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Abstract

The main theme of this thesis is classification of non-simple C*-algebras. It is based on the work
obtained in the author’s Master’s thesis (c¢f. [Res03] and [Res06]). The thesis is divided into two
parts: a text-part and an appendices-part consisting of four papers (Articles A-D).

The text-part contains two main results. The first one is a generalization of Bonkat’s Universal
Coefficient Theorem (UCT) (¢f. [Bon02]) for Kirchberg’s ideal-related KK-theory with two specified
ideals. Invoking results of Kirchberg, this gives classification of certain purely infinite C*-algebras with
exactly two non-trivial ideals. The second result consists of a development of a notion of ideal-related
K-theory with coeflicients with one specified ideal, which has shown to be of relevance to classification
of automorphisms of non-simple C*-algebras (with Eilers and Ruiz).

In Article A and B (with Eilers and with Ruiz) we classify essential extensions of Kirchberg algebras
and characterize the range of the invariants. In Article C (with Eilers and Ruiz) we classify certain
extensions of algebras belonging to certain classes, where we can lift positive, invertible KK-elements
to #-isomorphisms. Also we have some applications of this to Matsumoto algebras and graph algebras.
In Article D (with Eilers and Ruiz) we give a series of examples showing that the naive guess of how
to define ideal-related K-theory with coefficients does not work. Also we give an example showing
that Bonkat’s UCT does not split, in general.

Sammenfatning

Hovedtemaet for denne afhandling er klassifikation af ikke-simple C*-algebraer. Den tager udgangs-
punkt i forfatterens speciale (jeevnfor [Res03] samt [Res06]). Afhandlingen bestar af to dele: en del
tekst samt tilleeg bestaende af fire artikler (artikel A-D).

Tekstdelen har to hovedresultater. Det fgrste er en generalisering af Bonkats universal koefficient
seetning (UCT) (cf. [Bon02]) for ideal relateret KK-teori med to specificerede idealer. Ved anvendelse
af Kirchbergs resultater giver dette en klassifikation af visse rent uendelige C*-algebraer med przecis
to ikke-trivielle idealer. Det andet bestar af udvikling af en form for ideal relateret K-teori med koeffi-
cienter med eet specificeret ideal, hvilket har vist sig at veere relevant for klassifikation af automorfier
af ikke-simple C*-algebraer (med Eilers og Ruiz).

I artikel A og B (med Eilers og med Ruiz) klassificerer vi essentielle udvidelser af Kirchberg
algebraer og beskriver billedet af invarianterne. I artikel C (med Eilers og Ruiz) klassificerer vi visse
udvidelser af algebraer, der tilhgrer visse klasser, hvori vi kan lgfte positive, invertible KK -elementer
til #-isomorfier. Endvidere anvender vi resultaterne pa Matsumoto algebraer samt graf algebraer. 1
artikel D (med Eilers og Ruiz) gives en raekke eksempler, der viser, at den naive made at definere ideal
relateret K-teori med koefficienter pa ikke er brugbar. Desuden vises, at Bonkats UCT ikke splitter
generelt.

Samandrattur

Hgvudstemad { hesari ritgerd er klassifikation av ikki-simplum C*-algebraum, og tekur hon ttgangs-
stedi { serritgerd hgvundsins (si [Res03] og [Res06]). Ritgerdin er { tveimum lutum: fyrri partur er
tekstur og seinri partur er eitt uppiskoyti vid fyra greinum (grein A-D).

I tekstpartinum eru tvinni hgvudsurslit. Fyrra er ein generalisering av universal koeffisient setningi
(UCT) Bonkats (s [Bon02]) fyri ideal relaterada KK-teori vid tveimum spesifiseradum idealum. Vid at
nyta urslit Kirchbergs faa vit soleidis klassifiserad avisar reint 6endaligar C*-algebrair vid just tveimum
idealum. Seinra umfatar menning av einum slagi av ideal relateradari K-teori vid koeffisientum vid
eittans spesifiseradum ideali — hetta hevur vist seg at vera naer tengt at klassifikation av automorfium
av ikki-simplum C*-algebraum (vid Eilers og Ruiz).

I grein A og B (vid Eilers og vid Ruiz) klassifisera vit vesentligar vidkanir av Kirchberg algebraum
og karakterisera myndina av invariantunum. I grein C (vid Eilers og Ruiz) klassificera vit dvisar
vidkanir av algebraum ur klassum, har til ber at lyfta positivar, invertiblar KK-lutir til *-isomorfi-
ir. Harumframt nyta vit urslitini { sambandi vid Matsumoto algebrair og graf algebrair. [ grein D
(vid Eilers og Ruiz) hyggja vit at eini rgd av dgmum, har vit lysa, hvi naivi matin at skapa eina
ideal relaterada K-teori vid koeffisientum ikki kann nytast. Eisini verdur vist, at Bonkatsar UCT ikki
splittar generelt.
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Preface

Here I will describe the process which lead to this thesis. In the first chapter, I will give a description
and overview of the contents of the thesis.

In the autumn of 2003, I wrote my Master’s thesis in mathematics at the University of Copenhagen.
The subject of the thesis was classification of Cuntz-Krieger algebras — with an emphasis on the non-
simple case. Cuntz-Krieger algebras were introduced by Cuntz and Krieger, and have since shown to
give important examples of C*-algebras as well as they have established interplay between C*-alge-
bra-theory and shift spaces. In the nineties Rgrdam and Huang classified the Cuntz-Krieger algebras
of type (II) in three cases: (i) the simple case, (ii) the case with exactly one non-trivial ideal, and (iii)
the case where the Kj-group is trivial. Type (II) corresponds to pure infiniteness.

Using recent results of Boyle and Huang, I was able to generalize the results to include all Cuntz-
Krieger algebras of type (II). The main ingredients were proven in my Master’s thesis (cf. [Res03]),
and the results later published in Crelle’s Journal (c¢f. [Res06]). Since this article has mainly been
worked out prior to the start of my PhD-studies, this is not a part of the thesis.

During the summer of 2004, I and my family moved back to the Faroe Islands. At the same time,
I won, by lottery, a grant from Valdemar Andersen’s Rejselegat for Matematikere (Travel scholarship
for Mathematicians), which would pay all expenses for me and my family for a year of studies in
mathematics abroad.

I applied for more money to supplement this to a full PhD-project, and got the remaining part
from Faculty of Science, University of Copenhagen, and the Faroese Research Council — they are
paying one year each.

In June 2005, T started my PhD-studies, and I and my family went one year to Canada — mainly
Toronto — where I visited Professor George A. Elliott, University of Toronto, and the Fields Institute,
which provided me with excellent working conditions.

The second and third year I have been at the Department of Mathematical Sciences, University of
Copenhagen — travelling a lot between the Faroe Islands and Copenhagen. Also during this period
I was on a ten weeks leave due to my youngest daughter’s birth.

The thesis is based on the work of my Master’s thesis, and all the way the main objective is to
classify non-simple C*-algebras. The starting point was to try to generalize the UCT for ideal-related
KK-theory obtained by Bonkat in the case where we specify one ideal (¢f. [Bon02]). T used a lot of my
time in Toronto on understanding Bonkat’s work and trying to generalize it. One of the main problems
were to make a suitable framework for doing homological algebra with the invariants. During the year
in Toronto, I obtained a UCT for ideal-related KK-theory with two specified ideals (linearly ordered).
Partly because I wanted to generalize it, and partly because of teaching duties and other research
projects, I did not really use so much time on writing this down until the beginning of January 2007.
In the end of January 2007, I got an e-mail from Ryszard Nest informing me that he in collaboration
with Ralf Meyer had obtained a UCT for all finite ideal lattices.

My proof was quite long, and, moreover, quite specialized to the case with only two ideals (though
it probably would be easy to generalize it to the case of a linear ideal lattice). Since Meyer and Nest
claimed to have a proof, which worked in the general settings, I stopped working on this project. In
November 2007, I learned from Ralf Meyer that they did not have a proof for the general case, and,
moreover, it was somewhat unclear whether they still believed it to hold in general. Thus I decided to
finish writing my proof down, and include it as a part of my thesis. Partly because it is not written
in a format suitable for publishing, and partly because it already has been generalized by Meyer and
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iv Preface

Nest. I have not tried to make any further improvements of this part (the theorems are in Chapter [5)).

The latest I know about the status of the UCT in general, is that they can prove it for (finite)
linearly ordered ideal lattices, and can disprove it for most other more complicated cases. The reader
is referred to the work of Meyer and Nest (cf. [MNal [MND]).

During my time in Toronto, I started collaborating with my advisor, Seren Eilers, and with Efren
Ruiz, who was a post-doc. at University of Toronto at that time. This evolved to an ongoing project,
where we have looked at aspects of classification theory for non-simple C*-algebras. The rest of the
thesis, Chapter |§| and the articles in the appendices, are joint work with them (in different constella-
tions of the three of us). We have one work in progress which is based on the results of Chapter |§| (cf.
[ERR]). As the existing preprint is very preliminary and hard to read, it is not included.
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Chapter 1

Introduction

Correspondences, which satisfy that objects that are thought of being the same (equivalent or iso-
morphic) are mapped to the same object (or at least equivalent or isomorphic objects) are called
invariants (modulo the specific equivalence relation).

With respect to classification of objects, invariants can in general only be used to tell objects apart:
if two objects have different invariants (non-equivalent or non-isomorphic), then the objects have to
be different (non-equivalent or non-isomorphic). We cannot, in general, deduce that objects with the
same invariant have to be the same. For instance, the cardinality of a group is an (isomorphism)
invariant, but it is certainly not true that the equipotent groups are isomorphic.

For vector spaces over C, the dimension is an invariant (the cardinality of a basis — we will always
assume the Axiom of Choice) of vector spaces up to isomorphism. But here we can make the opposite
conclusion: any two vector spaces with the same dimension are isomorphic. Such invariants are called
complete invariants.

It is very common that invariants of categories are given as functors — although this is not
always the caseﬂ A functor is automatically an invariant (up to isomorphism). We call a functor a
classification functor if it gives rise to a complete invariant.

With respect to classification theory, it is very natural to consider the following properties for a
functor F: C — D.

» For every morphism a: F(X) — F(Y), there is a morphism ¢: X — Y such that F(¢) = « (for
all objects X and Y'). Such a functor is called a full functor in category theory.

» For every isomorphism a:: F(X) — F(Y'), there is an isomorphism ¢: X — Y such that F(¢) = «
(for all objects X and Y'). In this case, we call F a strong classification functor.

» For every object Y of D, there is an object X of C such that F(X) is (isomorphic to) Y. Such
a functor is called essentially surjective in category theory.

Of course, we may also ask for necessary or sufficient conditions for two homomorphisms (or iso-
morphisms) to induce the same morphism, or specifically, we might ask for a characterization of the
morphisms inducing the identity morphism

We call a functor faithful, if it is injective on morphisms. The reason we omitted these above, is
that these are rarely interesting from a classification point of view: usually the objective in classifica-
tion theory is that it should be easier to compare the invariants than the original objects.

The program of classifying C*-algebras was essentially initiated by George A. Elliott, and is now
known as the Elliott program. A large number of classes of C*-algebras have successfully been classified
using some flavour of K-theoretical invariant, and for these many of the above questions have been

1 Actually, we can think of any invariant of a category as induced by a functor on the largest subcategory, which is
groupoid, i.e., every morphism is an isomorphism.

2Tt is evident that the automorphisms of an object that induce the identity morphism form a normal subgroup of
the automorphism group of that object, so if the functor is a strong classification functor, the automorphism group can
be described as a group extension.



2 Chapter 1. Introduction

answered. Usually we restrict ourselves to classify only separable, nuclear C*-algebras. For a good
overview of parts of the topics of the Elliott program and the classification theory for simple, nuclear
C*-algebras the reader is referred to [Rer02).

Overview of the thesis

The thesis is organized as follows. The thesis is in two parts — one text-part and one part with four
appendices. The text-part contains six numbered chapters, of which the last two chapters contain the
(somewhat independent) main results.

Chapter Introduction. This is the current chapter, and it serves to give an overview of the
contents of the thesis.

Chapter Quivers. Here the notion of quivers with relations is introduced. Along the way, we
introduce representations of quivers with relations over the ring Z, and the path algebra of a quiver
with relations. Basic facts are shown. This is quite similar to the theory considered in [ARS9T,
Section III.1] — where they instead work over special fields (instead of the ring Z). This chapter is
needed for reading Chapters [] and [5}

Chapter Mapping cones. The chapter starts with basic definitions and results about suspen-
sions, cones, and mapping cones. Then it goes on with more technical lemmata needed later in the
thesis. It includes a survey of the definitions and results on homology and cohomology theories on
C*-algebras (based on Blackadar’s book, [Bla98]). We explore the interplay between such theories
and mapping cone sequences of x-homomorphisms. This chapter is needed for the last three chapters
(though the technical Lemmata [3.1.13| and [3.1.14] are only need for the last chapter).

Chapter |4} Invariants for C*-algebras with a distinguished system of ideals. Here we review the
different — equivalent — pictures of C*-algebras with a distinguished system of ideals. In terms of
a functor, we define an invariant of such systems (for a fixed index set), and a category which serves
as the codomain for this functor — this category is defined using the framework of representations of
quivers developed earlier. This chapter is needed for Chapter

Chapter |5 A UCT for ideal-related KK-theory. Here we proceed as in [Bon02] to prove a UCT
for ideal-related KK-theory, in the case that we have two specified ideals (linearly ordered). One of
the main difficulties in proving this was to establish that all objects in the range of the invariant have
projective and injective dimension 1 (and to characterize the projective and injective objects of the
category). The last section contains classification results for certain purely infinite, nuclear, separable
C*-algebras with exactly two non-trivial ideals. This is obtained by combining work of Kirchberg
with the UCT we have obtained here. This is done analogous to the papers in Appendices [A] and [B]
(and therefore it might be preferable for the reader to take a look at them before Section . This
chapter is independent of Chapter [0}

Chapter [6] Ideal-related K-theory with coefficients. In this chapter we develop a notion of
ideal-related K-theory with coefficients. The goal is to use this to prove a Universal Multi-Coefficient
Theorem (UMCT) along the lines of Dadarlat and Loring for ideal-related KK-theory with one speci-
fied ideal. The series of examples in the paper in Appendix [D]gives the motivation for these definitions.
The largest part of this chapter is devoted to obtain some new groups and commutative diagrams
involving the new groups, and the cyclic six term exact sequences in K-theory with coeflicients. These
diagrams will be used in a forthcoming paper where we prove a ’limited UMCT” for a class of C*-alge-
bras with one specified ideal — this class includes all Cuntz-Krieger algebras of type (II) with exactly
one non-trivial ideal (¢f. [ERR]). It might be a good motivation for the reader to read the paper in
Appendix@ first (although it is not a prerequisite). This chapter is independent of Chapter

Appendices. The four appendices, Appendices [AHD] consist of four papers. These four papers
can be read independently of the text-part of the thesis. Articles [A] [C] and [D] can, indeed, be read
independently — while Article [B] builds on Article [A]

Appendix On Rgrdam’s classification of certain C*-algebras with one non-trivial ideal (with
Eilers). This is a published paper (¢f. [ER06]). Using Bonkat’s UCT, we prove that the classification
functor obtained by Rgrdam for stable, essential extensions of Kirchberg algebras in the bootstrap
category N is in fact a strong classification functor (i.e., we allow for lifting of isomorphisms). We
generalize a trick used by Rgrdam for the classification of unital, simple Cuntz-Krieger algebras of type




Notation 3

(IT), which allows us — in certain cases — to deduce a unital classification from a strong classification
of the stabilization. Using these results, we also get a unital classification of unital, essential extensions
of Kirchberg algebras in the bootstrap category N.

Appendix On Rgrdam’s classification of certain C*-algebras with one non-trivial ideal, II
(with Ruiz). This is a published paper (c¢f. [RR07]). In this paper we extend the results from
the paper in Appendix [A] We prove that the obtained classification functor for the unital, essential
extensions of Kirchberg algebras in the bootstrap category N is in fact a strong classification functor.
We also prove a classification result for the non-stable, non-unital essential extensions of Kirchberg
algebras in the bootstrap category A/, and we characterize the range in both cases. The invariants
are cyclic six term exact sequences together with the class of some unit.

Appendix Classification of extensions of classifiable C*-algebras (with Eilers and Ruiz). This
is an unpublished preprint. Most likely, it will be reorganized before submission (to make it shorter
and more concise). For a certain class of extensions e: B — & — 2 of C*-algebras in which % and 2
belong to a classifiable class of C'*-algebras, we show that the functor which sends e to its associated
six term exact sequence in K-theory and the positive cones of Ky(B) and Ky(2) is a classification
functor. We give two independent applications addressing the classification of a class of C*-algebras
arising from substitutional shift spaces on one hand and of graph algebras on the other.

Appendix @ Non-splitting in Kirchberg’s ideal-related KK -theory (with Eilers and Ruiz). This
paper has been accepted for publication in the Canadian Mathematical Bulletin. Bonkat proved
that his UCT for Kirchberg’s ideal-related KK-theory splits, unnaturally, under certain conditions.
Employing certain K-theoretical information derivable from the given operator algebras in a way
introduced here, we shall demonstrate that Bonkat’s UCT does not split in general. Related methods
lead to information on the complexity of the K-theory which must be used to classify *-isomorphisms
for purely infinite C*-algebras with exactly one non-trivial ideal.

Notation

A few words on the used notation. We will use «— and — for injective and surjective homomorphisms,
resp. Unless the contrary is explicitly stated, we will use the following conventions: ideals are two-
sided; ideals of C*-algebras are furthermore closed; modules are left modules. We let N denote the
positive integers, {1,2,3,...}. Otherwise, most of the notation should be self explanatory to operator
algebraists.

We have tried to make an effort to unify notation throughout (the text-part of) the thesis. Also
results and definitions from articles and books have been included, when it felt natural and made the
text easier to read and more self-contained. However, the thesis relies heavily upon other works, and
uses, of course, notation and results herefrom — especially the thesis of Bonkat (¢f. [Bon02]).



Chapter 1. Introduction



Chapter 2

Quivers

In this chapter we develop some framework for the homological considerations leading to the UCT.
We will consider quivers over the ring Z, their representations, and the corresponding path algebras.
Much of this chapter is a generalization of [ARS97], Section III.1].

2.1 Quivers

Remark 2.1.1. Throughout this chapter, we will work only with quivers over the ring Z. Many of
the definitions and results can, however, be formulated for modules over any non-trivial, commutative
ring with an identity. In fact, one can generalize much of Section IIL.1 in [ARS97] about the connection
between representations of quivers and modules over the path algebra to include commutative rings
— but we will not need this.

This is sometimes in the literature also called the algebra of the enveloping category (see Fei Xu’s
thesis, [Xu06]).

Definition 2.1.2. A quiver I' = (I'y,I'1) is an oriented graph, where Ty is the set of vertices and I'y
is the set of arrows between vertices. We say that the quiver I' is finite if both I'g and I'; are finite
sets. We denote by s: I'1 — I'g and ¢: I';y — 'y the source and target maps, resp.

A path in the quiver I is either an ordered non-empty finite sequence of arrows p = «, - - - a3 with
t(a;) = s(aiq1), for i = 1,...,n — 1, or the symbol e;, for i € Ty. We call the paths e; the trivial
paths and we define s(e;) = t(e;) = i. For a non-trivial path p = a, --- @1 we define s(p) = s(a1)
and t(p) = t(ay,). A non-trivial path p is said to be an oriented cycle if s(p) = ¢(p).

Definition 2.1.3. A representation M, = (M, m) of a quiver I" (over the ring Z) is a system of
abelian groups {M; |i € T'o} together with homomorphisms my: M; — M, for every arrow o: i — j
inT.

A morphism ¢,: (M,m) — (N, n) between two representations of I is a family (¢;: M; — N;);er,
of homomorphisms such that for each arrow «: i — j in I" the diagram

7 3

M
'\% ¢J l

g Nj

@i

PN,
N

commutes. If ¢po: (L,1) — (M, m) and ¢: (M,m) — (N,n) are morphisms between representations
then the composite morphism e, is defined to be the family (1;¢;: L; — N;);er,. This gives us
the category of representations of I' (over Z), which we denote by Rep; T, or just RepT.

Definition 2.1.4 (Structure on RepI'). Let ¢po: (M,m) — (N,n) and t: (M,m) — (N,n) be
morphisms between representations. Then we define o + 1o as the family (¢; + ¥;)ier,. Clearly,
Hom((M, m), (N, n)) is an abelian group under this addition, and the composition is bilinear.

5



6 Chapter 2. Quivers

We call the representation (M, m) where M; = 0, for all i € Ty, and m, = 0, for all « € Ty, the
null (or zero) object of RepT.

We say that an object (N, n) is a subobject of a representation (M, m) if N; is a subgroup of M;,
for all i € Ty, and n, = my|n;,, for each arrow a: i — j.

For a morphism ¢: (M,m) — (N,n) we define the kernel, ker ¢, to be the subobject (L,I) of
(M, m), where L; = ker ¢;, for all i € I'y, and |, = mg|.,, for each arrow «: ¢ — j (for this to be
well-defined, one needs to check that m (ker ¢;) C ker ¢; for each arrow a: i — j); let tier ¢, denote
the canonical morphism from ker ¢po to (M, m).

For a morphism ¢,: (M,m) — (N,n) we define the image, im ¢,, to be the subobject (L,l) of
(N, n), where L; = im ¢;, for all ¢ € I'y, and |, = n,|.,, for each arrow «: i — j (one needs to check
that ny(im ¢;) C im ¢; for each arrow a: i — j); let tim ¢, denote the canonical morphism from im ¢,
to (N, n).

For a morphism ¢,: (M,m) — (N, n) we define the cokernel, cok ¢, to be the object (L, ), where
L; = cok¢; = N;/im¢;, for all ¢ € Ty, and lo: L; — L; is the lifting of n,, for each arrow a: i — j
(we use of course that ny(im¢;) € im ¢;); let meok ¢, denote the canonical morphism (obtained from
the quotient maps) from (N, n) to cok ¢.

Let M, = (M, m) and N, = (N,n) be two representations. We define the product and sum
of (M;m) and (N,n) as M, x Ny = (M; x N;)jer, together with the maps (my X ng)acr, and
M.®N, = (M; ®N;)ier, with (mg @ ng)aer,, resp. The product and the sum are canonically isomor-
phic. It is evident that we have canonical morphisms (corresponding to injections and projections)
M4, MqxN, * M- - Mo X No; LN, ,MqxN, * No - Mo X N07 TM¢xN4,M, - Mo X No - Mo, and
TM. xN, N. : Me X Ng — N, (and correspondingly for the sum).

An object is said to be indecomposable if it is not isomorphic to the sum of two non-zero
subobjects.

Definition 2.1.5 (Quivers with relations). A relation o on a quiver I' is a Z-linear combination
of non-trivial paths o = a1p; + -+ + anpn, where n € N, ay,...,a, € Z, s(p1) = --- = s(p,) and
tp1) = = t(pn)ﬂ If p = (ot)ter is a family of relations, then the pair (T, p) is called a quiver
with relations.

Recall that a subcategory D of C is called full, if every morphisms in C between objects of D is
a morphism in D.

Definition 2.1.6 (Rep(T',p)). Let (T',p) be a quiver with relations. For each representation M,
of the quiver I' and for each non-trivial path p = o, - -- @1, we define m;, to be the homomorphism
Mg, « Mg, , and let mg, = idy,, for all ¢ € I'y.

By Rep(T, p) we denote the full subcategory of RepI', whose objects M, satisfy

almpl + e + anmpn = O’
for each relation ¢ = ai1p; + - -+ + anpn in p.

Example 2.1.7 (A special representation). Let (T, p) be a quiver with relations (where we allow p
to be the empty family in which case this just denotes the quiver).

Let G be an abelian group and let ig € I’y be a vertex. Then we define the representation
M, = ComplS by M;, = G, M; = {0}, for all i # ig, and m, = 0, for every arrow a € I';. Then
M, is in Rep(T', p).

2.2 Some preliminaries
Definition 2.2.1. An algebra over the ring Z is a Z-module A with an associative multiplication

such that the map A x A 3 (a,a’) — ad’ is bilinear. This is equivalent to say that A is a ring (where
we allow for non-unital rings).

n [ARS97] they assume that the number of arrows in each of these paths is at least 2 — but for our purposes, we
do not need that assumption.
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We say that an element e of a ring is idempotent if €2 = e. We say that a system (e1,...,e,)
of idempotents is orthogonal if e;e; = 0 whenever ¢ # j. We say that a non-zero idempotent e is
primitive if e cannot be written as the sum of two non-zero orthogonal idempotents. When we say
module, we mean left module (except when we explicitly say right module).

The following lemma is inspired by [ARS97, Proposition 1.4.8].

Lemma 2.2.2. Let R be a non-trivial ring with identity, and let e be a non-zero idempotent in R.

(a) Let (e1,...,en) be an orthogonal system of non-zero idempotents such that e =e;+---+e,. Then
Re; is a submodule of Re, for alli=1,...,n, and Re = Re; @ --- @ Re,.

(b) Re is a projective R-module.
(c) e is primitive if and only if Re is an indecomposable R-module.

Proof. (a): We have that e;e = e;e; + -+ - + e;e, = e;. Hence each e; is in Re and so each Re; C Re.
We now want to show, that each element x of Re can be written uniquely as a sum z; + --- + =,

with z; € Re;, for all i = 1,...,n. Let x € Re be given. Clearly,  can be written as such a sum
(x = xe = ze1 + -+ + xey). Let now x = req + -+ + rpe, = rier + -+ + e, with v, 1) € R, for
all i =1,...,n. From this we get rieje; + - + rpene; = rieje; + - - + rleqe;, which is the same as

r;e; = rie;. This proves the uniqueness.

(b): If e = 1 this is clear, so assume that e # 1. Clearly, 1 — e and e are non-zero orthogonal
idempotents. Thus we have from (a) that R = R1 = R(1 — e) @ Re. So Re is a direct summand in
the free R-module R, consequently, it is projective.

(c): If e is not primitive, then we have two non-zero orthogonal idempotents ej,es such that
e = e1 + es. From (a) we have that Re = Re; & Resy, and clearly neither Re; nor Res are zero.

Contrary, if Re is decomposable, then we have two non-zero submodules M7, My of Re such that
Re = My & M. So there exist unique elements e; € M7 and ey € M such that e = e; + e5. We also
have that eje = e1e1 +e1e2 = €1 and ege = ese; + €269 = €9, since My and M, are submodules of Re.
By uniqueness we have e% =eq, e1e5 = 0 = egeq and e% = ey (since eje; € M;, for all 4,5 € {1,2}). It
is easy to see that e; # 0 # es, hence e is not primitive. (X X )

The following definition is taken from [HS97, §I.8].

Definition 2.2.3. Let R be a non-trivial ring with identity. Let M be a right R-module and let G be
an abelian group. Then we can equip the abelian group Homyz (M, G) with a (left) R-module structure

as follows:
(re)(x) =p(zr), x€ M,r € R,p € Homz(M,G).

It is an easy exercise to verify that this makes Homgz (M, G) into a (left) R-module.

Definition 2.2.4. Let R be a non-trivial ring with identity. Let M be an R-module and let G be
an abelian group. Then M ®z G is clearly a Z-module. But for each r € R we can uniquely define a
Z-module homomorphism by

friM®;G3220g— 179 M ®zG.

By uniqueness we see, that for all , 72 € R we have fr, 4r, = fry +fros frirs = fri 0 fras 1 = 1due,a-
Consequently, the left action of R on M ®z G given by R x (M ®z G) > (r,z) — fr(x) € M @z G
makes M ®z G into an R-module.

Inspired by [HS97, Proposition 1.8.1], we prove the following two propositions.

Proposition 2.2.5. Let R be a non-trivial ring with identity, and let e be a non-zero idempotent in
R. Regard eR as a right R-module. Let M be an R-module, and let G be an abelian group. Regard
Homy(eR,G) as an R-module as above. Then we have a functorial isomorphism

nar: Hompg(M, Homg(eR, G)) — Homgz(eM, G)

of abelian groups.
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Proof. The proof of this proposition is quite similar to the proof of [HS97, Proposition 1.8.1] (where
e =1). For each ¢ € Homg(M,Homy(eR, G)), we define ny (@) = ¢’ € Homy(eM, G) by

¢'(2) = (p(2))(e), = €eM.
For each 1 € Homyz(eM, G), we define a map ¢': M — Homg(eR, G) by
(W'(2))(r) =¢(rz), reeRzeM

(clearly, ¢'(z) is a Z-module homomorphism). Clearly, 1’ is a Z-module homomorphism, and for
re R, € eR and x € M we have

& (ra)(r') = ¥(r're) = '(2)(r'r) = (r('(2)))(r").

Hence, v’ is an R-module homomorphism.

It is evident, that ¢ — ¢’ and ¥ — 1)/ are Z-module homomorphisms. Moreover, (¢') = ¢ and
(') = 4. First, we see immediately that (¢') () = (¥'(z))(e) = ¥(ex) = () for all z € eM.
Moreover, for z € M and r € eR we have

(@) (@)(r) = ¢'(rz) = (e(rz))(e) = (r(e(@)))(e) = (p(@))(er) = (p(z))(r).

Thus ny = [ — ¢'] is a Z-module isomorphism, with inverse 1 — 1'. Functoriality is straight-
forward to check. o000

Proposition 2.2.6. Let R be a non-trivial ring with identity, and let e be a non-zero idempotent in
R. Let M be an R-module, and let G be an abelian group. Regard Re @7 G as an R-module as above.
Then we have a functorial isomorphism

ny: Hompg(Re ®z G, M) — Homgz (G, eM)
of abelian groups.

Proof. For each ¢ € Hompg(Re ®z G, M), we define ¢’ € Homz(G,eM) by

P(9)=ple@g) =ep(l®g), g€GqG.

Using the universal property for tensor products, for each i) € Homyz (G, eM), we define a unique
Z-module homomorphism ©': Re ®7; G — M by

V' (r@g)=ri(g), forallre Re,geQG.

It is straightforward to check that v’ is an R-module homomorphism.
Clearly, ¢ — ¢’ and 1 — ¢’ are Z-module homomorphisms. Moreover, (¢’) = ¢ and (') = ¥:

(@) (reg) =re'(g) =rele®g) =p(r(e®g)) =p(r®g), reRegecd,

(W) (9) =V (e®g) =ed(g) =¥(g9), geG.

Thus 1y = [p — ¢'] is a Z-module isomorphism, with inverse ¢ — . Functoriality is straight-
forward to check. o000

Proposition 2.2.7. Let R be a non-trivial ring with identity, let e € R be a non-zero idempotent.
For each projective Z-module P (i.e., free abelian group), the R-module Re ®y P is projective. For
each injective Z-module I (i.e., divisible abelian group), the R-module Homy(eR, I) is injective.

Proof. If 0 - L — M — N — 0 is a short exact sequence of R-modules, the induced sequence
0 — eL — eM — eN — 0 abelian groups is also short exact. Since Homg(P,—) is exact when
P is projective, and Homgz(—,I) is exact when [ is injective, the results follow from the functorial

isomorphisms of Propositions and ( X X J
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We will be using some notation from category theory — a good reference for category theory is
the monography [ML9§| (all what we use will be found there).

Proposition 2.2.8. Let F: C — D be an equivalence of categories. Then the following three properties
hold.

(a) For all objects X andY of C the induced function Homg(X,Y) — Homp (F(X),F(Y)) is injective
(i.e., the functor F is faithful).

(b) For all objects X andY of C the induced function Home(X,Y) — Homp (F(X),F(Y)) is surjec-
tive (i.e., the functor F is full).

(¢) For all objects Z of D there is an object X of C such that F(X) and Z are isomorphic in D (i.e.,
the functor F is essentially surjective).

Proof. Let G: D — C denote the inverse of F. Let : GF — idg and n: FG — idp be the natural
isomorphisms corresponding to this equivalence.
Assume f,g: X — Y with F(f) = F(g). Then

f = GY o GF(f) ] 9)_(1 = 9Y [¢] GF(g) o 9)_(1 =g.
Let g: F(X) — F(Y) be an arbitrary morphism. Set

h =ngwyyo F(05') ogoF(fx)o 77|:_(1)()7

and set
f =0y oG(h)o by
Then
F(f) = F(6y) o FG(h) o F(6") = F(fy) 0 ng 3y © b o me(x) © F(0x') = g-
Let Z be an arbitrary object of D. Then 7y is an isomorphism from F(G(Z)) to Z. (XX

Proposition 2.2.9. Let F: C — D be an equivalence of categories with G: D — C as inverse. Let
0: GF — id¢ and n: FG — idp be the natural isomorphisms corresponding to this equivalence.
Let X be an object of C and let f be an arrow in C. Then

(a) X is an initial (terminal, or zero) object of C if and only if F(X) is an initial (terminal, or zero)
object of D.

(b) f is a monic (epic, or iso-) morphism in C if and only if F(f) is a monic (epic, or iso-) morphism
n D.

(c) X is projective (or injective) if and only if F(X) is projective (or injective).
(d) The image of a product (or coproduct) is — in the canonical way — again a product (or coproduct).

(e) The image of a kernel (or cokernel) of f is — in the canonical way — a kernel (or cokernel) of

F(f)-
(f) F is an exact functor (i.e., maps exact sequences to exact sequences).

(9) If C is an additive category (or abelian category), then D may be turned into an additive category
in such a way that F becomes an additive functor. On the other hand, if C and D both are additive
categories (or abelian categories), then F and G are automatically additive.

Proof. We found this on the internet without any reference nor any proofﬂ Using the previous
proposition, the proof is quite straightforward (at least until the last part), and we leave the long and
tedious proof to the reader. (X X

2In order to not being as bad, we should refer to the homepage http://en.wikipedia.org/wiki/Equivalence_of _
categories where we found it.
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2.3 The path algebra of a quiver

Definition 2.3.1 (Path algebra of a quiver). For the ring Z, let ZI" be the (free) Z-module with the
paths of ' as Z-basis. Thus as Z-module ZI is just the set Z®ah(I) of functions with finite support
from the set of paths of I' to Z equipped with the pointwise addition.

For paths p = ap, -y and ¢ = B, --- (1 with t(¢) = s(p) we let pg denote the concatenated
path ., - o168, - 01, and pg = p (resp. pg = q) if ¢ (resp. p) is trivial. Then we can define a
multiplication x on ZI'" as follows:

(fxg)(r) = Z f(p)g(q), for every path r.

pg=r

It is easy to verify, that the map ZT' X ZT"' 3 (f,g) — f*g € ZT is bilinear and that the multiplication
is associative. Consequently, ZI" is a Z-algebra (or, equivalently, (ZI', 4, *) is a ring). This algebra is
called the path algebra of I' (over Z). Clearly, 1 =3, . e; is an identity for the ring ZI' if I' is a
finite quiver. It is evident from the definition that a finite quiver I" has no oriented cycles if and only
if ZI is finitely generated as a Z-module.

For a path p we will also let p denote the characteristic function of {p}. Note that with this
notation pg = p * ¢ for any two paths, with the convention, that pg = 0 if t(q) # s(p).

Definition 2.3.2. Let there be given a finite quiver I', and assume for notational convenience that
Iy ={1,...,n}. We are looking at the category of representations of I" (over Z), RepT’, and at the
category of ZI'-modules, Mod(ZI") (we do not only consider the finitely generated ones as the authors
of [ARS97] do). We now want to construct functors F: RepI’ — Mod(ZI') and G: Mod(ZI') — Rep .

Let M, be an object of RepT'. Define F(M,) to be V = @®;cr,M; as an abelian group. Let f € ZT
and v = (v;)ier, € V. Then we define a left action by

fo= > FP)mp(vs(p))

pepath(l),t(p)=i i€l

It is straightforward to show, that V' is a ZI'-module under this action.

Now let ¢po: M, — Ny be a morphism in RepI'. For each ¢ € I'y we have a group homomorphism
¢;: M; — N;. Clearly this induces a group homomorphism from F(M,) to F(N,). Let F(¢s) be this
homomorphism. It is easy to check that this in fact is a ZI'-module homomorphism. Clearly F is a
functor.

Now let V' be a given ZI'-module. Since 1 = e; + -+ + ¢, is a sum of orthogonal idempotents in
ZT', we get the abelian group V as a direct sum V = @, ¢;V. For any arrow a: i — j we have
ae; = o = e;o — therefore we have a group homomorphism mg,: ¢,V 3 v — av € e;V. Now let G(V)
be the representation M, consisting of the abelian groups (e;V);cr, together with the homomorphisms
(ma)aefl .

Now let ¢: V — V' be a ZImodule homomorphism. Let M, = G(V) and N, = G(V’). Then
d(e;V) = e;(V) C e;V'. Thus we can define ¢;: e;V — e;V’ to be the restriction of ¢ to e;V,
for every i = 1,...,n. Clearly these are group homomorphisms. Let a: i — j be an arrow. Then
i (Mqa(v)) = plaw) = ad(v) = ny(¢i(v)), for every v € e;V. Consequently, (¢;)ier, is a morphism in
RepT', we denote it G(¢). Clearly G is a functor.

Similarly as in [ARS97], we prove that F and G are equivalences of categories:

Lemma 2.3.3. Let T’ be a finite quiver. The functors F and G are inverse equivalences of categories.
Proof. Let M, be a representation. Let ¢;: M; — @®;er,M; be the canonical embedding, and let HlM’
be the corestriction of ¢; to the image of ¢;. Then clearly QZM * is an isomorphism, for every ¢ € I'y.
In fact, we have an isomorphism 9{“' : M, — GF(M,) = N, — for this we only need to show that
9}\4’ My = nae?/l', for every arrow a: ¢ — j. So let a: i — j be a given arrow. Then for m; € M; we
have

Nl (M) = na((85,6mi)ker,) = (85 kmi)kery = (3j,6Ma(mi))ker,

= 03 (ma(m;)).
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We want to prove that @, is a natural transformation from idrepr to GF. To show this, let M,
and N, be representations, and let ¢o: M, — N, be a morphism. Then we have to show that
GF(¢4)0M+ = QN+ ¢, which is clear since we for m; € M; have

GF()i0;"* (mi) = GF(ba)i((0:.kmi)kery) = (o) (8i5mi)rers)
= (05,6Pi (M) ) ker, = 9?1' (ds(my)).

