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Summary

This thesis is concerned with one of the nonlinear financial time series models, the stochastic volatility

model. For financial time series, nonlinear time series models are better suited to describe their behavior.

In contrast to linear time series models such as ARMA, the investigation of nonlinear models is still work

in progress.

We start by collecting some of the standard properties of a stochastic volatility process. Under

mild assumptions, the stochastic volatility sequence is a strictly stationary ergodic martingale difference

sequence. Using this fact, we derive the central limit theorem for the sample mean of this sequence.

Another property of the stochastic volatility model is strong mixing. This fact is helpful to establish a

central limit theorem for the sample variance of this sequence. In both cases, under the assumption of

finite variance innovations, the limiting distribution is a Gaussian distribution. In contrast to this case,

under the assumption of infinite variance stable innovations, these estimators have a limiting distribution

which is not Gaussian and rather unfamiliar. The autocorrelation function is an important tool in

time series analysis. We study its estimator, the sample autocorrelation function and its limit Gaussian

distribution via a multivariate central limit theorem.

Another important characterization of a time series is provided by its spectral density. We estimate

the spectral density of a stochastic volatility process in some heavy– and light–tailed cases by using

the raw periodogram. We derive the pointwise limit distribution of the periodogram. The limit of the

periodogram in the case of iid Gaussian noise is exponential as in the case of an iid sequence. On the

other hand, the limit in the case of α−stable infinite variance noise is rather unfamiliar and, in particular,

depends on the fact whether the frequency is a rational or irrational multiple of π.

In the second part of this thesis, we study the extremes in the stochastic volatility model and compare

the results with the GARCH model. Under the assumption of regular variation of the noise of the

stochastic volatility model, we show that the distributional limits of the maxima and order statistics are

the same as in the iid case with the same marginal distributions as in the stochastic volatility model.
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In addition, the stochastic volatility model itself inherits regular variation from the iid regular variation

noise. The stochastic volatility model has extremal index one and upper tail dependence coefficient zero.

These results show that the extremal behavior of a stochastic volatility process and of an iid sequence

with regularly varying marginals is very much the same.



Resumé

I denne afhandling studerer vi en ikke-lineær model for finansielle tidsrækker, den stokastiske volatilitetsmodel.

Ikke-lineære modeller giver et godt fit til finansielle tidsrækker, og forklarer tidsrækkenernes egenskaber

bedre end lineære tidsrækkemodeller. Analysen af ikke-lineære tidsrækkemodeller er ikke afsluttet, og

der eksisterer stadigvæk mange interessante problemer.

Først opsummerer vi basale egenskaber for stokastiske volatilitetsmodeller. Vi viser under milde

betingelser, at en stokastisk volatilitetsmodel er en stærkt stationær og ergodisk martingaldifferens.

Vi bruger dette til at bevise den centrale grænseværdisætning for middelværdien af stikprøven. Den

stokastiske volatilitetsmodel er ogs̊a strong mixing. Med hjælp af denne egenskab beviser vi en central

grænseværdisætning for stikprøvevariansen. Hvis støjen i modellen har endelig varians, s̊a er grænse-

fordelingerne gaussiske. Hvis vi antager, at den multiplikative støj i modellen har uendelig varians og

stabil fordeling, beviser vi, at grænsefordelingerne er ukendte ikke-gaussiske. Autokorrelationsfunktionen

er en af de vigtigste objekter i tidsrækkeanalyse. Vi undersøger stikprøveautokorellationsfunktionen, og

beviser en multivariat central grænseværdisætning for en vektor af stikprøveautokorellationerne.

En stationær tidsrække er ogs̊a karakteriseret af sin spektraltæthed. Vi estimerer spektraltætheden af

den stokastiske volatilitetsmodel i tilfælde med b̊ade tunge of lette haler med hjælp af periodogrammet.

Vi bestemmer grænsefordelingen af periodogrammet for en fast frekvens. Denne fordeling er exponentiel,

n̊ar tidsrækken er iid gaussisk. Hvis støjen er stabil med uendelig varians, s̊a er grænsefordelingen en

ukendt fordeling, som afhænger af formen af frekvensværdien.

I den anden del af afhandlingen undersøger vi ekstremværdierne i en stokastisk volatilitetsmodel,

og vi sammenligner ogs̊a resultaterne med GARCH modellen. Hvis vi antager, at støjen er regulært

varierende, viser vi at grænsefordelingerne af maksima og order statistics er de samme, som i tilfældet

hvor tidsrækken er iid og har samme marginalfordeling som den stokastiske volaltilitetsmodel. Blandt

andet er den stokastiske volatilitetsmodel ogs̊a regulært varierende. Den stokastiske volatilitetsmodel har

ekstremalindeks 1 og den øvre haleafhængighedskoefficient er 0. Alle resultater viser, at de ekstremale
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egenskaber af den stokastiske volatilitetsmodel er de samme som de ekstremale egenskaber af en iid følge

med den samme marginalfordeling.
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Chapter 1

Introduction

1.1 Objectives of time series analysis

In practice, observations of various phenomena are often recorded sequentially over time. Values in

the future depend, usually in a stochastic manner, on the observations available at the present. Such

dependence makes it worthwhile to predict the future from its past. Time series analysis deals with such

records that are collected over time. The time order of data is important. We write (Xt)t∈Z for any time

series. The unit of the time scale is usually implicit in this notation.

The following example of a real-life time series is often used in the financial time series literature.

Example 1.1.1. (The Standard and Poor’s 500 Index)

The Standard and Poor’s 500 index (S&P 500) is a value-weighted index based on the prices of the 500

stocks that account for approximately 70% of the total U.S. equity market capitalization. The selected

companies tend to be the leading companies in leading industries within the U.S. economy. The index

is a market capitalization-weighted index (shares outstanding multiplied by stock price)-the weighted

average of the stock price of the 500 companies. In 1980, the S&P 500 became a component of the U.S.

Department of Commerce’s Index of Leading Economic Indicators, which are used to gauge the health of

the U.S. economy. It serves as a benchmark of stock market performance against which the performance

of many mutual funds is compared. It is also a useful financial instrument for hedging the risks of market

portfolios. The S&P index began in 1923 when the Standard and Poor’s Company introduced a series

of indices, which included 323 companies and covered 26 industries. The current S&P 500 Index was

introduced in 1957.

This example is one of a multitude of time series data existing in astronomy, biology, economics,

finance, environmental studies, engineering, and other areas.
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Depending on the background of applications, the objectives of time series analysis are diverse. Statis-

ticians usually view a time series as a realization from a stochastic process. A fundamental task is to

unveil the probability law that governs the observed time series. With such a probability law, we can

understand the underlying dynamics, forecast future events, and control future events via intervention.

These are the three main objectives of time series analysis.

Time series analysis rests on proper statistical modeling. In selecting a model, interpretability, sim-

plicity, and feasibility play important roles. A selected model should reasonably reflect the physical law

that governs the data. Everything else being equal, a simple model is usually preferable.

1.2 Linear and nonlinear time series

A very popular class of time series models consists of the autoregressive moving average (ARMA) models.

ARMA models are frequently used to describe linear dynamic structures, to depict linear relationships

among lagged variables (see Example 2.1.6). It is one of the most frequently used families of parametric

models in time series analysis. This is due to their flexibility in approximating many stationary processes.

From the pioneering work of Yule [41] on AR modeling of the sunspot numbers to the work of Box

and Jenkins [6] that marked the maturity of ARMA modeling in terms of theory and methodology,

linear Gaussian time series models flourished and dominated both theoretical explorations and practical

applications.

However, there is no universal key that can open every door. Moran, in his classical paper in 1953

[31], on modeling the Canadian lynx data, hinted at a limitation of linear models. He drew attention to

the ”curious feature” that the residuals for the sample points greater than the mean were significantly

smaller than those for the sample points smaller than the mean. This can be well-explained in terms of

the so-called ”regime effect” at different stages of population fluctuation.

Another application which challenges the linear time series model are financial time series (see Sec-

tion 2.2 for stylized facts about financial time series). Among the stylized facts of financial time series

(log−returns), we have:

• Zero sample autocorrelations ρ̂X(h) for (Xt) at almost all lags h > 0, with a possible exception at

the first lag although the estimated autocorrelation ρ̂X(1) is usually rather small (often about 0.1).

• Very slowly decaying sample autocorrelations of (|Xt|) and (X2
t ). In this context, one often refers

to long memory in the volatility.
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• Occurrence of extremely large and small Xt’s clustered at certain instants of time, caused by

turbulences in the market due to financial crashes, political decisions, war, etc.

If we wanted to explain the dependence structure of such a model by an ARMA model with iid noise

(Zt), we would have to restrict our attention to models of the form Xt = Zt or moving average models

of very low order. Indeed, for an MA(q) (moving average process of order q) model, Xt and Xt+q+1 are

independent, hence |Xt|r and |Xr
t+q+1| are independent for any r > 0 and therefore ρ|X|r (h) = 0 for

|h| > q. This means that the effect of non-vanishing autocorrelations of the (|Xt|r) processes for r = 1, 2

cannot be explained by an MA(q) model with iid noise (Zt).

Beyond the linear domain, there are infinitely many non–linear forms to be explored. In the econo-

metrics literature, the ARCH processes (autoregressive processes with conditional heteroscedasticity) and

their numerous modifications have attracted significant attention. One of the 2003 Bank of Sweden Prizes

for Economics, better known under the name of Nobel Prize for Economics, was awarded to Robert Engle

who introduced the ARCH model in the celebrated 1982 paper [12]. We also refer to the collection of

papers on the theme ”ARCH” edited by Engle [13]. A generalization of ARCH is given by the popular

GARCH models (generalized ARCH). For example, GARCH(1,1) is given by

Xt = σtZt, t ∈ Z,

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1.

where (Zt) is iid noise and α0, α1, β1 are positive parameters.

There are some reasons for the wide use of GARCH. Mikosch [27] summarized these reasons which can

be given by:

• Its relation to ARMA processes suggests that the theory behind it might be closely related to

ARMA process theory which is well studied, widely known and seemingly ”easy”.

This opinion is, however, wishful thinking. The difference to standard ARMA processes is due to the

fact that the noise sequence in the ARMA representation of (X2
t ) depends on the Xt’s themselves,

so a complicated non–linear relationship of the Xt’s builds up.

• A second argument for the use of GARCH models is that, even for a GARCH(1,1) model with three

parameters one often gets a reasonable fit to real-life financial data, provided that the sample has

not been chosen from a too long period making the stationarity assumption questionable. Tests for

the residuals of GARCH(1,1) models with estimated parameters α0, α1, β1 give the impression that
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the residuals very much behave like an iid sequence. Some evidence on this issue can be found in

the paper of Mikosch and Stǎricǎ [29].

• The most powerful argument in favor of GARCH models, from an applied point of view, is the

fact that the statistical estimation of the parameters of a GARCH process is rather uncomplicated.

This attractive property has led S+ to provide us with a module for the statistical inference and

simulation of GARCH models, called S+FinMetrics.

Another non–linear model for financial time series is the stochastic volatility model, given by

Xt = σtZt, t ∈ Z,

where the noise process (Zt) and the volatility process (σt) are assumed to be independent. Although

this model is much easier than the GARCH in understanding its probabilistic properties, the lack of

estimation procedures for the stochastic volatility model made it less attractive than the GARCH family.

Recently, the attitude towards the stochastic volatility model has changed and a variety of estimation

techniques (such as GMM and quasi-MLE) have been developed as well. We study some properties of

the stochastic volatility model in Section 2.4, including stationarity, mixing properties, moments.

1.3 Objectives and methodology of the thesis

As mentioned before, financial time series have some characteristic features which should be taken into

consideration when analyzing them. By now, there is no ”perfect” time series model for returns. Some

of these models score high in some cases and not so well in other cases. This leads to many different

models for financial time series. Some of these models are useful as regards certain aspects of time series

analysis, such as estimation of the parameters, capturing a large variety of real–life financial time series:

they give a good fit in many examples, their probabilistic properties are easy to study as regards some

other aspects. On the other hand, the available models usually suffer from some shortage as regards

some other aspects. Therefore, in general we use different models according to the slogan ”This model

is correct, having some shortage and the other model is wrong, having some advantages”. This is the

problem of statistics in general.

We already mentioned some time series models, ARMA, GARCH and stochastic volatility models.

The (linear) ARMA process is not really suited for modeling financial time series. The GARCH model

is very attractive because of its simplicity in estimation problems and its capability to fit real–life return

data. There exists an enormous body of literature on the properties of the GARCH model. This work aims
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at studying strict and weak stationarity, power law tails, extremes, mixing and the statistical properties

of parameter estimators (such as consistency and asymptotic normality under general assumptions on

the distribution of Zt). Despite the many papers and books which have been written on the ”ARCH”

theme, the GARCH model is still not completely understood as regards its probabilistic properties. The

stochastic volatility model is still in the frame of the picture when we speak about financial time series

analysis. The problem of estimation of the stochastic volatility model parameters was a serious threat

for this model. New methods for estimation made the stochastic volatility model more interesting for

financial time series analysis.

1.3.1 Asymptotic theory for the sample autocorrelation for the stochastic
volatility model

In this thesis our interest focuses on the stochastic volatility model as a tool for financial time series

analysis. Our first aim will be to derive an asymptotic theory for the stochastic volatility model. If one

estimates the parameters of the model from the sample data, the estimators often include the sample

mean Xn, the sample variance and the sample autocorrelations for (Xt) and (|Xt|p) for some p > 0, e.g.

for p = 2. We start our study, as usual in time series analysis, by exploring the probabilistic properties

of the stochastic volatility process.

In the beginning, an introduction to the probabilistic tools which are used throughout the thesis are

given. The ergodic theorem and the central limit theorem play an important role for the asymptotic

theory of the estimators. Martingale properties are crucial for the central limit theorem of (Xt). For the

(|Xt|p), p > 0, sequence, mixing conditions are needed for the application of the central limit theorem

for dependent variables. We introduce different types of mixing conditions, see Section 2.1.4. In the

case of the stochastic volatility model, strong mixing is convenient. Using the Cramér -Wold device, we

get a multivariate version of the central limit theorem, see Section 2.1.5. The multivariate central limit

theorem is useful, e.g. when studying the joint convergence of the sample mean and the sample variance,

but also when we consider the asymptotic behavior for a lagged vector of sample autocorrelations or

sample autocorrelations. This is the topic of Section 2.7.

Stationarity is an important property in time series analysis. For linear time series analysis often

weak stationarity suffices, whereas for non–linear time series analysis strict stationarity is important. In

practice, financial time series in general are non–stationary. If there is a doubt about stationarity we can

apply some transformations to make the data stationary. The stochastic volatility sequence is a strictly

stationary sequence under some mild conditions, see Section 2.4.2.
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One of the advantages of the stochastic volatility model is that we can easily study its probabilistic

properties. Its moments are used to compute variances, autocovariances, and autocorrelation functions.

In Section 2.4.4, we study the moments of the stochastic volatility sequence (Xt) and its powers (|Xt|p).
We introduce the results in the case log σt =

∑∞
i=0 ψiηt−i where (ηt) is an iid sequence and (ψt) are

suitable constants and in the special case that η has a Gaussian distribution.

We need a central limit theorem to study the asymptotic behavior of the estimators of moments and

covariances. The central limit theorem for iid sequences is not applicable for financial time series as

the data are dependent through time. For a stochastic volatility model, the sequence (Xt) is a strictly

stationary ergodic martingale difference sequence under mild assumptions, see Section 2.4.4. Hence the

central limit theorem for strictly stationary ergodic martingale difference sequences can be applied to

the sample mean of a stochastic volatility model. Another important sequence in financial time series

analysis consists of the series of the powers (|Xt|p). In practice, it is common to study the sequences

(|Xt|) and (X2
t ) in order to detect non–linearities in the sequence of the returns (Xt). If the sequence (Xt)

is strongly mixing the sequence (|Xt|p), p > 0, is also strongly mixing sequence. Thus the central limit

theorem for strictly stationary strongly mixing sequences can be applied to get the asymptotic behavior

of the sample mean of (|Xt|p). Using these central limit theorems and the Cramér–Wold device, we get

multivariate versions of the central limit theorem. Section 2.5 studies the joint central limit theorem for

the sample mean and the estimated variance of the stochastic volatility sequence (Xt) and the power

sequence (|Xt|p).

First, we are interested in the case of finite variance innovations Zt, where we can use the standard

central limit theorems from Section 2.1.5. We also consider the non–standard case, when Zt has infinite

variance. As a special case we study iid α−stable innovations (Zt). We study the joint asymptotic

behavior of (Xn, ŝ2
n), where Xn is the sample mean and ŝ2

n is the sample variance, under the assumption

that (Zt) is iid symmetric stable (sαs) for some α ∈ (0, 2). The limiting joint mixed characteristic

function–Laplace–Stieltjes transformation of (Xn, ŝ2
n) is derived. We also study the limiting distribution

of the standardized sample mean
√

nXn/ŝn. It is symmetric and has unit variance but it is not standard

normal. This result is in contrast to the case when var(X) is finite, when the limit is normal.

The other side of the coin in time series analysis is spectral analysis. In this thesis we study the

asymptotic theory for the periodogram of a stochastic volatility sequence. The spectral representation of a

stationary process (Xt) essentially decomposes (Xt) into a sum of sinusoidal components with uncorrelated

random coefficients. In conjunction with this decomposition there is a corresponding decomposition into
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sinusoids of the spectral density of (Xt). The spectral decomposition is thus an analogue for stationary

stochastic processes of the more familiar Fourier representation of deterministic functions. Herglotz’s

theorem and the spectral distribution function of a stationary process are important building blocks in

this area. The standard methods for estimating the spectral density are based on the periodogram. We

again study the asymptotic behavior of the periodogram for the stochastic volatility model when either

(Zt) is iid normal or (Zt) is iid infinite variance sαs, for some α < 2, see Section 2.6. We also study the

self-normalized periodogram.

An important fact about financial time series is related to the autocovariance/autocorrelation func-

tions, which are usually estimated by their sample autocovariance/autocorrelation functions. Of course,

as for any statistical estimator, we need to study its asymptotic behavior. The stochastic volatility se-

quence (Xt) is a strictly stationary ergodic martingale difference sequence, so the central limit theorem

for strictly stationary ergodic martingale difference sequences is applicable in this case. We study the

joint limit distribution for the sample autocovariance and the sample autocorrelation functions in the

case of Gaussian and non-Gaussian log σt. For the sequence (|Xt|p), p > 0, its autocorrelation function

is relevant in financial time series analysis. For example, for real–life data (Xt), the autocorrelation

function of the time series (|Xt|) does not decay very fast for large lags h. The sequence (|Xt|p) is a

strictly stationary strongly mixing sequence, so the central limit theorem for this kind of sequence and

its multivariate versions can be applied to the sample autocovariances and autocorrelations. As the auto-

covariance for lag h > 0 does not equal zero, the variance covariance matrix for the limiting distribution

is more complicated than in the case when p = 1. These are the topics of Section 2.7.

1.3.2 Extremes in the stochastic volatility model

When reading a newspaper and studying the financial index on the first page, one expects to find big

losses or big profits in the financial market. This is a simple example when extremes matter. In general,

extreme value theory takes a special interest in very different areas, and financial time series analysis

is just one of them. Some time series analysts consider extremes as outliers. This means, that they do

not consider them as belonging to the probability distribution underlying the data. Dealing with these

extremes as outliers, leaves one no choice for a quantitative analysis of these values. Another point of

view, especially for long records of phenomena, is to model the extremes. Extreme value theory deals

with this topic. In Section 3.1.1, we give a short review of classical extreme value theory for iid random

variables.

Real–life financial returns are heavy–tailed in the sense that their distributional tails exhibit power
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law behavior. This means in particular that sufficiently high moments of returns might be infinite. For

modeling heavy tails of financial time series, the class of regularly varying distributions is particularly

attractive. A random variable X is said to be regularly varying with index α ≥ 0 if there exist constants

p, q ≥ 0, q = 1− p satisfies

P (X > x) = (p + o(1))x−αL(x) and P (X ≤ −x) = (q + o(1))x−αL(x),

for every x > 0, L(·) is a slowly varying function, i.e. L(cx)/L(x) → 1, as x → ∞, for every c > 0. In

many real–life data, there is evidence in favour of regularly varying distributions, see [11]. In addition,

mathematical reasons for using regularly varying distributions for modeling extremal events come from

their relation with extreme value theory and the fluctuation theory of modern models. A probability

distribution is regularly varying with index α ∈ (0, 2) if and only if it belongs to the domain of attraction

of an infinite variance stable distribution. Moreover, a regularly varying distribution with index α > 0

belongs to the maximum domain of attraction of one particular extreme value distribution, the Fréchet

distribution

Φα(x) = e−x−α

, x > 0.

In Sections 3.1.3 and 3.1.4, we introduce univariate/multivariate regular variation, major properties of

regularly varying variables and vectors, and give examples. Two functions of regularly varying vectors,

product and sum, are particularly important for our purposes. We study them in these sections.

An important application of regular variation is modeling extremal events in financial time series. In

Section 3.2.1 we study the regular variation of the GARCH model. In particular, we study the so–called

spectral distribution of the GARCH(1, 1) case under mild conditions. This distribution is a quantitative

measure of the likelihood that multivariate extremes occur in a certain direction. The knowledge of the

spectral distribution enables one to conclude various limiting conditional probabilities, among which the

tail dependence coefficient has gained some popularity in quantitative risk management, see e.g. McNeil

et al [25]. This leads us to study some consequences for the extremes of the GARCH(1, 1). We also study

regular variation in the stochastic volatility model in Section 3.2.2, which is a less demanding task.

In general, sequences of iid random variables are not very often met in time series practice. An

important fact about financial time series is that their extremes usually occur in clusters. Classical

extreme value theory does not apply to the stochastic volatility model; we need some extra conditions

on the dependence structure. There are different models for dependence. In the case of heavy–tailed

distributions, the autocorrelation function is not a perfect measure of dependence. To measure the
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dependence in the tails, the extremal index of a stationary sequence is a useful tool. Smaller values of

the extremal index indicate stronger clustering of large fluctuations, i.e. more dependence in the tails.

Perhaps surprisingly (and in contrast to the GARCH model), the extremal index of a stochastic

volatility model is one, i.e. it has the same value as for an iid sequence. In Section 3.3 we study the

asymptotic behavior of the extremes in a stochastic volatility process. Under the assumption of regular

variation on the noise (Zt) we show that the limits of the maxima and ordered statistics are the same

as in the iid case with the same marginal distributions as in the stochastic volatility model, and we also

show that the weak limit of the point processes of exceedances is a homogeneous Poisson process.

1.4 Summary

The thesis contributes results in the following areas:

1) We give an overview of the asymptotic behavior of the sample mean and sample variance for a stochastic

volatility model under strong mixing of the volatility sequence. Whereas the results in the finite variance

case follow standard patterns, the results, where the noise is iid symmetric α−stable, are new.

2) We study the asymptotic behavior of the periodogram of the stochastic volatility model in the cases

when the noise is either iid Gaussian or infinite variance α−stable. We also consider the self–normalized

(or standardized) periodogram at a fixed frequency. Whereas the limit of the periodogram in the case

of iid Gaussian noise is exponential as in the case of an iid sequence, the limits in the case of α−stable

infinite variance noise are rather unusual and, in particular, depend on whether the frequency is a rational

or irrational multiple of 2π. Whereas this phenomena has been observed in Klüppelberg and Mikosch

[23] for an iid sequence, the results are new for the stochastic volatility model. Since the self–normalized

periodogram has a limit distribution in both cases, the finite and the infinite variance ones, the limits

of the smoothed self–normalized periodogram can be interpreted as a spectral density irrespective of

whether the spectral density of the model is well defined or not.

3) We provide a limit theory for the sample autocovariance and autocorrelation functions of the stochastic

volatility model and its absolute values and any positive power. Since we exclusively made use of strong

mixing, the results follow by standard arguments from the theory of strong mixing.

4) We study the extremal behavior of a stochastic volatility model under the assumption that the iid

noise be regularly varying. We show that the stochastic volatility model itself inherits regular variation

in the sense that its finite–dimensional distributions are regularly varying with a spectral distribution

concentrated at the coordinate axes. This is again analogous to the case of an iid sequence. In particular,
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the stochastic volatility sequence has extremal index one and has upper tail zero. These are two other

properties it shares with an iid regularly varying sequence.

In since, the results of this thesis show that the asymptotic results for sum–like functionals and

extremes of a strongly mixing stochastic volatility sequence very much parallel the theory for an iid

sequence.



Chapter 2

Asymptotic theory for stochastic
volatility processes

This chapter deals with the stochastic volatility model. We study the properties of this model including

its moments. The main aim is to study the asymptotic behavior of its estimated autocorrelations.

2.1 Preminaries on time series

In this section the emphasis is on some tools which play an important role in the study of the stochastic

volatility model.

2.1.1 Weak and strict stationarity

When looking at a time series we hope to see some sort of ”regularity”. In particular, when looking at

different segments of the series we might expect to discover similar patterns or similar behavior. This

can be made precise by introducing the notion of ”stationarity”. Before we can do that we need another

fundamental quantity:

Definition 2.1.1. (The autocovariance function (ACVF))

Let (Xt)t∈Z be a process such that var(Xt) < ∞ for all t ∈ Z. The function

γX(s, t) = cov(Xs, Xt) = E[(Xs − EXs)(Xt − EXt)]; s, t ∈ Z, (2.1.1)

is called the autocovariance function of the process (Xt). We write ACVF for short.

Definition 2.1.2. ((Weak) stationarity)

The time series (Xt)t∈Z is said to be stationary if the following relations hold:

• E|Xt|2 < ∞, t ∈ Z.
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• EXt = m, t ∈ Z, for a constant m.

• γX(s, t) = γX(s + h, t + h) for all s, t, h ∈ Z.

Definition 2.1.3. (Strict stationarity)

The time series (Xt)t∈Z is said to be strictly stationary if for any h ∈ Z and t ≥ 0, the random vectors

(Xh, . . . , Xt+h) and (X0, . . . , Xt) have the same distribution.

Any strictly stationary sequence will always be indexed by the integers Z. We will usually drop the

index set. For any strictly stationary sequence (Xt) we write X for a generic element of the sequence.

• If (Xt)t∈Z is stationary then the autocovariance function of (Xt) can be written as

γX(h) ≡ cov(Xt, Xt+h) = γX(0, h)

• A strictly stationary process with finite second moments is (weakly) stationary. The converse of

the previous statement is not true.

• There is an important case in which (weak) stationarity implies strict stationarity. It is a Gaussian

time series (if the finite dimensional distributions of (Xt) are all multivariate normal).

The weak stationarity assumes that only the first two moments of time series are time invariant provided

that the process has finite second moments. Weak stationarity is primely used for linear time series, such

as ARMA processes, where we are mainly concerned with the linear relationships among variables at

different times. In fact, the assumption of weak stationarity suffices for most linear time series analysis,

such as in spectral analysis. In contrast, we have to look beyond the first two moments if our focus is on

nonlinear relationships. This explains why strict stationarity is often required in the context of nonlinear

time series analysis.

2.1.2 Autocovariance, autocorrelation functions and their sample analogs of
a stationary process

Definition 2.1.4. (Autocorrelation function ACF)

Let (Xt)t∈T be a stationary process such that var(Xt) < ∞ for all t ∈ T . The function

ρX(h) =
γX(h)
γX(0)

, (2.1.2)

is called the autocorrelation function at lag h ∈ Z .



2.1 Preminaries on time series 13

Since the ACVF and ACF are unknown for a real-life data set, they have to be estimated by sta-

tistical means. Standard estimators are given by the sample autocovariances γ̂X(h) and the sample

autocorrelations ρ̂X(h) at lag h ∈ Z.

