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Preface

The present booklet constitutes my Ph.-D. thesis in mathematics. It was written

in the period 2003–2005 under the supervision of Christian U. Jensen whom it is

my pleasure to thank warmly for his interest and support over the years.

The thesis consists of 5 chapters. Chapter 1 is an introduction to the theory

of procyclic Galois extensions. Chapters 2 and 3 are extended versions of my

papers [3] and [4]. Chapters 4 and 5 are based on two papers still in preparation.

For the benefit of the busy reader, I have included a thorough abstract to the

entire thesis.
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Abstract

Denote by Zp the additive group of p-adic integers. The main theme of this thesis

is the existence and properties of Galois extensions of algebraic number fields with

Galois group Zp, in short Zp-extensions. We shall however also consider some non-

abelian pro-p-groups as Galois groups (in particular in Chapter 5). The thesis is

divided into 5 chapters.

Chapter 1. In this introductory chapter, results of Iwasawa and Shafarevich are

summarised, note in particular Theorems 1, 3, and 6. The connection between

Zp-extensions and Leopoldt’s Conjecture is discussed. The notion of p-rationality

is defined, and the classification of 2-rational imaginary quadratic fields is given

(Theorem 10), apparently for the first time (correctly).

Chapter 2. Consider an imaginary quadratic number field K and an odd prime

p. The following question is investigated: if the p-class group of K is non-trivial

and cyclic, is the p-Hilbert class field of K (or part of it) then embeddable in a

Zp-extension of K? It is shown that the answer is always yes when K is p-rational

(Lemma 12), and two criteria for p-rationality are given (Theorem 13 of which

only part (b) is new). Some examples are given indicating that “most” K are p-

rational. When K is not p-rational, an effective algoritm is given that determines

Zp-embeddability (Theorem 15). Numerical examples show that all five cases of

that theorem occur.

Chapter 3. Consider an imaginary quadratic number field K and an odd prime

p. The (well-known) fact that K has a unique Zp-extension which is prodihedral

over Q is shown (Proposition 18). We call this extension the anti-cyclotomic

p-extension of K.

We give laws for the decomposition of prime ideals in the anti-cyclotomic

extension (Theorems 22 and 24). The laws involve representation of some rational

prime power qh by certain quadratic forms of the same discriminant dK as K.

Using Gauss’ theory of composition of forms, we show that it suffices instead to

represent q by some form (Section 3.3). The whole story becomes particularly

simple when each genus of forms of discriminant dK consists of a single class

6



(Theorem 28). This happens for 65 values of dK closely connected to Euler’s

numeri idonei or convenient numbers

The decomposition laws also depend on how many steps of the anti-cyclotomic

extension are unramified. This dependence may be turned around, meaning that

if we know how certain primes decompose, then we can compute the number of

unramified steps (Examples 25–27). In particular, we can answer whether the

p-Hilbert class field of K is contained in the anti-cyclotomic extension and thus

is Zp-embeddable.

In section 3.5 we show how to find explicit polynomials whose roots generate

the first step of the anti-cyclotomic extension. When K is not p-rational this

involves using the decomposition laws to identify the right polynomial f among

a finite number of candidates (Examples 31 and 32). When this is done, one

obtains nice laws for the splitting of f modulo q. For instance we show that

X5 +5X2 +3 splits into linear factor modulo a prime number q 6= 3, 5 if and only

if q is of the form x2 + 5xy + 100y2 or 3x2 + 15xy + 50y2.

Chapter 4. Consider an imaginary quadratic number field K with Hilbert class

field KH . The ring class field N = N(2∞) over K of conductor 2∞ is the maximal

2-ramified (i.e. unramified outside 2) abelian extension of K which is generalised

dihedral over Q.

We determine the structure of the Galois group Gal(N/KH) (Lemma 33) and,

in some cases, Gal(N/K) (Corollaries 39, 44, 49).