Now let V and W be ZI'-modules, and let ¢: V. — W be a ZI'-module homomorphism. Let
o;: e;V — e;W denote the restriction. Then we have the following commutative diagram

Vv ¢ w )

|= =

FG(¢)=¢1 P 2D Bon
FG(V) = @ierg e;V FG(W) = @iero e;W

where the vertical ZI'-module isomorphisms are the canonical ones. From this it follows that we have
an isomorphism of functors from idyeqzr to FG. 000

Definition 2.3.4 (Path algebra of a quiver with relations). Let (T',p) be a quiver with relations.
Associated with (T, p) is the path algebra Z(T',p) = ZI'/< p >, where < p > denotes the ideal of
ZT generated by the set p of relations.

Corollary 2.3.5. Let (T, p) be a finite quiver with relations. Then the functor F induces an equivalence
between the categories Rep(T', p) and Mod(Z(T, p)).

Proof. Let M, be in Rep(T, p), and let 0 = a;p1 + -+ + arpr € p. Let i = s(p1) and j = ¢(p1). Then
m, = 0. So for each v = (vg)ker, € F(Ma,) is

ov = a1p1v + - + apprv = (65,6 (armp, (v;) + - -+ + apmy, (v5)))ker, = 0.

From this we see that F(M,) is a Z(T, p)-module (Mod Z(T', p) is a subcategory of Mod ZT").

If conversely F(M,) is a Z(T', p)-module, then cF(M,) = 0, for all ¢ € p. So — by a similar
calculation — m, = 0, for all o € p. Hence M, is in Rep(T', p), and therefore it is easy to see, that
also GF(M,) is in Rep(T, p). So the above lemma finishes our proof. o000

Definition 2.3.6. We say that a sequence L, s M, i’ N, of morphisms is exact if im ¢4 = ker 1,.

Clearly this is the case if and only if L; & M; ¥y N; is exact, for all i € I'y. We extend this to define
exactness of any sequence, and to define short exact sequences in the obvious way.

Corollary 2.3.7. Let (T, p) be a finite quiver with relations. Then M, is projective (resp. injective,
indecomposable) in Rep(T, p), if and only if F(M,) is projective (resp. injective, indecomposable) in
Mod Z(T, p), if and only if GF(M,) is projective (resp. injective, indecomposable) in Rep(T, p).

Moreover, a sequence Ly — M, — N4 in Rep(T, p) is exact, if and only if the induced sequence
F(L.) — F(M,) — F(N,) is exact in Mod Z(T', p), if and only if GF(Ls) — GF(M,) — GF(N,) is
ezact in Rep(T, p).

Proof. This is a direct consequence of Proposition and Corollary o000

Assume that (T, p) is a finite quiver with relations. From Proposition m — and Corollary
— it also follows, that Rep(T, p) is an abelian category. Moreover, it follows that Rep(T", p) has enough
projectives and injectives, so it makes sense to define derived functors such as Ext! (actually, it is not
so hard to prove these results directly, but the proof is long and boring). It is easy to check that the
socalled null object, products, resp. sums, are in fact null object, products, resp. coproducts in the
category theoretical sense. Also, it is easy to see that the kernel, image and cokernel (in Rep(T, p))
correspond to the usual definitions in Mod(Z(T", p)) via this equivalence.

Using this equivalence and Proposition we also see that a morphism ¢o: M, — N, is a
monic morphism, an epic morphism, or an isomorphism if and only if for all ¢ € 'y the Z-module
homomorphism ¢; is injective, surjective, or bijective, resp. (cf. [HS9T, Propositions 1.6.1 and 1.6.2])
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Definition 2.3.8. Let (T, p) be a finite quiver with relations, and denote A = Z(T, p). Note that if
every cycle belongs to < p >, then F(Complf;’i) is canonically isomorphic to g;Ag; ®z G.
Form the A-module Ag; ®; G (c¢f. Definition . We let Freef;’i denote the representation
G(Ag; ®z G). Note that FreeS is projective if G is a projective Z-module (¢f. Proposition .
Form the A-module Homz(€;A,G) (cf. Definition . We let Cofreel"" denote the represen-
tation G(Homyz (€A, G)). Note that Cofreel" is injective if G is an injective Z-module (cf. Proposi-

tion [2.2.7)).

2.4 Examples

Remark 2.4.1. Let (T', p) be a finite quiver with relations. Let A denote the ring Z(T", p). Then we
can write the identity of the ring A as a sum of orthogonal, non-zero idempotents 1 = Ziel‘o e; (for
a path p we let p denote the class in Z(T, p) containing p). It is clear that (€;);er, is an orthogonal
system of idempotents. Since every path in a relation in p is assumed to be non-trivial, it is easy to
see that e; € < p >, for ¢ € I'y.

Therefore, A€; is a (non-zero) projective module over A, for every i € T' (¢f. Lemma. So Ag;
is generated by all paths starting at vertex i. Also, Homz(e;A, Q/Z) is an injective A-module.

Let us look at some examples.

Example 2.4.2. Let I" be the quiver

vlavgﬁv37v4.

Then {ey, ea, €3, €4, a, 3,7, Ba,¥8,vPa} is a Z-basis for the path algebra ZT'. Let there also be given
the relations p = {Ba,y3}. Then {€;,e2,€3,€4,@, 3,7} is a Z-basis for Z(T, p), while {Ba,v3,vBa}
is a Z-basis for the ideal < p >.

Let A = Z(T, p). The four projective A-modules Ae;, for ¢ = 1,...,4, have as Z-basis {e1,a},
{@s, 8}, {€3,7}, and {4}, resp. The corresponding four representations are:

7=——=7—=0—>0, 0——=Z=—7—0,
OHOHZ:Z’ 0 0 0 Z, resp.
The four injective A-modules Homy(e;A, Q/Z), for i = 1,...,4, correspond to the four represen-
tations:
Q/Z—0 0—=0, Q/Z=Q/Z—>0——>0,

0—Q/Z=Q/Z—0, 0——0—>Q/Z=Q/Z, resp.

Consider the subring R of the ring of all 4 x 4 matrices over Z consisting of lower triangular
matrices. This ring is isomorphic to ZI' (the matrix

e1 0 0 O

a es 0 O

Ba B e3 0

Voo By es

indicates how). The ring of course isomorphic to the quotient of this ring by the ideal consisting

Ais
0000

of matrices of the form 2888 .
* % 00

Example 2.4.3. Let I' be the quiver

U1 D a .,
Then {e;,a,a?,...} is a Z-basis for the path algebra ZI'. Clearly ZT is isomorphic to the polynomial
ring Z[X] in one variable over Z. Let there be given the relation p = {aa}, and let A = Z(T, p).
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Then {e1,a} is a Z-basis for A, while {a?, a3, a%,...} is a Z-basis for < p >. So A is isomorphic to
72 equipped with the multiplication (z1,%1)(%2,y2) = (z172,Z1y2 + T2y1). Also Ae; = A, and the
corresponding representation is 72 :/x f, where f(z,y) = (0,2). We see that the injective A-module

Homygz (€1 A, Q/Z) corresponds to the representation (Q/Z)? Q I, where f(x,y) = (y,0).
Example 2.4.4. Let I' be the quiver

Vo
AN

(%1 ﬁ V3.
Let p1 = vBa, p2 = ayB and p3 = Bay. Then
{p}, Py, s, apl, Bph, vPh, Bapl, vBph, ayph | i > 0}

is a Z-basis for the path algebra ZI', where p? = e;. Let there be given the relations p = {Ba, v, av},
and let A = Z(T, p). Then {€;,és,3,@, 3,7} is a Z-basis for A.

Also {e;,a}, {€2, 3}, and {e3,7} are Z-bases for Ae;, Aey, and Aes, resp. — and they correspond
to the representations

Y/ 0
VAR N 7N

7,  Tesp.

The injective A-modules Homy(e; A, Q/Z), Homy(eaA,Q/Z), and Homy(esA, Q/Z) correspond to
the representations

0 Q/Z Q/z
N 7\ /N
Q/Z Q/Z, Q/z 0, 0 Q/Z  resp.
Example 2.4.5. Let I' be the quiver
(% i> V2
sl s
V3 T) V4.

Then {ei, ez, €e3,€4,,3,9,7,da,78} is a Z-basis for the path algebra ZI'. Let there be given the
relation p = {dov — yB3}, and let A = Z(T', p). Then {&1,@2,83,84,@, 3,9,7,da} is a Z-basis for A.
Moreover {e1,@, 3,0a}, {€2,0}, {€3,7}, and {€4} are Z-bases for Ae;, Aey, Aez, and Aey, resp. —
and they correspond to the representations
0
Z

The injective A-modules Homy(e; A, Q/Z), for i = 1,2, 3,4, correspond to the representations

—7, _—

iy

HZ

Z

Z

7

Z

O=<—-0CO

e resp.

Q/z —
i
0

Example 2.4.6. Let ' be the quiver

QZ=Q/z Q/Z—0 Q/Z=Q/Z

LT

0——0 Q/Z——0 Q/Z=—=Q/7Z  Ttesp.

_

V1 4&> V3.
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Then {e;, e, a} is a Z-basis for the path algebra ZI'. This ring is isomorphic to the 2 x 2 lower
triangular matrices over Z. Let there be given the relation p = {2a}. Then {€;,e;, @} generates
Z(T, p) as a Z-module, while {2a} is a Z-basis for the ideal < p >.

Let A = Z(T', p). The two projective A-modules A; = Ag; and Ay = A€s, have as generating sets
{€1,a@} and {€s}, resp. The corresponding two representations are:

7 —>1/2, 0——17, resp.

The two injective A-modules, Homgz (1A, Q/Z) and Homy(e2A, Q/Z), correspond to the two re-
presentations:

1
[z]— |5z
Q/Z —=0, 7)2Z ij@/z, resp.

This example shows that it is certainly possible to get torsion into the path algebra. But in the
cases we will be considering there will be no torsion.

It is natural to ask whether every projective (or injective) object is a direct sum (or direct product)
of such basic projective (or injective) objects as above (in the case that every oriented cycle belongs
to < p >, say). We do believe that this is true, but we do not know how to prove this in general. We
have asked some specialists in this area, but they could not answer this question. One of the problems
is that the Krull-Schmidt Theorem does not apply for these rings. In later sections we will study the
projective and the injective objects in more detail. In order to do so, we will need the constructions
from Definitions [2.2.3| and and some more facts about them.

Remark 2.4.7. Let (T, p) be a finite quiver with relations, and denote A = Z(T, p). Let G be an
abelian group, and let i € I'g. Let, moreover, V be a A-module, and let ¢: G — €;V be a Z-module
homomorphism. Then it follows from Proposition m (and its proof) that there exists exactly one
A-module homomorphism ¢¢ ;: Ae; ®z G — V such that

¢bci(€i®g)=¢(g), foralged.

It is immediate from the proof of Proposition that G(¢q,;); is surjective whenever ¢ is
surjective, and that ¢ is injective whenever G(¢¢,;); is injective. But G(¢¢,;); need not be injective
even if ¢ is injective, nor need ¢ be surjective even if G(¢¢ ;) is surjective.

Remark 2.4.8. Let (T, p) be a finite quiver with relations. Let G be an abelian group, let M, be a
representation, let ¢y € I'g, and let ¢: G — M;, be a Z-module homomorphism.

Using the preceding remark, we will consider the morphism ¢ = G(¢¢ 4, ): Freel"™ — M, which
is induced by ¢. We also see that if ¢, s : Free?’i0 — M, are induced by ¢,¢: G — M;,, resp.,
then ¢, = ¥, if and only if ¢ = .

Now assume that every cycle belongs to < p >, so in particular, €;,Z(T, p)€;, is canonically iso-
morphic to Z. According to the previous remark, there exists a unique morphism ¢ = G(¢g ;,) from
Freel " to M, such that ¢;, = ¢ (where we, in the canonical way, identify &, (Z(T, p)&;, ®z G) with
G). So in this case, injectivity (resp. surjectivity) of ¢ is equivalent to injectivity (resp. surjectivity)

of iy, = G(ba,i )io -

Remark 2.4.9. Let (I', p) be a finite quiver with relations, and denote A = Z(T', p). Let G be an
abelian group, and let ¢ € I'y. Let, moreover, V' be a A-module, and let ¢: €;V — G be a Z-module
homomorphism. Then it follows from Proposition [2.2.5] (and its proof) that there exists exactly one
A-module homomorphism ¢¢;: V — Homz(€;A, G) such that

(¢c.i(7))(&) = d(eiz), forallzeV.

Surely, the existence is clear from this proposition (and its proof), but also the uniqueness is clear,
since for ¢¢ ; satisfying this we have for all z € V and A € A that

(9c.i(2)) (@) = (M¢c.i(2)))(@) = (¢c.i(Ar))(€) = d(eiAx).
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It is immediate from the proof of Proposition that G(¢¢,;); is injective whenever ¢ is injective,
and that ¢ is surjective whenever G(¢¢ ;); is surjective. But G(¢¢,;); need not be surjective even if ¢
is surjective, nor need ¢ be injective even if G(¢¢ ;); is injective.

Remark 2.4.10. Let (T', p) be a finite quiver with relations. Let G be an abelian group, let M, be
a representation, let igp € I'g, and let ¢: M;; — G be a Z-module homomorphism.

Using the preceding remark, we will consider the morphism ¢o = G(¢g.i,): Me — Cofree?’i(’
which is induced by ¢. We also see that if ¢he,1Pe: M, — Cofree.G’io are induced by ¢,¢: M;, — G,
resp., then ¢, = 1, if and only if ¢ = 1.

Now assume that every cycle belongs to < p >, so in particular €;,Z(T", p)€;, is canonically isomor-
phic to Z. According to the previous remark, there exists a unique morphism ¢eo = G(¢g ;,) from M,
to Cofreel " such that ¢i, = ¢ (where we, in the canonical way, identify €;, Homgz(e;,Z(T", p), G) with
(). So in this case, injectivity (resp. surjectivity) of ¢ is equivalent to injectivity (resp. surjectivity)

of ¢iy = G(daig )io-
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Chapter 3
Mapping cones

In this chapter we examine the interplay between mapping cone sequences and homology and coho-
mology theories on C*-algebras (like K-functors and KK-functors).

3.1 Preliminaries: Suspensions, cones, and mapping cones

In this section, we define basic concepts like cones, suspensions, and mapping cones. We prove some
fundamental results, which will be needed later. Also we prove two technical lemmata (Lemmata|3.1.13

and |3.1.14]), which are needed for Chapter @
Definition 3.1.1. Let 2 be a C*-algebra. Then we define the suspension and the condﬂ of A as

SA={feC(0,1,2)]f(0)=0,f(1)=0},
CA={feC(0,1],20)| f(0)=0}, resp.
Remark 3.1.2. For each C*-algebras 2|, we have a canonical short exact sequence:
SA — CA — 2A.
It is well-known, that S and C are exact functors.
Notation 3.1.3. Whenever convenient we will identify CC2(, SC2(, CS2(, and SS2I with subalgebras of
C([0,1]%,2) by writing f(x,y) for (f(x))(y). In this way ev(f) will become f(1,—) while (Sevy)(f)

or (Cevy)(f) will be f(—,1).
We let flip denote the operation on C([0,1]2,2A) that flips a function on [0, 1]? along the diagonal,

i.e., flip(f)(z,y) = f(y,2).
Definition 3.1.4. Let 2 and 8 be C*-algebras, and let ¢: 2 — B be a *-homomorphism. The

mapping cone of ¢, Cy4, is the pullback of the maps %, B and CB % 8.
As usual, we may realize the pullback as the restricted direct sum:

Co = ADper, CB = { (2,y) € ADCB| $(a) = evi(y) = y(1) }.

Remark 3.1.5. Let ¢: A — B be a x-homomorphism between C*-algebras. Then there is a canonical
short exact sequence
SB — C¢ — A

called the mapping cone sequence. This sequence is natural in 2 and B, i.e., if we have a
commuting diagram

Q11i>%1

I

QLQH%Q

INote that some authors place the algebra at 0 rather than 1 — e.g. Blackadar in [Bla98]

17
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then there is a (canonical) *-homomorphism w: Cy, — C,, making the diagram

0 5%, Cs, 2y 0
Sgl J{w lf
0 S8, C¢2 Aoy 0

commutative (cf. [Bla98 Section 19.4]). Actually, we have a concrete description of w as follows:
w(a,h) = (f(a),goh) for all (a,h) € A By, ev, CB1 = Cy,.

Remark 3.1.6. The mapping cone sequence of the identity homomorphism idg is the canonical
sequence SA — CA — 2A. For each x-homomorphism ¢: A — B between C*-algebras, we have
canonical *-isomorphisms S-flip from SCy4 to Csg, and C-flip from CC, to Ccy, given by

SCy =S(ASpev, CB) 3 (z,y) — (x,flip(y)) € SABspev; CSB = Csy,
CCyp =C(A Dy ev, CB) 5 (z,y) — (z,flip(y)) € CABcyev; CCB = Ccy,
resp. See Definition and Lemma for more on these isomorphisms.

Definition 3.1.7. We define functors me, S and C on the category of all extensions of C*-algebras
(with the morphisms being triples of *-homomorphisms making the obvious diagram commutative)

as follows. For an extension e: 2y N Ay SN Ao we set
me(e): SAp <25 C 5 Ay,
L St
S(e) = Se: SAg s SA; — SAs,

Cle) = Ce: CAp <= €Ay 0 CAs.

For a morphism ¢ = (¢o, d1,d2) from e to €, we let mc(¢) be the morphism (S¢o,w, ¢1) defined
using the naturality of the mapping cone construction (see above), we let S(¢) = S¢ be the morphism
(Sébo, S¢p1,Sdh2), and we let C(¢) = C¢ be the morphism (Ceg, Co1, Coa).

It is easy to verify that these are functors. Moreover, one easily verifies, that they are exact (i.e.,
they send short exact sequences of extensions to short exact sequences of extensions).

Definition 3.1.8. Let there be given an extension e: 2l N Ay N Ay of C*-algebras. Then
we construct two new extensions, i(e) and g(e), from e as follows. Let i(e) denote the extension
Ao = Ap — 0, and let q(e) denote the extension 0 — Ay = As. Then we have a canonical short exact

. . i de
sequence of extensions: i(e) — e —» q(e).
Remark 3.1.9. If we have an extension
e: Qlo ‘;> Qll L* 2[2

of C*-algebras, then we get a commuting diagram

00— SAy ——= S,
( f(:’

Ao C, s
-, I
A A, — > Ay

with short exact rows and columns. The map f.: 2y — C, induces isomorphism on the level of
K-theory (actually, this hold more generally for additive, homotopy-invariant, half-exact functors, cf.
[Bla98, Proposition 21.4.1]).

e (de)
Actually, this diagram is nothing but the short exact sequence mc(i(e)) recte) me(e) =5 me(q(e))

induced by applying the functor me to the short exact sequence i(e) —= e e q(e).
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Definition 3.1.10. Let there be given an extension e: 2 N Ay SN Ay of C*-algebras. Form the
extensions S(me(e)), me(S(e)), C(me(e)), and mc(C(e)) as above. Then we define morphisms 6, from
S(mc(e)) to me(Se) and 7, from C(me(e)) to me(Ce) as follows:

S(me) S(me)

S(mc(e)): 0 — SS52, SC, S,y 0
:iaﬁ :lﬂip lsmp
me(Se): 0 —> 559, s g BTne g 0,
C(me(e)): 0—— s, L cc, e g 0
:ine :lﬂip icmp
me(Ce): 0 —— SCaly s o O gy, 0,

where the x-homomorphisms SC, — Cs, and CC, — C¢, are the canonical isomorphisms from

Remark B.1.6

Lemma 3.1.11. The above morphisms, 0. and 1., are functorial, i.e., they implement isomorphisms
from the functor S o mc to the functor mc oS and from the functor C o mc to the functor mco C,
respectively.

Proof. This is a long, straightforward verification. ( X X )

Lemma 3.1.12. Let e be an extension of C*-algebras. Then we have an isomorphism of short exact
sequences of extensions as follows:

0 — Smc(e) — Cmc(e) ——=mc(e) —=0

-

0 —— mc(Se) —— mc(Ce) ——= mc(e) —— 0.

Proof. This is a straightforward verification. (X X J

Lemma 3.1.13. Let there be given a commutative diagram

x$m1

J

@2?3

of C*-algebras and *-homomorphisms. We get canonical induced x-homomorphisms C4, — Cy, and
Cy, — Cy,. The mapping cones Ccdpl_{w2 and CCM_)Cw1 are canonically isomorphic to

(@i mm exsanecmecc| 207 A0 RGN0

:fQ(l)’ ¢20f2(_):h(17_)

resp. So (z, f1, fa, h) — (z, fa, f1,flip(h)) is an isomorphism from Cc,, —cy, to Ccy—cy, -

{ (x,fQ,fl,h) cxXoe CQJQ @le @ CC3 z;gi; = fl(l)’ 1/)1 Ofl(_) = h<_,1)7 }

Proof. This is straightforward to check by writing out the mapping cones as restricted direct sums.
Note that we only need to check the first statement, since the second follows by symmetry (by
interchanging 1 and 2). o000
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For a morphism ¢ = (¢o, ¢1, ¢2) between extensions of C*-algebras, we let C4 denote the object
Cyo — Cy, — Cy, (cf. also [Bon02, Definition 3.4.1] and Section [5.2.1)).

Lemma 3.1.14. Let there be given a commuting diagram

A 2> By —L ¢,
vﬁm \[1‘3 ﬁ@‘
QL1CL> B, v ¢,

Y2

Qb(ﬁ) By —os ¢,

with the rows and columns being short exact sequences of C*-algebras — we will write this short as

eq — e RN ee. Then we have an isomorphism &y from Cpcyy to me(Cy) given as follows:

C

me(y) - 0 CSyg CC,”B

migy N\LS-ﬂip ui

mc(Cy): 0—— SCy2 - ch—’cuz - Cyl

—>Cﬂ.¢ Hcyl >

HO

where the isomorphism from Ccm —Cr TO Ccyl_{y2 s given as in the above lemma. Moreover, the
map given by the matrix

0 bOep 6o
ld gy 7]6@
id id id
between the standard diagrams
0 Smc(ee) Smc(ee) 0 mc(Seg) === mc(Sec)

] ]

me(eg)—— Cuey) —— Cme(ee) and me(eg)—— me(Cy) — mc(Cee)

| P

me(eg)—— me(en) —> me(ee) me(eg ) me(eqs) — me(ec)

makes everything commutative.

Proof. Using the above, we have that Cc,  —.c,, is isomorphic to

{(x,fg,fl, h) € B, @ CB, @ CC; @ CCL, (( )) 1}12(()) ZZZJEE:EZ(_’”’}

and Ccylﬂcy2 is isomorphic to

yi(e) = f1(1),  meo fi(=) =n(1,-),
{(x;flaf27 )6%1@C€1@C%2@CC€ ( ) f2( )’ yzof;(—) :h(—,l) }

and, moreover,

Csy, = { (f2 h) €SBy @ CSEy [yp0 fo(—) =h(1,-) },
SCy, ={ (f2 )65%2@5C¢2\y20f2 —)=h(=1)},
Cylz{(a f1) € B1@C& yi(x) = f1(1) }.
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Using these identifications, we compute the extensions:

(f2,h)—(0,f2,0,h) (z,f2,f1,h)—(z,f

Cmc(y): 0 CSy2 : : CCW‘B*' g ke ltyl 07
(f2,h)—(0,0,f2,h) (z,f1,f2,h)—(z,f1),

me(Cy): 0 SC,, = *>Ce,, ¢y, 2 'Cy, 0.

Now it is routine to check that the given diagram commutes.

Second part: The above results show that every square which not involves Cy(yy and me(Cy)
commutes. The long and straightforward proof of the commutativity of the remaining four squares of
morphisms of extension is left to the reader. 000

3.2 Homology and cohomology theories for C*-algebras

This section is essentially contained in [Bla98, Chapters 21 and 22] (these two chapters are primarily
due to Cuntz, Higson, Rosenberg, and Schochet — see the monography for further references). These
definitions and results will be very important to us in the sequel. Because of this and because it is not
completely standard how to define the connecting homomorphisms, we have chosen to include this.

Definition 3.2.1. Let S be a subcategory of the category of all C*-algebras, which is closed under
quotients, extensions, and closed under suspension in the sense that if 2 is an object of S then the
suspension S2{ of 2 is also an object of S, S¢ is a morphism in S whenever ¢ is, SC is an object of S
and every x-homomorphism from SC to every object of S is a morphism in S.

Let Ab denote the category of abelian groups. We will consider functors F from S to Ab. Such
functors may or may not satisfy each of the following axioms:

(H) Homotopy-invariance. If ¢,¢: 2 — 9B are homotopic, then F(¢) = F(%)).

(S) Stability. The canonical embedding x: 2 — 2 ® K induces an isomorphism F(x), whenever
is in S (here we assume, moreover, that S is closed under tensoring by K).

(A) o-additivity. The subcategory S is closed under finite direct sums and (countable) inductive
limits (and so it is closed also under (countable) direct sums), and the canonical maps

e F(2A;) — F(, A;) induce an isomorphism P, F(2A;) — F(EP, ;) for every countable family
(2;) of C*-algebras, if F is covariant, and

e F(P,A;) — F(U;) induce an isomorphism F(€P, A;) — €D, F(2,) for every countable family
() of C*-algebras, if F is contravariant.

If we replace countable by arbitrary, we say the functor is completely additive. If we replace
countable by finite, we say the functor is additive.

(HX) Half-exactness. If
Qlo — 211 — 2[2

is a short exact sequence of C*-algebras in S, then the induced sequence F(2(y) — F(;) — F(2(3)
is exact, if F is covariant (resp. F(22) — F(2(1) — F(2lp) is exact, if F is contravariant).

Definition 3.2.2. A homology theory on S is a sequence (h,,) of covariant functors from S to Ab
satisfying (H) and if
2Ag Ay —» A

is a short exact sequence in S, then for each n there is a connecting map 0y, : hyp(™U2) — hp—1(Ap)
making exact the long sequence

On+1 hn (L) hon (

2 @) 2 ) On

hin—1(¢)
hn—l(ﬂo) PR NGO

"L ()

where 0,, are natural with respect to morphisms of short exact sequences.
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Definition 3.2.3. A cohomology theory on S is a sequence (h™) of contravariant functors from S
to Ab satisfying (H) and if

Ay s Ay — Ap
is a short exact sequence in S, then for each n there is a connecting map 9™: h"(2y) — h"T1(2s)
making exact the long sequence

n—1 h™(m h™ (L n h’ﬂ+1 T
2 (1) 2 ) S (o) — L et () D

where 0" are natural with respect to morphisms of short exact sequences.
Definition 3.2.4. Let F be an additive functor from S to Ab satisfying (H) and (HX).
Let e: 2y N Ay SN 2y be a given extension. Then for each n € Ny, we set
Fo=FoS" and 0,11 =F,(f)) "t oF.(tme): Fuy1(™A2) — Fr(Ao), if F is covariant,
F"=FoS" and 0" =F"(tme) 0o F*(fo)71: F*(™Ao) — F"1(Ay), if F is contravariant,
where (¢ S~ — C; and f.: g — C; are the canonical *—homomorphismsEI
From [Bla98, Theorem 21.4.3] we have the following theorem.

Theorem 3.2.5. Let F be an additive functor from S to Ab satisfying (H) and (HX). If F is covariant,
then (Fp)22 is a homology theory. If F is contravariant, then (F™)32, is a cohomology theory.

Corollary 3.2.6. If F is an additive functor from S to Ab satisfying (H) and (HX), then F is
split-exact, i.e., F sends split-exact sequences from S to split-exact sequences of abelian groups.

Proof. Let 2y <9 N 2y be a split-exact sequence of C'*-algebras, and assume that F is covariant.
It is clear that F(7) and F(Sm) are surjective (since F and FoS are functors). From preceding theorem
it follows that 01 = 0, so F¢ is injective. The proof in the contravariant case is dual. 000

The following theorem is taken from [Bla98, Corollary 22.3.2].

Theorem 3.2.7. Let F be an additive functor from S to Ab satisfying (H), (S), and (HX). Then F
is naturally isomorphic to F o S2.

Definition 3.2.8. Let F be an additive functor from S to Ab satisfying (H), (S), and (HX), and let
Ba: F(2) — F(S?2A) denote the natural isomorphism. Then for each short exact sequence

8252[0;9[1 L"Q{Q

of C*-algebras we make the following definition. If F is covariant, then we define dy: F(23) — F(S2p)
as the composition of the homomorphisms

F(22) —22 F(S295) — 2> F(S2Ay).

If F is contravariant, then we define o F(So) — F(2(2) as the composition of the homomorphisms
o' Bay

So with each such short exact sequence we have associated a cyclic six term exact sequence

F(v) F(m) F(m) F(v)

F(2lo) —— F(1) ——— F(Ay) F(22) —— F(1) ——— F(o)
01 T iao resp. 91 T iao
F(S2) 5 F(S2) < F(S%) F(S2y) <5 F(S2) <57 F(S%2)

which is natural with respect to morphisms of short exact sequences of C*-algebras. We will occa-
sionally misuse the notation and write &' instead of &' (which should not cause any confusions).

?Note that S™ denotes the composition of S with itself n times, while the superscript in F™ indicates that this is
some kind of n’th cohomology.
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Remark 3.2.9. While it is obvious how to generalize homotopy-invariance, stability, additivity, and
split-exactness for a functor from S to an additive category A, it is not obvious how to generalize
half-exactness.

In Section 21.4 in [Bla98], Blackadar defines half-exactness for such functors (i.e., Homa (X, F(—))
and Homa (F(—), X) should be half-exact for all objects X). It is natural to ask whether this extends
the original definition, and the answer is no. This is seen by applying Homy(Zs, K1(—)) to the short
exact sequence SMs <— I3 g — C (cf. Deﬁnition. On the other hand, for the category of modules
over a unital ring, Homg(R, M) is naturally isomorphic to M — so this property is stronger than the
ordinary half-exactness. To avoid confusions, we will not use this terminology.

3.3 (Co-)Homology theories and mapping cone sequences

In this section we show exactly how the cyclic six term exact sequence of the mapping cone sequence
for an extension of C*-algebras is related to the cyclic six term exact sequence of the original extension
(when they are defined as in the previous section).

First we will need the following lemma, which Bonkat uses a version of in the proof of [Bon02|
Lemma 7.3.1]. The proof given here is much more elementary.

Lemma 3.3.1. Let Fy and Fy be covariant additive functors from the category S to the category Ab,
which have the properties (H), (S), and (HX). Assume that 8y and 8y are boundary maps making
(Fi, 0;)}_ into a cyclic homology theory on S. Let there also be given a commuting diagram

Ay — Ay —= Ay

L

%OC—> B, — By

RN

¢ —= ¢,

with the rows and columns being short exact sequences of C*-algebras. Let eq,em and ec denote the
three horizontal extensions, while eg,e1 and eo denote the three vertical extensions. Then we get a
diagram

. P PR o 50 ot o2
6]‘%{ 8091 81&1
—> Fo(2o) —> Fo(2A1) Fo(2A2) Fi(2Ao) Fq(21) Fi(A2)
816‘B BS‘B 316‘3
—_— Fg(%o) —_— Fg(%l) Fg(%g) Fl(%o) Fl(%l) Fl(%z)
af@ a§¢ af@
—> Fo(€o) —> Fo(€1) Fo(€2) F1(<o) F1(€1) F1(€2)
. ago agl 832 . afo afl af2 .
9,2 o2 9™
— F1(™%o) — F1(21) F1(™A2) Fo(%o) Fo(%1) Fo(%Az2)
88% 816‘3 38‘8
—_— Fl(%o) —_— Fl(%l) Fl(%g) FQ(%()) FQ(%l) FQ(%Q)
ag@ 8;¢ agt
—> F1(¢o) —> F1(&1) F1(€2) Fo(€o) Fo(€1) Fo(C2)
a0 ot 972 a5° ot 952
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with the cyclic six term exact sequence both horizontally and vertically. The two squares

e e

0 61
Fo(&€2) —— F1(&o) F1(€2) ——Fo(Cy)
o e e e
3;“" 832!
F1(R2) — Fo(Ao) Fo(212) — F1 (o)

anticommute, while all the other squares (in the big diagram) commute.
If F is contravariant instead, the dual statement holds.

Proof. That all the other squares commute, is evident (using that Fy and F; are functors and that
the maps 9y and 0 are natural).

Let ® denote the pullback of €, along B85 — €5 and €; — €,. Then we have short exact sequences

€sum - Ql()(—> A + By ——==As D &

€pullback - Q{Q D Q:()( ) Q:Qa

where we identify 20; and By with their images inside B;. Split-exactness of Fy and Fq, ¢f. Corol-
lary and naturality of Jy and 0; together with the morphisms of extensions

2, C By I 2,C Ay A;
L |
A€ A1 +Bo A2 DEo 2 C A1 +Bg A BT
AP ¢oC o) ¢, A B¢, C o) ¢,
| L
2, C B, ¢y @€ ¢y ¢y

give that the map 5;3’3“5;""“““: Fj(€2) — F;(2Uo) is exactly 0y*,;05* + 9% ;0;¢, for j = 0,1. But it
turns out that 8163‘;“8;““"“1‘ = 0 proving anticommutativity. For we have the following commuting

diagram with short exact rows and columns

Ap——= A + By —= A O &

2, C B D

S N

so the map 8;"“”“““1‘ factors through F1_; (21 + Bo) — F1_; (A & &).
The proof in the case that F is contravariant is dual. ( X X J

Lemma 3.3.2. Let F be an additive functor from the category S to the category Ab, which has the
properties (H), (S), and (HX). Let A be an arbitrary C*-algebra. The standard cyclic siz term exact
sequencd’| associated with S — CA — A is the sequence

F(SA) —0—— F(2)
T—id 1l—5m
F(SA) <—— 0 <— F(S),
3as defined in Definitions and [3.2.§
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in the covariant case, and the sequence
F(A) —— 0 ——F(52)
o~ T —By " lid
F(S2A) =<—— 0 <—— F(S2),
in the contravariant case.

Proof. Assume that F is covariant. Since the cone, C2(, of 2 is homotopy equivalent to the zero
C*-algebra, F(C2() = F(SC2A) = 0 (¢f. [RLLOO, Example 4.1.5]).

We have the commutative diagram
(j Sf f

Yy (AN GR—e

o, |

SA = CUA —=

with short exact rows and columns. Note that C; is realized as {(x,y) € CASCA | z(1) = y(1)}. Using
this picture we get a *-homomorphism ¢: C2A > x — (z,z) € C,. Note that the composed *-homo-
morphism @ o ¢ is just f + tme. Since F(CA) = 0, we must have F(¢ o¢) = 0. Using the split-exactness
of F (¢f. Corollary [3.2.6), we get a canonical identification of F(S2 & S) with F(S2() & F(S2). Under
this identification, we get

F(SA) — = F(SA @ SA) F(C.)
2 (2,) gi (z,wHF(f)(zHF(/Lm?)(y)
\ /
F(S2A) & F(SA)

Consequently,
F(f) + Fltme) = F(f + tme) = F(p01) =0,
and hence F(f) = —F(tmc). Therefore, we have 91 = F(f) ™! o F(tyc) = —id.
The map Jp: F(2) — F(S22A) is the composition of the maps

F(21) 2 F(s2) — 2> F(s2Q),
where 9y = F(Sf)™! 0 F(Stmc). It is easy to see that the matrix
0 flip flip
flip (flip,flip) Afip
flip flip id

implements a map between the diagrams

0 5591 = S5 0 S(SA) =—=5(52)
T T
sl sC, SCa  and  S(SA)C C, C(s20)
P | |
SSA>> SCU —T> S9 S(SA)—> C(SA) 2 s

such that everything commutes. So by the above, we have Jy = — (.
The proof when F is contravariant is dual. o000
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Proposition 3.3.3. Let F be an additive functor from S to the category Ab, which has the properties
(H), (S), and (HX). Let there be given an extension

6:9‘0‘#9‘1 —71-»2[2

Then we have isomorphism of cyclic siz term exact sequences as follows:

—F(Sm o7 F(e —F(m s F(Se —F(Sn
S so1) 2 Feate) o Fat) L Fay) — 2 Fsatg) L0 Fsaty) —0
8mc<g) tme Tmec amt(E) Stme STme aFC(E)

F(S2As) Fleme) F(Cx) F(me) F(21) — F(SS%)F( ) F(sc,r)F( )F(SQll)

in the covariant case, and
—F(m F(o a° —F(Sw F(Se o} —F(m

() F(2A1) ® F(20) ——> F(SAs) ( )F(sml) L> F(S20) > F(Ag) (r)

:TF(fe) ZTF(Sfe) :Tﬁ;;
arlnc e Tme lmc a(r:\r e STme Stme 6r1nc e
Oray) ) ke T Esany o™ rsan) o Esen) PO pissarg)

in the contravariant case.

Proof. Assume that F is covariant. The diagram

A ——= Ay

Az

Ay =——

induces the morphism of extensions

0 S2As Cx Ay 0

)

00— SAy — Cidy, —> Ay —> 0.

Note that Ciq,, is canonical isomorphic to CRz. According to Lemma @, this induces a morphism
between cyclic six term exact sequences:

arme tme TTme agme tme lmec arme
s resms) L pen) DT ) 2 pssan S psc,) o psay)
\L \LF(W) \L iF(STr)
= F(S23) 0 F(22) ; F(SS22) 0 F(S22) =
—Ba,

This takes care of the commutativity of two of the six squares.
Commutativity of

F(v)

F(2o) — 2 F(21,) F(S2o) 2“2 F(sary)
=|r) W
F(Co) 2 Faty) F(SC) ™ Fsary)

follows directly from the 3 x 3-diagram above.
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Now we only need to check commutativity of

F(S2s) — > F(2A) F(2y) — s F(S2%)
T o o
F(s2) "L F(C,) F(SS2y) " F(SC,)

Since C; is the pullback, we get a canonical map C2; — C; and commuting diagrams

T I1m 1111

s> Coy —= 9 CAC—— CA; —>= C2A S > CAy —> Ay
SUALC—> CA, —= Ay 2 C fe Cr C2As SALC—> €, —— 2y

with exact rows and columns. Using Lemma [3.3.1] and Lemma [3.3:2] these diagrams give rise to the
following commutative diagrams

—Bay F(fe) Fleme)
F(2s) — F(SS5%Az) F(2o) —— F(Cy) F(S2%2) —> F(C,)
L e O O I
(SUp) =——= F(S2o) F(SSA) = F(S52) F(SS2Ag) = F(S52)
F(Sfe) F(Stme)
(SAs) F(SAs) F(S20) — 5 F(SC,r) F(SS2s) —— F(SCx)
Bfl iaéﬁ laf’ 6§Ei laf’
F(2o) = F(SS2Ao) F(SAp) ——— F(SAp) F(S2p) ——— F(SUAo)
By

where €’ denotes the extension Sy — C2(; — C,. Consequently,
Flime) = (95) 7" 0 85° = =F(fe) o (Bg,) ©
= F(fe) o By, © Pau, 097 = F(fe) 0 F,
F(Stme) = (9F) ™" 0 0% = —F(Sfc) 0 8
= F(Sfe) 0 9 o By,
The proof in the contravariant case is dual. 000

Corollary 3.3.4. Let F be an additive functor from S to the category Ab, which has the properties
(H), (S), and (HX). Let there be given a x-homomorphism

¢:A—-B
from a C*-algebra A to a C*-algebra B, and let
e SB <M C, T AL

denote the corresponding mapping cone sequence.
Then we have isomorphism of cyclic siz term exact sequences as follows:
—F(S Flime F(mme —F Stme STme —F(S
(S¢) F(sB) (tme) F(Cs) (Tme) Fea0) (¢) F(%)( ¢ )oﬁ%(sc¢,) (Smme) F(s20) (S¢)

|
F(S%B) Fleme) F(Cy) FTme) F(21) % F(SS%)F(SL‘“C) F(SC¢)FM F(521) L

ot
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in the covariant case, and

—F(¢) F(20) F(mme) F(Cy) F(tme) F(s%) —F(S¢) F(s) F(SﬂmC)F(SC(;,) F(Stme) F(B) —F(¢)
|-
61 Tmc Lme ag Tmc o Lm¢ 8;
> F(2) i )F(C¢) Fleme) F(SB) F(s21) F& )F(SC¢[3)%F4(S> F>(SS‘B) —

in the contravariant case.

