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Summary

The topic of this dissertation is the statistical analysis of discretely observed diffusion
driven models. Focus is on estimating and goodness of testing. Summed diffusions, in-
tegrated diffusions, and diffusion driven stochastic volatility models are explored in detail.

Only rarely the functional form of the likelihood function of a diffusion driven model
is explicitly known. Moreover, the algorithms that can be used to simulate it are compli-
cated from a mathematical as well as a computational point of view. Therefore alternative
estimating schemes are often called upon when the models have to be fitted and validated.
In particular, moment based methods such as general estimating functions and the gener-
alized method of moments have proven themselves a successful means for making inference
in discretely observed diffusion models. This thesis elaborates further on these ideas for
specific diffusion driven models as well as for the general class driven by the so-called
Pearson diffusions.

The thesis consists of two parts. The latter contains my research contributions in the
form of three papers. The two first papers have been submitted for publication and very
soon the third will follow. The first part serves as a general introduction to the analysis
of diffusion driven models and to the papers in particular.

The introduction is likewise made out of two main chapters. Chapter 2 contains a survey
on the diffusion driven models studied in the thesis and an account of the probabilistic
features of scalar diffusions with emphasis on their statistical applications. Section 2.2.4
presents ongoing work on a new multivariate stochastic volatility model which has not
yet converged to a form suitable for publication. Chapter 3 provides an overview of some
existing statistical methods for diffusions and diffusion driven models including likelihood
inference, the theory of estimating functions, the generalized method of moments, and
nonparametric inference. The purpose of the chapter is to motivate and contrast the
results found in the papers.

The first paper studies least squares estimators for the autocorrelation parameters in
a summed diffusion process. The asymptotic theory is described in detail. Further a
consistent procedure for selecting the number of underlying diffusions is presented. The
results of the Monte Carlo simulations indicate that the optimally weighted least squares
estimator is no less efficient than the maximum likelihood estimator.
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The second paper introduces the term Pearson diffusions for the diffusion processes having
a mean reverting linear drift and a quadratic squared diffusion coefficient. The classifica-
tion of the models yields six more or less known classes of diffusion. Each class has it own
distinct features. Treated as a whole the Pearson diffusions are highly tractable from a
statistical point of view due to their explicitly computable polynomial eigenfunctions. It
is further demonstrated that the tractability is inherited by summed Pearson diffusions,
integrated Pearson diffusions, and Pearson stochastic volatility models.

The third paper is concerned with a new and generic goodness of fit test for stochas-
tic process models that are fitted by means of general estimating functions. The basic
idea is to compare the estimate obtained from the original sample to those obtained from
downsampled data. The asymptotic theory for the test is derived and exemplified by lin-
ear drift diffusions. The small sample performance of the test is further explored through
Monte Carlo simulations.



Dansk resumé

Den foreliggende afhandling omhandler statistisk inferens i diskrete observerede diffu-
sions type modeller med fokus p̊a estimation og goodness of fit test. Vi ser nærmere p̊a
summerede diffusioner, integrerede diffusioner og diffusionsdrevne stokastiske volatilitets-
modeller.

Kun i ganske f̊a tilfælde har man eksplicitte udtryk for likelihood funktionen for en diffu-
sion type model. Den kan findes ved simulation, men de forh̊andenværende algoritmer er
komplicerede fra et matematisk s̊avel som fra et programmeringsmæssigt perspektiv. Der-
for benytter man ofte alternative statistiske metoder til at estimere modellernes parame-
tre. Momentbaserede metoder s̊asom generelle estimationsfunktioner og GMM har vist sig
at være særligt nyttige. Afhandlingen videreudvikler disse metoder for de diffusionsdrevne
modeller hver især og for klassen af s̊akaldt Pearson-diffusionsdrevne modeller som helhed.

Afhandlingen best̊ar af to dele. Anden halvdel indeholder resultaterne af mit forsk-
ningsarbejde i form af tre artikler. De to første artikler er sendt afsted med henblik
p̊a publicering og den tredie vil meget snart g̊a samme vej. Første del af afhandlingen er
en introduktion til den generelle statistiske teori for inferens i diffusionsdrevne modeller.
Den er skrevet som oplæg til artiklernes resultater.

Introduktionsdelen best̊ar af to større kapitler. Kapitel 2 giver et overblik over de diffu-
sionsdrevne modeller som behandles i afhandlingen samt en introduktion til sandsynheds-
teorien for endimensionelle diffusioner med hovedvægt p̊a dens statistiske anvendelser.
Afsnit 2.2.4 præsenterer foreløbige resultater om en ny flerdimensionel volatilitetsmodel,
der muligvis vil blive til en publicerbart manuskript engang i fremtiden. Kapitel 3 er en
oversigt over en række eksisterende statistiske metoder for diffusioner og diffusionsdrevne
modeller. Disse inkluderer likelihood baseret inferens, generelle estimationsfunktioner,
GMM og ikke-parametriske metoder. Det overordnede form̊al med kapitlet er at sætte
artiklernes resultater ind i et større perspektiv.

Den første artikel handler om mindste kvadraters metode for korrelationsparametrene
i en summeret diffusion. Den asymptotiske teori er detaljeret beskrevet. Herudover
præsenteres en konsistent procedure til valg af antallet af led i den underliggende sum.
Simulationsstudiet viser at estimoren udledt fra den optimalt vægtede mindste kvadraters
metode kan være liges̊a efficient som maksimaliseringsestimator i de givne eksempler.
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Den anden artikel handler om Pearson diffusionerne, hvor navnet Pearson diffusion in-
troduceres som fællesbetegnelse for diffusioner med lineær drift og kvadratisk volatilitets-
koefficient. Pearson diffusionerne kan inddeles i seks mere eller mindre kendte typer hver
med sine særkender. Fra et statistisk synspunkt er Pearson diffusionerne under et nemme
at analysere fordi de har polynomier som egenfunktion og disses koefficienter kan udreg-
nes eksplicit. Endvidere diskuteres den statistiske analyse af Pearson diffusionsdrevne
modeller som p̊a mange punkter er liges̊a nemme at g̊a til som Pearson diffusionerne selv.

Den tredie og sidste artikel handler om et nyt og generelt goodness of fit test for stokastiske
processer. Testet bygger p̊a en generel estimationsfunktion hvorfra parameterestimater
kan udledes. Ideen g̊ar i sin enkelthed ud p̊a at sammenligne parameterestimater for data
udtaget ved forskellige frekvenser, en procedure vi betegner som downsampling. Den
asymptotiske fordeling af testet er udledt. Som eksempel betragtes test af hypotesen om
lineær drift i en diffusionsmodel. Testets egenskaber er yderligere belyst gennem en række
Monte Carlo simulationer.
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Introduction

Diffusion models provide a natural and flexible framework for modeling a large variety
of phenomena that evolve continuously and randomly with time. Whereas financial time
series tend dominate the applications, the models are of equal relevance in say, physical
and biological applications. In this thesis diffusions take the form of solutions to the
stochastic differential equation,

dXt = µ(Xt)dt+ σ(Xt)dBt

where Bt is a Brownian motion (the source of randomness), µ(Xt) is the instantaneous
mean and σ2(Xt) is the instantaneous variance of the diffusion. Given the past of the pro-
cess up to time t the speed and direction of the diffusion only relies on the present stateXt,
this is known as the Markov property. Loosely speaking the diffusion has no memory and
therefore the plain diffusions cannot always account for the dependence structure found
in real data. This has motivated the development of a large range of diffusions driven
models with longer memory. For instance summed diffusions are formed by aggregating
diffusions moving on different time scales. Integrated diffusions occur naturally when
data is formed by measuring the average of a certain quantity over disjoint time intervals.
The stochastic volatility models are meant to deal with the fact that the variance of for
instance the log returns of a stock price varies randomly with time.

The topic of this thesis is statistical inference from discretely observed diffusion driven
models. The focus will be on statistical methodology rather than on applications. The
applications appear as no more (or no less one could say) than a strong motivating factor
for the development of the preceding results.

Historically the statistical analysis of discretely observed diffusions has been challenging.
Only rarely the functional form of the likelihood function is known (the likelihood function
of a non-Markovian diffusion driven model is of course even more complicated). This has
motivated the development of a large number of alternative estimating schemes. Many
of these are based on the matching of moments through general estimating equations.
Important directions are simulated and approximate likelihood inference, the theory of
general estimating functions, the general method of moments, and nonparametric infer-
ence. All of these are reviewed in chapter 3. The method of indirect inference is briefly

3



4 Introduction

mentioned in section 2.2.3. A point made in this thesis is that the methods used for
making inference in plain diffusion models are often (but not always) applicable to the
more general diffusion driven models. In particular, our paper Forman & Sørensen (2006)
shows that highly tractable diffusion type models can be build from a class of simple
scalar diffusions the so-called Pearson diffusions. This idea is further elaborated on in
section 2.2.4 where a new idea for modeling multivariate stochastic volatility models is
presented.

1.1 Likelihood vs moment based inference

Throughout the thesis special attention is given to likelihood inference as the more or
less unattainable ideal and to moment based inference which is exemplified by our papers
Forman (2005), Forman & Sørensen (2006) and Forman, Markusen & Sørensen (2007).

Today specialized algorithms render likelihood inference applicable by means of computer
intensive methods. In contrast to the pioneer algorithms the time spent on computing the
maximum likelihood estimator with great accuracy is no longer devastating. The maxi-
mum likelihood estimator is efficient so is there any need for new moment based estimators
today? Traditionally moment based estimators are promoted as being fast and tractable
compared to the maximum likelihood estimator. This is more or less still the case. Even
though general algorithms for computing the likelihood function are available the imple-
mentation is time consuming and demands a certain expertise on for instance Markov
chain Monte Carlo methods to run smoothly. Misspecification may cause the algorithm
to break down and most often a good initial guess is needed to find the maximum likeli-
hood estimator. In contrary the moment based estimators often rely on explicit criteria
and are thus very easy to handle. There exists several examples of simple moment based
estimators that attain almost the same efficiency as the maximum likelihood estimator. It
should be noted that the moment based estimators also apply to semiparametric models
for which the likelihood function does not exist or cannot be simulated.

1.2 Specification testing

Another major topic of the thesis is specification testing for diffusion driven models. Only
the imagination of the researchers limits the great variety of diffusion based model con-
structions. With a growing number of models at our disposal it becomes increasingly
important to validate the choice of model made in a specific application. Compared to
the vast literature on estimation in diffusion-type models, the material on goodness of fit
is somewhat limited. A highly informative diagnostic is provided by the so-called uni-
form residuals obtained when applying the probability transform given past observations
to each datum in turn. For most diffusion type models the probability transform is not
explicitly known, but it can be simulated by means of the same computer intensive al-
gorithms used in obtaining the likelihood function. In connection with moment based
inference goodness of fit it typically based on checking excess moment conditions by use
of the so-called overidentifying restrictions test. This is used in the model selection pro-
cedure considered in my paper Forman (2005). A new idea for checking the dependence



The structure of the thesis 5

structure in a stochastic process is presented in our paper Forman, Markusen & Sørensen
(2007). The main idea is to compare the parameter estimates from the downsampled data.
Downsampling can also be viewed as a generic way of creating excess moment conditions.
Hence the test is closely related to the overidentifying restrictions test.

1.3 The structure of the thesis

The thesis consist of two parts. The second part is formed by the papers which contain
my main contributions. The first part of the thesis serves as a general introduction to
the statistical analysis of diffusion driven models and the papers in particular. Save from
the multivariate stochastic volatility model considered in section 2.2.4 no new results are
presented in this part of the thesis.

Chapter 2 of the introduction is concerned with the diffusion driven models. The first
section provides a short crash course on scalar diffusions. A large number of basic features
and probabilistic facts are summarized motivated by their use in statistics. The Pearson
diffusions studied in our paper, Forman & Sørensen (2006) are used as an example. The
second section reviews the three kinds of diffusion driven models studied in this thesis:
summated diffusions, integrated diffusions, and diffusion driven stochastic volatility mod-
els. In addition a new idea for modeling multivariate volatility processes is presented in
section 2.2.4.

Chapter 3 of the introduction outlines a number of statistical methods for analyzing
discretely observed diffusions and diffusion driven models. Likelihood inference, general
estimating functions, the generalized method of moments, and nonparametric statistics
are considered. Also the so-called uniform residuals are discussed. The overall purpose
of this chapter is to motivate and contrast the results found in my papers. Whenever
relevant I use my own results as examples. The focus is on estimation and goodness of fit
testing which are also the main topics of my papers.

The three papers are presented in a form that have been (or will soon be) submitted
for publication. More detailed accounts of their contents are found in the preceding sum-
mary and the abstracts introducing each paper. The papers can be read independently
from one another. An unfortunate consequence is that the notation differs in between
papers. Hopefully this will not be the cause of confusion. The introduction has been
written exclusively for this thesis and is also by and large self contained. In order to make
a good reading of the individual sections the same information sometimes appear several
different places in the introduction as well as in the papers. The list of references on the
other hand is collected in a single bibliography at the end of the thesis.
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Diffusion driven models

The following sections provide an overview of the various models encountered in the thesis.
These are the plain scalar diffusions, the summated diffusions, the integrated diffusions
and the diffusion driven stochastic volatility models. Section 2.2.4 presents a new idea for
modeling multivariate volatility processes.

Preliminarily, section 2.1 gives a short account of the probabilistic features of scalar
diffusion. The foremost purpose is to get the basic definitions in place. The invariance
and mixing properties (sections 2.1.3 and 2.1.5) are of major importance in relation to
statistical inference. Likewise the theory related to the infinitesimal generator (section
2.1.4) is indispensable not only for generating moment conditions to be used in estimation
but for the deeper understanding of the theory of diffusions. All of the stated results can
be found in the literature, hence no proofs are given. We consider as an example the class
of Pearson diffusions the statistical analysis of which is the topic of our paper Forman &
Sørensen (2006).

Section B.4 outlines the features of the distinctive diffusion driven models. A point made
is that the diffusion driven models inherit many probabilistic features such as stationarity
and mixing properties from the underlying diffusions. Pearson diffusion driven models are
pointed out as they allow for the explicit computation of moments and mixed moments.
This is one of the major results of our paper Forman & Sørensen (2006). Extensions to
more general multivariate volatility model is discussed in section 2.2.4. In addition for
each class of models a short survey on its statistical analysis is given. Further details on
the statistical analysis of diffusion and diffusion driven model can be found in chapter 3
and in the quoted papers.

7



8 Diffusion driven models

2.1 On scalar diffusions

We consider a scalar diffusion on the state space I =]l; r[⊆ R, the weak solution of a
stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dBt. (2.1)

where for convenience the drift µ : I → R and the diffusion coefficient σ : I → [0;∞[ are
assumed to be continuous. Further we assume that σ is strictly positive on I. These
assumptions ensure that for any initial distribution on I a weak solution exist, and that
this solution is unique in the sense of probability law, see for instance Karatzas & Shreve
(1991).

Definition 2.1.1 Let {ln} and {rn} be sequences in I such that l1 < r1, ln ց l, and
rn ր r. The process {Xt}t≥0 is a weak solution to (2.1) if there exists a filtered probability
space (Ω,F , {Ft}, P ) admitting a {Ft}-adapted Brownian motion {Bt} such that

• {Ft}t≥0 satisfies the usual conditions

• {Xt}t≥0 is a continuous, {Ft}-adapted, [l; r]-valued process with P (X0 ∈ I) = 1.

• For all t ≥ 0 it holds that
∫ t∧Tn

0
{|b(Xs)| + σ2(Xs)}ds <∞ and

Xt∧Tn
= X0 +

∫ t∧Tn

0

b(Xs)ds+

∫ t∧Tn

0

σ(Xs)dBs

almost surely where Tn = inf{t ≥ 0: Xt /∈ (ln; rn)},
We refer to T = limn→∞ Tn as the exit time from I. The process is said to be explosive if
P (T <∞) > 0 and non-explosive otherwise.

Simulation: The drift and diffusion coefficient has the interpretation as the instantaneous
mean and standard deviation of the diffusion. For ∆ → 0 the increment Xt+∆ − Xt is
approximately normal with mean ∆µ(Xt) and variance ∆σ2(Xt). This property is used
when simulating a diffusion process by means of the Euler scheme where the initial variable
X̂0 is drawn from a relevant distribution and the following realizations are recursively
drawn according to

X̂(i+1)∆ = X̂i∆ + ∆µ(X̂i∆) + ∆1/2σ(X̂i∆)εi+1

where ε1, ε2, . . . are i.i.d. standard normal random numbers and ∆ is a suitably small step
size. See Kloeden & Platen (1999) for a thorough account on simulating solutions to the
stochastic differential equation.

Transformation: The class of diffusions is closed under twice continously differen-
tiable and invertible transformations. If g is such at transformation then by Ito’s formula
Yt = g(Xt) is a diffusion satisfying

dYt = Lg(g−1(Yt))dt+ g′(g−1(Yt))σ(g−1(Yt))dBt

where Lg=µg′ + σ2/2g′′ (more on the differential operator L in section ... below). The
transformed diffusion inherits every important feature that {Xt} might posses. In partic-
ular, whenever the diffusion {Xt} is sufficiently simple that a successful statistical analysis
can be carried out, the same holds for the transformed process {Yt}.
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2.1.1 Example: The Pearson diffusions

A Pearson diffusion is a stationary solution of a stochastic differential equation of the
form

dXt = −θ(Xt − µ)dt+
√

2θ(aX2
t + bXt + c)dBt, (2.2)

with mean reverting linear drift and squared diffusion coefficient which is a second order
polynomial. The parameter θ > 0 is a scaling of time that determines the speed of evo-
lution of the diffusion. The parameters µ, a, b, and c determine the state space of the
diffusion and the shape of its distribution. Our paper Forman & Sørensen (2006) iden-
tifies six subclasses of Pearson diffusions corresponding to whether the squared diffusion
coefficient is constant, linear, a convex parabola with either zero, one or two roots, or a
concave parabola with two roots. The Pearson class of diffusions is closed under transla-
tions and scale-transformations. Table 2.1 displays the state spaces and squared diffusion
coefficients of the six standard-type Pearson diffusions considered in Forman & Sørensen
(2006) together with their general rescaled form under the transformation t(x) = γx+ δ
where γ > 0 (the case γ < 0 is similar).

Standard σ2(x) I Rescaled σ2(x) I

1 2θ R 2θγ2 R

2 2θx ]0;∞[ 2θγ(x− δ) ]δ,∞[
3 2θa(x2 + 1) R 2θa(x2 − 2δx+ δ2 + γ2) R

4 2θax2 ]0;∞[ 2θa(x2 − 2δx+ δ2) ]δ;∞[
5 2θax(x+ 1) ]0;∞[ 2θa{x2 − (γ − 2δ)x+ δ(δ − γ)} ]δ;∞[
6 2θax(x− 1) ]0; 1[ 2θa{x2 − (γ + 2δ)x+ δ(δ + γ} ]δ; γ + δ[

Table 2.1: Squared diffusion coefficients and state spaces of the Pearson subclasses. The
standard drift is µ(x) = −θ(x− µ) and the rescaled drift is µ(x) = −θ(x− γµ− δ).

The first and most simple subclass is formed by the well known Ornstein-Uhlenbeck pro-
cesses sometimes referred to as the Vasiček model in the finance literature. The Ornstein-
Uhlenbeck process is a Gaussian continuous time autoregression. Due to its tractability
the process is often used as benchmark in e.g. simulation studies. The second subclass
contains the square-root processes which are also known as the Cox-Ingersoll-Ross pro-
cesses in the finance literature. Feller (1951) used this process as a model of population
growth, whereas Cox, Ingersoll & Ross (1985) used it as a model for the term struc-
ture of interest rates. Just like the Ornstein-Uhlenbeck process, the square-root process
is well understood and often serves as a testing case for statistical methods in survey.
The third subclass to my knowledge is new to the literature, it is thus exemplified in
our paper Forman & Sørensen (2006). The fourth type of Pearson diffusion is known
as the GARCH-diffusion in the finance literature as Nelson (1990) showed that it is the
continuous-time limits of the GARCH(1,1) process. The fifth class of Pearson diffusions
have not received much attention. The sixth class is formed by the so-called Jacobi dif-
fusions used by De Jong, Drost & Werker (2001) and Larsen & Sørensen (2003) to model
exchange rates in a target zone. Most of the Pearson diffusions were derived by Wong
(1964) and are also among the diffusion models studied in Bibby, Skovgaard & Sørensen
(2005). See Nagahara (1996) for an application.
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Figure 2.1: Sample paths of simulated standard Pearson diffusions. For all of the real-
izations θ = 0.05, The means are µ = 0 for types 1 and 3, µ = 1 for types 2, 4, and 5,
µ = 0.5 for type 6. For the sixth case a = −0.25. In case 1 through 5 the remaining
parameter was chosen to match a unit variance.
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2.1.2 Scale function and speed measure

The scale and the speed measure densities of the diffusion (2.1) are defined by

s(x) = exp

(
−2

∫ x

x0

µ(u)

σ2(u)
du

)
and m(x) =

1

s(x)σ2(x)

where x0 is a fixed point in I, the exact value is not important. The scale function S
is defined as an antiderivative of s. Note that the scale and speed densities uniquely
determines the drift and diffusion coefficients. When studying the behavior of scalar
diffusions both measures are indispensable. For instance the non-explosive diffusions can
be characterized in terms of their scale function and speed measure.

Theorem 2.1.1 (Fellers test for explosion) The diffusion (2.1) is non-explosive if and
only if lima→r

∫ a
x0
{S(a) − S(x)}m(x)dx = ∞ and limb→l

∫ x0

b
{S(x) − S(b)}m(x)dx = ∞.

An often employed sufficient condition for non-explosiveness is

S(l) = −∞ and S(r) = ∞. (2.3)

This is also known as the recurrence condition as it implies P (inftXt = l, suptXt = r) = 1.
If condition (2.3) holds true, the boundaries cannot even be reached in the limit as t→ ∞,
while on the contrary, if for instance S(l) > −∞, then P (limt→T Xt = l) > 0 and the
boundary l is said to be attracting.

Example 2.1.1 The scale and speed densities of the Pearson diffusions (B.1) are

s(x) = exp

(∫ x

x0

u− µ

au2 + bu+ c
du

)
and m(x) =

1

2θs(x)(ax2 + bx+ c)

where x0 is a fixed point such that ax2
0 + bx0 + c > 0. The speed and scale densities of the

individual subclasses are given in table 2.2. △

scale density s(x) speed measure density m(x)

1 exp( (x−µ)2

2
) exp(− (x−µ)2

2
)

2 x−µ exp(x) xµ−1 exp(−x)
3 (x2 + 1)

1

2a exp(−µ
a

tan−1 x) (x2 + 1)−
1

2a
−1 exp(µ

a
tan−1 x)

4 x
1

a exp( µ
ax

) x−
1

a
−2 exp(− µ

ax
)

5 (1 + x)
µ+1

a x−
µ
a (1 + x)−

µ+1

a
−1x

µ
a
−1

6 (1 − x)
1−µ

a x
µ
a (1 − x)−

1−µ
a

−1x−
µ
a
−1

Table 2.2: Scale and speed measure densities of the standard type Pearson diffusions.
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2.1.3 Boundary classification and stationarity

In statistical applications the stationary diffusions are considered the most tractable. If
for instance the diffusion gets absorbed at the right boundary at time T = k the consec-
utive observations are totally uninformative. Fortunately simple and explicit condition
characterize the stationary scalar diffusions. At first we briefly summarize the bound-
ary classification scheme that characterizes the behavior of the diffusion near its right
boundary, see Karlin & Taylor (1981) for details. The conditions for the left boundary
are analogous.
Define S(r) =

∫ r
x0
s(x)dx, M(r) =

∫ r
x0
m(x)dx, Σ(r) = lima→r

∫ a
x0
{S(a) − S(x)}m(x)dx,

and N(r) =
∫ r
x0
{S(x) − S(x0)}m(x)dx, where x0 is some interior point in I. The be-

havior of the diffusion near its right boundary is given by one of the following exclusive
categories, see table 2.3 for a brief resume.

A regular boundary can be reached and left again in finite time. We consider only the
case where the regular boundary is made instantaneously reflecting. The boundary
r is regular if and only if S(r) <∞ and M(r) <∞.

Please note that a diffusion with instantaneously reflecting boundaries may be ergodic
even though it hits the boundary in finite time. An example of such a process is the
square root process with α ≤ 1. Many papers are overly restrictive when focusing solely
on non-explosive diffusions.

An exit boundary can with positive probability be reached in finite time but never left
again. The boundary r is exit if and only if S(r) <∞, M(r) = ∞, and Σ(r) <∞.

An entrance boundary can never be reached from within I. However the diffusion
may be initialized at the entrance whereupon it leaves never to return again. The
boundary r is entrance if and only if S(r) = ∞, M(r) <∞, and N(r) <∞.

The final category covers any other case.

A natural boundary cannot be reached in finite time and cannot be used as starting
point for the diffusion. However, it may happen that the boundary is attained as
limit as t→ ∞. The boundary r is natural if and only if Σ(r) = ∞ and N(r) = ∞.
Note that P (limt→∞Xt = r) > 0 if and only if S(r) <∞.

S(r) M(r) boundary classification

finite finite r is regular
finite ∞ r is exit if Σ(r) <∞ and otherwise natural
∞ finite r is entrance if N(r) <∞ and otherwise natural
∞ ∞ r is natural

Table 2.3: This table summarizes the classification of the right boundary. The quantities
S(r), M(r), Σ(r), and N(r) are defined in the above. Similar criteria are valid for the
left boundary.
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Note that the diffusions with natural boundaries can behave quite differently according to
further subclassifications. A diffusion with both boundaries natural can be positive recur-
rent (S(x) = ∞ and M(x) < ∞ for x = l, r), null-recurrent (S(x) = ∞ and M(x) = ∞
for x = l, r), or non-recurrent (S(x) <∞ for x = l, r).

A key result is that a stationary scalar diffusion has invariant distribution that is propor-
tional to the speed measure. This for instance is used by Bibby, Skovgaard & Sørensen
(2005) to construct diffusion models with pre-specified marginals.

Theorem 2.1.2 Suppose that the diffusion (2.1) has boundaries that are entrance, nat-
ural or regular with instantaneous reflection, then an invariant distribution exists if and
only if the speed measure is finite. Furthermore the invariant distribution is unique with
density given by m(x)/

∫ r
l
m(x)dx.

Example 2.1.2 The invariant densities of the stationary Pearson diffusion are specified
by table 2.4. Most of the invariant distributions are well known. The name Pearson
diffusion is due to the fact that the invariant densities all belong to the Pearson system,
Pearson (1895), as

dm(x)

dx
= −(2a+ 1)x− µ+ b

ax2 + bx+ c
m(x).

Just like the Pearson densities the Pearson diffusions can be positive, negative, real valued,
or bounded, symmetric or skewed, and heavy- or light-tailed. The class 3 marginals have
a type IV Pearson distribution which is a skewed kind of t-distribution. The class may
thus be of interest in say financial applications. △

speed measure density m(x) integrable for type

1 exp(− (x−µ)2

2
) all normal

2 xµ−1 exp(−x) µ > 0 Gamma

3 (x2 + 1)−
1

2a
−1 exp(µ

a
tan−1 x) a > 0 (skewed) t

4 x−
1

a
−2 exp(− µ

ax
) a, µ > 0 inverse Gamma

5 (1 + x)−
µ+1

a
−1x

µ
a
−1 a, µ > 0 (scaled) F

6 (1 − x)−
1−µ

a
−1x−

µ
a
−1 a < 0 and 0 < µ < 1 Beta

Table 2.4: Types of integrable speed measure densities of the standard type Pearson
diffusions.

2.1.4 The transition probabilities and their generator

The scalar diffusion (2.1) is a strong Markov chain. As the diffusion is regular (see
Karatzas & Shreve (1991), pg. 344) the transition probabilities have continuous densities,
say p(t, x, y) satisfying Kolmogorov’s backward equation

∂p(t, x, y)

∂t
= µ(x)

∂p(t, x, y)

∂y
+
σ2(x)

2

∂2p(t, x, y)

∂y2
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and the Kolmogorov forward or Fokker Planck equation

∂p(t, x, y)

∂t
=
∂p(t, x, y)µ(y)

∂y
+

1

2

∂2p(t, x, y)σ2(y)

∂y2
.

Save from a few simple diffusions like the Ornstein-Uhlenbeck and square root process, the
functional form of the transition densities are hardly ever known. As a consequence like-
lihood inference for diffusion models is typically only feasible through computer intensive
methods. Simulated likelihood inference is discussed in section 3.1 below.

The infinitesimal generator

In discrete time the distribution of a stationary Markov chain is uniquely determined by
its one-step transition operator which is therefore an important object to study. In contin-
uous time the zero-step transition operator is trivial, but the derivative of the transition
operators at time zero is highly informative. This mapping is known as the infinitesimal
generator of the Markov process.
For a strictly stationary diffusion let Ptf(x) = E{f(Xt)|X0 = x} define the t-step transi-
tion operator on L2(π) where π is the invariant distribution. The infinitesimal generator is
defined as Af = limt→0(Ptf − f)/t whenever the limit exists. The infinitesimal generator
uniquely determines the transition semi-group and hence the distribution of the Markov
chain. In case of a stationary scalar diffusion it is well known the generator coincides with
the differential operator

Lf = µf ′ + (1/2)σ2f ′′.

In fact A is the restriction of L to the domain consisting of all functions ψ ∈ L2(π) for
which ψ′ is absolutely continuous, Lψ ∈ L2(π), and

lim
x→l

ψ′(x)

s(x)
= 0 and lim

x→r

ψ′(x)

s(x)
= 0.

The last condition is automatically fulfilled in case the boundary is either natural or in-
stantaneously reflecting. Only entrance boundaries need additional checking, see Hansen,
Scheinkman & Touzi (1998). Note that the generator of a strictly stationary scalar dif-
fusion is self adjoint which in turn implies that these diffusions are time reversible, i.e.
(Xs, Xt) has the same distribution as (Xt, Xs) for all s, t ≥ 0, see Ritz (2000).
The spectrum of the generator plays a central part when studying the mixing properties
of diffusions, see section 2.1.5, and in several applications where it is used to generate
moment conditions for estimating the parameters, see sections 3.2 and 3.3. An eigen-
function of the generator is a function φ ∈ D satisfying Aφ = −λφ for some eigenvalue
−λ ≤ 0 (the generator is negative semidefinite, hence all eigenvalues are non-positive).
The infinitesimal generator and the transition operators share their eigenfunction and the
eigenvalues are linked by the exponential function. I.e. if φ is an eigenfunction of the
generator with eigenvalue −λ, then E{φ(Xt)|X0} = e−λtφ(X0). This is used by Kessler
& Sørensen (1999) in the construction of the martingale estimating functions which we
further explored in Forman & Sørensen (2006) in case of the Pearson diffusions.

Example 2.1.3 The generator of the Pearson diffusion (B.1) is given by

Lf(x) = −θ(x − µ)f ′(x) + θ(ax2 + bx+ c)f ′′(x).
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In particular the generator maps a square integrable polynomial to a polynomial of at most
the same degree. Recursive formula for the polynomial eigenfunctions can be found in our
paper Forman & Sørensen (2006). △

An alternative specification

An alternative specification for scalar diffusions was suggested by Hansen, Scheinkman &
Touzi (1998). It is given by a triple (q, ψ, κ) where κ is a positive constant and q and ψ
are functions on I =]l, r[ satisfying that

• q is a strictly positive continuous density on I =]l, r[.

• ψ ∈ C2(I) with ψ′ > 0,
∫ r
l
ψ(x)2q(x)dx <∞, and

∫ r
l
ψ(x)q(x)dx = 0.

Hansen, Scheinkman & Touzi (1998) show that (q, ψ, κ) determines a unique stationary
diffusion on I with scale density s(x) = ψ′(x)/{2κ

∫ r
l
ψ(y)q(y)dy} and speed measure

density m(x) = q(x). The drift and diffusion coefficients of the diffusion are thus given
by

σ2(x) =
2κ
∫ r
x
ψ(y)q(y)dy

ψ′(x)q(x)
, µ(x) = −σ

2(x)ψ′′(x) + κψ(x)

2ψ′(x)
.

By construction ψ is an eigenfunction of the generator of the diffusion and −κ is the
corresponding eigenvalue which is also the maximum non-zero eigenvalue the so-called
spectral gap. In particular the diffusion is ρ-mixing, see section 2.1.5 below.

Example 2.1.4 The triple {π(x),−θ(x − µ), θ} where π has mean µ and finite second
order moment corresponds to a diffusion with linear drift −θ(x−µ) and invariant density
π. Diffusions of this kind were studied in Aı̈t-Sahalia (1996a) and Bibby, Skovgaard &
Sørensen (2005). △

Spectral representation of the transition probabilities

The spectral representation of the transition probabilities is outlined in Karlin & Taylor
(1981). In order to find an explicit expression of the function u(t, x) = E{f(Xt)|X0 = x}
where f is continuous and bounded on I, it is useful to note that u satisfies the partial
differential equation

∂u(t, x)

∂t
= Lu(t, x) (2.4)

with initial condition u(0, x) = f(x), and the further restriction that ∂u(t, l)/∂x = 0 if l is
a reflecting boundary, and similarly if r is reflecting. By separations of variables a solution
is sought out among the functions of the form u(t, x) = c(t)φ(x) where dc(t)/dt = −λc(t)
and dφ(x)/dx = −λLφ(x) for some λ ≥ 0. Obviously this implies that c(t) = ce−λt and
φ(x) is an eigenvalue of the generator. Assuming an entirely discrete spectrum {λn}n∈N

with associated eigenfunctions {φn(x)}n∈N the solution is given by

u(t, x) =

∞∑

n=0

cne
−λntφn(x), cn =

∫ r

l

f(x)φn(x)m(x)dx ·
(∫ r

l

φn(x)
2m(x)dx

)−1

,
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where m(x) is the speed measure density. An additional argument is needed to show that
this is the unique solution of (2.4 under the given boundary conditions.
The spectral representation of the transition densities,

p(t, x, y) = m(y) ·
∞∑

n=0

e−λntφn(x)φn(y)

(∫ r

l

φn(u)
2m(u)du

)−1

.

is obtained applying the above to f(x) = (b−a)−11(a;b)(x) and letting (a, b) shrink to {y}.
If the spectrum has a continuous component, the desired expansion takes a more general
form

m(y) ·
∫ ∞

0

e−λtφλ(x)φλ(y)dψ(λ)

where ψ is a measure on [0,∞[. Wong (1964) derived the spectral representations of the
transition probabilities for most of the Pearson diffusions.

2.1.5 Mixing

Recall that the α and ρ mixing coefficients of a stationary continuous time Markov process
are given by

αt(X) = sup
A,B∈B

|P (X0 ∈ A,Xt ∈ B) − P (X0 ∈ A)P (Xt ∈ B)|

ρt(X) = sup
f,g∈L2(π)

|Cor(f(X0), g(Xt))|

and that αt(X) ≤ 4ρt(X) ≤ 1. If αt(X) → 0 (ρt(X) → 0) as t→ ∞ then the diffusion is
α-mixing (ρ-mixing) and in particular ergodic. The ρ-mixing coefficients of a scalar dif-
fusion are determined by the spectrum of the infinitesimal generator, see Genon-Catalot,
Jeantheau & Laredo (2000).

Theorem 2.1.3 Suppose that the scalar diffusion (2.1) is strictly stationary, then the
ρ-mixing coefficients are given by ρt(X) = e−λ0t where

λ0 = sup{ ∫ rl f(x)Af(x)π(x)dx/
∫ r
l f(x)2π(x)dx : f ∈ D(A),

∫ r
l f(x)π(x)dx = 0}.

Further λ0 > 0 if and only if zero is an isolated point of the spectrum of the generator.
This being the case λ0 is the so-called spectral gap,

All stationary Pearson diffusions with second order moment are ρ-mixing.

Example 2.1.5 Suppose that the diffusion (2.1) is strictly stationary with second order
moment and linear drift µ(x) = −θ(x−µ). Then ρt(X) = e−θt. This follows by appealing
to the alternative specification of Hansen, Scheinkman & Touzi (1998), see section 2.1.4
above. △

Please note that the mixing coefficients are shared by the discretely sampled diffusion
{Xi∆}i∈N for any ∆ > 0. The mixing coefficients play a key role if the following central
limit theorem is to apply, see Doukhan (1994).
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Theorem 2.1.4 Suppose that the stochastic process {Yt}t∈N is stationary and α-mixing
with

∑∞
t=1 αt(Y )δ/(2+δ) <∞ for some δ > 0 such that E|Yt|2+δ <∞, then

n−1/2
n∑

t=1

(Yt − EYt)
D→ N (0, τ 2)

where τ 2 = Var(Y1) + 2
∑∞

t=2 Cov(Y1, Yt).

The mixing properties of scalar diffusions carry over to non-Markovian transformations
such as the diffusion type models considered in the coming sections. For instance the
mixing properties of a set of independent diffusions is inherited by their sum since
αt(X

(1) + . . .+X(m)) ≤ αt(X
(1)) + . . .+ αt(X

(1)), see Doukhan (1994). For these models
martingale estimating functions are no longer available. Hence, the more general central
limit theorems is needed for proving asymptotic normality of their estimators.
The following results are deduced from Genon-Catalot, Jeantheau & Laredo (2000) and
Rogers & Williams (1987).

Theorem 2.1.5 Assume that the diffusion (2.1) is strictly stationary and satisfies the
recurrence condition (2.3). Then the diffusion {Xt}t≥0 is ergodic. If further µ ∈ C1(I)
and σ2 ∈ C2(I) satisfies that for some constant K > 0

|µ(x)| ≤ K(1 + |x|) and σ2(x) ≤ K(1 + x2) for all x ∈ I,

Then the diffusion is α-mixing. Finally, if in addition limx→l,rm(x)σ(x) = 0 and both of
the limits

lim
x→l

{σ′(x) − 2µ(x)/σ(x)}−1 and lim
x→r

{σ′(x) − 2µ(x)/σ(x)}−1

exist and are finite, then {Xt}t≥0 is ρ-mixing.



18 Diffusion driven models

2.2 Diffusion driven models

The scalar diffusion processes can be used as building blocks to obtain more general
diffusion-type models which typically are not Markovian. In what follows we consider
integrated diffusions, summed diffusions, and stochastic volatility models. A new idea
for modeling multivariate stochastic volatility based on scalar diffusions is presented in
section 2.2.4. We outline the distinctive features of the models and briefly discus how
they can be analyzed. Further details on the various statistical methods are found in the
quoted papers and in chapter 3 and the references therein.

2.2.1 Summed diffusions

Sums of mean reverting linear drift diffusions constitute a flexible class of stochastic
process models having a particularly nice and explicit autocorrelation function. Bibby,
Skovgaard & Sørensen (2005) show that the summed diffusions fit turbulence data well.
Also the summed diffusions are appropriate for modeling stochastic volatility in analogy
with the superpositions of Barndorff-Nielsen & Shephard (2001a).

The construction is as follows. Let Xt = X1,t + . . .+Xm,t where {X1,t}t≥0, . . . , {Xm,t}t≥0

are independent diffusions, solving

dXi,t = −θi(Xi,t − µi) + σi(Xi,t)dBi,t, i = 1, . . . , m (2.5)

where θ1, . . . , θm > 0 and the diffusion coefficients σ1, . . . , σm are continuous and strictly
positive. If all of the underlying diffusions are stationary with finite second moment, then
so is the summed diffusion {Xt}t≥0 and its autocorrelation function is given by

ρ(t) = φ1 exp(−θ1t) + . . .+ φM exp(−θM t) (2.6)

with φi = Var(Xi,t)/{Var(X1,t) + · · · + Var(Xm,t)}. Note that φ1 + . . . + φm = 1. The
expectation of Xt is µ1 + · · ·+µm. The joint moments of the summed diffusion are linked
to those of the underlying diffusions as for instance,

E(Xk
sX

ℓ
t ) =

∑∑(
k

k1, . . . , km

)(
ℓ

ℓ1, . . . , ℓm

)
E(Xk1

1,sX
ℓ1
1,t) · · ·E(Xkm

m,sX
ℓm
m,t)

where the summation is over k1, . . . , km ≥ 0 such that k1 + . . . + km = k and similarly
for the ℓ’s. The diffusion coefficients can be chosen to accommodate a vide range of
marginal distributions. Sums of diffusions with a pre-specified marginal distribution were
considered by Bibby & Sørensen (2003) and Bibby, Skovgaard & Sørensen (2005). It was
shown that for any θi > 0 the mean µi and the diffusion coefficient σi can be chosen to
match continuous, strictly positive, and bounded density fi with second order moment.
To be specific the selection

µi =

∫ u

l

fi(x)dx and σ2
i (x) = fi(x)

−12θi

∫ x

l

(µi − y)fi(y)dy,

implies that (2.5) has a unique stationary weak solution with marginal density fi and
autocorrelation function ρi(t) = exp(−θit). It follows that the summed diffusion {Xt}t≥0
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among many unknown mixture distributions admits any infinitely divisible marginal den-
sity subject to some regularity conditions.