We give a law for the decomposition of prime ideals in the anti-cyclotomic

2-extension of K (Theorem 34) similar to that from Chapter 3 (but more com-

plicated). Again, this law involves representation of rational prime powers by

quadratic forms.

In Sections 4.5–4.8, quadratic forms are discussed. For example, we show

the new result (Lemma 36) that a prime number congruent to 1 modulo 16 is

representable by both or none of the forms X2 + 32Y 2 and X2 + 64Y 2, whereas

a prime number congruent to 9 modulo 16 is representable by one, but not both

of these forms. New proofs of two formulae of Hasse regarding the order of cyclic

2-class groups are given. The key ingredient in these proofs are two new explicit

expressions ((4.10) and (4.12)) for a form representing a class of order 4 in the

form class group.

The first step of the anti-cyclotomic 2-extension Kanti/K is of the form K(
√
a)

with an a ∈ Z. As a Z2-extension, Kanti/K is unramified outside 2. However, the

lower steps might be unramified also at 2. Let ν denote the number of unramified

steps. When the 2-class group of K is cyclic (possibly trivial), we give algorithms

to compute both ν and a (Theorems 37, 42, 47). In most cases we can even
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give explicit expressions for ν (Theorems 38, 43, 48) and a (Theorems 41, 46, 50

of which 41 and 46 are not new). The proofs of these results involve the class

number formulae of Hasse.

When the 2-class field of K is non-trivial and cyclic, one can ask if it can

be embedded into a Z2-extension of K. We answer this question completely

(Theorem 51) using many of our previous results. For any (odd or even) prime p,

it is conjectured that there exist imaginary quadratic fields with Zp-embeddable

p-class field of arbitrarily high degree,

Put K = Q(
√
−l) and K ′ = Q(

√
−2l) with a prime l ≡ 1 (mod 8). There

are some quite surprising interrelations between these two fields. Let h and h′

be the class numbers of K and K ′, respectively. We show 8 | h ⇔ 8 | h′ for

l ≡ 1 (mod 16), and 8 | h ⇔ 8 - h′ for l ≡ 9 (mod 16) (Theorem 52). We

also give results on interrelations between the anti-cyclotomic 2-extensions of K

and K ′ (Theorems 54, 55). Finally, a conjecture for primes l ≡ 1 (mod 16) is

put forth that would allow a certain assumption in Theorems 54 and 55 to be

omitted. This conjecture has been verified by the author for all primes up to 14

millions.

In the last section, many numerical examples are given showing that the results

of the previous sections are best possible.

Chapter 5. The pro-2-group H = 〈a, b | ba = a−1b−1, ba−1 = ab−1〉 is described

as a fibre product of two copies of the 2-adic prodihedral group D2. The socle of a

H-extension M/Q is defined as its unique biquadratic subfield. It is investigated

which biquadratic extensions of Q appear as socle of a H-extension. This is for

example the case for Q(
√
−1,
√

2) (Example 58). If the socle of a H-extension

M/Q is of the type Q(
√
−l,
√

2) with an odd prime l, it is shown than M contains

a square root of either
√

2 + 2 or
√

2− 2 (Lemma 59). The determination of the

right square root is not trivial, and some partial results in this direction are given

(Theorems 60 and 61).

The pro-2-group G = 〈a, b | ab2 = b2a, a2b = ba2〉 is described as a fibre

product of Z2 × Z2 with D2. G is not realisable as Galois group over Q. Some

results on the number ν(G, K) of G-extensions of imaginary quadratic fields of

type K = Q(
√
−l) or K = Q(

√
−2l) with l an odd prime are given, for example

it is shown that always ν(G, K) ≤ 3 (Theorem 63). Further, it is shown that the

free pro-2-group of rank 2 is realisable over K in some cases (l ≡ 3, 5 (mod 8)),

but not in others (l = 353, for example).
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Chapter 1

Iwasawa’s theory of Zp-extensions

1.1 Introduction and notation

Let p be a fixed prime number. Denote by Zp the additive group of p-adic integers.