Definition 2.1.5. (The sample autocovariance function and the sample autocorrelation function)

The sample ACVF and sample ACF of a stationary process (Xt) are given by

γ̂X(h) =
1
n

n−h∑
t=1

(Xt − X̄n)(Xt+h − X̄n), ρ̂X(h) =
γ̂X(h)
γ̂X(0)

, 0 ≤ h < n, (2.1.3)

respectively, where X̄n = 1
n

∑n
t=1 Xt is the sample mean.

Autocovariances, autocorrelations and their sample versions are relevant for the study of the depen-

dence structure and for building theoretical time series models. Whenever we work with these quantities

we are in the time domain of time series analysis. Another way of looking at time series is the frequency

domain where one studies the spectral properties of such series.

Example 2.1.6. (Linear Process, ARMA)

The time series (Xt) is said to be an ARMA(p, q) process if it is stationary and satisfies the ARMA

difference equations

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q, t ∈ Z, (2.1.4)

for given real numbers φ1, . . . , φp, θ1, . . . , θq and a white noise sequence (Zt) with var(Z) > 0. The process

(Xt) is linear if it has representation

Xt =
∞∑

j=−∞
ψjZt−j , t ∈ Z.

An ARMA(p, q) process is said to be causal if it has representation

Xt =
∞∑

j=0

ψjZt−j , t ∈ Z, (2.1.5)

for constants ψj satisfying
∞∑

j=0

|ψj | < ∞. (2.1.6)

This means all causal ARMA(p, q) processes have a linear series representation. The following formula
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can be obtained for any linear process, hence in particular for ARMA(p, q) process

var(X) = σ2
∞∑

j=0

ψ2
j , (2.1.7)

γX(h) = σ2
∞∑

j=0

ψjψj+|h|, h ∈ Z, (2.1.8)

ρX(h) =

∑∞
j=0 ψjψj+|h|∑∞

j=0 ψ2
j

, h ∈ Z. (2.1.9)

For causal ARMA processes, there exist k > 0, a < 1, such that |ψj | ≤ kaj for all j ≥ 0. Hence for all

h ≥ 0

|γX(h)| ≤ σ2
∞∑

j=0

|ψj ||ψj+h| ≤ σ2k2
∞∑

j=0

ajaj+h

= σ2k2ah 1
1− a2

.

Therefore both γX(h) and ρX(h) converge to zero exponentially fast as h →∞.

2.1.3 Ergodicity

If (Xt, t ≥ 0) are independent identically distributed, then their sample mean converges to EX if E|X| <
∞. When (Xt) is merely strictly stationary, convergence to a nonconstant limit is possible. In order to

be able to study the limiting random variable in the stationary case ergodicity and invariance play an

important role (see for example [8], Chapter 6 and [38]).

Definition 2.1.7. (Measure-preserving function)

Let (Ω,F , P ) be a probability space. A transformation T from Ω to Ω is measure-preserving (alternatively

”T preserves P”) if it is measurable and if P [T−1A] = P (A) for all A ∈ F .

Every measure-preserving transformation generates a strictly stationary sequence and any strictly

stationary sequence can be represented by means of a measure-preserving transformation [38, p. 168].

Definition 2.1.8. (Invariant event)

Given a measure-preserving transformation T , a measurable event A is said to be invariant if T−1A = A.

If P (T−1A4A) = 0 then A is said to be almost invariant.

The collection of almost invariant events T forms a σ-field which is the completion of T with respect

to F and P (that is, every almost invariant event differs from an invariant event by a measurable event

of probability 0.)
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Definition 2.1.9. (Ergodic transformation) [38, p. 172]

A measure-preserving transformation is ergodic if for all A ∈ T either P (A) = 0 or P (A) = 1.

Lemma 2.1.10. (The mean ergodic theorem) [38, p. 178]

Let T be a measure- preserving transformation. Then E|X| < ∞ implies

E

∣∣∣∣∣
n−1∑

k=0

X(T k)/n− E[X|T ]

∣∣∣∣∣ → 0

as n →∞ (that is, convergence in L1).

Theorem 2.1.11. (The pointwise ergodic theorem for a strictly stationary sequence) [38, p. 181]

Let (Xt, t ≥ 1) be a strictly stationary sequence with E|X| < ∞. Then 1
n

∑n
i=1 Xi → E[X|T ] a.s. If in

addition (Xt, t ≥ 1) is ergodic, 1
n

∑n
i=1 Xi → E[X] a.s.

In particular, so-called Bernoulli shifts Yt = f((Xt+h)h∈Z), t ∈ Z, of a strictly stationary ergodic

sequence (Xt) are again strictly stationary ergodic sequences. Here f is any measurable real-valued

function f , and (Xt) can be an ergodic process with values in some abstract space, see for example [24].

In particular, (Yt) is ergodic if (Xt) is an iid sequence.

2.1.4 Mixing

The classical asymptotic theory in statistics is built on the central limit theorem and the law of large

numbers for sequences of independent random variables. For time series, there are rather complicated

dependence structures. Certain asymptotic independence conditions are needed in order to derive large

sample properties for time series inferences. A mixing time series can be viewed as a sequence of random

variables for which the past and distant future are asymptotically independent. For mixing sequences,

both the law of large numbers (i.e., ergodic theorem) and central limit theorem can be established. Mixing

conditions for strictly stationary processes can be given by defining mixing coefficients. These coefficients

measure the strength of dependence for the two segments of a time series that are apart from each other

in time.

Definition 2.1.12. (Mixing conditions) [15, p. 68-69]

Let Fb
a be the σ−field generated by Xt, a ≤ t ≤ b, and L2(Fb

a) consists of the Fb
a-measurable random

variables with finite second moment. A strictly stationary sequence (Xt)t∈Z is said to be

α-mixing, also called strongly mixing if

sup
B∈F0

−∞,C∈F∞t

|P (B ∩ C)− P (B)P (C)| =: αt −→ 0, t −→∞, (2.1.10)
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β-mixing, also called absolute regular if

E

(
sup

B∈F∞t
|P (B)− P (B|X0, X−1, X−2, · · · )|

)
=: βt −→ 0, t −→∞, (2.1.11)

ρ-mixing if

sup
X∈L2(F0

−∞),Y ∈L2(F∞t )

|Corr(X,Y )| =: ρt −→ 0, t −→∞, (2.1.12)

ϕ-mixing if

sup
B∈F0

−∞,C∈F∞t ,P (B)>0

|P (C)− P (C|B)| =: ϕt −→ 0, t −→∞, (2.1.13)

and

ψ-mixing if

sup
B∈F0

−∞,C∈F∞t ,P (B)P (C)>0

∣∣∣∣1−
P (C|B)
P (C)

∣∣∣∣ =: ψt −→ 0, t −→∞. (2.1.14)

The following diagram illustrates the relationships between the five mixing conditions:

↗ β −mixing ↘
ψ −mixing → ϕ−mixing α−mixing.

↘ ρ−mixing ↗

In general the α-mixing condition, also called strong mixing, is the weakest among the five, which is

implied by any one of the four other mixing conditions. On the other hand, ψ-mixing is the strongest

condition. However, e.g. for Gaussian processes, ρ-mixing is equivalent to α-mixing and therefore is

weaker than the β-mixing condition [15, p. 69]. Usually strong mixing plays a fundamental role in time

series analysis.

The decay rate of the mixing coefficients to zero as t → ∞ is a measure of the range of dependence

or of the memory in the sequence (Xt). If it decays to zero at an exponential rate, then (Xt) is said to

be mixing with geometric rate.

The rate function (αt) is closely related to the rate of decay of the ACF ρX of the stationary process

(Xt) [17, p. 309]. For example, the following classical result holds.

Lemma 2.1.13. (ACF upper limit)

Assume (Xt)t∈Z is strictly stationary and strongly mixing with rate function (αh) and E(|X|2+δ) < ∞
for some δ > 0. Then the relation

|ρX(h)| ≤ cα
δ

2+δ

h , h ≥ 0 (2.1.15)

holds for some constant c > 0.
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In particular, if (αh) decays to zero exponentially fast as h →∞ so does (ρX(h)).

Example 2.1.14. (The rates of decays for ARMA)

Assume that (Xt) is a causal Gaussian ARMA process. Then it follows from [33] that (αh) decays

exponentially fast. Of course, in this case it is well known (also for non-Gaussian causal ARMA processes)

that ρX(h) decays to zero exponentially fast, see Example 2.1.6.

Since strong mixing is defined via the σ−fields generated by the random variables Xt, it remains valid

for any sub-σ fields. In particular, if one considers the time series

Yt = g(Xt−k, . . . , Xt+k) , t ∈ Z ,

for any k ≥ 0 and a measurable function g assuming values in d-dimensional Euclidean space, then (Yt) is

again strictly stationary and strongly mixing with a rate function αh(g) ≤ αh. This follows from the fact

that the Borel σ-fields generated from the Yt’s are sub-σ-fields of those generated from (Xt−k, . . . , Xt+k).

We will typically be interested in measurable transformations of the form

Yt = |Xt|p , t ∈ Z ,

for some p > 0, or

Yt = (X2
t , XtXt+1, . . . , XtXt+k),

for some k ≥ 0 and the corresponding analogs for |Xt|p, some p > 0. These processes have essentially the

same strong mixing properties as the original (Xt) sequence.

2.1.5 Central limit theorems

Here the focus will be on the central limit theorem for dependent variables.

Theorem 2.1.15. (Central limit theorem for strictly stationary ergodic martingale difference sequences

[2, p. 206])

Let (Xt) be a strictly stationary, ergodic sequence for which

E(Xn|X1, . . . Xn−1) = 0, a.s. (2.1.16)

and for which EX2 = σ2 ∈ (0,∞). Then

1√
n

n∑

i=0

Xi
d→ N(0, σ2). (2.1.17)
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This result is remarkable insofar that it holds under a second moment condition as in the iid case.

For the iid case σ2 < ∞ is necessary and sufficient for relation (2.1.17).

Theorem 2.1.16. (Central limit theorem for strictly stationary strongly mixing sequences [17, p. 346–

347])

Let the strictly stationary sequence (Xt) satisfy the strong mixing condition with mixing coefficients αt,

and let EX = 0 and E|Xt|2+δ < ∞ for some δ > 0. If
∑∞

i=1 α
δ

2+δ

i < ∞, then

1√
n

n∑

i=0

Xi
d→ N(0, σ2 + 2

∞∑

j=1

γX(j)). (2.1.18)

The asymptotic variance in (2.1.18) is finite. This is an immediate consequence of (2.1.15) and

∞∑

i=1

α
δ/(2+δ)
i < ∞.

Theorem 2.1.17. (Cramér-Wold device [21, p. 150])

Suppose that X, X1, X2, . . . are k-dimensional random vectors. Then, Xn
d→ X if and only if for all

choices of a = (a(1), . . . , a(k)) ∈ Rk,

k∑

i=1

a(i)Xn(i) d→
k∑

i=1

a(i)X(i). (2.1.19)

Lemma 2.1.18. (The multivariate central limit theorem for strictly stationary ergodic martingale dif-

ference sequences)

Let X, X1, X2, . . . be a strictly stationary k−dimensional ergodic martingale difference sequence satisfying

(2.1.16) and E|X|2 < ∞. Then
1√
n

n∑

i=1

Xi
d→ N(0, Σ), (2.1.20)

where Σ is the variance-covariance matrix of X.

Proof. Since E(Xn|X1, X2, . . . , Xn−1) = 0,

E(a′Xn|X1, X2, . . . , Xn−1) = a′E(Xn|X1, X2, . . . , Xn−1) = 0,

for all a ∈ Rk. An application of Theorem 2.1.15 yields that

1√
n

n∑

i=1

a′Xi
d→ N(0, var(a′X)).

Notice that

var(a′X) = a′Σa.

By the Cramér-Wold device (Theorem 2.1.17), Relation (2.1.20) holds.
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Lemma 2.1.19. (The multivariate central limit theorem for strictly stationary strongly mixing se-

quences)

Let X, X1, X2, . . . be a strictly stationary k−dimensional strongly mixing sequence satisfying E|X|2+δ < ∞
for some δ > 0 and

∑∞
i=1 α

δ
2+δ

i < ∞, then

1√
n

n∑

i=1

Xi
d→ N(0,Σ + 2

∞∑

h=1

Σ0h), (2.1.21)

where Σ is the variance-covariance matrix of X and

Σ0h = (cov(X0(i), Xh(j)))i,j=1,...,k.

Proof. Since (Xi) is strongly mixing with rate function αh, the measurable function f(Xi) = a′Xi is

strongly mixing with the same rate function. An application of Theorem 2.1.16 yields that

1√
n

n∑

i=1

a′Xi
d→ N(0, var(a′X) + 2

∞∑

h=1

cov(a′X0, a
′Xh)),

and the asymptotic variance is finite. Notice that

var(a′X) = a′Σa′,

and

cov(a′X0, a
′Xh) = a′Σ0ha.

By the Cramér-Wold device (Theorem 2.1.17), this is equivalent to relation (2.1.21).

2.2 Financial time series and their stylized facts

One branch of financial mathematics is pricing theory. It is the part of financial mathematics which is

related to the pricing of derivatives such as options. The Black-Scholes option pricing formula stands

as a synonym for this theory. It has been developed since 1973 when two fundamental papers of Black,

Scholes [3] and Merton [26] appeared. The basic version of the much quoted Black-Scholes model for log

prices, pt = log(Pt), is given by the simple stochastic differential equation,

dpt = µdt + σdBt,

with t denoting time and B a Brownian motion. Furthermore, µ is the drift coefficient and σ is commonly

referred to as the volatility which is essential in option pricing for example. This model has two basic

assumptions (which are often known to fail):
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• The volatility σ is constant over time.

• pt is normally distributed.

Brownian motion and Itô stochastic integral, Girsanov transformation and change of measure are

basic notions in this framework. A deep knowledge of the theory of stochastic processes is the basis for

anybody who wants to conduct serious research in this area.

Another approach to modeling financial phenomena is via time series. Time series are discrete-time

processes, and the link to continuous-time processes is not obvious and in general difficult to establish, i.e.,

the embedding of a discrete-time process in a continuous-time one is by no means an easy matter. The

aims of time series analysis are different from those of pricing. Whereas the latter requires a continuous-

time framework in order to make martingale and stochastic integration techniques applicable, time series

analysis has always been directed towards the understanding of the mechanism that drives a given series

of data with the aim of possibly predicting future values in the series.

This does not mean that stochastic differential equations, which are commonly used to model price

movements for derivative pricing, do not describe a certain physical mechanism of the price evolution.

This approach, however, does not primarily aim at the most realistic model for prices. Its basic goal is to

get a reasonable model that is mathematically tractable and can be understood or interpreted by financial

practitioners. Thus, financial time series analysis focuses on the ”truth” behind the data meaning that

one is interested in finding physical models that explain, at least to some extent, the empirically observed

features of real-life data.

Because there are many financial data, it might be difficult to say anything about some common

properties. Surprisingly, a large variety of financial data which we denote consistently by Pt, t = 0, 1, 2, . . .,

(t can be minutes, hours, days, etc.) exhibits similar properties after the transformation

Xt = log Pt − log Pt−1 = log(1 +
Pt − Pt−1

Pt−1
),

at least if one focuses on share prices (of Microsoft, say), stock indices (DAX, Nikkei, Dow Jones, etc.) or

foreign exchange rates (such as USD/JPY, USD/DEM, or JPY/DEM). In fact, these similar properties

depend on the time scale chosen. Depending on whether the time unit is a second, half an hour, or a day,

a month, or a year, qualitative differences in the time series can be expected and different models need to

be introduced. E.g., if the time scale is too small Pt lives on a grid and varies little; one often observes that

Pt does not change over longer (relative to the time unit) periods. This would imply that the distribution

of Xt has an atom at zero. This would be an unacceptable assumption if Xt was calculated on a daily
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basis, in which case one often requires that Xt has a density. Since we do not want to get into too large

or small time scales; in what follows we think of t in units of hours, days, or weeks.

The resulting (Xt) is the time series of log-returns which, by a Taylor series argument, is close to

the relative returns series Pt−Pt−1
Pt

. The relative returns give some more intuition on the log-returns (the

relative returns are very small and therefore almost indistinguishable from the log-returns), i.e., they

describe the relative change over time of the price process. In what follows, we often refer, for short, to

returns instead of log-returns.

The log-differences Xt have the advantage that they are free of any unit, therefore, comparable

among each other. Moreover, there is an important mathematical issue as well: it is believed that the

time series (Xt) can be modeled by a stationary (in the strict or wide senses) stochastic process, i.e., this

transformation yields one realization of a stationary process. In turn, stationarity is a basic assumption

for any kind of time series analysis. There are several references which discuss the stylized facts of

financial time series, for example Mikosch [27].

2.2.1 Distribution and tails
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Figure 2.1: The Nikkei daily closing log-returns over a period of 4 years

Samples of returns, X1,. . . ,Xn have the following stylized facts in common:
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• The sample mean of the data is close to zero; the sample variance is of the order 10−4 or smaller.

This is due to the fact that price changes are in general very small; a daily change of 1%, 2% or

more is very unusual.

• A density plot of the data, see Figure 2.2, shows that the distribution of the data is roughly

symmetric in its center, sharply peaked around zero with heavy tails on both sides. The shape of
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Figure 2.2: Left: Density plot of the Nikkei data. Right: QQ-plot of the Nikkei data against the normal
distribution with mean and variance estimated from the Nikkei data.

the density and the QQ-plot of the data against the normal distribution in Figure 2.2 indicate that

the normal distribution is not a perfect distribution to fit the returns. This is in contrast to the

assumptions in the Black-Scholes model, which is most widely used for modeling stock prices.

• The log-returns have heavy-tailed marginal distribution. This is clear from the very large and very

small values in the density plot and the shape of the QQ-plot (which curves up at the right and

curves down at the left). Examples of distributions more suitable for fitting return data are e.g.

the Pareto and the t-distribution. Both distributions are regularly varying in the sense defined in

Definition 3.1.4. This means that their tails are power-like, hence very heavy-tailed.

2.2.2 Dependence and autocorrelations

Using the ACF and its estimator, the sample ACF, the following dependence properties of log-return series

(Xt) are commonly observed, see Figure 2.3 for an illustration. They are observed for many financial
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Figure 2.3: Sample ACFs for the log-returns (top) and absolute log-returns (bottom) of the Nikkei com-
posite stock index. The confidence band is set as the 95 % asymptotic confidence interval corresponding
to the sample ACF of iid Gaussian noise.

time series.

• The sample ACF is negligible at all lags. An exception can be the first lag.

• The sample ACF for the absolute values |Xt| and also for the squares X2
t are different from zero

for a large number of lags and stay almost constant and positive for large lags.

• Occurrence of extremely large and small Xt’s clustered at certain instants of time, caused by

turbulences in the market due to financial crashes, political decisions, war, etc.

The slow decay of the sample ACF for the absolute log-returns is typical for longer time series. The

sample ACF is not negligible even for large lags, this is often interpreted as long memory of the absolute

returns.

Autocorrelations are not good tools for explaining large and small values in a time series. Indeed,

covariance and correlations are moments, hence they are integrated characteristics of the distribution of

the underlying time series; the contribution of the probabilities in the tails of the distributions is averaged

out and disappears.
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2.2.3 Dependence and extremes

The dependence of extremal return values is obvious if one looks, for example, at pairs |Xt|, |Xt+1|
exceeding a high threshold, see Figures 2.4 and 2.6. For comparison, we include the graph of the joint

exceedances of the same threshold for the successive values |Xt|, |Xt+1| in an iid sequences (Xt) with a

student t−distribution with four degrees of freedom which often fits returns nicely. It is obvious that joint

pairwise exceedances of a high threshold occur in clumps for log-return data due the dependence of the

extreme values. We refer to dependence in the tails. For an iid sequence, exceedances of high positive or

low negative thresholds (relatively to the size of the data) occur separated over time, roughly according

to a homogeneous Poisson process. For returns, this is not true. This leads to the next stylized fact:

• The large and small values in the log-return sample occur in clusters. There is dependence in the

tails.
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Figure 2.4: Top: Absolute returns |Xt| of the Nikkei composite stock index series for which both |Xt| and
|Xt+1| exceed the 85% quantile of the data. Bottom: The same kind of plot for an iid sequence from a
student distribution with 4 degrees of freedom. In the former case pairwise exceedances occur in clusters,
in the latter case exceedances appear uniformly scattered over time.

Since autocorrelations are not appropriate for describing the dependence of large and small Xt−values,

further tools have been considered. One of them we want to explain now. For an iid sequences (Xt) we
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Figure 2.5: Top: Absolute returns |Xt| of the S&P500 composite stock index series for which both |Xt|
and |Xt+1| exceed the 85% quantile of the data. Bottom: The same kind of plot for an iid sequence
from a student distribution with 4 degrees of freedom. In the former case pairwise exceedances occur in
clusters, in the latter case exceedances appear uniformly scattered over time.

know that

P (Mn ≤ x) = [P (X ≤ x)]n, n = 1, 2, . . . ,

where

Mn = max(X1, . . . , Xn).

For large classes of strictly stationary sequences (Xt) one can show the existence of a number θ ∈ [0, 1]

such that

P (Mn ≤ xn) = [P (X ≤ xn)]θ + o(1),

where (xn) is a suitable sequence converging to the right endpoint of the distribution of X. This number

θ is the extremal index of (Xt). It can be estimated from the data by statistical methods, see [11], Section
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8.1. By its definition, θ describes the reciprocal of the expected cluster size in a sample X1, . . . , Xn above

high thresholds.
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Figure 2.6: Point estimation of the extremal index for the Nikkei data. The estimators are based on
the upper order statistics exceeding the threshold u. The smallest u is the 97% quantile of the data.
The estimator estimates θ in a u-region, where the plot does not change much (between 0.02 and 0.03)
resulting in an extremal index of about 0.55. If u is too high (above 0.03 say), the estimator is based on
too few order statistics and not reliable.

2.3 Some standard financial time series models

Time series can be roughly divided into two groups, linear and nonlinear time series. Examples of linear

time series models are autoregressive (AR), moving average (MA), and autoregressive moving average

(ARMA) processes. ARMA models and their variations play an active role in analyzing time series data

due to their simplicity, feasibility, and flexibility [15, p. 14]. On the other hand, as regards the properties

of financial time series, the ARMA family is not suitable for fitting the data. Beyond the linear domain,

there are infinitely many nonlinear forms to be explored.

Most models for return data used in practice are of a multiplicative form

Xt = µ + σtZt, t ∈ Z, (2.3.1)
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where (Zt) is an iid noise or innovation sequence, (σt) is a stochastic process with nonnegative values

such that σt and Zt are independent for fixed t. The volatility process (σt) and the return process (Xt)

are usually assumed to be strictly stationary. Sometimes Zt is assumed to be symmetric. We will often

assume that EZ = 0 and var(Z) = 1. We will also assume that µ can be estimated from the data and

therefore it will be convenient to assume µ = 0 as well. If Zt is iid symmetric, the direction of price

changes is modeled by the sign of Zt, independent of the order of magnitude of this change, which is

directed by the volatility σt. This is in agreement with the empirical observation that it is difficult to

predict the sign of price changes. Since σt and Zt are independent, σ2
t is then the conditional variance of

Xt given σt. Most models assume that σt is a function of Xt−1, Xt−2, . . . and σt−1, σt−2, . . .. We consider

two of the most popular ones.

2.3.1 The ARCH family

One of the successful examples of nonlinear time series models which has a multiplicative form is the

ARCH process (autoregressive process with conditional heteroscedasticity) and its numerous modifica-

tions.

Definition 2.3.1. (ARCH(p) process)

An ARCH process of order p is defined as

Xt = σtZt, σ2
t = a0 + b1X

2
t−1 + · · ·+ bpX

2
t−p, t ∈ Z (2.3.2)

where a0 > 0, bj ≥ 0, bp > 0 and Zt are iid with EZ = 0 and var(Z) = 1.

The ARCH model was introduced by Engle [12] in 1982 to model the varying conditional variance

or volatility of a return time series. It is one of the properties of financial time series that the larger

values of the past lead to instability (i.e., larger variances at the present), which is termed (conditional)

heteroscedasticity.

Bollerslev [4] in 1986 introduced the generalized autoregressive conditionally heteroscedastic (GARCH)

process of order (p, q) by replacing the second equation in (2.3.2) with

σ2
t = a0 + a1σ

2
t−1 + · · ·+ aqσ

2
t−q + b1X

2
t−1 + · · ·+ bpX

2
t−p, t ∈ Z, (2.3.3)

where aj ≥ 0, bj ≥ 0, a0 > 0, aq > 0 and bp > 0.

There exists a constantly increasing number of references to ARCH-GARCH and related process.

Relevant references on different issues are the following ones:



28 Chapter 2. Asymptotic theory for stochastic volatility processes

• On strict stationarity Bougerol and Picard [5], Nelson [32] give conditions for strict stationarity.

Those are in general not easily established. They depend on the coefficients ai, bj and on the

distribution of Z.

• On the tails GARCH models, under general conditions, have power law tails. This is explored in

[11], Section 8.4 for ARCH(1), in [29] for GARCH(1,1) and for general GARCH(p, q) in [1].

• On extremes Power law tails of an iid sequence (Xt) imply that the distribution of X is in the

domain of attraction of the Fréchet distribution, see [11], Section 3. This remains true for GARCH

process. See [29] and [1]. In contrast to iid sequences, GARCH extremes occur in clusters. See also

Section 3.2.1 below.

• On mixing The GARCH process has nice mixing properties. Given that Zt has a positive density

in some neighborhood of the origin (such as the normal or t-densities), (Xt) is β-mixing with

geometric rate. This was proved by Mokkadem [30], see also [10, p. 108].

• On estimation An advanced estimation theory for GARCH and related processes can be found in

[39]. Estimation of the GARCH parameters is typically based on the Gaussian quasi-maximum like-

lihood procedure. This means that one maximizes the likelihood function of the sample (X1, . . . , Xn)

under the assumption that the Zt’s are iid N(0, 1). The estimators are a.s. consistent and asymp-

totically normal under very general assumptions on the distribution of Zt.

2.3.2 The stochastic volatility model

The stochastic volatility model is an alternative model to the celebrated GARCH model. The GARCH

probabilistic properties (existence of stationary solution, dependence structure, tails, etc.) are by no

means easy to derive and not in all cases well understood. We will consider another multiplicative model,

the stochastic volatility process.

Definition 2.3.2. (Stochastic volatility model)

The time series (Xt)t∈Z is said to be a stochastic volatility process if it satisfies the equations

Xt = σtZt, t ∈ Z,

where the volatility sequence (σt)t∈Z is a strictly stationary sequence of positive random variables and

(Zt)t∈Z is an iid noise sequence. Moreover, (σt)t∈Z and (Zt)t∈Z are mutually independent.
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In the stochastic volatility model, the volatility sequence (σt) and the noise sequence (Zt) are inde-

pendent. This is in contrast to the GARCH model where σt is a measurable function of the past values

of the multiplicative noise (Zs)s<t and, for fixed t, σt and (Zs)s≥t are independent, i.e., in contrast to

GARCH processes, there is no feedback between the noise (Zt) and the volatility process (σt),i.e., there

are two independent sources of randomness. For this reason, the stochastic volatility model is sometimes

considered as unnatural. However, the probabilistic properties of a stochastic volatility process are much

better understood than the properties of GARCH processes.

Usually (σt) is given by a parametric model such as a Gaussian ARMA process for (log σt). By first

squaring Xt and then taking logarithms, one can see that the ARMA process 2 log σt gets perturbed by

the extra noise 2 log |Zt| which makes estimation more complicated because it is impossible to give an

explicit expression for the likelihood function. We still can use some estimation methods like GMM and

quasi-MLE. Often one needs to resort to simulation based methods to calculate efficient estimates.

