?-distribution. The process (4.8) is not affine
and the index default swap spread needs to be computed via quadrature.

4.3.3 Intensity-based approach

One restriction implied by specifying the intensity as a Cox process is that
the default intensity process is not affected by the occurrence of default
events. This leads to an underestimation of default clustering effects (Das,
Duffie, Kapadia & Saita (2007)) due to the fact that in the Cox framework
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the hazard rate A\; depends only on the history of the factor process X
but not on the default itself.

An alternative approach is to model the default events via the default
intensity ¢, defined as the Fi-intensity of the default process N;, where
F; designates the market history up to t, including observations of past
defaults. Intuitively, the default intensity 4 is the conditional probability
per unit time of the next default event, given past market history:

1
= lim —P(N, =N +1 .
= lim 2 (Nitat — + 1| F)
This naturally leads to a default intensity which jumps at default dates.
Thereby the default process becomes self-affecting in that one default may

have spill-over effects on other names and trigger a cluster of defaults.

Example 4.3.3 (Markovian defaults) A simple way to model the im-
pact of past defaults on the default rate is to model the default intensity as
a function of the total number of defaults:

Tt = f(ta Nt)

This leads to a Markov process for Ny which is easy to simulate and in
which loss distributions and other quantities may be computed by solving
a system of linear ordinary differential equations. Cont & Minca (2008)
show that the intensity function f implied from market prices of CDO
tranches exhibit a strong, non-monotone, dependence of the default inten-
sity on the number of defaults. However this model is too simple for our
purpose since it leads to piecewise-deterministic spread dynamics between
default dates, whereas the CPDO is sensitive to spread volatility.

Example 4.3.4 (Self-exciting defaults) An example of a self-exciting
default process is given by the model of Giesecke € Kim (2007) where the
default intensity jumps up by a magnitude proportional to the loss at de-
faults and follows a diffusive process between default times. The intensity
process is given by

dy? = k(0 —72)dt + o\ AW +ndLy, A >0 (49)

where L denotes the loss process. The intensity of the default counting
process N is thus updated at each default and undergoes a jump. Between
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default events the intensity reverts back to its long term level 0 exponen-
tially in mean at a rate k > 0 with diffusive fluctuations driven by a
Brownian motion. The default counting process N is self-exciting because
the intensity of Ny increases at each default event. This property captures

the feedback effects (contagion) of defaults observed in the credit market.

As in the CIR case, 2k0 > o2 is required to ensure ’th > 0 almost surely.

The process (4.9) also belongs to the class of affine processes, where, with
the same notations as in Example 4.3.1,

1 7577# Tt
B = — R A
K0 1-R 1 K0
A(t = - e_(H—H’(T))(T _t)fl 7T17t'
9= rar | )t e

4.3.4 Modelling the index roll

When modelling the default intensity of the underlying index, it is crucial
to take the semi—annual rolling of the index into account: the replacement
of downgraded names results in a negative jump in the default intensity
and thereby also in the swap spread on average implying a loss when
liquidating swap contracts. In the long run, rolling the index also has a
positive effect as the portfolio default risk and thereby the portfolio loss
is lowered.

We consider two possible approaches for modelling the roll over effect.

The simplest model is to include a constant proportional jump size in
the default intensity on each roll date. However, empirical observations
show variation in the jump sizes, so extending this setup to allow for
two possible jump sizes hi, ho € [0, 1], not necessarily taken with equal
probability, is more realistic.

To model in more detail the index roll, we assume that the index is ho-
mogeneous, such that all individual name default intensities (A, ..., AV I)
are independent with identical distribution denoted F'. For a given roll
date T € RD let (/_\%j, v J_\% I) be a realization of N! independent F dis-
tributed variables. Rolling the index corresponds to removing a number
of the highest realizations and replacing these by new independent draws
from the F' distribution. The roll over effect is then given as the difference
between the average intensity before and after the roll. This setup requires

95



an assessment of the average number of names removed on each roll date
and of the individual default intensity distribution.

Assuming that the term structure is upward sloping, the effect from
rolling down the credit curve will counteract the effect from rolling over
the index. Empirically these two effects are more or less observed to offset
each other. In the following, the first mentioned approach for modeling
the roll over effect will be taken and the jump sizes {hy,ho} are chosen
such as on average to cancel the roll down effect implied by the dynamics
of the default intensity. Note that, the proportional jump in the default
intensity does not affect the calculation of the index spread, since this
references the current index, not the rolling index.

