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Summary

This thesis studies two main subjects: claims reserving in non-life insurance
and regularly varying functions.

The work on regular variation is a continuation of the work presented in
my Master Thesis and the paper Regularly varying functions was chronologi-
cally the first part of this thesis to be written. It is included as the last paper
in this thesis.

The primary part (four papers) of this thesis deals with claims reserving.
The papers on claims reserving are, for the most part, kept simplistic for
the theory to be easily applicable to data. The theory is centered around
the methodology of run-off triangles but it is in some cases assumed that
additional data is available. Apart from the first introductory section, Chain
ladder and its extension, the papers on claims reserving do all include data
studies based on data from Codan Insurance or Winterthur Insurance.

The chain ladder method is the most commonly used way of calculating a
reserve in non-life insurance. The original idea of the chain ladder method is
elementary and based on heuristic reasoning but the chain ladder method has
since been formulated in a precise mathematical framework. The first paper
in this thesis, Chain ladder and its extension, serves as an introduction to the
chain ladder method considered in a multiplicative Poisson model (and mul-
tiplicative GLM) framework. In this framework a number of modifications
and extensions have appeared in the literature. Some modifications simply
belong to the folklore of the practicing actuary and these modifications do
not necessarily have reference in the literature. The aim of the paper is to
collect results and modifications related to the chain ladder method and for-
mulate them in a mathematically precise way. Some results are proven in
this paper. For results proven elsewhere we give references.

The second paper, Diagonal effects in claims reserving, studies one mod-
ification of the chain ladder method that includes diagonal effects — effects
on payments triggered by, for example, changes in reporting patterns, law
practice or economic inflation. For paid low-dimensional run-off triangles em-
pirical analysis suggests that the estimation uncertainty becomes too large
for the prediction to be meaningful. To overcome this problem we consider
similar models with fewer parameters. The mean value structure of such a
model and the according estimation of the parameters is known as the sepa-
ration method. We extend the separation method to a GLM type framework
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and propose a credibility model leading to a Benktander type prediction in-
cluding diagonal effects. The Benktander method gives a simplistic reserve
predictor based on a weighted average of the chain ladder method and the
prior expected value of the total payments for an underwriting year.

The third paper, Prediction of RBNS and IBNR claims using claim
amounts and claim counts, considers two run-off triangles: one including the
number of reported claims and the other a paid run-off triangle. An insur-
ance claim runs through a number of states before it is finally settled. First
the claim was incurred but is unknown to the insurance company, then the
claim is reported to the insurance company and finally the claim is settled
with no, one or more payments to cover the damage. The waiting time from
when a claim was incurred to when it is reported is referred to as IBNR-delay
(Incurred But Not Reported) and the waiting time from when a claim is re-
ported and until it is fully settled is called RBNS-delay (Reported But Not
Settled). The inclusion of a run-off triangle of the number of reported claims
add extra information to the reserve prediction compared to the chain ladder
method as reported claims are not necessarily represented in the paid trian-
gle. The model we propose explicitly models the IBNR- and RBNS-delays
allowing for the prediction of both IBNR- and RBNS-reserves. The sum of
these two add up to the total reserve. It is an important argument in this
paper that data comes in two run-off triangles because this data format is
the most common one in insurance companies. This assumption complicates
the statistical analysis but this is a trade-off we are willing to make.

The fourth paper, Prediction of outstanding payments in a Poisson clus-
ter model, deals with a similar but more general framework than the paper
Prediction of RBNS and IBNR claims using claim amounts and claim counts.
The model considered is also based on the number of reported claims and
paid amounts but allows for a number of different distributional assumptions
related to the total number of claims in a year (say). The number of payments
triggered by each claim is assumed to be Poisson distributed. Therefore a
Poisson cluster model is defined. The asymptotic behavior of the predictors
turns out to be closely related to the chain ladder method which to some
extent justifies the use of the chain ladder method in the broad framework of
a Poisson cluster model. A comparison of the two methods based on a data
study shows the resemblance between the models.

The final paper in this thesis, Regularly varying functions, considers ran-
dom variables with regularly varying tail distributions; random variables with
such distributions are referred to as regularly varying. Regularly variation of
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the tail is maintained under a large number of operations on regularly varying
random variables. We have collected a number of results related to functions
of regularly varying random variables and proved some in the paper. Regular
variation is relevant when considering heavy-tailed distributions and in the
contexts of extreme value theory and quantitative risk management.
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Sammenfatning

I denne afhandling studeres to hoved emner: Skadesreservering i skadesfor-
sikring og regulært varierende funktioner.

Arbejdet med regulær variation er en fortsættelse af arbejdet præsenteret
i mit speciale og dette afsnit, Regularly varying functions, er inkluderet som
den sidste del af denne afhandling.

Den hovedvægten i denne afhandling er lagt på skadesreservering. Pa-
pirerne om skadesreservering er generelt forsøgt skrevet i en let tilgængelig
form, da vi håber, at dette vil lette anvendelserne i praksis. Teorien tager
udgangspunkt i afløbstrekanter, men det antages i nogle tilfælde, at vi har
yderligere information til rådighed for at kunne gennemføre analysen. Bort
set fra det første afsnit, Chain ladder and its extensions, er teorien vedrørende
reservering anvendt på data, som er lånt fra Codan forsikring eller Winter-
tour Insurance.

Chain ladder metoden er den mest anvendte metode til at beregne re-
server i skadesforsikring. Den originale idé er ikke baseret på en statis-
tisk model men på intuitiv argumentation. Efterfølgende er modeller blevet
formuleret, som på en naturlig måde medfører chain ladder metoden som
prædiktion eller estimation af reserven. Identifikationen af sådanne modeller
giver således mulighed for at analysere den oprindelige chain ladder metode
i en matematisk ramme. Det første afsnit, Chain ladder and its extensions,
tjener som en introduktion til chain ladder metoden i rammen af en multi-
plikativ Poisson- og GLM-model. Da chain ladder metoden er vidt udbredt
og samtidig meget simpel findes et utal af modifikationer og variationer af
den oprindelige Poisson model. En stor del af disse modifikationer er velk-
endt blandt praktiserende aktuarer dog uden, at der altid findes konkrete
henvisninger til resultaterne i litteraturen om skadesforsikring. Målet med
dette afsnit er således at samle resultater fra litteraturen, der vedrører chain
ladder i rammen af en multiplikativ Poisson model. I tilfælde, hvor vi ikke
har kunnet finde et bevis, giver vi selv et.

Andet afsnit, Diagonal effects in claims reserving, omhandler en modi-
fikation af chain ladder modellen, der inkluderer diagonale effekter. Studierne
tager udgangspunkt i allerede kendte metoder, som er beskrevet i Afsnit 1,
men som vi har forsøgt at optimere. Diagonale effekter findes ofte i afløb-
strekanter pga. fx ændringer i anmeldelsesmønstre, økonomisk inflation eller
ændring i lovpraksis. Vi har studeret lav-dimensionelle afløbstrekanter (un-
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der 13 års afløb) og fundet frem til, at det overvejende gælder, at tilføjelsen af
diagonale parametre til chain ladder modellen øger estimationsusikkerheden
så meget, at reserveprædiktionen bliver ubrugelig. For at omgås dette prob-
lem betragter vi en tilsvarende model, der er opbygget over færre parametre.
Denne kan ses som en udvidelse af, hvad der kendes som The separation
method. Vores set up tillader dog, at vi kan opbygge en kredibilitetsmodel
omkring første momentstrukturen og af den vej konstruere en Benktander re-
serveprædiktion, hvor diagonale effekter er inkluderet. Benktander metoden
i sin oprindelige form er baseret på et vægtet gennemsnit af en på forhånd
forventning til forsikringsårets totale betalinger og chain ladder prædiktio-
nen.

Tredje afsnit, Prediction of RBNS and IBNR claims using claim amounts
and claim counts, tager udgangspunkt i to afløbstrekanter: En med antallet
af anmeldte skader og en med betalinger. En forsikringsskade gennemløber
forskellige stadier, før den afsluttes. Først er skaden indtruffet uden at være
meldt til forsikringsselskabet, derefter bliver den anmeldt og til sidst afslut-
tet med ingen, en eller flere udbetalinger til dækning af skaden. Tidsrum-
met mellem skades indtræffelse og til dens anmeldelse kaldes IBNR-delay’et
(Incurred But Not Reported) mens tiden mellem anmeldelse og endelig af-
slutning kaldes RBNS-delay (Reported But Not Settled). Viden om an-
meldelsestidspunktet tillader os eksplicit at modellere både IBNR-delay og
RBNS-delay og ad denne vej beregne IBNR og RBNS reserver særskilt. Dvs.
reservering relativt til skader, der er anmeldte, og skader, som endnu ikke
er anmeldt. Vi antager, at skader enten afsluttes med en betaling eller in-
gen. Der kan i modellen ikke være flere betalinger per skade. Det er vigtigt
for argumenterne i papiret, at dataformatet er to afløbstrekanter, da dette
dataformat kan forventes at være tilgængeligt i de fleste tilfælde i praksis.

Det fjerde papir, Prediction of outstanding payments in a Poisson cluster
model, betragter et mere generelt set up end afsnit tre. Formler for prædik-
torer udledes for en lang række fordelinger. Beregningerne bliver særligt
pæne, når de indgående fordelinger er indenfor (a,b)-klassen. En ufravigelig
antagelse er dog, at antallet af betalinger per skade er Poisson fordelt - heraf
også titlen. Den asymptotiske opførsel af prædiktorerne i denne model viser
sig at replicere en chain ladder struktur, hvilket i noget omfang retfærdiggør
brugen af chain ladder metoden i Poisson cluster modeller. En sammen-
ligning af de to forskellige prædiktionsmetoder ud fra et datastudie viser
tilsvarende resultater.

Femte og sidste afsnit, Regularly varying functions, betragter fordelinger
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med regulært varierende halesandsynligheder. Stokastiske variable med reg-
ulært varierende halesandsynligheder betegnes regulært varierende stokastiske
variable. Regulær variation af en stokastisk variabel viser sig at være invari-
ant under forskellige operationer på variablerne, og i papiret har vi samlet
en lang række resultater relateret til dette. En række resultater, for hvilke vi
ikke kunne finde beviser i literaturen, er bevist i afsnittet. Regulær variation
er relevant i relation til tunghalede fordelinger i ekstrem værditeori samt i
risk managemet.
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Chain ladder and its extensions

Anders Hedegaard Jessen
Department of Mathematical Sciences, University of Copenhagen

May 27, 2009

Abstract
The chain ladder method is the most commonly used way of calculating
a reserve in a non-life insurance company. Although the original idea of
the chain ladder method is elementary and based on heuristic reasoning the
chain ladder method has since been formulated in a precise mathematical
framework. In this framework a number of modifications and extensions
have appeared in the literature. Many of these extensions are used in practise
without references to specific scientific papers, and they have as such become
part of the folklore of the practising actuary. The aim of this paper is to
collect results related to the chain ladder method which are commonly used
by practitioners. We will use the chain ladder estimates whenever possible,
and if this is not the case we will prefer to give results where closed form
expressions can be derived.

1 Introduction

Practising actuaries often refer to the chain ladder method (CLM) as a way
of estimating a reserve for a line of business in a non-life insurance company.
The original method was based on heuristic reasoning and probably one out
of many competing methods for determining a reserve. The CLM proved
robust and intuitively appealing and, by now, the CLM is, to a large extent,
standard. The simplistic nature of the CLM allows for easy ad hoc modifi-
cations of the calculation procedure. Thus the actuary may include business
knowledge — practical knowledge based on personal experience about the
nature of the business. This pragmatic way of handling claims reserving
makes the CLM applicable to a large number of data sets.

The actuarial tradition however requires a more scientific approach to the
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calculation of reserves. Rather than heuristic reasoning and referring to em-
pirical evidence it is advantageous to analyze the CLM and its modifications
in a probabilistic framework, i.e., a stochastic model needs to be formulated
in such a way that the CLM appears as a natural consequence of the model
specifications. Models related to the CLM were formulated by Kremer (1982,
1985), Mack (1991, 1993, 1994), Hachemeister and Stanard (1975). We con-
sider these models and discuss possible extensions and modifications of the
original ideas in a structured way. For known results we give references. In
some cases however, we elaborate or clarify the results. If we could not find
suitable references in the literature we give proofs of the results.

In order for the results to be applicable in practise the calculations should
not be numerically challenging or time consuming as this aspect would dis-
qualify many ideas simply because a busy actuary has not got the time
to implement them. We therefore make an effort to use the chain ladder
estimates whenever possible. In some cases this approach will make the es-
timation suboptimal but this is a trade-off we are willing to accept.

We proceed as follows. In Section 2 we introduce some notation and ex-
plain the general idea of claims reserving and the CLM. In Section 3 we start
by considering the setup of Mack (1991), where count data is the object of
interest. In Section 4 we suggest how paid data can be understood in the
framework of the CLM. Then we argue that most of the results from Sec-
tion 3 carry over to Section 4. Finally, in Section 5 we consider the setup
of Mack (1993) and relate it to the framework of Section 4. We will use the
embedding in a time series to find extensions of the model and even make a
connection between the CLM and a diffusion process.

2 Claims reserving

In this section we give a brief introduction to claims reserving and the CLM.
We consider a non-life insurance company which sells policies (in one line
of business) in a period of time, a year say. This year is referred to as
accident or underwriting year. The claims regarding an underwriting year
will not necessarily all be paid within this year. Due to legal issues, general
consideration of the claim, the delay from the claim’s occurrence time to the
reporting time, etc., some claims are reported and paid in the following years.
At some point in time there will however be no more payments regarding
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underwriting year one; we say that year one has run off.
Formally, let Xij be the total claims regarding the underwriting period

i which have been paid with j periods delay. The claim amounts Xij with
i + j = n have thus been paid in the same calender period (year), namely in
period n ∈ N, but they regard different underwriting periods (period i). At
the end of period m ∈ N one thus observes the total payments

Xij, (i, j) ∈ Am, (1)

where
Am = {(i, j) ∈ N× N0 : 1 ≤ i + j ≤ m}.

The triangular array (1) is referred to as a run-off triangle.
Assume that all periods of insurance are fully run off in m0 ∈ N periods,

i.e., Xij = 0 for j > m0. Then the reserve for the underwriting period i is
defined as a predictor of the not yet observed amount Xi,m−i + · · · + Xi,m0

based on the observations (1). The total reserve, or just the reserve, is a
prediction of the sum of the variables Xij, (i, j) ∈ Bm,m0 , where

Bm,m0 = {(i, j) ∈ {1, ...,m} × {0, ..., m0} : i + j ≥ m + 1}.

We will often assume that m = m0 in which case we write Bm,m0 = Bm.
The CLM works on the accumulated payments

Yij = Xi0 + · · ·+ Xij, (i, j) ∈ Am ∪ Bm.

In this setup, prediction of the random variables Yij, (i, j) ∈ Bm, is equivalent
to prediction of Xij as Xij = Yij − Yi,j−1, (i, j) ∈ Bm where Yi,−1 = 0. The
CLM is based on the chain ladder factors which are given as

f̂j =

∑m−j−1
i=1 Yi,j+1∑m−j−1

i=1 Yij

, 0 ≤ j ≤ m− 2. (2)

The chain ladder factors can be seen as weighted averages of the increments
in the payments from delay j to j + 1 as

f̂j =

m−j−1∑
i=1

Wij
Yi,j+1

Yij

, Wij =
Yij∑m−j−1

i=1 Yij

.
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Notice that
∑m−j−1

i=1 Wij = 1. Given this interpretation it is appealing to
define the corresponding chain ladder predictors

Ŷij = Yi,m−i

j−1∏

k=m−i

f̂k , (i, j) ∈ Bm. (3)

Of course, the word ’predictor’ has not yet been made precise in a mathe-
matical sense since a stochastic model has not been formulated. Assuming
that m = m0, the reserve calculated by using the CLM is defined by

R̂m =
m∑

i=2

[
Ŷi,m−1 − Yi,m−i

]
=

m∑
i=2

m−1∑
j=m−i+1

[
Ŷij − Ŷi,j−1

]
=

∑

(i,j)∈Bm

X̂ij,

where X̂ij = Ŷij − Ŷi,j−1 for (i, j) ∈ Bm.
It has now been formulated what is understood by the CLM. In the next

section we introduce a stochastic model which reproduces the above formulas.

3 A Poisson model for claim counts

In this section we consider the multiplicative Poisson model suggested by
Mack (1991), pp. 105-106. In the framework of Mack’s model the CLM
appears in a natural way in order to predict reserves.

Assume that Nij, (i, j) ∈ Am ∪ Bm, are mutually independent and

Nij ∼ Pois (eµij) , (4)

where
µij = δ + αi + βj, (i, j) ∈ Am ∪ Bm.

In a reserving context Nij denotes the number of claims from the underwriting
period i which is reported with j periods delay. The parameter vector of
model (4) is given by

θm = (α1, ..., αm, β0, ..., βm−1, δ) ∈ R2m+1, (5)

i.e., the dimension of the parameter space increases with m.
Before we go through the result of Mack (1991), some observations on the
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identifiability of the model are in place. The model defined in (4) is obviously
not fully identified because

δ + αi + βj = (δ + a + b) + (αi − a) + (βj − b)

for all (i, j) ∈ Am ∪ Bm and a, b ∈ R. Various papers suggest different
identification schemes such as for example α1 = β0 = 0 in England and
Verrall (1999) or (δ,

∑m−1
j=0 eβj) = (0, 1) in Mack (1991), p. 97. In this section

we let α1 = β0 = 0. We discuss the identification problem more in detail in
Section 3.3.

3.1 Estimation and the connection to the CLM

In this section the connection between the model (4) and the CLM (3) is
made precise; see Mack (1991), Appendix A.

Write
Mij = Nij + · · ·+ Ni0, (i, j) ∈ Am ∪ Bm.

Since Nij are mutually independent and Poisson distributed the likelihood
equations based on Nij, (i, j) ∈ Am, are given by the intuitively appealing
equations

m−j∑
i=1

Nij =

m−j∑
i=1

eδ+αi+βj , 1 ≤ j ≤ m− 1, (6)

Mi,m−i =
m−i∑
j=0

Nij =
m−i∑
j=0

eδ+αi+βj , 2 ≤ i ≤ m, (7)

m∑
i=1

Mi,m−i =
m∑

i=1

m−i∑
j=0

Nij =
m∑

i=1

m−i∑
j=0

eδ+αi+βj . (8)

As pointed out in Schmidt andWünsche (1998) equations (6)−(8) correspond
to the principal of marginal totals. It follows directly from (6)− (8) that

Mi,m−i =
m−i∑
j=0

e
bδ+bαi+bβj = e

bδ+bαi

m−i∑
j=0

e
bβj , 2 ≤ i ≤ m. (9)
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The chain ladder factors, here considered as parameters, are defined by

fj =

∑j+1
k=0 eδ+αi+βk

∑j
k=0 eδ+αi+βk

=

∑j+1
k=0 eβk

∑j
k=0 eβk

, 0 ≤ j ≤ m− 2.

It now follows from Mack (1991), Appendix A, that the maximum likelihood
estimates for fj, 0 ≤ j ≤ m− 2, are given by

f̂j =

∑j+1
k=0 e

bβk

∑j
k=0 ebβk

=

∑m−j−1
i=1 Mi,j+1∑m−j−1

i=1 Mij

, 0 ≤ j ≤ m− 2,

in agreement with (2). Together with (9) this formula yields

j∑

k=0

e
bδ+bαi+bβk = Mi,m−i

m−i∏

k=j

(
f̂k

)−1

, (i, j) ∈ Am,

j∑

k=0

e
bδ+bαi+bβk = Mi,m−i

j∏

k=m−i

f̂k, (i, j) ∈ Bm.

To calculate the individual parameter estimators we use the restriction α1 =
β0 = 0 together with the formula

e
bδ+bαi+bβj =

j∑

k=0

e
bδ+bαi+bβk −

j−1∑

k=0

e
bδ+bαi+bβk , (i, j) ∈ Am ∪ Bm. (10)

It follows directly from (10) that, with (i, j) = (1, 0), we obtain the maximum
likelihood estimator of e

bδ. Then with i = 1 estimators of

e
bδ+bβj , 1 ≤ j ≤ m− 1, (11)

are obtained. Similarly with j = 0 we get estimators

e
bδ+bαi , 2 ≤ i ≤ m. (12)

Finally, if we divide all expressions in (11) and (12) by e
bδ, we arrive at the full

set of the maximum likelihood estimators for the components of θm in (5).
Thus the chain ladder factors are introduced to help calculating estimators
of θm in (5).

We continue by studying the asymptotic behavior of the latter parameter
estimators.
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3.2 Asymptotic results

In this section we inspect the asymptotic behavior of the maximum likelihood
estimators given in Section 3.1, in particular the chain ladder factors.

For simplicity we start by considering (f̂0, f̂1). Let

t =
m−1∑
i=1

eδ+αi+β0 and s =

∑m−2
i=1 eαi

∑m−1
i=1 eαi

such that
m−1∑
i=1

Mi0 ∼ Pois (t) ,

m−1∑
i=1

Mi1 ∼ Pois (tf0) ,

m−2∑
i=1

Mi1 ∼ Pois (tsf0) ,

m−2∑
i=1

Mi2 ∼ Pois (tsf0f1) .

By Mikosch (2006), p. 65, it follows that

t−1




∑m−1
i=1 Mi0∑m−1
i=1 Mi1∑m−2
i=1 Mi1∑m−2
i=1 Mi2




asymp∼ N (
ξ, t−1Σ

)
, t →∞,

where

ξ =




1
f0

sf0

sf0f1


 and Σ =




1 1 s s
1 f0 f0s f0s
s f0s f0s f0s
s f0s f0s f0f1s


 .

Define the function h : R4
+ → R2

+ by

h((x1, ..., x4)
′) = (x1x

−1
2 , x3x

−1
4 )′.

Then the Delta method, see for example Casella and Berger (2002), used on
h implies that
[

f̂0

f̂1

]
asymp∼ N

([
f0

f1

]
, t−1

[
f0(f0 − 1) 0

0 (sf0)
−1f1(f1 − 1)

])
, t →∞.
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This result can be generalized to m dimensions as formulated below.

Proposition 1
Let Nij, (i, j) ∈ Am, follow the assumption (4) with α1 = β0 = 0. Then as
δ →∞,



f̂0
...

f̂m−2


 asymp∼ N







f0
...

fm−2


 , diag




(∑m−1
i=1 eδ+αi+β0

)−1
f0(f0 − 1)

...(∑m−2
j=0 eδ+α1+βj

)−1

fm−2(fm−2 − 1)





 .

Since Mi,m−i is independent of f̂m−i, ..., f̂m−2 and

Mi,m−i
asymp∼ N

(
m−i∑
j=0

eδ+αi+βj ,

m−i∑
j=0

eδ+αi+βj

)
, δ →∞,

it follows directly from Proposition 1 that

sup
x∈R

∣∣∣∣∣P
(

Mi,m−i

m−2∏
j=m−i

f̂j ≤ x

)
− P

(
U

m−2∏
j=m−i

Uj ≤ x

)∣∣∣∣∣ → 0, δ →∞,

where U,Um−i, ..., Um−2 are mutually independent,

U ∼ N
(

m−i∑
j=0

eδ+αi+βj ,

m−i∑
j=0

eδ+αi+βj

)

and

Uj ∼ N

fj,

(
m−j−1∑

i=1

eδ+αi+βj

)−1

fj(fj − 1)


 , m− i ≤ j ≤ m− 2.

A similar result is derived in Mikosch (2006), Theorem 2.2.4, p. 60, which
immediately yields that

f̂j =

∑m−j−1
i=1 Mi,j+1∑m−j−1

i=1 Mij

= fj
(
∑m−j−1

i=1

∑j+1
k=0 eµik)−1

∑m−j−1
i=1 Mi,j+1

(
∑m−j−1

i=1

∑j
k=0 eµik)−1

∑m−j−1
i=1 Mij

a.s.→ fj

as δ →∞.
Taylor (2003) shows that the chain ladder estimates are upward biased on
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the conditional probability measure where f̂j is finite. More precisely Taylor
(2003) shows that when the chain ladder factors are well defined then

E
(
f̂j | f̂j < ∞

)
> fj

for 0 ≤ j ≤ m − 1. With Mij = Ni0 + · · · + Nij this implies that M̂i,m−1 as
defined in (3) is also biased upward in the sense that

E

(
M̂i,m−1 |

m−2∏
j=m−i

f̂j < ∞
)

= E

(
Mi,m−i

m−2∏
j=m−i

f̂j |
m−2∏

j=m−i

f̂j < ∞
)

> EMi,m−1

for 1 ≤ i ≤ m; see Taylor (2003) for a proof.

3.3 Identification and prediction

In this section we follow the more general approach given in Kuang et. al
(2008) where it is pointed out that a constant can be removed from αi and
βj by taking differences such as ∆αi = αi − αi−1. In particular by choosing
a = α1 and b = β0 we get

µij = µ10 +
i∑

k=2

∆αk +

j∑

k=1

∆βk,

where
∑1

k=2 ∆αk =
∑0

k=1 ∆βk = 0 by convention. A canonical parametriza-
tion, θ∗m, can thus be generated using differences and one initial point,

θ∗m = (∆α2, ..., ∆αm, ∆β1, ..., ∆βm−1, µ10).

In group-theoretical terms this can be formulated as follows. Consider

µ = {µij, (i, j) ∈ Am ∪ Bm}

a function of θm and define the group

g :




αi, 1 ≤ i ≤ m
βj, 0 ≤ j ≤ m− 1
δ


 7→




αi − a, 1 ≤ i ≤ m
βj − b, 0 ≤ j ≤ m− 1
δ + a + b


 .

9



Then µ is invariant under g because µ(g(θm)) = µ(θm). In Kuang (2008) it
is proved that θ∗m is the maximal invariant function of θm under g.

The identification scheme proposed in England and Verrall (1999), α1 =
β0 = 0, is obtained by letting

δ = µ10, αi =
i∑

k=2

∆αk, βj =

j∑

k=1

∆βk.

We will use this convention throughout this paper unless mentioned other-
wise. The identification scheme of Mack (1991), (δ,

∑m−1
j=0 eβj) = (0, 1), can

be obtained from the canonical parameter by

δ = 0, αi = C + µ10 +
i∑

k=2

∆αk, βj = −C +

j∑

k=1

∆βk,

where

C = log

(
m−1∑
j=1

e
Pj

k=1 ∆βk

)
.

Notice that eβj is that proportion of the total number of claims which is re-
ported with j periods delay, whereas eαi is the (expected) total claim amount
for underwriting period i. This identification scheme is in agreement with
the idea of the Bornheutter-Ferguson method which is considered in Sections
3.5 and 3.6 below.

Out of sample prediction

In the models which have been considered up to this point it has been as-
sumed that m0 = m (using the notation of Section 2). That is, it has been
assumed that ENij = 0 for j ≥ m. In many cases of interest this assumption
does not hold. If payment of claims related to underwriting year i takes more
than m periods one should somehow estimate ENij for m ≤ j ≤ m0. The
estimator of ENij for m ≤ j ≤ m0 should however not depend on the choice
of identification scheme and the following result insures that this is not the
case.

10



Proposition 2
An estimator of ENij, m ≤ j ≤ m0, which is a function of

θ∗m = (∆α2, ..., ∆αm, ∆β1, ..., ∆βm−1, µ10)

does not depend on the choice of identification scheme.

The proof of Proposition 4 (in a slightly more general setting) is given in
Kuang (2008).

A straightforward consequence of Proposition 4 is that any estimation
of fm, ..., fm0−1 based on f̂0, ..., f̂m−1 is invariant under the choice of iden-
tification scheme. A number of ways of predicting from the development
factors f0, ..., fm−1 are given in Boor (2006). Another straightforward way
of estimating ENij, m ≤ j ≤ m0, is simply by estimating the differences
∆βm, ..., ∆βm0−1 based on ∆β̂1, ..., ∆β̂m−1.

3.4 An extended model with overdispersion

Overdispersion is often empirically observed in data. That is

V Nij = γENij

for some γ > 1. A model compatible with this property is given if Nij has a
negative binomial distribution. We assume this distribution in this section.

Let Θij, (i, j) ∈ Am ∪ Bm, be mutually independent random variables
with distribution

Θij ∼ Γ

(
γ−1

1− γ−1
eδ+αi+βj ,

γ−1

1− γ−1

)
.

Assume further that given Θij, (i, j) ∈ Am ∪ Bm, the variables Nij, (i, j) ∈
Am ∪ Bm, are conditionally independent and

Nij ∼ Pois(Θij).

With
rij =

γ−1

1− γ−1
eµij

11



it follows; see Mikosch (2006), p. 72, that

Nij ∼ NegBin(γ−1, rij).

Straightforward calculation yields that ENij = EE(Nij|Θij) = eµij which is
similar to the model (4), and

V Nij = EV (Nij | Θij) + V E(Nij | Θij) = eµij +
(1− γ−1)eµij

γ−1
= γENij,

which is the desired overdispersion property. These conditions define a GLM
setup as in McCullagh and Nelder (1989), Table 9.1. McCullagh and Nelder
propose a Poisson quasi likelihood function to estimate the parameters αi,
βj and δ. This procedure leads to the same estimators as in (10). McCullagh
and Nelder (1989), p. 328, give a moment estimator of γ by

γ̂ =
2

m(m− 1)

m∑
i=1

m−i∑
j=0

(Nij − ebµij)2

ebµij

which also suggests an estimator for rij, namely,

r̂ij =
γ̂−1

1− γ̂−1
ebµij , (i, j) ∈ Am ∪ Bm.

