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Abstract

It is a well-known result that the noncommutative residue of a pseudodifferential pro-
jection is zero on a compact manifold without boundary. Equivalently, the value of
the zeta-function of P at zero, ζθ(P, 0), is independent of θ for any elliptic operator P .
Here θ denotes the angle of a ray where the resolvent of P has minimal growth.

In this thesis, we consider the analogous questions on a compact manifold with
boundary. We show that the noncommutative residue is zero for any projection in
Boutet de Monvel’s calculus of pseudodifferential boundary problems.

For an elliptic boundary problem {P+ + G, T}, with the corresponding realization
B = (P + G)T , we define the sectorial projection Πθ,ϕ(B) and the residue of this
projection. We discuss whether this residue is always zero, through various analyses of
the structure of the projection. The question is interesting since ζθ(B, 0) is independent
of θ exactly when the residues of the corresponding sectorial projections are zero; in
particular this holds when the projections are in Boutet de Monvel’s calculus. This
happens in certain cases, but we also give examples where the projections lie outside
the calculus.

Resumé

Det er et velkendt resultat at det ikke-kommutative residuum af en pseudodifferentiel
projektion er nul p̊a en kompakt mangfoldighed uden rand. Et hermed ækvivalent
udsagn er, at zeta-værdien af P i nul, ζθ(P, 0), er uafhængig af θ for enhver elliptisk
operator P . Her betegner θ vinklen for en str̊ale hvor resolventen for P har minimal
vækst.

I denne afhandling betragter vi de tilsvarende problemstillinger p̊a en kompakt
mangfoldighed med rand. Det vises at det ikke-kommutative residuum er nul for enhver
projektion i Boutet de Monvels kalkyle af pseudodifferentielle randværdiproblemer.

For et elliptisk randværdiproblem {P+ + G, T}, med den tilhørende realisation
B = (P + G)T , definerer vi den sektorielle projektion Πθ,ϕ(B) og dennes residuum. Vi
diskuterer hvorvidt residuet altid er nul, gennem forskellige analyser af projektionens
struktur. Dette spørgsmål er interessant, da ζθ(B, 0) er uafhængig af θ netop n̊ar resi-
duerne af de tilhørende sektorielle projektioner er nul; specielt gælder dette alts̊a n̊ar
projektionerne ligger i Boutet de Monvels kalkyle. Det forekommer i visse tilfælde, men
vi giver ogs̊a eksempler hvor projektionerne ligger uden for kalkylen.
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Ph.D. stipend, my office mate Jonas B. Rasmussen for copy-editing the thesis,

and the math students at the University of Copenhagen in general.

Copenhagen, October 2008
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Outline

As mentioned, the main work lies in the two articles [GG08] and [Gaa07]. They

appear at the end of the present text. Besides these papers, the thesis is divided

into three parts:

1. Chapters 1 and 2 give a short introduction to the subject at hand: zeta- and

eta-functions of elliptic operators, noncommutative residue, and trace expansions.

Chapter 1 concerns operators on closed manifolds, while Chapter 2 deals with the

case of manifolds with boundary and in particular Boutet de Monvel’s calculus

of boundary value problems. None of this is my work, but it is a historical

description — primarily with original references — and it partly serves as a

motivation for my interest in the subject.

2. Chapters 3 and 4 basically recap the articles mentioned above, rewritten

to help the “flow” of the text — to make the dissertation more easily readable —

although Chapter 4 also contains some additional work on the noncommutative

residue of a sectorial projection and some examples.

3. Finally, Chapter 5 is a description of the various further results I have

achieved in light of the main results.

Almost no proofs are given in Chapters 1-4 (none until Section 4.2), and my

goal was to make these chapters as non-technical as possible and hopefully in

this way readable for non-experts. I have attempted to write this part so that

graduate students with some knowledge of PDE theory and geometric analysis

should be able to get an intuitive understanding of the subject.

Note that while the articles [GG08] and [Gaa07] appear in chronological order

at the end of the text, I reversed the order in Chapters 3 and 4 as I felt the text

as a whole would benefit from this.

vii



viii Outline

Notation

We generally follow the notation conventions of Grubb [Gru96], except for a few

instances. For example, we do not include zero in N.

We shall often consider the halfspace

Rn
+ = {x ∈ Rn | x = (x′, xn) with xn > 0}. (P.1)

Whenever we consider a manifold with boundary, it is understood that a fixed

atlas is chosen such that each chart intersecting the boundary of the manifold

corresponds to a set in Rn
+ with the boundary at xn = 0, as explained in the

appendix of [Gru96]. As indicated above, tangential variables are primed while

normal variables have a subscript n; in some instances, xn can be seen as a

boundary defining function on the manifold.

All manifolds are understood to be smooth and equipped with a smooth pos-

itive density dx; all vector bundles are understood to be smooth and Hermitian.

In our terminology, a compact manifold without boundary is called closed. The

fiberwise trace in a vector bundle — corresponding to the standard matrix trace

in local trivializations — is denoted tr.

For function spaces on Rn and Rn
+, respectively, r+ restricts from Rn to Rn

+

while e+ extends from Rn
+ to Rn by zero. Similarly, for a manifold X embedded

in a larger manifold X̃, r+ restricts from X̃ to X◦ while e+ extends functions on

X by zero to X̃.

Let P be an operator on a Hilbert spaceH with domain D(P ), and λ ∈ sp(P ),

the spectrum of P . We define the generalized eigenspace

Eλ(P ) = {u ∈ D(P ) | (P − λ)Nu = 0, for some N ∈ N}. (P.2)

We say that P has a complete set of root vectors, when the algebraic direct sum

of all Eλ, λ ∈ sp(P ), is dense in H.

For θ < ϕ < θ + 2π we define the sector

Λθ,ϕ = {λ ∈ C \ {0} | θ < arg λ < ϕ} = { reiω | r > 0, θ < ω < ϕ}. (P.3)

We define the algebraic direct sum of the generalized eigenspaces for all the

eigenvalues in the sector Λθ,ϕ:

Eθ,ϕ(P ) = uλ∈sp(P )∩Λθ,ϕ
Eλ. (P.4)



Chapter 1

Closed manifolds

The subject of my thesis has mainly been noncommutative residues of sectorial

projections of boundary value problems. This introductory chapter gives a brief

historical description of the analogous results in the setting of manifolds without

boundary.

The setup is the following: Let X denote a closed manifold of dimension n

and E a vector bundle over X. The class of classical pseudodifferential operators

(ψdos) of order m acting on the sections of E is denoted Ψm(X,E).

1.1 Zeta- and eta-functions

We begin with a short description of the complex powers of an elliptic ψdo, as

defined by Seeley [See67]: Let P ∈ Ψm(X,E) be elliptic, and assume that the

principal symbol pm(x, ξ) of P has no eigenvalues on the negative real line R−.

Then P has (possibly after a small rotation) R− as a ray of minimal growth, i.e.,

the spectrum of P is disjoint from R− and ‖(P−λ)−1‖ is O(λ−1), where the norm

is the operator norm in L2(X,E).

Letting C be a Laurent loop, a contour in the complex plane going around the

non-zero spectrum of P ,

C = {reiπ | ∞ > r > r0}∪{r0eiω | π ≥ ω ≥ −π}∪{re−iπ | r0 < r <∞}, (1.1.1)

we define the complex powers of P by

P s =
i

2π

∫
C
λs(P − λ)−1 dλ, Re s < 0,

P s = P kP s−k, Re s ≥ 0, where k ∈ N is such that Re (s− k) < 0.

(1.1.2)

1



2 Chapter 1

Seeley showed the following properties of the complex powers:

Theorem 1.1.1 ([See67]). P s is a ψdo of order ms, and is in particular trace-

class for Re s < − n
m

. The zeta-function of P is defined as

ζ(P, s) = TrP−s, Re s > n
m
. (1.1.3)

It is a holomorphic function of s which extends to a meromorphic function —

also denoted ζ(P, s) — in the entire complex plane with at worst simple poles at

s = (n− j)/m, j ∈ N0. The pole at s = 0 is a removable singularity.

Consider now a self-adjoint, elliptic ψdo A ∈ Ψm(X,E). Then the spectrum

sp(A) is a discrete set of real eigenvalues, and Atiyah, Patodi and Singer [APS75]

defined the eta-function of A to be

η(A, s) =
∑

λ∈sp(A)\{0}

sgn(λ) |λ|−s, Re s > n
m
, (1.1.4)

summing over the eigenvalues in accordance with multiplicity. Like the zeta-

function, η(A, s) is an analytic function of s, extendable to a meromorphic func-

tion in all of C with at worst simple poles at s = (n− j)/m, j ∈ N0.

Unlike the zeta-function, however, it was not clear that the pole at the origin

is removable and η(A, s) thus regular at s = 0: Atiyah-Patodi-Singer [APS76]

themselves — connecting the question to the investigation of first order boundary

problems — showed that the residue at the origin does indeed vanish when the

dimension n is odd.

Whether the same held true in even dimensions was long an open problem.

The question was answered in the affirmative by Gilkey [Gil81]:

Theorem 1.1.2 ([APS76, Gil81]). The residue R(A) = ress=0 η(A, s) is zero, so

η(A, s) is regular at the origin s = 0. The value η(A, 0) is called the eta-invariant

of A and denoted η(A).

Gilkey used topological methods in his proof, making Wodzicki wonder if the

local nature of R(A) could possibly contribute to an analytic proof. Here, the

term local refers to the fact that R(A) can be computed as the integral of an

explicit density on X, depending only on finitely many homogeneous terms of

the symbol of A.
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Wodzicki [Wod82, Wod84] began his search for an analytic proof with the

observation by Shubin [Shu78, Problem 13.5] that there is a connection between

R(A) and the zeta-function(s) of A. To describe this, we generalize the definition

of complex powers slightly to depend on a specific spectral cut: assume that,

instead of R−, it is the ray Γθ = eiθR+ which is disjoint from the spectrum of

pm(x, ξ), such that Γθ is a ray of minimal growth for P . Defining the contour

Cθ = {reiθ | ∞ > r > r0} ∪ {r0eiω | θ ≥ ω ≥ θ − 2π} ∪ {rei(θ−2π) | r0 < r <∞},
(1.1.5)

we then define

P s
θ =

i

2π

∫
Cθ

λs
θ(P − λ)−1 dλ, Re s < 0,

P s
θ = P kP s−k

θ , Re s ≥ 0, where k ∈ N is such that Re (s− k) < 0.

(1.1.6)

Here, the subscript θ indicates that we take the holomorphic branch of λs with

a branch cut at Γθ. The properties of Theorem 1.1.1 hold for P s
θ as well, and

analogously to (1.1.3) we then define the ray-dependent zeta-function

ζθ(P, s) = TrP−s
θ , Re s > n

m
, (1.1.7)

meromorphically extended to C. ζθ(P, s) has the same pole structure as described

above for ζ = ζ−π.

For the self-adjoint operator A above, any ray Γθ in the complex plane with

θ 6= 0, 2π will be a ray of minimal growth, and ζθ(A, s) hence well-defined for

such θ.

Proposition 1.1.3 ([Shu78]).

R(A) = ress=0 η(A, s) =
i

π

(
ζ↑(A, 0)− ζ↓(A, 0)

)
, (1.1.8)

where ↑, resp. ↓, refers to any angle θ in the upper, resp. lower, halfplane.

From this identity we immediately obtain that if ζθ(A, 0) is independent of θ

then η(A, s) is regular at the origin. Wodzicki proved the former statement and

thus obtained a new proof of the regularity of the eta-invariant:

Theorem 1.1.4 ([Wod82, Wod84]). ζθ(P, 0) is independent of θ.
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Unfortunately, a careless formulation in the introduction of [See67] caused

an important flaw in the original proof of Theorem 1.1.4 in [Wod82]. Instead,

Wodzicki had to rely on a rather complicated characterization of local invariants

of spectral asymmetry [Wod84] to prove the result, and it could be argued that

not much had been gained in relation to a simpler proof of Theorem 1.1.2.

However, Wodzicki had many other interesting observations, including the

definition of the noncommutative residue which we describe in the next section.

1.2 The noncommutative residue

Consider a ψdo P ∈ Ψm(X,E). In local trivializations of E, the symbol p(x, ξ)

of P has an asymptotic expansion

p(x, ξ) ∼
∞∑

k=0

pm−k(x, ξ), (1.2.1)

with each pm−k homogeneous in the sense that

pm−k(x, tξ) = tm−kpm−k(x, ξ), for t ≥ 1, |ξ| ≥ 1. (1.2.2)

Under changes of coordinates the homogeneous terms transform in a way such

that the principal symbol pm(x, ξ) is the only term which is invariantly defined

on X — or rather on S∗X, the cosphere bundle.

However, the term of degree −n, when integrated over the unit sphere S∗xX,

transforms such that the density resx P dx, with

resx P =

∫
|ξ|=1

p−n(x, ξ) −dS(ξ), (1.2.3)

is in fact also invariant under coordinate changes. Here, −dS(ξ) denotes the surface

measure on S∗xX, divided by (2π)n.

We call resx P dx the noncommutative residue density of P . Its invariance

under transformations allows the following definition:

Definition 1.2.1 ([Wod84]). We define the noncommutative residue of P to be

resP =

∫
X

tr resx P dx =

∫
S∗X

tr p−n(x, ξ) −dS(ξ) dx. (1.2.4)
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Although we have mostly concerned ourselves with Wodzicki’s work, it should

be noted that the residue (and some of the theorems below) was independently

discovered by Guillemin [Gui85] in a different setting.

The noncommutative residue has a number of interesting properties:

Theorem 1.2.2 ([Wod84]). res is a trace on Ψ∞(X,E), i.e., a linear functional

which vanishes on commutators: res([P,Q]) = 0 for P,Q ∈ Ψ∞(X,E).

When S∗X is connected, res is the only trace on Ψ∞(X,E) up to multiplication

by a scalar.

Requiring S∗X to be connected is equivalent to requiring that X is connected

and of dimension n at least 2; if X has more than one component, all linear

combinations of the component-wise residues will form a trace on Ψ∞(X,E).

Likewise, for n = 1 the integral over S∗xX becomes a sum
∫
|ξ|=1

=
∑

ξ=±1 and

there is an ambiguity in the choice of constants for each term.

We consider now the case of a ψdo projection Π, i.e., Π ∈ Ψ∞(X,E) satis-

fying Π2 = Π. We follow the terminology from functional analysis, which does not

require a projection to be self-adjoint (as opposed to the terminology of operator

algebraists). Obviously, Π must have order 0 or −∞.

Theorem 1.2.3 ([Wod84]). Let Π be a ψdo projection on X. Then res Π = 0.

Wodzicki proved this theorem by showing the statement to be equivalent to his

earlier Theorem 1.1.4; see also Proposition 1.3.2 below. Due to an observation

by Brüning and Lesch [BL99, Lemma 2.7], Theorem 1.2.3 can in fact also be

deduced from Theorem 1.1.2.

1.3 Sectorial projection

Assume now that P has two rays of minimal growth Γθ and Γϕ, with θ < ϕ <

θ + 2π.

For λ on either ray and u ∈ D(P ) = Hm(X,E), the m’th Sobolev space of

sections of E, we then have

‖λ−1P (P − λ)−1u‖ ≤ ‖λ−1(P − λ)−1‖ · ‖Pu‖ = O(λ−2). (1.3.1)

This permits the definition of the sectorial projection

Πθ,ϕ(P )u =
i

2π

∫
Γθ,ϕ

λ−1P (P − λ)−1 u dλ, u ∈ Hm(X,E), (1.3.2)
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where Γθ,ϕ is the integration contour

{reiϕ | ∞ > r > r0} ∪ {r0eiω | ϕ ≥ ω ≥ θ} ∪ {reiθ | r0 < r <∞}. (1.3.3)

Wodzicki showed interest for this projection — Burak considered it earlier,

but in a different setting — in connection with his here mentioned results, but

gave few details. Ponge [Pon06] filled in the details:

Proposition 1.3.1 ([Pon06]). Πθ,ϕ(P ) is a ψdo projection of order 0, in parti-

cular it extends to a bounded projection on L2(X,E).

Its image contains the closure of Eθ,ϕ(P ), the algebraic sum of the generalized

eigenspaces for the eigenvalues of P in the sector Λθ,ϕ. Its kernel contains the

closure of Eϕ,θ+2π(P ) u E0(P ), the corresponding space for the eigenvalues in

Λϕ,θ+2π ∪ {0}.

(Cf. equations (P.2) and (P.4) for the E(P )-spaces.)

We call Πθ,ϕ the sectorial projection since it is “essentially” the spectral pro-

jection onto the spectrum of P in the sector Λθ,ϕ = {θ < arg λ < ϕ}. In certain

cases, Πθ,ϕ(P ) equals this spectral projection, for example when P is a normal

operator (P commutes with its adjoint P ∗).

The polyhomogeneous symbol (in local trivializations) of Πθ,ϕ(P ) is given by

πθ,ϕ ∼
∞∑

j=0

πθ,ϕ,−j, πθ,ϕ,−j(x, ξ) =
i

2π

∫
C(x,ξ)

q−m−j(x, ξ, λ) dλ, (1.3.4)

where q ∼
∑∞

j=0 q−m−j is the symbol of the resolvent (P − λ)−1 and C(x,ξ) is

a closed contour in the complex λ plane going around (once, in the positive

direction) the zeroes of the λ polynomial det(pm(x, ξ) − λ) lying in the sector

Λθ,ϕ.

The connection with the previous sections is given by the following proposi-

tion, which “completes the circle” (well, not quite) between Theorems 1.1.2, 1.1.4

and 1.2.3:

Proposition 1.3.2 ([Wod84]).

ζθ(P, 0)− ζϕ(P, 0) =
2πi

m
res Πθ,ϕ(P ). (1.3.5)

The proof of this proposition is actually quite easy and will appear as an

intermediate result in Chapter 4.
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1.4 Trace expansions

As we saw above, the zeta-function is defined with the use of a holomorphic

family of complex powers (P s
θ )s∈C. We wish to consider the notion of zeta-

functions in the setting of manifolds with boundary, and since complex powers

of boundary problems are in general difficult to work with, we mention here a

different approach using resolvent trace expansions.

We consider once again P ∈ Ψm(X,E) with Γθ as a ray of minimal growth. For

convenience, we temporarily add the assumption m > n, such that the resolvent

(P − λ)−1 is trace-class.

Theorem 1.4.1 ([Gru96, 3.3.5]). There is a trace expansion

Tr(P − eiθλ)−1 =
n∑

k=0

ck,θ(−eiθλ)
n−k
m

−1 +O(λ−1− 1
4m ), (1.4.1)

for λ going to ∞ in a small sector Λ−ε,ε of C containing R+. The coefficients of

the expansion are given by

ck,θ =

∫
X

ck,θ(x)dx, ck,θ(x) = −eiθ

∫
Rn

qh
−m−k(x, ξ, e

iθ) −dξ, (1.4.2)

where qh
−m−k are the strictly homogeneous terms of the symbol q ∼

∑∞
k=0 q−m−k

of the resolvent (P − λ)−1.

Note that λ need not be a real parameter in (1.4.1), but will have relatively

small imaginary part. The branch λs
θ is used for the fractional powers. The

strictly homogeneous version of the term q−m−k is obtained by extending the

domain of homogeneity inside the unit ball |ξ| ≤ 1, i.e., it satisfies

qh
−m−k(x, ξ, λ) = q−m−k(x, ξ, λ), |ξ| ≥ 1,

qh
−m−k(x, tξ, t

mλ) = t−m−kqh
−m−k(x, ξ, λ), t > 0, ξ 6= 0.

(1.4.3)

Remark 1.4.2. Determining the “correct” reference is quite difficult in this case;

the result was possibly known by Seeley in connection with his work on complex

powers [See67], but the first explicit references seem to be Agmon and Kannai

[AK67] in the case of self-adjoint differential operators and Grubb [Gru78] in the

case of self-adjoint ψdos. We have listed [Gru96] as the reference here, since the

first edition of this monograph (from 1986) is apparently the first source with a

complete description.
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We have chosen to present the trace expansion slightly different than usually

done: Traditionally, the dependence upon θ is not made explicit and one considers

the trace of (P − λ)−1 for λ going to infinity in a small sector containing Γθ.

We need to be able to handle coefficients for different rays simultaneously, cf.

Definition 4.2.3, and thus need λ to run in a particular sector independent of θ,

here chosen to be close to the real line.

The reason for the particular “sign” convention in (1.4.1) two-fold: we ensure

that (1.4.4) below is satisfied without having to insert a phase factor, and at the

same time the expression in (1.4.1) is comparable with the standard convention

for θ = π, i.e., for θ = π the coefficients ck,π equal the coefficients of e.g. [Gru96,

eq. (3.3.33)].

The coeffient of λ−1 in the above expansion is of particular interest to us, for

it is essentially equal to the zeta-function at the origin:

Theorem 1.4.3 ([See67]). We have an equality

cn,θ = ζθ(P, 0) + ν0, (1.4.4)

where ν0 is the algebraic multiplicity of 0 as an eigenvalue of P .

According to the definition (P.2) of Eλ(P ), ν0 can also be characterized as the

dimension of the generalized nullspace E0(P ).

If m ≤ n, one can instead consider the N ’th power of the resolvent with

N ∈ N so large that (P − eiθλ)−N is trace-class (satisfied for N > n/m). Then

the trace expansion has the form

Tr(P − eiθλ)−N =
n∑

k=0

c
(N)
k,θ (−eiθλ)

n−k
m

−N +O(λ−N− 1
4m ). (1.4.5)

In this case, it is the coefficient of λ−N which interests us: as explained in e.g.

[Gru05, Remark 3.12] one can use the identity (P − λ)−N =
∂N−1

λ

(N−1)!
(P − λ)−1 to

turn the iterates into λ-derivatives and show that in fact c
(N)
n,θ is independent of

N and can be inserted into equations (1.4.4) and (1.4.2):

Proposition 1.4.4. c
(N)
n,θ is independent of N and satifies

c
(N)
n,θ = ζθ(P, 0) + ν0, (1.4.6)

c
(N)
n,θ =

∫
X

c
(N)
n,θ (x)dx, where c

(N)
n,θ (x) = −eiθ

∫
Rn

qh
−m−n(x, ξ, eiθ) −dξ. (1.4.7)



Chapter 2

Manifolds with boundary

This chapter begins with a description of Boutet de Monvel’s calculus of bound-

ary value problems. Then the results from Chapter 1 are transferred to the

setting of manifolds with boundary, that is, we discuss noncommutative residues

of boundary operators, and zeta-functions and trace expansions for realizations

of boundary problems.

In this chapter, X denotes a compact n-dimensional manifold with boundary

∂X. We assume that X is embedded in a closed manifold X̃; for instance, we

could choose X̃ as the double manifold 2X.

2.1 Boutet de Monvel’s calculus

Boutet de Monvel [BdM71] constructed a calculus with the aim that it should

contain all differential boundary value problems, and the parametrices of the

elliptic ones.

A standard example of such a boundary problem is the Dirichlet problem for

the Laplacian (plus the identity in this case, for technical reasons):

(1−∆)u = f on X,

u|∂X = ϕ on ∂X.
(2.1.1)

The solution of this problem is well-known to be

u = (Q+ +G)f +Kϕ, (2.1.2)

where Q+ = r+Qe+ is the truncation of Q = (1−∆)−1, the inverse of 1−∆ on X̃,

K is a Poisson operator, going from the boundary to X, while G is a so-called

9
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singular Green operator with the intuitive description of Gf as a “boundary

correction term”.

We can describe this problem as a column vector of operators

A =

(
−∆+

γ0

)
: C∞(X) →

C∞(X)
×

C∞(∂X),
(2.1.3)

which maps u to (f, ϕ). Here γ0 is the standard trace operator of order 0, which

is merely restriction to the boundary.

The solution in (2.1.2) can likewise be described as the operator row vector

A−1 =
(
Q+ +G K

)
, (2.1.4)

which maps (f, ϕ) to u.

Let Ẽ1, Ẽ2 be vector bundles over X̃; we denote their restrictions to X by

E1, E2. Let F1, F2 be vector bundles over ∂X. Boutet de Monvel combined the

“row” and “column” operators in (2.1.3) and (2.1.4) in a larger setting of matrices

of operators:

A Green operator, or pseudodifferential boundary operator (ψdbo), is an op-

erator of the form

A =

(
P+ +G K

T S

)
:
C∞(X,E1) C∞(X,E2)

× → ×
C∞(∂X, F1) C∞(∂X, F2),

(2.1.5)

where P+ = r+Pe+ is the truncation to X of a ψdo P on X̃, going from Ẽ1 to

Ẽ2 and satisfying the transmission condition with respect to ∂X, i.e., P+ maps

C∞(X,E1) into C∞(X,E2); G is a singular Green operator from E1 to E2; T is

a trace operator from E1 to F2 (going from the manifold X to its boundary); K

is a Poisson operator from F1 to E2 (going from the boundary to X); and S is a

ψdo on the closed manifold ∂X from F1 to F2.

A more thorough introduction to Green operators can be found in [Gru96]

or [Sch01], in particular a detailed description of the different types of operators

mentioned above.

The following important property allows us to speak of the set of Green op-

erators as a calculus of pseudodifferential boundary problems, called Boutet de

Monvel’s calculus (or the Boutet de Monvel calculus):
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Theorem 2.1.1 ([BdM71]). The composition of two Green operator (with match-

ing vector bundles) is a Green operator.

The different components of a Green operator each have an order and class

assigned to them, they have symbols with polyhomogeneous expansions and can

be thought of as being operatorvalued ψdos along the boundary. This is most

easily described in local coordinates (x′, xn, ξ
′, ξn) ∈ T ∗X in a neighborhood of

the boundary. Here, the action of G, a singular Green operator of order m and

class 0, is given by a symbol-kernel g̃(x′, xn, yn, ξ
′):

Gu(x′, xn) =

∫
Rn−1

eix′·ξ′
∫ ∞

0

g̃(x′, xn, yn, ξ
′) ú(ξ′, xn) dyn

−dξ′, (2.1.6)

where ú denotes the partial Fourier transform ú(ξ′, xn) = Fx′→ξ′u(x
′, xn).

The symbol-kernel satisfies estimates combining the usual S1,0 estimates in

the (x′, ξ′)-variables with rapid decay estimates in the (xn, yn)-variables:

sup
xn,yn∈R+

|xk
nD

k′

xn
yl

nD
l′

yn
Dβ

x′D
α
ξ′ g̃(x

′, xn, yn, ξ
′)| ≤ c(x′)〈ξ′〉m+1−k+k′−l+l′−|α|. (2.1.7)

The boundary symbol operator of G on L2(R+) is the compact integral operator

g(x′, ξ′, Dn)v(xn) =

∫ ∞

0

g̃(x′, xn, yn, ξ
′) v(yn) dyn, (2.1.8)

and the action of G is then

Gu(x′, xn) =

∫
Rn−1

eix′·ξ′g(x′, ξ′, Dn) ú(ξ′, yn) dyn
−dξ′, (2.1.9)

where we see that G behaves like a pseudodifferential operator on Rn−1 with

symbol g(x′, ξ′, Dn), an operator on L2(R+) for each fixed (x′, ξ′). The symbol of

G is obtained by Fourier (and conjugate Fourier) transforming the symbol-kernel

g(x′, ξ′, ξn, ηn) = Fxn→ξnFyn→ηn g̃(x
′, xn, yn, ξ

′). (2.1.10)

As mentioned, g has an expansion in homogenous terms; we will denote by g0

the principal term, homogeneous in (ξ, ηn) of degree m− 1 when G is of order m.

Inverting the relation between g and g̃ above, we get a principal symbol-kernel

g̃0 which satisfies the following quasi-homogeneity:

g̃0(x′, xn

t
, yn

t
, tξ′) = tm+1 g̃0(x′, xn, yn, ξ

′), t ≥ 1, |ξ′| ≥ 1. (2.1.11)
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The corresponding integral operator on L2(R+) with this kernel is then denoted

g0(x′, ξ′, Dn), the principal boundary symbol operator (of G).

Similarly, K and T can be ascribed symbols and principal boundary sym-

bol operators, k0(x′, ξ′, Dn) : C → L2(R+), the multiplication by the princi-

pal symbol-kernel k̃0(x′, xn, ξ
′), and t0(x′, ξ′, Dn) : L2(R+) → C, the operator

v 7→
∫∞

0
t̃0(x′, yn, ξ

′)v(yn)dyn. The analogous notions for P and Q should be

obvious, and we can define the principal boundary symbol operator of A:

a0(x′, ξ′, Dn) =

(
p0(x′, 0, ξ′, Dn)+ + g0(x′, ξ′, Dn) k0(x′, ξ′, Dn)

t0(x′, ξ′, Dn) s0(x′, ξ′)

)
. (2.1.12)

Occasionally this is denoted γ(A) and simply called the boundary symbol (in

comparison with the interior symbol σ(A), the principal symbol of P ). For

simplicity, we have sketched only the case of class 0 operators here.