4.4 Performance and risk analysis

We analyse the performance of the CPDO strategy by Monte Carlo simu-
lations. The aim is not only to assess the rating based on the default and
cash out probabilities but also to study other risk measures such as the
loss distribution and the expected shortfall. Further, we wish to identify
key parameters and study the dependence of the CPDO performance on
these parameters.

4.4.1 Simulation results

We model the risk neutral hazard rate /\f2 as a CIR process (4.7) follow-
ing example 4.3.1 and assume the P-hazard rate is given by A9 = 9\,
We conduct the analysis in three credit market configurations. The first
is a benign credit environment with a relatively low number of obligors
defaulting (on average 5 defaults during the lifetime of the CPDO) and
a tight index spread around 40bp. This setup would correspond to em-
pirical observations in 2005-2006. Parameters for the risk neutral hazard
rate corresponding to such a setup could be

0=22=16 Kx=02 o0=08 and ¥ =25

According to the empirical findings of Berndt et al. (2005) we expect the
risk neutral default intensity to be 2-3 times higher than the statistical
intensity but ¥ may become much higher in stressed credit environments.
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Let » = 0.05 and R = 0.4. For the roll over effect, we choose a fairly
low jump size h;y = 0.05 in most scenarios (95%) and occasional (5%)
large downward jumps of he = 0.2 on roll dates. We examine the case
of a CPDO contract paying coupons of 100bp above LIBOR employing a
maximum leverage of M = 15, ¢ = 0.25 and cash out threshold & = 0.1.
The aggressiveness of the target leverage rule (4.1) is determined by the
gearing factor § = 1.5 and cushion p = 0.05.

Based on 10000 simulation runs we find the probability of the CPDO
defaulting to be 3.7%. According to Standard & Poor’s default probability
thresholds given in table 4.1, this will earn the CPDO principal note a
BBB+ rating. The probability of the CPDO cashing out and thereby
defaulting on both coupons and principal note is 0.24%, thereby giving
the coupon payments a AAA rating. The expected loss conditional on
default occurring, LGD, is 22% of notional.

Another useful risk measure is the expected shortfall defined at a given
level o by

ESq=E[LIL>VaR,] for  VaR,=inf{l|P(L>1)<1-a},

where L denotes the loss of the CPDO. In this credit environment we find
ESyg99 = 55% of note notional. That is, in the worst 1% of scenarios,
the investor expects to recover about half of the initial investment. If not
defaulting the CPDO cashes in quite fast, on average after 2.6 years, even

though the chosen strategy is not very aggressive. Results are given in
table 4.2.

Market PD Cash Out Rating LGD ESg9 CashIn Np

(%) (%) (%) (%) (years) -

Benign 3.7 0.24 BBB+ 22.3 54.8 2.6 4.8
Stressed 1.2 0.49 AA 40.2 47.3 3.0 8.6
Historical | 2.5 0.70 A 33.8 75.0 3.1 7.0

Table 4.2: Summary of results.

Figure 4.1 illustrates a typical scenario in the benign credit market.
The first graph shows the portfolio default intensity A", at the top right
is the on-the-run index default swap spread S(t, T! ) versus the contracted
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spread (S;), at the bottom left is the target (m;) and actual leverage factor
(m¢) and the last graph is the evolution in the CPDO portfolio value (V%).
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Figure 4.1: Benign credit market scenario.

Figure 4.1 clearly shows how the spread widening during the years 3-5
and the implied mark-to-market losses result in decreasing CPDO portfolio
value. However, the consecutive spread tightening allows the CPDO to
cash in after approximately 6.5 years.

The second model configuration studied is a stressed credit environ-
ment with an average of 9 defaults among the 250 names in the underlying
portfolio over a 10 year period. The average index default swap spread
is around 100bp. This could illustrate a market during a crisis, as ex-
perienced during the second half of 2007 and in 2008. CIR parameters
corresponding to such a setup could be § = 4.0, k = 0.2 and ¢ = 1.0.
Consistent with empirical findings in Berndt et al. (2005) let ¥ = 3.5.
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With a higher spread level it is reasonable to expect the CPDO to pay
higher coupons, therefore in this credit environment consider a CPDO
paying a 200bp spread above LIBOR. The gearing factor is § = 2 and
the remaining parameters left unchanged. The probability of the CPDO
defaulting is 1.2% corresponding to AA and the cash out probability is
0.5% giving the coupons a AAA rating in this credit environment. The
expected shortfall is 47% of note notional and close to the tail loss in the
benign credit market. Here, the CPDO takes a little longer to cash in, on
average 3 years. Figure 4.2 shows a typical scenario in the stressed credit
environment.