3.5 The Bornheutter-Ferguson method

In this section we consider a simple modification of the chain ladder method
called the Bornheutter-Ferguson method; see for example Schmidt and Zocher
(2008) for a detailed description of this method and related issues. It will be
convenient to use the identification scheme

(
δ,

m−1∑
j=0

eβj

)
= (0, 1),

in which case eβj is the proportion of the total number of claims which are
reported with j periods delay, whereas eαi is the (expected) total claim for
underwriting period i (the net premium for period i). The Bornheutter-
Ferguson method simply exploits the idea that eαi is replaced by its prior

12



expected value, the net premium, Ti. In this way the reserve estimate be-
comes

R̂m =
m∑

i=2

Ti

m−1∑
j=m−i+1

e
bβj .

This simple idea proves to be an easy and practical way of modifying the chain
ladder estimates if the estimates of eαi seem unprecise and far away from Ti.
The Bornheutter-Ferguson method bases the reserve estimate purely on prior
information, whereas the chain ladder method starts a recursion purely from
the observed data, namely from Mi,m−i = Ni0 + · · ·+Ni,m−i. An obvious way
of combining these two outer positions is based on a Bayesian idea which
used both prior information as well as the actual observed values. Such an
approach is described in the next section.

3.6 A credibility model combining the chain ladder and
Bornheutter-Ferguson methods

The idea of combining the CLM and the Bornheutter-Ferguson method has
been addressed in a number of papers; see for example Benktander (1976),
Hovinen (1981), Neuhaus (1992), Mack (2000) and Wüthrich (2008). We
will however choose an alternative approach which is closely related to Ver-
rall (2004) but formulated in the framework of this paper. In this framework
a simple credibility estimate can be derived. The credibility model is a con-
ditional chain ladder model defined as follows. Let

Θi ∼ Γ(αTi, α)

be mutually independent for i ≥ 1, and assume that given Θi,

Nij ∼ Pois(Θie
βj),

m−1∑
j=0

eβj = 1. (13)

Then EΘi = Ti, V Θi = α−1Ti and

log E(Nij | Θi) = log Θi + βj.

This situation is similar to (4) provided the identification scheme (δ,
∑m−1

j=0 eβj) =
(0, 1) is applied.

13



The idea is to estimate Θi by the Bayes estimator, µ̂i, defined as the min-
imizer of E(µ̂i − Θi)

2 over all measurable, finite variance functions of Nij,
(i, j) ∈ Am. Following an approach similar to, for example Mikosch (2006),
p. 197, we obtain the Bayes estimate

µ̂i = ωiTi + (1− ωi)

∑m−i
j=0 Nij∑m−i
j=0 eβj

, (14)

where ωi = (α−1
∑m−i

j=0 eβj + 1)−1. Notice that
∑m−i

j=0 Nij∑m−i
j=0 eβj

=

(
m−i∑
j=0

Nij

) ∑m−i+1
j=0 eβj

∑m−i
j=0 eβj

∑m−i+2
j=0 eβj

∑m−i+1
j=0 eβj

· · ·
∑m−1

j=0 eβj

∑m−2
j=0 eβj

=

(
m−i∑
j=0

Nij

)
m−1∏

j=m−i

fj (15)

as
∑m−1

j=0 eβj = 1 by definition. This proves that, if the chain ladder estimates
are used for fj, 0 ≤ j ≤ m− 1, then the right hand side in (14) is in fact the
chain ladder reserve estimate.

To estimate the parameter α we use the following result.

Proposition 3
Define

α̂−1 =
1

m

m∑
i=1

(∑m−i
j=0 Nij

)2

− Ti

(∑m−i
j=0 eβj

)
− T 2

i

(∑m−i
j=0 eβj

)2

Ti

(∑m−i
j=0 eβj

)2 .

Then Eα̂−1 = α−1 and if

1

m2

m∑
i=1

T k−2
i

(
m−i∑
j=0

eβj

)k−4

→ 0, m →∞,

for 1 ≤ k ≤ 4 it also holds that α̂−1 P→ α−1 as m →∞.

Proof: First observe that

E(N2
i.) = T 2

i

(
m−i∑
j=0

eβj

)2

+
Ti

α

(
m−i∑
j=0

eβj

)2

+ Ti

m−i∑
j=0

eβj
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with Ni. = Ni0 + · · ·+Ni,m−i. This relation directly imply that the estimator

α̂−1 =
1

m

m∑
i=1

N2
i. − Ti

(∑m−i
j=0 eβj

)
− T 2

i

(∑m−i
j=0 eβj

)2

Ti

(∑m−i
j=0 eβj

)2

is unbiased. Chebyshev’s inequality then yield that

P
(∣∣∣α̂−1 − α−1

∣∣∣ > ε
)
≤ V α̂−1

ε2

where

V α̂−1 =
1

m2

m∑
i=1

EE(N4
i. | Θi)− [EE(N2

i. | Θi)]
2

T 2
i

(∑m−i
j=0 eβj

)4

≤ 1

m2

m∑
i=1

EE (N4
i. | Θi)

T 2
i

(∑m−i
j=0 eβj

)4

≤ 1

m2

m∑
i=1

4∑

k=1

ckT
k−2
i(∑m−i

j=0 eβj

)4−k
.

The constants ck are calculated in the following way. Since the factorial
moments E(N

(k)
i. | Θi) = Θk

i it holds that

E(N4
i. | Θi) =

(
Θi

m−i∑
j=0

eβj

)4

+ 6

(
Θi

m−i∑
j=0

eβj

)3

+7

(
Θi

m−i∑
j=0

eβj

)2

+

(
Θi

m−i∑
j=0

eβj

)
. (16)

And as Θi is gamma distributed

EΘk
i =

∏k−1
l=0 (αTi + l)

αl
.

It directly follows that Ti 7→ EE(N4
i. | Θi) is a polynomial of order 4 where

the constants ck > 0 are determined by plugging the moments of Θi in (16) .
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The original credibility estimator of Θi proposed by Benktander (1976) is
given in the form (14) with ωi = 1 − ∑m−i

j=0 eβj . The so-called Benktander
estimator of Θi is thus given by

µ̂B
i = Ti

(
1−

m−i∑
j=0

eβj

)
+

m−i∑
j=0

Nij. (17)

The according reserve related to (14) and (17) is given as

R̂m =
m∑

i=2

µ̂B
i

m−1∑
j=m−i+1

e
bβj .

3.7 Diagonal effects

In this section we consider diagonal effects. Recall that Nij denotes the
number of reported claims regarding underwriting period i which have been
reported with j periods delay. As motivation assume that we consider data
from third part liability auto policies where a lawsuit to have whiplash in-
juries accepted as legitimate claims has been won in period n ≤ m. It is then
likely that a number of other whiplash claims will be reported in this calen-
der period i + j = n (and possibly the subsequent periods, n + 1, n + 2, ...,
as well). The average number of claims reported along the nth diagonal will
thus be relatively high. The model (4) however does not allow for diagonal
effects.

For a number of reasons calender effects appear all kinds of data. In
this section, (4) is extended to include diagonal effects such as described
above. The following is based on Kuang, Nielsen and Nielsen (2008a, 2008b).
To start with assume that Nij are mutually independent such that Nij ∼
Pois(eµij) where

µij = δ + αi + βj + πi+j. (18)

Here πi+j represents the diagonal effects and αi and βj have the same inter-
pretations as in (4). The model (18) depends on the parameter

θm = (δ, α1, ..., αm, β0, ..., βm−1, π1, ..., π2m−1)
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and (18) is obviously not identified. In fact if µ = {µij, (i, j) ∈ Am ∪ Bm}
is considered a function of θm then µ is invariant under g, i.e., µ(g(θm)) =
µ(θm), where

g :




αi, 1 ≤ i ≤ m
βj, 0 ≤ j ≤ m− 1
πi+j, 1 ≤ i + j ≤ m
δ


 7→




αi − a− d(i− 1), 1 ≤ i ≤ m
βj − b− dj, 0 ≤ j ≤ m− 1
πi+j − c + d(i + j − 1), 1 ≤ i + j ≤ 2m− 1
δ + a + b + c




and a, b, c and d are arbitrary constants. In comparison to (4), in (18) one
can add and subtract a linear trend in contrast to (4) where one only could
subtract/add a constant. A linear trend can be removed by using double
differences such as ∆2α3 = ∆(α3 − α2) = α3 − 2α2 + α1. For example

∆2(αi − a− d(i− 1)) = ∆(∆αi − d) = ∆2αi.

A canonical parametrization, θ∗m, can thus be generated using double differ-
ences and three initial points,

θ∗m = (∆2α3, ..., ∆
2αm, ∆2β2, ..., ∆

2βm−1, ∆
2π3, ..., ∆

2π2m−1, µ10, µ11, µ20).

Kuang (2008a, 2008b) shows that θ∗m is the maximal invariant function of θm

under g. In particular, if one puts

αi = (i− 1)(µ20 − µ10) +
i∑

k=3

k∑

l=3

∆2αl,

βj = j(µ11 − µ10) +

j∑

k=3

k∑

l=3

∆2βl,

πi+j =

i+j∑

k=3

k∑

l=3

∆2πl,

δ = µ10,

then the identification scheme α1 = β0 = π1 = π2 = 0 is obtained. With this
choice of identification scheme Venter (2007) gives likelihood equations which
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can be recursively run through until the parameter estimates converge,

eαi =

∑m−i
j=0 Xij∑m−i

j=0 eβj+πi+j
, 2 ≤ i ≤ m,

eβj =

∑m−j
i=1 Xij∑m−i

i=1 eαi+πi+j
, 1 ≤ j ≤ m− 1,

eπk =

∑m−k
i=1 Xi,m−k−i∑m−k

i=1 eαi+βm−k−i

, 3 ≤ k ≤ m.

Venter (2007) mentions that usually around 50 loops are sufficient when using
the usual chain chain ladder estimates for eαi and eβj and eπk = 1 as starting
points for the recursion. The canonical parameter is then estimated by, for
example,

e∆̂2αi = ebαi−2bαi−1+bαi−2

for 3 ≤ i ≤ m and accordingly for e∆2πi+j and e∆2βj .
In order to estimate ENij, (i, j) ∈ Bm, it is necessary to predict πi+j for

m + 1 ≤ i + j ≤ 2m− 1. The most common approach is to assume that the
likelihood estimates are observations from some time series from which we
can predict future calender effects. When applying a method to do this one
should take the following result into account.

Proposition 5
A predictor of πi+j, m + 1 ≤ i + j ≤ 2m− 1, which is a function of θ∗m does
not depend on the choice of identification scheme.

¤

A similar result holds for βj, j ≥ m− 1.

This concludes our studies of the CLM in connection with count data.
We continue by studying CLM used on a so-called paid run-off triangle in
the next section.
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4 Paid amounts

In most cases the real objects of interest are the payments triggered by the
reported number of claims. In claims reserving one usually wants to estimate
the ultimate amount which will be paid for each underwriting period along
with the related cashflows. As described in Section 2 it is an empirically
proven fact that the CLM works well on payments. In this section we will
explain why the CLM is a reasonable way of estimating the parameters de-
scribing the payments triggered by Nij, (i, j) ∈ Am. We will hence propose a
model for the payments which inherits the important properties of the model
(4). In fact most of the results in Section 3 carry over to the model for paid
amounts.

4.1 A model for paid amounts

Assume that the number of reported claims, Nij, triggers a vector of mutually
independent numbers of payments

Nijl ∼ Pois(eδ+αi+βj+ρl), l ≥ 0.

For fixed i, j and l payments, Z
(k)
ijl , k ≥ 1, are assumed iid with finite second

moment. Moreover, Z
(k)
ijl , k ≥ 1, and Nijl are all assumed mutually indepen-

dent for (i, j) ∈ Am ∪ Bm and 0 ≤ l ≤ d. Let the relative variance of each
payment, defined by

φ =
E

(
Z

(k)
ijl

)2

EZ
(k)
ijl

,

be constant. Some bookkeeping tells us that the total payments regarding
period i which are paid with j periods delay are given by

Xij =

j∑

l=0

Ni,j−l,l∑

k=1

Z
(k)
i,j−l,l,

where Nijl = 0 for l < 0 by convention. It now follows that

EXij = eδ+αi

j∑

l=0

eβj−l+ρlEZ
(1)
i,j−l,l = eδ+αi+ζj (19)
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where

eζj =

j∑

l=0

eβj−l+ρlEZ
(1)
i,j−l,l.

Further, as Xij, (i, j) ∈ Am ∪ Bm, are mutually independent we get that

V Xij = eδ+αi

j∑

l=0

eβj−l+ρlE
(
Z

(1)
i,j−l,l

)2

= φeδ0+αi+ζj

which yields the relation

V Xij = φEXij, ∀(i, j) ∈ Am ∪ Bm. (20)

The mean and variance structures (19) and (20) are closely related to the
model (4) and it turns out to be sufficient to explain why the CLM works on
paid data as described above.

For simplicity we will use the same notation as in the latter sections and
let µij = δ + αi + ζj.

4.2 Estimation

In this section it is assumed that Nij, (i, j) ∈ Am, are not observed. The
estimations are based purely on the observations Xij, (i, j) ∈ Am.

The only distributional characteristics specified for Xij, (i, j) ∈ Am ∪Bm

are mean and variance along with mutual independence. For data with such
a specification McCullagh and Nelder (1989), p. 326, propose a Poisson quasi
likelihood function. The idea consists of borrowing the likelihood function
from a known distribution with similar mean and variance relation which
belongs to an exponential family of distributions. As in Section 3.4, this
approach yields the chain ladder estimates of eδ, eαi and eζj based on Xij,
(i, j) ∈ Am, which are similar to (10)− (12).

It remains to estimate φ. In the same way as in Section 3.4, the following
moment estimator is proposed:

φ̂ =
2

m(m− 1)

∑

(i,j)∈Am

(Xij − ebµij)2

ebµij
.

We continue by considering the asymptotic behavior of the latter estimates
which is similar to the asymptotics as given in Proposition 1.
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4.3 Asymptotic results

The asymptotics of the model for paid amounts is closely related to the
asymptotics of the counts data. In fact by Mikosch (2006), pp. 118-119, the
payment Xij has a representation

Xij =

N∗
ij∑

k=1

Z∗
ijk

where N∗
ij is independent of Z∗

ijk, k ≥ 1,

N∗
ij ∼ Pois

(
j∑

l=0

eδ+αi+ζj−l

)

and Z∗
ijk, k ≥ 1, are iid with

Z∗
ijk

d
=

j∑

l=0

I{J = l}Z(1)
ijl , P (J = l) =

eρl

∑j
l=0 eρl

,

where J and Z
(k)
ijl are mutually independent. Since Xij can be interpretated

as a compound Poisson process it follows from Mikosch (2006), p. 81, that
as δ →∞,

(
j∑

l=0

eδ+αi+ζj−l

)−1

Xij
asymp∼ N


EZ∗

ij1, φEZ∗
ij1

(
j∑

l=0

eδ+αi+ζj−l

)−1

 .

Similar arguments as in Section 3.2 yield the following result.

Proposition 4
Let Xij, (i, j) ∈ Am, follow the assumption (19) with α1 = ζ0 = 0. Then as
δ →∞,




f̂0
...

f̂m−2


 asymp∼ N







f0
...

fm−2


 , diag




φ
(∑m−1

i=1 eδ+αi+ζ0
)−1

f0(f0 − 1)
...

φ
(∑m−2

j=0 eδ+α1+ζj

)−1

fm−2(fm−2 − 1)






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where f̂j, 0 ≤ j ≤ m− 2, are given in (2).

In the same way as in Section 3.2, it follows directly from Proposition 4
that

sup
x∈R

∣∣∣∣∣P
(

Yi,m−i

m−2∏
j=m−i

f̂j ≤ x

)
− P

(
U

m−2∏
j=m−i

Uj ≤ x

)∣∣∣∣∣ → 0, δ →∞,

where U,Um−i, ..., Um−2 are mutually independent,

U ∼ N
(

m−i∑
j=0

eδ+αi+ζj , φ

m−i∑
j=0

eδ+αi+ζj

)

and

Uj ∼ N

fj, φ

(
m−j−1∑

i=1

eδ+αi+ζj

)−1

fj(fj − 1)


 , m− i ≤ j ≤ m− 2.

Recall the definition of f̂j in (2). Then, by Mikosch (2006), p. 81, it follows
as δ →∞,

f̂j =

∑m−j−1
i=1 Yi,j+1∑m−j−1

i=1 Yij

= fj
(
∑m−j−1

i=1

∑j+1
k=0 eµik)−1

∑m−j−1
i=1 Yi,j+1

(
∑m−j−1

i=1

∑j
k=0 eµik)−1

∑m−j−1
i=1 Yij

a.s.→ fj.

Taylor (2003) shows that the chain ladder estimates are upward biased
on the conditional probability measure where f̂j is finite; see the remark on
p. 8 above.

4.4 The bootstrap method

The bootstrap method as a general resampling method was introduced by
Efron (1979). In the context of claims reserving the bootstrap method was
utilized by England and Verrall (1999) and England (2002); see also Cairns
(2000) for a discussion on how one should quantify the reserve uncertainty. In
the claims reserving context, it is common to base the bootstrap resampling
on the quantities

ε̂ij =
Xij − ebµij

e
1
2
bµij

, (i, j) ∈ Am.
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The basic assumption for the bootstrap method to be meaningful is that

εij =
Xij − eµij

e
1
2
µij

, (i, j) ∈ Am,

are iid. It is then our hope that the iid property asymptotically carry over
to ε̂ij, (i, j) ∈ Am, as δ →∞. For simplicity we will refer to both ε̂ij and εij

as (Pearson) residuals.
The naive bootstrap method corresponds to drawing independently from

the empirical distribution function of ε̂ij given by

Fm(x) =
2

m(m + 1)

∑

(i,j)∈Am

I{ε̂ij ≤ x}, x ∈ R.

If we pragmatically assume that that εij ∼ Fm then independent versions of
the residuals

e∗ij(k), (i, j) ∈ Am,

for 1 ≤ k ≤ B can be simulated. Independent versions of Xij can then be
generated by

X∗
ij(k) = e

1
2
bµijε∗ij(k) + ebµij .

Generating a large number, B, of iid realizations, X∗
ij(k), 1 ≤ k ≤ B, enables

one to estimate distributional properties of relevant functions of the data. If,
in fact, the relation

X∗
ij(k)

d
= Xij, (i, j) ∈ Aij,

were true then with

f̂ ∗j (k) =

∑m−j−1
i=1

∑j+1
l=0 X∗

il(k)∑m−j−1
i=1

∑j
l=0 X∗

il(k)

the law of large numbers would yield

1

B

B∑

k=1

I
{

f̂ ∗j (k) ≤ x
}

P→ P
(
f̂j ≤ x

)

for B →∞. Similarly, it follows that

1

B

B∑

k=1

I

{
m−i∑

l=0

X∗
il(k) ≤ x

}
P→ P

(
m−i∑

l=0

Xil ≤ x

)
= P (Yi,m−i ≤ x) .
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Adjustments to obtain iid residuals

In some data sets, Xij, (i, j) ∈ Am, the residuals are not homogeneous as a
function of j (and possibly i). In this section we propose one possible solution
to this problem. We assume that εij, (i, j) ∈ Am, are independent such that

Eεij = 0, Eε2
ij = V εij = φj,

where φj is some function of j. For simplicity, let φj = a + bj but φj can
be defined in a number of other ways as well. The parameters a, b ∈ R are
estimated by minimizing the sum

m∑
i=1

m−i∑
j=0

(
ε2
ij − φj

)2
.

In the case when φj = a + bj the minimum is obtained by

b̂ =
2
(∑m

i=1

∑m−i
j=0 j ε2

ij

)
κm −m(m + 1)

(∑m
i=1

∑m−i
j=0 ε2

ij

)

2κm −m(m + 1)
(∑m

i=1

∑m−i
j=0 j2

) ,

â =
2

m(m + 1)

(
m∑

i=1

m−i∑
j=0

ε2
ij − b̂κm

)
.

where

κm =
m∑

i=1

m−i∑
j=0

j =
m∑

i=1

(m− i)2 + m− i

2
=

(m− 1)m

4

(
2m− 1

3
+ 1

)

New residuals can consequently be defined as

ε̃ij = φ
−1/2
j εij,

where Eε̃ij = 0 and V ε̃ij = 1. To bootstrap the reserve uncertainty in this
frame it is assumed that ε̃ij are iid such that they can be resampled. The
formula

ε̃ijφ
1/2
j = εij

yields a sample of residuals as defined in Section 4.4. A similar approach as
taken in Section 4.4 can thus be used.

As in Section 3 we go on to study the Bornheutter-Ferguson method in
relation with paid data.
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4.5 The Bornheutter-Ferguson method and a credibility
model combining the chain ladder and Bornheutter-
Ferguson methods

The Bornheutter-Ferguson method works on paid data in almost the same
way as with claim numbers and most results from Sections 3.5 and 3.6 carry
over to this section.

As in Sections 3.5 and 3.6 the identification scheme(
δ,

m−1∑
j=0

eβj

)
= (0, 1)

is used in this section. Again, let Ti be the prior expected losses related to
underwriting year i. In the same way as in Section 3.5 the estimate of eαi is
replaced by its prior estimate, Ti, to obtain the Bornheutter-Ferguson reserve

R̂m =
m∑

i=2

Ti

m−1∑
j=m−i+1

e
bβj .

This reserve is based purely on the prior estimate Ti of the ultimate payments,
Yi,m−1. The CLM is purely based on data in the sense that

Ŷi,m−1 =
Yi,m−i∑m−i
j=0 ebβj

as shown in (15). Thus it seems straightforward to propose a credibility
model that combines these two positions.

As in Section 3.6 we assume that Θi are independent and let

EΘi = Ti and V Θi =
Ti

α
.

Further assume that Xij, (i, j) ∈ Am ∪ Bm, are conditionally independent
given Θi, 1 ≤ i ≤ m, and that

E(Xij | Θi) = eβjΘi and V (Xij | Θi) = φeβjΘi

for (i, j) ∈ Am∪Bm. Then the linear estimator, µ̂L
i , minimizing E(µ̂L

i −Θi)
2

over all linear function of Xij, (i, j) ∈ Am, is given by

µ̂L
i = ωiTi + (1− ωi)

Yi,m−i∑m−i
j=0 eβj

, (21)
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where ωi = ((φα)−1
∑m−i

j=0 eβj + 1)−1. This is similar to Section 3.7 however
with different weights, ωi, where α−1 is replaced with α−1φ. A proof of
(21) follows directly from the Bühlmann-Straub model used on Xij/e

βj ; see
Mikosch pp. 213-214.

To estimate the parameters in this model first observe that

V

(
m−i∑
j=0

Xij

)
=

(
φ +

∑m−i
j=0 eβj

α

)
E

(
m−i∑
j=0

Xij

)
.

Thus, if we put

bi =
m−i∑
j=0

eβj and X̃i =

(∑m−i
j=0 Xij − Ti

∑m−i
j=0 eβj

)2

Ti

∑m−i
j=0 eβj

then EX̃i = φ + α−1bi which suggest a linear regression of X̃i on bi. A
standard linear regression yields estimators of α−1 and φ given by

α̂−1 =
(
∑m

i=1 bi) (
∑m

i=1 Xi.)−m
∑m

i=1 biXi.

(
∑m

i=1 bi)
2 −m

∑m
i=1 b2

i

, φ̂ =

∑m
i=1 Xi. − α̂−1

∑m
i=1 bi

m
.

The chain ladder estimates are used to estimate eβj , 0 ≤ j ≤ m− 1. Under
similar assumption as in Section 3.3 it can be shown that the chain ladder
estimates converge in probability to their true values.

4.6 Diagonal effects

The results in this section are related to count data, Nij, (i, j) ∈ Am. The
methods proposed for counts can easily be applied to paid data, Xij, (i, j) ∈
Am, by considering the GLM model

EXij = eµij , V Xij = φEXij,

for paid amounts. All results from Section 3.7 carry over directly.
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Abstract
In this paper we present two different approaches to how one can include
diagonal effects in non-life claims reserving based on run-off triangles. Em-
pirical analyses suggest that the approaches in Zehnwirth (2003) and Kuang,
Nielsen and Nielsen (2008a, 2008b) do not work well with low-dimensional
run-off triangles because estimation uncertainty is too large. To overcome
this problem we consider similar models with a smaller number of parame-
ters. These are closely related to the framework considered in Taylor (1977,
2000) and Verbeek (1972); the separation method. We explain that these
models can be interpretated as extensions of the multiplicative Poisson mod-
els introduced by Hachemeister and Stanard (1975) and Mack (1991).

1 Introduction

Recently, some attention has been given to diagonal effects in run-off trian-
gles {Nij} of claim counts. For example, the approach to estimation and
prediction as taken in Zehnwirth (2003) was addressed in Kuang, Nielsen
and Nielsen (2008a, 2008b), where it is also assumed that

Nij ∼ Pois(µij) (1)

with

µij = αiβjδi+j. (2)
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Kuang, Nielsen and Nielsen (2008a, 2008b) point out that the parameters
(2) are not uniquely identified and, therefore, one has to be careful when it
comes to the identification of the model. Indeed, the choice of identification
scheme in Zehnwirth (2003) has an effect on the final prediction.

The model (1) is a generalization of the multiplicative Poisson models
proposed in Hachemeister and Stanard (1975) and Mack (1991). There it is
shown that (1) with δj = 1, j ≥ 1, implies the chain ladder method. As the
chain ladder method is close to the industry standard it seems reasonable to
take it as a starting point. We are, however, not interested in claim counts
but paid amounts. In the spirit of Venter (2007) and England and Verrall
(1999) we thus consider the GLM framework, where it is simply assumed for
a paid run-off triangle {Xij} that

EXij = µij and V Xij = ϕEXij. (3)

McCullagh and Nelder (1989) consider models of type (3). They suggest to
use a Poisson quasi-likelihood equivalent to the likelihood in (1) to estimate
the parameters in (3). This approach provides another link back to the chain
ladder method (with δj = 1, j ≥ 1) for paid amounts because the reserve
estimation remains identical to Hachemeister and Stanard (1975) and Mack
(1991) for paid amounts.

Rietdorf (2008) points out that diagonal effects, δj, usually come from two
sources: 1) economic inflation, i.e., claim payments follow a relevant price
index which again follows the calender time and 2) legal issues, changes in
the way claims are handled or similar give diagonals effects in the number of
payments. 2) is referred to as claims inflation. Economic inflation is usually
assumed to work in a multiplicative way suggesting that

EXij = αiβjδi+j, V Xij = ϕαiβjδ
2
i+j,

where claims inflation (see Kuang et. al (2008a, 2008b)) is assumed to satisfy

EXij = αiβjδi+j, V Xij = ϕαiβjδi+j.

Based solely on data from a paid run-off triangle one cannot distinguish
whether changes along a diagonal are due to 1) or 2). In order to take this
aspect into account Rietdorf (2008) considers models

EXij = µij and V Xij = ϕδi+jEXij (4)
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by optimizing the extended Poisson quasi-likelihood functions suggested in
Nelder and Pregibon (1987). In a similar way various modifications of (4),
including structures like

V Xij = ϕδc
i+jEXij and V Xij = ϕδc

i+j(1 + kj)EXij (5)

for c, k > 0, are studied. The different modifications of (4) in (5) lead to
different estimators of the diagonal effects causing dramatic diversifications
in the ultimate reserve prediction.

The motivation for the work presented in this paper comes from the data
studies of paid run-off triangles; see Rietdorf (2008). The conclusion based
on Rietdorf (2008) is that it is intuitively difficult to understand and explain
the estimated diagonal effects coming from (4). When diagonal effects are
added to the GLM model

EXij = αiβj, V Xij = ϕαiβj,

one significantly overparameterizes this model which may cause unreliable
parameter estimates in the framework of the data available in a paid run-off
triangle. The estimation uncertainty leads to unreliable reserve prediction
which in practice disqualifies these type models for actuarial purposes.

Therefore it is natural to search for models including diagonal effects with
less parameters. Taylor (1977, 2000) and Verbeek (1972) consider the first
order structure of a such model. This paper suggests two different variants of
the models proposed in Taylor (1977, 2000) and Verbeek (1972) where a sec-
ond order structures have been added; one variant leads to the same reserve
estimates as Taylor and Verbeek, the other gives different reserve estimates
through a credibility weighted model. In our framework the calculation of
credibility weights is made possible because we can analyze the second or-
der structure. As shown in Section 3 our results can be interpretated as a
Benktander type method with diagonal effects included. The second order
structure further allows for simulation studies of reserve predictors uncer-
tainty; see Section 4.

We insist that model formulations remain as simplistic as (4) and estima-
tion procedures are easily applicable to data. A data study shows that the
estimated diagonal effects are intuitively appealing.

The paper is organized as follows. In Section 2 a Bornhuetter-Ferguson
type method including diagonal effects is presented. In Section 3 we in-
troduce a credibility model with diagonal effects which ultimately gives a
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prediction based on a weighted average of a chain ladder type estimator and
the Bornhuetter-Ferguson method. Finally, in Section 4 data studies are
given.

2 A Bornhuetter-Ferguson method including di-
agonal effects

In this section we will consider a model based on the Bornhuetter-Ferguson
method; see Bornhuetter and Ferguson (1972). We will however use the
framework of Schmidt and Zocher (2008) as they consider the row effects as
known, leading to a reduction of the number of parameters. This approach
is preferable because it is closely related to the chain ladder setup of Mack
(1991) or Hachemeister and Standard (1975) as mentioned in the introduc-
tion.