The homogeneous terms of the symbols provide us with a countable family

of seminorms, which allows us to define a Fréchet topology on the set of Green

operators.

The symbol is also important for the definition of ellipticity: for A to be ellip-

tic, we require that both symbols — the interior symbol σ(A) and the boundary

symbol γ(A) — are invertible. Since σ(A) = p0(x, ξ), the first requirement is

just that P is elliptic in the usual sense.

In the remainder of this chapter, we consider only the case with E1 = E2 = E

and F1 = F2 = F . The Green operators then form an algebra, occasionally called

Boutet de Monvel’s algebra. With the topology mentioned above it becomes a

Fréchet algebra. We denote it A ∞
EF or, more often, just A ∞ when the specific

choice of vector bundles is understood (or irrelevant).

Remark 2.1.2. Regarding the assumption that X is embedded in a closed mani-

fold, there are in fact examples of elliptic operators on X that do not extend to

elliptic operators on X̃. However, in our applications there is no loss of generality

in this assumption since we consider only operators with a ray of minimal growth,

and such operators do indeed have an elliptic extension to X̃. See e.g. [Gru99,

Theorem 7.4] for details.
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2.2 The noncommutative residue

The notion of noncommutative residue of a Green operator was defined by Fe-

dosov, Golse, Leichtnam and Schrohe [FGLS96]:

For the ψdbo A in (2.1.5), since P is a classical ψdo on the closed manifold

X̃, its residue density resx P dx is well-defined for all x ∈ X̃, in particular for

x ∈ X. Similarly, S is a ψdo on the closed manifold ∂X and has a residue

density resx′ S dx
′. Finally, from the singular Green operator G with symbol-

kernel g̃(x′, xn, yn, ξ
′), we define its normal trace trnG with symbol

trn g(x
′, ξ′) =

∫ ∞

0

g̃(x′, xn, xn, ξ
′)dxn (2.2.1)

in local coordinates. This is a ψdo on ∂X as well, and hence also the density

resx′(trnG) dx′ makes sense.

Definition 2.2.1. The noncommutative residue of the operator A is defined as

resA =

∫
X

tr resx P dx+

∫
∂X

tr resx′(trnG) dx′ +

∫
∂X

tr resx′ S dx
′

=

∫
S∗X

tr p−n(x, ξ) −dS(ξ)dx+

∫
S∗∂X

tr trn g1−n(x′, ξ′) −dS(ξ′)dx′

+

∫
S∗∂X

tr s1−n(x′, ξ′) −dS(ξ′)dx′.

(2.2.2)

(Here, tr denotes the bundletrace in E, E|∂X and F , respectively. Also, a sign

error in [FGLS96] has been corrected, cf. Grubb and Schrohe [GSc01, eq. (1.5)].)

The term
∫

X
tr resx P dx is occasionally denoted res+ P to emphasize that one

only integrates over X, cf. the plus symbol in r+, restriction to X.

Remark 2.2.2. Although trnG (and thus resx′(trnG) dx′) can depend on the

specific choice of boundary charts, the noncommutative residue is independent of

this choice.

The noncommutative residue is a continuous trace on the Fréchet algebra

A ∞, in fact the unique such trace:

Theorem 2.2.3 ([FGLS96]). res : A ∞ → C is continuous and vanishes on com-

mutators. When X and S∗∂X are connected, res is — up to scalar multiplication

— the only continuous trace on A ∞.
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We see that the central properties (being tracial, uniqueness) of Wodzicki’s

noncommutative residue are preserved for the noncommutative residue of Fedosov

et al. An open question has been whether Theorem 1.2.3 does as well: is the

noncommutative residue of a projection in A ∞ zero? This question has been

central in my thesis and was answered in the affirmative, see Chapter 3 and/or

[Gaa07].

Regarding Theorem 1.1.4 (that ζθ(P, 0) is independent of θ) in the setting

of boundary problems, I was not quite so fortunate and only reached a final

conclusion in the cases where the corresponding sectorial projection belongs to

Boutet de Monvel’s calculus. The investigations in this matter are described in

Chapter 5, but first we must dedicate the next couple of pages to introduce the

notion of zeta-functions in the setting of boundary value problems.

2.3 Zeta-functions and trace expansions

We consider now a boundary value problem{P++G, T} of order m ∈ N in Boutet

de Monvel’s calculus, that is, a Green operator of the form

A =

(
P+ +G

T

)
. (2.3.1)

Here T is a system of trace operators, a column vector T = {T0, . . . , Tm−1} with

each Ti a trace operator, cf. [Gru96, Section 1.4]. We define the realization

B = (P +G)T to be the operator on L2(X,E) with domain

D(B) = {u ∈ Hm(X,E) | Tu = 0}, (2.3.2)

acting on D(B) as P+ +G, in the distributional sense.

Assume now that {P+ +G− λ, T} is parameter-elliptic for λ on the rays in a

small sector around Γθ, as defined in [Gru96, Definition 1.5.5].

Then — cf. [Gru96, Section 3.3] — the realization B−λ will be invertible for

λ ∈ Γθ when |λ| is sufficiently large, and the resolvent there has the form

Rλ = (B − λ)−1 = Qλ,+ +Gλ. (2.3.3)

Here Qλ = (P −λ)−1 is the parameter-dependent resolvent of P on X̃, with sym-

bol q(x, ξ, λ) ∼
∑∞

j=0 q−m−j(x, ξ, λ). Gλ is a parameter-dependent singular Green

operator with symbol-kernel g̃(x′, xn, yn, ξ
′, λ) ∼

∑∞
j=0 g̃−m−j(x

′, xn, yn, ξ
′, λ).
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Furthermore, Γθ is a ray of minimal growth, i.e., the spectrum of B is disjoint

from Γθ and the L2(X,E) operator norm of Rλ satisfies

‖(B − λ)−1‖ = O(λ−1). (2.3.4)

This is clearly similar to the situation in Chapter 1 that allowed the definition of

P s. Like there, we are interested in the zeta-function ζ(B, s) at s = 0.

That Γθ is a ray of minimal growth allows for the definition of complex powers

Bs
θ for Re s < 0 as in the case of ψdos on closed manifolds, cf. (1.1.6). For

Re s > n
m

the operator B−s
θ is trace-class [Gru96, Corollary 4.5.11] and one can

then analogously define the zeta-function ζθ(B, s) as the trace of B−s
θ for large

Re s.

Seeley [See69a, See69b] used this approach for the case of a differential bound-

ary problem PT (P and T differential, G = 0), and managed to show that ζ(PT , s)

extends to a meromorphic function in C with a pole-structure comparable to (al-

though not quite as nice as) the one in Theorem 1.1.1. In particular the pole at

s = 0 is removable, so ζ(PT , 0) is defined.

However, Seeley specifically made use of the symbol-structure of Qλ and Gλ

in (2.3.3), which is much more explicit and easier to work with in the differential

case than in the more general case of pseudodifferential boundary problems, and

his methods cannot be directly applied in general.

In fact, the complex powers Bs
θ do not lie in Boutet de Monvel’s calculus

[Gru96, Section 4.4], and hence a more appealing approach is to take the route

via trace expansions. Here, one can work in a parameter-dependent version of

Boutet de Monvel’s calculus, developed by Grubb [Gru96].

If m > n we have a trace expansion [Gru96, Theorems 3.3.5, 3.3.10]

Tr(B − eiθλ)−1 =
n∑

j=0

cj,θ(−eiθλ)
n−j
m

−1 +O(λ−1− 1
4m ). (2.3.5)

We state the more general statement, valid also for m ≤ n, in the following

theorem:

Theorem 2.3.1. For N ∈ N such that N > n/m, we have

Tr(B − eiθλ)−N =
n∑

j=0

c
(N)
j,θ (−eiθλ)

n−j
m

−N +O(λ−N− 1
4m ), (2.3.6)

for |λ| → ∞ in the sector V+.
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Like in Chapter 1, original references are somewhat unclear. This theorem,

and the statements in the rest of this section, can essentially be found in [Gru96]

(in fact, in the 1986 edition).

As in Proposition 1.4.4, the coefficient c
(N)
n,θ is independent of N , and we define

it to be the basic zeta coefficient of B

C0,θ(B) = C0,θ(P +G)T = c
(N)
n,θ . (2.3.7)

According to e.g. [Gru05, eq. (5.5) and Remark 3.12] we have

c
(N)
n,θ = cQn,θ,+ + cGn,θ =

∫
X

tr cQn,θ(x)dx+

∫
∂X

tr cGn,θ(x
′)dx′, (2.3.8)

where, in local coordinates, cQn,θ(x) is given by (1.4.7)

cQn,θ(x) = −eiθ

∫
Rn

qh
−m−n(x, ξ, eiθ) −dξ, (2.3.9)

while cGn,θ(x
′) is given by

cGn,θ(x
′) = −eiθ

∫
Rn−1

sh
−m+1−n(x′, ξ′, eiθ) −dξ′, (2.3.10)

with sh
−m+1−n the strictly homogeneous version of s−m+1−n, where s = trn g is

the symbol of the normal trace trnGλ:

s−m+1−n(x′, ξ′, λ) =

∫ ∞

0

g̃−m+1−n(x′, xn, xn, ξ
′, λ)dxn. (2.3.11)

We recap this in the following proposition:

Proposition 2.3.2. The basic zeta coefficient satisfies the equation

C0,θ(B) =

∫
X

tr cQn,θ(x)dx+

∫
∂X

tr cGn,θ(x
′)dx′. (2.3.12)

As shown in e.g. [GSe96], the existence of the asymptotic trace expansion

(2.3.6) implies that the zeta-function ζ(B, s) does indeed have a meromorphic

extension beyond the set {Re s > n
m
} (although not to all of C) with a pole

structure resembling that in Chapter 1. Moreover, the pole at the origin is

removable and the value there identifies with the trace expansion coefficient in a

way similar to (1.4.6):

ζθ(B, 0) + ν0 = c
(N)
n,θ = C0,θ, (2.3.13)

where ν0 is the algebraic multiplicity of zero as an eigenvalue of B = (P + G)T .

We see here the motivation for calling C0,θ(B) the basic zeta value.

A direct proof of (2.3.13) can be found in [Gru96, Theorem 4.4.8].



Chapter 3

Noncommutative residue of
Green operator projections

This chapter recaps the article [Gaa07] — the second article in this text — and

essentially contains only one result, Theorem 3.1.1 below, which is one of the

main theorems of the present thesis.

We attempt to give an intuitive understanding of the proof, which is based

on the work of Melo, Nest and Schrohe [MNS03], and Melo, Schick and Schrohe

[MSS06].

3.1 Theorem and idea of proof

In Theorem 1.2.3 we saw that Wodzicki’s noncommutative residue vanishes when

applied to (classical) ψdo projections. As mentioned, a central part of my thesis

has been to investigate whether this holds true for the noncommutative residue

of Fedosov et al. It does:

Theorem 3.1.1 ([Gaa07, Theorem 1.1]). The noncommutative residue of a pro-

jection in Boutet de Monvel’s calculus is zero.

The idea of the proof is to use K-theoretic methods to reduce the question

to the well-known case of projections on closed manifolds. The proof is based on

a number of results on the K-theory of the Boutet de Monvel algebra shown in

[MNS03, MSS06]. We will not give specific references below, they can be found

in [Gaa07].

We consider the Boutet de Monvel algebra A ∞, and in particular the subal-

gebra of all operators of order and class zero, which we denote A . Being of order

17
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and class zero ensures that the Green operators are bounded operators on the

Hilbert space H = L2(X,E)⊕H−1/2(∂X, F ), and that A is closed under taking

adjoints. Also, all projections in Boutet de Monvel’s calculus lie in A , since a

projection must have order and class zero.

A is a Fréchet ∗-algebra with the topology from Section 2.1. Moreover, it

is contained in B(H), the C∗-algebra of bounded operators on H; we denote the

C∗-closure of A by A. A is closed under holomorphic function calculus, which

implies that A is local in the C∗-algebra A in the sense of Blackadar [Bla98]. Thus

the K-theory of A equals the K-theory of A, and in particular K0(A ) ∼= K0(A).

The noncommutative residue

res : A → C (3.1.1)

is a continuous trace in the Fréchet-topology of A (although not continuous with

respect to the coarser norm-topology in A) and induces a map

res∗ : K0(A ) → C. (3.1.2)

The K0-classes of K0(A ) are given by projections — synonymous to idempotents

in our terminology — in Mn(A ), the set of n× n matrices with entries from A .

Every ψdbo projection A thus defines a class [A]0 ∈ K0(A ) such that

res(A) = res∗[A]0. (3.1.3)

We show that the linear map res∗ is the zero map, and hence res(A) = 0 for any

idempotent A.

To prove this, we first show that K0(A ) is the sum of two parts:

K0(A ) ∼= m∗K0(C
∞(X)) + (σ∗)

−1K0(C
∞
0 (S∗X◦)). (3.1.4)

Here m∗ and σ∗ are the K0-induced maps of m : C∞(X) → A , which maps a

function f to the multiplication operator

m(f) =

(
f 0
0 0

)
, (3.1.5)

and σ : A → C∞(S∗X), which maps a Green operator

(
P+ +G K
T S

)
to the

principal symbol p0(x, ξ) of its pseudodifferential part P .
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While σ∗ is not an isomorphism on K0(A ), it does restrict to an isomorphism

with range K0(Cv(S
∗X◦)) ∼= K0(C

∞
0 (S∗X◦)) such that (σ∗)

−1 is defined there.

(The domain of this isomorphism is K0(I/K), details can be found in [Gaa07].)

So (3.1.4) gives us that, intuitively, (the K0-class of) each ψdbo projection is

the sum of (the K0-class of) a multiplication operator and (the K0-class of) an

operator supported in the interior of X, away from the boundary ∂X. This de-

composition was essentially done in [MSS06], and we just had to improve slightly

on their result.

It only remains to show that res∗ vanishes for each of the two parts in (3.1.4).

For the multiplication operators it is fairly obvious [Gaa07, Lemma 3.1], while

the other is more difficult. Here, we had to rely on a technical lemma [Gaa07,

Lemma 3.2] to show that we only need to investigate the residue of a certain

kind of ψdbo projection Π+; the advantage is that the residue resX(Π+) of this

particular kind of operator in fact equals the residue res eX Π of a ψdo projection

Π on the closed manifold X̃.

According to the well-known result by Wodzicki (Theorem 1.2.3) the residue

res eX Π vanishes, and we can conclude the proof, having essentially reduced the

question to the known (but non-trivial) case of closed manifolds.

Remark 3.1.2. Our notation here differs slightly from that in [Gaa07]: Here C∞
0

denotes “smooth, with compact support”, corresponding to C∞
c there; Cv here

means “vanishing at infinity”, corresponding to C0 there.

Remark 3.1.3. Since K0(A ) ∼= K0(A), we can in fact extend the residue to

idempotents in A: For any idempotent A ∈ A there is a corresponding [A]0 in

K0(A ), and we can define res(A) = res∗[A]0. In any case, this is zero.

Note that res does not have a continuous extension to A: res(R) vanishes

for all smoothing operators R and, in the topology of A, the set of smoothing

operators is dense in the set of compact operators, which includes the operators

of order −n. The definition of res above is valid only for idempotents in A.



Chapter 4

The sectorial projection

This chapter takes up the results regarding the sectorial projection of an elliptic

boundary value problem from the article [GG08].

We define the operator and name some of its properties, both the general

functional analytic properties as well as the more specific structural properties

in our case. We discuss how it fits into Boutet de Monvel’s calculus and its

connection to the logarithms, and we show that the noncommutative residue in

a natural way extends to the set of sectorial projections.

Finally, we look at a few interesting examples.

4.1 The sectorial projection

We consider a boundary value problem {P+ + G, T} in the Boutet de Monvel

calculus of order m > 0, where P+ is the truncation of a ψdo P on X̃, G is a

singular Green operator, and T = {T0, . . . , Tm−1} a system of trace operators.

B = (P +G)T is the realization as described in Section 2.3.

Let θ < ϕ < θ + 2π, and assume that {P+ + G − λ, T} is parameter-elliptic

for λ in two sectors Vθ and Vϕ around Γθ and Γϕ, respectively, such that both are

rays of minimal growth.

Like in (1.3.2) we can then define the sectorial projection

Πθ,ϕ(B)u =
i

2π

∫
Γθ,ϕ

λ−1B(B − λ)−1 u dλ, u ∈ D(B). (4.1.1)

Unlike the case of Proposition 1.3.1, Πθ,ϕ(B) is not necessarily a bounded op-

erator and, a priori, its domain is only D(B). In some cases it is bounded, cf.

20
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the proposition below, and we then extend the domain to all of L2(X,E) by

continuity.

There are parallels to Proposition 1.3.1 in any case:

Proposition 4.1.1 ([GG08, Proposition 4.1]). The operator Πθ,ϕ(B) is a projec-

tion in L2(X,E): Πθ,ϕ(B)2 = Πθ,ϕ(B). Its range contains Eθ,ϕ(B) and its kernel

contains Eϕ,θ+2π(B) u E0(B).

(a) If B has a complete set of root vectors, then Πθ,ϕ(B) is the bounded pro-

jection onto Eθ,ϕ(B) along Eθ,ϕ(B) u E0(B).

(b) If B is normal (commutes with B∗), then Πθ,ϕ(B) is the bounded ortho-

gonal projection onto ⊕λ∈sp(B)∩Λθ,ϕ
ker(B − λ) along ⊕λ∈sp(B)\Λθ,ϕ

ker(B − λ).

The above proposition is essentially just functional analysis. In our case, we

have additional information on the structure of the resolvent from (2.3.3), namely

that

(B − λ)−1 = Qλ,+ +Gλ. (4.1.2)

We use this to decompose Πθ,ϕ(B) into two parts:

Theorem 4.1.2 ([GG08, Theorem 4.5]). The sectorial projection satisfies

Πθ,ϕ(B) = Πθ,ϕ(P )+ +Gθ,ϕ (4.1.3)

where Πθ,ϕ(P )+ is the truncation of the bounded ψdo Πθ,ϕ(P ) on X̃ (from Section

1.3), while Gθ,ϕ is a generalized singular Green operator, given by

Gθ,ϕ =
i

2π

∫
Γθ,ϕ

Gλ dλ, (4.1.4)

bounded from L2(X,E) to H−ε(X,E).

For the specific (and rather technical) meaning of the term generalized singular

Green operator, we refer to [GG08, Theorem 2.6]. The intuitive understanding

is that Gθ,ϕ acts like a singular Green operator, cf. (2.1.6),

Gθ,ϕu(x) =

∫
Rn−1

eix′·ξ′
∫ ∞

0

g̃θ,ϕ(x′, xn, yn, ξ
′) ú(ξ′, yn) dyn

−dξ′, (4.1.5)

but the symbol-kernel g̃θ,ϕ does not satisfy all the required decay-estimates. How-

ever, it does have an asymptotic expansion g̃θ,ϕ ∼
∑∞

j=0 g̃θ,ϕ,−j with terms given

by

g̃θ,ϕ,−j(x
′, xn, yn, ξ

′) =
i

2π

∫
Γθ,ϕ

g̃−m−j(x
′, xn, yn, ξ

′, λ) dλ, (4.1.6)



22 Chapter 4

where g̃ ∼
∑∞

j=0 g̃−m−j is the symbol-kernel of Gλ and Γθ,ϕ is the integration

contour from (1.3.3). For j > 0, g̃θ,ϕ,−j is quasi-homogeneous in the sense

g̃θ,ϕ,−j(x
′, xn

t
, yn

t
, tξ′) = t1−j g̃θ,ϕ,−j(x

′, xn, yn, ξ
′), t ≥ 1, |ξ′| ≥ 1. (4.1.7)

We now consider the case where the system {P+ +G, T} is differential, that

is, the operators P , T0, . . . , Tm−1 are differential and G = 0.

Theorem 4.1.3 ([GG08, Theorem 4.6]). Assume that B = PT is differential.

Then Gθ,ϕ is bounded and Πθ,ϕ(B) is thus a bounded projection in L2(X,E).

The reason for Gθ,ϕ being bounded in this case is that the homogeneous terms

g̃−m−j of the symbol-kernel of Gλ have a certain exponential decay when B is

differential, cf. [See67]. This also ensures that the quasi-homogeneity described

in (4.1.7) applies for j = 0 (the principal part of the symbol-kernel) as well.

The proof of Theorem 4.1.2 cannot be improved in order to drop the term

“generalized” in the description of the singular Green part. We show this in Ex-

ample 4.4.1 where we consider a differential problem B = PT and show explicitly

that Gθ,ϕ is not a true singular Green operator.

So the singular Green part of Πθ,ϕ(B) is in general not in the Boutet de Monvel

calculus, but how about the ψdo part Πθ,ϕ(B)? This question is determined

by whether or not its symbol πθ,ϕ, given in (1.3.4), satisfies the transmission

condition. The answer is the following:

Proposition 4.1.4 ([GG08, Lemma 4.7]). πθ,ϕ(x, ξ) satisfies the transmission

condition when the order m of P is even. Hence Πθ,ϕ(P )+ is in the Boutet de

Monvel calculus for even m.

Also in this case, the proof cannot be improved to general m: Example 4.4.1

— the same as mentioned above — gives a concrete case of an odd order operator

where Πθ,ϕ(P ) does not satisfy the transmission condition.

4.2 Residue of the sectorial projection

As we have just mentioned, Πθ,ϕ(B) is not always in Boutet de Monvel’s calculus

and hence the residue definition does not apply in general. However, in case it is

defined, it satisfies an identity similar to Proposition 1.3.2:
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Proposition 4.2.1. Assume that Πθ,ϕ(B) is in the Boutet de Monvel calculus.

Then the noncommutative residue satisfies the identity

res Πθ,ϕ(B) =
m

2πi

(
C0,θ(B)− C0,ϕ(B)

)
. (4.2.1)

Proof. We begin with the right hand side of (4.2.1). Recall from (2.3.12) that

C0,θ(B)− C0,ϕ(B) =

∫
X

tr
[
cQn,θ(x)− cQn,ϕ(x)

]
dx+

∫
X′

tr
[
cGn,θ(x

′)− cGn,ϕ(x′)
]
dx′.

(4.2.2)
with

cQn,θ(x)− cQn,ϕ(x) = −
∫

Rn

[
eiθqh

−m−n(x, ξ, eiθ)− eiϕqh
−m−n(x, ξ, eiϕ)

] −dξ,
cGn,θ(x)− cGn,ϕ(x) = −

∫
Rn−1

[
eiθsh

−m+1−n(x′, ξ′, eiθ)− eiϕsh
−m+1−n(x′, ξ′, eiϕ)

] −dξ′.
(4.2.3)

By Lemma 4.2.2 below, this reduces to

cQn,θ(x)− cQn,ϕ(x) = − 1

m

∫
|ξ|=1

∫
Γh

θ,ϕ

qh
−m−n(x, ξ, λ) dλ −dS(ξ),

cGn,θ(x)− cGn,ϕ(x) = − 1

m

∫
|ξ′|=1

∫
Γh

θ,ϕ

sh
−m+1−n(x′, ξ′, λ) dλ −dS(ξ′),

(4.2.4)

where Γh
θ,ϕ is the integration contour

Γh
θ,ϕ = {teiϕ | ∞ > t ≥ 0} ∪ {teiθ | 0 ≤ t <∞}. (4.2.5)

Now, for each |ξ| = 1 we have∫
Γh

θ,ϕ

qh
−m−n(x, ξ, λ) dλ =

∫
C(x,ξ)

q−m−n(x, ξ, λ) dλ, (4.2.6)

where C(x,ξ) is the curve from (1.3.4). To see this, let µ = |λ|1/m. From [Gru96,

eqs. (3.3.35-36)], we have

|qh
−m−n(x, ξ, λ)| ≤ C

{ |ξ, µ|−m−n, if n < m,

|ξ|m−n|ξ, µ|−2m if n ≤ m,
(4.2.7)

so that in any case, for |ξ| = 1 we have

|qh
−m−n(x, ξ, λ)| ≤ C|1, µ|−m−ε, which is O(〈λ〉−1−δ). (4.2.8)
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Furthermore, for |ξ| = 1 we have qh
−m−n(x, ξ, λ) = q−m−n(x, ξ, λ), which is a

meromorphic function in λ ∈ Λθ,ϕ with poles at the eigenvalues of pm(x, ξ), i.e.,

inside C(x,ξ). As it is O(|λ|−1−δ) for λ → ∞, it follows that the infinite contour

Γh
θ,ϕ can be deformed into the closed contour C(x,ξ), since the two contours enclose

the same poles. Hence, (4.2.6) is proved.

By (1.3.4), the right hand side of (4.2.6) is (−2πi)πθ,ϕ,−n(x, ξ), the symbol of

Πθ,ϕ(P ) of degree −n. So combining this with (4.2.4) we get

m

2πi

(
cQn,θ(x)− cQn,ϕ(x)

)
=

∫
|ξ|=1

π−n(x, ξ) −dS(ξ), (4.2.9)

which, by definition, is resx Πθ,ϕ(P ).

For the singular Green part of (4.2.4) we have, for |ξ′| = 1,∫
Γh

θ,ϕ

sh
−m+1−n(x′, ξ′, λ) dλ =

∫ ∞

0

∫
Γθ,ϕ

g̃−m+1−n(x′, xn, xn, ξ
′, λ) dλ dxn, (4.2.10)

where the right hand side is (−2πi) trn gθ,ϕ,1−n(x′, ξ′), cf. (4.1.6). To show this,

note that sh
−m+1−n equals s−m+1−n for |ξ′| = 1, and is holomorphic in λ in a

neighborhood of Γh
θ,ϕ, so the integration contour Γh

θ,ϕ can be deformed to Γθ,ϕ.

The left hand side of (4.2.9) thus equals∫
Γθ,ϕ

s−m+1−n(x′, ξ′, λ) dλ =

∫
Γθ,ϕ

∫ ∞

0

g̃−m+1−n(x′, xn, xn, ξ
′, λ) dxn dλ. (4.2.11)

To arrive at the right hand side of (4.2.10), we only need to change the order of

integration in xn and λ; this is easily achieved using Fubini’s theorem (g̃−m+1−n

is O(〈xn〉−N〈λ〉−1−δ) for |ξ′| = 1, any N ∈ N).

Combining (4.2.10) with (4.2.4) now gives us

m

2πi

(
cGn,θ(x)− cGn,ϕ(x)

)
=

∫
|ξ′|=1

trn gθ,ϕ,1−n(x′, ξ′) −dS(ξ′), (4.2.12)

which equals resx′ trnGθ,ϕ. Inserting this into (4.2.2) we obtain

m

2πi

(
C0,θ(B)− C0,ϕ(B)

)
=

∫
X

tr resx Πθ,ϕ(P ) dx+

∫
∂X

tr resx′ trnGθ,ϕ dx
′,

(4.2.13)

the residue of Πθ,ϕ(B) = Πθ,ϕ(P )+ +Gθ,ϕ.

In the proof we used the following lemma, where Γ is the set

Γ = {reiω | r ≥ 0, ω ∈ [θ − ε, θ + ε] ∪ [ϕ− ε, ϕ+ ε]}, (4.2.14)

for some sufficiently small ε > 0.
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Lemma 4.2.2. Let m > 0. Let f(ξ, λ) be continuous for (ξ, λ) ∈ (Rk \ {0})× Γ

and quasi-homogeneous there in the sense that f(sξ, smλ) = s−m−kf(ξ, λ) for all

s > 0, and integrable at ξ = 0 for each λ 6= 0. Then∫
Rk

[
eiθf(ξ, eiθ)− eiϕf(ξ, eiϕ)

] −dξ =
1

m

∫
|ξ|=1

∫
Γh

θ,ϕ

f(ξ, λ) dλ −dS(ξ). (4.2.15)

Proof. The proof is completely analogous to the proof of [Gru05, Lemma 1.3],

except for the phases eiθ and eiϕ which enter the contour integral.

Since C0,θ(B) and C0,ϕ(B) are well-defined in any case, we can now use Prop-

osition 4.2.1 to define the noncommutative residue of Πθ,ϕ(B) even when it is not

a Boutet de Monvel operator:

Definition 4.2.3. We define the noncommutative residue of Πθ,ϕ(B) to be

res Πθ,ϕ(B) =
m

2πi

(
C0,θ(B)− C0,ϕ(B)

)
. (4.2.16)

As shown in the proposition above, this is consistent with the definition of

[FGLS96] when the latter is applicable.