Proof. This follows from the first part of the proof of the previous proposition. (X X )

3.4 Examples of concrete homology and cohomology theories

Example 3.4.1. Let S be the full subcategory of the category of all C*-algebras, consisting of
separable, nuclear algebras. For each separable C*-algebra 2, both KK (—,2) and KK (2, —) are
additive functors from S to Ab, which have the properties (H), (S), and (HX). The first one is
contravariant while the second is covariant. So the above theory applies to these, and identifies the
cyclic six term exact sequences associated with extensions in these two cases (as defined in [Bla98]).

Example 3.4.2. The functors Ky and K; are additive, covariant functors from the category of all
separable C*-algebras to the category Ab, which have the properties (H), (S), and (HX). So the above
theory applies to these two functors.

We have also a standard cyclic six term exact sequence in K-theory (as defined in [RLLO00]). To
avoid confusions, we write g and J; for the exponential map and the index maps, resp. We will recall
the definition here. We have an isomorphism 6_ of functors from K;(—) to Ko(S(—)), i.e., for each
C*-algebra 2 we have an isomorphism 6y : K7 () — Ko(S) and, moreover, for all C*-algebras 2
and B and all x-homomorphisms ¢: 2 — B, the diagram

commutes (c¢f. [RLLO0, Theorem 10.1.3]).
The exponential map dg: Ko(23) — K1(2) associated with a short exact sequence 2y — 21 — 2y
is defined as the composition of the maps

Baty 51 6911
Ko(ﬁg) e K1 (SQ[Q) e K()(SQ[Q) 40> Kl (Qlo),

where ¢; is the index map associated with the short exact sequence
SQLO — 5211 —» SQ[Q

Lemma 3.4.3. Let A be a C*-algebra. The standard cyclic six term exact sequence in K-theory
associated with SA — CA — A (as in [RLLOJ]) is the sequence
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Proof. Since the cone, C2, of 2 is homotopy equivalent to the zero C*-algebra, Ko(C) = K;(C2A) =0
(¢f. IRLLOO, Example 4.1.5]).

That the index map is 6y follows directly from the definition of 8y (c¢f. [RLLO00, Proof of Theo-
rem 10.1.3]).

The exponential map dg: Ko(R) — K1 (S2) is defined as the composition of the maps

-1

Ko(2) — K (52) — = Ko(S(520)) = K (S20),
where §; is the index map associated with the short exact sequence
S(S2A) — S(CA) — SA.
We have a commuting diagram

S(S2A)C S(Cca) S(A)

L

C(SA) = C(CA) — C(2A)

N

SAC c A

with exact rows and columns. This gives — by Lemma and the above (applied to S instead of
2A) — rise to an anticommuting square

Ko(A) (;O K1(S2)

\L(so lQSQl

K1 (S(2)) — = Ko(S(S2))

1R

Consequently, §; = —fsg. Now it follows that 5y = —q. o000

Since the index and exponential maps are unique up to signs (cf. [WO93|, Exercise 9.F]), we have
that the standard cyclic six term exact sequence in K-theory as defined here differs from the cyclic
six term exact sequence defined as above by change of sign of the index map (under the identification
0_ of K1 with KQ ] S)

Thus we get the following corollaries:

Corollary 3.4.4. Let there be given an extension
L s
€. 2[0 — Q[l —> Q[Q.

Then we have isomorphism of cyclic sixz term exact sequences as follows:

-4y K —Ko(m 8¢ K1 Kiq(m
K (912) o Ko (20) 2 ko) D g o) — 2 iy () L gy gy S
:J/QQQ :lKO(fa) :iﬁ“’h :\LKl(fc)
HKO(sz) HK()(C.,\-) Ko(ml) Kl(Sle) HKl(Cﬂ-) Kl(Qll)

the second sequence is the standard cyclic siz term exact sequence in K-theory associated with mc(e).
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Corollary 3.4.5. Let there be given a x-homomorphism
¢:A—B

from a C*-algebra A to a C*-algebra B, and let

Tme

e: SB IS Cy 5 A

denote the mapping cone sequence.
Then we have isomorphism of exact sequences as follows:

— K K
K1(B) Ko(Cy) o) Y ko) K1(Cy) ey 29
| |
— > K(SB) Ko(Cy) Ko(A) —— K1(SB) K1(Cy) K1 (%) —>

the second sequence is the standard cyclic sixz term exact sequence in K-theory associated with e.

Remark 3.4.6. Note that the way Bonkat associates cyclic six term exact sequences in ideal-related
KK-theory with short exact sequences with completely positive contractive coherent splittings is
completely analogous to the definitions of Section [3.2] (¢f. [Bon02, Section 3.4]).

Example 3.4.7. An instructive example to get a better understanding of Lemma [3.3:1] is to look at

SRS“——=S®C—=SgC

CS“——CeC—=CxC

S

CRS——C®C—=C®C
where S = SC and C = CC. It is tempting to guess that the maps
Ko(C®C) - K1(S®C) — Ko(S®S)

Ko(C®C) - K1(C®S) — Ko(S®S)

are equal (after all, S ® C is canonically isomorphic to C ® S) — but this is not the case. One map
gives the Bott map while the other gives the anti-Bott map. After some thought this seems reasonable
after all, since the map S®S 3z Ry— y®x € S®S corresponds to the flip along the diagonal in
Co((0,1) x (0,1)), which induces the automorphism —id on Kj.



Chapter 4

Invariants for C*-algebras with a
distinguished system of ideals

In this chapter, we first review the different — equivalent — pictures of C*-algebras with a distin-
guished system of ideals. For each fixed index set, we define a quiver with relations, and we give some
examples of representations of this quiver for different index sets. The category of representations
over this quiver with relations serves as the codomain of the invariant we define for C*-algebras with
a distinguished system of ideals (for a fixed index set). This invariant is used in the next chapter to
obtain a UCT for the case with two specified (linearly ordered) ideals.

4.1 Categories of systems of (*-algebras

We will consider C*-algebras with a distinguished system of ideals. Bonkat also considers such systems,

but he prefers to view them as a special example of projective systems. Each of the different pictures

in use in [Bon02] has its own advantages and disadvantages. Since this thesis is very closely related to

Bonkat’s thesis, we will define the different pictures that we will use, and explain their interrelation.
The following definition is an amalgamation of [Bon02, Definitions 1.1.1-1.1.5]

Definition 4.1.1. Let I be an ordered set. Assume that I has a countable cofinal subset (a subset
Iy C I is cofinal in [ if for every ¢ € I there is an iy € I such that iy < ¢). A projective system
over I (of C*-algebras) is a family (2;);c; of C*-algebras together with surjective *-homomorphisms
aij: A — Ay, for all ¢ < 7, such that ay; = idg,, for all ¢ € I, and aji 0 ay; = aup, for all ¢ < j < k.

A morphism from a projective system (2;);c; to a projective system (9B;);cs is a family of
completely positive linear maps f;: A; — B;, for ¢ € I, such that f; o ay; = B;; o f; whenever
i < j (where a;; and f;; denote the connecting morphisms of (2;),c; and (B;)icr, resp.). We also
call such a morphism a completely positive linear map (between projective systems). If each f; is a
x-homomorphism, then we call (f;);cr a C;-homomorphism (or just a homomorphism).

In the obvious way, this gives us the category of projective systems over I, C Iﬂ The objects
of C; are the projective systems over I, and the morphisms are the completely positive linear maps.

We will also consider the subcategory, SCy, of projective systems of separable C'*-algebras with
Cr-homomorphisms as morphisms.

These categories satisfy the axioms (C1) to (C4) on [Bon02, p. 25]. From these, it follows, that
Cr has a null-object, Cy is closed under ideals, quotients, (finite) direct sums and products, pullbacks
and it is also closed under tensoring by a nuclear C*-algebra. Moreover, a convex combination of
completely positive maps is again completely positive (¢f. [Bon02, Section 2.2]).

For these systems (and more general systems) Bonkat develops a KK-theory. But first we want
to compare the definition of projective systems for certain index sets with the notion of distinguished
systems of ideals of a C*-algebra. The following definition is from [Bon02, Definition 6.1.1].

!Bonkat considers two different categories of projective systems over a fixed index set, cf. [Bon02, pp. 30-31] — we
will only use this one

31
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Definition 4.1.2. Let I be an ordered set containing a least element, i.,i, , and let % be a C*-algebra.
A distinguished system of ideals over [ in 2l is an order preserving map

\IJQlI I — I(Ql), SatiSfying \I]Ql(imin ) = {0}3

where Z(2() denotes the lattice of ideals of 2.

A completely positive linear map f: 2 — B between two C*-algebras with distinguished systems
of ideals over I is called W-equivariant if f(Wg(i)) C (i), for all i € 1.

Let C*Id(I) denote the category of C*-algebras with a distinguished system of ideals over I with the
U-equivariant completely positive linear maps as morphisms. Let SC*Id(I) denote the subcategory
of separable C*-algebras with a distinguished system of ideals over I with the W-equivariant *-homo-
morphisms as morphisms.

Remark 4.1.3. Let I be an ordered set with a least element, 7,,;,. We let I=1uU {imax }, where
imax 1s a distinguished element (not in I), such that i < 4.y for all 4 € I. There is a one-one
correspondence between the order preserving maps Wo: I — Z () satistying Uy (imin ) = {0} and the
order preserving maps We: I — Z() satisfying We((imin ) = {0} and We((imayx ) = .

Remark 4.1.4. This is a natural generalization of Kirchberg’s action of a (locally complete Tp)
topological space (here I is the lattice of the open sets of the space). Every ordered set I can be
enlarged by a least element i, . So I could as well be an ordered set without a least element. Also,
I could be an ordered set with a least element iy without having ¥y (ig) = {0}. We could even have
I to be just a set, then add an element i,,;, to the set and impose the order iy, <1, for all ¢ € I.

In [Bon02, Satz 6.1.2], Bonkat proves the following proposition.

Proposition 4.1.5. Let I be an ordered set with a least element iymin. Then we define functors
G: C*'Id(I) — C; and H: C; — C*Id(I) as follows. Set G(A) = (A/ Yy (i))icr, for all A in C*Id(I),
and let oyj: A/ V(i) — A/Vy(j) be the surjective homomorphism induced by the quotient map
A — A/ Uy (j) whenever i < j; and let H((A;)ier) be the C*-algebra ;. together with the action
Yo, (1) = ker(2A — 2;), for i € I. The functors act on morphisms in the obvious way.

Then the pair (G,H) is an equivalence between the categories C*Id(I) and C;. The restrictions Go
and Hy to the subcategories SC*Id(I) and SC; give an equivalence between these two categories.

Tmin

§ 4.1.6. Let I be an ordered set~with a least element i, . Let (2A;);c; be a projective system over I;
For each pair of elements 4, j € I with i < j, we have a C*-algebra ker a;;. For each triple 4, j,k € I
with ¢ < j < k, we have a short exact sequence

ker a;; — ker o, — ker agjg,.

Moreover, for each quadruple i, j, k,1 € T with i < j <k <1, we have a commutative diagram with
short exact rows and columns:

ker aj; & ker a;, —>> ker o,

ker a;;&——— ker ai;; —> ker oy

F

ker gy ker ag;

Note that here we have used I instead of I to unify and shorten the notation. Of course, all the
algebras, (;);es are included in these diagrams; for each i € I, we have ker av;;, . = ;.

Remark 4.1.7. Let I be an ordered set with a least element i, , and let (2;);er and (9B;);er be
projective systems over I. For every completely positive map f: (2;);er — (B )ier, there is a unique
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linear map from ker a;; to ker 3;; such that the diagram

0 — ker ay; A; A 0
T
0 — ker ﬂij B; %j 0

commutes, whenever ¢ < j. This map will automatically be completely positive, and if f is a C;-
homomorphism, then this map is a x-homomorphism. It is an easy exercise to check commutativity
of the following diagram for i < j < k:

ker ocij(—> ker av;, —>> ker ajp

NN TN

kerﬂjj(—> ker 3;;, —>> ker B,k
) M

keraijL — A — | = Qlj
NN N
ker 3;;C B, ¢ B,
Qlk | == Qlk
N N
B By

From this, it is clear that the maps between the corresponding diagrams as given in previous paragraph,
will give a commutative diagram. So looking at the category of projective systems over I, at the
category of C*-algebras with a distinguished system of ideals over I, or at the category of families
of extensions (as outlined above) is equivalent. So we choose the picture which is most convenient
to us in the particular case considered. If we have only one distinguished ideal (except for the zero
ideal), then it seems more natural to work with extensions. The picture with projective systems has
at least one nice feature: since the connecting homomorphisms are surjective, it makes perfectly sense
to define the multiplier system of a projective system in the obvious way — while for extensions, it
is not the multiplier algebra of the ideal you want to consider. While it seems more natural (from
C*-algebraic point of view) to use the projective systems, there is a specific reason for viewing them
as systems of extensions — this reason will be clear later, when we define the invariant we will use.

Definition 4.1.8. As in [Bon02, Sections 6.2 and 7.1], we let £ denote the category of extensions of
C*-algebras, with the morphisms being triples of completely positive maps making the obvious diagram
commutative. We let SE denote the subcategory consisting of extensions of separable C*-algebras,
with the morphisms being triples of *-homomorphisms. It is clear that S& is canonically equivalent

to SC*Id(I), where I = {0,1} (cf. Remark |4.1.7).
Definition 4.1.9. We define the category & as follows. An object 2, of & is a commuting diagram

a2 Q2.4
A=Ay —> Ay

\{\02,3 \{\04,5
«

1,3 3

Ay Ay — 2 Ay

ia&ﬁ ias,e

A =——Us

with the rows and columns being extensions of C*-algebras. The morphisms in & are six completely
positive maps making the obvious diagram commutative. Let S& denote the subcategory of &
consisting of diagrams involving only separable C*-algebras, where the morphisms are six *-homo-
morphisms. It is clear that S&; is canonically equivalent to SC*Id(I), where I = {0,1,2} (cf.

Remark [4.1.7]).
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Similarly to S€ we define the following:

Definition 4.1.10 (Constructions with systems of extensions). Let ® be a nuclear C*-algebra. Then
we define the functor — ® © from SE& to S&; as follows. Let A, be an object of SE. We let Ay @ D
denote the object (2; ® D)$_; with the canonical maps, (a; ; ® idp). If ®4: Ae — B, is a morphism
in S&, then ®, ® D denotes the morphism (¢; ® idp)%_;.

In this way we define the suspension of 2, SUs = Ae @ S = A ® C((0, 1)), the cone of A,,
CAy = A @ C=2A, @ Cu((0,1]), and the stabilization of A, As ® K, for each object A, of SEs.

Remark 4.1.11. We will only use the category where the morphism correspond to *-homomorphisms.
But for consistency, we use the same definitions as Bonkat does.

4.2 Definition of a quiver with relations from an ordered set

One of our goals is to define an invariant of projective systems of C*-algebras over a fixed ordered set
(with a least element), which fits in a UCT with Kirchberg’s ideal-related KK-theory. This invariant
is going to be defined as a functor, so first we want to define a suitable category which is going to be
the codomain of this functor. Thus for each ordered set (with a least element), we want to define a
quiver with relations. The category we are interested in, will then be the category of representations
over this quiver with relations. First let us define the quiver.

Assumption 4.2.1. In this section, let (I, <) be an ordered set with a least element, ,,;,, . Moreover,
let (I, <) be the ordered set, obtained from (7, <) by adjoining a greatest element, imax (even if (I, <)
already has a greatest element).

Definition 4.2.2. Now we associate a quiver, I' = (To,T'1), with the given ordered set I as follows.
For each pair i,i" € I with i < 4', we let (i'/i)o and (i'/i); denote vertices of I'.  For each triple
i,1,4" € I with 7 <1’ < 4" we have arrows as indicated

L(i,'i”),(i,i/) [GRUSNCRLS)

(i fi)o ————(i" /i) = (i"/i')o

.y Y P N
PICEORCE )T léé NGO

(" /i) < (" i)1 <———— (/i1

ﬂgi/’i”)’(i’i”) L(li‘i”)‘(i‘i,)

Remark 4.2.3. Note that from the indices included in the labels of the arrows, we easily read of a
lot of information.

» The source (resp. target) of an arrow is immediately read of from the grading and second pair
(resp. first pair). Thus two arrows can be ’composed’ if and only if the grading and the meeting
pair match up.

» Moreover, we can immediately read of whether a given arrow exists. More specific for * = 0,1
we have

IENCRONCIRED :
*

exists if and only if ¢ = 4" <" <7/,

=

Ry YA
. ﬂ_g,l ), (@7,i) g

exists if and only if i/ <7< ¢

o ST oxists if and only if i <4/ =" <.
We will use the convention, that Li“ )@ and m(F” ), ), for i = 4" < ¢/ =4, will denote the
trivial path from (i'/). to (¢"/i"). = (i’ /1)s.

Definition 4.2.4. Now we want to define a family, p, of relations on the quiver I' associated with I.
For every triple 4,4, € I with ¢ < ¢’ <" we include for * = 0,1 the relations

ng’i”)’(i’il)5§i_’i;)’(il’ill) 7T(i',i")(i,i”)Lii,i"),(i,i’)

) *

65(7;77;/):(ilsi”)ﬂ.ii,:i”)f(ivi”) .

?
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Moreover, for every quadruple 4,4',i",7" € I with i < i’ < i’ < ¢ we include for * = 0,1 the

- -
relations

(6,4""),(4,4"") (4,4"),(i,3") (5,4"""),(3,3")
Ly Ly — s ,

7T('L-”,'L-”/)’(Z—I,Z'”/)ﬂ(i/’i///)’(i’i,,/) . W('L"’/L-,//)’(i,illl)

* * * B

LA A ), ) ) (1) ), ()
* * * *

i i Y

5)(;‘,1"),(1 AT G0, 5*(‘1'71")»(1'/,2'”)
ng;,j/l),(i,i//)5£i7i”)7(i”7i”/) . 5>(ki/7i”)7(i”7i/”)’

i), 8" i, G 03", (i,i i), @ "
SO GG )G s, (),

* 1—x

Definition 4.2.5. Let M, N € N, let mq,...,my,n1,...,nNy € Z, and let p1,...,ppm,q1,-..,qN be
paths in the quiver I' associated with I. We write

mip1 +mep2 + - +MmpypPy ~ N1q1 +N2qe + - - + NN

whenever
s(p1) = s(p2) = -+ = s(pm) = s(q1) = 5(q2) = --- = s(qw),

mip1 + mapa + - -+ muypar — (Mg +naga + -+ +nygn) € < p >.

Remark 4.2.6. So if p and ¢ are paths, then p ~ ¢ exactly when s(p) = s(q), t(p) = t(g), and
p—q € < p>. Clearly, ~ is an equivalence relation. Also we easily show that

np +n'p' ~ng+n'q if s(p) = s(q),t(p) = t(q),
p'p~dqq if t(p) = s(p').

So, in particular, p ~ ¢ = p1ppo ~ pP1gpo whenever t(pg) = s(p) = s(q) and t(p) = t(q) = s(p1).

pwqandp'wq'ﬁ{

Proposition 4.2.7. Let (I,<) and (I, <) be as in Assumption|{.2.1, and let (T, p) be the quiver with
relations associated with I (as in Definitions|4.2.9 and|4.2.4). Then the following holds:

(a) For every pair of vertices v,v' € Ty there is at most one arrow a: v — v'.
(b) There is no arrow o € T'y with s(a) = t(«a).

(¢) For each triple (i,i',i") € I® withi < i’ < i" there is a canonical functor F(i,ir,iy from Rep Z(T', p)
to the category of complexes of Z-modules.

(d) Let p be a non-trivial path in the 0-layer from (y/x)o to (y'/x')o. Then x <z’ andy <y, and

Léﬂ,y’)(w,y) ifo=a,
p Ll ) -

77(()1,’yl)’(z’y,)b(()w’y/)’(z’y) ifr#z andy #y'.

With the convention mentioned above, we can use the last expression for all the cases. The
corresponding statement about the 1-layer also holds.

(e) Leti,i',i" € I withi <i <i".

5(()1',2’/),(1"71'”) -~ ng,i/),(imiu,i/)(;(()imm,i')(i',imax)b(()i',imax),(iﬂi”)’

(4,4),(¢" ") (4,4),(4min,1") s(imin,i") (@ imax) , (¢ imax),(¢,1"")
0y ~ TG 03 A .
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(f) Let po be a path in the 1-layer, let p be a path, and assume that

p ~ 6§a7b)a(b’c)p06(()dae)7(e’f) .

Then p ~ 0. We also have the corresponding statement for the 0-layer.
(9) If p is a (non-trivial) oriented cycle, then p € < p >.

Proof. Part @, , and : This follows easily from the construction of (T', p).

Part @: The path p clearly consists of compositions of ¢g’s and/or m’s. Therefore it is clear
that x < 2’ and y < y’. We may w.l.o.g. assume that there never are two consecutive ¢o’s nor two
consecutive 7g’s (using the relations p). If

b,d)(b,c b,c),(a,c
pngbé )( )77(() ) ( )p1 (4.1)

for some paths pi, po, then
(b,d),(a,d) (a,d)
D~ p2Ty Lo
Again doing concatenation of 1o’s and m(’s, we get the same type of representation of p, and if p; or
po is non-trivial, we have reduced the total number of ¢y’s and 7y’s in p. If both p; and py are trivial,
then p is in the desired form. If p cannot be written in the form (4.1)), then

(a,c)pl‘

-~ L(()w’7y’)7(z,y)7 N 7r((Jﬂﬁ',y'),(amy), (()w’7y’)7(z,y')L(()x7y’)7($,y)'

p

p or p~m

By induction we see that p can be written in the desired form.
Part @: We show this for the O-layer only. If ¢ # i, then

i

(Séivi/)v(l i) ~ W:(li77;/)7(imin77;/)5(()illlitl;i/)7(i/7i”)'

If 4" # imax, then

(imin 7i/)7(il ,i”) (imin ,i/),(i/ 7imaX) (7;/ aimaX)v(i/ 77;//)
0y ~ 6y L0 .

Part @: From part @ it follows that

‘nlixnb ) bfmax ‘nlina 7‘Inax
b~ p35£l b )172(5(()Z oot )pl

)

where p; and p3 are paths in the O-layer and ps is a path in the 1-layer. Clearly po is non-trivial
(because otherwise would imax = € < imax). We note that b # imin and e # imax, because a < b and
e < f. If we assume that ps & < p >, then it follows from @ that

p2 ~ ﬂ_gbyimax)y(imixnimax)L:(liminyimax)v(iminae)

~ but Lginlin1imax)7(imin7e)6(()in1inye)(eaimax) ~ 0.

Part : Let p be a non-trivial oriented cycle. From part @ it follows that p has to visit both
levels. Now it is evident from part @ that p € < p >. ( X X J

Definition 4.2.8 (Exact representation). We call a representation M, exact if F; ;s (M) is exact
for every triple (i,i,4") € I® satisfying i < ¢’ < .

4.3 Examples

Example 4.3.1. Let I = {0}, and let 1 denote iax, so that we write I= {0,1}. Then the represen-
tations of the quiver associated with (I, <) are exactly the Zs-graded groups.

Example 4.3.2. Let I = {0,1} with the usual order, and let 2 denote imax, so that we write
I =1{0,1,2}. Then the representations of the quiver associated with (I, <) are exactly the cyclic six
term complexes (considered by Bonkat).

Among other things, Bonkat shows, that a cyclic six term complex is projective (resp. injective) if
and only if it is exact and every entry is a projective (resp. injective) Z-module.



4.3. Examples 37

Example 4.3.3. Let I = {0,1,2} with the usual order, and let 3 denote imax, so that we write
I ={0,1,2,3}. Then the representations of the quiver associated with (I, <) correspond exactly to
the commuting diagrams

0122 O12,4 06,8 96,10
10,1 10,1
Ly Lo Ly L7 Lg L1g
011,1 011,1
Ly Ls Ls L7 Lg L1y
Le =——=Lg¢ Lis == L1»
06,8 96,10 0122 12,4

with the rows and columns being cyclic six term complexes with the additional conditions:
06,8056 = 078057 and 012201112 = 01,2011,1-

We will later show (c¢f. Theorem [5.1.8)) that an object is projective (resp. injective), if and only if the
four mentioned complexes are exact and all the Z-modules Ly, ..., Lis are projective (resp. injective).

Example 4.3.4. Let I = {0,a,b}, with 0 < a,0 < b,a £ b,b £ a, and denote I = {0,a,b,1}. Then a
representation corresponds to two overlapping cyclic six term complexes:

s 03 s
4 o5
\ /
o1 Ly 9, 9, 05
86 / \ / \ 0

0 7D 7
— 0 p——lal \0

We have an epic morphism from the second one onto the first one, given by identity on “L4 and L}”
and (z,y) — x +y on “Ls”. Clearly this cannot split, so the ﬁrst representation is not projective,
even though both complexes are exact and every entry is a projective Z-module.

Similarly, one can show that the representation

——=0 Q/Z——0 00—

.
Q/Z
7

A
N/

is not injective (even though both complexes are exact and every entry is an injective Z-module).
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Remark 4.3.5. One should note that the two representations in the above example cannot be ob-
tained as the invariant (see the next section) of any distinguished system of ideals over I = {0, a,b},
since this corresponds to a direct sum (if the ideal lattice of 2 is isomorphic to I via Wy).

Moreover, we do believe that the objects coming from distinguished systems of ideals over I have
homological dimension 1 in general. For the above example it is easy to show, but we have not been
able to prove this in general.

4.4 An invariant

Here we define an extension of the full filtered K-theory introduced in [Res06].

Definition 4.4.1. Let (I, <) be an ordered set with a least element, iy, . Let, moreover, (f ,<) be
the ordered set, obtained from (I, <) by adjoining a greatest element, iymax (even if (I, <) already has
a greatest element).

We will consider distinguished systems of ideals over I in a C*-algebra (cf. Definition . These
systems Wo: I — Z(2) are in one-to-one correspondence with the distinguished systems of ideals over
ITin%A satisfying Wo(imax) = A — and we will freely shift between these points of view.

Now we want to construct a functor Kg from the category SC*Id(I) to the category Rep(T, p),
where (T, p) is the quiver associated with I. This is done as follows.

Let Wo: I — Z(2A) be an object of SC*Id(I)E| Now we associate an object M, = Kg(Wy)
with Wy as follows. For each pair i,i’ € I with i < i’ we let M siye = Ko(Wa(i')/Pa(i)) and
M /iy, = K1(Wa(i')/Wa(i)). For each triple 4,4’,4" € I with i < i’ <" we let

mb(i,i”),(i,i’) mﬂ_(i/,i”),(z‘,i”)

Mir iy —————— M iy ——————— My,
m5§i’il)’(i,'i”)T l/mééi,i’).(i’.i”)

M(i”/i/)l -~ M(i”/i)l % M(l’/l)l

M (if,i’7),(,i'") LN CRUSNERL
1 ‘1

be the standard cyclic six term exact sequenceﬂ

Ko (Wau (i) War (i) — o Koy (W (i) /W () — o e (Wae (i) W (1))

o Js

Ky (Vo (i) /(i) & Ky (O (") /al(i)) DA — K (o (i')/Wal(i))

in K-theory induced by the extension

Wou(i') /W (i) = W (i) W (i) = W (i") / War (i)

Using naturality of the index and exponential map, it is easy to verify that M, satisfies the relations
p, i.e., M, is really in Rep(T', p) and not only in Rep(T"). Note that Kg(¥g) is always exact.

Let Wy : I — Z(A) and ¥es: I — Z(B) be objects of SC*Id(I), and let ¢: A — B be a morphism
in SC*Id(I), i.e., a W-equivariant +-homomorphism. For each pair i,i’ € I with i < ¢’ this induces
a *-homomorphism ; ;ry: We(i')/We (i) — e (i')/ Vs (7). We define the morphism ¢, = Kg(p) by
setting v(ir /i), = Ko(@,iny) and o), = Ki(@a,i). 1t is easy to verify that ¢4 is a morphism.

We define the functor Kg41 from the category SC*Id(I) to the category Rep(T, p) in exactly the
same way, just interchanging Ky and K, everywhere and interchanging the index map, d;, with the
exponential map, dg, everywhere. It is easy to check (using the results from previous chapter), that
Kg41 and Kg oS are naturally isomorphic (using the canonical isomorphisms).

Remark 4.4.2. Every object in the range of the invariant is exact. The reason we use this larger
category, is that if we restrict to only exact representations, this is not an abelian category (the kernel
of a morphisms from an exact representation to another exact representation is not exact, in general).

2Recall that we let Wy (imax) = A where imax is the greatest element of TI.
3We define the index and exponential maps according to [RLLOO]



Chapter 5

A UCT for ideal-related KK-theory

In this chapter, we prove the first main result of this thesis: a Universal Coefficient Theorem (UCT)
for ideal-related KK-theory with two specified ideals, of which one is included in the other. The
main ideas of the proof are along the lines of the proofs of the UCT of Rosenberg and Schochet (cf.
[RS87] and [Bla98]) and the UCT of Bonkat (c¢f. [Bon02]). The main difficulty has been to establish
a suitable framework for the homological algebra needed in the proof — in particular to characterize
the projective and injective objects in the category where the invariant lives and to prove that all
objects in the image of the invariant have projective and injective dimension at most one. The UCT
is used together with results of Kirchberg to prove classification theorems for certain purely infinite
C*-algebras with exactly two non-trivial ideals. The main results are in the three last sections.

It seems that Meyer and Nest recently have generalized this UCT to include all finite, linearly
ordered ideal lattices (¢f. [MNa] and [MND]). Also they claim that there are obstructions for having
a UCT for many other finite ideal lattices (earlier Dadarlat and Eilers have pointed out to the author
that there are such obstructions in the case with infinitely many specified ideals). It seems that
the invariant used by Meyer and Nest is more abstract, and it is not clear to the author whether it
coincides with (or is equivalent to) the invariant introduced here. For these reasons, no attempts have
been made to generalize the proofs of this chapter to cover other specified ideal structures (e.g., finite,
linearly ordered lattices).

5.1 Projective and injective objects

In this section, we characterize the projective and injective objects (in the case of two specified ideals,
linearly ordered). It turns out, that these are, indeed, the objects which are exact and have every
entry to be a projective resp. injective abelian group. Using this, we can prove that an object is exact
if and only if it has projective dimension at most one if and only if it has injective dimension at most
one. This result plays a crucial role in the sequel.

Assumption 5.1.1. We assume that I = {0,1,2} and I = {0,1,2,3} with the usual order. Much
of what we will do from now on can be done in general, but it is much easier to consider this special
case. And, moreover, we cannot prove all the results generally (as stated, they are not even true in
general, ¢f. Example .

Let (T, p) denote the finite quiver with relations associated with (I, <). From Proposition
we also know that every oriented cycle is in the ideal < p > generated by the relations p. Therefore
the ring A = Z(T', p) is finitely generated free as a Z-module.

Corollary 5.1.2. If F is a projective Z-module (i.e., a free abelian group), then Freef’” 18 a projective
object for allv € Tg. If D is an injective Z-module (i.e., a divisible abelian group), then Cofree?’”
is an injective object for all v € T'y.

Proof. We already know this (¢f. Proposition and Definition [2.3.8)). (X X

39
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Lemma 5.1.3. Let G be a Z-module, and let x,y € I with © <vy. Then Free?’(y/m)o, P‘I'eef;v(y/””)17
CofreeS /@ and CofreeS /=)

are exact objects.

Proof. 1t is easy to check all the cases by bare hand. It seems very lengthy to prove this in general,
but we expect this to be true in general. o000

As in [Bon02, Lemma 7.2.6] we get the following.

Lemma 5.1.4. Let M, be an object of Rep(I', p). Then there exists an exact, projective object P
in Rep(T, p) and an epic morphism ¢e: Pe — M,, and there exists an exact, injective object I, in
Rep(T, p) and a monic morphism ¢e: Mo — I,.

Proof. For each v € T’ there exists a projective Z-module P¥ and a surjective group homomorphism
py: P? — M,. This induces a morphisms ¢} : Projfw’” — M, for every v € I'y.
Let now P, be the direct sum of the family (Proj’ U’U)UEFU of representations. Using the universal
property of the direct sum, define a morphism ¢,: Po — M, from the family (¢?),er, of morphisms.
Note that ¢, is epic (we just need to check that ¢, is surjective for each v € Ty, which is clear
from the universal construction because ¢¥: P, — M, is surjective). Note also that F, is additive, so
F.(P,) is a (finite) direct sum of exact complexes, hence it is exact.

Dualize the proof to get a proof for the part involving injectivity. o000
Following [Bon02, Korollar 7.2.7], we prove the corollary:
Corollary 5.1.5. Every projective object and every injective object of Rep(T, p) is exact.

Proof. Let P, be a projective object of Rep(T', p). From preceding lemma we know that there exists
an exact representation M, and an epic morphism ¢,: M, — P,. Then there exists a morphism
Yo : Pe — M, such that the diagram

Ik

commutes. Let 7 = (i,4’,4”) € 33 with i < i’ < " be given. Then it is enough to show that F,.(P,)
is exact. By standard homological algebra we need only to show that the homology groups are zero,
i.e., H,(F.(P,)) =0, for all n € Z. But this is clear from the induced diagram

0
HW iHn(FT(qb'))

Hn(FT(P-)) _ Hn(Fr<P-))

— which commutes since H,,(F,(¢s)) © H,(F,(vs)) = H,(F.(id)) = id.
The statement involving injectivity is proved by dualizing the proof. o000

Part of [Bon02, Proposition 7.2.8] corresponds to the following:

Proposition 5.1.6. If P, is a projective object of Rep(T', p), then P, is exact and P, is a projective
Z-module (i.e., free abelian group) for every v € Ty. If 14 is an injective object of Rep(T, p), then I,
is exact and |, is an injective Z-module (i.e., divisible abelian group) for every v € T'y.

Proof. By preceding corollary, P, is exact.

Let P/, be the exact projective object and let ¢, : P, — P, be the epic morphism constructed in
the proof of Lemma Then there exists a morphism 10, : Py — P, such that ¢ o 10 = id. So
P, is a direct summand of P,. Consequently, P, is a subgroup of P/, and hence projective (for all
(IS F())

This proof is also dualizable (since the quotient of an injective Z-module is injective). o000



5.1.

Projective and injective objects

41

Proposition 5.1.7 (A Mayer-Vietoris sequence). Let (My, frn)nez and (Np, gn)nez be ordinary chain
complezes, let (pn)nez: (Mp)nez — (Np)nez be a chain homomorphism, and assume that

foralln € Z, i.e.,

f-s f-2

M o ——= M ;4

i l

M3, = N3n7 ©3n = lda

we have a commuting diagram:

f1

_l

Then the two sequences

z—fog—1% z—(fiz,p17)

N_1 M, Mo
(ﬂc,y)Hg1y—sosz2 x> f3gax M,
and
N, z— fog—1 MfEH(flzﬁw:r)JWQ
(ﬂf/ﬂ/)HglyﬂpzGDN2 z— f3ga2x M,

are complezes. If, moreover, (Mp)nez and (

My — s 0,
|
Ny —2> Ny

(z,y)—~g1y—pax
_—

SNy
(z,y)—=g1y+p22
&N ———

Np)nez are exact, then these two sequences are also exact.

Proof. First of all, the second sequence follows from the first by considering the chain homomorphism

between complexes given by:

f-3 fo2

M _ 9 —=M_4

- l

—9-3 g
N

f1

l 1
go g1

My — 0,
|
Ny —Z 5 Ny

—2

It is straightforward to verify that the sequence is a complex.

(Np)nez are exact sequences.
Diagram chases:

(1) Assume M; >z +— (fiz,p12) =0 € My ® N1. Then we have

(Mn)nez

o |

So assume that (M,,),ecz and

i(‘pn)nez I

(Nn)nel

and, consequently, z = fpg_12.

z|—> PoTo=To }—)

E

)

(2) Assume My @ Ny 3 (z,y) — g1y — 22 = 0 € N3. Then we have

(an)nez

l(%’n)nez

(Nn)nEZ

(Mn)nez

i(tﬂn)nez

(Nn)nEZ

T |

6 2
T}
[o

faz=0
2

E

y |—0> g1y75 P2 |—1> Offzm,
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and, COHsequenﬂy, T = fll‘l = fl(foyo + 331) and Y=y —p1T1+p1x1 = <P1(f0yo + xl)-

(3) Assume Ny 3z — f3gox = 0 € My. Then we have

1

(Mn)nez T3 | gz s

l(@n)nez Io
(Nn)nez x }—O> g2,
(Mn)nel

l(@n)nez

3 2
(Nn)nez Y1 b———>> z—poz2 —> 0,
and, consequently, * = & — poxs + Qoxs = g1y1 — wa(—x2). PP

Analogous to [Bon02, Propositionen 7.2.8 und 7.2.9] we have the following main result — but the
proof is not analogous.

Theorem 5.1.8. An object Mo of Rep(T', p) is projective (resp. injective) if and only if M, is exact
and M, is a projective (resp. injective) Z-module for all v € T.