Let Xij be the entries in a paid incremental run-off triangle with dimen-
sion m:

4m = {Xij : (i, j) ∈ Am}
where

Am = {(i, j) ∈ N× N0 : 1 ≤ i + j ≤ m}.
Write

Bm = {(i, j) ∈ N× N0 : i ≤ m, j ≤ m− 1}.
We are interested in the prediction of

Xij, (i, j) ∈ Bm\Am,

which are unobserved random variables at time m. As a technical basis for
prediction we consider a model for all random variables, Xij, (i, j) ∈ Bm,
given by the following requirements.

i) Xij, (i, j) ∈ Bm, are mutually independent.

ii) For (i, j) ∈ Bm

EXij = Tiβjδi+j, V Xij = ϕδc
i+jEXij.
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where the net premiums Ti > 0, 1 ≤ i ≤ m, are assumed to be known,
c ∈ [0, 1] and

ϕ, β0, ..., βm−1 and δ1, ..., δ2m−1

are positive unknown constants. For the purpose of identification we also
assume that

m−1∑
j=0

βj = 1.

The parameter c ∈ [0, 1] is considered known. In particular we will chose
c ∈ {0, 0.5, 1} for the following reasons:

• c = 0 corresponds to claims inflation; see 2) p. 2. This means that the di-
agonal effects are additive suggesting that changes in diagonals are triggered
by an increased number or claims reported (due to, for example, changes in
law practice).
• c = 1 corresponds to economic inflation; see 1) p. 2. If there have been no
big changes in reporting patterns and the only diagonal effects in data are
due to economic inflation (which usually acts in a multiplicative way).
• c = 1/2 is chosen if we are in a situation where both effects described above
have an impact on data.

The specific choice of c can be based on intuition as well as plots of residuals;
see the definition of êij in (10).

Notice that if we had assumed Ti, 1 ≤ i ≤ m, unknown and δj = 1, then
model i), ii) would have been identical to the GLM chain ladder setup; see
from for example England and Verrall (1999). Assuming Ti, 1 ≤ i ≤ m,
known and δj = 1, i), ii) is identical to the setup in Schmidt and Zocher
(2008). If Ti, 1 ≤ i ≤ m, are a priori expected values of discounted accu-
mulated claims, then δj, 1 ≤ j ≤ m, can be compared directly with exter-
nally given inflation rates. If Ti, 1 ≤ i ≤ m, are inflation adjusted then δj,
1 ≤ j ≤ m, may be thought of as inflation in this portfolio less the estimated
a priori inflation.

We estimate the parameters in the model i), ii) in a two-step procedure.
First, we use the separation method; see Taylor (1977, 2000) and Ver-

beek (1972). This method is based on the following observation where a
transformation makes diagonals into row effects:

X̃ij =
Xi+j,j

Ti+j

then EX̃ij = δiβj (6)
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for 1 ≤ i ≤ m and 0 ≤ j ≤ i−1. The well known multiplicative structure (6)
suggests that the estimation can be based on the total marginals principal
(see for example Schmidt and Wünsch (1998));

δ̂i

i−1∑
j=0

β̂j =
i−1∑
j=0

X̃ij, 1 ≤ i ≤ m, and β̂j

m∑
i=j+1

δ̂i =
m∑

i=j+1

X̃ij, 0 ≤ j ≤ m−1.

Schmidt and Wünsch points out that the total marginals principal yields a
chain ladder method — here under the restriction

∑m−1
j=0 βj = 1. Therefore

the estimation procedure can be carried out using the following calculation.
First put

m−1∑
j=0

β̂j = 1. (7)

Then use the ratios
∑k

j=0 β̂j∑k−1
j=0 β̂j

=

∑k
j=0

∑m
i=k+1 X̃ij∑k−1

j=0

∑m
i=k+1 X̃ij

, 1 ≤ k ≤ m− 1, (8)

to recursively calculate estimators β̂0, ..., β̂m−1 starting from (7). Finally,
calculate

δ̃i =

∑i−1
j=0 X̃ij∑i−1
j=0 β̂j

, 1 ≤ i ≤ m. (9)

The second part of the estimation procedure is related to the variance
structure. Define

êij =
Xij − Tiβ̂j δ̂i+j−1

(Tiβ̂j δ̂
1+c
i+j−1)

1/2
, (i, j) ∈ Am. (10)

The estimation of ϕ is carried out by using the method of moments:

ϕ̂ =
2

m(m + 1)

m∑
i=1

m−i∑
j=0

ê2
ij.

Another motivation for the form of the estimators (7) − (9) is that the
estimators are in fact consistent in the following sense.
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Proposition 1
Assume the model i), ii). If Ti →∞ for all 1 ≤ i ≤ m then

δ̂j+1
P→ δj+1 and β̂j

P→ βj

for 0 ≤ j ≤ m− 1.

Proof:
From assumptions i) and ii) and Chebyshev’s inequality it is straightforward
that

Xij

Ti

P→ βjδi+j

as Ti → ∞. The recursive scheme (8) and (7) together with the continuous
mapping theorem give the desired result.

¤

As Xij, (i, j) ∈ Bm, are assumed independent it is natural to predict Xij,
(i, j) ∈ Bm\Am, by its expected value:

µ(Xij) = EXij = Tiβjδi+j.

The parameters, δj, 0 ≤ j ≤ m−1, are estimated directly from data using re-
cursion (9). The diagonal parameters, δj, m+1 ≤ j ≤ 2m−1, are related to
unobservable data, Xij, (i, j) ∈ Bm\Am, and these can thus not be estimated
directly using (9). Since the latter predictor, µ(Xij), is solely dependent on
diagonal parameters δj, m + 1 ≤ j ≤ 2m− 1, we however need to somehow
be able to estimate or predict these. The idea is to construct a predictor of
δj, m + 1 ≤ j ≤ 2m− 1, based on the in-sample diagonals, δ1, ..., δm. In the
following, one way of generating a prediction is suggested and we also add a
remark of a more theoretical character justifying this approach.

Example 2
Assume that δ̂j, j ≥ 1, follow an AR(1)-process, i.e., that

δ̂jΓ + εj = δ̂j+1,

7



where εj, 1 ≤ j ≤ 2m− 1, is a mean zero white noise process. Based on the
in-sample diagonal parameter estimators we estimate Γ by

Γ̂ =

∑m−1
j=1 δ̂j+1δ̂j∑m−1

j=1 δ̂2
j

.

The AR(1) assumption suggests a predictor of δ̂j, j ≥ m + 1, given by

δ̃j = δ̂mΓ̂j−m.

Consequently, the prediction of Xij, (i, j) ∈ Bm\Am, is given by

µ̃(Xij) = Tiβ̂j δ̃i+j.

¤

Remark 3
The approach to prediction taken in Example 2 indicates that δj, j ≥ 1,
should be considered as a time series rather than fixed parameters. For-
mally, this suggests the following alternative model assumptions:

i’) assume that Xij, (i, j) ∈ Am, are conditionally independent given δj,
j ≥ 1, and
ii’) that

E(Xij | δi+j−1) = Tiβjδi+j

V (Xij | δi+j−1) = ϕδc
i+jEXij

for (i, j) ∈ Bm.

In this setup Proposition 1 remains valid. In fact by Proposition 1 it
follows that

P (|Xij/Ti − βjδi+j| > ε | δi+j) → 0, Ti →∞,

and dominated convergence yields that

Xij

Ti

P→ βjδi+j, Ti →∞.

8



In the same way as in the proof of Proposition 1 it now follows that if Ti →∞
for all 1 ≤ i ≤ m then

δ̂j+1
P→ δj+1, β̂j

P→ βj, 0 ≤ j ≤ m− 1,

where the latter estimators are given by (7).
Moreover, if we want to predict by minimizing the mean square error,

E[Xij − µ(Xij)]
2

over all measurable finite variance functions, µ(Xij), of 4m, δ1, ..., δm, then
we obtain the predictor

µ(Xij) = TiβjE(δi+j|δ1, ..., δm).

Since δ1, ..., δm are not observable we have to replace them by the pseudo-
observations δ̂1, ..., δ̂m, ultimately leading to the same prediction as suggested
in Example 2.

¤

To estimate the uncertainty in model i), ii) we can apply a bootstrap method
similar to England and Verrall (1999). The bootstrap method should be
based on the assumption that the residuals êij, (i, j) ∈ Am, are iid such that
these can be resampled B times, e∗ij(k), 1 ≤ k ≤ B, to generate iid versions
of 4m by

Xij(k) = Tiβ̂j δ̂i+j + e∗ij(k)
[
ϕ̂Tiβ̂j δ̂

1+c
i+j

]1/2

, 1 ≤ k ≤ B. (11)

In this section the row effects, Ti, 1 ≤ i ≤ m, are considered fixed giving a
lot of importance to the a priori estimates Ti, 1 ≤ i ≤ m, of the underwriting
years total payments. In the next section we consider a credibility model
that leads to estimators of the row effects based on a weighted average of Ti

and a chain ladder type estimator of the total payments.

3 A credibility model including diagonal effects

In this section we consider a credibility model in a similar framework as in
Section 2 but with random rowwise effects. In a special case (c = 1) this

9



approach yields predictors based on a weighted average of the chain ladder
estimates (see for example Mack (1991,1993,1994)) and the Bornhuetter-
Ferguson estimates given in Section 2. This type of results can also be found
in Verrall (2004) and Wüthrich (2007) where diagonal effects are not in-
cluded.

Using the same notation as in Section 2, we assume

i) Θi, 1 ≤ i ≤ m, be mutually independent with EΘi = Ti and V Θi = ξ−1Ti,
ii) given Θi, 1 ≤ i ≤ m, Xij, (i, j) ∈ Bm, are mutually independent and
iii) for (i, j) ∈ Bm

E(Xij | Θi) = Θiβjδi+j, V (Xij | Θi) = ϕδc
i+jE(Xij | Θi)

where the net premiums Ti > 0, 1 ≤ i ≤ m, are considered known and

ϕ, ξ, β0, ..., βm−1, δ1, ..., δ2m−1

are positive unknown constants. For the model to be identified let
m−1∑
j=0

βj = 1.

This leads directly to the following result.

Proposition 4
Assume that i)-iii) holds. Then the best linear Bayes estimator of Θi is given
by

µLB(Θi) = Tiwi + (1− wi)X i.

where

X i. =

∑m−i
j=0 δ−c

i+jXij∑m−i
j=0 βjδ

1−c
i+j

and wi =

(
1 + (ϕξ)−1

m−i∑
j=0

βjδ
1−c
i+j

)−1

.

The best linear Bayes predictor of Xij is moreover given by

µ(Xij) = µLB(Θi)βjδi+j.

Proof:
The proof of Proposition 4 follows directly from an application of the Bühlmann-
Straub model (see for example Mikosch (2006) pp. 213-215) to

Zij =
Xij

βjδi+j

, 0 ≤ j ≤ m− i.

10



The Bühlmann-Straub model assumes fixed and known parameters which
is not the case in the above, but whether the parameters are fixed or not
does not have an effect on the optimization problem considered. The result
applies directly.

¤

Remark 5
The special case c = 1 is particularly interesting. In this case

X i. =

∑m−i
j=0 δ−1

i+jXij

1−∑m−1
m−i+1 βj

,

where one interpretation is that
∑m−i

j=0 δ−1
i+jXij is a sum of discounted pay-

ments multiplied by a chain ladder type of factor. In fact if one calculates the
chain ladder factors, f̂0, ..., f̂m−2, see Mack (1991), based on the discounted
accumulated payments

Cij =
m−i∑
j=0

δ−1
i+jXij, (i, j) ∈ Am,

then (1 −∑m−1
j=m−i+1 β̂j)

−1 and
∏m−2

j=m−i f̂j are two estimators of the relative
increase from j = m− i+1 to j = m−1. Since the Cij’s define a GLM setup
as in England et. al (1999), a Poisson quasi likelihood identical to the one
in Mack (1991) and Hachemeister et. al (1975) can be used to estimate the
parameters. This ultimately leads to prediction by the chain ladder method,

Cij

m−2∏
j=m−i

f̂j =

[
m−i∑
j=0

δ−1
i+jXij

]
m−2∏

j=m−i

f̂j.

A look at Proposition 5 now explains how one can interpret the Bayes esti-
mator, µLB(Θi), as a weighted average between the chain ladder estimators
and the Bornhuetter-Ferguson estimators.

¤
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In the same way as in Section 2 estimation is carried out in a two step proce-
dure. In the first step the parameters δj+1, βj, 0 ≤ j ≤ m− 1, are estimated
by the recursive procedures (7) and (9). A motivation for reusing the es-
timation procedure from Section 2 is that Proposition 1 still holds under
assumption i)-iii).

The Bayes estimator given in Proposition 4 depends on parameters that
are unknown. These unknown parameters must be estimated to produce the
actual point estimators. Plugging in estimators for the parameters in Propo-
sition 4 yields an empirical Linear Bayes procedure.

Proposition 6
Assume that i)-iii) holds. If Ti →∞ for all 1 ≤ i ≤ m then

δ̂j+1
P→ δj+1 and β̂j

P→ βj

for 0 ≤ j ≤ m− 1.

Proof:
Put Yij = Xij/Ti. By Chebyshev’s inequality it holds that

P (|Yij − βjδi+j| > ε | Θi) ≤ E([Xij − Tiβjδi+j]
2 | Θi)

T 2
i ε2

≤ V (Xij | Θi) + (Tiβjδi+j −Θiβjδi+j)
2

T 2
i ε2

.

Taking expectations on both sides, we obtain the inequality

P (|Yij − βjδi+j| > ε) ≤
ϕβjδ

1+c
i+j Ti + (βjδi+j)

2 Ti

ξ

T 2
i ε2

,

where the right hand side goes to zero as Ti →∞. The recursive scheme (9)
together with the continuous mapping theorem now yields the desired result.

¤

The second step in the estimation procedure is based on the definition
of the row residuals

ei =

∑m−i
j=0 Xij − Ti

∑m−i
j=0 βjδi+j

(Ti

∑m−i
j=0 βjδi+j)1/2

, 1 ≤ i ≤ m,

12



where

Ee2
i =

1

ξ

(
m−i∑
j=0

βjδi+j

)
+ ϕ

∑m−i
j=0 βjδ

1+c
i+j∑m−i

j=0 βjδi+j

.

By replacing the parameters βj, δj+1, 0 ≤ j ≤ m − 1, by their estimators a
least squares method based on the latter expectation can be used to estimate
c, ϕ and ξ. In the case c = 0 the latter procedure can be reduced to an
ordinary linear regression of e2

i against
∑m−i

j=0 βjδi+j, 1 ≤ i ≤ m. If c = 1
then ξ and ϕ can also be estimated by a linear regression based on the relation

e2
i∑m−i

j=0 βjδi+j

' 1

ξ
+ ϕ

∑m−i
j=0 βjδ

2
i+j(∑m−i

j=0 βjδi+j

)2 , 1 ≤ i ≤ m.

As there are only m row residuals, ei, one or two outliers in the sample can
influence the above regression a lot. It is therefore recommended to plot
expected value against observed and in some case use subjective judgement
to correct the estimation.

To simulate iid versions of 4m in the model i)-iii) we can also here apply
a bootstrap method similar to England and Verrall (1999). The bootstrap
method should be based on the assumption that the residuals

e∗ij =
Xij − µLB(Θi)βjδi+j

(ϕµLB(Θi)βjδ
1+c
i+j )1/2

, (i, j) ∈ Am, (12)

are iid such that these can be resampled.
In the next section the models proposed in Section 2 and 3 are applied

to a data set.

4 A data study

In this section a data set from Codan Insurance in considered. Data contains
13 years run-off for a portfolio of a third-party liability for auto insurance.
This run-off triangle is given below in Table 1.
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i\j 0 1 2 3 4 5 6 7 8 9 10 11 12
1 22564 17331 17377 7723 5058 2530 1443 1195 1889 106 33 139 14
2 22901 26734 8974 7089 3116 1911 3284 1591 879 21 575 476
3 36152 26513 10973 6714 7155 2176 1656 1094 −89 8 115
4 34733 29642 13593 11496 6256 6404 3900 2157 1133 25
5 30709 28020 12465 8504 9929 5592 910 3413 1428
6 33727 32190 13318 9211 8129 5225 2149 773
7 30727 27677 9251 9221 6169 7492 2952
8 32498 35446 18432 15110 13990 4986
9 32228 42937 16231 12942 11078
10 41947 41634 21056 15442
11 37247 34135 19061
12 32891 29719
13 35993

Table 1: Incremental run-off triangle.

In the models considered in Section 2 and 3 it is assumed that the expected
rowwise effects are known. These are given below in Table 2.

i 1 2 3 4 5 6 7
Ti 85047 74409 86077 83082 83427 81557 79495
i 8 9 10 11 12 13
Ti 101564 95482 107062 90091 85413 81995

Table 2: Row effects, Ti, 1 ≤ i ≤ 13.

To apply models i), ii) in Section 2 and i) − iii) in Section 3 to data Ta-
bles 1 and 2 is all the data we need. The estimation of the parameters βj, δj,
0 ≤ j ≤ 12, is identical in Section 2 and 3. The estimators are shown in
Table 3 and Figure 1.

j 0 1 2 3 4 5 6 7 8 9 10 11 12

β̂j 0.32 0.29 0.13 0.09 0.07 0.04 0.02 0.02 0.01 0.00 0.00 0.00 0.00

δ̂j+1 0.84 0.84 1.33 1.13 1.11 1.12 1.23 1.11 1.18 1.39 1.30 1.41 1.38

Table 3: The estimators β̂j, δ̂j+1, 0 ≤ j ≤ 12, as given in (7).

To calculate the final reserve estimate we need to predict the diagonal ef-
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Figure 1: Left: Diagonal effects, δj, 1 ≤ j ≤ 13. Right: The payments
pattern, βj, 0 ≤ j ≤ 12.

fects, δ14, ..., δ25. We follow the procedure suggested in Example 2. The
expected yearly increment, Γ, is estimated by

Γ̂ = 1.0245

leading to prediction of δ14, ..., δ25 given by

δ̃13+j = δ̂13Γ̂
j = 1.38 · 1.0245j, j ≥ 1.

Moreover, if we assume that εj ∼ N (0, σ2), j ≥ 1, then

σ̂2 = (m− 1)−1

m−1∑
j=1

(δ̂j+1 − Γ̂δ̂j)
2 = 0.03037.

We go on to consider the model from Section 2 in detail.
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4.1 Data study: A Bornhuetter-Ferguson method in-
cluding diagonal effects

The first thing we have to determine is the parameter c ∈ {0, 1/2, 1}. One
way of doing this is by considering the residuals, êij, (i, j) ∈ A13, as given in
Section 2. For each c = 0, 1/2, 1 we have plotted points

(j, êij) , (i, j) ∈ Am,

to check whether these residuals ’look iid’. If they do it can be taken as an
indicator that the estimated model i), ii) fit data. Judging from such residual
plots c = 0 gives the best fit; see Figure 2 below for the case c = 0. With
c = 0 the moment estimator of ϕ is ϕ̂ = 345.08. Define the rowwise reserve

2 4 6 8 10 12

−
40

−
20

0
20

40

Residuals

j

 

Figure 2: Rowwise residuals: {j, êij, 0 ≤ j ≤ 13 − i} for 1 ≤ i ≤ 12 in the
case c = 0.

estimators by

R̂
(1)
i =

m−1∑
j=m−i+1

µ̂(Xij), 2 ≤ i ≤ 13.

Using this notation the reserve estimators are given below in Table 4.

i 2 3 4 5 6 7 8 9 10 11 12 13

R̂i 12 364 631 690 1793 3589 7911 13377 26264 34599 49503 82308

Table 4: Reserve estimators R̂
(1)
i , 2 ≤ i ≤ 13.
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A simulation study

The definition of residuals allows us to quantify uncertainty related to the
model i)− ii) from Section 2 using a bootstrap method. We have considered
the process error defined by the following simulation procedure. The same
way as in (11) we generate iid realizations of Xij, (i, j) ∈ Bm\Am, by

Xij(k) = Tiβ̂j δ̃i+j(k) + e∗ij(k)
[
ϕ̂Tiβ̂j δ̃

1+c
i+j (k)

]1/2

, 1 ≤ k ≤ B,

where δ̃j(k), j ≥ 1, is simulated independently of e∗ij(k), (i, j) ∈ Bm\Am,
using the recursion given in Example 2 with εj(k), j ≥ 1, iid and normally
distribution with mean zero and variance σ̂2.

Table 5 below shows some relevant statistics of the 500000 simulation
runs.

i SD Qt(95%) ES(95%)
2 66 130 12
3 358 991 99
4 476 1446 194
5 505 1558 218
6 829 3216 355
7 1225 5697 554
8 2023 11399 928
9 2916 18384 1328
10 4932 34698 2231
11 6371 45349 2868
12 8896 64496 3941
13 13671 105310 5993

Total 34890 279392 14916

Table 5: Results related to the simulation study of the process error related to
the reserve estimators R̂

(1)
i , 2 ≤ i ≤ 13. Column SD gives the standard de-

viation, column Qt(95%) gives the 95%-quantile and column ES(95%) gives
expected shortfall at level 95%; see Mikosch (2006) p. 94 for a formal defi-
nition.
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4.2 Data study: A credibility model including diagonal
effects

In this section we apply the model i)-iii) to data in Table 1. The above esti-
mators of βj, δj+1, 0 ≤ j ≤ 12, are also used in this section. The estimation
of ξ and φ is carried out by ordinary linear regression of the row residuals,
ei against

∑m−i
j=0 βjδi+j, 1 ≤ i ≤ 13; see Figure 3.
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Figure 3: Row residuals, ê2
i , 1 ≤ i ≤ 13, plotted

∑m−i
j=0 βjδi+j, 1 ≤ i ≤ 13.

The solid line fitted to the row residuals by the least squares method.

This procedure yields the estimates

ξ̂ = 0.00383, ϕ̂ = 238.50.

Using the convention that R̂
(2)
i =

∑m−1
j=m−i+1 µ̂(Xij) and the prediction of

δ14, ..., δ25 given in Example 2 we can now calculate the credibility estimators
of the rowwise reserves;

i 2 3 4 5 6 7 8 9 10 11 12 13

R̂i 12 342 685 709 1883 3578 8015 13564 26124 34576 46251 82476
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Table 6: Reserve estimators R̂
(2)
i , 2 ≤ i ≤ 13.

see Figure 4 for the credibility weights wi determining how much credibility
should be put on the a priori expectation Ti.
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Figure 4: Credibility weights, wi, 1 ≤ i ≤ 13, as given in Proposition 5.

We finally compared the row reserve estimates R̂
(1)
i and R̂

(2)
i to see how

much the credibility model effects the Bornhuetter-Ferguson way of predic-
tion. The ratio of the reserve estimates is plotted in Figure 5.
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Figure 5: Rowwise ratios, R̂
(2)
i /R̂

(1)
i , 2 ≤ i ≤ 13, between the reserve esti-

mates obtained for the model proposed in Section 3 and 2.

19



A simulation study

We follow the same simulation procedure as described in Section 4.1 however
based on the residual definition (12). As in Section 4.1 we have generated
500.000 independent simulations. Results are not surprising similar to Sec-
tion 4.1 and given below in Table 6.

i SD Qt(95%) ES(95%)
2 59 121 15
3 319 917 102
4 457 1461 203
5 471 1515 217
6 786 3225 360
7 1135 5506 528
8 1926 11289 904
9 2815 18340 1302
10 4750 34134 2154
11 6209 44936 2800
12 8221 60003 3652
13 13491 104857 5895

Total 34188 274513 14566

Table 7: Results related to the simulation study of the process error related to
the reserve estimators R̂

(2)
i , 2 ≤ i ≤ 13. Column SD gives the standard de-

viation, column Qt(95%) gives the 95%-quantile and column ES(95%) gives
expected shortfall at level 95%.

Figure 6 shows the histogram of the 500.000 simulation runs. This also
concludes our analysis of data.
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Figure 6: Histogram for the total reserve.
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Abstract
The paid run-off triangle is considered and it is assumed that also the numbers of
reported claims (in a similar triangular array) are observable. In this paper only
these two triangular arrays are used as data for the model we go on to set up.
The data restrictions, to some extent, complicate the statistical analysis, but
allow for the model proposed to be implemented on a large variety of data sets.
On the basis of those data we suggest a stochastic model build on a compound
Poisson framework. The model explicitly takes into account the delay from
when a claim is incurred and to when it is reported (the IBNR delay) and the
delay from when a claim is reported and to when it is fully paid (the RBNS
delay). It is assumed that the single (unobserved) claims are iid and gamma
distributed.

1 Introduction

We propose a bivariate stochastic model of loss reserving which is based on
observable incremental reported claim numbers Nij and paid amounts Xij and
which serves to predict RBNS and IBNR claims.

We start with a micro-model implying certain well defined properties of
the reported aggregated claim numbers and aggregated paid amounts. We then
study the maximum likelihood estimation of the parameters based on the run-off
triangles {Nij} and {Xij}. This is relatively straightforward since the multi-
plicative structure of the likelihood function allows for separate estimation of
the entering parameters which we call {αi, βj} and of p0, ..., pd, δ, ν.
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The model has three main ingredients, first the random variables of differ-
ent accident years are assumed independent for every accident year i and the
reported claim numbers

Ni0, ..., Ni,m−1

are assumed to have a multiplicative Poisson distribution with parameters eαieβ0 ,
..., eαieβm−1 .

Secondly, when we condition on

Nij :=
d∑

k=0

Nijk + Nzero
ij ,

the numbers Nijk with delay k and the number of zero claims Nzero
ij have a

multinomial distribution with parameter Nij and parameters p0, ..., pd and pzero

(being independent of accident year i and development year j) with

d∑

k=0

pk + pzero = 1.

Thirdly and last, when we condition on

Npaid
ij :=

min{j,d}∑

k=0

Ni,j−k,k

the paid claim amount Xij are gamma distributed with parameters δNpaid
ij and

ν (also being independent of accident year i and development year j).
In the final prediction step we use estimators of the outstanding members of

the family {Nijk} to construct RBNS and IBNR claim numbers for every cell
of the lower triangle. It is then assumed that the corresponding claim amounts
have a gamma distribution as before, but with Nrbns

ij and N ibnr
ij , respectively, in

the place of Npaid
ij . Then we compute the Bayes predictor of Xibnr

ij and Xrbns
ij

given the triangle of reported claim numbers.
In this section we go through some of our arguments for why we have chosen

to work with the above mentioned aggregated data and why we have chosen
the above mentioned modeling. There are a number of stochastic models that
can be used to estimate reserves in non-life insurance mathematics; see [12] for
an extensive literature list. Most of these models have been designed to deal
with data which have been aggregated in some way, as this is relatively easily
done by the practising actuary. The aggregation of data leads to a loss of infor-
mation that in some cases can give relatively poor estimation and prediction of
the outstanding liabilities. This has been the subject of some recent papers on
reserving: for example, [15] use a generalized linear model framework to model
the characteristics of individual claims. Further back, a notable set of papers
[7, 8] sets out a framework for the claims occurrence, reporting and payment
process, at an individual claims level. These types of models are very detailed,
often rather complex and use extensive data to estimate parameters. For the
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practising actuary however, they have certain limitations: in particular, they
are difficult to implement because the use of data at an individual level is par-
ticularly computationally challenging. Further, very large and elaborate data
sets are often hard to get in insurance companies, and it is often the case that
a model will only get used in a practical situation if it can be applied to a wide
variety of data sets across a wide variety of business lines.

We are therefore left with the dilemma of whether to use individual data,
which is theoretically appealing, but computationally difficult, or whether to
use aggregate data, which is much easier to deal with but from which some
(possibly important) information has been lost. In this paper, we take a similar
approach as [9, 19], in that we build the model from basic principles at the level
of individual data and we improve the reserving accuracy by adding aggregated
counts data readily available in most actuarial offices. Another interesting way
of adding more information the classical chain ladder approach is introduced as
the Munich chain ladder technique, see [10], where aggregated paid and aggre-
gated incurred data are mixed in a joined model. Other interesting possibilities
of adding extra data compared to the simple chain ladder method are [3, 9,
14, 16, 18]. The papers suggests a different ways of handling RBNS and IBNR
claims. The extra information of aggregated counts data allow us to model
payment patterns for RBNS claims. We believe that this provide better estima-
tion and prediction of the outstanding liabilities. One of our strong arguments
is that our model is based on an underlying realistic mathematical statistical
micro model. The distributional assumptions are well defined as simple conse-
quences of this underlying model.

The chain ladder method, which in many places is industry standard, was
originally introduced without a stochastic model specified using heuristic rea-
soning to estimate the sum of Incurred But Not Reported (IBNR) claims and
RBNS claims. In [2, 4, 5, 11] stochastic models have since been formulated that
lead to the same estimates as the chain ladder method. In all three cases, these
models take the data as given and do not attempt to build a model based on
the commonly accepted compound Poisson framework, used elsewhere in risk
theory. It could be argued that the over-dispersed Poisson model could be inter-
preted in this way (see, for example, [1]), but this was not the original approach
taken. In this paper we take a starting point in a compound Poisson model.
This is possible because we also observe and model the number of reported
claims.

In this paper, we take as the starting point the compound Poisson model.
A stringent model formulation for IBNR and RBNS claims is formulated and
allows for prediction of IBNR and RBNS claims separately. This is possible
because we have added aggregated counts to the data set. In Section 2 we de-
fine the notation and describe the data which we will assume is available. In
Section 3, the theoretical development is given, working from assumptions at
the level of individual data. Also in Section 3, the model which we will actually
apply is given, as an approximation to the more detailed models for individual
data. Section 4 considers estimation, Section 5 prediction, Section 6 examines
some results based on the model and in Section 7 we collect the most important
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conclusions.

2 Data and notation

The data we work with is carefully chosen. The two main points of our choice
of data is that the extra aggregated counts data is readily available for most
practical actuaries and that this extra data gives a much better handling of
RBNS and IBNR reserves. It also gives a well defined estimated cash flow that
lends itself to many actuarial applications including capital considerations.