2.4 Properties of the stochastic volatility model

2.4.1 Some elementary properties

In what follows, we will assume that the following conditions are satisfied. It is common use to assume

that EZ = 0 and EZ2 = 1. Then, if Eσ < ∞, EX equals zero. This is in agreement with return data of

price series such as foreign exchange rates, share prices and stock indices, see page 20.

Moreover, if var(Z) and var(σ) are finite, var(X) < ∞ and, by the Cauchy-Schwarz inequality,

|cov(Xt, Xt+h)| ≤
√

var(Xt)var(Xt+h) .

In particular, we have

cov(Xt, Xt+h) = E(XtXt+h) = E(Zt)E(Zt+h)E(σtσt+h) = 0

for all t, h ∈ Z. This shows that (Xt) is a white noise sequence. This is in agreement with the stylized

facts in Section 2.2.2.

2.4.2 Strict stationarity

The assumption of stationarity of the time series (Xt) is basic for the statistical analysis of the data.

Lemma 2.4.1. (The stochastic volatility sequence is a strictly stationary ergodic sequence)

Under the conditions of Definition 2.3.2, (Xt) is strictly stationary. Moreover, it is ergodic if (σt) is

ergodic.
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Proof. Condition on (Zn). By strict stationarity of (σn), the sequences (σn) and (σn+h) have the same

distribution for any h ∈ Z. Hence (Znσn+h) d= (Znσn). Now condition (Znσn+h) on (σn+h). The iid

property of (Zn) yields that (Zn) d= (Zn+h). Hence (Znσn+h) has the same distribution as (Zn+hσn+h).

Finally, (Xn) d= (Xn+h). The ergodicity of (Xn) follows from the fact that both (σt) and (Zt) are ergodic

and mutually independent.

2.4.3 Strong mixing

Lemma 2.4.2. (The stochastic volatility sequence is a strongly mixing sequence)

Consider the stochastic volatility model with a strongly mixing sequence (σn) with rate function (αh(σ)).

Then the sequence (Xt) is strongly mixing with rate function αh ≤ 4αh(σ).

Proof. Let Fb
a = σ(Xt, a ≤ t ≤ b) and choose A ∈ F0

−∞, B ∈ F∞t . Then

|P (A ∩B)− P (A)P (B)| = P ((Xs)s≤0 ∈ C, (Xs)s≥t ∈ D)

−P ((Xs)s≤0 ∈ C)P ((Xs)s≥t ∈ D),

where C,D are suitable Borel sets in R∞. Conditioning on (σs) yields

P (A ∩B) = E[P ((Xs)s≤0 ∈ C, (Xs)s≥t ∈ D)|(σs)]

= E[P (((Xs)s≤0 ∈ C)|σs)P (((Xs)s≥t ∈ D)|(σs))]

Since (σt) and (Zt) are independent we can write

f(. . . , σ−1, σ0) = P ((. . . , X−1, X0) ∈ C|σs, s ≤ 0),

g(σt, σt+1, . . .) = P ((Xt, Xt+1, . . .) ∈ D|σs, s ≥ t),

and then

|P (A ∩B)− P (A)P (B)| = |E(f(. . . , σ−1, σ0)g(σt, σt+1, . . .))

−E(f(. . . , σ−1, σ0))E(g(σt, σt+1, . . .))|.

Notice that f(. . . , σ−1, σ0) and g(σt, σt+1, . . .) are less than 1. Standard results about strong mixing show

that the right-hand side in the previous equation is bounded by 4αh(σ) [15, Proposition 2.5, p. 71–72].

A common way of constructing a positive strictly stationary volatility sequence (σt) is to assume a

particular form of the strictly stationary log-volatility sequence Yt = log σt, t ∈ Z. In the literature, it is
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often assumed that (Yt) is a linear process

Yt =
∞∑

i=0

ψiηt−i, t ∈ Z, (2.4.1)

where (ψt) is a sequence of deterministic coefficients with ψ0 = 1 and
∑∞

i=0 ψ2
i < ∞ and (ηt) is an

iid mean zero and finite variance sequence of random variables. By Kolmogorov’s three series theorem

[21, p. 185] the latter conditions ensure that the infinite series (2.4.1) converges a.s. As a Bernoulli

shift of the iid sequence (ηt), the process (σt) is strictly stationary ergodic (see Section 2.1.3), and (Xt)

inherits ergodicity from ergodicity of (σt), the iid property of (Zt) and the independence of (σt) and (Zt).

Moreover, if (Yt) is strongly mixing with rate function (αh) then (σt) has the same rate function and by

Lemma 2.4.2, (Xt) has rate function αh ≤ 4αh(σ).

2.4.4 Martingale properties

We consider the filtration Gt = σ(Zs, ηs, s ≤ t) in the model given by Equation (2.4.1). Then (Xt) is

adapted to (Gt) and

E(Xt|Gt−1) = e
∑∞

i=1 ψiηt−iE(Zte
ηt ) = e

∑∞
i=1 ψiηt−iEZEeηt = 0 a.s., (2.4.2)

provided that Eσ < ∞. Then (Xt) constitutes a centered finite variance strictly stationary ergodic

martingale difference sequence.

Lemma 2.4.3. The sequence (XtXt+h) is a mean zero finite variance strictly stationary ergodic martin-

gale difference sequence with respect to (Gt+h). If var(σ2) < ∞ it is also stationary.

Proof. For h > 0, (Xt, Xt+h) is adapted to the filtration (Gt+h) and by (2.4.2)

E(XtXt+h|Gt+h−1) = XtE(Xt+h|Gt+h−1) = 0 a.s.

Hence (XtXt+h) is a strictly stationary ergodic mean zero martingale difference sequence. In addition,

since EZ2 = 1 and if var(σ2) < ∞, then

var(XtXt+h) = E(σ0
2σh

2) < ∞.

Therefore (XtXt+h) is a mean zero finite variance strictly stationary ergodic martingale difference se-

quence.

Lemma 2.4.4. Assume p ≥ 1. If Eσp < ∞ and E|Z|p < ∞, the sequence (σp
t (|Zt|p − E|Zt|p)) is a

strictly stationary ergodic mean zero martingale difference sequence with respect to (Gt). If Eσ2p < ∞
and E|Z|2p < ∞ it is also stationary.
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Proof. The sequence (σp
t (|Zt|p − E|Zt|p)) is adapted to the filtration (Gt). Moreover,

E(σp
t (|Zt|p − E|Zt|p)|Gt−1) = ep

∑∞
i=1 ψiηt−iE((epηt(|Zt|p − E|Z|p))|Gt−1)

= ep
∑∞

i=1 ψiηt−iEepηtE(|Z|p − E|Z|p) = 0.

Thus (σp
t (|Zt|p − E|Zt|p)) is a mean zero strictly stationary ergodic martingale difference sequence with

respect to (Gt). If Eσ2p < ∞ and E|Z|2p < ∞,

var(σp(|Zt|p − E|Zt|p)) = Eσ2p(E|Zt|2p − (E|Z|p)2) = Eσ2pvar(|Zt|p) < ∞.

Another sequence of interest in the stochastic volatility model is

(σp
t σp

t+h((|Zt|p − E|Z|p)(|Zt+h|p − E|Z|p))), h > 0.

The last sequence is adapted to the filtration (Gt+h).

Lemma 2.4.5. Assume p ≥ 1. For every h > 0 the sequence (σp
t σp

t+h((|Zt|p−E|Z|p)(|Zt+h|p−E|Z|p)))
is a strictly stationary ergodic martingale difference with respect to (Gt+h) if Eσ2p < ∞ and E|Z|p < ∞.

It is stationary if E|Z|2p < ∞ and Eσ4p < ∞.

Proof. For h > 0, the sequence (σp
t σp

t+h((|Zt|p − E|Z|p)(|Zt+h|p − E|Z|p))) is adapted to the filtration

(Gt+h). Therefore

E((σp
t σp

t+h((|Zt|p − E|Z|p)(|Zt+h|p − E|Z|p))|Gt+h−1)) =

(|Zt|p − E|Z|p)σp
t ep

∑∞
i=1 ψiηt+h−iE(epηt+h(|Zt+h|p − E|Zt|p)) =

(|Zt|p − E|Z|p)σp
t ep

∑∞
i=1 ψiηt+h−iEepηt+h(E|Zt+h|p − E|Zt|p) = 0.

Since Eσ2p < ∞ and E|Z|p < ∞, the sequence (σp
t σp

t+h((|Zt|p −E|Z|p)(|Zt+h|p −E|Z|p))) constitutes a

strictly stationary ergodic martingale difference sequence with respect to (Gt+h). Moreover, if Eσ4p < ∞
and E|Z|2p < ∞,

var(σp
t σp

t+h((|Zt|p − E|Z|p)(|Zt+h|p − E|Z|p))) = E(σ2p
t σ2p

t+h)(var(|Z|p))2 < ∞.
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2.4.5 Moments of the stochastic volatility model

Throughout this section, we assume (Xt) is a stochastic volatility process with specification given in

Section 2.4.3, in particular EZ = 0 and EZ2 = 1, and (σt) is defined through equation (2.4.1) where (ηt)

is an iid sequence with E(η) = 0, var(η) = E(η2
t ) = τ2 < ∞ and the moment generating function of η,

mη(s) = Eesη, is finite for all s ∈ R ,
∑∞

i=0 ψ2
i < ∞ and ψ0 = 1.

Remark 2.4.6. The fact that (Xt) is a white noise sequence agrees with real-life return data. However,

this observation is not very informative. Therefore it has become common in financial time series analysis

to study the ACVF and ACF of the absolute values, squares and other powers of absolute return data

as well. In contrast to the GARCH process, in the stochastic volatility model one can exploit the

independence between (σt) and (Zt) in order to get explicit formulas for γ|X|p .

Lemma 2.4.7. Assume p > 0. Then the following relations hold.

E(σp) =
∞∏

i=0

mη(pψi), (2.4.3)

var(σp) =
∞∏

i=0

mη(2pψi)− (
∞∏

i=0

mη(pψi))2. (2.4.4)

The ACVF of (σp
t ) at lag h > 0 is given by

γσp(h) =
∞∏

i=0

mη(p(ψi + ψi+h))
h−1∏

i=0

mη(pψi)− (
∞∏

i=0

mη(pψi))2 (2.4.5)

and the ACF of (σp
t ) at lag h > 0 is given by

ρσp(h) =
∏∞

i=0 mη(p(ψi + ψi+h))
∏h−1

i=0 mη(pψi)− (
∏∞

i=0 mη(pψi))2∏∞
i=0 mη(2pψi)− (

∏∞
i=0 mη(pψi))2

. (2.4.6)

Moreover if η has a Gaussian distribution with mean zero and variance τ2 > 0 then

E(σp) = e
p2τ2

2

∑∞
i=0 ψ2

i , (2.4.7)

var(σp) = ep2τ2 ∑∞
i=0 ψ2

i (ep2τ2 ∑∞
i=0 ψ2

i − 1), (2.4.8)

γσp(h) = ep2τ2 ∑∞
i=0 ψ2

i

(
ep2τ2 ∑∞

i=0 ψiψi+h − 1
)

, (2.4.9)

ρσp(h) =
ep2τ2 ∑∞

i=0 ψiψi+h − 1
ep2τ2

∑∞
i=0 ψ2

i − 1
=

ep2γY (h) − 1
ep2γY (0) − 1

. (2.4.10)

Proof. The volatility sequence (σt) in the stochastic volatility model is given by σt = e
∑∞

i=0 ψiηt−i . Hence
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by independence of the ηi’s and since mη(s) exists for all s ∈ R,

E(σp) = Eep
∑∞

i=0 ψiη−i =
∞∏

i=0

mη(pψi),

var(σp) = E(σ2p − (Eσp)2) =
∞∏

i=0

mη(2pψi)− (
∞∏

i=0

mη(pψi))2,

E(σp
t σp

t+h) = E(σp
0σp

h) = Eep(
∑∞

i=0 ψiη−i+
∑∞

i=0 ψiηh−i)

= Eep(
∑∞

i=0(ψi+ψi+h)η−i+
∑−1

j=−h ψj+hη−j)

=
∞∏

i=0

mη(p(ψi + ψi+h))
h−1∏

i=0

mη(pψi), h > 0.

From the above results, formulas (2.4.5) and (2.4.6) are straightforward. For the special case when η has

a Gaussian distribution N(0, τ2), τ2 > 0, the moment generating function is given by mη(s) = e
1
2 τ2s2

. In

this case (2.4.7) and (2.4.8) are straightforward from (2.4.3) and (2.4.4). Direct calculation with (2.4.5)

yields

E(σp
0σp

h) = e
p2τ2

2 (∑∞
i=0(ψi+ψi+h)2+

∑h−1
i=0 ψ2

i )

= e
p2τ2

2 (∑∞
i=0 ψ2

i +
∑∞

i=0 ψ2
i+h+2

∑∞
i=0 ψiψi+h+

∑h−1
i=0 ψ2

i )

= ep2τ2 ∑∞
i=0(ψ2

i +ψiψi+h),

γσp(h) = cov(σp
t σp

t+h) = ep2τ2 ∑∞
i=0 ψ2

i

(
ep2τ2 ∑∞

i=0 ψiψi+h − 1
)

,

ρσp(h) =
ep2τ2 ∑∞

i=0 ψiψi+h − 1
ep2τ2

∑∞
i=0 ψ2

i − 1
.

Remark 2.4.8. Notice that when η comes from a Gaussian distribution N(0, τ2), (Yt) presents a linear

process as introduced in Example 2.1.6. Thus (Yt) satisfies

γY (0) = τ2
∞∑

j=0

ψ2
j ,

γY (h) = τ2
∞∑

j=0

ψjψj+h, h > 0,

ρY (h) =

∑∞
j=0 ψjψj+h∑∞

j=0 ψ2
j

, h > 0.

For the ACF of (σp
t ) we then have

γσp(h) = ep2γY (0)(ep2γY (h) − 1), h > 0.
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Since γY (h) → 0 as h →∞ a Taylor series expansion yields

γσp(h) ∼ ep2γY (0)p2γY (h), h →∞. (2.4.11)

In addition,

ρσp(h) =
ep2γY (h) − 1
ep2γY (0) − 1

∼ p2

ep2γY (0) − 1
γY (h). (2.4.12)

In particular, if (Yt) is strongly mixing with geometric rate, γY (h) → 0 as h → ∞ exponentially fast,

hence ρσp(h) → 0 exponentially fast too. This is in agreement with the theory of strong mixing, see

Lemma 2.1.13.

Lemma 2.4.9. Assume p > 0. The ACVF of (σp
sσp

s+h) at lag t > 0 is given by

• if h ≤ t

γσp
0σp

h
(t) =

∞∏

i=0

mη(p(ψi + ψh+i + ψt+i + ψt+h+i))

.

h−1∏

i=0

mη(p(ψi + ψi+t−h + ψi+t)
t−h−1∏

i=0

mη(p(ψi + ψh+i))

.

h−1∏

i=0

mη(pψi)−
[ ∞∏

i=0

mη(p(ψi + ψi+h)).
h−1∏

i=0

mη(pψi)

]2

,

• if h > t

γσp
0σp

h
(t) =

∞∏

i=0

mη(p(ψi + ψh+i + ψt+i + ψt+h+i))

.

t−1∏

i=0

mη(p(ψi + ψi+h−t + ψi+h)
h−t−1∏

i=0

mη(p(ψi + ψt+i))

.

t−1∏

i=0

mη(pψi)−
[ ∞∏

i=0

mη(p(ψi + ψi+h)).
h−1∏

i=0

mη(pψi)

]2

.

Moreover, if η has a Gaussian distribution N(0, τ2) the above ACVF is

γσp
0σp

h
(t) = e2p2τ2 ∑∞

i=0(ψ
2
i +ψiψi+h)[e

∑∞
i=0(ψiψt+i+ψiψt+h+i) − 1]. (2.4.13)
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Proof. If h ≤ t we have

E(σp
0σp

hσp
t σp

t+h) = Eep(
∑∞

i=0 ψiη−i+
∑∞

i=0 ψiηh−i+
∑∞

i=0 ψiηt−i+
∑∞

i=0 ψiηt+h−i)

= E
[
ep(

∑∞
i=o(ψi+ψh+i+ψt+i+ψt−h−i)η−i)

ep(
∑−1

j=−h(ψj+h+ψj+t+ψt+h+j)η−j+
∑−h−1

l=−t (ψl+t+ψt+h+l)η−l+
∑−t−1

m=−t−h ψm+t+hη−m)
]

=
∞∏

i=0

mη(p(ψi + ψh+i + ψt+i + ψt−h−i)).
−1∏

i=−h

mη(p(ψj+h + ψj+t + ψt+h+j))

.

−h−1∏

i=−t

mη(p(ψl+t + ψt+h+l)).
−t−1∏

i=−t−h

mη(pψt+h+i).

From the above result and Lemma 2.4.7 we get

γσp
0σp

h
(t) = E(σp

0σp
hσp

t σp
t+h)− (E(σp

0σp
h))2

=
∞∏

i=0

mη(p(ψi + ψh+i + ψt+i + ψt+h+i))

.

−1∏

i=−h

mη(p(ψi+h + ψi+t + ψi+t+h)
−h−1∏

i=−t

mη(p(ψi+t + ψt+h+i))

.

−t−1∏

i=−t−h

mη(pψt+h+i)−
[ ∞∏

i=0

mη(p(ψi + ψi+h)).
h−1∏

i=0

mη(pψi)

]2

.

For the special case we have

γσp
0σp

h
(t) = e

p2τ2

2 [
∑∞

i=0(ψi+ψh+i+ψt+i+ψt+h+i)
2+

∑−1
i=−h(ψi+h+ψi+t+ψi+t+h)2+

∑−h−1
i=−t (ψi+t+ψt+h+i)

2]

.e
p2τ2

2

∑−t−1
i=−t−h ψ2

t+h+i − [ep2τ2 ∑∞
i=0(ψ2

i +ψiψi+h)]2

= e2p2τ2 ∑∞
i=0(ψ

2
i +ψiψi+h+ψiψi+t+ψiψi+t+h) − e2p2τ2 ∑∞

i=0(ψ2
i +ψiψi+h).

In the same way we can get the results for h > t.

Remark 2.4.10. When η comes from a Gaussian distribution N(0, τ2), the following result holds

γσp
0σp

h
(t) = e2p2(γY (0)+γY (h))[eγY (t)+γY (t+h) − 1]. (2.4.14)

A Taylor expansion yields

γσp
0σp

h
∼ e2p2(γY (0)+γY (h))(γY (t) + γY (t + h)), t →∞.

The variance of (σp
0σp

h) is given by

var(σp
0σp

h) = E(σ2p
0 σ2p

h )− (E(σp
0σp

h))2

= e4p2τ2 ∑∞
i=0(ψ2

i +ψiψi+h) − (ep2τ2 ∑∞
i=0(ψ2

i +ψiψi+h))2

= e2p2(γY (0)+γY (h))(e2p2(γY (0)+γY (h)) − 1).
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In addition, the ACF has the form

ρσp
0σp

h
(t) =

eγY (t)+γY (t+h) − 1
e2p2(γY (0)+γY (h)) − 1

∼ e2p2(γY (0)+γY (h))

e2p2(γY (0)+γY (h)) − 1
(γY (t) + γY (t + h)) (2.4.15)

In particular, if (Yt) is strongly mixing with geometric rate, γY (t) → 0 as t → ∞ exponentially fast,

hence γσp
0σp

h
(t) → 0 exponentially fast too.

Lemma 2.4.11. Assume p > 0. If E|Z|p < ∞, we have

E|Xt|p = E(|Z|p)
∞∏

i=0

mη(pψi). (2.4.16)

If E|Z|p < ∞ the ACVF for (|X|p) at lag h > 0 is given by

γ|X|p(h) = (E(|Z|p))2
( ∞∏

i=0

mη(p(ψi + ψi+h))
h−1∏

i=0

mη(pψi)− (
∞∏

i=0

mη(pψi))2
)

. (2.4.17)

If E|Z|2p < ∞ the ACF of (|X|p) at lag h > 0 is given by

ρ|X|p(h) =
(E(|Z|p))2

(∏∞
i=0 mη(p(ψi + ψi+h))

∏−1
i=−h mη(pψi+h)− (

∏∞
i=0 mη(pψi))2

)

E(|Z|2p)
∏∞

i=0 mη(2pψi)− [E(|Z|p)∏∞
i=0 mη(pψi)]

2 . (2.4.18)

When η has a Gaussian distribution N(0, τ2) we have

E(|X|p) = E(|Z|p)e p2τ2

2

∑∞
i=0 ψ2

i = E|Z|pe p2

2 γY (0), (2.4.19)

var(|X|p) = ep2τ2 ∑∞
i=0 ψ2

i

(
E|Z|2pep2τ2 ∑∞

i=0 ψ2
i − (E|Z|p)2

)

= ep2γY (0)
(
E|Z|2pep2γY (0) − (E|Z|p)2

)
, (2.4.20)

E(|Xt|p|Xt+h|p) = ep2γY (0)(1+ρY (h))(E|Z|p)2, (2.4.21)

γ|X|p(h) = (E|Z|p)2ep2τ2 ∑∞
i=0 ψ2

i

(
ep2τ2 ∑∞

i=0 ψiψi+h − 1
)

, (2.4.22)

ρ|X|p(h) =
(E|Z|p)2

(
ep2τ2 ∑∞

i=0 ψiψi+h − 1
)

E|Z|2pep2τ2
∑∞

i=0 ψ2
i − (E|Z|p)2 . (2.4.23)

Proof. For the sequence (Xt) we have the following straightforward calculations.

E|X|p = E(σp)E(|Z|p) = E(|Z|p)
∞∏

i=0

mη(pψi),

var(|X|p) = E(|Z|2p)
∞∏

i=0

mη(2pψi)− [E(|Z|p)
∞∏

i=0

mη(pψi)]2

γ|X|p(h) = E(σp
0 |Z0|pσp

h|Zh|p)− (E|Z|p)2E(σp
0σp

h) = (E(|Z|p))2γσp(h).
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Now we use (2.4.5) to get the formulas for γ|X|p(h) and ρ|X|p(h).

For the special Gaussian case, the moment generating function is given by mη(t) = et2τ2/2. We have

from the previous calculations

E(|X|p) = E(|Z|p)e p2τ2

2

∑∞
i=0 ψ2

i ,

var(|X|p) = E|Z|2pe2p2τ2 ∑∞
i=0 ψ2

i − (E|Z|p)2ep2τ2 ∑∞
i=0 ψ2

i

= ep2τ2 ∑∞
i=0 ψ2

i

(
E|Z|2pep2τ2 ∑∞

i=0 ψ2
i − (E|Z|p)2

)
,

γ|X|p(h) = (E|Z|p)2ep2τ2 ∑∞
i=0 ψ2

i

(
ep2τ2 ∑∞

i=0 ψiψi+h − 1
)

,

ρ|X|p(h) =
(E|Z|p)2

(
ep2τ2 ∑∞

i=0 ψiψi+h − 1
)

E|Z|2pep2τ2
∑∞

i=0 ψ2
i − (E|Z|p)2 .

Remark 2.4.12. Note that in the above lemma var(|X|p) cannot be derived by formally setting h = 0

in the ACVF γ|X|p(h) in Equation (2.4.17).

Remark 2.4.13. The ACVF γ|X|p in the case of a Gaussian distribution N(0, τ2) for η can be approxi-

mated by using a Taylor expansion as follows:

γ|X|p(h) = (E|Z|p)2ep2γY (0)(ep2γY (h) − 1)

∼ (E|Z|p)2p2ep2γY (0)γY (h), h →∞. (2.4.24)

This follows from the fact that (γY (h)) decays to zero at h →∞. The ACF is approximated by

ρ|X|p(h) ∼ (E|Z|p)2p2

E|Z|2pep2γY (0) − (E|Z|p)2 γY (h), h →∞. (2.4.25)

Remark 2.4.14. We conclude from Remarks 2.4.8 and 2.4.13 that γσp inherits the asymptotic behavior

of the ACVF γY and, in turn, γ|X|p inherits the asymptotic behavior of γσp and γY . In particular, if (Yt)

is strongly mixing with a geometric rate function (αt) then we know from page 17 that (|Xt|p) and (σp
t )

inherit strong mixing with the same rate function. We conclude from (2.4.24) and (2.4.25) that (γ|X|p(h))

and (γσp(h)) decay exponentially fast as h →∞. This is in agreement with Remark 2.4.13.

Lemma 2.4.15. Assume p > 0 and E|Z|p < ∞. The ACVF of the sequence (|X0Xh|p) for h > 0 at lag

t > 0 is given by
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• if h < t

γ|X0Xh|p(t) = (E|Z|p)4
( ∞∏

i=0

mη(p(ψi + ψh+i + ψt+i + ψt+h+i))

.

h−1∏

i=0

mη(p(ψi + ψi+t−h + ψi+t)
t−h−1∏

i=0

mη(p(ψi + ψh+i)) (2.4.26)

.

h−1∏

i=0

mη(pψi)−
[ ∞∏

i=0

mη(p(ψi + ψi+h)).
h−1∏

i=0

mη(pψi)

]2

 ,

• if h > t

γ|X0Xh|p(t) = (E|Z|p)4
( ∞∏

i=0

mη(p(ψi + ψh+i + ψt+i + ψt+h+i))

.

t−1∏

i=0

mη(p(ψi + ψi+h−t + ψi+h)
h−t−1∏

i=0

mη(p(ψi + ψt+i)) (2.4.27)

.

t−1∏

i=0

mη(pψi)−
[ ∞∏

i=0

mη(p(ψi + ψi+h)).
h−1∏

i=0

mη(pψi)

]2

 ,

• if h = t and E|Z|2p < ∞

γ|X0Xh|p(h) = (E|Z|p)2E|Z|2p

( ∞∏

i=0

mη(p(ψi + ψi+2h + 2ψh+i))

.
h−1∏

i=0

mη(p(2ψi + ψi+h))
h−1∏

i=0

mη(pψi)

)
(2.4.28)

−(E|Z|p)4
[ ∞∏

i=0

mη(p(ψi + ψi+h)).
h−1∏

i=0

mη(pψi)

]2

.

Proof. In the stochastic volatility model we have for t 6= h

γ|X0Xh|p(t) = E(|Z0|pσp
0 |Zh|pσp

h|Zt|pσp
t |Zt+h|pσp

t+h)− (E(|Z0|pσp
0 |Zh|pσp

h))2

= (E|Z|p)4γσp
0σp

h
(t), t 6= h.

The ACVF for (σp
0σp

h) was given in Lemma 2.4.9. This yields formulas (2.4.26) and (2.4.27). If t = h the

ACVF is given by

γ|X0Xh|p(h) = (E|Z|p)2E|Z|2pE(σp
0σ2p

h σp
2h)− (E|Z|p)4(E(σp

0σp
h))2,

E(σp
0σ2p

h σp
2h) =

∞∏

i=0

mη(p(ψi + ψi+2h + 2ψh+i))
h−1∏

i=0

mη(p(2ψi + ψi+h))
h−1∏

i=0

mη(pψi).

Direct calculation leads to formula (2.4.28).
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Figure 2.7: Top: A simulated time series and the corresponding sample ACF of 1000 observations from
the ARMA(1,1) process given by Vt = 0.7Vt−1 + 0.7δt−1 + δt, for iid (δt) with common distribution
N(0, 1). Middle: A simulated time series and the corresponding sample ACF of 1000 observations from
the stochastic volatility model given by Qt = Ztσt where log(σt) = Vt in the top case and Z comes from
the Gaussian distribution N(0, 1). Bottom: A simulated time series and the corresponding sample ACF
of 1000 observations from the stochastic volatility model when Z comes from a Cauchy distribution.