We have

Zp
∼= lim←− Z/pn,

i.e. Zp is the infinite procyclic pro-p-group.

We shall consider Galois extensions of algebraic number fields with Galois

group Zp, in short Zp-extensions.

In this chapter, an overview of important results is given. In particular we

emphasise Theorem 1 and Theorem 3 which are due to Iwasawa [18], Theorem 6

(and its Corollary 7) due to Shafarevich [26] , and the definition of the anti-

cyclotomic extension at the end of section 1.6.

In all of this chapter 1, we use the following notation:

p : a prime number

Zp : the additive group of p-adic integers

ζ : a primitive p’th root of unity

K : an algebraic number field

O : the ring of integral elements in K

E : the group of units O
r1, r2 : the number of real and complex primes of K, respectively

Up : the group of local units at p (note Up = K∗
p for p infinite)

KH : the Hilbert class field of K

K∞ : the maximal abelian p-extension of K unramified outside p

KZp : the composite of all Zp-extensions of K

9



1.2 Ramification in Zp-extensions

An algebraic extension L/K is called unramified outside p if all primes p of

K with p - p (including the infinite ones) are unramified. More generally, for a

(usually finite) set S of primes of K, it is said that L/K is unramified outside

S if all primes p 6∈ S are unramified. We shall later see that being unramified

outside a finite set of primes is a rather strict condition.

Theorem 1. Any Zp-extension L of the algebraic number field K is unramified

outside p.

Proof. Let p be a prime of K with p - p and assume indirectly that p ramifies

in L. Consider a localisation Lp/Kp. This means the following: Pick some prime

P of L extending p. Let Ln ⊂ L be the subextension of degree pn over K and

denote by Ln,p the completion of Ln with respect to the restriction of P to Ln.

Then we have the tower

Kp j L1,p j L2,p j . . .

and Lp is defined as the union of the Ln,p.

We may assume that Lp/Kp is a totally ramified Zp-extension. By the below

valuation-theoretic lemma, each Ln,p/Kp is a radical extension. HenceKp contains

a primitive pn’th root of unity for all n, a contradiction. �

Lemma 2. Let F be a field with a complete and discrete valuation. Assume

E/F is a totally and tamely ramified extension of finite degree n. Then there

exists a uniformising element Π ∈ E with Πn ∈ F . In particular E/F is a radical

extension.

Proof. Let Π and π be uniformising elements for E and F , respectively. Write

Πn = uπ with some unit u ∈ E. Since F and E have the same residue field, we

may pick a unit u′ ∈ F with u′ ≡ u (mod Π). Put u∗ := u/u′ and π∗ := u′π.

Then Πn = u∗π∗ where π∗ ∈ F , and the unit u∗ ∈ E satisfies u∗ ≡ 1 (mod Π).

By Hensel’s Lemma, u∗ is an n’th power: u∗ = vn. The uniformising element

Π∗ := Π/v then satisfies (Π∗)n = π∗. Now replace Π with Π∗. �

1.3 Rank and essential rank of pro-p-groups

Let X be a pro-p-group. The Frattini subgroup Φ(X) of X is the closed

subgroup generated by the commutators and the p’th powers. The quotient

X/Φ(X) is an elementary abelian p-group. The rank of X is defined as the
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dimension of X/Φ(X) as vectorspace over Fp. By Burnside’s Basis Theorem1,

this rank equals the cardinality of any minimal generating subset of X.

Now let X be an abelian pro-p-group. We may view X as a (compact) Zp-

module. Iwasawa defines the essential rank of X as the dimension over the

p-adic numbers Qp of the tensor product

X ⊗Zp Qp.

If X has finite rank, the Elementary Divisor Theorem gives

X ∼= (Zp)
a × T

where a <∞ is the essential rank of X, and T is a finite p-group.

Let us finally note that if

1→ X → Y → Z → 1

is an exact sequence of abelian pro-p-groups, then exactness is conserved by ten-

soring with Qp, and hence

ess.rank(Y ) = ess.rank(X) + ess.rank(Z).