2.1 The data

We begin by defining the notation. Let us for now just say that a run-off
triangle consists of the random variables 4m = {Xij : (i, j) ∈ Am} where
Am = {(i, j) ∈ N× N0 : 1 ≤ i + j ≤ m}.

X10 X11 . . . X1,m−2 X1,m−1

X20 X21 . . . X2,m−2

...
. . .

Xm0

The first suffix is a mark that denotes the origin period of the claim; the period
when it incurred. The second suffix denotes the delay from the incurred period
to when a payment (or a claims reserve) has been made.

There are different possibilities for what the random variables in 4m could
represent. Xij , (i, j) ∈ Am, could be the total claims incurred in period i and
paid with j periods delay from when they incurred. This is then the triangle of
paid claims. Another possibility defines Xij as total claims incurred in period i
with delay j . In the cases where the claims are reported but not paid a claim
estimate is included, rather than the actual payment. In this case, the triangle
represents the incurred claims. The use of either the paid or the incurred claims
have different advantages and disadvantages. When including only paid data
then 4m contains no human judgement; we deal with "real data". However,
there is information about future payments, RBNS claims, which is then dis-
regarded. On the other hand, the inclusion of claim estimates is debatable as
one no longer considers "real data". There can be political or business related
considerations which make the individual claim estimates unreliable. There is
further some variability that is disregarded, since the claim estimates and the
actual paid amount often differ. Finally claims estimates appear as paid at the
wrong point in time which disrupts the cashflow modeling.

For these reasons we adopt the first approach in this paper, and use the
triangle of paid claims. Thus, Xij is the total claims incurred in period i and
paid with j periods delay. Paid amounts are real data and is in most companies
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easily accessible since they are the numbers taken directly from the book. We
combine this paid triangle with incurred information. We also use a second
triangle, in the exact same format as the paid triangle above. In order to in-
corporate our available information on the number of incurred RBNS claims,
we consider random variables ℵm = {Nij : (i, j) ∈ Am} where Nij represents
the number of claims incurred in period i and reported with j periods delay
(in period i + j) for (i, j) ∈ Am. Note that these data consist of the incurred
claims, and therefore use some of the information not used when just the ag-
gregate paid claims are used. It would also have been possible to consider the
number of payments, which would remove the claims which end up without a
payment being made - the zero-claims - from the data. However, this can lead
to a number of difficulties. For example, the number of payments is rarely easily
accessible in insurance companies. The number of reported claims on the other
hand is usually relatively easy to obtain.

We will therefore assume that we can observe {(Nij , Xij) : (i, j) ∈ Am}. In
what follows the notation (ℵm,4m) := {(Nij , Xij) : (i, j) ∈ Am} is used. This
data straightforward to obtain in most cases. We note here that we are aware
that the use of data to which we have limited ourselves to some extent compli-
cates the statistical analysis. It would be better, from this point of view at least,
to assume that we have data available at whatever level of detail we require. A
disadvantage of this would be that the estimation of the models became much
more computationally intense, and the models could not be used when the data
requirements were not satisfied.

Thus, we have made a compromise about the data we use, but it will be
seen in Section 5 that by just including the count data for the incurred claims,
we can improve significantly on the chain ladder technique without completely
giving up the well known chain ladder idea. The chain ladder method is in fact
a special case of our model.

In the next section we bind together 4m and ℵm using some unobservable
random variables. The structure of the unobservable variables are intended to
mimic the models [7,8], but we use a discrete time framework.

2.2 IBNR and RBNS claims

In this section we introduce our micro model including a number of (in practise
often) unobservable random variables. Based on this micro model we are able
to articulate a compound poisson interpretation of IBNR and RBNS claims (on
individual level). In Section 2.1, the data available for the statistical analysis
was outlined, in this section notation relating to some basic variables is defined
which mimic the structure in the underlying data related to the payment of
claims.

The detailed model of this paper with assumptions on individual claim de-
velopment follow to some extent the theoretical papers [4, 7, 8]. This approach
is operationalized through restrictions on available data. While assumptions are
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made on individual data level, only aggregated data is assumed to be available
for the statistical estimation process.

Consider the kth claim of the Nij claims incurred in period i and reported
with j periods delay. Usually a claim is not paid immediately upon notification
to the insurance company. The final claim amount is generally paid with some
waiting time from notification, often due to general consideration of the case,
legal issues, collection of further information concerning the case, etc. In other
words, there is a delay from a claim being reported and until it is fully paid.
The claims that have been reported but are not yet paid are the so called RBNS
claims (or Incurred But Not Enough Reported (IBNER) claims). The related
delay in payment is referred to as the RBNS delay.

In order to formulate mathematically how claims are paid, we introduce
some stochastic variables that in some cases may be observable, but we assume
in general that they are not, and the model does not rely on having observations
for them. Denote by Nijk the part of the Nij claims which are (fully) paid with
k periods delay, k = 0, ..., d. Here k = 0 corresponds to a claim being paid in
the same period as it was reported whereas k = d is the maximal possible RBNS
delay in the model. d could be chosen using information from the underlying
data or the judgement from a claims handler.

It sometimes occurs that reported claims are settled with no payment, for
example, if there is consideration about who carries responsibility for a claim,
fraud or similar. These are referred to as zero claims. Denote the number of
zero claims that are incurred (or apparently incurred in fraud cases etc.) in
period (i, j) and are settled at value zero at some point in time by Nzero

ij . We
then must have Nij0 + · · ·+ Nijd ≤ Nij and Nzero

ij + Nij0 + · · ·+ Nijd = Nij for
(i, j) ∈ Am. The number of claims incurred in period i and (fully) paid with j
periods delay after being reported is defined as

Nij0 + Ni,j−1,1 + · · ·+ Ni,j−min{j,d},d =
min{j,d}∑

k=0

Ni,j−k,k =: Npaid
ij

for (i, j) ∈ Am where we put Nijk = 0 for j < 0, i, k ≥ 1, by convention. The
non-negative random variable Yijk is the kth claim paid in period i + j which
was incurred in period i for (i, j) ∈ Am and k = 1, ..., Npaid

ij .
Thus, we divide the lifetime of a claim into two: the IBNR delay and the

RBNS (and IBNER) delay.
The notation has now been defined, and the next section is dedicated to

formulating a model and discussing its possibilities and limitations.

3 The stochastic model

In this section basic assumptions on how claims are reported and paid are con-
sidered leading to a model for the paid amounts and reported numbers of claims.
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The model for the reported number of claims is derived in Section 3.1, and mod-
els for claim amounts are derived in Sections 3.2. These models are built from
principles closely related to the set-up in [7, 8].

3.1 The claim counts

In this section, a model for the number of reported claims, ℵm, is proposed. It
is assumed that Nij are independent random variables, which have a Poisson
distribution with mean µij where

log µij = αi + βj (1)

and
∑m−1

j=0 eβj = 1. The maximum likelihood estimates of αi, 1 ≤ i ≤ m, and
βi, 0 ≤ j ≤ m− 1, are such that the estimation of the number of IBNR claims
corresponds to the chain ladder method applied to ℵm: see for example [2, 5, 13,
18] for proofs of this well known result. As the chain ladder method is standard
among practitioners and because the modeling of ℵm is not the prime objective
of this paper, we will simply assume the above model for ℵm.

3.2 Paid amounts: one payment per claim

The model of this paper assumes only one payment per claim. This model
restriction simplifies theory, estimation and data questions considerable. For
example, in real life there is often more than one payment per claim, however,
modeling this through stochastic time series approaches is nontrivial. Also,
data are often not available on the development of the payment patterns and
definitions on payments may differ from one insurance company to the other, or
even within the same insurance company. Assuming only one payment per claim
should therefore be considered as a well chosen model simplification leading to
more robustness, fewer parameters to estimate and a wider applicability of the
method.

The proportion of claims settled at zero, Q ∈ [0, 1), is assumed to be a known
constant for (i, j) ∈ Am. Given Nij let

(Nij0, ..., Nijd, N
zero
ij ) ∼ Multi(Nij ; p0, ..., pd, Q)

for (i, j) ∈ Am and p0 + · · ·+ pd = 1−Q where pi ∈ (0, 1), 0 ≤ i ≤ d. In other
words, it is assumed that the conditional density (w.r.t. the counting measure
on Nd+2

0 ) of (Nij0, ..., Nijd, N
zero
ij ) is given by

fNij0,...,Nijd,Nzero
ij |Nij

(n0, ..., nd+1) =
(

Nij

n0, ..., nd+1

)
pn0
0 · · · pnd

d Qnd+1
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for nl ∈ N0, 0 ≤ l ≤ d + 1 such that n0 + · · ·+ nd+1 = Nij , see Section 2.2. The
aggregated payments made with l periods delay are defined as

Sijl =
Nij0+···+Nijl∑

k=Nij0+···+Nij,l−1+1

Y
(k)
ij (2)

for (i, j) ∈ Am. Where Y
(k)
ij , (i, j) ∈ Am, k ≥ 1, is as defined in Section 3.2.

Here the second order structure is

E (Sijl | Nij = nij) = nijEY
(1)
11 pl,

Cov (Sijl; Sijl′ | Nij = nij) = nij

[
V

(
Y

(1)
11

)
plI{l = l′} −

(
EY

(1)
11

)2

plpl′

]

for (i, j) ∈ Am and l, l′ = 0, ..., d. In reality there are different numbers of pay-
ments related to different claims: sometimes there is one payment and sometimes
there are more. From a pragmatic point of view this means that the parameter
estimates in some cases may not have straightforward interpretations. While
there are of course claims that are paid in one payment, we recognize that for
many claims this is not the case. However, when there is more than one pay-
ment then often there is one main payment that is big compared to the others
(which are adjustments, additional costs or similar). Thus the model (2) has
the type of properties at the aggregate level that we believe are reasonable, and
we can accept some theoretical shortcomings in the model. As was stated at
the beginning of the paper, the logical process we have followed is to derive a
model as far as possible, based on very basic, unobservable random variables,
and then approximate the model as closely as possible to motivate a model for
the data available. Accepting the convention that there is only one payment
per claim, leads one to relatively simple distributional characteristics. The con-
ditional distribution of Sijl given Nijl is a Γ(δNijl, ν)-distribution and we thus
have

Xij :=
d∑

l=0

Nij0+···+Nijl∑

k=Nij0+···+Nij,l−1+1

Y
(k)
ij

d=
Nij0+···+Ni,j−d,d∑

k=1

Y
(k)
11 ∼ Γ(Npaid

ij δ, ν)

given Npaid
ij using the notation from Section 2.2.

In this section, we have discussed a model for ∆m given ℵm and argued
that this model (1) and (2) is suitable for the data format available. The next
sections discuss estimation and prediction for this model.

4 Estimation

In this section the likelihood functions for the model (1) and (2) proposed in
Sections 3.1 and 3.2 given the data (ℵm,4m) are calculated. The likelihood
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function for (ℵm,4m) can be written as

Lℵm,4m
({αi, 1 ≤ i ≤ m}, {βj , 0 ≤ j ≤ m− 1}, δ, ν, {pl, 0 ≤ l ≤ d}) (3)

= Lℵm({αi, 1 ≤ i ≤ m}, {βj , 0 ≤ j ≤ m− 1})× L4m|ℵm
(δ, ν, p0, ..., pd)

=




m∏

i=1

m−i∏

j=0

P (Nij = nij)




×
(

m∏

i=1

fXi0,...,Xi,m−i|Ni0,...,Ni,m−i
(xi0, ..., xi,m−i|ni0, ..., ni,m−i)

)
.

Since Lℵm and L4m|ℵm
are not functions of the same parameters, it is sufficient

to maximize Lℵm and L4m|ℵm
separately to maximize L4m,ℵm in (3).

The likelihood function of ℵm can be optimized the following way using the
chain ladder method. Define the accumulative run-off triangle by

Cij =
j∑

k=0

Nik, for (i, j) ∈ Am,

and let Ĉi,m−1 be the according chain ladder predictors of Ci,m−1, see for ex-
ample [2,4]. Then the maximum likelihood estimates of eαi and eβj are given
by

ebαi = Ĉi,m−1, 1 ≤ i ≤ m,

and

e
bβj =

Ĉmj − Ĉm,j−1

ebαi
, 0 ≤ j ≤ m− 1.

See appendix A for a proof.
The log-likelihood function for 4m given ℵm, see Appendix A, is given by

log(L4m|ℵm
(δ, ν, p0, ..., pd)) = C ′−νx..+

m∑

i=1

log




m−i∑

j=0

Qnij nij !




nij∑
nij0=0

(
p0

Q

)nij0 1
nij0!

nij−nij0∑
nij1=0

(
p1

Q

)nij1 1
nij1!

· · ·
nij+nijd−nij.∑

nijd=0

(
pd

Q

)nijd 1
nijd!

1
(nij − nij.)!

m−i∏

k=0

(νxik)npaid
ik δ

Γ(npaid
ik δ)







(4)

where npaid
ij = nij0 + · · ·+ ni,j−d,d with nijl := 0 for l ≤ −1, (i, k) ∈ Am, and

x.. =
m∑

i=1

m−i∑

j=0

xij .
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If some of the nij ’s are large numbers then numerical calculations of the sums
in (4) requires a long computer time. To overcome this problem see Appendix
B for an alternative estimation method using generalized linear models.

Now formulae for estimating the parameters in the model defined in (1) and
(2) have been derived. The next section is dedicated to a discussion of what
is meant by RBNS and IBNR claims on aggregate level and how these can be
estimated.

5 Prediction

This section describes what RBNS and IBNR claims are (based on Section 2.2)
and how they can be predicted. Firstly, we clarify the notions of RBNS and
IBNR clams on aggregate level in the framework of a suitable model. The
model for the triangular arrays (ℵm,4m) = {(Nij , Xij) : (i, j) ∈ Am} defined
in (1) and (2) can be extended in a natural way to the random variables Nij ,
(i, j) ∈ Bm. Here

Bm = {(i, j) ∈ N2
0 : 1 ≤ i ≤ m, 0 ≤ j ≤ m− 1}

and Xij , (i, j) ∈ Cm, where

Cm = {(i, j) ∈ N2
0 : 1 ≤ i ≤ m, 0 ≤ j ≤ m + d− 1}.

The random variables thus appear in this format

N10 . . . N1,m−1

N20 . . . N2,m−1

...
...

Nm0 . . . Nm,m−1

X10 . . . X1,m+d−1

X20 . . . X2,m+d−1

...
...

Xm0 . . . Xm,m+d−1.

In compliance with (1), it is natural to assume that the variables Nij , m−i+1 ≤
j ≤ m− 1, are independent and

Nij ∼ Pois (µij) , log(µij) = αi + βj ,

for 1 ≤ i ≤ m. Further, in analogy with (2), it is assumed that given Nij

(Nij0, ..., Nijd, N
zero
ij ) ∼ Multi(Nij ; p0, ..., pd, Q)

for (i, j) ∈ Bm. Define Nrep
ij := 0 for j ≥ m such that also (Nij0, ..., Nijd, N

zero
ij ) =

(0, ..., 0) for j ≥ m and 1 ≤ i ≤ m. In other words, it is assumed that no claims
can be reported more than m periods after they incurred. As in Section 3.2,
the total paid amounts, given Npaid

ij , (i, j) ∈ Cm, are independent and

Xij ∼ Γ(Npaid
ij δ, ν)
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where Npaid
ij := Nij0 + · · ·+ Ni,j−d,d, (i, j) ∈ Cm, again using the notation from

Section 2.2.
The triangular arrays (ℵm,4m) are subsets of Nrep

ij , (i, j) ∈ Bm and Xij ,
(i, j) ∈ Cm. The unobservable variables Nrep

ij , (i, j) ∈ Bm\Am and Xij , (i, j) ∈
Cm\Am represent the number of claims that will be reported in the future and
the future payments, respectively. It is natural to split the future payments into
two parts: those related to claims that are already reported and as such appear
in ℵm, and those that will be reported in the future, Nrep

ij , (i, j) ∈ Bm\Am.
Formally, these are related to the (RBNS) payments

Xrbns
ij ∼ Γ(Nrbns

ij δ, ν)

which are independent given Nrbns
ij := Ni,m−i,i+j−m+· · ·+Ni,max{j−d,0},min{d,j}

for m− i + 1 ≤ j ≤ m− i + d and 1 ≤ i ≤ m. For j > m− i + d and 1 ≤ i ≤ m,
let Xrbns

ij := 0.
The claims that will be reported and paid in the future (IBNR claims) are

independent given N ibnr
ij , (i, j) ∈ Cm\Am, and

Xibnr
ij ∼ Γ(N ibnr

ij δ, ν),

where N ibnr
ij := Nij0 + · · · + Ni,max{m−i+1;j−d},min{j+i−m−1;d} for m − i + 1 ≤

j ≤ m + d − 1 and 2 ≤ i ≤ m. Let Xibnr
1j := 0 for j ≥ m. Finally we assume

that the random variables Xibnr
ij , m − i + 1 ≤ j ≤ m − i + d, and Xrbns

ij ,
m− i + 1 ≤ j ≤ m− i + d are mutually independent such that

Xibnr
ij + Xrbns

ij = Xij

for (i, j) ∈ Cm\Am.

5.1 Prediction of the total IBNR claims

This section considers the prediction of Xibnr
ij for m − i + 1 ≤ j ≤ m − i + d

and 2 ≤ i ≤ m. In this case the predictor of total IBNR claims is an immediate
functional of our parameters estimated by maximum likelihood. The predictor
µ̂rbns

ij of Xibnr
ij is defined as the minimizer of

E
(
Xibnr

ij − µibnr
ij

)2

over µibnr
ij where µibnr

ij is any finite variance measurable function of (ℵm,4m),
m− i + 1 ≤ j ≤ m− i + d and 2 ≤ i ≤ m. As Xibnr

ij , m− i + 1 ≤ j ≤ m− i + d
and 2 ≤ i ≤ m are independent of (ℵm,4m), the minimizer is simply given by

µ̂ibnr
ij = E

(
Xibnr

ij

)
=

eαiδ

ν

min{d,j+i−m−1}∑

k=0

pkeβj−k . (5)
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5.2 Prediction of the total RBNS claims

The prediction of RBNS claims is nontrivial, even when all entering statistical
parameters have been estimated from the maximum likelihood procedure. The
reason is that the best distribution of RBNS claims conditional on available data
is a complicated expression. While we do know the number of claims behind the
RBNS claims, we do not know the exact number of claims that have been paid
at this moment in time, and we do not know the exact amount paid. We only
have aggregated data indicating trends, we do not have the exact underlying
information available to us. In the following we derive the predictor of RBNS
claims as the conditional mean based on observed information. RBNS claims
are not independent of (ℵm,4m) which complicates the prediction slightly. For
simplicity we derive the predictor, µrbns

i , of the row-wise RBNS payments,

Xrbns
i := Xrbns

i,m−i+1 + · · ·+ Xrbns
i,m+d−i, 1 ≤ i ≤ m,

but it is also possible to derive predictors of Xrbns
ij in a similar fashion. The

predictor, µ̂rbns
i , of Xrbns

i is again defined as the minimizer of

E
(
Xrbns

i − µrbns
i

)2

over all finite variance functions of (ℵm,4m). As Y
(k)
ij are iid, i, k ≥ 1 and

j ≥ 0, and independent of 4m it is straightforward that

µ̂rbns
i =

δE(Nrbns
i | ℵm,4m)

ν

for 1 ≤ i ≤ m. One way of determining E(Nrbns
i | ℵm,4m) is to derive a formula

for P (Nrbns
i = k | ℵm,4m), 0 ≤ k ≤ Ni. where Ni. := Ni0 + · · · + Ni,m−i,

and 1 ≤ i ≤ m. However, an application of Bayes formula shows that the
probabilities

P
(
Xij ∈ (xj , xj + hj ], ξi ≤ j ≤ m− i | Nrbns

m = k,ℵm

)

appear in the expression for E(Nrbns
i | ℵm,4m). And these probabilities are

relatively complex to determine. In order for the prediction to be applicable in
practise another predictor is thus proposed. To obtain relatively simple formulae
we introduce the predictor, µ̃rbns

i , of Xrbns
i as the minimizer of

E
(
Xrbns

i − µrbns
i

)2

over all finite variance functions of ℵm and Xi., 1 ≤ i ≤ m. Conditioning only
on how much has been paid in total, Xi., 1 ≤ i ≤ m, leads to much less com-
plex expressions for the predictors, µ̃rbns

i , 1 ≤ i ≤ m. A drawback is that the
predictors, µ̃rbns

i , are of course sub-optimal in the usual L2 sense.
Denote by k 7→ pn,q(k) the point mass in k ∈ {0, ..., n} of a binomial distri-

bution with length n and success probability 1 − q ∈ (0, 1). Let fΓ(a,b) be the
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Lebesgue density of a gamma distribution with parameter (a, b) ∈ (0,∞)2. For
0 ≤ k ≤ Ni. an application of Bayes formula yields that

P
(
Nrbns

i = k | ℵm, Xi. ∈ (xi, xi + h]
)

=

P
(
Nrbns

i = k | ℵm

)
P

(
Xi. ∈ (xi, xi + h] | Nrbns

m = k,ℵm

)

P (Xi. ∈ (xi, xi + h] | ℵm)
for xi, h > 0 and 1 ≤ i ≤ m. With km−i := k − kξi − · · · − km−i−1 it follows
directly from Section 3.2 that

P
(
Nrbns

i = k | ℵm

)
=

k∑

kξi
=0

k−kξi∑

kξi+1=0

· · ·
k−kξi

−···−km−i−2∑

km−i−1=0

m−i∏

j=ξi

pNij ,Q+
Pm−i−j

l=0 pl
(kj).

for 1 ≤ i ≤ m. Particularly with i = m, then P
(
Nrbns

i = k | ℵm

)
= pNm0,Q+p1(k).

Further, for 1 ≤ i ≤ m we have

P
(
Xi. ∈ (xi, xi + h] | Nrbns

m = k,4m

)

P (Xi. ∈ (xi, xi + h] | 4m)
=

P
(
Xi. ∈ (xi, xi + h] | Nrbns

m = k, Ni.

)

P (Xi. ∈ (xi, xi + h] | Ni.)

= (1 + o(1))
h

∑Ni.−k
l=1 pNi.−k,Q(l)fΓ(lδ,ν)(xi)

h
∑Ni.

l=1 pNi.,Q(l)fΓ(lδ,ν)(xi)

as h → 0 and it follows with C ′i := (
∑Ni.

l=1 pNi.,Q(l)fΓ(lδ,ν)(xi))−1 and ξi :=
max{0,m + 1 + d− i} that

P
(
Nrbns

i = k | ℵm, Xi.

)
=

= C ′i




k∑

kξi
=0

k−kξi∑

kξi+1=0

· · ·
k−kξi

−···−km−i−2∑

km−i−1=0

m−i∏

j=ξi

pNij ,Q+
Pm−i−j

l=0 pl
(kj)




×
(

Ni.−k∑

l=0

pNi.−k,Q(l)fΓ(lδ,ν)(Xi.)

)
.

The predictor, µ̃rbns
i , of Xrbns

i , is therefore given by

µ̃rbns
i =

δE(Nrbns
i | ℵm, Xi.)

ν
(6)

=
δ

ν

Ni.∑

k=0

kP
(
Nrbns

i = k | ℵm, Xi.

)
.

Notice in particular that µ̃rbns
m = µ̂rbns

m .
An alternative and simplistic predictor of the RBNS claims, Xrbns

ij , which
does not take into account the models dependence structure, is given by

µ̆rbns
ij :=

δ

ν

m−i∑

k=ξi

pkNi,j−k

13



for (i, j) ∈ Am. One could use µ̆ij as a benchmark prediction.
In this section the model (1) and (2) was extended in a natural way and

in this work it has been specified what RBNS and IBNR claims are. Finally
predictors minimizing the L2-norm have been derived. Prediction of the RBNS
and IBNR claims is the last step in the theoretical analysis of model (1) and (2)
based on the data (ℵm,4m). In the next section an application to data of the
results in Sections 4 and 5 is carried out.

6 Data study

In this section, the model (1) and (2) is applied to a dataset from Royal & Sun
Alliance. The data relate to a portfolio of motor policies; in this example the
auto third part liability (TPL) data is considered. The reason for choosing this
data set is that we expect there to be reasonably long settlement delays (RBNS
delays). This could be of particular interest as (1) and (2) explicitly models the
RBNS delay. The data displayed in Table 1 is inflation corrected, so that

Xij :=
Yij

δi+j

where Yij , (i, j) ∈ A10, are the observed payments and δi is an inflation index,
1 ≤ i ≤ 10. In a full analysis of a dataset such as this, the inflation index could
be modeled independently, for example by a time series which should then be
used in the prediction, Xijδj for j ≥ 10−i+1. For the purpose of this paper, we
assume that the claims inflation has already been estimated, and we concentrate
on modeling the inflation corrected payments, 410, which are shown in Table
1.

i\j| 0 1 2 3 4 5 6 7 8 9
--------------------------------------------------------------------
1 |451288 339519 333371 144988 93243 45511 25217 20406 31482 1729
2 |448627 512882 168467 130674 56044 33397 56071 26522 14346
3 |693574 497737 202272 120753 125046 37154 27608 17864
4 |652043 546406 244474 200896 106802 106753 63688
5 |566082 503970 217838 145181 165519 91313
6 |606606 562543 227374 153551 132743
7 |536976 472525 154205 150564
8 |554833 590880 300964
9 |537238 701111
10 |684944

Table 1: The paid run-off triangle, Xij, (i, j) ∈ A10, for the auto TPL data.
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The incurred counts are shown in Table 2.

i\j| 0 1 2 3 4 5 6 7 8 9
----------------------------------------------------------
1 | 6238 831 49 7 1 1 2 1 2 3
2 | 7773 1381 23 4 1 3 1 1 3
3 |10306 1093 17 5 2 0 2 2
4 | 9639 995 17 6 1 5 4
5 | 9511 1386 39 4 6 5
6 |10023 1342 31 16 9
7 | 9834 1424 59 24
8 |10899 1503 84
9 |11954 1704
10 |10989

Table 2: The number of reported claims, Nij, (i, j) ∈ A10, for the auto TPL.

Expert advice from a claims handler have been used to determine the fraction of
reported zero-claims, Q ∈ [0, 1), and the maximal possible RBNS delay, d ≤ 10.
In this case (Q, d) = (0.2, 7).

Estimation in the model (1) and (2) has been done using the chain ladder
method as described in Section 4 and Appendix B respectively. Prediction of
IBNR and RBNS claims has been conducted as proposed in (5) and (6).

6.1 Estimation in model (1) and (2)

The parameters in the model (1) are estimated by maximizing the likelihood
function, Lℵm(γ, {β,0 ≤ j ≤ 9}, {αi, 1 ≤ i ≤ 10}), in (3).

Some of the values Ni0, 1 ≤ i ≤ 10, exceed 10000. Therefore the maximiza-
tion of (4) would require long computer time. Instead we use the quasi-likelihood
function in (8) in Appendix B to estimate the parameters (δ, ν, p0, ..., p7).

The optimizations are carried out in the statistical software R. The results
are displayed in Table 4.

j | 0 1 2 3 4 5 6 7 8 9
------------------------------------------------------------------
e^b| 0.875 0.118 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000
p | 0.291 0.230 0.091 0.068 0.053 0.029 0.020 0.018

Table 4: The row indexed by ê b are the maximum likelihood estimates of eβj ,
0 ≤ j ≤ 9 and the row indexed p are the maximum likelihood estimates of pl,

0 ≤ l ≤ 7.
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Notice that the part of claim that is settled at value zero is set to Q = 0.2 such
that

p0 + · · ·+ p7 = 0.8.

The estimates of (ν, δ) are

(ν̂, γ̂) = (0.0170, 8.395e− 5)

such that the distribution of the single (unobserved) claim, Y
(k)
ijl , is estimated

to be a Γ(0.0170, 8.395e− 5).
As was mentioned in the beginning of Section 6, the TPL claims are expected

to have relatively long settlement delays (RBNS delays) as bodily injury claims
often take a long time to settle. As may be seen from the left hand plot in
Figure 1 there is empirical proof of this: long time after the majority of claims
has been reported there are still significant payments. Also notice that p0 may
be relatively small. As claims happen, on average, in the middle of the year
there is on average only half a year to receive the final payment in order to
finish in the category of claims related to p0. All other delay periods are full
years.

Given N1., it holds that

(N11, ..., N1m) ∼ Multi
(
N1., e

β0 , ..., eβ9
)
.

It hence seems natural to compare the estimates of the IBNR and RBNS delays
by considering p′j := eβj , 0 ≤ j ≤ 9 and pl, 0 ≤ l ≤ 7. This comparison is made
in the right hand plot in Figure 1. In this way the average IBNR delay related
to p′j , 0 ≤ j ≤ 9 is 0.129 years whereas the average RBNS delay is 1.22. Hence
the RBNS reserve is expected to be (about ten times) bigger than the IBNR
reserve because the individual claims are assumed iid.

6.2 Model validation

In this section we verify whether the model (1) and (2) seems to be consis-
tent with the dataset in Tables 1 and 2. As the random variables Nij , Xij ,
(i, j) ∈ Am, all have different distributions the following idea is used to validate
the model.