2.5 Asymptotic theory for the sample mean and sample variance
in the stochastic volatility model

2.5.1 Asymptotic theory for the sample mean and sample variance with finite
variance innovations Zt

In what follows, we assume (Xt) is a stochastic volatility process with specification given in Section

2.4.3, in particular EZ = 0 and EZ2 = 1, and (σt) is defined through equation (2.4.1) where (ηt) is

an iid sequence with E(η) = 0, var(η) = E(η2
t ) = τ2 < ∞ and the moment generating function of η,

mη(s) = Eesη, is finite for all s ∈ R ,
∑∞

i=0 ψ2
i < ∞ and ψ0 = 1.

Proposition 2.5.1. Assume (Xt) is a stochastic volatility process. The sample mean Xn = 1
n

∑n
t=1 Xt
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Figure 2.8: Top: The time series of the absolute values and the corresponding sample ACF of 1000
observations from the ARMA(1,1) process given in Figure 2.7. Middle: The time series of absolute values
and the corresponding sample ACF of 1000 observations from the stochastic volatility model given in
Figure 2.7 when Z comes from the Gaussian distribution N(0, 1). Bottom: The time series of absolute
values and the corresponding sample ACF of 1000 observations from the stochastic volatility model given
in Figure 2.7 when Z comes from a Cauchy distribution.

satisfies the following property
√

n Xn
d→ N(0, E(σ2)). (2.5.1)

In particular, if η has Gaussian N(0, τ2) distribution then

√
n Xn

d→ N(0, e2τ2Σ∞i=0ψ2
i ).

Proof. The sequence (Xt) constitutes a centered finite variance strictly stationary ergodic martingale

difference sequence (see relation (2.4.2)). Therefore the central limit theorem for strictly stationary

ergodic martingale difference sequences can be applied (see Theorem 2.1.15)

√
n Xn

d→ N(0, var(X)),
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where var(X) = E(σ2) =
∏∞

i=0 mη(2ψi). If η has a Gaussian distribution with mean 0 and variance

τ2 > 0 then Eσ2 = e2τ2 ∑∞
i=0 ψ2

i , see Lemma 2.4.7.

Proposition 2.5.2. Assume that (Yt) = (log σt) is a strictly stationary strongly mixing sequence with

rate function (αt) satisfying the condition
∑∞

t=1 α
δ/(2+δ)
t < ∞. Then

1√
n

n∑

i=0

(σp
t − Eσp) d→ N

(
0, var(σp) + 2

∞∑

i=1

γσp(i)

)
, (2.5.2)

where

var(σp) =
∞∏

i=0

mη(2pψi)− (
∞∏

i=0

mη(pψi))2

and

γσp(h) =
∞∏

i=0

mη(p(ψi + ψi+h))
h−1∏

i=0

mη(pψi)− (
∞∏

i=0

mη(pψi))2.

Moreover, the infinite series
∑∞

i=1 γσp(i) is finite. If η is Gaussian N(0, τ2) distributed the above

results simplify to

var(σp) = ep2γY (0)(ep2γY (0) − 1),

γσp(i) = ep2γY (0)(ep2γY (i) − 1).

Proof. The strictly stationary ergodic sequence (σp
t ) inherits strong mixing from the sequence (log σt)

with the same rate function. A direct application of the central limit theorem in Theorem 2.1.16 gives the

above result. The variance and the ACVF of (σp
t ) were calculated in Lemma 2.4.7 and Remark 2.4.8.

Proposition 2.5.3. Under the same assumptions for (log σt) given in Proposition 2.5.2 and if E|Z|2p+ε <

∞ for some ε > 0, we have
1√
n

n∑
t=1

(|Xt|p − E|X|p) d→ N(0, ν2), (2.5.3)

where

ν2 = 2(E(|Z|p))2
∞∑

h=1

( ∞∏

i=0

mη(p(ψi + ψi+h))
h−1∏

i=0

mη(pψi)− (
∞∏

i=0

mη(pψi))2
)

+E|Z|2p
∞∏

i=0

mη(2pψi)− (E|Z|p
∞∏

i=0

mη(pψi))2. (2.5.4)

If η is Gaussian N(0, τ2) then

ν2 = ep2γY (0)(E|Z|2pep2γY (0) − (E|Z|p)2) + 2(E|Z|p)2ep2γY (0)
∞∑

h=1

(ep2γY (h) − 1). (2.5.5)
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Proof. The strictly stationary ergodic sequence (Xt) inherits the strong mixing properties from the

sequence (Yt) with the same rate function (αt). Moreover, E|X|2p+ε = Eσ2p+εE|Z|2p+ε < ∞ and
∑∞

i=1 α
δ/(2+δ)
i < ∞, by assumption. Hence, we can use Theorem 2.1.16 to get the central limit theorem.

1√
n

n∑
t=1

(|Xt|p − E|X|p) d→ N(0, ν2),

with variance

ν2 = var(|X|p) + 2
∞∑

i=1

γ|X|p(i) < ∞.

From Lemma 2.4.11 we have

var(|X|p) = E|Z|2p
∞∏

i=0

mη(2pψi)− (E|Z|p
∞∏

i=0

mη(pψi))2

γ|X|p(h) = (E(|Z|p))2
( ∞∏

i=0

mη(p(ψi + ψi+h))
h−1∏

i=0

mη(pψi)− (
∞∏

i=0

mη(pψi))2
)

,

This yields ν2 in (2.5.4). If η is Gaussian N(0, τ2) then from Lemma 2.4.11 we also have

var(|Xt|p) = ep2γY (0)(E|Z|2pep2γY (0) − (E|Z|p)2),

γ|X|p(h) = (E|Z|p)2ep2γY (0)(ep2γY (h) − 1).

Remark 2.5.4. Another proof for Proposition 2.5.3 using the multivariate CLT for strongly mixing

sequences can be derived as follows. We can write 1√
n

∑∞
t=1(|Xt|p − E|X|p) as follows:

1√
n

n∑
t=1

(|Xt|p − E|X|p) =
1√
n

(
n∑

t=1

(σp
t |Zt|p − E(σpZp))

=
1√
n

n∑
t=1

σp
t (|Zt|p − E|Z|p) +

1√
n

n∑
t=1

(σp
t − Eσp)E|Z|p

=
(
1 , E|Z|p)

(
1√
n

∑n
t=1 σp

t (|Zt|p − E|Z|p)
1√
n

∑n
t=1(σ

p
t − Eσp)

)
. (2.5.6)

The sequence (σp
t − Eσp) is a strongly mixing strictly stationary ergodic sequence. The CLT for this

sequence was given in Proposition 2.5.2. The sequence (σp
t (|Zt|p −E|Z|p)) is a mean zero finite variance

strictly stationary ergodic martingale sequence with respect to the filtration (Gt) (see Lemma 2.4.4).

Hence this sequence satisfies the CLT in Theorem 2.1.15. Moreover, (σp
t (|Zt|p − E|Z|p)) and σp

t are

uncorrelated and (σp
t (|Zt|p−E|Z|p)) is strongly mixing with the same rate as (σp

t ). Then the multivariate

central limit theorem in Theorem 2.1.18 yields that

1√
n

n∑
t=1

(
σp

t (|Zt|p − E|Z|p)
σp

t − Eσp

)
d→ N(0, Σ), (2.5.7)
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where

Σ =
(

Eσ2pvar(|Z|p) 0
0 var(σp) + 2

∑∞
h=1 γσp(h)

)
.

Finally, (2.5.6) and (2.5.7) and the continuous mapping theorem imply that:

1√
n

∞∑
t=1

(|Xt|p − E|X|p) d→ N(0, ν2),

where

ν2 =
(
1 , E|Z|p)Σ

(
1

E|Z|p
)

= Eσ2pvar(|Z|p) + (E|Z|p)2(var(σp) + 2
∞∑

h=1

γσp(h)).

¤

This approach shows nicely that the CLT for the sample mean of (|Xt|p) is essentially determined by

the CLT for the sample mean of (σp
t ) and the CLT for the asymptotically independent sample mean of

(σp
t (|Zt|p − E|Z|p)).

Lemma 2.5.5. If (Xt) is a stochastic volatility sequence, (log σt) satisfies the conditions in Proposition

2.5.2 and E|Z|4+ε < ∞ for some ε > 0, then

√
n(

1
n

n∑
t=1

(Xt −Xn)2 − var(X)) d→ N(0, ν2), (2.5.8)

where

ν2 = EZ4
∞∏

i=0

mη(4ψi)− [EZ2
∞∏

i=0

mη(2ψi)]2

+2(EZ2)2
∞∑

h=1

( ∞∏

i=0

mη(2(ψi + ψi+h))
h−1∏

i=0

mη(2ψi)− (
∞∏

i=0

mη(2ψi))2
)

.

If η is a Gaussian distribution N(0, τ2) then

ν2 = e4γY (0)(EZ4e4γY (0) − (EZ2)2) + 2(EZ2)2e4γY (0)
∞∑

h=1

(e4γY (h) − 1).
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Proof. We observe that

√
n(

1
n

n∑
t=1

(Xt −Xn)2 − var(X))

=
√

n(
1
n

n∑
t=1

X2
t − (Xn)2 − var(X))

=
√

n(
1
n

n∑
t=1

(X2
t − EX2)−X

2

n + (EX)2)

=
√

n(
1
n

n∑
t=1

(X2
t − EX2)− (Xn − EX)(Xn + EX))

=
√

n(
1
n

n∑
t=1

(X2
t − EX2))− (Xn + EX)

√
n(Xn − EX)

=
1√
n

n∑
t=1

(X2
t − EX2) + op(1).

In the last step we used the SLLN

Xn → EX = 0 a.s.,

and the CLT
√

n(Xn − EX) d→ N(0, var(X)),

from Proposition 2.5.1. Hence
√

n((Xn)2−(EX)2) P→ 0 and therefore it suffices to prove a CLT for (X2
t ).

We may apply the CLT in Theorem 2.1.16 to obtain

√
n(

1
n

n∑
t=1

(X2
t − EX2)) d→ N(0, var(X2) + 2

∞∑

h=1

γX2(h)),

since (X2
t ) is a strongly mixing ergodic sequence with rate function (αt) satisfying

∑∞
t=1 α

δ/(2+δ)
t < ∞

for some δ > 0 and since E|X|4+ε = E|Z|4+εEσ4+ε < ∞. Using Lemma 2.4.11, we get

var(X2) = EZ4
∞∏

i=0

mη(4ψi)− [EZ2
∞∏

i=0

mη(2ψi)]2,

γX2(h) = (EZ2)2
( ∞∏

i=0

mη(2(ψi + ψi+h))
−1∏

i=−h

mη(2ψi+h)− (
∞∏

i=0

mη(2ψi))2
)

.

If η has a Gaussian distribution N(0, τ2) then by Lemma 2.4.11

var(X2) = e4γY (0)(EZ4e4γY (0) − (EZ2)2),

γX2(h) = (EZ2)2e4γY (0)(e4γY (h) − 1).
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In the same way, it can be shown for the strictly stationary strongly mixing ergodic sequence (σp
t )

that the following result holds.

Lemma 2.5.6. If the volatility sequence (σt) satisfies the assumptions in Proposition 2.5.2, the following

CLT holds

√
n(

1
n

n∑
t=1

(σp
t −

1
n

n∑

j=1

σp
j )2 − var(σp)) d→ N(0, ν2), (2.5.9)

where

ν2 = 4(Eσp)2var(σp) + var(σ2p)− 4Eσpcov(σ2p
t , σp

t ) + 2
∞∑

h=1

γσ2p(h)

+8(Eσp)2
∞∑

h=1

γσp(h)− 8Eσp
∞∑

h=1

cov(σ2p
0 , σp

h).

Proof. In the same way as in the proof of Lemma 2.5.5 we start with the following decomposition

√
n(

1
n

n∑
t=1

(σp
t −

1
n

n∑

j=1

σp
j )2 − var(σp))

=
√

n(
1
n

n∑
t=1

(σ2p
t − Eσ2p))− (

1
n

n∑
t=1

σp
t + Eσp)

√
n(

1
n

n∑
t=1

σp
t − Eσp)

=
1√
n

n∑
t=1

(σ2p
t − Eσ2p)− 2Eσp

√
n(

1
n

n∑
t=1

σp
t − Eσp) + op(1) (2.5.10)

=
(
1 , −2Eσp

)
(

1√
n

∑n
t=1(σ

2p
t − Eσ2p)

1√
n

∑n
t=1(σ

p
t − Eσp)

)
,

Here we used the SLLN

1
n

n∑
t=1

σp
t → Eσp a.s.,

to get that 1
n

∑n
t=1 σp

t +Eσp = 2Eσp +op(1). Note that the sequences (σ2p
t ) and (σp

t ) are strongly mixing

stationary ergodic sequences. The CLT in Lemma 2.1.19 can be applied.

1√
n

n∑
t=1

(
(σ2p

t − Eσ2p)
(σp

t − Eσp)

)
d→ N(0, Σ),

where

Σ =
(

var(σ2p) + 2
∑∞

h=1 γσ2p(h) cov(σ2p
0 , σp

0) + 2
∑∞

t=1 cov(σ2p
0 , σp

t )
cov(σ2p

0 , σp
0) + 2

∑∞
t=1 cov(σ2p

0 , σp
t ) var(σp) + 2

∑∞
h=1 γσp(h)

)
.

Therefore
(
1 , −2Eσp

)
(

1√
n

∑n
t=1(σ

2p
t − Eσ2p)

1√
n

∑n
t=1(σ

p
t − Eσp)

)
d→ N(0, a′Σa)
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where

a′ =
(
1 , −2Eσp

)
,

a′Σa =
(
1 , −2Eσp

)
Σ

(
1

−2Eσp

)

= 4(Eσp)2var(σp) + var(σ2p)− 4Eσpcov(σ2p
t , σp

t ) + 2
∞∑

h=1

γσ2p(h)

+8(Eσp)2
∞∑

h=1

γσp(h)− 8Eσp
∞∑

h=1

cov(σ2p
0 , σp

h).

Remark 2.5.7. Alternatively the proof of Lemma 2.5.6 can be given as follows. Starting from (2.5.10),

we have

√
n(

1
n

n∑
t=1

(σp
t −

1
n

n∑

j=1

σp
j )2 − var(σp))

=
√

n(
1
n

n∑
t=1

[σ2p
t − Eσ2p − 2Eσp(σp

t − Eσp)]) + op(1).

The sequence (σ2p
t −2σp

t Eσp) is a strongly mixing sequence with rate function (αt) such that
∑∞

t=1 α
δ/(2+δ)
t <

∞ and σt is supposed to have all moments finite. Theorem 2.1.16 can be applied:

√
n(

1
n

n∑
t=1

(σp
t −

1
n

n∑

j=1

σp
j )2 − var(σp)) d→ N(0, ν2),

where

ν2 = var(σ2p
t − Eσ2p − 2Eσp(σp

t − Eσp))

+2
∞∑

h=1

cov(σ2p
0 − Eσ2p − 2Eσp(σp

0 − Eσp), (σ2p
h − Eσ2p − 2Eσp(σp

h − Eσp)))

= var(σ2p) + 4(Eσp)2var(σp)− 4Eσpcov(σ2p, σp) + 2
∞∑

h=1

γσ2p(h)

+8(Eσp)2
∞∑

h=1

γσp(h)− 8Eσp
∞∑

h=1

cov(σ2p
0 , σp

h).

¤

Lemma 2.5.8. Assume (Xt) is a stochastic volatility sequence satisfying the conditions in Proposition

2.5.2 and E|Z|4p+ε < ∞ for some ε > 0. Let |X|pn = 1
n

∑n
t=1 |Xt|p. Then

√
n

(
1
n

n∑
t=1

(|Xt|p − |X|pn)2 − var(|X|p)
)

d→ N(0, ν2), (2.5.11)
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where

ν2 = var(|X|2p) + 2
∞∑

h=1

γ|X|2p(h)− 4E|X|pcov(|X|2p, |X|p)

−8E|X|p
∞∑

r=1

cov(|X0|2p, |Xr|p) + 4(E|X|p)2var(|X|p) + 8(E|X|p)2
∞∑

h=1

γ|X|p(h).

Proof. We observe that

√
n

(
1
n

n∑
t=1

(|Xt|p − |X|p)2 − var(|X|p)
)

=
1√
n

n∑
t=1

(|Xt|2p − E|X|2p)

−√n(|X|pn − E|X|p)(|X|p + E|X|p)

=
1√
n

n∑
t=1

(|Xt|2p − E|X|2p)

−2E|X|p√n(|X|pn − E|X|p) + op(1)

=
(
1 , −2E|X|p)

(
1√
n

∑n
t=1(|Xt|2p − E|X|2p)√
n(|X|pn − E|X|p)

)

= a′
(

1√
n

∑n
t=1(|Xt|2p − E|X|2p)√
n(|X|pn − E|X|p)

)
.

Notice that we used the SLLN |X|pn → E|X|p a.s. Hence

(|X|p + E|X|p) = 2E|X|p + op(1).

The sequences (|Xt|2p) and (|Xt|p) are strongly mixing stationary ergodic sequences with rate functions

(αt) such that
∑∞

t=1 α
δ/(2+δ)
t < ∞. Moreover E|X|4p+ε = Eσ4p+εE|Z|4p+ε < ∞. Lemma 2.1.19 gives

that
(

1√
n

∑n
t=1(|Xt|2p − E|X|2p)√
n(|X|pn − E|X|p)

)
d→ N(0, Σ),

where

Σ =
(

var(|X|2p) + 2
∑∞

h=1 γ|X|2p(h) cov(|X|2p, |X|p) + 2
∑∞

r=1 cov(|X0|2p, |Xr|p)
cov(|X|2p, |X|p) + 2

∑∞
r=1 cov(|X0|2p, |Xr|p) var(|X|p) + 2

∑∞
h=1 γ|X|p(h)

)
.

Then

a′
(

1√
n

∑n
t=1(|Xt|2p − E|X|2p)√
n(|X|pn − E|X|p)

)
d→ N(0, a′Σa),

where

a′Σa = var(|X|2p)− 4E|X|pcov(|X|2p, |X|p)− 8E|X|p
∞∑

r=1

cov(|X0|2p, |Xr|p)

+4(E|X|p)2var(|X|p) + 8(E|X|p)2
∞∑

h=1

γ|X|p(h) + 2
∞∑

h=1

γ|X|2p(h).
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Remark 2.5.9. The same idea of the proof in Remark 2.5.7 can be repeated for Lemma 2.5.8 to get the

above results.

2.5.2 Asymptotic theory for the sample mean and sample variance with in-
finite variance α-stable innovations (Zt)

Any time series which exhibits sharp spikes or occasional bursts of outlying observations suggests the

possible use of an infinite variance model (see [14]). In this section we study the asymptotic behavior

of the sample mean Xn = 1
n

∑n
t=1 Xt and of the sample variance ŝ2

n = 1
n

∑n
t=1(Xt − X)2 in the case

when (σt) is a strictly stationary ergodic sequence independent of the iid noise (Zt), but we give up the

assumption of finite variance, var(Z) < ∞.

Definition 2.5.10. (Stable distribution) [37, p. 5]

A random variable Z is said to be stable, or to have a stable distribution, if for every positive integer

n there exist constants, an > 0 and bn, such that the sum Z1 + · · · + Zn has the same distribution as

anZ + bn for iid random variables Z1, . . . , Zn, with the same distribution as Z.

Properties of a stable random variable, Z

• The characteristic function, φ(u) = EeiuZ , is given by

φ(u) =
{

eiuβ−c|u|α(1−iθsgn(u) tan(πα/2)), if α 6= 1;
eiuβ−c|u|(1+iθ(2π)sgn(u) log |u|), if α = 1;

(2.5.12)

where sgn(u) is u/|u| if u 6= 0, and zero otherwise. The parameters α ∈ (0, 2], β ∈ R, c ∈ [0,∞)

and θ ∈ [−1, 1] are known as the exponent, location, scale and symmetry parameters respectively.

• If α = 2 then Z has a Gaussian distribution, N(β, 2c).

• If θ = 0 then the distribution of Z is symmetric about β. The symmetric stable distributions (i.e.

those which are symmetric about 0) have characteristic functions of the form

φ(u) = e−c|u|α , u ∈ R. (2.5.13)

• If α = 1, θ = 0, c = 1 and β = 0 then Z has the Cauchy distribution with probability density

f(z) =
1

π(1 + z2)
, z ∈ R.
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• The symmetric stable distributions satisfy the defining property in Definition 2.5.10 with an = n1/α

and bn = 0, since if Z,Z1, . . . , Zn all have the characteristic function (2.5.13) and Z1, . . . , Zn are

independent, then

Eeiu(Z1+···+Zn) = e−nc|u|α = EeiuZn1/α

.

Definition 2.5.11. (Laplace-Stieltjes transform) [21, p. 176]

The Laplace-Stieltjes transform of a random variable Y ≥ 0 is the function lY : R+ → R+ given by

lY (t) = Ee−tY .

Laplace-Stieltjes transforms exist for all positive random variables.

Properties of the Laplace-Stieltjes transform for a random variable Y

• lY is uniformly continuous and 0 < lY (t) < lY (0) = 1 for all t.

• If Y and U are positive and independent, then lZ+U = lZ lU .

• If Y and U are positive and lY (t) = lU (t) for all t belonging to an open interval in R+, then Y
d= U .

• If Y ≥ 0 and EY k < ∞, then the derivative l
(k)
Y exists and EY k = (−1)kl

(k)
Y (0).

• Given positive random variables Y, Y1, . . . , Yn, . . ., the relation Yn
d→ Y holds if and only if lYn(t) →

lY (t) for all t ∈ R+.

In what follows, we will study the joint asymptotic behavior of (Xn, ŝ2
n) under the assumption that (Zt)

is iid symmetric α-stable (sαs) for some α ∈ (0, 2). This means that Z has characteristic function

EeiλZ = e−c|λ|α , λ ∈ R, (2.5.14)

for some constant c > 0. It is well known that

E|Z|p < ∞, 0 < p < α,

E|Z|p = ∞, p ≥ α,

see [37, p. 18]. Hence var(Z) = ∞ for 0 < α < 2 and E|Z| < ∞ only if 1 < α < 2.

We also recall the notion of a positive α-stable random variable Y . It has Laplace-Stieltjes transform

Ee−sY = e−c′sα

, s ≥ 0, (2.5.15)
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for some constant c′ > 0, see [37, p. 15]. Here it is necessary that α ∈ (0, 1). It is immediate from

(2.5.14) and (2.5.15) that for iid copies Zi of Z and Yi of Y , respectively, and weights c1, . . . , cn ∈ R and

d1, . . . , dn > 0, any n ≥ 1

c1Z1 + · · ·+ cnZn
d= Z1(

n∑

i=1

|ci|α)
1
α , (2.5.16)

d1Y1 + · · ·+ dnYn
d= Y1(

n∑

i=1

dα
i )

1
α .

In what follows, we will often make use of the joint mixed characteristic function-Laplace-Stieltjes trans-

formation of a pair of random variables (A,B), where B ≥ 0, given by

f(λ, s) = EeiλA−sB , λ ∈ R, s ≥ 0.

This transform determines the distribution of (A,B) by virtue of the Stone-Weierstrass theorem, see [36,

p. 115]. Moreover if (An, Bn) d→ (A,B) for a sequence ((An, Bn)) with Bn ≥ 0 a.s., n ≥ 1, this is

equivalent to

fn(λ, s) = EeiλAn−sBn → f(λ, s), λ ∈ R, s ≥ 0. (2.5.17)

Proposition 2.5.12. Assume Eσα < ∞ and α ∈ (0, 2). Then

(n1− 1
α Xn, n1− 2

α ŝ2
n) d→ (Sα, Yα

2
),

where Sα is sαs with characteristic function

EeiλSα = e−Eσαc|λ|α , λ ∈ R,

Yα
2

has Laplace-Stieltjes transformation

Ee
−sY α

2 = e−EσαE|N |αc(2s)
α
2 , s ≥ 0,

and N is N(0, 1) distributed. The joint mixed characteristic function-Laplace-Stieltjes transform of

(Sα, Yα
2
) is given by

f(λ, t) = e−EσαE|λ+
√

2tN |αc, λ ∈ R, t ≥ 0. (2.5.18)

Remark 2.5.13. Note that

f(0, t) = Ee−EσαE|N |α(2t)
α
2 , c ∈ R, t ≥ 0.

is indeed the Laplace-Stieltjes transformation of a positive α
2 -stable random variable for α ∈ (0, 2), see

(2.5.15). Similarly,

f(λ, 0) = e−cEσα|λ|α , λ ∈ R.

is the characteristic function of a sαs random variable.
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Proof. (Proof of Proposition 2.5.12.) The joint mixed Laplace-Stieltjes transform-characteristic function

of (n1− 1
α Xn, n−

2
α (X2

1 + · · ·+ X2
n)) is given by

fn(λ,
s2

2
) = Eeiλn−

1
α (X1+···+Xn)− s2

2 (X2
1+···+X2

n)n−
2
α , λ ∈ R, s ∈ R.

Let (Nt) be iid N(0, 1) independent of (σt) and (Zt). Conditioning on (Xt), we get

fn(λ,
s2

2
) = E(Eeiλn−

1
α (X1+···+Xn)+is(N1X1+···+NnXn)n−

1
α |(Xt))

= Eein−
1
α

∑n
t=1 Xt(λ+Nts).

Here we used the fact that EeisN = e−
s2
2 , s ∈ R. Now condition on (Nt) and (σt) to obtain

fn(λ,
s2

2
) = EE(ein−

1
α

∑n
t=1 Ztσt(λ+Nts)|(Nt), (σt))

= Ee−Z1(n
−1 ∑n

t=1 σα
t |λ+Nts|α)1/α

.

Here we used (2.5.16). Thus, using the characteristic function of Z1,

f(λ,
s2

2
) = Ee−n−1 ∑n

t=1 σα
t |λ+sNt|αc.

Notice that (σt) is ergodic and independent of (Nt) which is an iid sequence. Therefore ((σt, Nt)t∈Z) is

ergodic and in consequence (g(σt, Nt))t∈Z. Therefore (σα
t |λ + sNt|α) is ergodic. Hence the SLLN applies

to this sequence and we get

fn(λ, s2/2) → e−E(σα|λ+sN |α)c,

by Lebesgue dominated convergence. Writing t = s2/2 or s =
√

2t, we obtain

fn(λ, t) → e−EσαE|λ+
√

2tN |αc = f(λ, t).

Notice that

f(λ, 0) = e−Eσαc|λ|α, λ ∈ R.

This is the characteristic function of

Sα
d= Z1(Eσα)

1
α .

On the other hand,

f(0, t) = e−Eσα(2t)α/2E|N |αc.

By (2.5.15) this is the Laplace-Stieltjes transform of a positive α/2-stable random variable Yα/2. Since

f(λ, t) 6= f(λ, 0)f(0, t) in general, Sα and Yα/2 are dependent.
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The result is proved by observing that

n1−2/αŝ2
n = n1−2/α(

1
n

n∑
t=1

X2
t − (Xn)2)

= n−2/α
n∑

t=1

X2
t − (n−

1
α− 1

2 (X1 + · · ·+ Xn))2

= n−2/α
n∑

t=1

X2
t + op(1).

Hence we proved that

n(n
−1
α Xn, n−

2
α ŝ2

n) = (n1− 1
α Xn, n−

2
α (X2

1 + · · ·+ X2
n)) + op(1) d→ (Sα, Yα

2
),

as desired.

An immediate consequence of the continuous mapping theorem is the following relation.