In particular, ess.rank(X) = ess.rank(Y ) if Z is finite.

The reason we introduce the above concepts is this: We shall take as X the

Galois group Gal(K∞/K). It will then be a key point of this chapter to show that

rank(X) is finite and to give an expression for this rank as well as for ess.rank(X).

We can interpret the essential rank as the maximal number of linearly disjoint

Zp-extensions of K.

1.4 Leopoldt’s conjecture

Consider the algebraic number field K and the rational prime p. For any prime p

of K dividing p, denote by Up the group of local units at p, i.e. the group of units

in the ring of integers Op of the completion Kp. Further, consider the higher unit

groups

U
(n)
p = {x ∈ Up | x ≡ 1 (mod pn)}

for n ≥ 1.

1Burnside’s Basis Theorem is well known for finite p-groups, see for instance [17]. It can be
extended to pro-p-groups without too much trouble. Note incidentally that the cyclic group of
order 6 shows that the assumption that X is a p-group can not be omitted.
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For sufficiently large n, the p-adic logarithm is an isomorphism

logp : U
(n)
p → (pn,+).

Hence U
(n)
p is a free Zp-module of rank [Kp : Qp]. It follows that U

(1)
p is a Zp-

module of rank [Kp : Qp]. Hence the direct product

U (1) :=
∏
p|p

U
(1)
p

is a Zp-module of rank ∑
p|p

[Kp : Qp] = [K : Q].

Let E be the group of global units of K and put

E1 = {ε ∈ E | ∀p | p : ε ≡ 1 (mod p)}.

The abelian group E1 is a subgroup of E of finite index and hence has the same

rank which is

rank(E1) = rank(E ) = r1 + r2 − 1

by Dirichlet’s unit theorem (r1 and r2 have the usual meaning). We may consider

E1 as a subgroup of U (1) via the embedding

E1 ↪→ U (1), ε 7→ (ε, . . . , ε).

The closure E 1 of E1 with respect to the topology of U (1) is a (compact) Zp-

module.

One could think that the Zp-rank of E 1 equals the Z-rank of E1. This might

also very well be true, however only the inequality

Zp-rank(E 1) ≤ r1 + r2 − 1

is clear. We have the

Leopoldt Conjecture for the field K and the prime p: The Zp-rank

of E 1 is r1 + r2 − 1.

This conjecture was formulated by Leopoldt [21] in 1962 for totally real fields.

If K = Q or K is imaginary quadratic, then r1 + r2 − 1 = 0 and hence

the Leopoldt Conjecture is trivially true. Further, it was shown by Brumer [6]

that the Leopoldt Conjecture is true if K is abelian over Q or over an imaginary

quadratic field. In the general case, however, neither proof nor counter-example

is known.
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1.5 The maximal number of linearly disjoint Zp-

extensions

Let K∞ be the maximal abelian p-extension of K which is unramified outside p.

By Theorem 1, any Zp-extension of K is contained in K∞. Write

[K : Q] = r1 + 2r2

where r1 and 2r2 are the numbers of real and complex embeddings of K, respec-

tively.

Theorem 3. The rank of the abelian pro-p-group Gal(K∞/K) is finite, and the

essential rank a satisfies

r2 + 1 ≤ a ≤ [K : Q].

Equality a = r2 + 1 holds if and only if the Leopoldt Conjecture for the field K

and the prime p is true.

We have

Gal(K∞/K) ∼= (Zp)
a × T

with a finite p-group T .

Proof. We start by summarising some results from class field theory. Let J be

K’s idèle group. For any abelian extension L/K, the global norm symbol

( , L/K) : J → Gal(L/K)

is a continuous, surjective homomorphism. The kernel N is called the normgroup

of L. The mapping L 7→ N gives a 1-1 corresponding between the abelian exten-

sions L/K and the closed subgroups N j J containing the principal idèles K∗

and with J/N totally disconnected. Moreover, a prime p of K is unramified in

L/K iff the normgroup N contains the group Up of local units at p.