Default intensity Swap Spread

= —— Index Swap Spread
—— Contracted Spread

200
!

bp

100
1

Leverage factor CPDO Portfolio Value

—— Actual leverage
—— Target leverage

——— Portfolio Value

—— Target Value

Figure 4.2: Stressed credit market scenario.

Calibrating the model to market data is not straightforward, since
data for the index default swap spread is only available a few years back
in time. During this period credit markets have been fairly benign (up to
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the summer of 2007) and may therefore result in an incorrect risk profile
for a CPDO strategy. To overcome this issue, previous studies (Gilkes
et al. (2005) and Jobst et al. (2007)) have used different proxies for the
index default swap data in past periods. In these studies, the 5-year index
spread is directly modeled as an OU-process as given in example 4.3.2:

ds(t, TT)

_ n I
S(t, T7) =a(f—InS(E,T7) )dt 4 £dW,. (4.10)

To compare our model to estimates found by calibrating (4.10) to index
proxy data, we simulated 1000 scenarios for the 5-year index spread im-
plied by our top-down model and calibrated each path to a spread process
of the form (4.10). Thereby we arrive at a historical model configuration
generated by the following parameters for the risk neutral hazard rate:
k=0.2,0 =28 and ¢ =0.9.

We examine the case of a CPDO paying out a 200bp spread. The
risk premium parameter is set to ¥ = 3.0 corresponding to 7 defaults
on average among the 250 names over a 10 year period. Again we set the
gearing factor 3 = 2. The probability of default is 2.5% which corresponds
to a A rating. The cash out probability is 0.7% still earning the coupon
payments a AAA rating. The expected shortfall is now somewhat higher
than in the previous two model configurations, namely 75% of notional.

A typical market evolution in this setup is shown in figure 4.3. We see
that even though the CPDO portfolio value falls below half of its principal
value and the leverage factor is at its maximum for 3-4 years, a significant
spread tightening makes it possible for the CPDO to cash in after 6 years.

Self-exciting defaults

The effects of allowing for a self-exciting default intensity as described in
example 4.3.4 can also be studied in a Monte Carlo framework. To do
this, we use the historical parameters for x, # and ¢ and set n = 3 in
accordance with the findings in Giesecke & Kim (2007). This means that
a default event causes a jump in the default intensity of three times the
loss. Including this feed-back effect from defaults on the default intensity
results in a poorer CPDO performance. The default probability increases
to 3.0% corresponding to A- and the cash out probability to 0.9% lowering
the rating of the coupons to AA+. We also find a negative effect on the
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Figure 4.3: Scenario in the credit market based on historical parameters.

expected shortfall which increases to almost 90%. CPDO performance
for different choices of n are given in appendix A. Although allowing for
feedback effects from default events does result in a poorer performance
it does not change the overall qualitative conclusions of our analysis.

4.4.2 Sensitivity analysis

To assess the impact of the various parameters on the performance of the
CPDO, we have carried out a sensitivity analysis of the dependence of risk
measures on model parameters. Simulation results from the three market
configurations are found in appendix A. The main findings are summa-
rized below.
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Default intensity

The default risk premium parameter ¢ clearly has a significant influence
on the CPDO performance, since ¥ determines the average level of spread
income relative to the credit losses incurred. Even small changes in ¥ may
imply rating changes of several categories. The dependence of the CPDO
performance on the risk premium is illustrated in figure 4.4 showing the
probability of default and expected loss given default in the historical
credit market as a function of the risk premium 1 based on 10000 simu-
lations. Not surprisingly, we see downward sloping curves in both cases —
especially for 9 € [0, 2], the slopes are very steep.

Probability of default Expected loss given default

%
|

%

% of nofional
I
|

L]
|

Figure 4.4: Left: Dependence of CPDO default rate on risk premium . Right:
Dependence of CPDO loss given default on risk premium .

The parameter underlying the intensity process affecting the CPDO
performance the most is the long term mean 6: the higher level of spread
income implied by a higher value of 8 more than compensates for the in-
crease in credit losses which is another implication of increasing 6. This
is most clearly seen when comparing the benign, stressed and historical
credit markets. The portfolio swap spread level, mainly determined by
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0, will typically set the coupon size a CPDO can offer its investors. The
analysis also shows that an initial spread widening (tightening) and the re-
sulting mark-to-market losses (gains) have a large effect on the probability
of default, although less effect on the expected shortfall.

The volatility of the hazard rate affecting the spread volatility is less
important, but we do see that that a higher volatility is harmful for the
CPDO performance both when it comes to the probabilities of default
and cash out as well as the expected shortfall. The reason is that higher
volatility leads to more extreme scenarios, which for a CPDO that has no
upside potential means more extreme loss scenarios and therefore a higher
probability of cashing out.