Proof. The “only if” part has already been proved above (Proposition [5.1.6)).
So assume that M, is exact and that M, is a projective (resp. injective) Z-module for all v € T'y.
As we saw in Example |4.3.3] we may visualize objects Lo of Rep(T, p) as a commuting diagram

12,2 0124 6,8 96,10
010,1 010,1
Ly Lo Ly L Lg Lo
011,1 011,1
1 L3 Ls Ly Lg L1 (5.1)
Le ——=Lg Lo =——= L1
96,8 96,10 12,2 12,4

with the rows and columns being cyclic six term complexes, and with the additional conditions:
05,8056 = 078057 and 012201112 = 01,2011

— and with the obvious notion of morphisms. We may equivalently write the diagram as:

04,5 O12,4 010,11 d10,1
01,3 01,3
L Ls L7 Ly L1 Ly
Ls Lg Lg Ly L1o Lo (5.2)
Lip == L1o Ly=——=14
010,11 010,1 Oa,5 O12,4
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with the additional conditions:
035023 = 045024 and 010,1108,10 = 09,1108.9.

Also the object L, is exact if and only if all of the four cyclic six term complexes are exact (in either
of the diagrams). Although we in the sequel will switch between these two pictures, when convenient,
we are always referring to the former picture, when we explicitly write out an object.

For every exact sequence A AN B—Ys(C of projective (resp. injective) Z-modules,

g

0 im f¢ B img 0 (5.3)

is exact. As a submodule of a projective Z-module, im g is projective (resp. as a quotient of an injective
Z-module, im f is injective). Hence the sequence splits, so B =1im f & B for some submodule B
of B. Note that B is also projective (resp. injective), and that g(b) = 0 for a b € B only if b = 0.
The strategy of the proof is to write M, as a direct sum of 12 objects which are already known to
be projective (resp. injective). The first main problem is to get started.
Step 1: Write

M, = imdyy 1 @ My,
My =im 011,12 @ Mis.

Clearly, im 0101 € im0;1,1 and imdg 12 C imdi1,12. From the Mayer-Vietoris sequence, Proposi-
tion [5.1.7] we have a cyclic six term exact sequence

My, My ® M, M, M Me © M7 —— Mg ——

From this we get a decomposition

M; = (im 2 +im di22) & Ms.
Write

M3 =im 0 3 & Mg
My =im0y 4 & M4.

Claims:

im ) o = im(d) 2011,1) ® O 2 M (5.4)
im 9190 = im(81 2011.1) ® D122 Mo (5.5)
My = im(01,2011,1) © O01,2My @ Ora2 Mz & M, (5.6)

M3z = 8a3Ms @ 0y 3M, © M; (5.7)

My = 89,4 My & D194 Mo ® M. (5.8)

“Equation (5.4)”: Clearly, im 0; 2 D im(0; 2011,1) —&—81’2]\21. Let z € My, and write z = 011,12 + ¥,
where x € M, and Yy € M. Then 81722 = 81,281171$ + 8172y, SO im@lg - im(al)gau,l) + 81,2M1 also
holds. Now let there be given x € M;; and y € M; with 0y 2011,12 = 01,2y. Then

31,39 = 32,331,2y = 32,351,2811,155 = 31,3311,115 =0,
and, consequently, this is a direct sum.
“Equation (5.5))”: This is proven analogously.
“Equation (5.6)”: It is enough to show that

imd) o 4 im dyg o = im(d) 2011.1) © O1 2 My ® d19.2Mis.
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Clearly,
im oy 2 +1imdio9 D im(0h 2011.1) + O1,2M1 + D12 2M2. (5.9)

On the other hand, let z1 € My and z15 € M. Write 21 = 811’11'1 + 1 and z19 = 811’12‘%12 + Y12,
where z1, 212 € M1, y1 € My, and Y12 € Mis. Then

01221 + 0122212 = 01,2011,1(T1 + T12) + O1 291 + D12.2Y12-

So “C” in Equation (5.9) holds as well. To prove that this is in fact a direct sum we need to
show that the sum is unique. For this, let x € My, y € M, and z € M5 and assume that
w = 81)26117137 + al)gy + 612,22 = 0. Then

0= 024w = 02401201112 + 02,401 2y + 02401222 = 012,4011,12% + 0+ 01242 = O12,42.

Hence z = 0. Analogously, y = 0, and hence 0; 201112 = 0.
“Equation ((5.7)”: It is enough to show that

im 3273 = 8273M2 ©® 8173M1.

Clearly,
im (92’3 D) 62,3M2 + 81’3M1. (510)

On the other hand, let z € My, and write
z = 01,2011,1711 + 01 221 + O12,2212 + 22,
where x17 € My, 1 € Ml, T19 € Mlg, and x5 € ]\;[2. Then
0232 = 013011,1211 + 01,301 + 0230122212 + 02 322 = 0+ 01 321 + 0+ Oo 3%2.

So “C” in Equation also holds. Now assume that we have z € M, and Yy € M such that
z = Oy 32 = 01,3y. Then 03502 30 = 05 501,3y = 0, so x = 0 (according to the construction of Mg).
Hence z = 0, so this is a direct sum.

“Equation ”: This claim is proven similarly.

Let M. be the object corresponding to

i

>N, —> 91 2M; —>0—>0—>0—>0—>

.

-~
<— O
< O

and let M2 be the object corresponding to

i i

—> 0 —> d1229Mi3 —> 9124 M2 —> 0

S
S
L

—> 0 0
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and let M, be the object corresponding to

| o l

i

‘>in1811,1 ‘>im(81,2611,1)®]\;12 662,4]\22@]\_44 — My Mg Mo
o, | | l
—> Im 611,1 —_— 82’3M2@Af3 Ms M~ Mgy My,

l | l

Mg —— Mg im 611,12 f———

! i !

l

im 011,12

J{o

45

Claim: These are exact, and each entry is a projective (resp. injective) Z-module. That the entries

are projective (resp. injective) Z-modules is clear. Moreover, these are clearly objects if we can show
that the maps are well-defined. This is clear for M} and M!2. By checking that the image of each
map is inside the stated codomain, this is also seen to be true for M. To check that M} and M2
are exact, we check that the three non-trivial maps in each object are isomorphisms (which is easy).

A straightforward lengthy computation shows that M also is exact.

Moreover,

M, = M! e M2 ¢ M..

Step 2: Analogously, we show that (with Ms, My, and Ms in My’s, Mi3’s, and My’s role, resp.)

M, = M3 & M, @ MY,

where M2 is the object corresponding to

—0 0
—> 00— M3 —> 03 5M3
6

03 3 03

- ° = U = o<

M is the object corresponding to

i

—>0—>0——> My —> 047 My —>0—> 0 —>

l

—>0—>0—> 84 5My —> 847 My —>0 —> 0 —>

l
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and M/ is the object corresponding to

L b i l

— imd11,1 —> im(1,2011,1) DMz ——— 02 4 My ————> 95 7 M5 DMy Mg Mio
N I [ i l
—> im 811,1 _— 8213]\/12 e im(84ys82‘4)@M5 —— 85,7A45@M7 Mo M1
o ) l l
95,6 Ms® Mg ——— 95,6 M5® Mg im 11,12 =——= im J11,12.

i i i b

These are all exact and all entries of these objects are projective (resp. injective) Z-modules.
Step 3: Now we apply the same argument with M7, Mg, and Mg in M;’s, Mis’s, and My’s role,
resp. We see that
M, =M ® M; &MY,

where MY is the object corresponding to

l i

00— 66,8M6 —_— 85,10]\26 —_—

<~ o<—0O=<—
<~ SC=<—0o=<—

MY is the object corresponding to

i

—>0—>0—>0—> Ny —> O7sMy —> 0 —>

| |

—>0—>0—>0—> Ny —> 97 9M7; —> 0 —>

l

0 0
and MY’ is the object corresponding to

| b ¢ I

— im 11,1 —> im(1,2011,1) DMy ———— 92, aMy ———> 95,7 M5 —> im(97,805,7)®Ms —> 9,10 Ms®M10 —>

I, L l

—> im 0111 2,3 M> im(84,502,4)®Ms —> 85,7 M5 —> 93,0 Ms® My My
o ! ! l
85,6 My ————= 05,6 Ms im 011,12 =———= im d11,12.

! I’ i e
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These are all exact and all entries of these objects are projective (resp. injective) Z-modules.

Step 4: Now we apply a similar argument (with My, Mo, and My in My’s, Mis’s, and May’s
role, resp.). We see that

M/// _ M9 @ MlO @ M////’

where MY is the object corresponding to

b

—>0—>0—>0—>0 0 0

H H i

—>0—>0—>0—>0——> Mg ——> 89,11 Mg —>

l !

0——0 89,12 Mg == 89,12 My,

l i

M is the object corresponding to

!

—> 8101 M1p —> 0 —>0—>0—>0 Mio

| |

—> 9101 M19 —> 0 —> 0 —> 0 —> 0 —> 910,11 M10 —>

and M/” is the object corresponding to

| b ! b

0 - - _ _ - _
—_— 811,11\/[11 — im(61‘2811,1)@M2 _— 6214M2 _— 65,71\/[5 — im(671885,7)eaM8 as’loMg
—> 911,10 M11 92,3 M> im(04,502,4)DMs —> 05,7 M5 ———> 03,0 Ms —> im(810,119s,10)HM11 —>
o ! o !
85,6 Ms =——= 85,6 M5 d11,12 My =——= 911,12 M11.

i ' i I’

These are all exact and all entries of these objects are projective (resp. injective) Z-modules.

Step 5: Now, it is elementary to see that

MY =M{ oM, & M; &M,
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where M? is the object corresponding to

l

—0 Mo

l

2,4 M
—> 0 —> 9y 3My —> im(94,502,4) —>0 —>0 —> 0 —>
0

g —>0—>0—>0—>
)

00—

l

M? is the object corresponding to

—0 0 0 95,7 M5 —> im(97,805,7) —> 0 —>
—0 0 Ms; 85,7 M35 0 0 —>
95,6 Ms 95,6 Ms 0 0,

M2Z is the object corresponding to

i i

—>0—>0—>0—>0 Mg ds,10 Mg ——>

i i

—>0—>0—>0—>0—> 8g,9Mg —> im(010,1108,10) —>

l i

A

and M1! is the object corresponding to

—> 91,1 My —> im(81,2611,1) —>= 0 —>0 0 0
— 9111 M1, 0 0—=0 0 M,
0——————0 d11,12 M1 911,12 M11.

Step 6: Now we have written M, as a direct sum of standard projective (resp. injective) objects:

12
M, = P M.
=1

Hence M, is projective (resp. injective). 000
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From [Bon02, Lemma 7.2.13] we have the following lemma:

Lemma 5.1.9. Let L, — M, — N, be a short exact sequence of objects of Rep(T, p). If two of the
objects are exact, then all three are exact.

Proof. This follows directly from the corresponding statement for chain complexes Lo, M,, and N,
— which is proved by diagram chase (c¢f. also [Bon02, Lemma 7.2.13 and Lemma A.1.2]). o000

Analogous to [Bon02, Korollar 7.2.14], we characterize the exact objects.
Proposition 5.1.10. Let M, be an element of Rep(T', p). The following are equivalent:
(1) The object M, is exact.

(2) The projective dimension of M, is at most 1.
(8) The projective dimension of M, is finite.

(4) The injective dimension of M, is at most 1.
(5) The injective dimension of M, is finite.

Proof. The proof of this is analogous to the proof of [Bon02, Korollar 7.2.14].

“(1)=(2)”: Assume that M, is exact. Let P, be a projective object and ¢o: Ps — M, an epic
morphism. Then ker ¢ — Py — M, is a short exact sequence. The object P, = ker ¢, is exact (cf.
Corollary and Lemma , and P! is projective for all v € Ty (because P/, is a subgroup of
the projective abelian group P,, cf. Proposition [5.1.6). Consequently, P, = ker ¢, is projective (cf.
Theorem .

“(2)=(3)”: Trivial.

“(8)=(1)”: Let there be given an exact sequence:

n—1 2 1 0

0 pn ey pr-1 ey L p! N pY Pe M, 0,
where n € Ng and PY, ..., P? are projective objects. Then we have a short exact sequence

ker @f —— PF 2, im ¥

for each k = 0,1,...,n. We have that P, PL,... P21 P? = im 7 are exact (cf. Corollary [5.1.5).
So, using im ¥ = kerh~!, for k = 1,...,n, and Lemma we see by induction that ker ¢pJ is
exact for all K =0,1,...,n. So now it follows from the short exact sequence

0
ker 0 —— PY ., im % = M,

and Lemma that M, is exact.
The proofs of “(1)=(4)", “(4)=(5)”, and “(5)=(1)" are dual. 'Y X

5.2 Geometric resolution

As in the proof of the usual UCT, we need to be able to construct geometric resolutions for each object
A, (both projective and injective), i.e., we need to construct a projective (resp. injective) resolution
of Kg(2e) coming from a short exact sequence of C*-algebras. In the construction of the geometric
resolutions, we need some definitions and some basic C*-algebra results, which will be given in the first
subsection — some of these results may already be known by the reader. In the second subsection,
we construct the geometric resolutions.
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5.2.1 Some preliminaries

Definition 5.2.1. Let 2, — B, — &, be a short exact sequence of objects of SE€. Define the
morphisms AP : Kg(€) — Kgi1(s) and AZTL: Kg i 1(€,) — Kg(s) as follows. We let AP = 9
and A?—&-fi =07, for i = 1,2,3,4,5,6, and similarly we let Ai@“ = 07" and Ag_gl = 9§, where e; is
the extension A; — B; - &;, fori=1,..., 6E|

As in [Bon02, Lemma 7.3.1], every short exact sequence of objects of S&; induces a cyclic six term
exact sequence in the invariant:

2, I, .
Lemma 5.2.2. Let Ay — By —» €, be a short exact sequence of objects of SE5. Then we have the
following cyclic siz term exact sequence

Ko@) —= 2 rg(,) —= s kg (eu)

o] o

Ke11(¢) Kg11(B.) Ke11(e)

-
Kg1(I1s) Ka+1(®e)

Proof. The only part which is not obvious is that A® and A®+! are morphisms. This follows from

Lemma and Section Here the difference of signs for 9; and §; (i.e. 9; = (—1)%6;) is, of course,
crucial. 000

Definition 5.2.3 (Mapping cones). Let ®,: A4 — B, a morphism between objects of S€. Then
the mapping cone, Cs,, of ®, is the object

Cp,&——Cop, —>Cg,

Cop, = Cqp, —= Co,

b

Co, = Ca,

where Cg, is the mapping cone of ®;, for ¢ = 1,...,6. It follows from [Bon02, Korollar A.1.5] that
this diagram consists of short exact sequences (both horizontally and vertically). It is easy to show
that this diagram is commutative (using the concrete description of the maps Cy, — Cg; mentioned

in Section .

Remark 5.2.4. Let Q,: Cg, — o be the standard morphism (the naturality of the mapping cone
implies that this is a morphism). The kernel of €, is canonically isomorphic to SB,, so we have a
short exact sequence

Q,
SBy — Co, —» Uo.

This sequence is natural in 2 and B,, i.e., if we have a commuting diagram

Q(.i)%.

| i o

AL — > B,

THere g and 91 are the connecting homomorphisms defined as in Section and, as seen in Section we have
8o = 8o and 91 = —d1 (up to the standard identification 6_ of Ky with Ky oS).
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then there is a (canonical) homomorphism w,: Ce, — Cg, making the diagram

0 SB. Ce, e 0
Sge l in lf.
0 SB, Ca, AL 0

commutative. If we have an extension
II,
Ao — By — €4

of objects of S&, then we get a commuting diagram

I\(—> S¢, ——S¢,
AT Cn, ce.
2, B, ¢,

with short exact rows and columns. The map fo: UAe — Cpp, induces isomorphism on the level of
K-theory.

In [Cun98| Section 2], Cuntz constructs a universal extension for each separable C*-algebra. This
construction will be useful for constructing geometric resolutions — for convenience we will restate
the result here.

Proposition 5.2.5. Let 25 be a separable C*-algebra. Then there exists an extension
JQ[Q — TQ[Q — ng

in SE with the property that, given any extension

Qlo — ml — mg
in SE there is a morphism of extensions
0 JUs T2 Ao 0
0 Ay A4 Aoy 0.

Moreover, T, is contractible, and hence has trivial K-theory.

Definition 5.2.6. When 2 is a C*-algebra, we let 2 denote the C*-algebra obtained from 2 by
adjoining a unit (even if 2 is unital). Let 2 and B be C*-algebras and let ¢: 2l — B be a *-homo-
morphism. Then there exists a unique *-homomorphism ¢: A — 9B such that

A——>9——C
Pk
B——p—>C

commutes, where the left hand horizontal maps are the canonical embeddings, and the right hand
horizontal maps are the corresponding quotient maps.
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In [RLLOO, Section 8.1], K of a C*-algebra 2 is defined as Ua, (24)/ ~1, where Uso (24) = S, Un (),

Mn(él) is the unitary group of Mat,, (), and u ~; v if and only if u @ 1, _p, ~p v ® L, in U,.(A) for

an r > m,n whenever u € U, (A) and v € U,,(~A). We will need the following description.
Lemma 5.2.7. Let U be a C*-algebra. Then
K1(2) = {[u]; € K1(A)|3In € NJa € Mat,(A): u =1+ a € U, (A)}.

Proof. Let u € U, () be given. Then it is enough to find some a € Mat,, () such that 1+ a € U, ()
and u ~1 1 + a. We proceed in two steps.

Write v = A + a where A € Mat,,(Clg) = Mat, (C) and a € Mat,, (). Then it is easy to verify
that A is unitary. So there exists a unitary w in Mat,, (Clg) such that wAw* is diagonal. So

uw = wwu ~ wuw* = wlw* + waw®.

So we may w.l.o.g. assume that A is diagonal: \ = diag(eQT”‘gl]lﬁ7 ceey 627”'9"15[), for some 64,...,6,
in [0,1). Let

At = diag(e_%”'@lt]lg17 . ,6_2”9”115[),
for t € [0,1], and let u; = Ayu, for t € [0,1]. Then [0,1] 3 t — wu; € Uy, () is continuous, u; = 1g+Ma,
and ug = u. So u; is a homotopy (in U, (A)) from u to u;. (XX

Proposition 5.2.8. We have a *-isomorphism
{9€C(D)[g(1) =0} > f > [0 f(e*™)] € Co((0,1)).
Identifying Co((0,1)) with its image, Co(T \ {1}), in C(T) under this x-homomorphism, we consider

—_~—

C(T) as Cy((0,1)).
Let there be given a C*-algebra 2. Then the map

{: Co(T\ {1}) — A| ¢ is a x-homomorphism} >
o= §(lz - 2]
cfucld) |1y —uecA}
is bijective. Moreover, if ¢: Co(T \ {1}) — 2 is a x-homomorphism, then
Ki(p): Ki(Co(T\ {1})) — K1 (%)
is given on the generator [z — z]1 of K1(Co((0,1))) (2 Z) as

Ki(p)([z = zlh) = [p(z = 2)l1.

Proof. Clearly, fo = [z +— 2] is a unitary in C(T). Let ¢: Co(T\{1}) — A be a given +-homomorphism.
Since ¢ is unital, ¢(fp) is a unitary in . Moreover, (fo — Lo(r))(1) =0 and

A3 o(fo—Lem) = @(fo— Loy = @(fo) — Ly

If¢: Co(T\{1}) — Asatisfies ¢(fo) = ¥(fo), then ¢ = ¢ (because fy generates C(T) as a C*-algebra).

Now suppose that u = 1g + a, for an a € 2, is unitary. Using Gelfand’s Theorem one easily
shows that C'(T) = C*(fo) is the universal C*-algebra generated by a unitary. Thus there is a unique
s-homomorphism ¢: C(T) — 2 such that ¢(fo) = u. Clearly, ©lcy(r\{1}) 18 @ *-homomorphism. Let
f € Co(T\ {1}) be given. To show that ¢|c,(r\{1}) is a *-homomorphism from Co(T \ {1}) to A, we
only need to show that p(f) € A. For each € > 0, we can find N € Nand a_y,...,axy € C such that
IIf = gllu < &, where g = Zngzv an fl', g(1) = 0 (by Stone-Weierstrafy’ Theorem for locally compact
spaces, see e.g. [Ped89]). We have

N

N N
<p(g) = Z an@(fO)n = Z anu” =a' + Z an]]-g] = Cl,,,
n=—N n=—N

n=—N

for some o’ € A, so p(g) = a’ € A. By continuity, ¢(f) € 2.
The rest of the proposition is well-known. 000
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Lemma 5.2.9. Let B be a separable C*-algebra, and let S be a countable set of generators for K1(B).

Then there exists a x-homomorphism ¢: @, g Co((0,1)) — B @ K such that

Ki(9): Ki (6D Co((0,1))) — Ki(B ©K) = K, (B)
seS

is surjective. Moreover, Ki(@,cCo((0,1))) = P, 5 Z.

Proof. Let fo = [z — z] € C(T). Since B is separable, K;(B) is countably generated. For each
s € S there is a unitary us € Mat,,, (B) such that 1 — us € Mat,, (B) and s = [us]; (use

Lemma [5.2.7]).

According to Proposition @ there is, for each s € S, a *-homomorphism ¢ from Cy((0,1)) to
Mat,,, (B) such that K1 (ps)([fo]1) = [us]1, where we view C(T) as the unitization of the C*-algebra
Co((0,1)) 2 Co(T \ {1}) (¢f. also Proposition [5.2.8]).

Define ¢: @, Co((0,1)) — P, g Mat,, (B) as the direct sum P, g 5. If S is finite, then we
clearly have an embedding

Mat,,, (%)

L @Matns(%) — Maty, ., (B) = BoK
ses

In this case, let ¢ = 1 01.

Now assume the S is infinite. Choose a bijection a: N — S. Let N; = Z;Zl Na(j)- 1t is well-known,
that the inductive limit of Maty, (B) — Maty, (B) — - - - is (isomorphic to) B ®K. For each i € N we
have a canonical *-homomorphism 1); of Cy((0,1)) into “the lower right corner of Mat;, (B)” induced

by ¥a(). Then Co((0,1)) %, Maty, (B) — B @ K is a commuting family if *+-homomorphisms.
Thus it induces a *-homomorphism ¢: @, .4 Co((0,1)) — B K.

Since K7 is completely additive, K1(¢)([fods,s0]1) = [tso]1 = s0 and K1 (P .4 Co((0,1))) is iso-
morphic to @, ¢ Z (cf. [Bla98, §21.1]). Y X

5.2.2 Geometric resolution

We now prove the following proposition, which is similar to [Bon02, Proposition 7.4.1].

Proposition 5.2.10. Let A, be an object of SE. Then there exists an object My of SE with
Ko(O;) and K1(9M;) countable free abelian groups, fori=1,...,6, such that there exists a morphism
P,: Mo — SUAe ® K with Ko(P;) and K1(P;) surjective, for i =1,...,6. In other words, Kg(9M.,)
is a projective object, and Kg(®,) is an epic morphism. If the K-theory of Ue is finitely generated,
then we can choose M, to have finitely generated K -theory.

Proof. Choose a countable set S7 of generators for K7 (%), and construct a homomorphism ¢ from
B =@D,cq, Co((0,1)) to 2A; ® K as in Lemma Let B, denote the object

Ll
g

B ——>
B ——>
0=——=

and let ®P+ = (@?', ce @?') denote the morphism (1, 1,201, @1,3¢1,0,0,0).
Choose a countable set S of generators for K;(2s), and construct a homomorphism ¢y from
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€=P,cs, Co((0,1)) to A ® K as in Lemma Let €, denote the object

and let ®% = (CDf‘, cee @g‘) denote the morphism (0, p2, a2 302, a2 492, a2 592, 0).
Choose a countable set S3 of generators for K;(2l3), and construct a homomorphism ¢3 from
D =@.cq, Co((0,1)) to A3 ® K as in Lemma Let ©, denote the object

OC—>(j*>>(j
0——D=——=29
@:@

and let ¢ = (<I>1©‘, ..., ®g*) denote the morphism (0,0, 3,0, a3 593, ¥3,693)-
Choose a countable set Sy of generators for K;(2l4), and construct a homomorphism ¢4 from
€ =@,cq, Co((0,1)) to Ay ® K as in Lemma Let &, denote the object

J(&)C T(¢

(

L

and let ®%+ = (@g',...,@G'L where ®F* and ®$* are the *-homomorphisms induced by ®%* = ¢,
and ®5* = ap385*, P = ay 54, and BF* = 0 (where J(€) and T(€) are as in Proposition
and the induced maps also are according to this proposition). Then ®&¢ is a morphism.

Choose a countable set Sy of generators for K;(2s), and construct a homomorphism ¢ from
F= @sess Co((0,1)) to A5 ® K as in Lemma Let §o denote the object

|
) 3

g

=3

)@
)

and let ®3+ = (@g‘, .., ®5*), where ®%* and ®5* are the *-homomorphisms induced by ®5* = ¢
and ®3* = a1 ,®%*, ®* = 0, and BF* = a5 605 (where J(F) and T(F) are as in Proposition
and the induced maps also are according to this proposition). Then ®3* is a morphism.
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Choose a countable set Sg of generators for K;(2g), and construct a homomorphism ¢g from
6 =D,cs, Co((0,1)) to As @ K as in Lemma Let &, denote the object

0C—— J(&) —— J(8)
0——=T(6) —=T(®)
b—6
and let ®%+ = (@?', cee @g’), where @f' and @?' are the x-homomorphisms induced by ‘bgj' = g

and ®P* =0, Y = a4®5*, and P = a3 5PF* (where J(&) and T(®) are as in Proposition
and the induced maps also are according to this proposition). Then ®&+ is a morphism.

We let 4 denote the object Be D Co D Dg D Eq D Fo D B, and we let <I>f" denote the morphism
BT @ B D P D P @ B @ PP+ — s0 we have

6

®2*: 9o — P A @K C Matg(Us @ K) = Ay @ Matg(K).
i=1

Now it is evident that K;(®*) is surjective for all i = 1,...,6, and that Kg(£e) is projective

(using Theorem and Proposition [5.2.5]).

Use the same construction for S, and get an object Jo and a morphism ®3J*: J, — S, ®Matg(K)
such that K, (®]*): K1(J;) — K1 (S ® Matg(K)) is surjective, for i = 1,...,6. Let My = SHe © T,
and let

T = SPI @ dI+: M, — SA, ® Matg(K) @ SA, @ Matg(K) C SA, @ Mato(K) = S, @ K.

Clearly, K;(®M*): K;(9M;) — K1 (S; ® K) is surjective, for all i = 1,...,6. Moreover, we have that
Ko(®"*) = Ko(S®P*) @ Ko(®;*), for i = 1,...,6. Because we know that K;(®P*) is surjective, for
i=1,...,6, it follows from the above and that K;(—) 2 Ko(S(—)) that Ko(®*) is surjective, for
i=1,....,6.

Moreover, Ko(9t;) and K;(91;) are countable free abelian groups, for ¢ = 1,...,6. They are
finitely generated, if Ko(2;) and K;(2l;) are finitely generated, for all i = 1,...,6. 000

Dually, we obtain the following (which is analogous to [Bon02, Proposition 7.4.2]).

Proposition 5.2.11. Let 4 be an object of SE5. Then there exists an object Mo of SE with Ko(N;)
and K1(OM;) countable divisible abelian groups, for i = 1,...,6, such that there exists a morphism
W,: SSA, — N, with Ko(¥;) and K1(¥;) injective, for i =1,...,6. In other words, Kg(Ms) is an
injective object, and Kg(W,) is a monic morphism.

Proof. Let ®4: MMy — S™A. ® K be as in Proposition [5.2.10} The mapping cone, Cg,, of ®, is

Cp,——Cqp, —>Cy,

L

Co,&—— Cp, — Co,

P

Coy == Ca,

where Cg, is the mapping cone of ®;, fori =1,...,6.
Let QF: Cs, — MM, be the standard morphism. Let R be the UHF-algebra with dimension group
Q, and let RM, = M, @ R. Define QL : M, — RM, by Ql(z) =z®1, forallz € M; and i =1,...,6.
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By the Kiinneth Theorem, K;(RIM;) = K;(M;) ® Q and K;(QF) is injective, for i = 1,...,6 and
j = 0,1 (for each C*-algebra B 1dent1fy B Wlth B ®C in the canonical way). The mapping cone
sequence for QL0 : Co, — RIN,,

A, A,
SEM, — Cain; — Cas,,
induces (up to a sign)

Ko (Ap Q:’QS
—— Kg(Caras) M Kg( C@.fL- 7)(®(Rfm.) —— Kg11(Cata;) — (5.11)

(cf- Section [3.3). Since Kg(2LQ3) is injective, this sequence degenerates to two short exact sequences:

Ko (2,2))
Kg(Co,) —
This implies that the K-groups of Cqrqs, for ¢ = 1,...,6, are divisible (since quotients of divisible
groups are divisible, and G ® Q is divisible for every group G). Consequently, Kg11(Caiag) is an
injective object.

We have a commuting diagram

Kg(RM,) — Ko41(Caray)-

s

Cq;. — m.

-
QLo
Ce, —= RM,.
Naturality now gives the commuting diagram
0 S9N, Cﬂg Cs, 0

isna Je-

0 ——SRM, —— Cato; — Cs, —— 0.

This induces a commuting diagram

Kg (2
0—— K@ Cq).) M K®(9ﬁ.) E— K®+1(CQ§) — 0

lK®(9i) \LK®+1(“’.)
o
00— Kg(Co, ®(RM,) — Ke+1(Carn;) —=0

Using that K;(€2) is injective, a simple diagram chase shows that K;(w;) is injective, for i = 1,...,6
and j = 0,1. Consequently, Kg(ws) is monic.
Since S(S2, ® K) is the kernel of Q% we get a commuting diagram of short exact sequences:

0 — > S(SU. ©K) —*> Cq; com. 0
| ]
0—— S(SQ{. ® K) C'I’. mo 0.

Since Kg(CMM,) is the zero object, Kg(€2y) is an isomorphism. We let Ny = Cqrqg, and we let
¥, : SSU, — I, denote the composition of the morphisms

SSA, 554 (52U, 0 K) ——> Caz —*> Caas.

Note that Kg(¥,) is monic and Kg(M,) is injective. (X X
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Now we are prepared to construct a geometric injective resolution (cf. also [Bon02, Proposi-
tion 7.4.3]). A geometric projective resolution (which is needed to prove that the UCT is natural, cf.
the proof of Proposition [5.5.2)) is constructed in the dual way.

Proposition 5.2.12. Let A, be an object of SE. Then there exist objects €4 and Do of SE and
morphisms ®q: Ve — &4 and ¥o: €4 — SSA and a completely positive contraction O4: SSA, — €,
such that

9, 2% e, 25 5o,

is exact and V.0, = id, and such that this short exact sequence induces a short exact sequence
Kg (o) = Koy1(Das) = Kgi1(C)
with Kg11(De) and Kg11(C,) being injective.

Proof. Let W,: SS2A, — M, be as in Proposition 5.2.11} Let €, = Cy, and ®, = SN,.
Then we have a short exact sequence

@. Q.
SNy — Cg, —>» SSU,.
This induces a cyclic six term exact sequence

HK@ﬁ,l SSQ{ *>K®(S‘ﬁ )*>K® C\p. HK@ SSQ{ *>K®+1(S‘)T.) ——

*>K®+1 5591 ®+1(\P o+1(Me) — Kg(Cy,) *O>K® SS2e MK@(”-) -

IR

So we have such a short exact sequence

9. 2% e, 25 sy,
which induces a short exact sequence
Keg(Ue) = Kg+1(Da) > Kg11(Ts)

with Kgy1(D.) and Kg411(€s) being injective (here we of course use the main theorem from Sec-

tion Theorem and Proposition [5.1.10)).
Now define ®,: SS2(; — €; = Cy, by

Qi(x) = (x,[t — t¥;(z)]) € €, xe€SSY;,i=1,...,6.

Clearly, ®; is linear (but not necessarily a *-homomorphism). Moreover, ,;®; = idssy, and ®; is
contractive, for i = 1,...,6. Using that t¥;(2)¥(y)* = (Vt¥;(z))(Vt¥;(y))* it is straightforward to
show that ®; is completely positive. Of course, one also needs to check that ®; o SSa; ; = v;; o ®4,
where «; ; are the maps of €,. 000

5.3 The KK¢,-groups in certain cases
In this section we will, in certain cases, relate the KK ¢, -groups to KK ¢-groups (in a way similar to
[Bon02l Section 7.1]).

We have four canonical functors F;: S€ — SE, i =1,2,3,4, defined by F;(2s), Fa(Us), F3(As),

and Fy(2,) is the extension
Q‘l > 9[2 >> Q[47

A —— Ay — Az,
Q(j—)%(g >> Q[67

Ay —— A; — A,
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resp. By universality, these will induce functors G, G2, G3, and G4 from KKg, to KK¢ such that

F;

S& SE

Kngl lKKg

KKg, ——> KKe.

The proofs of the following two lemmata are straightforward (the lemmata correspond to the
easy parts of [Bon02, Proposition 7.1.2 und Proposition 7.1.3]). See [Bon02, Definition 3.1.1] for the
definition of Kasparov-2e-28,-modules.

Lemma 5.3.1. Let U, and B, be objects of SE. Let v = ((F5 — Es — Eg), (¢3, 05, ¢6), (F3, F5, Fg))
be a Kasparov-(Us, As, As)-(Bs, Bs, Be)-module. Then clearly

zo := ((E3 — Es), (¢3, ¢5), (F3, F5)) is a Kasparov-(As, As)-(B3, Bs)-module,
z3 = ((E3 — Eg), (¢3, P6), (F3, Fs)) is a Kasparov-(As,Us)-(B3, Be)-module,
x4 := ((E5 — Eg), (¢s5, d6), (F5, Fg)) is a Kasparov-(Us, As)-(Bs5, Bg)-module.

Lemma 5.3.2. We have that Go(x) = x2, G3(z) = 3, and G4(z) = 4.

Analogous to [Bon02, Lemma 7.1.5], we prove the following proposition.
Proposition 5.3.3. Let A, and B, be objects of SE. Then the following holds:
(a) Go: KKg,(Ue,Bo) — KK g(Fa(Us), F2(Ba)) is an isomorphism whenever A4 = 0 or Bg = 0.
(b) Gs: KK¢g,(Ue,Bo) — KK (F3(2s), F5(*Bs)) is an isomorphism whenever A; = 0 or By = 0.
(c) Ga: KKg,(Ue,Bo) — KK (Fa(As), F1(*Bs)) is an isomorphism whenever B1 = 0.

Proof. We first prove surjectivity.
Assume that Bg = 0. Let

y = (B3 = Es), (¢3,¢5), (F3, F5))

be an arbitrary Kasparov-(2s,2s)-(Bs, Bs)-module. Now define

T = ((E3 —» E5 —» O)a (¢37 ¢)57 0)3 (F3a F57 0));

which clearly is a Kasparov-(2s, s, s)-(Bs, Bs, Be)-module. Then it is clear that zo = y.
Assume that 24 = 0. So as¢ is an isomorphism. Let

Yy = ((E?) - E5)7 (¢37 ¢5)> (F3>F5))
be an arbitrary Kasparov-(2s, s)-(B3, Bs)-module. Now define
€T = ((E3 — E5 — Es ®555 %6)7 (¢37¢5a ¢5 o a5_61 ®556 1)’ (F37 F5’ Fs ®356 1))

Using the results from [Bon02, Section 1.2], one easily shows that x is a Kasparov-(s, s, Us)-
(B3, B5, Bs)-module, such that zo = y.
Assume that 20; = 0. So ags is an isomorphism. Let

y = ((E3 — Es), (¢3, 96), (F3, Io))

be an arbitrary Kasparov-(2s, 2g)-(Bs, Be)-module. Now — using results from [Bon02] Section 1.2]
— we can define a Kasparov-(2s, 2s, 2s)- (B3, B, Be)-module by

z = ((E3 - E3 ®p,; Bs — Fe), (¢3, 03 0 g5 ®p,; 1, 06), (F3, F3 ®p,, 1, Fp)).
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Clearly, we have that x3 = y.
Assume that 281 = 0. So (335 is an isomorphism. Let

y = ((Es — Es), (95, 06), (F5, Fg))

be an arbitrary Kasparov-(s,2s)-(B5, Bs)-module. Now define

x:= ((Es - E5 - Eg), (¢5 0 ass, ¢5, ¢6), (F5, F5, Fg)).

It is straightforward to show that z is a Kasparov-(s, s, As)-(Bs, Bs, Be)-module with x4 = y.
Assume that B4 = 0. So [s¢ is an isomorphism. Let

y = ((E3 - Es), (¢3, %), (F3, Fs))

be an arbitrary Kasparov-(s,2s)-(B3, Bs)-module. Now define

x:= ((B3 - Eg — Eg), (¢3, 96 0 as6, ¢6), (F3, Fe, Fs)).

It is straightforward to show that z is a Kasparov-(s,2s,As)-(Bs, Bs, Be)-module with x5 = y.
We now prove injectivity. We use the picture of KK ¢, (2L, B,) given as unitary equivalence classes
of Kasparov-(s, s, As)-(B3, Bs, Be)-modules modulo homotopy (cf. [Bon02, Definition 3.1.3]).
Assume that B¢ = 0. So assume that there are given two Kasparov-(2s, s, 2s)-(Bs, B, 0)-
modules

' = ((Eiza - Eé - Eé)’ (¢§a gvd)%)v (ngFg»Fé))» fori=0,1,
such that } ‘ ‘ o o
(z')2 = (B3 — E3), (05, ¢5), (F5, F)), fori=0,1,
are homotopic, i.e., there is a Kasparov-(2s,s5)-(C([0, 1], B3), C([0, 1], B5))-module
(B3 — Es,(¢3,¢5), (I3, I5))
such that
((F3 @ev; Bz — Es ®ey; Bs, (03 Devs 1, 05 Qev,; 1), (F3 Qev; 1, F5 Rey, 1)) = (z)2, for i =0, 1.

Since Bg = 0, we have E{ = 0 = E}, and, consequently, ¢J = 0 = ¢} and FJ = 0 = Fy.
As above, we can lift this to a Kasparov-(2s,2s,2s)-(C([0, 1], B3), C([0,1],B5), 0)-module

((ES - E5 - 0)7 (¢37 ¢570)a (F37 F570))
This means that we have homotopic Kasparov-(2s, s, 2s)-(Bs, B5, 0)-modules
at = ((E:lz - Eg - 0), (‘bév d)é’o)v (Fév Fg,O))
= ((E3 ®ev, B3 = E5 Qey, Bs — 0), (3 Rev, 1, 95 Qev, 1,0), (3 ®ev, 1, F5 Revy, 1,0)), fori=0,1.