Lemma 2.5.14. Under the assumptions in Proposition 2.5.12, the following relation holds.

√
n

Xn

ŝn

d→ Sα√
Yα/2

(2.5.19)

Proof. We observe by the continuous mapping theorem that

nXn√
nŝn

=
X1 + · · ·+ Xn

(X2
1 + · · ·+ X2

n)
1
2

=
n−

1
α (X1 + · · ·+ Xn)

(n−
2
α (X2

1 + · · ·+ X2
n))

1
2

d→ Sα

(Yα
2
)

1
2
.

The relation (2.5.19) means that the standardized sample mean satisfies a central limit theorem. In

contrast to the case when var(X) < ∞, the limit is not Gaussian, but is a rather unfamiliar ratio of two

dependent infinite variance variables. For comparison, we consider the case where (Xi) is an iid mean

zero unit variance sequence. Then the central limit theorem and the SLLN imply that
√

n Xn
d→ N(0, 1)

and ŝ2
n → 1 a.s. Hence the central limit theorem for the standardized sample mean holds:

√
n

Xn

ŝn

d→ N(0, 1). (2.5.20)

The next example illustrates this result.

Example 2.5.15. Let (Qt) be a stochastic volatility model given by Qt = Ztσt where log(σt) = Vt is an

ARMA(1, 1) process given by

Vt = 0.7Vt + 0.7δt + δt,
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Figure 2.9: (Example 2.5.15) Top: 5 sample mean paths for a stochastic volatility model when Z comes
from the Cauchy distribution (α = 1). Bottom: 5 sample mean paths for a stochastic volatility model
when Z comes from the standard normal distribution (α = 2).
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Figure 2.10: (Example 2.5.15) Boxplot for 10000 standardized sample means for a stochastic volatility
model (1) when Z comes from the Cauchy distribution (α = 1) and (2) the boxplot for 10000 standardized
sample means when Z comes from the standard normal distribution (α = 2).

for iid (δt) with common distribution N(0, 1). We simulated 10 samples each of size 1000 observations

from the stochastic volatility model. Five of these samples have Z from a Cauchy distribution and the

other five samples are for the case when Z has a normal distribution, i.e., when α = 1 and 2 respectively.
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Figure 2.11: (Example 2.5.15) Let (Qt) be a stochastic volatility model given by Qt = Ztσt where
log(σt) = Vt is an ARMA(1, 1) process given by Vt = 0.7Vt−1 + 0.7δt−1 + δt, for iid (δt) with common
distribution N(0, 1). Top: Left: The density from 10000 standardized sample means with sample size
1000 for a stochastic volatility model when Z comes from the Cauchy distribution (α = 1). Right:
The density of 10000 standardized sample means with sample size 1000 for a stochastic volatility model
when Z comes from the standard Gaussian distribution (α = 2). Bottom: Left: The QQ–plot for 10000
standardized sample means for a stochastic volatility model when Z comes from the Cauchy distribution
(α = 1). Right: The QQ–plot for 10000 standardized sample means for a stochastic volatility model
when Z comes from the standard Gaussian distribution (α = 2).

We normalized (standardized) the means using the Relation (2.5.19). The result for the standardized

sample mean paths are given in Figure 2.9. The behavior of the two sequences is close. The results in this

figure show that the normalization is reasonable to get close to the limiting distribution. To discover if

both cases have the same limiting distribution we simulated 10000 samples each of size 1000 observations

for the Cauchy and normal cases. The boxplot for the statistic in equation (2.5.19) is given in Figure 2.10.

The boxplot figure suggests that both limiting distributions are symmetric and have some similarity in

their behavior but not the same distributions. Figure 2.11 introduces the densities for both distributions.

In the case of the Gaussian distribution, the limiting density is close to the normal distribution. For

the Cauchy case, the limiting density is symmetric around zero but not a Gaussian distribution. The

QQ-plot emphasizes this idea. The following table summarizes the results for these samples:
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Item Cauchy Gaussian
number of samples 10000 10000
sample size 1000 1000
mean 0.005887241 0.009034064
s.d. 0.9910633 0.9998287
median 0.01660911 0.009490259
1st. quantile -0.88545755 -0.743342986
3rd quantile 0.89173822 0.764400447
minimum -2.911422 -3.241606
maximum 2.830357 3.070718

Lemma 2.5.16. The limit Sα/
√

Yα
2

is symmetric and has unit variance. If (Xt) is strongly mixing,

E(Sα/
√

Yα
2
)4 < 3, hence Sα/

√
Yα

2
is not standard normal.

Proof. As a matter of fact the limiting variable in (2.5.19) is symmetric as in (2.5.20). This follows from

the fact that Xi = εi|Xi|, i = 1, . . . , n are independent symmetric, given |Xi|, i = 1, . . . , n. Then

X1 + · · ·+ Xn√
X2

1 + · · ·+ X2
n

=
ε1|X1|+ · · ·+ εn|Xn|√

X2
1 + · · ·+ X2

n

(2.5.21)

is a sum of independent random variables, conditionally on (|Xi|). In turn, (2.5.21) is symmetric itself. We

conclude that (2.5.21) has all odd moments zero, provided these moments exists. The same remains valid

for the distributional limit (2.5.19) of (2.5.21) since the weak limits of symmetric probability measures

are also symmetric.

Next we show that (2.5.21) has variance one:

E
(X1 + · · ·+ Xn)2

X2
1 + · · ·+ X2

n

= E(
X2

1 + · · ·+ X2
n

X2
1 + · · ·+ X2

n

) + E(

∑
1≤i6=j≤n εi|Xi|εj |Xj |

X2
1 + · · ·+ X2

n

)

= 1 + E
∑

1≤i 6=j≤n

E(
εiεj |Xi||Xj |

X2
1 + · · ·+ X2

n

).

The expectations on the right hand side exist and are finite since, by 2ab ≤ a2 + b2, a, b ∈ R,

1
2
E

2|Xi||Xj |
X2

1 + · · ·+ X2
n

≤ 1
2
E

X2
i + X2

j

X2
1 + · · ·+ X2

n

≤ 1
2
.

The random variables εiεj are symmetric for i 6= j:

P (εj = ±1) = EP (εiεj = ±1|εi = ±1) =
1
2
. (2.5.22)

Hence εiεj |Xi||Xj |
X2

1+···+X2
n

has finite mean and is symmetric. This implies that

E
(X1 + · · ·+ Xn)2

X2
1 + · · ·+ X2

n

= 1.

An application of the Lebesgue dominated convergence theorem (switching from convergence in distribu-

tion to a.s. convergence on a suitable probability space) implies that

1 = E
(X1 + · · ·+ Xn)2

X2
1 + · · ·+ X2

n

→ E(
S2

α

Yα
2

) = 1.
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We conclude that Sα/
√

Yα
2

is a symmetric unit variance random variable.

However, Sα/
√

Yα
2

is not standard normal. Indeed, if it were standard normal it had 4th moment 3.

We show that E(Sα/
√

Yα/2)4 < 3.

We have

E
(X1 + · · ·+ Xn)4

(X2
1 + · · ·+ X2

n)2
= E

(
X2

1 + · · ·+ X2
n +

∑
1≤i6=j≤n XiXj

X2
1 + · · ·+ X2

n

)2

= 1 + E

(∑
1≤i 6=j≤n XiXj

X2
1 + · · ·+ X2

n

)2

+ 2E

∑
1≤i 6=j≤n XiXj

X2
1 + · · ·+ X2

n

. (2.5.23)

The expectation of E
(∑

1≤i 6=j≤n XiXj

X2
1+···+X2

n

)2

exists because

|XiXj |
X2

1 + · · ·+ X2
n

≤ 1
2

for every i 6= j,

by the same reasons as given before. The expectation of

E(

∑
1≤i 6=j≤n XiXj

X2
1 + · · ·+ X2

n

) = 0,

as shown above. We have

(
∑

1≤i 6=j≤n

XiXj)2 = (2
n∑

i=2

i−1∑

j=1

XiXj)2 = 4
n∑

i=2

i−1∑

j=1

XiXj

n∑

i′=2

i′−1∑

j′=1

Xi′Xj′

= 4
n∑

i=2

i−1∑

j=1

(XiXj)2 + 4
n∑

i=2

i−1∑

j=1

n∑

i′=2

i′−1∑

j′=1,(i,j) 6=(i′,j′)

XiXjXi′Xj′ . (2.5.24)

We observe that the random variables

XiXjXi′Xj′

(X2
1 + · · ·+ X2

n)2
=

εiεjεi′εj′ |Xi||Xj ||Xi′ ||X ′
j |

(X2
1 + · · ·+ X2

n)2
(2.5.25)

are symmetric if 2 ≤ i ≤ n, 1 ≤ j ≤ i − 1 and (i, j) 6= (i′, j′). Indeed, then it is excluded that

εiεjεi′εj′ = ε2
l ε

2
k for certain l, k and the random variable εiεjεi′εj′ is symmetric. Assume i 6= i′ then

EP (εiεjεi′εj′ = ±1|εi′ = ±1) = P (εiεjεj′ = ±1)

If j = j′, then εjεj′ = 1, hence the right hand side is 1
2 . If j 6= j′, then since i 6= j

EP (εiεjεj′ = ±1|εi = ±1) = P (εjεj′ = ±1) =
1
2

as proved in (2.5.22). We conclude that the random variables in (2.5.25) have mean zero.
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We conclude from (2.5.23) and (2.5.24) that

E
(X1 + · · ·+ Xn)2

(X2
1 + · · ·+ X2

n)2
= 1 + 4

n∑

i=1

i−1∑

j=1

E
(XiXj)2

(X2
1 + · · ·+ X2

n)2

= 1 + 2E
(
∑n

i=1 X2
i )2 −∑n

i=1 X4
i

(X2
1 + · · ·+ X2

n)2

= 3− 2E

∑n
i=1 X4

i

(X2
1 + · · ·+ X2

n)2
. (2.5.26)

We observe that ∑n
i=1 X4

i

(X2
1 + · · ·+ X2

n)2
≤ 1. (2.5.27)

Hence we are finished if we can show that

E

∑n
i=1 X4

i

(X2
1 + · · ·+ X2

n)2
→ EA > 0, (2.5.28)

for some non-degenerate random variable A. Indeed, then

E
(X1 + · · ·+ Xn)2

(X2
1 + · · ·+ X2

n)2
→ 3− 2EA < 3,

because A ≤ 1 a.s. by (2.5.27). We observe that

E

∑n
i=1 X4

i

(X2
1 + · · ·+ X2

n)2
= E

(∑n
i=1 NiX

2
i∑n

i=1 X2
i

)2

, (2.5.29)

where (Ni) is an iid N(0, 1) sequence independent of (Xi). Indeed, conditioning on (Xi) yields

EE

((∑n
i=1 NiX

2
i∑n

i=1 X2
i

)2

|(Xi)

)
= EE




(
N1(

∑n
i=1 X4

i )
1
2∑n

i=1 X2
i

)2

|(Xi)




= E(N2
1 )E

∑n
i=1 X4

i

(
∑n

i=1 X2
i )2

= E

∑n
i=1 X4

i

(
∑n

i=1 X2
i )2

as desired.

On the other hand, the random variables s1NiX
2
i + s2X

2
i = (s1Ni + s2)X2

i constitute a strictly

stationary ergodic martingale sequence for every s1, s2 ∈ R. By Breiman’s theorem and the fact that Xi

is regularly varying with index α ∈ (0, 2) (for more details about Breiman’s theorem see Section 3.1.4),

we have

P ((s1N1 + s2)X2
1 > x) ∼ E(s1N1 + s2)

α/2
+ P (X2

1 > x),

and

P ((s1N1 + s2)X2
1 ≤ −x) ∼ E(s1N1 + s2)

α/2
− P (X2

1 > x),
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where x± = max(0,±x). Since X2
1 is regularly varying with index α/2, we conclude that (s1N1 + s2)X2

1

is regularly varying with index α/2. According to [19] and using the strong mixing property of (Xt),

hence of ((s1Nt + s2)Xt), the limit of

n−
2
α

n∑

i=1

(s1Ni + s2)X2
i

d→ Yα
2
(s1, s2),

is an α
2−stable random variable Yα

2
(s1, s2). Thus we proved by the Cramèr-Wold device that

(
s1 , s2

)
n−

2
α

n∑

i=1

(
NiX

2
i

X2
i

)
d→ (

s1 , s2

)
Yα

2
,

for an α
2−stable random vector Yα

2
in R2. According to Samorodnitsky and Taqqu [37], Yα

2
is α

2−stable in

R2, since a vector is α
2−stable if and only if all its linear combinations are α−stable. Now an application

of the continuous mapping theorem yields

n−
2
α

∑n
i=1 NiX

2
i

n−
2
α

∑n
i=1 X2

i

d→ Yα
2
(1)

Yα
2
(2)

,

and by (2.5.29)

E(
∑n

i=1 X4
i

(X2
1 + · · ·+ X2

n)2
) → E(

Yα
2
(1)

Yα
2
(2)

)2.

Thus we proved that E(Sα/
√

Yα
2
)4 < 3.

2.6 Asymptotic theory for the periodogram of a stochastic volatil-
ity sequence

The techniques used in analyzing stationary time series may be divided into two categories: time domain

analysis and frequency domain analysis. The former deals with the observed data directly, as in con-

ventional statistical analysis with independent observations. The frequency domain analysis, also called

spectral analysis, applies the Fourier transform to the data (or ACVF) first, and the analysis proceeds

with the transformed data only. The spectral analysis is in principle equivalent to the time domain anal-

ysis based on the ACVF. However, it provides an alternative way of viewing a process via decomposing

it into a sum of uncorrelated periodic components with different frequencies, which for some applications

may be more illuminating.

Theorem 2.6.1. (Herglotz) [9, p. 117–118]

The function γ : Z → C with γ(−h) = γ(h) is the autocovariance function of a stationary process

if and only if there exists a right-continuous, non-decreasing, bounded function F on [−π, π] such that

F (−π) = 0 and

γ(h) =
∫

(−π,π]

eihλdF (λ) h ∈ Z. (2.6.1)
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The function F satisfying (2.6.1) is unique. However, notice that F is in general not a probability

distribution function since F (π) 6= 1 is possible.

Definition 2.6.2. (Spectral distribution function of a stationary process)

Suppose that the stationary process (Xt) has an autocovariance function with representation

γX(h) =
∫

(−π,π]

eihλdFX(λ), h ∈ Z (2.6.2)

where FX is the right-continuous, non-decreasing, bounded function FX on [−π, π] with FX(−π) = 0

corresponding to γX in Herglotz’s theorem. The function FX is called the spectral distribution function

of the process (Xt), the corresponding measure the spectral distribution, and (2.6.2) is the spectral rep-

resentation of the autocovariance function γX . Moreover, if FX is absolutely continuous with respect to

Lebesgue measure then the corresponding density function fX , i.e.,

FX(λ) =
∫

(−π,π]

fX(x)dx, λ ∈ (−π, π],

is called the spectral density of (Xt).

Corollary 2.6.3. [9, p. 119] A complex-valued function γ(·) defined on the integers is the autocovariance

function of a stationary process (Xt)t∈Z if and only if either of the following conditions holds:

• γ(h) =
∫
(−π,π]

eihνdF (ν) for all h = 0,±1, . . . , where F is right-continuous, non-decreasing, bounded

function on [−π, π] with F (−π) = 0, or

• ∑n
i,j=1 aiγ(i− j)aj ≥ 0 for all positive integers n and for any a = (a1, . . . , an)′ ∈ Cn, n ≥ 1.

The spectral distribution function F (·) (and the corresponding spectral density if there is one) will be

referred to as the spectral distribution function (and the spectral density) of both γ(·) and of (Xt).

Corollary 2.6.4. [9, p. 120] An absolutely summable complex-valued function γ(·) defined on the integers

is the autocovariance function of a stationary process if and only if

f(λ) :=
1
2π

∞∑
n=−∞

e−inλγ(n) ≥ 0 for all λ ∈ [−π, π], (2.6.3)

in which case f(·) is the spectral density of γ(·).

2.6.1 Estimation of the spectral density

Let (Xt) be a stationary sequence with spectral density f . Recall from Corollary 2.6.4 that the spectral

density of (Xt) has representation

fX(λ) =
1
2π

∞∑
n=−∞

e−inλγX(n),
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provided the autocovariances γX(h) are absolutely summable. For a stochastic volatility model

Xt = σtZt,

where (σt) is a strictly stationary ergodic sequence, σt > 0, independent of the iid sequence (Zt), the

spectral density exists if and only if var(X0) is finite. If EZt = 0 then

γX(h) = cov(X0, Xh) = 0, h 6= 0.

From Equation (2.6.3), we have that (Xt) has spectral density

fX(λ) = var(X0)/2π, λ ∈ [0, π].

It is natural to replace the autocovariances γX(h) by their sample versions and to get an estimator of

fX in this way. Thus a natural (method of moment) estimator of fX(λ) is the periodogram given by

In,X(λ) = |a−1
n

n∑
t=1

Xte
iλt|2,

for a fixed frequency λ ∈ (0, π). We study two cases

1. (Zt) is iid N(0,
√

2).

2. (Zt) is iid symmetric α−stable (SαS) for α < 2, hence has infinite variance, see Section 2.5.2.

The two cases can be considered from a unified point of view since

EeitZ1 = e−|t|
α

, t ∈ R, α ∈ (0, 2],

where we assumed in both cases that the scaling is in this standard way. The case α = 2 corresponds to

N(0,
√

2).

We choose the normalization an = n
1
α , n = 1, 2, . . .. Then

In,X(πω) = S2
n(ω) + C2

n(ω), ω ∈ (0, 1),

where

Sn(ω) = a−1
n

n∑
t=1

Xt cos(πωt),

Cn(ω) = a−1
n

n∑
t=1

Xt sin(πωt).

The joint characteristic function of Sn(ω) and Cn(ω) is given by

fn(s1, s2; ω) = Eeis1Sn(ω)+is2Cn(ω), (s1, s2) ∈ R2.
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Then by stability of (Zt):

fn(s1, s2; ω) = Eeia−1
n

∑n
t=1 Ztσt(s1 cos(πωt)+s2 sin(πωt))

= Eeia−1
n Z1(

∑n
t=1 σα

t |s1 cos(πωt)+s2 sin(πωt)|α)
1
α

= Ee−
1
n

∑n
t=1 σα

t |s1 cos(πωt)+s2 sin(πωt)|α . (2.6.4)

In what follows, we study the limit of

An =
1
n

n∑
t=1

σα
t |s1 cos(πωt) + s2 sin(πωt)|α.

We have

EAn =
Eσα

0

n

n∑
t=1

|s1 cos(πωt) + s2 sin(πωt)|α.

Write

ν(x) = |s1 cos(πx) + s2 sin(πx)|α, (2.6.5)

and

(s1, s2) = r(cos(πϕ), sin(πϕ)), ϕ ∈ (0, 2].

Then

ν(x) = rα| cos(πϕ) cos(πx) + sin(πϕ) sin(πx)|α

= rα| cos(π(ϕ− x))|α.

The function ν has period 1.

1. Assume ω ∈ (0, 1) is rational, i.e., ω = q1/q2 for positive relatively prime integers q1, q2. Then

1
n

n∑
t=1

ν(ωt) =
1
n

n∑
t=1

ν({ωt}) =
1
n

n∑
t=1

ν({q1

q2
t}), (2.6.6)

where {x} = x− [x] denotes the fractional part of x.

Let

nk = #{t ≤ n :
q1

q2
k ≡ q1

q2
t mod 1}, n →∞.

Then there exist rk such that

nk

n
→ rk, k = 1, 2, 3, . . . , n →∞.
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Let N(ω) denote those integers such that for any k, k′ ∈ N(ω), q1
q2

k 6≡ q1
q2

k′ mod 1. For k ∈
N(ω), rk = 1

#N(ω) . Hence

1
n

n∑
t=1

ν({q1

q2
t}) →

∑

k∈N(ω)

rk cos ν({q1

q2
k})

=
1

#N(ω)

∑

k∈N(ω)

ν({q1

q2
k}) = Eν({q1

q2
U(ω)}), (2.6.7)

where U(ω) is discretely uniform on N(ω).

2. Assume ω irrational. The same calculation as in (2.6.6) yields

1
n

n∑
t=1

ν(ωt) =
1
n

n∑
t=1

ν({ωt}).

By Weyl’s theorem [40] the right hand side converges to
∫ 1

0

ν(u)du = Eν(U),

for a U(0, 1) random variable U .

Thus we obtained:

EAn → Eσα
0 rα

{
Eν(U), if ω is irrational;
Eν(ωU(ω)), if ω is rational.

= g(s1, s2; ω),

where ν(x) is defined in (2.6.5).

Next we prove that var(An) → 0 under suitable conditions on (σt).

We observe that

var(An) =
r2α

n2

n∑
t=1

n∑
s=1

cov(σα
t , σα

s )ν(ωt)ν(ωs)

≤ c

n2

n∑
t=1

n∑
s=1

|γσα(t− s)|

=
c

n
var(σα

0 ) +
2c

n

n−1∑

h=1

(1− h

n
)|γσα(h)|,

for some constant c > 0. The right hand side converges to zero if γσα(h) → 0 as h →∞. Thus we proved

An
P→ g(s1, s2; ω), if γσα(h) → 0 as h →∞.

This, (2.6.4) and Lebesgue dominated convergence prove that

fn(s1, s2;ω) → e−g(s1,s2;ω).
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The right hand side is the characteristic function of a vector (T1, T2) which is jointly α−stable and

symmetric. Such a characteristic function has representation

Eei(s1T1+s2T2) = e−
∫
S |s1x1+s2x2|αdΓ(x1, x2), (2.6.8)

for a measure Γ on the unit circle

S = {x ∈ R2 : x2
1 + x2

2 = 1}.

See [37]. We have for irrational ω and α < 2

e−g(s1,s2;ω) = e−Eσα
0 rαE| cos π(ϕ−U)|α

= e−Eσα
0 rαE| cos πU |α

= e−Eσα
0 (
√

s1+s2)
α

∫ 1
0 | cos πu|αdu (2.6.9)

= Ee−(Eσα
0 )

2
α (

∫ 1
0 | cos πu|αdu)

2
α A(s2

1+s2
2)

= Ee−(Eσα
0 )

1
α (

∫ 1
0 | cos πu|αdu)

1
α A

1
2 (N1s1+N2s2),

where A > 0 is α/2−stable (see Equation (2.5.15)), independent of the iid N(0,
√

2) random variables

N1, N2. A random vector with representation

A
1
2 (N1, N2),

is known to be a stable sub-Gaussian SαS vector, see [37].

We have for a rational ω

e−g(s1,s2;ω) = e−Eσα
0 E|s1 cos(πωU(ω))+s2 sin(πωU(ω))|α ,

which again has the form in Equation (2.6.8).

The case α = 2 deserves special attention. In this case, for ω irrational in (2.6.9)

e−g(s1,s2;ω) = e−Eσ2
0(s2

1+s2
2)

∫ 1
0 cos2(πu)du = e−

Eσ2
0

2 (s2
1+s2

2).

Hence the limit is of the form (N1, N2) for iid N(0, σ2
0) random variables N1, N2. For rational ω the same

result applies since

E(s1 cos(πωU(ω)) + s2 sin(πωU(ω)))2 =
s2
1

2
+

s2
2

2
,

where we used the orthogonality of cos(πωU(ω)), sin(πωU(ω)).

We summarize our results.
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Proposition 2.6.5. Assume that (Xt) is a strictly stationary ergodic stochastic volatility model with iid

SαS noise (Zt) for some α < 2 and finite variance (σt). Then

In,X(λ) d→ T 2
1 + T 2

2 , (2.6.10)

where (T1, T2) is jointly SαS and the distribution of (T1, T2) depends on whether ω = λ/π is rational or

irrational. If ω is irrational, T 2
1 +T 2

2
d= A(N2

1 +N2
2 ), where A is α

2 -stable positive, independent of the iid

N(0, 1) random variables N1, N2.

2.6.2 Self-normalization of the periodogram for α < 2

Since the normalization an in the definition of the periodogram is in general unknown it is reasonable to

replace it by a known normalization. We have observed in Section 2.6 that

n−
2
α

n∑
t=1

X2
t

d→ Yα/2,

for a positive α/2−stable random variable. Since a2
n = n2/α, it seems reasonable to replace a2

n by
∑n

t=1 X2
t . In order to show this, one has to prove that there is joint convergence:

(
a−2

n

∑n
t=1 X2

t , In,α(λ)
) d→ (

R1 , R2

)
,

for non-degenerate random variables R1, R2. This is achieved if we can show

(
a−2

n

∑n
t=1 X2

t , Sn(ω) , Cn(ω)
) d→ (

R1 , R2S , R2C

)
,

for non-degenerate random variables R1, R2S , R2C , such that R2 = R2
2S + R2

2C .

We consider the joint Laplace-Stieltjes transform-characteristic function

fn(s1, s2, s3; ω) = E exp(−s2
1

2
a−2

n

n∑
t=1

X2
t + is2Sn(ω) + is3Cn(ω))

= E exp(is1a
−1
n

n∑
t=1

NtXt + is2Sn(ω) + is3Cn(ω))

= E exp(in−
1
α

n∑
t=1

Ztσt(s1Nt + cos(πωt)s2 + sin(πωt)s3))

= E exp

(
in−

1
α Z1(

n∑
t=1

σα
t |s1Nt + cos(πωt)s2 + sin(πωt)s3|α)

1
α

)

= E exp(−n−1
n∑

t=1

σα
t |s1Nt + cos(πωt)s2 + s3 sin(πωt)|α), (2.6.11)

where (Nt) is an iid N(0, 1) sequence independent of (Zt), (σt).

Write

βn =
1
n

n∑
t=1

σα
t |s1Nt + cos(πωt)s2 + s3 sin(πωt)|α.
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Then

Eβn =
1
n

n∑
t=1

E|s1N1 + s2 cos(πωt) + s3 sin(πωt)|α.

Write

w(x) = E|s1N1 + s2 cos(πx) + s3 sin(πx)|α.

Notice that w has period 1. Therefore

w(x) = E|s1N1 + s2 cos(π{x}) + s3 sin(π{x})|α.

The same reasons as for EAn above yield that

Eβn →
{

E|s1N1 + s2 cos(πU) + s3 sin(πU)|α, for ω ∈ (0, 1) irrational;
E|s1N1 + s2 cos(πωU(ω)) + s3 sin(πωU(ω))|α, for ω ∈ (0, 1) rational.

= g(s1, s2, s3; ω) (2.6.12)

Here U is U(0, 1) independent of N1 and U(ω) is defined in Equation (2.6.7) and independent of N1.

We also have for some constant c > 0

var(βn) = n−2
n∑

t=1

n∑
s=1

w({ωt})w({ωs})cov(σα
t , σα

s )

≤ cn−1var(σα
0 ) +

1
n

c2
n−1∑

h=1

(1− h

n
)|γσα(h)|

→ 0 as n →∞, if γσα(h) → 0 as h →∞.

Hence we have

βn
P→ g(s1, s2, s3;ω), if γσα(h) → 0 as h →∞.

By Lebesgue dominated convergence and relation (2.6.11),

fn(s1, s2, s3; ω) → e−g(s1,s2,s3;ω),

for any (s1, s2, s3) ∈ R3. This shows the joint convergence of
(
n−

2
α

∑n
t=1 X2

t , Sn(ω) , Cn(ω)
)
, to

(
R1 , R2S , R2C

)
and hence the continuous mapping theorem implies that

Ĩn,X(λ) =
In,X(λ)

n−
2
α

∑n
t=1 X2

t

=
|∑n

t=1 Xte
iλt|2∑n

t=1 X2
t

=
S2

n(ω) + C2
n(ω)

n−
2
α

∑n
t=1 X2

t

d→ R2
2S + R2

2C

R2
1

.