It is important to notice that the time changed process {Xi,δt}t≥0 where δ > 0 has the
same marginal distribution as {Xi,t}t≥0 and autocorrelation function ρ̃i(t) = e−θiδt. This
implies that θi measures the speed at which the underlying diffusion evolves with time.
Hence, the summed diffusion process can be interpreted as an aggregation over multiple
time scales. If for instance {Xt}t≥0 is the sum of two independent diffusions we can think
of the slower moving diffusion as a stochastic trend and the faster moving diffusion as
noise.

Statistical analysis of summed diffusion models can in principle be based on the like-
lihood function which being far from explicit can be simulated by use of some of the
algorithms described in section 3.1 below. The same algorithms can be modified to out-
put the uniform residuals which can be used for diagnostics, see section 3.5. How well
the algorithms in fact perform is an open question; Simulated likelihood has never been
attempted for summed diffusions.

Moment based estimation is far more tractable due to the explicit autocorrelation func-
tion. My paper Forman (2005) investigate least squares estimators for the autocorrelation
parameters and find these to behave well in theory as well as in practice. The related
overidentifying restrictions test, section 3.3.3, can be used to asses the goodness of fit
for the autocorrelation function. In particular, it demonstrated that a certain forward
selection procedure yields consistent estimates of the number of underlying diffusions.
For fitting a full model the parameters of the pre-specified marginal distribution can be
estimated for instance by means of marginal estimating functions, see section 3.2.3, or by
means of the nonparametric methods of Äıt-Sahalia (1996a) which can also be used to
asses the fit of the marginal density, see section 3.4.3.

In our paper Forman & Sørensen (2006) we consider sums of Pearson diffusions and show
how these can be fitted using suitable prediction based estimating functions, see section
3.2.2. If the predictors and targeted variables are chosen among powers of the observa-
tions, we obtain explicit expressions of an optimal prediction based estimating function.
Goodness of fit can be based on the overidentifying restrictions test, section 3.3.3 below,
or on the downsampled estimating function as in Forman, Markusen & Sørensen (2007),
which is shown to be successful in distinguishing a plain diffusions from a sum.

The summed diffusions are related to the Ornstein-Uhlenbeck type processes studied in
Barndorff-Nielsen, Jensen & Sørensen (1998), Barndorff-Nielsen & Shephard (2001b), and
Barndorff-Nielsen & Shephard (2001a). These models are based on the solutions of the
stochastic differential equation

dXi,t = −θiXi,tdt+ dZi,t i = 1, . . . , m (2.7)

where the (Zi,t)t≥0’s are independent homogenous Levy process. The summed Ornstein-
Uhlenbeck type models share the flexibility of the summed diffusions in having the same
form of autocorrelation function (2.6) and a large range of admissible marginal distri-
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butions depending on the choice of underlying Levy processes. A noteworthy difference
between the two classes of models is that save from the ordinary Ornstein-Uhlenbeck
process driven by Brownian motion, all other Ornstein-Uhlenbeck type processes have
jumps. The Ornstein-Uhlenbeck type models can be analyzed by the same means as the
summed diffusions, see for instance Forman (2005). It is worth noting that the discrete
time process (Xi,t)t∈N forms an auto-regression

Xi,t+1 = λi ·Xi,t + εi,t

where (εi,t)t∈N are i.i.d. In particular the conditional moments of {Xi,t}t∈N up to any order
can easily be calculated. Masuda (2004) study the mixing properties of the Ornstein-
Uhlenbeck type processes.

2.2.2 Integrated diffusions

Integrated observations occur when a diffusion cannot be observed directly, for instance
if the diffusion {Xt}t≥0 is observed after passage through an electronic filter. Ditlevsen,
Ditlevsen & Andersen (2002) makes inference for the paleo-temperature by use of an in-
tegrated Ornstein-Uhlenbeck model. The paleo-temperature cannot be observed directly,
but the isotope ratio 18O/16O measured as an average in pieces from the ice core serves
as a proxy. Another important example is realized volatility, see Andersen & Bollerslev
(1998), Andersen et al. (2001), Barndorff-Nielsen & Shephard (2002), and section 2.2.3
below. Daily realized volatility is computed by summing squared intraday returns. An-
dersen et al. (2001) argue that for practical purposes realized volatility based on high
frequency data is free of measurement error. Hence, integrated volatility can be treated
as observed and analyzed by means of integrated diffusion models.

To be specific, let the stationary diffusion, and the integrated observations be given by

dXt = µ(Xt)dt+ σ(Xt)dBt, Yi =
1

∆

∫ i∆

(i−1)∆

Xs ds

for some fixed ∆. Since {Xt}t≥0 is stationary, the integrated observations {Yi}i∈N form a
stationary process with the same mixing properties as {Xt}t≥0. The mean of the integrated
observations is identical to that of the underlying diffusion. The joint moments of the
integrated observations are linked to the joint moments of the underlying diffusion by

E(Y k
i Y

ℓ
j ) = ∆−(k+ℓ)

∫

[(i−1)∆,i∆]k×[(j−1)∆,j∆]ℓ
E{Xs1 · · ·Xsk

Xt1 · · ·Xtℓ}ds1 . . . dskdt1 . . . dtℓ.

Please note that the domain of integration can be reduced considerably by symmetry ar-
guments. If the underlying diffusion has a mean reverting linear drift yielding its autocor-
relation function to be exponentially decreasing with coefficient θ, then the autocovariance
function of the integrated observations is given by

Var(Yi) =
2 Var(Xt)(θ∆ + e−θ∆ − 1)

(θ∆)2
, Cov(Yi, Yi+j) =

Var(Xt)(1 − e−θ∆)2e−(j−1)θ∆

(θ∆)2
.
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Save from the integrated Ornstein-Uhlenbeck process which is Gaussian, the invariant
distribution of the integrated diffusion does not have a simple closed form expression.
Gloter (2001) considers estimation in the integrated Ornstein-Uhlenbeck process. Ob-
serving that the integrated observations form a Gaussian ARMA(1,1) process he shows
that the model can be efficiently estimated by using the Whittle approximation to the
likelihood function. For most other integrated diffusions likelihood inference is only feasi-
ble through simulation. The algorithms of Pitt, Chib & Shephard (2006) and Durham &
Gallant (2002) made to form inference for stochastic volatility models should work just as
well when applied to integrated diffusions, see section 3.1. When adequately modified the
same algorithms output uniform residuals which can be used for diagnostics, see section
3.5.

Moment based estimation is considered by Bollerslev & Zhou (2002) who find the first two
conditional moments of an integrated square root model and use these to construct GMM-
estimators. Ditlevsen & Sørensen (2004) propose prediction based estimating functions
where predictors and targeted variables are found among the powers of past and present
observations. Integrated Ornstein-Uhlenbeck and square root processes are exemplified.
These results are further generalized in Forman & Sørensen (2006) where explicit and
optimal prediction-based estimating functions are found for a general underlying Pearson
diffusion.

In the high-frequency setting the integrated observations approaches the underlying dif-
fusion. Hence, the parameters can be estimated by use of an Euler-type approximation.
Gloter (2006) provides the appropriate approximation accounting for the fact that the
integrated diffusion is no longer a Markov chain.

A more general model with similar inference is obtained when the underlying diffusion
is replaced by the sum of independent diffusions or by an Ornstein-Uhlenbeck type pro-
cess. See Sørensen (2000), Barndorff-Nielsen & Shephard (2001a), Bollerslev & Zhou
(2002), Barndorff-Nielsen & Shephard (2002), and Forman & Sørensen (2006) for relevant
examples.

2.2.3 Diffusion driven stochastic volatility.

Stochastic volatility models are mainly used in financial economics as e.g. models for
exchange rates and stock prices. Here we focus on continuous-time, diffusion driven
stochastic volatility models solely, see Shephard (2005) for a general introduction. A
stochastic volatility model is a generalization of the Black-Scholes model for the logarithm
of an asset price that takes into account the empirical finding that the variance varies
randomly over time. Following Hull & White (1987) the variance process or the volatility
is often modeled as a diffusion. Thus the stochastic volatility model is a partially observed
two dimensional diffusion evolving according to,

dXt = (κ+ βvt)dt+
√
vtdWt, dvt = µ(vt) + σ(vt)dBt

where {Wt}t≥0 and {Bt}t≥0 are independent Brownian motions. The volatility {vt}t≥0 by
assumption cannot be observed directly. Given the volatility {vt}t≥0, the observed returns
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Yi = Xi∆−X(i−1)∆ are independent and normally distributed with mean Mi and variance
Si given by

Mi = κ∆ + βSi, Si =

∫ i∆

(i−1)∆

vtdt.

Please note that the sequence of conditional variances the so-called actual volatility pro-
cess {Si}i∈N is an integrated diffusion, see section 2.2.2 above. Simple examples of volatil-
ity models specify {vt}t≥0 as a square root process or as the exponential of an Ornstein-
Uhlenbeck model. Another simple specification models {vt}t≥0 as a Pearson diffusion from
the fourth class of Forman & Sørensen (2006) which can be interpreted as a continuous
time analogue to the GARCH(1,1) model, see Nelson (1990).
We assume that {vt}t≥0 is stationary, thus so is the return process {Yi}i∈N. The returns
inherit the mixing properties of the volatility process, see Genon-Catalot, Jeantheau &
Laredo (2000). The invariant distribution is the normal mixture with respect to the
invariant distribution of the integrated volatility process which is typically unknown.
The means and variances of returns are given by E(Yi) = κ∆ + βE(Si) and Var(Yi) =
E(Si) + β2 Var(Si). The joint moments can be calculated by

E(Y k
i Y

ℓ
j ) =

∑∑(
k

k1 k2 k3

)(
ℓ

ℓ1 ℓ2 ℓ3

)
(κ∆)k1+ℓ1βk2+ℓ2ζk3ζℓ3E(S

k2+k3/2
i S

ℓ2+ℓ3/2
j ),

where the sum is over integers k1, k2, k3 ≥ 0 such that k1+k2+k3 = k and similarly for the
ℓ’s. The constant ζm is the m’th order moment of the standard normal distribution. Note
that ζm = 0 when m is odd. Hence, the problems reduces to finding the joint moments
of an integrated diffusion, see section 2.2.2 above. For instance the covariances are given
by Cov(Yi, Yj) = β2 Cov(Si, Sj) for i 6= j. If β = 0, then the returns are uncorrelated and
more can be learned from the squared returns for which Cov(Y 2

i , Y
2
j ) = Cov(Si, Sj) for

i 6= j (assuming β = 0).

As the likelihood function is not readily available, the statistical analysis of volatility
models has been a challenge through the last two or three decades resulting in a vast
number of papers, see Shephard (2005) for a selective overview. It is important to no-
tice that most of the econometric papers from the 1980’s and 1990’s are concerned with
discrete time stochastic volatility models. The derived estimating schemes should be ap-
plied with caution to the continuous time models as the discretization scheme may be the
source of bias. A classical approach suggested by Harvey, Ruiz & Shephard (1994) is to
apply the Gaussian quasi-likelihood to the log-transformed returns.

Today likelihood inference is indeed applicable using suitable simulation schemes, see
section 3.1 below. We emphasize the Markov chain Monte Carlo algorithm, e.g. Pitt,
Chib & Shephard (2006), and the importance sampler, e.g. Durham & Gallant (2002). In
addition these algorithms can output one-step ahead predictions and uniform residuals to
be used for diagnostics, see section 3.5. The efficiency gain of the maximum likelihood
estimator on the quasi-likelihood and moment based estimators can be substantial, see
Jacquier, Polson & Rossi (1994).

Moment based estimation is considered by for instance Melino & Turnbull (1990), Ander-
sen & Sørensen (1996), Sørensen (2000), and Genon-Catalot, Jeantheau & Laredo (2000).
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For continuous time models moment conditions can be found for instance by aid of the
above formulae. In our paper Forman & Sørensen (2006) we find the explicit optimal
estimating function based on prediction of powers of returns for the stochastic volatility
models driven by a Pearson diffusion. In connection with moment based estimation it is
natural to base goodness of fit on the overidentifying restrictions test, section 3.3.3 below,
or by downsampling the estimating function, see Forman, Markusen & Sørensen (2007).

Another influential approach is that of indirect inference also known as the efficient
method of moments, see Gourieroux, Monfort & Renault (1993) and Gallant & Tauchen
(1996). An estimate is obtained by first introducing an auxiliary model, for instance a
GARCH model, for which the maximum likelihood estimator is easy to compute. The
second step is to simulate long time series from the stochastic volatility model searching
for a set of parameter values that will match the auxiliary estimator obtained from the
simulation with the one obtained from the data. At best the indirect estimator attains the
efficiency of the intractable maximum likelihood estimator with considerably less compu-
tational effort, but much depends on the choice of auxiliary model. Gallant & Tauchen
(1996) have particular recipes for making a sensible selection.

Recently, high frequency data has rendered the integrated volatilities almost observable
through the so-called realized volatilities, which are estimates of the actual volatilities.
These are easily derived by observing that the quadratic variation of {Xt}t≥0 is given by

[X]t =

∫ t

0

vsds.

For instance daily realized volatility is computed by summing squared intraday returns.
Hence, high frequency stochastic volatility models can be analyzed by means of integrated
diffusion models as suggested in Andersen et al. (2001). The statistical analysis of volatil-
ity models based on high frequency data is further discussed in Genon-Catalot, Jeantheau
& Laredo (1999), Hoffmann (2002), and Barndorff-Nielsen & Shephard (2002).

A more general model with similar inference is obtained when the underlying diffusion
is replaced by the sum of independent diffusions or by an Ornstein-Uhlenbeck type pro-
cess, see section 2.2.1 above. Barndorff-Nielsen & Shephard (2001a) demonstrated that
the autocorrelation function (2.6) of the summed diffusions fits empirical autocorrelation
functions of volatility well, while an autocorrelation function like that of a single linear
drift, mean reverting diffusion is too simple to obtain a good fit. In our paper Forman &
Sørensen (2006) we derive explicit prediction based estimating functions for a volatility
model where the underlying volatility is the sum of independent Pearson diffusions.

2.2.4 The construction of a multivariate volatility process

This section presents a new idea for modeling multivariate stochastic volatility based
on scalar diffusions. In section 2.2.3 only univariate stochastic volatility models were
considered. A general multivariate stochastic volatility process is the solution of the
stochastic differential equation,

dXt = (A + CΣtΣ
T
t ) + ΣtdBt (2.8)
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where {Bt}t≥0 is a k-dimensional Brownian motion and {Σt}t≥0 is a k by k matrix valued
stochastic process so that Vt = ΣtΣ

T
t is positive semidefinite for all t. In most of the

existing models the spot volatility matrix is determined by a lower dimensional struc-
ture. That is ΣtΣ

T
t does not vary freely in the space of positive definite matrices. Some

classical examples are found in Harvey, Ruiz & Shephard (1994), Danielsson (1998), Pitt
& Shephard (1999b), Aguilar & West (2000), and Liesenfeld & Richard (2003). Most
of these models are constricted in the sense that the conditional correlations are con-
stant over time. However, there is evidence of time-varying correlations in multivariate
financial time series, see Yu & Meyer (2004) for a comparative study of two-dimensional
stochastic volatility models for exchange rates. Recent models for the volatility process
are the Wishart diffusions studied in Philipov & Glickman (2006) and Gourieroux, Jasiak
& Sufana (2004) and the Ornstein-Uhlenbeck type processes on the space of positive
semidefinite matrices considered by Barndorff-Nielsen & Stelzer (2006).
We suggest modeling the matrix valued volatility process through its diagonal represen-
tation,

ΣtΣ
T
t = OtΛtO

T
t (2.9)

where Λt = diag{λj,t} contains the eigenvalues of ΣtΣ
T
t and Ot is the orthogonal matrix

the columns of which contain the eigenvectors. Note that if {Ot}t≥0 is assumed constant,
the model of Harvey, Ruiz & Shephard (1994) is recovered. However, we aim at a random
specification of Ot with the potential of hitting any value in the set of orthogonal matrices.
To this end we appeal to the decomposition

Ot =
∏

1≤i<j≤k
Φi,j,t. (2.10)

where Φi,j,t is the k by k matrix with elements equal to those of the identity save from
the (i, j)-submatrix which has the form

(
cos(φi,j,t) − sin(φi,j,t)
sin(φi,j,t) cos(φi,j,t)

)
(2.11)

Note that Φi,j,t is the matrix representing a turn in k-space. Visually speaking the stan-
dard base in Rk (represented by the identity matrix) is mapped into an other orthonormal
base (represented by Ot) by performing a series of turns. Sequentially each pair of basis
vectors is turned counter clockwise in the plane they span while the other basis vectors
are fixed. The angles of the consecutive turns are φ1,2,t, . . . , φ1,k,t, . . . , φk−1,k,t.
For a full model specification we need to model the diagonal elements λ1, . . . , λk and the
turning angles φ1,2, . . . , φ1,k, . . . , φk−1,k. For instance the λ’s could be specified as inde-
pendent square root processes or the exponentials of independent Ornstein-Uhlenbeck
processes. The model is completed by taking the angles to be a set of stochastic pro-
cesses. Diffusions on ] − π/2; π/2[ seem the natural choice for the φi,j’s. A particularly
tractable process occur when both angles and diagonal elements are modeled by suitable
transformed Pearson diffusions. For the angles we can assume for instance the Ornstein-
Uhlenbeck process on ] − π/2; π/2[ introduced in Kessler & Sørensen (1999) or its asym-
metric generalization derived by Larsen & Sørensen (2003). For the diagonal elements we
can assume plain Pearson diffusions as long as these are non-negative. The non-negative
Pearson diffusions are those from the second, fourth, and fifth class of Forman & Sørensen
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(2006), i.e. the square root processes, the GARCH diffusions, and the Pearson diffusions
with marginal F-distributions. All of these selections allow for explicit moment calcula-
tions, which in turn yield explicit estimating functions for fitting the model.

The 2D model

In two dimensions the volatility matrix takes the form (suppressing the dependence on t)

Vt =

(
cos(φ)2λ1 + sin(φ)2λ2 cos(φ) sin(φ)(λ1 − λ2)
cos(φ) sin(φ)(λ1 − λ2) sin(φ)2λ1 + cos(φ)2λ2

)
(2.12)

In particular the conditional correlation is given by

ρ2D =
cos(φ) sin(φ)(λ1 − λ2)√

(cos(φ)2λ1 + sin(φ)2λ2)(sin(φ)2λ1 + cos(φ)2λ2)
. (2.13)

Note that the correlation coefficient depends on λ1 and λ2 only through their quotient.
For φ = 0 and φ = ±π/2 the correlation equals zero. Otherwise ρ2D = 0 only if λ1 = λ2

and for λ1

λ2
tending to zero or infinity |ρ2D| → 1. Given λ1 and λ2 maximum numerical

correlation is attained for | cos(φ)| = | sin(φ)| = 1√
2

in which case |ρ2D| = |λ1−λ2|
λ1+λ2

. The

sign of the correlation depends on the signs of sin(φ) and λ1 − λ2. A positive correlation
can be forced by choosing φ ∈]0; π/2[ and λ1 ≥ λ2. For instance the latter is obtained by
replacing λ1 with λ1+λ2. All in all we get an very flexible dynamic conditional correlation.

Example 2.2.1 An example of a specific two-dimensional model is given by the choice
of λ1 and λ2 being stationary square root processes,

dλi,t = −θi(λi,t − αiβi)dt+
√

2θiβidWi,t

where αi, βi, θi > 0 for i = 1, 2 and {W1,t}t≥0 and {W1,t}t≥0 are independent Brownian
motions. Further define φ to be an arcsine-transformed Jacobi diffusion as in Larsen &
Sørensen (2003). As cos(φt) is determined by cos(φt) =

√
1 − sin(φt)2 we might as well

model Zi = sin(φt) directly as the translated and rescaled Jacobi diffusion,

dZt = −θ3(Zt − µ)dt+
√

2θ3γ(1 − Z2
t )dW3,t

on ] − 1; 1[ where −1 < µ < 1, γ, θ3 > 0, ... , and {W3,t}t≥0 is another Brownian motion
independent of {W1,t}t≥0 and {W2,t}t≥0. Both the square root processes and the rescaled
Jacobi diffusion are Pearson diffusions. Hence, recursive formula for computing explicit
moments and conditional moments or any order are found in Forman & Sørensen (2006).
△

Assume for simplicity that A = C = 0, then given the volatility process {Vt}t≥0 the two-
dimensional returns Yi = Xi∆ −X(i−1)∆ are independent and normal with mean zero and
covariance matrix given by

Si =

( ∫ i∆
(i−1)∆

{cos(φt)
2λ1,t + sin(φt)

2λ2,t}dt
∫ i∆
(i−1)∆

cos(φt) sin(φt){λ1,t − λ2,t}dt∫ i∆
(i−1)∆

cos(φt) sin(φt){λ1,t − λ2,t}dt
∫ i∆
(i−1)∆

{sin(φt)
2λ1,t + cos(φt)

2λ2,t}dt

)
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It follows that the mean return is E(Yi) = 0 and the covariance matrix is Cov(Yi) = E(Si)
implying that

Var(Y1,i) = ∆[E{1 − sin(φ)2}E(λ1) + E{sin(φ)2}E(λ2)]

Var(Y1,i) = ∆[E{sin(φ)2}E(λ1) + E{1 − sin(φ)2}E(λ2)]

Cov(Y1,i, Y2,i) = ∆E{sin(φ)
√

1 − sin(φ)2}{E(λ1) − E(λ2)}.

Save from the mean of sin(φ)
√

1 − sin(φ)2 all of these moments are explicitly known in
the above example, and the problematic term can be found by numerical integration as
the invariant distribution of sin(φ) is merely a rescaled Beta distribution. In particular,
if the Beta distribution is symmetric, then E(sin(φ)

√
1 − sin(φ)2) = 0. Further, let ζm

denote the m’th order moment of the standard normal distribution, then for i 6= j the
joint moment E(Y k

1,iY
ℓ
1,j) is given by

ζkζℓ ·
∫

[(i−1)∆;i∆]k×[(j−1)∆;j∆]ℓ
E{f(s1) · · · f(sk)g(t1) · · · g(tℓ)}ds1 . . . dskdt1 . . . dtℓ,

where

f(s) = {1 − sin(φs)
2}λ1,s + sin(φ2

s)λ2,s

g(t) = sin(φt)
2λ1,s + {1 − sin(φ2

t )}λ2,t

and similar equations hold for the joint moments E(Y k
2,iY

ℓ
2,j) and E(Y k

1,iY
ℓ
2,j). After some

lengthy calculations following the lines of Forman & Sørensen (2006), we obtain explicit
expressions for the stochastic volatility model driven by Pearson diffusion as in the above
example.

All in all moment based estimation is feasible for the two-dimensional volatility model, and
for the Pearson driven model in particular explicit expressions of moments and joint mo-
ments can be found. We emphasize the prediction based estimating functions of Sørensen
(2000). For the univariate stochastic volatility models driven by a Pearson diffusion the
optimal prediction based estimating functions based on powers of returns were derived by
Forman & Sørensen (2006).

Alternatively the model can for a wide range of underlying diffusions be analyzed by
simulated likelihood or Markov chain Monte Carlo methods, see section 3.1 below and
the papers by Durham & Gallant (2002) and Pitt, Chib & Shephard (2006).

The 3D model

The three dimensional model displays the same features as in the two dimensional setting,
only now there are three covariances/correlations in play. The volatility matrix is given
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by

V11 = c212c
2
13λ1 + (s12c23 − c12s13s23)

2λ2 + (s12s23 + c12s13c23)
2λ3

V22 = s2
12c

2
13λ1 + (c12c23 − s12s13s23)

2λ2 + (c12s23 + s12s13c23)
2λ3

V33 = s2
13λ1 + c213s

2
23λ2 + c213c

2
23λ3

V12 = −c12s12c
2
13λ1 + (s12c23 − c12s13s23)(c12c23 − s12s13s23)λ2

+(s12s23 + c12s13c23)(c12s23 + s12s13c23)λ3

V13 = c12s13c
2
13λ1 + (s12c23 − c12s13s23)c13s23λ2 + (s12s23 + c12s13c23)c13c23λ3

V23 = s12c13s13λ1 + (c12c23 − s12s13s23)c13s23λ2 + (c12s23 + s12s13c23)c13c23λ3

Where we abbreviate cij = cos(φij) and sij = sin(φij). Regrettably, as turning angles
are defined relative to previous turns, the model lack symmetry in the variance and
covariance formulae. Hence if coordinates are interchanged we may have to redefine the
angle processes.
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3

Statistical inference

In this chapter we review some important methods for making statistical inference in
diffusion driven models which motivate and contrast the results presented in our papers.

Throughout the chapter we consider inference from the stationary continuous time pro-
cess {Xt}t≥0 based on discrete time observations defined by Yi = Xi∆, i = 1, . . . , N where
∆−1 is the sampling frequency. Unless otherwise stated we are concerned with the low
frequency setting where ∆ is fixed and asymptotic results are proven as the number of
observations tend to infinity.
For the unknown distribution of {Xt}t≥0 we assume a (semi) parametric model parame-
terized by θ ∈ Θ ⊆ Rd, where d is the dimension of the parameter. Two main problems
are addressed. Firstly, how can the parameter θ be estimated? Secondly, how do we
assess whether or not the fitted model provide an acceptable description of the data?

Ideally we would base inference on the likelihood function. However, most diffusion-type
models do not admit an explicit likelihood function and alternative estimating schemes
are thus often called upon. We emphasize the theory of general estimating functions as
a suitable means which often yield simple and explicit criteria. In section 3.1 we review
some important approximations of the log-likelihood function. The evolution of the last
decade implies that today likelihood inference is in fact feasible. However, the algorithms
are still demanding from a computational as well as from a mathematical point of view.
In comparison the general estimating functions considered in section 3.2 are often far
more tractable. We summarize some important results on how to construct estimating
equations and how to combine these in an optimal way. The theory is exemplified by
the martingale estimating functions and the prediction based estimating functions en-
countered in our paper Forman & Sørensen (2006). Section 3.3 covers GMM, i.e. the
generalized method of moments. Similar to the general estimating functions the GMM
criterion from which the estimators are obtained is based on moment conditions. Indeed
the two fields intersect in many regards. We highlight some of the GMM specific results
on covariance estimation and goodness of fit testing. The goodness of fit test developed in
our paper Forman, Markusen & Sørensen (2007) is closely related to the GMM overiden-
tifying restrictions test and so is the models selection procedure of my first paper Forman
(2005). Section 3.4 reviews nonparametric inference from diffusion processes. We consider

29
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the nonparametric setting a natural framework for goodness of fit testing. However, a
similar theory for diffusion-type models is yet to be explored. Finally, section 3.5 is con-
cerned with the uniform residuals. We believe that these provide an excellent diagnostic
not just for diffusion models but for stochastic process models in general.

The overall focus of this chapter will be on the basic ideas and results. Hence, regu-
larity conditions and other technical details must be looked up in the relevant papers. An
exception to the rule are the asymptotic results of section 3.2.5 which are presented with
all regularity conditions included.

Please note that this introduction by no means claim to be exhaustive. For instance
we do not discuss the methodology of indirect inference Gourieroux, Monfort & Renault
(1993) nor the efficient method of moments Gallant & Tauchen (1996) which also pro-
vide popular ways of forming statistical inference for diffusion-type models. See instead
Gallant & Tauchen (2004) for a review.
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3.1 Likelihood based inference

Likelihood inference is the preferred means by which statistical models are analyzed due
to its generic form and the asymptotic efficiency of the maximum likelihood estimator.
But when it comes to diffusion type models the functional form of the likelihood function
is hardly ever known. This complicates the evaluation of estimates and likelihood ratios.
For instance the log-likelihood function of a discretely observed diffusion is given by

lN (θ) =

N−1∑

i=1

log{p∆(Yi+1|Yi, θ)}

where p∆(Yi+1|Yi, θ) is the, typically unknown, ∆-step transition probability. As a con-
sequence: If likelihood inference is to be carried out for a diffusion model the transition
density will have to be replaced by a suitable analytical or numerical approximation. In
the coming sections we review some of the most important approximation schemes empha-
sizing basic ideas and computations. In either case likelihood inference is computationally
demanding.

Note that at least for some diffusions likelihood inference is uncomplicated. The fact
that it has simple Gaussian transition densities makes the Ornstein-Uhlenbeck process
the most celebrated diffusion and the most used test case in theoretical examples as well
as in simulation studies. Pedersen (1995b) summarizes the maximum likelihood estima-
tors. By similar arguments the square root process is often used as benchmark. The
remaining Pearson diffusions are potentially accessible for likelihood inference as their
transition probabilities have fairly explicit spectral representations. How to make proper
use of these is a subject for future research.

3.1.1 Simulated likelihood

The method of simulated likelihood estimation for discretely observed diffusion processes
was proposed independently by Pedersen (1995b) and Brandt & Santa-Clara (2002). The
basic idea is to approximate the unknown transition densities with mixtures of normal
densities corresponding to a suitably fine Euler scheme and evaluate these by means of
Monte Carlo simulations. To be specific the M ’th order approximation is defined by

p(M)(Yi+1|Yi, θ) =

∫ M∏

t=0

φ{Ŷi,t+1| Ŷi,t + δµ(Ŷi,t, θ), δσ
2(Ŷi,t, θ)}dŶi,1 · · · dŶi,M (3.1)

where δ = ∆/(M+1), Ŷi,0 = Yi, Ŷi,M+1 = Yi+1, and φ(x| κ, τ 2) denotes the normal density

with mean κ and variance τ 2. The variable Ŷi,t is interpreted as a missing data point at

time {i+ t/(M+1)}∆. If {Ŷ (s)
i,1 , . . . , Ŷ

(s)
i,M}s=1,...,S are i.i.d. realizations of the Euler scheme

started at Ŷi,0 = Yi, the integral can be approximated by

1

S

S∑

s=1

φ{Yi+1| Ŷ (s)
i,M + δµ(Ŷ

(s)
i,M , θ), δσ

2(Ŷ
(s)
i,M , θ)}. (3.2)
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There are two sources of error in the approximation of the log-likelihood; Bias adher-
ing from the approximation of the transition density (3.1) and simulation error from the
Monte Carlo evaluation (3.2). Both can be reduced at the expense of increased computa-
tions; As M,S → ∞ with S1/2/M → 0 the simulated log-likelihood function converges to
the true one, and so does the simulated maximum likelihood estimator. It is important
to notice that the same random numbers must be recycled when computing the transi-
tion density for different values of θ in order to obtain a smooth log-likelihood function.
Further note that no numerical differentiation is needed for the optimization as explicit
expressions of the gradient and Hessian of the simulated log-likelihood are obtained from
differentiation of the Euler scheme.

It has been pointed out for instance by Durham & Gallant (2002) that the simulation
scheme of Pedersen (1995b) and Brandt & Santa-Clara (2002) is highly inefficient and can
be improved dramatically by use of a suitable importance sampler. The main reason is
that the auxiliary observations Ŷi,1, . . . , Ŷi,M are simulated without using the information

contained in Yi+1, i.e. for many sampled Ŷi,M ’s the transition to Yi+1 is very unlikely.
In importance sampling the auxiliary data is sampled according to an adapted density
ri(Ŷi,1, . . . , Ŷi,M), and the transition density approximated by

1

S

S∑

s=1

∏M
t=0 φ{Ŷ

(s)
i,t+1| Ŷ (s)

i,t + δµ(Ŷ
(s)
i,t , θ), δσ

2(Ŷ
(s)
i,t , θ)}

ri(Ŷ
(s)
i,1 , . . . , Ŷ

(s)
i,M)

.

The importance sampler works well if the sample density is close to the target density.
Durham & Gallant (2002) obtain good results sampling the auxiliary data from a tied
down diffusion - the so-called modified Brownian bridge. Also good results are obtained
from Richard & Zhang (1998)’s efficient importance sampler where the sampling density
is taken from a family of densities indexed by a high dimensional parameter and prelimi-
narily fitted to the data. Recently Beskos & Roberts (2005) proved that exact simulation
of a diffusion is feasible not just in theory but also in practice, see in addition Beskos
et al. (2006).

Simulated likelihood works also for non-equidistant samples, for non-stationary diffu-
sions and for time-inhomogeneous diffusions. Extension to diffusion type models is pos-
sible though more complicated as outlined by Durham & Gallant (2002) in the case of a
stochastic volatility model.

3.1.2 An analytical approximation

A closed form approximation to the log-likelihood function based on its Hermite polyno-
mial expansion was developed by Äıt-Sahalia (2002). The resulting approximate likelihood
function is computationally less demanding than simulating the likelihood function and
also more accurate, see Jensen & Poulsen (2002) for a comparative study.
First assume that the diffusion coefficient is constantly equal to one. Then the K’th order
Hermite expansion of the transition density around the normal density takes the form

p
(K)
∆ (x|x0, θ) =

1

∆1/2
φ

(
x− x0

∆1/2

)
exp

(∫ x

x0

µ(u, θ)du

) K∑

k=0

ck(x|x0, θ)
∆k

k!
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where the correction terms have be grouped in orders of ∆. The coefficients are recursively
defined by c0(x|x0, θ) = 1 and

cj(x|x0, θ) = j(x− x0)
−j
∫ y

x0

(u− x0)
j−1

{
λ(u, θ)cj−1(u|x0, θ) +

1

2

∂2

∂u2
cj−1(u|x0, θ)

}
du

for j ≥ 1 where λ(x, θ) = −(1/2){µ(x, θ)2 + ∂xµ(x, θ)}. Making use of the Taylor expan-
sion of the logarithm the expansion translates into a closed form approximation of the
log-density function

{log p∆}(K)(x|x0, θ) = − log(2π∆)

2
+ C−1(x|x0, θ)

1

∆
+

K∑

k=0

Ck(x|x0, θ)
∆k

k!
.

The coefficient are most easily found by substituting the above into the Kolmogorov for-
ward and backward equations for the log-transition density. This in turn yields a set of
differential equations for the Ck(x|x0, θ)’s which can be solved explicitly, see Äıt-Sahalia
(2003) for details.
If the diffusion coefficient differs from one, the diffusion preliminarily has to be trans-
formed. The Lamperti transformation, γ(x, θ) =

∫ x
σ(u, θ)−1du achieves the goal as

Zt = γ(Xt, θ) satisfies dzt = µZ(Zt, θ)dt+ dBt with

µZ(z, θ) = µ{γ−1(z, θ), θ}/σ{γ−1(z, θ), θ} − (1/2)∂xσ{γ−1(z, θ), θ}.

Loosely speaking the transformation brings the diffusion closer to being Gaussian which
is needed for the Hermite expansion to converge. The desired approximation to the log-
likelihood function of {Xt}t≥0 is obtained as p∆(x|x0, θ) = σ(x, θ)−1p∆,Z{γ(x, θ)|γ(x0, θ), θ}.

There has been some effort made to extend the analytical expansion to multivariate diffu-
sions and stochastic volatility models, see Äıt-Sahalia (2003) and Äıt-Sahalia & Kimmel
(2004). The lack of a multivariate analogue to the Lamperti transform makes the exten-
sion a more complicated matter.

3.1.3 Bayesian inference.

Elerian, Chib & Shephard (2001) suggested Markov Chain Monte Carlo algorithms for
performing Bayesian inference for Diffusion processes. The same idea was launched inde-
pendently by Eraker (2001).
From a purist Bayesian point of view the one goal of the statistical analysis is to find the
posterior distribution of the parameter. From a pragmatic point of view the posterior
mean is just another estimator which can be used for various statistical purposes. Based
on moderate size datasets the results are largely determined by the information in the
likelihood function not in the prior. Hence, suitably flat priors leads to inference similar
to simulated likelihood. As in simulated likelihood the basic idea is to augment the data
with the set of latent variables {Ŷi,t}i=1,...,N−1,t=1,...,M . If M is sufficiently large the dis-
tribution of the augmented dataset is well approximated by the Euler scheme. Thus the
joint posterior of {Ŷi,t}i=1,...,N−1,t=1,...,M and θ can be resolved using the following Gibbs
sampler:
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1. Initially select a prior on θ along with sensible values of θ and {Ŷi,t}i=1,...,N−1,t=1,...,M .

2. For i = 1, . . . , N − 1 update Ŷi,1, . . . , Ŷi,M by sampling from the conditional distri-
bution given Yi, Yi+1, and θ.

3. Update θ by sampling from the conditional distribution given the data {Yi}i=1,...,N

and the augmented variables {Ŷi,t}i=1,...,N−1,t=1,...,M .

4. Repeat the updating schemes of step 2 and 3 for a large number of sweeps.

As the conditional distributions hardly ever are explicitly known, separate Metropolis-
Hastings algorithms are needed to perform steps 2 and 3. The same proposal distributions
used in the importance sampler for simulated likelihood are of relevance when sampling
the latent variables in step 2. Further, if M is large it may be difficult to sample all of
Ŷi,1, . . . , Ŷi,M at a time. Elerian, Chib & Shephard (2001) suggest to sample blocks of
length m sequentially in each step using a Metropolis-Hastings algorithm to sample from
the approximate density

f(Ŷi,k, . . . , Ŷi,k+m|Ŷi,k−1, Ŷi,k+m+1, θ) ∝
k+m∏

t=k

φ{Ŷi,t+1| Ŷi,t + µ(Ŷi,t, θ)δ, σ
2(Ŷi,t, θ)δ}

with a data based Laplace approximation as proposal density. Please note that there is a
trade-of in the choice of block size. A small m simplifies the sampling of Ŷi,1, . . . , Ŷi,M but
a the same time implies a slow mixing rate for the Markov chain as neighbor Yi,k’s are
highly dependent. In simulation studies conducted by Elerian, Chib & Shephard (2001)
the best performance occurs for a random (Poisson distributed) block size.
Similarly, in step 3 the parameter must be sampled according to the density

f(θ|{Ŷi,t}i=1,...,N−1,t=0,...,M+1) ∝ f0(θ)

N−1∏

i=1

M∏

t=0

φ{Ŷi,t+1| Ŷi,t + µ(Ŷi,t, θ)δ, σ
2(Ŷi,t, θ)δ},

where we let Ŷi,0 = Yi and Ŷi,M+1 = Yi+1, and f0 denotes the prior. If θ is high dimen-
sional, it is suggestible to sample the parameters block-wise. Note that in the limit as
M → ∞ the parameters in the diffusion coefficient are fully determined by the quadratic
variation of the underlying path. As pointed out by Roberts & Stramer (2001) this may
cause the algorithm to slow down considerably for large values of M . In order to avoid
this problem Roberts & Stramer (2001) further suggests transforming the latent variables
prior to sampling θ.
Once the estimate is obtained the algorithm can be altered to compute likelihood ratios,
filtered or smoothed values, and residuals and predictions for model diagnostics, see Pitt
& Shephard (1999a), Elerian, Chib & Shephard (2001) and Chib & Jeliazkov (2001) for
details.

The major drawback of the Bayesian approach it that it is computationally demand-
ing and requires good programming skill as well as expertise on Markov chain Monte
Carlo methods. To evaluate the performance of the algorithm one can plot the sample
path and autocorrelation function of each simulated parameter. A useful diagnostic is the
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simulation inefficiency factor which is defined as the ratio of the variance of estimate to
the variance of estimate from a hypothetical i.i.d. sampler. The latter can be estimated
by the posterior variance divided by the total number of sweeps, whereas the former can
be estimated by a HAC estimator, see section 3.3.2 below. An inefficiency factor of say
200 has the interpretation that the algorithm has to be run for 200 as many sweeps as
the i.i.d. sampler to obtain the same numerical precision. The serial correlation can be
quite high for badly behaved algorithms.

The algorithm easily extends to non-equidistant samples, non-stationary diffusions, and
time inhomogeneous diffusions. Furthermore, the Bayesian approach extends to diffusion
type models in generality as described in Pitt, Chib & Shephard (2006).

3.1.4 Further topics

Lo (1988) suggested computing the likelihood function by solving the Kolmogorov forward
equation numerically. See Jensen & Poulsen (2002) for further results on the approxima-
tion.

Goodness of fit and hypothesis testing can be based on the likelihood ratio statistic.
Durham (2003) evaluates various nested models of the short-term interest rate by per-
forming simulated likelihood ratio tests. When comparing non-nested models the dis-
tribution of the likelihood ratio will have to be simulated. Repeating the approximate
maximum likelihood estimation for a large number of datasets seems a lengthy project,
though. Likelihood ratio testing of non-nested models is reviewed in Gourieroux & Mon-
fort (1994).