Assume that B4 = 0. So (5 is an isomorphism. For convenience, we assume that B5 = B4 and
Bs6 = idm,. Assume first that there is given a Kasparov-(s, Us, As)-(B3, Be, Be)-module

= ((E3 = Es - Es), (¢3, ¢5, ¢6), (F3, F5, Fg)).

Then €56 is a module isomorphism, and Fs and Fg are identical as Hilbert-28g-modules under this
isomorphism, and, moreover, ¢5 = ¢¢ © ass and T5 = T under this identification (this follows easily
from [Bon02, Lemmata 1.2.3 und 1.2.4]). So z is actually unitarily equivalent to

(B3 = Eg — Eg), (¢3, ¢6 © as6, ¢6), (F3, Fe, F)).
So assume that there are given two Kasparov-(2s, s, As)-(Bs, B, B )-modules

at = ((Eé e Eé - Eé)v (¢§7¢% © a565¢é)) (F§7Fé’Fé))’ fori=0,1,
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such that _ ' _ o o
(z')s = (B3 - Eg), (5, ¢5), (F3, Fg)), fori=0,1,
are homotopic, i.e., there is a Kasparov-(2s,2s)-(C([0, 1], B3), C([0, 1], B))-module
((Es — Eg, (03, ¢6), (F3, F5))

such that
((ES ®ev71 %3 - E6 ®ev,, %67 (¢3 ®evi 1; ¢6 ®ev,, 1)7 (F3 ®ev7~, 17 F6 ®evi 1)) = (-Ti)Sa for i = Oa 1

As above, we can lift this to a Kasparov-(23,2s,2s)-(C([0, 1], B3), C([0,1],Bs), C([0, 1], Bs))-
module
((E5 - Es — Es), (¢3, ¢6 © as6, 96), (I3, Fo, Fs)).

This means that we have homotopic Kasparov-(2s, s, s)-(Bs, Bs, Be)-modules
= ((E3 ®ev, B3 = Eg Qcv, Bs — L Dev, Be),
(¢3 ®evi 17 ¢6 O Us6 ®evi 17 (ZSG ®evi 1)7 (FB ®evi 1; FG ®evi 17 FG ®evi 1))7 for i = 07 1.

Assume that 8B, = 0. So (35 is an isomorphism. For convenience, we assume that B3 = B5 and
B35 = idm,. Assume first that there is given a Kasparov-(s, Us, Us)-(Bs, Bs, Be)-module

v = ((B3 — E5 — Es), (¢3, 95, ¢6), (F3, I, F)).

Then €35 is a module isomorphism, and F3 and FE5 are identical as Hilbert-8g-modules under the
isomorphism, and, moreover, ¢3 = ¢5 o ags and T3 = T under this identification (this follows easily
from [Bon02, Lemmata 1.2.3 und 1.2.4]). So « is actually unitarily equivalent to

((E5 — E5 — Eg), (¢5 0 ass, ¢5, ¢6), (F5, Fs, Fe))-
So assume that there are given two Kasparov-(2s, s, 2s)-(B5, Bs, Be)-modules
zt = ((Eé - Eé - Eé)) (Q% © a3s, ¢l5’ d%)v (ng ngFé))7 for i = 0,1,
such that , . , o o
(xl)4: ((Eé _»Eé)v(¢é7¢76)v(Fg’Fé))’ fori=0,1,
are homotopic, i.e., there is a Kasparov-(2s,2s)-(C([0, 1],B5), C([0, 1], Bg))-module
((Es — Es, (¢5,%6), (I, Fs))

such that
((Bs ®ev; Bs — Eg Qev; B, (05 Qev, 1, P6 Rev; 1), (Fs ®ey, 1, Fg Ry, 1)) = (z')4, fori=0,1.

As above, we can lift this to a Kasparov-(2s,%s,%s)-(C([0, 1], B5), C([0, 1], B5), C([0, 1], Bs))-
module
((E5 — E5 — Eg), (¢5 0 ass, ¢5, ¢6), (F5, I, F5)).

This means that we have homotopic Kasparov-(2s3, s, As)-(Bs, Bs, Be)-modules
((Es — Eg — Eg), (¢4 o ass, o5, %), (F3, F3, Fg))
= ((E5 ®evi %5 - E5 ®evi %5 - EG ®evi %6)7
(¢5 O (35 ®cvi 17 ¢5 ®cvi ]-a ¢6 ®cvi ]-)7 (F5 ®cvi 1; F5 ®cvi 1; F6 ®cvi 1))7 fOI‘ 1= 07 1.

J?i

Assume that 2(; = 0. So ass is an isomorphism. For convenience, we assume that A3 = s and
ags = idg,. Assume first that there is given a Kasparov-(2s,2s, 2s)-(B3, Bs, Be)-module

z = ((E3 - Es — Es), (¢3, ¢5, ¢6), (F3, F5, Fg)).
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Then Es can be identified with E3 ®g,, B5, and under this identification, ¢5 becomes ¢35 ®z,, 1, and
F5 becomes F3 ®g,; 1 (this follows easily from [Bon02| Lemmata 1.2.3 und 1.2.4]). So z is actually
unitarily equivalent to

((E3 — B ®535 %5 - E6)7 (¢37 ¢3 ®535 1a ¢6)a (F37 F3 ®535 lvFG))
So assume that there are given two Kasparov-(2s, s, 2s)-(B3, B5, Bs)-modules
at = ((Eé - Eé ®Bs5 Bs — E(ZS)’ (¢g’ (bé ®Bs5 1, ¢26)7 (F?f’ F?f ®Bs5 17F(§))7 for i =0,1,
such that _ _ ' o o
(x")s = (B3 — Eg), (85, d5), (I, Fg)), fori=0,1,
are homotopic, i.e., there is a Kasparov-(s, %s)-(C([0,1],B3), C([0, 1], Be))-module
(B3 — Eg, (93, ¢6), (F3, F6))

such that
((E3 ®ey; Bz — Eg Qov, Be, (¢3 Pev; 1, 6 Doy, 1), (F3 Rev, 1, Fg Doy, 1)) = (z')3, fori=0,1.

As above, we can lift this to a Kasparov-(s, s, 2s)-(C([0, 1],B3), C([0, 1], Bs5), C([0, 1], Be))-
module
(B3 — E3 ®py; Bs — Ee), (93, 93 Qpys 1, d6), (F3, F3 @py5 1, F)).

This means that we have homotopic Kasparov-(2s, s, As)-(Bs, Bs, Be)-modules

zt = ((Eil% - Eé ®Bss B5 — Eé)v (¢?37 ¢é ® B35 L (Z)l(:’o)v (F?fv F§ ® B35 1, Fé))
= ((EB ®evi %3 - (E3 ®ﬁ35 %5) ®evi %5 - E6 ®evi %6)7
(d)S ®evi ]-7 (¢3 ®ﬁ35 ]-) ®evi ]-a ¢6 ®evi 1)» (FS ®evi ]-7 (FS ®[335 1) ®evi ]-7 F6 ®evi 1)); for i = Oa 1.

Assume that 2, = 0. So asg is an isomorphism. For convenience, we assume that 25 = g and
ase = idg(,. Assume first that there is given a Kasparov-(2s,2s,2s5)-(Bs, Bs, Be)-module

= ((E3 = Es - Es), (¢3, ¢5, ¢6), (F3, F5, Fg)).

Then Fg can be identified with Es ®g,, B¢, and under this identification, ¢ becomes ¢s ®g,, 1, and
Fs becomes F5 ®g,, 1 (this follows easily from [Bon02, Lemmata 1.2.3 und 1.2.4]). So z is actually
unitarily equivalent to

(B3 = E5 — E5 ®p,s Be), (03, 05, 05 @pse 1), (F3, F5, Fs @56 1)).
So assume that there are given two Kasparov-(2s, s, 2s)-(B3, Bs, Be)-modules
o' = ((Bs — Eg — Ej ®p,, B), (03, 05, 05 ©poe 1), (F3, Fy, Fy @ 1)), for i =0,1,
such that ‘ ‘ ‘ o o
(2")2 = (B3 — Ej), (03, ¢5), (F3, F5)), fori=0,1,
are homotopic, i.e., there is a Kasparov-(23,s5)-(C([0, 1], B3), C([0, 1], B5))-module
(B3 — Es, (¢3,¢5), (F3, F5))

such that

(B3 ®ev, B3 — B5 ®ev, Bs, (93 Qev; L, d5 @ev, 1), (F3 Qev, 1, F5 ®ey, 1)) = (¢')2, fori=0,1L.

As above, we can lift this to a Kasparov-(2s,2s,2s5)-(C([0, 1], B3), C([0, 1], Bs5), C([0, 1], Bg))-
module
((E3 - E5 - E5 ®556 %6)7 (¢37 ¢5a ¢5 ®ﬂ55 1)a (F?n F57F6 ®ﬁ35 1))



62 Chapter 5. A UCT for ideal-related KK -theory

This means that we have homotopic Kasparov-(2s, A5, As)-(B3, By, Be)-modules

at = ((Eil% - Eé - Eé @ Bss %6)5 (¢éa¢l5’¢§’> ®Bss 1)7 (F?vag?Fg ®Bss 1))
= ((ES Rev, B3 —» Es Rev, Bs — (ES ®Bse %6) Dev, %6)7
(63 @ev, 1, 05 Qev, 1, (95 @pze 1) ®ev, 1), (F3 @ey, 1, F5 @ey, 1, (F5 ®pyq 1) Qev, 1)), fori=0,1.
( X X )

In the above, we did not prove anything for G;. We expect similar results to hold for G, and we
expect them to be somewhat harder to prove than for G2, G3, and G4. The examination of this case
is left out, since we will not need these (potential) results.

5.4 The UCT for KKg,

In this section we will state and prove the Universal Coefficient Theorem (UCT) for KK¢,. First we
define the bootstrap class (cf. also [Bon02, Definition 7.5.2]).

Definition 5.4.1. Let Ng, be the smallest class of objects 2, of S& with 2, As, ..., As nuclear
satisfying the following:

(1) If A, is an object of SE with Ay, 2s, ..., A nuclear and in the bootstrap class N, then A, is in
Ne,.

(2) If (A7)22, is an inductive system in Ng,, then the inductive limit is in N, .

(3) Let Ay — €4 — D, be a short exact sequence in S&. If two of the objects in the short exact
sequence belong to Ng,, then also the third one belongs to Ng,.

(4) If A, and A, are KK ¢,-equivalent, then 2, belongs to Ng, if and only if 2, belongs to Ng,.

Now we state one of our main theorem, the generalization of Bonkat’s UCT ([Bon02l Satz 7.5.3]).
The proof will be carried out in two steps (in the next two propositions, which correspond to [Bon02l
Proposition 7.5.5] and [Bon02, pp. 170-172], resp.).

Theorem 5.4.2 (The Universal Coefficient Theorem (UCT) for KK¢,). Let Ao and Bo be objects of
SEs, and assume that We belongs to the class Ng,.
Then there is a short exact sequence

Toag,mq

Ext(Ke (2), Ko t1(B) 2% KK g, (U, By) —2 22 Hom(Kg(2), Ko (B4)).

Proposition 5.4.3. Let A, be a fixed given object of SE. Assume that for all objects B of SE; with
Kg(®B,) injective, the natural map

Lo, m,: KKg,(Ue,Bo) — Hom(Kg(Ae), Ko (Ba))
is a (group) isomorphism. Then the UCT holds with e and Be for all objects Bo of SEs.
Proof. Let 9B, be an arbitrary object of S&. Form a geometric injective resolution

0 Dy — 2" @, . 5SB,

0

as in Proposition [5.2.12
The cyclic six term exact sequence for KK¢, (cf. [Bon02, Korollar 3.4.6]) is

KKe, (Ao, P
KKe, (e, D) 2@ e @, €0) KKe, (2, SSB.)

T !

KKeg, (Ao, SSSB,) KKe¢,(Ua,SC,) KKe,(UAa,59,)

B ——
KKe,(Ue,5%0)
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We let we = KKg, (Ao, Po) and wl = KK, (As,S5P,). If we use the the standard identification of
KK¢,(Us,S558B,) with KK ¢, (U, B.), this will give rise to a short exact sequence

cokwe — KKg,(Ue,Bo) — kerwi.

By assumption, we have

-

KK e, (%,5D,) . KK ¢, (Us,5€,)

EJ/FQL.,SQ. Eirm.,se.
Kg (S®e)o—

Hom (K g (A ), Ke(5D,)) Hom(Kg (U ), Kg(SC)),

which is commutative (by universality). Since Hom(Kg (2, ), —) is left-exact, it follows from the short

exact sequence

Ke+1(®e)
Kg(Be) — Kot1(De) —  Kgr1(C),

that we have
ker(wl) 2 ker(Kg(S®,) 0 —) Z ker(Kg 1 1(®,) 0 —) = Hom(Kg(Ae ), K (Ba)).
Similarly, we have

We

KKe, (e, D.)

&lrm.yg. ﬂll’\g{.ﬁ@.
Kg(®o)o—
_—

HOI’H(K@(Q[.),K@(@.)) HOI’H(K@(Q‘.),K@(@.)),

KK, (@, €,)

which is commutative (by universality). Since

Kg(®)
Ke11(Be) — Ko(Ds) — Kg(<s)

is an injective resolution of Kgy1(%B,), it follows from the definition of Ext', that
cok w,e 2 cok(Kg(®,) 0 —) = Ext' (Kg(Ae), Ko11(Bs)). (YY)

Proposition 5.4.4. Let B, be a fized given object of SEo with Kg(Bse) injective. Then for all objects
Ay of Ne, the natural map

Fm.,%. : Kng (Ql., %.) — HOIH(K@(Q[.), K@(%.))
is a (group) isomorphism.

Proof. It is enough to show that the class of objects 2, for which I'y, =, is an isomorphism satisfies
the corresponding conditions (1)—(4) in Definition

(1) Let 24 be an object of SE with 1,%As, ..., As nuclear and in the bootstrap class . Let AL, A2,
A3, and A? denote the objects

Q{1<—> Q[l —s() OCH- Ay *»-2[4

NN,
|

Q(l Q[ —_— OC—>Q[4—1>>Q[4
0=——

o

0

0
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0——s0—>0 OC—>Q[4—1d»QL4

NN

As *»Q[G O(—>915 *»915

A N

Ae —— AUs Ag =—— Ug

resp. An argument similar to that on page 170 in [Bon02]— using Proposition and [Bon02]
Lemma 7.1.5] — it follows that 'y m,, [z m,, and Tyz o, are 1bom0rphlsmb Since we have
short exact sequences Al — A, — Ql4 and le — A - 2[3, it follows from part (3) below that
Iy, s, is an isomorphism.

Let (A7)52; be an inductive system. Assume that for each n € N, 7 is nuclear and that T'yp 2,
is an isomorphism. Let 2, denote the inductive limit.

By use of the Milnor-lim'-sequence for KK¢,(—,B,) and Hom(Kg(—), Ke(Ba)) (c¢f [Bon02,
Satz 4.3.2 und Bemerkung 4.3.3]) and the Five Lemma, it follows that Iy, g, is an isomorphism.

Let Ay — €, — D, be a short exact sequence in S& with ;, &€;, and ©; nuclear, for all
i=1,2,...,6.

By Lemma [5.2.2] the above short exact sequence induces a cyclic six term exact sequence of Kg-
objects. Since Kg(B,) is injective, Hom(—, K& (B, )) is an exact functor. Consequently, it maps
the cyclic six term exact sequence of Kg-objects to a cyclic six term exact sequence of abelian
groups.

The natural homomorphisms I'_ g, give a morphism from the cyclic six term exact sequence in
KK¢, to the above mentioned cyclic six term exact sequence (the reason the boundary maps
commute is that they both are defined in the same way — here it is important that we make

exactly the choices we do in Definition and Definition [5.2.1)).

Now it follows from the Five Lemma, that if two of the maps I'y, %,, I'e, ., and I'p, », are
isomorphisms then also the third is an isomorphism.

Assume that I'y, o, is an isomorphism, and that y € KK¢, (s, 2A,) is a KK ¢,-equivalence. Since
I" actually is a functor, T'y, g, (y) is an isomorphism and the diagram

Fg[/

KKe, (2, B,) ~2 . Hom(Kg (2

o) Ko (B.))
y®KK52_l/% i—orm’ », ()

Cotg,m4

KKe,(Ue,Bs) Hom(Kg (%), Ke(Bs))

commutes. Since I'y, o, is an isomorphism (by assumption), we have that 'y, s, is also an
isomorphism. ( X X J

5.5 Naturality of the UCT

Definition 5.5.1. Let Néz denote the class of objects Aq of SE with A, ™As, ..., Ag are nuclear such
that the UCT holds for (,,%B,) for every object B, of S&. Clearly (by the UCT), the class Ng, is
contained in N, .

The UCT for KK ¢, is also natural in both variables (¢f. also [Bon02, Satz 7.7.1]).

Proposition 5.5.2. The UCT for KK ¢, is natural in both variables with respect to the KK ¢, -product,
e, if Ao and A, are objects of Ng,, x is an element of KKg,(Us,As), and y is an element of
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KK¢,(B.,B,), then the we have the following commutative diagrams:

ACTICN Tar s,

Ext(Ke(A,), Ko 11(Be)) ———> KKe, (U, Bs)

\LFQK.,QL’. ()~
Aoy, B e

Ext(Kg (%), Ke11(Bs)) ———> KK¢, (e, Bs)

Hom(Kg(2,), Kg(B.))

iz@m‘— \L_OFQK.,Ql’.(m)
T
2225 Hom(Kg (2a), K (Bs))

Aoy, B4 Ta,, 5,

Ext(Kg (), Kg+1(Be))———> KK¢,(Ua, Ba) Hom(Kg (%), Kg(Bs))
lr%h%‘(y)* l@%.y lr‘%.,fs/.(y)o—

As / F 7
Ext(Ke(e), Koy1(B)) s KK, (e, B),) — 2 Hom (K (2Ae), Ko (B)))

Proof. Naturality of the quotient map is clear, since I' is a functor. Naturality of A is proved analogous
to [RS87, Theorem 4.4] (cf. also [Bon02 Satz 7.7.1]) — here we will need the geometric projective
resolutions (as mentioned above). (XX

As usually, we use this to prove that isomorphisms on the invariant level can be lifted to a KK ¢, -
equivalence (cf. [Bon02, Proposition 7.7.2]).

Proposition 5.5.3. Let A, and B, be objects of Néz and let ©* € KKg,(Ue,Bs). Then z is a
KK ¢, -equivalence if and only if Ty, s, (x) is an isomorphism.

Proof. Since I' is a functor, the “only if”-part is clear. The “if”-part follows from the naturality of
the UCT and the Five Lemma (for abelian groups). ‘X X

5.6 Classification of purely infinite algebras

In this section we extend the classification of purely infinite C*-algebras to include (stable and uni-
tal) purely infinite C*-algebras with exactly two non-trivial ideals (assuming the bootstrap class,
separability, and nuclearity, of course). See also [Rer97, Bon02, [Kir00, [ER06, [RRO7, [Phi00] [Kir].

Theorem 5.6.1. Let 2 and B be C*-algebras with exactly two non-trivial ideals each, J1 and Jo resp.
J1 and Jo. Assume, moreover, that the ideal lattices of A and B are totally ordered. Assume that Jq,
Jo/T31, A/Ta, J1, J2/31, and B/J2 are Kirchberg algebras in the bootstrap class N'. Let Uy and By be
the corresponding objects of SE.

If A and B are stable, then every isomorphism from Kg(As) to Kg(Be) can be lifted to an
isomorphism from e to B,.

If A and B are unital, then every isomorphism from Kg(e) to Kg(Bs) sending [Lylo € Ko(A)
to [Ls]o € Ko(B) can be lifted to an isomorphism from e to B.

Proof. The stable case follows from the UCT and [Kir00, Folgerung 4.3] as in the one ideal case (cf.
[EROG, Theorem 5]). The only thing which might not be clear, is that 2 and B are strongly purely
infinite. Strong pure infiniteness is considered in [KR02], and it is shown that a separable, stable
and nuclear C*-algebra € is strongly purely infinite, if and only if € absorbs O, i.e. if and only if
¢~ E® Oy. Now it follows from [TWOT7, Theorem 4.3] that 2 and 9B are strongly purely infinite.
The unital case now follows from the stable case and [ER06, Theorem 11] and [RROT, Theorem 2.1]
by noting that 2 and % are properly infinite (by [KR00, Theorem 4.16 and Theorem 4.19]). @ @ @®

A classification result has been obtained in the case of one non-trivial ideal when the algebra is
neither unital nor stable by including the class of the unit in the quotient (cf. the paper in Appendix.

Question 1. Do we have a (strong) classification in the cases that the algebras are neither unital nor
stable (by including the class of the relevant unit)?



66 Chapter 5. A UCT for ideal-related KK -theory

In the one ideal case, Rgrdam has characterized the range of the six term exact sequences of
extensions of stable Kirchberg algebras as the cyclic six term exact sequences of countable abelian
groups, cf. [Rer97] (the cases with non-stable quotients have also been characterized, cf. Appendix.

Question 2. What is the range of the invariant?

Of course, it is also natural to ask to what extent the invariant can be used for classification of
purely infinite C*-algebras with other (finite) ideal lattices.
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with Sgren FEilers and Efren Ruiz

To characterize the automorphism groups of purely infinite C*-algebras up to, say, approximate uni-
tary equivalence, one naturally looks at the work of Dadarlat and Loring, which gave such a character-
ization of the automorphism groups of certain stably finite C*-algebras of real rank zero as a corollary
to their Universal Multi-Coefficient Theorem (UMCT), ¢f. [DL96]. But even for nuclear, separable,
purely infinite C*-algebras with real rank zero, finitely generated K-theory and only one non-trivial
ideal, there are substantial problems in doing so. The work of Rgrdam (c¢f. [Rer97]) clearly indicates
that the right invariant contains the associated six term exact sequence in K-theory, and the work of
Dadarlat and Loring indicates that one should consider K-theory with coefficients in a similar way.

In the paper in Appendix [D] we have given a series of examples showing that the naive approach
— of combining the six term exact sequence with total K-theory — does not work. There are several
obstructions given in the paper, and they can even be obtained using Cuntz-Krieger algebras of type
(IT) with exactly one non-trivial ideal.

With this as motivation, we have defined a new invariant, which we believe should be thought
of as the substitute for total K-theory, when working with C'*-algebras with exactly one non-trivial
ideal. We call it ideal-related K -theory with coefficients, and introduce it in this chapter. It is easy to
show that all the obstructions from the paper in Appendix [D] vanish when using this invariant. We
furthermore exhibit a lot of diagrams which are part of the new invariant (though not all of it). These
diagrams can — in many cases — be of big help when computing the new groups which go into the
invariant. Also these diagrams are used in a work in progress by the three authors, where we show a
UMCT for KK ¢ for a class of C*-algebras including all Cuntz-Krieger algebras of type (II) with one
specified ideal (¢f. [ERR]) — in this case, the invariant can actually be relaxed quite much.

6.1 An invariant

In this section, we introduce the new invariant.

Definition 6.1.1. Let n € N>o. We let I, o denote the (non-unital) dimension-drop interval, i.e.,
I, 0 is the mapping cone of the unital *-homomorphism from C to M,,.

Definition 6.1.2. Let n € N>3. We let ¢, ¢ denote the mapping cone sequence
€n,0: SM,, — Hn,O - C

corresponding to the unital *-homomorphism from C to M,,. We let, moreover, ¢, ; = mc'(e, o), for
all i € N. We write
€n,1: SC — ]In,l - Hn,Oa

eni: Sy i—o = In; — 11, for i > 2.

67
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Similarly, we set f;9: C LN C— 0 and fp0: Lo 2, I, 0 — 0, for all n € N>5. Moreover, we
set fn; = mc?(fn0) for all n € N and all i € N.

Definition 6.1.3. Let K, denote the functor, which to each extension of C*-algebras associates the
corresponding standard cyclic six term exact sequence (as defined in [RLL0O0] — ¢f. Example .
We let Homygix (Kgix(€1), Ksix(e2)) denote the group of cyclic chain homomorphisms.

As in [DL96], we let K;(—;Z,) = KK'(I,0,—). Moreover, we let K denote total K-theory as
defined in [DL.96].

Remark 6.1.4. As is easily seen, the above cyclic six term exact sequence in K-theory differs from
that defined by Bonkat in [Bon02l §7.3] by the index and exponential maps having the opposite signs.
This makes no difference for the arguments and results in [Bon02|] (the important thing here is that
we change the sign of either the index map or the exponential map compared with the definition of
the connecting homomorphisms in KK-theory).

By applying Lemma and Lemma to

S>> SA; — o Sy

CA > Ay — s Oy

I

Wp— Ay — = Ay

we get a commuting diagram

o7 Ko(¢) Ko(m) 36 Ki1(v) Ky () o7
— > Ko(g) — Ko(A1) —> Ko(Aa) —— K (Ag) —> K1 (A;) —> K (A) ——

ﬁlﬁmo ﬁlﬁml Nlﬁmz ﬁlﬁmo ﬁiﬂml NiﬁmQ
556 1(Se (ST 558 L T 556
*> Kl(SQ[o) &S)- Kl(SQll) @ Kl(Sle) 4> Ko(SQlo) @ KO(SQll) Iﬁi KO(S%)

Consequently, the definition of “(K,y14;)” in [Bon02] is just Kgx(Se) (up to canonical identification
with our terminology). The same argument works if we choose to work with the slightly different
cyclic six term exact sequence defined in [Bon02]. Note also that this is not true if we define the cyclic
six term sequence using the abstract machinery of Section

Definition 6.1.5. For each extension e of separable C*-algebras, we define the ideal-related K-
theory with coefficients, K (e), of e to be the (graded) group

2 1
@@(KK (f14,e @@KK] enyir€) ® KK% (i, ))-

=0 j=0 n=2

A homomorphism from Kc(e1) to K¢(e2) is a group homomorphism « from K¢(e1) to Kg(e2)
respecting the direct sum decomposition and the natural homomorphisms induced by the elements of
KKl (e,€), for j = 0,1, where e and €’ are in { e, i, fn,i,f1,i | € N>2,4=0,1,2 }. Every morphism
from an extension e; to another extension ey (of separable C*-algebras) induces a homomorphism
from Kc(e1) to Kg(ez). In this way K becomes a functor.

Remark 6.1.6. For extensions e : %y — 2A; — Ay and ey : By — By — By, of separable C*-alge-
bras, we have natural homomorphisms G;: KK¢(e1,es) — KK (;,%;), for i = 0,1, 2.
As in the proof of [Bon02 Satz 7.5.6], the obvious diagram

Exttoix (Ksix (1), Ksix (Se2)) ——> KK¢(e1,e2) ————————> Homgix(Ksix(e1),Ksix(e2))

l ¥ |

Ext(KO(Qli),Kl(‘B,i))EBExt(Kl(Q[i),Ko(‘Bi))C—> KK(U;,B;) —> Hom (Ko (2;),Ko(B;))PHom (K1 (A;),K1(B,))
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commutes and is natural in es, for i = 0, 1,2 — provided that e; belongs to the UCT class considered
by Bonkat.

’

Let e: g SN Ay N s and e’ : By < B N 85 be two given extensions. Then we define
Ae,e’ : Homsix(Ksix(e)y Ksix(el)) — Homsix(Ksix(mc(e))y Ksix(mc(el)))

as follows: Let (a;)7_o in Homgix(Ksix(€), Ksix(€')) be given. Then by Corollary the diagram

émc(e) Ko(tme Ko(Tme Jmc( e) Ki(tme Ki(Tme 6""( e)
*> Ko(smz) L>) Ko(cﬂ-) L>)]:{0(§2[1) *> Kl(Sng) Lﬁ Kl(cﬂ-) L>)K1 911
Oa, Ko(fo)™" Bay
Ky (m) —o7 Ko(e) —Ko(m) o6 Kl(b)

- Kl(m2) - Ko(mo) — Ko(ml) — Ko@b) — Kl(glo I Kl Qll

as @0 ial a2 as Qg
’

Ki(n' *56’ Ko() —Ko(n') 36 Ki(d) Kq(n")
Tk (Ba) — - Ko(Bo) L Ko(B1) % Ko(B5) — K (Bo) ey (3)

O, Ko(fer) BBy Ki(fer)
6mc(e’) Ko(d 6mc(e/) K () Ky (7 6mc(e’)
O K(5%2) e Ry (Co) T e () S Ky (5%0) ) K () T e (8y)

commutes. Let A, o ((;)?_,) denote the composition of these maps. Clearly, A ./ is an isomorphism.
A computation shows that A from Homgy (Kix(e), Ksix(—)) to Homg (Kgix(me(e)), Kgix(me(—))) de-
fined by A(e’) = A¢,er is a natural transformation such that A o(Kgix(ide)) = Kgix(idme(e))-

Let SE€ be the subcategory of £ consisting only of extensions of separable C'*-algebras and morphism
being triples of *-homomorphisms such that the obvious diagram commutes (c¢f. Definition .
Consider the category KK¢ whose objects are the objects of S€ and the group of morphisms is
KK¢g(eq,es). Consider the the composed functor KK ¢ o me from SE to KKg, which sends an object
e of S€ to me(e), and sends a morphism (¢g, P1, P2) of SE to KK ¢(me((po, 1, d2))). This is a stable,
homotopy invariant, split exact functor, so by [Bon02, Satz 3.5.10 und Satz 6.2.4], there exists a
unique functor mc from KKg¢ to KK¢ such that the diagram

S —" =g

KKgi iKKg

KK — KK¢
mec
commutes. By the universal property, the diagram

KKg(e, 6/) e — Homsix(Ksix(e)a KSiX(e/))

n/ﬁl lA(e')

KK g(mc(e), me(e)) —— Homgix (Kix (me(e)), Kgix(me(e')))
commutes, where the horizontal arrows are the natural maps in the UCT.

Lemma 6.1.7. Let e and €’ be extensions of separable, nuclear C*-algebras in the bootstrap category
N. Then mc induces an isomorphism from KK¢(e,e') to KK ¢(mc(e), me(e’)), which is natural in both
variables.

Proof. Let ae . denote the map from KK¢(e,e') to KK g(me(e), me(e’)) induced by the functor me.
Since mc is a functor, clearly the map is going to be natural (in both variables).

From Proposition 3.5.6 in [Bon02] (c¢f. also [Hig87, Lemma 3.2]), it follows that mc is a group
homomorphism.
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Since A, ¢ is an isomorphism, from the above diagram and the UCT of Bonkat [Bon02], we have
that o s is an isomorphism whenever Ky (€') is injective.

When € is an arbitrary extension, then by [Bon02, Proposition 7.4.3], there exist an injective
geometric resolution e; — es —» Se’ of €, i.e., there exists a short exact sequence e; — ey —» Se’ of
extensions from S&, with a completely positive contractive coherent splitting, such that the induced
six term exact Kgix-sequence degenerates to a short exact sequence Ky (SSe’) — Kgix(e1) = Kgix(e2),
which is an injective resolution of Ky (SSe’).

The cyclic six term exact sequences in KK ¢-theory give a commuting diagram

KKg(e,Ser) m) KK g (mce(e),mc(Sey)) ——> KKg(me(e),Sme(er))

Qe Sey i

KKg(e,Ses) ——> KKg(me(e),me(Sez)) ——> KK g(mce(e),Smc(es))

|

Qe sSe’
KK¢g(e,SSe’) — KKg(mce(e),me(SSe’)) — KK ¢ (mc(e),Smc(Se’))

KKe(e,e1) ——Ls KK g (me(e)me(er))

|

KKeg(e,e2) &) KK¢(me(e),me(ez))

KK ¢(me(e),me(er))

KK ¢ (me(e),mc(ez))

with exact columns. Naturality of a. _ gives us commutativity of the squares on the left hand side,
while naturality of the isomorphism from the functor mcoS to the functor Some gives us commutativity
of the squares on the right hand side (cf. Lemma. The remaining rectangle is seen to commute
by using the definition of the connecting homomorphisms and Lemma By the Five Lemma,
we have that a, sse is an isomorphism. Therefore also . er. Y X )

Remark 6.1.8. Similarly, there exists a unique functor S from KK¢ to KK¢ such that the diagram

5&—> > 5¢

KKgi \LKK;;

KKg — KKg
S

commutes.

6.2 Some diagrams

In this section we construct 19 diagrams involving the groups of the new invariant. These diagrams
can in many cases be used to determine the new groups introduced in the invariant. They will also be
used in a forthcoming paper, where the three authors prove a UMCT for a certain class of C*-algebras
with one specified ideal, which includes all the Cuntz-Krieger algebras of type (II) with one specified
ideal. The long proof of these diagrams is outlined in the next section.

Assumption 6.2.1. Throughout this section, e: g < Ay N 2y is a fixed extension of separable
C*-algebras.

Definition 6.2.2. Set Fi; = KK¢g(fi4,€), Fny = KKg(fnise), and H,; = KKg(eni,¢e), for all
n € N>g and all ¢ = 0,1,2,3,4,5. For convenience, we will identify indices modulo 6, i.e., we write
Fn,6 = Fn,07Fn,7 = Fn,l etc.



6.2. Some diagrams 71

Remark 6.2.3. Let e: 2 N 2Aq SN 2, be a given extension of C*-algebras. Then we consider the
two extensions

tme)me)me ((Tme)me)me
me3(e): SCy ((omeJme) Clrme)me — " C

and .
St I
S(e): 55210 — 5911 — SQ[Q
We have canonical *-homomorphisms Sy — SCr, S%; — Cr, ..., and Sy — C; ., which all induce
isomorphisms on the level of K-theory. But these do not, in general, induce a morphism of extensions

— in fact not even of the corresponding cyclic six term exact sequences. Using Corollary [3.4.4] we
easily see, that the diagram

85e Ko(St) Ko(Sm) 55e K1 (Se) K1 (Sm) 85e
—> Ko(S%p) ————> Ko(S21) ————> Ko(S22) ——— K1 (S20p) ——— > K 1(S2%1) ———— > K1 (S%Uz) —>

aol% —allg azl% agi% —(Mi% asl%
3 3 3
sme(© Ko()) Ko(r') smet () K1) Ki(n') smee

9
—— KO(SCTI') —_— KO(C("mc)mc) —_— KO(C’"mc) —— Kl(sc‘l\') —— Kl( (rme)me) = Kl(c”fmc) ——

commutes, where «; are the induced maps as mentioned above, and +/ and 7’ denote the maps
((tme)me)me and ((Tme)me)mes reSpE| We expect that it is possible to find a functorial way to implement
the KK g-equivalences between mc?(e) and Se, but can not see how to do this — not even how to
make a canonical choice of KK ¢-equivalences.

Definition 6.2.4. The previous remark showed that mc3(e) and Se are KK g-equivalent (assuming
the UCT). Though, the remark did not give us a canonical way to choose a specific KK g-equivalence
(so we get a functorial identification of the two functors).

For our purposes, it is enough to have the following lemma. Let e: 20 T = 2y be a given
extension of separable, nuclear C*-algebras in the bootstrap category A'. Assume, moreover, that
Extl, (Keix(e), Kqix(Se)) is the trivial group. For each such extension e, we can define

X, € KK¢(Se,mc®(e))

to be the unique element inducing (ag, —aq, g, a3, —ay, as) in Homg, (Kgix(Se), Ksix(me3(e))) (as
defined in the preceding remark).

Lemma 6.2.5. Let e and €' be two given extensions of separable, nuclear C*-algebras in the boot-
strap category N. Assume, moreover, that Extl (Kax(e), Kux(Se)), Extl (Kux(e), Keix(S€')), and

Extl (Kaix(e), Kuix(Se')) are trivial groups. Let @ be a morphism from e to €', and set x = KK ¢(9)
in KKg(e,e'). Then

KK ¢(S¢) X Xor = 5% X X = Xe X Me (X) = X, x KKg(mc®(¢)).
Proof. From the assumptions and the UCT of Bonkat, we see that the canonical homomorphisms
KK¢(e,e') — Homgy (Kgix(€), Ksix(€')),
KK ¢(Se, Se’) — Homgix (Ksix(Se), Ksix(Se')),
KK g(mc®(e), me®(e')) — Homgix (Kgix(mc®(e)), Kgix (mc®(e'))),
KK ¢(Se,mc*(e')) — Homgix (Kix(Se), Kgix(me®(€)))

are functorial isomorphisms. Consequently, it is enough to prove that the result holds for the induced
maps in K-theory, i.e.,

Ksix(xe’> o Ksix(§X> - Ksix(n/l\c?) (X)> o Ksix(xe)-

1Here we also use that the canonical identifications K;(2;) — K1_;(S2;) give an isomorphism of the corresponding
cyclic six term exact sequences.
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Again to prove this, it is enough to show that

Y} o Se; = (me®(9)); o i,

for 1 = 0,1,2, where tg (¢1, and 19, resp.) is the canonical *-homomorphisms from the ideal (the
extension, and the quotient, resp.) of Se to the ideal (the extension, and the quotient, resp.) of mc?(e)
— and correspondingly for ;. This equation is straightforward to check. o000

Remark 6.2.6. Let e be an extensions of separable, nuclear C*-algebras in the bootstrap category
N, and assume that Extl (Ky(e), Ksx(Se)) is the trivial group. Then we get a KK g-equivalence
gxe X Xme3(e) from SSe to mcS(e). Composed with the standard KK g-equivalence from e to SSe, this
gives a canonical KK g-equivalence from e to mc®(e).

It is also easy to show, that we have that
Xme(e) = —KKg(ee) X IT/I\C(XE).