Another important parameter is the mean reversion speed . A higher
r reduces the probability of default and leads to a lower expected shortfall.
With a higher mean reversion speed the index spread fluctuates more
tightly around its long term mean level thereby reducing the mark-to-
market losses incurred by the CPDO. This dependence is investigated in
figure 4.5, where the default rate and expected loss as a function of the
mean reversion speed x are shown. We see an improved performance,
both with respect to the CPDO default rate and the expected loss given
default, for increasing values of x. The dependence is close to linear.

Not surprisingly, we also find that the magnitude of the (negative)
jump in the spread at index roll dates affects the performance significantly.

Recovery rate

The level of recovery R upon default in the underlying portfolio affects the
outcomes in two ways. First, a higher recovery will increase the CPDO
default probability due to the fact that a higher recovery implies a lower
index default swap spread. On the contrary, a high recovery rate will lead
to fewer cash out events and lower losses given default.

Interest rates

The level of interest rates affects the probabilities of default and cash out
in opposite directions: A higher interest rate implies lower probability of
default at the cost of more cash out events and higher expected shortfalls.
The average cash in time is also reduced as a consequence of higher inter-
est rates.
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Figure 4.5: Left: Dependence of CPDO default rate on mean reversion speed k.
Right: Dependence of CPDO loss given default on mean reversion speed k.

Leverage strategy

The leverage strategy employed has significant effects on the CPDO per-
formance. Starting off with a high initial leverage is important, and in-
creasing the maximum leverage M will result in lower default rates at the
cost of higher losses. This is exactly the reason for capping the leverage
factor, namely to reduce the overall possible loss.

The aggressiveness of the strategy described by the gearing factor 3
(and to some extent the cushion) can be used to balance the CPDO default
rate versus the expected loss. Some versions of the CPDO strategy even
employs a time dependent gearing factor. Alternatively, the risky dura-
tion of the liabilities of the CPDO could be used when calculating target
leverage instead of the duration of assets. This would result in a less ag-
gressive strategy the first couple of years, but in case the CPDO has not
cashed in closer to maturity, this leverage rule becomes more aggressive.

Employing a simplified version of the leverage strategy according to
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which leverage is only adjusted on roll dates does not change the per-
formance significantly. In the benign and stressed markets we observe
slightly lower probabilities of the CPDO defaulting on its principal note
at the cost of higher expected shortfall. In the historical environment,
both measures are reduced when employing this strategy. The reason for
these observations is that as long as a scenario evolves favourable, i.e. as
long as the shortfall and thereby the target leverage is being reduced, this
alternative strategy operates more aggressively than the regular leverage
rule due to fewer deleveraging events. However, if the CPDO closer to
expiry is falling short of meeting the repayment of principal, the simpli-
fied strategy is not as flexible and the result is heavier losses and more
defaults.

Including a 1% administration fee at initiation of the CPDO does not
have a significant effect in neither of the three credit market configurations.

In this simple model we are also able to study the loss distribution for
the CPDO, as shown in figure 4.6 in a credit environment generated by
historical parameters. We see that in a large part of the default scenarios,
only small losses of 0-20% of note notional are incurred. In these cases
the CPDO is typically not under distress toward expiry but the employed
leverage strategy is not aggressive enough to allow a cash in prior to expiry.
The heavy right tail of the loss distribution corresponds to cases where
the CPDO cashes out or is very close to cashing out.

4.4.3 Scenario analysis

The model allows to determine market scenarios that are most harmful
for the CPDO performance by studying scenarios in the historical credit
market in which the CPDO cashes out. An example of such a scenario is
given in figure 4.7. In this case a 100bp spread widening between year 2
and 4 causes the portfolio value to drop to 20% of notional. Two defaults in
the underlying portfolio at the end of this period cause even more distress.
Another 50bp spread widening within a few months and finally a default
results in a cash out event around year 5.

In general, the main reason causing a CPDO to cash out is continued
spread widening. The average cash out time, given that there is a cash out
event, in this credit environment is 4.1 years. Since the default intensity
is mean reverting, a significant spread widening will at some point be
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Figure 4.6: Kernel estimator of loss density based on 10 000 simulated scenarios.

followed by a similar spread tightening (as is also the case in figure 4.7).
Thereby, if the CPDO survives the period of spread widening it will benefit
from the consecutive spread tightening and may thereby regain a large part
of the lost capital.