Asymptotic theory for the maximum likelihood estimator of a discretely observed diffusion
process can be found in for instance Billingsly (1961), Dacunha-Castelle & Florens-Zmirou
(1986), Pedersen (1995a), and Äıt-Sahalia (2002). The asymptotic behavior of the max-
imum likelihood estimators in other diffusion type models such as stochastic volatility
models is yet to be resolved. See, however Sørensen (2003) for an approximation to the
likelihood function of a volatility model resulting in an estimator with tractable asymp-
totics.
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3.2 General estimating functions.

A general estimating function is a function of the parameter and the data,

FN(θ) = FN (Y1, . . . , YN , θ) ∈ R
d.

The related estimator is obtained by solving the estimating equation, FN (θ) = 0. As a
general frame the theory of estimating functions covers virtually any estimating scheme.
For instance the prime example of an estimating function is the score function for which
the maximum likelihood estimator is a zero point. However, in connection with diffusion-
type models we are mainly interested in estimating functions which are fairly explicit as
they posses the analytical tractability lacked by the likelihood.

Estimating functions are often obtained by combining relationships between consecu-
tive observations that are informative about the parameter. I.e. if hij(Y1, . . . , Yi, θ) where
j = 1, . . . , m are real valued functions for, then an estimating function is given by,

FN(θ) =

N∑

i=1

wi(Y1, . . . , Yi−1, θ)hi(Y1, . . . , Yi, θ)

where hi = (hi1, . . . , him)T and w1, . . . , wN are possibly random d by m weight matrix.
Two natural questions arise in connection with diffusion-type models. How do we derive
useful relations? How do we combine these relations in the best possible way?
In what follows we summarize some important classes of estimating functions, review the
theory on optimal estimating functions and the general asymptotic theory. See also Bibby,
Jacobsen & Sørensen (2004) and the references therein for a thorough introductions and
various examples.

3.2.1 Martingale estimating functions

The score function is usually a martingale. Hence, it is natural to try to approximate it
with a simpler estimating function which shares this property. The estimating function
Fn is a martingale estimating function if

Eθ{FN(θ)|Y1, . . . , YN−1} = FN−1(θ) N = 1, 2, . . .

where F0 = 0. Moreover, martingale estimating functions are particularly tractable due
to the well developed martingale limit theory, see Hall & Heyde (1980).
Martingale estimating functions have turned out to be very useful for estimating the
parameters of discretely observed diffusions. If {Yi}i∈N is a Markov chain, then a generic
martingale estimating function is given by

FN(θ) =

N∑

i=2

m∑

j=1

wj(Yi−1, θ)[fj(Yi) −Eθ{fj(Yi)|Yi−1}] (3.3)

where w1, . . . , wm are d× 1 weight functions.
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Example 3.2.1 The linear martingale estimating function studied by Bibby & Sørensen
(1995) takes the form

FN (θ) =
N∑

i=2

w(Yi−1, θ){Yi − Eθ(Yi|Yi−1)}

where w is a d by one weight function. If the underlying diffusion has a mean reverting
linear drift, then the conditional mean is explicitly known. More generally the conditional
means can be simulated. Forman, Markusen & Sørensen (2007) exemplify the down sam-
pled linear estimating function as a means for testing the goodness of fit of mean reverting
linear drift diffusions. △

The martingale estimating function 3.3 is particularly tractable if the functions f1, . . . , fm
are chosen such that the conditional means are explicitly known.

Example 3.2.2 Kessler & Sørensen (1999) suggested basing martingale estimating func-
tions on eigenfunctions φ1, . . . , φm of the infinitesimal generator. If φj is an eigenfunction
of the generator with corresponding eigenvalue −λj, then E{φj(Yi)|Yi−1} = e−λj∆φj(Yi−1).
Our paper Forman & Sørensen (2006) gives a thorough treatment of the martingale esti-
mating functions based on the polynomial eigenfunctions of the Pearson diffusions. △

For non-Markovian diffusion-type models one could in principle apply a martingale esti-
mating function of the form

FN (θ) =

N∑

i=1

m∑

j=1

wij(Y1, . . . , Yi−1, θ)[fj(Yi) − Eθ{f(Yi)|Y1, . . . , Yi−1}]. (3.4)

However, save for trivial cases the conditional moments are not explicitly known and the
computational burden involved in simulating them usually is not worth the effort (one
might as well attack the score function directly). In comparison the prediction based
estimating functions considered below are much more tractable as only unconditional
moments need to be computed.

3.2.2 Prediction based estimating functions

When the data generating process is no longer Markovian, martingale estimating functions
are hard to come by. Sørensen (2000) developed prediction based estimating functions as
a generic alternative. Here we briefly outline the basic ideas and computations.
In order to construct a set of relations the functions f1(Yi), . . . , fm(Yi) of the present
observation are targeted. Each of them we predict based on the functions of past ob-
servations Zjk = hjk(Yi−r+1, . . . , Yi−1), k = 1, . . . , qj . The best linear predictor is the L2

projection π̂
(i−1)
j of fj(Yi) onto the prediction space Pi−1,j spanned by the basic predictors

1, Zj1, . . . , Zjqj . The prediction based estimating function takes the form,

FN (θ) =

N∑

i=r

m∑

j=1

wij(θ){fj(Yi) − π̂
(i−1)
j (θ)} (3.5)
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where wij(θ) is a d-dimensional data dependent vector of weights, the coordinates of

which belong to Pi−1,j . The best linear predictor is given by π̂
(i−1)
j (θ) = âj(θ)

TZ
(i−1)
j with

Z
(i−1)
j = (Z

(i−1)
j1 , . . . , Z

(i−1)
jqj

)T and âj(θ)
T = {âj0(θ), . . . , âjqj(θ)} defined as

{âj1(θ), . . . , âjqj(θ)} = Cj(θ)
−1bj(θ), âj0(θ) = Eθ(Y

j
1 ) −

qj∑

k=1

âjk(θ)Eθ(Z
(r)
jk )

where Cj(θ) is the covariance matrix of (Z
(r)
j1 , . . . , Z

(r)
jqj

)T and bj(θ) is the covariance vector

(Covθ{Z(r)
j1 , fj(Yr+1)}, . . . ,Covθ{Z(r)

jqj
, fj(Yr+1)})T . Thus to find π̂

(i−1)
j (θ), j = 1, . . . , m, we

need to calculate the covariances in Cj(θ) and bj(θ). In practice, the best linear predictor
can be found by means of the Durbin-Levinson algorithm or the innovations algorithm,
see Brockwell & Davis (1991).

Example 3.2.3 Our paper Forman & Sørensen (2006) considers prediction based es-
timating functions for diffusion-type models driven by Pearson diffusion. It is demon-
strated that predicting powers of the observations Y j

i in terms of powers of past obser-
vations {Y κ

i−ℓ | ℓ = 1, . . . , r, κ = 0, . . . , j} yields explicit estimating functions. Calculating

the best linear predictors essentially amounts to finding the joint moments Eθ(Y
κ
1 Y

j
ℓ ) for

0 ≤ κ ≤ j ≤ m and ℓ = 1, . . . , r, which can be explicitly derived for integrated and
summated Pearson diffusions as well as Pearson stochastic volatility models. △

3.2.3 Simple estimating functions

A simple estimating function is an estimating function of the form

FN(θ) =

N∑

i=1

f(Yi, θ)

where Eθf(Yi, θ) = 0. Simple estimating functions do not take into account the relations
between consecutive observations and thus can only identify parameters in the invariant
distribution.

Example 3.2.4 In case {Yi}i∈N has invariant density µ(·, θ) the simple estimating func-
tion with f(y, θ) = ∂θT log µ(y, θ) yields estimators of the parameters of the invariant
distribution. Note that if the observations were independent this would be score function.
Together with other simple estimating functions it was studied by Kessler (2000). △
Another class of simple estimating functions are derived from the first moment condition
of Hansen & Scheinkman (1995).

Example 3.2.5 Suppose that {Yi}i∈N is a discretely observed scalar diffusion with drift
µ(·, θ) and diffusion coefficient σ2(·, θ). Hansen & Scheinkman (1995) show that for all
functions g in the domain of the infinitesimal generator, see section 2.1.4, it holds that
Eθ{µ(Yi, θ)h

′(Yi) + σ2(Yi, θ)h
′′(Yi)/2} = 0. Hence, a simple estimating function is given

by

FN(θ) =

N∑

i=1

m∑

j=1

wj(θ){µ(Yi, θ)h
′
j(Yi) + σ2(Yi, θ)h

′′
j (Yi)/2}

where w1, . . . , wm are d by one weight functions. △
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3.2.4 Optimal estimating functions

The problem of finding the best possible weights for the various estimating function is
better understood in the general framework of Godambe & Heyde (1987). Recall that the
Godambe information of an unbiased estimating function FN is the d by d matrix,

KFN
(θ) = SFN

(θ)TEθ{FN(θ)FN (θ)T}−1SFN
(θ)

where SFN
(θ) = Eθ{∂θTFN (θ)} is the sensitivity function. The estimating function F ⋆

N is
Godambe optimal within a class of unbiased estimating functions FN , if it attains maxi-
mal Godambe information w.r.t. the partial ordering of positive semidefinite matrices. It
is important to notice that KFN

(θ)−1 converges to the asymptotic variance of the related

estimator θ̂N as N → ∞, see theorem 3.2.1 below. Hence, the Godambe optimal estimat-
ing function also attains minimum asymptotic variance among the estimators obtained
from FN . Further the optimal estimating functions can be interpreted as approximations
to the score function. If FN is a closed subspace in L2, then the optimal estimating func-
tion F ⋆

N is the L2 projection of the score function onto FN , see Heyde (1997).

For the generic estimating functions of the previous subsections it is possible to find
optimal weights. If the estimating function takes the form

FN(θ) = w(θ)HN(θ), HN(θ) =
∑N

i=1hi(Y1, . . . , Yi, θ),

then the optimal weights are given by w⋆(θ) = −Eθ{∂θTHN(θ)}Eθ{HN(θ)HN (θ)T}.
The optimal choice of weights in the prediction based estimating function (B.15) were
derived in Sørensen (2000).

Example 3.2.6 In case of the prediction based estimating functions for integrated, sum-
mated, and stochastic volatility Pearson diffusion-models studied in Forman & Sørensen
(2006) the optimal estimating functions are explicit. Forman & Sørensen (2006) show
that in order to calculate the optimal weights all that needs to be found are the mixed
moments Eθ(Y

κ1

1 Y κ2

ℓ1
Y κ3

ℓ2
Y κ4

ℓ3
) for 1 ≤ ℓ1 ≤ ℓ2 ≤ ℓ3 and κ1 + κ2 + κ3 + κ4 ≤ 4m.

For the martingale estimating functions (3.3) and (3.4) the optimal weights are given by

w⋆i (X1, . . . , Xi−1, θ) = −Eθ{∂θThi(X1, . . . , Xi, θ)|X1, . . . , Xi−1} ·
Eθ{hi(X1, . . . , Xi, θ)hi(X1, . . . , Xi, θ)

T |X1, . . . , Xi−1)}.

where hi,j(Y1, . . . , Yi, θ) = fj(Yi) − Eθ{f(Yi)|Y1, . . . , Yi−1}.
Forman & Sørensen (2006) provides explicit formulae for computing the optimal mar-
tingale estimating functions for the plain Pearson diffusions based on their polynomial
eigenfunctions.
Note that in the generic examples optimality is only attained within the class generated
from the initial set of relations. The overall efficiency depends crucially on the choice of
relations, see for instance Kessler (2000).
The choice of relations at the same time is the major strength and the major weakness of
the estimating function approach. Computationally a simple explicit estimating function
is a gain on the inaccessible score function. However there might be a price to pay; the
moment based estimators are often less efficient than the maximum likelihood estimator.
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3.2.5 Asymptotic theory

To simplify matters we consider only unbiased estimating functions of the form

FN(θ) =

N∑

i=r

f(Yi−r+1, . . . , Yi, θ)

which appeals directly to the central limit theorem and the law of large numbers. FN is
unbiased if and only if Eθf(Y1, . . . , Yr, θ) = 0. Denote by θ̂N a solution to the estimating
equation FN (θ) = 0. We briefly outline the regularity conditions ensuring that θ̂N eventu-
ally exists and is a consistent and asymptotically normal estimator of the true parameter
θ0.

R1: θ0 belongs to the interior of Θ.

R2: The process {Yi}i∈N is stationary and ergodic.

R3: There exists a neighborhood U(θ0) of θ0 such that Eθ0f(Y1, . . . , Yr, θ) is finite for all
θ ∈ U(θ0) and Eθ0f(Y1, . . . , Yr, θ0) = 0.

R4: f(y1, . . . , yr, θ) is continuously differentiable w.r.t. θ for all (y1, . . . , yr).

R5: For i, j = 1, . . . , d each family {∂θi
fj(Y1, . . . , Yr, θ)}θ∈U(θ0) is dominated by an inte-

grable random variable.

R6: The matrix S(θ0) = E{∂θT f(Y1, . . . , Yr, θ0)} is invertible.

R7: N−1/2FN (θ0) → N (0, V (θ0)) where V (θ0) = limN→∞N−1E{FN(θ0)FN(θ0)
T}.

Theorem 3.2.1 If R1 - R7 hold true, then with probability tending to one as N → ∞
a solution θ̂N to the estimating equations exists such that θ̂N → θ0 in probability and

n1/2(θ̂N − θ0)
D→ N (0, S(θ0)

−1V (θ0){S(θ0)
−1}T ).

If in addition Eθ0f(Y1, . . . , Yr, θ) 6= 0 when θ 6= θ0 and each family {fj(Y1, . . . , Yr, θ)}θ∈U(θ0)

is dominated by an integrable random variable, then θ̂N is eventually the unique zero point
of FN on every compact subset of Θ containing θ0.

In a forthcoming paper by Jacod & Sørensen (2007) this result it is proved for martin-
gale estimating functions. As the martingale property is needed only for establishing the
central limit theorem for FN(θ0), we have reinforced condition R7 instead of the weaker
assumption that Eθ0f(Y1, . . . , Yr, θ)f(Y1, . . . , Yr, θ)

T be well defined.

It should be noted that the estimator θ̂N is eventually identical to the generalized method
of moments estimator obtained by minimizing the criterion FN(θ)WNFN(θ) for any posi-
tive definite weight matrix WN . Consistency and asymptotic normality of the generalized
method of moments-estimators was proven by Hansen (1982) under slightly different reg-
ularity conditions. We review the generalized method of moments in section ... below.
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In practice, it is usually a good idea to replace for instance the optimal weights w∗
i (θ)

by estimated weights w∗
i (θ̃N ), where θ̃N is a

√
N -consistent estimator of θ. This has the

advantages that the weight matrices need only be evaluated once for every datum and
that a simpler estimating equation is hereby obtained. There is no loss in efficiency by
doing so as the asymptotic variance of the estimator is preserved. The following corollary
to appear in Jacod & Sørensen (2007) establish the desired asymptotic behavior of the
estimating function.

F̃N(θ) =
N∑

i=r

w(Yi−r+1, . . . , Yi−1, θ̃N)h(Yi−r+1, . . . , Yi, θ)

where w is the d by m weight function.

Corollary 3.2.1 Suppose that the above regularity conditions R1 – R3 and R6 – R7
hold true for f(y1, . . . , yr, θ) = w(y1, . . . , yr−1, θ0)h(y1, . . . , yr, θ) and that

R8: The functions θ 7→ w(y1, . . . , yr−1, θ) and θ 7→ h(y1, . . . , yr, θ) are continuously dif-
ferentiable for all possible outcomes of (y1, . . . , yr).

R9: The family {∂θi
w(Y1, . . . , Yr−1, θ)jkfk(Y1, . . . , Yr, θ)}θ∈U(θ0), is dominated by an inte-

grable random variable, and so are {∂θi
w(Y1, . . . , Yr−1, θ)jk∂θi

fk(Y1, . . . , Yr, θ)}θ∈U(θ0)

and {w(Y1, . . . , Yr−1, θ)jk∂θi
fk(Y1, . . . , Yr, θ)}θ∈U(θ0), for every i, j = 1, . . . , d and

k = 1, . . . , m.

Then with probability tending to one as N → ∞ a solution θ̂N to the estimating equation
F̃N(θ) = 0 exists such that θ̂N → θ0 in probability and

n1/2(θ̂N − θ0)
D→ N (0, S(θ0)

−1V (θ0){S(θ0)
−1}T ),

where S(θ0) and V (θ0) are defined as in conditions R6 and R7 above. Moreover, θ̂N
is eventually unique on every compact subset of Θ containing θ0 under the additional
assumptions of theorem 3.2.1.

The estimator θ̃N can, for instance, be obtained from a similar estimating function, where
the estimated weights have been replaced by suitable simple matrices independent of θ,
but such that the estimating equation has a solution.

3.2.6 Further topics

A goodness of fit test can be based on the surplus relations as prescribed by the overiden-
tifying restrictions test, section 3.3.3 below. Our paper Forman, Markusen & Sørensen
(2007) suggest down-sampling the estimating function in order to check that the param-
eter estimates are consistent with varying sampling frequencies.

Criteria for estimating functions being optimal in a high-frequency asymptotics were de-
veloped by Jacobsen (2001). See also Jacobsen (2002).
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3.3 The Generalized Method of Moments

The generalized method of moments - GMM in brief - was introduced by Hansen (1982) as
a general theory concerning estimation in stochastic process models. Among practitioners
it has become a popular statistical tool for making inference from economic and finan-
cial time series. See for instance Melino & Turnbull (1990) on estimation in a stochastic
volatility model.

GMM inference is based on a q-dimensional set of moment conditions given by the function
f : Yr × Θ 7→ Rq satisfying that for the true parameter θ0,

E{f(Yi−r+1, . . . , Yi, θ0)} = 0.

For instance Hansen & Scheinkman (1995) have shown how the infinitesimal generator of
a scalar diffusion can be used to generate moment conditions for the discretely observed
process. The generalized method of moments estimator is the minimum chi square-type
estimator defined by

θ̂N = arg min
θ∈Θ

{
1

N

N∑

i=r

f(Yi−r+1, . . . , Yi, θ)

}
WN

{
1

N

N∑

i=r

f(Yi−r+1, . . . , Yi, θ)

}T

, (3.6)

where {Wn} is an possibly data dependent sequence of positive semi definite q× q weight
matrices converging to a deterministic positive definite matrix W as N → ∞.

The GMM framework includes for instance maximum likelihood and least squares es-
timators. In many ways it parallels the setting of general estimating function. Important
development within the GMM-theory includes covariance estimation, hypothesis testing,
goodness of fit testing, and the behavior of estimates under misspecification. We would like
to point out that many of these results applies readily to the general estimating functions.

While, depending on the moment condition, the GMM-estimators sometimes have a poor
small sample performance, there are still good reasons why GMM is often preferred to the
more efficient maximum likelihood estimators. As pointed out by Hall (2005), GMM does
not require a full model specification and is thus less sensitive to model misspecification.
Furthermore, GMM is computationally far less burdensome if the criterion is chosen to
be simple and explicit. The same of course can be said about estimators obtained from
general estimating functions.

3.3.1 GMM and estimating functions

Note that minimizing the GMM criterion is equivalent to solving
{

1

N

N∑

i=r

∂θT f(Yi−r+1, . . . , Yi, θ)

}T

WN

{
1

N

N∑

i=r

f(Yi−r+1, . . . , Yi, θ)

}
= 0

which makes the connection to generalized estimating functions obvious. Indeed, in its
most general form Hansen (1982) defines the GMM estimator as a solution to an estimat-
ing equation of the above form allowing also an additional term of order oP (N−1/2) to be
added.
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Example 3.3.1 My paper Forman (2005) considers the estimation of the sums of linear
drift diffusions modeled in Bibby, Skovgaard & Sørensen (2005). The autocorrelation
function of these processes take the form

ρ(t, λ, φ) =
m∑

i=1

φi exp(−λit).

where λ1 > . . . > λm > 0 and φ1 + . . .+φm = 1. It is demonstrated that when the number
of underlying diffusions, m is known, the correlation parameters can be estimated by least
squares estimation,

(λ̂N , φ̂N) = arg min
(λ,φ)∈Θ




ρ(λ, φ, 1) − rN(1)
...

ρ(λ, φ, k) − rN(k)




T

Wn




ρ(λ, φ, 1) − rN(1)
...

ρ(λ, φ, k) − rN(k)


 (3.7)

where k ≥ 2m − 1, rN(1), . . . , rN(k) are the empirical correlations, and (Wn)n∈N is a
sequence of k by k weight matrices. The least squares estimator is not a GMM estimator
in the strict sense (3.6) but in the more general sense of Hansen (1982) as

ρ(j, λ, φ) − rN(j) =
1

N

N∑

i=k+1

ρ(j, λ, φ)(Yi − µ)2 − (Yi − µ)(Yi−j − µ)

σ2
+ oP (N−1/2)

where µ and σ2 are the mean and variance of the Yi’s. Hence, the asymptotic behavior of
the least squares estimator can be verified along the lines of GMM. △

3.3.2 Asymptotics and covariance estimation

Hansen (1982) derived the asymptotics for the GMM estimator. Note that the regularity
conditions for asymptotic normality are similar to those given for the general estimating
functions. Assuming {Yi}i∈N to be ergodic, consistency of the GMM estimator can often
be verified directly by showing that the criterion converges to a function which has a
unique zero point at θ0. If further N−1/2

∑N
i=r f(Yi−r+1, . . . , Yi, θ0) admits a central limit

theorem, with asymptotic variance Σ, then θ̂N is asymptotically normal,

N1/2(θ̂N − θ0)
D→ N (0,M(θ0)

TΣ(θ0)M(θ0))

where M(θ) = {F (θ)TWF (θ)}−1F (θ)TW with F (θ) = E{∂θT f(Yi−r+1, . . . , Yi, θ)}. The
weights are optimal in the sense of minimum asymptotic variance if they converge to
W = Σ(θ0)

−1. This being the case the asymptotic variance is F (θ0)
TΣ(θ0)

−1F (θ0). The
optimal estimator is typically found using a two-step procedure where WN = Σ(θ̃N )−1 is
estimated using an initial estimate of θ.

For forming asymptotic confidence intervals for the parameters and for computing op-
timal weights we need to estimate Σ(θ0) (obviously F (θ0) is easy to estimate). In general
Σ(θ) takes the form,

Σ(θ) = Σ0(θ) +

∞∑

j=1

{Σj(θ) + Σj(θ)
T} (3.8)
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where Σj(θ) is the j’th order autocovariance of the process {f(Yi, . . . , Yi+r−1, θ)}i∈N,
namely

Eθ({f(Y1, . . . , Yr, θ)−Eθf(Y1, . . . , Yr, θ)}T{f(Yj+1, . . . , Yj+r, θ)}−Eθf(Yj+1, . . . , Yj+r, θ)}).

Example 3.3.2 If {f(Yi, . . . , Yi+r−1, θ0)}i∈N is serially uncorrelated, then Σ(θ0) = Σ0(θ0)
which is easily estimated. In particular, if {f(Yi, . . . , Yi+r−1, θ0)}i∈N is a martingale dif-
ference, i.e. E{f(Yi−r+1, . . . , Yi, θ0)|Y1, . . . , Yi−1) = 0, then {f(Yi, . . . , Yi+r−1, θ0)}i∈N is
serially uncorrelated and E{f(Yi, . . . , Yi+r−1, θ0)} = 0. △

For non-Markovian diffusion type models the series (3.8 typically has an infinite number
of non-zero terms. The individual autocovariances can be estimated by

Σ̂j =
1

N − j

N−j∑

i=r

{f(Yi−r+1, . . . , Yi, θ̂N) − fN}T{f(Yi−r+j, . . . , Yi+j, θ̂N ) − fN}.

but it is a non-trivial task to combine these into an estimate of Σ which is both consistent
and positive semidefinite. The heteroscedasticity and autocorrelation covariance matrix
is given by

Σ̂HAC = Σ̂0 +
N∑

i=1

ωi,N(Σ̂i + Σ̂T
i )

where ω is a suitable kernel ensuring that Σ̂HAC is positive semidefinite. For instance a
suitable choice could be the Parzen kernel

ωi,N = (1 − 6a2
i + 6a3

i )I{0 ≤ ai ≤ 1/2} + 2(1 − ai)
3I{1/2 ≤ ai ≤ 1} ai = i/(bN + 1)

with bandwidth bN ∈ N or the quadratic spectral kernel

ωi,N =
25b2N
12π2i2

{
sin(mi)

mi
− cos(mi)

}
with mi = 6πi/(5bN)

with bandwidth bN > 0. For each or the above kernels the HAC estimator is consis-
tent under suitable regularity conditions, see Andrews (1991). The optimal bandwidth
in terms of asymptotic mean squared error is bN = O(n1/5). A procedure for bandwidth
selection was proposed by Newey & West (1994).
The finite sample performance of the HAC estimator can be quite poor if the autocorrela-
tion dies out slowly. This for instance is the case if the process {f(Yi, . . . , Yi+r−1, θ0)}i∈N

has a substantial autoregressive component. Andrews & Monahan (1992) propose a mod-
ification known as pre-whitening and recoloring to account for the problem. The idea is to
fit a first order autoregression to {f(Yi, . . . , Yi+r−1, θ0)}i∈N, compute the HAC estimator
for the residuals, and re-transform to obtain an estimate of Σ. However, if an explicit
expression of Σ(θ) can be found together with an initial estimate θ̃N , then Σ(θ̃N ) usually
is the more precise estimate, whereas Σ̂HAC by construction is more robust.

Example 3.3.3 My paper Forman (2005) presents explicit expressions of the covariance
matrix for the least squares estimator (3.7) when the underlying diffusions belong to the
Pearson family. △
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3.3.3 The overidentifying restrictions test

Only d equations are needed to identify the parameter. A model specification test can thus
be based on the remaining q−d equations by checking that N−1

∑N
i=r f(Yi−r+1, . . . , Yi, θ̂N)

is close to zero. Hansen (1982) introduced the overidentifying restrictions test for testing
H0 : Ef(Yi, . . . , Yi+r−1, θ0) = 0 using the test statistic

JN = N

{
1

N

N∑

i=r

f(Yi−r+1, . . . , Yi, θ̂N)

}T

Σ̂−1
N

{
1

N

N∑

i=r

f(Yi−r+1, . . . , Yi, θ̂N )

}
,

which converges to a χ2
q−d distribution under the null. Newey (1985) proposed basing

the goodness of fit test on a subset of moment conditions (the ones believed to fail) to
enhance the power.

Example 3.3.4 Forman (2005) uses the overidentifying restrictions test based on the
criterion (3.7) to estimate the number of terms in the summed diffusion model of Bibby,
Skovgaard & Sørensen (2005). The suggested estimator is the smallest number of terms
for which the model passes the test. By appealing to the law of the iterated logarithm, it
is demonstrated that the estimator is consistent when the level of the test tends to zero at
a sufficiently slow rate as N → ∞. △

Hall (2000) considered the behavior of the GMM estimator and the HAC estimators under
misspecification, and proved that overidentifying restrictions test is consistent assuming
that under the alternative Ef(Yi−r+1, . . . , Yi, θ) = µ(θ) where ||µ(θ)|| > 0 for all θ ∈ Θ,
that θ̂N → θ as N → ∞ for some θ ∈ Θ, and that Σ̂−1

N converges to a positive definite
matrix. Forman, Markusen & Sørensen (2007) prove the consistency of their goodness of
fit tests under similar conditions. Further Hall (2000) established the convergence of the
centered HAC estimator under certain regularity conditions.

3.3.4 Further topics

The use of moment conditions in statistical analysis dates back to the 1890’s where Pearson
introduced it as a mean to estimate the parameters of for instance the Pearson distribu-
tions, Pearson (1895).

Nested hypothesis can be tested in the GMM framework by mimicking the Wald, La-
grange Multiplier, and Likelihood Ratio tests from likelihood theory. The Likelihood
function is simply replaced by the GMM criterion, Newey & West (1987a). Hall & Inoue
(2003) investigate the behavior of these tests under misspecification.

The HAC estimator is known in other fields as the empirical covariance estimator or
the sandwich covariance estimator. A general concern is the overall efficiency which can
be very poor, see for instance, Liang, Zeger & Qaqish (1992) and Kauermann & Carroll
(2004).
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3.4 Nonparametric inference

Nonparametric diffusion-type models provides a natural framework for goodness of fit
testing. Here we briefly outline some of the existing schemes for testing a parametric
diffusion model against the nonparametric alternative

dXt = µ(Xt)dt+ σ(Xt)dBt (3.9)

where µ and σ satisfy suitable regularity conditions to ensure the existence and unique-
ness of a stationary weak solution. Further we consider nonparametric estimation of the
drift, diffusion coefficient, the invariant density and the transition densities of a plain
stationary diffusion. The basic ideas are taken from standard nonparametric theory on
density estimation and regression analysis. See for instance Bosq (1996) for a general
introduction in the stochastic process setting.

Whereas the nonparametric theory for scalar diffusions is well developed, little has been
said so far about the non-Markovian diffusion-type models. To my knowledge no literature
exist on nonparametric inference for integrated and summated diffusions. In particular,
the estimation of the drift and diffusion coefficients of the underlying diffusions from a
discretely observed diffusion-type model is a topic yet to be explored. Note that in case
of a sum-of-diffusions model this clearly presents an ill-posed problem unless the model
is restricted somehow.

3.4.1 Estimation of the drift and the diffusion coefficient

The nonparametric estimators of the drift and the diffusion coefficient can be derived
from the approximate regression

Xi∆ −X(i−1)∆ ≈ µ(X(i−1)∆)∆ + σ(X(i−1)∆)∆1/2εi (3.10)

where {εi} are i.i.d. N (0, 1) variables. As

∆−1E(Xi∆ −X(i−1)∆|X(i−1)∆ = x) = µ(x) + o(∆)

∆−1E({Xi∆ −X(i−1)∆}2|X(i−1)∆ = x) = σ2(x) + o(∆)

approximate kernel regression estimates of µ and σ2 are given by,

µ̂(x) =

N∑

i=2

Yi − Yi−1

∆ · bN
K

(
Yi−1 − x

bN

)
·
{

N∑

i=2

1

bN
K

(
Yi−1 − x

bN

)}−1

σ̂2(x) =
N∑

i=2

(Yi − Yi−1)
2

∆ · bN
K

(
Yi−1 − x

bN

)
·
{

N∑

i=2

1

bN
K

(
Yi−1 − x

bN

)}−1

where K is the kernel and bN is the bandwidth. See Florens-Zmirou (1993) and Bandi
& Phillips (2003) for results on the consistency and asymptotic normality of two similar
kernel regression estimates as, N → ∞, bN → 0, ∆ = ∆N → 0 and N∆N → ∞. For
fixed ∆ the estimates are inconsistent due to the approximation error. Later studies
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indicate that the bias is particularly bad near the boundaries. The boundary bias is
reduced when the conditional moments are estimated by local polynomial regression,
Fan & Gijbels (1996). See also Hoffmann (1999) on wavelet based estimators. The
local polynomial estimators are defined as follows. Consider the Taylor approximation
µ(x) ≈ µ(x0) + β1(x − x0) + . . . + βq(x − x0)

q, then µ̂bN (x0) = β̂0 where (β̂0, . . . , β̂q) are
the least squares estimators obtained by minimizing the criterion,

N∑

i=2

{Yi − Yi−1 − β0 − . . .− βq(Yi−1 − x0)
q}2 1

bN
K

(
Yi−1 − x0

bN

)

for a suitable choice of kernel K and bandwidth bN . Fan & Gijbels (1996) recommends
the local linear estimator; q = 1. The diffusion estimator σ̂2

bN
(x0) is obtained in a similar

way when replacing Yi − Yi−1 with {Yi − Yi−1}2 in the above. Fan & Yao (1998) show
that the bias of σ̂2

bN
is further reduced when the squared increments are replaced by the

squared residuals {Yi − Yi−1 − µ̂bN (Yi−1)}2. At times the local linear estimators can also
be improved by weighting the least squares estimators.
Nonparametric estimators based on higher order differences are suggested by Stanton
(1997) who points of their potential in bias reduction but fail to recognize the accompa-
nying variance inflation later documented by Fan & Zhang (2003).
A general problem is that in practice it is hard to quantify the approximation error. See
the discussion following Fan (2005) for a discouraging example in the parametric case. The
approximation error can also be sidestepped by recognizing that the conditional moments
m(x) = E(Xi∆ −X(i−1)∆|X(i−1)∆ = x) and s2(x) = E({Xi∆ −X(i−1)∆}2|X(i−1)∆ = x) are
being estimated rather than the drift and diffusion coefficients in themselves.

3.4.2 The generalized likelihood ratio test

The generalized likelihood ratio test of Fan, Zhang & Zhang (2001) can be applied to test
that the drift or diffusion coefficient have a specific parameterized form. For testing

H0 : µ(x) = µ0(x, θ) for some θ ∈ Θ against HA : µ(x) 6= µ0(x, θ) ∀θ ∈ Θ

the generalized likelihood ratio statistic is given by

λN (bN) =
N − 1

2
log

{
RSS0

RSS1(bN )

}
(3.11)

where

RSS0 =
N∑

i=2

{Yi − Yi−1 − ∆µ0(Yi−1, θ̂N )}2

σ̃2
N (Yi−1)∆1/2

, RSS1(bN) =
N∑

i=2

{Yi − Yi−1 − ∆µ̂bN (Yi−1)}2

σ̃2
N (Yi−1)∆1/2

.

Here µ̂bN is the weighted local linear estimator and θ̂N is the weighted least squares
estimator from the approximate regression (3.10). The weights are given by σ̃2

N (Yi−1)
−1

where σ̃2
N is an initial estimate of the diffusion coefficient. In order to test that

H ′
0 : σ2(x) = σ2

0(x, θ) for some θ ∈ Θ against HA : σ2(x) 6= σ2
0(x, θ) ∀θ ∈ Θ
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consider the log-transformed and centered residuals of the approximate regression (3.10),

Zi = log{∆−3/2(Yi − Yi−1) − ∆−1/2µ̂bN (Yi−1)} − E(log εi).

The (unweighted) local linear estimator ̂log(σ2)bN and the (unweighted) least squares

estimator θ̂N are obtained from the regression of residuals

Zi ≈ log{σ2
0(Yi−1, θ)} + ηi, ηi = log(εi) − E{log(εi)}. (3.12)

Hence, the same form of statistic (3.11) applies with RSS0 =
∑N

i=2{Zi− log(σ2
0)(Yi−1, θ̂)}2

and RSS1(bN ) =
∑N

i=2{Zi − ̂log(σ2)bN (Yi−1)}2. Fan & Zhang (2003) indicate a limit
distribution of λN(bN ), which in both cases is independent of nuisance parameters and
approximates a χ2 distribution with increasing degrees of freedom. The proof is left for
future research. To be specific, the presumed limit distribution is

rKλN(bN ) − dN(bN )√
2dN(bN )

D→ N (0, 1) as bN → 0 and Nb
3/2
N → ∞

where dN(bN ) = cKrKb
−1
N |Ω|, rk and cK are constants depending on the kernel K, see

table 2 in Fan, Zhang & Zhang (2001), and |Ω| is the length of the support of {Yi}i∈N.
In finite samples we suggest replacing the support of the data with the range. It seems
a reasonable thing to do, in particular if the support is unlimited as in the examples
of Fan & Zhang (2003). We presume that the asymptotic result should be considered
in a high frequency asymptotics as ∆ = ∆N → 0, otherwise the estimators obtained
from the approximate regression would be inconsistent. In practice Fan & Zhang (2003)
recommends bootstrapping the p-value under the null (nuisance parameters can be fixed
at whatever point of interest), which probably improves on possible biases.

3.4.3 Inference based on the invariant density

Äıt-Sahalia (1996b) is one of the first to consider goodness of fit for diffusion models. To
this end he compares the invariant density implied by a parametric model to a nonpara-
metric estimator

π̂(x) =
1

N

N∑

i=1

1

bN
K

(
Yi − x

bN

)

where K is a kernel, say a symmetric density function subject to certain regularity con-
ditions, and bN is the bandwidth. The goodness of fit statistic is given by

M̂ =
1

N

N∑

i=1

{π(Yi, θ̂) − π̂(Yi)}2 with θ̂N = arg min
θ∈Θ

1

N

N∑

i=1

{π(Yi, θ) − π̂(Yi)}2.

Assuming the process to be mixing at a sufficiently fast rate and the density π(x, θ) to be
smooth it is demonstrated that θ̂N is asymptotically normal and

b
−1/2
N {M̂ −EM} → N (0, VM)

where EM =
∫
K(x)2dx ·

∫
π0(x)

2dx and VM = 2
∫
π0(x)

4dx ·
∫
{
∫
K(u)K(u+ x)du}2dx.

Further Äıt-Sahalia (1996b) applies the test to a number of existing diffusion models for
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interest rates, firmly rejecting every one of them and pointing to nonlinearity of drift as
the main reason of failure. However, later simulation studies conducted by Pritsker (1998)
and Chapman & Pearson (2000) questions these finding as the small sample behavior of
the test is often quite bad. Indeed Pritsker (1998) finds that it takes 2755 years of daily
data for the asymptotics to work adequately in an empirically relevant Vasicek model.

The relation between the drift, the diffusion coefficient and the the invariant density
can be inverted to yield a non-parametric estimate of either the drift or the diffusion coef-
ficient in a semiparametric diffusion model. For instance Äıt-Sahalia (1996a) transforms
the nonparametric density estimate into a nonparametric estimate of the diffusion coeffi-
cient in a semiparametric diffusion model with linear drift. This estimator is consistent
in the low frequency setting.

3.4.4 Inference based on the transition densities

Please note that two different diffusions may have the same invariant density. Hence, the
test of Äıt-Sahalia (1996b) is not omnibus for the class of diffusion models. Goodness
of fit could instead be based on the difference between nonparametric and parametric
estimates of the transition densities. In comparison to the test based on the invariant
density these tests are consistent against a larger family of alternatives.
Fan, Yao & Tong (1998) suggest estimating the transition density by use of a double
kernel method. Note that

E

{
1

bN
K

(
Yi − x

bN

)
|Yi−1 = x0

}
→ p∆(x|x0) as bN → 0.

Thus, p∆(x|x0) can for instance be estimated by

p̂∆(x|x0) =

N∑

i=2

1

b2N
K

(
Yi − x

bN

)
K

(
Yi−1 − x0

bN

)
·
{

N∑

i=2

1

bN
K

(
Yi−1 − x0

bN

)}−1

or more generally by a local linear or polynomial estimator. A goodness of fit test can be
based on the log-likelihood ratio of the parametric and nonparametric estimates of the
transition densities,

λ(bN) =
N∑

i=2

log p̂∆(Yi|Yi−1) −
N∑

i=2

log p∆(Yi|Yi−1, θ̂)

where θ̂N is the maximum likelihood estimator and p̂∆ is the local linear transition density
estimator. This is a generalized likelihood ratio test, see Fan, Zhang & Zhang (2001).

The Kolmogorov forward and backward equations implies the relation

1

2

∂2

∂x2
{σ2(x, θ)p∆(x|x0)}−

∂

∂x
{µ(x, θ)p∆(x|x0)} = µ(x0, θ)

∂

∂x0
p∆(x|x0)−

1

2
σ2(x0, θ)

∂2

∂x2
0

p∆(x|x0)

between the drift, the diffusion coefficient, and the transition probabilities of a diffusion.
Äıt-Sahalia (1996b) propose a goodness of fit test based on this relation where nonpara-
metric estimates are inserted for the transition probabilities.
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In principle, the transition densities determines the drift and the diffusion coefficient
of the diffusion. Estimates of the drift and the diffusion coefficients can be obtained
from the estimates of the transition probabilities and the invariant density as follows. We
appeal to the alternative parameterization of Hansen, Scheinkman & Touzi (1998), see
section 2.1.4. Assuming that the diffusion is ρ-mixing we look for the eigenfunction φ1

of the infinitesimal generator attaining maximal non-zero eigenvalue −λ1 < 0. At the
same time φ1 is the the eigenfunction of the ∆-step transition operator attaining maximal
correlation. That, is

exp(−λ1∆) = Cor{φ1(Yi), φ1(Yi+1)} = sup
f : Ef(Yi)=0

Cor{f(Yi), f(Yi+1)}.

In practice, φ1 and λ1 can be estimated by means of wavelet methods. Gobet, Hoffmann
& Reiß (2004) finds the optimal rate of convergence for this scheme which is consistent
in the low frequency setting.

The usefulness of the estimators and tests based on the transition densities is some-
what questionable as the small sample behavior of the nonparametric estimates of the
transition densities undoubtedly is even worse than for the invariant density.

3.4.5 Further topics

Goodness of fit for multivariate continuous-time models can also be based on the condi-
tional characteristic functions as demonstrated by Chen & Hong (2005).

Äıt-Sahalia, Hansen & Scheinkman (2003) suggest testing that a process is Markovian
by testing that nonparametric estimates of the one- and two-step transition probabilities
behave as prescribed by the Chapman-Kolmogorov equations.