A PP-plot is constructed in the following way. Denote the distribution func-
tion of a random variable, Zj , by FZj , 1 ≤ j ≤ N . Then Uj := FZj (Zj) ∼Unif(0, 1)
provided FZj is continuous and for the ordered sample U(1) ≤ U(2) ≤ · · · ≤ U(N)

it holds that EU(j) = j/(N +1) for 1 ≤ j ≤ N . A PP-plot consists of the points
(j/(N + 1), EU(j)) which approximate the line {(x, y) ∈ [0, 1]2 : x = y}. In the
left hand plot in Figure 2 the points k/56, 1 ≤ k ≤ 55 are plotted against the
ordered sample of F̂Nij (Nij), (i, j) ∈ A10, where F̂Nij is the estimated distribu-
tion function of Nij (from Section 6.1). The right hand PP-plot corresponds to
the variables FXij |4m

(Xij), (i, j) ∈ A10. It seems that there is some systematic
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Figure 1: Left: The dotted lines represent the points {Xij/40, 0 ≤ j ≤ 9} for
1 ≤ i ≤ 10. The solid graphs are the number of reported claims, {Nij , 0 ≤ j ≤ 9}
for 1 ≤ i ≤ 9. Right: The estimates of (p0, ...., p7) representing the RBNS delay
are the dotted graphs and the solid graphs are the IBNR delay, p′j, 0 ≤ j ≤ 9.

error in the left hand plot in Figure 2, but the right hand PP-plot looks con-
vincing.

To visualize possible changes in the structure of the data through time we
have also plotted FNij (Nij) and FXij (Xij) against the row and column indices
respectively, see Figure 3. Notice in particular that the bottom right plot indi-
cates that either pl, 0 ≤ l ≤ d, or the average claim, EY

(1)
1j , change as a function

of the column, 0 ≤ j ≤ m− 1.
The plots indicate a reasonable fit of the model (1) and (2) to the data in

Tables 1 and 2. In the next section we therefore go on to predict the IBNR and
RBNS claims.

6.3 Estimation of IBNR and RBNS claims

In this section we predict the IBNR and RBNS claims as proposed in (5) and
(6) respectively. We have chosen to consider only the rows i = 4, ..., 10 because
the majority of the total claims reserve is related to these. Given the parameter
estimates in Section 6.1 the estimated reserve are given in Table 5.
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Figure 2: Left: A PP-plot for αm. Right: PP-plot for 4m given ℵm.

i | 10 9 8 7 6 5 4
----------------------------------------------------------------
IBNR | 317326 17805 6670 3950 3215 2453 1883
RBNS | 1137206 853576 511176 298823 168321 92933 57285
RESERVE | 1454532 871381 517846 302773 171536 95386 59168

Table 5: The row wise reserve estimates split into IBNR and RBNS claims.

We saw in Section 6.1 that the IBNR delay is (on average) shorter than the
RBNS delay, and hence the RBNS is expected to be larger then the IBNR
reserve. The actual estimates divide the reserves such that the RBNS reserve
takes up 91.6% of the total reserve and the IBNR only 8.4%: roughly 1 : 10 as
suggested in Section 6.1.

As proposed in Section 5.2 it is relevant to compare the more sophisticated
estimator, µ̃rbns

i , with the simple estimator µ̆rbns
ij , 1 ≤ i ≤ 10. This is done in

Table 6 below.

i | 10 9 8 7 6 5 4
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Figure 3: Top left graphs: the points {(j, FNij (Nij), 1 ≤ j ≤ m− i}, 1 ≤ i ≤ m.
Top right graphs: the points {(i, FNij (Nij), 1 ≤ i ≤ m − j}, 0 ≤ j ≤ m − 1.
Bottom left graphs: the points {(j, FXij (Xij), 1 ≤ j ≤ m − i}, 1 ≤ i ≤ m. Top
right graphs: the points {(i, FXij (Xij), 1 ≤ i ≤ m− j}, 0 ≤ j ≤ m− 1.

-------------------------------------------------------------
mu_i(~)/(delta/nu) | 5601 4204 2518 1472 829 458 282
mu_i(v)/(delta/nu) | 5594 4197 2509 1473 845 466 215

Table 6: The top row is the number of RBNS claims estimated using (6). The
bottom row is the number of RBNS claims estimated by µ̆rbns

i0 + · · ·+ µ̆rbns
i,9−i,

4 ≤ i ≤ 10, where µ̆rbns
ij , (i, j) ∈ Am, is as defined in Section 5.2.

It was said in the introduction that the use of more data than, for example,
the chain ladder allows for a more sophisticated analysis. However, as often
done, we can use the chain ladder method as a benchmark to which one can
relate the results in this section. In the next section we compare the results
from the model (1) and (2) and the chain ladder reserve estimates. One could
use bootstrapping to find the distributional characteristics for the chain ladder
estimates, see [1]. The predictive distributions in model (1) and (2) are all
explicitly given in Section 5.1 and 5.2.
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6.4 A comparison with the chain ladder results

One of the most popular methods for calculating reserves in practise is the
chain ladder method. Using the paid run-off triangle, 4m, it is straightforward
to estimate the row-wise reserves. The chain ladder reserves include both IBNR
and a part of the RBNS claims. But it is not possible to split them explicitly.
The reserve estimates are given in Table 7.

i | 10 9 8 7 6 5 4
----------------------------------------------------------------
RESERVE | 1459860 763919 475992 249349 173802 101158 53791

Table 7: The row-wise chain ladder reserve estimates.

The chain ladder reserve estimates are close to the result from the Section 6.3.
The total chain ladder reserve for rows i = 4, ..., 10, is 3277871 compared to the
3472622 in Section 6.3. The difference could be explained by the fact that not
all RBNS claims are estimated using the chain ladder method. It could also be
due to model uncertainty.

In datasets with relatively few claims there is empirical evidence that the
estimation in (1) and (2) gives an estimation error of the reserve estimates which
is smaller than compared to the chain ladder.
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7 Appendix A

In this section we assume the model (1) and (2).

7.1 The likelihood function for ℵm

In the papers [2,4] it is shown that

e
bCi,m−1 =

m−1∑

j=0

ebαi+bβj , 1 ≤ i ≤ m

where ebαi and e
bβj denote the maximum likelihood estimators of eαi and eβj .

Since the model is made identifiable by imposing the constraint

m−1∑

j=0

eβj = 1

we directly obtain
e
bCi,m−1 = ebαi , 1 ≤ i ≤ m.

It moreover follows directly that

e
bCmj − e

bCm,j−1

ebαm
=

1
ebαm

(
j∑

k=0

ebαi+bβk −
j−1∑

k=0

ebαi+bβk

)
= e

bβj

for 0 ≤ j ≤ m− 1.

7.2 The likelihood function for 4m given ℵm

In addition to the conditions of Section 8.1 we assume that the paid amounts,
Xij = xij , (i, j) ∈ Am, are also known. We define xi. := xi0 + · · · + xi,m−i,
nij. := nij0 + · · · + nijd and npaid

ij := nij0 + ni,j−1,1 + · · · + ni,j−d,d where we
put nijl = 0 for l < 0 by convention. The conditional likelihood function of 4m

given ℵm defined in (3) is given as

L4m|ℵm
(δ, ν, p0, ..., pd) =

m∏

i=1

m−i∑

j=0

nij∑
nij0=0

nij−nij0∑
nij1=0

· · ·
nij−nij.∑
nijd=0

[(
nij

nij0 · · ·nijd · (nij − nij.)

)
p

nij0
0 · · · pnijd

d Qnij−nij.

m−i∏

k=0

νnpaid
ik δ

Γ(npaid
ik δ)

x
npaid

ik δ−1

ik e−νxik

]
.

21



Here

m−i∏

k=0

νnpaid
ik δ

Γ(npaid
ik δ)

x
npaid

ik δ−1

ik e−νxik = e−νxi.−
Pm−i

j=0 log(xij)
m−i∏

k=0

νnpaid
ik δ

Γ(npaid
ik δ)

x
npaid

ik δ

ik

and
d∏

l=0

p
nijl

l Qnij−nij. = Qnij

d∏

l=0

(
pl

Q

)nijl

such that L4m|ℵm
can be written as

m∏

i=1

e−νxi.−
Pm−i

j=0 log(xij)
m−i∑

j=0

Qnij nij !




nij∑
nij0=0

nij−nij0∑
nij1=0

· · ·
nij−nij.∑
nijd=0

(
d∏

l=0

(
pl

Q

)nijl 1
nijl!

)

1
(nij − nij.)!

m−i∏

k=0

(νxik)npaid
ik δ

Γ(npaid
ik δ)

]
.

Taking logarithms, one finally obtains

log(L4m|ℵm
(δ, ν, p0, ..., pd)) = C ′+

m∑

i=1


−νxi. + log




m−i∑

j=0

Qnij nij !




nij∑
nij0=0

(
p0

Q

)nij0 1
nij0!

nij−nij0∑
nij1=0

(
p1

Q

)nij1 1
nij1!

· · ·
nij+nijd−nij.∑

nijd=0

(
pd

Q

)nijd 1
nijd!

1
(nij − nij.)!

m−i∏

k=0

(νxik)npaid
ik δ

Γ(npaid
ik δ)










where C ′ =
∑m

i=1

∑m−i
j=0 log(xij).
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8 Appendix B

In this section we propose an approximative GLM approach to estimating
the parameters (ν, δ, p0, ..., pd). Section 9 in [6] is used to put up a Quasi-
likelihood function. We however need the following convention: the relation
V Y

(1)
11 /EY

(1)
11 À maxl=0,...,d(1− pl) holds, where À means that the right hand

side is negligible in comparison to the left hand side. This is often empirically ob-
served. In Section 9.3 in [6] it is suggested that the random variables Xij should
be considered (conditionally given ℵm) independent as the covariance structure
of 4m given ℵm is completely determined by the parameters (ν, δ, p0, ..., pd).
Using [6], p. 326, the estimation is purely based on the relation between the
conditional mean and variance of Xij , (i, j) ∈ Am given 4m. For (i, j) ∈ Am

we see that

E(Xij |ℵm) =
d∑

l=0

Nrep
i,j−lψl

V (Xij |ℵm) =
d∑

l=0

Nrep
i,j−lψl

[
V Y

(1)
11

EY
(1)
11

+ (1− pl)

]
' ϕ

d∑

l=0

Nrep
i,j−lψl, (7)

where ψl = plEY
(1)
11 , 0 ≤ l ≤ d, and ϕ = V Y

(1)
11 /EY

(1)
11 . The approximate

formula (7) combined with Section 6.2.3 and Table 9.1 in [6] suggest the following
conditional quasi-log-likelihood function for 4m given ℵm,

∑

(i,j)∈Am

[
Xij log

(
d∑

l=0

Nrep
i,j−lψl

)
−

d∑

l=0

Nrep
i,j−lψl

]
.

Denote the maximizers of the latter quantity by ψ̂l, 0 ≤ l ≤ d. Following Section
9.2 in [6], the ratio, ϕ, can be estimated by

ϕ̂ =
2

m(m + 1)

∑

(i,j)∈Am

(
Xij −

∑d
l=0 Nrep

i,j−lψ̂l

)2

∑d
l=0 Nrep

i,j−lψ̂l

.

The actual parameter estimates are then obtained by the method of moments:

ν̂ =
∑d

k=0 ψ̂k

φ̂(1−Q)
, δ̂ = ν̂

∑d
k=0 ψ̂k

1−Q
,

p̂l =
ψ̂l(1−Q)∑d

k=0 ψ̂k

, 1 ≤ l ≤ d. (8)
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PREDICTION OF OUTSTANDING PAYMENTS IN APOISSON CLUSTER MODELANDERS HEDEGAARD JESSEN, THOMAS MIKOSCH,AND GENNADY SAMORODNITSKYAbstra
t. We 
onsider a simple Poisson 
luster model for the paymentnumbers and the 
orresponding total payments for insuran
e 
laims ar-riving in a given year. Due to the Poisson stru
ture one 
an give rea-sonably expli
it expressions for the predi
tion of the payment numbersand total payments in future periods given the past observations of thepayment numbers. One 
an also derive reasonably expli
it expressionsfor the 
orresponding predi
tion errors. In the (a, b)-
lass of Panjer's
laim size distributions, these expressions 
an be evaluated by simplere
ursive algorithms. We study the 
onditions under whi
h the predi
-tions are asymptoti
ally linear as the number of past payments be
omeslarge. We also demonstrate that, in other regimes, the predi
tion may befar from linear. For example, a stair
ase-like pattern may arise as well.We illustrate how the theory works on real-life data, also in 
omparisonwith the 
hain ladder method.1. Introdu
tionLet Nk be the number of payments for 
laims arriving in an insuran
eportfolio in the year 0 and being exe
uted in the year k ∈ {0, 1, . . .}. More-over, let Sk be the 
orresponding total amount of the payments exe
uted inyear k. If one has observed the 
ounts Nk, k = 0, . . . , j, for some j ≥ 0, a ma-jor problem for an insuran
e 
ompany is to determine a reserve for the years
j + 1, j + 2, . . .. This amounts to predi
ting the pairs (Nj+ℓ+1, Sj+ℓ+1) for
ℓ = 0, 1, . . .. In this 
ontext natural estimators are given by the 
onditionalexpe
tations given the past values N0, . . . ,Nj , i.e.,

N̂j+ℓ+1 = E(Nj+ℓ+1 | Fj) and Ŝj+ℓ+1 = E(Sj+ℓ+1 | Fj) ,(1.1)
ℓ = 0, 1, . . ., where Fj = σ(N0, . . . ,Nj), j = 0, 1, . . .. Assuming var(Sj+ℓ+1)<

∞, S = Ŝj+ℓ+1 is the a.s. unique minimizer of the mean square error
E((Sj+ℓ+1 −S)2) in the 
lass of square integrable random variables S whi
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s Subje
t Classi�
ation. Primary 60K10, Se
ondary 60G25, 60G55.Key words and phrases. Poisson 
luster model, predi
tion, 
laims reserving, 
hain lad-der method, Panjer distributions, (a, b)-
lass, re
ursive algorithm.Thomas Mikos
h's resear
h is partly supported by the Danish Resear
h Coun
il (FNU)Grant 272-06-0442. Gennady Samorodnitsky's resear
h is partly supported by the AROgrant W911NF-07-1-0078 at Cornell University and a Villum Kann Rasmussen VisitingProfessor Grant at the University of Copenhagen.1



2 A. JESSEN, T. MIKOSCH, AND G. SAMORODNITSKYare measurable fun
tions of N0, . . . ,Nj , and a similar remark applies to
N̂j+ℓ+1. Moreover, s = Ŝj+ℓ+1 minimizes the 
onditional mean square error
E((Sj+ℓ+1 − s)2 | Fj).One of the popular pro
edures in this 
ontext was suggested by Ma
k;see Ma
k [2, 3, 4℄ and Ma
k et al. [6℄. In its simplest version, Ma
k'spro
edure de
lares the predi
tors Ŝj+ℓ+1 and N̂j+ℓ+1 to be linear fun
tionsof S0 + · · · + Sj or Nj = N0 + · · · + Nj , respe
tively. For example,

N̂j+1 = (fj − 1) (N0 + · · · + Nj) , j = 0, 1, . . . ,(1.2)for 
onstants fj ≥ 1.Assume that one observes the run-o� triangle
(Ni,i+k, Si,i+k) , i = 1, . . . , n , k = 0, . . . , n − i ,(1.3)where ((Ni,i+k, Si,i+k))k=0,...,j−i are the payment numbers and total pay-ments for 
laims arriving in year i and being exe
uted in year i + k; one as-sumes that ((Ni,i+k, Si,i+k))k=0,1,... are iid 
opies of ((Nk, Sk))k=0,1,.... Here

n is the last year for whi
h payments were observed. Ma
k's assumptions(1.2) give raise to 
onstru
ting natural estimators f̂j of fj whi
h are referredto as 
hain ladder estimators. Then, repla
ing the unknown parameters fjon the right-hand side of (1.2) by their estimators f̂j, one obtains a predi
-tor of Nj+1. In Se
tion 5 we we will introdu
e the 
hain ladder estimatorsand 
ompare the performan
e of the 
orresponding predi
tors with thoseproposed in this paper.Ma
k's pro
edure (1.2) does not determine the dynami
s of a parti
ularsto
hasti
 pro
ess. For example, one 
annot simulate a pro
ess (Nj)j=0,1,...from (1.2). Moreover, the linearity of the estimator (1.2) is a simpli�
a-tion whi
h is hard to re
on
ile with natural sto
hasti
 models for the 
ountpro
ess.In this paper, we 
onsider a simple sto
hasti
 pro
ess model for the 
ounts
Nj, j = 0, 1, . . . , and the 
orresponding payments Sj, j = 0, 1, . . .. The modelis given by the following 
onditions whi
h we assume throughout this paper.The model. Let M be the number of 
laims arriving in a given year withdistribution

qm = P (M = m) , m = 0, 1, . . . .The mth 
laim 
auses a stream of Km payments from the insurer to theinsured through the next years. We assume that the kth of these payments isexe
uted in the year Ymk. We further assume that (Km) is an iid sequen
e of
Poisson(µ) distributed random variables and that (Ymk)m,k=1,2,... 
onstitutesan iid family with 
ommon distribution(1.4) pj = P (Y11 = j) , j = 0, 1, . . . .



PREDICTION OF OUTSTANDING PAYMENTS 3Finally, assume that M , (Km) and (Ymk) are independent. Write
Nj =

M∑

m=1

Km∑

k=1

I{Ymk=j} , j = 0, 1, . . . ,i.e., Nj is the number of payments for 
laims arriving in a given year andbeing exe
uted in year j. Assume further that (Xmk)m,k=1,2,... is an iid familyof non-negative random variables independent of M , (Km) and (Ymk). Weinterpret Xmk as the kth payment for the mth 
laim. Then
Sj =

M∑

m=1

Km∑

k=1

Xmk I{Ymk=j} , j = 0, 1, . . . ,are the total payments for the 
laims arriving in year 0 and being exe
utedin year j.Both pro
esses (Nj) and (Sj) 
an easily be simulated. It is our aim toshow that the predi
tors (1.1) and their errors 
an be 
al
ulated expli
itlyand are easily derived by numeri
al methods for 
ertain spe
ial 
ases of thedistribution of M . The expressions for the predi
tor of Nj+1 are highlynon-linear fun
tions of N0 + · · ·+ Nj , in 
ontrast to Ma
k's pro
edure (1.2).However, under some 
ondition on the distribution of M these predi
torsare asymptoti
ally linear fun
tions of N0 + · · · + Nj if the latter quantityin
reases to in�nity. In other situations, the predi
tors stay non-linear evenin the limit.The paper is organized as follows. We start in Se
tion 2 by giving therelevant formulas for the predi
tors of Sj+ℓ+1, ℓ = 0, 1, . . .. Sin
e Sj = Nj if
Xmi = 1 for all m, i, the predi
tion of Nj+ℓ+1, ℓ = 0, 1, . . ., is a spe
ial 
ase.We also determine the predi
tion errors. The predi
tors and 
onditionalpredi
tion errors involve 
ertain derivatives of the Lapla
e-Stieltjes trans-form of M . In general, these derivatives are di�
ult to obtain. However,in the (a, b)-
lass of Panjer distributions, in
luding the Poisson, binomialand negative binomial distributions, there exist simple re
ursive algorithmsfor 
al
ulating these derivatives; see Se
tion 3. In Se
tion 4 we study theasymptoti
 behavior of the predi
tors as the number of the previously ob-served payments grows. In parti
ular, we give 
onditions under whi
h thepredi
tors Ŝj+ℓ+1 are asymptoti
ally linear fun
tions of N0 + · · · + Nj. Wealso 
onsider other situations, where di�erent asymptoti
 patterns of thebehavior of the predi
tors arise. An interesting feature is the stair
ase-likepattern dis
ussed in that se
tion. In Se
tion 5 we apply our predi
tors to anon-life insuran
e data set. We 
ompare the performan
e of these predi
torswith the 
orresponding ones based on 
hain ladder estimation.2. The predi
tion problemWe intend to predi
t the future numbers of payments Nj+ℓ+1 and the 
or-responding total 
laim amounts Sj+ℓ+1, ℓ = 0, 1, . . . , given the past paymentnumbers N0, . . . , Nj . This means we will 
al
ulate the predi
tors Ŝj+ℓ+1 and
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N̂j+ℓ+1 in (1.1) provided these quantities are well-de�ned. Sin
e we alwaysassume the 
onditions of the model introdu
ed in Se
tion 1, the indepen-den
e of (Xmi) and the rest of the random ingredients in the model impliesthat

Ŝj+ℓ+1 = EX11 E(Nj+ℓ+1 | Fj) = EX11 N̂j+ℓ+1 ,(2.1)
ℓ = 0, 1, . . .. Therefore the predi
tion problem for Sj+ℓ+1 redu
es to theone for Nj+ℓ+1. Conversely, if Xmi = 1 a.s. for all m, i then Nj = Sj,
j = 0, 1, . . .. Therefore it su�
es to study the predi
tion of Sj+ℓ+1 given
N0, . . . , Nj .We will derive expressions for the predi
tors (2.1) and determine theirerrors. We start with the one-step ahead predi
tion problem, i.e., ℓ = 0.2.1. One-step ahead predi
tion. We introdu
e some notation to be usedthroughout the paper. We will need the Lapla
e-Stieltjes transform of M ,i.e.,

L(γ) = Ee−γM =
∞∑

m=0

qm e−γ m , γ ≥ 0 ,and its derivatives
L(ℓ)(γ) = (−1)ℓE(M ℓe−γ M ) , γ > 0 , ℓ = 0, 1, . . . ,with the 
onvention that L(0) = L. Moreover, de�ne

Rℓ(γ) = −
L(ℓ+1)(γ)

L(ℓ)(γ)
=

E(M ℓ+1e−γ M )

E(M ℓe−γ M )
, γ > 0 , ℓ = 0, 1, . . . .Finally, write

θj = µ

j∑

d=0

pd , j = 0, 1, . . . ;re
all that µ is the Poisson rate of the number of payments per 
laim, and
(pk) are the displa
ement probabilities in (1.4).Next we formulate our main result on the predi
tion of Sj+1. Re
all thatthe 
orresponding result for Nj+1 follows by setting Xmi = 1 a.s. for all m, i.Theorem 2.1. Assume that EM < ∞ and EX11 < ∞.(1) The predi
tor Ŝj+1 of Sj+1 given N0, . . . ,Nj has the form(2.2) E(Sj+1 | N0 = n0, . . . ,Nj = nj) = µ pj+1 EX11 Rn0+···+nj(θj) ,

n0, . . . , nj = 0, 1, . . ., j = 0, 1, . . ..(2) Assume, in addition, that var(M) < ∞ and var(X11) < ∞. Then theun
onditional predi
tion error for Sj+1, j = 0, 1, . . ., is given by
E
(
(Sj+1 − Ŝj+1)

2
)

= E(X2
11)µ pj+1 EM(2.3)

+ (EX11µ pj+1)
2 E(M2) − E(Ŝ2

j+1) .



PREDICTION OF OUTSTANDING PAYMENTS 5.(3) Assume, in addition, that var(M) < ∞ and var(X11) < ∞. Then the
onditional predi
tion error for Sj+1 given the past observations N0, . . . ,Nj ,
j = 0, 1, . . ., is(2.4) var(Sj+1 | N0 = n0, . . . ,Nj = nj) = E(X2

11)µ pj+1 Rn0+···+nj(θj)

+(EX11 µ pj+1)
2 Rn0+···+nj(θj)

[
Rn0+···+nj+1(θj) − Rn0+···+nj(θj)

]
.Remark 2.2. Writing ℓj = n0 + · · ·+ nj , j = 0, 1, . . ., we observe by virtueof (2.2) that

E(Sj+1 | N0 = n0, . . . ,Nj = nj)

= E(Sj+1 | N0 = ℓ0,N0 + N1 = ℓ1, . . . ,N0 + · · · + Nj = ℓj)

= E(Sj+1 | N0 + · · · + Nj = ℓj) ,or, alternatively,
E(S0 + · · · + Sj+1 | N0 + · · · + Nj = ℓj)

= EX11 ℓj + E(Sj+1 | N0 + · · · + Nj = ℓj) .(2.5)By virtue of (2.2), the 
onditional expe
tation (2.5) is in general not a linearfun
tion of ℓj, in disagreement with Ma
k's pro
edure (1.2). In Se
tion 4 wewill give 
onditions on the distribution of M ensuring that (2.5) is asymp-toti
ally linear as ℓj → ∞.Remark 2.3. In Se
tion 3 we will give a re
ursive algorithm for evaluatingthe quantities L(ℓ) when the distribution of M belongs to the (a, b)-
lass usedfor Panjer re
ursion.Proof. (1) By the splitting property of the Poisson pro
ess, (Nj) 
onstitutes,
onditionally on M , a sequen
e of independent Poisson random variables.Therefore
E(Nj+1 | N0, . . . , Nj ,M) = M µ pj+1 , j = 0, 1, . . . ,and

Ŝj+1 = EX11 µ pj+1 E(M | Fj) , j = 0, 1, . . . .(2.6)Even more pre
isely, let Zjl denote the number of payments in the lth pay-ment stream, l = 1, 2, . . ., whi
h are exe
uted in year j = 0, 1, . . .. Then
(Zjl) 
onstitutes a double array of independent random variables with Zjl ∼
Poisson(µpj). Therefore for any m, j = 0, 1, . . . and n0, . . . , nj = 0, 1, . . .,

P (N0 = n0, . . . ,Nj = nj,M = m)

= qm P

(
m∑

l=1

Z0l = n0

)
· · ·P

(
m∑

l=1

Zjl = nj

)

= qm

j∏

d=0

e−m µ pd
(m µ pd)

nd

nd!
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= qm e−m θj m

Pj
d=0 nd

j∏

d=0

(µ pd)
nd

nd!
.(2.7)We 
on
lude that for j ≥ 0,

P (M = m | N0 = n0, . . . ,Nj = nj) =
qme−m θj m

Pj
d=0 nd

∑∞
r=0 qre−r θj r

Pj
d=0 nd

,

m, n0, . . . , nj = 0, 1, . . . .(2.8)In parti
ular,
E(M | N0 = n0, . . . , Nj = nj) =

∑∞
m=0 qme−m θj m

Pj
d=0 nd+1

∑∞
r=0 qre−r θj r

Pj
d=0 nd

= Rn0+···+nj (θj) .(2.9)We 
on
lude, using (2.6), that (2.2) holds.(2) & (3) We start by 
al
ulating the predi
tion error of Sj+1 given thevalues N0, . . . , Nj . First observe that
var(Sj+1 | N0, . . . ,Nj ,M) = M E(X2

11)µ pj+1 .Taking into a

ount this relation and (2.1), we see that the 
onditional pre-di
tion error 
an be written as(2.10) var(Sj+1 | Fj) = E(X2
11)E(Nj+1 | Fj)

+(EX11µ pj+1)
2 var(M | Fj) .Using (2.8), we 
an repla
e the 
onditional moments of M by the 
orre-sponding derivatives of L, leading to (2.4). Taking expe
tations in (2.10),we obtain the predi
tion error

E
(
(Sj+1 − Ŝj+1)

2
)

= E [var(Sj+1 | Fj)]

= E(X2
11)ENj+1 + (EX11µ pj+1)

2
[
E(M2) − E[(E(M | Fj))

2]
]

= E(X2
11)µ pj+1 EM + (EX11µ pj+1)

2 E(M2) − E(Ŝ2
j+1) .This �nishes the proof. �Remark 2.4. A simple upper bound of the un
onditional predi
tion error(2.3) is given by

E[(Sj+1 − Ŝj+1)
2] ≤ E(X2

11)µ pj+1 EM + (EX11µ pj+1)
2 E(M2) .Evaluation of E(Ŝ2

l+1) in (2.3) is 
ompli
ated. Following the lines of theproof above, one 
an derive a more expli
it expression for this term:
E(Ŝ2

j+1) = (EX11 µ pj+1)
2 E
[
(E(M | Fj))

2
]

= (EX11µ pj+1)
2 E
[
(RN0+···+Nj(θj))

2
]
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= (EX11µ pj+1)

2
∞∑

k=0

∞∑

m=0

P (N0 + · · · + Nj = k ,M = m) (Rk(θj))
2 .Applying (2.7), the right-hand double sum turns into

∞∑

k=0

[
∞∑

m=0

qm e−m θj mk

]
∑

n0+···+nj=k

j∏

d=0

(µ pd)
nd

nd!
(Rk(θj))

2

= e θj

∞∑

k=0

(−1)k
(
L(k+1) (θj)

)2

L(k) (θj)
P (Θj = k)

= e θj E

(
(−1)Θj

(
L(Θj+1) (θj)

)2

L(Θj) (θj)

)
,where Θj is Poisson(θj) distributed.2.2. Multi-step ahead predi
tion. In this subse
tion we 
onsider the pre-di
tion problem for ℓ + 1 periods ahead. This means we are interested inthe quantities Ŝj+ℓ+1, ℓ = 0, 1, . . ., de�ned in (1.1), and the 
orrespondingpredi
tion errors.Theorem 2.5. Assume that EM < ∞ and EX11 < ∞.(1) The predi
tor Ŝj+ℓ+1 of Sj+ℓ+1 given N0, . . . ,Nj has the form

E(Sj+ℓ+1 | N0 = n0, . . . ,Nj = nj) = EX11 µ pj+ℓ+1 Rn0+···+nj (θj) ,

j, ℓ = 0, 1, . . . .(2) Assume, in addition, that var(M) < ∞ and var(X11) < ∞. Then theun
onditional predi
tion error for Sj+ℓ+1, j, ℓ = 0, 1, . . ., is given by
E
[
(Sj+ℓ+1 − Ŝj+ℓ+1)

2
]

= E(X2
11)µ pj+ℓ+1 EM

+(EX11µ pj+ℓ+1)
2 E(M2) − E(Ŝ2

j+ℓ+1) .(3) Assume, in addition, that var(M) < ∞ and var(X11) < ∞. Then the
onditional predi
tion error for Sj+ℓ+1, j, ℓ = 0, 1, . . ., is given by
var(Sj+ℓ+1 | N0 = n0, . . . , Nj = nj)

= E(X2
11)µ pj+ℓ+1 Rn0+···+nj (θj)