Defaults in the underlying portfolio also have some effect, although not
as large as spread widening. One default causes a reduction of portfolio
value (if leveraged up to 15x) of 3.6%, whereas a 15bp spread widening
causes almost 10% reduction of the portfolio value. In our model, the main
determinant of possible spread widenings is the mean reversion parameter
k. A cluster of defaults (3 or 4 defaults over a short period of time) in the
reference portfolio may cause the CPDO to cash out if it is already under
distress. Figure 4.8 illustrates a scenario with many obligor defaults, in
this case 22 defaults over the 10 year period. Periods with particularly
many defaults are year 2-2.5 with four defaults, year 5.5-6 with five defaults
and finally four defaults during the last six months. In this case the reason
for the CPDO defaulting on its principal value is due to heavy credit losses
during its entire 10 year lifetime. This example also illustrates the fact
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Figure 4.7: A cash-out scenario.

that CPDOs are able to recover (or in this case, partly recover) from bad
positions; after 1.5 years only 20% of notional is left and three years later

it has recovered 90%.

Similarly, one can determine the best scenarios for the CPDO. This

reveals that initial spread tightening combined with no defaults in the
reference portfolio, results in the fastest cash in and the lowest maximum
shortfall, i.e. the difference between minimum portfolio value and target
value. A cash in scenario is shown in figure 4.9. In this example, cash in is
not a result of significant spread tightening and it shows that in relatively
stable spread scenarios the CPDO will cash in within a few years.
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Figure 4.8: A scenario with many defaults in the underlying portfolio.

4.4.4 Variability of ratings and downgrade probabilities

Given that CPDOs are leveraged and path-dependent instruments, the
initial rating of CPDO notes gives only a partial idea of the risk of the
instrument. As in the case of CDO tranches studied by Cont & Moussa
(2008), a CPDO with initial AAA rating may have a probability of being
downgraded which is much higher than a AAA bond. It is therefore inter-
esting to examine the probability of rating downgrades during the lifetime
of the CPDO. This can be done by a nested Monte Carlo simulation as
suggested by Morokoff (2007).

Suppose that at initiation the strategy is given rating Ry corresponding
to a T-year probability of default PD € [LL,U[. We want to re-assess
the rating after 71 < T years. In the outer loop of the simulation Np paths
of \, V, A, m, etc. up to time T} is generated. For each path that has not
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Figure 4.9: A cash-in scenario.

cashed out at time 77, a second Monte Carlo simulation is performed in
order to assess the default probability at 77 and thereby a possibly new
rating R;. This is done by simulating N; paths from time 7T} to expiry 7T,
using the starting values Ar,, Vr,, Ap, etc. found in the outer loop. The
rating transition probability is estimated by:

No
1
P(Ry # Ro) ~ N 21 1{1551_%@(?27,]52[}’ (4.11)

where 7o, =T — T} and P/bz denotes the estimated probability of default
in the i’th outer loop. Now, P(PD; = NLI) = Poin(J; N1, PD;) where Py,
denotes the binomial point probability in j for Ny trials and success rate
equal to the true default probability PD;. Then PD; — PD; for Nf — oo
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implying
Ny
E[l{]’Dbi¢[L527UOTQ[}] = ;}1{]\?’I¢[L0T27U52[}Pbin(j5NLPDi)
1{PD¢¢[L§2,UOTQ[} for Ny — oo,
i.e. the expected estimated transition indicator converges to the true tran-
sition indicator. Hereby it follows, that the estimation in (4.11) can be

performed summing E[l = P(]/D-\Dz ¢ [L0T2, U0T2 [) = Péﬂ

{FM[LOT%UE?[}}
over i = 1,..., No.

Define the simulated rating transition indicator by

_ [ 1 ifPD; ¢ [LE, U
Yi 0 otherwise

and let

wo— 4 Yi with probability pgw '
’ 1 —y; with probability 1 — p..

Now w;y; + (1 —w;)(1 —y;) is equal to 1 with probability p. and the rating
transition probability can then be calculated as
1
P(R1 # Ry) ~ o D (wigi + (1= w) (1 —yy)).
i=1

With No = 1000 and N; = 10000 the rating transition probabilities
are given in table 4.3. Our results indicate high probabilities for rating

‘ P(Rl 7& Ro) P(Rl < R())
=1 98.2% 8.2%
71 =5 98.5% 9.4%

Table 4.3: Rating transition probabilities.

downgrades. Since the average cash in time is less than 5 years, for a
large part of the scenarios the CPDO has already cashed in before year 5,
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earning the CPDO a AAA rating, which differs from the initial A rating
obtained in this market configuration. More interestingly, almost 8% of the
contracts have been downgraded after one year and this number increases
up to almost 10% at year 5. Since less than 3% of the contracts end up
in default, this is an indication of the CPDO being able to recover even
after severe losses. The high rating volatility documented here clearly
distinguishes CPDOs from similarly rated investment grade bonds, which
typically are expected to maintain their original rating during the lifetime.