Recent results on the estimation of the invariant density of the volatility process of a
stochastic volatility model are given by van Es, Spreij & van Zanten (2003) and Comte
& Genon-Catalot (2006).
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3.5 Diagnostics: the uniform residuals

A powerful diagnostic for stochastic process models is provided by the uniform residu-
als. In a univariate stochastic process model the uniform residuals U1(θ), . . . , UN(θ) are
obtained when applying the conditional probability transform given past observations to
the present observations, i.e.

Ui(θ) = Fθ(Yi|Y1, . . . , Yi−1).

If the model is correctly specified for θ0 ∈ Θ, then U1(θ0) . . . , UN(θ0) are i.i.d. uniform
variables. This result goes back to Rosenblatt (1952). As a tool for model checking in
diffusion models it appears in Pedersen (1994).

In practice, the parameter must be estimated prior to computing the residuals. If the
estimator θ̂N is consistent, then the residuals Ûi = Ui(θ̂N) are approximately i.i.d. uni-
form as N → ∞. Moreover the probability transform must be found by simulation as its
functional form usually is not explicitly known. For a plain diffusion model for instance the
Euler scheme applies. For a non-Markovian diffusion-driven model the probability trans-
form can be simulated by use of a suitable importance sampler or a Metropolis-Hastings
algorithm, see for instance Elerian, Chib & Shephard (2001). We refer to sections 3.1.1
and 3.1.3 above and the references therein for further details.

In higher dimensions the probability transform is useless for model checking as it does not
yield i.i.d. uniform random variables when applied to a multivariate process. Hence, in
order to obtain residuals for a multivariate process, the coordinates of the process must
be sequentialized. Note that the values of the residuals depend on the ordering.

3.5.1 Goodness of fit testing

Hong & Li (2005) propose a goodness of fit test based on the uniform residuals of a
parametric model for which a

√
N -consistent estimate of the parameter exists. It applies to

a vide range of stationary stochastic process models including diffusions and the diffusion-
type models considered in chapter 2. The test statistic is given by

QbN (j) =
bN (N − j)

∫ 1

0

∫ 1

0
|ĝbN (j, u1, u2) − 1|2du1du2 −AbN

V 1/2

where ĝ(j) is a boundary modified kernel density estimator of the joint density of (Ui, Ui−j)
based on the kernel k and bandwidth bN , see Hong & Li (2005) for the exact form. The
normalizing constants are given by

AbN =


(b−1

N − 2)

∫ 1

−1

k(u)2du+ 2

∫ 1

0

∫ w

−1

{
k(w)∫ w

−1
k(v)dv

}2

dudw




2

− 1

V = 2

(∫ 1

−1

{∫ 1

−1

k(u+ v)k(v)dv

}2

du

)2

.
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In case the model is correct {QbN (1), . . . , QbN (k)} converge in distribution to the k-
dimensional normal distribution as N → ∞, bN → 0, and Nb5N → ∞. The bandwidth
bN = sN(Û) · N−1/6 where sN(Û) is the empirical standard deviation of the residuals is
recommended. The advantage of the test is that the probability transform removes the
dependence in the data, so that the asymptotics work faster than for the nonparamet-
ric specification tests of Äıt-Sahalia (1996b) considered in sections 3.4.3 and 3.4.4 above.
Further Hong & Li (2005) show that their test is omnibus for univariate models subject to
certain regularity conditions. I.e. it is consistent against any other stationary stochastic
process model satisfying the regularity conditions. The same is not true for multivariate
models. See Chen & Hong (2005) for an example of a misspecified multivariate model for
which the residuals are i.i.d. uniform whatever ordering is chosen.

In addition to the overall goodness of fit tests Hong & Li (2005) suggest diagnostics
based on weighted averages of the empirical correlations of Um

i and U l
i−j for varying lags

j. These provide some insight as to how the model could be misspecified. In essence the
tests of Hong & Li (2005) captures the information contained in the QQ-plot and the
lag-plot of Ûi vs Ûi−j . Other indications of misspecification might display in the plots of
residuals vs time and residuals vs past observations.
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Abstract

Least squares estimators are developed for the parameters in the autocorre-
lation function of a stationary process. Regularity conditions for consistency
and asymptotic normality are given, and optimal weights are derived. It
is shown how goodness of fit and model selection can be based on the
distance between empirical and fitted autocorrelations. Examples of sums
of Ornstein-Uhlenbeck type processes and sums of linear drift diffusions are
studied in greater detail. The performance of the estimators and the goodness
of fit test is evaluated through Monte Carlo simulations.

Key words: asymptotic normality, consistency, goodness of fit, Levy
process, model selection, optimal estimation, stochastic differential equation.

A.1 Introduction

When dealing with data series sampled over time measurements typically are dependent
and quantifying dependence is thus an important part of the statistical analysis. One
aspect often focused upon is that of simple linear correlation as summarized by the auto-
correlation function of a stationary stochastic process. Many statistical models in longitu-
dinal data analysis (see Diggle et al. (2002)) and time series analysis involve parameters
specifying the correlation structure. Matching the correlation structure found in real data
is an issue in model building, model selection, and in assesing goodness of fit. Stochastic
processes with a more delicate correlation structure have recently been constructed in
Barndorff-Nielsen, Jensen & Sørensen (1998) and Bibby, Skovgaard & Sørensen (2005).
The purpose being to better model the autocorrelation found in high frequency data in
the fields of turbulence and finance, see also Barndorff-Nielsen & Shephard (2001a). In
this paper we consider inference for the correlation parameters in models such as these.
It is often the case that the likelihood function is intractable, hence other means of esti-
mating the parameters must be sought for. A straightforward and thus often used way of
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estimating the parameters is by least squares estimation based on the empirical autocor-
relation function. The estimates in the examples of Bibby, Skovgaard & Sørensen (2005)
and Barndorff-Nielsen & Shephard (2001a) are least squares estimates. The advantages
to this approach are obvious. Least squares estimation is simple from a theoretical as
well as a computational point of view. As demonstrated in section A.2 below the least
squares estimator is strongly consistent and eventually unique under mild regularity con-
ditions. In practice, estimates can be calculated with any statistical standard software,
and the adequacy of the estimates calculated can be checked by comparing the estimated
autocorrelation function with the empirical one. Nevertheless, least squares estimation of
correlation parameters is not just a matter of simple curve fitting. Contrary to the case of
simple regression the empirical autocorrelations typically have unequal variances and are
mutually dependent. This should be taken into account when looking at the deviation
between empirical and estimated autocorrelation functions.

The structure of the paper is as follows. In section A.2 we consider least squares es-
timation for autocorrelation parameters in a general setup. The asymptotic theory for
the least squares estimator is developed, an optimal weight is derived together with a
goodness of fit statistic and a model selection strategy. In section 3 we apply the results
of section A.2 to the processes constructed in Barndorff-Nielsen, Jensen & Sørensen (1998)
and Bibby, Skovgaard & Sørensen (2005). That is stationary stochastic processes with
autocorrelation functions of the form ρ(t) =

∑m
j=1 φjλ

t
j. In particular, we show that the

integer valued parameter m can be estimated consistently. The examples are concluded
by a thorough simulation study.

A.2 LSE for autocorrelation parameters

In this section we consider least squares estimation for the parameter in an autocorrela-
tion function of a stationary process. Large sample results are derived under standard
regularity conditions. As usual the conditions form a compromise between the demands
for generality and simplicity; They are well suited for several classes of processes as the
ones considered in section A.3 although not necessary in a strict mathematical sense.
For technical details we refer to the proofs in appendix A.

Recall that the autocorrelation function of a stationary stochastic process (Yi)i∈N is defined
by

ρ(t) = Cor(Yi, Yi+t) = {E(YiYi+t) − µ2} · σ−2, t ∈ N0

where µ is the mean of (Yi)i∈N and σ2 is the variance. Based on a the sample Y1, . . . , Yn
the t-lag correlation ρ(t), where t < n, can be estimated by a moment estimator such as

rn,t =
cn,t
s2
n

=
1
n−t
∑n−t

i=1 YiYi+t − { 1
n−t
∑n−t

i=1 Yi}{ 1
n−t
∑n−t

i=1 Yi+t}
1
n

∑n
i=1 Y

2
i − { 1

n

∑n
i=1 Yi}2

, (A.1)

where the nominator cn,t is the empirical t-lag covariance and the denominator s2
n = cn,0

is the empirical variance of Y1, . . . , Yn. We term rn,t the empirical t-lag correlation. If
(Yi)i∈N is ergodic, then rn,t is a strongly consistent estimator of ρ(t) for any fixed t.
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Remark A.2.1 Other estimators are referred to as empirical t-lag correlations. The cor-
relation of the empirical distribution on {(Y1, Yt+1), . . . , (Yn−t, Yn)} contrary to rn,t attains
values in [−1, 1] almost surely. Another often employed empirical correlation is obtained
by replacing the empirical covariance in (A.1) with 1

n−t
∑n−t

i=1 YiYi+t − { 1
n

∑n
i=1 Yi}2. As

it is based on the pooled estimate of µ it is argued to be a better estimate than rn,t.
However, it is not invariant under translation.

For the present exposure we stick to the empirical correlations defined by (A.1) noting
that the large sample results given below are valid for other empirical correlations, such
as the ones of remark A.2.1, as well.

A.2.1 The least squares estimator

Suppose that the autocorrelation function ρ of (Yi)i∈N belongs to a parameterized class
{ρ(θ) : θ ∈ Θ} where Θ ⊆ Rd. We denote the true parameter by θ⋆ so that ρ = ρ(θ⋆).
For a fixed k ∈ N we consider the one through k-lag correlations using bold face letters
to indicate vectors of such, e.g.

rn,k = {rn,1, . . . , rn,k}T
ρk(θ) = {ρ(θ, 1), . . . , ρ(θ, k)}T .

A least squares estimator of θ is obtained by minimizing the criterion

lWn (θ) = {ρk(θ) − rn,k}T ·Wn · {ρk(θ) − rn,k} (A.2)

where (Wn)n∈N is a sequence of positive definite k by k weight matrices which may depend
on the data.

Definition A.2.1 Let Θ⋆ be a subset of Θ. The least squares estimator of θ on Θ⋆ is a
sequence of Θ⋆-valued random variables (θ̂n)n∈N satisfying that

lWn (θ̂n) = inf
θ∈Θ⋆

lWn (θ)

eventually with probability one.

For calculations it is useful to note that lWn has the same minima as

l̃Wn = {s2
n · ρk(θ) − cn,k}T ·Wn · {s2

n · ρk(θ) − cn,k}. (A.3)

Re-expressing the least squares estimator in terms of empirical covariances is beneficial
since the means of the empirical covariances can be calculated whereas the means of the
empirical correlations usually cannot.
The least squares estimator resembles the GMM estimators of Hansen (1982), but is not
a GMM estimator in itself. Note for instance that

E(s2
n · ρ(t) − cn,t) = ρ(t)σ2{ 1

n − 1
n−t} − 2ρ(t)σ2 1

n

∑n
s=1

n−s
n ρ(s)

+ σ2 1
n−t

∑n−t
s=1

n−t−s
n−t {ρ(t+ s) + ρ(|t− s|)}

need not equal zero. The least squares estimator can also be regarded from an estimating
function point of view. By differentiating l̃Wn we obtain an estimating function for θ which
is typically biased but nevertheless gives rise to consistent estimates.
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A.2.2 Consistency and uniqueness

Only mild regularity conditions are needed to ensure the eventual existence and strong
consistency of least squares estimators on every compact subset of Θ containing θ⋆.

A1: The process (Yi)i∈N is stationary and ergodic.

A2: For all θ1, θ2 ∈ Θ we have that ρk(θ1) = ρk(θ2) if and only if θ1 = θ2.

A3: (Wn)n∈N converge almost surely to a non-random, regular matrix W0.

The strategy for proving consistency is standard. One shows that lWn converge uniformly
to a deterministic function lW having a unique global minimum at θ⋆. In addition to A1-
A3, we need an assumption to guarantee that lW only attains values close to the minimum
in a small neighborhood of θ⋆. If Θ is compact, it suffices that ρk be continuous. For
non-compact Θ we also have to rule out approximate minimum points on the boundary
of Θ.

Theorem A.2.1 (strong consistency.)
Under A1-A3 the following hold:

1. If θ 7→ ρk(θ) is continuous, then for every compact subset Θ⋆ of Θ such that θ⋆ ∈ Θ⋆

a least squares estimator of θ on Θ⋆ exist, and any least squares estimator of θ on
Θ⋆ converge almost surely to θ⋆.

2. If ρk satisfies that
inf{|ρk(θ) − ρk|2 : |θ − θ⋆| ≥ ε} > 0 (A.4)

for all ε > 0 then a least squares estimator on Θ exists, and any least squares
estimator on Θ converge almost surely to θ⋆.

Note that if ρk is continuous and the parameter space Θ is compact, then by A2 condition
(A.4) holds and case 1. and 2. coincide.
The least squares estimators of theorem A.2.1 can be shown to be unique eventually with
probability one if the limit criterion is convex in a neighborhood of θ⋆. The following as-
sumptions ensure that this is the case. The same assumption is used when demonstrating
asymptotic normality of the least squares estimator.

A4: For t = 1, . . . , k the mappings θ 7→ ρ(θ, t) are twice continously differentiable with
respect to θ and the first order derivative V = ∂θT ρk(θ)|θ=θ⋆ evaluated at θ⋆ satisfy
that for some d-subset {t1, . . . , td} of {1, . . . , k} the rows (V )t1 , . . . , (V )td are linearly
independent.

It is illuminating to make the following observation. The second order derivative of the
limit criterion lW at θ⋆ equals 2 ·V TW0V which by the regularity of W0 is positive definite
if and only if V has rank d. Namely if the requirements of A4 are satisfied. Consequently,
if A4 is to hold, the number of autocorrelations considered must be greater than or equal
to the number of parameters in the autocorrelation function, k ≥ d that is.

Theorem A.2.2 (uniqueness)
Suppose that A1-A4 hold. Then in both cases 1. and 2. of theorem A.2.1 the least squares
estimator is unique eventually with probability one.
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A.2.3 Asymptotic normality and optimal weights

In order to show root n consistency of the least squares estimator a few more assumptions
are needed. The definition of α-mixing can be found in Doukhan (1994) or Nahapetian
(1991).

A5: θ⋆ is an interior point of Θ.

A6: There exists a δ > 0 such that E(Y
2·(δ+2)
1 ) is finite and such that (Yt)t∈N is α-mixing

with mixing coefficients satisfying that
∑∞

i=1 α
δ·(δ+2)−1

i <∞.

The second assumption strengthens A1. It allows us to apply the central limit theorem
in the proof of theorem A.2.3 below and could be replaced by any other condition with
the same impact. Please note that the processes considered in section A.3.1 are α-mixing
with exponentially decaying mixing coefficients and hence comply with A6.

Theorem A.2.3 (asymptotic normality.)
Assume that A1-A6 hold. If θ̂n is a consistent least squares estimator, then

√
n · {θ̂n − θ⋆} D→ N (0,Λ)

where Λ = (V TW0V )−1 ·V TW0ΣW0V ·(V TW0V )−1 and Σ is the k by k matrix with entries
given by

σs,t = ρ(s)ρ(t)S0,0 − ρ(s)S0,t − ρ(t)S0,s + Ss,t

where Ss,t for s, t ∈ {0, . . . , k} denotes the series

µ1,1,s+1,t+1 − ρ(s)ρ(t) +

∞∑

i=1

{µ1,s+1,i+1,i+t+1 + µ1,t+1,i+1,i+s+1 − 2ρ(s)ρ(t)}

of standardized joint moments

µi1,i2,i3,i4 = E
(
{(Yi1 − µ)(Yi2 − µ)(Yi3 − µ)(Yi4 − µ)} · σ−4

)
.

If confidence sets for θ are to be calculated from theorem A.2.3, a consistent estimate of
the variance matrix Λ is in demand. To this end we consider the estimation of each of the
components V , W0, and Σ. A consistent estimator of V is given by V̂n = ∂θT ρk(θ)|θ=θ̂n

,
whereas W0 by assumption can be estimated by Wn. The matrix Σ forms a real chal-
lenge as the standardized joint moments need not be known let alone the series of such.
Moreover, as the model is semiparametric, Σ may not be fully specified as a function of
θ. Nevertheless, some cases including example A.3.1 yield simple closed form expressions
of the moment series leading to explicit estimators of Σ. In connection with the examples
of section A.3.1 it is advantageous to restate the matrix Σ in terms of cumulants.

Remark A.2.2 Following Barndorff-Nielsen & Cox (1989) but with a slightly different
annotation we define the standardized joint cumulants by

κi1,i2,i3,i4 = µi1,i2,i3,i4 − ρ|i2 − i1|ρ|i4 − i3| − ρ|i3 − i1|ρ|i4 − i2| − ρ|i4 − i1|ρ|i3 − i2|.
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For s, t ∈ {0, . . . , k} let Ks,t denote the cumulant series

κ1,1,s+1,t+1 +

∞∑

i=1

{κ1,s+1,i+1,i+t+1 + κ1,t+1,i+1,i+s+1},

then

σs,t = ρ(s)ρ(t)K0,0 − ρ(s)K0,t − ρ(t)K0,s +Ks,t

+ρ(s)ρ(t)R0,0 − ρ(s)R0,t − ρ(t)R0,s +Rs,t

where

Rs,t = ρ(|s− t|) + ρ(s)ρ(t) + 2 ·∑∞
i=1ρ(i){ρ(i+ |s− t|) + ρ(i+ s+ t)}

+
∑|s−t|

i=1 ρ(i)ρ(|s− t| − i) +
∑s

i=1ρ(i+ t)ρ(s− i) +
∑t

i=1ρ(i+ s)ρ(t− i).

is a remainder consisting of essentially known terms.

In general closed form expressions of Σ are rare. Still Σ can be estimated by a kernel
estimator, the so-called autocorrelation consistent covariance matrix estimator going back
to Newey & West (1987b) and White (1984). We recommend Hansen (1992) for an
introduction, Andrews & Monahan (1992) and Jansson (2002) for further reading. It is
not obvious from the statement of theorem A.2.3 that Σ is a long run covariance matrix.
However, from the proof we get that

Σ = lim
n→∞

n∑

i=1

n∑

i′=1

E(ZiZ
T
i′ )

where Zi = {ρ(1)Y 2
i − YiYi+1, . . . , ρ(k)Y

2
i − YiYi+k}T defines a k dimensional stationary

process with the same mixing properties as (Yi)i∈N.

An important issue when applying the least squares estimator is to choose the weights
so that the resulting estimate is likely to be as close to θ⋆ as possible. Let us consider
the class of least squares estimators induced by sequences of weight matrices (Wn)n∈N

satisfying A3. We term a sequence of weight matrices optimal if the asymptotic variance
of the induced estimator θ̂n is minimal with respect to the partial ordering of positive
semidefinite d by d matrices. Please note that optimality of a sequence of weight matrices
depends only on the limit W0. The following result carries over directly from Hansen
(1982) theorem 3.2 and is therefore stated without proof.

Theorem A.2.4 (optimal weights)
Suppose that A1-A6 hold and that the matrix Σ is regular. The weight matrices (Wn)n∈N

form an optimal sequence if and only if

V TW0 = B · V TΣ−1

for some regular d by d matrix B. Moreover, all optimal least squares estimators have
asymptotic variance Λ = (V TΣ−1V )−1.

Hence, a sequence of optimal weights is given by Wn = Σ̂−1
n where Σ̂n is a consistent

estimator of Σ. In practice, we need an initial estimate of θ to calculate the weight matrix.
Such an estimate could be the ordinary (i.e. identity weight) least squares estimator.
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A.2.4 Misspecification and goodness of fit

Even when the model is misspecified the least squares estimator has a meaningful inter-
pretation. As long as A1 and A3 are in power, it holds that

inf
θ∈Θ

{ρk(θ) − rn,k}T ·Wn · {ρk(θ) − rn,k} a.s.−→ inf
θ∈Θ

{ρk(θ) − ρk}T ·W0 · {ρk(θ) − ρk}

Asymptotically speaking, the autocorrelation function induced by the least squares esti-
mator is as close to the true autocorrelation function as possible in the sense that its one
through k-lag correlations attains minimum distance with respect to W0. In particular, if
there exists a unique θ ∈ Θ such that for all ε > 0

inf
|θ−θ|≥ε

{ρk(θ) − ρk}T ·W0 · {ρk(θ) − ρk} > {ρk(θ) − ρk}T ·W0 · {ρk(θ) − ρk},

then a least squares estimator exists eventually with probability one and any least squares
estimator converge almost surely to θ. To verify this claim recycle the proof of theorem
A.2.1.

In order to check the adequacy of the model, {ρ(θ) : θ ∈ Θ}, we can apply a goodness of
fit test like the one of Hansen (1982) lemma 4.2, which we refer to for proof.

Theorem A.2.5 (goodness of fit)
Suppose that A1-A6 hold, that k > d, and that the matrix Σ defined in theorem A.2.3 is
regular. If θ̂n is an optimal least squares estimator, then

n · {ρk(θ̂n) − rn,k}T ·Wn · {ρk(θ̂n) − rn,k} D→ χ2
k−d

for any sequence of optimal weights (Wn)n∈N.

The ultimate goal when assessing the fit of the model is to ascertain whether or not
ρ ∈ {ρ(θ) : θ ∈ Θ}. To this end the goodness of fit test induced by theorem A.2.5 is likely
but not sure to be successful; Whenever testing at a fixed level p0 there will be a small
probability of approximately p0 of rejecting the model even though it is true. One could
try to mend this by decreasing p0 as the number of observations increase. That is, with
(pn)n∈N a sequence decreasing to zero

Accept {ρ(θ) : θ ∈ Θ} if {ρk(θ̂n) − rn,k}TWn{ρk(θ̂n) − rn,k} ≤ n−1 · χ2
k−d,1−pn

.

Reject {ρ(θ) : θ ∈ Θ} if {ρk(θ̂n) − rn,k}TWn{ρk(θ̂n) − rn,k} > n−1 · χ2
k−d,1−pn

.

Where χ2
k−d,1−pn

denotes the 1 − pn quantile in the χ2 distribution with k − d degrees of
freedom. Let εn = n−1 · χ2

k−d,1−pn
. Our next result, inspired by Dembo & Peres (1994),

gives conditions on (εn)n∈N ensuring that the above scheme is successful eventually with
probability one.
In case the model is misspecified it may be problematic to show that an estimated sequence
of weights converge almost surely. It is thus comforting to find that theorem A.2.6 still
hold when A3 is replaced by the weaker condition A7. For the second part of the theorem
we need a slightly strengthened version of condition A6.
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A7: (Wn)n∈N is contained in a compact set of positive definite k by k matrices.

A8: There exists constants ∆, δ, δ′ > 0 such that E(Y
2·(δ+2)
1 ) is finite and such that (Yt)t∈N

is α-mixing with mixing coefficients satisfying that
∑∞

i=n α
δ·(δ+2)−1

i ≤ ∆·(logn)−(3+δ′)

eventually.

Theorem A.2.6 (discernibility)
Let ρ be the autocorrelation function of the stationary process (Yi)i∈N and {ρ(θ) : θ ∈ Θ}
a family of autocorrelation functions.

1. Suppose that infθ∈Θ |ρk(θ) − ρk|2 > 0. If A1 and A7 hold, then for every sequence
(εn)n∈N such that εn → 0

inf
θ∈Θ

{ρk(θ) − rn,k}T ·Wn · {ρk(θ) − rn,k} > εn

holds eventually with probability one.

2. Suppose that ρ ∈ {ρ(θ) : θ ∈ Θ}. If A7 and A8 hold, then for every sequence
(εn)n∈N such that εn · n · {log(log n)}−1 → ∞

inf
θ∈Θ

{ρk(θ) − rn,k}T ·Wn · {ρk(θ) − rn,k} ≤ εn

holds eventually with probability one.

Please note that A3 and A7 are guaranteed to hold for any constant deterministic weight
sequence. For a sequence of estimated optimal weights A7 has to be established under
misspecification. For instance, the behavior of the optimal weights Wn = Σ̂−1

n depend on
the estimator Σ̂n.

Remark A.2.3 In simple settings such as in example A.3.1 of section A.3 we might find
Σ̂n = Σ(θ̃n, τ̃n) with θ̃n an initial estimate of θ, τ̃n an almost surely convergent statistic,
and Σ a continuous function of (θ, τ). If Σ(θ, τ) is positive definite for all (θ, τ), then for
A7 to hold it suffices that (θ̃n)n∈N stays within a compact subset of Θ.

Theorem A.2.6 is particularly useful when facing a complicated model selection prob-
lem like the one described in section A.3.2. Given a hierarchic sequence of models
({ρ(θm) : θm ∈ Θm})m=1,2,... the theorem suggests that the smallest m for which ρ be-
longs to {ρ(θm) : θm ∈ Θm} can be picked out eventually with probability one. The
hierarchy should not be taken literally; We need not assume that the sequence of mod-
els is increasing with respect to inclusion. Rather we shall think of the ordering as a
matter of preference; Models appearing in the beginning of the sequence are preferred to
models indexed by larger numbers as long as they display a satisfactory fit of the data.
The hierarchy could be induced by an increasing complexity of the models in the sense
that dim(Θm) increases with m, but we might as well deal with the problem of choosing
between competing models where the ordering relies on vague arguments.
To be more specific, fix k ∈ N and let (Wm,n)n∈N where m = 1, 2, . . . be sequences of k by
k weight matrices. As above, goodness of fit is measured in terms of the distances

dn,m = inf
θm∈Θm

{ρk(θm) − rn,k}T ·Wn · {ρk(θm) − rn,k}
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between the empirical autocorrelations and the least squares induced estimates. For
m = 1, 2, . . . let (εm,n)n∈N be sequences of maximal acceptable distances. Then model
number m̂n is selected where

m̂n = inf{m = 1, 2, . . . : dn,m ≤ εn,m}.

Theorem A.2.6 translates directly into consistency of m̂n. We denote by m⋆ the smallest
m for which the true autocorrelation function belongs to {ρ(θm) : θm ∈ Θm}.

Corollary A.2.1 (model selection)
Assume that A8 holds, that A7 holds for the weights indexed by m = 1, . . . , m⋆, and
that infm=1,...,m⋆−1 infθm∈Θm

|ρk(θm) − ρk|2 > 0. If the sequences (εn,m)n∈N satisfy that
εn,m → 0 and εn,m · n · {log(log n)}−1 → ∞ for m = 1, . . . , m⋆, then m̂n = m⋆ eventually
with probability one.

A.3 Examples

In this section we consider the specific class of autocorrelation functions given by

ρ(t) =

m∑

j=1

φjλ
t
j (A.5)

where m ∈ N, λ1, . . . , λm ∈ [0; 1], φ1, . . . , φm > 0, and
∑m

j=1 φm = 1. The autocorrela-
tions of form (B.32) have been studied by Barndorff-Nielsen, Jensen & Sørensen (1998)
and Bibby, Skovgaard & Sørensen (2005). Both papers are devoted to the construction
of classes of stationary processes which allow for flexibility in the choice of marginal dis-
tribution as well as in the autocorrelation function. Their construction is reviewed in
section A.3.1 below. Next, in section A.3.2 we apply the results of section A.2 to derive
consistent estimators for the parameters in (B.32). In particular we demonstrate that the
integer valued m can be estimated consistently.

A.3.1 Modeling autocorrelation

In this section we review the construction of stationary processes with autocorrelation
function of the form (B.32) as given by Barndorff-Nielsen, Jensen & Sørensen (1998) and
Bibby, Skovgaard & Sørensen (2005). In addition, we study the mixing properties of these
processes as well as the problem of calculating their quadro-variate joint moments.
The basic idea is as follows. Suppose that (X

(1)
t )t≥0, . . . , (X

(m)
t )t≥0 are independent sta-

tionary processes each having a well defined autocorrelation function ρj(t) = λtj , then

Yt = X
(1)
t + . . .+X

(m)
t ,

defines a stationary process which has autocorrelation function of form (B.32) with φj =
Var(X(j)) · {Var(X(1)) + . . .+ Var(X(m))}−1.
The constructions of Barndorff-Nielsen, Jensen & Sørensen (1998) and Bibby, Skovgaard
& Sørensen (2005) differ only in their choices of underlying processes. We summarize
these in examples A.3.1 and A.3.2 below.
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Remark A.3.1 The models constructed above are sometimes referred to as multiple time
scale models. This is due to the following property. Let δ ≥ 0, then the time changed
process (X

(j)
δt )t≥0 has the same marginal distribution as (X

(j)
t )t≥0 and autocorrelation

function ρ̃(t) = (λδj)
t. Hence, the λj’s measure the speed at which the underlying processes

evolve with time. Moreover, the λj ’s can be chosen independently of any admissible
marginal distribution.

Example A.3.1 (Ornstein-Uhlenbeck type processes.)
Barndorff-Nielsen, Jensen & Sørensen (1998) take their underlying processes to be Ornstein-
Uhlenbeck type processes, i.e. solutions of the stochastic differential equation

dXt = θXtdt+ dZt (A.6)

driven by a homogenous Levy process (Zt)t≥0. In case (Zt)t≥0 is a Brownian motion,
we recover the ordinary Ornstein-Uhlenbeck process; the only Ornstein-Uhlenbeck type
process which does not have jumps.
Given a θ > 0 and a characteristic function C of some probability distribution satisfying

A9: C is self-decomposable, differentiable at any point other than zero, and yields a
continuous extension of ξ · d

dξ
logC(ξ) at zero

then with (Zt)t≥0 specified by the characteristic function CZ1
(ξ) = exp{θξ · d

dξ
logC(ξ)},

a stationary solution of (A.6) is given by

Xt = exp(−θt)X0 +

∫ t

0

exp{−θ(t− s)}dZs.

where X0 is distributed according to C and independent of (Zt)t≥0. If the marginal
distribution has second order moment, then (Xt)t≥0 has autocorrelation function ρ(t) =
exp(−θt). Moreover, it follows from Masuda (2004) theorem 4.3 that (Xt)t≥0 is strongly
mixing with exponentially decaying mixing coefficients.
It is worth noting that the discrete time process (Xt)t∈N forms an autoregression

Xt+1 = λ ·Xt + εt

where λ = exp(−θ) and (εt)t∈N are i.i.d. It is thus straightforward to calculate conditional
moments of any order. Let µ and σ2 denote the mean and variance of (Xt)t≥0, then

E(Xs+t − µ |Xs) = λt(Xs − µ),

E({Xs+t − µ}2|Xs) = λ2t(Xs − µ)2 + (1 − λ2t)σ2,

and with ζ3 denoting the third order standardized moment of (Xt)t≥0

E({Xs+t − µ}3|Xs) = λ3t(Xs − µ)3 + 3λt(1 − λ2t)σ2(Xs − µ) + (1 − λ3t)ζ3σ
3.

Further calculations based on successive conditioning lead to explicit formulae for stan-
dardized joint moments and cumulants. The latter are given by

κi1,i2,i3,i4 = λi2+i3+i4−3i1(ζ4 − 3)

for i1 ≤ i2, i3, i4 and with ζ4 denoting the fourth order standardized moment of X0. (See
theorem A.2.3 and remark A.2.2 for the definitions of standardized joint moments and
cumulants.)
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Example A.3.2 (Diffusion type processes.)
Bibby, Skovgaard & Sørensen (2005) consider linear drift diffusions, i.e. solutions of the
stochastic differential equation

dXt = −θ(Xt − µ)dt+ σ(Xt)dBt. (A.7)

Given a θ > 0 and a density f on the interval ]l; u[ satisfying

A10: f is continuous, strictly positive, and bounded on ]l; u[ with second order moment,

they show that with µ =
∫ u
l
f(x)dx and σ2(x) = f(x)−1

∫ x
l
(µ − y)f(y)dy a unique sta-

tionary weak solution with marginal density f exists. It is an ergodic, time reversible
diffusion and has autocorrelation function ρ(t) = exp(−θt). Well known examples of
linear drift diffusions are the Ornstein-Uhlenbeck processes (Gaussian marginal) and the
Cox-Ingersoll-Ross processes (Gamma marginal).
The mixing properties of diffusions are reviewed in Genon-Catalot, Jeantheau & Laredo
(2000). Their theorem 2.6 in combination with the re-parameterization of Hansen, Scheinkman
& Touzi (1998) section 5 yield that (Xt)t≥0 is strongly mixing with mixing coefficients
αt ≤ 1

4
exp(−θt) decaying exponentially fast.

Bibby, Skovgaard & Sørensen (2005) derive a formula for the conditional first order mo-
ment

E(Xs+t − µ |Xs) = λt(Xs − µ)

where λ = exp(−θ). Higher order conditional moments in general are hard to come by.
In case the diffusion coefficient is quadratic and the process has fourth order moment,
an explicit expression of the conditional second order moment can be found. Suppose
that θ−1σ2(x) = a(x − µ)2 + b(x − µ) + c. Itô’s formula yields an evolution equation for
(Xt − µ)2 from which we deduce that the variance of (Xt)t≥0 is given by σ2 = c(2 − a)−1

and moreover that,

E({Xs+t − µ}2|Xs) = λ(2−a)t(Xs − µ)2 + λt{1 − λ(1−a)t}b(1 − a)−1(Xs − µ)

+{1 − λ(2−a)t}σ2.

Note that in case (Xt)t≥0 has sixth order moment, b(1 − a)−1 = E(Xt − µ)3σ−2. Further
calculations based on successive conditioning and exploiting the time reversibility reveal
the joint moments and finally the joint cumulants which are given by

κi1,i2,i3,i4 = λi4+(1−a)i3−(1−a)i2−i1{ζ4 − b(1 − a)−1σ−1ζ3 − 1}
+λi4−i1b(1 − a)−1σ−1ζ3 − 2λi4+i3−i2−i1

for i1 ≤ i2 ≤ i3 ≤ i4 and with ζ3 denoting the standardized third order moment of
(Xt)t≥0. Examples of diffusions with quadratic diffusion coefficients can be found in table
1 of Bibby, Skovgaard & Sørensen (2005).

In both of the examples the (X
(j)
t )t≥0’s are Markov processes. Typically when adding the

processes, the Markov property is destroyed, and statistical inference is thus complicated.
However, mixing properties caries over from the underlying processes to their sum. If
each (X

(j)
t )t≥0 is α-mixing, then so is (Yt)t≥0 as αt(Y ) ≤∑m

j=1 αt(X
(j)).1

1Doukhan (1994) theorem 1.1.1
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Furthermore, once the joint moments of the underlying processes are found, the joint
moments of the sum process can easily be calculated. The standardized joint cumulants
satisfy

κi1,i2,i3,i4(Y ) =

m∑

j=1

φ2
j · κi1,i2,i3,i4(X(j)).

Remark A.3.2 In the above examples λj = exp(−θj) with θj > 0 implying that 0 < λj <
1. However, the autocorrelation function (B.32) does make sense even if λj = 0 or λj = 1;
Any i.i.d. sequence with second order moment has autocorrelation function ρ(t) = λt with
λ = 0, whereas λ = 1 defines the autocorrelation function of a non-degenerate, constant
process.

A.3.2 Estimating the parameters

Suppose that Y1, . . . , Yn is a sample from a stationary process with autocorrelation func-
tion given by (B.32). We consider the estimation problem. It is important to notice that
m determines the dimensions of the remaining parameters. In case m is known, least
squares estimation can be employed as described in section A.2. The large sample results
are summarized below. The parameter m cannot be estimated by least squares estimation
the problem being that the distance between the empirical and the fitted autocorrelations
decreases with m. Rather, the estimation of m should be viewed as a model selection
problem as in section A.2.4.
To be more specific, we consider for m ∈ N the model parameterized by λ = (λ1, . . . , λm)
and φ = (φ1, . . . , φm−1) belonging to the parameter space

Θm = {(λ,φ) ∈ [0; 1]2m−1 : λ1 > . . . > λm, φ1, . . . φm−1 > 0,
∑m−1

j=1 φj < 1}.

Note that φm = 1 −∑m−1
j=1 φj is implicitly given. The restrictions λ1 > . . . > λm and

φ1, . . . , φm > 0 are needed to make the parameters identifiable. Properties of the param-
eterization are listed in the following lemma. Part 1 ensures that the parameters can be
recognized from the sequence {ρ(t)}t∈N. The remaining parts of the lemma refer to the
regularity conditions of section A.2; Provided that a sufficient number of lags are consid-
ered A2, A4, and the additional assumptions demanded by theorem A.2.1 and corollary
A.2.1 hold true. As in section A.2 the vector of one- through k-lag correlations is denoted
by ρk.

Lemma A.3.1 (properties of the parameterization)

1. Let (λ,φ) ∈ Θm, (λ̃, φ̃) ∈ Θ em, and k ≥ m + m̃ − 1. If ρk(λ,φ) = ρk(λ̃, φ̃), then
m = m̃ and (λ,φ) = (λ̃, φ̃).

2. If k ≥ 2m−1, then V (λ,φ) = ∂
(λ,φ)T ρk(λ,φ) has full rank 2m−1 for all (λ,φ) ∈

Θm.

3. Let (λ⋆,φ⋆) ∈ Θm and ε > 0. If k ≥ 2m− 1, then

inf{|ρk(λ,φ) − ρk(λ
⋆,φ⋆)|2 : (λ,φ) ∈ Θm, |(λ,φ) − (λ⋆,φ⋆)| ≥ ε} > 0.
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4. Let (λ⋆,φ⋆) ∈ Θm⋆. If k ≥ 2m⋆ − 1, then

inf
m<m⋆

inf
(λ,φ)∈Θm

|ρk(λ,φ) − ρk(λ
⋆,φ⋆)|2 > 0.

The proof can be found in Appendix A.3.3.

Estimating λ and φ

In case m is known, the remaining parameters can be identified from the first 2m − 1
autocorrelations. Hence, fix k ≥ 2m− 1 and let (Wn)n∈N be a pre-specified sequence of k
by k weight matrices. The least squares estimator of (λ,φ) is given by

(λ̂n, φ̂n) = arg min
(λ,φ)∈Θm

{ρk(λ,φ) − rn,k}TWn{ρk(λ,φ) − rn,k}

whenever a minimum is attained on Θm. The large sample results carry over from section
A.2 assuming that the process (Yi)i∈N satisfies suitable mixing and moment conditions.
Note that for instance the processes of examples A.3.1 and A.3.2 satisfy the mixing con-
dition. Moreover, the weights (Wn)n∈N must converge almost surely to a regular matrix
W0. Let λ⋆,φ⋆ denote the true parameter values and V the derivative of ρk evaluated at
(λ⋆,φ⋆).

• If (Yi)i∈N is ergodic, then a unique least squares estimator exists eventually with
probability one, and it is strongly consistent.

• If (Yi)i∈N is strongly mixing and has 4 + δ order moment for some δ > 0 such that
A6 holds and λ⋆m > 0, then

√
n · {(λ̂n, φ̂n)

T − (λ⋆,φ⋆)T} D→ N (0,Λ)

where Λ = (V TW0V )−1 · V TW0ΣW0V · (V TW0V )−1 with the matrix Σ defined as in
theorem A.2.3.

• If (Yi)i∈N is strongly mixing and has 4 + δ order moment for some δ > 0 such that
A6 holds, λ⋆m > 0, and Σ is regular, then optimal sequences of weights exist and are
characterized by having V TW0 = BV TΣ−1 for some regular matrix B. In particular,
if Σ̂n is a consistent estimator of Σ, then Wn = Σ̂−1

n is optimal.

• If (Yi)i∈N is strongly mixing and has 4 + δ order moment for some δ > 0 such that
A6 holds, k ≥ 2m, λ⋆m > 0, Σ is regular, and (Wn)n∈N is an optimal sequence of
weights, then

n · {ρk(λ̂n, φ̂n) − rn,k}T ·Wn · {ρk(λ̂n, φ̂n) − rn,k} D→ χ2
k−d.

Explicit expressions of the matrix Σ are available for many of the processes considered
section A.3.1. Confidence sets and optimal weights are thus easy to come by in these
examples; We need only insert consistent estimates of the parameters and moments in
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the expression of Σ.
Recall that by remark A.2.2 the entries of Σ are given by

σs,t = ρ(s)ρ(t)K0,0 − ρ(s)K0,t − ρ(t)K0,s +Ks,t

+ ρ(s)ρ(t)R0,0 − ρ(s)R0,t − ρ(t)R0,s +Rs,t

where the Ks,t’s are series of joint cumulants and the Rs,t’s are remainder terms depending
only on ρ. In case ρ takes the form (B.32), we find that

Rs,t = ρ(|s− t|) + ρ(s)ρ(t) +
∑m

j=1φ
2
j{|s− t|λ|s−t|j + (s+ t)λs+tj }

+
∑

j 6=j′φjφj′{λ
|s−t|
j′ − λ

|s−t|
j + λsjλ

t
j′ + λtjλ

s
j′ − 2λs+tj } · λj(λj′ − λj)

−1

+ 2 ·∑m
j=1

∑m
j′=1φjφj′{λ

|s−t|
j + λs+tj } · λjλj′(1 − λjλj′)

−1.