Put

U ′ =
∏
p|p

Up , U ′′ =
∏
p-p

Up , U = U ′ × U ′′.

U is an open subgroup of J . The normgroup of the maximal abelian extension

of K unramified outside p is

H = U ′′K∗.

So Gal(K∞/K) is isomorphic to the p-part of J/H. The normgroup corresponding

to K’s Hilbert class field is H ′ = UK∗. Clearly

H ⊂ H ′ ⊂ J,

13



and H ′ has finite index in J (because J/H ′ is isomorphic to K’s class group).

Evidently U ′H = H ′, so

H ′/H ∼= U ′/(U ′ ∩H).

Let U (1) be as in section 1.4. It is a subgroup of U ′ of finite index. So U (1)/(U (1)∩
H) has finite index in U ′/(U ′ ∩H).

Recall we have an embedding

ψ : E1 ↪→ U (1).

This embedding does not commute with the standard embedding K∗ ↪→ J , so we

cannot omit the ψ here.

We claim

ψ(E 1) = U (1) ∩H.

For an ε ∈ E1, we have

ψ(ε) = ε · ψ(ε)

ε
∈ K∗U ′′

and hence E 1 j K∗U ′′ = H. Proving the other inclusion is somewhat technical

and we omit the details. The reader is referred to [27], page 266.

Write the rank of E 1 (as a Zp-module) as r1+r2−1−δ with a δ ≥ 0. Then δ = 0

iff the Leopoldt Conjecture for K and p holds. Hence U (1)/(U (1) ∩H) = U (1)/E 1

has Zp-rank

[K : Q]− (r1 + r2 − 1− δ) = r2 + 1 + δ

by section 1.4. This module is isomorphic to a submodule of J/H of finite index.

It follows that the p-part of J/H has finite rank and that its essential rank is

r2 + 1 + δ. The claims follow by section 1.3. �

The composite KZp of all Zp-extensions of K (inside a fixed algebraic closure)

is called the maximal Zp-power extension of K. By Theorem 3, Gal(KZp/K)

is a free Zp-module of rank a. Therefore, a = a(K) is the maximal number of

linearly disjoint Zp-extensions of K. No number field K is known for which a(K)

depends on the prime p (hence the notation); in fact no K is known for which

a(K) 6= r2 + 1 since that would constitute a counter-example to the Leopoldt

Conjecture.

For an arbitrary (abstract) field k, it still holds that Gal(kZp/k) is a free

Zp-module, but its rank is in general no longer equal to the essential rank of

Gal(k∞/k) (see [12]). The rank of Gal(kZp/k) is called the Iwasawa number

of k with respect to p. For number fields, we henceforth use the term Iwasawa

number instead of the equivalent essential rank.

14



From Theorem 3 follows immediately a(Q) = 1, i.e. there is a unique Zp-

extension of Q for any p. We can describe this extension explicitly. Adjoint to

Q all roots of unity of p-power order. By class field theory, this is the maximal

abelian extension of Q unramified outside {p,∞}. Its Galois group over Q is

isomorphic to Zp×Z/(p− 1) for p > 2 and to Z2×Z/2 for p = 2. Hence it has a

unique subfield Qcycl with Galois group Zp over Q. We call Qcycl the cyclotomic

Zp-extension of Q. In the simplest case p = 2, one finds

Q ⊂ Q
(√

2
)
⊂ Q

(√
2 +
√

2

)
⊂ · · · ⊂ Qcycl.

For any number field K, the composite Kcycl = KQcycl is a Zp-extension of K

called the cyclotomic extension of K.

From Theorem 3 also follows a(K) = 2 for an imaginary quadratic field K.

Hence K has maximally 2 linearly disjoint Zp-extensions. One such, of course, is

Kcycl. We shall have more to say on finding a “complementary” Zp-extension of

K.