For ω = λ/π irrational we know from Section 2.6.1 that

R2
2S + R2

2C
d= cA(N2

1 + N2
2 ),



2.7 Asymptotic theory for the sample ACVF and ACF of a stochastic volatility process 67

for some constant c > 0, A positive α/2−stable, independent of N1, N2. Up to a constant multiple, R2
1

has the same distribution as A, but A and R2
1 are dependent. Therefore, we have for ω irrational

Ĩn,X(λ) =
|∑n

t=1 Xte
iλt|2∑n

t=1 X2
t

d→ cA

R2
1

(N2
1 + N2

2 ).

In the case α = 2, i.e., for iid N(0, 1) noise variables Zt, both A and R2
1 degenerate to constants. For

A this was explained above and for R2
1 this is a consequence of the strong law of large numbers and the

ergodicity of (Xt). We also conclude that N2
1+N2

2
2 is exponentially Exp(1) distributed. Therefore, the

periodogram of a stochastic volatility model at irrational ω = λ/π has the same limits as in the case of

iid Xt, in the case α < 2 see [23] and for α = 2 see [9].

As in the case of linear processes (Xt) it seems feasible to show that smoothed versions of the standard-

ized periodogram Ĩn,X(λ) are consistent estimators of the constant spectral density provided var(Xt) < ∞
and the same result might apply for regularly varying Xt with α < 2. In order to show this one needs

to consider the limit distribution of (Ĩn,X(λh))h=1,...,m at frequencies 0 < λ1 < . . . < λk < π, where

λk = λk(m) → λ as m →∞ and k = k(m) →∞ as m →∞. This was shown in [23] for infinite variance

linear processes (Xt) and the case of finite variance linear processes (Xt) can be found in [9].

Example 2.6.6. We simulated 1000 observations from two different samples of stochastic volatility

models in the same way as in Example 2.5.15. We estimated the spectral density by using the raw

periodogram for the two samples. The results are shown in Figure 2.12. In a later step, we standardized

the observations in the two samples using the transformation
√

nX/γ̂X(0). We again estimated the

spectral density for these two samples of standardized samples. The result of the two estimated spectral

densities are close to each other, see Figure 2.12.

2.7 Asymptotic theory for the sample ACVF and ACF of a
stochastic volatility process

2.7.1 Asymptotic theory for the sample ACVF and ACF for (Xt)

This section will deal with the asymptotic behavior of the sample ACVFs and ACFs for the sequence

(Xt). Recall that the sample ACVF and ACF of any stationary process (At) are given by

γ̂A(h) =
1
n

n−h∑
t=1

(At − Ān)(At+h − Ān), ρ̂A(h) =
γ̂A(h)
γ̂A(0)

, 0 ≤ h < n, (2.7.1)

respectively, where Ān = 1
n

∑n
t=1 At is the sample mean.

We will always assume (Xt) is a stochastic volatility process with specification given in Section 2.4.3, in

particular EZ = 0 and EZ2 = 1, and (σt) is defined through equation (2.4.1), where (ηt) is an iid sequence
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Figure 2.12: (Example 2.6.6) Let (Qt) be a stochastic volatility model given by Qt = Ztσt where log(σt) =
Vt is an ARMA(1, 1) process given by Vt = 0.7Vt−1 + 0.7δt−1 + δt, for iid (δt) with common distribution
N(0, 1). Top: Left: Estimated spectral log-density of 1000 observations from a stochastic volatility
model when Z comes from the Gaussian distribution (α = 2). Right: Estimated spectral log-density
of 1000 observations from a stochastic volatility model when Z comes from the Cauchy distribution
(α = 1). Bottom: Left: Estimated spectral log-density of 1000 standardized observations from a stochastic
volatility model when Z comes from the Gaussian distribution (α = 2). Right: Estimated spectral log-
density of 1000 standardized observations from a stochastic volatility model when Z comes from the
Cauchy distribution (α = 1). Note that the λ’s on the x-axis correspond to the frequency 2πλ.

with E(η) = 0, var(η) = E(η2
t ) = τ2 < ∞ and the moment generating function of η, mη(s) = Eesη, is

finite for all s ∈ R ,
∑∞

i=0 ψ2
i < ∞ and ψ0 = 1.

Lemma 2.7.1. If (Xt) is a stochastic volatility sequence as specified above. Then γ̂X(h) → 0 a.s. for

any h > 0 and

√
n γ̂X(h) d→ N(0, E(σ2

0σ2
h)), h > 0, (2.7.2)

where

E(σ2
0σ2

h) =
∞∏

i=0

mη(2(ψi + ψi+h))
h−1∏

i=0

mη(2ψi).
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Proof. We start with the decomposition

γ̂X(h) = (
n− h

n
)(

1
n− h

)
n−h∑
t=1

(Xt −Xn)(Xt+h −Xn),

= (1− h

n
)

(
1

n− h

n−h∑
t=1

XtXt+h − (Xn)2
)

. (2.7.3)

Moreover, (Xt) and (XtXt+h) are strictly stationary ergodic sequences. and

E|X| = EσE|Z| < ∞,

E|X0Xh| = E(σ0σh)(E|Z|)2 < ∞.

The SLLN and (2.7.3) imply that

γ̂X(h) → EX0Xh − (EX)2 = 0 a.s.

Similarly,

√
n− h(

1
n− h

n−h∑
t=1

XtXt+h − (Xn)2)

=
1√

n− h

n−h∑
t=1

XtXt+h −
√

n− h

n
(

1√
n

n∑
t=1

Xt)2.

The sequences (Xt) and (XtXt+h) constitute mean zero finite variance strictly stationary ergodic mar-

tingale difference sequences. This was proved in Lemma 2.4.3. Hence the CLT in Theorem 2.1.15 applies

to 1
n

∑n
t=1 Xt and therefore √

n− h

n
(

1√
n

n∑
t=1

Xt)2
P→ 0.

An application of the CLT (see Theorem 2.1.15) yields that

1√
n− h

n−h∑
t=1

XtXt+h
d→ N(0, var(X0Xh)),

where var(X0Xh) = E(σ2
0σ2

h). This proves the statement.

Using the multivariate central limit theorem for a strictly stationary ergodic martingale difference in

Lemma 2.1.18, we can obtain a multivariate version of Lemma 2.7.1. As in the proof of Lemma 2.7.1, we

have 


1√
n−1

γ̂X(1)
1√
n−2

γ̂X(2)
...

1√
n−m

γ̂X(m)




=




1√
n−1

∑n−1
t=1 XtXt+1

1√
n−2

∑n−2
t=1 XtXt+2

...
1√

n−m

∑n−m
t=1 XtXt+m




+ op(1). (2.7.4)
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Now apply the multivariate central limit theorem (Lemma 2.1.18) to the strictly stationary ergodic

martingale difference sequence ((XtXt+1, XtXt+2, . . . , XtXt+m)′)t∈Z. According to Lemma 2.1.18 the

asymptotic variance in the central limit theorem is given by

Σ = cov(((X0Xi), (X0Xj)))i,j=1,...,m.

By the construction of a stochastic volatility sequence, the covariances cov((X0Xi), (X0Xj)), i 6= j

vanish. This simplifies the structure of Σ significantly to

Σ = diag(var(X0X1), · · · , var(X0Xm)) = diag(E(σ2
0σ2

1), . . . , E(σ2
0σ2

m)). (2.7.5)

Proposition 2.7.2. If (Xt) is a stochastic volatility sequence satisfying the conditions given at the

beginning of the section, we have

√
n (γ̂X(h))h=1,...,m

d→ N(0, Σ),

where Σ is given in (2.7.5).

Proposition 2.7.2 helps one to prove the central limit theorem for the sample ACF ρ̂X(h). We start

with the result for one lag h > 0.

Lemma 2.7.3. If (Xt) is a stochastic volatility sequence satisfying the conditions given at the beginning

of the section then

ρ̂X(h) → 0 a.s., h > 0,

and the central limit theorem for the sample ACF at lag h of (Xt) holds:

√
n ρ̂X(h) d→ N(0, ν2), (2.7.6)

where

ν2 =
E(σ2

0σ2
h)

γ2
X(0)

=
∏∞

i=0 mη(2(ψi + ψi+h))
∏h−1

i=0 mη(2ψi)
(
∏∞

i=0 mη(2ψi))2
.

In particular if η has a Gaussian N(0, τ2) distribution then ν2 has the form

ν2 = e4τ2 ∑∞
i=0 ψiψi+h = e4γY (h). (2.7.7)

Proof. Lemma 2.7.1 yields that γ̂X(h) → 0 a.s. Moreover, the ergodic theorem applied to (X2
i ) yields

γ̂X(0) =
1
n

n∑
t=1

X2
t − (Xn)2 → EX2 − (EX)2 = γX(0) a.s.
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Hence we have

ρ̂X(h) → 0 a.s., h > 0,

and

√
n ρ̂X(h) =

√
nγ̂X(h)

γX(0)(1 + op(1))
. (2.7.8)

We know from Lemma 2.7.1 that
√

nγ̂X(h) d→ N(0, E(σ2
0σ2

h)).

Hence the continuous mapping theorem applies to (2.7.8) and (2.7.6) follows. If η is N(0, τ2) we apply

Lemma 2.4.7. This yields that ν2 is given by (2.7.7)

ν2 =
e4τ2 ∑∞

i=0(ψ
2
i +ψiψi+h)

e4τ2
∑∞

i=0 ψ2
i

.

Following the lines of the proof of Lemma 2.7.3 and using Proposition 2.7.2, we conclude that

√
n(ρ̂X(h))h=1,...,m =

√
n(γ̂X(h))h=1,...,m

γX(0)
(1 + op(1)).

Now the following proposition gives the central limit theorem for the sample ACF of a stochastic volatility

sequence as a consequence of Proposition 2.7.2.

Proposition 2.7.4. If (Xt) is a stochastic volatility sequence satisfying the conditions given at the

beginning of the section, we have

√
n(ρ̂X(h))h=1,...,m

d→ N(0,
1

(E(σ2))2
Σ),

where Σ is given in (2.7.5).

2.7.2 Asymptotic theory for the sample ACVF and ACF for (|Xt|p), 0 < p < ∞

In this section we will consider the sample ACVF and ACF for (|X|p) for any p > 0. We assume that the

sequence (σt) is a strongly mixing sequence with rate function (αt). Then the sequence (|Xt|p) inherits

the strong mixing property with the same rate function, see page 17. Under conditions on the rate of

decay of (αt), the central limit theorem for strictly stationary strongly mixing sequences can be applied

to (|Xt|p). The sequence (σp
t σp

t+h) constitutes a strictly stationary strongly mixing sequence with the
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same rate function as (σt) and (|Xt|p). The central limit theorem (see Theorem 2.1.16) for this sequence

is given by:

1√
n

n∑
t=1

(σp
t σp

t+h − E(σp
0σp

h)) d→ N(0, var(σp
0σp

h) + 2
∞∑

i=1

γσp
0σp

h
(i)), h > 0. (2.7.9)

Here we assumed that E(σ0σh)2p+δ < ∞ for some δ > 0 and
∑∞

h=0 α
δ/(2+δ)
h < ∞.

In addition, the sequence (|XtXt+h|p−E(σ0σh)p(E|Z|p)2) is also a strictly stationary strongly mixing

sequence with the same rate function as (σt). Again the central limit theorem of Theorem 2.1.16 applies:

1√
n

n∑
t=1

(|XtXt+h|p − E(σ0σh)p(E|Z|p)2) d→ N(0, υ2), h > 0, (2.7.10)

where

υ2 = var(|X0Xh|p) + 2
∞∑

i=1

γ|X0Xh|p(i).

Here we again assumed that E(σ0σh)2p+δ < ∞ for some δ > 0 and
∑∞

h=0 α
δ/(2+δ)
h < ∞.

In what follows, we make precise under which conditions these central limit theorems hold. The

following lemma will be useful.

Lemma 2.7.5. Let (At) be a strictly stationary sequence such that (At) satisfies the CLT
√

n(An−EA) d→
N(0, ν2) for some ν > 0 and var(A) < ∞. Then

∆n =
1√
n

(
n−h∑
t=1

(At − EA)(At+h − EA)−
n−h∑
t=1

(At −An)(At+h −An)

)
P→ 0 (2.7.11)

Proof. We assume without loss of generality that EA = 0. We can decompose ∆n as follows

∆n =
1√
n

n−h∑
t=1

AtAt+h − 1√
n

(
n−h∑
t=1

AtAt+h −An

n−h∑
t=1

At+h −An

n−h∑
t=1

At + (n− h)(An)2
)

=
√

n(An)2 + op(1) P→ 0.

Proposition 2.7.6. Let p > 0, E|Z|2p+δ < ∞ for some δ > 0. Assume that (Xt) is a stochastic volatility

sequence with specification at the beginning of Section 2.7.1. Moreover, assume that the volatility sequence

(σt) is strongly mixing with rate function (αt) satisfying
∑∞

t=1 α
δ

2+δ

t < ∞ for some δ > 0. Then the central

limit theorem for the sample ACVF for the sequence (|Xt|p) is given by

√
n(γ̂|X|p(h)− γ|X|p(h)) d→ N(0, ν2(h)), (2.7.12)
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where

ν2(h) = var(|X0Xh|p) + 4(E|X|p)2var(|X|p)− 4E|X|pcov(|X0Xh|p, |Xh|p)

+8(E|X|p)2
∞∑

t=1

γ|X|p(t)− 4E|X|p
∞∑

t=1

cov(|X0Xh|p, |Xt+h|p)

+2
∞∑

t=1

γ|X0Xh|p(t)− 4E|X|p
∞∑

t=1

cov(|XtXt+h|p, |Xh|p) (2.7.13)

Proof. By assumption, (σt), hence (|Xt|p) is strongly mixing with rate function (αt) satisfying
∑∞

t=1 α
δ

2+δ

t <

∞ for some δ > 0 and so is ((|Xt|p − E|X|p)(|Xt+h|p − E|X|p)). The central limit theorem for strongly

mixing sequences in Theorem 2.1.16 implies that

1√
n

n−h∑
t=1

[(|Xt|p − E|X|p)(|Xt+h|p − E|X|p)− γ|X|p(h)] d→ N(0, ν2(h)). (2.7.14)

By an application of Lemma 2.7.5 one may replace E|Xt|p in (2.7.14) by 1
n

∑n
t=1 |Xt|p. This concludes

the proof for one lag h > 0.

A multivariate central limit theorem for the vector (γ|X|p(h))h=1,...,m also holds.

Proposition 2.7.7. Under the same assumptions in Proposition 2.7.6 a central limit theorem for

(γ̂|X|p(h))h=1,··· ,m,

is given by

√
n




(γ̂|X|p(1)− γ|X|p(1))
(γ̂|X|p(2)− γ|X|p(2))

...
(γ̂|X|p(m)− γ|X|p(m))




d→ N(0,Σ),

where

Σ =




ν2(1) Λ(1, 2) · · · Λ(1,m)
Λ(1, 2) ν2(2) · · · Λ(2,m)

...
...

...
...

Λ(1, m) Λ(2,m) · · · ν2(m)


 ,

Λ(0, h) = cov((|X0Xh|p − 2E|X|p|Xh|p), (|X0|2p − 2E|X|p|X0|p))

+2
∞∑

t=1

cov((|XtXt+h|p − 2E|X|p|Xt+h|p), (|X0|2p − 2E|X|p|X0|p))

= cov(|X0Xh|p, |X0|2p)− 2E|X|pcov(|Xh|p, |X0|2p)− 2E|X|pcov(|X0|p, |X0Xh|p)

+4(E|X|p)2γ|X|p(h) + 2
∞∑

t=1

cov(|XtXt+h|p, |X0|2p)− 4E|X|p
∞∑

t=1

cov(|Xt+h|p, |X0|2p)

−4E|X|p
∞∑

t=1

cov(|X0|p, |XtXt+h|p) + 8(E|X|p)2
∞∑

t=1

cov(|Xt+h|p, |X0|p),
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and, slightly abusing notation,

Λ(h− l) = Λ(0, |h− l|) = Λ(h, l).

The variance ν2(h) is given by (2.7.13).

Proof. The central limit theorem for (γ̂|X|p(h))h=1,··· ,m is analogous to the proof of Proposition 2.7.6 by

observing that
((

(|Xt|p − E|X|p)(|Xp
t+h − E|X|p))

h=1,··· ,m

)
t∈Z

,

is strongly mixing sequence with rate functions (αh). An application of Lemma 2.1.19 yields the central

limit theorem for

1√
n

n∑
t=1




(|Xt|p − E|X|p)(|Xt+1|p − E|X|p)
(|Xt|p − E|X|p)(|Xt+2|p − E|X|p)

...
(|Xt|p − E|X|p)(|Xt+m|p − E|X|p)


 .

Lemma 2.7.5 again allows one to replace E|X|p by 1
n

∑n
t=1 |Xt|p. This concludes the proof.

Let us have a look at the sample ACF for the sequence (|Xt|p). This sequence as mentioned before

is a strictly stationary strongly mixing sequence. The following lemma gives a central limit theorem for

the sample ACF of the stochastic volatility model.

Lemma 2.7.8. Assume the conditions in Proposition 2.7.6 and E(σ0σh)2p+δ < ∞ and E|Z|2p+δ < ∞
for some δ > 0. Let ν2(h) be the variance of the limiting distribution in Proposition 2.7.6 given by formula

(2.7.13), λ2 the variance of the limiting distribution in Lemma 2.5.8, i.e.

√
n(γ̂|X|p(0)− γ|X|p(0)) d→ N(0, λ2),

and Λ = Λ(0, h) is given in Proposition 2.7.7. Then

√
n(ρ̂|X|p(h)− ρ|X|p(h)) d→ N

(
0,

1
(γ|X|p(0))2

ν2(h) + 2
γ|X|p(h)

(γ|X|p(0))3
Λ +

(γ|X|p(h))2

(γ|X|p(0))4
λ2

)
. (2.7.15)

Proof. The difference between the ACF and the estimated ACF at lag h can be decomposed as:

√
n(ρ̂|X|p(h)− ρ|X|p(h))

=
√

n
(γ̂|X|p(h)− γ|X|p(h))γ|X|p(0)− γ|X|p(h)(γ̂|X|p(0)− γ|X|p(0))

(γ|X|p(0))2
(1 + op(1)), (2.7.16)

=
√

n
(

1
γ|X|p (0) ,

γ|X|p (h)

(γ|X|p (0))2

) (
γ̂|X|p(h)− γ|X|p(h)
γ̂|X|p(0)− γ|X|p(0)

)
+ op(1),

where we used that

γ̂|X|p(0) = γ|X|p(0) + op(1).
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Another application of Theorem 2.1.19 yields,

√
n

(
γ̂|X|p(h)− γ|X|p(h)
γ̂|X|p(0)− γ|X|p(0)

)
=

1√
n

n∑
t=1

(|XtXt+h|p − E|X0Xh|p − 2E|X|p(|Xt+h|p − E|X|p)
|Xt|2p − E|X|2p − 2E|X|p(|Xt|p − E|X|p)

)
+ op(1)

d→ N (0, Σ) , (2.7.17)

where

Σ =
(

ν2 Λ
Λ λ2

)
.

Then it follows from (2.7.16) and (2.7.17) that

√
n(ρ̂|X|p(h)− ρ|X|p(h)) d→ N(0, a′Σa).

where

a′ =
(

1
γ|X|p (0) ,

γ|X|p (h)

(γ|X|p (0))2

)
.

Then

a′Σa =
(

1
γ|X|p (0) ,

γ|X|p (h)

(γ|X|p (0))2

) (
ν2 Λ
Λ λ2

) ( 1
γ|X|p (0)
γ|X|p (h)

(γ|X|p (0))2

)
.

Remark 2.7.9. The proofs of Lemmas 2.7.8 and 2.1.19 are helpful in constructing a multivariate central

limit theorem for the sample ACF (ρ̂|X|p(h))h=1,··· ,m. Let

A =
1

(γ|X|p(0))2




−γ|X|p(1) γ|X|p(0) 0 0 · · · 0
−γ|X|p(2) 0 γ|X|p(0) 0 · · · 0

...
...

...
...

...
...

−γ|X|p(m) 0 0 0 · · · γ|X|p(0)


 ,

S =




√
n(γ̂|X|p(0)− γ|X|p(0))√
n(γ̂|X|p(1)− γ|X|p(1))√
n(γ̂|X|p(2)− γ|X|p(2))

...√
n(γ̂|X|p(m)− γ|X|p(m))




.

Then the differences between the ACF’s and their estimators can be written as


√
n(ρ̂|X|p(1)− ρ|X|p(1))√
n(ρ̂|X|p(2)− ρ|X|p(2))

...√
n(ρ̂|X|p(m)− ρ|X|p(m))


 = AS + op(1) d→ N(0, A′ΣA),

by the multivariate central limit theorem given in Theorem 2.1.19. Here

Σ =




λ2 Λ(0, 1) · · · Λ(0,m)
Λ(0, 1) ν2(1) · · · Λ(1,m)

...
...

...
...

Λ(0,m) Λ(1,m) · · · ν2(m)


 .
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Chapter 3

Some extreme value theory for
stochastic volatility models

3.1 Preliminaries on extreme value theory

A risk manger is responsible for a portfolio consisting of a few up to hundred or thousands of financial

assets and contracts. Management or investors have also imposed risk preferences that the risk manager

is trying to meet. To evaluate the position the risk manager tries to assess the loss distribution to make

sure that the current positions is in accordance with imposed risk preferences. If it is not, then the risk

manager must rebalance the portfolio until a desirable loss distribution is obtained. We may view a

financial investor as a player participating in the game at financial market and the loss distribution must

be evaluated in order to know which game the investor is participating in.

There are some standard methods for computing value at risk (VaR) and expected shortfall (ES)

for a portfolio of risky assets like empirical VaR and ES, using bootstrap to obtain confidence intervals,

historical simulation, Monte-Carlo methods, etc. One of these methods is extreme value theory. The

main advantage of the methods of extreme value theory is that these methods are designed to be able to

say as much as possible about the tail of the underling distribution.

In a risk management context one is typically interested in the loss distribution from an investment

in financial assets or the distribution of the claims arriving to an insurance company. Extreme events

are particularly frightening because although they are by definition rare, they may cause severe losses to

a financial institution or insurance company. Extreme value theory is the proper tool for estimating the

probability of such events.



78 Chapter 3. Some extreme value theory for stochastic volatility models

3.1.1 Extreme value theory for iid random variables

Let X, X1, X2, ... be a sequence of iid non-degenerate random variables (rv). We define the sample

maxima Mn as

M1 = X1, Mn = max(X1, X2, ...Xn), n ≥ 2.

A non-degenerate rv X is called max-stable if for all n ≥ 1 there exist cn > 0 and dn ∈ R such that

Mn
d= cnX + dn. (3.1.1)

We are interested in the limiting distribution of Mn as n →∞ under affine transformations.

If there exists a random variable Y with a non-degenerate distribution H such that for some cn > 0

and dn ∈ R

c−1
n (Mn − dn) d→ Y, (3.1.2)

then by the Fisher-Tippett theorem [11, p. 121] Y belongs to the type of one of the distributions Fréchet,

Weibull or Gumbel. The Fréchet distribution function is given by

Φα(x) = exp(−x−α), x > 0, α > 0,

the Weibull distribution function by

Ψα = exp (−(−x)α) , x ≤ 0, α > 0,

and the Gumbel distribution function by

Λ(x) = exp
(−e−x

)
, x ∈ R.

Maximum domain of attraction (MDA)

Definition 3.1.1. A random variable X (and its distribution F ) belongs to the maximum domain of

attraction of the extreme value distribution H if (3.1.2) holds. We write X ∈ MDA(H) or F ∈ MDA(H).

The distribution function F belongs to the maximum domain of attraction of the extreme value

distribution H if and only if

lim
n→∞

nF (cnx + dn) = − log H(x), x ∈ R. (3.1.3)

where F (x) = 1− F (x), see [11, p. 128].

By the above definition and the relation (3.1.2) the maximum domain of attraction of the three

distributions can be characterized as follows :
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• A random variable X belongs to the maximum domain of attraction of Φα if and only if F (x) =

x−αL(x), x > 0, L is slowly varying function, i.e. limx→∞
L(tx)
L(x) = 1 for all t > 0. In this case, one

can choose

cn = inf(x ∈ R : F (x) ≥ 1− 1
n

) = F←(1− 1
n

),

and dn = 0. Examples of distributions in this class are the Pareto, Cauchy, Burr, loggamma

distributions.

• A random variable X belongs to the maximum domain of attraction of Ψα if and only if the right

end point

xF = sup (x ∈ R : F (x) < 1) ,

is finite and F (xF − 1
x ) = x−αL(x), x > 0, where L is slowly varying function. The corresponding

norming constants are cn = xF − F←(1 − 1
n ) and dn = xF . Examples of this class are beta and

uniform distributions.

• A random variable X belongs to the maximum domain of attraction of Λ if and only if there exists

z < xF such that

F (x) = c(x) exp
(
−

∫ x

z

g(t)
a(t)

dt

)
, z < x < xF , (3.1.4)

where c(·) and g(·) are measurable functions, limx→xF c(x) = c > 0, limx→xF g(x) = 1 and a(x)

is a positive, absolutely continuous function with limx→xF a′(x) = 0. The norming constants are

given by dn = F←(1− 1
n ) and cn = a(dn). Examples of distributions in MDA(Λ) are the normal,

lognormal, exponential, Weibull and gamma distributions.

3.1.2 The extremal index

In contrast to Section 3.1.1, in reality extremal events often tend to occur in clusters caused by local

dependence in the data. For instance, large claims in insurance are mainly due to hurricanes, storms,

floods, earthquakes, etc. Claims are then linked with these events and do not occur independently. The

same can be observed with financial data such as exchange rates and asset prices. If one large value in

such a time series occurs we can usually observe a cluster of large values over short periods afterwards,

see Section 2.2.

The extremal index is a quantity which, in an intuitive way, allows one to characterize the relationship

between the dependence structure of the data and their extremal behavior.
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Definition 3.1.2. (Extremal index [11, p. 416])

Let (Xn) be a strictly stationary sequence with marginal distribution function F and θ a non-negative

number. Assume that for every τ > 0 there exists a sequence (un) such that

lim
n→∞

nF (un) = τ, (3.1.5)

lim
n→∞

P (Mn ≤ un) = e−θτ . (3.1.6)

Then θ is called the extremal index of the sequence (Xn).

The extremal index θ always belongs to the interval [0, 1], see Section 8.1 in [11].

3.1.3 Univariate regular variation

Definition 3.1.3. (Slowly varying function [28, p. 105])

A measurable positive function L(x) on (0,∞) is slowly varying if it satisfies the asymptotic relation

L(cx)
L(x)

→ 1, x →∞, (3.1.7)

for all c > 0.

The class of slowly varying functions includes constants, logarithms, iterated logarithm, powers of

logarithms. Every slowly varying function has the representation

L(x) = c0(x) exp
∫ x

x0

ε(t)
t

dt, 0 < x0 < x, (3.1.8)

where ε(t) → 0 as t →∞ and c0(t) is a positive function satisfying c0(t) → c0 for some positive constant

c0. Using the representation in Equation (3.1.8), one can show that for every δ > 0,

lim
x→∞

L(x)
xδ

= 0, lim
x→∞

xδL(x) = ∞,

i.e., L is negligible compared to any power function xδ, x−δ.

Definition 3.1.4. (Regularly varying function and regularly varying random variable [28, p. 106])

Let L be a slowly varying function in the sense of (3.1.7).