Additional assumptions are needed to calculate the cumulant series.

Example A.3.1 continued: If (Yt)t≥0 is the sum of independent stationary Ornstein-
Uhlenbeck type processes with fourth order moment, then

Ks,t =
∑m

j=1φ
2
jλ

s+t
j {1 + 2λ2

j (1 − λ2
j)

−1}(ζ4,j − 3)

where ζ4,j denotes the fourth order standardized moment of the j’th underlying process.
A particularly simple case occurs when the underlying processes are ordinary Ornstein-
Uhlenbeck processes. Then ζ4,j = 3 and consequently Ks,t = 0.

Example A.3.2 continued: If (Yt)t≥0 is the sum of independent stationary diffusions
with linear drifts and quadratic diffusion coefficients

θ−1
j σ2

j (x) = aj(x− µj)
2 + bj(x− µj) + cj ,

define constants Aj and Bj by

Aj = ζ4,j − bj(1 − aj)
−1σ−1ζ3,j − 1, Bj = bj(1 − aj)

−1σ−1ζ3,j

where ζ3,j and ζ4,j denote the standardized moments. Note that if the underlying process
has sixth order moment, Bj = ζ2

3,j. The cumulant series are given by

Ks,t =
∑m

j=1φ
2
jKs,t,j

where for aj 6= 0, t ≤ s,

Ks,t,j = Ajλ
s+t
j {(s− t)λ

−ajt
j + 2λ

aj

j (1 − λ
aj

j )−1 + 2λ
2−aj

j (1 − λ
2−aj

j )−1}
+ Bjλ

s
j{s− t+ 2λj(1 − λj)

−1} − 2λs+tj {s+ t+ 2λ2
j(1 − λ2

j)
−1},

and for aj = 0, t ≤ s,

Ks,t,j = (Aj − 2)λs+tj {s+ t+ 2λ2
j(1 − λ2

j )
−1} +Bjλ

s
j{s− t+ 2λj(1 − λj)

−1}.
In, particular for the sum of independent Cox-Ingersoll-Ross processes having marginal
distributions with shape parameters α1, . . . , αm > 1 and joint scale parameter we find
that

Ks,t = 2 ·∑m
j=1φ

2
jα

−1
j [λs+tj {s+ t+ 2λ2

j (1 − λ2
j)

−1} + 2λsj{s− t+ 2λj(1 − λj)
−1}].
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Estimating m

The above is still valid when the known m is replaced by a consistent estimator. In
practice only a finite number of different m can be distinguished. The problem is that the
whole sequence of autocorrelations {ρ(t)}t∈N is needed to identify an arbitrary m ∈ N,
and for a fixed sample only a limited number of empirical autocorrelations are available.
However, it does not seem unreasonable to bound m. One reason for doing so is that
the dimension of the parameter space increases with m. Another is that the classes of
autocorrelation functions are practically indistinguishable even for moderate values of m.
In order to estimate m ∈ {1, . . . ,M}, one needs a fixed k ≥ 2M and sequences (εm,n)n∈N

satisfying that εm,n → 0 and εm,n · n · {log(log n)}−1 → ∞. The estimator m̂n is the
smallest number in {1, . . . ,M} for which

{ρk(λ̂m,n, φ̂m,n) − rn,k}T ·Wm,n · {ρk(λ̂m,n, φ̂m,n) − rn,k} ≤ εm,n

where (λ̂m,n, φ̂m,n) is the least squares estimator in Θm. Let m⋆ denote the true value of
m.

• If (Yi)i∈N is strongly mixing and has 4 + δ order moment for some δ > 0 such that
A8 hold true and the weights indexed by m = 1, . . . , m⋆ are bounded in the sense
of A7, then m̂n = m⋆ eventually with probability one.

Section A.2.4 suggests taking the weights to be optimal and maximal acceptable distances
of the form εm,n = n−1χ2

k−2m+1,1−pn
where χ2

k−2m+1,1−pn
is the 1 − pn quantile of the χ2

distribution and (pn)n∈N decreases slowly to zero. In doing so we hope to bound the
probability of overestimating m with a probability of approximately pn. However, A7
still needs to be checked. When it comes to the probability of underestimating m, it
cannot be bounded as the true autocorrelation function could have a component with a
indefinitely tiny φ-value.

A.3.3 Numerical results

In this section we investigate the small-sample behaviour of the least squares estimators for
sums of independent Ornstein-Uhlenbeck type processes (example A.3.1). The purpose is
to asses whether the asymptotic results are useful in practice and to compare the ordinary
and optimally weighted least squares estimators. To faciliate simulation the underlying
processes are taken to be ordinary Ornstein-Uhlenbeck processes. The optimal weights are
estimated from the formula of section A.3.2 inserting the ordinary least squares estimates
as initial estimates. The standard errors of estimates are obtained from the same formulae.

Single Ornstein-Uhlenbeck process

First we consider a single Ornstein-Uhlenbeck process with zero mean, unit variance,
and correlation parameter θ, i.e. autocorrelation function ρ(t) = exp(−θt). Table A.1
compares the ordinary and optimally weighted least squares estimates for varying numbers
of lags, sample sizes, and three different values of θ. The table displays the sample
mean (Mean) and the standard errors (SSE) of the simulated estimates together with the
sample mean of their estimated standard errors (SEE) and the covering frequency of the
approximate 95% confidence intervals (CP95).
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OLSE Optimally weighted LSE
n k Mean SSE SEE CP95 Mean SSE SEE CP95

θ = 1
1,000 5 1.01 0.10 0.10 0.96 1.01 0.08 0.08 0.96

25 1.01 0.10 0.10 0.96 1.01 0.08 0.08 0.96
50 1.01 0.10 0.10 0.96 1.01 0.08 0.08 0.96

5,000 5 1.00 0.04 0.04 0.95 1.00 0.04 0.04 0.95
25 1.00 0.04 0.04 0.95 1.00 0.04 0.04 0.95
50 1.00 0.04 0.04 0.95 1.00 0.04 0.04 0.95

10,000 5 1.00 0.03 0.03 0.95 1.00 0.03 0.03 0.95
25 1.00 0.03 0.03 0.95 1.00 0.03 0.03 0.95
50 1.00 0.03 0.03 0.95 1.00 0.03 0.03 0.95

θ = 0.1
1,000 5 0.105 0.017 0.017 0.95 0.105 0.016 0.015 0.94

25 0.109 0.024 0.024 0.96 0.107 0.016 0.015 0.94
50 0.110 0.026 0.027 0.95 0.107 0.016 0.015 0.94

5,000 5 0.101 0.007 0.007 0.96 0.101 0.007 0.007 0.96
25 0.102 0.010 0.011 0.95 0.101 0.007 0.007 0.95
50 0.102 0.012 0.012 0.95 0.101 0.007 0.007 0.95

10,000 5 0.101 0.005 0.005 0.95 0.100 0.005 0.005 0.95
25 0.101 0.007 0.007 0.95 0.101 0.005 0.005 0.95
50 0.101 0.008 0.008 0.95 0.101 0.005 0.005 0.95

θ = 0.01
1,000 5 0.0148 0.0064 0.0054 0.91 0.0148 0.0063 0.0054 0.9

25 0.0155 0.0071 0.0060 0.92 0.0153 0.0065 0.0055 0.89
50 0.0163 0.0078 0.0068 0.96 0.0156 0.0066 0.0055 0.88

5,000 5 0.0108 0.0022 0.0021 0.94 0.0108 0.0022 0.0021 0.94
25 0.0109 0.0023 0.0022 0.95 0.0109 0.0022 0.0021 0.94
50 0.0110 0.0025 0.0024 0.95 0.0109 0.0022 0.0021 0.94

10,000 5 0.0104 0.0015 0.0015 0.94 0.0104 0.0015 0.0014 0.94
25 0.0105 0.0016 0.0015 0.94 0.0105 0.0015 0.0015 0.94
50 0.0105 0.0017 0.0016 0.95 0.0105 0.0015 0.0015 0.94

Table A.1: Comparison of least squares estimates for Ornstein-Uhlenbeck processes with
autocorrelation function ρ(t) = exp(−θt). Sample size is denoted by n, whereas k denotes
the number of lags. Based on 10,000 time series.
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As the discretely observed Ornstein-Uhlenbeck process is merely an AR(1) process, closed
form maximum likelihood estimates of mean, variance, and correlation parameter can be
found when conditioning on the initial observation. For a comparison maximum likelihood
estimates of θ are summarized in table A.2. Mean and variance estimates are not reported
as these parameters are treated as nuisance.

MLE
θ n Mean SSE SEE CP95

1 1,000 1.01 0.08 0.08 0.95
5,000 1.00 0.04 0.04 0.95
10,000 1.00 0.02 0.02 0.95

.1 1,000 0.104 0.016 0.015 0.95
5,000 0.101 0.007 0.007 0.96
10,000 0.100 0.005 0.005 0.95

.01 1,000 0.0145 0.0062 0.0053 0.91
5,000 0.0108 0.0022 0.0021 0.94
10,000 0.0104 0.0015 0.0014 0.94

Table A.2: Summary of maximum likelihood estimates for Ornstein-Uhlenbeck processes
with autocorrelation function ρ(t) = exp(−θt).

In all but one scenario the estimators behave as predicted by the asymptotic theory.
For θ = 0.01 the sample size n = 1000 yields estimators more variable than predicted
and both estimators are biased. However, the maximum likelihood estimator is likewise
flawed. As the parameter θ = 0.01 is close to the boundary of the parameter space a better
normal approximation might be obtained for log(θ). When the sample size is increased
all of the estimators behave nicely. The efficiency of the weighted least squares estimator
matches the maximum likelihood estimator. The variance of the ordinary least squares
estimator tend to increase with the number of lags. For five lags it is almost the same as
for the weighted least squares estimator. For θ = 0.1 the standard error of the ordinary
least squares estimator nearly doubles when the number of lags is increased to fifty. The
weighted least squares estimator remains unaffected when the number of lags is increased.

Sums of two Ornstein-Uhlenbeck processes

Next, we consider the weighted sum of two Ornstein-Uhlenbeck processes with mean zero,
unit variance and correlation parameters θ1, θ2, and φ1. That is, the autocorrelation func-
tion is given by ρ(t) = φ1 exp(−θ1t) + (1 − φ1) exp(−θ2t). We fix θ1 = 0.1 and θ2 = 1.
For three different values of the weight parameter φ1 tables A.3 through A.5 compare the
least squares estimators. Please note that θ2 − θ1 have been estimated instead of θ2 in
order for the parameters to vary freely. The tables are similar to those of the previous
section. The only difference is that in this case a number of estimates are missing due
to the fact that the least squares estimators only exist with a probability tending to one.
The frequency on non-existing estimates are reported as Pne.
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OLSE Optimally weighted LSE
n k Pne Mean SSE SEE CP95 Mean SSE SEE CP95

Estimates of θ1 = 0.1 when θ2 = 1, φ1 = 0.2
1,000 5 0.42 0.199 0.130 0.214 0.96 0.197 0.125 0.222 0.96

25 0.08 0.134 0.091 0.105 0.94 0.128 0.086 0.092 0.93
50 0.06 0.136 0.089 0.109 0.92 0.131 0.085 0.093 0.93

5,000 5 0.18 0.129 0.075 0.096 0.96 0.129 0.075 0.095 0.95
25 0.00 0.106 0.036 0.036 0.94 0.106 0.034 0.032 0.94
50 0.00 0.106 0.038 0.038 0.92 0.107 0.034 0.032 0.94

10,000 5 0.09 0.112 0.059 0.068 0.96 0.112 0.058 0.067 0.96
25 0.00 0.103 0.025 0.024 0.94 0.103 0.022 0.022 0.94
50 0.00 0.103 0.026 0.026 0.93 0.104 0.022 0.022 0.94

Estimates of θ1 = 0.1 when θ2 = 1, φ1 = 0.5
1,000 5 0.14 0.113 0.059 0.072 0.97 0.115 0.058 0.071 0.96

25 0.06 0.114 0.050 0.054 0.94 0.111 0.044 0.042 0.93
50 0.10 0.118 0.052 0.061 0.93 0.113 0.044 0.043 0.94

5,000 5 0.00 0.100 0.030 0.030 0.96 0.100 0.030 0.030 0.95
25 0.00 0.103 0.022 0.022 0.95 0.103 0.017 0.017 0.95
50 0.02 0.103 0.025 0.026 0.94 0.103 0.017 0.017 0.95

10,000 5 0.00 0.099 0.021 0.021 0.96 0.100 0.021 0.021 0.95
25 0.00 0.101 0.015 0.015 0.95 0.101 0.012 0.012 0.95
50 0.00 0.101 0.018 0.018 0.94 0.101 0.012 0.012 0.95

Estimates of θ1 = 0.1 when θ2 = 1, φ1 = 0.8
1,000 5 0.08 0.100 0.033 0.038 0.98 0.101 0.032 0.037 0.98

25 0.41 0.096 0.034 0.043 0.95 0.100 0.027 0.029 0.94
50 0.55 0.097 0.037 0.051 0.94 0.102 0.029 0.030 0.94

5,000 5 0.00 0.100 0.015 0.015 0.95 0.100 0.015 0.015 0.95
25 0.09 0.100 0.018 0.019 0.96 0.101 0.013 0.012 0.95
50 0.24 0.099 0.023 0.023 0.96 0.101 0.013 0.012 0.94

10,000 5 0.00 0.100 0.010 0.010 0.95 0.100 0.010 0.010 0.95
25 0.03 0.101 0.013 0.013 0.96 0.101 0.009 0.009 0.95
50 0.13 0.100 0.017 0.017 0.96 0.101 0.009 0.009 0.95

Table A.3: Comparison of estimates for the sum of two Ornstein-Uhlenbeck processes
with autocorrelation function ρ(t) = φ1 exp(−θ1t)+(1−φ1) exp(−θ2t) for varying sample
size n and number of lags k. Based on 10,000 time series.
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OLSE Optimally weighted LSE
n k Pne Mean SSE SEE CP95 Mean SSE SEE CP95

Estimates of θ2 − θ1 = 0.9 when θ1 = 0.1, φ1 = 0.2
1,000 5 0.42 1.100 0.372 0.694 1.00 1.070 0.345 0.512 1.00

25 0.08 1.010 0.270 0.403 0.98 0.964 0.233 0.240 0.98
50 0.06 1.020 0.276 0.421 0.98 0.962 0.238 0.252 0.98

5,000 5 0.18 0.928 0.079 0.085 0.98 0.927 0.082 0.082 0.98
25 0.00 0.913 0.078 0.082 0.95 0.907 0.058 0.057 0.95
50 0.00 0.915 0.086 0.092 0.94 0.907 0.058 0.057 0.95

10,000 5 0.09 0.912 0.046 0.050 0.98 0.912 0.045 0.048 0.98
25 0.00 0.906 0.054 0.055 0.95 0.903 0.039 0.039 0.95
50 0.00 0.906 0.060 0.062 0.95 0.903 0.039 0.039 0.95

Estimates of θ2 − θ1 = 0.9 when θ1 = 0.1, φ1 = 0.5
1,000 5 0.14 1.040 0.335 0.376 0.97 1.040 0.340 0.358 0.97

25 0.06 1.130 0.525 1.030 0.93 0.964 0.266 0.252 0.96
50 0.10 1.200 0.600 1.420 0.91 0.963 0.273 0.261 0.96

5,000 5 0.00 0.918 0.113 0.112 0.95 0.919 0.110 0.107 0.94
25 0.00 0.939 0.178 0.193 0.93 0.911 0.083 0.083 0.96
50 0.02 0.956 0.240 0.278 0.91 0.912 0.084 0.083 0.96

10,000 5 0.00 0.907 0.077 0.077 0.94 0.907 0.074 0.074 0.95
25 0.00 0.917 0.119 0.124 0.94 0.904 0.057 0.057 0.95
50 0.00 0.924 0.164 0.178 0.92 0.904 0.057 0.057 0.95

Estimates of θ2 − θ1 = 0.9 when θ1 = 0.1, φ1 = 0.8
1,000 5 0.08 1.070 0.542 0.726 0.94 1.050 0.498 0.606 0.95

25 0.14 1.200 0.874 16.10 0.85 0.951 0.432 0.466 0.92
50 0.55 1.300 0.956 14.80 0.86 0.945 0.428 0.468 0.91

5,000 5 0.00 0.926 0.194 0.193 0.95 0.927 0.187 0.184 0.95
25 0.09 1.120 0.665 1.350 0.87 0.917 0.160 0.157 0.95
50 0.24 1.240 0.828 2.630 0.88 0.910 0.160 0.155 0.95

10,000 5 0.00 0.915 0.133 0.133 0.95 0.915 0.128 0.126 0.95
25 0.03 1.040 0.489 0.672 0.90 0.913 0.111 0.109 0.95
50 0.13 1.160 0.687 1.390 0.89 0.911 0.110 0.109 0.95

Table A.4: Comparison of estimates for the sum of two Ornstein-Uhlenbeck processes
with autocorrelation function ρ(t) = φ1 exp(−θ1t)+(1−φ1) exp(−θ2t) for varying sample
size n and number of lags k. Based on 10,000 time series.
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OLSE Optimally weighted LSE
n k Pne Mean SSE SEE CP95 Mean SSE SEE CP95

Estimates of φ1 = 0.2 when θ1 = 0.1, θ2 = 1
1,000 5 0.42 0.336 0.160 0.261 0.95 0.329 0.155 0.264 0.95

25 0.08 0.248 0.127 0.159 0.96 0.231 0.116 0.123 0.94
50 0.06 0.250 0.128 0.167 0.94 0.231 0.117 0.124 0.93

5,000 5 0.18 0.237 0.083 0.100 0.97 0.238 0.083 0.098 0.97
25 0.00 0.207 0.053 0.054 0.94 0.205 0.047 0.045 0.94
50 0.00 0.208 0.057 0.059 0.93 0.206 0.047 0.045 0.94

10,000 5 0.09 0.216 0.060 0.068 0.98 0.216 0.059 0.066 0.98
25 0.00 0.203 0.037 0.037 0.95 0.202 0.031 0.031 0.95
50 0.00 0.203 0.040 0.041 0.93 0.202 0.031 0.031 0.94

Estimates of φ1 = 0.5 when θ1 = 0.1, θ2 = 1
1,000 5 0.14 0.518 0.121 0.153 0.94 0.520 0.120 0.150 0.93

25 0.06 0.516 0.132 0.156 0.96 0.498 0.098 0.104 0.94
50 0.10 0.525 0.147 0.184 0.95 0.496 0.099 0.105 0.94

5,000 5 0.00 0.498 0.067 0.068 0.95 0.498 0.066 0.067 0.94
25 0.00 0.503 0.066 0.067 0.95 0.500 0.044 0.044 0.95
50 0.02 0.502 0.085 0.085 0.94 0.500 0.044 0.044 0.95

10,000 5 0.00 0.497 0.048 0.048 0.95 0.498 0.047 0.047 0.95
25 0.00 0.501 0.046 0.047 0.95 0.499 0.031 0.031 0.95
50 0.00 0.500 0.060 0.061 0.94 0.499 0.031 0.031 0.95

Estimates of φ1 = 0.8 when θ1 = 0.1, θ2 = 1
1,000 5 0.08 0.778 0.101 0.115 0.94 0.781 0.097 0.110 0.94

25 0.41 0.744 0.158 0.192 0.97 0.768 0.081 0.088 0.95
50 0.55 0.738 0.182 0.251 0.95 0.765 0.084 0.091 0.95

5,000 5 0.00 0.794 0.046 0.045 0.95 0.795 0.044 0.043 0.94
25 0.09 0.786 0.089 0.084 0.97 0.795 0.035 0.036 0.94
50 0.24 0.771 0.143 0.120 0.96 0.793 0.036 0.036 0.94

10,000 5 0.00 0.797 0.031 0.031 0.95 0.798 0.030 0.030 0.95
25 0.00 0.795 0.061 0.058 0.95 0.799 0.025 0.025 0.95
50 0.13 0.784 0.113 0.086 0.97 0.798 0.025 0.025 0.95

Table A.5: Comparison of estimates for the sum of two Ornstein-Uhlenbeck processes
with autocorrelation function ρ(t) = φ1 exp(−θ1t)+(1−φ1) exp(−θ2t) for varying sample
size n and number of lags k. Based on 10,000 time series.
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Many data are missing among the smallest samples, among moderate samples for φ = 0.2
when five lags are considred, and for φ = 0.8 when twenty five or fifty lags are considered.
In practice one can usually find an existing estimate by varying the number of lags. In
cases of many missing data the estimators appear biased and less variable than predicted.
In the remaining cases the least squares estimators are well behaved and the weighted
least squares estimator is the most precise. The variance of the estimators depend on the
number of lags. From five to twenty five lags the variances of both estimators tend to
decrease. From twenty five to fifty the variance of the ordinary least squares estimator
tend to increase whereas the weighted least squares estimator is unaffected. The optimal
number of lags depend on the parameters. For φ = 0.2 it lies between twenty five and
fifty, for φ = 0.5 around twenty five, and for φ = 0.8 between five and twenty five.

Goodness of fit

Finally, we apply the goodness of fit test of section A.2.4 to the sums of Ornstein-
Uhlenbeck processes considered in the previous simulation studies. To be specific, we
test whether one or two underlying processes describe the autocorrelation function of the
data in a satisfactory manner. Empirical levels and powers of the test are reported in
tables A.6 and A.7 for nominal levels of one and five percent, respectively.

α = 1%

m = 1 (m = 1) m = 2 (m = 2) m = 1 (m = 2)
θ1 φ1 φ1

n k 1 0.1 0.01 0.2 0.5 0.8 0.2 0.5 0.8

1,000 5 0.01 0.01 0.02 0.01 0.01 0.01 0.63 0.99 0.99
1,000 25 0.02 0.07 0.08 0.01 0.02 0.04 0.49 0.98 0.98
1,000 50 0.02 0.14 0.16 0.02 0.05 0.10 0.54 0.99 0.99
5,000 5 0.01 0.01 0.01 0.01 0.01 0.01 1.00 1.00 1.00
5,000 25 0.01 0.02 0.03 0.01 0.01 0.02 1.00 1.00 1.00
5,000 50 0.01 0.05 0.06 0.01 0.02 0.06 0.98 1.00 1.00
10,000 5 0.01 0.01 0.01 0.01 0.01 0.01 1.00 1.00 1.00
10,000 25 0.01 0.02 0.02 0.01 0.01 0.02 1.00 1.00 1.00
10,000 50 0.01 0.03 0.04 0.01 0.02 0.05 1.00 1.00 1.00

Table A.6: Empirical levels and powers for testing whether m = 1 or m = 2 in the auto-
correlation function ρ(t) =

∑m
j=1 φj exp(−θjt) at level α. The true values are indicated in

paranthesis.

When testing whether the autocorrelation function could be the one of a single Ornstein-
Uhlenbeck process, we find that the test is very powerful. The overall behavior of the
goodness of fit test is good when five lags are considered. For the higher number of lags the
level tend to be to high. It seems that the fewer the lags, the better the χ2-approximation.
Surprisingly, the levels are farther off in case of the single Ornstein-Uhlenbeck process. For
the sums of two Ornstein-Uhlenbeck processes the level of the test is closer to the formal
level than what might be expected. A plausible explanation is the missing parameter
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α = 5%

m = 1 (m = 1) m = 2 (m = 2) m = 1 (m = 2)
θ1 φ1 φ1

n k 1 0.1 0.01 0.2 0.5 0.8 0.2 0.5 0.8

1,000 5 0.05 0.05 0.07 0.04 0.05 0.05 0.83 1.00 1.00
1,000 25 0.06 0.13 0.15 0.05 0.07 0.10 0.68 0.99 0.99
1,000 50 0.08 0.19 0.22 0.07 0.12 0.18 0.70 0.99 1.00
5,000 5 0.06 0.05 0.05 0.05 0.05 0.05 1.00 1.00 1.00
5,000 25 0.06 0.07 0.07 0.05 0.06 0.08 1.00 1.00 1.00
5,000 50 0.06 0.11 0.13 0.05 0.08 0.13 1.00 1.00 1.00
10,000 5 0.05 0.05 0.05 0.05 0.05 0.05 1.00 1.00 1.00
10,000 25 0.05 0.06 0.07 0.05 0.05 0.07 1.00 1.00 1.00
10,000 50 0.05 0.08 0.10 0.06 0.06 0.11 1.00 1.00 1.00

Table A.7: Empirical levels and powers for testing whether m = 1 or m = 2 in the auto-
correlation function ρ(t) =

∑m
j=1 φj exp(−θjt) at level α. The true values are indicated in

paranthesis.

estimates (reported in tables A.3 through A.5), which typically occur when the empirical
autocorrelation function diverge the most from the true one.

Appendix: Proofs

Consistency and Uniqueness

Proof of theorem A.2.1:
A1 and A3 imply that lWn (θ) converge to lW (θ) = {ρk(θ)−ρk}T ·W0 ·{ρk(θ)−ρk} almost
surely, and convergence is uniform on Θ as for all θ

|lWn (θ) − lW (θ)| ≤ k3||Wn −W0||2max + 5k3||W0||max|rn,k − ρk|

where ||W ||max = maxi,i′=1,...,k |Wi,i′| defines the matrix norm. Clearly lW ≥ 0, and by A2
and A3 it holds that lW (θ) = 0 if and only if θ = θ⋆. If B⋆

ǫ denotes the closed ball in Θ
centered at θ⋆ with radius ǫ, it suffices to show that minimum of lWn on Θ⋆ (Θ in case 2)
is attained in B⋆

ǫ eventually with probability one. Let

δ = inf{lW (θ) : θ ∈ Θ⋆, ||θ − θ⋆|| ≥ ǫ},

then δ > 0 by continuity and compactness (by assumption in case 2), and for n so large
that supθ∈Θ |lWn − lW | < δ

2
we find

inf{lWn (θ) : θ ∈ Θ⋆, ||θ − θ⋆|| > ǫ} > δ − δ
2 = δ

2 ,

which together with

inf{lWn (θ) : θ ∈ Θ⋆, ||θ − θ⋆|| ≤ ǫ} ≤ lWn (θ⋆) < δ
2
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imply that lWn attains its minimum in B⋆
ǫ . �

Proof of theorem A.2.2:
We consider the derivatives FW

n (θ) = ∂θ∂θT lWn (θ) and FW (θ) = ∂θ∂θT lW (θ). By the above
uniqueness will hold for θ̂n if FW

n is positive definite on B⋆
ǫ for some ǫ > 0. By A4 this

holds true eventually with probability one as FW
n → FW uniformly on compacts, FW is

continuous, and FW (θ⋆) is positive definite. �

Asymptotic normality

Proof of theorem A.2.3:
Let GW

n (θ) = ∂θT lWn (θ). Apply a Taylor expansion around θ̂n to each coordinate of
Gn = GW

n (θ⋆) the conclusion being that eventually as Gn(θ̂n) = 0,

(Gn)i = {FW
n (θ̃n,i)}i · (θ⋆ − θ̂n)

for some θ̃n,i such that |θ̃n,i− θ⋆| ≤ |θ̂n− θ⋆|. Let F̃n define the matrix with i’th row equal
to the i’th row of FW

n (θ̃n,i). Then, as θ̃n,i tend to θ⋆ and FW
n tend to FW uniformly on

compacts, F̃n → 2 · V TW0V almost surely. In particular, F̃n will be invertible eventually
with probability one, implying

√
n · (θ⋆ − θ̂n) = F̃−1

n · √n ·GT
n = 2s−2

n · F̃−1
n V TWn ·

√
n · {ρk · s2

n − cn,k}

As 2s−2
n · F̃−1

n V TWn converge in probability to σ−2 · (V TW0V )−1V TW0, we are done if we
can prove that

√
n·{ρk·s2

n−cn,k} converge in distribution to a normally distributed random
variable with mean zero and variance σ4 · Σ. From this point on, assume without loss of
generality that µ = 0. As the empirical covariances are invariant under translation, we
can replace the obeservations Yi with Yi−µ. A bit of rearranging yields

√
n·(s2

n ·ρ(t)−cn,t)
equal to

1√
n

∑n
i=1{ρ(t) · Y 2

i − YiYi+t} + 1√
n

∑n
i=n−t+1YiYi+t − t√

n(n−t)
∑n−t

i=1YiYi+t

+
√
n · ( 1

n−t
∑n−t

i=1Yi) · ( 1
n−t

∑n−t
i=1Yi+t) −

√
n · (ρ(t) 1

n

∑n
i=1Yi)

2.

The four latter terms tend to zero in probability as we now demonstrate. First, note
that the process (

∑n
i=n+t−1 YiYi+t)n∈N is stationary and thus converges in distribution. It

follows that 1√
n

∑n
i=n−t+1 YiYi+t tends to zero in probability. Secondly, t√

n
· 1
n−t
∑n−t

i=1 YiYi+t

converge almost surely to zero. Likewise 1
n

∑n
i=1 Yi tends to zero almost surely, and

1√
n

∑n
i=1 Yi converges in distribution by Ibragimov’s central limit theorem2. We conclude

that
√
n · ( 1

n

∑n
i=1 Yi)

2 tends to zero in probability. The same argument finally shows that√
n · ( 1

n−t
∑n−t

i=1Yi) · ( 1
n−t

∑n−t
i=1Yi+t) tends to zero in probability.

Define random vectors by (Zi)t = ρ(t)Y 2
i − YiYi+t. We have just shown that

√
n · {ρk · s2

n − cn,k} =
1√
n

n∑

i=1

Zi + oP (1)

2Nahapetian (1991) theorem 5.1.7
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The process (Zi)i∈N inherits stationarity as well as mixing properties from (Yi)i∈N. Hence
by the central limit theorem, 1√

n

∑n
i=1 Zi converges in distribution to a normal distribution

with mean 0 and variance Σ̃ given by

σ̃s,t = lim
n→∞

1

n
Cov(ρ(s) ·∑n

i=1Y
2
i −∑n

i=1YiYi+s , ρ(t) ·
∑n

i=1Y
2
i −∑n

i=1YiYi+t).

Splitting the covariance into four terms leads us to consider, for s, t ∈ {0, . . . , k},
1

n
Cov(

∑n
i=1YiYi+s,

∑n
i=1YiYi+t) = Cov(Y1Ys+1, Y1Yt+1)

+
∑n

i=1
n−i
n {Cov(Y1Ys+1, Yi+1Yi+t+1) + Cov(Y1Yt+1, Yi+1Yi+s+1)}

which by dominated convergence, using A6 and the covariance inequalities Doukhan
(1994) theorem 1.2.3, tends to

Cov(Y1Ys+1, Y1Yt+1) +
∑∞

i=1{Cov(Y1Ys+1, Yi+1Yi+t+1) + Cov(Y1Yt+1, Yi+1Yi+s+1)}.

Under the assumption µ = 0 this quantity is equal to σ4 · Ss,t as for instance

Cov(Y1Ys+1, Y1Yt+1) = E(Y1Ys+1Y1Yt+1) − σ4ρ(s)ρ(t) = σ4{µ1,s+1,1,t+1 − ρ(s)ρ(t)}

All in all we conclude that Σ̃ = σ4Σ. For a general µ the observations should be replaced
by their centralized counterparts. �

Misspecification and goodness of fit

Proof of theorem A.2.6:
Suppose that infθ∈Θ |ρk(θ) − ρk|2 > 0. For all θ ∈ Θ it holds that

{ρk(θ) − rn,k}T ·Wn · {ρk(θ) − rn,k} ≥ λmin(Wn) · |ρk(θ) − rn,k|2

where λmin(Wn) denotes the smallest eigenvalue of Wn. From this we conclude that

lim inf
n→∞

inf
θ∈Θ

{ρk(θ) − rn,k}T ·Wn · {ρk(θ) − rn,k} > 0

as A1 implies that infθ∈Θ |ρk(θ)−rn,k|2 → infθ∈Θ |ρk(θ)−ρk|2, and A7 that lim infn→∞ λmin(Wn)
is greater than zero. Part 1 of the theorem follows readily.
To establish part 2 it suffices to prove that eventually with probability one

{ρk − rn,k}T ·Wn · {ρk − rn,k} ≤ ǫn. (A.8)

By a diagonalization argument

{ρk − rn,k}T ·Wn · {ρk − rn,k} ≤ λmax(Wn) · |ρk − rn,k|2

where λmax(Wn) denotes the largest eigenvalue of Wn. Hence we are led to consider

|ρk − rn,k|2 = s−4
n ·

k∑

t=1

{s2
n · ρ(t) − cn,t}2
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As in the proof of theorem A.2.3 we assume without loss of generality that µ = 0 and
rearrange slightly to get

s2
n · ρ(t) − cn,t = ρ(t) · 1

n

∑n
i=1(Y

2
i − σ2) − 1

n−t
∑n−t

i=1 (YiYi+t − ρ(t)σ2)

−( 1
n

∑n
i=1Yi)

2 + ( 1
n−t

∑n−t
i=1Yi) · ( 1

n−t
∑n−t

i=1Yi+t).

The law of the iterated logaritm, Nahapetian (1991) theorem 5.4.3, applies to each average.
Consequently there exist constants C1, . . . , Ck, and C such that

|ρk · s2
n − cn,k|2 ≤

k∑

t=1

Ct(
√

log(logn)
n +

√
log{log(n−t)}

n−t + log(log n)
n + log{log(n−t)}

n−t )2

≤ C · log(logn)
n

holds eventually with probability one. It follows that eventually

{ρk − rn,k}T ·Wn · {ρk − rn,k} ≤ λmax(Wn) · s−4
n · C · log(logn)

n

By A7 the sequence {λmax(Wn)}n∈N is almost surely bounded. As ǫn ·n ·{log(logn)}−1 →
∞, the proof is hereby completed. �

Examples

Proof of lemma A.3.1:
To prove the first part of the lemma we shall use the following fact:

FACT: For m ∈ N, x1, . . . , xm ∈ R the m×m-matrix

A(x1, . . . , xm) =




1 . . . 1
x1 . . . xm
...

...
xm−1

1 . . . xm−1
m




has non-trivial null space if and only if two or more of x1, . . . , xm are identical.

Clearly, if two or more x’s are identical A(x1, . . . , xm) cannot have full rank; Thus, the
null space is at least one dimensional. On the other hand, if the null space contains a
non-zero vector (a1, . . . , am)T , then x1, . . . , xm are roots of a polynomial p(x) =

∑m−1
i=0 aix

i

of degree at most m− 1.

To prove 1 we assume without loss of generality that m̃ ≤ m and begin by demonstating
that {λ̃1, . . . , λ̃ em} ⊆ {λ1, . . . , λm}. By assumption ρm+ em−1(m,λ, φ) = ρm+ em−1(m̃, λ̃, φ̃).
This we restate as

A(λ1, . . . , λm, λ̃1, . . . , λ̃ em) · (φ1, . . . , φm,−φ̃1, . . . ,−φ̃ em)T = 0.

The φ’s are all non-zero. Thus, by the above FACT one of λ1, . . . , λm must equal one
of λ̃1, . . . , λ̃ em. We assume that λ1 = λ̃1 (changing indices if necessary). Deleting the
replicate λ̃1 yields the equation

A(λ1, . . . , λm, λ̃2, . . . , λ̃ em) · (φ1 − φ̃1, φ2, . . . , φm,−φ̃2, . . . ,−φ̃ em)T = 0.
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By assumption λ1 = λ̃1 differs from the other λ’s and λ̃’s. Therefore we conclude that
one of λ2, . . . , λm equals one of λ̃2, . . . , λ̃ em, say λ2 = λ̃2 (changing indices again if neces-
sary). Continuing this way leads to the desired conclusion, {λ̃1, . . . , λ̃ em} ⊆ {λ1, . . . , λm}.
Moreover, if m > m̃, then

A(λ1, . . . , λm) · (φ1 − φ̃1, . . . , φ em − φ̃ em, φ em+1, . . . , φm)T = 0,

which contradics FACT. We conclude that m = m̃, and λ = λ̃ follows as λ1 > . . . > λm
and λ̃1 > . . . > λ̃m by definition. At last, φ = φ̃ is deduced from

A(λ1, . . . , λm) · (φ1 − φ̃1, . . . , φm − φ̃m)T = 0

with a final application of FACT.

To establish part 2 let θ ∈ Θm and Vk(θ) = ∂θT ρk(θ). It suffices to show that V2m−1(θ)
has full rank 2m − 1. To this end we demonstrate that V2m−1(θ)

T has trivial null space.
Assume that V2m−1(θ)

Ta = 0 for an a ∈ R2m−1. That is,

0 =




φ1

∑2m−1
t=1 attλ

t−1
1

...

φm
∑2m−1

t=1 attλ
t−1
m∑2m−1

t=1 atλ
t
1 −

∑2m−1
t=1 atλ

t
m

...∑2m−1
t=1 atλ

t
m−1 −

∑2m−1
t=1 atλ

t
m




implying that the polynomial p(x) =
∑2m−1

t=1 atx
t −∑2m−1

t=1 atλm has m distinct double
roots, namely λ1, . . . , λm. This is only possible if a = 0.

Finally, to prove part 3 and 4 note that for all k,m it holds that

{ρk(θ) : θ ∈ Θm} = {ρk(θ) : θ ∈ Θm} = ∪mj=1{ρk(θ) : θ ∈ Θj}.

By part 1 if k ≥ 2m − 1, the union is disjoint. Using compactness, continuity (part 2),
and identifiablility (part 1) both claims now follow. First, whenever θ⋆ ∈ Θm, ε > 0, and
k ≥ 2m− 1 it holds that

inf{|ρk(θ) − ρk(θ
⋆)|2 : θ ∈ Θm, |θ − θ⋆| ≥ ε} ≥

inf{|ρk(θ) − ρk(θ
⋆)|2 : θ ∈ Θm, |θ − θ⋆| ≥ ε} > 0.

Secondly, for θ⋆ ∈ Θm⋆ and k ≥ 2m⋆ − 1.

inf
m=1,...,m⋆−1

inf
θ∈Θm

|ρk(θ) − ρk(θ
⋆)|2 ≥ inf

θ∈Θm⋆

|ρk(θ) − ρk(θ
⋆)|2 > 0

holds true. �
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Abstract

The Pearson diffusions is a flexible class of diffusions defined by having
linear drift and quadratic squared diffusion coefficient. It is demonstrated
that for this class explicit statistical inference is feasible. Explicit optimal
martingale estimating functions are found, and the corresponding estimators
are shown to be consistent and asymptotically normal. A complete model
classification is presented for the ergodic subclass. The class of stationary
distributions equals the full Pearson system of distributions. Well-known
instances are the Ornstein-Uhlenbeck processes and the square root processes.
Also heavy-tailed and skewed marginals are included. Special attention is
given to a skewed t-type distribution. Explicit formulae for the conditional
moments and the polynomial eigenfunctions are derived. The analytical
tractability is inherited by transformed Pearson diffusions, integrated Pearson
diffusions, sums of Pearson diffusions, and stochastic volatility models with
Pearson volatility process. For the non-Markov models explicit optimal
prediction based estimating functions are found and shown to yield consistent
and asymptotically normal estimators.

Key words: stochastic differential equation, ergodic diffusion, Pearson
system, mixing, martingale estimating function, prediction based estimating
function, optimal estimating function, quasi likelihood.

B.1 Introduction

In applications of diffusions the Ornstein-Uhlenbeck process and the square-root process
(a.k.a. the CIR process) are often used, more because of their tractability than because
they fit the data particularly well. The aim of this paper is to point out that these two
diffusion processes belong to a versatile class of tractable diffusion models, which we call
the Pearson diffusions. For these diffusion models moments and conditional moments can
be calculated explicitly. Moreover, the optimal martingale estimating functions based
on eigenfunctions of the generator, introduced by Kessler & Sørensen (1999), can be
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found explicitly. Thus statistical inference using this method is straightforward. Recently,
Sørensen (2007) has proved that optimal martingale estimating functions give estimators
that are efficient in a high frequency asymptotics. Parameter estimation is also easy for
some diffusion-type models obtained using the Pearson diffusions as building blocks such
as transformations and sums of Pearson diffusions, integrated Pearson diffusions, and
Pearson stochastic volatility models. Most of these models are non-Markovian processes,
for which we derive explicit optimal prediction-based estimating functions, see Sørensen
(2000).