In (4.2.9), we saw that

resx Πθ,ϕ(P ) =
m

2πi

(
cQn,θ(x)− cQn,ϕ(x)

)
. (4.2.17)

Together with Theorems 1.4.1 and 1.4.3 (or Proposition 1.4.4), this proves Prop-

osition 1.3.2 as we promised in Chapter 1.

Moreover,

res Πθ,ϕ(B) =

∫
X

tr resx Πθ,ϕ(P )dx+
m

2πi

∫
X′

tr
[
cGn,θ(x

′)− cGn,ϕ(x′)
]
dx′, (4.2.18)

where we recognize the X-integral as res+Πθ,ϕ(P ), well-defined whether or not

Πθ,ϕ(P ) satisfies the transmission condition. This prompts us to define

resx′ Gθ,ϕ =
m

2πi

(
cGn,θ(x

′)− cGn,ϕ(x′)
)
, resGθ,ϕ =

∫
X′

tr resx′ Gθ,ϕ dx
′, (4.2.19)

such that we obtain the “usual” formula

res Πθ,ϕ(B) = res(Πθ,ϕ(P )+ +Gθ,ϕ) = res+ Πθ,ϕ(P ) + resGθ,ϕ. (4.2.20)

As shown above, whenever Gθ,ϕ is a singular Green operator, the definition

(4.2.19) is indeed in agreement with the usual definition by [FGLS96].
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Remark 4.2.4. We have not investigated if the noncommutative residue, as de-

fined above, is in fact a trace (in the sense that it vanishes on commutators).

Partial results in this direction have been obtained by Grubb [Gru08]; for in-

stance, if B is of even order m and A = P ′
+ +G′ has order and class 0, the residue

of [A,Πθ,ϕ(B)] vanishes [Gru08, Theorem 7.5].

4.2.1 Spectral asymmetry

Combining (2.3.13) and the above Definition 4.2.3 we easily get

ζθ(B, 0)− ζϕ(B, 0) =
2πi

m
res Πθ,ϕ(B), (4.2.21)

which shows that — in this case as well, cf. Proposition 1.3.2 — the sectorial

projection encodes the dependence of ζθ(B, 0) upon θ. Occasionally, this depen-

dence is somewhat vaguely referred to as the (sectorial) spectral asymmetry of B,

although, for self-adjoint B, the phrase spectral asymmetry traditionally refers

to η(B).

The statement in Theorem 1.1.4, in the setting of boundary problems, has

been a central question in our work: is ζθ(B, 0) independent of θ? Or, equiva-

lently, is the residue of Πθ,ϕ(B) zero?

Unfortunately, we have not obtained a final result in this matter. From Chap-

ter 3, we see that the answer is yes when Πθ,ϕ(B) is a Boutet de Monvel operator;

Example 4.4.2 gives an example of a sectorial projection not in Boutet de Mon-

vel’s calculus which nevertheless has residue zero. But otherwise it is still an

open question: our work in this direction is explained in Chapter 5.

If we assume B to be self-adjoint, the dependence of ζθ(B, 0) on θ is given in

terms of the residue of the eta-function:

ζ↓(B, 0)− ζ↑(B, 0) = iπ R(B) = iπ ress=0 η(B, s). (4.2.22)

This follows from Proposition 1.1.3, the proof of which only requires that the

operator is self-adjoint; ↓ (↑) refers to any angle in the lower (upper) half-plane.

The projection Π↓↑(B) is the projection onto the eigenspaces for the eigenvalues

with positive real part, i.e., it equals the projection Π> onto the eigenspaces

corresponding to eigenvalues in R+. This proves the following proposition:

Proposition 4.2.5. When the realization B is self-adjoint, we have

res Π> = res Π↓↑(B) =
m

2
R(B) =

m

2
ress=0 η(B, s). (4.2.23)
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However, not much is known about R(B) for the boundary problems we con-

sider — as opposed to the boundaryless case where it has been studied intensively

(and is known to vanish). See also Section 5.4.

4.3 Logarithms

The results presented in Section 4.1 are actually shown in [GG08] as corollaries

to similar results for logB, the logarithm of B. Since these logarithms were not

central in my thesis work, I have chosen to downplay their role in the presentation

of the material here. Although logarithms were used in the proofs in [GG08], one

could easily have avoided this: working directly with the symbol-structure of

Πθ,ϕ(B) one can show the results above, often in a manner very similar to the

methods used in [GG08, Sections 2 and 3].

However, let us quickly discuss the connection between logB and Πθ,ϕ(B):

Since B has Γθ as a ray of minimal growth, we can define an operator

logθB u =
i

2π
lim

s→0+

∫
Cθ

λ−s
θ logθλ (B − λ)−1 u dλ, u ∈ D(B). (4.3.1)

The subscript θ once again indicates that we take the holomorphic branch of

λ−s log λ with a branch cut at Γθ.

The logarithm has a “Boutet de Monvel-like” structure [GG08, Theorem 2.2]

logθB = logθ(P +G)T = (logθP )+ +Glogθ , (4.3.2)

where logθP is the logarithm (with a branch cut at θ) of P on X̃ and Glogθ

is a generalized singular Green operator. logθB is bounded from L2(X,E) to

H−ε(X,E) for any ε > 0.

The basic zeta value of B can be interpreted as a noncommutative residue

C0,θ(B) = − 1

m
res+(logθP )− 1

m
resS

logθ
sub , (4.3.3)

[GG08, Theorem 3.2]. Here res+(logθP ) is the integration over X of the residue

density resx,1 logθP on X̃, a generalization by Lesch [Les99] of Wodzicki’s non-

commutative residue to log-polyhomogeneous operators; res(S
logθ
sub ) is intuitively

the residue of the (generalized) normal trace of Glogθ from above, subtracted the

principal part for technical reasons.
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For this reason — and because this would be an analogy to the boundaryless

case, cf. Scott [Sco05] — we define ([GG08, Definition 3.3]) the noncommutative

residue of the logarithm to be

res(logθB) = −mC0,θ(B). (4.3.4)

The dependence of the choice of θ in the definition of the logarithm is given

by the sectorial projection:

Proposition 4.3.1 ([GG08, Proposition 4.4]). For u ∈ D(B),

logθB u− logϕB u = −2πi Πθ,ϕ(B)u. (4.3.5)

The structure of logθB from (4.3.2) is consistent with this, in the sense that,

when the operators below are applied to u ∈ D(B), we have

(logθP )+ − (logϕP )+ = −2πi Πθ,ϕ(P )+, Glogθ −Glogϕ = −2πiGθ,ϕ. (4.3.6)

The residue definitions (4.2.16) and (4.3.4) are consistent with the proposition:

res(logθB)− res(logϕB) = −2πi res Πθ,ϕ(B). (4.3.7)

Obviously, this is no surprise, since we used the identity in the proposition to

define the residue of Πθ,ϕ(B) from the residues of the logarithms.

4.4 Examples

We conclude this chapter with two concrete examples of sectorial projections.

One is the abovementioned example showing that the sectorial projection need

not be in Boutet de Monvel’s calculus. The other is interesting because it gives

an example of a sectorial projection which is not in Boutet de Monvel’s algebra,

but nevertheless has vanishing residue — even though its residue densities are

locally non-vanishing.

Example 4.4.1. This example is given in detail in [GG08, Example 4.8], so we

skip the intermediate computations here. We consider the differential operators

A and P on R4
+ given by

A =

(
i 0
0 −i

)
D1 +

(
0 1
−1 0

)
D2 +

(
0 i
i 0

)
D3 +

(
1 0
0 1

)
D4, (4.4.1)
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and

P =

(
0 −A∗

A 0

)
, (4.4.2)

where A∗ is the formal adjoint of A. The trace operator T = Bγ0, with

B =

(
1 0 1 0
0 1 0 1

)
,

is then added to obtain the realization B = PT . The system {P − λ, T} is

parameter-elliptic for λ on any ray in C\ iR, so we can consider the sectorial pro-

jection Πθ,ϕ(B) with θ = 0 and ϕ = π, that is, the projection on the eigenspaces

corresponding to eigenvalues with positive imaginary part. (We regard the whole

thing as a localization of an operator on a compact manifold.)

First, the symbol of the ψdo part Πθ,ϕ(P ) is

πθ,ϕ(ξ) =
1

2|ξ|


|ξ| 0 ξ1 + iξ4 −iξ2 + ξ3
0 |ξ| iξ2 + ξ3 −ξ1 + iξ4

ξ1 − iξ4 −iξ2 + ξ3 |ξ| 0
iξ2 + ξ3 −ξ1 − iξ4 0 |ξ|

 , (4.4.3)

which is easily seen not to satisfy the transmission condition: In order for a

polyhomogeneous symbol p(x, ξ) ∼
∑∞

j=0 pm−j(x, ξ) of order m ∈ Z to satisfy the

transmission condition, it has to obey

Dβ
xD

α
ξ pm−j(x

′, 0, 0, ξn) = (−1)m−j−|α|Dβ
xD

α
ξ pm−j(x

′, 0, 0,−ξn). (4.4.4)

In particular, πθ,ϕ would have to be even in ξn for ξ′ = 0, which it clearly is not.

Turning to the singular Green part Gθ,ϕ, its symbol-kernel is given by

g̃θ,ϕ(xn, yn, ξ
′) =

i

2π

∫ ∞

−∞
g̃(xn, yn, ξ

′, λ) dλ, (4.4.5)

where the integrand is the parameter-dependent symbol-kernel ofGλ (the singular

Green part of the resolvent):

g̃(xn, yn, ξ
′, λ) =

1

2σ


−iξ1 + iσ −ξ2 − iξ3 −λ 0
ξ2 − iξ3 iξ1 + iσ 0 −λ
−λ 0 −iξ1 − iσ −ξ2 − iξ3
0 −λ ξ2 − iξ3 iξ1 − iσ

 e−σ(xn+yn),

(4.4.6)

with σ = (|ξ′|2 + λ2)1/2.
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A necessary condition for g̃θ,ϕ to be the symbol-kernel of a true singular Green

operator, is that, for each (x′, ξ′), it lies in S(R2

++), i.e., it can be described as the

restriction to R2
++ = R+ ×R+ of a Schwartz function in (xn, yn) ∈ R2. However,

g̃θ,ϕ is in fact unbounded for (xn, yn) → 0. To see this, note that the diagonal

contains terms of the form∫ ∞

−∞
e−(|ξ′|2+t2)1/2(xn+yn) dt ≥

∫ ∞

−∞
e−(|ξ′|+|t|)(xn+yn) dt = 2

e−|ξ
′|(xn+yn)

xn + yn

. (4.4.7)

So g̃θ,ϕ cannot be the restriction of a smooth function on R2, and is not the

symbol-kernel of a singular Green operator.

Although we discussed this example on R4
+, it can easily be carried over to a

compact manifold, e.g. S1 × S1 × S1 × [0, 1].

Let us now look at another interesting example, namely a differential re-

alization B = PT where, in the calculation of res Πθ,ϕ(B), we find that both

res+ Πθ,ϕ(P ) and resGθ,ϕ are non-zero — but of same magnitude and opposite

sign such that they cancel each other out.

The present example is inspired by Wodzicki’s example of a nonvanishing

residue density [Wod82].

Example 4.4.2. We consider the Dirichlet realization B = Pγ0 of the differential

operator P on R2
+ given by

P =

(
−∆ D2

1

ϕ(x2)D2 ∆

)
, (4.4.8)

where ϕ is a smooth function on R+. We will use the notions (x1, x2) and (x′, xn)

interchangeably. We proceed to find Qλ and Gλ in the usual manner:

P has principal symbol

p2(x, ξ) =

(
ξ2
1 + ξ2

2 ξ2
1

0 −ξ2
1 − ξ2

2

)
. (4.4.9)

The eigenvalues of the principal symbol are ±|ξ|2 = ±(ξ2
1 + ξ2

2). The principal

symbol of the parametrix with parameter Qλ thus becomes

q−2(x, ξ, λ) = (p2(x, ξ)− λ)−1 =
1

|ξ|4 − λ2

(
|ξ|2 + λ ξ2

1

0 −|ξ|2 + λ

)
. (4.4.10)
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Working out the singular Green part, Gλ, one finds that {P − λ, γ0} is

parameter-elliptic for λ on all rays in C \ R. For such λ the principal part of

the symbol-kernel g̃ is

g̃−2(x
′, xn, yn, ξ

′, λ) = −


e
−
√

ξ21−λ(xn+yn)

2
√

ξ2
1−λ

ξ2
1

4λ

(
e
−
√

ξ21−λ(xn+yn)

√
ξ2
1−λ

− e
−
√

ξ21+λ(xn+yn)

√
ξ2
1+λ

)
0 − e

−
√

ξ21+λ(xn+yn)

2
√

ξ2
1+λ


(4.4.11)

We seek the operator Πθ,ϕ(Pγ0) with θ = −π
2

and ϕ = π
2
, the projection on

the eigenspaces corresponding to eigenvalues with positive real part.

The principal symbol, resp. symbol-kernel, of Πθ,ϕ(P ), resp. Gθ,ϕ, is

πθ,ϕ,0(x, ξ) =
i

2π

∫
Cξ

q−2(x, ξ, λ)dλ =

(
1

ξ2
2

2|ξ|2

0 0

)

g̃θ,ϕ,0(x
′, xn, yn, ξ

′) =
i

2π

∫
Γθ,ϕ

g̃−2(x
′, xn, yn, ξ

′, λ)dλ =

(
0 −1

4
|ξ1|e−|ξ1|(xn+yn)

0 0

)
,

(4.4.12)

where Cξ is a closed curve encircling the pole λ = |ξ|2 exactly once.

We see that g̃θ,ϕ,0 is a true singular Green symbol-kernel, and hence the “prin-

cipal part” of Πθ,ϕ(B) is in the Boutet de Monvel calculus. (The “full” operator

is not a Boutet de Monvel operator, however. To see this, one can show that the

second term g̃θ,ϕ,−1 — although bounded in (xn, yn) — has unbounded xn and

yn derivatives near the origin and g̃θ,ϕ cannot be a true singular Green symbol-

kernel.)

To calculate the non-commutative residue of Πθ,ϕ(B), we need to find the

lower order terms of the parametrix. Since n is 2, the contribution to the residue

from the pseudodifferential part stems from π−2(x, ξ).

The lower order terms of the symbol p(x, ξ) are

p1(x, ξ) =

(
0 0

ϕ(x2)ξ2 0

)
and p0(x, ξ) = 0, (4.4.13)

and the next terms of our parametrix then become

q−3 = −q−2p1q−2, q−4 = −q−2p1q−3 − q−2

∑
|α|=1

Dα
ξ p2∂

α
x q−3 − q−2p0q−2. (4.4.14)
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For us, q−4 is the relevant term:

q−4(x, ξ, λ) =

 − ξ2
1ξ2

2(4i|ξ|2ϕ′(x2)−ξ2
1ϕ(x2)2)

(|ξ|2−λ)(|ξ|4−λ2)2
− ξ4

1ξ2
2(4i|ξ|2ϕ′(x2)−ξ2

1ϕ(x2)2)
(|ξ|4−λ2)3

− iξ2
2(iξ2

1ϕ(x2)2+2(|ξ|2−λ)ϕ′(x2))
(|ξ|4−λ2)2

− ξ2
1ξ2

2(ξ2
1ϕ(x2)2−2i(|ξ|2−λ)ϕ′(x2))
(|ξ|2+λ)(|ξ|4−λ2)2

 ,

(4.4.15)

which leads to the following result for the projection’s symbol

π−2(x, ξ) =
i

2π

∫
Cξ

q−4(x, ξ, λ) dλ = −Resλ=|ξ|2 q−4(x, ξ, λ)

=

3ξ2
1ξ2

2(ξ2
1ϕ(x2)2−4i|ξ|2ϕ′(x2))

16|ξ|8
3ξ4

1ξ2
2(ξ2

1ϕ(x2)2−4i|ξ|2ϕ′(x2))
16|ξ|10

iξ2
2(iξ2

1ϕ(x2)2+2|ξ|2ϕ′(x2))
4|ξ|6

ξ2
1ξ2

2(4i|ξ|2ϕ′(x2)−3ξ2
1ϕ(x2)2)

16|ξ|8

 .

(4.4.16)

For the trace we find

trπ−2(x
′, ξ′) = −iξ

2
1ξ

2
2

2|ξ|6
ϕ′(xn). (4.4.17)

Integrating over the unit sphere in ξ-space, in polar coordinates, then gives us

resx Πθ,ϕ(P ) =

∫
|ξ|=1

trπ−2(x, ξ)
−dS(ξ) = −

∫
|ξ|=1

iξ2
1ξ

2
2ϕ

′(xn)

2|ξ|6
−dS(ξ)

= −iϕ
′(xn)

8π2

∫ 2π

0

cos(ω)2 sin(ω)2dω =
ϕ′(xn)

32πi
.

(4.4.18)

Remark 4.4.3. It should be noted that we have chosen P with “minimal” lower

order terms (4.4.13), in the sense that another operator P ′ with the same principal

part as P , but lower order terms given by

p′1(x, ξ) =
(
aij(x)ξ1 + bij(x)ξ2

)
i,j=1,2

, p′0(x, ξ) =
(
cij(x)

)
i,j=1,2

, (4.4.19)

will have

resx Πθ,ϕ(P ′) =
∂xnb21(x)

32πi
, (4.4.20)

i.e., only the coefficient of ξ2 in the (2, 1)-entry of the matrix p′1 will contribute.

We now turn our attention to the contribution from the singular Green part.

Actually calculating g̃θ,ϕ,−1 is quite difficult, but we do not need this. Recall that

the noncommutative residue density of Gθ,ϕ is given by

resxGθ,ϕ =
m

2πi

(
tr cGn,θ(x

′)− tr cGn,ϕ(x′)
)
, (4.4.21)
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where

cGn,θ(x
′) = −eiθ

∫
Rn−1

sh
−m+1−n(x′, ξ′, eiθ) −dξ′, (4.4.22)

and sh
−m+1−n is the strictly homogeneous version of

s−m+1−n(x′, ξ′, λ) =

∫ ∞

0

g̃−m−n(x′, xn, xn, ξ
′, λ)dxn. (4.4.23)

The expressions for g−3 and s−3 are quite complicated, but we end up with

tr sh
−3(x

′, ξ′, λ) =
iξ2

1

8λ3

(
2
√
ξ2
1 + λ− 2

√
ξ2
1 − λ− λ√

ξ2
1 − λ

− λ√
ξ2
1 + λ

)
ϕ(0).

(4.4.24)

(At first sight, this expression appears non-integrable in ξ′ = ξ1, but cancellations

ensure a O(|ξ′|−3) decay. Which we know it has from homogeneity in any case.)

We obtain then, for λ ∈ C \ R,∫
R

tr sh
−3(x

′, ξ′, λ) −dξ′ =
iϕ(0)

64π

log(−λ)− log(λ)

λ
. (4.4.25)

Hence, inserting eiθ = −i in (4.4.22), we find

tr cGn,θ(x
′) = −(−i)iϕ(0)

64π

log(i)− log(−i)
−i

=
ϕ(0)

64
. (4.4.26)

Likewise for eiϕ = i, where we get tr cGn,ϕ = −ϕ(0)/64. We arrive at

resx′ Gθ,ϕ =
m

2πi

[
tr cGn,θ(x

′)− tr cGn,ϕ(x′)
]

=
ϕ(0)

32πi
. (4.4.27)

Now, let us consider this problem on the compact manifold X = S1 × [0, a].

The operator P from (4.4.8) has an obvious analogue onX if we considerD2 = Dn

as the usual differentiaion on [0, a] and D1 = D′ as the usual invariant vector field

on S1. We take ϕ ∈ C∞([0, a]).

Carrying the local calculations above over to X, we obtain the following re-

sults: The noncommutative residue of the ψdo Πθ,ϕ(P )+ is

res+ Πθ,ϕ(P ) =

∫
X

resx Πθ,ϕ(P ) dx

=
vol(S1)

32πi

∫ a

0

ϕ′(xn)dxn =
ϕ(a)− ϕ(0)

16i
,

(4.4.28)

while the residue of the singular Green part is

resGθ,ϕ =

∫
∂X

resx′ Gθ,ϕ dx
′. (4.4.29)
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The boundary is the disjoint union of two circles

∂X = S1 × {0} ∪ S1 × {a}, (4.4.30)

and hence the integral over ∂X (4.4.21) splits into two:∫
∂X

(· · · ) dx′ =
∫

S1×{0}
(· · · ) dx′ −

∫
S1×{a}

(· · · ) dx′, (4.4.31)

where the sign is due to the opposite orientation of the boundaries at x2 = 0 and

x2 = a, respectively. In comparison with (4.4.27), we find at x2 = a that

resx′ Gθ,ϕ =
ϕ(a)

32πi
, (4.4.32)

such that the residue of Gθ,ϕ becomes

resGθ,ϕ =
1

32πi

(∫
S1×{0}

ϕ(0) dx′ −
∫

S1×{a}
ϕ(a) dx′

)
=

vol(S1)

32πi

(
ϕ(0)− ϕ(a)

)
=
ϕ(0)− ϕ(a)

16i
= − res+(Πθ,ϕ(P )).

(4.4.33)

The residue of the projection is then

res Πθ,ϕ(B) = res+ Πθ,ϕ(P ) + resGθ,ϕ = 0. (4.4.34)

So the residue does indeed vanish, through a somewhat miraculous cancellation.

One might think that this vanishing has nothing to do with the nature of the

projection, and that in fact the contribution from each ray vanishes, i.e, that C0,θ

and C0,ϕ are both zero. However this is not the case, as we find

C0,θ(B) = C0,ϕ(B) =
1

64

∫ a

0

ϕ(xn)2 dxn +
ϕ(a)− ϕ(0)

8i
. (4.4.35)

So it seems the property of being a projection is important for the vanishing.

Note that the residue of logθB is −mC0,θ(B), which is apparently non-zero

(in general) and independent of θ in this case.

Although — as noted above — Πθ,ϕ(B) is not in A , its principal part is; so

the operator is of the form (A + compact) and therefore lies in A, the C∗-closure

of A , and its residue should indeed vanish, cf. the discussions in Remarks 3.1.3

and 5.1.3.
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Is it zero?

It was shown in Chapter 3 that the noncommutative residue of [FGLS96] al-

ways vanishes on projections in A , the algebra of Boutet de Monvel boundary

operators of order and class zero. So res Πθ,ϕ(B) is zero whenever the sectorial

projection lies in A . Further, we saw in Chapter 4 that we can define a residue

of Πθ,ϕ(B) even when this operator is not a Boutet de Monvel operator.

Basically, our work in the final year of the thesis project was spent on inves-

tigating whether the vanishing can be extended to the latter case:

Is the noncommutative residue of Πθ,ϕ(B) always zero?

For simplicity, we considered only differential problems B = PT , which have

two important properties compared to the general pseudodifferential case: the

operator Πθ,ϕ(B) is then known to be bounded (Theorem 4.1.3) and we have the

exponential decay of [See69a] at our disposal (see below).

We did not arrive at a final conclusion, but achieved partial results. This

chapter is a discussion of those results, as well as the outline of a few related

ideas which we did not work on in detail.

5.1 C∗-closure

Πθ,ϕ(B) is not always in A , but since the K-theoretic arguments of [Gaa07]

actually show that the residue of [FGLS96] is extendable to projections — and

vanishes for these also — in the C∗-closure A of A , cf. Remark 3.1.3, our first aim

was to examine if Πθ,ϕ(B) lies in A. Observe that we only consider A where the

vector bundle F over ∂X is empty, since Πθ,ϕ(B) is an operator onH = L2(X,E).

35
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That is, A here is the set of Green operators A = P+ +G of order and class zero,

with A its C∗-closure in B(L2(X,E)).

The pseudodifferential part Πθ,ϕ(P )+ is the truncation of a ψdo on X̃, and is

thus in A exactly when its symbol πθ,ϕ(x, ξ) satisfies the transmission property.

For example, this holds when the order m of P is even, cf. Proposition 4.1.4.

The principal symbol map σ : A → C∞(S∗X) — mapping A = P+ + G to

p0(x, ξ), the principal symbol of P — extends to a map σ : A → C(S∗X), by

[MNS03, Theorem 5]. The range of this map is given by the functions in C(S∗X)

which, over each point of the boundary, take the same value at the two covectors

that vanish on the tangent space of ∂X, that is,

σ(A) = {f ∈ C(S∗X) | f(x′, 0, 0, 1) = f(x′, 0, 0,−1) }. (5.1.1)

In other words, Πθ,ϕ(P )+ can lie in A only if its principal symbol π0
θ,ϕ(x, ξ) satisfies

π0
θ,ϕ(x′, 0, 0, 1) = π0

θ,ϕ(x′, 0, 0,−1). (5.1.2)

This is also known as the weak transmission property. For odd m, we can find

examples where this does not hold, for instance our Example 4.4.1 where the

(principal) symbol is given by (4.4.3), such that

π0
θ,ϕ(x′, 0, 0, t) =

1

2|t|


|t| 0 it 0
0 |t| 0 it
−it 0 |t| 0
0 −it 0 |t|

 . (5.1.3)

This clearly does not satisfy (5.1.2). The conclusion is that Πθ,ϕ(P )+ is in A for

even m, but not in general.

We now look into whether Gθ,ϕ lies in A. First, we consider if Gθ,ϕ is the

limit in A of a sequence of singular Green operators. We have the following

composition sequence, cf. [MNS03, eq. (11)],

0 ⊂ K ⊂ G ⊂ A, (5.1.4)

where K denotes the ideal of compact operators in B(H), and G is the closure of

G , the algebra of all Green operators A in A with P of negative order. In other

words, we investigate if Gθ,ϕ is in G.

The boundary symbol map γ, cf. (2.1.12),

γ(A) = a0(x′, ξ′, Dn) = p0(x′, 0, ξ′, Dn)+ + g0(x′, ξ′, Dn), (5.1.5)
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induces an isometry from G/K to C(S∗∂X) ⊗ KR+ [MNS03, Theorem 6], where

KR+ is the ideal of compact operators in L2(R+).

In particular, forGθ,ϕ to be the limit of a sequence of singular Green operators,

the corresponding boundary principal symbol operator γ(Gθ,ϕ) = g0
θ,ϕ(x′, ξ′, Dn)

would have to be a compact operator in L2(R+) for all (x′, ξ′). Recall that the

boundary symbol operator is the integral operator with kernel g̃θ,ϕ,0(x
′, xn, yn, ξ

′).

Like above, we have to look no further than Example 4.4.1 to find a coun-

terexample where g0
θ,ϕ(x′, ξ′, Dn) is not compact in L2(R+), and so, Gθ,ϕ is not in

G. Here, the parameter-dependent singular Green kernel is given by (4.4.6):

g̃(xn, yn, ξ
′, λ) =

1

2σ


−iξ1 + iσ −ξ2 − iξ3 −λ 0
ξ2 − iξ3 iξ1 + iσ 0 −λ
−λ 0 −iξ1 − iσ −ξ2 − iξ3
0 −λ ξ2 − iξ3 iξ1 − iσ

 e−σ(xn+yn),

(5.1.6)

where σ = (|ξ′|2 + λ2)1/2. For θ = 0 and ϕ = π we obtain, by holomorphy, that

g̃θ,ϕ(xn, yn, ξ
′) =

i

2π

∫
Γθ,ϕ

g̃(xn, yn, ξ
′, λ) dλ =

i

2π

∫ ∞

−∞
g̃(xn, yn, ξ

′, t) dt. (5.1.7)

The action of γ(Gθ,ϕ) on u ∈ L2(R+) is then

g0
θ,ϕ(ξ′, Dn)u(xn) =

∫ ∞

0

g̃θ,ϕ(xn, yn, ξ
′)u(yn) dyn. (5.1.8)

Proposition 5.1.1. g0
θ,ϕ(ξ′, Dn) is not compact.

Proof. There are three types of entries in the “matrix-part” of g̃: those with only

ξ2 and ξ3, those with only λ, and those with ξ1 and σ.

For the first type, the corresponding symbol-kernel g̃
(ij)
θ,ϕ (xn, yn, ξ

′) is in fact in

L2,xn,yn(R2
++) for each ξ′ (we ignore the factors of ξ2 ± iξ3 here):(∫
R+×R+

∣∣∣ ∫ ∞

−∞

e−σ(xn+yn)

σ
dt
∣∣∣2dxndyn

)1/2

≤
∫ ∞

−∞

(∫
R+×R+

∣∣∣e−σ(xn+yn)

σ

∣∣∣2dxndyn

)1/2

dt

=

∫ ∞

−∞

1

σ

(∫ ∞

0

e−2σxndxn

∫ ∞

0

e−2σyndyn

)1/2

dt

=

∫ ∞

−∞

1

2σ2
dt =

∫ ∞

−∞

1

2(|ξ′|2 + t2)
dt =

π

2|ξ′|
<∞,

(5.1.9)
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where a form of Minkowski’s inequality (Lieb and Loss [LL01, Theorem 2.4]) was

employed at the inequality sign. These matrix entries become Hilbert-Schmidt

operators in L2(R+).