+(EX11µpj+ℓ+1)
2 Rn0+···+nj(θj)

[
Rn0+···+nj+1(θj) − Rn0+···+nj (θj))

]
.Proof. (1) We start by observing that for ℓ ≥ 0,

Ŝj+ℓ+1 = E [E(Sj+ℓ+1 | Fj+ℓ) | Fj] .Hen
e, using (2.6), we obtain
Ŝj+ℓ+1 = EX11 µ pj+ℓ+1E [E(M | Fj+ℓ) | Fj]
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= EX11 µ pj+ℓ+1E(M | Fj) .Now use relation (2.9).(2) & (3) For the 
onditional predi
tion error for Sj+ℓ+1, we observe thatby (2.10)

var(Sj+ℓ+1 | Fj)

= E(var(Sj+ℓ+1 | Fj+ℓ) | Fj) + var(E(Sj+ℓ+1 | Fj+ℓ) | Fj)

= E(X2
11) N̂j+ℓ+1 + (EX11µ pj+ℓ+1)

2 E(var(M | Fj+ℓ) | Fj)

+(EX11µ pj+ℓ+1)
2 var(E(M | Fj+ℓ) | Fj)

= E(X2
11) N̂j+ℓ+1 + (EX11µ pj+ℓ+1)

2 var(M | Fj) .The 
onditional moments of M 
an, on
e again, be expressed using (2.8).Taking expe
tations, we obtain the un
onditional predi
tion error
E
[
(Sj+ℓ+1 − Ŝj+ℓ+1)

2
]

= E [var(Sj+ℓ+1 | Fj)]

= E(X2
11)µ pj+ℓ+1 EM + (EX11µ pj+ℓ+1)

2
[
E(M2) − E

(
(E(M | Fj))

2
)]

= E(X2
11)µ pj+ℓ+1 EM + (EX11µ pj+ℓ+1)

2 E(M2) − E(Ŝ2
j+ℓ+1) .

�Remark 2.6. Noti
e that
Ŝj+ℓ+1 =

pj+ℓ+1

pj+1
Ŝj+1 , ℓ = 0, 1, . . . ,provided pj+1 > 0. Moreover, if pj+ℓ+1 = 0 then Ŝj+ℓ+1 = 0.2.3. Conditionally independent payments. In this subse
tion we 
on-sider a slightly more general model. As before, we assume that the se-quen
es (Xmk)k=1,2,..., m = 1, 2, . . ., are iid and independent of the rest ofrandom variables de�ning the model. We further assume that ea
h sequen
e

(Xmk)k=1,2,... 
onsists of 
onditionally iid random variables or, equivalently,that (Xmk)k=1,2,... is ex
hangeable. This situation is similar to models in
redibility theory, where the 
laim sizes o

urring in an individual poli
y areassumed 
onditionally iid; see Mikos
h [7℄, Chapters 5 and 6.Sin
e the random variables (Xmk)m,k=1,2,... and (Ymk)m,k=1,2,... are inde-pendent the form of the one-step ahead predi
tor is again given by (2.1) butthe predi
tion error 
hanges.Proposition 2.7. Assume var(M) < ∞ and var(X11) < ∞. Then theun
onditional predi
tion error for Sj+1 is given by
E((Sj+1 − Ŝj+1)

2) = EM
[
E(X2

11)µ pj+1 + cov(X11,X12) (µ pj+1)
2
]

+(EX11µ pj+1)
2E(M2) − E(Ŝ2

j+1) , j = 0, 1, . . . .
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onditional predi
tion error of Sj+1 given N0, . . . ,Nj , j = 0, 1, . . ., hasthe form
var(Sj+1 | N0 = n0, . . . , Nj = nj)

=
[
E(X2

11)µ pj+1 + cov(X11,X12) (µ pj+1)
2
]

Rn0+···+nj (θj)

+(EX11µ pj+1)
2Rn0+···+nj(θj)

[
Rn0+···+nj+1(θj) − Rn0+···+nj(θj)

]
.A 
omparison of this result with Theorem 2.1 shows that the predi
tionerror in
reases by the additional term with the fa
tor cov(X11,X12). It isnon-negative as an appli
ation of the 
onditional Jensen inequality shows.Proof. We start by 
al
ulating

var(Sj+1 | N0, . . . ,Nj ,M) = M var
( K1∑

k=1

X1k I{Y1k=j+1}

∣∣∣Fj

)

= M E
(( K1∑

k=1

X1k I{Y1k=j+1}

)2∣∣∣Fj

)
− M (EX11 µ pj+1)

2 .We observe that
E
(( K1∑

k=1

X1k I{Y1k=j+1}

)2∣∣∣Fj

)
= E

( K1∑

k=1

X2
1k I{Y1k=j+1}

∣∣∣Fj

)

+E
( K1∑

k=1

K1∑

l=1,l 6=k

X1k X1l I{Y1k=j+1}I{Y1l=j+1}

∣∣∣Fj

)

= [E(X2
11) − E(X11X12)]µ pj+1 + E(X11X12)E

(( K1∑

k=1

I{Y1k=j+1}

)2∣∣∣Fj

)

= E(X2
11)µ pj+1 + E(X11X12) (µ pj+1)

2 .Here we used the fa
t that, by the ex
hangeability, E(X11X12) = E(X1kX1l)for k 6= l. Overall, we obtain
var(Sj+1 | N0, . . . , Nj ,M) = M

[
E(X2

11)µ pj+1 + cov(X11,X12) (µ pj+1)
2
]

.Therefore,
var(Sj+1 | Fj) = E(M | Fj)

(
E(X2

11)µ pj+1 + cov(X11,X12) (µ pj+1)
2
)

+(EX11µ pj+1)
2var(M | Fj) .For the un
onditional predi
tion error we have

E[(Sj+1 − Ŝj+1)
2] = EM

[
E(X2

11)µ pj+1 + cov(X11,X12) (µ pj+1)
2
]

+E(M2) (EX11µ pj+1)
2 − (EX11µ pj+1)

2E[(E(M | Fj))
2]

= EM
[
E(X2

11)µ pj+1 + cov(X11,X12) (µ pj+1)
2
]
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+E(M2) (EX11µ pj+1)

2 − E(Ŝ2
j+1) .

�3. Predi
tion in the (a, b)-
lassIn the previous se
tions we have learned that, for predi
ting the values
Nj+ℓ+1 and Sj+ℓ+1, ℓ ≥ 0, given N0, . . . ,Nj , it is 
ru
ial to be able toevaluate the derivatives (−1)lL(l)(γ) = E(M le−γ M ). In this se
tion weassume that the distribution of M belongs to the (a, b)-
lass whi
h is usedin the Panjer re
ursive algorithm; see Mikos
h [7℄, Se
tion 3.3. This 
lass isgiven by the re
ursive relation

q0 > 0 , qm = (a + b/m) qm−1 , m = 1, 2, . . . , a, b ∈ R .(3.1)This 
lass 
ontains exa
tly three non-degenerate distributions.(1) The Poisson(b) distribution with a = 0, b > 0.(2) The Bin(n, p) distribution with a < 0, a = −p/(1−p), b = −a(n+1)and p ∈ (0, 1), n ≥ 1.(3) The negative binomial distribution with parameter (p, v):
qm =

(
v + m − 1

m

)
pv(1 − p)m , m = 0, 1, . . . , p ∈ (0, 1) , v > 0 .where 0 < a = 1 − p, b = (1 − p)(v − 1).We will derive a re
ursion for the expressions (−1)lL(l)(γ) = E(M le−γ M ).Using the (a, b)-stru
ture and the binomial formula, we have for l ≥ 1,

(−1)lL(l)(γ) =
∞∑

m=1

e−γ mml (a + b/m)qm−1

= a e−γ
∞∑

m=0

e−γ m (m + 1)l qm + b e−γ
∞∑

m=0

e−γ m (m + 1)l−1 qm

= a e−γ
∞∑

m=0

e−γ m
l∑

r=0

(
l

r

)
mr qm + b e−γ

∞∑

m=0

e−γ m
l−1∑

r=0

(
l − 1

r

)
mr qm

= a e−γ(−1)lL(l)(γ) + e−γ
l−1∑

r=0

[
a

(
l

r

)
+ b

(
l − 1

r

)]
(−1)rL(r)(γ) .Hen
e(3.2) (−1)lL(l)(γ) =

e−γ

1 − a e−γ

l−1∑

r=0

[
a

(
l

r

)
+ b

(
l − 1

r

)]
(−1)rL(r)(γ) .Noti
e that these formulas are meaningful be
ause a is always smaller than1. Now we 
onsider the three di�erent 
lasses of (a, b)-distributions.



PREDICTION OF OUTSTANDING PAYMENTS 11Proposition 3.1. Assume that the distribution of M is in the (a, b)-
lass.(1) In the Poisson(b) 
ase, a = 0, b > 0, we have
L(γ) = e−b (1−e −γ) , γ ≥ 0 ,

(−1)lL(l)(γ) = e−γ b

l−1∑

r=0

(
l − 1

r

)
(−1)rL(r)(γ) , l ≥ 1 .(2) In the Bin(n, p) 
ase, a = −p/(1− p), b = p(n + 1)/(1 − p), n = 1, 2, . . .and p ∈ (0, 1), we have for l ≥ 1,

L(γ) = (1 − p(1 − e−γ))n , γ ≥ 0 ,

(−1)lL(l)(γ) =
p e−γ

1 − p(1 − e−γ)

l−1∑

r=0

(
l

r

)[
(n + 1)

l − r

l
− 1

]
(−1)rL(r)(γ) .(3) In the negative binomial 
ase, a = 1 − p, b = (1 − p)(v − 1), p ∈ (0, 1)and v > 0, we have for l ≥ 1,

L(γ) =

(
p

1 − (1 − p)e−γ

)v

, γ ≥ 0 ,

(−1)lL(l)(γ) =
(1 − p)e−γ

1 − (1 − p) e−γ

l−1∑

r=0

(
l

r

)[
(v − 1)

l − r

l
+ 1

]
(−1)rL(r)(γ) .Remark 3.2. In the Poisson 
ase, one 
an also get a di�erent re
ursion for

L(k). Introdu
e the polynomial Hn of degree n by the re
ursion
H0(x) = 1 , Hn(x) = −x [H ′

n−1(x) + Hn−1(x)] , n ≥ 1 , x > 0 .Then 
al
ulation yields
L(k)(γ) = Hk(be

−γ)L(γ) , k ≥ 0 , γ > 0 .In parti
ular, Rk(γ) is a rational fun
tion of be−γ for ea
h k ≥ 0:
Rk(γ) = −

Hk+1(be
−γ)

Hk(be−γ)
= be−γ

(
1 +

H ′
k(be

−γ)

Hk(be−γ)

)
.Remark 3.3. Extensions of the (a, b)-
lass were 
onsidered in Hess et al.[1℄. They introdu
ed distributions (qm)m=0,1,... satisfying the (a, b)-
ondition(3.1) with q0, . . . , qk = 0 for some k ≥ 0 and qk+1 > 0. The 
al
ulationsleading to the re
ursion (3.2) for L(l) remain valid in this 
ase as well.Remark 3.4. The quantities (−1)lL(l)(γ) grow rapidly as a fun
tion of l andtherefore standard software delivers the value ∞ even for moderately largevalues l. This numeri
al problem 
an be avoided by writing (3.2) in termsof the ratios Rr(γ) whi
h are relevant for the predi
tion formulae 
onsideredin the previous se
tions:

Rl(γ) =
e−γ

1 − a e−γ

l∑

r=0

[
a

(
l + 1

r

)
+ b

(
l

r

)]
(Rr(γ) · · ·Rl−1(γ))−1 .



12 A. JESSEN, T. MIKOSCH, AND G. SAMORODNITSKYThe latter re
ursion for Rl avoids the dire
t 
al
ulation of the large quantities
|L(l)(γ)|. 4. The asymptoti
 behavior of the predi
tion4.1. The behavior of Rk(γ) as k → ∞. In this subse
tion we study theasymptoti
 behavior of the predi
tors E(Sj+1 | N0 = n0, . . . ,Nj = nj),
j = 0, 1, . . ., when the number of payments N0 + · · ·+ Nj = n0 + · · · + nj =
k → ∞. The same dis
ussion will apply equally to the multi-step predi
tors
E(Sj+ℓ+1 | N0 = n0, . . . , Nj = nj), j, ℓ = 0, 1, . . .. In view of the results inTheorem 2.1 one needs to study the asymptoti
 behavior of the ratios Rk(γ)as k → ∞.The interest in the asymptoti
 behavior of Rk(γ) as k → ∞ is triggered,in parti
ular, by a 
omparison with Ma
k's pro
edure (1.2). The latterde
lares the predi
tor of Nj+ℓ+1 given N0, . . . ,Nj to be a linear fun
tionof k = N0 + · · · + Nj. In our setting, this predi
tor is a multiple of Rk(γ)whi
h has no reason to be linear. However, this observation does not ex
ludethe 
ase that the limit k−1Rk(γ) exists, is �nite and positive. In su
h 
ases
Rk(γ) would be approximately linear for large k, as in Ma
k's pro
edure.The following result yields a su�
ient 
ondition for asymptoti
 linearityof Rk(γ).Lemma 4.1. Assume that qm > 0 for m ≥ m0 and the limit

lim
m→∞

qm

qm−1
= e−τ ∈ (0, 1](4.1)exists. Then

lim
k→∞

Rk(γ)

k
=

1

γ + τ
.(4.2)Proof. Let ǫ ∈ (0, 1). We de
ompose (−1)kL(k)(γ) for �xed γ:

(−1)kL(k)(γ) =
( ∑

m<
k (1−ǫ)

γ+τ

+
∑

m∈
h

k (1−ǫ)
γ+τ

, k (1+ǫ)
γ+τ

i

+
∑

m>
k (1+ǫ)

γ+τ

)
mk qm e−γ m

= I1(ǫ) + I2(ǫ) + I3(ǫ) .We start by studying I3(ǫ). For m > k(1 + ǫ)/(γ + τ),
(m + 1)k e−(m+1)γ

mk e−m γ
= e−γ

(
1 + m−1

)k

≤ e−γ
((

1 + m−1
)m)γ+τ

1+ǫ ≤ e−γ+(γ+τ)/(1+ǫ) .Choose δ ∈ (0, ǫ/(1 + ǫ)). For k large enough, whi
h implies that m >
k(1 + ǫ)/(γ + τ) is large enough, we have in view of (4.1),

qm+1

qm
≤ e−τ (1−δ) .



PREDICTION OF OUTSTANDING PAYMENTS 13Combining these two bounds, we obtain
qm+1 (m + 1)k e−(m+1) γ

qm mk e−m γ
≤ e−γ+(γ+τ)/(1+ǫ)e−τ (1−δ) =: f(ǫ, δ) < 1 ,where we used the fa
t that δ ∈ (0, ǫ/(1 + ǫ)). Therefore for large k,(4.3) I3(ǫ) ≤

1

1 − f(ǫ, δ)
q⌈k(1+ǫ)/(γ+τ)⌉

⌈k(1 + ǫ)

γ + τ

⌉k
e
−

⌈
k(1+ǫ)/(γ+τ)

⌉
γ
.Further, for large k the index set in I2(ǫ) 
ontains the point [k/(γ + τ)].Therefore we obtain a lower bound, valid for large k:

I2(ǫ) ≥ q[k/(γ+τ)]

[ k

γ + τ

]k
e−γ [k/(γ+τ)] .(4.4)A 
ombination of (4.3) aud (4.4) yields

I3(ǫ)

I2(ǫ)
≤

1

1 − f(ǫ, δ)

q⌈k(1+ǫ)/(γ+τ)⌉

q[k/(γ+τ)]

(⌈k(1 + ǫ)/(γ + τ)⌉

[k/(γ + τ)]

)k

e−[⌈k(1+ǫ)/(γ+τ)⌉−[k/(γ+τ)]] γ .By virtue of (4.1), for small α ∈ (0, 1) and large k,
q⌈k(1+ǫ)/(γ+τ)⌉

q[k/(γ+τ)]
≤ e−τ(1−α) (⌈k(1+ǫ)/(γ+τ)⌉−[k/(γ+τ)])

≤ e−
(
τ/(γ+τ)

)
k (1−α) ǫ .Furthermore, for large k and some positive 
onstant c1,

(⌈k(1 + ǫ)/(γ + τ)⌉

[k/(γ + τ)]

)k
≤
(k(1 + ǫ)/(γ + τ) + 1

k/(γ + τ) − 1

)k

= (1 + ǫ)k
(
1 +

1

k(1 + ǫ)/(γ + τ)

)k(
1 −

1

k/(γ + τ)

)−k

≤ c1 (1 + ǫ)k .Finally,
e−[⌈k(1+ǫ)/(γ+τ)⌉−[k/(γ+τ)]] γ ≤ e−γ k ǫ/(γ+τ) .Colle
ting the above bounds and 
hoosing α su
h that

e ǫ(τ(1−α)+γ)/(γ+τ) > (1 + α)(1 + ǫ),we obtain, for some positive 
onstant c2,
I3(ǫ)

I2(ǫ)
≤ c2(1 + ǫ)k e−k ǫ (τ(1−α)+γ)/(γ+τ) ≤ c2

(
1

1 + α

)k

.Hen
e I3(ǫ) = o(I2(ǫ)) as k → ∞.



14 A. JESSEN, T. MIKOSCH, AND G. SAMORODNITSKYNext we turn to the estimation of I1(ǫ). On
e again, let δ ∈ (0, 1) be smalland 
hoose m0 so large that
qm+1

qm
≥ e−τ (1+δ)

(
1 +

1

m

)m

≥ e 1−δ , m ≥ m0 .(4.5)We further de
ompose I1(ǫ):
I1(ǫ) =

( ∑

m<m0

+
∑

m∈
h

m0,k 1−ǫ
γ+τ

”

)
mk qm e−γ m = I11(ǫ) + I12(ǫ) .Trivially, I11(ǫ) = o(I2(ǫ)) as k → ∞. For m ∈ [k, k(1− ǫ)/(γ + τ)) we haveby (4.5)

(
1 + m−1

)k
≥ e (k/m)(1−δ) ≥ e (γ+τ)(1−δ)/(1−ǫ) ,and, therefore,

qm+1 (m + 1)k e−(m+1) γ

qm mk e−m γ
≥ e−γ e−τ(1+δ) e−(γ+τ) (1−δ)/(1−ǫ) = g(ǫ, δ) > 1 ,if we 
hoose δ ∈ (0, 1) so small that (1 − δ)/(1 − ǫ) < 1 + δ. Therefore for klarge,

I12(ǫ) ≤
1

1 − (g(ǫ, δ))−1
q⌊k(1−ǫ)/(γ+τ)⌋

⌊k(1 − ǫ)

γ + τ

⌋k
e−⌊k(1−ǫ)/(γ+τ)⌋γ ,and an argument similar to the one above implies that I12(ǫ) = o(I2(ǫ)) as

k → ∞ for every ǫ ∈ (0, 1).We 
on
lude that for ǫ ∈ (0, 1), as k → ∞

Rk(γ) ∼

∑
m∈

h

k(1−ǫ)
γ+τ

,
k(1+ǫ)

γ+τ

i mk+1 qme−γ m

∑
m∈

h

k(1−ǫ)
γ+τ

,
k(1+ǫ)

γ+τ

i mk qme−γ m
∈

[
k(1 − ǫ)

γ + τ
,
k(1 + ǫ))

γ + τ

]
,and, hen
e, relation (4.2) is immediate. This 
on
ludes the proof. �In view of Lemma 4.1 and Theorem 2.1 we 
on
lude that, under suitable
onditions on the distribution of M , the predi
tor for Sj+1 given N0, . . . ,Njis asymptoti
ally linear.Corollary 4.2. Assume that EX11 < ∞ and that the distribution of Msatis�es 
ondition (4.1). Then, as n0 + · · · + nj → ∞,

E(Sj+1 | N0 = n0, . . . , Nj = nj) ∼
EX11 µ pj+1

τ + θj
(n0 + · · · + nj) .In the rest of this subse
tion we study the behavior of Rk(γ) for large kfor the distributions in the (a, b)-
lass introdu
ed in Se
tion 3.4.1.1. The negative binomial distribution. The negative binomial distributionis the only member of the (a, b)-
lass satisfying the 
ondition (4.1) with

e−τ = 1−p. Hen
e Corollary 4.2 applies. The asymptoti
ally linear behaviorof Rk(γ) is ni
ely illustrated in the right graph of Figure 4.3.
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Figure 4.3. The ratio Rk(2) for Poisson(200) distributed M (left) and fornegative binomial M with parameters p = 0.1, v = 12.1 (right).4.1.2. The binomial distribution. In this 
ase, it is 
lear that, as k → ∞,

Rk(γ) =

∑n
m=1(m/n)k m e−γ m qm∑n

m=1(m/n)k e−γ m qm
→ n .The same result holds for any distribution (qm)m=0,...,n, n ≥ 1, with qn > 0.In this 
ase, if EX11 < ∞, then, as n0 + · · · + nj → ∞,

E(Sj+1 | N0 = n0, . . . ,Nj = nj) → n EX11 µ pj+1 .4.1.3. The Poisson distribution. If M is Poisson(b) distributed, then
E(Mke−γM ) = e−b (1−e−γ)

∞∑

m=1

mk(b/e γ)m
1

m!
e−be −γ

, k ≥ 1 .Hen
e, the ratio Rk(γ) is equal to the ratio of the moments E(M ′)k+1/E(M ′)kfor some Poisson random variable M ′ with a di�erent mean, say, λ. In thesequel we study, therefore, the asymptoti
 behavior, as k → ∞, of su
h ra-tios. For simpli
ity, we use the notation EMk+1/EMk instead of the proper
E(M ′)k+1/E(M ′)k.The proof of the following lemma is similar to the proof of Lemma 4.1.We sket
h the argument.Lemma 4.4. Let M be Poisson(λ) distributed. Then, as k → ∞,

EMk+1

EMk
∼

k

log k
.(4.6)Proof. For ǫ ∈ (0, 1) we de
ompose EMk as

EMk =
( ∑

m<
k (1−ǫ)
log k

+
∑

m∈
h

k (1−ǫ)
log k

,
k (1+ǫ)
log k

i

+
∑

m>
k (1+ǫ)
log k

)
mk e−λ λm

m!
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= I1(ǫ) + I2(ǫ) + I3(ǫ) .Beginning with I3(ǫ), it is straightforward to 
he
k, using Stirling's formula,that

sup
m> k (1+ǫ)

log k

(m + 1)k λm+1/(m + 1)!

mk λm/m!
≤

λ log k

1 + ǫ
k−ǫ/(1+ǫ) → 0as k → ∞. Hen
e, as k → ∞,

I3(ǫ) =
(
1 + o(1)

)
(m+,ǫ

∗ )k e−λ λm+,ǫ
∗

(m+,ǫ
∗ )!

,where
m∗ = ⌊k/ log k⌋, m+,ǫ

∗ = ⌈(1 + ǫ)m∗⌉ .It is 
lear that for large k,
I2(ǫ) ≥ mk

∗ e−λ λm∗

m∗!
.Therefore, as k → ∞,

I3(ǫ)

I2(ǫ)
= e k (log(1+ǫ)−ǫ+o(1)) .Sin
e log(1 + ǫ) < ǫ, we 
on
lude that for every ǫ > 0,

I3(ǫ)

I2(ǫ)
→ 0 as k → ∞.Similarly, as k → ∞,

I1(ǫ) =
(
1 + o(1)

)
(m−,ǫ

∗ )k e−λ λm−,ǫ
∗

(m−,ǫ
∗ )!

,where
m−,ǫ

∗ = ⌊(1 − ǫ)m∗⌋ ,from whi
h it is easy to 
he
k that , as k → ∞,
I1(ǫ)

I2(ǫ)
= e k (log(1−ǫ)+ǫ+o(1)) .Sin
e − log(1 − ǫ) > ǫ for 0 < ǫ < 1, we 
on
lude that for every ǫ > 0,

I1(ǫ)

I2(ǫ)
→ 0 as k → ∞.That is, for every ǫ > 0,

EMk =
(
1 + o(1)

) ∑

m∈
h

k (1−ǫ)
log k

,
k (1+ǫ)
log k

i

mk e−λ λm

m!



PREDICTION OF OUTSTANDING PAYMENTS 17as k → ∞ and, hen
e,
EMk+1

EMk
=

(
1 + o(1)

)
∑

m∈
h

k (1−ǫ)
log k

, k (1+ǫ)
log k

i mk+1 e−λ λm

m!

∑
m∈

h

k (1−ǫ)
log k

,
k (1+ǫ)
log k

i mk e−λ λm

m!

∈

[(
1 + o(1)

)k (1 − ǫ)

log k
,
(
1 + o(1)

)k (1 + ǫ)

log k

]
.Hen
e the statement of the lemma. �Taking into a

ount Lemma 4.4 and the remark pre
eeding it, we 
on
ludethat, if M is Poisson(b) distributed, then, as n0 + · · · + nj → ∞,

E(Sj+1 | N0 = n0, . . . , Nj = nj) ∼ EX11 µ pj+1
n0 + · · · + nj

log
(
n0 + · · · + nj

) .The asymptoti
 behavior of Rk(γ) pres
ribed by (4.6) is ni
ely illustratedin the left graph of Figure 4.3.4.2. The behavior of Rk(γ) for large γ. When evaluating the ratio Rk(γ)numeri
ally, one observes a rather unusual phenomenon for large values of
γ: Rk(γ) os
illates rather strongly for moderately large values of k, whereasthis e�e
t gradually disappears when k be
omes even larger. For small valuesof γ this behavior 
annot be observed. A 
omputer graph of Rk(γ) whi
hexhibits this stair
ase-like behavior is illustrated in Figure 4.5. Below wegive a limit theorem explaining this phenomenon.
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Figure 4.5. The ratio Rk(100) for negative binomial M with parameters
p = 0.1 and v = 12.1.



18 A. JESSEN, T. MIKOSCH, AND G. SAMORODNITSKYAssume that
γ → ∞ , k = k(γ) and k/γ → t ∈ (0,∞) .(4.7)For t > 0 we 
onsider the stri
tly 
onvex fun
tion

ht(s) = s − t log s , s > 0 ,whi
h rea
hes its minimum at s = t. Therefore the sequen
e (ht(m))m=1,2,...rea
hes its minimum either at m = m−(t) = ⌊t⌋ if m−(t) ≥ 1 or at m =
m+(t) = ⌈t⌉, and it is possible that the values of ht at m−(t) and m+(t)
oin
ide. Let us assume that there exists a unique value m = m∗(t) at whi
h
ht is minimized. We have for k ≥ 1,

E(Mke−γ M ) = qm∗(t) (m∗(t))
k e−γ m∗(t) +

∑

m6=m∗(t)

mk e−γ m qm .By virtue of (4.7),
qm∗(t) (m∗(t))

k e−γ m∗(t) = qm∗(t) e−γ hk/γ(m∗(t))(4.8)
→ qm∗(t) e−γ ht(m∗(t)) .The assumption that the minimum of ht(m) is unique for a given t impliesthat the minimum of hu(m) is also unique for u in a small neighborhood of

t and a
hieved at m∗(t). Hen
e, for u su�
iently 
lose to t,
min

m6=m∗(t)
hu(m) = min

(
hu(m∗(t) − 1), hu(m∗(t) + 1)

)

→ min
(
ht(m∗ − 1), ht(m∗ + 1)

)
, u → t .(4.9)Therefore for γ su�
iently large,

∑

m6=m∗(t)

mk e−γ m qm =
∑

m6=m∗(t)

e−γ hk/γ(m) qm

≤ e−γ min(hk/γ(m∗(t)−1),hk/γ (m∗(t)+1)) .(4.10)It now follows from (4.8)�(4.10) that
E(Mke−γ M ) ∼ qm∗(t) (m∗(t))

k e−m∗(t) γ ,provided qm∗
(t) 6= 0, and, therefore, under assumption (4.7),

Rk(γ) → m∗(t) .(4.11)For j = 1, 2, . . ., let
aj = inf{t ≥ 0 : m∗(t) = j} =

1

log j − log(j − 1)
.Then aj < aj+1, and by relation (4.11) we obtain the following result.Proposition 4.6. For j = 1, 2, . . . let t ∈ (aj , aj+1) be su
h that qm∗

(t) 6= 0.If k and γ grow a

ording to (4.7), then
Rk(γ) → j .