4.5 Discussion

We have presented a parsimonious model for analysing the performance
and risks of CPDO strategies. We consider a variety of specifications for
a one factor top-down model for the index default intensity and show that
they allow to study credit ratings, default probabilities, loss distributions
and different tail risk measures for the CPDO and capture its risk features
in a meaningful yet simple way.

Our results indicate that while coupon notes have a low probability of
default (compatible with AAA or AA given pre-crisis market parameters),
principal notes have typically a much higher probability of default, leading
to A ratings under the same market conditions. Also, our scenario analysis
identifies a high exposure to credit-spread widening scenarios, similar to
those observed recently in the market.

Perhaps the most important insight from our study is that CPDOs
are less sensitive to default risk than to movements of spreads and behave
in this respect more like path-dependent derivatives on the index spread.
Our scenario analysis clearly indicates that the worst case scenario for a
CPDO manager is that of a sustained period of spread widening. This
scenario has precisely happened in the second half of 2007 and in 2008,
and has resulted in the forced unwinding of many CPDOs (Wood (2007))
as predicted by our analysis.

In line with the findings of rating agencies, we have found the CPDO
structure to be very parameter sensitive. Relatively small changes in cer-
tain parameters may result in a jump of several notches in the rating.
Accordingly, we conclude that over the lifetime of the CPDO this leads to
very high variability of the rating compared to standard top-rated prod-
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ucts and is one of the main criticisms of CPDOs receiving a top rating.
The parameters with respect to which we observed the highest sensitivity
are the (long-term) spread level 6 setting the spread income generated by
the CPDO, the mean reversion speed x determining the possible spread
widening and the risk premium parameter 9 which governs the discrepancy
between market-implied and historical default rates.

Another insight from our analysis is the influence of the aggressive-
ness of leverage strategy employed. Following a more aggressive leverage
rule results in fewer defaults at the cost of higher tail losses. An actively
managed CPDO or a time/state dependent gearing factor would there-
fore possibly result in a better performing CPDO in some scenarios and
could be designed to accommodate the risk aversion of the investor. An-
alyzing risks and performance of such a product would require a subtle
specification of actions taken by the manager.

There are straightforward extensions and refinements, e.g. a two factor
model for the joint evolution of the default intensity and interest rate or
including a time depending risk premium 9. Yet we believe that the top-
down model in the basic form introduced here captures the essential risk
factors of CPDOs.

It is difficult to compare directly our results with the ratings/default
probabilities given by rating agencies since many parameters and contract
details enter into these computations. But our model makes it clear that
the main factors are the term structure of credit spreads, which determines
the roll-down effect, the behaviour of the index spread at each roll date (ex-
plicitly modelled here using parameters compatible with historical data)
and the dynamics of the spread (mean-reversion, widening/tightening).

More importantly, our analysis shows that within a given rating cat-
egory a wide range of expected shortfalls may be observed, leading us to
conclude that basing the risk analysis of such complex products as CP-
DOs on ratings or default probabilities alone is not sensible: credit ratings
should be complemented by other risk measures such as tail conditional
expectation or other measures of downside risk, in agreement with similar
conclusions drawn from studies of CDO tranche ratings (Cont & Moussa
(2008)).

The question of “credit ratings” for such leveraged, path-dependent
products such as CPDOs raises various methodological issues. Credit
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ratings are usually presented to investors as a metric for credit/default
risk (as opposed to indicators of “market risk”). However, in the context
of structured credit products such as CPDOs, it is clear that the rating
will be based on scenario simulations incorporating various market risk
factors such as volatility of spreads, the level and volatility of interest
rates, etc., blurring the (non-existent?) borderline between credit and
market risk and raising questions about the interpretation of such ratings
by investors. Our results suggest that for such complex products ratings
tend to be misleading and cannot replace a detailed risk analysis. Indeed,
some rating agencies have refused to rate CPDO deals.
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Appendix A

Results of the sensitivity analysis in the three credit environments are
given in this appendix. Ratings in the tables refer to the principal note
and are given according to the CDO default matrix of Standard & Poor’s
(Gilkes et al. (2005)).
The standard parameters in the benign credit environment (setup 1)
are:
0=2¢=16 k=02 o0=08 and 9=25.