We shall use the term Pearson diffusion for any stationary solution of a stochastic
differential equation specified by a mean reverting linear drift and a squared diffusion
coefficient which is a second order polynomial of the state. The motivation is that when a
stationary solution exists, then its invariant density belongs to the Pearson system, Pear-
son (1895). The class of Pearson diffusions is thus highly flexible and therefore suited for
many different applications. Just like the Pearson densities the diffusions can be positive,
negative, real valued, or bounded, symmetric or skewed, and heavy- or light-tailed. We
give special attention to the Pearson diffusion with type IV marginals (the type IV Pear-
son distribution is a skewed kind of t-distribution). To our knowledge this process is new
to the literature and has a noteworthy potential in, for instance, financial applications.
Most of the Pearson diffusions were derived by Wong (1964) using a different approach
and with another aim. In particular, he did not consider the nice statistical properties
of the Pearson diffusions on which our paper focuses. Most of the Pearson diffusions are
among the diffusion models studied in Bibby, Skovgaard & Sørensen (2005), where no
attention was, however, given to statistical inference.
The paper is organized as follows. In Section 2 we give a complete classification of the
Pearson diffusions and demonstrate their tractability. We show that all Pearson diffu-
sions have polynomial eigenfunctions that can be found explicitly. It is also demonstrated
that estimation is easy for transformations of Pearson diffusions. In Section 3 statisti-
cal inference based on martingale estimating functions is investigated, and in Section 4
we explicitly find optimal prediction-based estimating functions for integrated Pearson
diffusions, for sums of Pearson diffusions and for stochastic volatility models where the
volatility process is a Pearson diffusion or a sum of Pearson diffusions. Also asymptotics
for these models are considered.

B.2 The Pearson diffusions

A Pearson diffusion is a stationary solution to a stochastic differential equation of the
form

dXt = −θ(Xt − µ)dt+
√

2θ(aX2
t + bXt + c)dBt, (B.1)

where θ > 0, and where a, b and c are such that the square root is well defined whenXt is in
the state space. The parameters of (B.1) are referred to as the canonical parameterisation:
θ > 0 is a scaling of time that determines how fast the diffusion moves. The parameters µ,
a, b, and c determine the state space of the diffusion as well as the shape of the invariant
distribution. In particular, µ is the mean of the invariant distribution.

Let us first briefly outline, why the stationary density of the diffusion (B.1) belongs
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to the Pearson system. The scale and speed densities of the diffusion (B.1) are

s(x) = exp

(∫ x

x0

u− µ

au2 + bu + c
du

)
and m(x) =

1

2θs(x)(ax2 + bx+ c)

where x0 is a fixed point such that ax2
0 + bx0 + c > 0. Let (l, r) be an interval such that

ax2 + bx + c > 0 for all x ∈ (l, r). A unique ergodic weak solution to (B.1) with values
in the interval (l, r) ∋ x0 exists if and only if

∫ r
x0
s(x)dx = ∞,

∫ x0

l
s(x)dx = ∞, and∫ r

l
m(x)dx <∞. Its invariant distribution has density proportional to the speed density,

m(x). Since
dm(x)

dx
= −(2a+ 1)x− µ+ b

ax2 + bx+ c
m(x),

we see that when a stationary solution to (B.1) exists, the invariant distribution belongs
to the Pearson system, which is defined as the class of probability densities obtained by
solving a differential equation of this form. If

∫ r
x0
s(x)dx < ∞, the boundary l can with

positive probability be reached in finite time. In this case a solution for which the invariant
distribution has density proportional to the speed density is obtained if the boundary l is
made instantaneously reflecting. Similarly for the other boundary, r.

B.2.1 Classification of the stationary solutions

In the following we present a full classification of the ergodic Pearson diffusions. Needless
to say, the squared diffusion coefficient must be positive on the state space of the diffusion.
We consider six cases according to whether the squared diffusion coefficient is constant,
linear, a convex parabola with either zero, one or two roots, or a concave parabola with
two roots. The classification problem can be reduced by first noting that the Pearson
class of diffusions is closed under translations and scale-transformations. To be specific,
if (Xt)t≥0 is an ergodic Pearson diffusion, then so is (X̃t)t≥0 where X̃t = γXt + δ. The
parameters of the stochastic differential equation (B.1) for (X̃t)t≥0 are ã = a, b̃ = bγ−2aδ,
c̃ = cγ2 − bγδ + aδ2, θ̃ = θ, and µ̃ = γµ+ δ.
Hence, up to translation and transformation of scale the ergodic Pearson diffusions can
take the following forms. Note that we consider scale transformations in a general sense
where multiplication by -1 is allowed, so that to each case of a diffusion with state space
(0,∞) there corresponds a diffusion with state space (−∞, 0). Note also that the enu-
meration of cases does not correspond to the types of the Pearson system.

Case 1: σ2(x) = 2θ.
For all µ ∈ R there exists a unique ergodic solution to (B.1). It is an Ornstein-Uhlenbeck
process, and the invariant distribution is the normal distribution with mean µ and vari-
ance 1. In the finance literature this model is sometimes referred to as the Vasiček model.

Case 2: σ2(x) = 2θx.
A unique ergodic solution to (B.1) on the interval (0,∞) exists if and only if µ > 1.
The invariant distribution is the gamma distribution with scale parameter 1 and shape
parameter µ. In particular µ is the mean of the invariant distribution. If 0 < µ ≤ 1,
the boundary 0 can with positive probability be reached at a finite time point, but if the
boundary is made instantaneously reflecting, we obtain a stationary process for which
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the invariant distribution is the gamma distribution with scale parameter 1 and shape
parameter µ. The process goes back to Feller (1951), who introduced it as a model of
population growth. It is often referred to as the square-root process. In the finance liter-
ature it is often refereed to as the CIR-process; Cox, Ingersoll & Ross (1985).

Case 3: a > 0 and σ2(x) = 2θa(x2 + 1).

The scale and speed densities are given by s(x) = (x2 +1)
1

2a exp(−µ
a

tan−1 x) and m(x) =

(x2 +1)−
1

2a
−1 exp(µ

a
tan−1 x). Hence, for all a > 0 and all µ ∈ R a unique ergodic solution

to (B.1) exists on the real line. If µ = 0 the invariant distribution is a scaled t-distribution

with ν = 1 + a−1 degrees of freedom and scale parameter ν−
1

2 . If µ 6= 0 the invariant
distribution is skew and has tails decaying at the same rate as the t-distribution with
1+ a−1 degrees of freedom. A fitting name for this distribution is the skew t-distribution.
It is also known as Pearson’s type IV distribution. In either case the mean is µ and the
invariant distribution has moments of order k for k < 1 + a−1. The class of diffusions
with µ 6= 0 seem to be new. With its skew and heavy tailed marginal distribution it is
potentially very useful in e.g. finance. The skew t-distribution with mean zero, ν degrees
of freedom, and skewness parameter ρ has (unnormalized) density

f(z) ∝ {(z/√ν + ρ)2 + 1}−(ν+1)/2 exp
{
ρ(ν − 1) tan−1

(
z/
√
ν + ρ

)}
, (B.2)

which is the invariant density of the diffusion Zt =
√
ν(Xt−ρ) with ν = 1+a−1 and ρ = µ.

By the transformation result above, the corresponding stochastic differential equation is

dZt = −θZtdt+

√
2θ(ν − 1)−1{Z2

t + 2ρν
1

2Zt + (1 + ρ2)ν}dBt. (B.3)

For ρ = 0 the invariant distribution is the t-distribution with ν degrees of freedom. Fig-
ure B.1 shows the density for a range of ρ values.

Case 4: a > 0 and σ2(x) = 2θax2.

The scale and speed densities are s(x) = x
1

a exp( µ
ax

) and m(x) = x−
1

a
−2 exp(− µ

ax
). The

integrability conditions hold if and only if µ > 0. Hence, for all a > 0 and all µ > 0 a
unique ergodic solution to (B.1) exists on the positive halfline. The invariant distribution
is an inverse gamma distribution with shape parameter 1 + 1

a
and scale parameter a

µ
.

In particular the mean is µ and the invariant distribution has moments of order k for
k < 1 + 1

a
.

Case 5: a > 0 and σ2(x) = 2θax(x+ 1).

The scale and speed densities are s(x) = (1 + x)
µ+1

a x−
µ
a and m(x) = (1 + x)−

µ+1

a
−1x

µ
a
−1.

The integrability conditions hold if and only if µ
a
≥ 1. Hence, for all a > 0 and all µ ≥ a

a unique ergodic solution to (B.1) exists on the positive halfline. The invariant distribu-
tion is a scaled F-distribution with 2µ

a
and 2

a
+ 2 degrees of freedom and scale parameter

µ
1+a

. In particular the mean is µ and the invariant distribution has moments of order k

for k < 1 + 1
a
. If 0 < µ < 1, the boundary 0 can with positive probability be reached

at a finite time point, but if the boundary is made instantaneously reflecting, a station-
ary process is obtained for which the invariant distribution is the indicated F-distribution.
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Figure B.1: Densities of skew t-distributions (Pearson type IV distributions) with zero
mean for ρ = 0, 0.5, 1, and 2 respectively.

Case 6: a < 0 and σ2(x) = 2θax(x− 1).

The scale and speed densities are s(x) = (1 − x)
1−µ

a x
µ
a and m(x) = (1 − x)−

1−µ
a

−1x−
µ
a
−1.

The integrability conditions hold if and only if µ
a
≤ −1 and 1−µ

a
≤ −1. Hence, for all

a < 0 and all µ > 0 such that min(µ, 1 − µ) ≥ −a a unique ergodic solution to (B.1)
exists on the interval (0, 1). The invariant distribution is a Beta distribution with shape
parameters µ

−a ,
1−µ
−a . In particular the mean is µ. If 0 < µ < −a, the boundary 0 can with

positive probability be reached at a finite time point, but if the boundary is made instan-
taneously reflecting, a stationary process is obtained with the indicated Beta distribution
as invariant distribution. Similar remarks apply to the boundary 1 when 0 < 1−µ < −a.
These diffusions are often referred to as the Jacobi diffusions because the related eigen-
functions are Jacobi polynomials, see below. The model was used (after a position and
scale transformation) by De Jong, Drost & Werker (2001) (with µ = 1

2
) and Larsen &

Sørensen (2003) to model the logarithm of exchange rates in a target zone.

B.2.2 Mixing and moments

Common to the stationary solutions of (B.1) is that they are ergodic and ρ-mixing with
exponentially decaying mixing coefficients. This follows from Genon-Catalot, Jeantheau
& Laredo (2000) theorem 2.6 by the fact that the drift is linear, see Hansen, Scheinkman
& Touzi (1998), section 5. If the marginal distribution has finite second order moment,
the linear drift implies, moreover, that the autocorrelation function is given by

ρ(t) = Cor(Xs, Xs+t) = e−θt
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see for instance Bibby, Skovgaard & Sørensen (2005). Another important and appealing
feature is that explicit expressions of the marginal and conditional moments can be found.
We saw in subsection 2.1 that E(|Xt|κ) < ∞ if and only if a < (κ − 1)−1. Thus if a ≤ 0
all moments exist, while for a > 0 only the moments satisfying that κ < a−1 + 1 exist. In
particular, the expectation always exists. By Ito’s formula

dXn
t = −θnXn−1

t (Xt−µ)dt+ θn(n−1)Xn−2
t (aX2

t + bXt+ c)dt+nXn−1
t σ(Xt)dBt, (B.4)

and if E(X2n
t ) is finite, i.e. if a < (2n− 1)−1, the integral of the last term is a martingale.

Thus, the moments of the invariant distribution satisfy

E(Xn
t ) = a−1

n {bn ·E(Xn−1
t ) + cn · E(Xn−2

t )} (B.5)

where an = n{1−(n−1)a}θ, bn = n{µ+(n−1)b}θ, and cn = n(n−1)cθ for n = 0, 1, 2, . . ..
Initial conditions are given by E(X0

t ) = 1, and E(Xt) = µ.

Example B.2.1 Equation (B.5) allows us to find the moments of the skewed t-distribution,
in spite of the fact that the normalising constant of the density (B.2) is unknown. In par-

ticular, for the diffusion (B.3), E(Z2
t ) = Var(Zt) = (1+γ2)ν

ν−2
,

E(Z3
t ) =

4γ(1 + γ2)ν
3

2

(ν − 3)(ν − 2)
, E(Z4

t ) =
24γ2(1 + γ2)ν2 + 3(ν − 3)(1 + γ2)2ν2

(ν − 4)(ν − 3)(ν − 2)
.

Recall that the mean of Zt is zero. △

The conditional moments qn(x, t) = E(Xn
t |X0 = x) satisfy the recursive system of first

order linear differential equations

d

dt
qn(x, t) = −anqn(x, t) + bnqn−1(x, t) + cnqn−2(x, t).

This follows from (B.4), again under the condition that the 2n’th moment is finite. Solving
for the initial condition qn(x, 0) = xn yields

qn(x, t) = xne−ant + bnIn−1(an, x, t) + cnIn−2(an, x, t)

where Iη(α, x, t) = exp(−αt)
∫ t
0
eαsqη(x, s)ds. Using once more the recursion, we get

Iη(α) =
xη{e−aηt − e−αt} + bη{Iη−1(aη) − Iη−1(α)} + cη{Iη−2(aη) − Iη−2(α)}

α− aη
.

To calculate I1(α, x, t) we use that I0(α, x, t) = α−1{1 − e−αt} as q0(x, t) = 1 and that
c1 = 0. We see that qn(x, t) is a polynomial of order n in x for any fixed t. A somewhat
easier derivation of this result comes by means of the eigenfunctions considered below.

B.2.3 Eigenfunctions

Recall that for a diffusion process

dXt = b(Xt)dt+ σ(Xt)dBt
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the generator is the second order differential operator

L = b(x)
d

dx
+

1

2
σ2(x)

d2

dx2
.

A function h is an eigenfunction if there exist a positive number λ > 0, an eigenvalue, such
that Lh = −λh. Under mild regularity conditions, see e.g. Kessler & Sørensen (1999), it
follows from Ito’s formula that

E(h(Xt)|X0 = x) = e−λth(x). (B.6)

This relationship can be used to construct martingale estimating functions. In case of the
Pearson diffusions that have a linear drift and a quadratic squared diffusion coefficient,
the generator maps polynomial into polynomials. It is therefore natural to search for
eigenfunctions among the polynomials

pn(x) =

n∑

j=0

pn,jx
j .

The polynomial pn(x) is an eigenfunction if an eigenvalue λn > 0 exist satisfying that
θ(ax2 + bx+ c)p′′n(x) − θ(x− µ)p′n(x) = −λnpn(x), i.e.

n∑

j=0

{λn − aj}pn,jxj +
n−1∑

j=0

bj+1pn,j+1x
j +

n−2∑

j=0

cj+2pn,j+2x
j = 0.

where aj = j{1− (j− 1)a}θ, bj = j{µ+ (j− 1)b}θ, and cj = j(j− 1)cθ for j = 0, 1, 2, . . ..
Without loss of generality, we assume pn,n = 1. Thus, equating the coefficients we find
that the eigenvalue is given by λn = an = n{1−(n−1)a}θ. If further we define pn,n+1 = 0,
then the coefficients {pn,j}j=0,...,n−1 solve the linear system

(aj − an)pn,j = bj+1pn,j+1 + cj+2pn,j+2 (B.7)

Equation (B.7) is equivalent to a simple recursive formula if an − aj 6= 0 for all j =
0, 1, . . . , n−1. Note that an−aj = 0 if and only if there exists an integer n−1 ≤ m < 2n−1
such that a = m−1 and j = m − n + 1. In particular, an − aj = 0 cannot occur if
a < (2n− 1)−1. It is important to notice that λn is positive if and only if a < (n− 1)−1.
This is exactly the condition ensuring that pn(x) is integrable with respect to the invariant
distribution. If the stronger condition a < (2n−1)−1 is satisfied, the first n eigenfunctions
belong to the space of functions that are square integrable with respect to the invariant
distribution, and they are orthogonal with respect to the usual inner product in this space.
From equation (B.6) the conditional moments can be derived. Sufficient conditions that
(B.6) holds is that the drift and diffusion coefficients, b and σ, are of linear growth and
that the eigenfunction h is of polynomial growth. These conditions are clearly satisfied
here. Thus,

E(Xn
t |X0 = x) = e−ant

n∑

j=0

pn,jx
j −

n−1∑

j=0

pn,jE(Xj
t |X0 = x). (B.8)
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For any fixed t the conditional expectation is a polynomial of order n in x the coefficients
of which are linear combinations of 1, e−λ1t, . . . , e−λnt. Let λ0 = 0 and

E(Xn
t |X0 = x) = qn(x, t) =

n∑

k=0

qn,k(t)x
k =

n∑

k=0

n∑

l=0

qn,k,l · e−λlt · xk. (B.9)

Initially q0(x, t) = 1. From the above it follows that qn,n(t) = e−ant and for k = 0, . . . , n−1,

qn,k(t) = pn,ke
−ant −

n−1∑

j=k

pn,jqj,k(t). (B.10)

In particular, qn,k,n = pn,k and qn,k,l = −∑n−1
j=l pn,jqj,k,l for l = 0, . . . , n− 1.

For the diffusions of form (B.1) with a ≤ 0 there are infinitely many polynomial eigenfunc-
tions. In these cases the eigenfunctions are well-known families of orthogonal polynomials.
In case 1, where the marginal distribution is the normal distribution, the eigenfunctions
are the Hermite polynomials. In case 2, with gamma marginals, the eigenfunctions are the
Laguerre polynomials, and finally in case 6, where the marginals are Beta-distributions,
the eigenfunctions are Jacobi polynomials (on the interval (0, 1)). For these cases all mo-
ments of the marginal distribution exists.
In the remaining cases, 3, 4, and 5, a > 0 which implies that there is only a finite number
of polynomial eigenfunctions. The number is the integer part of 1 + a−1, which is also
the order of the highest finite moment of the marginal distribution. In these cases the
marginal distributions are the inverse gamma distributions, the F-distributions, and the
skew (and symmetric) t-distributions, respectively.

Example B.2.2 The skew t-diffusion (B.3) has the eigenvalues λn = n(ν − n)(ν − 1)−1θ
for n < ν. The four first eigenfunctions are p1(z) = z,

p2(z) = z2 − 4γν
1

2

ν − 3
z − (1 + γ2)ν

ν − 2
,

p3(z) = z3 − 12γν
1

2

ν − 5
z2 +

24γ2ν + 3(1 + γ2)ν(ν − 5)

(ν − 5)(ν − 4)
z +

8γ(1 + γ2)ν
3

2

(ν − 5)(ν − 3)
,

and

p4(z) = z4 − 24γν
1

2

ν − 7
z3 +

144γ2ν − 6(1 + γ2)ν(ν − 7)

(ν − 7)(ν − 6)
z2

+
8γ(1 + γ2)ν

3

2 (ν − 7) + 48γ(1 + γ2)ν
3

2 (ν − 6) − 192γ3ν
3

2

(ν − 7)(ν − 6)(ν − 5)
z

+
3(1 + γ2)2ν(ν − 7) − 72γ2(1 + γ2)ν2

(ν − 7)(ν − 6)(ν − 4)
,

provided that ν > 4. Conditional moments are readily obtained from equation (B.8). The
most simple cases are E(Zt|Z0 = z) = ze−θt and

E(Z2
t |Z0 = z) = e−

2ν−4

ν−1
θtz2 +

4γν
1

2

ν − 3
(e−θt − e−

2ν−4

ν−1
θt)z +

(1 + γ2)ν

ν − 2
(1 − e−

2ν−4

ν−1
θt).

These formulae are used in Examples B.4.1 and B.4.4 below. △
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B.2.4 Transformations

For any diffusion obtained from a solution to (B.1) by a twice differentiable and invert-
ible transformation T , the eigenfunctions of the generator are pn{T−1(x)}, which have
the same eigenvalues as the original eigenfunctions pn. Thus the estimation methods
discussed below can be used for the much broader class of diffusions obtained by such
transformations. Their stochastic differential equations can, of course, be found by Ito’s
formula. We will just give a couple of examples.

Example B.2.3 For the Jacobi-diffusion (case 6) with µ = −a = 1
2
, i.e.

dXt = −θ(Xt − 1
2)dt+

√
θXt(1 −Xt)dWt

the invariant distribution is the uniform distribution on (0, 1) for any θ > 0. For any
strictly increasing and twice differentiable distribution function F we therefore have a
class of diffusions given by Yt = F−1(Xt) or

dYt = −θ (F (Yt) − 1
2
)f(Yt)

2 + 1
2
F (Yt){1 − F (Yt)}

f(Yt)3
dt+

θF (Yt){1 − F (Yt)}
f(Yt)

dWt,

which has invariant distribution with density f = F ′. A particular example is the logistic
distribution

F (x) =
ex

1 + ex
x ∈ R,

for which
dYt = −θ

{
sinh(x) + 8 cosh4(x/2)

}
dt+ 2

√
θ cosh(x/2)dWt.

If the same transformation F−1(y) = log(y/(1 − y)) is applied to the general Jacoby
diffusion (case 6), then we obtain

dXt = −θ
{
1 − 2µ+ (1 − µ)ex − µe−1 − 8a cosh4(x/2)

}
dt+ 2

√
−aθ cosh(x/2)dWt,

a diffusion for which the invariant distribution is the generalized logistic distribution with
density

f(x) =
eαx

(1 + ex)α+βB(α, β)
, x ∈ R,

where α = −(1 − µ)/a, β = µ/a and B denotes the Beta-function. This distribution was
introduced and studied in Barndorff-Nielsen, Kent & Sørensen (1982). △

Example B.2.4 Let again X be a general Jacobi-diffusion (case 6). If we apply the
transformation T (x) = sin−1(2x− 1) to Xt we obtain the diffusion

dYt = −ρsin(Yt) − ϕ

cos(Yt)
dt+

√
−aθ/2dWt,

where ρ = θ(1 + a/4) and ϕ = (2µ − 1)/(1 + a/4). The state space is (−π/2, π/2). The
model was proposed and studied in Kessler & Sørensen (1999) for ϕ = 0, where the drift
is −ρ tan(x). The general asymmetric version was proposed in Larsen & Sørensen (2003)
as a model for exchange rates in a target zone. △
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B.3 Martingale estimating functions

Suppose {Yi}i=0,1,...,n is a sequence of observations from an ergodic Pearson diffusion made
at the time points ti = i∆ for i = 0, . . . , n. Our goal is to estimate a parameter ψ belonging
to the parameter space Ψ ⊂ Rd. The parameter ψ might be the parameter (θ, µ, a, b, c)
of the full class of Pearson diffusions, or it might be a subclass, e.g. a class corresponding
to one of the Pearson types. If the diffusion has moments of order N , then the N first
eigen-polynomials p1(·, ψ), . . . , pN(·, ψ) are well defined. Thus, we can apply a martingale
estimating function of the type introduced by Kessler & Sørensen (1999),

Gn(ψ) =
n∑

i=1

N∑

j=1

αj(Yi−1, ψ){pj(Yi, ψ) − e−λj(ψ)∆pj(Yi−1, ψ)} (B.11)

where α1, . . . , αN are weight functions and λ1(ψ), . . . , λN(ψ) are the eigenvalues. Written
on matrix form the associated estimating equation take the form

Gn(ψ) =

n∑

i=1

α(Yi−1, ψ)h(Yi−1, Yi, ψ) = 0. (B.12)

where α is the d×N weight matrix and hj(x, y, ψ) = pj(y, ψ)−e−λj(ψ)∆pj(x, ψ). We shall
focus on the optimal estimating function in the sense of Godambe & Heyde (1987) where
α is chosen to minimize the asymptotic variance of the related estimator. Also the simple
estimating function where α is the d×d identity matrix is briefly considered, although not
all parameters can be estimated in this simple way. For other choices of weight functions
we refer to the general theory in Bibby, Jacobsen & Sørensen (2004).
It is well known that the transition probabilities of an ergodic diffusion have series expan-
sions in terms of the eigenfunctions, see e.g. Karlin & Taylor (1981). As the expansion
mainly depends on the first eigenfunctions the optimally weighted martingale estimating
function can be interpreted as an approximation to the score function. In fact the optimal
martingale estimating function is the L2 projection of the score function onto the set of
martingale functions given by the various selection of weights as was proved by Kessler
(1996), see also Sørensen (1997). The series expansions for some of the Pearson diffusions
can be found in Wong (1964).

B.3.1 Moment estimators and the simple estimating function

Very often the most simple estimating equations can be solved explicitly, and although
the resulting estimators may not be efficient, they are still useful as input when having to
solve more complicated estimating equations numerically or to simplify optimal estimating
functions as discussed below. The most simple martingale estimating function of form
(B.11) is the one with weight matrix equal to the identity. However, it is of limited use
as it can only identify parameters in the invariant distribution. Consider for instance the
canonical parameter τ = (θ, µ, a, b, c). The simple estimating function, Gn(τ), yields no
sensible estimate of θ because

Gn(τ)j
n

→ (1 − e−j(1−(j−1)a)θ∆) · Eτ0(pj(Y, τ)),
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almost surely as n→ ∞. The limit equals zero for (µ, a, b, c) = (µ0, a0, b0, c0) regardless of
the value of θ. Estimators of the parameters in the marginal distribution might as well be
obtained from solving the first four instances of equation (B.5) with empirical moments
inserted. Let Mn(j) = 1

n

∑n
i=1 Y

j
i , then µ̃n = Mn(1) and




ãn
b̃n
c̃n



 =




Mn(2) Mn(1) 1
2Mn(3) 2Mn(2) 2Mn(1)
3Mn(4) 3Mn(3) 3Mn(2)




−1

·




Mn(2) −Mn(1)2

Mn(3) −Mn(1)Mn(2)
Mn(4) −Mn(1)Mn(3)





are consistent and asymptotically normal estimators of µ, a, b, and c due to the mixing
properties of the Pearson diffusion. In fact, the moment estimators are asymptotically
equivalent to the estimators obtained from the simple martingale estimating function with
θ (any θ) held fixed. Finally, θ can be estimated by least squares estimation as in Forman
(2005), by means of a linear estimating function as in Bibby & Sørensen (1995), or with
a modification of Kessler’s estimator, Kessler (2000). A simultaneous estimator of τ can
also be obtained by replacing the first diagonal element in the identity matrix by Yi−1.

B.3.2 Optimal martingale estimating function

A noteworthy feature of the Pearson diffusions is that the optimal weights in the sense of
Godambe & Heyde (1987) are simple and explicit. For the optimal weights the asymptotic
variance of the corresponding estimator is minimal. An account of the theory of optimal
estimating functions can be found in Heyde (1997).
Assume that the Pearson diffusion is ergodic and has moments of order 2N . In particular,
a < (2N − 1)−1. Further assume that the mapping ψ 7→ τ = (θ, µ, a, b, c) is differentiable.
Then the optimal weights for the martingale estimating function (B.11) are given by
proposition 3.1 of Kessler & Sørensen (1999) as

α⋆(x, ψ) = −S(x, ψ)T · V (x, ψ)−1 (B.13)

where T denotes transposition and

Sj,k(x, ψ) = −Eψ{∂ψk
pj(Yi, ψ)|Yi−1 = x} + ∂ψk

{e−λj(ψ)∆pj(x, ψ)}
Vj,k(x, ψ) = Eψ{pj(Yi, ψ)pk(Yi, ψ)|Yi−1 = x} − e−{λj(ψ)+λk(ψ)}∆pj(x, ψ)pk(x, ψ).

Note that the indicated conditions imply that S and V are well defined. The proof that
V is invertible is implicitly given as part of the proof of Theorem B.3.1 below. Moreover,
the formula defining the optimal weights can be made explicit by means of the recursive
formula (B.8) and (B.7) of Section B.2. Note that

Vj,k(x, ψ) =

j∑

j′=0

k∑

k′=0

pj,j′(ψ)pk,k′(ψ)qj′+k′(x,∆, ψ) − e−(λj (ψ)+λk(ψ))∆pj(x, ψ)pk(x, ψ)

Sj,k(x, ψ) = pj(x, ψ)e−λj(ψ)∆∂ψTλj(ψ) +

j∑

j′=0

{qj′(x,∆, ψ) − e−λj(ψ)∆xj
′}∂ψT pj,j′(ψ).
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where qj(x, t, ψ) = Eψ(Xj
t |X0 = x) is specified by equations (B.8) and (B.9). Hence, the

j, k’th element of V (x, ψ) is a polynomial vj,k(x) =
∑j+k

l=0 vj,k,lx
l with coefficients given by

vj,k,l =

j∑

j′=0

k∑

k′=0

pj,j′pk,k′ · (qj′+k′,l(∆) − e−(λj+λk)∆I{j′+k′=l}),

where I{j′+k′=l} denotes the indicator function. Similarly, the j, k’th element of S(x, ψ) is

the j’th order polynomial sj,k(x) =
∑j

l=0 sj,k,lx
l the coefficients of which are

sj,k,l = e−λj∆(pj,l∂ψk
λj − ∂ψk

pj,l) +

l∑

j′=0

∂ψk
pj,j′ · qj′,l(∆).

It is important to notice that the derivatives dj,l = ∂ψT pj,l satisfy the recursion

dj,l =
bl+1dj,l+1 + cl+2dj,l+2 + pj,l∂ψT (al − aj) + pj,l+1∂ψT bl+1 + pj,l+2∂ψT cl+2

al − aj

for l = j − 1, j − 2, . . . , 0 where initially dj,j = dj,j+1 = 0.

In practice, it is often a good idea to replace the weight matrix α⋆(x, ψ) by

α̃n(x) = α⋆(x, ψ̃n), (B.14)

where ψ̃n is a
√
n-consistent estimator of ψ. For instance ψ̃n could be a moment estimator

as described in Section B.3.1. The resulting estimating equations are much easier to solve
numerically because of the simpler dependence on θ and because the weight matrix need
only be evaluated once for every observation. Moreover, replacing the weights by estimates
does not affect the asymptotic distribution of the estimator so there is no loss of efficiency
(see Theorem B.3.1 below).

B.3.3 Asymptotic theory

The optimally weighted martingale estimating function (B.11) provides consistent and
asymptotically normal estimators of the parameters of a Pearson diffusion under mild
regularity conditions. In what follows ψ0 denotes the true parameter value.

Theorem B.3.1 Suppose that the following hold true:

R0: The Pearson diffusion is ergodic and has moments of order 2N where N ≥ 2.

R1: ψ0 belongs to the interior of Ψ.

R2: The mapping ψ 7→ τ = (θ, µ, a, b, c) is differentiable and ∂ψτ(ψ0) has full rank d.

Then with probability tending to one as n→ ∞ there exist a solution ψ̂n to the estimating
equation (B.12) with weights specified by either (B.13) or (B.14) such that ψ̂n converges
to ψ0 in probability and √

n(ψ̂n − ψ0)
D→ N (0,W (ψ0)

−1)

where W (ψ0) = Eψ0
{S(Yi, ψ0)

TV (Yi, ψ0)
−1S(Yi, ψ0)}.
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Note: Condition R0 ensures that the eigenfunctions are well defined and that h1, . . . , hN
have finite variance so that Gn(ψ0) is indeed a martingale. In fact, R0 implies that Gn(ψ0)
is a square integrable martingale. The proof of Theorem B.3.1 is given in the appendix.

Example B.3.1 For the skewed t-diffusion with parameter ψ = (θ, ν, ρ) the canonical
parameter is

(θ, µ, a, b, c) =

(
θ, 0,

1

ν − 1
,
2ρν

1

2

ν − 1
,
(1 + ρ2)ν

ν − 1

)

and

∂τ

∂ψT
=




1 0 0 0 0

0 0 − 1
(ν−1)2

ρ

ν
1
2 (ν−1)

− 2ρν
1
2

(ν−1)2
1+ρ2

(ν−1)
− ν(1+ρ2)

(ν−1)2

0 0 0 2ν
1
2

ν−1
2νρ
ν−1




which has full rank three. Hence, consistent and asymptotically normal estimates are
obtained by means of the optimally weighted martingale estimating function under the
further assumption that ν0 > 2N . △

B.4 Derived diffusion-type models

The Pearson diffusion processes can be used as building blocks to obtain more general
diffusion-type models. In what follows we consider inference for integrated diffusions,
sums of diffusions, and stochastic volatility models. These derived processes are not
Markovian. Therefore explicit martingale estimating functions are no longer available. In
stead we suggest to base the statistical inference on prediction based estimation functions,
introduced in Sørensen (2000). We will demonstrate that such estimating functions can
be found explicitly for models based on Pearson diffusions. We start by briefly reviewing
the method of prediction based estimating functions.

B.4.1 Prediction based estimating functions

Here we focus on estimating functions based on prediction of powers of the observations
of the process. Suppose that we have observed the random variables Y1, . . . , Yn that form
a stationary stochastic process the distribution of which is parametrised by Ψ ⊆ Rd.
Assume that Eψ(Y 2m

i ) < ∞ for all ψ ∈ Ψ for some m ∈ N. For each i = r + 1, . . . , n

and j = 1, . . . , m let the class {Z(i−1)
jk | k = 1, . . . , qj} be a subset of the random variables

{Y κ
i−ℓ | ℓ = 1, . . . , r, κ = 0, . . . , j}, where Z

(i−1)
j1 is always equal to 1. We wish to predict Y j

i

by means of linear combinations of the Z
(i−1)
jk -s for each of the values of i and j listed above

and then to use suitable linear combinations of the prediction errors to estimate the para-
meter ψ. Let Pi−1,j denote the space of predictors of Y j

i , i.e. the space of square integrable

random variables spanned by Z
(i−1)
j1 , . . . , Z

(i−1)
jqj

. The elements of Pi−1,j are of the form

aTZ
(i−1)
j , where aT = (a1, . . . , aqj) and Z

(i−1)
j = (Z

(i−1)
j1 , . . . , Z

(i−1)
jqj

)T are qj-dimensional
vectors.
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We will use estimating functions of the type

Gn(ψ) =

n∑

i=r+1

m∑

j=1

Π
(i−1)
j (ψ)

[
Y j
i − π̂

(i−1)
j (ψ)

]
(B.15)

where Π
(i−1)
j (ψ) is a d-dimensional data dependent vector of weights, the coordinates of

which belong to Pi−1,j , and where π̂
(i−1)
j (ψ) is the minimum mean square error predictor

of Y j
i in Pi−1,j , which is the usual L2-projection of Y j

i onto Pi−1,j . When ψ is the true

parameter value, we define Cj(ψ) as the covariance matrix of (Z
(r)
j2 , . . . , Z

(r)
jqj

)T and bj(ψ) =

(Covψ(Z
(r)
j2 , Y

j
r+1), . . . ,Covψ(Z

(r)
jqj
, Y j

r+1))
T . Then we have

π̂
(i−1)
j (ψ) = âj(ψ)TZ

(i−1)
j

where âj(ψ)T = (âj1(ψ), âj∗(ψ)T ) with âj∗(ψ)T = (âj2(ψ), . . . , âjqj(ψ)) defined by

âj∗(ψ) = Cj(ψ)−1bj(ψ) (B.16)

and

âj1(ψ) = Eψ(Y j
1 ) −

qj∑

k=2

âjk(ψ)Eψ(Z
(r)
jk ). (B.17)

Thus to find π̂
(i−1)
j (ψ), j = 1, . . . , m, we need to calculate moments of the form

Eψ(Y κ
1 Y

j
k ), 0 ≤ κ ≤ j ≤ m, k = 1, . . . , r. (B.18)

Once we have calculated these moments, the vector of coefficients âj can easily be found by
means of the m-dimensional Durbin-Levinson algorithm applied to {(Yi, Y 2

i , . . . , Y
m
i )}i∈N,

see Brockwell & Davis (1991). The non-Markovian diffusion-type models considered in
this paper inherit the exponential ρ-mixing property from the Pearson diffusions. There-
fore constants K > 0 and λ > 0 exist such that

∣∣Covψ(Y j
1 , Y

j
k )
∣∣ ≤ Ke−λk (λ is typically

the smallest speed of mean reversion of the involved Pearson diffusions). Therefore r will
usually not need to be chosen particularly large. If Y j

i is restricted to have mean zero, we
need not include a constant in the space of predictors, i.e. we need only the space spanned
by Z

(i−1)
j2 , . . . , Z

(i−1)
jqj

.

In many situations m = 2 with Z
(i−1)
jk = Yi−k, k = 1, . . . , r, j = 1, 2 and Z

(i−1)
2k = Y 2

i+r−k,
k = r + 1, . . . , 2r, will be a reasonable choice. In this case the minimum mean square
error predictor of Yi can be found using the Durbin-Levinson algorithm for real processes,
while the predictor of Y 2

i can be found by applying the two-dimensional Durbin-Levinson
algorithm to the process (Yi, Y

2
i ).

Including predictors in the form of lagged terms Yi−kYi−k−l for a number of lags l’s might
also be of relevance. These terms enter into the least squares estimator of Forman (2005),
which produces good estimates for a sum of Ornstein-Uhlenbeck processes.

The choice of the weights Π
(i−1)
j (ψ) in (B.15) for which the asymptotic variance of the

estimators is minimized is the Godambe optimal prediction-based estimating function,
that was derived in Sørensen (2000). An account of the theory of optimal estimating
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functions can be found in Heyde (1997). The optimal estimating function of the type
(B.15) can be written in the form

G∗
n(ψ) = A∗

n(ψ)
n∑

i=r+1

H(i)(ψ), (B.19)

where
H(i)(ψ) = Z(i−1)

(
F (Yi) − π̂(i−1)(ψ)

)
, (B.20)

with F (x) = (x, x2, . . . , xm)T , π̂(i−1)(ψ) = (π̂
(i−1)
1 (ψ), . . . π̂

(i−1)
m (ψ))T and

Z(i−1) =




Z
(i−1)
1 0q1 · · · 0q1

0q2 Z
(i−1)
2 · · · 0q2

...
...

...

0qm 0qm · · · Z
(i−1)
m



. (B.21)

Here 0qj denotes the qj-dimensional zero-vector. Finally,

A∗
n(ψ) = ∂ψâ(ψ)T C̄(ψ)M̄n(ψ)−1, (B.22)

with

M̄n(ψ) = Eψ

(
H(r+1)(ψ)H(r+1)(ψ)T

)
+ (B.23)

n−r−1∑

k=1

(n− r − k)

(n− r)

[
Eψ

(
H(r+1)(ψ)H(r+1+k)(ψ)T

)
+Eψ

(
H(r+1+k)(ψ)H(r+1)(ψ)T

)]
,

C̄(ψ) = Eψ
(
Z(i−1)(Z(i−1))T

)
, (B.24)

and
â(ψ)T =

(
â1(ψ)T , . . . , âm(ψ)T

)
, (B.25)

where âj(ψ) is given by (B.16) and (B.17). A necessary condition that the moments in
(B.23) exist is that Eψ(Y 4m

i ) < ∞ for all ψ ∈ Ψ. For (B.19) to be optimal we need that
the matrix ∂ψâ(ψ)T has full rank. The matrix M̄n(ψ) is always invertible.

Because the processes considered below inherit the exponential ρ-mixing property from
the Pearson diffusions, there exist constants K > 0 and λ > 0 such that the absolute
values of all entries in the expectation matrices in the sum in (B.23) are dominated by
Ke−λ(k−r−1) when k > r. Therefore, the sum in (B.23) can in practice often be truncated
so that fewer moments need to be calculated. The matrix M̄n(ψ) can also be approximated
by a truncated version of the limiting matrix

M̄(ψ) = Eψ

(
H(r+1)(ψ)H(r+1)(ψ)T

)
+ (B.26)

∞∑

k=1

[
Eψ

(
H(r+1)(ψ)H(r+1+k)(ψ)T

)
+ Eψ

(
H(r+1+k)(ψ)H(r+1)(ψ)T

)]
,

obtained for n→ ∞. In practice, it is usually also a good idea to replace A∗
n(ψ) by A∗

n(ψ̄n),
where ψ̄n is a

√
n-consistent estimator of ψ (and similarly for approximations to A∗

n(ψ)).
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This has the advantages that (B.23) or (B.26) need only be calculated once and that a
simpler estimating equation is obtained, while the asymptotic variance of the estimator is
unchanged. The estimator ψ̄n can, for instance, be obtained from an estimating function
similar to (B.19), where A∗

n(ψ) has been replaced by a suitable simple matrix independent
of ψ, but such that the estimating equation has a solution. Usually it is enough to use
the first d coordinates of H(i)(ψ), where d is the dimension of the parameter. In order to
calculate (B.23) or (B.26), we need mixed moments of the form

Eψ[Y k1
1 Y k2

t1 Y
k3
t2 Y

k4
t3 ], 1 ≤ t1 ≤ t2 ≤ t3 k1 + k2 + k3 + k4 ≤ 4m (B.27)

where ki, i = 1, . . . , 4 are non-negative integers. In the following subsections we demon-
strate that in three diffusion-type models derived from Pearson diffusions, explicit ex-
pressions can be found for the necessary moments, (B.18) and (B.27). Thus the optimal
prediction-based estimating functions are explicit.