In chapter 2, we shall concern ourselves with the determination of the torsion

T from Theorem 3 in caseK is imaginary quadratic. A first step is to compute the

rank of Gal(K∞/K). This is done in section 1.8 using a theorem of Shafarevich.

To formulate and prove this result, we first need to introduce the concept of

hyperprimary elements in section 1.7.

1.6 The dihedral Iwasawa number

For a prime p, define the p-adic prodihedral group Dp as the natural projective

limit of the dihedral groups of order 2pn, n ≥ 1:

Dp = lim←− Dpn .

Dp contains the procyclic group Zp as unique abelian subgroup of index 2. Any

element τ ∈ Dp\Zp has order 2 and inverts Zp by conjugation. So we may write

Dp as the semidirect product

Dp = Zp o Z/2.

If a field extension M/K has Gal(M/K) ∼= Dp, we denote the subfield corre-

sponding to the subgroup Zp as the quadratic base of the Dp-extension.

Now let L/K be a quadratic extension of number fields and consider the

maximal Zp-power extension LZp for some prime p. Let a(K) and a(L) be the

Iwasawa numbers of K and L with respect to p. Define L+ and L− as the maximal

15



subextensions of LZp/L, normal over K, such that Gal(L/K) operates trivially

on Gal(L+/L) and by inversion on Gal(L−/L), respectively. Then LZp is the

composite of L+ = KZpL and L− and hence

Gal(L+/L) ∼= Za(K)
p , Gal(L−/L) ∼= Za(L)−a(K)

p

(see section 3 of [12] for details on this).

We call a(L/K) := a(L)− a(K) the dihedral Iwasawa number of K (with

respect to p). It is the maximal number of linearly disjoint (over L) Dl-extensions

with quadratic base L/K.

Clearly, L+ and L− are linearly disjoint over L for p > 2, but it is not always

the case for p = 2. This will cause us some trouble.

Now consider an imaginary quadratic fieldK. It has dihedral Iwasawa number

a(K/Q) = a(K)− a(Q) = 2− 1 = 1.

Hence there exists a unique Dp-extension with quadratic base K/Q for every

prime p. We call it the anti-cyclotomic Zp-extension of K and denote it Kanti.

As noted previously, Kcycl and Kanti are linearly disjoint over K when p > 2. For

p = 2, however, the intersection could be K(
√

2) which is always the first step of

the cyclotomic 2-extension of K.

1.7 Hyperprimary elements

Consider a finite set S of primes of K. We shall mainly be interested in the

case S = {p | p divides p}, but for the moment S is arbitrary. Define the set of

hyperprimary elements

V := {x ∈ K∗ | (x) = ap for an ideal a j O}

and the set of S-hyperprimary elements

VS := V ∩
⋂
p∈S

Kp
p .

Evidently one has V = V∅ and the inclusions

K∗p j VS j V j K∗.

The quotient VS/K
∗p is a vectorspace over Fp, the dimension of which is denoted

σ(S). First we compute σ(∅):
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Lemma 4. Let E = O∗ be the group of units in K and let C be the class group

of K. Then

dim(V/K∗p) = rankp(E ) + rankp(C ).

Proof. For a hyperprimary x ∈ V , the ideal a with (x) = ap is unique. Therefore

V −→ C , x 7→ [a]

is a well-defined homomorphism. The image is {[a] ∈ C | [a]p = 1}, and the

kernel is E ·K∗p. The lemma follows. �

Remark 5. Assume that K contains a primitive p’th root of unity and that

S contains all primes dividing p. Then there is the following characterisation of

S-hyperprimary elements:

x ∈ VS ⇔


In the extension K( p

√
x)/K, every finite

prime (i.e. every prime ideal) is unramified,

and moreover, every p ∈ S splits.

In this case, K( p
√
VS) is the maximal elementary abelian p-extension of K in

which all prime ideals are unramified and all p ∈ S split. Kummer theory then

gives

VS/K
∗p ∼= Gal(K( p

√
VS)/K).