We study a CPDO paying a 100bp spread and the strategy chosen has
gearing factor § = 1.5. Note that in the sensitivity analysis in table
4.4 it is not possible to choose the parameters freely, since the condition
2k6 > o2 should be fulfilled in a CIR model. For the above parameters
the condition holds with equality and therefore ¢ cannot be chosen higher
and x and @ not lower without changing other parameters as well.

117



PD Cash Out Rating LGD ESgg sd(LGD) Cash In So Nt

(%) (%) - (%) (%) - (years) (bp) -

setup 1 3.7 0.24 BBB+ 22.3 54.8 23.9 2.6 39 4.8
simple 3.5 0.42 A- 30.5 67.2 27.1 2.2 39 4.8
1% adm. fee 4.8 0.31 BBB+ 23.2 62.9 24.1 2.7 39 4.9
¥ =20 5.2 0.46 BBB 27.2 83.5 26.3 2.7 39 5.9

¥ =3.0 2.6 0.10 A 15.6 32.3 19.5 2.5 39 4.0
oc=0.6 4.3 0.02 BBB+ 12.0 33.4 14.3 3.2 39 4.8
0= )\OQ =2.0 3.3 0.19 A- 16.6 43.0 23.2 2.8 49 6.0
)\OQ =1.0 5.9 0.50 BBB 23.7 70.8 24.6 2.7 30 4.1
)\OQ =2.0 2.8 0.26 A- 22.5 50.8 26.7 2.6 46 5.3
k=04 3.2 0 A- 9.8 23.2 11.5 3.4 39 5.2
R=02 3.0 0.40 A- 23.4 56.6 29.6 2.6 52 4.9
R=0.6 8.0 0.05 BBB- 17.0 47.1 15.0 2.7 26 4.8
r=0.02 4.3 0.34 BBB+ 21.3 59.4 25.1 2.8 39 4.9
r=20.1 3.2 0.31 A- 30.2 63.7 26.4 2.2 39 4.8
(h17 h2) = (0, O) 2.5 0.22 A 15.0 32.9 24.5 2.7 39 6.5
(h1,h2) = (0.3,0.02) || 3.2 031  A- 217 544 266 2.6 39 53
6 =0.015 7.8 0.58 BBB- 25.0 78.5 24.8 3.2 39 4.9
M =10 7.3 0.04 BBB- 16.4 44 .8 14.7 2.7 39 4.9
M = 20 2.9 0.36 A- 23.0 54.7 28.9 2.6 39 4.8
B=1 7.1 0.10 BBB 13.3 43.9 15.5 3.4 39 4.8
B=2 3.4 0.38 A- 29.9 63.4 26.1 2.1 39 4.8

Table 4.4: Sensitivity analysis: Benign credit market.

The standard parameters in the stressed credit market (setup 2, table

4.5) are:

0 =2 =40

k=02

c=10 and U =3.5.

The CPDO studied pays a 200bp spread and the strategy chosen has

gearing factor § = 2.
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PD Cash Out Rating LGD ESg9 sd(LGD) CashIn So Nr

(%) (%) - (%) (%) - (vears) (bp) -

setup 2 1.2 0.49 AA 402 473 411 3.0 100 86
simple 1.1 0.87 AA 73.6  79.2 32.3 2.1 100 86
1% adm. fee 1.4 0.70 AA 478 65.8 41.9 3.1 100 8.6
9 =30 1.6 0.68 AA- 420 645 41.6 3.1 100 10.1

¥ =4.0 1.0 0.45 AA+ 422 426 42.5 3.0 100 7.5
0=038 0.89 0.09 AA+ 136 136 25.9 3.5 100 8.6
c=12 1.7 1.4 AA- 737 90.8 33.2 2.6 100 8.6
0=X3 =35 1.4 0.75 AA 50.9  70.2 41.2 2.9 87 7.6
0=\¢ =45 0.96 0.31 AA+ 328 328 39.3 3.1 114 9.7
A =35 1.4 0.57 AA 40.6  55.8 40.7 3.1 92 8.1
A =45 0.97 0.39 AA+ 405 405 415 3.0 110 9.0
k=015 1.3 0.83 AA 58.3  76.9 39.9 2.8 100 8.2
k=04 0.37 0 AAA 35 35 3.8 3.8 100 9.4
R=0.2 1.2 0.65 AA 50.9  60.8 42.1 3.0 134 87
R=0.6 1.4 0.25 AA 24.5 344 32.4 3.1 67 86
r=0.02 2.0 0.71 A+ 36.6  69.5 41.1 3.4 100 86
r=0.1 0.51 0.24 AAA 428 428 39.5 2.5 101 86
(h1,h2) = (0,0) 0.61 0.35 AAA 523 523 42.2 2.9 100 114
(h1,h2) = (0.3,0.02) || 0.93 0.43 AA+ 434 434 42.4 3.0 100 9.5
§ =0.015 0.64 0.21 AAA 324 324 40.3 2.7 100 86
5 =0.025 1.9 0.80 AA- 429 763 40.9 3.3 100 8.6
M =10 1.4 0.26 AA 251  35.0 32.8 3.1 100 86
M =20 1.2 0.53 AA 419 50.6 43.0 3.0 100 8.6
g=1 12.9 0.02 BB+ 6.8 275 8.0 5.1 100 8.6
B=3 1.3 1.2 AA 85.3  89.4 16.3 2.0 100 8.6