1. For any δ ∈ R, the function f(x) = xδL(x), x > 0, is said to be regularly varying with index δ.

2. A positive random variable X and its distribution are said to be regularly varying with (tail) index

α ≥ 0 if the right tail of the distribution has the representation P (X > x) = L(x)x−α, x > 0.
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An alternative way of defining regular variation with index δ is to require

lim
x→∞

f(cx)
f(x)

= cδ, for all c > 0.

Hence a distribution F of a positive random variable X is regularly varying with index α ≥ 0 if and only

if

lim
t→∞

F (tx)
F (t)

= x−α, for each x > 0. (3.1.9)

We call a random variable X and its distribution regularly varying if its distribution is regularly

varying in a ”balanced manner” in both tails, i.e. if for some p ∈ [0, 1] the following two limits exist

lim
t→∞

P (X > tx)
P (|X| > t)

= px−α and lim
t→∞

P (X ≤ −tx)
P (|X| > t)

= qx−α, (3.1.10)

for every x > 0 and q = 1−p. The word ”balance” is imprecise. Apart from distributions which have both

tails regularly varying of a ”similar shape”, this definition includes distributions with one tail regularly

varying with index α and the other tail of any other shape as long as this tail is lighter.

From the definition of the regularly varying distributions we conclude that they have very heavy

tails, in particular for small α. Examples of regularly varying distributions include the Pareto and Burr

distributions which are standard models for large claims in (re)insurance applications.

Example 3.1.5. Some univariate regularly varying distributions

Here we give some well known regularly varying distributions. We introduce the right tail F or density

f for these distributions.

Pareto F (x) = xα

(x+k)α , x ≥ 0, k > 0, α > 0,

student with n degrees of freedom

f(x) =
Γ((n + 1)/2)
Γ(n/2)

√
Πn

(1 + x2/n)(n+1)/2, x ∈ R,

log-gamma f(x) = γβ

Γ(β) (log x)β−1x−α−1, x ≥ 1, α, β > 0,

Burr F (x) = ( k
k+xτ )α, α, k, τ > 0,

Cauchy f(x) = (π(1 + x2))−1, x ∈ R,

Fréchet F (x) = e−x−α

, x > 0, α > 0,

Generalized Pareto distribution with positive shape parameter ξ. The distribution function is

given by

Gξ(x) = 1− (1 + ξx)−1/ξ, ξ > 0, x ≥ 0.
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In various cases the analysis of the moments of a random variable X can be refined by a study of the

asymptotic tail behavior of the distribution of X. The close relation between the moments and the tails

can be seen e.g. from the fact that for any non-negative random variable X,

EX =
∫ ∞

0

P (X > x)dx. (3.1.11)

Assume X has a power law tail of the form

P (X > x) = x−αL(x), x > 0, (3.1.12)

where α > 0 and L is a slowly varying function. Since for every δ > 0 there exist positive constants x0

and c1, c2 such that

c1x
−δ ≤ L(x) ≤ c2x

−δ, x ≥ x0, (3.1.13)

the contribution of L to the tail in Equation (3.1.12) is negligible compared to the power law x−α. From

Equations (3.1.11) – (3.1.13) we conclude that

E(Xα+δ)
{

< ∞, δ < 0,
= ∞, δ > 0,

whereas EXα may be finite or infinite, depending on the slowly varying function L.

There exists empirical evidence that the distribution of log-returns is well approximated in its left

and right tails by a regularly varying function (possibly with different tail indices on the left and on the

right). Also teletraffic data (file lengths, transmission durations, throughput rates, etc.) and insurance

claims are often found to have power law tails.

Regular variation conditions are important for limit theorems in probability theory. It is well known

(Feller [16]) that for an iid sequence (Xn) with distribution F and Sn = X1 + · · · + Xn, n ≥ 1, there

exist constants cn > 0, dn ∈ R such that

c−1
n (Sn − dn) d→ Y, (3.1.14)

for some non-degenerate Y if and only if

σ2(x) = EX2I{|X|≤x}, x > 0,

is regularly varying. In particular if EX2 < ∞, Y is normal, and if X is regularly varying with index

α < 2, then

x−2σ2(x) = x−2

∫ x

−x

y2dF (y) ∼ α

2− α
P (|X| > x).
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In the case α < 2, regular variation of X is equivalent to the fact that Y in (3.1.14) has an infinite variance

α−stable distribution. Its distribution is given by the characteristic function in Equation (2.5.14). Stable

distributions have the stability property. This means that for iid random variables Yi with an α−stable

distribution there exists bn > 0 such that

Y1 + · · ·+ Yn
d= n−

1
α Y1 + bn, n ≥ 1.

Examples of stable distributions are the normal distribution with α = 2 and the Cauchy distribution with

α = 1. The latter distribution is symmetric. The Cauchy distribution coincides with the t−distribution

with one degree of freedom.

Regular variation is also a necessary and sufficient condition for convergence of maxima of iid random

variables Xi in the maximum domains of attraction of the Fréchet and Weibull distributions, see Section

3.1.1.

3.1.4 Multivariate regular variation

Definition 3.1.6. (Multivariate regular variation [1])

The d−dimensional random vector X = (X1, . . . , Xd)′ and its distribution are said to be regularly varying

with index α > 0 if there exists a random vector Θ with values in Sd−1, where Sd−1 = {x ∈ Rd : |x| = 1}
denotes the unit sphere in Rd with respect to the norm |.|, such that for all t > 0,

P (|X| > ty,X/|X| ∈ ·)
P (|X| > y)

w→ t−αP (Θ ∈ ·), as y →∞. (3.1.15)

The symbol w→ stands for weak convergence on the Borel σ−algebra of Sd−1 and the probability measure

P (Θ ∈ ·) on Sd−1 is the spectral measure of regular variation of X.

Observe that, in the case d = 1, Equation (3.1.15) coincides with condition (3.1.10), which was the

definition of regular variation of X in R. The spectral measure in this case is given by P (Θ = 1) = p

and P (Θ = −1) = q. Definition 3.1.6 is often used as a definition of multivariate regular variation. The

following definition is equivalent to it.

Definition 3.1.7. (Equivalent definition for multivariate regular variation [34])

The d−dimensional random vector X = (X1, . . . , Xd)′ and its distribution are said to be regularly varying

with index α > 0 if there exists a random vector Θ ∈ Sd−1 and a sequence (an), an → ∞, such that for

any t > 0,

nP (|X| > tan, X/|X| ∈ ·) w→ t−αP (Θ ∈ ·), n →∞. (3.1.16)

Here w→ denotes weak convergence.
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As shown in [35] Section 5.4.2., Definitions 3.1.6 and 3.1.7 are equivalent to

P (x−1X ∈ ·)
P (|X| > x)

v→ µ(·), (3.1.17)

where v→ denote vague convergence in Rd \ {0}, R = R ∪ {∞,−∞} and µ is a Radon measure (finite on

compact sets) on Rd \ {0} satisfying

µ(tA) = µ(A)t−α, t > 0,

for any Borel set A ⊂ Rd \ {0}, bounded away from zero, i.e. there exists ε such that A ⊂ {x : |x| > ε}.

The upper tail coefficient

In the literature on risk management, one often finds the upper tail coefficient λu of a two-dimensional

random vector X = (X1, X2) as a measure of extremal risk in X, see [25]. For such a random vector with

X1
d= X2 and jointly regularly varying distribution we have

λu = lim
x→∞

P (X1 > x|X2 > x) = lim
x→∞

P (x−1(X1, X2) ∈ (1,∞)2)
P ((X1, X2) ∈ R× (1,∞))

.

Notice that (1,∞)2 and R× (1,∞) are bounded away from zero. Therefore,

λu = lim
x→∞

P (x−1(X1, X2) ∈ (1,∞)2)/P (|X| > x)
P (x−1(X1, X2) ∈ R× (1,∞))/P (|X| > x)

=
µ((1,∞)2)

µ(R× (1,∞))
.

The definition of the upper tail index for a regularly varying vector X ∈ Rd can be generalized in many

different ways. For example, let A ⊂ Rd−1
be a set bounded away from zero. Then

P (x−1(X2, . . . , Xd) ∈ A|X1 > x) =
P (x−1X ∈ (1,∞)×A)

P (X1 > x)

→ µ((1,∞)×A)
µ((1,∞)× Rd−1)

,

where we assumed that µ((1,∞)× Rd−1) > 0.

For example, let A1 = (1,∞)d−1. Then

P (x−1(X2, . . . , Xd) ∈ A1|X1 > x) = P (Xi > x, i = 2, . . . , d|X1 > x)

→ µ((1,∞)d)
µ((1,∞)× Rd−1)

,

where we assumed that µ((1,∞)× Rd−1) > 0. Or let A2 = ([0, 1]d−1)c. Then

P (x−1(X2, . . . , Xd) ∈ A2|X1 > x) = P (Xi > x for some i = 2, . . . , d|X1 > x)

→ µ((1,∞)×A2)
µ((1,∞)× Rd−1)

,

where we assumed µ((1,∞)× Rd−1) > 0.
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Examples of spectral measures

We consider some examples of regularly varying random vectors and try to determine their spectral

measures. For the purpose of illustration we focus on two-dimensional vectors with positive components

in the first two examples.

Example 3.1.8. (Total dependence)

We assume that X = (X,X)′ for some regularly varying X with index α > 0 and choose the max-norm

|x| = max(x1, x2). In this case, with nP (|X| > xn) ∼ 1,

nP (|X| > xn, X/|X| ∈ S) = nP (|X| > xn, (1, 1) ∈ S) ∼ IS((1, 1)),

where we assume that (1, 1) is not at the boundary of S. The spectral measure is degenerate and

concentrated at the intersection of the unit sphere with the line x = y. The same remark applies to any

norm in R2.

For an iid sequence X1, . . . , Xn with the same distribution as X, it is clear from the dependence

structure of the components that an Xi far away from the origin occurs if both components in the vector

are large at the same time.

In contrast to the previous artificial example, for a real-life time series X1, . . . , Xn with dependent

non-identical components we do not expect that all these vectors lie on the line x = y. However, when

the Xis of large modulus stay away from the axes, we have an indication of asymptotic dependence. The

observed features can be generalized to vectors with values in Rd.

Example 3.1.9. (Independence between components)

We assume that X = (X1, X2) has independent components and X1
d= X2 for a regularly varying X1

with index α > 0. Choose the max-norm |X| = max(|X1|, |X2|). Then

P (|X| > x) = P (max(X1, X2) > x) = 1− P (max(X1, X2) ≤ x)

= 1− (P (X1 ≤ x))2 = (1− P (X1 ≤ x))(1 + P (X1 ≤ x)) ∼ 2P (X1 > x).

Choose cn such that P (|X| > cn) ∼ 1
n . Then for y > 0,

nP (c−1
n X ∈ (y,∞)2) = nP (c−1

n Xi > y; i = 1, 2) = n[P (X1 > cny)]2

∼ n[P (X1 > cn)]2y−2α → 0.

Since y > 0 is arbitrary, we can choose y so small that (y,∞)2 ⊃ A for any set A which is bounded away
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Figure 3.1: (Example 3.1.9) Left: Plot of 1000 lagged vectors Xt = (Xt, Xt+1) for the AR(1) process
Xt+1 = 0.9Xt +Zt for iid symmetric regularly varying noise (Zt) with tail index 1.8. The vectors Xt with
large norm are typically concentrated along the line y = 0.9x. Right: Scatterplot of the pairs (Xt, Xt+1)
of the daily log-return Xt of S&P500 series. The extremes in the series do not tend to cluster around the
axes. This is an indication of dependence in the tails.

from the axes. Therefore nP (c−1
n X ∈ A) → 0 for such sets. In particular, for sets

A(r, S) = {x ∈ R2
t : |X| > r,

X

|X| ∈ S},

where S ⊂ S and S is bounded away from (0, 1) and (1, 0),

nP (c−1
n X ∈ A(r, S)) = nP (|X| > cnr,

X

|X| ∈ S) → 0, r > 0.

Therefore

µ(A(r, S)) = r−αµ(A(1, S)) = 0,

but µ(A(1, S)) for any Borel sets S ⊂ S is the spectral measure of X. Hence the spectral measure is

concentrated at (0, 1) and (1, 0).

Example 3.1.10. (A toy model)

This example helps one to understand the spectral measure. Let

X = R(cosΦ, sinΦ), (3.1.18)

where the radius R has distribution P (R > r) = r−α, r ≥ 1, for some α > 0 and is independent of

the random angle Φ with distribution on (−π, π]. Choosing the Euclidean norm | · | and exploiting the
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independence of R and Φ, this vector is immediately seen to be regularly varying with Θ = (cos Φ, sinΦ):

P (|X| > tx, X/|X| ∈ S)
P (|X| > x)

=
P (R > tx, Θ ∈ S)

P (R > x)

=
P (R > tx)
P (R > x)

P (Θ ∈ S) = t−αP (Θ ∈ S),

provided min(tx, x) ≥ 1. The knowledge of the distribution of Φ allows for some straightforward inter-

pretation of the two-dimensional dependence in the tails.
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Figure 3.2: (Example 3.1.10) IID vectors Xi from model (3.1.18) with tail index α = 5 and Φ is uniform
on (−π, π].

Functions of regularly varying vectors

Regularly variation remains valid under various useful operations. We consider some of them.

Products

Let X, Y be two independent random variables such that X,Y > 0 a.s. and X is regularly varying with

index α > 0 and EY α+δ < ∞, for some δ > 0. It follows from Breiman [7] that

P (XY > x) ∼ E(Y α)P (X > x), x →∞. (3.1.19)
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In particular, XY is regularly varying with index α. Thus the product inherits the heavier tail of the

two factors. The condition E(Y α+δ) < ∞ can be relaxed if more information about the tail P (Y > x)

is available. For example, if P (Y > x) ∼ cx−α for some c > 0, then (3.1.19) remains valid although

EY α = ∞.

It is also well-known that XY is regularly varying with index α > 0 if both X, Y are regularly varying

with index α > 0.

The following result is a multivariate extension of Breiman’s result to random vectors. It can be found

in [1].

Lemma 3.1.11. Let A be a random (r × d)−matrix such that E‖A‖α+δ < ∞ for some δ > 0 (‖.‖ is an

appropriate matrix norm). Assume that A is independent of the d−dimensional regularly varying vector

X with index α > 0 and limit measure µ in Equation (3.1.17). Then

P (x−1AX ∈ ·)
P (|X| > x)

v→ Eµ({x ∈ Rd : A x ∈ ·}) = v(·).

Here v→ denotes vague convergence. In particular, if v is a full measure in Rd, (i.e.: not concentrated on

a lower-dimensional subspace of Rd) A X is regularly varying with index α > 0.

Summation

Let X = (X1 . . . , Xd) be a regularly varying vector with index α > 0. Then
∑d

i=1 ciXi is regularly

varying with index α > 0 for any choice of ci ∈ R, i = 1, . . . , d, such that ci 6= 0 for at least one i.

Indeed, define c = (c1, . . . , cd)′ and

Ac = {x ∈ Rd : c′x > 1},

then it follows from (3.1.17) that

P (
∑d

i=1 ciXi > tx)
P (|X| > x)

=
P (x−1X ∈ Ac)

P (|X| > x)
→ µ(tAc) = t−αµ(Ac) as x →∞,

and
P (

∑d
i=1 ciXi < −tx)
P (|X| > x)

→ t−αµ({x : c′x < −1}) = t−αµ(A−c).

In particular,

P (X1 + · · ·+ Xd > x)
P (|X| > x)

→ µ({x : x1 + · · ·+ xd > 1}),
P (X1 + · · ·+ Xd > x)

P (|X| ≤ −x)
→ µ({x : x1 + · · ·+ xd ≤ −1}).
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As a special case, let X be a regularly varying variable and P (|Y | > x) = o(P (|X| > x)). Then, X + Y

is a regularly varying variable such that

P (X + Y > x) ∼ P (X > x), x →∞,

P (X + Y ≤ −x) ∼ P (X ≤ −x), x →∞.

3.2 Regular variation of GARCH and stochastic volatility mod-
els

3.2.1 The GARCH model

Recall the GARCH(p, q) process (Xn) from Section 2.3.1. In this case it is well known that (σn) and

(Xn) have regularly varying finite dimensional distributions, see [1]. This holds under general condition

on the iid noise (Zt). A sufficient condition for regularly variation of σt and Xt is that Zt has a density

with unbounded support. This includes t− and normally distributed Zt. The index α of regular variation

of σt is given by

E(α1Z
2
1 + β1)

α
2 = 1, (3.2.1)

in the GARCH(1, 1) case, provided this solution exists. Then a result by Kesten [22] implies that

P (σ > x) ∼ cx−α. (3.2.2)

Breiman’s result in Equation (3.1.19) shows that

P (Xt > x) = P (σtZt > x) ∼ E(Zα
+)P (σ > x) ∼ E(Zα

+)cx−α.

In the GARCH(1, 1) case it is possible to determine the spectral distribution of the finite-dimensional

distributions of (σ2
t ). To see this, we write

σ2
t = Mt, At = α1Z

2
t−1 + β1, B0 = α0.

Then

σ2
t = Mt = α0 + (α1Z

2
t−1 + β1)σ2

t−1

= B0 + AtMt−1.

Iteration yields

Mt = At · · ·A1M0 +
t∑

i=1

At · · ·Ai+1B0

= At · · ·A1M0 + B0 +
t−1∑

i=1

At · · ·Ai+1B0.
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Under the conditions of Kesten’s [22] result and with E|Z|α+δ < ∞ for some δ > 0 (this condition is

trivially satisfied for normally and t−distributed Z with ν > α degrees of freedom), and for h ≥ 0,

M t,t+h = (Mt, · · · ,Mt+h)

= (At · · ·A1, . . . , At+h · · ·A1)M0 + (
t∑

i=1

At · · ·Ai+1, . . . ,

t+h∑

i=1

At+h · · ·Ai+1)B0

= At · · ·A1(1, At+1, . . . , At+h · · ·At+1)M0 + Rt, (3.2.3)

where E|Rt|α/2+δ < ∞.

The following lemma is helpful in this case.

Lemma 3.2.1. (Lemma 3.12 in [20])

Assume that X1 ∈ Rd is regularly varying with index α > 0 and limit measure µ and X2 ∈ Rd is such

that P (|X2| > x) = o(P (|X1| > x)) as x →∞. Then X1 + X2 is regularly varying with index α > 0 and

limit measure µ.

An application of Lemma 3.2.1 shows that regular variation of M t,t+h is solely determined by the

regular variation of At · · ·A1(1, At+1, . . . , At+h · · ·At+1)M0. Indeed, since E|Rt|α/2+δ < ∞ for some

δ > 0,

nP (|n− 2
α Rt| > ε) → 0, for all ε > 0. (3.2.4)

Therefore the spectral distribution of M t,t+h
d= Mh is given by

nP (|Mh| > rn
2
α ,

Mh

|Mh|
∈ S)

= nP (M0At · · ·A1|(1, At+1, . . . , At+h · · ·At+1)| > rn
2
α ,

(1, At+1, . . . , At+1 · · ·At+h)
|(1, At+1, . . . , At+1 · · ·At+h)| ∈ S)

= nP

(
M0At · · ·A1|(1, At+1, . . . , At+1 · · ·At+h)|I{ (1,At+1,...,At+1···At+h)

|(1,At+1,...,At+1···At+h)|∈S} > rn
2
α

)

∼ nP (M0 > rn
2
α )E

(
At · · ·A1|(1, At+1, . . . , At+1 · · ·At+h)|I{ (1,At+1,...,At+1···At+h)

|(1,At+1,...,At+1···At+h)|∈S}

)α
2

∼ r−αcE

(
At · · ·A1|(1, At+1, . . . , At+1 · · ·At+h)|I{ (1,At+1,...,At+1···At+h)

|(1,At+1,...,At+1···At+h)|∈S}

)α
2

,

where we used Breiman’s result, see (3.1.19). By virtue of (3.2.2) we thus have

nP (σ2
0 > rn

2
α ) ∼ cr−

α
2 .

It is immediate that the spectral measure of M0 is then given by the probability measure on Sh+1

F (S) =
E

[
(At · · ·A1)

α
2 |(1, At+1, . . . , At+1 · · ·At+h)|α

2 I{ (1,At+1,...,At+1···At+h)
|(1,At+1,...,At+1···At+h)|∈S}

]

E
[
(At · · ·A1)

α
2 |(1, At+1, . . . , At+1 · · ·At+h)|α

2
] ,
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for any Borel set S ⊂ Sh. By virtue of (3.2.1) we have

E(At · · ·A1)
α
2 = 1.

Hence

F (S) =
E

[
(1, A1, . . . , A1 · · ·Ah)

α
2 I{ (1,A1,...,A1···Ah)

|(1,A1,...,A1···Ah)|∈S}

]

E|(1, A1, . . . , A1 · · ·Ah)|α
2

,

is the spectral measure of the distribution of Mh.

The spectral measure of the finite-dimensional distributions of (X2
t ) follows in a similar way. Using

the recursion in (3.2.3), we see that

(X2
t , . . . , X2

t+h) = (Z2
t σ2

t , . . . , Z2
t+hσ2

t+h)

= (Z2
t At · · ·A1M0, . . . , Z

2
t+hAt+h · · ·A1M0) + St (3.2.5)

= N t,t+h + St,

where E|St|α
2 +δ < ∞ for some δ > 0 if E|Z|α+δ < ∞.

Using the same argument as for the finite-dimensional distributions of (σ2
t ), we see that the regular

variation of (X2
t , . . . , X2

t+h) is completely determined by the regular variation of M0 in (3.2.5). Proceed

as before for N t,t+h
d= Nh:

nP (|Nh| > rn
2
α ,

Nh

|Nh|
∈ S)

= nP
(
M0At · · ·A1|(Z2

t , Z2
t+1At+1, . . . , Z

2
t+hAt+1 · · ·At+h)| > rn

2
α ,

(Z2
t , Z2

t+1At+1, . . . , Z
2
t+hAt+1 · · ·At+h)

|(Z2
t , Z2

t+1At+1, . . . , Z2
t+hAt+1 · · ·At+h)| ∈ S

)

= nP
(
M0At · · ·A1|(Z2

t , Z2
t+1At+1, . . . , Z

2
t+hAt+1 · · ·At+h)|

I
{ (Z2

t ,Z2
t+1At+1,...,Z2

t+h
At+1···At+h)

|(Z2
t ,Z2

t+1At+1,...,Z2
t+h

At+1···At+h)|∈S}
> rn

2
α




∼ nP (M0 > rn
2
α )E


|(Z2

1 , Z2
2A2, . . . , Z

2
1+hA2 · · ·A1+h)|α

2 I
{ (Z2

1 ,Z2
2A2,...,Z2

h+1A2···Ah+1)

|(Z2
1 ,Z2

2A2,...,Z2
h+1Ah+1···Ah+1)|∈S}




∼ cr−αE


|(Z2

1 , Z2
2A2, . . . , Z

2
1+hA2 · · ·A1+h)|α

2 I
{ (Z2

1 ,Z2
2A2,...,Z2

h+1A2···Ah+1)

|(Z2
1 ,Z2

2A2,...,Z2
h+1Ah+1···Ah+1)|∈S}


 .

Here we again used Breiman’s result (see (3.1.19)) and Kesten’s result (see [22]).

Now it is immediate that the spectral measure of Nh is given by

E




|(Z2
1 , Z2

2A2, . . . , Z
2
1+hA2 · · ·A1+h)|α

2 I
{ (Z2

1 ,Z2
2A2,...,Z2

h+1A2···Ah+1)

|(Z2
1 ,Z2

2A2,...,Z2
h+1A2···Ah+1)|∈S}

E|(Z2
1 , Z2

2A2, . . . , Z2
1+hA2 · · ·A1+h)|α

2


 ,
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for any Borel set S ⊂ Sh.

For the ARCH(1) case, i.e., β1 = 0, the spectral measure therefore simplifies to

E


|(α1Z

2
1 , α2Z

2
2A2, . . . , α1Z

2
1+hA2 · · ·A1+h)|α

2 I
{ (Z2

1 ,Z2
2A2,...,Z2

h+1A2···Ah+1)

|(Z2
1 ,Z2

2A2,...,Z2
h+1A2···Ah+1)|∈S}




E|(α1Z2
1 , α2Z2

2A2, . . . , α1Z2
1+hA2 · · ·A1+h)|α

2

=

E


|(A2, A3A2, . . . , A2+h · · ·A2)|α

2 I
{ (Z2

1 ,Z2
2A2,...,Z2

h+1A2···Ah+1)

|(Z2
1 ,Z2

2A2,...,Z2
h+1A2···Ah+1)|∈S}




E|(A2, A3A2, . . . , A2+h · · ·A2)|α
2

=
E

(
|(1, A1, A1A2, . . . , A1 · · ·Ah)|α

2 I{ (1,A1,A1A2,...,A1···Ah)
|(1,A1,A1A2,...,A1···Ah)|∈S}

)

E|(1, A1, A1A2, . . . , A1 · · ·Ah)|α
2

,

where we used that EA
α/2
1 = 1, see (3.2.1).

This spectral measure is not tractable and can only be calculated by using numerical or simulation

methods.

The spectral measures of the finite-dimensional distribution of (|Xt|2p) for any p > 2 can be calculated

from the spectral measure of X2
t . Indeed, for any set B ⊂ Rh+1 \ {0}, bounded away from zero whose

boundary has limiting measure zero,

nP (n−
2p
α (|X0|2p, . . . , |Xh|2p) ∈ B) = nP (n−

2
α (X2

0 , . . . , X2
h) ∈ B

1
p ),

where B
1
p = {(x

1
p

0 , . . . , x
1
p

h ) : (x0, . . . , xh) ∈ Rh+1
+ , (x0, . . . , xh) ∈ B}. In particular, if B = {x ∈ Rh+1

:

|x| > 1, x
|x| ∈ S} for some S ∈ Sh, we obtain

nP (n−
2p
α (|X0|2p, . . . , |Xh|2p) ∈ B) → P (θp ∈ S).

In the following lemma we study some consequences of the regular variation of the finite-dimensional

distributions of (Xt).

Lemma 3.2.2. 1. For GARCH(1, 1)

P (X2
2 > x, . . . , X2

n > x | X2
1 > x) →

E

(
min

(
Z2

1 , Z2
2A2, . . . , Z

2
n

∏n
j=2 Aj

)α
2
)

E|Z|α . (3.2.6)

For ARCH(1)

P (X2
2 > x, . . . , X2

n > x | X2
1 > x) → E


min


1, A1, . . . ,

n−1∏

j=1

Aj




α
2

 . (3.2.7)
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2. For GARCH(1, 1)

P (X2
i ≤ x for all 2 ≤ i ≤ n | X2

1 > x) → 1−
E

(
Z2

1 ∧max(Z2
2A2, . . . , Z

2
n

∏n
j=2 Aj)

)α
2

E|Z|α . (3.2.8)

For ARCH(1) the right-hand side in (3.2.8) is

α

2

∫ ∞

1

P


max(A1, . . . ,

n−1∏

j=1

Aj) ≤ v−1


 v−1−α

2 dv .

The extremal index of the sequence (X2
t ) is the limit as n →∞:

θ =
α

2

∫ ∞

1

P (sup
n≥1

n∏

j=1

Aj ≤ ν−1)ν−1−α
2 dν.

3. For n ≥ 2 and 0 < a < b < ∞, for GARCH(1, 1)

P (x−1X2
n ∈ (a, b] | X2

1 > x) (3.2.9)

→ (E|Z|α)−1
(
E


min


Z2

1 , a−1Z2
n

n∏

j=2

Aj




α
2

− E


min


Z2

1 , b−1Z2
n

n∏

j=2

Aj




α
2



)
.