For the entries of the second type we get

g̃
(ij)
θ,ϕ (xn, yn, ξ

′) = − i

2π

∫ ∞

−∞

t

(|ξ′|2 + t2)1/2
e−(|ξ′|2+t2)1/2(xn+yn) dt = 0 (5.1.10)

since the integrand is odd in t.

The entries of the third type split into terms with ξ1 and σ, respectively. For

the former, the story is the same as in (5.1.9), i.e., a Hilbert-Schmidt operator.

For the terms with σ, we get (since the σ cancels out the 1
σ
)

4π

i
g̃

(ij)
θ,ϕ (xn, yn, ξ

′) =

∫ ∞

−∞
e−(|ξ′|2+t2)1/2(xn+yn)dt = 2

∫ ∞

0

e−(|ξ′|2+t2)1/2(xn+yn)dt

≥ 2

∫ ∞

0

e−(|ξ′|+t)(xn+yn)dt =
2 e−|ξ

′|(xn+yn)

xn + yn

. (5.1.11)

So we get a singularity of the type (xn + yn)−1 and by Lemma 5.1.4 below,

g0
θ,ϕ(ξ′, Dn) cannot be compact in L2(R+).

So Πθ,ϕ(P )+ is not in A and Gθ,ϕ is not in G, but this does not rule out that

their sum Πθ,ϕ(B) could be in A. However, the matrix M ij ∈M4(C) with a 1 in

the (i, j)-entry and zeroes elsewhere is clearly in A , so M iiAM jj — essentially

the (i, j)-entry of A — is in A for any A ∈ A .

Now, the (1, 3)-entry of Πθ,ϕ(B) equals the corresponding entry of Πθ,ϕ(P )+,

since the (1, 3)-entry in Gθ,ϕ vanishes, by (5.1.10). So the sum Πθ,ϕ(B) cannot

lie in A either. (According to (5.1.3), this entry does not satisfy (5.1.2).) We

summarize our findings in the following theorem:

Theorem 5.1.2. The operator Πθ,ϕ(B) from Example 4.4.1 is not in A, so we

cannot draw a final conclusion on the residue just from our results on A.

Remark 5.1.3. It should be noted that it remains to be proven that the K-

theoretic extension to idempotents in A, from Remark 3.1.3, actually agrees with

the definition given in 4.2.3. It would seem counter-intuitive if this is not the

case, but we have not spent time on this question since it would not help us

much, in light of the above.
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We conclude this section with the lemma used above and a remark on the

normal trace of Gθ,ϕ.

Lemma 5.1.4. The integral operator K with kernel k(x, y) = 1
x+y

is not a com-

pact operator on L2(R+).

Proof. Let, for n ∈ N, gn be the characteristic function of the interval (0, 1
n
) and

fn =
√
n gn. Then ‖fn‖ = 1 and

Kfn(x) =
√
n

∫ 1
n

0

1

x+ y
dy. (5.1.12)

For 0 < x < 1
n

we have

Kfn(x) =
√
n

∫ 1
n

0

1

x+ y
dy ≥

√
n

∫ x

0

1

x+ y
dy ≥

√
n

2x

∫ x

0

dy =

√
n

2
. (5.1.13)

So Kfn ≥ 1
2
fn ≥ 0, and hence ‖Kfn‖ ≥ 1

2
for all n. In particular ‖Kfn‖ 6→ 0.

But fn converges weakly to zero: Since

〈fn, v〉 =
√
n

∫ 1
n

0

v(x)dx (5.1.14)

we obviously have limn→∞〈fn, v0〉 = 0 for all v0 ∈ C∞
0 (R+).

Let v ∈ L2(R+) and let ε > 0. Find v0 ∈ C∞
0 (R+) such that ‖v − v0‖ < ε

2
,

and find N such that |〈fn, v0〉| < ε
2

for n ≥ N .

Then, for n ≥ N ,

|〈fn, v〉| ≤ |〈fn, v − v0〉|+ |〈fn, v0〉| ≤ ‖fn‖ · ‖v − v0‖+ |〈fn, v0〉| < ε
2

+ ε
2

= ε.

(5.1.15)

So (fn) is a sequence of L2-functions converging weakly to 0. Compact oper-

ators map weakly convergent sequences to norm convergent sequences, so K is

not compact since ‖Kfn‖ does not converge to 0.

With the arguments from the proof of Proposition 5.1.1 at our disposal, we

can easily show that the normal trace of Gθ,ϕ is in general not defined. Again,

we consider Gθ,ϕ from Example 4.4.1:

Proposition 5.1.5. trn gθ,ϕ(ξ′) does not converge.
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Proof. The normal trace of gθ,ϕ is given by

trn gθ,ϕ(ξ′) =

∫ ∞

0

g̃θ,ϕ(xn, xn, ξ
′)dxn =

i

2π

∫ ∞

0

∫ ∞

−∞
g̃(xn, xn, ξ

′, t)dt dxn.

(5.1.16)

For the terms with σ — as in (5.1.11) above — this becomes∫ ∞

0

∫ ∞

−∞
e−2(|ξ′|2+t2)1/2xndt dxn

=

∫ ∞

−∞

∫ ∞

0

e−2(|ξ′|2+t2)1/2xndxn dt =

∫ ∞

−∞

1

2(|ξ′|2 + t2)1/2
dt = ∞,

(5.1.17)

using Tonelli’s theorem.

This proves that the normal trace of the principal part is not in general well-

defined for Gθ,ϕ, just as in the case of Glog [GG08, Section 3].

5.2 Larger algebras

Another approach to the question at hand, is to find an algebra containing A as

well as all the sectorial projections. Of course, this is an interesting problem in

its own right, but moreover, one could then hope to extend the definition of non-

commutative residue to this algebra, and maybe even use K-theoretic arguments

to show that the map induced by res in K0 vanishes, as it does in the case of A

itself.

The algebra in question should contain A as well as the set of ψdos without

the transmission property — because of Πθ,ϕ(P )+ — and the generalized singular

Green operators of type Gθ,ϕ. One suggestion is the algebra B0 by Rempel and

Schulze [RS82]; we show why this is a good suggestion further below.

5.2.1 Description of Gθ,ϕ

Let us first give a more thorough description of Gθ,ϕ, the operator which poses

the greater questions in this connection. Recall from Chapter 4 that it is given

by

Gθ,ϕu(x) =
i

2π

∫
Γθ,ϕ

Gλu(x) dλ, (5.2.1)

where Gλ is the singular Green part of the resolvent (B−λ)−1 = Qλ,++Gλ. Since

we assume B to be differential, we know from Seeley [See69a] that Gλ is given
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(in local coordinates) by a parameter-dependent singular Green symbol-kernel

g̃ ∼
∑∞

j=0 g̃−m−j:

Gλu(x) =

∫
Rn−1

eix′·ξ′
∫ ∞

0

g̃(x′, xn, yn, ξ
′, λ) ú(ξ′, yn) dyn

−dξ′, (5.2.2)

where the terms are quasi-homogeneous

g̃−m−j(x
′, xn

t
, yn

t
, tξ′, tmλ) = t1−m−j g̃−m−j(x

′, xn, yn, ξ
′, λ), for t ≥ 1, |ξ′| ≥ 1,

(5.2.3)
and satisfy estimates

|Dβ
x′D

α
ξ′x

k
nD

k′

xn
y`

nD
`′

yn
Dp

λ g̃−m−j| ≤ C κ1−m−j−|α|−k+k′−`+`′−mpe−c κ(xn+yn), (5.2.4)

for all indices, when κ = |ξ′| + |λ|1/m ≥ ε. It is here we see the previously

mentioned exponential decay. We can then write Gθ,ϕ as

Gθ,ϕu(x) =

∫
Rn−1

eix′·ξ′
∫ ∞

0

g̃θ,ϕ(x′, xn, yn, ξ
′) ú(ξ′, yn) dyn

−dξ′, (5.2.5)

a generalized singular Green operator with symbol-kernel g̃θ,ϕ ∼
∑∞

j=0 g̃θ,ϕ,−j

given by

g̃θ,ϕ(x′, xn, yn, ξ
′) =

i

2π

∫
Γθ,ϕ

g̃(x′, xn, yn, ξ
′, λ) dλ, (5.2.6)

where the terms g̃θ,ϕ,−j are given by similar integrals of g̃−m−j, cf. (4.1.6). They

are quasi-homogeneous

g̃θ,ϕ,−j(x
′, xn

t
, yn

t
, tξ′) = t1−j g̃θ,ϕ,−j(x

′, xn, yn, ξ
′), for t ≥ 1, |ξ′| ≥ 1, (5.2.7)

and satisfy estimates

|Dβ
x′D

α
ξ′x

k
nD

k′

xn
y`

nD
`′

yn
g̃θ,ϕ,−j| ≤ C|ξ′|−j−|α|−k+k′−`+`′ e

−c|ξ′|(xn+yn)

xn + yn

, for |ξ′| ≥ ε.

(5.2.8)

The claims here are proven in [GG08, Theorem 2.4]. Further remarks on the

(xn, yn)-singularities for j > 0 are found in [GG08, Remark 2.5].

In short, we seek an algebra containing operators Gθ,ϕ as described here.

5.2.2 Model operator

Our investigations initially centered on finding a suitable algebra containing the

generalized singular Green operator with symbol-kernel

g̃(xn, yn, ξ
′) =

e−|ξ
′|(xn+yn)

xn + yn

. (5.2.9)
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Here in Section 5.2 we will call the operator g(ξ′, Dn) — acting on L2(R+) with

this g̃ as its integration-kernel — our model operator.

The reason for this particular choice should be obvious from the estimate

(5.2.8) above, but let us elaborate in any case: In Example 4.4.1 we saw an

example of an operator Πθ,ϕ(B) where the “troublesome” terms of the singular

Green part had a symbol-kernel

g̃θ,ϕ(xn, yn, ξ
′) =

∫ ∞

−∞
e−(|ξ′|2+t2)1/2(xn+yn)dt, (5.2.10)

which is O( 1
xn+yn

) for xn + yn → 0 and O(e−|ξ
′|(xn+yn)) for xn + yn →∞, just like

(5.2.9). Moreover, the generalized singular Green operators we wish to investigate

can be written as the difference between two logarithmic terms, cf. (4.3.6),

Gθ,ϕ =
i

2π

(
Glogθ −Glogϕ

)
, (5.2.11)

so it seems fair to assume that Gθ,ϕ will resemble operators of type Glog in general;

for the Dirichlet realization of the Laplacian in Rn
+, the logarithm is given by

[GG08, Example 2.3]

log(−∆γ0) = log(−∆)+ +Glog = OP(2 log |ξ|)+ +Glog, (5.2.12)

where Glog is the generalized singular Green operator with symbol-kernel

g̃log(xn, yn, ξ
′) =

e−|ξ
′|(xn+yn)

xn + yn

. (5.2.13)

So although we might not actually obtain a sectorial projection with (5.2.9)

as its singular Green symbol-kernel (e.g., Gθ,ϕ is zero for the Laplacian), we will

definitely get operators very similar to it and we study this particular choice of

operator for simplicity.

5.2.3 Èskin’s algebra

The first step is to find an algebra of pseudodifferential operators on the half-

line, which contains our model operator g(ξ′, Dn) for fixed ξ′. We consider an

algebra E of operators on L2(R+) constructed by Èskin [Èsk73, Chapter 15]. The

operators in E are of the form

p(ξ′, Dn)+ + ωM + T. (5.2.14)
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Here p(ξ) = p(ξ′, ξn) is a symbol of order 0, which is independent of x and does

not necessarily satisfy the transmission property; ω is (multiplication with) a

fixed cutoff function

ω ∈ C∞
0 (R+), 0 ≤ ω ≤ 1, ω(t) = 1 for t ≤ 1; (5.2.15)

T is a compact operator on L2(R+); and M is of the type M described below.

Èskin’s purpose was to find an algebra that contained the parametrices of elliptic

p(ξ′, Dn)+ in the case that p(ξ) does not satisfy the transmission property.

We denote by M the class of integral operators on R+ of the form

Mϕ(xn) =

∫ ∞

0

τ−1m
(xn

τ

)
ϕ(τ) dτ, ϕ ∈ C∞

0 (R+), (5.2.16)

where m is in M∞, the set of functions m ∈ C∞(R+) which satisfy

|tk∂k
t m(t)| = O(t−δ−ε), t→ 0, |tk∂k

t m(t)| = O(t−1+δ+ε), t→∞, (5.2.17)

for some δ ∈ [0, 1
2
), dependent of m, and all k ∈ N0, ε > 0.

Applying the Mellin transform

ũ(z) = Mu(z) =

∫ ∞

0

tz−1 u(t) dt (5.2.18)

to (5.2.16), we obtain

M̃ϕ(z) =

∫ ∞

0

xz−1
n Mϕ(xn) dxn =

∫ ∞

0

xz−1
n

∫ ∞

0

τ−1m
(xn

τ

)
ϕ(τ) dτ dxn

=

∫ ∞

0

∫ ∞

0

tz−1m(t) τ z−1 ϕ(τ) dτ dt = m̃(z) ϕ̃(z), (5.2.19)

where the transformation xn = tτ was used. We call m̃ the symbol of M ; it is the

Mellin transform of m. From the estimates (5.2.17) it can be shown that m̃(z) is

analytic in the strip δ < Re z < 1− δ and

|zkm̃(z)| ≤ Cε,k, δ + ε ≤ Re z ≤ 1− δ − ε, for all k ∈ N0, ε > 0. (5.2.20)

Conversely, if m̃ is analytic in δ < Re z < 1 − δ and satisfies (5.2.20) then m is

in M∞. In this manner, one could say that M is the space of Mellin multipliers,

whose symbols are in M(M∞), i.e., satisfy (5.2.20).

The operators in M (and hence the operators in E) are bounded and thus

extend to all of L2(R+).
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An important example in M is the operator M0 with m0(t) = 1
1+t

and symbol

m̃0(z) = −2πi
eiπz

1− e2πiz
=

π

sin(πz)
. (5.2.21)

Its action can be written as

M0ϕ(xn) =

∫ ∞

0

τ−1 1

1 + xn

τ

ϕ(τ) dτ =

∫ ∞

0

ϕ(τ)

xn + τ
dτ =

∫ ∞

0

ϕ(yn)

xn + yn

dyn,

(5.2.22)

which evidently resembles our model operator g(ξ′, Dn) from (5.2.9) for small

xn + yn; in fact, M0 equals g(0, Dn). This observation was one of the main

reasons we became interested in Èskin’s algebra.

However, the algebra does not allow M to depend on ξ′ as g(ξ′, Dn) does.

Instead, the idea is to subtract the ξ′-independent singularity for small (xn, yn):

We have an expansion

e−|ξ
′|(xn+yn)

xn + yn

=
1

xn + yn

+ |ξ′|+O(|ξ′|2(xn + yn)). (5.2.23)

Subtracting 1/(xn + yn) turns this into a bounded function of (xn, yn), which is

in fact smooth up to the boundary on R2
++. Now,

h(xn, yn, ξ
′) =

e−|ξ
′|(xn+yn)

xn + yn

− ω(xn)

xn + yn

(5.2.24)

is in L2,xn,yn(R2
++) and hence the operator with h as its integral-kernel is Hilbert-

Schmidt. So our model kernel becomes

g̃(xn, yn, ξ
′) = ω(xn)

1

xn + yn

+ h(xn, yn, ξ
′), (5.2.25)

and in this way the model operator can be written

g(ξ′, Dn) = ωM0 + T ∈ E, (5.2.26)

where T is the compact operator with h as its integral kernel. Going on from the

model operator, let us consider the concrete example from earlier:

Proposition 5.2.1. The boundary symbol operator from Example 4.4.1,

πθ,ϕ(ξ′, Dn)+ + gθ,ϕ(ξ′, Dn), (5.2.27)

is in E, with M0 (times a coefficient matrix) as its Mellin multiplier.
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Proof. Since πθ,ϕ is a symbol of order 0, we only need to show that gθ,ϕ(ξ′, Dn)

is the sum of a Mellin multiplier and a compact operator.

Recall its generalized singular Green symbol-kernel g̃θ,ϕ from (5.1.6), (5.1.7),

and the description of its structure from the proof of Proposition 5.1.1. As

described there, most of the matrix entries are Hilbert-Schmidt kernels and to

prove that gθ,ϕ(ξ′, Dn) is in E, we only need to account for the entries of the form∫ ∞

−∞
e−(|ξ′|2+t2)1/2(xn+yn)dt. (5.2.28)

Subtracting the model kernel, we obtain

f(xn, yn) =

∫ ∞

−∞
e−(|ξ′|2+t2)1/2(xn+yn)dt− 2

e−|ξ
′|(xn+yn)

xn + yn

, (5.2.29)

which is in fact a Hilbert-Schmidt kernel as well. To see this, we rewrite it as

f(xn, yn) = 2

∫ ∞

0

[
e−(|ξ′|2+t2)1/2(xn+yn) − e−(|ξ′|+t)(xn+yn)

]
dt. (5.2.30)

We can then bound its L2 norm, again using the inequality [LL01, Theorem 2.4]:(∫
R2

++

|f(xn, yn)|2dxndyn

)1/2

≤ 2

∫ ∞

0

(∫
R2

++

∣∣e−(|ξ′|2+t2)1/2(xn+yn) − e−(|ξ′|+t)(xn+yn)
∣∣2dxndyn

)1/2

dt

=
1

2

∫ ∞

0

( 1

(|ξ′|+ t)2
+

1

|ξ′|2 + t2
− 8

(|ξ′|+ t+
√
|ξ′|2 + t2)2

)1/2

dt.

(5.2.31)

Putting the terms on a common denominator, cancellations will ensure that the

contents of the square root is O(t−4) and hence the integrand is O(〈t〉−2) and

integrable for ξ′ 6= 0, so f(xn, yn) is square integrable.

From (5.2.29) we now see that the operator with the kernel in (5.2.28) is the

sum of the compact operator with kernel f and (2 times) our model operator

g(ξ′, Dn) from (5.2.26); the latter we proved to be in E with M0 as its Mellin

multiplier.

Obviously, the next interesting question here is whether the boundary symbol

operator of a general sectorial projection is in E for fixed (x′, ξ′), i.e., whether the

operator gθ,ϕ(x′, ξ′, Dn), with g̃θ,ϕ as in Section 5.2.1, can be written as the sum

of a Mellin multiplier and a compact operator, as in the example above.



46 Chapter 5

Possibly, one could succeed with a proof similar to above, where we rewrote

(5.2.29) as (5.2.30), but unfortunately, we discovered the idea of subtracting the

ξ′-independent singularity (i.e., that the model operator is in fact in E) so late

that there was no time left to really dig into the general question.

Nevertheless, let us continue with the results above.

5.2.4 Rempel and Schulze’s algebra

Based on the works of Vǐsik and Èskin [VÈ67, Èsk73], Rempel and Schulze [RS82]

constructed an algebra of boundary operators B0, which includes problems that

do not satisfy the transmission condition. In apperance, the operators here re-

semble the Green operators in (2.1.5): an operator in B0 has the form

B =

(
A′ K

T S

)
:
L2(X,E1) L2(X,E2)

× → ×
L2(∂X, F1) L2(∂X, F2),

(5.2.32)

whereK, T , and S are just slightly more general than the corresponding operators

in Boutet de Monvel’s calculus. The big difference lies in the entry A′ which, in

local coordinates, can be described as pseudodifferential along the boundary with

operator-valued symbols, where, for each (x′, ξ′), the symbol belongs to a variant

of Èskin’s algebra E.

For our purposes — cf. the first paragraph of Section 5.1 — we need only

consider the entry A′. (We can assume that E = E1 = E2 and that the Fi

bundles are empty.) In local coordinates, the operator A′ is given by

A′ = P+ +W +G, (5.2.33)

modulo compact operators; P is a ψdo with no requirement of the transmission

condition, G is a B-singular Green operator, and W is an M-operator.

A B-singular Green operator G is quite similar to Boutet de Monvel’s notion

of a singular Green operator (of order and class zero) and its action is also given

by (2.1.6) with a symbol-kernel g̃. The difference is that g̃ is only required

to be in L2(R2
++) — as opposed to S(R2

++) — with respect to (xn, yn). (The

term B-singular is our convention to avoid confusion; [RS82] simply calls them

Green operators.) By working modulo compact operators, we disregard lower

order terms; in particular, the symbol-kernel g̃ is assumed quasi-homogeneous of

degree 1.
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An M-operator W is of the form

Wu(x′, xn) =

∫
Rn−1

eix′·ξ′ω(|ξ′|xn)

∫ ∞

0

y−1
n µ

(
x′,

xn

yn

)
ú(ξ′, yn) dyn

−dξ′, (5.2.34)

where ω is a cutoff function as in (5.2.15), and µ is a smooth function of x′ with

values in M∞. For fixed (x′, ξ′) we recognize the inner integral as an operator in

M.

Now we go back to our model operator G and show that it lies in B0. For

this, we modify (5.2.24) and (5.2.25) slightly: Let

h(x′, xn, yn, ξ
′) =

e−|ξ
′|(xn+yn)

xn + yn

− ω(|ξ′|xn)

xn + yn

, µ0(x
′, t) =

1

1 + t
, (5.2.35)

such that

g̃(xn, yn, ξ
′) = ω(|ξ′|xn) y−1

n µ0

(
x′,

xn

yn

)
+ h(x′, xn, yn, ξ

′). (5.2.36)

Then G, with

Gu(x′, xn) =

∫
Rn−1

eix′·ξ′
∫ ∞

0

g̃(xn, yn, ξ
′) ú(ξ′, yn) dyn

−dξ′, (5.2.37)

equals W0 +H, where W0 is the M-operator with µ = µ0 and H is the B-singular

Green operator with symbol-kernel h; h is in L2,xn,yn(R2
++), as stated previously,

and the quasi-homogeneity

h(x′, xn

t
, yn

t
, tξ′) = t h(x′, xn, yn, ξ

′) (5.2.38)

is satisfied due to the factor |ξ′| in the nonhomogeneous function ω.

So the model operator G is in B0. Similarly to the proof of 5.2.1, one then

shows the following statement:

Proposition 5.2.2. The operator Πθ,ϕ(B) from Example 4.4.1 is in B0.

Since this was our prime example of a sectorial projection not in A , it is

an obvious question whether all sectorial projections lie in B0. This question is

clearly related to the question at the end of the previous section; as explained

there, we made the observations here too late to reach more general results.

Regarding the question of residues, B0 actually seems to offer some promise

since [RS82] states results on the C∗-closure of B0, which might be needed for a

K-theoretic proof in the spirit of Chapter 3.
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5.2.5 Mellin operators

Before we realized that B0 may suffice, we had spent some time looking at more

modern versions of Rempel and Schulze’s algebra. As mentioned, the M operators

in Èskin’s class do not permit symbols that depend on ξ′, and the same holds for

the M-operators in [RS82]. Also, those algebras are quite crude in the sense that

all lower order terms only appear as compact operators.

The concepts from [RS82] were later further developed in a wide range of ap-

plications, cf. e.g. the collaborations of Schulze with Schrohe and Seiler, respec-

tively, [SS94, SS95, SSe02]. Here the algebras have a more detailed structure, in

particular the M-operators are allowed to depend on ξ′ as we describe below.

Remark 5.2.3. In this section, (xn, yn) will be denoted by (t, t′), since this is

customary when working with Mellin operators. In particular, the prime on t′

should not be understood as a “tangential prime” in the sense of x′ and ξ′.

The Mellin transform is invertible in the sense that

f(t) = M−1
z→t

(
f̃(z)

)
=

1

2πi

∫
Lγ

t−z

∫ ∞

0

rz−1f(r) dr dz, (5.2.39)

for “suitable” f , where Lγ = {z ∈ C | Re (z) = 1/2 + γ}. We apply this to

(5.2.19) and obtain

Mϕ(t) = M−1
z→t

(
m̃(z) ϕ̃(z)

)
=

1

2πi

∫
Lγ

t−z m̃(z)
(∫ ∞

0

(t′)z−1 ϕ(t′) dt′
)
dz

=
1

2πi

∫
Lγ

∫ ∞

0

(t/t′)−z m̃(z) ϕ(t′)
dt′

t′
dz.

(5.2.40)

Now, just like we obtain the pseudodifferential operators from the Fourier mul-

tipliers by allowing the symbol to depend on (x, y), we allow the symbol m̃(z) of

the Mellin multiplier in (5.2.40) to depend on (t, t′) to get the Mellin operator

opγ
M f with symbol f(t, t′, z):

[opγ
M f ]u(t) =

1

2πi

∫
Lγ

∫ ∞

0

(t/t′)−z f(t, t′, z)u(t′)
dt′

t′
dz. (5.2.41)

If f is independent of t′, the inner integral is merely the Mellin transform of u:

[opγ
M f ]u(t) =

1

2πi

∫
Lγ

t−zf(t, z) ũ(z) dz. (5.2.42)
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Now, if g̃(xn, yn, ξ
′) is a quasi-homogeneous (B-)singular Green symbol-kernel,

such that

g̃(t, t′, ξ′) = (t′)−1 g̃
(

t
t′
, 1, t′ξ′

)
, (5.2.43)

then, using (5.2.39) and setting p = r/t′, we get∫ ∞

0

g̃(t, t′, ξ′)u(t′) dt′ =
1

2πi

∫
Lγ

t−z

∫ ∞

0

rz−1

∫ ∞

0

g̃(r, t′, ξ′)u(t′) dt′ dr dz

=
1

2πi

∫
Lγ

t−z

∫ ∞

0

∫ ∞

0

rz−1g̃(r, t′, ξ′) dr u(t′) dt′ dz

=
1

2πi

∫
Lγ

t−z

∫ ∞

0

∫ ∞

0

rz−1 (t′)−1 g̃
(

r
t′
, 1, t′ξ′

)
dr u(t′) dt′ dz

=
1

2πi

∫
Lγ

t−z

∫ ∞

0

∫ ∞

0

pz−1 (t′)z−2 g̃(p, 1, t′ξ′) t′ dp u(t′) dt′ dz

=
1

2πi

∫
Lγ

∫ ∞

0

(t/t′)−z

∫ ∞

0

pz−1 g̃(p, 1, t′ξ′) dp u(t′)
dt′

t′
dz.

(5.2.44)

Defining

g(t, t′, ξ′, z) =

∫ ∞

0

pz−1g̃(p, 1, t′ξ′) dp = Mp→z

(
g̃(p, 1, t′ξ′)

)
(5.2.45)

we arrive at

g(ξ′, Dn)u(t) =

∫ ∞

0

g̃(t, t′, ξ′)u(t′) dt′ = [opγ
M g]u(t). (5.2.46)

We conclude that the principal boundary operator g(x′, ξ′, Dn) of a singular Green

operator of order 0, with quasi-homogeneous symbol-kernel g̃(x′, xn, yn, ξ
′), can

be described as a Mellin operator with symbol g(x′, t, t′, ξ′, z) given by (5.2.45).

Note that the symbol in (5.2.45) is independent of t, while most of the litera-

ture on Mellin operators deals with t′-independent symbols. However, there are

formulas to express symbols depending on (t, t′) as symbols depending only on t:

we can find g1(x
′, t, ξ′, z) such that

g(x′, ξ′, Dn) = opγ
M g ∼ opγ

M g1, (5.2.47)

where the ∼ essentially means “modulo smoothing operators” (but is more tech-

nical), cf. [SS95, Theorem 2.3.3].

In the case of our model operator we find the Mellin symbol to be

g(t, t′, ξ′, z) =

∫ ∞

0

pz−1 e
−t′|ξ′|(1+p)

1 + p
dp = Γ(z) Γ

(
1− z, t′|ξ′|

)
, (5.2.48)
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where Γ(a, x) is the (upper) incomplete Gamma function

Γ(a, x) =

∫ ∞

x

ta−1e−tdt, a ∈ C, x ∈ R+. (5.2.49)

For t′|ξ′| > 0, g(t, t′, ξ′, z) is a meromorphic function of z, with simple poles in

z ∈ −N0. When t′|ξ′| = 0, it simplifies to

g(t, 0, 0, z) = Γ(z) Γ(1− z) =
π

sin(πz)
, (5.2.50)

as in (5.2.21).

More generally, one would investigate the Mellin symbol gθ,ϕ(t, t′, z) from

(5.2.45) where g̃θ,ϕ is as in Section 5.2.1. In particular, plugging in (5.2.6) gives

us

gθ,ϕ(t, t′, z) =
i

2π

∫ ∞

0

∫
Γθ,ϕ

pz−1 g̃(p, 1, t′ξ′, λ) dλ dz. (5.2.51)

However, it seems there are no immediate advantages to this, i.e., changing the

order of integration does not seem to simplify.