Table 4.5: Sensitivity analysis: Stressed credit market.

The standard parameters in the historical credit environment (setup

3, table 4.6) are:

0 =2 =28

k=0.2

c=09 and v =3.0.

The CPDO premium is 200bp above LIBOR and the strategy chosen has

gearing factor g = 2.
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PD Cash Out Rating LGD ESg9 sd(LGD) Cash In So Nr

(%) (%) - (%) (%) - (years) (bp) —

setup 3 2.5 0.70 A 338 75.0 36.4 3.1 69 7.0
simple 2.1 0.96 A+ 52.5  59.4 36.1 2.2 69 7.0
1% adm. fee 2.8 0.90 A- 38.6  89.6 37.6 3.1 69 7.0
I =25 3.9 1.3 BBB+ 405 895 37.0 3.1 69 8.3

¥ =35 2.0 0.70 A+ 40.9  75.0 39.4 2.9 69 6.0
o=07 2.5 0.09 A 122 26.2 18.6 3.6 69 7.0
o=10 2.9 1.5 A- 53.3  89.9 38.7 2.8 69 7.0
f=2¢ =21 4.8 1.0 BBB+ 352  89.6 32.2 2.9 52 5.3
0=\ =35 1.8 0.48 AA- 29.9  51.0 37.1 3.2 87 8.7
A$ =21 4.1 1.1 BBB+ 342 892 35.3 3.1 58 6.3
A¢ =35 1.7 0.60 AA- 35.3  59.1 38.7 2.9 81 7.8
k=0.15 3.2 1.4 A- 474 904 39.3 2.8 69 6.8
k=04 1.6 0.01 AA- 7.3 111 11.6 3.9 69 7.6
R=02 2.3 1.1 A+ 46.8  89.6 41.0 3.0 93 7.0
R=0.6 5.3 0.26 BBB 209 59.1 22.4 3.4 46 7.0
= 0.02 3.4 1.0 A- 361 91.1 38.8 3.3 69 7.0
r=0.1 1.9 0.55 AA- 37.8  65.8 34.2 2.5 70 7.0
(h1,h2) = (0,0) 1.1 0.42 AA 377 414 41.2 3.0 69 9.3
(h1,h2) = (0.3,0.02) || 2.0 0.79 A+ 40.1 755 40.2 3.0 69 7.8
§=10.015 1.1 0.34 AA 374 403 37.9 2.7 69 7.0
5 =0.025 4.2 1.3 BBB+ 378  90.6 38.0 3.3 69 7.0
M =10 5.7 0.27 BBB 20.8 60.1 21.9 34 69 7.0
M =20 2.4 1.2 A 481 90.0 41.6 3.0 69 7.0
B=1 15.4 0.09 BB 9.5 416 11.2 5.0 69 7.0
B=3 2.1 1.0 A+ 55.2 624 89.1 2.3 69 7.0

Table 4.6: Sensitivity analysis: Historical parameters.

For the self exciting process (4.9) in example 4.3.4 we use the historical
parameters and vary the index roll parameter 77 according to table 4.7.
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PD Cash Out Rating LGD ESgy sd(LGD) Cash In So Nr

(%) (%) - (%) (%) - (years) (bp) -
n=0 2.5 0.81 A 38.4 81.2 37.2 3.04 69.4 7.0
n=1 2.8 1.0 A- 39.6 89.1 38.2 3.0 69.1 7.0
n= 3.0 0.92 A- 37.2 87.5 37.4 3.1 68.5 7.0
n=2>5 3.3 0.95 A- 35.8 88.8 36.7 3.1 679 7.1
n =10 4.2 1.2 BBB+ 36.4 89.5 36.3 3.1 66.5 7.2

Table 4.7: Sensitivity analysis: Self-exciting default.
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