For ARCH(1)

P (x−1X2
n ∈ (a, b] | X2

1 > x) (3.2.10)

→ E


min


1 , a−1

n−1∏

j=1

Aj




α
2

− E


min


1 , b−1

n−1∏

j=1

Aj




α
2

 .

4. For GARCH(1, 1)

P (X2 > x, . . . , Xn > x | X1 > x) →
E

(
min((Z1)2+, (Z2)2+A1 , . . . , (Zn)2+

∏n−1
j=1 Aj)

)α
2

EZα
+

.

(3.2.11)

5. For GARCH(1, 1)

P (X2 ≤ x, . . . , Xn ≤ x | X1 > x)

→ 1−
E

(
max(0, Z2A

1/2
1 , . . . , Zn

∏n−1
j=1 A

1/2
j ) ∧ (Z1)+

)α

EZα
+

+ Pn−1(Z1 < 0).

The extremal index of (Xt) is the limit as n →∞ of the right-hand side.

For ARCH(1) with symmetric Z the right-hand side becomes with ri = sign(Zi)

α

∫ ∞

1

P


max(0, r2A1, . . . , rn

n−1∏

j=1

Aj) ≤ v−1


 v−1−α dv + 2−n+1 .
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The extremal index of (Xt) is given by

θ = α

∫ ∞

1

P


sup(0, r2A1, . . . , rn

n−1∏

j=1

Aj , . . .) ≤ ν−1


 ν−1−αdν.

6. For GARCH(1, 1) and ε > 0

P (|X2
n −X2

1 | ≤ εx | X2
1 > x) → 1−

E
(
ε−1|Z2

n

∏n
j=2 Aj − Z2

1 | ∧ Z2
1

)α
2

E|Z|α

For ARCH(1),

P (|X2
n −X2

1 | ≤ εx | X2
1 > x) ∼ 1− E


ε−1|

n∏

j=2

Aj − 1| ∧ 1




α
2

.

7. For GARCH(1, 1) and c > 1,

P (X2
1 + · · ·+ X2

n > cx | X2
1 > x) ∼ E(c−1(Z2

1 + Z2
2A1 + · · ·+ Z2

n

∏n−1
j=1 Aj) ∧ Z2

1 )
α
2

E|Z|α .

For ARCH(1) and c > 1,

P (X2
1 + · · ·+ X2

n > c x | X2
1 > x) ∼ E(c−1(1 + Z2

1 + · · ·+
n−1∏

j=1

Aj) ∧ 1)
α
2 .

8. For GARCH(1, 1)

P (min(X2
1 , . . . , X2

n) > x | max(X2
1 , . . . , X2

n)) ∼ P (σ2
1 min(Z2

1 , Z2
2A1, . . . , Z

2
n

∏n−1
j=1 Aj) > x)

P (σ2
1 max(Z2

1 , Z2
2A1, . . . , Z2

n

∏n−1
j=1 Aj) > x)

∼ E(min(Z2
1 , Z2

2A1, . . . , Z
2
n

∏n−1
j=1 Aj))

α
2

E(max(Z2
1 , Z2

2A1, . . . , Z2
n

∏n−1
j=1 Aj))

α
2

.

For ARCH(1)

P (min(X2
1 , . . . , X2

n) > x | max(X2
1 , . . . , X2

n) > x) ∼ E(min(1, A1, . . . ,
∏n−1

j=1 Aj))
α
2

E(max(1, A1, . . . ,
∏n−1

j=1 Aj))
α
2

.

Proof. (1) By Breiman’s result

P (X2
1 > x) ∼ E|Z|α P (σ2 > x) . (3.2.12)

By Lemma 3.2.1 and Breiman, see also (3.2.3) and (3.2.4),

P (X2
1 > x, . . . , X2

n > x) ∼ P


σ2

1 Z2
1 > x, σ2

1Z2
2A2 > x, . . . , σ2

1Z2
n

n∏

j=2

Aj > x




∼ P (σ2 > x)E


min


Z2

1 , Z2
2 A2, . . . , Z

2
n

n∏

j=2

Aj




α
2

 . (3.2.13)
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For the ARCH(1) process EA
α
2
1 = E(α1Z

2)
α
2 = 1 and therefore the right-hand side reads as

P (σ2 > x) α
−α/2
1 E


min


A2, A3A2, . . . ,

n∏

j=2

Aj




α
2



= P (σ2 > x)α
−α/2
1 E


min


1, A1, . . . ,

n−1∏

j=1

Aj




α
2

 .

Taking the ratio of (3.2.13) and (3.2.12) and letting x →∞, we obtain (3.2.6) and (3.2.7).

(2) Let µ(x,∞) = x−
α
2 , x > 0. By the joint regular variation of (X2

1 , . . . , X2
n) and Lemma 3.2.1,

P (X2
i ≤ x for 2 ≤ i ≤ n | X2

1 > x)

∼ Eµ{s : sZ2
1 > 1 , Z2

2A1s ≤ 1, . . . , Z2
n

∏n
j=2 Ajs ≤ 1}

E|Z|α

=
Eµ{s : sZ2

1 > 1 , s max(Z2
2A2, . . . , Z

2
n

∏n
j=2 Aj) ≤ 1}

E|Z|α

= 1−
E

(
Z2

1 ∧max(Z2
2A2, . . . , Z

2
n

∏n
j=2 Aj)

)α
2

E|Z|α .

For ARCH(1), observing that E(α1Z1)
α
2 = 1, the right-hand side becomes

1− E


A2 ∧A2 max(A3, . . . ,

n+1∏

j=3

Aj)




α
2

= 1− E


1 ∧max(A1, . . . ,

n−1∏

j=1

Aj)




α
2

=
∫ 1

0

P (y2/α > max(A1, . . . ,

n−1∏

j=1

Aj)) dy

=
α

2

∫ ∞

1

P


max(A1, . . . ,

n−1∏

j=1

Aj) ≤ v−1


 v−1−α

2 dv . (3.2.14)

It follows from [11, p. 422], Section 8.1, that the extremal index θ of the sequence (X2
t ) is given as the

limit as n →∞ of (3.2.14).
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(3) For c > 0 and n ≥ 2, by Breiman’s result,

P (X2
n > xc, X2

1 > x) ∼ P


σ2

1c−1Z2
n

n∏

j=2

Aj > x , Z2
1σ2

1 > x




∼ P (σ2
1 > x) E


min


Z2

1 , c−1Z2
n

n∏

j=2

Aj




α
2

 .

For ARCH(1),

P (X2
n > xc, X2

1 > x) ∼ P (σ2
1 > x)α

−α
2

1 E


min


1 , c−1

n−1∏

j=1

Aj




α
2

 .

Then (3.2.9) and (3.2.10) follow.

(4) By Breiman’s result

P (X1 > x) ∼ EZα
+P (σ > x), (3.2.15)

and by Breiman’s result and Lemma 3.2.1,

P (X1 > x, . . . , Xn > x) ∼ P (Z1σ1 > x, Z2A
1/2
2 σ1 , . . . , Zn

n∏

j=2

A
1/2
j σ1 > x)

∼ P (σ > x)E


min((Z1)2+, (Z2)2+A1 , . . . , (Zn)2+

n∏

j=2

Aj




α
2

. (3.2.16)

Combining (3.2.15) and (3.2.16), we get (3.2.11).

(5) With ν(x,∞) = x−α.

P (X2 ≤ x, . . . ,Xn ≤ x | X1 > x)

→
E

(
ν{s : s max(Z2A

1/2
2 , . . . , Zn

∏n
j=2 A

1/2
j ) ≤ 1, sZ1 > 1}

)

EZα
+

= 1−
E

(
max(0, Z2A

1/2
2 , . . . , Zn

∏n
j=2 A

1/2
j ) ∧ (Z1)+

)α

EZα
+

+
E[(Z1)α

+I(−∞,0)(max(Z2A
1/2
2 , . . . , Zn

∏n
j=2 A

1/2
j ))]

EZα
+

(3.2.17)

= 1−
E

(
max(0, Z2A

1/2
2 , . . . , Zn

∏n
j=2 A

1/2
j ) ∧ (Z1)+

)α

EZα
+

+
E(Z1)α

+I{Z2<0,...,Zn<0}
EZα

+

= 1−
E

(
max(0, Z2A

1/2
2 , . . . , Zn

∏n
j=2 A

1/2
j ) ∧ (Z1)+

)α

EZα
+

+ Pn−1(Z1 < 0). (3.2.18)
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For ARCH(1) with symmetric Z, with ri = sign(Zi), observing that (|Zt|) and (rt) are independent,

1−
E

(
max(0, Z2A

1/2
2 , . . . , Zn

∏n
j=2 A

1/2
j ) ∧ (Z1)+

)2α

EZα
+

= 1−
0.5E

(
max(0, r2A2A3, , . . . , rn

∏n+1
j=2 Aj) ∧A2

)α

0.5E(α1Z2)α

= 1− E


max(0, r2A2, , . . . , rn

n∏

j=2

Aj) ∧ 1




α

=
∫ 1

0

P


y1/α > max(0, r2A1, , . . . , rn

n−1∏

j=1

Aj)


 dy

and

Pn−1(Z1 < 0) = 2−n+1

In view of [11, p. 422], Section 8.1, the limit of (3.2.18) as n →∞ yields the extremal index of (Xt).

(6) The set {(x, y) : |x−y| ≤ ε, x > 1} is bounded away from zero. Therefore with µ(x,∞) = x−
α
2 , x > 0,

P (|X2
n −X2

1 | ≤ εx | X2
1 > x) ∼ P (σ2

1 |Z2
n

n−1∏

j=1

Aj − Z2
1 | ≤ εx | σ2

1Z2
1 > x)

→ Eµ({s : s |Z2
n

∏n−1
j=1 Aj − Z2

1 | ≤ ε, sZ2
1 > 1})

E|Z|α

= 1−
E

(
ε−1|Z2

n

∏n−1
j=1 Aj − Z2

1 | ∧ Z2
1

)α

E|Z|α
2

For ARCH(1) the right-hand side becomes

1− E


ε−1|

n∏

j=2

Aj − 1| ∧ 1




α
2

.

The relations (7) and (8) are obtained by similar arguments.

3.2.2 The stochastic volatility model

We start by studying the one-dimensional tails. Let the sequence (Xt) = (Ztσt) be a stochastic volatility

process given by Definition 2.3.2. Since σt and Zt are independent it follows that Xt is regularly varying

with index α > 0, if Zt is regularly varying with index α and E(σα+δ
t ) < ∞ or if σt is regularly varying

with index α > 0 and E(|Z|α+δ) < ∞ for some δ > 0. This follows from Breiman’s result in Equation

(3.1.19).
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Example 3.2.3. (Breiman’s result for stochastic volatility model)

If σt = eYt for a Gaussian linear process (Yt) then σt is log-normal, hence Eσα
t < ∞ for any α > 0.

Hence regular variation of Xt is due to the regular variation of Zt. Moreover, if Zt is regularly varying

with index α > 0, so is ZtZt+h, see Remark after Relation (3.1.19). Then by Breiman’s result

P (XtXt+h > x) ∼ E(σ0σh)αP (Z0Zh > x),

P (XtXt+h ≤ −x) ∼ E(σ0σh)αP (Z0Zh < −x).

Next we show regular variation of the finite-dimensional distributions of (Xt). We assume that

Eσα+δ
0 < ∞ for some δ > 0 and that (Zt) is iid and regularly varying with index α > 0. This follows by

an application of a multivariate version of Breiman’s result, see Lemma 3.1.11. Write

X =




X1

...
Xd


 =




σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σd







Z1

...
Zd


 = A.Z.

Since the Zt’s are iid, Z is regularly varying with index α and spectral measure concentrated at the

intersection of the unit sphere Sd−1 in Rd and the axes (see Example 3.1.9). By assumption, E‖A‖α+δ <

∞, hence by the multivariate Breiman result

P (x−1X ∈ ·)
P (|Z| > x)

v→ Eµ(x ∈ Rd : A.x ∈ ·)

= Eµ(x ∈ Rd : x ∈ A−1·)

Since the spectral measure is concentrated at the axes, it follows that µ([x, y]) = 0 for any x ≤ y such

that 0 6∈ [x, y].

We conclude that µ(A) = 0 for any set A ⊂ Rd \ {0} which does not intersect the axes. Therefore

the spectral measure of X is concentrated at the intersection of the unit sphere Sd−1 and the axes. In

other words, the vector X has very much the same extremal behavior (this means for large |X|) as the

iid vector Z. See Example 3.1.9.

3.3 The extremal behavior of a stochastic volatility model with
regularly varying noise

We know that there exist only three types of different limit laws for affinely transformed maxima of iid

random variables: the Fréchet distribution Φα, the Weibull distribution Ψα and the Gumbel distribution Λ
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for affinely transformed maxima of iid random variables. It is impossible to build a general extreme value

theory for the class of all strictly stationary sequences. For a (strictly) stationary sequence (Xn), there are

two conditions (see below) which ensure that its sample maxima (Mn) and the corresponding maxima

(M̃n) of an iid sequence (X̃n) with common distribution function F (x) = P (X̃1 ≤ x) = P (X1 ≤ x)

exhibit similar limit behavior. We call (X̃n) an iid sequence associated with (Xn) or simply an associated

iid sequence. We write F ∈MDA(H) for any of the extreme value distributions H if there exist constants

cn > 0 and dn ∈ R such that c−1
n (M̃n − dn) d→ Y, for a random variable Y with distribution H. For

the derivation of the limit probability of P (M̃n ≤ un) for a sequence of thresholds (un) the following

factorization property is used:

P (M̃n ≤ un) = Pn(X̃ ≤ un) ≈ e−nF (un). (3.3.1)

In general, for any τ ∈ [0,∞],

P (M̃n ≤ un) → e−τ ,

if and only if

nF (un) → τ = 1.

In what follows, we assume this condition for some τ = 1.

It is clear that we cannot directly apply (3.3.1) to maxima of a stochastic volatility sequence. However,

to overcome this problem we assume that there is a specific type of asymptotic independence. Recall the

conditions D and D′ from [11], Section 4.4.

Definition 3.3.1. Condition D(un)

For any integers p, q ≥ 1 and n ≥ 1

1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n

such that j1 − ip ≥ l we have

|P ( max
i∈A1∪A2

Xi ≤ un)− P (max
i∈A1

Xi ≤ un)P (max
i∈A2

Xi ≤ un)| ≤ αn,l, (3.3.2)

where A1 = i1, . . . , ip, A2 = j1, . . . , jq and αn,l → 0 as n →∞ for some sequence l = ln = o(n).

Condition D(un) is a distributional mixing condition, weaker than most of the classical forms of

dependence restrictions. Condition D(un) implies, for example, that

P (Mn ≤ un) = (P (M[n/k] ≤ un))k + o(1),
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for constant or slowly increasing k. This relation already indicates that the limit behavior of (Mn) and

its associated sequence (M̃n) must be closely related.

If (Xn) is strongly mixing with rate function (αh) (see 2.1.10), then it is immediate that (3.3.2) holds.

Indeed, for a sequence (Xn),

|P ( max
i∈A1∪A2

Xi ≤ un)− P (max
i∈A1

Xi ≤ un)P (max
i∈A2

Xi ≤ un)|

= |P (Xi1−ip
≤ un, . . . , X0 ≤ un, Xj1−ip

≤ un, . . . , Xjq−ip
≤ un)− P (max

i∈A1
Xi ≤ un)P (max

i∈A2
Xi ≤ un)|

≤ αj1−ip
,

since

{Xi1−ip
≤ un, . . . , X0 ≤ un} ∈ σ(. . . , X−1, X0),

and

{Xj1−ip ≤ un, . . . , Xjq−ip ≤ un} ∈ σ(Xj1−ip , Xj1−ip+1, . . .).

Definition 3.3.2. Condition D′(un)

lim
k→∞

lim sup
n→∞

n

[n/k]∑

j=2

P (X1 > un, Xj > un) = 0.

The condition D′(un) is an ”anti-clustering condition” on the strictly stationary sequence (Xn).

Indeed, notice that D′(un) implies

lim
k→∞

lim sup
n→∞

E(
∑

1≤i<j≤[n/k]

I{Xi>un,Xj>un}) ≤ lim
k→∞

lim sup
n→∞

[n/k]
[n/k]∑

j=2

P (X1 > un, Xj > un) = 0,

so that, on average, joint exceedances of un by pairs (Xi, Xj) become very unlikely for large n.

We assume that Xt = σtZt constitutes a stochastic volatility process with volatility sequence (σt),

(Zt) is iid independent of (σt). We want to show that D and D′ are satisfied for the stochastic volatility

model (Xt) under mild conditions on (σt).

Lemma 3.3.3. Let (Xt) be a stochastic volatility model with a strongly mixing sequence (σn) with rate

function (αh(σ)). Then (Xt) satisfies condition D(un) with un satisfying P (X1 > un) ∼ 1
n .

Proof. We have for B ⊂ {1, 2, . . .}

P (max
i∈B

Xi ≤ un) = E

(
P (max

i∈B
σiZi ≤ un|(σt))

)

= E

(∏

i∈B

P (Z ≤ un

σi
|σi)

)
.
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Write

f(z) = P (Z ≤ z), z ∈ R.

Then f(Z) ≤ 1 and condition (3.3.2) reads as follows:

|E(
∏

i∈A1∪A2

f(
un

σi
))− E(

∏

i∈A1

f(
un

σi
))E(

∏

i∈A2

f(
un

σi
))| ≤ αn,l. (3.3.3)

If (σt) is strongly mixing, it follows by the proof of Lemma 2.4.2 that (3.3.3) holds with αn,l ≤ 4αl(σ).

Proposition 3.3.4. Let (Xt) be a stochastic volatility model with iid regularly varying noise (Zt) with

index α > 0. Assume that the following conditions hold

1. There exist integers rn →∞ such that rn/n1−ε′ → 0 for some ε′ ∈ (0, 1).

2. The sequence (Xn) is strongly mixing with rate function (αn) such that n
∑∞

i=rn+1 αi → 0 as n →∞.

3. Eσ2α
1 < ∞.

Then (Xt) satisfies condition D′(un) for (un) satisfying P (X1 > un) ∼ 1
n .

Proof. Let (rn) be as in condition (1). Then

n

[n/k]∑

i=2

P (X1 > un, Xi > un) = n

rn∑

i=2

P (X1 > un, Xi > un) + n

[n/k]∑

i=rn+1

P (X1 > un, Xi > un).

By Markov’s inequality and the definition of (un), for δ ∈ (0, α),

n

rn∑

i=2

P (X1 > un, Xi > un) = n

rn∑

i=2

E(P (Z >
un

σ1
|σ1)P (Z >

un

σi
|σi))

≤ nu−2(α−δ)
n

rn∑

i=1

E(σ1σi)α−δ (3.3.4)

≤ nu−2(α−δ)
n rnconst(Eσ

2(α−δ)
1 )

1
2

≤ nn−( 1
α−ε)(2(α−δ))rnconst,

for any ε > 0. Here we used that E|X1|α−δ < ∞ and

E(σ1σi)α−δ ≤ (Eσ
2(α−δ)
1 )

1
2 < ∞,

by the Cauchy-Schwarz inequality and by condition (3). We also exploited the fact that un = n
1
α l(n) for

some slowly varying function l such that un ≥ n
1
α−ε for small ε > 0 and large n.

Hence

n

rn∑

i=2

P (X1 > un, Xi > un) ≤ n−1+ε′rnconst → 0,
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for some ε′ > 0 as in condition (1).

We have

n

[n/k]∑

i=rn+1

P (X1 > un, Xi > un) = n

[n/k]∑

i=rn+1

[P (X1 > un, Xi > un)− (P (X1 > un))2]

+n([
n

k
]− rn)(P (X1 > un))2.

By definition of un,

lim
k→∞

lim sup
n→∞

(nP (X1 > un))2

k
= 0. (3.3.5)

By definition of strong mixing,

n

[n/k]∑

i=rn+1

|P (X1 > un, Xi > un)− (P (X1 > un))2| ≤ n

[ n
k ]∑

i=rn+1

αi−1 ≤ n

∞∑

i=rn+1

αi−1 → 0,

by assumption (2).

Remark 3.3.5. The above three conditions in Proposition 3.3.4 are satisfied if (σt) is strongly mixing

with geometric rate (αh(σ)) and if Eσ2α
1 < ∞. Indeed, then we can choose rn = nγ for any γ < 1 − ε′

and n
∑∞

i=rn
≤ narn → 0 for some a ∈ (0, 1).

The following two standard theorems are helpful in constructing a result for the limiting distribution

of the maxima of a stochastic volatility sequence.

Theorem 3.3.6. (Limit distribution of maxima of a stationary sequence [11, p. 215–216])

Let (Xn) be a strictly stationary sequence with common distribution function F ∈ MDA(H) for some

extreme value distribution H, i.e. there exist constants cn > 0, dn ∈ R such that

lim
n→∞

nF (cnx + dn) = − log H(x), x ∈ R. (3.3.6)

Assume that for x ∈ R the sequence (un) = (cnx + dn) satisfies the condition D(un) and D′(un). Then

(3.3.6) is equivalent to each of the following relations:

c−1
n (Mn − dn) d→ Y, (3.3.7)

c−1
n (M̃n − dn) d→ Y, (3.3.8)

where Y has distribution H.

Theorem 3.3.7. (Weak convergence of point processes of exceedances, stationary case [11, p. 243])

Suppose (Xn) is strictly stationary and (un) is a sequence of threshold values such that

nF (un) → τ ∈ (0,∞),
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and D(un) and D′(un) hold. Let (Nn) be the point process of exceedances of a threshold un by the random

variables X1, . . . , Xn:

Nn(·) =
n∑

i=1

ε i
n
I{Xi>un}, n = 1, 2, . . . .

Then Nn
d→ N , where N is a homogeneous Poisson process on (0, 1] with intensity τ . The convergence

holds in the space of point processes on (0, 1].

The following corollary is an immediate consequence of Theorems 3.3.6 and 3.3.7.

Corollary 3.3.8. (The limiting distribution of the maxima of a stochastic volatility model)

Assume that (Xt) is a strictly stationary stochastic volatility process with regularly varying noise (Zt) with

index α > 0. Assume that (Xn) is strongly mixing with rate function (αh). Moreover, if the assumptions

in Proposition 3.3.4 hold, then (Xn) satisfies the conditions D(un), D′(un) with (un) satisfying P (X1 >

un) ∼ 1/n and for Mn = max(X1, . . . , Xn),

P (u−1
n Mn ≤ x) → Φα(x) = e−x−α

, x > 0.

In particular, (Xn) has extremal index 1.

Moreover, the point processes of exceedances Nn,x converge in distribution to a homogeneous Poisson

process Nn,x on (0, 1] with intensity − log Φα(x) = x−α, x > 0 :

Nn,x =
n∑

i=1

ε i
n
I{Xi>unx}

d→ Nx. (3.3.9)

Remark 3.3.9. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics of the sample X1, . . . , Xn from

a stochastic volatility model satisfying the conditions of Corollary 3.3.8. An immediate consequence of

(3.3.9) is that

P (Nn,x(0, 1] < k) = P (u−1
n X(n−k+1) ≤ x)

→ P (Nx(0, 1] < k)

= Φα(x)
k−1∑

i=0

(− log Φα(x))i

i!
= Φα(x)

k−1∑

i=0

x−αi

i!
.

3.4 The extremal behavior of a stochastic volatility model with
regularly varying volatility sequence

So far we assumed that (Zt) is iid regularly varying, independent of the volatility sequence (σt). Then

(Xt) = (σtZt) inherits regular variation from (Zt) provided Eσα+δ < ∞ for some δ > 0. Moreover, (Xt)

inherits strong mixing with essentially the same rate function as (σt).
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We now investigate the case when E|Z|α+δ < ∞ for some δ > 0, but (Xt) is regularly varying with

index α > 0. We again assume that (σt) is strongly mixing with rate function (αh(σ)). Regular variation

of (Xt) is easily verified. The one-dimensional case is simple: if σ is regularly varying, by Breiman’s

result in (3.1.19)

P (X > x) ∼ E(Zα
+)P (σ > x),

P (X ≤ −x) ∼ E(Zα
−)P (σ > x),

as x →∞. Hence X is regularly varying. A similar result holds for the finite-dimensional distributions



X1

...
Xn


 =




Z1 · · · 0
... · · · 0
0 · · · Zn







σ1

...
σn


 .

A multivariate Breiman’s result and the independence of (Z1, . . . , Zn) and (σ1, . . . , σn) imply regular

variation of (X1, . . . , Xn). However, it can be tricky to verify that (σ1, . . . , σn) is regularly varying, as

the following example shows.

Example 3.4.1. Consider the AR(1) process Yt = ϕYt−1 + ηt for iid noise (ηt), ϕ ∈ (0, 1). Choose

σt = eYt = eϕYt−1+ηt . If σt is regularly varying with index α > 0,

P (eϕYt−1 > x) = P (σϕ > x) = P (σ > x
1
ϕ )

= x−
α
ϕ L(x

1
ϕ ),

for a slowly varying function L. Hence σϕ is regularly varying with index α/ϕ > α. We do expect that

eηt is regularly varying. This is, however, not straightforward. One needs an inverse result to Breiman’s

result, i.e. we need to conclude from the product structure eϕYt−1eηt and the fact that E(eϕYt−1)α+ε =

Eσϕ(α+ε) < ∞ for some ε > 0 that eηt is regularly varying. According to [18], one needs to verify the

condition

E(σϕ)α+iΘ 6= 0, ∀Θ ∈ R.

Using the AR(1) structure, we have

E(σϕ)α+iΘ = Eeϕ(α+iΘ)
∑∞

s=0 ϕsηs

=
∞∏

s=0

Eeϕs+1(α+iΘ)η 6= 0, ∀Θ ∈ R.

This condition is satisfied if

E(ez(α+iΘ)η) 6= 0, Θ ∈ R, 0 ≤ z ≤ ϕ.
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If we assume that this condition is satisfied it is clear that the regular variation of σ is due to regular

variation of eη, and then by Breiman’s result,

P (σ > x) = P (eϕYt−1+ηt > x) ∼ E(σϕα)P (eη > x).

In what follows, assume that eη is regularly with index α > 0. This condition is satisfied if η is Exp(α)

distributed:

P (eη > x) = P (η > log(x)) = e−α log(x) = x−α, x ≥ 1.

We intend to show joint regular variation of (σ1, . . . , σn). We have

(σ1, . . . , σn) = (σ1, σ
ϕ
1 eη2 , σϕ2

1 eϕη2+η3 , . . . , σϕn−1

1 eϕn−2η2+···+ηn).

Since E(σϕ
1 )α+ε < ∞, E(σϕ2

1 eϕη2)α+ε < ∞, . . . , E(σϕn−1

1 eϕn−2η2+...+ϕηn−1)α+ε < ∞ for small ε > 0 we ex-

pect that the regular variation of (σ1, . . . , σn) follows from regular variation of the vector (σ1, e
η2 , eη3 , . . . , eηn)

which has independent components which are regularly varying, hence the whole vector is regularly vary-

ing with index α > 0. We observe that

h(σ1, e
η2 , . . . , eηn) = (σ1, σ

ϕ
1 eη2 , σϕ2

1 eϕη2+η3 , . . . , σϕn−1

1 eϕn−2η2+···+ηn),

is a continuous mapping such that h−1(B) is bounded for B bounded in Rn \ {0}.
It is, however, not straightforward to use a continuous mapping argument to verify that

h(σ1, e
η2 , . . . , eηn),

inherits regular variation from regular variation of (σ1, e
η2 , . . . , eηn). This is due to the fact that h is not

a homogeneous function, i.e. h(tx) 6= tgh(x), t > 0, for some g ∈ R. It remains an open problem whether

(σ1, . . . , σn) is jointly regularly varying.
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