Definition 6.2.7. For an extension e, we let b, denote the element of KK¢(e,SSe) induced by
the Bott element — this is a KK ¢-equivalence. Moreover, we let z, denote the KK g-equivalence
in KK¢g(Sf1,0,i(en,0)) induced by the canonical embedding C — M,,. We let w,, denote the KK ¢-

id
equivalence from 0 SN SM,, —» SM,, to q(e, 2) induced by the canonical embedding SM,, — I, ;.
For each n € N>y, we will, during the following three definitions, define 36 homomorphisms,

1,1,in pliLout

n,i n,i
Hn,i

Fiiq F1443

n,l,in n,l,out
hn,i h

n,i
Fn i Hn,i

)

Iy 40

1,n,in 1,n,out
h,)" h

Fiipo——Hyp; —— Fy 11,

where we identify indices modulo 6 (so we write e.g. h.¢" = h5").

ien, q:n,O
Definition 6.2.8. For each n € N>3, we have a short exact sequence i(e,, ) 1 en0 — q(en,0) of

. 1,1,in 1,1,0ut
extensions. We define h,’ ;" and h, """ by

pLLin pLLout
n,0 n,0
Iy H, I3
KK ¢ e KKe(e e KK 3,€).
e(aleno). ) KKe(de, o)X — £(eno,€) X7 X2 X KK e (ie,, 0) X~ efrs.€)

By applying the functor m¢, we define h-}"" and h}l’é’o"t, for i =1,2,3,4,5, i.e.,

hib™ = KK g(me' (KK e(qe, ), e),

n,i

hy i = KK (e (x7,) % 2, x KKe(ie,,,)),€),

foralli =0,1,2,3,4,5 (of course we use the canonical KK g-equivalences from Remark to identify
KKS(fl’j+6, 6) Wlth KKg(fl’j, 6))

ten, ey,
Definition 6.2.9. For each n € N>3, we have a short exact sequence (e, 1) S en.1 5 q(en,1) of
extensions. We define 71" and hlv'1 " by

n,l,in n,1,0ut
hyy hay

Fn 1 : Hn,l ’ F1’3

)

KKf(q(en,l)ae) KKS(en,lae)

KKe(de,, )%~ xp ) X KK (e, )%=

KK¢(f1,3,€).
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By applying the functor me, we define hZ:}’i" and hZ:g")”t, fori=0,2,3,4,5, i.e.,

hor™ = KKe(me' ™ (KKe(qe, ) ),

prebent — KKg(n?cifl(x;l}o x KKgl(ie, ), ),

foralli=1,2,3,4,5,6.

e, Gep .o
Definition 6.2.10. For each n € N>, we have a short exact sequence i(ey 2) <3 en2 — q(en,2) of

. 1 ] 1 t
extensions. We define h,’5"" and h, 5" by

n,2
1,m,in 1,n,0ut
hn,z hn,2 ¢
F174 Hn,2 Fn73
KKE(ﬁA,i) —— KKe(eno,e) — . KK¢(fn,3,€).
KKe(qe, o)Xw, =~ Xme(z, ) Xxs; | X— xinoXKKg(lgng)Xf

By applying the functor m¢, we define b and hi’:’om, fori=0,1,3,4,5, i.e.,

n,i
hyt" = KK (e (KK e(qe, ) x Wy ' x me(z, ') x xq, ), €),

hhmont — KK g(me' 2 (x; L x KKel(ie, ,))s €),

n,i fn,0
for alli=2,3,4,5,6,7.

Definition 6.2.11. Now, we define homomorphisms f,; from F, ; to F, 11, for all n € N and
1=0,1,2,3,4,5. We set

KK g(SSfn0,€) KKe(fn,e) KKg(fn,2,€)
Y_nl,o x= /
F,o S0 Foq S F, -
fn,ST ifﬂ2
F, F, F,
n,5 Foa n,4 o n,3
o~ \L Xfn,0 X—=
| Xy, X~ o
anyz X — =
KKg(Sme,e) KKg(Sfml,e) KKg(Sfmo,e)

where the outer sequence is the cyclic six term exact sequence in KK g-theory induced by the short
exact sequence i(fp,2) <= fn,2 = q(fn,2) (which is exactly Sf,.0 = fn,2 = fn,1)-

Definition 6.2.12. Now, we will define the Bockstein operations,

Pni Bn,i
F,——=F,,—>Fi,+3,
for all n € N>o and i =0,1,2,3,4,5.
The extension ¢, ¢: SM,, < I, ¢ — C induces a short exact sequence i(e, o) N fn.0 — f1,0. We
set

Pn,0 Bn,0

F.o Fy 5

)

Fip

KK KK n,0s
e(fr0.€) KKe(y)x— £(fno-€) xi! Xz X KK e (2) % —

KK¢(f1,3,€).
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By applying the functor me, we define p,, ; and 3,4, for i = 1,2,3,4,5, i.e.,

pni = KK e(me' (KK ¢(y)), e),

Bni = KK g (me' (x;

1
f1,0

X Zp, X KK¢g(x)),e),

for all i = 0,1,2,3,4,5 (of course we use the canonical KK ¢-equivalences from Remark to make

identifications modulo 6).

Definition 6.2.13. For each n € N, we set fm- = fnsfori=1,2,4,5 and fn,i = —fp, fori=0,3.

Theorem 6.2.14. For alln € N and alli=0,1,2,3,4,5,

fn,i—l

fn,i

Fhi1——=F,; —>F, ;1

s exact. For alln € N>g and all1=0,1,2,3,4,5,

plilin pliLout proliin proliout
n,i n,i n,i n,i
Fii ni Fiiva F H, ; Fii0
T"fl,i nfLHB\L Tfn,iJrSOPn,iJrS fn,i+2°pn,i+2l
Fl,i ﬁ Hn,i+3 ﬁ Fl,i+47 Fl,z‘+5 mlout Hn,z‘+3 ﬁ Fn,i+37
n,i+3 n,i+3 n,i+3 n,i+3
h:;’;»i" hil,‘;ihout Pn,i Bn.i
Fii40 H,; Foivt Fy i Iy iya
Tﬂn,wsofn,uzl Bn,i+20fn,i+1l and TXn an
Friva <——— Hpits <7 Fiiys, P j<—Fp i3 p— F1i43
n,it3 hivs Pri+a e
are exact. Moreover, all the three diagrams
fi
iy ———Fii
. fl,‘+1
P Byt ’
hn,},in
F Hy; Fyiqo (6.1)
hn,?,out
ni
SN e -
n,i
Fy it —a I3
Xn
Fiip ——F1i
. . Pn,i+1
1,1,
fii41 hn‘i o
n,i+1 (6.2)
7/8n,i+1

Fiijp3 — 144
1,143
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fn,i+5
Foivs ——— Fp

—Bn,i+5 hf’Lf’"
plimiin
n,i
Fiito Hyi ——=Fy it (6.3)
hn’,i,
n,1,0u =
n oyt frjitt
i F,
1,i4+2 TM) n,i+2
commute.
Proof. See next section. o000
Corollary 6.2.15. For eachi=0,1,2,3,4,5, the two squares
fl,'i fn,i
Py ——F i F,i——=F, i1
Pn.'il ipm“ and —ﬁml lﬂn,vﬁ»l
Fyi—Fy i1 Fijy3 ——F1 44
n,i 1,143
commute.
Proof. This follows directly from the previous theorem:
r P 1,n,out 1,1in
Jnji © pnji = friohy ;5 0 by by (6.2)
n,l,out 1,1in
= Pn,i+1 © hn,ifl © hn,ifl by (6.3)
= Pn,i+1© fl,z' by ‘)
rs 1,n,out n,l,in
5n,¢+1 o fn,i = 5n,i+1 © hn,i o hn,i by "
3 1,1,0ut n,l,in
= —frirz o7 o by by (6.2)
= —f1,i4+3 © Bny by (6.1) o000

Remark 6.2.16. From the preceding theorem and corollary, it follows that, for each ¢ = 0,1, 2, we
have the following — both horizontally and vertically six term cyclic — commuting diagrams with
exact rows and columns:

xn xn xn Xxn xn Xxn
fis fio fin fi2 f1.3 fia fi.s
Fio Fy1 Fi 2 Fy 3 Fi 4 Fy 5
Pn,0 Pn,1 Pn,2 Pn,3 Pn,4 Pn,5
fn 5 fn,O ]Zn 1 fn,z fn 3 fn,4 fn 5
Fno Fna Fp 2 Fpn3 Fp a4 Fpns (Do)
Bn.o —Bn,1 Bn,2 —Bn,3 Bn,a —Bn.,s
fi,2 f1,3 fia fis fio fin fi,2
F1 3 1,4 P15 Fio 1 F12
Xxn Xn xn Xn xn Xxn
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Xn nfi,i xXn nf1,i+3
f1,i+5 f1,i f1,i41 f1,i42 fi,i+3 f1,i44 fi,i+5
1,4 F1 i1 Fyiq2 1,43 1,44 P45
1.1,in ) 1.1,in
Pn,i hmi Pn,i+3 i3
= n,l,in n,l,out = n,l,in n,l,out =
Pn,iof1,i+5 hyi h,; Pn,i+30S1,i+2 hy ks hyi¥s Pn,iof1,i+5
i Hy i 1,042 Frniy3 — Hp 13 1,45 (Dl)
1,1,0ut 1,1,0ut
Bn,i n’i'o” Bn,it3 hn_’if;‘
—— F1,i+3 Fiit3 0 Fi Fy 0
xXn nf11i+3 xXn ’nfl,i
nfi, fi,i nfi,it+s fi,i+s
0 F1i11 Fy i1 0 Fyiqa P44 ———
1.1,in : 1,1,in P
hys friita hyivs Jiiva
~ hn,l,in hn,l,out ~ n,l,in n,1l,out e
Pn,iof1,it+5 ni ni Pn,i+30f1,i42 n,it+3 n.it+3 Pn,iof1,it+5 N
i Hy, i Fiit2 Fpits n,i+3 Fiits (Dl)
1.1,0ut P 1,1,0ut z
hy'i J1it2 n,it3 fi,it5
Pni Bn,i xXn Pn,i+3 Brn,it3 xn Pni
Fr i Fyiy3 Fyiv3 n,it3 i Fy
nfi,it3 f1,i+3 nfi f1,i
fi,i nfi,i fiii+s nfiit+s
Br,ita xn Pr,it1 Brn,it1 xn Pnita Br,ita
Fii41 Fy it Fr,it1 Fyita Fiita Frita
7 1,1,in r 1,1,in
fii+1 ni f1,i+a hy s
= 1,n,in 1,n,0ut = 1,n,in 1,n,0ut =
f1,i4108n,ita hy' hy f1,i4408n,it1 n,it+3 hyiis f1,iv10B8n,ita
——> Flit2 Hy i n,it1 F1it5 Hyits n,ita (DQ)
z 1.1,0ut P 1.1,0ut
fiit2 hy'i f1,i+5 h. s
——> F1iy3 Fyiy3 0 Fy Fy; 0
fi,i+3 nf1,i+3 f1,i nfii
nf1i Xn nfi,it3 Xn
0 Fy it Fy i1 0 Fyita Fiitg ————>
hi’;’m Pritl :L,llig Pn,ita
. 1,n,in 1,n,0ut - 1,n,in 1,n,0ut =
—f1,i+198n,it4 hy n,i —f1,i+40Bn,it1 n,it+3 n,it+3 —f1,i+108n,ita .
—> F1 42 Hy, ; Fr i1 1,045 n,i+3 n,itd (D2)
1.1,0ut 1,1,0ut
by —Brit1 nita —Bnita
frii+1 friite fi,i+s f1iita fi,i+s f1,i fiii+1
F1it2 1,i+3 1,i+4 1,i+5 1, 1,041
nf1,it+3 xn nfii xn
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Pn,its fn,i+5090n,i+5 Pn,it2 fn,i4+20Pn,it2
fn,i+4 fn,i+5 fn,i fn"H»l fn,i+2 fn,'H»S fn,i+4
Frits Fn, Friva Friy2 Frivs Fritg ———
1 ,1,d
—Bn,i+5 ho o™ —Bn.it2 by
1,n,in 1,n,out 1,n,in 1,n,out
hys hy hy ks hy ks
Fyiq2 Hy i Friva Fy 15 Hy ivs Fritg —— (D3)
n,l,out n,l,out
xn ni xXn hylifs
———> Fy 40 ——— F1,it2 0 Fiit5 ——— F1,it5 0
Pn,it2 Fr,it20Pn it2 Pn,i+5 frn,it500n,its
frn,i+500n,i+5 | fn,its fr,it200n,it2 | fnit2
0 Fpi—=——xsrFn; 0 Fh it3 =———= Fn,it3 ———>
n,1,in F n,1,in 7
hnvi fn,i hn,i+3 fn,z‘+3
1,m,in 1,m,0ut 1,n,in 1,n,0ut
n,i hn.i hn,i+3 hn,i+3 *
Fy g2 Hy i Frit1 F1its Hy iys3 Frita ( 3)
n,1,0ut P n,1,0ut z
h,' fr,it1 hyiis fr,ita
Bn,i+5 xn Prnit2 Bn,it+2 Xxn Pn,it+s Bn,i+s
Fyiq2 F1i12 Frit2 F1 15 F1iqs Frnits
frit200n,it+2 | fn,it2 fr,i+590n,i+5 | fn,i+5

Remark 6.2.17. Just like with Diagrams (5.1]) and (5.2)), we see that Diagrams (D;) and (D) with
two extra conditions each are equivalent, for ¢ = 1,2, 3.

6.3 Proof of Theorem [6.2.14]

In this section, we prove Theorem |6

14] First we need some results, which will be useful in the proof.

id
Remark 6.3.1. Let 2 be a separable, nuclear C*-algebra, in the bootstrap category N. Set eq: 2 AN
21 — 0, and set e; = mci(eg). As earlier we know that

60:91&91—»0,

61:0(—>Q(£»Ql,

eo: SA s CA 9,

(0,0) T1
ez: SA — CA Beyyov; CA —» CA,

where 77 is the projection onto the first coordinate.

We have a canonical morphism, ¢ = (id, (0,¢),0), from Seg to e3, which induces a KK g-equivalence.
It is evident that KK g(¢) is exactly x., in the case that Exty(K;(2), K;1_;()) =0, for i = 0,1. Also
we see that in this case, KK g¢(me(¢)) = —x,, (according to Remark [6.2.6)).

Note that i(e2) = Seg, q(e2) = e1, and me(i(ez)) = Sey. So if we apply mc®, mc!, and mc? to the

. tey ez . leg Gea me(icy) me(des)
short exact sequence i(es) — ea —» q(ea), we get just Seg — ea —» €1, Se; —— ez —» eg,
mc2(ic2) mc2(q62)

and mcSe; —— e4 —» ez, resp.
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Proposition 6.3.2. Let 2 be a separable, nuclear C*-algebra in the bootstrap category N satisfying
Exty,(K;(), K1_;(A)) = 0, for i = 0,1, and let e be an extension of separable C*-algebras. Set

ep: A 24, 2A —» 0, and set e; = mc'(eg). Then we have

KK ¢(SSey,e) KK¢(ea,e) KK¢(es,e)

b.
\ Anti-commutes Commutes

KKg(er,e) — KKg(eg,e) — KK ¢(Seq, e)

%\ 1R
S

X

|

Commutes T J/ Commutes

KKg SSeO, <7 KKg 562, <7 KKg Sel,

Ser
Commutes Anti-commutes

KKg(Seg, KKg 562, ) KKg Sel, )

where the inner and outer sequences are the cyclic six term exact sequences in KK ¢-theory induced

. iey Geo . me(icy) me(gey)
by i(ea) — ea — q(e2) and mc(i(ez)) —— mc(ea) —> mc(q(ez)), resp. Moreover, we have that

KK ¢(SmcSeq,e) KK¢(es,e) KK¢(eq,e€)
Wel)x— /
Anti-commutes Anti-commutes
Xeq X —
KK¢(ea,e) KK¢(es,e) — KK¢(Seq,e)

Anti-commutes T J/ Anti-commutes

KKg SSel, )<7KK5 563, %KKg 562,

Sxe1
Anti-commutes Anti-commutes KK
£(0ey

KKg(Se47 KKg 563, KKg mcSel, )

where the inner and outer sequences are the cyclic six term exact sequences in KK g-theory induced

(ieg) me(dey) % (iep) *(dey)
by me(i(ez)) e, me(ey) — me(g(ez)) and me2(i(es)) ptiiie mc?(e) "5 me 2(q(eq)), resp.

) ) iey Geq mC(iez) mc(qeg)
Proof. First, we write out the short exact sequences Seg —— es —» ey, Se; —— e3 —» eg, and
me2(ie,) M (dey)
meSe; —— e4 —» e3:
SA——SA——>0 0———SY———S5
L
SA—— CA —> 2 SA—> CA B e CA " €A
A AR
0 ——=™A=——"2 SA———=cau—= A
SSAC > scat s S
&Sm (0,0,cco) 2
ev1,0,Ce) h)—(g,h(
csa— Y (@, CU) By, e, CCATETEM D gl

iew i(f,gyh)'—*(fyg) i’”

SAC = CA @y, CAU ik c2A
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Now, we write out the cyclic six term exact sequences of cyclic six term exact sequences corresponding
to these three short exact sequences — where we horizontally use the KK-boundary maps and ver-
tically use the Ki-boundary maps. For convenience we will identify K7 with Ky oS. The diagrams

are:

I P T R
s K5 Ko(S20) 0 Ko (S52) =——— Ko (S52) 0
e Lo T e ]
T sy o) RO oty —2% o (s 20 Ko™ pepisay —— 4
l Ko(m) H l Ko(Sm) ‘
0 Ko(2) Ko(2) 0 Ko(S2) Ko(S2) —— >
\L —Ba J{ J/ Bsat \L
s Ky(SS%) Ko(S521) 0 Ko(SSSR) ——— Ko (SSS21) 0
Ko(St) J{ Ko(SS0) l
T essan 0B KoBm) e isay ——52 gy (sssay <255 Ko sy — 79
l Ko(Sm) l Ko(S57)
0 Ko(S20) Ko(S) 0 Ko(S52) Ko(SS) — >
\L id l l —id \L
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80

pi— pI
0 0 0 0 0 0
<~ (BS9)° T (758)%31 (165SS) 031 T (055) 031 (29)0x (9051 (15sS) b
(285)031 (T2ss) 037 (x8)057 (Txs) 037
0 Amkmmvm%uz@auvmmvmmmﬁ (165SS) 031 0 Amkmvoﬁausk@auvmvcwﬂﬂ (155S) 03 <——
(755) 031 (2785) 031 (15)031 (215) 051
~<— (18SSS) 01 (165SS) 031 0 (135S) 031 (135S) 051 0
5wQ 5Q|
0 0 0 0
- (155) 031 5 0 )0 (165S) 031 R () 031 o 0 o (155) 031 -
(x5)037 (Txg)037 (x)037 (Tx)037
0 ?kmvom,muz@auv@@%@ﬂ (1SS) 031 0 ?kvoxgu%k@auvox?v@ (155) 031
(18) 031 (215) 031 (1)051 (21)051
<— (1B85S) 01 (135S) 031 0 (15) 051 (155) 031 0
pi— pI
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<~ ((BD*™*@12)5S) O <— (1332 ™ @ (1D * *®1D))SS) O3

(%155) 051

<~ (®SSS)

((BD* @wD)SS) 0 <——— (1BSSS

(1155) 031

pI—

—

031

<—— ((B*™*®1D)S) 0 <— ((152D "> "B (1D * *®1D))S) 07

(e15)031

-
o1 (1SS) 031

(3655SS) 037 <—— (15SS) 037

1BSSgf

(B2 *®1D)S) 031 <——— (18SS) O3

(T18) 037

1BSS¢)

(B> @12)5) 03 <—— ((1532 ™" "B (15D * *®1D))S) 037

(215) 031

Pt

(B2 *®1D)S) 03] <———— (BSS) 0N <—

(T15) 037

(1SS

(B> #@W/D) 0 <——— (132D " "B (3D * *PwD)) 0N

(16SSS) 031

pI—

(87)031

(T2)031

5mQ|

(D * *@®15D) 0 <——— (1S

S) 0y S

Y g —

&Sgf

(155) 031

(1855) 031 <——

pr
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We see that x.,, —X¢,, and KK¢g(0,,) are induced by the morphisms

flip
s 0 SC STL —— SS9
SUA 2> CA@, . CA s 010 (CAD 77 CA) Dy v, CCA csA P scy
0 —CA S —2 > CAD, . CA s2A SA

Using all these diagram, a long, tedious, straightforward verification shows the Proposition. @ ® @

Remark 6.3.3. What we actually showed in the proof of the preceding proposition, is that the
corresponding diagrams of morphisms in the category KK¢ (i.e., before we apply KK ¢(—, €)) commute
resp. anti-commute. This observation will be useful in the sequel.
Proof of the first part of Theorem[6.2.17 By definition, Fy ;-1 fn#> E, g F, i1 is exact for
allmneNandall i =0,1,2,3,4,5.

We have a commuting square

C=——=C

|

CHMna

where the maps C — M, are the unital x-homomorphisms. By naturality of the mapping cone
construction, this induces a morphism ¢ = (¢o, ¢1,¢2) from f12 to e,0. This gives a commuting
diagram

i(f1,2)S f1,2 q(f1,2)

l(%@mo) \L¢

i(ento)(—> €n,0 —= q(enyo)

of short exact sequences. If we apply KK ¢(—,e) to this diagram we will get a morphism between two
cyclic six term exact sequences in KK g-theory. Using the standard equivalences introduced so far, we
arrive at the commuting diagram
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0'T,y e'urr v €T, o'urr Ty
e‘u elu o‘u 0‘uw
gnosperd ureper anocperd wreperd
(240°1{) 333 ] = (2°8'%2) 333y <—— (27’ 1) 331y (28 1) 33y 3] = (2°0°%2) 33y <——— (2°T' )33y
—xuzgx " lq |z IXo,H:\mx = \Xﬂﬂx = \x:NXQ,HMx =

<~ (@(OMING) Iy <——— (3°0M5) Iy =<——— (' THG)Zyy <——— (2 (0 )) Iy <——— (2°0H) 3y =<——— (2T Iy <—
—x((0°09*09)S) 33737 —x(95) 3311 —x((0°09*09)) 3 5137 —X(¢)33131
<~ ('0°H55) 3y <——— (2°F'HG) Iy <——— (@' T'HG) Iy <——— (2°0'HQg) 3y <——— (2T )3y <—— (' TH)Iyy <——

o1 — ¢ « _ © —
— X Huﬂ = —xelx|= —x'Hx|= _xOlx | =

<~ (013 yyyy =———— ('S Y)Yy =——— (V' IY)3yyy =———— ('€ Y)3yyy =<——— (2T Y)Iyy <=<——— (' )3yy <=<————————

OJ.\. m,H.\. w,ﬁ.\. mha,\. N,H.\. H,H.\. O,H.\.
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with exact rows. We use Lemma for commutativity the two squares on the right hand side
between row three and four — and we use that

EXt;ix<Ksix(en,0)a Ksix(sfl,l)) = 0;

EXt;ix(KsiX(Sfl,S)v Kqix(Sen3)) = 0.

This is easily verified using projective resolutions.
It is easy to verify that, up to a sign, we have

KKe(z;' x KKe((¢o, 00,0)),e) =nid and KK¢(Sz, " x SKK¢((¢o, do,0)),€) = nid.

Consequently, nfi o and nfq 3 are exactly the connecting homomorphisms of the cyclic six term exact
sequence in the bottom.

This proves exactness of the first of the four cyclic sequences in the theorem, for ¢ = 0, 3.

This same result also works for ¢ = 1,2,4,5, by invoking Proposition (remember that we do
not care about the signs, because that does not change exactness).

We have a commuting square

]In,O Hn,O

l

I,0 ——C,

where the maps I,, g — C are the canonical surjective *-homomorphisms. By naturality of the mapping
cone construction, this induces a morphism ¢ = (¢o, ¢1, ¢2) from f, 2 to e, 1. This gives a commuting
diagram

i(fn,2) = fn2 —q(fn2)

l(¢07¢'070) l¢

i(en,l)(—> Cn,1 —> q(en,1)

of short exact sequences. If we apply KK ¢(—,e) to this diagram we will get a morphism between two
cyclic six term exact sequences in KK g-theory. Using the standard equivalences introduced so far, we
arrive at the commuting diagram
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—X
<~ (2'0'lg

—x((0°0¢09)S) 3 5131

0T,y vy
viu yiu
ﬁﬁo,ﬁrﬁs\ ﬁiﬁ:@

(0035 = (7 M) Iy =< (V) 3y
0'lq | = —x""x|= —x"Mx s x0Ty

— - —

—X(¢8)3 331 —x((0°0¢09))3 3137

‘ ‘
VU €17

1w
nj‘ohﬁ,ﬁﬁ

~

—X(¢)33131

1‘u
‘t,th:Q

(eI <—— (T )33y <——— (V™) 3y

S)IMM < (2'1M3G) I3y <———— (VUG Iy < (OHG) Iy <———— (3T Iy = (') <

<~ (30"s) 3y = (3FHS) I = (TSI < (30 I =< (T I <———— (M) Iy <

—X

o‘uw _ ¢ 4 3
Jaq|= —x x| = —x x| = —x 0x

(CRUIYED* 5% BErre— (a9 ) 333 <———— (3T Hf) 3] <—— (2°8"%)

f viuf gy

F <———— (2°E) 3y
z'u

f

<~ Uy <—

H,:.\.

otuf
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with exact rows. We use Lemma for commutativity the two squares on the right hand side
between row three and four — and we use that

EXt;iX(Ksix<Sen,l)a Ksix(san)) = Oa

EXt;ix(KsiX(Sfl,S)v Kix(Sena)) = 0.

This is easily verified using projective resolutions.
Using naturality of b_ and Lemma [6.2.5] it is easy to see that

KKe(x; "' x KKg((do,60,0)) X Xy, ,€) = pn,3, and

KK¢(by, , x KK¢(S(¢0,60,0)) x by €) = ppo-

Consequently, fn 30 pn 3 and f,, g 0 pyo are exactly the connecting homomorphisms of the cyclic six
term exact sequence in the bottom.

This proves exactness of the second of the four cyclic sequences in the theorem, for i = 1,4.

This same result also works for ¢ = 0,2, 3,5, by invoking Proposition [6.3.2

We have a commuting square

L, ——=1,p0

|

]In,() ]In,07

where the maps I, 1 — I, are the canonical surjective *-homomorphisms. By naturality of the
mapping cone construction, this induces a morphism ¢ = (¢q, ¢1, ¢2) from ey, 2 to f, 2. This gives a
commuting diagram

i(en,2) = en,2 —=q(en,2)

\L¢ i(ov%@z)

i(fn,2)— fn2 — q(fn,2)

of short exact sequences. If we apply KK ¢g(—,e) to this diagram we will get a morphism between two
cyclic six term exact sequences in KK g-theory. Using the standard equivalences introduced so far, we
arrive at the commuting diagram
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<~ (03 <——— (T <——— (V) Iy =<———— (2 EU Iy =<——— (T3 <——— ' TH)IYyYy <—
o'uf gluf vius glup gluf Tug otuf

o‘u _ ¢ ‘ .
—X Hum— =~ _xMx|= —_x x| = —x0 x| =

<~ (2°0"g5) Iy <——— (28 UQ) Iy ] <——— (2°1'UG) Iy <——— (2°0°HG) Iy <———— (2TU) Iy <—— (V)T <~——

—x(99) 35131 — X ((29‘29‘0)S) 3 >137 —x(9)3>131 — X ((29°290)) 33131

<~ (2°0'%g5) Iy <—— (2°8'25) 33 3] <—— (2°(T2)bS) I3 ] <—— (2°0°5) T3] <——— (9°'*2) I3[y <— (3°(FH)D) Iy <~—

o o A , A
\XCT_Q = —x x| —x " Hax(((2)mx tm)g —xOMx|m —x T Hxx ([ Yz)awx  “m
f - 7
(O3 < (0°¢™2) 33y <——— (T3 ('8 )33 < (0°¢™2) 33y <——— (V' )3y
o,ﬁn& mh:m ﬁ,ﬁﬁw m,:n& N,ﬁm ﬁ,ﬁn&
g‘u gu ziu T'u
ot wrenert smou Y upenigd
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with exact rows. We use Lemma for commutativity the two squares on the right hand side
between row two and three — and we use that

Extl (Kuix(Sen.2), Keix(Sf1,7)) = 0,
EXt;ix(KSiX(fn,O)7 Ksix(SSen’Q)) =0.

This is easily verified using projective resolutions.
Using naturality of b_ and Lemma [6.2.5] it is easy to see that
KKg(x5,, X M&(2n) X W X KK¢((0, 92, ¢2)),€) = —fpn,1, and

KKg(by, , x Sme(z,) x Swy, x KKg(S(0, o, ¢a)),€) = — 3.

Consequently, 3,4 0 frn,3 and (3,1 o f, 0 are exactly the connecting homomorphisms of the cyclic six
term exact sequence in the top (up to a sign, of course).

This proves exactness of the third of the four cyclic sequences in the theorem, for i = 2, 5.

This same result also works for i = 0,1, 3,4, by invoking Proposition [6.3.2}

That the last one of the sequences is exact for all i = 0,1, 2 is straightforward to check. (X X )

Proof of the second part of Theorem[6.2.14] Diagram (6.1]). First we prove it for ¢ = 1. We have a

commuting diagram

0> me(i(ep0)) —— me(i(en.0))
f jmc(ien‘o) j
(e ) s et —— e ey,

imC(qen,O) i

i(en,1)——=mc(q(en0)) —f1.1

of objects from SE with short exact rows and short exact columns. Note that the short exact se-
quences i(en,1) — me(q(en0)) — f1,1 and me(i(en,0)) — q(en,1) — f1,1 are exactly the short exact

1q, 51, . .
sequences i(f1,2) 2 f1,2 -3 q(f1,2) and me applied to the sequence i(ey, o)) N fn.0 . f1,0 from De-

finition [6.2.12] resp. Now apply KK ¢(—,e), then one easily shows the commutativity of the diagram
(using the definitions of the different maps)

fi
i ———=Fi»

Pn ll pLlin f2

n,1

proLin
n.1
Fn,l Hn,l T FLS
prLiout
n1
pliLout
Bn,1 8
Fi 4

If we apply mc* to the diagram, for k = 1,2,3,4,5, we obtain commutativity of the corresponding
part of Diagram , for i = 2,3,4,5,0, resp. — this is, indeed, a very long and tedious verification
using the identifications and results above.
Now we prove commutativity of the remaining square in Diagram for ¢ = 1. We have a
commuting diagram
Sf1,1 ——Sf1,0

e

q(en,2) — en,1,
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where the horizontal morphisms are the unique morphism which are the identity on the extension
algebra, and the vertical morphism from Sf; 1 to (¢, 2) is the morphism induced by the *-homomor-
phism SC — I, ; in the extension e, 1. It is easy to see that mc(ienyo) is exactly ¢ o w,, where w,, is
the morphism inducing w,,. Now we get commutativity of

n,1,0ut
n,1

Hpy1 ——Fi3

\Lhi’}l’out \Lfld

F174 R F1’4
Xn

by applying KK ¢(—, ) to the above diagram. If we first apply mc” to the diagram, for k = 1,2, 3,4, 5,
we obtain commutativity of the corresponding square of Diagram (6.1)), for i = 2,3,4,5,0, resp.
Diagram ([6.2]). We first prove it for i = 2. We have a commutative diagram

. bme2(sf1,0) Gme2(sfy,0)
i(me2(Sf1,0)) —= me?(Sf1.0) —> q(me?(Sf1.0))
iS(mozn) imcz(itnyoozn) lwnomc(zn)
. i"n,? ey 2
i(en,2) €n,2 qen,2)
isy lmg(qen’o)
1,0

Sfi0———————>f1.3

where y, , 2, and w, denote the morphisms inducing x;, ,, z, and w,,, resp., and the first column is
the suspension of the short exact sequence introduced in Definition (note that we do not claim
the columns and rows to be exact).

A computation shows that this gives rise to a commutative diagram (by applying KK ¢(—,e€))

I3
; Pn,3
g '
n
F1,4 Hn,2 1 Fn,?)
h ,n,out
n,2
~ WA B
f1,4
s — I .
f1,5

If we apply mc* to the diagram, for k = 1,2,3,4,5, we obtain commutativity of the corresponding
part of Diagram , for i = 3,4,5,0,1, resp. — this is, indeed, a very long and tedious verification
using the identifications and results above.

Now we prove commutativity of the remaining square in Diagram for ¢ = 2. We have a
commuting diagram

q
€n,2 e q(Bnyg)

i(*,idﬁ) l(oyidvo)

[Hn,2 — Hn,2 — 0] —_— [H’ml — ]In,l — 0]7

where the bottom horizontal morphism is the morphism induced by the #-homomorphism from I, »
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to I,,1 in the extension e, 2. It is easy to see that we have a commuting square

Xi11
Sfi1——>Tf14

KK;;(S(o,idc,o))i \LKKS(m53(0a1d670))=KK5(mfz(qflg))
Sfl,O W Jfl.,S

in KK¢. Using that KK ¢(ey, 2, Sf1,0) is naturally isomorphic to Homgix (Ksix(en,2), Ksix(Sf1,0)) (since
ExtiiX(Ksix(en,g), Kix(SSf1,0)) = 0), we can show that the square

KKeg(me?(de,, )
en2 ——mc(q(en,0))

KKg((*,i(LO))l le_jo

[]In72 — ]In,2 - 0] > Sfl,O

anti-commutes in KK¢, where the bottom horizontal map is the canonical identification. Using all
this, we can show that we have a commuting diagram

Xmn
Fi3——Fi3

fl,sl \Lh;’,lz’m

Fi4—— Hp .
) hl,'rzt,zn )
n,

If we first apply mc” to the diagrams, for k = 1,2, 3, 4, 5, we obtain commutativity of the corresponding
square of Diagram (6.2), for ¢ = 3,4,5,0, 1, resp.
Diagram ([6.3). First we prove it for ¢ = 2. We have a commuting diagram of objects from S&

0 mc(i(en,1)) ===mc(i(en,1))
j jmc(ien’l) J
ie, qe,,
i(e,0) "> en2 = q(en,2)

imC(qe",l) i

i(en,2)—=mc(q(en,1)) — fn1

with short exact rows and columns. The short exact sequence i(e,2) — me(q(en,1)) — fn,1 is ex-

ifn, s,
actly the short exact sequence i(fy 2) i fn.2 kil q(fn,2). Moreover, the short exact sequence

me(i(en,1)) — q(en2) — fn,1 is exactly the short exact sequence Sfi; — e — 1 induced by the
extension ¢, 1: SC — 1,1 = L, 0, where eis 0 — L, ;1 — I, 1.
A computation shows that this gives rise to a commutative diagram (by applying KK ¢(—,e))

PE

Fo1———=Fuo
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If we apply mc® to the diagram, for k = 1,2,3,4,5, we obtain commutativity of the corresponding
part of Diagram (6.3)), for i = 3,4,5,0,1, resp. — this is, indeed, a very long and tedious verification
using the identifications and results above.

Now we prove commutativity of the remaining square in Diagram for i = 2. We have a
commuting diagram

an,l — ¢

|

i(en,Q) — €n2,

where e is the extension 0 — I, » l—d» I, 2, the map from Sf, 1 to e is the one induced by the
map SI,, o — L, 2 in e, 2, the map from Sf, 1 to Sf, 0 = i(es,2) is the unique morphism which is the
identity on the extension algebra, and the morphism from e to e, 2 is the unique morphism which is
the identity on the extension algebra. It is elementary to see that if we compose the morphism from
e to e, with the canonical identification of e with Sf; 1, we get exactly the morphism mec(i,, ,). If
¢ denotes the obvious morphism from f, 1 to fn 0, it is elementary to show that mc®(¢) is me?(qy,, ).
Using all this, we see that this gives rise to a commuting square

Hn,2 Fn,B
hl,n,out

n,2
n,l,out 7
hn,2’ fn,?»

Fi4y—— F, 4.
’ Pn,4 )

If we first apply mc® to the diagrams, for k = 1,2, 3,4, 5, we obtain commutativity of the corresponding
square of Diagram (6.3]), for i« = 3,4, 5,0, 1, resp. (X X )
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Appendix A

On Rordam’s classification of
certain C*-algebras with one
non-trivial ideal

This article is a follow up on a talk given by the first named author of the article, Sgren Eilers, at the
first Abel Symposium, which was held in Oslo in 2004. It has been published in the proceedings of
this symposium, ¢f. [ER06]. The article is followed up by the article in Appendix

For copyright reasons, this paper has been left out
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Appendix B

On Rgrdam’s classification of
certain C*-algebras with one
non-trivial ideal, II

This article is a follow up on the article from Appendix [A] and has been published in Mathematica
Scandinavica ([RR07]). Partly it generalizes some of the arguments of the that article, and it solves in
a very satisfactory way the classification problem of essential extensions of Kirchberg algebras, which
was initiated by Rgrdam in his seminal paper [Rgr97].

For copyright reasons, this paper has been left out
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Appendix C

Classification of extensions of
classifiable C'*-algebras

The project of this paper was initiated by a question from the first named author, Sgren Eilers, and
Toke Meier Carlsen concerning the completeness of the Matsumoto algebras as an invariant of flow
equivalence of shift spaces. It answered the question in the negative, and, moreover, it turned out
that the methods could be formulated in much more generality. We include an application of our
results to graph algebras (with the help of Mark Tomforde). The included paper in this appendix, is
an unpublished preprint. Most likely, it will be reorganized before submission (to make it shorter and
more concise).

119
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CLASSIFICATION OF EXTENSIONS OF CLASSIFIABLE
C*-ALGEBRAS

SOREN EILERS, GUNNAR RESTORFF, AND EFREN RUIZ

ABSTRACT. For a certain class of extensions ¢ : 0 = B — E — A — 0 of
C*-algebras in which B and A belong to a classifiable class of C*-algebras,
we show that the functor which sends e to its associated six term exact
sequence in K-theory and the positive cones of Ky(B) and Ky(A) is a
classification functor. We give two independent applications addressing
the classification of a class of C'*-algebras arising from substitutional shift
spaces on one hand and of graph algebras on the other. The former ap-
plication leads to the answer of a question of Carlsen and the first named
author concerning the completeness of stabilized Matsumoto algebras as an
invariant of flow equivalence.

INTRODUCTION

Associated to every extension 0 — B — E — A — 0 of nonzero C*-algebras
is a six term exact sequence of K-groups

Ko(B) — Ko(E) — Ko(A)

| |

K1(A) <— K{(E) ~— K/(B)

This six term exact sequence of K-groups provides a necessary condition for
two extensions to be isomorphic, which leads one to wonder if the above exact
sequence is sufficient to distinguish certain extensions of C*-algebras.

For examples of classification results involving the six term exact sequence of
K-groups see [29], [24], [23], and [40]. In each case, the extensions considered
were extensions that can be expressed as inductive limit of simpler extensions.
The classification results were achieved by using the standard intertwining
argument.