We considered different pseudodifferential calculi incorporating Mellin opera-

tors; there are several to choose from, e.g. cone algebras, but the appearance of

the t′ξ′ in (5.2.45) — which intuitively corresponds to xn∂x′ , a tangential differ-

ential operator which degenerates at the boundary — makes it natural to look

at some form of an edge calculus:

Let A =
∑

|α|≤m aα(x)Dα
x be a differential operator in Rn

+ with coefficients aα

in C∞(Rn

+). Then A can be rewritten

A = x−m
n

∑
k+|β|≤m

ak,β(x′, xn)(−xn∂n)k(xnDx′)
β, ak,β ∈ C∞(Rn

+). (5.2.52)

Schulze and Seiler [SSe02] call a differential operator of the form (5.2.52) edge-

degenerate, and we see the appearance of xn∂x′ as mentioned above. It should be

mentioned that the class of edge-degenerate operators is much larger than that

induced by operators with smooth coefficients. (The notion of edge-degenerate

operators is closely connected to Mazzeo’s zero calculus, cf. e.g. Albin and Melrose

[AM06] and the references there.)

One description of an edge algebra is given in [SSe02]; we spent quite some

time studying this subject before it was ultimately decided to be too time-

consuming to get to the bottom of edge algebras compared to the expected gains

(it is not at all clear how one would define a residue on the edge algebra).
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5.2.6 The Hilbert transform

Let us finish this discussion with a quick look at an example in one dimension; we

originally looked at this to get an intuitive feel for the problem, but the example

is interesting in its own right.

We look — once again — at Example 4.4.1, transferred to the 1d case by

setting ξ = (0, 0, 0, ξ4). We denote ξ4 by ξ for ease of notation; we get

πθ,ϕ(ξ) =
1

2|ξ|


|ξ| 0 iξ 0
0 |ξ| 0 iξ
−iξ 0 |ξ| 0
0 −iξ 0 |ξ|

 =
1

2


1 0 i sgn(ξ) 0
0 1 0 i sgn(ξ)

−i sgn(ξ) 0 1 0
0 −i sgn(ξ) 0 1

 .

(5.2.53)

The symbol-kernel of the singular Green part becomes

g̃θ,ϕ(xn, yn) =
i

2π

∫ ∞

−∞
g̃(xn, yn, t) dt (5.2.54)

where

g̃(xn, yn, λ) =
1

2σ


iσ 0 −λ 0
0 iσ 0 −λ
−λ 0 −iσ 0
0 −λ 0 −iσ

 e−σ(xn,yn) (5.2.55)

with σ =
√
λ2. Plugging (5.2.55) into (5.2.54) we obtain

g̃(xn, yn) =
1

2π


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 1

xn + yn

. (5.2.56)

The Hilbert transform H ,

H f(x) =
1

π

∫ ∞

−∞

f(y)

x− y
dy, (5.2.57)

is a classical ψdo of order 0 with symbol −i sgn(ξ); this is essentially the symbol of

(5.2.53). Using the reflection operator J : f(x) 7→ f(−x) we define the operators

H and G as

Hf(x) = r+H e+f(x) =
1

π

∫ ∞

0

f(y)

x− y
dy,

Gf(x) = r+H Je+f(x) =
1

π

∫ ∞

0

f(y)

x+ y
dy,

(5.2.58)
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and find that

Πθ,ϕ(P )+ =
1

2


I 0 −H 0
0 I 0 −H
H 0 I 0
0 H 0 I

 , Gθ,ϕ =
1

2


−G 0 0 0
0 −G 0 0
0 0 G 0
0 0 0 G

 . (5.2.59)

Since Πθ,ϕ = Πθ,ϕ(P )+ +Gθ,ϕ is idempotent, we obtain the identities

G2 −H2 = I, GH = HG, (5.2.60)

which are probably well-known. The one on the left is connected to the fact that

H 2 = −I.

5.3 Logarithms

Finally, we have spent a little time working on the idea of an algebra containing

(logP )+, the truncation of logP to Rn
+, for a ψdo P on Rn. As is well known,

the symbol of logP is m log[ξ]+ l(x, ξ), where m is the order of P , [ξ] is a smooth

positive function that equals |ξ| for |ξ| ≥ 1, and l(x, ξ) is a classical ψdo symbol

of order zero; it does not satisfy the transmission condition in general.

We briefly studied the boundary symbol operator p(ξ′, Dn)+ in L2(R+) for

p(ξ) = log |ξ|; what we proved is that one cannot draw any immediate parallels

to Èskin’s algebra.

5.3.1 Analogy to Èskin

Èskin gave the following description of a ψdo of order zero [Èsk73]: Let a(ξ) be

homogeneous of degree 0, and let ã(ξ′, xn) = F−1
ξn→xn

a(ξ′, ξn), a± = a(0,±1) and

u+ = e+u. Then

a(ξ′, Dn)+u = ã ∗ u+ = a+δ− ∗ u+ + a−δ+ ∗ u+ + b ∗ u+ (5.3.1)

where ∗ is convolution, b̃ is in L2,xn(R), and

δ± =
δ

2
± 1

2πi
PV

1

x
. (5.3.2)

This description was central for Èskin in showing that the operators in E in fact

form an algebra. It is an essential detail that the operator Π± : u 7→ δ± ∗ u+ can
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be described as a Mellin multiplier with symbol

µ̃+(s) =
1

1− e2πis
, µ̃−(s) = − e2πis

1− e2πis
. (5.3.3)

While µ̃± is not in M(M∞), it is analytic in the strip {0 < Re s < 1} and

bounded in closed substrips; hence, for each m ∈ M∞, the product µ̃±(s)m̃(s) is

in M(M∞). Below, we look into the possibility of a similar scenario for log |ξ|.
The idea behind (5.3.1) is to control the behavior of a(ξ) for ξn → ±∞: let

H denote the Heaviside function, and split up a as

a(ξ′, ξn) = a+H(ξn) + a−H(−ξn) +
{
a(ξ′, ξn)− a+H(ξn)− a−H(−ξn)

}
. (5.3.4)

The expression enclosed in { } is in L2 wrt. ξn and b̃ is then the inverse Fourier

transform of this, while the δ∓ arises as the inverse Fourier transform of H(±ξn).

We seek to emulate this for the symbol p(ξ) = log |ξ| = 1
2
log(ξ2). Here

b(ξ) = p(ξ)− log |ξn| = 1
2
log(|ξ′|2 + ξ2

n)− log |ξn| = 1
2
log
(
1 +

|ξ′|2

ξ2
n

)
(5.3.5)

is in L2 wrt. ξn, so if we let

` = F−1
ξn→xn

log |ξn| and b̃(ξ′, xn) = F−1
ξn→xn

b(ξ), (5.3.6)

then the action of the boundary symbol operator is given by

p(ξ′, Dn)+u = ` ∗ u+ + b̃ ∗ u+. (5.3.7)

Here ` is a temperate distribution and b̃(ξ′, xn) is in L2,xn(R) for fixed ξ′; in fact,

the dependence of the L2 norm on ξ′ is such that b ∈ S 1
2 (Rn−1;L2(R)).

We find ` to be

` = −1

2
Pf

1

|x|
− γ δ, (5.3.8)

where γ is Euler’s gamma constant and the “pseudofunction” is defined by

Pf
1

|x|
= lim

ε→0+

[H(x− ε)−H(−x− ε)

x
+ 2 log ε δ

]
, (5.3.9)

such that convolution with a function u+ = e+u becomes

(
Pf

1

|x|
∗u+

)
(x) = lim

ε→0+

[ ∫ x−ε

0

u(y)

x− y
dy−

∫ ∞

x+ε

u(y)

x− y
dy+2 log ε u(x)

]
. (5.3.10)
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However, ` is not a homogeneous distribution, and this prevents convolution

with it from being a Mellin multiplier. The easiest way to show this is with a

concrete example: let a > 0 and consider the function

u(y) = e−ay, ũ(s) =

∫ ∞

0

ys−1 u(y) dy = a−s Γ(s). (5.3.11)

The convolution of Pf 1
|x| with u+ is given by the above formula, and we get

(
Pf

1

|x|
∗ u+

)
(x) = lim

ε→0+

[
e−ax

(
Ei(ax)− Ei(a ε)− Γ(0, a ε) + 2 log ε

)]
= e−ax

(
Ei(ax)− 2γ − 2 log a

)
,

(5.3.12)

where Ei is the exponential integral function

Ei(z) = −PV

∫ ∞

−z

e−t

t
dt, (5.3.13)

which is smooth on R+ (and square integrable on [0, 1]).

Convolution with δ is the identity, such that(
` ∗ u+

)
(x) = −1

2
e−ax

(
Ei(ax)− 2γ − 2 log a

)
− γ e−ax = e−ax

(
log a− 1

2
Ei(ax)

)
.

(5.3.14)
The Mellin transform of this is

M
(
` ∗ u+

)
(s) =

∫ ∞

0

xs−1e−ax
(
log a− 1

2
Ei(ax)

)
dx

= a−s Γ(s)
(
log a− π

2
cot(πs)

)
=
(
log a− π

2
cot(πs)

)
ũ(s).

(5.3.15)

The log a term ensures that we cannot find a Mellin symbol h(s) such that

M
(
` ∗ v

)
(s) = h(s)ṽ(s) (5.3.16)

for arbitrary v, and we have shown that convolution with ` is not a Mellin mul-

tiplier.

Remark 5.3.1. The operator p(ξ′, Dn) above can also be described as convo-

lution with p̃(ξ′, xn), the inverse Fourier transform of p(ξ) = log |ξ|. It is given

by

p̃(ξ, xn) = F−1
ξn→xn

p(ξ) = −1

2
e−|ξ

′| |xn| Pf
1

|xn|
− γ δ. (5.3.17)
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For xn > 0, this equals − e−|ξ′|xn

2xn
, which clearly resembles the symbol-kernel of

our model operator quite a lot.

The symbol p(ξ) corresponds to the operator P = 1
2
log(−∆) on Rn; let

J : f(x′, xn) 7→ f(x′,−xn) be the reflection map; then the generalized singular

Green operators, cf. [GG08, Example 2.8],

G+(P ) = r+Pe−J and G−(P ) = Jr−Pe+ (5.3.18)

have symbol-kernels

g̃+(xn, yn, ξ
′) =

(
r+
zn
F−1

ξn→zn
p(ξ)

)∣∣
zn=xn+yn

= −e
−|ξ′|(xn+yn)

2 (xn + yn)
,

g̃−(xn, yn, ξ
′) =

(
r−zn
F−1

ξn→zn
p(ξ)

)∣∣
zn=−xn−yn

= −e
−|ξ′|(xn+yn)

2 (xn + yn)
.

(5.3.19)

We see that the generalized singular Green operator G, with the model kernel

(5.2.9) as its symbol-kernel, arises as G = G±(−2P ) = −G±( log(−∆)
)
.

Another interesting observation in this connection: the function b̃(ξ′, xn) from

above is given, for xn > 0, by

b̃(ξ′, xn) = F−1
ξn→xn

b(ξ) = −1

2

(e−|ξ′|xn

xn

− 1

xn

)
, (5.3.20)

such that

− 2
(
r+
zn
F−1

ξn→zn
b(ξ)

)∣∣
zn=xn+yn

=
e−|ξ

′|(xn+yn)

xn + yn

− 1

xn + yn

, (5.3.21)

which equals h(xn, yn, ξ
′) from (5.2.24).

Remark 5.3.2. In our preprints for [GG08], equation (2.9) there,

(logP )+ : H t(X,E) → H t−ε(X,E) for |t| < 1
2
, (5.3.22)

was stated as being valid for all t > −1
2
. This was a formulational error, for in

fact, it is not.

We can show this easily with the example u(y) = e−y: while u is in H t(R+)

for any t, the boundary symbol operator maps it to the function

v(x) = p(ξ′, Dn)+u(x) = 1
2
e−x
(
Γ(0, x|ξ′| − x) + log(|ξ′|2 − 1)

)
(5.3.23)

which is in L2(R+), but not even in H1(R+):

v′(x) = −e
−|ξ′|x

2x
− v(x) 6∈ L2(R+). (5.3.24)
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Looking at the product ϕ(x′)u(xn) for some ϕ ∈ C∞
0 (Rn−1) and carrying the

situation over to the manifold X, it follows that the statement in (5.3.22) above

is not valid for t > 1.

The error was corrected in the galley proofs.

Remark 5.3.3. Another reason we studied edge algebras was the following: It

is clear from Section 4.3, that an algebra of logarithms automatically would give

us an algebra containing the sectorial projections. Schulze and Seiler [SSe02,

Theorem 4.3.4] describe an edge boundary operator Dµ with principal symbol

|ξ|µ; from this, one could possibly obtain an operator with symbol log |ξ| as

d

dµ
Dµ
∣∣∣
µ=0

. (5.3.25)

However, as mentioned earlier, the edge algebra work was ended when it seemed

to take us too far astray.

5.4 APS operators

In our definition of the sectorial projection of a boundary problem B = (P +G)T ,

we required that the boundary problem {P+ +G− λ, T} was parameter-elliptic

— in the sense of Grubb — for λ in two sectors.

Since normality is a necessary condition for parameter-ellipticity to occur,

cf. [Gru96, Lemma 1.5.7], this requirement excludes an important class of non-

normal boundary value problems, namely the Atiyah-Patodi-Singer (APS) oper-

ators. An APS operator is the realization of a certain class of boundary problems

for first order Dirac operators [APS75].

In other words, our Definition 4.2.3 of noncommutative residue does not apply

to sectorial projections of APS operators, since the definition of the sectorial

projection itself does not apply.

However, for a self-adjoint APS operator D, the projection Π> onto the

eigenspaces of the eigenvalues in R+ can obviously be interpreted as the sectorial

projection Π↓↑(D), where ↓ (↑) corresponds to any angle in the lower (upper)

halfplane. Likewise for Π< and Π↑↓(D).

For such an operator D, there are — to our knowledge — no results on trace

expansions coefficients C0,↓(D) and C0,↑(D), but we can instead define the residue
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analogously to Proposition 4.2.5:

res Π> = res Π↓↑(D) = 1
2
ress=0 η(D, s). (5.4.1)

The right hand side has been extensively examined — for more general APS-

type problems too — in e.g. [GSe96, Corollary 2.4], [BL99, Theorem 3.4], Woj-

ciechowski [Woj99, Theorem 0.2], Grubb [Gru03, Theorem 5.9], and vanishes in

certain cases.

However, [GSe96, Corollary 2.4.(2)] also gives examples of APS-type operators

P≥, for which the right hand side may be non-zero (see [GSe96] for notation):

res Π> = 1
2
ress=0 η(P≥, s) = ress=0 η(P≥, 2s) = 1

4π
Tr(σΠ0(A)). (5.4.2)

Likewise, [Gru03, p. 276–278] indicates that there might be cases where R(P ) is

nonzero. In both cases, a closer analysis would be needed in order to verify this.

5.5 Other ideas

Finally, we sketch a few other ideas related to the question res Πθ,ϕ(B) = 0. We

have not spent any significant time on these approaches, though.

5.5.1 Brüning-Lesch

Brüning and Lesch [BL99, Lemma 2.7] showed that, on a closed manifold, the

vanishing of ress=0 η(P, s) for self-adjoint ψdos P is equivalent to the vanishing

of res Π for any idempotent ψdo Π.

If one was to examine whether a similar equivalence holds on manifolds with

boundary, Proposition 4.2.5 is clearly relevant; however, ress=0 η(B, s) has not

been studied thoroughly for general self-adjoint realizations B and not much is

known, as mentioned in connection with the proposition.

5.5.2 Adjoining projections to A

Another approach might be to use entirely operator algebraic methods; for in-

stance, one could consider the smallest C∗-algebra generated by A and all the

sectorial projections Πθ,ϕ(B), but a simpler path in this direction is to adjoin

a single sectorial projection Π = Πθ,ϕ(PT ) to A to obtain the sub-C∗-algebra

C = C∗(A ,Π) ⊆ B(H) generated by A and Π.
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Hopefully, one could then use some kind of K-theoretic arguments on this new

algebra C to extend the definition of residue and show its (possible) vanishing.

The description of the set of commutators [Π,A ] is probably important for

this approach; for instance, if [Π,A ] ⊆ A Π +A , then 〈A ,Π〉 = A Π +A , since

Π is idempotent and any combination of Π with operators from A can then be

commuted.

5.5.3 Deformation

Given a projection Πθ,ϕ(B), one final approach could be to make a continuous

deformation (through projections) to a projection which is essentially supported

in the interior. The idea of continuous deformations go back to Boutet de Monvel

himself, but also Albin and Melrose worked on this in their recent paper [AM06].

However, it does not immediately seem to be a promising idea: deformations

usually go through elliptic elements, and the projections are not elliptic. One

could imagine making a homotopy B = PT to B′ = P ′
T ′ , and then looking at

the path from Πθ,ϕ(B) to Πθ,ϕ(B′) but it seems highly unlikely that this would

work, since continuous deformations are bad at “conserving the spectrum”, i.e.,

it is hard to imagine that all intermediate realizations in the path would satisfy

the requirements on the spectrum such that the sectorial projection could even

be defined.
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LOGARITHMS AND SECTORIAL PROJECTIONS FOR
ELLIPTIC BOUNDARY PROBLEMS

ANDERS GAARDE and GERD GRUBB

Abstract

On a compact manifold with boundary, consider the realizationB of an elliptic, possibly pseudodif-
ferential, boundary value problem having a spectral cut (a ray free of eigenvalues), say R−. In the
first part of the paper we define and discuss in detail the operator logB; its residue (generaliz-
ing the Wodzicki residue) is essentially proportional to the zeta function value at zero, ζ(B, 0),
and it enters in an important way in studies of composed zeta functions ζ(A,B, s) = Tr(AB−s )
(pursued elsewhere).

There is a similar definition of the operator logθ B, when the spectral cut is at a general angle
θ . When B has spectral cuts at two angles θ < ϕ, one can define the sectorial projection�θ,ϕ(B)
whose range contains the generalized eigenspaces for eigenvalues with argument in ]θ, ϕ[; this
is studied in the last part of the paper. The operator �θ,ϕ(B) is shown to be proportional to the
difference between logθ B and logϕ B, having slightly better symbol properties than they have.
We show by examples that it belongs to the Boutet de Monvel calculus in many special cases, but
lies outside the calculus in general.

1. Introduction

The purpose of this paper is to set up logarithms and sectorial projections
for elliptic boundary value problems, and to establish and analyze residue
definitions associated with these operators. Let us first recall the situation for
boundaryless manifolds:

For a classical elliptic pseudodifferential operator (ψdo) P of orderm > 0,
acting in a vector bundle Ẽ over a closed (i.e., compact boundaryless) n-
dimensional manifold X̃, certain functions of the operator have been studied
with great interest for many years. Assuming that P has no eigenvalues on
some ray, say R−, one has from Seeley’s work [16] that the complex powers
P−s can be defined as ψdo’s by use of the resolvent (P − λ)−1. Moreover,
the zeta function ζ(P, s) = Tr(P−s) has a meromorphic extension to s ∈ C
with at most simple poles at the real numbers {(n− j)/m | j ∈ N} (we denote
{0, 1, 2, . . .} = N). There is no pole at s = 0 (for j = n), and the value ζ(P, 0)
plays an important role in index formulas. Let us define the basic zeta value

Received March 27, 2007.
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C0(P ) by

(1.1) C0(P ) = ζ(P, 0)+ ν0,

where ν0 is the algebraic multiplicity of the zero eigenvalue of P (if any). It
is well-known how C0(P ) can be calculated in local coordinates from finitely
many homogeneous terms of the symbol of P .

Another interesting function of P is logP , defined on smooth functions by

(1.2) logP = lim
s↘0

i

2π

∫
C

λ−s log λ (P − λ)−1 dλ;

here λ−s and log λ are taken with branch cut R−, and C is a contour in C \ R−
going around the nonzero spectrum of P in the positive direction. By use of
the fact that logP = − d

ds
P−s∣∣

s=0, Scott [15] showed that

(1.3) C0(P ) = − 1
m

res(logP),

where res(logP) is a slight generalization of Wodzicki’s noncommutative
residue ([20], Guillemin [11]).

In the case of a compactn-dimensional manifoldXwith boundary ∂X = X′
(smoothly imbedded in an n-dimensional manifold X̃ without boundary), one
can study the analogous operators and constants defined from a realization B
of a pseudodifferential (or differential) elliptic boundary value problem. Here
B = (P +G)T , defined from a system {P+ +G, T } of order m > 0 (m ∈ Z)
in the Boutet de Monvel calculus [2], where P is a ψdo on X̃ and P+ is its
truncation to X (acting in E = Ẽ|X), G is a singular Green operator (s.g.o.)
and T is a system of trace operators. B is the operator acting like P+ +Gwith
domain

(1.4) D(B) = {u ∈ Hm(X,E) | T u = 0},
where Hm(X,E) is the Sobolev space of order m. In the differential operator
case, G = 0. Assuming that for λ on a ray, say R−, {P+ + G − λ, T } satis-
fies the hypotheses of parameter-ellipticity of Grubb [6, Sect. 3.3] (consistent
with those of Seeley [17] in the differential operator case), one can define
the complex powers by functional analysis and study the pole structure of
ζ(B, s) = Tr(B−s) [6, Sect. 4.4], and in particular discuss the basic zeta value
C0(B) defined similarly to (1.1). However, in contrast with the closed mani-
fold case, the powers B−s do not lie in the calculus we are using (in particular
their ψdo part does not satisfy the transmission condition of [2]). Then it is
advantageous to build the analysis more directly on the resolvent, which does
belong to the parameter-dependent calculus set up in [6]. In fact, forN > n/m
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(such that (B − λ)−N is trace-class), there is a trace expansion for λ → ∞ in
a sector V around R−:

(1.5) Tr(B − λ)−N =
∑

0≤j≤n
c
(N)
j (−λ)(n−j)/m−N +O(λ−N−ε)

(ε > 0), and here

(1.6) C0(B) = c(N)n ,

independently of N . It is shown in [8] that for a generalization of (1.3) to B,

(1.7) C0(B) = − 1
m

res(logB),

it is sufficient to be able to define logB; the complex powers B−s are not
needed.

The present paper gives in Sections 2 and 3 a detailed study of logB. For one
thing, this allows a more precise interpretation of the formula (1.7), initiated
in [8]. Another important purpose is to open up for the use of compositions of
logB with other operators. These are needed for the consideration of composed
zeta functions ζ(A,B, s) = Tr(AB−s) with general A from the calculus of
[2], or rather, trace expansion formulas for composed resolventsA(B−λ)−N .
Such a study is carried out in [9] using the results on logB obtained in the
present paper. We show in Section 2 that

(1.8) logB = (logP)+ +Glog,

where Glog is a generalized singular Green operator satisfying a specific part
of the usual symbol estimates for s.g.o.s; its principal part has a singularity at
the boundary. In Section 3 we study its residue.

If, more generally than R−, the ray free of eigenvalues for B (the spectral
cut) is eiθR+ for some angle θ , the corresponding operator functions will be
defined by formulas where λ−s and log λ (as in (1.2)) are replaced by λ−s

θ and
logθ λ with branch cut eiθR+, and the integration curve runs in C \ eiθR+. The
functions are then provided with an index θ ;

(1.9) ζθ (B, s) = Tr(B−s
θ ), logθ B = (logθ P )+ +Glogθ .

WhenB has spectral cuts at θ andϕ for some θ < ϕ < θ+2π , it is of interest to
study the sectorial projection �θ,ϕ(B), a projection whose range contains the
generalized eigenspace ofB for the sector�θ,ϕ = { reiω | r > 0, θ < ω < ϕ }
and whose nullspace contains the generalized eigenspace of B for �ϕ,θ+2π ; it
was considered earlier by Burak [3], and in the boundaryless case by Wodzicki
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[20], Ponge [14]. We show in Section 4 that it equals i
2π (logθ B− logϕ B) and

has the form

(1.10) �θ,ϕ(B) = (�θ,ϕ(P ))+ +Gθ,ϕ.

Here �θ,ϕ(P ) is a zero-order classical ψdo, which satisfies the transmission
condition when m is even, and Gθ,ϕ is a generalized s.g.o., bounded in L2 in
the differential operator case. There are natural types of examples whereGθ,ϕ

is a standard s.g.o. as in [2], but in general it will be of a generalized type
satisfying only part of the standard symbol estimates.

We expect to take up elsewhere the study of its residue, whose possible
vanishing is important for the study of eta functions associated with B.

2. The singular Green part of the logarithm

Let X be a compact n-dimensional C∞ manifold with boundary ∂X = X′,
provided with a hermitian C∞ vector bundle E. We can assume that X is
smoothly imbedded in ann-dimensional manifold X̃without boundary and that
E is the restriction toX of a bundle Ẽ over X̃. Consider a system {P+ +G, T }
of operators in the Boutet de Monvel calculus [2] (pseudodifferential boundary
operators, ψdbo’s). Here P is defined as a ψdo of order m > 0 on X̃ acting
on the sections of Ẽ, and its truncation to X is

(2.1) P+ = r+Pe+, r+ restricts from X̃ to X◦, e+ extends by 0.

To assure that P+ maps C∞(X,E) into itself, P is assumed to satisfy the
transmission condition, which means that in local coordinate systems at the
boundary, where the manifold is replaced by Rn+ = {x = (x1, . . . , xn) | xn >
0}, with notation x ′ = (x1, . . . , xn−1),

(2.2) ∂βx ∂
α
ξ pm−j (x ′, 0, 0,−ξn)

= (−1)m−j−|α|∂βx ∂
α
ξ pm−j (x ′, 0, 0, ξn) for |ξn| ≥ 1,

for all indices; m is integer. (A discussion of such conditions can be found in
Grubb and Hörmander [10].) G is a singular Green operator in E of order and
classm, and T = {T0, . . . , Tm−1} is a system of trace operators Tk of order and
class k, going from E to bundles Fk over ∂X, defining an elliptic boundary
value problem. In particular,

(2.3)
∑

0≤k≤m−1

dim Fk = 1
2m dimE.

Details on these operator types can be found in [2], [6].
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We assume that the system {P+ + G − λ, T } satisfies the conditions of
parameter-ellipticity in [6, Def. 3.3.1] for λ on the rays in a sector V around
R−. In particular, it can be a differential operator system; here P and T are
differential, and G is omitted. A classical example is the Laplace operator on
a domain in Rn, together with the Dirichlet trace operator T = γ0.

It should be noted that the hypotheses imply that the trace operator is normal,
as accounted for in [6, Section 1.5].

The system has a certain regularity number ν in the sense of [6]; it is
an integer or half-integer in

[
1
2 ,m

]
for pseudodifferential problems, +∞ for

purely differential problems.
From the system we define the realization B = (P +G)T as the operator

acting like P+ + G with domain (1.4). By [6, Ch. 3], the resolvent Rλ =
(B − λ)−1 exists on each ray in V for sufficiently large |λ|, and is O(λ−1) in
L2 operator norm there. It has the structure

(2.4) Rλ = Qλ,+ +Gλ,

where Qλ = (P − λ)−1 on X̃ (which can be assumed to be compact), and Gλ

is the singular Green part. Since the spectrum of B is discrete, we can assume
(after a small rotation if necessary) that R− is free of eigenvalues of B, and
likewise for P .

We shall define the operator log(B) = log((P +G)T ), also written logB,
log(P +G)T , by

(2.5) log(P +G)T = lim
s↘0

i

2π

∫
C

λ−s log λRλ dλ,

to be further explained below; here C is a Laurent loop
(2.6)
C = {reiπ | ∞ > r > r0} ∪ {r0eiω | π ≥ ω ≥ −π} ∪ {re−iπ | r0 < r < ∞}
going around the nonzero spectrum of (P +G)T in the positive direction.

Insertion of the decomposition (2.4) in the defining formula (2.5) shows
that Qλ,+ contributes with

(2.7) lim
s↘0

i

2π

∫
C

λ−s log λ r+Qλe
+ dλ = r+(logP)e+ = (logP)+,

where logP is well-known from the closed manifold case, cf. (1.2). Its symbol
in local coordinates is of the form

(2.8) symb(logP) = m log[ξ ] + l(x, ξ),
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where l(x, ξ) is a classicalψdo symbol of order 0 (see also the lemma below),
and [ξ ] is a smooth positive function that equals |ξ | for |ξ | ≥ 1. The operator
is continuous from Ht(X̃, Ẽ) to Ht−ε(X̃, Ẽ) for any ε > 0; hence

(2.9) (logP)+:Ht(X,E) → Ht−ε(X,E) for |t | < 1
2 .