B.4.2 Integrated Pearson diffusions

Let X be a stationary Pearson diffusion, i.e. a solution to (B.1). Suppose that the diffusion
cannot be observed directly, but that the data are

Yi =
1

∆

∫ i∆

(i−1)∆

Xs ds, i = 1, . . . , n (B.28)

for some fixed ∆. Such observations can be obtained if the process X is observed after
passage through an electronic filter. Another example is provided by ice-core records.
The isotope ratio 18O/16O in the ice, measured as an average in pieces of ice, each piece
representing a time interval with time increasing as a function of the depth, is a proxy
for paleo-temperatures. The variation of the paleo-temperature can be modelled by a
stochastic differential equation, and it is natural to model the ice-core data as an integrated
diffusion process, see Ditlevsen, Ditlevsen & Andersen (2002). Estimation based on this
type of data was considered by Gloter (2001), Ditlevsen & Sørensen (2004) and Gloter
(2006). Since X is stationary, the random variables Yi, i = 1, . . . , n form a stationary
process with the same mixing properties asX, i.e. it is exponentially mixing. However, the
observed process is not Markovian, so martingale estimating functions are not available
in a tractable form, but explicit prediction-based estimating functions can be found.

Suppose that 4m’th moment of Xt is finite. The moments (B.18) and (B.27) can be
calculated by

E
[
Y k1

1 Y k2
t1 Y

k3
t2 Y

k4
t3

]
=

∫
A
E[Xv1 · · ·Xvk1

Xu1
· · ·Xuk2

Xs1 · · ·Xsk3
Xr1 · · ·Xrk4

] dt

∆k1+k2+k3+k4

where 1 ≤ t1 ≤ t2 ≤ t3 , A = [0 , ∆]k1 × [(t1 − 1)∆ , t1∆]k2 × [(t2 − 1)∆ , t2∆]k3 ×
[(t3 − 1)∆ , t3∆]k4, and dt = drk4 · · · dr1 dsk3 · · · ds1 duk2 · · · du1 dvk1 · · · dv1. The domain
of integration can be reduced considerably by symmetry arguments, but here the point
is that we need to calculate moments of the type E(Xκ1

t1 · · ·Xκk
tk

), where t1 < · · · < tk.
Since E(Xn

t |X0 = x) is a polynomial in x given by (B.9), it follows that we can find the
needed moments iteratively

E(Xκ1

t1 · · ·Xκk
tk

) =

κk∑

j=1

qκk,j(tk − tk−1)E(Xκ1

t1 · · ·Xκk−1+j
tk−1

),
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where qκk,j(tk − tk−1) is given by (B.10). The coefficient depends on time through an
exponential function, so E(Xκ1

t1 · · ·Xκk
tk

) depends on t1, . . . , tk through sums and products
of exponential functions. Therefore the integral above can be explicitly calculated.

Example B.4.1 Integrated skew t-diffusion. We will now calculate an optimal estimating
function for the integrated skew t-diffusion (B.3). To simplify the exposition we consider

the simple case where m = 2, Z
(i−1)
1,1 = Yi−1, Z

(i−1)
2,1 = 1, and Z

(i−1)
2,2 = Y 2

i−1 (i.e. q1 = r =
1, q2 = 2). The estimating equations take the form

Gn(θ, ρ, ν) =
n∑

i=2




Yi−1Yi − β1Y
2
i−1

Y 2
i − σ2(1 − β2) − β2Y

2
i−1

Y 2
i−1Y

2
i − σ2(1 − β2)Y

2
i−1 − β2Y

4
i−1


 = 0, (B.29)

with σ2 = Var(Yi−1) and βj = Cov(Y j
i−1, Y

j
i ) · Var(Y j

i−1)
−1 for j = 1, 2. In particular,

σ2 =
2ν(1 + ρ2)

ν − 2
·
{

1

θ∆
− 1 − e−θ∆

(θ∆)2

}
, β1 =

(1 − e−θ∆)2

2(θ∆ − 1 + e−θ∆)
.

In order to get an explicit expression of β2 let fn(x) = x−n(1 − e−x), then

Cov(Y 2
i−1, Y

2
i ) = 4γ1(λ∆− θ∆)−2{f1(λ∆)− f1(θ∆)}2 + 4γ2(θ∆)−2{1− (1 + θ∆)f1(θ∆)}2

where λ = 2θ(ν−2)
ν−1

, γ1 = (3ν3−10ν2−4ν)ρ2σ2

(ν−4)(ν−3)2
+ 3νσ2

ν−4
− σ4, and γ2 = 16νρ2σ2

(ν−3)2
. Likewise,

Var(Y 2
i−1) = 24γ1[(λ∆ − θ∆)−2{f2(θ∆) − f2(λ∆)} + (θ∆)−2{(λ∆)−1 + (λ∆ − θ∆)−1}]

− 24γ1(θ∆)−1(θ∆ − λ∆)−1(2 + θ∆)f2(θ∆)

+ 12γ2(θ∆)−2[1 + 6(θ∆)−1 − {(θ∆)2 + 4θ∆ + 6}f2(θ∆)]

+ 12σ4(θ∆)−2{1 − 6(θ∆)−1 + (2θ∆ + 6)f2(θ∆)} − 4σ4(θ∆)−2{1 − f1(θ∆)}2.

Solving equation (B.29) for β1, β2, and σ2 we get

β̂1 =
1

n−1

∑n
i=2 Yi−1Yi

1
n−1

∑n
i=2 Y

2
i−1

, β̂2 =
1

n−1

∑n
i=2 Y

2
i−1Y

2
i − ( 1

n−1

∑n
i=2 Y

2
i−1)(

1
n−1

∑n
i=2 Y

2
i )

1
n−1

∑n
i=2 Y

4
i−1 − ( 1

n−1

∑n
i=2 Y

2
i−1)

2

and

σ̂2 = 1
1−β̂2

1
n−1

∑n
i=2 Y 2

i−1 + β̂2

1−β̂2

1
n−1

∑n
i=2 Y 2

i .

Hence, if 0 < β̂1 < 1, which happens eventually with probability one, the expression of
β1 yields a unique estimate θ̂ > 0 satisfying

2β̂1{θ̂∆ − (1 − e−θ̂∆)} − (1 − e−θ̂∆)2 = 0.

The remaining equations are solved by substituting ρ̂(ν)2 = ν−2
2ν

{(θ̂∆)−1 − f2(θ̂∆)}−1 − 1

into the equation β2(θ̂, ρ̂(ν)
2, ν) = β̂2, which has to be solved numerically. To estimate

the sign of ρ, note that for instance E(Y 3
1 ) = 24

√
νρσ2

ν−3
· (θ∆)−2{2 − (2 + θ∆)f1(θ∆)} has

the same sign as ρ. △
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B.4.3 Sums of diffusions

The simple exponentially decreasing autocorrelation function of the Pearson diffusions is
too simple in some applications, but we can obtain a much richer autocorrelation structure
by considering sums of Pearson diffusions:

Yt = X1,t + . . .+XM,t (B.30)

dXi,t = −θi(Xi,t − µi) + σi(Xi,t)dBi,t, i = 1, . . . ,M, (B.31)

where θ1, . . . , θM > 0 and B1, . . . , BM are independent Brownian motions. The diffusion
coefficients σ1, . . . , σM are of the form of a Pearson diffusion (B.1). Suppose all Xi,t have
finite second moment. Then the autocorrelation function of Y is

ρ(t) = φ1 exp(−θ1t) + . . .+ φM exp(−θM t) (B.32)

with

φi =
Var(Xi,t)

Var(X1,t) + · · · + Var(XM,t)
.

Thus φ1 + . . .+ φM = 1. The expectation of Yt is µ1 + · · ·+ µM . Sums of diffusions with
a pre-specified marginal distribution of Y were considered by Bibby & Sørensen (2003),
Bibby, Skovgaard & Sørensen (2005) and Forman (2005). Here we specify instead the
distributions of the Xi,t’s, which implies that the models are simpler to handle. Sums of
Ornstein-Uhlenbeck processes driven by Lévy processes were introduced and studied in
Barndorff-Nielsen, Jensen & Sørensen (1998). An autocorrelation function of the form
(B.32) fits turbulence data well, see Barndorff-Nielsen, Jensen & Sørensen (1990) and
Bibby, Skovgaard & Sørensen (2005).

Example B.4.2 Sum of Ornstein-Uhlenbeck processes. If σ2
i (x) = 2θici, the stationary

distribution of Yt is a normal distribution with mean µ1+· · ·+µM and variance c21+· · ·+c2M .
△

Example B.4.3 Sum of CIR processes. If σ2
i (x) = 2θibx and µi = αib, then the station-

ary distribution of Yt is a Gamma-distribution with shape parameter α1 + · · · + αM and
scale parameter b. The weights in the autocorrelation function are φi = αi/(α1+· · ·+αM).
△

In the other cases of Pearson diffusions, the class of marginal distributions is not closed
under convolution, so the stationary distribution of Yt is not in the Pearson class and is,
in fact, not any of the standard distributions. It has recently been proven that the sum
of two t-distributions with odd degrees of freedom is a finite mixture (over degrees of
freedom) of scaled t-distributions, see Berg & Vignat (2006). In the case of the Jacobi-
diffusions it might be preferable to consider Yt/M to obtain again a process with state
space (0, 1).

A sum of diffusions is not a Markov process, so also for this type of model we use
prediction-based estimating functions rather than martingale estimating functions. Sup-
pose that the process Y has been observed at the time points ti = ∆i, i = 1, . . . , n. The
necessary moments of the form (B.18) and (B.27) can, provided they exist, be obtained
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from the mixed moments of the Pearson diffusions because by the multinomial formula
we find, for instance

E(Y κ
t1Y

ν
t2) =

∑∑(
κ

κ1, . . . , κM

)(
ν

ν1, . . . , νM

)
E(Xκ1

1,t1X
ν1
1,t2) . . . E(XκM

M,t1
XνM

M,t2
)

where (
κ

κ1, . . . , κM

)
=

κ!

κ1! · · ·κM !

is the multinomial coefficient, and where the first summation is over 0 ≤ κ1, . . . , κM such
that κ1 + . . . κM = κ and the second summation is the same just for the ν’s. The higher
order mixed moments of the form (B.27) can be found by a similar formula with four sums
and four multinomial coefficients. Such formulae may appear daunting, but are easy to
programme. Mixed moments of the form E(Xκ1

t1 · · ·Xκk
tk

) can be calculated iteratively as
explained in Subsection B.4.2.

Example B.4.4 Sum of two skew t-diffusions. If, for i=1,2, σ2
i (x) = 2θi(νi − 1)−1{x2 +

2ρ
√
νix+ (1 + ρ2)ν}, the stationary distribution of Xi,t is a skew t-diffusion. The distri-

bution of Yt is a convolution of skew t-diffusions,

Var(Y ) = (1 + ρ2)

(
ν1

ν1 − 2
+

ν2

ν2 − 2

)
,

and φi = νi(νi−2)−1/{ν1(ν1 −2)−1 +ν2(ν2 −2)−1}. To simplify the exposition we assume
that the correlation parameters θ1, θ2, φ1, and φ2 are known or have been estimated in
advance (the least squares estimator of Forman (2005) applies and so does the predictions

based estimating function with m = 1, Z
(i−1)
1,k = Yi−k, k = 1, . . . , r). We will find the

optimal estimating function in the simple case where predictions of Y 2
i are made based

on Z
(i−1)
1,1 = 1 and Z

(i−1)
1,2 = Yi−1. The estimating equations take the form

Gn(θ, ρ, ν) =

n∑

i=2

[
Y 2
i − σ2 − β21Yi−1

Yi−1Y
2
i − σ2Yi−1 − β21Y

2
i−1

]
= 0, (B.33)

with σ2 = Var(Yi−1) and β21 = Cov(Yi−1, Y
2
i ) · Var(Yi−1)

−1. To be specific

σ2 = (1 + ρ2)

{
ν1

ν1 − 2
+

ν2

ν2 − 2

}
, β21 = 4ρ

{ √
ν1

ν1 − 3
φ1e

−θ1∆ +

√
ν2

ν2 − 3
φ2e

−θ2∆

}
.

Solving equation (B.33) for β21 and σ2 we get

β̂21 =
1

n−1

∑n
i=2 Yi−1Y

2
i − ( 1

n−1

∑n
i=2 Yi−1)(

1
n−1

∑n
i=2 Y

2
i )

1
n−1

∑n
i=2 Y

2
i−1 − ( 1

n−1

∑n
i=2 Yi−1)2

,

σ̂2 = 1
n−1

∑n
i=2 Y 2

i + β̂21
1

n−1

∑n
i=2 Yi−1.

In order to estimate ρ we restate β21 as

β21 =
√

32(1 + ρ2) · ρ ·
{√

9(1 + ρ2) − φ1σ2

3(1 + ρ2) − φ1σ2
φ1e

−θ1∆ +

√
9(1 + ρ2) − φ2σ2

3(1 + ρ2) − φ2σ2
φ2e

−θ2∆

}
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and insert σ̂2 for σ2. Thus, we get a one-dimensional estimating equation, β21(θ, φ, σ̂
2, ρ) =

β̂21, which can be solved numerically. Finally by inverting φi = 1+ρ2

σ2

νi

νi−2
we find the

estimates ν̂i = 2φiσ̂2

φiσ̂2−(1+ρ̂2)
, i = 1, 2. △

A more complex model is obtained if the observations are integrals of Y in analogy
with the previous subsection:

Zi =
1

∆

∫ i∆

(i−1)∆

Ys ds =
1

∆

(∫ i∆

(i−1)∆

X1,tds+ · · ·+
∫ i∆

(i−1)∆

XM,tds

)
, (B.34)

i = 1, . . . , n. Also here the moments of form (B.18) and (B.27) can be found explicitly
because each of the observations Zi is a sum of processes of the type considered in the
previous subsection. To calculate E(Zk1

1 Z
k2
t1 Z

k3
t2 Z

k4
t3 ), first apply the multinomial formula

to express this quantity in terms of moments of the form E(Y ℓ1
j,1Y

ℓ2
j,t1
Y ℓ3
j,t2
Y ℓ4
j,t3

), where

Yj,i =
1

∆

∫ i∆

(i−1)∆

Xj,s ds.

Now proceed as in Subsection B.4.2.

B.4.4 Stochastic volatility models

A stochastic volatility model is a generalization of the Black-Scholes model for the loga-
rithm of an asset price dXt = (κ + βσ2)dt+ σdWt, that takes into account the empirical
finding that the volatility σ2 varies randomly over time:

dXt = (κ+ βvt)dt+
√
vtdWt. (B.35)

Here the volatility vt is a stochastic process that cannot be observed directly. If the
data are observations at the time points ∆i, i = 0, 1, 2, . . . , n, then the returns Yi =
Xi∆ −X(i−1)∆ can be written in the form

Yi = κ∆ + βSi +
√
SiAi, (B.36)

where

Si =

∫ i∆

(i−1)∆

vtdt, (B.37)

and where the Ai’s are independent, standard normal distributed random variables. Here
we consider the case where v is a sum of independent Pearson diffusions with state-space
(0,∞) (the cases 2, 4 and 5). Barndorff-Nielsen & Shephard (2001a) demonstrated that
an autocorrelation function of the type (B.32) fits empirical autocorrelation functions of
volatility well, while an autocorrelation function like that of a single Pearson diffusion is
too simple to obtain a good fit. We assume that v and W are independent, so that the
sequences {Ai} and {Si} are independent.

By the multinomial formula we find that

E
(
Y k1

1 Y k2
t1 Y

k3
t2 Y

k4
t3

)
=

∑
Kk11,...,k43E(S

k12+k13/2
1 S

k22+k23/2
t1 S

k32+k33/2
t2 S

k42+k43/2
t3 )E(Ak131 )E(Ak23t1 )E(Ak33t2 )E(Ak43t3 ),
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where the sum is over all non-negative integers kij, i = 1, 2, 3, 4, j = 1, 2, 3 such that
ki1 + ki2 + ki3 = ki (i = 1, 2, 3, 4), and where

Kk11,...,k43 =

(
k1

k11, k12, k13

)(
k2

k21, k22, k23

)(
k3

k31, k32, k33

)(
k4

k41, k42, k43

)
(κ∆)k·1βk·2

with k·j = k1j +k2j +k3j +k4j. The moments E(Aki3

i ) are the well-known moments of the
standard normal distribution. When ki3 is odd, these moments are zero. Thus we only
need to calculate the mixed moments of the form E(Sℓ11 S

ℓ2
t1 S

ℓ3
t2S

ℓ4
t3 ), where ℓ1, . . . , ℓ4 are

integers. However, when the volatility process is a sum of independent Pearson diffusions,
Si of the same form as Zi in (B.34) (apart from 1/∆), so we can proceed as in the pre-
vious section. Thus also for the stochastic volatility models defined in terms of Pearson
diffusions we can explicitly find the optimal estimating function based on prediction of
powers of returns.

B.4.5 Asymptotics

In this subsection we will briefly discuss the asymptotic distribution of the estimators
obtained from prediction based estimating functions for the model types discussed above.
We assume that the estimating function has the form

Gn(ψ) = A(ψ)
n∑

i=r+1

H(i)(ψ) (B.38)

with H(i)(ψ) given by (B.20), and that it is based on predicting powers up to m of the
observations. The observations are either Yi given by (B.28), (B.30) or (B.36) or Zi given
by (B.34). We denote the true value of ψ by ψ0.

Theorem B.4.1 Assume that the underlying Pearson diffusions have finite (4m + ǫ)’th
moment (a < (4m − 1 + ǫ)−1) for some ǫ > 0. Suppose, moreover, that A(ψ) is twice
continuously differentiable, and that the matrices A(ψ), A(ψ)M̄(ψ)A(ψ)T and ∂ψT â have
full rank, d, where â(ψ) is given by (B.25) and M̄(ψ) by (B.26). Then with probability
tending to one as n→ ∞ there exists a solution ψ̂n to the estimating equation Gn(ψ) = 0
such that ψ̂n converges to ψ0 in probability and

√
n(ψ̂n − ψ0)

D→ N
(
0,W−1(ψ0)V (ψ0)(W

−1(ψ0))
T
)
,

where W (ψ0) = A(ψ0)C̄(ψ0)∂ψT â(ψ0) and V (ψ0) = A(ψ0)M̄(ψ0)A(ψ0)
T with C̄(ψ) given

by (B.24). For the optimal matrix A∗(ψ) = ∂ψâ(ψ)T C̄(ψ)M̄(ψ)−1, the asymptotic covari-

ance matrix of ψ̂n simplifies to

[
∂ψâ(ψ0)

T C̄(ψ0)M̄(ψ0)
−1C̄(ψ0)∂ψT â(ψ0)

]−1
.

Proof: The result follows from Theorem 6.2 in Sørensen (2000). We just need to check
the conditions of that theorem. First, we note that the observations are exponentially
α-mixing. In the cases of integrated Pearson diffusions and sums of Pearson diffusions,
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this follows immediately from the exponential α-mixing of the Pearson diffusions. That
the sequence of observations of a stochastic volatility model with exponentially α-mixing
volatility process is exponentially α-mixing, was proven in Sørensen (2000) in the case
κ = β = 0. The proof holds in the more general case too, see also the more general result
in Genon-Catalot, Jeantheau & Laredo (2000). Secondly, we need that H (i)(ψ), given by
(B.20), has finite (2 + δ)’th moment for some δ > 0. In the case of an integrated Pearson
diffusion this follows from Jensen’s inequality and Fubini’s theorem:

Eψ

(∣∣∣∣
∫ ∆

0

Xsds

∣∣∣∣
2m(2+δ)

)
≤
∫ ∆

0

Eψ
(
|Xs|2m(2+δ)

)
ds = ∆Eψ

(
|X0|2m(2+δ)

)
<∞.

In the case of a sum of Pearson diffusions, it follows from Minkowski’s inequality that
the (2 + δ)’th moment of H (i)(ψ) is finite. For Pearson stochastic volatility models,
Minkowski’s inequality shows that it is sufficient that the integrated volatility process
has finite (4m + ǫ)’th moment, and integrated Pearson diffusion were considered above.
Finally, it follows from (B.5) that the (finite) moments of a Pearson diffusion are twice
continuously differentiable, so that â is twice continuously differentiable, cf. (B.16) and
(B.17). Now all conditions of Theorem 6.2 in Sørensen (2000) have been shown to hold.
�

Appendix: Proofs and general asymptotics

Theorem B.3.1 can be established using standard asymptotic techniques. Regularity
conditions to ensure the existence of a consistent and asymptotically normal sequence
of solutions to a general martingale estimating equation of form (B.12) can be found in
Sørensen (1999). In case estimates are inserted for the parameter in the weights, as in
(B.14), we need somewhat stronger conditions. The following result is taken from Jacod
& Sørensen (2007).

Theorem B.4.2 Suppose that {Yi}i∈N0
is a stationary ergodic process with state-space D

and that

Gn(ψ) =
n∑

i=1

α(Yi−1, ψ)h(Yi−1, Yi, ψ)

is a martingale estimating function such that the following holds.

A1: The true parameter ψ0 belongs to the interior of Ψ.

A2: For all ψ in a neighborhood of ψ0 each of the variables α(Yi−1, ψ0)h(Yi−1, Yi, ψ) is
Pψ0

-integrable and α(Yi−1, ψ0)h(Yi, Yi−1, ψ0) is square integrable.

A3: The mappings ψ 7→ α(x, ψ) and ψ 7→ h(x, y, ψ) are continuously differentiable in a
neighborhood of ψ0 for all x, y ∈ D.

A4: For all ψ, ψ′ in a neighborhood of ψ0 each of the entries of ∂ψk
α(Yi−1, ψ)h(Yi−1, Yi, ψ0),

α(Yi−1, ψ0)∂ψk
h(Yi−1, Yi, ψ), and ∂ψk

α(Yi−1, ψ)∂ψk′
h(Yi−1, Yi, ψ

′) (k, k′ = 1, . . . , d) is
dominated by a Pψ0

-integrable function.
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A5: The d× d matrix W (ψ0) = Eψ0

{
∂ψT [α(Yi−1, ψ)h(Yi−1, Yi, ψ)]

}
is invertible.

Then with probability tending to one as n→ ∞ the estimating equation Gn(ψ) = 0 has a
solution, ψ̂n, satisfying that ψ̂n → ψ0 in probability and

√
n(ψ̂n − ψ0)

D→ N (0,W (ψ0)
−1V (ψ0)W (ψ0)

−1)

where V (ψ0) = Eψ0
{α(Yi−1, ψ0)h(Yi−1, Yi, ψ0)h(Yi−1, Yi, ψ0)

Tα(Yi−1, ψ0)
T}. The same re-

sult holds for the estimating function

G̃n(ψ) =

n∑

i=1

α(Yi−1, ψ̃n)h(Yi−1, Yi, ψ),

where ψ̃n is a
√
n-consistent estimator of ψ.

Proof of Theorem B.3.1:
Preliminarily we demonstrate that V (x, ψ) is positive definite for all (x, ψ) and that the
smallest eigenvalue is bounded away from zero uniformly in (x, ψ) when ψ belongs to a
compact subset Ψ0 ⊂ Ψ. Clearly V (x, ψ) is positive semidefinite for all (x, ψ). Moreover,
for z ∈ RN it holds that zTV (x, ψ)z = 0 if and only if

N∑

j=1

zj{pj(y, ψ) − e−λj(ψ)∆pj(x, ψ)} = 0

for almost every y with respect to the conditional distribution of Yi given Yi−1 = x under
ψ. However, the above is a polynomial in y and thus cannot equal zero almost surely
unless the order is zero. As pj(y, ψ) is a j’th order polynomial with leading coefficient
pj,j = 1 we deduce that that zTV (x, ψ)z = 0 if and only if z = 0. Hence, V (x, ψ) is
positive definite. By continuity the smallest eigenvalue

ε1{V (x, ψ)} = inf{zTV (x, ψ)z : |z| = 1}

is bounded away from zero on compact subsets of Ψ × X where X is the state space.
To make the bound valid for all x ∈ X we need only check that it holds as |x| → ∞.
To this end note that zTV (x, ψ)z is a non-zero polynomial in x of order at most 2N the
coefficient of which are given as continuous functions of z and ψ. If a sequence (xn, zn, ψn)
were to exist such that zTn V (xn, ψn)zn → 0, |xn| → ∞, |zn| = 1, and {ψn} ⊂ Ψ0, then
we would find an accumulation point (z0, ψ0) such that zT0 V (xn, ψ0)z0 → 0 although
zT0 V (x, ψ0)z0 defines a non-zero polynomial in x. By contradiction we conclude that
inf{ε1{V (x, ψ)} : x ∈ X , ψ ∈ Ψ0} > 0.

As to the regularity conditions, A1 holds true by assumption, and A3 follows from
R2 as α⋆(x, ·) and h(y, x, ·) are continuously differentiable with respect to the canonical
parameter.
In order to check the integrability condition A2 let Ψ0 be a compact neighbourhood of
ψ0 and denote by ||B|| = maxj,k |Bj,k| the max-norm of a matrix. A diagonalization
argument shows that

||V (x, ψ)−1|| ≤ N2

C1(Ψ0)
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for all x and all ψ ∈ Ψ0 where C1(Ψ0) is the lower bound on the smallest eigenvalue of
V (x, ψ) on X × Ψ0. Thus, by continuity of the coefficients a constant C2(Ψ0) exist such
that

|α⋆(Yi−1, ψ0)h(Yi, Yi−1, ψ)| ≤ d ·N · ||S(Yi−1, ψ0)|| · ||V (Yi−1, ψ0)
−1|| · |h(Yi, Yi−1, ψ)|

≤ C2(Ψ0)(1 + Y 2N
i−1 + Y 2N

i )

for all ψ ∈ Ψ0. The latter is integrable by R0. Further we note that

Eψ0
{α⋆(Yi−1, ψ0)h(Yi, Yi−1, ψ0)h(Yi, Yi−1, ψ0)

Tα⋆(Yi−1, ψ0)
T}

= Eψ0
{S(Yi−1, ψ0)

TV (Yi−1, ψ0)
−1S(Yi−1, ψ0)},

which by R0 is finite because

||S(x, ψ0)
TV (x, ψ0)

−1S(x, ψ0)|| ≤ N2 · ||S(x, ψ0)||2 · ||V (x, ψ0)
−1|| ≤ C3(ψ0)(1 + x2N )

for some constant C3(ψ0).
Similar bounds can be established for the derivatives of A4.
Finally, let us check that A5 holds true. Clearly, W (ψ0) is negative semidefinite as

W (ψ0) = −Eψ0
{S(Yi−1, ψ0)

TV (Yi−1, ψ0)
−1S(Yi−1, ψ0)}.

Let z ∈ Rd be such that zTW (ψ0)z = 0. The task is to demonstrate that z = 0. As
V (x, ψ0) is positive definite for all x the assumption is that S(x, ψ0)z = 0 for almost
every x. We assume without loss of generality that ψ = τ = (θ, µ, a, b, c) is the canonical
parameter. The general case follows readily as

S(x, ψ0) = S(x, τ0) · ∂ψT τ(ψ0)

where by R3 ∂ψT τ(ψ0) has full rank d. Hence, the assumption is

Eτ0(∂τT {pj(Yi, τ0) − e−λj(τ0)∆pj(Yi−1, τ0)} · z|Yi−1 = x) = 0

for j = 1, . . . , N and almost every x. The first equation reads

z1(x− µ0)∆e
−θ0∆ + z2(e

−θ0∆ − 1)
a.e.x
= 0

which only holds true if z1 = z2 = 0. As N ≥ 2 at least one more equation is available,
namely

z3S2,3(x, τ0) + z4S2,4(x, τ0) + z5S2,5(x, τ0) = 0

where

S2,3(x, τ0) = −2θ∆e−2(1−a)θ∆p2(x, τ0) +
4(µ+ b)

(2a− 1)2
(e−2(1−a)θ∆ − e−θ∆)x

−4µ(µ+ b)

(2a− 1)2
(1 − e−θ∆) +

{
µ(µ+ b)(4a− 3)

(2a− 1)2(a− 1)2
+

c

(a− 1)2

}
(e−2(1−a)θ∆ − 1),

S2,4(x, τ0) =
2

2a− 1
(e−θ∆ − e−2(1−a)θ∆)x+

2µ

2a− 1
(1 − e−θ∆) +

µ(1 − e−2(1−a)θ∆)

(2a− 1)(a− 1)
,

S2,5(x, τ0) =
1

a− 1
(1 − e−2(1−a)θ∆)

from which we deduce that z3 = z4 = z5. �
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Abstract

In this paper we develop a goodness of fit test based on comparison of distri-
butions for different sampling frequencies. More specifically the test compares
parameter estimates for downsamples of the data. We prove asymptotic
results and apply the test to various diffusion models. In particular we develop
a test for a linear drift hypothesis. Simulations indicate that the finite sample
properties are satisfactory and that the test indeed is able to detect certain
deviations from the hypothesis.

Key words: continuous time model, goodness of fit, generalized esti-
mating equation, generalized method of moments, linear drift hypothesis,
martingale estimating function.

C.1 Introduction

Continuous-time models based on diffusions have a wide range of applications. In biology,
chemistry and physics the models are used to represent phenomena that evolve continu-
ously and randomly in time. In finance diffusions and stochastic volatility models are used
to model various price processes. The analysis of these models however is complicated
since the functional form of the likelihood is rarely explicitly known. Through the last
decade the estimating problem has received much attention, see for instance Bibby, Ja-
cobsen & Sørensen (2004), Gallant & Tauchen (2004), Äıt-Sahalia, Hansen & Scheinkman
(2003), and Sørensen (2004) for reviews. On the other hand the literature on goodness
of fit testing is limited. Nevertheless goodness of fit is a matter of importance; in case a
model is misspecified the related estimators may be inconsistent and the conclusions of
the statistical analysis may be invalid.
In this paper we develop a goodness of fit test applicable for diffusion-type models as
well as other continuous-time models. The basic idea is to check if the distributions for
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different sampling frequencies are consistent with another. More specifically we compare
parameter estimates computed from the original sample to those obtained from downsam-
pled data. If the model is true, then one would expect the estimates of the parameters to
be alike, whereas if the model is not true, then one would expect estimates to differ for
parameters related to the misspecification of the model.
Äıt-Sahalia (1996b) was perhaps the first to consider goodness of fit for stationary diffu-
sion models. He proposed to compare a kernel density estimator of the invariant density
to the density implied by the parametric model. The test extends naturally to other
stationary process models with a parameterized marginal density such as for instance
the summed diffusion models of Bibby, Skovgaard & Sørensen (2005). However, the test
aims solely at the marginal distribution of the data and, hence, is not suited for detecting
misspecification in the dependence structure of the model. Moreover, numerical studies
have shown that the test has a poor finite sample performance in case of high persistence
in the data, see Pritsker (1998) and Chapman & Pearson (2000).
Fan & Zhang (2003) suggest applying the generalized likelihood ratio test of Fan, Zhang
& Zhang (2001) to perform goodness of fit in plain diffusion models. It is not clear how
the generalized likelihood ratio test can be extended to other diffusion-type processes.
The test is based on parametric and nonparametric estimates of the drift and diffusion
coefficient derived from a discretization scheme. Hence, in a low frequency asymptotics
the estimators are inconsistent. Whereas the bias is negligible in the examples of Fan &
Zhang (2003) this need not always be the case, see the discussion following Fan (2005) for
an example. We suspect that the discretization bias may in some cases have a damaging
effect to the test.
Recently Hong & Li (2005) launched a test based on the uniform residuals, that is, the
observations transformed with the conditional distribution function given the past obser-
vations. The uniform residuals is a highly useful diagnostics, and the idea is to test if the
residuals are independent and uniformly distributed. However, it may be computationally
demanding to compute the residuals when the conditional distributions are not explicitly
known and, in particular, for non-Markovian models. The test of Hong & Li (2005) is
omnibus in a large class of univariate stationary processes and due to the approximate
independence of the residuals it has a good small sample behavior. An application to
interest rate data suggests that the test is almost too powerful in the sense that it firmly
rejects all of the preceding models. A more adequate test for multivariate data based
on non-parametric estimation estimation of the conditional characteristic function is dis-
cussed by Chen & Hong (2005).
An overall concern with omnibus tests such as the ones proposed by Hong & Li (2005)
and Chen & Hong (2005) is that it may be hard to tell what kind of deviation the test
detects. In both papers additional diagnostics are proposed to gauche possible sources
of misspecification. Still the conditional transformations blur the relation to the original
data and it is an open question whether or not the reported discrepancy seriously affect
the model application.
In practice we are often content applying a model which may in some regards be misspec-
ified as long as the estimators are robust. In this paper we propose a test which compares
estimates based on various sampling frequencies in order to detect misspecification in the
dependence structure of the model. The test is thus likely to detect any misspecification
leading the estimates to vary systematically with the sampling frequency. On the other
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hand, if the estimator is robust against a certain alternative, the model most likely passes
the test.
In practice the sampling frequency can be varied by downsampling the data, picking out
for instance every second, third or fourth datum.
The proposed test is within the framework of general estimating functions. The theory
of estimating functions covers virtually any estimating scheme but we shall be mostly
interested in fairly simple estimating equations. This makes the test quite simple from a
computational point of view as it only requires evaluation of quantities which are already
used for estimation and inference.
The test is closely related to the overidentifying restrictions test of the generalized method
of moments, see Hansen (1982), as downsampling can be viewed as a generic way of con-
structing excess moment conditions. The idea of recycling the moment conditions for
varying sampling frequencies is particularly useful in models where simple explicit mo-
ment conditions are hard to come by. The test resembles the tests of Hausman (1978)
and Newey (1985) as it compares different estimators for the same parameter(s).
In the following we apply the test to various diffusion models, in particular we use it to
test the adequacy of linear drift diffusions. The basic idea, however, of comparing the
distributions for downsamples of the original data is certainly more generally applicable.
The structure of the paper is as follows: In Section C.2 we review some important prop-
erties of estimating functions, define the test and discuss some of its properties. In Sec-
tion C.3 we apply the test to diffusion models, in particular we propose a test checking for
linear drift. The diffusion applications are illustrated by simulation studies in Section C.4,
and finally conclusions are drawn in Section C.5.

C.2 Inference from downsampled estimating functions

In what follows we briefly review the statistical inference of continuous time models based
on a general estimating function. Throughout the chapter we assume that {Xt}t≥0 is a
stationary stochastic process which we observe at discrete time-points ti = i∆. That is,
our observations are Yi = Xi∆, i = 1, . . . , n where ∆−1 is the sampling frequency. For the
unknown distribution of {Xt}t≥0 we assume a (semi) parametric model parameterized by
θ ∈ Θ ⊆ Rd. By convention we treat all vectors as rows, for instance θ is a 1 × d matrix.
The true parameter is denoted by θ0. In order to check that the model is correctly specified
we suggest comparing the estimates based on varying sampling frequencies ∆−1, (2∆)−1,
(3∆)−1, etc.

C.2.1 General estimating functions

Ideally we would base inference on the likelihood function. However, many continuous
time models such as diffusion type models do not admit an explicit likelihood function.
Thus, we consider instead a general estimating function, i.e. a function of the parameter
and the data

F (θ) = F (Y1, . . . , Yn, θ) ∈ R
d.

An estimate is obtained by solving the estimating equation F (θ) = 0. The prime exam-
ple of an estimating function is the score function from which the maximum likelihood



Inference from downsampled estimating functions 113

estimator is obtained. Some examples of simple explicit estimating functions are given
in Section C.3 below: see also Bibby, Jacobsen & Sørensen (2004) for a recent review.
In general any estimator obtained from minimizing or maximizing a differential criterion
function is the solution to the estimating equation where the estimating function is the
derivative of the criterion. The generalized method of moments estimators of Hansen
(1982) is an important class of such estimators in relation to what follows, see also Hall
(2005) for a thorough account of the method.
To simplify matters we consider only estimating functions of the form (note that the
dependence on ∆ is made explicit)

F1(θ) =

n−r∑

i=1

f(Yi, . . . , Yi+r, θ,∆)

satisfying

A0: Ef(X∆, . . . , Xr∆, θ,∆) = 0 if and only if θ = θ0.

Denote by θ̂1 a solution to the estimating equation F1(θ) = 0. Theorem C.2.1 below states
that the estimator θ̂1 is consistent and asymptotically normal provided that the following
regularity conditions are valid:

A1: The parameter θ0 belongs to the interior of Θ.

A2: The process {Yi}i∈N is stationary and ergodic.

A3: f(y1, . . . , yr+1, θ,∆) is twice continuously differentiable w.r.t. θ for all (y1, . . . , yr+1).

A4: There exists a neighborhood Bε(θ0) of θ0 in which the variables f(Y1, . . . , Yr+1, θ,∆),
∂θi
f(Y1, . . . , Yr+1, θ,∆), and ∂θi

∂θj
f(Y1, . . . , Yr+1, θ,∆) indexed by i, j = 1, . . . , d and

θ ∈ Bε(θ0) are dominated by an integrable function.

A5: The matrix S1(θ0) = E{∂θT f(Y1, . . . , Yr, θ0,∆)} is invertible.

A6: n−1/2F1(θ0) → N (0,Γ1) where Γ1 = limn→∞ n−1E{F1(θ0)
TF1(θ0)}.

Theorem C.2.1 If A0 - A6 are satisfied then, with probability tending to one as n →
∞, a unique solution θ̂1 to the estimating equations exist, and it furthermore holds that
θ̂1 → θ0 in probability and

n1/2(θ̂1 − θ0)
D→ N (0, {S1(θ0)

−1}TΓ1S1(θ0)
−1).

Proof: Theorem C.2.1 is proven in Jacod & Sørensen (2007) in the case r = 1, and the
general case is a straight-forward extension. �
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C.2.2 The goodness of fit test

It is important to notice that the continuous-time model specifies the distribution of
(X∆, . . . , Xn∆) not just for the given sampling frequency but for any ∆ > 0. In particular,
the moment conditions A0 should hold for all ∆ > 0 if the ∆-dependence is specified
correctly according to the true data generating model. On the other hand if the model is
misspecified, it is likely that the moment conditions fail to hold simultaneously for all ∆
causing the parameter estimates to vary with the choice of ∆. Define

µ(θ,∆) = Ef(X∆, . . . , Xr∆, θ,∆).

Ideally we would test the hypothesis that µ(θ0,∆) = 0 for all ∆ > 0. However, as data is
only available at sampling frequencies ∆−1, (2∆)−1, etc., we derive a statistic for testing

H0 : there exists a θ0 such that µ(θ0,∆) = µ(θ0, k∆) = 0

against the alternative

HA : for all θ ∈ Θ µ(θ,∆) 6= 0 or µ(θ, k∆) 6= 0

where k is a pre-specified integer. To this end we consider the “downsampled” estimating
functions Fk given by

Fk(θ) =

n−rk∑

i=1

f(Yi, Yk+i, . . . , Yrk+i, θ, k∆).

Note that Fk is based on all observations, not only every k’th. In other words, Fk is not
based on a single downsample, but is the sum of k estimating functions based on different
downsamples. For example, F2 is the sum two estimating functions, one based on all
the even-indexed observations and another based on all the odd-indexed observations.
This seems beneficial as no observations are wasted, but one should be aware that certain
properties, for example the martingale property, of the original estimating function F1

are not inherited by its downsampled version. In particular the asymptotic variance for
n−1/2Fk(θ0) is usually far more complicated than the one for n−1/2F1(θ0).
Denote by θ̂k the estimator associated to Fk. In case the null hypothesis hold true θ̂1
and θ̂k both are consistent estimators of θ0 and we would thus expect that θ̂1 ≈ θ̂k for n
sufficiently large. Hence, we would reject the hypothesis when observing a large value of

τ(k) = n−1 · (θ̂1 − θ̂k)Wn(θ̂1 − θ̂k)
T (C.1)

where {Wn}n∈N is an appropriate sequence of positive semi-definite weight matrices. Haus-
man (1978) and Newey (1985) also based their goodness of fit tests on the difference of
two estimators, the one assumed to be consistent under the null and inconsistent under
the alternative and the other assumed to be consistent under both the null and the alter-
native. In comparison, the above estimators θ̂1 and θ̂k usually are either both consistent
or both inconsistent under the alternative as they rely on essentially the same moment
conditions.

Theorem C.2.2 Suppose that A0 through A5 hold true and that the analogous condi-
tions hold for the downsampled data (replace ∆ with k∆ etc). Further assume that
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A7: n−1/2{F1(θ0), Fk(θ0)} → N (0,Γ0), where Γ0 = limn→∞ n−1 Var({F1(θ0), Fk(θ0)}).
Define matrices S0 and Σ0 by

S0 =

(
S1(θ0)

−1

−Sk(θ0)−1

)

and Σ0 = ST0 Γ0S0. If Σ0 is non-singular and Wn → Σ−1
0 in probability, then

τ(k)
D→ χ2

d.

Proof: The regularity conditions ensure the consistency and asymptotic normality of the
estimators θ̂k and θ̂1. The proof relies on the same standard Taylor expansions as the
proof of Theorem C.2.1, see for instance Jacod & Sørensen (2007). For j = 1, k we get

0 = Fj(θ̂j) = Fj(θ0) + {θ̂j − θ0}∂θTFj(θ0) + oP (n1/2).