A reference to hyperprimary elements is [16].

1.8 A theorem of Shafarevich

Let S be a finite set of primes of the number field K. Define KS as the maximal

elementary abelian p-extension of K which is unramified outside S, and let d(S)

be the dimension of Gal(KS/K) over Fp. In other words, d(S) is the maximal

number of linearly disjoint Z/p-extensions of K unramified outside S. The fol-

lowing theorem of Shafarevich links this number to the dimension σ(S) of VS/K
∗p

(see section 1.7).

Theorem 6. Let t(S) be the number of non-complex primes p ∈ S such that

the completion Kp contains a primitive p’th root of unity ζ. Put δ = 1 if ζ ∈ K,

else δ = 0. Further, let

λ(S) =
∑

p∈S, p|p

[Kp : Qp]
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and r = r1 + r2 − 1. Then one has the equality

d(S) = σ(S) + t(S)− δ + λ(S)− r .

In particular, KS is a finite extension of K.

Proof. The proof is somwhat similar to that of Theorem 3 whose notation we

reuse. The definition of KS gives that its normgroup is the open group

NS = USJ
pK∗

with US =
∏

p6∈S Up. So we have to compute the dimension of

J/NS
∼= Gal(KS/K).

Consider the following sequence of vectorspaces over Fp:

1 −→ VS/K
∗p f4−→ V/K∗p f3−→ U∅/USU

p f2−→ J/NS
f1−→ J/N∅ −→ 1.

Here f1, f2 and f4 are defined the natural way. For an x ∈ V , the principal idèle

(x) is the product of a u ∈ U∅ and a yp ∈ Jp. The idèle u is unique modulo Up.

Therefore f3 : x 7→ u gives a well-defined homomorphism.

With a little work, it is seen that the above sequence is exact. We show below

that all dimensions are finite. Thus

dim(VS/K
∗p)−dim(V/K∗p)+dim(U∅/USU

p)−dim(J/NS)+dim(J/N∅) = 0. (∗)

The dimension of VS/K
∗p is σ(S) by definition. The dimensionen of J/NS is d(S)

by definition. We have

U∅/USU
p ∼=

∏
p∈S

Up/U
p
p , dim(U∅/USU

p) =
∑
p∈S

dim(Up/U
p
p ).

By the determination of powers in valued fields (use Hensel’s lemma or see [16],

for instance), U/USU
p has dimension t(S) + λ(S). Note that K∅ is the maximal

unramified elementary abelian p-extension of K. Hence dim(J/N∅) equals the p-

rank of K’s class group C . By Dirichlet’s unit theorem, the p-rank of K’s group of

units E is r+δ. Lemma 4 now gives that V/K∗p has dimension r+δ+dim(J/N∅).

Putting everything into (∗) gives the claim. �

It is an important, but straightforward observation that d(S) equals the

rank of the Galois group over K of the maximal p-extension unramified out-

side S (see definition of rank in section 1.3). The same goes for the maxi-

mal abelian p-extension of K unramified outside S. In particular we get for
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S = {p | p divides p}:

Corollary 7. The rank of the pro-p-group Gal(K∞/K) is σ(S)+t(S)−δ+r2+1.

�

This rank can be computed explicitly in some simple cases:

Corollary 8. Assume p = 2 and that K = Q(
√
−∆) is imaginary quadratic

with a square-free ∆ ∈ N. Then the rank of the pro-2-group Gal(K∞/K) is{
r + 2 if all pi ≡ ±1 (mod 8)

r + 1 otherwise

where r is the number of odd primes p1, . . . , pr dividing ∆.