(The limit for s → 0 in (2.7) can be taken in this operator norm.)
In even-order cases, the transmission condition satisfied by P carries over

to l(x, ξ):

Lemma 2.1. When m is even, l(x, ξ) satisfies the transmission condition.

Proof. As shown e.g. in Okikiolu [13], the symbol of logP is calculated
in local coordinates from the symbol q(x, ξ, λ) of Qλ by integration with
log λ around the spectrum of the principal symbol pm of P ; here the quasi-
homogeneous terms in the expansion q(x, ξ, λ) ∼ ∑

j∈N q−m−j (x, ξ, λ) (ho-

mogeneous of degree −m− j in (ξ, |λ| 1
m ) on each ray) contribute as follows:

(2.10)

i

2π

∫
C (x,ξ)

log λ q−m(x, ξ, λ) dλ

= i

2π

∫
C (x,ξ)

log λ(pm(x, ξ)− λ)−1 dλ = logpm(x, ξ)

= log([ξ ]m)+ log([ξ ]−mpm(x, ξ)) = m log[ξ ] + l0(x, ξ),

i

2π

∫
C (x,ξ)

log λ q−m−j (x, ξ, λ) dλ = l−j (x, ξ) for j > 0,

where C (x, ξ) is a closed curve in C \ R− around the spectrum of pm(x, ξ).
Each l−j is homogeneous in ξ of degree −j for |ξ | ≥ 1; for j = 0 it follows
since [ξ ]−mpm(x, ξ) is so, and for j ≥ 1 it is seen e.g. as follows (where we
set λ = tm�):

l−j (x, tξ) = i

2π

∫
C (x,tξ)

log λ q−m−j (x, tξ, λ) dλ

= i

2π

∫
t−mC (x,tξ)

(log � +m log t)t−m−j q−m−j (x, ξ, �)tmd�

= t−j l−j (x, ξ)+mt−j log t
i

2π

∫
C (x,ξ)

q−m−j (x, ξ, �) d�,

where the last term is zero since q−m−j isO(|�|−2) for |�| → ∞ when j > 0.
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When m is even, we see that the transmission condition (2.2) carries over
through the calculations (2.10) to the corresponding property for l(x, ξ), since
the parity of −j is the same as that of −j −m.

Now consider the contribution from Gλ. Here we shall use the following
observations:
(2.11)
Qλ + λ−1 = Qλ + λ−1(P − λ)Qλ = λ−1PQλ on X̃,

Rλ + λ−1

= Rλ + λ−1(P+ +G− λ)Rλ = λ−1(P+ +G)(Qλ,+ +Gλ)

= λ−1[(PQλ)+ − L(P,Qλ)+GQλ,+ + (P+ +G)Gλ]

= Qλ,+ + λ−1 + λ−1[−L(P,Qλ)+GQλ,+ + (P+ +G)Gλ] on X;
they imply in view of (2.4) that Gλ may be written as

(2.12) Gλ = λ−1[−L(P,Qλ)+GQλ,+ + (P+ +G)Gλ].

Here L(P,Qλ) = G+(P )G−(Qλ) in local coordinates. (The latter formula
is accounted for in [6, (1.2.49–50) and Sect. 2.6]; we recall that G+(P ) =
r+Pe−J andG−(P ) = J r−Pe+, where e± extends by zero from Rn± to Rn, r±
restricts from Rn to Rn±, and J is the reflection map J : u(x ′, xn) �→ u(x ′,−xn).)
By [6, Th. 3.3.2],Gλ is of order −m and regularity ν; moreover, (2.12) shows
that it is λ−1 times an s.g.o. of order 0 and regularity ν (by the composition
rules in [6, Th. 2.7.6–7]).

Since

Qλ:L2(X̃, Ẽ) → Hm−ε(X̃, Ẽ),
Gλ:L2(X,E) → Hm−ε(X,E),

with norms O(λ−ε/m),

for ε ∈ [0,m] (a standard observation used also in [6, pp. 409–410]), each of
the terms in [ ] in (2.12) maps L2(X,E) to H−ε(X,E) with norm O(λ−ε/m).
Then we can perform the integration in this operator norm (letting s → 0),
defining the s.g.o.-like part Glog of log(P +G)T by

(2.13)

Glog = i

2π

∫
C

log λGλ dλ

= i

2π

∫
C

λ−1 log λ[−L(P,Qλ)+GQλ,+ + (P+ +G)Gλ] dλ,

also written as
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(2.14) Glog = −G+(P )
i

2π

∫
C

λ−1 log λG−(Qλ) dλ

+G
i

2π

∫
C

λ−1 log λQλ,+ dλ+ (P+ +G)
i

2π

∫
C

λ−1 log λGλ dλ,

when localized. It is a bounded operator from L2(X,E) to H−ε(X,E). Sum-
ming up, we have found:

Theorem 2.2. The logarithm of the realization B = (P +G)T satisfies

(2.15) logB = log(P +G)T = (logP)+ +Glog,

where logP is the logarithm of P on X̃, and Glog is defined by (2.13), (2.14);
the terms are bounded operators from L2(X,E) to H−ε(X,E) (any ε > 0).

The operator Glog is a generalized singular Green operator, in the same
spirit as the generalized s.g.o.s G(−s) studied in [6, Sect. 4.4] (the s.g.o.-like
parts of the powers B−s), and one can show as in [6, Th. 4.4.4] that there is a
symbol-kernel satisfying part of the usual L2,xn,yn (R

2++) estimates for s.g.o.s,

allowing Dβ

x ′ , Dα
ξ ′ , (xnDxn)

k and (ynDyn)
l in arbitrarily high powers (with

exceptions for the principal term), and allowing some applications of xknD
k′
xn

and ylnD
l′
yn

, limited by the regularity and other restrictions. We account for this
in Theorem 2.6 below; let us first consider an example.

Example 2.3. Let P = 1 − � on Rn+. It is easy to see that the solution
operator for the Dirichlet problem for P −λ = 1 −�−λ, λ ∈ V = C \R+, is
Rλ = Qλ,++Gλ, whereQλ is theψdo (1−λ−�)−1 with symbol (〈ξ〉2−λ)−1,
andGλ is the singular Green operator with symbol-kernel −1

2κ1
e−κ1(xn+yn); κ1 =

(〈ξ ′〉2−λ) 1
2 . (We here use the well-known notation 〈x〉 = (x2

1 +· · ·+x2
n+1)

1
2 .)

It follows that

(2.16) logP = OP(2 log〈ξ〉).
To find out how Glog acts on functions ϕ ∈ C∞

0 (R
n+), we write (using that

e−κ1(xn+yn) is rapidly decreasing in λ on the rays in V when yn is in the support
of ϕ):

Glogϕ = i

2π

∫
C

log λGλϕ dλ

= i

2π

∫
C

∫
Rn−1

∫ ∞

0
log λ eix

′ ·ξ ′ −1

2κ1
e−κ1(xn+yn)ϕ́(ξ ′, yn) dyn d−ξ ′ dλ,
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with ϕ́ denoting the partial Fourier transform ϕ́(ξ ′, yn) = Fy ′→ξ ′ϕ(y ′, yn).
Here we can calculate
(2.17)

i

2π

∫
C

log λ
−1

2κ1
e−κ1(xn+yn) dλ =

∫ 0

−∞
1

2(〈ξ ′〉2 − t)
1
2

e−(〈ξ
′〉2−t) 1

2 (xn+yn) dt

=
∫ ∞

0

1

2(〈ξ ′〉2 + s)
1
2

e−(〈ξ
′〉2+s) 1

2 (xn+yn) ds

=
∫ ∞

〈ξ ′〉
1

2u
e−u(xn+yn) 2u du

= 1

xn + yn
e−〈ξ ′〉(xn+yn),

using that the log |λ| contributions cancel out (as in [8, Lemma 1.2]). Thus

Glogϕ =
∫

Rn−1

∫ ∞

0
eix

′ ·ξ ′ 1

xn + yn
e−〈ξ ′〉(xn+yn)ϕ́(ξ ′, yn) dynd−ξ ′.

This shows that Glog is a generalized kind of s.g.o. with symbol-kernel

(2.18) g̃log(x ′, xn, yn, ξ ′) = 1

xn + yn
e−〈ξ ′〉(xn+yn).

Since the operator with kernel 1
xn+yn is bounded in L2(R+) (as a truncation of

the Hilbert transform), it follows that Glog is a bounded operator in L2(Rn+).
Note that ∂ξ1 g̃

log is a standard s.g.o. symbol-kernel, and that xng̃log is
bounded.

The same calculations with 〈ξ ′〉 replaced by |ξ ′| show that for P = −�,
Glog has symbol-kernel 1

xn+yn e
−|ξ ′|(xn+yn) for |ξ ′| ≥ 1.

In the general differential operator case, Glog is qualitatively very much
like in this example. Here one can directly use the symbol-kernel estimates and
boundedness considerations worked out by Seeley in [17], [18]. Notationally,
we follow [8]; in particular, the enumeration of quasi-homogeneous (resp.
homogeneous) terms in the asymptotic expansions of singular Green symbol-
kernels (resp. symbols) have been shifted by one step in comparison with [6],
in order to have the same index on an s.g.o. symbol-kernel (resp. symbol) and
its normal trace. For example, the principal part of a symbol-kernel g̃ of order
−m is denoted g̃−m (although the corresponding symbol g−m has homogeneity
degree −m − 1). We shall use the notation ≤̇ (resp. ≥̇) to indicate “less than
or equal (resp. greater than or equal) to a constant times”, and =̇ to indicate
that both ≤̇ and ≥̇ hold.
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Theorem 2.4. Consider the case whereP is a differential operator,G = 0,
and the trace operators T0, . . . , Tm−1 are differential operators. In this case,
the singular Green partGλ of the resolvent is of regularity +∞ and its symbol-
kernel in local coordinates g̃ ∼ ∑

j≥0 g̃−m−j , expanded in quasi-homogeneous
terms

(2.19) g̃−m−j
(
x ′,

xn

t
,
yn

t
, tξ ′, tmλ

)
= t−m+1−j g̃−m−j (x ′, xn, yn, ξ ′, λ) for t ≥ 1, |ξ ′| ≥ 1,

satisfies estimates on the rays in V , with κ = |ξ ′| + |λ| 1
m :

(2.20)∣∣Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
D
p

λ g̃−m−j
∣∣ ≤̇ κ1−m−|α|−k+k′−l+l′−j−mpe−cκ(xn+yn)

for all indices, when κ ≥ ε.
Then Glog is, in local coordinates near X′, a generalized singular Green

operator

(2.21)
Glogu(x) =

∫
Rn−1

∫ ∞

0
eix

′ ·ξ ′
g̃log(x ′, xn, yn, ξ ′)ú(ξ ′, yn) dyn d−ξ ′

= OPG(g̃log(x ′, xn, yn, ξ ′))u(x)

with g̃log ∼ ∑
j∈N g̃

log
−j ; here the j ’th term is quasihomogeneous:

(2.22) g̃
log
−j

(
x ′,

xn

t
,
yn

t
, tξ ′

)
= t1−j g̃log

−j (x
′, xn, yn, ξ ′) for t ≥ 1 and |ξ ′| ≥ 1,

and satisfies, when |ξ ′| ≥ ε,

(2.23)
∣∣Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
−j
∣∣ ≤̇ |ξ ′|−|α|−k+k′−l+l′−j 1

xn+yn e
−c|ξ ′|(xn+yn)

for the indices satisfying

(2.24) −k + k′ − l + l′ − |α| − j ≤ 0.

It follows in particular that Glog is a bounded operator in Lp(X,E) for
1 < p < ∞.

Proof. The estimates (2.20) were shown in [17, (29)], [18]. Because of the
fall-off in λ, they allow us to define the j ’th term in the symbol-kernel ofGlog
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for |ξ ′| ≥ ε by

(2.25)

g̃
log
−j (x

′, xn, yn, ξ ′) = i

2π

∫
C

log λg̃−m−j (x ′, xn, yn, ξ ′, λ) dλ

=
∫ ∞

0
g̃−m−j (x ′, xn, yn, ξ ′,−s) ds;

here we rewrote the integral as in (2.17) (and [8, Lemma 1.2]). The homo-
geneity is seen from the last integral, using (2.19). The function is estimated
as follows, for the indices satisfying (2.24), when we use that |ξ ′| + s

1
m =̇

(|ξ ′|m + s)
1
m :

(2.26)∣∣Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
−j
∣∣

=
∣∣∣∣∫ ∞

0
D
β

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃−m−j (x ′, xn, yn, ξ ′,−s) ds

∣∣∣∣
≤̇ |ξ ′|−|α|−k+k′−l+l′−j

∫ ∞

0

(
(|ξ ′|m + s)

1
m

)1−m
e−c(|ξ

′|m+s) 1
m (xn+yn) ds

= |ξ ′|−|α|−k+k′−l+l′−j
∫ ∞

|ξ ′|
u1−me−cu(xn+yn)mum−1 du

= |ξ ′|−|α|−k+k′−l+l′−j m
c(xn+yn) e

−c|ξ ′|(xn+yn).

The operator Glog is defined from a finite number of these symbol terms
multiplied with an excision function ζ(|ξ ′|), where
(2.27)

ζ(t) ∈ C∞(R), ζ(t) = 0 for |t | ≤ δ1, ζ(t) = 1 for |t | ≥ δ2,

plus an integral as in (2.13) of the remainder of Gλ, which can be taken with
arbitrarily high smoothness of the kernel and decrease for λ → ∞, cf. [18,
(2.14)]. Applying the arguments of Theorem 1 of [18] (using Lemmas 1 and 2
there invoking Mihlin’s theorem and the Hilbert transform) one finds thatGlog

is Lp-continuous as asserted.

Remark 2.5. The lower order terms in g̃log and the derivatives are not as
singular for xn + yn → 0 as (2.23) indicates. In fact, the symbol-kernels one
step down can be estimated as follows:

(2.28) When − k + k′ − l + l′ − |α| − j ≤ −1,
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∣∣Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
−j
∣∣ ≤̇ |ξ ′|−|α|−k+k′−l+l′−j+1

∫ ∞

|ξ ′|
u−1−εuεe−cu(xn+yn) du

≤̇ |ξ ′|−|α|−k+k′−l+l′−j+1+ε sup
u∈R+

∣∣uεe−cu(xn+yn)∣∣
≤̇ |ξ ′|−|α|−k+k′−l+l′−j+1+ε(xn + yn)

−ε,

for ε > 0. The symbol-kernels two steps down are bounded for xn + yn → 0:

(2.29) When − k + k′ − l + l′ − |α| − j ≤ −2,∣∣Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
−j
∣∣ ≤̇ |ξ ′|−|α|−k+k′−l+l′−j+2

∫ ∞

0

(|ξ ′| + s
1
m

)−m−1
ds

≤̇ |ξ ′|−|α|−k+k′−l+l′−j+1,

and the smoothness at 0 increases with increasing |α| and j .

Now let us turn to the pseudodifferential case and the methods of [6,
Sect. 4.4].

Theorem 2.6. Let {P++G, T } have regularity ν ∈ [ 1
2 ,∞

[
, and defineGlog

by (2.13). Then Glog is, in local coordinates near X′, a generalized singular
Green operator as in (2.21) with g̃log ∼ ∑

j∈N g̃
log
−j ; here the j ’th term is

quasihomogeneous as in (2.22) when j > 0, and the series approximates g̃log

asymptotically in the sense that

(2.30)

∥∥∥∥Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn

[
g̃log −

∑
j<J

g̃
log
−j

]∥∥∥∥
L2,xn,yn

≤̇ 〈ξ ′〉−|α|−k+k′−l+l′−J

holds for the indices satisfying

(2.31)
−k + k′ − l + l′ − |α| − J < 0,

[k − k′]− + [l − l′]− < ν.

Moreover,

(2.32)
∥∥Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
−J
∥∥
L2,xn,yn

≤̇ 〈ξ ′〉−|α|−k+k′−l+l′−J

holds for these indices.
With ζ(t) defined as in (2.27), the above symbol-kernels multiplied with

ζ(xn)ζ(yn) satisfy estimates for all α, β, J, k, k′, l, l′ with 〈ξ ′〉−M , any M , in
the right-hand side.

Proof. This is modeled after the proof of [6, Th. 4.4.4] and the remarks
preceding it.
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We recall from [6, Th. 3.3.9] that the symbol-kernel g̃(x ′, xn, yn, ξ ′, λ) of
Gλ (in a local coordinate system) has an expansion in quasi-homogeneous
terms g̃ ∼ ∑

j≥0 g̃−m−j satisfying (2.19) in V , and that one has for all indices,

denoting λ = −μmeiω (μ > 0), (|ξ ′|2 + μ2 + 1)
1
2 = 〈ξ ′, μ〉:

(2.33)

∥∥∥∥Dβ

x ′,ωD
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn

[
g̃ −

∑
j<J

g̃−m−j
]∥∥∥∥

L2,xn,yn

≤̇ (〈ξ ′〉ν−M ′ + 〈ξ ′, μ〉ν−M ′)〈ξ ′, μ〉−m−ν+M ′′

≤̇
{ 〈ξ ′, μ〉−m−M ′+M ′′

, when M ′ ≤ ν,

〈ξ ′〉ν−M ′ 〈ξ ′, μ〉−m−ν+M ′′
, when M ′ ≥ ν,

with

(2.34)

M ′ = [k − k′]+ + [l − l′]+ + |α| + J,

M ′′ = [k − k′]− + [l − l′]−; so

−M ′ +M ′′ = −k + k′ − l + l′ − |α| − J.

The notation N± = max{±N, 0} is used, and we have (as recalled earlier)
changed the indexation from [6] by one step as in [8].

Let us first observe that the “error terms” and remainders in the resolvent
construction, that are negligible in the class of operators of order −m and
regularity ν, give rise to generalized s.g.o. error terms G′ here, satisfying
estimates of the type (as in [6, Lemma 2.3.11])

(2.35)

∥∥∥∥Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃′
∥∥∥∥
L2,xn,yn

≤̇ 〈ξ ′〉−M
∣∣∣∣∫

C

log λ〈λ〉−1−(ν−[k−k′]−−[l−l′]−)/m dλ
∣∣∣∣

≤̇ 〈ξ ′〉−M, for any M , when [k − k′]− + [l − l′]− < ν.

It follows that the corresponding kernels KG′(x, y) satisfy, for these indices:

(2.36) sup
x ′,y ′

∥∥Dγ

x ′,y ′x
k
nD

k′
xn
ylnD

l′
yn

KG′
∥∥
L2,xn,yn

< ∞.

For j > 0 the L2,xn,yn -norm of g̃−m−j is O(λ−1−1/2m) since ν ≥ 1
2 , so

the corresponding term g̃
log
−j can be defined directly for |ξ ′| ≥ 1 by Cauchy

integrals as in (2.25), convergent in the L2,xn,yn -norm. The quasi-homogeneity
of g̃log

−j is seen as in (2.25) by using [8, Lemma 1.2] in L2,xn,yn -norm.

71



256 anders gaarde and gerd grubb

We use the estimates (2.33) to see that for g̃log − ∑
j<J g̃

log
−j with J > 0

(so that the first term is excluded), the integrand in the corresponding Cauchy
integral is O(λ−1−ε) in L2,xn,yn -norm (some ε > 0), when

(2.37) −k+k′ − l+ l′ − |α|−J < 0, if [k−k′]+ + [l− l′]+ +|α|+J ≤ ν,

and when

(2.38) [k − k′]− + [l − l′]− < ν, if [k − k′]+ + [l − l′]+ + |α| + J ≥ ν.

Then the integral converges and defines a symbol-kernel satisfying the asserted
estimate. Since

−k+k′−l+l′−|α|−J = [k−k′]−+[l−l′]−−([k−k′]++[l−l′]++|α|+J ),
we see that the conditions “if . . . ” can be left out in (2.37)–(2.38), leading to
the formulation (2.31).

We still have to consider the first term g̃
log
0 in g̃log, defined from the prin-

cipal part g̃−m of g̃. Here we use that g̃−m can be found by performing the
resolvent construction on the principal boundary symbol level for the corres-
ponding operators on L2(R+), and that they obey a one-dimensional version
of the identities in (2.11). So we can replace g̃−m by the symbol-kernel of the
principal boundary symbol version of (2.12), which gives a convergent Cauchy
integral, when the λ-independent factors are pulled outside of the integration.
In a formal sense, we can ascribe it a symbol-kernel g̃log

0 (x ′, xn, yn, ξ ′). The
resulting boundary symbol operator is continuous from L2(R+) to H−ε(R+)
for ε > 0, at each (x ′, ξ ′). If we define the functions derived from g̃log

0 “weakly”
by

D
β

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
0 (x ′, xn, yn, ξ ′)

= i

2π

∫
C

log λDβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃−m(x ′, xn, yn, ξ ′, λ) dλ,

we can use that the integral converges inL2,xn,yn -norm when the indices satisfy
(2.31). In this sense, the estimates (2.30) hold also when J = 0 in (2.31).

The estimates (2.32) of the individual terms follow from (2.30) since g̃log
−J =(

g̃log −∑
j<J g̃

log
−j
)− (

g̃log −∑
j<J+1 g̃

log
−j
)
.

Finally, for the statements on the symbol-kernels multiplied with
ζ(xn)ζ(yn), note that ζ(t) can for any k ∈ N be written as tkζk(t) with a
bounded smooth function ζk , so from the already shown estimates we can in-
fer arbitrarily rapid fall-off in ξ ′ by rewriting with arbitrarily high powers of
xn and yn.
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If Rλ has infinite regularity, ν can be arbitrarily large in the second line of
(2.31), so the line can be left out. Note that even then there is a limitation on
the indices for which we get standard s.g.o. estimates.

While Glog is the primary s.g.o.-type operator to consider in this con-
nection, it is also of interest to study some other s.g.o.-type operators here,
namely, in local coordinates, G+(logP) = r+(logP)e−J and G−(logP) =
J r−(logP)e+, with notation as in the text after (2.12). The operators
G±(logP) have properties very similar to those of Glog:

Theorem 2.7. The operators G±(logP) are defined in local coordinates
by

(2.39)

G+(logP) = r+ logPe−J = r+ i

2π

∫
C

log λQλ dλ e
−J

= i

2π

∫
C

λ−1 log λG+(PQλ) dλ,

G−(logP) = J r− logPe+ = J r− i

2π

∫
C

log λQλ dλ e
+

= i

2π

∫
C

λ−1 log λG−(PQλ) dλ.

Their symbol-kernels g̃±(logp) have properties like those of g̃log in The-
orem 2.6, with ν = m.

In particular, when P is a differential operator, the s.g.o.s G±(Qλ) satisfy
Seeley’s estimates (2.20), and hence the operators G±(logP) have symbol
estimates and boundedness properties like those of Glog in Theorem 2.4, Re-
mark 2.5.

Proof. The defining integrals are established by use of the first formula in
(2.11), noting that G±(λ−1) = 0. By [6, Th. 2.7.4], G±(Qλ) is a parameter-
dependent polyhomogeneous family of s.g.o.s of order −m and regularitym−ε
(any ε > 0), since Qλ is of order −m and regularity m. The symbol-kernel
then satisfies estimates like those for g̃ in Theorem 2.6, with ν = m− ε. The
method of Theorem 2.6 leads to the conclusion that the resulting symbol-kernel
g̃±(logp) has properties like those stated for g̃log, with ν = m− ε; here ε can
be removed since the second inequality in (2.31) is sharp.

For the second statement, we must show that the Seeley estimates (2.20) are
valid for the homogeneous terms in the symbol-kernel of G±(Qλ). But this is
easy. Consider e.g.G+(Qλ). Using the Taylor expansion of the symbol ofQλ

at xn = 0:
q(x ′, xn, ξ, λ) ∼

∑
l∈N

1
l!x

l
n∂
l
xn
q(x ′, 0, ξ, λ)
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we have from [6, Th. 2.7.4] that

g+(q)(x ′, ξ, ηn, λ) ∼
∑
l∈N

1
l!D

l

ξn
g+[∂lxnq(x

′, 0, ξ, λ)],

where g+[f ](ξn, ηn) is the s.g.o. symbol corresponding to the symbol-kernel
g̃+[f ](xn, yn) defined by:

g̃+[f ](xn, yn) = (
r+
zn

[F −1
ξn→zn

f ]
)|zn=xn+yn .

The homogeneous terms in the symbols ∂lxnq(x
′, 0, ξ, λ) are rational functions

of ξn with 1
2m dimE poles in C± = {z ∈ C | Im z ≷ 0}, lying inside a

circle of radius Cκ and having a distance ≥ cκ from the real axis, for suitable
positive constants C > c. (A more detailed description is given e.g. in [6,
Remark 3.3.7].) For simplicity of notation, consider the j ’th term q−m−j itself.
The inverse Fourier transform evaluated at zn > 0 can be written as an integral
of eiznξnq−m−j (x ′, 0, ξ ′, ξn) over the curve bounding the intersection of the
circle {|ξn| = Cκ} with the halfplane {Im ξn ≥ cκ} (lying in C+). We get
the factor e−cκzn since |eiznξn | ≤ e−cκzn on the curve. (Similarly, the inverse
Fourier transform evaluated at zn < 0 can be written as an integral over a
closed curve in C− with Im ξn ≤ −cκ .) For the resulting symbol-kernel, this
gives the factor e−cκ(xn+yn); the power of κ in front is seen from the degree of
the rational function.

Once the estimates (2.20) are established, the rest of the proof goes as in
Theorem 2.4.

Example 2.8. For P = 1 − � as in Example 2.3, one finds by direct
calculation of the inverse Fourier transform w.r.t. ξn that G±(Qλ) both have
the symbol-kernel

(2.40) g̃+ = g̃− = 1

2κ1
e−κ1(xn+yn),

with κ1 = (〈ξ ′〉2 − λ)
1
2 . Then the calculations of Example 2.3 can be used

again, to see that
(2.41)

g̃+(logp)(x ′, xn, yn, ξ ′) = g̃−(logp)(x ′, xn, yn, ξ ′) = −1

xn + yn
e−〈ξ ′〉(xn+yn).

For P = −�, the calculations give that the symbol-kernel ofG±(logP) is
−1

xn+yn e
−|ξ ′|(xn+yn) for |ξ ′| ≥ 1; the same holds for P = OP([ξ ]2).

When the order m is even, there is a remarkable simplification in view of
Lemma 2.1:
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Proposition 2.9. When m = 2k, k integer > 0, then in local coordinates,
the symbol-kernel of G±(logP) satisfies for |ξ ′| ≥ 1:

(2.42) g̃±(logp)(x ′, xn, yn, ξ ′) = −k
xn + yn

e−|ξ ′|(xn+yn)+g̃±,0(x ′, xn, yn, ξ ′),

where g̃±,0(x ′, xn, yn, ξ ′) is a standard singular Green symbol of order and
class 0.

Proof. We here have in view of Lemma 2.1 that the symbol of logP is the
sum of k log[ξ ]2 and a symbol l(x, ξ) of order 0 satisfying the transmission
condition. Then we can apply Example 2.8 to the first term and the standard
G± construction (of [6]) to the second term.

Thus in the even-order case, the terms in G±(logP) of order < 0 satisfy
all the standard s.g.o. estimates.

3. Trace formulas

The normal trace trn G of a singular Green operator G with symbol-kernel
g̃(x ′, xn, yn, ξ ′) in a local coordinate system is theψdo S = trn Gwith symbol

(3.1) s(x ′, ξ ′) = (trn g̃)(x
′, ξ ′) =

∫ ∞

0
g̃(x ′, xn, xn, ξ ′) dxn.

In the differential operator case, we see from the estimates (2.23), (2.28),
(2.29) that trn g̃

log
−j is well-defined for j ≥ 1. (Example 2.3 shows that this will

generally not hold for the principal part.) In view of the homogeneity (2.22),
trn g̃

log
−j is homogeneous of degree −j in ξ ′ for |ξ ′| ≥ 1, hence a classical ψdo

symbol of degree −j . In the pseudodifferential case, we have when ν > 1 and
j ≥ 1 that the L2,xn,yn -estimates of g̃log

−j , yng̃
log
−j , ∂yn g̃

log
−j and yn∂yn g̃

log
−j imply

as in [6, pf. of Th. 3.3.9] that there is a well-defined normal trace, again a
homogeneous classical symbol of order −j . This estimation applies also to
remainders g̃log −∑

j<J g̃
log
−j for J ≥ 1.

For ν = 1
2 or 1, the estimates in Theorem 2.6 do not provide the estimates

of ∂yn g̃
log
−j needed for this argument. However, it is still posssible to take the

normal trace of Gλ, subtract the principal part, and integrate the remaining
operator with log λ to get a classical ψdo of order −1.