PREDICTION OF OUTSTANDING PAYMENTS 19That is, if k and λ are large, and k/λ ∈ (aj , aj+1) for j that is not verylarge, then Rk(γ) will be 
lose to j. On
e again, this stair
ase-like behavioris neatly visible in Figure 4.5.5. Predi
tion in a non-life insuran
e data setIn this se
tion we 
onsider a non-life insuran
e data set whi
h was kindlyprovided to us by Alois Gisler. The business line is not known to us. Our aimis to study the performan
e of our predi
tors on this data set, given suitableassumptions on the distributions (qm) and (pj) and the Poisson parameter
µ. Moreover, we will 
ompare our predi
tors with those pres
ribed by the
hain ladder method under Ma
k's 
onditions; see Se
tion 1. We will fo
uson the predi
tion of the numbers of payments.Our data 
ontains 
laims that arrive in one year (1985) and the individualpayment pro
esses for ea
h 
laim, in
luding arrival date in 1985 and all datesand amounts of exe
uted payments. Overall, 7,302 
laims were in
urredwhi
h triggered 24,606 payments through more than 10 years. Sin
e wewant to 
ompare our method with the 
hain ladder predi
tion in Ma
k'sframework, one of the problems we are fa
ing is as follows. The 
hain laddermethod requires a run-o� triangle of data from di�erent years; see (1.3).These data are needed for the 
onstru
tion of the 
hain ladder estimators ofthe fa
tors fj in (1.2):

f̂j =

∑n−j−1
i=1

∑j+1
r=0 Ni,i+r∑n−j−1

i=1

∑j
r=0 Ni,i+r

,(5.1)where n is the number of years for whi
h the run-o� triangle is available.But we have only one year of 
laim arrivals at our disposal.We solve this problem by swit
hing from years to months. Then we have
n = 12 months of 
laim arrivals and the 
orresponding individual paymentpro
esses a

ounted for by months. Table 5.1 
ontains the monthly 
laimarrival numbers Mj , j = 1, . . . , 12, showing a 
lear seasonality in the data.

j 1 2 3 4 5 6 7 8 9 10 11 12
Mj 414 391 493 552 641 765 748 762 741 635 628 532

100 × pj 2.41 11.36 10.37 7.95 6.49 5.26 4.30 4.04 3.00 2.94 2.60 2.09Table 5.1. The monthly 
laim numbers Mj and the estimated probabilities
pj, j = 1, . . . , 12.Table 5.2 
ontains the payment numbers in run-o� triangle form. The ithrow 
ontains the payment numbers Nii, . . . ,Ni,12 for 
laims arriving in the
ith month and whose payments are exe
uted in month i + k ∈ {i, . . . , 12}.These data are supposed to be known (observed). For our data set, we alsoknow the �future� monthly payment numbers Ni,12+k, k ≥ 1, whi
h we wantto predi
t. They are presented in Table 5.3.In our model, we assume that the monthly 
laim numbers Mj, j =
1, . . . , 12, are Poisson distributed. Sin
e there is a 
lear seasonality in thedata we do not assume the Mj 's identi
ally distributed and simply take the
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Month 1 2 3 4 5 6 7 8 9 10 11 12

1 40 147 141 120 99 84 67 63 42 44 47 35

2 40 144 132 100 85 71 53 63 52 50 25

3 39 179 159 125 118 80 85 85 85 48

4 36 209 169 158 117 91 103 98 54

5 60 217 224 159 136 125 110 86

6 75 280 229 186 191 145 121

7 70 234 192 184 157 131

8 63 242 250 197 142

9 62 246 227 195

10 64 200 175

11 59 197

12 28Table 5.2. The run-o� triangle with the number of payments arising from
12 months of 
laim arrivals. The ith row 
ontains the observed paymentnumbers Nii, . . . , Ni,12.

Month 13 14 15 16 17 18 19 20 21 22 23

1

2 33

3 52 42

4 51 45 32

5 68 53 56 42

6 107 79 68 75 55

7 120 83 66 98 68 54

8 150 105 112 107 88 75 59

9 148 140 115 131 107 85 80 56

10 174 118 122 103 82 77 76 57 45

11 235 167 143 134 116 89 65 66 50 61

12 177 161 138 139 120 101 113 63 65 86 56Table 5.3. The �future� payment numbers 
orresponding to the observa-tions in Table 5.2. The ith row 
ontains the monthly payment numbers
Ni,13, . . . , Ni,12+i−1. These numbers have to be predi
ted.
Mj's themselves as surrogates of their expe
tations EMj . The Poisson as-sumption on the Mj 's is rather ad ho
, but we have only one data set, whi
hmakes it impossible to estimate the distributions of the Mj 's. In general,su
h estimation has to be done on histori
al data. We estimated both theaverage Poisson number of payments per 
laim, µ = 3.37, and the distribu-tion (pj) from the empiri
al distribution of the data. The observed values
Mj and estimated probabilities pj , j = 1, . . . , 12, are given in Table 5.1.In Table 5.4 we show the results of our predi
tion pro
edure. Sin
e weknow the values to be predi
ted (Table 5.3) we 
al
ulated the relative pre-di
tion error. The ith row in Table 5.4 shows the relative error in our pre-di
tion pro
edure for the values Ni,12+k, k = 1, . . . , i−1, based on the values
Nii, . . . , Ni,12. This predi
tion triangle has been 
hosen be
ause it is stan-dard to 
al
ulate it in this way for the 
hain ladder method. The relativeerrors �u
tuate wildly both in the negative and in the positive dire
tions.Reasons for these deviations are problems in 
hoosing the right distributionsfor (qm), (pj), but also the statisti
al un
ertainty when 
alibrating the modelfrom a single data set. In addition, one may not expe
t mira
les from mean
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Month 13 14 15 16 17 18 19 20 21 22 23

1

2 −11.6

3 −0.8 0.7

4 −29.8 −33.0 −48.9

5 −32.9 −56.1 −33.6 −41.9

6 −2.4 −7.9 −14.8 5.9 −2.2

7 −1.8 −36.5 −33.5 17.7 −7.3 −7.6

8 6.0 −15.6 −0.5 18.2 8.9 3.3 2.2

9 0.4 7.9 3.5 21.5 25.2 13.8 17.2 5.8

10 14.1 −6.1 10.3 8.5 −6.5 11.7 18.1 1.3 0.5

11 17.1 3.2 5.4 11.7 12.2 −6.1 −13.0 −1.9 −21.6 20.6

12 −4.0 −6.1 −2.7 14.7 13.6 11.6 26.7 −2.2 9.3 38.0 24.2Table 5.4. Relative predi
tion error in % for our method. These values are
al
ulated by usig the observations given in Tables 5.2 and 5.3.
Month 13 14 15 16 17 18 19 20 21 22 23

1

2 3.4

3 17.9 2.5

4 −13.3 −6.5 −28.4

5 −13.8 −22.0 0.7 −18.7

6 −11.2 −17.0 −17.1 11.8 −11.7

7 8.3 −21.7 −21.1 35.9 15.3 −1.4

8 14.3 −10.5 −0.2 20.8 15.2 20.1 1.7

9 −6.9 7.3 −1.4 17.4 21.5 11.9 28.8 −2.9

10 14.3 −8.3 15.4 9.0 −9.3 7.9 23.6 13.3 −3.7

11 28.0 9.5 11.0 26.6 22.6 −1.6 −9.0 7.2 −0.7 30.4

12 67.5 68.0 73.3 106.5 117.1 104.4 139.1 68.9 10.21 227.0 129.2Table 5.5. Relative predi
tion errors in % for the 
hain ladder method.These values are 
al
ulated by usig the observations given in Tables 5.2and 5.3.square predi
tions in the presen
e of distributions whi
h are far away fromthe Gaussian.In the left 
olumn of Figure 5.6 we show the performan
e of our predi
tionpro
edure in two di�erent situations. In the top graph we are in the situationof the 11th line of Tables 5.2 and 5.3. We predi
t the payments numbers for
laims arriving in the 11th month. Two payment numbers have already beenobserved from whi
h the payment numbers for months 13-22 get predi
ted(solid lines). The dots indi
ate the observed payment numbers and thethe bands around the predi
tions represent ±1.96 times the square of the
onditional predi
tion error given in Theorem 2.5. In the bottom graph weare in the situation of the 7th line in Tables 5.2 and 5.3. We predi
t thepayment numbers arising from 
laims in the 7th month. Six payment havealready been observed from whi
h the payment numbers for months 13-18get predi
ted.Our predi
tions are 
ompared with those pres
ribed by the 
hain laddermethod under Ma
k's 
ondition (1.2). Using the previous notation and the
hain ladder estimator given in (5.1), the 
hain ladder predi
tors Ñi,12+k of
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Ni,12+k are then given by
Ñi,12+k = (f̂12−i+k−1 − 1)f̂12−i+k−2 · · · f̂12−i (Nii + · · · + Ni,12) , k = 1, 2, . . . .The form of these predi
tors is suggested by multiple use of Ma
k's 
ondition(1.2):

E(Ni,12+k | Nii, . . . , Ni,12)

= E
(
E(Ni,12+k | Nii, . . . ,Ni,12+k−1) | Nii, . . . ,Ni,12

)

= (f12−i+k−1 − 1)E(Nii + · · · + Ni,12+k−1 | Nii, . . . ,Ni,12)

= (f12−i+k−1 − 1)f12−i+k−2E(Nii + · · · + Ni,12+k−2 | Nii, . . . ,Ni,12)

= (f12−i+k−1 − 1)f12−i+k−2 · · · f12−i(Nii + · · · + Ni,12) .The quantity Ñi,12+k is then obtained by repla
ing the f -fa
tors by their
f̂ -estimators.In Table 5.5 the relative predi
tion errors of the 
hain ladder predi
tors
Ñi,12+k, k = 1, . . . , 12− i+1, are 
al
ulated from Tables 5.2 and 5.3. Again,the relative predi
ition errors �u
tuate wildly in the positive and negativedire
tions. A 
omparison with Table 5.4 shows that none of the two methodsseems to outperform the other one, with the ex
eption of the last row inTable 5.5 whi
h is far from the true payment values. It is even impossibleto say in whi
h regions of the Tables 5.4 or 5.5 one or the other method hassome advantages.In the right 
olumn of Figure 5.6 we show the 
hain ladder predi
tion forthe same situations as in the left 
olumn. Again, a dire
t 
omparison seemsdi�
ult although the error bands in the 
hain ladder 
ase seem to be largerthan for our method. In the right 
olumn, the bands around the predi
tionsindi
ate ±1.96 times the square of the 
onditional predi
tion error given atthe bottom of p. 363 in Ma
k [5℄.If we assume Mj Poisson distributed, Lemma 4.4 shows that the mainassumption of the 
hain ladder approa
h, i.e., linearity of the 
onditionalexpe
tation in (1.2), is not satis�ed even in an asymptoti
 sense. Given thefa
t that only 12 months of 
laim arrivals and the 
orresponding paymentstreams were available, the hypothesis about the Poisson distribution of Mj
annot be veri�ed. Despite all these short
omings, our study of real-lifedata 
learly shows that our predi
tion method is not worse than the 
hainladder predi
tion as regards 
loseness to the real-life payment numbers andmagnitude of the 
onditional predi
tion errors.For the three distributions of the (a, b)-
lass our predi
tion method iseasily implemented by using standard software. When taking into a

ountRemark 3.4, one gets qui
k numeri
al answers to the predi
tion problem.Noti
e that the distributions in the (a, b)-
lass are the most frequently usedones in appli
ations. Our model requires knowledge of the distributions (qm),
(pj) and the Poisson parameter µ. These quantities are easy to estimate ifdata from di�erent periods are available.
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Figure 5.6. Predi
tions (solid ines) of monthly payment numbers by usingthe theory in Se
tion 2.2 (left graphs) and the 
hain ladder approa
h (rightgraphs). The dots represent the payment numbers of the real-life data. Thebands around the predi
tions represent ±1.96 times the square of the 
on-ditional predi
tion errors. The top graphs 
orrespond to the 11th row inTables 5.2 and 5.3, the bottom ones to the 7th row.The theoreti
al and empiri
al results of this paper show that it is worth-while 
onsidering a sto
hasti
 pro
ess for modeling the dynami
s in a non-lifeinsuran
e portfolio. Even if one does not have enough information about allingredients of the model, our sto
hasti
 model allows one to get exa
t pre-di
tions of future payments. Moreover, this model 
an easily be simulated.
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REGULARLY VARYING FUNCTIONS

Anders Hedegaard Jessen and Thomas Mikosch

In memoriam Tatjana Ostrogorski.

Abstract. We consider some elementary functions of the components of a
regularly varying random vector such as linear combinations, products, min-
ima, maxima, order statistics, powers. We give conditions under which these
functions are again regularly varying, possibly with a different index.

1. Introduction

Regular variation is one of the basic concepts which appears in a natural way
in different contexts of applied probability theory. Feller’s [21] monograph has
certainly contributed to the propagation of regular variation in the context of limit
theory for sums of iid random variables. Resnick [50, 51, 52] popularized the notion
of multivariate regular variation for multivariate extreme value theory. Bingham
et al. [3] is an encyclopedia where one finds many analytical results related to
one-dimensional regular variation. Kesten [28] and Goldie [22] studied regular
variation of the stationary solution to a stochastic recurrence equation. These
results find natural applications in financial time series analysis, see Basrak et al.
[2] and Mikosch [39]. Recently, regular variation has become one of the key notions
for modelling the behavior of large telecommunications networks, see e.g. Leland
et al. [35], Heath et al. [23], Mikosch et al. [40].

It is the aim of this paper to review some known results on basic functions
acting on regularly varying random variables and random vectors such as sums,
products, linear combinations, maxima and minima, and powers. These results
are often useful in applications related to time series analysis, risk management,
insurance and telecommunications. Most of the results belong to the folklore but
they are often wide spread over the literature and not always easily accessible. We
will give references whenever we are aware of a proved result and give proofs if this
is not the case.
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We focus on functions of finitely many regularly varying random variables.
With a few exceptions (the tail of the marginal distribution of a linear process,
functionals with a random index) we will not consider results where an increasing
or an infinite number of such random variables or vectors is involved. We exclude
distributional limit results e.g. for partial sums and maxima of iid and strictly
stationary sequences, tail probabilities of subadditive functionals acting on a regu-
larly varying random walk (e.g. ruin probabilities) and heavy-tailed large deviation
results, tails of solutions to stochastic recurrence equations.

We start by introducing the notion of a multivariate regularly varying vector in
Section 2. Then we will consider sum-type functionals of regularly varying vectors
in Section 3. Functionals of product-type are considered in Section 4. In Section 5
we finally study order statistics and powers.

2. Regularly varying random vectors

In what follows, we will often need the notion of a regularly varying random
vector and its properties; we refer to Resnick [50] and [51, Section 5.4.2]. This
notion was further developed by Tatjana Ostrogorski in a series of papers, see
[42, 43, 44, 45, 46, 47].

Definition 2.1. An R
d-valued random vector X and its distribution are said

to be regularly varying with limiting non-null Radon measure µ on the Borel σ-field
B(R

d

0) of R
d

0 = R
d

� {0} if

(2.1)
P (x−1X ∈ ·)
P (|X| > x)

v→ µ , x→ ∞ .

Here | · | is any norm in R
d and v→ refers to vague convergence on B(R

d

0).

Since µ necessarily has the property µ(tA) = t−αµ(A), t > 0, for some α > 0
and all Borel sets A in R

d

0, we say that X is regularly varying with index α and
limiting measure µ, for short X ∈ RV(α, µ). If the limit measure µ is irrelevant we
also write X ∈ RV(α). Relation (2.1) is often used in different equivalent disguises.
It is equivalent to the sequential definition of regular variation: there exist cn → ∞
such that nP (c−1

n X ∈ ·) v→ µ . One can always choose (cn) increasing and such
that nP (|X| > cn) ∼ 1. Another aspect of regular variation can be seen if one
switches in (2.1) to a polar coordinate representation. Writing x̃ = x/|x| for any
x �= 0 and S

d−1 = {x ∈ R
d : |x| = 1} for the unit sphere in R

d, relation (2.1) is
equivalent to

(2.2)
P (|X| > x t , X̃ ∈ ·)

P (|X| > x)
w→ t−α P (Θ ∈ ·) for all t > 0,

where Θ is a random vector assuming values in S
d−1 and w→ refers to weak conver-

gence on the Borel σ-field of S
d−1.

Plugging the set S
d−1 into (2.2), it is straightforward that the norm |X| is

regularly varying with index α.
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The special case d = 1 refers to a regularly varying random variable X with
index α � 0:

(2.3) P (X > x) ∼ p x−α L(x) and P (X � −x) ∼ q x−α L(x), p+ q = 1,

where L is a slowly varying function, i.e., L(cx)/L(x) → 1 as x → ∞ for every
c > 0. Condition (2.3) is also referred to as a tail balance condition. The cases
p = 0 or q = 0 are not excluded. Here and in what follows we write f(x) ∼ g(x) as
x → ∞ if f(x)/g(x) → 1 or, if g(x) = 0, we interpret this asymptotic relation as
f(x) = o(1).

3. Sum-type functions

3.1. Partial sums of random variables. Consider regularly varying ran-
dom variables X1,X2, . . ., possibly with different indices. We write

Sn = X1 + · · · +Xn, n � 1,

for the partial sums. In what follows, we write G = 1 − G for the right tail of a
distribution function G on R.

Lemma 3.1. Assume |X1| is regularly varying with index α � 0 and distribution
function F . Assume X1, . . . , Xn are random variables satisfying

(3.1) lim
x→∞

P (Xi > x)
F (x)

= c+i and lim
x→∞

P (Xi � −x)
F (x)

= c−i , i = 1, . . . , n ,

for some non-negative numbers c±i and

lim
x→∞

P (Xi > x ,Xj > x)
F (x)

= lim
x→∞

P (Xi � −x ,Xj > x)
F (x)

= lim
x→∞

P (Xi � −x ,Xj � −x)
F (x)

= 0 , i �= j .(3.2)

Then

lim
x→∞

P (Sn > x)
F (x)

= c+1 + · · · + c+n and lim
x→∞

P (Sn � −x)
F (x)

= c−1 + · · · + c−n .

In particular, if the Xi’s are independent non-negative regularly varying random
variables then

(3.3) P (Sn > x) ∼ P (X1 > x) + · · · + P (Xn > x) .

The proof of (3.3) can be found in Feller [21, p. 278], cf. Embrechts et al.
[18, Lemma 1.3.1]. The general case of possibly dependent non-negative Xi’s was
proved in Davis and Resnick [14, Lemma 2.1]; the extension to general Xi’s follows
along the lines of the proof in [14]. Generalizations to the multivariate case are
given in Section 3.6 below.

The conditions in Lemma 3.1 are sharp in the sense that they cannot be sub-
stantially improved. A condition like (3.1) with not all c±i ’s vanishing is needed
in order to ensure that at least one summand Xi is regularly varying. Condition
(3.2) is a so-called asymptotic independence condition. It cannot be avoided as the
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trivial example X2 = −X1 for a regularly varying X1 shows. Then (3.1) holds but
(3.2) does not and S2 = 0 a.s.

A partial converse follows from Embrechts et al. [17].

Lemma 3.2. Assume Sn = X1 + · · ·+Xn is regularly varying with index α � 0
and Xi are iid non-negative. Then the Xi’s are regularly varying with index α and

(3.4) P (Sn > x) ∼ nP (X1 > x) , n � 1 .

Relation (3.4) can be taken as the definition of a subexponential distribution.
The class of those distributions is larger than the class of regularly varying distri-
butions, see Embrechts et al. [18, Sections 1.3, 1.4 and Appendix A3]. Lemma 3.2
remains valid for subexponential distributions in the sense that subexponentiality
of Sn implies subexponentiality of X1. This property is referred to as convolution
root closure of subexponential distributions.

Proof. Since Sn is regularly varying it is subexponential. Then the regular
variation of Xi follows from the convolution root closure of subexponential dis-
tributions, see Proposition A3.18 in Embrechts et al. [18]. Relation (3.4) is a
consequence of (3.3). �

An alternative proof is presented in the proof of Proposition 4.8 in Faÿ et
al. [20]. It strongly depends on the regular variation of the Xi’s: Karamata’s
Tauberian theorem (see Feller [21, XIII, Section 5]) is used.

In general, one cannot conclude from regular variation ofX+Y for independent
X and Y that X and Y are regularly varying. For example, if X+Y has a Cauchy
distribution, in particular X + Y ∈ RV(1), then X can be chosen Poisson, see
Theorem 6.3.1 on p. 71 in Lukacs [37]. It follows from Lemma 3.12 below that
Y ∈ RV(1).

3.2. Weighted sums of iid regularly varying random variables. We
assume that (Zi) is an iid sequence of regularly varying random variables with
index α � 0 and tail balance condition (2.3) (applied to X = Zi). Then it follows
from Lemma 3.1 that for any real constants ψi

P (ψ1 Z1 + · · · + ψm Zm > x) ∼ P (ψ1 Z1 > x) + · · · + P (ψm Z1 > x) .

Then evaluating P (ψi Z1 > x) = P (ψ+
i Z

+
i > x) + P (ψ−

i Z
−
i > x) , where x± =

0∨ (±x) we conclude the following result which can be found in various books, e.g.
Embrechts et al. [18, Lemma A3.26].

Lemma 3.3. Let (Zi) be an iid sequence of regularly varying random variables
satisfying the tail balance condition (2.3). Then for any real constants ψi and
m � 1,

(3.5) P (ψ1 Z1 + · · · + ψm Zm > x) ∼ P (|Z1| > x)
m∑

i=1

[
p (ψ+

i )α + q (ψ−
i )α

]
.

The converse of Lemma 3.3 is in general incorrect, i.e., regular variation of
ψ1 Z1 + · · · + ψm Zm with index α > 0 for an iid sequence (Zi) does in general
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not imply regular variation of Z1, an exception being the case m = 2 with ψi > 0,
Zi � 0 a.s., i = 1, 2, cf. Jacobsen et al. [27].

3.3. Infinite series of weighted iid regularly varying random vari-
ables. The question about the tail behavior of an infinite series

(3.6) X =
∞∑

i=0

ψjZj

for an iid sequence (Zi) of regularly varying random variables with index α > 0
and real weights occurs for example in the context of extreme value theory for
linear processes, including ARMA and FARIMA processes, see Davis and Resnick
[11, 12, 13], Klüppelberg and Mikosch [29, 30, 31], cf. Brockwell and Davis
[5, Section 13.3], Resnick [51, Section 4.5], Embrechts et al. [18, Section 5.5 and
Chapter 7].

The problem about the regular variation of X is only reasonably posed if the
infinite series (3.6) converges a.s. Necessary and sufficient conditions are given
by Kolmogorov’s 3-series theorem, cf. Petrov [48, 49]. For example, if α > 2
(then var(Zi) < ∞), the conditions E(Z1) = 0 and

∑
i ψ

2
i < ∞ are necessary and

sufficient for the a.s. convergence of X.
The following conditions from Mikosch and Samorodnitsky [41] are best pos-

sible in the sense that the conditions on (ψi) coincide with or are close to the con-
ditions in the 3-series theorem. Similar results, partly under stronger conditions,
can be found in Lemma 4.24 of Resnick [51] for α � 1 (attributed to Cline [7, 8]),
Theorem 2.2 in Kokoszka and Taqqu [32] for α ∈ (1, 2).

Lemma 3.4. Let (Zi) be an iid sequence of regularly varying random variables
with index α > 0 which satisfy the tail balance condition (2.3). Let (ψi) be a
sequence of real weights. Assume that one of the following conditions holds:

(1) α > 2, E(Z1) = 0 and
∑∞

i=0 ψ
2
i <∞.

(2) α ∈ (1, 2], E(Z1) = 0 and
∑∞

i=0 |ψi|α−ε <∞ for some ε > 0.
(3) α ∈ (0, 1] and

∑∞
i=0 |ψi|α−ε <∞ for some ε > 0.

Then

(3.7) P (X > x) ∼ P (|Z1| > x)
∞∑

i=0

[
p (ψ+

i )α + q (ψ−
i )α

]
.

The conditions on (ψj) in the case α ∈ (0, 2] can be slightly relaxed if one knows
more about the slowly varying L. In this case the following result from Mikosch
and Samorodnitsky [41] holds.

Lemma 3.5. Let (Zi) be an iid sequence of regularly varying random variables
with index α ∈ (0, 2] which satisfy the tail balance condition (2.3). Assume that∑∞

i=1 |ψi|α < ∞, that the infinite series (3.6) converges a.s. and that one of the
following conditions holds:

(1) There exist constants c, x0 > 0 such that L(x2) � cL(x1) for all x0 <
x1 < x2.
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(2) There exist constants c, x0 > 0 such that L(x1 x2) � cL(x1)L(x2) for all
x1, x2 � x0 > 0

Then (3.7) holds.

Condition (2) holds for Pareto-like tails P (Z1 > x) ∼ c x−α, in particular for
α-stable random variables Zi and for student distributed Zi’s with α degrees of
freedom. It is also satisfied for L(x) = (logk x)β , any real β, where logk is the kth
time iterated logarithm.

Classical time series analysis deals with the strictly stationary linear processes

Xn =
∞∑

i=0

ψi Zn−i , n ∈ Z ,

where (Zi) is an iid white noise sequence, cf. Brockwell and Davis [5]. In the case
of regularly varying Zi’s with α > 2, var(Z1) and var(X1) are finite and there-
fore it makes sense to define the autocovariance function γX(h) = cov(X0,Xh) =
var(Z1)

∑
i ψiψi+|h|, h ∈ Z. The condition

∑
i ψ

2
i < ∞ (which is necessary for the

a.s. convergence of Xn) does not only capture short range dependent sequences
(such as ARMA processes for which γX(h) decays exponentially fast to zero) but
also long range dependent sequences (Xn) in the sense that

∑
h |γX(h)| = ∞.

Thus Lemma 3.4 also covers long range dependent sequences. The latter class in-
cludes fractional ARIMA processes; cf. Brockwell and Davis [5, Section 13.2], and
Samorodnitsky and Taqqu [56].

Notice that (3.7) is the direct analog of (3.5) for the truncated series. The
proof of (3.7) is based on (3.5) and the fact that the remainder term

∑∞
i=m+1 ψi Zi

is negligible compared to P (|Z1| > x) when first letting x→ ∞ and then m→ ∞.
More generally, the following result holds:

Lemma 3.6. Let A be a random variable and let Z be positive regularly varying
random variable with index α � 0. Assume that for every m � 0 there exist finite
positive constants cm > 0, random variables Am and Bm such that the representa-
tion A

d= Am +Bm holds and the following three conditions are satisfied:

P (Am > x) ∼ cm P (Z > x) , as x→ ∞ ,

cm → c0 , as m→ ∞ ,

lim
m→∞ lim sup

x→∞
P (Bm > x)
P (Z > x)

= 0 and Am, Bm are independent for every m � 1 or

lim
m→∞ lim sup

x→∞
P (|Bm| > x)
P (Z > x)

= 0 .

Then P (A > x) ∼ c0 P (Z > x).

Proof. For every m � 1 and ε ∈ (0, 1).

P (A > x) � P (Am > x(1 − ε)) + P (Bm > εx) .
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Hence

lim sup
x→∞

P (A > x)
P (Z > x)

� lim sup
x→∞

P (Am > x(1 − ε))
P (Z > x)

+ lim sup
x→∞

P (Bm > εx)
P (Z > x)

= cm (1 − ε)−α + ε−α lim sup
x→∞

P (Bm > εx)
P (Z > εx)

→ c0 (1 − ε)−α as m→ ∞
→ c0 as ε ↓ 0.

Similarly, for independent Am and Bm,

lim inf
x→∞

P (A > x)
P (Z > x)

� lim inf
x→∞

P (Am > x (1 + ε) , Bm � −ε x)
P (Z > x)

= lim inf
x→∞

P (Am > x (1 + ε))
P (Z > x)

P (Bm � −ε x)

= cm (1 + ε)−α → c0 , as m→ ∞, ε ↓ 0.

If Am and Bm are not necessarily independent a similar bound yields

lim inf
x→∞

P (A > x)
P (Z > x)

� lim inf
x→∞

P (Am > x (1 + ε) , |Bm| � ε x)
P (Z > x)

� lim inf
x→∞

P (Am > x (1 + ε))
P (Z > x)

− lim sup
x→∞

P (|Bm| > εx)
P (Z > x)

= cm (1 + ε)−α → c0 , as m→ ∞, ε ↓ 0.

Combining the upper and lower bounds, we arrive at the desired result. �

We also mention that Resnick and Willekens [53] study the tails of the infinite
series

∑
i Ai Zi, where (Ai) is an iid sequence of random matrices, independent of

the iid sequence (Zi) of regularly varying vectors Zi.

3.4. Random sums. We consider an iid sequence (Xi) of non-negative ran-
dom variables, independent of the integer-valued non-negative random variable K.
Depending on the distributional tails of K and X1, one gets rather different tail
behavior for the random sum SK =

∑K
i=1Xi . The following results are taken from

Faÿ et al. [20].

Lemma 3.7. (1) Assume X1 is regularly varying with index α > 0, EK < ∞
and P (K > x) = o(P (X1 > x)). Then, as x→ ∞,

(3.8) P (SK > x) ∼ EK P (X1 > x) .

(2) Assume K is regularly varying with index β � 0. If β = 1, assume that
EK < ∞. Moreover, let (Xi) be an iid sequence such that E(X1) < ∞ and
P (X1 > x) = o(P (K > x)). Then, as x→ ∞,

(3.9) P (SK > x) ∼ P (K > (E(X1))−1 x) ∼ (E(X1))β P (K > x) .

(3) Assume SK is regularly varying with index α > 0 and E(K1∨(α+δ)) < ∞
for some positive δ. Then X1 is regularly varying with index α and P (SK > x) ∼
EK P (X1 > x).
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(4) Assume SK is regularly varying with index α > 0. Suppose that E(X1) <∞
and P (X1 > x) = o(P (SK > x)) as x → ∞. In the case α = 1 and E(SK) = ∞,
assume that xP (X1 > x) = o(P (SK > x)) as x→ ∞. Then K is regularly varying
with index α and

P (SK > x) ∼ (E(X1))α P (K > x) .

(5) Assume P (K > x) ∼ c P (X1 > x) for some c > 0, that X1 is regularly
varying with index α � 1 and E(X1) <∞. Then

P (SK > x) ∼ (EK + c (E(X1))α)P (X1 > x) .

Relations (3) and (4) are the partial converses of the corresponding relations
(1) and (2). The law of large numbers stands behind the form of relation (3.9),
whereas relation (3.8) is expected from the results in Section 3.1.

Relations of type (3.8) appear in a natural way in risk and queuing theory when
the summands Xi are subexponential and K has a moment generating function in
some neighborhood of the origin, see for example the proof of the Cramér-Lundberg
ruin bound in Section 1.4 of Embrechts et al. [18].

For α ∈ (0, 2) some of the results in Lemma 3.7 can already be found in
Resnick [50] and even in the earlier papers by Stam [57], Embrechts and Omey
[19]. The restriction to α < 2 is due to the fact that some of the proofs depend
on the equivalence between regular variation and membership in the domain of
attraction of infinite variance stable distributions. Resnick [50] also extends some
of his results to the case when K is a stopping time.