In [37], Rordam used a completely different technique to classify a certain
class of extensions. He considered essential extensions of separable nuclear
purely infinite simple C*-algebras in NV, where N is the bootstrap category of

Date: Second revised version, June 28, 2008.
2000 Mathematics Subject Classification. Primary: 46L35, 37B10 Secondary: 46M15,
46M18.
Key words and phrases. Classification, Extensions, Shift Spaces.
1
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Rosenberg and Schochet [39]. Using the fact that every invertible element of
KK(A, B) (where A and B are separable nuclear stable purely infinite simple
C*-algebras) lifts to a -isomorphism from A to B and that every essential
extension of A by B is absorbing, Rerdam showed the following:

Suppose Ay, Ay, By, and By are separable nuclear stable purely infinite
simple C*-algebras in N/. Two essential extensions

e : 0—-B —F —A, —0
ey : 0— By — FEy — Ay — 0

are isomorphic if and only if the six term exact sequences of K-groups of ¢;
and es are isomorphic. Moreover, E; is isomorphic to Fs if and only if e; is
isomorphic to e, since Ay, As, By, and Bs are simple C*-algebras.

The purpose of this paper is to extend the above result to other classes of
C*-algebras that are classified via K-theoretical invariants. We will show that
certain classes of essential extensions of classifiable C*-algebras are classified
by their six term exact sequence of K-groups together with the positive cone of
the Ky-groups of the distinguished ideal and quotient. This class of extensions
includes essential extensions of A® KC by B® K which satisfy a certain fullness
condition, where A and B can be unital separable nuclear purely infinite simple
C*-algebras satisfying the Universal Coefficient Theorem or unital simple AT-
algebras with real rank zero.

The motivation of our work was an application to a class of C*-algebras
introduced in the work of Matsumoto. Carlsen has in recent work (see [4])
showed for each minimal shift space X with a certain technical property (xx)
introduced in [8] that the Matsumoto algebra Ox fits in a short exact sequence
of the form

0 Kr Ox C(X) %y Z —0

where n is an integer determined by the structure of the so-called special
words of X. Tt turns out that C'(X) X, Z is a unital simple AT-algebra with
real rank zero. Using our results in Section 3, we show that two such C*-
algebras are stably isomorphic if and only if their six term exact sequences
of K-groups are isomorphic and the isomorphism between the Ky-groups of
the distinguished ideals and the isomorphism between the Kjy-groups of the
distinguished quotients are order isomorphisms.

The paper is organized as follows. In Section 1, we give basic properties
and develop some notation concerning extensions of C*-algebras. Section 2
gives notation concerning the six term exact sequence of K-groups. Most of
the notations were introduced in [37]. Section 3 contains our main results
(Theorem 3.11 and Theorem 3.16). In the last section we use these results to
classify the C*-algebras described in the previous paragraph. We also present
an alternative application to graph algebras.
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1. EXTENSIONS

We first develop some notation concerning extensions that will appear in
the sequel. We also give some basic facts about extensions all of which are
taken from [37].

For a stable C*-algebra B and a C*-algebra A, we will denote the class of
essential extensions

0—>Bi>E£>A—>O

by Ext(A, B).

Since the goal of this paper is to classify extensions of separable nuclear C*-
algebras, throughout the rest of the paper we will only consider C*-algebras
that are separable and nuclear.

Assumption 1.1. In the rest of the paper (unless stated otherwise) all C*-
algebras considered are assumed to be separable and nuclear.

Under the above assumption, if B is a stable C*-algebra, then we may iden-
tify Ext(A, B) with KK*(A, B) (for the definition of Ext(A, B) and KK'(A, B)
see Chapter 7 and Chapter 8 in [1]). Using this identification, for x in
Ext(A, B) and y in KK'(B, C) it makes sense to consider the Kasparov prod-
uct of z and y, which we denote by x x y. Note that z X y is an element of
KK (A, C).

Definition 1.2. Suppose ¢;(p1, F1,11) is in Ext(Ay, By) and es(pa, Eo, 19)
is in Ext(Ag, By). A homomorphism from e; (@1, E1,1%1) to ea(pa, Ea, 1s) is a
triple (3,1, a) where a from Ay to Ay, n from E; to Es, and [ from B to By
are *-homomorphisms which make the diagram

P1 P1

0 B, Ey Ay 0

N B

0 By Es Ay 0

¥2 o

commutative. We define the composition of two homomorphisms and the no-
tion of isomorphisms between two extensions in the obvious way. If e;(p1, E1, 1)
and es(p2, F2,12) in Ext(A, B) are isomorphic via (idg,n,id4) for some -
isomorphism 7 from F; to Fs, then we say that the extensions are congruent.
For notational convenience we will sometimes refer to e(p, £, 1) in Ext(A, B)
by just e.

Denote the multiplier algebra of B by M(B) and denote the corona algebra
M(B)/B of B by Q(B). For every element e(y, E, ) of Ext(A, B), there exist
unique injective x-homomorphisms 7, from E to M(B) and 7, from A to Q(B)
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which make the diagram

0—=B—">F A 0

0—> B“—> M(B) — Q(B) —=0

commutative, where 7 from M (B) to Q(B) is the canonical projection. The
sx-homomorphism 7, is called the Busby invariant of e. Note that there exists a
unique sub-C*-algebra E; of M(B) such that B is an ideal of E; and e(p, E, )
is isomorphic to e;(¢, Ey,7) via the isomorphism (idg, 7., 7.), where ¢ is the
canonical embedding from B to M(B).

Note that each element of Ext(A, B) represents an element of Ext(A, B).
For every element e of Ext(A, B), we use x4 p(e) to denote the element of
Ext(A, B) that is represented by e.

For each injective s-homomorphism « from A; to As; and for each e in
Ext(Ay, B), there exists a unique extension « - e in Ext(A;, B) such that the
diagram

a-e: 0 B fo Ay 0
e: 0 B E Ay 0

is commutative. For each x-isomorphism 3 from B; to B and for each ¢ in
Ext(A, By), there exists a unique extension ¢ - 3 in Ext(A, By) such that the
diagram

¢ 0 Bl E A 0
|
3'62 0 BQ FE A 0

is commutative.
The following propositions are Proposition 1.1 and Proposition 1.2 in [37].

Proposition 1.3. Suppose o from A; to As is an injective x-homomorphism
and suppose [ from By to By is a x-isomorphism. If ey is in Ext(A, By) and
eo is in Ext(Ay, B), then

TaBy(e1-B) =1ap,(e1) X KK(f)
A, B(a-e) = KK (a) X x4, 5(e2).
Proposition 1.4. Let ¢;(¢;, E;, ;) be an element of Ext(A;, B;) for j =1,2.
(1) If a from Ay to As and B from By to By are x-isomorphisms, then ¢
1s isomorphic to ey - B and ey is isomorphic to « - es.

(2) ey is isomorphic to ey if and only if ey - 5 is congruent to a- ey for some
x-isomorphisms « from Ay to As and 3 from By to Bs.
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(3) If e1 is isomorphic to es, then Ey is isomorphic to Es, and if each
A; and B; are simple, then L) is isomorphic to Ey implies that ey is
isomorphic to ey.

2. SIX TERM EXACT SEQUENCE IN K-THEORY

This section contains basic facts and notation concerning extensions, the
corresponding six term exact sequence of K-groups, and their mutual interac-
tion. Most of the notation was introduced by Rgrdam in [37].

2.1. We will start by introducing several graded groups.

Definition 2.1. Suppose A and B are C*-algebras and suppose Gy, G1, Hy,
and H, are abelian groups. Then

(1) The graded group Ky(A) @ K;(A) will be denoted by K, (A).

(2) The graded group Exty(Go, Hy) ® Exty(Gy, H;) will be denoted by
Exty(G., H.).

(3) The graded group Exty(Go, Hy) ® Exty(Gy, Hy) will be denoted by
Exty (G, Hey1).

(4) The graded group Hom(Gg, Hy) & Hom(Gy, H;) will be denoted by
Hom(G,, H.,).

(5) The graded group Hom(Gg, H;) & Hom(Gy, Hy) will be denoted by
Hom(Gy, Hii1).

In all cases, by a homomorphism between two graded groups we mean two
group homomorphisms respecting the grading. For example, a homomorphism
a, from K, (A) to K,(B) consists of two group homomorphisms o from Ky(A)
to Ko(B) and o from K;(A) to Ky(B).

We say that A satisfies the Universal Coefficient Theorem if for every C*-
algebra B with a countable approximate identity, the sequence

0 — BExtL(K.(A), K.1(B)) - KK°(A, B) 5 Hom(K.,(A), K.(B)) — 0

is exact. Hence, if A satisfies the Universal Coefficient Theorem, then for every
C*-algebra B with a countable approximate identity, the sequence

0 — ExtL(K.(A), K.(B)) - KK'(A, B) 25 Hom(K.(A), K.;1(B)) — 0

is exact. Rosenberg and Schochet in [39] showed that every separable nuclear
C*-algebra in N satisfies the Universal Coefficient Theorem.
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2.2. Suppose e(p, E, 1) is an element of Ext(A, B). Associated to e(p, E, 1)
is the following six term exact sequence of K-groups

Ko(y) Ko(y)
Ko(B) —22 » Ko(E) —— Ko(A)
o |t
K)o K)o K(B)

The homomorphism 6% is called the exponential map and §¥ is called the index
map. For every e = ¢(¢, £, 1) in Ext(A, B), denote the six term exact sequence
associated to e by Kj(e).

Let Hext(A, B) denote the class of all six term exact sequences of K-groups
arising from extensions in Ext(A, B). A homomorphism from an element of
Hext(Ay, By) to an element of Hext(Ag, By) is a triple (fs,ns, au), where [,
from K.(Bj) to K.(Bsy), n. from K,(F;) to K.(E), and a, from K,.(A;) to
K, (As) are homomorphisms making the obvious diagrams commute. Isomor-
phisms are defined in the obvious way.

Suppose h; and hy are elements of Hext(A, B). We say that hy and hy are
congruent if hy is isomorphic to hy via an isomorphism (idg, sy, 1, idk, A))
and we write hy = hy. Let Hext(A, B) be the set of all congruence classes of
Hext(A, B). For every element h of Hext(A, B), we use x4 g(h) to denote the
element of Hext(A, B) that is represented by h.

The following proposition is Proposition 2.1 in [37].

Proposition 2.2. For every pair of C*-algebras A and B with B stable, there
is a unique map Ky from Ext(A, B) to Hext(A, B) such that the following
statements hold:

(1) If ey and ey are elements of Ext(A, B) that represent the same element
of Ext(A, B), then Kgy(e1) is congruent to Ky (es).
(2) For every element ¢ of Ext(A, B), we have that

XA,B(Ksix(e)) = Ksix(wA,B(e))-

Suppose z is in Hext(A, B). If hy and hy are elements of Hext(A, B) that
represent z, then the exponential map of h; is equal to the exponential map
of hy and the index map of h; is equal to the index map of hy. Hence, for each
z in Hext(A, B) it makes sense to say that the ezponential map of z is the
exponential map of h in Hext(A, B) for any representative h of z. We denote
this map by Ko(z). Similarly, the index map of z will be the index map of any
representative h in Hext(A, B) of z and we denote this map by K;(z).

Let 6, be an element of Hom(K,(A), K.+1(B)). We will denote the set of all
z in Hext(A, B) that satisfy K;(z) =0, for j = 0,1 by Hext(A, B;d,). Define
a map

(05, =)oaps, : Hext(A, B;6,) — Exty(ker(d,), coker(d,41))
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as follows. Suppose z is represented by the following six term exact sequence:

Ko(y) Ko(v)

Ko(B) Ko(E) Ko(A)
(ﬁ lgo
Ki(4) =— W) 1(E) Ki(¢) K\(B)

Then o3, (z) in Exty,(ker(6,), coker(d,,)) is the element represented by the two
short exact sequences in the top and bottom rows in the diagram below.

0 — coker(0;) — Ko(E) —— ker(dy) —=0

M

s

Ko(B) — Ko(E) — Ko(4)

0<~——ker§; < K;1(E) < coker(8y) <— 0
It is straightforward to check that oy, is a well-defined map.

For each ¢, in Hom(K,(A), K.1(B)), we denote the subgroup of Ext(A, B)
consisting of all z in Ext(A, B) satisfying

(1) ker(d;) C ker(Kj;(x)) for j = 0,1 and
(2) image(K;(z)) C image(d;) for j =0, 1

by Exts, (A, B). We now define
(s5. =) sa.Bs. : Bxts, (A, B) — Exty(ker(6.,), coker(d,,1))
to be the map given by
x € Exts, (A4, B) — Kgx(x) € Hext(A, B; K.(z))
= 0k (o) (Kaix()) € Bxty (ker (K. (@), coker (K14 ()
— s5.(7) € Exty,(ker(d,), coker(d,,1)),
where the last map is induced by the maps
ker(0,) < ker(K,(x)) and coker(K,(x)) — coker(d,).

Note that the maps ker(d,) — K,(A) and K,(B) — coker(d,) induce a surjec-
tive homomorphism from Ext (K, (A), K,(B)) to Extj(ker(d,), coker(d,,1)).
We will denote this homomorphism by (s, .

127
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Lemma 2.3. Let A, B, and C' be separable nuclear C*-algebras with B stable
and let 0, be an element of Hom(K,(C), K,11(B)). Suppose C is in N and

suppose x in KK (A,C) is a KK -equivalence.
Set A\, = 9, 0 K, (z) in Hom(K.(A), K.y1(B)). Then
(1) & x (-) is an isomorphism from Exts, (C, B) onto Exty, (A, B).
(2) x induces an isomorphism [K,.(x)] from Exty(ker(6,), coker(d,,1)) onto
Exty (ker(\,), coker(Ayi1)).
(3) Moreover, if A and B are in N and if x = KK («) for some injective
x-homomorphism a from A to C, then the diagram

Exts.(C, B) 0 Exty. (A, B)

Exty,(ker(6,), coker(d,,1)) Exty,(ker(,), coker(A,y1))

(K (2))]
15 commutative.

Proof. Since x is a KK-equivalence, x X (+) is an isomorphism from Ext(C, B)
onto Ext(A, B). Therefore, to prove (1) it is enough to show that = x (-) maps
Exts, (C, B) to Exty, (A4, B) and 7! x (-) maps Ext,, (A, B) to Exts, (C, B).

Note that K,.(z) is an isomorphism and K;(z x z) = K;(z) o K;(z) for
j = 0,1 and z in Ext(C, B). Hence, image(K;(z) o K;(z)) = image(K;(2))
and image(d;) = image(d; o K;(z)). By definition, if z is in Exts, (C, B), then
image(K;(z)) C image(d;) for j = 0, 1. Therefore, for j = 0,1,

image(K;(z) o K;(z)) C image(d; o K;(z)) = image(},).

A straightforward computation shows that ker()\;) C ker(Kj(z) o Kj(x)).
Hence, x x z is an element of Exty, (A, B) for all z in Exts, (C,B). A sim-
ilar computation shows that x=! x (-) maps Ext,, (A, B) to Exts, (C, B). We
have just proved (1).

Since K, (z) is an isomorphism, image(\,) = image(d,). It is straightforward
to show that Kj;(x) is an isomorphism from ker()\;) onto ker(d;) for j = 0, 1.
Therefore, [K,(x)] is the isomorphism induced by K, (z). This proves (2).

We now prove (3). Let z be in Exty, (C, B). Let ¢ be an element of Ext(C, B)
such that z¢ g(e) = z. Since x = KK (o) for some injective *-homomorphism
a from A to O, there exist « - ¢ in Ext(A, B) and a homomorphism (idg, n, @)
from « - ¢ to e. By Proposition 1.3

rap(a-e) = KK(a) x zop(e) =2 X 2.

By the Five Lemma, (K., (idg), K.(n), K.(«)) is an isomorphism from K (2)
onto Ky (z X 2) since K, (z) and K,(idg) are isomorphisms.
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It is clear from the observations made in the previous paragraph and from
the definition of ss,, sy,, © X (), and [K,(z)] that the above diagram is com-
mutative. 0

The next two theorems were proved by Rgrdam for the case that A and
B are separable nuclear purely infinite simple C*-algebras in A/ (Proposition
3.1 and Theorem 3.2 in [37]). Rerdam used these results to show that if
e1 is in Ext(Ay, By) and ey is in Ext(Ag, By) where Ay, Ay, B, and B, are
stable separable nuclear purely infinite simple C*-algebras in N with Ky (e1)
isomorphic to Kgyx(¢e2), then ey is isomorphic to an element ¢; of Ext(A;, Bs)
and ey is isomorphic to an element ¢y of Ext(A;, Bs) such that x4, p,(¢1) =
T, B, (¢2). He then used Kirchberg’s absorption theorem to show that ¢ is
isomorphic to ¢3. Rgrdam conjectured that Proposition 3.1 and Theorem 3.2
in [37] are true for all separable nuclear C*-algebras in N.

Theorem 2.4. Let A and B be separable nuclear C*-algebras in N with B
stable. Let 6, = (0, 01) be an element of Hom(K,(A), K.i1(B)).

(1) The map
s, = Saps, : Bxts, (A, B) — Exty(ker(6.,), coker(d,,1))

s a group homomorphism.

(2) If x is in Ext(A, B) and if K.(x) = ., then s5, (x) = 05, (Kgx(x)).

(3) If z is in Exty(K.(A), K.(B)), then s5 (e(2)) = (. (2), where € is the
canonical embedding of Exty,(K.(A), K.(B)) into Ext(A, B).

Proof. (2) and (3) are clear from the definition of s;, and (s, .

We now prove (1). We claim that it is enough to prove (1) for the case that A
is a unital separable nuclear purely infinite simple C*-algebra in A. Indeed, by
the range results in [36] and [18], there exists a unital separable nuclear purely
infinite simple C*-algebra Ay in N such that K;(A) is isomorphic to K;(Ap).
Denote this isomorphism by A;. Suppose A is unital. Then, by Theorem
6.7 in [26], there exists an injective *-homomorphism v from A to Ay which
induces \,. Suppose A is not unital. Let € be the embedding of A into the
unitization of A, which we denote by A. Tt is easy to find a homomorphism i
from K;(A) to K;(Ap) such that \; o K;(¢) = A\;. Note that A is a separable
unital C*-algebra in N. By Theorem 6.7 in [26], there exists an injective *-
homomorphism 1 from A to Ay which induces .. Hence, 1) = ) o ¢ is an
injective x-homomorphism from A to Ay which induces \.. Therefore, in both
the unital or the non-unital case, we have an injective *-homomorphism 1)
which induces an isomorphism from K;(A) to K;(Ap). An easy consequence
of the Universal Coefficient Theorem [39] and the Five Lemma shows that
KK (v) is a KK-equivalence. Therefore by Lemma 2.3 our claim is true.

Let A be a unital separable nuclear purely infinite simple C*-algebra in
N. By the range results of [36] and [18], there exist separable nuclear purely
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infinite simple C*-algebras Ay and By in N such that A is unital, By is stable,
and

a; : Kj(Ag) = ker(d; : Kj(A) — K1 (B))
B+ Kj(By) = coker(d41 : Kj11(A) — K;(B))

for j = 0,1. Since A and A, are unital separable nuclear purely infinite simple
C*-algebras satisfying the Universal Coefficient Theorem, by Theorem 6.7 in
[26] there exists an injective x-homomorphism ¢ from Ay to A such that for
4 = 0,1 the map K;(Ag) = ker(d;) — K;(A) is equal to K;(p). Choose b in
KK (B, By) such that for j = 0,1 the map from K;(B) to coker(d;1) is equal
to ; o K;(b). Now, using the same argument as Proposition 3.1 in [37], we
have that the map ss, is a group homomorphism. O

Replacing Proposition 3.1 in [37] by the above theorem and arguing as in
Theorem 3.2 in [37], we get the following result.

Theorem 2.5. Let A and B be separable nuclear C*-algebras in N with B sta-
ble. Suppose x1 and xo are elements of Ext(A, B). Then Kgx(r1) = Kgix(22)
in Hext(A, B) if and only if there exist elements a of KK(A, A) and b of
KK(B, B) with K.(a) = K.(ida) and K,(b) = K.(idg) such that x1 X b =
a X Xy.

3. CLASSIFICATION RESULTS

We will now use the results of the previous sections to generalize Rgrdam’s
results in [37].

Since in the sequel we will be mostly interested in C*-algebras that are
classified by (Ko(A), Ko(A)y, K1(A)), we will not state the Elliott invariant in
its full generality.

Definition 3.1. For a C*-algebra A, the Elliott invariant (which we denote
by Ell(A)) consists of the triple

EIl(A) = (Ko(A), Ko(A) 1, Ki(A)).

A homomorphism «, from Ell(A) to Ell(B) consists of a group homomor-
phism o from Ky(A) to Ko(B), which maps Ky(A); to Ko(B), and a group
homomorphism «; from K;(A) to K;(B).

If A and B are unital, then a homomorphism a, from (Ell(A),[14]) to
(Ell(A), [15]) is @ homomorphism a. from Ell(A) to Ell(B) such that ag([14]) =
[15]. Isomorphisms are defined in the obvious way. It is well-known that the
canonical embedding of a C*-algebra A into its stabilization A ® K induces
an isomorphism from Ell(A) to Ell(A ® K) (this follows easily from Theorem
6.3.2 and the proof of Proposition 4.3.8 in [38]).

Suppose A and B are separable nuclear C*-algebras in A/. Let z be an
element of KK (A, B). We say that = induces a homomorphism from Ell(A)
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to Ell(B) if K.(x) is a homomorphism from Ell(A) to Ell(B). If, moreover
Ko(x)([14]) = [15], then we say x induces a homomorphism from (Ell(A), [14])
to (EIl(B), [15]).

Definition 3.2. We will be interested in classes C of separable nuclear unital
simple C*-algebras in NV satisfying the following properties:

(1) Any element of C is either purely infinite or stably finite.

(2) C is closed under tensoring with M,,, where M, is the C*-algebra of n
by n matrices over C.

(3) If Aisin C, then any unital hereditary sub-C*-algebra of A is in C.

(4) For all A and B in C and for all z in KK (A, B) which induce an isomor-
phism from (EI(A), [14]) to (Ell(A), [15]), there exists a *-isomorphism
a from A to B such that KK («a) = x.

Remark 3.3. (1) The class of all unital separable nuclear purely infinite
simple C*-algebras satisfying the Universal Coefficient Theorem satis-
fies the properties in Definition 3.2 (see [19] and [33]).

(2) The class of all unital simple AT-algebras with real rank zero satisfies
the properties in Definition 3.2 (see Corollary 3.13 in [20]).

(3) The class of all unital separable nuclear simple C*-algebras satisfying
the Universal Coefficient Theorem with tracial topological rank zero
and finitely generated K-theory satisfies the properties in Definition
3.2 (see Theorem 1.1 in [11]). In recent work by Lin and Niu they are
able to remove the assumption that the K-theory is finitely generated
(see Corollary 3.26 in [28]).

Notation 3.4. For the C*-algebra of compact operators I on a separable
Hilbert space, we will denote the canonical system of matrix units of I by
{eij}i,jeN-

Lemma 3.5. Let C be a class of separable nuclear unital simple C*-algebras
in N satisfying the properties in Definition 3.2. Let A and B be in C. Suppose
there exists x in KK(A® K, B®K) such that x induces an isomorphism from
Ell(A ® K) onto EIl(B ® K) and Ko(x)([1a ® e11]) = [1p @ e11]. Then there
exists a x-isomorphism « from A @ K onto B ® K such that KK («) = x.

Proof. Let ¢ from A to A ® K be the embedding t(a) = a ® e1;. Note that
KK(1) is a KK-equivalence. Since z induces an isomorphism from Ell(A ® K)
onto Ell(B ® K) and Ko(x)([14 ® e11]) = [1p ® e11], we have that KK (i) x
x x KK(:)~! induces an isomorphism from (Ell(A),[14]) onto (EI(B),[15]).
By the definition of C, there exists a *-isomorphism ¢ from A to B such that
KK(p) = KK (1) xxx KK (). Define a from AQK to BQK by a = p®id.
Then KK (a) = x. O

Let a be an element of a C*-algebra A. We say that a is norm-full in A if a
is not contained in any norm-closed proper ideal of A. The word “full” is also
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widely used, but since we will often work in multiplier algebras, we emphasis
that it is the norm topology we are using, rather than the strict topology. The
next lemma is a consequence of a result of L.G. Brown (see Corollary 2.6 in

[2]).

Lemma 3.6. Let A be a separable C*-algebra. If p is a norm-full projection
in A M, C AR K, then there exists a x-isomorphism ¢ from A ® K onto
P(A® K)p® K such that [p(p)] = [p ® en].

Proof. Using Corollary 2.6 in [2], we get a *-isomorphism ¢y from A ®@ K @ K
onto p(A® K)p® K that is induced by a partial isometry v in M(AQ K ® K)
with the property that v*v = 1yagkek) and v0* = p ® 1y k).

Let txc from K to K ® K be the canonical embedding. By the classification
of AF-algebras, there exists a *-isomorphism A from K to K ® K such that
Ko(N) = Ko(tx), and hence A is approximately unitarily equivalent to ¢ with
the implementing unitaries in the multiplier algebra of K @ K. Consequently,
id4 ®A is an isomorphism from AR K to AQ K&® K which is approximately uni-
tarily equivalent to ids ®t¢ with the implementing unitaries in the multiplier
algebra of A ® K. Hence, [(ida ®\)(p)] = [(ida ®uc)(p)] = [p ® e11].

Define ¢ from A ® K to p(A ® K)p ® K by ¢g o (idg ®\). Then ¢ is a
x-isomorphism and

[p()] = [o(p @ e11)] = [v(p ® en1)v™] = [p ® en]. O

Lemma 3.7. Let Ay, As, By, and By be unital separable nuclear C*-algebras
and let

¢e: 0Bk —-FE — A4 9K —0

be an essential extension. Let . from Ell(A; @ K) to Ell(Ay® K) and B, from
Ell(B; ® K) to Ell(By ® K) be isomorphisms. Suppose there exist a norm-
full projection p in M,,(A1) and a norm-full projection q in M,.(By) such that
ao([p]) = [14, ® en], and Bo([q]) = [15, ® e11].

Then there exist x-isomorphisms ¢ from pM,,(A1)pRK to A;QK and ¢ from
qM,.(B1)q®@ K to By ® K such that ¢ - e is isomorphic to e via the isomorphism
(idp, sk, 1dE,, @) with (ago Ko(v))([p® e11]) = [La, ® e11] and e is isomorphic
to e -~ wia the isomorphism (¢!, idg,,id4,) with (By o Ko(¥))([¢ @ e11]) =
[1p, ® eq1].

Moreover, ¢ is isomorphic to ¢ - ¢ - ™1 via the isomorphism (Y1, idg,, ¢).

Proof. By Lemma 3.6, there exists a *-isomorphism ¢ from p(A4; @ K)p @ K
to A; ® K such that [p(p ® e11)] = [p]. By the definition of ¢ - ¢, we have that
¢ - ¢ is isomorphic to e via the isomorphism (idp, gk, idg,, ¢). Also note that
(g © Ko(9))([p ® e11]) = ao([p]) = [1a, ® enn].

Using Lemma 3.6 again, there exists a x-isomorphism ¢ from ¢(B; @ K)q@ K
to B; ® K such that [¢)(q ® e11)] = [¢]. By the definition of ¢ - ¢)~!, we have
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that e is isomorphic to e - ¢! via the isomorphism (¢!, idg,,ida,ex). Note
that (fo o Ko(¥))(lg ® en1]) = Bo([q]) = [1s, ® en].

Note that the composition of (idp, ek, idg,, @) with (71, idg,, ida,egx) gives
an isomorphism (=%, idg,, ) from e onto ¢ - e -t O

The next lemma is well-known and we omit the proof.

Lemma 3.8. Let ¢ and ey be in Ext(A, B) and let 7y and T be the Busby
invariant of e, and ey respectively. If Ty is unitarily equivalent to o with imple-
menting unitary coming from the multiplier algebra of B, then ey is isomorphic
to €o.

A key component used by Rgrdam in [37] was Kirchberg’s absorption the-
orem. Elliott and Kucerovsky in [17] give a criterion for when extensions
are absorbing. They call such extensions purely large. By Kirchberg, every
essential extension of separable nuclear C*-algebras by stable purely infinite
simple C*-algebras are purely large. Kucerovsky and Ng (see [30] and [21])
studied C*-algebras satisfying the corona factorization property. They proved
the following result: Suppose B ® K satisfies the corona factorization property
and suppose 7 from A to Q(B ® K) is an essential extension of a separable
C*-algebra A with the property that for every nonzero element a of A, 7(a) is
norm-full in Q(B ® K). Then 7 is a purely large extension. Properties similar
to the corona factorization property were also studied by Lin [25].

Definition 3.9. Let B be a separable stable C*-algebra. Then B is said to
have the corona factorization property if every norm-full projection in M(B)
is Murray-von Neumann equivalent to 1(p).

A result of Kucerovsky and Ng shows that many simple stable separable nu-
clear C*-algebras, which have been successfully classified using K-theoretical
data, have the corona factorization property. We quote some of their results
here (see [30] and [21]).

Theorem 3.10. Let A be a unital separable simple C*-algebra.

(1) If A is exact, A has real rank zero and stable rank one, and Ky(A) is
weakly unperforated, then A® IC has the corona factorization property.
(2) If A is purely infinite, then AQK has the corona factorization property.

The following theorem is one of two main results in this paper. Using ter-
minology introduced by Elliott in [14], the next result shows that the six term
exact sequence together with certain positive cones is a classification functor
for certain essential extensions of simple strongly classifiable C*-algebras.

Theorem 3.11. Let C; and Cy be classes of unital nuclear separable simple
C*-algebras in N satisfying the properties of Definition 3.2. Let Ay and A, be
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in Cy and let By and By be in Cy with By ® IC and By ® K satisfying the corona
factorization property. Let

e : 0—-BK—-FE —- A4 K —0
ey 0= By@K —FEy— A,0K —0

be essential extensions. Let T,, and 7., be the Busby invariants of ¢; and eq
respectively. Suppose for every nonzero a; in A; ® K, we have that 1,(a;) is
norm-full in Q(B; ® K) for i =1,2. Then the following are equivalent:

(1) There exists a x-isomorphism n from Ey to Es.

(2) There exists an isomorphism ((,n,a) from e to es.

(3) There exists an isomorphism (By, 1., ) from Kgy(e1) to Kgx(e2) such
that By is an isomorphism from Ell(B; ® K) onto Ell(By ® K) and a
is an isomorphism from Ell(A; ® K) onto Ell(A; @ K).

Proof. Since Ay, Ay, By, and By are simple C*-algebras, by Proposition 1.4
E is isomorphic to Es if and only if e; is isomorphic to es. It is clear that an
isomorphism from e; onto es induces an isomorphism (., 7., ai) from Ky (eq)
onto Ky (ez) such that f, is an isomorphism from Ell(B; ® ) onto Ell(Ba® K)
and «, is an isomorphism from Ell(A; ® K) onto Ell(A; ® K).

So we only need to prove (3) implies (2). Using the fact that the canonical
embedding of A; into A; ® K induces an isomorphism between K;(A;) and
K;(A® K) and since A; is simple, by Lemma 3.7 we may assume [Gy([1p, ®
e11]) = [1p, ®e11] and ap([1a, @ €11]) = [1a, ® €11]. Hence, by Lemma 3.5 and
the Universal Coefficient Theorem, there exist *-isomorphisms 3 from B; ® K
to Bo®@K and « from A1 @ K to As ® K such that K,(F) = (. and K,(a) = a.

By Proposition 1.4, e; is isomorphic to e;- 3 and e, is isomorphic to a:-es. It is
straightforward to check that (K. (idp,ei), 7, K (ida,ex)) gives a congruence
between K (e; - 3) and Ky (o - ¢3). Therefore, by Proposition 2.2,

Kiix (74,0, B0k (€1 - ) = Kaix (T4, 0K, B0k (- €2)).
Let z; = w4,0k,8,0k(¢;) for j = 1,2. By Proposition 1.3,
Kix(z1 X KK (8)) = Kix(T4,0k,By0Kk(e1 - §))
= Kix(74,0K B0k (0 - €2))
= K (KK () X xg).
By Theorem 2.5, there exist invertible elements a of KK (A; ® K, A; ® K) and
b of KK (B ® K, By ® K) such that
(1) Ki(a) = K.(ida,ex) and K,(b) = K,(idp,sx) and
(2) 21 x KK(f) x b=a x KK («a) X x3.
Since A; is in C; and B is in Cy, by Lemma 3.5 there exist *-isomorphisms p

from A; ® K to A; ® K and v from By ® K to By ® K such that KK (p) = a
and KK (v) =05
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Using Proposition 1.4 once again, ¢, - 3 is isomorphic to e; - 5 -+ and « - ey
is isomorphic to p - a - ¢5. By Proposition 1.3,

Tayek,Brek (e B 7) =21 X KK (B) x KK(7) =21 x KK(8) x b
=a x KK(a) X z9 = KK(p) x KK (a) X xo

= $A1®K,Bz®/C(P s 62) .

Let 7 be the Busby invariant of ¢; - 5 -~ and let 75 be the Busby invariant
of p-a- ey By the above equation, [1] = [r2] in Ext(4; ® K, By ® K). By
our assumption, By ® K satisfies the corona factorization property and 7;(a)
is norm-full in Q(By ® K) for all nonzero element a of A; ® K. Therefore, by
Theorem 3.2(2) in [30] (also see Corollary 1.9 in [21]), there exists a unitary
u in M(By ® K) such that 7(u)m (a)m(u)* = m2(a) for all @ in A;. By Lemma
3.8, ¢ - B+ is isomorphic to p - « - e5. Hence, ¢; is isomorphic to e,. (]

Remark 3.12. In the above theorem, if Q(B; ® K) is simple, then for every
nonzero element a; of A;, we have that 7, (a;) is norm-full in Q(B; ® K). This
is the case when By ® K is a purely infinite simple C*-algebra.

Using similar techniques as above, we will show that a class of extensions
coming from substitutional dynamical systems are classified (up to stable iso-
morphism) by their six term exact sequence in K-theory together with the
order from the Ky-groups of the distinguished ideal and quotient.

Lemma 3.13. Let A be a unital AF-algebra. Then A ® K has the corona
factorization property.

Proof. Suppose p is a norm-full projection in M(A ® K). Then, by Corollary
3.6 in [25], there exists z in M(A ® K) such that zpz* = 1 4(agk). Therefore,
Imagk) is Murray-von Neumann equivalent to a sub-projection of p. Since
Imeagk) is a properly infinite projection, p is a properly infinite projection.
By the results of Cuntz in [10] and the fact that Ko(M(A® K)) = 0, we have
that 1yagk) is Murray-von Neumann equivalent to p. 0

Lemma 3.14. Let A be a separable stable C*-algebra satisfying the corona
factorization property. Let q be a norm-full projection in M(A). Then qAq is
isomorphic to A and hence qAq is stable.

Proof. Since ¢ is norm-full in M(A) and since A has the corona factorization
property, there exists a partial isomerty v in M(A) such that v*v = 144y and
vv* = q. Therefore v induces a *-isomorphism from A onto gAq. Since A is
stable, gAq is stable. O

Note that one of the key ingredients of the proof of Theorem 3.11 was that
the Busby invariant of the extension

0—-BK—FE —- A4 K —0
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took every nonzero element of A; ® K to a norm-full element of Q(B; ® K).
When we replace A; ® K by a unital simple C*-algebra and assume that the
Busby invariant is unital, then the Busby invariant always satisfies this fullness
condition.

In Theorem 3.16, we will be considering extensions

0—-—B—-F—-A—0

where A is a unital simple C*-algebra and the Busby invariant is unital. We
will classify a certain class of extensions of this form up to stable isomorphism.
Hence, as in the proof of Theorem 3.11, will need to know that the Busby
invariant of the stabilized extension

0—-BK—-FEQK—-AQQK —=0

has the fullness condition stated in the previous paragraph. This may be a
well-known result but we have not been able to find a reference so we prove it
here.

Proposition 3.15. Lete: 0 — B 5 E 5 A — 0 be an essential extension
where B is a separable, stable C*-algebra. Denote the Busby invariant of this
extension by 1, and denote the Busby invariant of the essential extension

e - 0— =Bk S rpeok™  Ank —>0

by Tes. Suppose for every nonzero element a of A, 1.(a) is norm-full in Q(B).
Then for every nonzero element x of A ® K, we have that T.s(x) is norm-full

in Q(B®K).

Proof. For any C*-algebra C, denote the embedding of C' into C' ® K which
sends ¢ into ¢ ® e1; by tc and denote the canonical embedding of C' as an
essential ideal of the multiplier algebra M(C') of C' by 6. We will first show
that ¢p satisfies the following properties:

(1) ¢p has an extension ip from M(B) to M(B ® K) (i.e. Opgx 0 tp =
Upofp), which maps 1,p) to a norm-full projection in M(B®K) and
(2) the map 5 from Q(B) to Q(B®K) induce by ip intertwines the Busby
invariants of e and ¢®; and the x-homomorphism ¢4 (i.e. Ts0t4 = TpoT,).

First note that there exist unique injective *-homomorphisms ¢ from E to
M(B) and ¢*® from £ ® K to M(B ® K) such that 0 = 0 01 and Opgr =
o®0(1®1idk). It is well-known that we have a unique *-homomorphism p from
M(B) @ M(K) to M(B ® K) such that Opgx = po (0p ® 6x) and that this
map is injective and unital (see Lemma 11.12 in [32]).
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In the following diagram, all the maps are injective *-homomorphisms

B K
L®id/cl
Ap®idc OBk
EFEeK
M(B) @K M(B) ® M(K) M(B®K)

_—
idp(B) ®0Kc

Everything commutes except possibly the bottom triangle but by the unique-
ness of ¢° this triangle commutes.

Now let ZB = po (1dM(B) ®91C) o LM(B)- Clearly, QB®IC olp = ZB o 03 and
p = i(1ymp)) is a projection in M(B ® K). Note that 1p(B) = B ® e =
POpgxc (B ® K)p. Therefore, pdpgi(B ® K)p is a stable, hereditary, sub-C*-
algebra of Opgx(B®K) which is not contained in any proper ideal of Opgxc(B®
KC). By Theorem 4.23 in [3], p is Murray-von Neumann equivalent to 1aqpgx)-
Hence, p = Tp(1r(p)) is norm-full in M(B ® K).

Now we see that igoo = o® o1 since the following diagram is commutative:

LE

E E®K

M(B) ——> M(B)® K M(B) ® M(K) —~ M(B® K)

LM(B)

—_—
id sy ®0k

Let 7p denote the x-homomorphism from Q(B) to Q(B®K) which is induced
by 7p. Arguing as in the proof of Theorem 2.2 in [12], we have that the diagram

Te

A Q(B)
LAl le (3.1)
A®K > QB®K)

is commutative since (tp, tg,t4) is @ morphism from e to ¢®. This finishes the
proof of the two claims (1) and (2) above.