Combining these by A5 yields

n1/2{θ̂k − θ1} = n−1/2F1(θ0)S1(θ0)
−1 − n−1/2Fk(θ0)Sk(θ0)

−1 + oP (1).

Hence, by A7 and the assumption that Wn → Σ−1
0 the desired limit distribution for τ(k)

is hereby established. �

Note that the theorem demands that Wn is a consistent estimator of Σ−1
0 . When it

comes to estimating Σ−1
0 several different strategies are available. If an explicit expres-

sion of Σ0 = Σ(θ0) is known, then the “plug-in estimator” Wn = Σ(θ̂1)
−1 is an obvious

choice. As an alternative sample analogues of the terms in S(θ̂1) and Γ(θ̂1) can be used
to estimate Σ0. Please note that

Γ0 = EH1(θ0)
TH1(θ0) +

∞∑

i=2

{EH1(θ0)
THi(θ0) + EHi(θ0)

TH1(θ0)} (C.2)

with E{H1(θ0)
THj+1(θ0)} the j′th auto-covariance of {Hi(θ0)}i∈N where

Hi(θ) = {f(Yi, Yi+1, . . . , Yi+r, θ,∆) − µ(θ,∆), f(Yi, Yi+k, . . . , Yi+rk, θ, k∆) − µ(θ, k∆)}
The so-called heteroscedasticity and auto-correlation consistent covariance estimator of
Newey & West (1987b) is a kernel-type estimator which combines the empirical auto-
covariances into a consistent and positive semi-definite estimate. We refer to Andrews
(1991), Andrews & Monahan (1992), and Newey & West (1994) for details. Notice that
the sample-type estimates are less sensitive to model misspecification than the plug-in
estimator as Σ usually depends on additional model features besides the moment condi-
tions A0. See Hall (2000) and Hall & Inoue (2003) for results on covariance estimation
under misspecification.
In practice some of the estimating equations may have either multiple solutions or no
solution at all. When faced with several potential estimates one can choose the one giv-
ing rise to the smallest τ(k)-value or the one closest to another consistent estimator. If
one or more estimates are missing, a test can still be based on the existing coordinates
of θ̂k − θ̂1 reducing the degrees of freedom of the limit χ2 distribution accordingly. How-
ever, it should be noted that the problems of computing the estimates could indicate
misspecification or an unfortunate choice of estimating function. A similar approach can
be adopted if Σ0 is singular.
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C.2.3 Misspecification and consistency

Under misspecification the limit distribution of τ(k) depends in part on the moment
conditions, in part on the behavior of the weights {Wn}n∈N as demonstrated in Theorem
C.2.3 below. See Hall (2005) for a similar result on the behavior of the generalized method
of moments estimator under misspecification.
If the model is misspecified and the moment conditions still hold for some θ0(∆) ∈ Θ
possibly depending on ∆, the test makes a comparison of the estimates of θ1 = θ0(∆) and
θk = θ0(k∆) satisfying

A8: µ(θ,∆) = 0 if and only if θ = θ1 and µ(θ, k∆) = 0 if and only if θ = θk.

If θ0(∆) = θ is constant, then the model is not badly misspecified in the sense that H0 in
fact holds true and the parameter estimates are robust. However, the test typically does
not attain the correct size unless the covariance estimate is also robust. Hence, if our
interest lies in testing whether a specific parameter estimate is robust, we should choose
the weights independent of nuisance parameters. On the other hand if the alternative HA

holds true, then the test is consistent provided that the weights are not too misbehaved.

Theorem C.2.3 Suppose A8 holds, and A1 through A5 hold with θ0 replaced by θ1

and that the analogous conditions hold for the downsampled data with θ0 replaced by θk.
Further assume that Wn → W in probability where W is a deterministic positive definite
matrix and that

A9: n−1/2{F1(θ1), Fk(θk)} → N (0,Γ), where Γ = n−1 limn→∞ Var[{F1(θ1), Fk(θk)}].

Define the matrices S and Σ in analogy with Theorem C.2.2, then

n1/2{θ̂k − θ̂1 − (θk − θ1)} D→ N (0, S
T
ΓS) (C.3)

and the limit distribution of τ(k) is given by one of the following:

1. If θk = θ1, then

τ(k)
D→ λ1χ

2
1 ⋆ . . . ⋆ λdχ

2
1

where λ1, . . . , λd are the eigenvalues of W 1/2ΣW 1/2 and ⋆ denotes convolution. In

particular, if W = Σ
−1

the limit distribution is χ2
d.

2. If θk 6= θ1, then the test is consistent as

n−1τ(k)
P→ (θk − θ1)W (θk − θ1)

T > 0.

Proof: Mimicking the proof of Theorem C.2.2 we get that

n1/2{θ̂k − θ̂1 − (θk − θ1)} = n−1/2F1(θ1)S1(θ1)
−1 − n−1/2Fk(θk)Sk(θk)

−1 + oP (1).

as well as the convergence in (C.3) follows from A9. Moreover, noting that τ(k) equals

n{θ̂k − θ̂1 − (θk − θ1)}W{θ̂k − θ̂1 − (θk − θ1)}T
+ n(θk − θ1)W (θk − θ1)

T + |θk − θ1|OP (n1/2) + oP (1),



Inference from downsampled estimating functions 117

the assertions made about the limit distribution follow readily from (C.3). �

With Theorem C.2.3 in mind we can aim the goodness of fit test at a specific alternative
by choosing the estimating function such that θ1 differs from θk as much as possible under
this particular kind of misspecification. If the estimating function is explicit, then the
regularity conditions can easily be checked for a specific alternative as µ(θ,∆) can be
computed either directly or by simulations. Hall (2000) and Hall & Inoue (2003) consider
the behavior of covariance estimators under misspecification. Note that the above con-
ditions assumed to derive the distribution of τ(k) are stronger than needed for the mere
consistency of the test. The condition in the following theorem are sufficient:

Theorem C.2.4 Assume that

C1: There exists sets Z1,Zk ⊂ Θ such that dist(Z1,Zk) > 0 and P (θ̂j ∈ Zj) → 1 as
n→ ∞ for j = 1, k.

C2: The smallest eigenvalue λ1(Wn) of Wn satisfy that nλ1(Wn) → ∞ in probability as
n→ ∞.

Then τ(k) → ∞ in probability as n→ ∞ and the test is consistent.

Proof: Choose δ such that δ < dist(Z1,Zk). Condition C1 implies that P (|θ̂k − θ̂1| >
δ) → 1 as n→ ∞. Further note that

τ(k) ≥ |θ̂k − θ̂1|2 · nλ1(Wn).

It follows that P (τ(k) > δ2 · nλ1(Wn)) → 1 as n → ∞. Thus, τ(k) diverges to infinity
by C2. In particular, P (τ(k) > χ2

d,1−α) → 1 for any 0 < α < 1 with χ2
d,1−α denoting the

1 − α quantile of the χ2 distribution. �

Note that condition C1 constrains the estimate θ̂k to the set Zk where F1 eventu-
ally cannot have zero points and vice versa. If {Yi}i∈N is ergodic, Θ is compact, and
f(y1, . . . , yr+1, θ, j∆) is continuous in θ for all (y1, . . . , yr+1) and j = 1, k, then a straight-
forward extension of the law of large number on Banach spaces, see Ledoux & Tala-
grand (1991), implies that n−1Fj(θ) → µ(θ, j∆) uniformly on Θ for j = 1, k whenever
µ(θ, j∆) = E{f(Yj+1, . . . , Yjr+1, θ, j∆)} is well defined in [−∞;∞]d for all θ ∈ Θ and
j = 1, k. Hence, C1 follows if the zero points of µ(θ,∆) and µ(θ, k∆) form disjoint sets.
Condition C2 is a mild condition on the weights. Loosely speaking it ensures that they
cannot tend to singularity at any rate faster than or equal to o(n).

C.2.4 The related over-identifying restrictions test

For those familiar with the generalized method of moments, Hansen (1982), it is natural
to view downsampling as a way to generate additional moment conditions and to perform
goodness of fit by use of the over-identifying restrictions test. Of course, the estimators
θ̂1 and θ̂k are identical to the generalized method of moments estimators, obtained by
minimizing the criteria |F1(θ)|2 and |Fk(θ)|2, respectively. The pooled moment conditions
for ∆ and k∆ yield the optimal generalized method of moments estimator

θ̂gmm = arg min
θ∈Θ

{F1(θ), Fk(θ)}Vn{F1(θ), Fk(θ)}T ,



118 Goodness of Fit Based on Downsampling with Applications

where {Vn} is an optimal sequence of weights, i.e. Vn converges to Γ−1
0 in probability, with

Γ0 as defined in Theorem C.2.2.
The associated over-identifying restrictions test statistic is given by the minimum value
of the criterion,

τgmm(k) = {F1(θ̂gmm), Fk(θ̂gmm)}Vn{F1(θ̂gmm), Fk(θ̂gmm)}T , (C.4)

which converges to a χ2 distribution with d degrees of freedom under the null. The over-
identifying restrictions test is consistent under the conditions of Theorem C.2.3, see Hall
(2000) and Hall & Inoue (2003). We would expect the behavior of our test to be similar
to that of the over-identifying restrictions test. This is confirmed by simulation studies,
see Section C.4.1.

C.3 Goodness of fit for diffusion models

In this section we present some examples that illustrate the theory of the previous section.
To simplify matters we consider only diffusion models, but the test is applicable to a
broader range of continuous time model.
Let {Xt}t≥0 be a stationary diffusion, the solution of the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dBt.

Regularity conditions on µ and σ that ensure the existence, uniqueness, stationarity, and
ergodicity of the solution can be found in Genon-Catalot, Jeantheau & Laredo (2000), for
example.
Often the parameters in the drift and/or the diffusion coefficients can be estimated by
means of a simple martingale estimating function of the form

G1(θ) =

n−1∑

i=1

ω(Xi∆)[g(X(i+1)∆, θ) − E{g(X(i+1)∆, θ)|Xi∆}]

where ω is a weight function. We refer to Bibby, Jacobsen & Sørensen (2004) for an
introduction to martingale estimating functions for diffusion models, including generic
examples, and to Kessler & Sørensen (1999) for some particularly nice explicit examples.
See Sørensen (1999) for asymptotic theory for estimating function on this particular form.
It is important to notice that the limit behavior of the corresponding test statistic depends
on the weight function under misspecification.
Note that the down-sampled estimating function Fk is not a martingale estimating func-
tions because the observations are mixed together in the different terms in a non-standard
way. Still, the martingale property of the original estimating function proves useful: due to
it, the matrix Γ0 defined in Theorem C.2.2 takes the form (C.2) with E{H1(θ0)Hj(θ0)

T} =
0 for j > k.

C.3.1 Testing for a linear drift

Due to their simple structure the linear drift diffusions are among the most tractable
diffusions. The linear drift family include some popular interest rate models such as the
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ones suggested by Vasicek (1977), Cox, Ingersoll & Ross (1985), and Chan et al. (1992),

VAS : dXt = −θ(Xt − µ)dt+ σdBt (C.5)

CIR : dXt = −θ(Xt − µ)dt+ σX
1/2
t dBt (C.6)

CKLS : dXt = −θ(Xt − µ)dt+ σXγ
t dBt (C.7)

In order to check the adequacy of these models we would have to asses whether the linear
drift is reasonable. Assume for simplicity that we observe Yi = Xi∆ − µ (in practice,
replace µ by the sample mean). By linearity of drift the conditional means are given by
E(Yi+1|Yi = y) = ye−θ∆, provided that E{σ2(Xt)} is finite. Hence, for j = 1, k

Gj(θ) =
∑n−j

i=1 (Yi+j − e−jθ∆Yi)Yi with θ̂j = −(j∆)−1 log{(∑n−j
i=1 Yi+jYi)/(

∑n−j
i=1 Y 2

i )}

is a (downsampled) estimating function which clearly satisfies A0. The estimator θ̂j is
well defined and unique provided that

∑n−j
i=1 Yi+jYi > 0 and

∑n−j
i=1 Y

2
i > 0. The test

statistic is thus given by

τ(k) = Σ̂−1
n · ∆−2 · [ log{∑n−1

i=1 Yi+1Yi/
∑n−1

i=1 Y 2
i } − log({(∑n−k

i=1 Yi+kYi)/(
∑n−k

i=1 Y 2
i )}1/k) ]2,

where Σ̂n is an estimate of Σ0.
In order to estimate Σ0 for one of the specific models, let λ0 = e−θ0∆, νj = E(Y 2

1 Y
2
j+1) −

λ2j
0 E(Y 4

1 ), and σ2
inv = E(Y 2

i ) then

S0 =

(
(∆λ0σ

2
inv)

−1

−(k∆λk0σ
2
inv)

−1

)
and Γ0 =

(
ν1 kλk−1

0 ν1

kλk−1
0 ν1 νk + 2

∑k−1
j=1 λ

2j
0 νk−j

)
.

It follows that Σ0 = σ−4
inv∆

−2[(kλk0)
−2{νk + 2

∑k−1
j=1 λ

2j
0 νk−j} − λ−2

0 ν1]. Obviously λ0 can

be estimated by λ̂k = e−θ̂k∆. For the Vasiček model (C.5) we find the explicit expression
νj = (1−λ2j

0 )σ4
inv where σ2

inv = σ2/(2θ) is the variance of the invariant normal distribution
of the diffusion (C.5). Consequently,

VAS : Σ0 = ∆−2 · [(kλk0)−2{2(1− λ2k
0 )(1− λ2

0)
−1 + (1− 2k)λ2k

0 − 1}− (1− λ2
0)λ

−2
0 ] (C.8)

For the CIR model (C.6), let α = 2µθ/σ2 and β = σ2/(2θ) be the shape and scale
parameter of the invariant Γ-distribution, then νj = α2β4(1−λ2j

0 )+4αβ4λj0(1−λj0) yields
an explicit expression,

CIR : Σ0 = ∆−2[(kλk0)
−2{2(1 − λ2k

0 )(1 − λ2
0)

−1 + (1 − 2k)λ2k
0 − 1} − (1 − λ2

0)λ
−2
0 ]

+ 4α−1∆−2[(kλk0)
−2{2λk0(1 − λk0)(1 − λ0)

−1 + (1 − 2k)λ2k
0 − λk0} − (1 − λ0)λ

−1
0 ].

Usually we will not be apt to use any of the model specific estimators of Σ0, though, when
we test for linearity rather than for the one of the specific models. Rather, we will use a
sample-based estimator like the heteroscedasticity and auto-correlation consistent (HAC)
estimator of Newey & West (1987b) for Γ0 and plug in λ̂ for λ in S0.
Due to the specific estimating function Gj we essentially test if the auto-correlation func-
tion has the correct form, that is, Cor(X0, Xk∆) = Cor(X0, X∆)k. If we were interested
in other features of the distribution, we should choose an estimating functions expressing
these. Note that the test statistic depends on the exact parameterization of the model,
which is of course somewhat unfortunate, but by the Delta-method the test is asymptot-
ically invariant under continuously differentiable re-parameterizations.
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Consistency against a sum of linear drift diffusions alternative

In order to better match the auto-correlation function found in measurements of the wind
velocity Bibby, Skovgaard & Sørensen (2005) considered sums of independent linear drift
diffusions. Our test is consistent against the sum of linear drift diffusions alternative
and thus well suited for judging whether an apparent deviation from linearity is signif-
icant. Suppose for instance that the true data generating process is the sum of m ≥ 2
independent stationary linear drift diffusions,

Xt = X1,t + . . .+Xm,t, dXj,t = −θj(Xj,t − µj)dt+ σj(Xj,t)dBj,t

where E{σ2
j (Xj,t)} < ∞. Let µ = µ1 + . . . + µm, σ2

inv = σ2
1,inv + . . . + σ2

m,inv, and let
φj = σ2

j,inv/σ
2
inv for i = 1, . . . , m. Based on the observations Yi = Xi∆ − µ the goodness of

fit test is consistent unless θ1 = . . . = θm. It is easily verified that for j = 1, k

µ(θ, j∆) = σ2
inv{φ1e

−jθ1∆ + . . .+ φme
−jθm∆ − e−jθ∆},

and that θ̂j tends to θj = −(j∆)−1 log{φ1e
−jθ1∆ + . . . + φme

−jθm∆} which is the unique
solution of µ(θ, j∆) = 0. Note that φ1, . . . , φm > 0 and φ1 + . . . + φm = 1. Hence, by
convexity

φ1e
−∆θ1 + . . .+ φme

−∆θm < {φ1e
−∆θ1 + . . .+ φme

−∆θm}1/k

unless θ1 = . . . = θm. Thus, θ1 6= θk and the conditions of Theorem C.2.3 hold true.

Consistency against a nonlinear drift-alternative

Äıt-Sahalia (1996b) suggests the following non-linear diffusion model as an alternative to
linear drift models:

dXt = (α−1X
−1
t + α0 + α1Xt + α2X

2
t )dt+

√
β0 + β1Xt + β2X

ρ
t dBt. (C.9)

The auto-correlations of the general non-linear drift model are not explicitly known. Hence
we cannot check the consistency condition by computing µ(θ, j∆) and θj explicitly. How-

ever, as θ̂j is explicit and unique we can easily simulate θ̂k − θ̂1 which will approximate
θk − θ1 for a large sample size n.

Figure C.1 depicts θk − θ1 as a function of the parameter α2 in the nonlinear drift model.
The remaining parameters are α−1 = 0, α0 = 0.2, α1 = 0.1, β0 = β1 = 0, β2 = 0.25,
and ρ = 1. For each value of α2 a time series of length 201, 000 was simulated using the
Milstein scheme with five steps for each observation. The one thousand first observations
served as burn-in. It is clear that θk− θ1 decreases with α2 and the test is thus consistent
for α2 < 0. It is important to notice that for α2 = 0 we recover the CIR model for which
the drift is of course linear, whence θk − θ1 = 0. In small samples, however, the test does
not have much power as the difference in θk and θ1 is tiny and cannot easily be detected
as described in the power study in section C.4.2 below.

C.3.2 A specification test for the Vasiček model

Of course, the above test for linear drift cannot distinguish the various linear drift models
as they have the same correlation structure. Hence, we need to consider other estimating
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Figure C.1: Simulated values of θk − θ1 based on time series of length 200,000 for the
nonlinear drift model dXt = (0.2− 0.1Xt + α2X

2
t )dt+

√
0.25XtdBt with α2 varying. The

values of k are 2 (solid) circles, 3 (open circles), and 4 (triangles).

functions in order to separate these models.
For the Vasiček model (C.5) it is known that E(Y 2

i+1|Yi = y) = y2e−2θ∆ + σ2
inv(1− e−2θ∆).

Gj(θ) =
∑n−j

i=1 {Y 2
i+j − σ2

inv − e−2jθ∆(Y 2
i − σ2

inv)}(Y 2
i − σ2

inv), j = 1, k

is a (downsampled) estimating function which is unbiased under the null. The unique
zero point is

θ̂j = −(2j∆)−1 log{(∑n−j
i=1 (Y 2

i+j − σ2
inv)(Y

2
i − σ2

inv))/(
∑n−j

i=1 (Y 2
i − σ2

inv)
2)}, j = 1, k

assuming that
∑n−j

i=1 (Y 2
i+j − σ2

inv)(Y
2
i − σ2

inv) > 0 and
∑n−j

i=1 (Y 2
i − σ2

inv)
2 > 0, and the

corresponding test statistic is given by

τ(k) = Σ̂−1
n · (2∆)−2 · [ log{∑n−1

i=1 (Y 2
i+1 − σ2

inv)(Y
2
i − σ2

inv)/
∑n−1

i=1 (Y 2
i − σ2

inv)
2}

− log({(∑n−k
i=1 (Y 2

i+k − σ2
inv)(Y

2
i − σ2

inv))/(
∑n−k

i=1 (Y 2
i − σ2

inv)
2)}1/k) ]2,

where Σ̂n is an estimate of Σ0. In order to find such an estimate note that the centered and
squared Vasiček process is a CIR process as it satisfies a stochastic differential equation
of form (C.6),

d(Xt − µ)2 = −2θ{(Xt − µ)2 − σ2
inv}dt+ 2σ{(Xt − µ)2}1/2dBt.

Hence, we test for linear drift of the transformed process. In this case, since we are testing
for a specific model, is is natural to use the CIR-specific estimator of Σ0. With the above
parameterization we get

Σ0 = 4∆−2[(kλ2k
0 )−2{2(1 − λ4k

0 )(1 − λ4
0)

−1 + (1 − 2k)λ4k
0 − 1} − (1 − λ4

0)λ
−4
0 ]

+ 32∆−2[(kλ2k
0 )−2{2λ2k

0 (1 − λ2k
0 )(1 − λ2

0)
−1 + (1 − 2k)λ4k

0 − λ2k
0 } − (1 − λ2

0)λ
−2
0 ]

where λ0 = e−θ0∆ = Cor(X0, X∆ is the correlation between two consecutive observations.
Summarizing, the procedure is the following: Consider the centered squared process,
X̃ = (X − µ)2, and proceed as in Section C.3.1, using the CIR-specific estimator Σ0,
suitably accommodated to the new situation.



122 Goodness of Fit Based on Downsampling with Applications

Consistency against the CIR alternative

By Theorem C.2.3 the test is consistent against the CIR alternative (C.6): Denote by θ0
the drift parameter of the CIR process and by α and β the parameters of the invariant
Γ-distribution, then for j = 1, k

µ(θ, j∆) = 2αβ4{(α+ 1)e−2jθ0∆ + 2e−jθ0∆ − (α+ 3)e−jθ∆}.

and θ̂j converges to θj = −(2j∆)−1 log{ψe−2jθ0∆ + (1− ψ)e−jθ0∆}, the unique solution of
µ(θ, j∆) = 0, where ψ = (α + 1)(α+ 3)−1. As

ψe−2θ0∆ + (1 − ψ)e−θ0∆ < {ψe−2kθ0∆ + (1 − ψ)e−kθ0∆}1/k

it follows that θk 6= θ1.

C.3.3 A specification test for the CIR model

For the CIR model (C.6) the conditional second order moments are well known, too:

E(Y 2
i+1|Yi = y) = y2e−2θ∆ + 2βye−θ∆(1 − e−θ∆) + αβ2(1 − e−2θ∆)

where α and β are the parameters of the invariant Γ distribution. A (downsampled)
estimating function is thus given by

Gj(θ) =
∑n−j

i=1 {Y 2
i+j − αβ2 − e−2jθ∆(Y 2

i − αβ2) − 2βe−jθ∆(1 − e−jθ∆)Yi}Yi, j = 1, k.

which may be used as the basis for a test. The estimating equations can be solved
explicitly, and using the moment formulas from Forman & Sørensen (2006) one can even
compute an explicit expression for Σ0 under the null. The formulas are quite complicated,
though, and therefore left out.

C.4 Simulation studies

In order to investigate the performance of the test we have carried out a number of simu-
lation studies for the diffusion case, cf. Section C.3. In Sections C.4.1 and C.4.2 focus is
on the test for linear drift, investigating properties under the null and the power against
certain alternatives, respectively, whereas in Section C.4.3 a minor study is performed on
the specification test for the Vasiček model.
First a few preliminary comments: As illustrated in Figure C.2, we find that τ(k) and
τgmm(k) defined by (C.1) and (C.4), respectively are almost indistinguishable even for
moderate sample sizes. Therefore, for the remaining figures and tables, we have used τ(k)
only.
For estimation of the variance matrix Γ0 we have systematically used the heteroscedas-
ticity and auto-correlation consistent covariance estimator with the data-generated (au-
tomatic) weight- and lag selection from Newey & West (1994) and the pre-whitening
technique from Andrews & Monahan (1992). This yields, per construction, a positive
semi-definite variance matrix, which from now on will be referred to as the HAC estima-
tor (or sample based) of Γ0. In practice we used (slightly modified) versions of functions
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Figure C.2: Comparison of three test statistics, τ(2), τgmm(2) and τF (2), for 500 samples
of length 500 from the Vasiček model.

from the R-package sandwich, see Zeileis (2004). Initially, we also tried a simpler version,
with weights one for the first k lags and zero otherwise (which is the correct form under
the null), but for misspecified models, small sample sizes and extreme parameter values
this often produced estimated variance matrices that were not positive definite. In some
studies we used the Vasiček model specific estimator of Σ0 given by (C.8). This is essen-
tially only meaningful if one is really interested in testing for the Vasiček model (and not
just for linear drift) and it is mainly included for comparison with the HAC estimator.

C.4.1 Properties of the test statistics under the null

In this section we investigate the properties of the goodness of fit test under the null
hypothesis of a linear drift. First, let us compare the asymptotically equivalent test
statistics τ(2) and τgmm(2) for a relatively small sample size. We simulated 500 processes
of length n = 500 from the Vasiček process (C.5) with parameters (µ, θ, σ) = (0, 0.1, 1)
and computed, for each sample, τ(2) and τgmm(2) with the HAC estimator of Γ0. The left
part of Figure C.2 where τgmm(2) is plotted against τ(2), shows that the two test statistics
are almost indistinguishable. We got similar results for k > 2 and when we simulated
from misspecified models. Yet another asymptotically equivalent test statistic is based
on F1(θ̂2), squared and correctly scaled in order to be asymptotically χ2(1)-distributed.
This test statistic, τF (2), is plotted against τ(2) in the right part of Figure C.2. Again,
the test statistics are essentially identical.

Second, Figure C.3 compares τ(2) and τ(3) for the same simulated datasets as above,
still using the HAC estimator of Γ0. We see that the two test statistics differ to some
degree; the Pearson correlation is 0.80. We got similar results when we simulated sums
of two Vasiček processes. We will return to the comparison of different values of k in the
following.

Third, we check the distribution of τ(k) under the null. Again we simulated Vasiček
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Figure C.3: Comparison of the test statistics τ(2) and τ(3) for 500 samples of length 500
from the Vasiček model.

processes with parameters (µ, θ, σ) = (0, 0.1, 1), this time 1,000 processes of length n =
1, 000. We computed 1√

n
(θ̂1 − θ̂k)/

√
Wn which is asymptotically N(0, 1)-distributed and

equal to τ(k) while squared. We used k = 2 and k = 3 and the HAC estimator (sample
based) as well as the Vasiček model specific estimator of Γ0. Recall that the choice of
estimation technique for Γ0 solely has to do with the normalization of the test statistic.
Normal probability plots (QQ-plots) are shown in Figure C.4 and compared to theN(0, 1)-
distribution (the straight line). The plots are quite nice for k = 2, not quite as nice for
k = 3, but they of course improve with increasing sample size. An AR(1)-process is fitted
for the pre-whitening technique, and we believe that perhaps fitting an AR(p)-process of
order p > 1 might improve the finite sample behavior of the HAC based τ(k) for k > 2,
see Andrews & Monahan (1992). Comparing the upper and lower left panels, the different
normalizations of the test statistic (sample based vs. model based) do not seem to give
different distributions for k = 2.

Fourth, we investigate the actual size of the test for varying sample size. For n ranging
from 200 to 6,000 we simulated 5,000 samples from the same Vasiček model as above and
carried out the goodness of fit test for each sample on the 5% significance level. That is,
we rejected the hypothesis of a linear drift when τ(k) was larger than 3.84. Figure C.5
shows the rejection rates plotted against sample size: we used the HAC (sample based)
estimator for Γ0 (solid lines) as well as the Vasiček model specific estimator (dashed lines)
for k = 2 (solid circles), k = 3 (open circles) and k = 4 (triangles). For all sample sizes
the size of the HAC test is close to 5% for k = 2, but too small for k equal to 3 and 4. For
n = 50, 000 we got 0.051 (k = 2), 0.049 (k = 3), and 0.044 (k = 4) for 1,000 samples so
the size does approach the correct size as n increases, but the convergence is quite slow.
The test procedure using the model specific estimator for Γ0 hits the level satisfactorily
for all three values of k.
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Figure C.4: Normal probability plots for 1√
n
(θ̂1 − θ̂k)

√
Wn (equal to τ(k) while squared),

based on 1,000 Vasiček processes of length 1,000. The values of k are 2 (left) and 3 (right).
The upper and lower panels differ by the estimation procedure for Γ0 (sample based in
the top, model based in the bottom).



126 Goodness of Fit Based on Downsampling with Applications

0 1000 3000 5000

0.
02

0.
04

0.
06

0.
08

sample size

R
ej

ec
tio

n 
ra

te

Figure C.5: Simulated size of the goodness of fit test for varying sample size. For the solid
lines we have used the HAC estimator of Γ0 for normalization; for the dashed lines we
have used the Vasiček model specific normalization. The values of k are 2 (solid circles),
3 (open circles) and 4 (triangles). Each point is based on 5,000 samples.

C.4.2 Power investigations

We proceed to investigate the power of the linear drift goodness of fit test under various
alternatives. All tests are carried out at the 5% significance level. As the first alternative
we assume that the true process is a sum of two Vasicik processes. We simulated processes
X1 + X2 where X1 has parameters (µ1, θ1, σ1) = (0, 0.1,

√
0.5) and X2 has µ2 = 0 and

varying (θ2, σ2) such that the variance of X is the same in all cases. In Figure C.6 the
rejection rates are plotted against the true value of θ2. In the left panel we have used
the HAC estimator of Γ0, in the right we have used the Vasiček model specific estimator.
As before solid circles, open circles and triangles correspond to k equal to 2, 3 and 4,
respectively. The sample size is n = 1, 000 (solid lines) and n = 2, 000 (dashed lines), and
each point is based on 5,000 samples. We see that the test procedure actually detects the
discrepancy from the hypothesis. Note that for θ2 = θ1 = 0.1 the sum itself is a Vasiček
process and hence we find the size for the test once again. Naturally the power increases
as the sample size increases (this is just the consistency of the test). As for the different
values of k we see that the power increases with k. Larger values of k turned out not to
improve the power any further, however. Recall that the size of the HAC test was not
quite as precise for k = 3 and k = 4 as for k = 2 (cf. Figure C.5) so it is not obvious that
k > 2 is to be preferred. Comparing the left and the right panel we see surprisingly little
difference between the two different normalization procedures.

As a second alternative we have used transformations of the CIR-process (C.6) with pa-
rameters (µ, θ, σ) = (1, 0.1,

√
0.2); then the stationary distribution is the Gamma distribu-

tion with shape parameter and scale parameter both equal to one. We simulated 1,000 CIR
processes and transformed each process with four different functions: log(x), log((x−1)2),

1/x, and (x − 1)2. We also used the integrated process, that is, Yi =
∫ i∆
(i−1)∆

Xs ds. The

goodness of fit test for linear drift was applied to the transformed processes, and the
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Figure C.6: Power against the alternative of a sum of two Vasiček processes. Sample sizes
are 1,000 (solid lines) and 2,000 (dashes lines). See the main text for further details.

rejection rates are listed in Table C.1. Note that the reported sample sizes vary quite a
lot. The results are quite different for the various transformations: The test procedure
very easily detects that the hypothesis is not true for the integrated CIR process: this
happens for roughly 90% of the simulated datasets for a sample size as small as 300. The
discrepancy from a linear drift process is detected with a probability of roughly 80% for
a sample size of 2,000, 1,000, and 5,000 for log(X), log((X − 1)2) and 1/X, respectively.
On the other hand, the test is useless for (X−1)2: the hypothesis is almost never rejected
even for a sample size of 8,000. Note that for log(X) the power increases with k, whereas
it decreases for the other transformations.

As a third alternative we used the non-linear diffusion process (C.9) from Äıt-Sahalia
(1996b). The results from four different sets of parameter values are listed in Table C.2
with the parameter values themselves in the top eight lines. The parameter values in case
I are the same as in Figure C.1 so the test is indeed consistent in this case. The parameter
values in case II are almost the same; only the coefficient α−1 has been changed. The
parameter values in case III are the estimated parameters from Äıt-Sahalia (1996b) for
a dataset on 5505 daily spot rates from 1973 to 1995, and finally case IV is a control
case corresponding to a CIR process where the linear drift hypothesis is indeed true.
The means and variances are quite different in the four settings and are listed in lines
9–10 of the table (computed by simulation in cases I–III). In each of the four cases we
simulated 1,000 processes with 10,000 observations, for case III also 1,000 samples with
5,500 observations corresponding to the spot rate data from Äıt-Sahalia (1996b). The
last lines list the rejection rates for the test where we have used the sample based HAC
estimator for Γ0. We not not try all combinations of parameter values and k: a star
(⋆) indicates a combination we have not tries; a horizontal line (—) indicates numerical
problems implying unreliable results (not listed).

The results are not too impressive. Although, from Figure C.1, we know that the
test is consistent in case I, the power against this alternative turns out to be extremely
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Transformation n k = 2 k = 3 k = 4∫
Xds 100 0.466 0.248 —∫
Xds 300 0.879 0.596 0.358∫
Xds 500 0.973 0.808 0.569∫
Xds 1,000 0.999 0.973 0.894

log(X) 1,000 0.454 0.535 0.561
log(X) 2,000 0.814 0.874 0.898
log(X) 3,000 0.928 0.968 0.981

log((X − 1)2) 500 0.351 0.122 —
log((X − 1)2) 1,000 0.835 0.615 0.095
log((X − 1)2) 2,000 0.955 0.988 0.0561

1/X 3,000 0.341 0.039 0
1/X 5,000 0.762 0.207 0.001
1/X 8,000 0.982 0.511 0.005

(X − 1)2 8,000 0.039 0.044 0.048

Table C.1: Power under various alternatives where the true process is a transformed CIR
process with parameters (1, 0.1,

√
0.2). Each rejection rate is based in 1,000 samples. For

the entries marked with a horizontal line (—) we encountered numerical problems which
we did not yet pursue any further.

low: for a sample size of 10,000 the linear drift is only rejected with a probability of 10%.
The reason is, of course, that the drift is close to linear in the part of the state space
where X actually takes its values. The results are even worse for case II where α−1 > 0.
What happens is that the process is strongly forced away from zero, so there are few
observations in the area where the drift is seriously non-linear. For the parameters from
Äıt-Sahalia (1996b), case III, we find that the power maximal for k = 6 (we also tried
larger values but 6 was optimal in this sense). The hypothesis of a linear drift is rejected
for 32% of the samples with 5,000 observations and for 47% of the samples with 10,000
observations. For the control case IV, the results are as expected.

As a fourth alternative we use the discrete-time AR(2)-process. Indeed, this is not a
continuous-process but it appears as the Euler approximation to certain delay SDE’s. We
simulated from an AR(2)-process

Xt = ρ1Xt−1 + ρ2Xt−2 + et

with the et’s are iid. N(0, σ2), ρ1 = 0.8 and (ρ2, σ) varies such that the stationary variance
is constantly equal to 0.6944, the variance for (ρ2, σ) = (0, 0.5). Figure C.7 shows the
results for sample size n = 1, 000. We have used k = 2, 3, 4 (solid circles, open circles,
triangles as above) and the HAC estimator (solid lines) as well as the Vasiček model
specific estimator of Γ0 (dashed lines). Each point is based on 5,000 samples. The test
indeed detects that this is not a linear drift process, and the power decreases with k. Note
that numerical problems occurred for k = 4 and large negative values of ρ2, and that the
two different estimation strategies for Γ0 produce almost identical power for k = 2 but
not for k = 3, 4.
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Case I II III IV
α−1 0 0.25 1.304 · 10−4 0
α0 0.2 0.2 −4.643 · 10−3 0.2
α1 -0.1 -0.1 0.04333 -0.1
α2 -0.3 -0.3 -0.1143 0
β0 0 0 1.108 · 10−4 0
β1 0 0 −1.883 · 10−3 0
β2 0.25 0.25 9.681 · 10−3 0.25
ρ 1 1 2.073 1

EX 0.58 1.04 0.097 2.00
VarX 0.14 0.14 0.0030 2.50
n 10,000 50,000 10,000 5,000 10,000 10.000

k = 2 0.095 0.359 0.05 0.171 0.241 0.054
k = 3 0.072 0.299 — 0.154 0.237 0.026
k = 4 0.060 0.203 — 0.211 0.318 0.032
k = 5 ⋆ ⋆ ⋆ 0.237 0.344 ⋆
k = 6 ⋆ ⋆ ⋆ 0.319 0.465 ⋆

Table C.2: Power against the non-linear diffusion model (C.9) from Äıt-Sahalia (1996b).
Each rejection rate is based on 1,000 samples. Stars (⋆) indicate that we have not per-
formed the corresponding simulations; horizontal lines (—) indicate that we encountered
numerical problems and hence do not have reliable results.
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Figure C.7: Power against the discrete-time AR(2)-alternative, where ρ1 = 0.8 and σ2 =
Var et is such that the stationary variance is 0.6944. The sample size is 1,000 and each
point is based on 5,000 samples.



130 Goodness of Fit Based on Downsampling with Applications

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

theta=0.1

mu

R
ej

ec
tio

n 
ra

te

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

theta=0.05

mu

R
ej

ec
tio

n 
ra

te
Figure C.8: Power of the Vasiček model specification test against the CIR model with
parameters (µ, θ1, σ) where θ1 is equal to 0.1 (left panel) and 0.05 (right panel), and
σ =

√
2θ/µ. The sample size is 1,000 (solid lines) and 5,000 (dashes lines), and k equals

2 (solid circles) and 3 (open circles). Each point is based on 5,000 observations.

C.4.3 Specification test for the VAS-model

As a final application we have applied the specification test for the Vasiček model from
Section C.3.2. Since the drift is linear for the Vasiček as well as for the CIR process, say,
the test for linear drift applied to the original observations would not (and should not) be
able to distinguish between these processes. The idea from Section C.3.2 was to instead
apply the test to the centered and squared observations in order check is the transformed
process is a linear drift diffusion. This is the case for the Vasiček process but not for the
CIR process.

We simulated 1,000 CIR processes with two different values of θ (θ = 0.1 and θ = 0.05)
and four different values of µ ≥ 1. In all cases we used σ =

√
2θ/µ, such that the

stationary variance is constantly one. For µ approaching infinity the drift for the squared
and centered process approaches a linear drift, so the hypothesis is true.

In Figure C.8 the rejection rates are shown for θ = 0.1 to the left and θ = 0.05 to the
right. The solid lines are for sample size 1,000, the dashed lines for sample size 5,000, and
As usual the solid circles corresponds to k = 2 and the open circles to k = 3. Each point is
based on 5,000 samples. The results are not impressive. The best rejection rate, obtained
for µ = 1 as expected, is only around 0.25 for a sample size of 5,000 and below 0.20 for a
sample size of 1,000. In other words, very large samples are necessary in order to use the
goodness of fit test to distinguish between these two processes with a satisfactory power.
(Note that for certain parameter values a simple analysis of the marginal distributions
easily detects the difference between the two models.)
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C.5 Conclusion

In this paper we have developed a goodness of fit test based on comparison of distributions
for different sampling frequencies. More specifically the test compares parameter estimates
for downsamples of the data. We have proved results on the asymptotic distribution
under the null as well as consistency results, and the properties of the test have been
investigated by simulation in various diffusion models. In this paper we have applied the
test to diffusion models only, but the it applies to (continuous-time) processes in general.

Of course, the simulations illustrate only partly the properties of the test in the sense
that other circumstances (other processes, parameter values, sample sizes etc.) could have
been considered. Nevertheless, for the test for linear drift we believe to have illustrated (i)
that the size of the test is satisfactory even for moderate sample sizes, at least for k = 2;
and (ii) that the test is indeed able to detect certain discrepancies from the hypothesis of a
linear drift diffusion. In particular the test was quite strong against three non-Markovian
alternatives: a sum of two VAS-processes, an integrated CIR-process and a discrete-time
AR(2)-process. On the other hand, there were other alternatives where the performance
was less than good, even in situations where it could be proved theoretically that the test
is consistent. This was also the case for the specification test for the Vasiček model.

Comparing the results for varying values of k we got different results for the various
alternatives. Intuitively, a discrepancy between two models will be magnified for increas-
ing k. On the other hand, the estimates get more imprecise (for example, elements of Γ0

increases dramatically in certain cases), so there is a trade-off. Our advice is to try out a
few different values of k, but one should be aware that the tests are far from independent.

As for all other goodness of fit tests it is necessary to understand which aspects of
the model that are actually tested for, that is, which alternatives the test is capable of
detecting. In our setting this is determined by the estimating function. For example,
the test for linear drift essentially tests whether the correlation over time lag 2∆ is the
square of the correlation over time lag ∆. If we are interested in other features of the
distribution, then we should choose estimating functions matching those.

It would be interesting to compare our test to other goodness of fit tests. In particular
we have the generalized likelihood ratio test Fan, Zhang & Zhang (2001; Fan & Zhang
(2003) in mind, where local linear estimators of the drift are compared to their parametric
counterparts. Moreover, the specification test for the Vasiček model could be compared
to the test based on generalized uniform residuals Hong & Li (2005).
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