In the following example the assumptions of Lemma 3.7 are not necessarily
satisfied. Assume (Xi) is a sequence of iid positive α-stable random variables for
some α < 1. Then SK

d= K1/αX1 and P (X1 > x) ∼ c x−α for some c > 0; cf.
Feller [21] or Samorodnitsky and Taqqu [56]. If EK < ∞ then Breiman’s result
(see Lemma 4.2 below) yields P (SK > x) ∼ EKP (X > x) in agreement with (3.8).
If EK = ∞ we have to consider different possibilities. If K is regularly varying
with index 1, then K1/α ∈ RV(α). Then we are in the situation of Lemma 4.2
below and SK is regularly varying with index α. If we assume that K ∈ RV(β)
for some β < 1, then K1/α ∈ RV(βα) and the results of Lemma 4.2 ensure that
P (SK > x) ∼ E(Xαβ)P (K1/α > x).

The latter result can be extended by using a Tauberian argument.

Lemma 3.8. Assume that K,X1 > 0 are regularly varying with indices β ∈ [0, 1)
and α ∈ [0, 1), respectively. Then

P (SK > x) ∼ P (K > [P (X > x)]−1) ∼ P (MK > x) ,

where Mn = maxi=1,...,nXi.

Proof. By Karamata’s Tauberian theorem (see Feller [21, XIII, Section 5])
1−E(e−sK) ∼ sβLK(1/s) as s ↓ 0 provided that P (K > x) = x−βLK(x) for some
slowly varying function L. In the same way, 1 − E(e−tX1) ∼ tαLX(1/t) as t ↓ 0.
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Then

1 − E(e−t SK ) = 1 − E
(
exp

{
K log

(
E

(
e−t X1

))})

∼ [− log
(
E

(
e−t X1

))]β
LK(1/[− log

(
E

(
e−t X1

))
])

∼ [
1 − E

(
e−t X1

)]β
LK

(
1/

[
1 − E

(
e−t X1

)])

∼ [tαLX(1/t)]βLK([tαLX(1/t)]−1)

= tαβL(1/t) ,

where L(x) = Lβ
X(x)LK(xα/LX(x)) is a slowly varying function. Again by Kara-

mata’s Tauberian theorem, P (SK > x) ∼ x−α β L(x) . Notice that the right-hand
side is equivalent to the tail P (K > [P (X1 > x)]−1) ∼ P (MK > x). The latter
equivalence follows from (5.1) below. �

3.5. Linear combinations of a regularly varying random vector. As-
sume X ∈ RV(α, µ) and let c ∈ R

d, c �= 0, be a constant. The set Ac = {x :
c′x > 1} is bounded away from zero and µ(∂Ac) = 0. Indeed, it follows from the
scaling property of µ that µ({x : c′x = y}) = y−α µ({x : c′x = 1}), y > 0. If
µ({x : c′x = 1}) > 0 this would contradict the finiteness of µ(Ac).

Therefore, from (2.1),

P (x−1X ∈ Ac)
P (|X| > x)

=
P (c′X > x)
P (|X| > x)

→ µ(Ac) .

We conclude the following, see also Resnick [52], Section 7.3.

Lemma 3.9. For c ∈ R, c �= 0, c′X is regularly varying with index α if µ(Ac) �=
0. In general,

P (c′X > x)
P (|X| > x)

→ µ({x : c′x > 1}) ,
where the right-hand side possibly vanishes. In particular, if µ({x : c′ix > 1}) > 0
for the basis vector ci = (0, . . . , 0, 1, 0, . . . , 0)′ with 1 in the ith component then
(Xi)+ is regularly varying with index α.

A natural question arises: given that

(3.10)
P (c′X > x)
L(x)x−α

= C(c) for all c �= 0 and C(c) �= 0 for at least one c

holds for some function C, is then X regularly varying in the sense of Definition 2.1?
This would yield a Cramér–Wold device analog for regularly varying random vec-
tors.

The answer to this question is not obvious. Here are some partial answers. The
first three statements can be found in Basrak et al. [1], the last statements are due
to Hult and Lindskog [26]. Statement (5) was already mentioned (without proof)
in Kesten [28].

Lemma 3.10. (1) (3.10) implies that X is regularly varying with a unique spec-
tral measure if α is not an integer.
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(2) (3.10) when restricted to c ∈ [0,∞)d
� {0} implies that X is regularly

varying with a unique spectral measure if X has non-negative components and α is
positive and not an integer,

(3) (3.10) implies that X is regularly varying with a unique spectral measure if
X has non-negative components and α is an odd integer.

(4) (1) and (2) cannot be extended to integer α without additional assumptions
on the distribution of X. There exist regularly varying X1 and X2 both satisfying
(3.10) with the same function C but having different spectral measures.

(5) For integer α > 0, there exist non-regularly varying X satisfying (3.10).

3.6. Multivariate extensions. In this section we assume that X1 and X2 are
random vectors with values in R

d. The following result due to Hult and Lindskog
[24], see also Resnick [52, Section 7.3], yields an extension of Lemma 3.1 to regularly
varying vectors.

Lemma 3.11. Assume that X1 and X2 are independent regularly varying such
that nP (c−1

n Xi ∈) v→ µi, i = 1, 2, for some sequence cn → ∞ and Radon measures
µi, i = 1, 2. Then X1 + X2 is regularly varying and nP (c−1

n (X1 + X2) ∈ ·) v→
µ1 + µ2.

The following lemma is often useful.

Lemma 3.12. Assume X1 ∈ RV(α, µ) and P (|X2| > x) = o(P (|X1| > x)) as
x→ ∞. Then X1 + X2 ∈ RV(α, µ).

Proof. It suffices to show that

(3.11) P (x−1(X1 + X2) ∈ A) ∼ P (x−1X1 ∈ A) ,

where A is any rectangle in R
d bounded away from zero. The latter class of sets

generates vague convergence in B(R
d

0) and satisfies µ(∂A) = 0. Assume that A =
[a,b] = {x : a � x � b} for two vectors a < b, where <, � are defined in the
natural componentwise way. Write a±ε = (a1 ± ε, · · · , ad ± ε) and define b±ε

correspondingly. Define the rectangles A−ε = [a−ε,bε] and Aε = [aε,b−ε] in the
same way as A. For small ε these sets are not empty, bounded away from zero and
Aε ⊂ A ⊂ A−ε.

For small ε > 0,

P (x−1(X1 + X2) ∈ A)

= P (x−1(X1 + X2) ∈ A , x−1|X2| > ε) + P (x−1(X1 + X2) ∈ A , x−1|X2| � ε)

� P (|X2| > xε) + P (x−1X1 ∈ A−ε) .

Then

lim sup
x→∞

P (x−1(X1+X2) ∈ A)
P (|X1| > x)

� lim sup
x→∞

P (|X2| > xε)
P (|X1| > x)

+ lim sup
x→∞

P (x−1X1 ∈ A−ε)
P (|X1| > x)

= µ(A−ε) ↓ µ(A) as ε ↓ 0.
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In the last step we used that A is a µ-continuity set. Similarly,

P (x−1(X1 + X2) ∈ A) � P (x−1X1 ∈ Aε , x−1|X2| � ε)

� P (x−1X1 ∈ Aε) − P (|X2| > εx) .

Then

lim inf
x→∞

P (x−1(X1 + X2) ∈ A)
P (|X1| > x)

� lim inf
x→∞

P (x−1X1 ∈ Aε)
P (|X1| > x)

= µ(Aε) ↑ µ(A) as ε ↓ 0.

In the last step we again used that A is a µ-continuity set.
Now collecting the upper and lower bounds, we arrive at the desired relation

(3.11). �

4. Product-type functions

Products are more complicated objects than sums. Their asymptotic tail be-
havior crucially depends on which tail of the factors in the product dominates. If
the factors have similar tail behavior the results become more complicated.

Assume for the moment d = 2. The set A = {x : x1 x2 > 1} is bounded away
from zero and therefore regular variation of X implies that the limit

P (X1X2 > x2)
P (|X| > x)

=
P (x−1(X1,X2) ∈ A)

P (|X| > x)
→ µ(A)

exists. However, the quantity µ(A) can be rather non-informative, for example, in
the two extreme cases: X = (X,X) for a non-negative regularly varying X with
index α and X = (X1,X2), where X1 and X2 are independent copies of X. In the
former case, with the max-norm | · |, µ(A) = 1, and in the latter case µ(A) = 0
since µ is concentrated on the axes.

Thus, the knowledge about regular variation of X is useful when µ(A) > 0,
i.e., when the components of X are not (asymptotically) independent. However, if
µ(A) = 0 the regular variation of X is too crude in order to determine the tails of
the distribution of the products of the components.

4.1. One-dimensional results. In the following result we collect some of
the well known results about the tail behavior of the product of two independent
non-negative random variables.

Lemma 4.1. Assume that X1 and X2 are independent non-negative random
variables and that X1 is regularly varying with index α > 0.

(1) If either X2 is regularly varying with index α > 0 or P (X2 > x) =
o(P (X1 > x)) then X1X2 is regularly varying with index α.

(2) If X1,X2 are iid such that E(Xα
1 ) = ∞ then P (X1X2 > x)/P (X1>x) →

∞.
(3) If X1,X2 are iid such that E(Xα

1 ) < ∞, then the only possible limit of
P (X1X2 > x)/P (X1 > x) as x → ∞ is given by 2E(Xα

1 ) which is attained under
the condition

lim
M→∞

lim sup
x→∞

P (X1X2 > x ,M < X1X2 � x/M)
P (X1 > x)

= 0 .
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(4) Assume P (X1 > x) ∼ cα x−α for some c > 0. Then for iid copies
X1, . . . , Xn of X1, n � 1,

P (X1 · · ·Xn > x) ∼ αn−1 cnα

(n− 1)!
x−α logn−1 x .

Proof. (1) was proved in Embrechts and Goldie [16, p. 245].
(2) The following decomposition holds for any M > 0:

(4.1)
P (X1X2 > x)
P (X1 > x)

=
∫

(0,M ]

P (X2 > x/y)
P (X1 > x)

dP (X1 � y) +
∫

(M,∞)

P (X2 > x/y)
P (X1 > x)

dP (X1 � y) = I1 + I2 .

By the uniform convergence theorem, P (X1 > x/y)/P (X1 > x) → y−α uniformly
for y ∈ (0,M ]. Hence

I1 →
∫ M

0

yα dP (X1 � y) , x→ ∞ ,

→ E(Xα
1 ) , M → ∞ .

Hence, if E(Xα
1 ) = ∞, (2) applies.

(3) It follows from Chover et al. [6] that the only possible limits of P (X1X2 > x)
/P (X1 > x) are 2E(Xα

1 ). The proof follows now from Davis and Resnick [12,
Proposition 3.1].

(4) We start with the case when P (Yi/c > x) = x−α, for x � 1 and an iid
sequence (Yi). Then

∑n
i=1 log(Yi/c) is Γ(α, n) distributed:

P

(
n∑

i=1

log(Yi/c) > x

)
=

αn

(n− 1)!

∫ x

0

yn−1 e−α y dy , x > 0 .

Then, by Karamata’s theorem,

P

(
n∏

i=1

(Yi/c) > x/cn

)
=

αn

(n− 1)!

∫ log(x/cn)

0

yn−1 e−α y dy

=
αn

(n− 1)!

∫ x/cn

1

(log z)n−1 z−α−1 dz

∼ αn−1

(n− 1)!
(log(x/cn))n−1 (x/cn)−α

∼ αn−1 cnα

(n− 1)!
(log x)n−1 x−α .

(4.2)

Next consider an iid sequence (Xi) with P (X1 > x) ∼ cα x−α, independent of
(Yi), and assume without loss of generality that c = 1. Denote the distribution
function of

∏n
i=2 Yi by G and let h(x) → ∞ be any increasing function such that

x/h(x) → ∞. Then
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P

(
X1

n∏

i=2

Yi > x

)
=

∫ ∞

0

P (X1 > x/y) dG(y)

=
∫ h(x)

0

P (X1 > x/y)
P (Y1 > x/y)

P (Y1 > x/y) dG(y)

+
∫ ∞

h(x)

P (X1 > x/y) dG(y)

= I1(x) + I2(x) .

For any ε > 0, sufficiently large x and y ∈ (0, h(x)),

1 − ε �
P (X1 > x/y)
P (Y1 > x/y)

� 1 + ε .

Hence

I1(x) ∼
∫ h(x)

0

P (Y1 > x/y) dG(y) .

Now choose, for example, h(x) = x/ log log x. Then

I2(x) � G(x/ log log x) = O((x/(log log x))−α logn−2 x) = o(x−α logn−1 x) .

A similar argument yields
∫ ∞

h(x)

P (Y1 > x/y) dG(y) = o(x−α logn−1 x) .

In view of (4.2) we conclude that

P

(
X1

n∏

i=2

Yi > x

)
∼ I1(x) ∼ P

( n∏

i=1

Yi > x

)

A similar argument shows that we may replace in the left probability any Yi, i =
2, . . . , n, by Xi. This proves (4). �

Under the assumption lim supx→∞ xαP (Xi > x) <∞ upper bounds similar to
(4) were obtained by Rosiński and Woyczyński [54]. The tail behavior of products
of independent random variables is then also reflected in the tail behavior of poly-
nomial forms of iid random variables with regularly varying tails and in multiple
stochastic integrals driven by α-stable Lévy motion; see Kwapień and Woyczyński
[34].

In the following results for the product X1X2 of non-negative independent
random variables X1 and X2 we assume that the tail of one of the factors dominates
the tail of the other one.

Lemma 4.2. Assume X1 and X2 are non-negative independent random vari-
ables and that X1 is regularly varying with index α > 0.

(1) If there exists an ε > 0 such that E(Xα+ε
2 ) <∞, then

(4.3) P (X1X2 > x) ∼ E(Xα
2 )P (X1 > x) .
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(2) Under the assumptions of part (1),

sup
x�y

∣∣∣∣
P (X1X2 > x)
P (X1 > x)

− E(Xα
2 )

∣∣∣∣ → 0 , as y → ∞.

(3) If P (X1 > x) ∼ c x−α and E(Xα
2 ) <∞ then (4.3) holds.

(4) If P (X2 > x) = o(P (X1X2 > x)) then X1X2 is regularly varying with
index α.

Proof. Part (1) is usually attributed to Breiman [4] although he did not prove
the result for general α. However, the proof remains the same for all α > 0, and it
also applies to the proof of (3): a glance at relation (4.1) shows that one has to prove
limM→∞ lim supx→∞ I2 = 0 by applying a domination argument. An alternative
proof of (1) is given in Cline and Samorodnitsky [9, Theorem 3.5(v)]. Part (3)
is hardly available as an explicit result; but is has been implicitly used in various
disguises e.g. in the books by Samorodnitsky and Taqqu [56] and in Ledoux and
Talagrand [36]. Part (2) is Lemma 2.2 in Konstantinides and Mikosch [33]. Part
(4) is due to Embrechts and Goldie [16], see also Theorem 3.5(iii) in Cline and
Samorodnitsky [9]. �

Denisov and Zwart [15] give best possible conditions on the distributions of X1

and X2 such that Breiman’s result (4.3) holds.
The lemma has applications in financial time series analysis. Indeed, financial

time series are often assumed to be of the form Xn = σn Zn, where the volatility σn

is a measurable function of past Zi’s, (Zi) is an iid sequence and (Xn) is strictly sta-
tionary. For example, this is the case for a strictly stationary GARCH(p, q) process,
see e.g. Mikosch [39]. In many cases of interest, Zn is light-tailed, e.g. standard
normal, but σn is regularly varying with some positive index α. Breiman’s result
implies P (X1 > x) ∼ E(Zα

1 )P (σ1 > x). Another case of interest is a stochastic
volatility model, where the strictly stationary volatility sequence (σn) is indepen-
dent of the iid noise sequence (Zn). A convenient example is given when log σn

constitutes a Gaussian stationary process. Then σn is log-normal. If Zn is regularly
varying with index α then Breiman’s result yields P (X1 > x) ∼ E(σα

1 )P (Z1 > x).
The following results contain partial converses to Breiman’s result, i.e., if we

know that X1X2 is regularly varying what can be said about regular variation of
X1 or X2?

Lemma 4.3. Assume that X1 and X2 are independent non-negative random
variables and that X1X2 is regularly varying with positive index α.

(1) Assume that Xp
2 for some p > 0 has a Lebesgue density of the form f(x) =

c0 x
β e−c xτ

, x > 0, for some constants τ, c, c0 > 0, β ∈ R, such that xβP (X1 >
x−1) is ultimately monotone in x. Then X1 is regularly varying with index α and
Breiman’s result (4.3) holds.

(2) Assume P (X1 > x) = x−α, x � 1. Then X2 ∈ RV(β) for some β < α if
and only if X1X2 ∈ RV(β).

(3) There exist X1, X2 such that E(Xα
1 ) < ∞, X1 and X2 are not regularly

varying and P (X1 > x) = o(P (X1X2 > x)).
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Proof. (1) The idea is similar to the proof in Basrak et al. [2, Lemma 2.2],
who assumed that X2 is the absolute value of a normal random variable. Notice
that if X1X2 ∈ RV(α) then (X1X2)p ∈ RV(α/p) for p > 0. Therefore assume
without loss of generality that p = 1 and we also assume for simplicity that c = 1.
Since X1X2 is regularly varying there exists a slowly varying function L such that

L(x)x−α = P (X1X2 > x) =
∫ ∞

0

P (X1 > x/y) f(y) dy

= c0 x
1+β

∫ ∞

0

P (X1 > z−1) zβe−(z x)τ

dz

= c0 τ
−1 x1+β

∫ ∞

0

P (X1 > v−1/τ ) v(β+1)/τ−1 e−v xτ

dv

= x1+β

∫ ∞

0

e−r xτ

dU(r) ,

where

U(r) =
c0
τ

∫ r

0

P (X1 > v−1/τ )v(β+1)/τ−1 dv = c0

∫ r1/τ

0

P (X1 > z−1) zβ dz .

Thus

L(x1/τ )x−(α+β+1)/τ =
∫ ∞

0

e−r x dU(r) .

An application of Karamata’s Tauberian theorem (see Feller [21, XIII, Section 5])
yields that

U(x) ∼ L(x−1/τ )x(α+β+1)/τ

Γ((α+ β + 1)/τ + 1)
, x→ ∞ .

By assumption, P (X1 > z−1) zβ is ultimately monotone. Then the monotone
density theorem (see Bingham et al. [3]) implies that

P (X1 > x) ∼ τ

c0 Γ((α+ β + 1)/τ)
L(x)
xα

.

(2) This part is proved in Maulik and Resnick [38].
(3) An example of this kind, attributed to Daren Cline, is given in Maulik and

Resnick [38]. �

Results for products of independent positive random variables can also be ob-
tained by taking logarithms and then applying the corresponding results for regu-
larly varying summands. The following example is in this line of thought.

Lemma 4.4. Let Xi be positive iid and such that (logX1)+ ∈ RV(α) for some
α � 0 and P (X1 � x−1) = o(P (X1 > x)). Then for n � 1,

P (X1 · · ·Xn > x) ∼ nP (X1 > x) .

Proof. We have for x > 0,

P (X1 · · ·Xn > x) = P (logX1 + · · · + logXn > log x)

∼ nP (logX1 > log x) = nP (X1 > x) .
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This follows e.g. by an application of Lemma 3.3. Indeed, (logX1)+ is regularly
varying and by assumption, for x > 0,

P ((logX1)− > x) = P (X1 < e−x) = o(P (X1 > e x)) = o(P ((logX1)+ > x)). �

Results for random products are rather rare. The following example is due to
Samorodnitsky (personal communication). Extensions can be found in Cohen and
Mikosch [10].

Lemma 4.5. Let (Xi) be an iid sequence with P (X1 > x) = c x−1 for some
x � c � 1, K be Poisson (λ) distributed and independent of (Xi). Write PK =∏K

i=1Xi. Then P (PK = 0) = e−λ and PK has density fP on (c,∞) satisfying as
x→ ∞,

fP (x) ∼ e−λc−λ c(λ c)1/4

2
√
π

x−2 (log x)−3/4 e 2 (λ c)1/2 (log x)1/2
,

and hence

P (PK > x) ∼ e−λc−λ c(λ c)1/4

2
√
π

x−1 (log x)−3/4 e 2 (λ c)1/2 (log x)1/2
.

Various results of this section can be extended to subexponential and even long-
tailed distributions, see Cline and Samorodnitsky [9]. Resnick [52, Section 7.3.2]
also treats the case of products with dependent regularly varying factors. Hult and
Lindskog [25] extended Breiman’s result in a functional sense to stochastic integrals
(
∫ t

0
ξs−dηs)0�t�1, where η is a Lévy process with regularly varying Lévy measure

and ξ is a predictable integrand.

4.2. Multivariate extensions. Breiman’s result (4.3) has a multivariate ana-
log. It was proved in the context of regular variation for the finite-dimensional
distributions of GARCH processes where multivariate products appear in a natural
way; see Basrak et al. [2].

Lemma 4.6. Let A be an m× d random matrix such that E(‖A‖α+ε) <∞ for
some matrix norm ‖ · ‖ and ε > 0. If X ∈ RV(α, µ) assumes values in R

d and is
independent of A, then AX is regularly varying with index α and

P (AX ∈ ·)
P (|X| > x)

v→ E (µ{x : Ax ∈ ·}) .

5. Other functions

5.1. Powers. Let X � 0 be a regularly varying random vector with index
α > 0. It is straightforward from the definition of multivariate regular variation
that for p > 0, Xp = (Xp

1 , . . . , X
p
d ) is regularly varying with index α/p. This can

be seen from the polar coordinate representation of regular variation with | · | the
max-norm, see (2.2):

P (|Xp| > tx , X̃p ∈ ·)
P (|Xp| > x)

=
P (|X| > (t x)1/p , (X̃)p ∈ ·)

P (|X| > x1/p)
→ t−α/p P (Θp ∈ ·) .
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5.2. Polynomials. We consider a sum Sn = X1 + · · ·+Xn of iid non-negative
random variables Xi. Assume that X1 is regularly varying with index α > 0. By
virtue of Lemma 3.2 this is equivalent to the fact that Sn is regularly varying and
P (Sn > x) ∼ nP (X1 > x). Then Sp

n for p > 0 is regularly varying with index α/p
and

P (Sp
n > x) ∼ nP (Xp

1 > x) ∼ P (Xp
1 + · · · +Xp

n > x) .
The latter relation has an interesting consequence for integers k > 1. Then one can
write

Sk
n =

n∑

i=1

Xk
i +

∑
Xi1 · · ·Xik

,

where the second sum contains the off-diagonal products. It follows from the results
in Section 4 that this sum consists of regularly varying summands whose index does
not exceed α/(k− 1). Hence, by Lemma 3.12, the influence of the off-diagonal sum
on the tail of Sk

n is negligible. The regular variation of polynomial functions of the
type ∑

1�i1,...,ik�n

ci1...ik
X

pi1
i1

· · ·Xpik
ik

for non-negative coefficients ci1...ik
and integers pi � 0 can be handled by similar

ideas.

5.3. Maxima. Assume that X ∈ RV(α, µ) and write Md = maxi=1,...,dXi for
the maximum of the components of X. The set A = {x : xi > 1 for some i} is
bounded away from zero and µ(∂A) = 0. Then

P (Md > x)
P (|X| > x)

=
P (x−1X ∈ A)
P (|X| > x)

→ µ(A) .

If µ(A) > 0, Md is regularly varying with index α. In particular, if X has non-
negative components and | · | is the max-norm, then Md = |X| which is clearly
regularly varying.

If X1, . . . , Xn are independent, direct calculation with

P (Xi > x)
P (|Xi| > x)

→ pi and
P (|Xi| > x)
P (|X| > x)

→ ci ,

yields the following limits

P (Md > x)
P (|X| > x)

∼
d∑

i=1

pi
P (|Xi| > x)
P (|X| > x)

→
d∑

i=1

ci pi .

For iid Xi we obtain
∑d

i=1 ci pi = d p.
Next we consider maxima with a random index.

Lemma 5.1. Assume that K is independent of the sequence (Xi) of iid random
variables with distribution function F and right endpoint xF .

(1) If EK <∞ then

P (MK > x) ∼ EK P (X1 > x) , x ↑ xF .
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Hence X1 is regularly varying with index α if and only if MK is regularly varying
with index α.

(2) If EK = ∞ assume that P (K > x) = L(x)x−α for some α ∈ [0, 1) and a
slowly varying function L. Then

(5.1) P (MK > x) ∼ (F (x))αL(1/F (x)) , x ↑ xF .

Hence X1 is regularly varying with index p > 0 if and only if MK is regularly
varying with index pα.

Proof. (1) Write F (x) = P (Xi � x). Then by monotone convergence, as
x ↑ xF ,

P (MK > x) = F (x)E
[
1 + F (x) + · · · + FK−1(x)

] ∼ EK F (x) .

(2) By Karamata’s Tauberian theorem (see Feller [21, XIII, Section 5]) and a
Taylor expansion argument as x ↑ xF

P (MK > x) = 1 − E(FK(x)) = 1 − E
(
e log F (x) K

)

∼ (− logF (x))αL(1/(− logF (x)))

∼ (F (x))αL(1/F (x)) .

Finally, if X1 is regularly varying, L(1/F (x)) is slowly varying and therefore
(F (x))αL(1/F (x)) is regularly varying with index −pα. �

5.4. Minima. For the minimum md = min(X1, . . . , Xd) of X ∈ RV(α, µ)
similar calculations apply by observing that md = −max(−X1, . . . ,−Xd). This
observation is not useful if some of the Xi’s do not assume negative values. Never-
theless, in this situation

P (md > x) = P (X1 > x , . . . ,Xd > x) = P (x−1X ∈ B) ,

where B = {x : mini=1,...,d xi>1} which is bounded away from zero and µ(∂B) = 0,
and therefore md is regularly varying with index α if µ(B) > 0. However, for
independent Xi, md is not regularly varying with index α since µ(B) = 0 and

P (md > x) =
d∏

i=1

P (Xi > x) .

In particular, if all Xi ∈ RV(α), then md ∈ RV(dα).
For an integer-valued non-negative random variable K independent of the se-

quence (Xi) of iid non-negative regularly varying random variables we have

P (mK > x) =
∞∑

n=1

P (K = n) [P (X1 > x)]n .

Let n0 be the smallest positive integer such that P (K = n0) > 0. Then

P (mK > x) ∼ P (K = n0) [P (X1 > x)]n0 ,

implying that mK is regularly varying with index n0α.
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5.5. Order statistics. Let X(1) � · · · � X(d) be the order statistics of the
components of the vector X ∈ RV(α, µ). The tail behavior of the order statistics
has been studied in some special cases, including infinite variance α-stable ran-
dom vectors which are regularly varying with index α < 2, see Theorem 4.4.8 in
Samorodnitsky and Taqqu [56]. It is shown in Samorodnitsky [55] (cf. Theorem
4.4.5 in Samorodnitsky and Taqqu [56]) that each X(i) as well as the order statistics
of the |Xi|’s are regularly varying with index α.

For a general regularly varying vector X with index α similar results can be
obtained. We assume that X has non-negative components. Write x(1) � · · · � x(d)

for the ordered values of x1, . . . , xd. Notice that the sets Ai = {x : x(i) > x} are
bounded away from zero. Hence the limits

lim
x→∞

P (X(i) > x)
P (|X| > x)

= µ(Ai)

exist and if µ(Ai) > 0 then X(i) is regularly varying. This statement can be
made more precise by the approach advocated in Samorodnitsky and Taqqu [56],
Theorem 4.4.5, which also works for general regularly varying vectors:

P (X(d−i+1) > x)
P (|X| > x)

(5.2)

=
d∑

j=i

(−1)j−i

(
j − 1
i− 1

) ∑

1�i1<···<ij�d

P (Xi1 > x , . . . ,Xij
> x)

P (|X| > x)

→
d∑

j=i

(−1)j−i

(
j − 1
i− 1

) ∑

1�i1<···<ij�d

µ({x : xi1 > 1 , . . . , xij
> 1}).(5.3)

In the same way one can also show the joint regular variation of a vector of order
statistics.

For iid positive Xi’s the limits of the ratios P (X(i) > x)/P (|X| > x) are zero
with the exception of i = 1. However, one can can easily derive that X(d−i+1) is
regularly varying with index i α. Indeed, by virtue of (5.2),

P (X(d−i+1) > x)
[P (X1 > x)]i

∼ d · · · (d− i+ 1)
i!

.

5.6. General transformations. Since the notion of regular variation bears
some resemblance with weak convergence it is natural to apply the continuous
mapping theorem to a regularly varying vector X with index α. Assume that
f : R

d

0 → R
m

0 for some d,m � 1 is an a.e. continuous function with respect to the
limit measure µ such that the inverse image with respect to f of any set A ∈ B(R

m

0 )
which is bounded away from zero is also bounded away from zero in R

d

0. Then we
may conclude that

P (f(x−1X) ∈ A)
P (|X| > x)

=
P (x−1X ∈ f−1(A))

P (|X| > x)
→ µ(f−1(A)) ,

provided µ(∂f−1(A)) = 0.
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This means that f(x−1X) can be regularly varying in R
m

0 , usually with an index
different from α. Think for example of the functions f(x) = x1 · · ·xd, mini=1,...,d xi,
maxi=1,...,d xi, (xp

1, . . . , x
p), c1x1 + · · · + cdxd. These are some of the examples of

the previous sections. These functions have in common that they are homogeneous,
i.e., f(tx) = tqf(x) for some q > 0, all t > 0. Then f(X) is regularly varying with
index α/q.
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