We are now ready to prove the proposition. Let x be a nonzero positive
element of A ® K. Then there exist ¢ and s in A ® K such that sz2t = 14(y)
for some nonzero positive element y of A. Let € be a strictly positive number.
From (1) of our claim, there exist x1,...,zn, y1,..., ¥y, in Q(B® K) such that

losax) — > zip(lom)y:
=1

<6
5
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From our assumption on 7., there exist t1, ..., ¢y, $1,..., Sy in Q(B) such that

€
< :
20555 [l flyall + 1)

Lom) = _ sime(y)t;
j=1
An easy computation shows that

< €.

i=1 7

LoBek) — sz ( LB(SjTe(y>tj)) Yi
=1

By the commutativity of Diagram (3.1), we have that

< €.

n m . 1
losak) — > T (Z t5(s)7, (Sﬁfzt)LB(tj)) Yi
i—1 j=

Therefore, the ideal of Q(B ® K) generated by 7 (22) is equal to Q(B ® K).
Since z2 is contained in the ideal of A ® K generated by x, we have that z is
norm-full in Q(B ® K).

For an arbitrary nonzero element x of A ® K, consider the positive nonzero
element x*z of A®QK and apply the result on positive elements to conclude that
Tes (z*2) is norm-full in Q(B ® K). Therefore, 7 (x) is norm-full in Q(B ® K)
since x*x is contained in the ideal of A ® I generated by z. OJ

The next theorem will be used to classify a class of C*-algebras associated to
certain minimal shift spaces. We will then use this result in the next section to
show that stable isomorphism of these C*-algebras associated to minimal shift
spaces arising from basic substitutional dynamical systems must be a strictly
coarser relation than flow equivalence.

Theorem 3.16. Let A; and Ay be unital simple AT-algebras with real rank
zero such that K1(Ay) and K1(As) are non-trivial abelian groups. Let By and
By be unital AF-algebras. Suppose

(41 0—>Bl®Kﬁ>E1E>A1—>O
€o 0—>BQ®’CB>EQEA2—>O

are unital essential extensions. Let e and e5 be the extensions obtained by
tensoring e; and ey with the compact operators. Then the following are equiv-
alent:

(1) By ® K is isomorphic to Fy ® K.

(2) e is isomorphic to e5.

(3) there exists an isomorphism (By, s, ) from Kgy(e5) onto Kgy(e3) such
that B, is an isomorphism from Ell(B; ® K ® K) onto Ell(B; ® K ® K)
and a is an isomorphism from Ell(A; ® K) onto Ell(A; ® K).
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(4) there exists an isomorphism (B, N, ) from Kgx(e1) to Kgx(e2) such
that B, is an isomorphism from Ell(B; ® K) to Ell(By ® K) and « is
an isomorphism from Ell(A;) to Ell(As).

Proof. First we show that (1) implies (2). Suppose that there exists a -
isomorphism 7 from E; ® K onto Fy ® K. Note that for i = 1,2, A; ® I is not
an AF-algebra since K;(A;®K) # 0. Since [()2®idx)ono(¢1®idi)](B1@KRK)
is an ideal of A; ® K and A; ® K is a simple C*-algebra, [(¢, ®idic) ono (¢1 ®
idi)](B1 ® K ® K) is either zero or A; ® K. Since the image of an AF-algebra
is again an AF-algebra, (¢, ®idx) oo (p; ®idx)](B1 ® K ® K) = 0. Hence,
71 induces an isomorphism from e] onto e3.

Clearly (2) implies both (1) and (3). As noted in Definition 3.1, (3) implies
(4). We now prove (3) implies (2). By Lemma 3.7, we may assume that
ap([la, ® en1]) = [1a, ® e11]. Using Elliott’s classification theorems for AF-
algebras and AT-algebras (see [15] and [16]), we get *-isomorphisms « from
A1 ®K to Ao @K and [ from B @ KR K to B, @ K® K such that K, («) = .
and K,(5) = b..

By Proposition 1.4, ef is isomorphic to ef - 3 and ej is isomorphic to a-¢5. It
is straightforward to check that Ky (ef - 3) is congruent to Ky (o -e5). Hence,
by Theorem 2.5 there exist invertible elements a of KK (A4; ® K, A; ® K) and
bof KK(B; @ K® K, By ® K ® K) such that

(1) K*(a) = K*(id/h@lc) and K*(b) = K*(idBQ®K®;C); and
(2) zay0K.Brsex(e] - B) X b=a X Taex Bekerc(e - €3).
By the Universal Coefficient Theorem, b = KK (idp,sxer) since By ® K @ K
is an AF-algebra. Since A; is a unital simple AT-algebra with real rank zero
and K.(a) = ida, ek, by Corollary 3.13 in [20] and Lemma 3.5 there exists a
k-isomorphism p from A; ® K to A; ® K such that KK (p) = a.
By Proposition 1.3 and Proposition 1.4, p - « - €5 is isomorphic to « - ¢5 and

T a0k, Byokak (€] - B) = 11 X KK(f)
= KK (p) x KK(«a) X 9

= xA1®IC,B2®IC®IC(p CQ eé),

where ©; = T,k Biokarc(€]).

Let 71 be the Busby invariant of e] - 3 and let 75 be the Busby invariant of
p-a-e5. Then, [n] = [r] in Ext(4; ® K, By @ K ® K). Note that since A;
is a simple unital C*-algebra and e; is a unital essential extension, we have
that for every nonzero element a of A;, 7, (a) is norm-full in Q(B; ® K). If 7.
denotes the Busby invariant for the extension ¢, then by Proposition 3.15 we
have that 7. (x) is norm-full in Q(B; ® K ® K) for any nonzero x in 4; ® K.
Using this observation and the fact that 3, a, and p are s-isomorphisms, it
is clear that 7;(x) is norm-full in Q(B, ® K) for i = 1,2 and for any nonzero
element = of A; ® K.
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Note that by Lemma 3.13, Bo ® L® K has the corona factorization property.
Therefore, by the observations made in the previous paragraph one can apply
Theorem 3.2(2) in [30] to get a unitary u in M(By ® K ® K) such that

m(u)m(z)m(u)” = 7o(z)

for all @ in A; ® K. Hence, by Lemma 3.8, ¢] - 3 and p o « - ¢5 are isomorphic.
Therefore, e is isomorphic to e3. O

4. EXAMPLES

Clearly, Theorem 3.11 applies to essential extensions of separable nuclear
purely infinite simple stable C*-algebras in A/ (and gives us the classification
obtained by Rgrdam in [37]). We present here two other examples of classes
of special interest, to which our results apply.

4.1. Matsumoto algebras. The results of the previous section apply to a
class of C*-algebras introduced in the work by Matsumoto which was investi-
gated in recent work by the first named author and Carlsen ([4],[5],[7],[8],[9]).
Indeed, as seen in [4] we have for each minimal shift space X with a certain
technical property (#*) introduced in Definition 3.2 in [8] that the Matsumoto
algebra Ox fits in a short exact sequence of the form

0 Kcr Ox C(X) %y Z —0 (4.1)

where n is an integer determined by the structure of the so-called special words
of X. Clearly the ideal is an AF-algebra and by the work of Putnam [34] the
quotient is a unital simple AT-algebra with real rank zero. Let us record a
couple of consequences of this:

Corollary 4.1. Let X, denote the Sturmian shift space associated to the pa-
rameter o in [0,1\Q and Ox_ the Matsumoto algebra associated to X,,. If a
and 3 are elements of [0,1]\Q, then

Ox, ® K= 0x, ®K
if and only if Z + oZ = 7 + BZ as ordered groups.

Proof. The extension (4.1) has the six term exact sequence

7740l —T7+aZ

|

A 0 0
by Example 5.3 in [9]. Now apply Theorem 3.16. O
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The bulk of the work in the papers [5]-[9] is devoted to the case of shift
spaces associated to primitive, aperiodic substitutions. As a main result, an
algorithm is devised to compute the ordered group Ko(Oy ) for any such sub-
stitution 7, thus providing new invariants for such dynamical systems up to
flow equivalence (see [31]). The structure result of [4] applies in this case as
well, and in fact, as noted in Section 6.4 of [7], the algorithm provides all the
data in the six term exact sequence associated to the extension (4.1). This is
based on computable objects n., p-,A,, A, of which the latter two are square
matrices with integer entries. For each such matrix, say A in M,,(Z), we define
a group
which, when A has only nonnegative entries, may be considered as an ordered
group which will be a dimension group. We get:

Theorem 4.2. Let 7y and 15 be basic substitutions, see [8], over the alphabets
a; and ao, respectively. Then

Olq ® KL = (9&72 ® K
if and only if there exist group isomorphisms ¢1, ¢o, ¢3 with ¢ and ¢3 order
isomorphisms, making the diagram

7 P g, DG(AH)&)DGMTJ

1 L o2 l ®3 l
y/ Z" DG(A,,) —— DG(A,)

Pro Q2 Roo

commutative. Here the finite data n;, in N, p;, in Z"i, A, in M, |(Ny), A,
in Mg, 1n, (Z) are as described in [7], the Q; are defined by the canonical map
to the first occurrence of Z"%i in the inductive limit, and R are induced by
the canonical map from ZI%1+07 to 7%l

Proof. We have already noted above that Theorem 3.16 applies, proving “if”.
For “only if”, we use that any *-isomorphism between Oln ® K and OLQ ®
K must preserve the ideal in (4.1) and hence induce isomorphisms on the
corresponding six term exact sequence which are intertwined by the maps of
this sequence as indicated. And since the vectors p,, both have all entries
positive, the isomorphism x — —z between Z and Z can be ruled out by
positivity of ¢;. O

This result shows, essentially, that the information stored in the stabilized
C*-algebras is the same as the information stored in the six term exact se-
quence, hence putting further emphasis on the question raised in Section 6.4
in [7] of what relation stable isomorphism of the C*-algebras induces on the



142

Appendix C. Classification of extensions of classifiable C*-algebras

22 SOREN EILERS, GUNNAR RESTORFF, AND EFREN RUIZ

shift spaces. We note here that that relation must be strictly coarser than flow
equivalence:

Example 4.3. Consider the substitutions
7(0) = 10101000 7(1) = 10100
and
v(0) = 10100100 v(1) = 10100
We have that Ox @ K = Ox ® K although X, and X,, are not flow equivalent.
Proof. Since both substitutions are chosen to be basic, computations using the

algorithm from [5] (for instance using the program [6]) show that the six term
exact sequence degenerates to

z—z--06([; 3 ) —rc([; 1))

for both substitutions (see Corollary 5.20 in [8]). Hence by Theorem 4.2, the
C*-algebras Ox_and Oy are stably isomorphic. However, the configuration
data (see [5]) are different, namely

T =
0/0,

respectively, and since this is a flow invariant, the shift spaces X and X, are
not flow equivalent. O

4.2. Graph algebras. A completely independent application is presented
by the first named author and Tomforde in a forthcoming paper ([13]) and we
sketch it here. By the work of many hands (see [35] and the references therein)
a graph C*-algebra may be associated to any directed graph (countable, but
possibly infinite). When such C*-algebras are simple, they are always nuclear
and in the bootstrap class NV, and either purely infinite or AF. They are
hence, by appealing to either [19] or [15], classifiable by the Elliott invariant.
Our first main result Theorem 3.11 applies to prove the following:

Theorem 4.4. ([13]) Let A and A’ be unital graph algebras with exactly one
nontrivial ideal 1 and I', respectively. Then A Q@ K = A’ ® K if and only if
there exists an isomorphism (1., au, Bi) between the siz term eract sequences
associated with A and A" such that ny and oq are positive.

Sketch of proof. Known structure results for graph C*-algebras establish that
all of I,1I')A/I and A’'/I' are themselves graph C*-algebras, but to invoke
Theorem 3.11 we furthermore need to know that I and I’ are stable and of
the form J ® KC for J a unital graph algebra. This is a nontrivial result which
is established in [13].
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With this we can choose as C in Theorem 3.11 the union of the set of unital
Kirchberg algebras with UCT and the unital simple AF-algebras. Then it is
easy to check that properties (1)-(4) in Definition 3.2 are satisfied, as is the
corona factorization property. Since A/I is simple, and A is unital, the Busby
invariant of 0 — I — A — A/I — 0 will satisfy the fullness condition. By
Proposition 3.15, it follows that 0 = I @ KX - A® K — (A/I) @ K — 0 also
satisfies the needed fullness condition (and likewise for A’). O
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Appendix D

Non-splitting in Kirchberg’s
ideal-related KK-theory

The article in this appendix has been accepted for publication in Canadian Mathematical Bulletin. It
is very closely related to Chapter [6] of the thesis. In principle Chapter [6] and this article can be read
independently, but — since this article is the main motivation for Chapter [6] — it is a good idea to
read the article before one reads Chapter [6]
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NON-SPLITTING IN KIRCHBERG’S IDEAL-RELATED
KK-THEORY

SOREN EILERS, GUNNAR RESTORFF, AND EFREN RUIZ

ABSTRACT. A universal coefficient theorem in the setting of Kirchberg’s
ideal-related KK-theory was obtained in the fundamental case of a C*-
algebra with one specified ideal by Bonkat in [1] and proved there to split,
unnaturally, under certain conditions. Employing certain K-theoretical in-
formation derivable from the given operator algebras in a way introduced
here, we shall demonstrate that Bonkat’s UCT does not split in general. Re-
lated methods lead to information on the complexity of the K-theory which
must be used to classify x-isomorphisms for purely infinite C*-algebras with
one non-trivial ideal.

1. INTRODUCTION

The KK-theory introduced by Kasparov ([9]) is one of the most important
tools in the theory of classification of C*-algebras, of use especially for sim-
ple C*-algebras. Recently, Kirchberg has developed the socalled ideal-related
KK-theory — a generalisation of Kasparov’s KK-theory which takes into ac-
count the ideal structure of the algebras considered — and obtained strong
isomorphism theorems for stable, nuclear, separable, strongly purely infinite
C*-algebras ([10]). The results obtained by Kirchberg establish ideal-related
KK-theory as an essential tool in the classification theory of non-simple C*-
algebras.

KK-theory is a bivariant functor; to obtain a real classification result one
needs a univariant classification functor instead. For ordinary KK-theory this
is obtained (within the bootstrap category) by invoking the Universal Coeffi-
cient Theorem (UCT) of Rosenberg and Schochet:

Theorem 1 (Rosenberg-Schochet’s UCT, [15]). Let A and B be separable
C*-algebras in the bootstrap category N'. Then there is a short exact sequence

Ext)(K.(A), K.(SB)) — KK (A, B) = Homz(K.(A), K.(B))

(here K.(—) denotes the graded group Ko(—)®K1(—)). The sequence is natural
in both A and B, and splits (unnaturally, in general). Moreover, an element
x in KK (A, B) is invertible if and only if v(x) is an isomorphism.

Date: March 11, 2008.
2000 Mathematics Subject Classification. Primary: 46L35.
Key words and phrases. KK-theory, UCT.

1
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This UCT allows us to turn isomorphism results (such as Kirchberg-Phillips’
theorem [11]) into strong classification theorems. Moreover, using the splitting,
it allows us to determine completely the additive structure of the KK-groups.

To transform Kirchberg’s general result into a strong classification theorem,
one would need a UCT for ideal-related KK-theory. This was achieved by
Bonkat ([1]) in the special case where the specified ideal structure is just a
single ideal. Progress into more general cases with finitely many ideals has
recently been announced by Mayer-Nest and by the second named author, but
in this paper we will only consider the case with one specified ideal:

Theorem 2 (Bonkat’s UCT, [1, Satz 7.5.3, Satz 7.7.1, and Proposition 7.7.2]).
Let e; and ey be extensions of separable, nuclear C*-algebras in the bootstrap
category N'. Then there is a short exact sequence

T
EthZG (Ksix(el), Ksix(862)> — KKS(elv 62) - HOHIZG (Ksix<el)7 Ksix<€2))

(here Kgix(—) is the standard cyclic six term ezact sequence, Zg is the category
of cyclic six term chain complexes, and Se denotes the extension obtained by
tensoring all the C*-algebras in the extension e with Cy(0,1)). The sequence is
natural in both e; and ey. Moreover, an element x € KK ¢(eq,ez) is invertible
if and only if T'(x) is an isomorphism.

Bonkat leaves open the question of whether this UCT splits in general. We
prove here that this is not always the case, even in the fundamental case
considered by Bonkat (see Proposition 6(1) below).

This observation tells us — in contrast to the ordinary KK-theory — that
we cannot, in general, completely determine the additive structure of KK ¢ just
by using the UCT. It is comforting to note, as may be inferred from the results
in [14], [6] and [13], that this has only marginal impact on the usefulness of
Bonkat’s result in the context of classification of e.g. the C*-algebras consid-
ered by Kirchberg. But as we shall see it has several repercussions concerning
the classification of homomorphisms and automorphisms of such C*-algebras,
and opens an intriguing discussion — which it is our ambition to close else-
where ([7]) in the important special case of Cuntz-Krieger algebras satisfying
condition (II) — on the nature of an invariant classifying such morphisms.

Indeed, examples abound in classification theory in which the invariant
needed to classify automorphims up to approximate unitary equivalence on a
certain class of C*-algebras is more complicated than the classifying invariant
for the algebras themselves. For instance, even though K,(—) is a classifying
invariant for stable Kirchberg algebras (i.e. nuclear, separable, simple, purely
infinite C*-algebras) one needs to turn to total K-theory — the collection
of K.(—) and all torsion coefficient groups K,.(—;Z,) — in order to obtain
exactness of

{1} — H(A) — Aut(A) — Autpy(K(A)) — {1}, (1.1)
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where Inn(A) is the group of automorphisms of A that are approximately
unitarily equivalent to id4 and the subscript A indicates that the group iso-
morphism on K (A) must commute with all the natural Bockstein operations.
The appearance of total K-theory in (1.1) is explained by the Universal
Multicoefficient Theorem obtained by Dadarlat and Loring in [4]:

Theorem 3 (Dadarlat-Loring’s UMCT, [4]). Let A and B be separable C*-
algebras in the bootstrap category N'. Then there is a short exact sequence

Pexth (K. (A), K.(SB)) — KK (A, B) — Homy(K(A), K(B))

(here Pext}, denotes the subgroup of Ext; consisting of pure extensions, and
Homy denotes the group of homomorphisms respecting the Bockstein oper-
ations). The sequence is natural in both A and B, and an element x in
KK (A, B) is invertible if and only if the induced element is an isomorphism.
Moreover, Pexty, (K, (A), K,(SB)) is zero whenever the K -theory of A is finitely
generated.

Dadarlat has pointed out to us that although [4] states that the UMCT
splits in general, this is not true. The problem can be traced to one in [16],
cf. [17] and [18].

In the stably finite case, as exemplified by stable real rank zero AD algebras,
the UMCT leads to exactness of

{1} — Inn(A) — Aut(A) — Autp 4 (K(A)) — {1}, (1.2)

in which the subscript “4” indicates the presence of positivity conditions (see
[4] for details). Noting the way the usage of a six term exact sequence in
[14] parallels the usage of positivity in the stably finite case (cf. [3]) it is
natural to speculate (as indeed the first named author did at The First Abel
Symposium, cf. [6]) that by combining all coefficient six term exact sequences
into an invariant K (—) one obtains an exact sequence of the form

{1} — Tnn(e) — Aut(e) — Auty (Kgx(e)) — {1}, (1.3)

and to search for a corresponding UMCT along the lines of Theorem 3.

This sequence is clearly a chain complex, but as we will see, the natural
map from KKg(eq,es) to Homp (K ge(e1), Kge(ea)) is not injective nor is it
surjective in general for extensions e; and e, with finitely generated K-theory
(see Proposition 6(2),(3)), and we will give an example of an extension of
stable Kirchberg algebras in the bootstrap category A’ with finitely generated
K-theory, such that (1.3) is only exact at Inn(e), telling us in unmistakable
terms that this is the wrong invariant to use.

Our methods are based on computations related to a class of extensions
which, we believe, should be thought of as a substitute for the total K-theory
of relevance in the classification of, e.g., non-simple, stably finite C*-algebras
with real rank zero. We shall undertake a more systematic study of these
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objects elsewhere, and show there how they may be employed to the task of
computing Kirchberg’s groups KK ¢(—, —).

2. PRELIMINARIES

We first set up some notation that will be used throughout.

Definition 4. Let n > 2 be an integer and denote the non-unital dimension
drop algebra by I = {f € Cy((0,1],M,,) : f(1) € Cly,}. Then I? fits into
the short exact sequence

eno : SM, — 19 — C.

It is well known that Ky(I2) = 0 and K;(I%) = Z,, where Z,, denotes the cyclic
abelian group with n elements.

Let ¢, : SC — I} — 1Y be the extension obtained from the mapping cone
of the map I? — C. The diagram

0 —=SC=——=5C

|

SM, T, —= Of: (2.1)
SM,, 10 C

is commutative and the columns and rows are short exact sequences. Note
that the x-homomorphism from SM,, to I! induces a KK-equivalence.

Let ¢, : SI2 < T2 — I be the extension obtained from the mapping cone
of the canonical map Il — I%. Then the diagram

0 — SI9 —— S1°

b

SCC I2 cr (2.2)
SCe—~ 11 I

is commutative and the columns and rows are short exact sequences. Note
that the s-homomorphism from SC to I? induces a KK-equivalence. This
implies, with a little more work, that we get no new K-theoretical information
from considering objects I¥ or e, for k > 2. Note also that the C*-algebras
10, 1! and T2 are NCCW complexes of dimension 1, 1, and 2, respectively, in

the sense of [5]. See Figure 2.1.
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[Fibre legends: [1=0, O0=M,,, Ill=C]

FIGURE 2.1. NCCW structure of T,

Let e : Ay — A; — A, be an extension of C*-algebras. We have an “ideal-
related K-theory with Z,-coefficients” denoted by Kgy(e;Z,). More precisely,
K« (e; Z,) denotes the six term exact sequence

KO(AO; Zn) — Ko(Al; Zn) — Ko(Az; Zn)

T l

Kl(Az; Zn) I — K1<A1§ Zn) =~ K1(A0§ Zn)

obtained by applying the covariant functor KK*(I°, —) to the extension e.
Let us denote the standard six term exact sequence in K-theory by Ky (e).
The collection consisting of K (e) and K (e;Z,) for all n > 2 will be de-
noted by Kg.(e). A homomorphism from K (e1) to K. (es) consists of a
morphism from Ky (e1) to Kgx(e2) along with an infinite family of morphisms
from Kgx(e1;Z,) to Kgx(ea;Z,,) respecting the Bockstein operations in A.
We will denote the group of homomorphisms from K (e1) to K .(ea) by
Homy (K gy (€1), Kgi(e2)). We turn K, into a functor in the obvious way.

Lemma 5. There is a natural homomorphism

Lepe, KKE(elaGQ) I HOIHA(K ix(el)vK (62))-

=2 £ six

Proof. A computation shows that Ky (—;Z,) is a stable, homotopy invariant,
split exact functor since KK satisfies these properties. Therefore, K, (—)
is a stable, homotopy invariant, split exact functor. Hence, for every fixed
extension e; of C*-algebras, Homy (K g (e1), Ky (—)) is a stable, homotopy
invariant, split exact functor. By Satz 3.5.9 of [1], we have a natural trans-
formation I, — from KK¢(e1,—) to Homy (K g (€1), Ky (—)) such that T, —
sends [id,] to K, (id,). Arguing as in the proof of Lemma 3.2 of [8], we have
that

Fel,ez : KKf(eb 62) - HomA(Ksix(61)>Ksix(62))

is a group homomorphism. ([l
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Another collection of groups that we will use in this paper is the following:
for each n > 2, set

2
= @ (KK (0 e) ® KK (19, A) © KK*(C, A;))

=0
3. EXAMPLES

Accompanied with the groups KKz(e,;,e) are naturally defined diagrams,
which will be systematically described in a forthcoming paper. For now, we
will use these groups to show the following:

Proposition 6. (1) The UCT of Bonkat (Theorem 2) does not split in gen-
eral.

(2) There exist e; and ey extensions of separable, nuclear C*-algebras in the
bootstrap category N of Rosenberg and Schochet [15] such that the siz term
exact sequence of K-groups associated to ey is finitely generated and

Fel,eg : KKS(eb 62) I HomA(Ksix(el)’Ksix(€2))

18 not injective.

(8) There exist e; and ey extensions of separable, nuclear C*-algebras in the
bootstrap category N of Rosenberg and Schochet [15] such that the siz term
exact sequence of K-groups associated to ey is finitely generated and

Fel,ez : KK5(617 62) - HomA<KSix(el)7 Ksix(eQ))

18 not surjective.

The proposition will be proved through a series of examples. The following
example shows that the UCT of Bonkat does not split in general. Also it shows
that there exist extensions e; and ey of separable, nuclear C*-algebras in N/
with finitely generated K-theory, such that I'., ., is not injective.

Example 7. Let n be a prime number. By Korollar 7.1.6 of [1], we have that
Z—=7—= KKg(en0,¢n1) —0

is an exact sequence. Therefore, KK é(emo, en1) is a cyclic group. By Korollar
7.1.6 of [1], KK :(¢,0,¢n1) fits into the following exact sequence

0 — Zn — KK};(en,Oa en,l) — Zn — 0

So, KK ¢(en.0, ¢n1) is isomorphic to Z,:.

An easy computation shows that Hom(Kyx(en,0), Ksix(Sen 1)) is isomorphic
to Z,. Using this fact and the fact that KK¢(e, 0, Sen1) = KK §(eno,en1) i8
Zy2, we immediately see that the UCT of Bonkat does not split in this case.

We would like to also point out another consequence of this example. Since
n is prime and Ext} (Kgx(en0), Kex(¢n,1)) injects into a proper subgroup of
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KK (¢n0,€n1), we have that Extéﬁ(Ksix(en,g), Kiix(en1)) is isomorphic to Z,.
Therefore, n annihilates all torsional K-theory information but n does not
annihilate the torsion group KK g (e,.0,¢n.1)-

We will now show that the natural map I, ,s.,, from KK¢(eno,Sen1)
to Homp (K g (en0), Kk (Sen1)) is not injective. Let Ay — A; — Ay and
By — By = B, denote the extensions e, and Se, 1, respectively. Note that
the corresponding six term exact sequences are (isomorphic to)

0——0——>7% 7 —7 —7Z,
T J{ and T l ,
0~—2Z,<~—17 0=—0=<~—0

respectively. Using the UCT of Rosenberg and Schochet, a short computation
shows that n [[7_, KK (A;, B;) = 0. Since all the K-theory is finitely generated,
we have by Dadarlat and Loring’s UMCT that Homp (K g (€5.0), Kgix(Sen1))
is isomorphic to a subgroup of [[7_, KK (A;, B;). Since the latter group has no
element of order n* and KK¢(e, 0, Se,1) is isomorphic to Z,2, we have that

I, ,.5¢,, 1s not injective.

The above example also provides a counterexample to Satz 7.7.6 of [1]. The
arguments in the proof of Satz 7.7.6 are correct but it appears that Bonkat
overlooked the case were the six term exact sequences are of the form:

0*>0*>>l< 0—0——"0
J=<=— k <— % * <—— k <— %

Our next example shows that there exist extensions e; and ey of separable,
nuclear C*-algebras in N with finitely generated K-groups, such that T, ., is
not surjective.

Example 8. Let n be a prime number. Consider the following short exact
sequences of extensions:

SC=——=SC——=0

.

SC——1I), —1 (3.1)

|

0——10 ——1°
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and

SM, T2 — (3.2)
0 C=——C

By applying the bivariant functor KK ¢(—, —) to the above exact sequences
of extensions with (3.1) in the first variable and (3.2) in the second variable
and by Lemma 7.1.5 of [1], we get that the diagram

0
0 0 Lo, Lo, 0

0———72—— KKS(en,laen,O) Hzn —0

0——=% / 0 0
0 L, Lo, 0 0
0 0 0

is commutative. By Korollar 3.4.6 of [1] the columns and rows of the above
diagram are exact sequences. Therefore, we have that KK¢g(e,1,¢,0) is iso-
morphic to Z & Z,,.

A straightforward computation gives that Kgx(en0) and Kgx(en,0; Zy,) are
given by

| ] |

O<~—2Zy<~—17Z 0<~—Znjmpn) <~ Ln,
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and similarly, for e, ;

0——=0—>0 0 0 Lin,m)

A map Ksix(en,l) SV Ksix(en,l; Zn) - Ksix(en,O) @ Ksix(en,O;Zn) Is giVen by a
12-tuple

((0,0,0,z,a,0),(0,0,b, ¢, d, 0))

where x € Z and a,b,c,d € Z,. To commute with the maps in the diagrams
as well as the Bockstein maps of type p and 3, we must have d = a and ¢ = 7,
and straightforward computations show that this tuple extends uniquely to
an element of Homp (K g, (en1), Kgx(eno)). Hence this group is isomorphic to
7 B L, & Z,,. Finally, note that no surjection Z & Z,, — Z & Z,, b Z,, exists.

00
00
??) and Bz( )
11
11

satisfy condition (II) of Cuntz ([2]). Hence, the Cuntz-Krieger algebras Oy4
and Op are purely infinite C*-algebras and have exactly one non-trivial ideal.
Using the Smith normal form and [12, Proposition 3.4] we see that the six term
exact sequence corresponding to O4 and Op are (isomorphic to) the sequences

Remark 9. The matrices

[l elele]
—H==OOO
=H=OOO0O

1
1
1
0
0
0

OO
OOOH =

7—7—= 1o ZQLZi)Z

T lo and T i,

V~——2Z~2"1 Z<~—7<~—10

respectively. Using KK ¢-equivalent extensions, that KK¢ is split exact, and
arguments similar to Example 7, one easily shows that the natural map I';, .,
is not injective for the extensions e; and e corresponding to the Cuntz-Krieger
algebras 04 and Op, respectively. Similar considerations on

110000 110000
011000 011000
C=1000111 and D= 1|660110
000111 000111
100111 100011

8

in the realm of Cuntz-Krieger algebras.

OO

yield a version of Example

One may ask if I';, ., is ever surjective and the answer is yes. If e; is
an extension of separable, nuclear C*-algebra in A such that the K-groups of
K« (eq) are torsion free, then Homy (K, (€1), Ky (€2)) is naturally isomorphic

157
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to Homz, (Ksix(e1), Ksx(e2)) such that the composition of I';, ., with this natu-
ral isomorphism is the natural map from KK¢(eq, e2) to Homz, (Kx(e1), Ksix(€2)).
Hence, by the UCT of Bonkat, we have that I'., ., is surjective.

4. AUTOMORPHISMS OF EXTENSIONS OF KIRCHBERG ALGEBRAS

The class R of C*-algebras considered by Rgrdam in [14] consists of all
C*-algebras A; fitting in an essential extension e: Ag — A; — Ay where Ay
and Ay are Kirchberg algebras in N/ (with Ay necessarily being stable). For
convenience we shall often identify e and A; in this setting, as indeed we can
without risk of confusion. As explained in [14] one needs to consider three
distinct cases: (1) A; is stable; (2) A; is unital; and (3) A; is neither stable
nor unital.

A functor F is called a classification functor, if A= B < F(A) = F(B)
(for all algebras A and B in the class considered). Such a functor F' is called
a strong classification functor if every isomorphism from F(A) to F(B) is
induced by an isomorphism from A to B (for all algebras A and B in the class
considered).

Rgrdam in [14] showed Ky to be a classification functor for stable algebras
in R. More recently, the authors in [6] and [13] showed that Ky (respectively
K« together with the class of the unit) is a strong classification functor for
stable (respectively unital) algebras in R. Moreover, they also showed that
Ky is a classification functor for non-stable, non-unital algebras in R.

In this section we will address some questions regarding the automorphism
group of e, where e isin R. If e : Ag — A; — A, is an essential extension of
separable C*-algebas, then an automorphism of e is a triple (¢g, ¢1, ¢2) such
that ¢; is an automorphism of A; and the diagram

A=A —= Ay

o

A=A —= A

is commutative. We denote the group of automorphisms of e by Aut(e). If
Ay and Ay are simple C*-algebras, then Aut(e) and Aut(A;) are canonically
isomorphic. Two automorphisms (¢g, @1, P2), (¢o,11,12) of e are said to be
approximately unitarily equivalent if ¢; and 1, are approximately unitarily
equivalent. A consequence of Kirchberg’s results [10] is that KK ¢ (e, e) classi-
fies automorphisms of stable algebras in R.

In [6] the first and second named authors asked whether the canonical map
from Aut(e) to Auty (K, (e)) was surjective, cf. (1.3). We answer this in the
negative as follows:
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Proposition 10. There is a C*-algebra e € R with finitely generated K -theory
such that (1.3) is exact only at

{1} —— Inn(e) — Aut(e)

Before proving the above proposition we first need to set up some nota-
tion. For ¢ in Aut(e), the element in KK ¢ (e, e) induced by ¢ will be denoted
by KK¢(¢) and the element in Homy (K g, (e), Ky (e)) induced by ¢ will be
denoted by K, (¢). We will also need the following result.

Proposition 11. Let e be any extension of separable C*-algebras. Define
Aen,i,e : KKS(en,iy 6) — HomZ<KKS(en,ia en,i)a KK(‘,‘(en,i, 6))

by A, ,(x)(y) = y x x, where y x x is the generalized Kasparov product (see

[1]). Then A, .. is an isomorphism for i =0,1,2.

Proof. We will only prove the case when i = 0, the other cases are similar. By
the UCT of Bonkat one shows that KK¢g(en,¢n,0) is isomorphic to Z and is
generated by KK¢(id,, ,). Therefore, if A, ,.(z) = 0, then

T = KK&‘(iden,()) X T = Aen,o,t?(x)(KKS(iden,o)) =0.

Hence, A, , is injective. Suppose a is a homomorphism from KK g(e, 0, €n0)
to KKg(en0,¢e). Set v = a(KKg(id,, ,)). Then

Aepoe(®) (KK e(ide, ) = # = a(KKe(ide, ).
Therefore, A, . is surjective. O

Proof of Proposition 10:
Set e; = Sep1De,1De, o where p is a prime number. Let ¢; be the embedding
of Se, 1 to e; and 7 be the projection from e; to e,o. Note that

KKg(Ll) X (—) : KKg(ep’o,SepJ) — KKg(epp,@l)
and
(—) X KKg(ﬂ'l) : KKg(ep,o,el) — KKg(el,el)
are injective homomorphisms. Hence
m = ((=) x KKg(m)) o (KKe(n1) x (=)

is injective. Since I'_ _ is natural

KKg(ep,O,Sep,l) n KKS(elael)

F“p,ovsep,l J/ Ceyeq J/

HomA(Ksix(eP@)vKsix(SQp,l)) ? HomA(Ksix<el>7Ksix(el))

is commutative. By Example 7, I'. | s.,, is not injective. Therefore, I, ., is
not injective.
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Let w5 be the projection of e; to e, and let 5 be the embedding of e, ; to
¢;. Note that
KKg(’ﬂ'g) X (-) : KKg(@l, 61) — KKg(el, ep,o)

and
(—) X KKg(LQ) : KKg(el, epyo) — KKg(epJ, epyo)
are surjective homomorphisms. Therefore,

12 = (=) X KK¢(12)) o (KKg(m2) x (=)

is surjective. Similarly, 6y = K, (12) o K, (m2) is surjective. Since I'_ _ is
natural,

KKg(@l,el) e KK:‘:(ep,l) ep,())

Leqeq l F‘p,l’epyol

HOHIA (Ksix(el)7 Ksix(el)) Tz. HOH’IA (Ksix(ep,1)7 Ksix(epao))

is commutative. By Example 8§, I’
surjective.

We have just shown that I', ., is neither surjective nor injective. By Propo-
sition 5.4 of [14] there is a stable extension e : Ay < A; — Ay in R such that
Kgx(e) = Kgx(e1). By the UCT of Bonkat, Theorem 2, we are able to lift this
isomorphism to a KK ¢-equivalence. Therefore,

¢p1,ep0 18 NOG surjective. Hence, I'e, ¢, is not

~

KKg(e,e) KKg(@l,el)

\Lre,e \Lrel,el

Homy (Kyix(€), Kyix(e)) —z= Homa (K (e1), Kix(er))

is commutative. Hence, I' . is neither injective nor surjective.
Denote the kernel of the surjective map from
Homy (K (e), K (e)) to Homz, (Kiix(e), Kiix(€))

by Extix (Ksix(€), Kax(Se)). Note that if v is an element of Homp (K g, (€), K g (€))
such that o|x, () is an isomorphism, then o is an isomorphism. Since I, . is
not surjective and

Ext z4 (Ksix(e), Ksix(Se)) —— KK¢(e,e) —————> Homz, (Ksix(e), Ksix(€))

lr J/F (4.1)

Extsix (Ksix(€), Keix(Se))—— Homya (K, (e), K, (€)) —s= Homz, (Kix(€), Ksix(€))

==six ) Z=six

is commutative, there exists 31 in Extgy(Kgix(€), Ksix(Se)) which is not in the
image of I'ce. Since (K (ide) + 01)|kye(e) = Keix(ide)|ky(e), We have that

K (ide) + B is an automorphism of K (e). Since f; is not in the image
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of I'ee, K. (ide) + f1 is not in the image of I'... Hence, Ky (id.) + (1 is

an automorphism of K (e) which does not lift to an automorphism of e.
Consequently,

Aut(e) — Auty (K, (e)) — {1}

1s not exact.

Since the diagram in (4.1) is commutative and I'c. is not injective, there
exists a nonzero element [y of Extz, (Kqx(e), Ksx(Se)) such that I'. .(f2) =
0. Therefore, 8 + KK¢(id.) is an invertible element in KK¢(e,e) such that
Lee(B2) + K (ide) = K, (id.). By Folgerung 4.3 of [10], B2 + KK ¢(id,.) lifts
to an automorphism ¢ of e. So K, (¢) = K, (ide) in Auty (K (e)).

Set

G = HOHl(KKg(Sep’l,el),KKg(Sep’1,€1)>

@ (é Hom(KK ¢(eys, 1), KK ¢(eps, 61))>

i=0
H = Hom(KKg(Sep1,e), KKg(Se,1,¢e))

2
@ (@ Hom(KKg(e, i, e), KK¢(ep,, e)))
=0
Since e; is equal to Se,;1 @ ¢p1 @ ¢,0, by Proposition 11 the map from
KKe(ey,er) to G given by z +— (—) X x is an isomorphism. Hence, the map
from KK¢(e,e) to H given by x — (—) x x is an isomorphism. A computa-
tion shows that if ¢ is in Inn(e), then ¢ induces the identity element in H.
Therefore, ¢ is not approximately inner. We have just shown that

Inn(e) — Aut(e) — Auty (K, (e))

is not exact. O
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