Theorem 3.1. In a local coordinate system, let Sλ = trn Gλ with sym-
bol s(x ′, ξ ′, λ) = (trn g̃)(x ′, ξ ′, λ), expanded in terms s−m−j (x ′, ξ ′, λ) =
(trn g̃−m−j )(x ′, ξ ′, λ). Define the parts of Gλ and Sλ of order −m− 1 by

(3.2)
Gλ,sub = Gλ − OPG(g̃−m(x ′, xn, yn, ξ ′, λ)),

Sλ,sub = trn Gλ,sub = Sλ − OP′(s−m(x ′, ξ ′, λ))
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(the remainders after subtracting principal parts), and let

(3.3) G
log
sub = i

2π

∫
C

log λGλ,sub dλ,

with symbol-kernel g̃log
sub = g̃log − g̃

log
0 . The formula

(3.4) S
log
sub = i

2π

∫
C

log λ Sλ,sub dλ

defines a classicalψdo of order −1, with symbol s log
sub(x

′, ξ ′) expanded in terms

(3.5) s
log
sub,−j (x

′, ξ ′) = i

2π

∫
C

log λ s−m−j (x ′, ξ ′, λ) dλ, j ≥ 1.

When ν > 1, S log
sub is the normal trace of Glog

sub.

Proof. Since Gλ and Gλ,sub are of regularity ν ≥ 1
2 , Sλ and Sλ,sub are of

regularity ν − 1
4 ≥ 1

4 , cf. [8, Section 3]. In particular, the symbols in Sλ,sub

are O(λ−1−1/4m) on the rays in V so that the integrals in (3.4) and (3.5) make
sense.

As accounted for in the text before the theorem, there are estimates in
the cases ν > 1 that allow interchange of the λ-integral with the xn-integral
involved in taking trn.

For the operator in Example 2.3, we note that Sλ = trn Gλ is the ψdo with
symbol −(2κ1)

−2 = − 1
4 (〈ξ ′〉2−λ)−1, so its log-integral gives − 1

4 log(1−�x ′).
This demonstrates that the “log-transform” of the principal part of Sλ will not
in general be a classical ψdo.

Finally, we shall connect this with the study of the expansion coefficient
C0(I, (P +G)T ) in the last section of [8]; we here write it simply as C0((P +
G)T ) (or C0(B)). It is known from [6, Sect. 3.3] that when m > n, the trace
of the resolvent has an expansion in powers of −λ,

(3.6) TrRλ =
∑

0≤l≤n
cl(−λ) n−lm −1 +O

(
λ−1− 1

4m
)
,

and a similar proof shows that for general m > 0, the expansion holds for a
sufficiently high iterate:

(3.7) TrRNλ = Tr
∂N−1
λ

(N − 1)!
Rλ =

∑
0≤l≤n

c
(N)
l (−λ) n−lm −N +O

(
λ−N− 1

4m
)
.
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Define the basic zeta value as the coefficient of (−λ)−N :

(3.8) C0(B) = c(N)n ,

it is independent of N . If B is invertible, C0(B) equals the value of the zeta
function ζ(B, s) — the meromorphic extension of Tr(B−s) — at s = 0. If B
has a nontrivial nullspace, the constants are connected by

(3.9) C0(B) = ζ(B, 0)+ ν0,

where ν0 is the dimension of the generalized eigenspace of the zero eigenvalue.
There are similar expansions as in (3.7) of the traces of theψdo iteratesQN

λ

on X̃, truncated toX, that follow from integration overX of the diagonal kernel
expansions, as established in [6, Sect. 3.3] (with remarks); it is the s.g.o. con-
tribution that presents the greater challenge in [6]. In view of the identifications
in [8, Sect. 1], the coefficient of (−λ)−N here equals − 1

m
res+(logP), where

the plus-index indicates that the pointwise contribution to − 1
m

res(logP) is in-
tegrated over X only. It can also be regarded as − 1

m
res((logP)+), extending

the notation of [4].
The constant C0(B) was analyzed in [8, Sect. 5] in relation to residue

formulas, and we can now improve the result with further information.

Theorem 3.2. One has that

(3.10) C0(B) = − 1
m

res+(logP)− 1
m

resX′(S
log
sub),

where the terms are calculated as sums of contributions from local coordinate
patches of the form

(3.11)

∫
Rn+

∫
|ξ |=1

tr l−n(x, ξ) d−S(ξ) dx, resp.∫
Rn−1

∫
|ξ ′|=1

tr s log
sub,1−n(x

′, ξ ′) d−S(ξ ′) dx ′.

The term − 1
m

res+(logP) has an invariant meaning as the coefficient of
(−λ)−N in the expansion similar to (3.7) of Tr(((P − λ)−N)+), and hence
the last term in the right-hand side of (3.10) likewise has an invariant mean-
ing.

When the problem is differential, or when the problem is pseudodifferential
with regularity ν > 1, then resX′(S

log
sub) is, in local coordinates, the residue of

the normal trace of Glog
sub.
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Proof. It was shown in [8, Sect. 5] how C0(B) is found from integrals of
the strictly homogeneous symbol terms of order −m − n in (P − λ)−1 resp.
of order −m − n + 1 in Gλ; the proof given for the case m > n extends
to general m when the iterates are used, cf. [8, Remark 3.12]. It was shown
moreover that these integrals by use of [8, Lemmas 1.2, 1.3] could be turned
into log-integrals as in (3.5). In those proofs, the log-integration is applied
after the trn-integration, so the boundary term is really res(S log

sub), as defined in
Theorem 3.1.

When ν > 1, in particular when the problem is differential so that ν = ∞,
Theorem 3.1 shows that S log

sub is the normal trace of Glog
sub, so the assertion for

the residues follows.

What we gain here in comparison with [8, Sect. 5] is a little more insight
into how the boundary term stems from the s.g.o.-like part of logB, plus the
inclusion of all orders m > 0. At any rate, since C0(B) is an invariant, we can
propose it to be the residue of − 1

m
logB:

Definition 3.3. When {P+ +G− λ, T } satisfies the hypotheses of para-
meter-ellipticity given above, the residue of log(P +G)T is defined to be the
constant

(3.12) res(log(P +G)T ) = −mC0((P +G)T ) = res+(logP)+ resX′(S
log
sub),

as calculated in Theorem 3.2.

This is consistent with the definition of [4]. We note that certain steps in an
explicit calculation of this constant depend very much on localizations, e.g.
in the steps of discarding the principal symbol and taking trn. A number of
similar or more general residue definitions are made in [9] for compositions
ofψdbo’s with components of logPT (when PT is defined from an even-order
differential problem). These residues do have a certain amount of traciality:
res([A, logPT ]) = 0 holds for operators A of order and class zero (cf. The-
orem 6.5 there).

It should be noted that Definition 3.3 does not cover the case of first-order
differential operators with spectral boundary conditions, since such boundary
conditions are not normal. But for such boundary problems (Atiyah-Patodi-
Singer problems [1]) there exists a wealth of other treatments, adapted to
the specific situation. The results there often depend on additional symmetry
properties. (See e.g. [7] and its references.)
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4. Sectorial projections

Now we turn our attention to a certain spectral projection connected to the
realization (P + G)T ; namely a projection whose range contains the closure
of the direct sum of the generalized eigenspaces for the eigenvalues in a sector
of the complex plane. Such projections have been studied earlier by Burak
[3], Wodzicki [20], and Ponge [14]; the latter gives a detailed deduction of the
basic properties in the case of classical ψdo’s on closed manifolds. We recall
the properties below, supplying them with some additional information.

In order to apply the techniques to different types of operators, we first
consider an abstract situation whereA denotes an unbounded, densely defined,
closed operator in a Hilbert space H . It is assumed to have the following
properties:
A has a resolvent set containing two sectors Vθ and Vϕ around eiθR+ and

eiϕR+, respectively, for some θ < ϕ < θ + 2π , the resolvent (A − λ)−1 is
compact, and ‖(A − λ)−1‖ is O(λ−1) for λ going to infinity on each ray of
these sectors. (We refer to Kato [12] for general background theory.)

For x ∈ D(A) and λ on a ray in either sector, we have

(4.1) ‖λ−1A (A− λ)−1x‖ ≤ ‖λ−1(A− λ)−1‖ · ‖Ax‖ = O(λ−2),

so that λ−1A(A− λ)−1x is integrable for |λ| → ∞.
Then define the operator �θ,ϕ(A), the sectorial projection, with domain

D(A) to begin with, by

(4.2) �θ,ϕ(A)x = i

2π

∫
�θ,ϕ

λ−1A (A− λ)−1x dλ, x ∈ D(A),

where the integration goes along the sectorial contour
(4.3)
�θ,ϕ = {reiϕ | ∞ > r > r0} ∪ {r0eiω | ϕ ≥ ω ≥ θ} ∪ {reiθ | r0 < r < ∞},

with r0 taken so small that 0 is the only possible eigenvalue in {|λ| < r0}. If the
operator is bounded in H -norm, we extend it to H . This operator is a spectral
projection in the following sense:

For each λ ∈ σ(A), denote the generalized eigenspace by Eλ,

Eλ =
⋃
k∈N

ker(A− λ)k

(it equals ker(A− λ)k0 for a sufficiently large k0). For α < β, set

�α,β = { reiω | r > 0, α < ω < β, }, Eα,β = �λ∈σ(A)∩�α,βEλ.
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Proposition 4.1. �θ,ϕ(A)
2 = �θ,ϕ(A), i.e. �θ,ϕ(A) is a (possibly un-

bounded) projection in H . Its range contains Eθ,ϕ and its kernel contains
E0 � Eϕ,θ+2π .

(a) If A has a complete system of root vectors, i.e. �λ∈σ(A)Eλ is dense in
H , then �θ,ϕ(A) is the bounded projection onto Eθ,ϕ along E0 � Eϕ,θ+2π .

(b) IfA is normal, i.e.A∗A = AA∗, then�θ,ϕ(A) is the bounded orthogonal
projection onto ⊕λ∈σ(A)∩�θ,ϕ ker(A− λ) along ⊕λ∈σ(A)\�θ,ϕ ker(A− λ).

Proof. Except for a few elementary considerations regarding the domain
and closedness, the proofs of [14, Propositions 3.2, A.4, and A.5] carry over
almost word for word to the present setting (it should be noted that some
contours in [14] have the opposite orientation).

In (a) and (b), the boundedness of �θ,ϕ(A) follows from the fact that the
kernel and range are closed.

In certain important cases, �θ,ϕ(A) can be seen to be bounded regardless
of whether the hypotheses of (a) or (b) can be verified; as shown in [14,
Proposition 3.1] this holds when A is a ψdo of order m > 0 on a closed
manifold. We shall see below in Theorem 4.6 that it also holds for the realization
of a differential elliptic boundary value problem.

As shown below, the sectorial projection has a direct connection with the
choice of spectral cut in our definition of the logarithm of an operator. Using
arguments as in Section 2, we can define the logarithm of A with a branch cut
at the angle θ as

(4.4) logθ A = lim
s↘0

i

2π

∫
Cθ

λ−s
θ logθ λ(A− λ)−1 dλ

where the subscript θ indicates that λ−s log λ is chosen to have a branch cut
along eiθR+, and the contour is the Laurent loop

(4.5) Cθ = {reiθ | ∞ > r > r0}
∪ {r0eiω | θ ≥ ω ≥ θ − 2π} ∪ {rei(θ−2π) | r0 < r < ∞}.

The following proposition eliminates the limiting procedure of (4.4) and
gives a useful alternative description of �θ,ϕ(A). A proof can be found in the
Appendix.

Proposition 4.2. For x ∈ D(A) we have the identities

logθ Ax = i

2π

∫
Cθ

λ−1 logθ λA(A− λ)−1x dλ and(4.6)

�θ,ϕ(A)x = i

2π

∫
�θ,ϕ

(A− λ)−1x dλ+ ϕ − θ

2π
x,(4.7)
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where the integral in the right-hand side of (4.7) is an improper integral.

Next, we include a lemma which will be useful for our considerations
regarding expressions involving different branches of the logarithm. Again, a
proof is available in the Appendix.

Lemma 4.3. Let f (λ) be a continuous (possibly vector-valued) function on
the “punctuated double keyhole region”

(4.8) Vr0,δ = {λ ∈ C | |λ| < 2r0 or | arg λ−θ | < δ or | arg λ−ϕ| < δ}\{0},
such that f (λ) is O(λ−1−ε) for |λ| → ∞ in Vr0,δ . Then

(4.9)
∫

Cθ

logθ λf (λ) dλ−
∫

Cϕ

logϕ λf (λ) dλ = −2πi
∫
�θ,ϕ

f (λ) dλ.

We can use this lemma to describe the relation between �θ,ϕ(A) and log-
arithms of A as follows:

Proposition 4.4. For x ∈ D(A),

(4.10) logθ Ax − logϕ Ax =
∫
�θ,ϕ

λ−1A(A− λ)−1x dλ = −2πi�θ,ϕ(A)x.

When �θ,ϕ(A) is bounded, so is logθ A− logϕ A, and

(4.11) �θ,ϕ(A) = i

2π
(logθ A− logϕ A).

Proof. For x ∈ D(A), the expression f (λ) = λ−1A(A − λ)−1x is holo-
morphic in Vr0,δ for some r0, δ > 0, and f (λ) isO(λ−2) for |λ| → ∞ in Vr0,δ
by (4.1).

Hence we can apply Lemma 4.3, and insertion of the expression for f (λ)
into (4.9) gives

(4.12)
∫

Cθ

logθ λλ
−1A(A− λ)−1x dλ−

∫
Cϕ

logϕ λλ
−1A(A− λ)−1x dλ

= −2πi
∫
�θ,ϕ

λ−1A(A− λ)−1x dλ.

Then (4.10) follows from (4.2) and (4.6).
If �θ,ϕ(A) is bounded, (4.10) extends to all x ∈ H since D(A) is dense in

H , and (4.11) follows.
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With the results above at hand we return to the realization (P + G)T .
Modifying the assumption of Section 2 a little, we now assume {P++G−λ, T }
to satisfy the conditions of parameter-ellipticity in [6, Def. 3.3.1] for λ on the
rays of two sectors around eiθR+ and eiϕR+, respectively. Then the realization
B = (P +G)T satisfies the requirements forA above (4.1), and we can define
the sectorial projection accordingly:

(4.13) �θ,ϕ(B) = i

2π

∫
�θ,ϕ

λ−1BRλ dλ.

Here, and below, the integrals are understood to be in the strong sense, to
simplify notation. Like in the case of the logarithm, we decompose it into the
contributions from the pseudodifferential and singular Green parts.

For the ψdo P on the closed manifold X̃, we can use Proposition 4.2 to see
that

(4.14)
i

2π

∫
�θ,ϕ

Qλu dλ+ ϕ − θ

2π
u = �θ,ϕ(P )u, u ∈ D(P );

it is known from [20], [14], that �θ,ϕ(P ) is a ψdo of order ≤ 0 on X̃.
Using Proposition 4.2, (2.4), and the fact that r+e+ = I , we can rewrite

(4.13) as

(4.15)

�θ,ϕ(B) = i

2π

∫
�θ,ϕ

Rλ dλ+ ϕ − θ

2π

= i

2π

∫
�θ,ϕ

[Qλ,+ +Gλ] dλ+ ϕ − θ

2π

= r+
(
i

2π

∫
�θ,ϕ

Qλ dλ+ ϕ − θ

2π

)
e+ + i

2π

∫
�θ,ϕ

Gλ dλ

= �θ,ϕ(P )+ + i

2π

∫
�θ,ϕ

Gλ dλ;

in the last line we moreover used (4.14). Now an application of Proposition 4.4
to P and B gives:

(4.16)
�θ,ϕ(P )+ = i

2π

(
(logθ P )+ − (logϕ P )+

)
,

�θ,ϕ(B) = i

2π

(
logθ B − logϕ B

)
.
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Using the contour Cθ from (4.5) we can define an operator as in (2.13),

(4.17) Glogθ = i

2π

∫
Cθ

logθ λGλ dλ,

and similarly defineGlogϕ where θ is replaced byϕ. By rotation it is obvious that
Glogθ andGlogϕ have properties similar to those ofGlog described in Section 2.
Now (4.16) and (2.15) show that if we define Gθ,ϕ by

(4.18) Gθ,ϕ = i

2π

∫
�θ,ϕ

Gλ dλ,

then

(4.19) Gθ,ϕ = i

2π

(
Glogθ −Glogϕ

)
.

In view of (4.15), we have then obtained:

Theorem 4.5. The sectorial projection for B = (P +G)T satisfies

(4.20) �θ,ϕ(B) = �θ,ϕ(P )+ +Gθ,ϕ,

where each term on the right hand side is known: �θ,ϕ(P )+ is the truncation
of a ψdo on X̃ of order at most zero, in particular it is bounded on L2(X,E);
Gθ,ϕ is a difference (4.19) of two terms of the log-type described in Section 2
and hence is a generalized singular Green operator, bounded from L2(X,E)

to H−ε(X,E).

LikeGlog,Gθ,ϕ acts as in (2.21). It has a symbol-kernel g̃θ,ϕ∼∑j∈N g̃θ,ϕ,−j ,
with terms given by

(4.21)

g̃θ,ϕ,−j = i

2π

(
g̃

logθ
−j − g̃

logϕ
−j
)

= −1

4π2

(∫
Cθ

logθ λ g̃−m−j dλ−
∫

Cϕ

logϕ λ g̃−m−j dλ
)
.

By Lemma 4.3 this is simplified to

(4.22) g̃θ,ϕ,−j (x ′, xn, yn, ξ ′) = i

2π

∫
�θ,ϕ

g̃−m−j (x ′, xn, yn, ξ ′, λ) dλ.

In view of (4.19) and (4.21), the results onGlog resp. g̃log in Section 2 carry
over immediately toGθ,ϕ resp. g̃θ,ϕ . We shall not reproduce all the statements
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explicitly, but will just present the following important result obtained from
Theorem 2.4.

Theorem 4.6. Assume that P is a differential operator, G = 0, and the
trace operators T0, . . . , Tm−1 are differential operators; hereby B = PT .

Then Gθ,ϕ is, in local coordinates near X′, a generalized singular Green
operator

(4.23) Gθ,ϕ = OPG(g̃θ,ϕ)

with g̃θ,ϕ ∼ ∑
j∈N g̃θ,ϕ,−j ; the j ’th term is quasihomogeneous as in (2.22) and

satisfies estimates as in (2.23).
Gθ,ϕ and �θ,ϕ(PT ) are bounded operators in Lp(X,E) for 1 < p < ∞.

In particular, �θ,ϕ(PT ) is a bounded projection in L2(X,E).

Proof. The claims regarding g̃θ,ϕ follow immediately from Theorem 2.4
and (4.21).

The boundedness properties of Gθ,ϕ are obvious from Theorem 2.4 and
(4.19). Since �θ,ϕ(P )+ is the truncation of a ψdo of order at most zero, this
is also bounded in Lp(X,E); then in view of (4.20) so is �θ,ϕ(PT ).

An interesting question is whether one can give criteria on P , G, and T
assuring that the operator �θ,ϕ((P + G)T ) belongs to the Boutet de Monvel
calculus.

Concerning theψdo part�θ,ϕ(P ), with symbol πθ,ϕ(x, ξ) in local coordin-
ates, we have easily by use of Lemma 2.1:

Lemma 4.7. Whenm is even, πθ,ϕ(x, ξ) satisfies the transmission condition.
Hence �θ,ϕ(P )+ is in the Boutet de Monvel calculus for even m.

Proof. We have that in view of (2.10) that

(4.24) symb(logθ P ) = m log[ξ ]+ lθ (x, ξ), lθ (x, ξ) ∼
∑
j∈N

lθ,−j (x, ξ),

where m log[ξ ] + lθ,0(x, ξ) = logθ (pm(x, ξ)), with similar formulas for
logϕ P , so the symbols of logθ P and logϕ P have the same log-termm log[ξ ].
Then it is seen from the first line in (4.16) that

(4.25) πθ,ϕ(x, ξ) = i

2π
(lθ (x, ξ)− lϕ(x, ξ)),

which satisfies the transmission condition when m is even in view of
Lemma 2.1.
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This could also be based more directly on the fact, worked out in detail in
[14], that πθ,ϕ(x, ξ) ∼ ∑

j∈N πθ,ϕ,−j (x, ξ), where the terms are given by

(4.26) πθ,ϕ,−j (x, ξ) = i

2π

∫
Cθ,ϕ (x,ξ)

q−m−j (x, ξ, λ) dλ;

here Cθ,ϕ(x, ξ) is a closed curve in the sector�θ,ϕ going in the positive direction
around the part of the spectrum of pm(x, ξ) lying in that sector.

Whenm is odd, one cannot expect�θ,ϕ(P ) to satisfy the transmission con-
dition. For example, for a first-order selfadjoint invertible elliptic differential
operator A on X̃ (e.g., a Dirac operator), �− π

2 ,
π
2
(A) equals �>(A), the pos-

itive eigenprojection 1
2 (I + A|A2|−1/2), where A|A2|−1/2 does not satisfy the

transmission condition (its even-order symbol terms are odd in ξ ).
Next, let us consider the s.g.o. part Gθ,ϕ . Example 4.8 below shows a dif-

ferential operator realization where Gθ,ϕ is not a standard singular Green op-
erator, already in a constant-coefficient principal symbol case. Example 4.9
on the other hand defines a general class of differential operator realizations
whereGθ,ϕ is a standard s.g.o., and�θ,ϕ(B) belongs to the standard calculus.
Here one finds however, that lower order perturbations can ruin the standard
s.g.o.-properties.

Example 4.8. Consider the differential operatorsA and P on R4+ given by

(4.27) A =
(
i 0
0 −i

)
D1 +

(
0 1

−1 0

)
D2 +

(
0 i

i 0

)
D3 +

(
1 0
0 1

)
D4,

and

(4.28) P =
(

0 −A∗

A 0

)
,

where A∗ denotes the formal adjoint of A. (A and P are Dirac-type operators,
with A∗A = −�I2, (iP )2 = −�I4.)

Regarding this as a localization of a manifold situation, we seek the pro-
jection onto the (generalized) eigenspaces for the eigenvalues λ in the upper
halfplane C+ for a certain realisation PT of P , where the boundary condition
is Bγ0u = 0, with

(4.29) B =
(

1 0 1 0

0 1 0 1

)
,

i.e., γ0u1 + γ0u3 = γ0u2 + γ0u4 = 0, ui being the i’th component of u.
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Thus, in this localized situation we shall construct �θ,ϕ(PT ) with θ = 0
and ϕ = π . In this case the contour �θ,ϕ is a contour from −∞ to ∞ passing
above the origin.
P has symbol

p(ξ) =
(

0 −t a(ξ)

a(ξ) 0

)

=

⎛⎜⎜⎜⎝
0 0 iξ1 − ξ4 ξ2 + iξ3

0 0 −ξ2 + iξ3 −iξ1 − ξ4

iξ1 + ξ4 ξ2 + iξ3 0 0

−ξ2 + iξ3 −iξ1 + ξ4 0 0

⎞⎟⎟⎟⎠ ,
the eigenvalues of which are ±i|ξ |. Hence P − λ is parameter-elliptic for λ
on all rays in C \ iR, with parametrix-symbol

q(ξ, λ) = (p(ξ)− λ)−1

= 1

|ξ |2 + λ2

⎛⎜⎜⎜⎝
−λ 0 −iξ1 + ξ4 −ξ2 − iξ3

0 −λ ξ2 − iξ3 iξ1 + ξ4

−iξ1 − ξ4 −ξ2 − iξ3 −λ 0

ξ2 − iξ3 iξ1 − ξ4 0 −λ

⎞⎟⎟⎟⎠ .
We first find the ψdo part of �0,π (PT ): According to (4.26) the symbol π(ξ)
of �0,π (P ) is obtained by integrating q(ξ, λ) along a small closed curve, Cξ ,
enclosing the pole i|ξ | in C+:

(4.30)

π(ξ) = i

2π

∫
Cξ

q(ξ, λ) dλ = − Res
λ=i|ξ |

(
q(ξ, λ)

)

= 1

2|ξ |

⎛⎜⎜⎜⎝
|ξ | 0 ξ1 + iξ4 −iξ2 + ξ3

0 |ξ | iξ2 + ξ3 −ξ1 + iξ4

ξ1 − iξ4 −iξ2 + ξ3 |ξ | 0

iξ2 + ξ3 −ξ1 − iξ4 0 |ξ |

⎞⎟⎟⎟⎠ .

The singular Green partGλ of the resolvent Rλ = (PT − λ)−1 has symbol-
kernel

g̃(xn, yn, ξ
′, λ)
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= 1

2σ

⎛⎜⎜⎜⎝
−iξ1 + iσ −ξ2 − iξ3 −λ 0

ξ2 − iξ3 iξ1 + iσ 0 −λ
−λ 0 −iξ1 − iσ −ξ2 − iξ3

0 −λ ξ2 − iξ3 iξ1 − iσ

⎞⎟⎟⎟⎠ e−σ(xn+yn),
where σ = √|ξ ′|2 + λ2. Note that σ is holomorphic (and Re σ > 0) for
λ ∈ C \ ±i(|ξ ′|,∞); in particular {P − λ,Bγ0} is parameter-elliptic for λ on
any ray in C \ iR.

The integration contour �0,π is homotopic in {reiω | ω �= ±π
2 or r < |ξ ′|}

to the real line; thus, due to the exponential falloff of e−(|ξ ′|2+λ2)
1
2 (xn+yn) we get

(4.31)

g̃θ,ϕ(xn, yn, ξ
′) = i

2π

∫
�θ,ϕ

g̃(xn, yn, ξ
′, λ) dλ

= i

2π

∫ ∞

−∞
g̃(xn, yn, ξ

′, t) dt.

We can now verify that g̃θ,ϕ is not a singular Green symbol-kernel: The 12-
matrix entry of g̃θ,ϕ becomes

(4.32)
−iξ2 + ξ3

4π

∫ ∞

−∞

(|ξ ′|2 + t2
)− 1

2 e−(|ξ
′|2+t2) 1

2 (xn+yn) dt,

which, for fixed ξ ′, is unbounded as xn + yn goes to zero; hence, g̃θ,ϕ is not in
S++.

To see this note that, for fixed a > 0,

f (r) = 1

2

∫ ∞

−∞
(a2 + t2)−

1
2 e−r(a

2+t2) 1
2
dt =

∫ ∞

0
(a2 + t2)−

1
2 e−r(a

2+t2) 1
2
dt

≥
∫ ∞

0

e−(a+t)r

a + t
dt =

∫ ∞

ar

e−u

u
du

which diverges to +∞ as r → 0+.

Example 4.9. Let X′
0 be a closed (n− 1)-dimensional manifold provided

with an elliptic second-order differential operator S which is selfadjoint pos-
itive in L2(X

′
0). Let X = X′

0 × [0, a] with points x = (x ′, xn), x ′ ∈ X′
0 and

xn ∈ [0, a], and let B be the Dirichlet realization ofD2
xn

+S onX; it is selfad-
joint positive in L2(X), withD(B) = H 2(X)∩H 1

0 (X). LetA be the Dirichlet
realization of

(4.33) P =
(
D2
xn

+ S S

S −D2
xn

− S

)
.
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on X, then in fact,

(4.34) A =
(
B S

S −B
)

with domain D(B)×D(B). The resolvent is

(4.35) (A− λ)−1 =
(−B − λ −S

−S B − λ

)
(λ2 − B2 − S2)−1,

where we used thatS andB commute. DefineB1 = (B2+S2)
1
2 . HereB2+S2 is

the realization of the fourth-order elliptic differential operator (D2
xn

+S)2 +S2

determined by the boundary condition γ0u = 0, γ0Bu = 0. This is one of
the particular cases where the square root of the interior operator does satisfy
the transmission condition, cf. [6, (4.4.9)]. Moreover, the square root of the
realization B2 + S2 represents a boundary condition consisting of exactly the
part of the boundary condition for B2 + S2 that makes sense on H 2(X), cf.
[6, Cor. 4.4.3] (based on a result of Grisvard); so in fact B1 is the realization
of ((D2

xn
+ S)2 + S2)

1
2 determined by the Dirichlet condition γ0u = 0. This

belongs to the standard calculus and enters nicely in the theory of [6], cf.
Section 1.7 there. Note that D(B1) = D(B).

We can then calculate

(4.36)

(λ2 − (B2 + S2))−1

= (λ2 − B2
1 )

−1 = (B1 − λ)−1(−B1 − λ)−1

= (B1 − λ)−1(2B1)
−1(B1 + λ+ B1 − λ)(−B1 − λ)−1

= −1

2
B−1

1

(
(B1 − λ)−1 − (−B1 − λ)−1

)
,

which leads to the formula:
(4.37)
(A− λ)−1

=
(−B + B1 − B1 − λ −S

−S B − B1 + B1 − λ

)
(B1 − λ)−1(−B1 − λ)−1

=
(
(B1 − λ)−1 0

0 (−B1 − λ)−1

)

−
(
B1 − B −S

−S B − B1

)
1

2
B−1

1

(
(B1 − λ)−1 − (−B1 − λ)−1

)
,

valid for λ outside the spectra of B1 and −B1. To determine the spectral pro-
jection �θ,ϕ(A) with θ = −π

2 , ϕ = π
2 , we use the abstract machinery. It is
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seen from either of the formulas (4.2) or (4.7) that

(4.38) �− π
2 ,

π
2
(A) =

(
�− π

2 ,
π
2
(B1) 0

0 �− π
2 ,

π
2
(−B1)

)

−
(
B1 − B −S

−S B − B1

)
1

2
B−1

1

(
�− π

2 ,
π
2
(B1)−�− π

2 ,
π
2
(−B1)

)
.

Here

(4.39) �− π
2 ,

π
2
(B1) = I, �− π

2 ,
π
2
(−B1) = 0,

in view of Proposition 4.1 and the fact that B1 is selfadjoint positive. It follows
that

(4.40) �− π
2 ,

π
2
(A) =

( 1
2 + 1

2BB
−1
1

1
2SB

−1
1

1
2SB

−1
1

1
2 − 1

2BB
−1
1

)
.

The operator is in the Boutet de Monvel calculus. Note that the sum of the
diagonal terms is I , so the residue of the operator is zero.

Inherent in this example are some symbol calculations where the poles of
the resolvent symbol appear isolated in such a way that integrals over �θ,ϕ
can be turned into integrals over closed curves, reducing to simple residue
calculations. Perturbations can easily introduce more complicated calculations
where integrals as in (4.32) appear, leading to non-standard s.g.o.-symbols (we
shall not reproduce examples here).

In view of Definition 3.3 and the formulas (4.16), the sectorial projection
�θ,ϕ(B) has a well-defined residue. In the differential operator case where
the order m is even, one can moreover define residues of the compositions of
�θ,ϕ(B) with operators A in the Boutet de Monvel calculus; this is taken up
in [9]. It is found there that if in addition, A is of order and class 0, the residue
vanishes on the commutator of �θ,ϕ(B) and A.

It is still an open question whether the residue is zero on sectorial projections
for boundary value problems, as it is in the closed manifold case; we expect
to return to this question in a forthcoming work.

Appendix A. Proofs of auxiliary results in functional analysis

Proof of Proposition 4.2. First we prove (4.6): Let, for N ∈ N,

(A.1) CN
θ = {reiθ | N ≥ r ≥ r0}

∪ {r0eiω | θ ≥ ω ≥ θ − 2π} ∪ {rei(θ−2π) | r0 ≤ r ≤ N}.
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Then, for s > 0

(A.2)
∫

CN
θ

λ−s−1
θ logθ λ dλ

=
[
− 1

s2
λ−s
θ (1 + s logθ λ)

]Neiθ
Nei(θ−2π)

−→ 0 for N → ∞,

since N−s and N−s logN go to 0 for N → ∞. It follows that

(A.3) lim
s↘0

lim
N→∞

∫
CN
θ

λ−s−1
θ logθ λ dλ = 0.

Observe that the order of the limits is important.
Using the resolvent identityA(A−λ)−1 = 1 +λ(A−λ)−1 we now get for

x ∈ D(A):
(A.4)

lim
s↘0

∫
Cθ

λ−s
θ logθ λ(A− λ)−1x dλ

= lim
s↘0

lim
N→∞

∫
CN
θ

λ−s
θ logθ λ(A− λ)−1x dλ

= lim
s↘0

lim
N→∞

[∫
CN
θ

λ−s−1
θ logθ λx dλ+

∫
CN
θ

λ−s
θ logθ λ(A− λ)−1x dλ

]
= lim

s↘0
lim
N→∞

∫
CN
θ

λ−s−1
θ logθ λ

[
1 + λ(A− λ)−1

]
x dλ

= lim
s↘0

lim
N→∞

∫
CN
θ

λ−s−1
θ logθ λA(A− λ)−1x dλ,

where we used (A.3) in the second line (adding zero). Then, since
‖(A− λ)−1‖ ≤̇ |λ|−1,

(A.5)
∥∥λ−s−1

θ logθ λA(A− λ)−1x
∥∥ ≤̇ | log λ||λ|−s−2‖Ax‖,

so that the integrand in the last expression of (A.4) is integrable along Cθ
uniformly in s > 0, and

(A.6) lim
s↘0

lim
N→∞

∫
CN
θ

λ−s−1
θ logθ λA(A− λ)−1x dλ

=
∫

Cθ

λ−1 logθ λA(A− λ)−1x dλ.

Combining (A.4) and (A.6) (and multiplying with i
2π ) we obtain the desired

result (4.6).
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The identity (4.7) stems from [3] (we have corrected a sign here). For this,
consider the integration contour

(A.7) �Nθ,ϕ = {reiϕ | N > r > r0}
∪ {r0eiω | ϕ ≥ ω ≥ θ} ∪ {reiθ | r0 < r < N}.

Using again A(A− λ)−1 = 1 + λ(A− λ)−1 we obtain

(A.8)
∫
�Nθ,ϕ

λ−1A(A− λ)−1x dλ =
∫
�Nθ,ϕ

(A− λ)−1x dλ+
∫
�Nθ,ϕ

λ−1x dλ.

For the second term we have, using a logarithm with branch cut disjoint from
�θ,ϕ ,

(A.9)
∫
�Nθ,ϕ

λ−1dλ = [
log λ

]Neiθ
Neiϕ

= i(θ − ϕ).

Thus

(A.10)
i

2π

∫
�Nθ,ϕ

λ−1A(A− λ)−1x dλ = i

2π

∫
�Nθ,ϕ

(A− λ)−1x dλ+ ϕ − θ

2π
x.

For x ∈ D(A) the limit for N → ∞ is well-defined on the left-hand side,
and the limit of the first term on the right-hand side then exists as an improper
integral, as indicated.

Proof of Lemma 4.3. The integral along Cθ is, in detail:
(A.11)∫

Cθ

logθ λ f (λ) dλ =
∫ r0

∞
(log r + iθ)f (reiθ )eiθ dr

+
∫ θ−2π

θ

(log r0 + iω)f (r0e
iω)ir0e

iω dω

+
∫ ∞

r0

(log r + iθ − 2πi)f (reiθ−2πi)eiθ−2πi dr.

Since f (reiθ−2πi)eiθ−2πi = f (reiθ )eiθ , the two terms with (log r+ iθ) cancel
each other. Thus

(A.12)
∫

Cθ

logθ λf (λ) dλ

= −
∫ θ

θ−2π
(log r0 + iω)f (r0e

iω)ir0e
iω dω − 2πi

∫ ∞

r0

f (reiθ )eiθ dr.
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Denote the integrand in the first integral g(ω) = (log r0 + iω)f (r0e
iω)ir0e

iω.
There is of course an identity similar to (A.12) with θ replaced by ϕ, and

then

(A.13)

∫
Cθ

logθ λf (λ) dλ−
∫

Cϕ

logϕ λf (λ) dλ

=
(

−
∫ θ

θ−2π
+
∫ ϕ

ϕ−2π

)
g(ω) dω

− 2πi

(∫ ∞

r0

f (reiθ )eiθ dr −
∫ ∞

r0

f (reiϕ)eiϕ dr

)

=
(

−
∫ θ

θ−2π
+
∫ ϕ

ϕ−2π

)
g(ω) dω

− 2πi
∫ r0

∞
f (reiϕ)eiϕ dr − 2πi

∫ ∞

r0

f (reiθ )eiθ dr.

The last two terms are recognized as the contributions to −2πi
∫
�θ,ϕ

f (λ) dλ

from the rays eiϕ[r0,∞[ and eiθ [r0,∞[. The first term is seen to give the
contribution from the arc Cr0,θ,ϕ = {r0eiω | ϕ ≥ ω ≥ θ} as follows:(

−
∫ θ

θ−2π
+
∫ ϕ

ϕ−2π

)
g(ω) dω

=
(

−
∫ θ

ϕ

+
∫ θ−2π

ϕ−2π

)
g(ω) dω =

∫ θ

ϕ

[−g(ω)+ g(ω − 2π)] dω

=
∫ θ

ϕ

[− (log r0 + iω)f (r0e
iω)ir0e

iω

+ (log r0 + i(ω − 2π))f (r0e
iω)ir0e

iω
]
dω

= −2πi
∫ θ

ϕ

f (r0e
iω)ir0e

iω dω = −2πi
∫

Cr0 ,θ,ϕ

f (λ) dλ.
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NONCOMMUTATIVE RESIDUE OF PROJECTIONS IN
BOUTET DE MONVEL’S CALCULUS

ANDERS GAARDE

Abstract. Employing results by Melo, Nest, Schick and Schrohe on

the K-theory of Boutet de Monvel’s calculus of boundary value prob-

lems, we show that the noncommutative residue introduced by Fedosov,

Golse, Leichtnam and Schrohe vanishes on projections in the calculus.

This partially answers a question raised in a recent collaboration

with Grubb, namely whether the residue is zero on sectorial projections

for boundary value problems: This is confirmed to be true when the

sectorial projection is in the calculus.

1. Introduction

Boutet de Monvel [2] constructed a calculus, often called the Boutet de
Monvel calculus (or algebra), of pseudodifferential boundary operators on
a manifold with boundary. It includes the classical differential boundary
value problems as well of the parametrices of the elliptic elements:

Let X be a compact n-dimensional manifold with boundary ∂X; we
consider X as an embedded submanifold of a closed n-dimensional manifold
X̃. Denote by X◦ the interior of X. Let E and F be smooth complex
vector bundles over X and ∂X, respectively, with E the restriction to X of
a bundle Ẽ over X̃.

An operator in Boutet de Monvel’s calculus — a (polyhomogeneous)
Green operator — is a map A acting on sections of E and F , given by a
matrix

(1.1) A =

(
P+ +G K

T S

)
:
C∞(X,E) C∞(X,E)

⊕ → ⊕
C∞(∂X,F ) C∞(∂X,F ),

2000 Mathematics Subject Classification. 58J42, 58J32, 35S15.
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2 ANDERS GAARDE

where P is a pseudodifferential operator (ψdo) on X̃ with the transmission
property and P+ is its truncation to X:

(1.2) P+ = r+Pe+, r+ restricts from X̃ to X◦, e+ extends by 0.

G is a singular Green operator, T a trace operator, K a Poisson operator,
and S a ψdo on the closed manifold ∂X. See [2], Grubb [6], or Schrohe [15]
for details.

Fedosov, Golse, Leichtnam and Schrohe [4] extended the notion of non-
commutative residue known from closed manifolds (cf. Wodzicki [17], [18]
and Guillemin [9]) to the algebra of Green operators. The noncommutative
residue of A from (1.1) is defined to be

(1.3) resX(A) =
∫

X

∫
S∗

xX
trE p−n(x, ξ)−dS(ξ)dx

+
∫

∂X

∫
S∗

x′∂X

[
trE(trn g)1−n(x′, ξ′) + trF s1−n(x′, ξ′)

]−dS(ξ′)dx′.

Here trE and trF are traces in Hom(E) and Hom(F ), respectively; −dS(ξ)
(resp. −dS(ξ′)) denotes the surface measure on the unit sphere of the cotan-
gent bundle, divided by (2π)n (resp. (2π)n−1); trn g is the symbol of trnG

(the normal trace of G), a ψdo on ∂X; and the subscripts −n and 1 − n

indicate that we consider only the homogeneous terms of degree −n resp.
1 − n. Also, a sign error in [4] has been corrected, cf. Grubb and Schrohe
[8, (1.5)].

It is well-known [17] that on a closed manifold, the noncommutative
residue of a classical ψdo projection vanishes. In the present paper we
show that the same holds in the case of Green operators:

Theorem 1.1. The noncommutative residue of a projection in the Boutet
de Monvel calculus is zero.

In the proof, we use K-theoretic arguments (in a C∗-algebra setting)
to reduce the problem to the known case of closed manifolds. We rely on
results on the K-theory of Boutet de Monvel’s algebra by Melo, Nest and
Schrohe [10] and Melo, Schick and Schrohe [11].

In our recent collaboration with Grubb [5] we studied certain spectral
projections: For the realization B = (P +G)T of an elliptic boundary value
problem {P+ +G,T} of order m > 0 with two spectral cuts at angles θ and
ϕ, one can define the sectorial projection Πθ,ϕ(B). It is a (not necessarily
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RESIDUE OF PROJECTIONS IN BOUTET DE MONVEL’S CALCULUS 3

self-adjoint) projection whose range contains the generalized eigenspace of
B for the sector Λθ,ϕ = {reiω | r > 0, θ < ω < ϕ} and whose nullspace
contains the generalized eigenspace for Λϕ,θ+2π. It was considered earlier
by Burak [3], and in the boundaryless case by Wodzicki [17] and Ponge
[13].

In general this operator is not in Boutet de Monvel’s calculus, but we
showed that it has a residue in a slightly more general sense. The question
was posed whether this residue vanishes.

The question of the noncommutative residue of projections is particularly
interesting in the context of zeta-invariants as discussed by Grubb [7] and
in [5]: The basic zeta value C0,θ(B) for the realization B of a boundary
value problem is defined via a choice of spectral cut in the complex plane;
the difference in the basic zeta value based on two spectral cut angles θ
and ϕ is then given as the noncommutative residue of the corresponding
sectorial projection:

(1.4) C0,θ(B)− C0,ϕ(B) =
2πi
m

resX(Πθ,ϕ(B)).

Our results here show that the dependence of C0,θ(B) upon θ is trivial
whenever the projection Πθ,ϕ(B) lies in Boutet de Monvel’s calculus.

It should be noted that the literature in functional analysis and PDE-
theory often uses “projection” as a synonym for idempotent, while C∗-
algebraists furthermore require that projections are self-adjoint. We choose
here the former terminology; that is, in this text projection and idempotent
are synonymous.

2. Preliminaries and notation

We employ Blackadar’s [1] approach to K-theory: A pre-C∗-algebra B
is called local if it, as a subalgebra of its C∗-completion B, is closed under
holomorphic function calculus. (Blackadar also required that all matrix al-
gebras Mn(B) are closed under holomorphic function calculus, but this fol-
lows automatically, cf. Schweitzer [16].) LetM∞(B) denote the direct limit
of the matrix algebras Mm(B), m ∈ N. Define IP∞(B) = Idem(M∞(B))
to be the set of all idempotent matrices with entries from B. Likewise,
IPm(B) = Idem(Mm(B)) is the set of all m×m idempotents. Define the
relation ∼ on IP∞(B) by

(2.1) x ∼ y if there exist a, b ∈M∞(B) such that x = ab and y = ba.
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4 ANDERS GAARDE

If B has a unit we define K0(B) to be the Grothendieck group of the
semigroup V (B) = IP∞(B)/ ∼. If B has no unit, we consider the scalar
map from the unitization — indicated with a tilde as in B̃ or B∼ — of B
to the complex numbers s : B̃ → C defined by s(b + λ1 eB) = λ, and then
define K0(B) as the kernel of the induced map s∗ : K0(B̃) → K0(C).

A fact that we shall use several times is that if B is local, then [1, p. 28]

(2.2) V (B) ∼= V (B), and hence K0(B) ∼= K0(B).

Combined with the standard picture of K0 this implies that

(2.3) K0(B) = { [x]0 − [y]0 | x, y ∈ IPm(B),m ∈ N }

in the case where B is unital, and
(2.4)
K0(B) = { [x]0 − [y]0 | x, y ∈ IPm(B̃) with x ≡ y mod Mm(B),m ∈ N }

in the non-unital case [1].

Let A denote the set of Green operators as in (1.1) of order and class
zero; it is equipped with a Fréchet topology, which makes it a Fréchet
∗-algebra (Schrohe [14]). Moreover, A is a ∗-subalgebra of the bounded
operators on the Hilbert space H = L2(X,E) ⊕ H−1/2(∂X,F ); we will
denote by A its C∗-closure in B(H). A is local [14], so K0(A ) ∼= K0(A).
Note that the definitions of K0(A ) are equivalent whether we consider A

as a Fréchet algebra or as a ∗-subalgebra of A, cf. Phillips [12].
We follow here the definition of order and class from [6], as opposed to

the convention used in [11] where the operators are bounded on the Hilbert
space H′ = L2(X,E)⊕ L2(∂X,F ). It is explained in [10, 1.1] how the two
approaches are equivalent for our purposes.

Furthermore, the K-theory of A is independent of the specific bundles
[10, 1.5], so for simplicity we assume in this paper the simple case E = X×C
and F = ∂X × C.

K denotes the subalgebra of smoothing operators, K its C∗-closure (the
ideal of compact operators). We let I denote the set of elements in A of
the form

(2.5)

(
ϕPψ +G K

T S

)
with ϕ,ψ ∈ C∞

c (X◦), P a ψdo on X̃ of order zero, and G, K, T and S of
negative order and class zero. I will be the C∗-closure of I in A.
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RESIDUE OF PROJECTIONS IN BOUTET DE MONVEL’S CALCULUS 5

The noncommutative residue defined in [4] is a trace — a linear functional
that vanishes on commutators — res : A → C. It is continuous with
respect to the Fréchet topology in A , and induces a group homomorphism
res∗ : K0(A ) → C such that

(2.6) res∗([A]0) = resX(A)

for any idempotent A ∈ A . Our goal is to prove the vanishing of res∗,
which obviously implies that resX(A) = 0 for all idempotent A.

The quotient map q : A → A/K induces an isomorphism q∗ : K0(A) →
K0(A/K) [10, Prop. 13]. The isomorphismsK0(A ) ∼= K0(A) ∼= K0(A/K) al-
low us to extend the noncommutative residue: For each [A+K]0 inK0(A/K)
there is an A ∈ IP∞(A ) such that q∗[A]0 = [A+ K]0, and we then define

(2.7) r̃es∗[A+ K]0 = res∗[A]0 = resX(A).

So r̃es∗ is just res∗ q−1
∗ , and is a group homomorphism K0(A/K) → C.

3. K-theory and the residue

We employ results from Melo, Schick and Schrohe [11]: Theorem 1 there
proves an isomorphism

(3.1) K0(A/K) ∼= K0(C(X))⊕K1(C0(T ∗X◦)).

The intuitive interpretation of this isomorphism is that each K0-class in
A/K is the sum of (the K0-class of) a continuous function and (the K0-
class of) something vanishing on the boundary ∂X.

More precisely, we will use their observation

(3.2) K0(A/K) = q∗m∗K0(C(X)) + i∗K0(I/K).

Here m : C(X) → A sends f to the multiplication operator

(
f 0
0 0

)
and i

is the inclusion I/K → A/K; m∗ and i∗ are then the corresponding induced
maps in K0. We will in general suppress i and i∗ to simplify notation.

We will show that r̃es∗ vanishes on both terms in the right hand side of
(3.2). The following lemma treats the first of these terms:

Lemma 3.1. r̃es∗ vanishes on q∗m∗K0(C(X)).

Proof. Recall that multiplication with a smooth function is a Green opera-
tor of order zero, whose noncommutative residue is clearly zero since it has
no homogeneous term of order −n.
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Let f ∈ IPm(C∞(X)); m(f) acts by multiplication with a smooth (ma-
trix) function and therefore lies in IPm(A ). Then q∗m∗[f ]0 = q∗[m(f)]0 =
[m(f) + K]0, and according to (2.7)

(3.3) r̃es∗(q∗m∗[f ]0) = res∗[m(f)]0 = resX(m(f)) = 0.

Since C∞(X) is local in C(X) [1, 3.1.1-2], any element of K0(C(X)) can be
written as [f ]0 − [g]0 for some f, g ∈ IPm(C∞(X)), cf. (2.3). The lemma
follows from this. �

We now turn to the second term of (3.2); our strategy is to show that
the elements of K0(I/K) correspond to ψdos with symbols supported in
the interior of X. This allows us to construct certain projections for which
the noncommutative residue is given as the residue of a projection on the
closed manifold X̃.

The principal symbol induces an isomorphism I/K ∼= C0(S∗X◦) [10,
Theorem 1]. We denote the induced isomorphism in K0 by σ∗, i.e.,

(3.4) σ∗ : K0(I/K)
∼=−→ K0(C0(S∗X◦)).

Like in Lemma 3.1 we wish to consider smooth functions instead of
merely continuous functions; the following shows that instead of C0(S∗X◦),
it suffices to look at smooth functions (symbols) compactly supported in
the interior:

The algebra C∞
c (S∗X◦), equipped with the sup-norm, is a local C∗-

algebra [1, 3.1.1-2] with completion C0(S∗X◦). It follows from (2.2) that
the injection C∞

c (S∗X◦) → C0(S∗X◦) induces an isomorphism

(3.5) K0(C∞
c (S∗X◦)) ∼= K0(C0(S∗X◦)).

We now show that each compactly supported symbol in K0(C∞
c (S∗X◦))

gives rise to a ψdo projection Π+ on X which is in fact the truncation of
a ψdo projection on X̃. This will allow us to calculate the residue of Π+

from the residue of a projection on the closed manifold X̃.

Lemma 3.2. Let p(x, ξ) ∈ IPm(C∞
c (S∗X◦)∼). There is a zero-order ψdo

projection Π acting on C∞(X̃,Cm), such that its symbol is constant on a
neighborhood of X̃ \X◦, its truncation Π+ is an idempotent in Mm(I ∼),
and

(3.6) σ∗q∗([Π+]0) = [p]0.
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Proof. By definition of the unitization of C∞
c (S∗X◦), we can write p as a

sum

(3.7) p(x, ξ) = α(x, ξ) + β,

with α ∈Mm(C∞
c (S∗X◦)) and β ∈Mm(C). Note that β itself is idempo-

tent, since p = β outside the support of α.
We extend α by zero to obtain a smooth function α̃(x, ξ) on the closed

manifold S∗X̃. We get a ψdo symbol (also denoted α̃) of order zero on X̃ by
requiring α̃ to be homogeneous of degree zero in ξ. Let p̃(x, ξ) = α̃(x, ξ)+β.

We now have an idempotent ψdo-symbol p̃ on X̃; we then construct a
ψdo projection on X̃ that has p̃ as its principal symbol.

In [7, Chapter 3], Grubb constructed an operator that, for a suitable
choice of atlas on the manifold, carries over to the Euclidean Laplacian
in each chart, modulo smoothing operators. Hence, choose that particular
atlas on X̃ and letD denote this particular operator, i.e., with scalar symbol
d(x, ξ) = |ξ|2. Define the auxiliary second order ψdo C = OP(c(x, ξ)), with
symbol c(x, ξ) given in the local coordinates of the specified charts as

(3.8) c(x, ξ) = (2p̃(x, ξ)− I)d(x, ξ).

Since p̃ is idempotent, the eigenvalues of 2p̃ − I are ±1, cf. (A.2), so C is
an elliptic second order operator and c(x, ξ)− λ is parameter-elliptic for λ
on each ray in C \ R.

Then we can define the sectorial projection, cf. [13], [5], Π = Πθ,ϕ(C)
with angles θ = −π

2 , ϕ = π
2 ,

(3.9) Π =
i

2π

∫
Γθ,ϕ

λ−1C(C − λ)−1 dλ.

Π is a ψdo projection [13] on X̃ with symbol π given in local coordinates
by

(3.10) π(x, ξ) =
i

2π

∫
C(x,ξ)

q(x, ξ, λ) dλ,

where q(x, ξ, λ) is the symbol with parameter for a parametrix of c(x, ξ)−λ,
and C(x, ξ) is a closed curve encircling the eigenvalues of c2(x, ξ) — the
principal symbol of C — in the {Re z > 0} half-plane.

The eigenvalues of c2(x, ξ) = (2p̃(x, ξ)−I)|ξ|2 are ±|ξ|2, so we can choose
C(x, ξ) as the boundary of a small ball B(|ξ|2, r) around +|ξ|2.
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Then, the principal symbol of π(x, ξ) is

π0(x, ξ) =
i

2π

∫
C(x,ξ)

q−2(x, ξ, λ) dλ

=
i

2π

∫
∂B(|ξ|2,r)

[(2p̃(x, ξ)− I)|ξ|2 − λ]−1 dλ = p̃(x, ξ),(3.11)

according to Lemma A.1. So Π is a ψdo projection with principal symbol
p̃(x, ξ), as desired.

Observe that for x outside the support of α̃, we have c(x, ξ) = (2β−I)|ξ|2

and q(x, ξ, λ) = q−2(x, ξ, λ) = ((2β− I)|ξ|2−λ)−1 so π(x, ξ) = π0(x, ξ) = β

there. (We cannot be sure that the full symbol of π equals p̃ inside the
support, since coordinate-dependence will in general influence the lower
order terms of the parametrix.) In particular, π(x, ξ) is constant equal to
β for x outside α̃’s support, i.e., in a neighborhood of X̃ \X◦.

Now consider the truncation Π+. We have

(3.12) (Π+)2 = (Π2)+ − L(Π,Π) = Π+ − L(Π,Π),

where the singular Green operator L(P,Q) is defined as (PQ)+−P+Q+ for
ψdos P andQ. Since π(x, ξ) equals the constant matrix β in a neighborhood
of the boundary ∂X it follows, cf. [6, Theorem 2.7.5], that L(Π,Π) = 0, so
(Π+)2 = Π+.

The symbol of Π−β is compactly supported within X◦, so we can write
Π+ = ϕPψ + β for some ϕ,ψ, P , as in (2.5); hence Π+ is in Mm(I ∼).
Technically, Π+ lies in the algebra where the boundary bundle F is the
zero-bundle, but inserting zeros into Π+’s matrix form will clearly allow us
to augment it to the present case with F = ∂X × C.

Finally we take a look at (3.6): Since Π+ is an idempotent in Mm(I ∼)
it defines a K0-class [Π+]0 in K0(I ∼). Then q∗[Π+]0 defines a class in
K0(I/K∼), a class defined by its principal symbol. Since the principal
symbol is exactly the idempotent p(x, ξ) we obtain (3.6) by definition. �

We now have all the tools to prove our main theorem:

Proof of Theorem 1.1. An idempotent Green operator necessarily has order
and class zero, and thus lies in A . So we need to show that resX(A) is zero
for any idempotent A ∈ A ; by (2.6) it suffices to show that res∗ vanishes
on K0(A ). In turn, according to equation (3.2) and Lemma 3.1, we only
need to show that r̃es∗ vanishes on K0(I/K).
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So let ω ∈ K0(I/K). Employing (2.4), (3.4), and (3.5) we can find p, p′

in IPm(C∞
c (S∗X◦)∼) such that

(3.13) σ∗ω = [p]0 − [p′]0.

Now, for p, p′ we use Lemma 3.2 to find corresponding ψdos Π, Π′ with
the specific properties mentioned there. By (3.6) and (3.13) we see that

(3.14) q∗[Π+]0 − q∗[Π′
+]0 = σ−1

∗
(
[p]0 − [p′]0

)
= ω.

Using equation (2.7) then gives us

(3.15) r̃es∗ω = resX(Π+)− resX(Π′
+).

Here

(3.16) resX(Π+) =
∫

X

∫
S∗

xX
trπ−n(x, ξ)−dS(ξ)dx.

By construction, π(x, ξ) is constant equal to β outside X; in particular
π−n(x, ξ) is zero for x ∈ X̃ \X and therefore

(3.17)
∫

X

∫
S∗

xX
trπ−n(x, ξ)−dS(ξ)dx =

∫
eX
∫

S∗
x

eX trπ−n(x, ξ)−dS(ξ)dx.

In other words

(3.18) resX(Π+) = res eX(Π),

where the latter is the noncommutative residue of a ψdo projection on a
closed manifold. It is well-known [17], [18] that this always vanishes, so
resX(Π+) = 0. Likewise we obtain resX(Π′

+) = 0 and finally

(3.19) r̃es∗ω = 0

as desired. �

In [5], it was an open question whether the residue is zero on the sec-
torial projection for a boundary value problem. This theorem answers that
question in the positive for the cases where the projection lies in A .

It is not, at this time, clear for which boundary value problems this is
true; however, we showed in [5] that there certainly are boundary value
problems where the sectorial projection is not in A .
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A. Appendix

Lemma A.1. Let M ∈ IPm(C). Let d > 0 and let ∂B(d, r) denote the
closed curve in the complex plane along the boundary of the ball with center
d and radius 0 < r < d. Then

(A.1)
i

2π

∫
∂B(d,r)

[(2M − I)d− λ]−1dλ = M.

Proof. A direct computation shows that, for λ 6= ±d,

(A.2) [(2M − I)d− λ]−1 =
M

d− λ
− I −M

d+ λ
.

The result in (A.1) then follows from the residue theorem. �
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