Proof. Clearly r2 = δ = 1. Let S be the set of primes of K dividing 2. So

t(S) is the cardinality of S, i.e. t(S) = 2 when ∆ ≡ −1 (mod 8) so that 2 splits

in K, else t(S) = 1. To compute σ(S), let E/K be the maximal unramified

abelian 2-extension in which all primes p ∈ S split. So σ(S) is the 2-rank of

Gal(E/K). The genus field F of K contains E. Let µ be the number of primes

dividing K’s discriminant dK . So µ equals r + 1 or r according to whether dK
is even or odd. Define p∗i := ±pi such that p∗i ≡ 1 (mod 4). Genus theory gives

F = K(
√
p∗1, . . . ,

√
p∗r). The 2-rank of Gal(F/K) is µ− 1. The degree of F/E is

1 or 2 since this extension is cyclic (Gal(F/E) is the decomposition group of an

unramified extension). Now note for a p ∈ S:

p splits in K(
√
p∗i )/K ⇔ p∗i is a square in Kp = Q2(

√
−∆)

⇔ p∗i or −∆p∗i is a square in Q2

⇔ p∗i or −∆p∗i is ≡ 1 (mod 8)

It follows that σ(S) = µ − 1 if all pi ≡ ±1 (mod 8) or −∆ ≡ 5 (mod 8), else

σ(S) = µ− 2. Putting everything into Corollary 7 gives the claim. �

1.9 The notion of p-rationality

The situation is particularly simple when

Gal(K∞/K) ∼= (Zp)
r2+1.

In this case K is called p-rational. This notion was introduced in [19].
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Theorem 9. The following conditions are equivalent:

(a) The field K is p-rational.

(b) Gal(K∞/K) has rank r2 + 1.

(c) Gal(K∞/K) is torsion-free, and the Leopoldt Conjecture forK and p holds.

(d) One has VS = K∗p where VS denotes the set of S-hyperprimary elements

in K for S = {p | p divides p}. Further, if K contains a primitive p’th root

of unity ζ, then K has only one prime p dividing p. If K does not contain

ζ, then neither do the completions Kp with p | p.

Proof. The equivalence of (a), (b), and (c) follows immediately from Theorem 3.

The equivalence of (b) and (d) follows from Corollary 7. �

Classifying the p-rational fields is not trivial. We show here one result in that

direction and return to the question in section 2.2.

Theorem 10. (a) Q is p-rational for all primes p.

(b) The 2-rational imaginary quadratic number fields are exactly Q(
√
−1),

Q(
√
−2), Q(

√
−l), and Q(

√
−2l) for primes l ≡ 3, 5 (mod 8).

Proof. (a) Let Q(ζp∞) denote the field obtained by adjoining to Q all roots of

unity of p-power order. Then the maximal abelian extension of Q unramified

outside p is the maximal real subfield of Q(ζp∞). This is a Z2-extension for p = 2

and a Zp × Z/((p− 1)/2)-extension for p > 2. The claim follows. (One also sees

that Q is 2-rational by noting that Q(
√

2) is the only quadratic extension of Q
which is unramified outside 2.)

(b) For an imaginary quadratic field K we have r1 = 1, so p-rationality means

that Gal(K∞/K) has rank 2. The claim now follows from Corollary 8. �

Note that the classification of the 2-rational imaginary quadratic fields in [19]

(Corollaire 1.3) is not correct.

1.10 Prime decomposition in ring class fields

One of the central results in class field theory is the law on decomposition of

prime ideals in abelian extensions L/K of algebraic number fields. We consider

here the case where K is imaginary quadratic and L/Q is a generalised dihedral

extension:

Gal(L/Q) ∼= Gal(L/K) o Z/2.
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Then L is contained in a ring class field N(f) over K with suitable conductor f

due to a theorem of Bruckner (see [5]).

The ring class group over K of conductor f is the group IK(f) of fractional

K-ideals prime to f modulo the subgroup PK(f) generated by the principal ideals

(α) with integral α ≡ a (mod f) for some a ∈ Z prime to f . By class field theory,

there is a canonical isomorphism (the Artin symbol)

IK(f)/PK(f)→ Gal(N(f)/K).

To the field L corresponds a subgroup of Gal(N(f)/K) which again by the Artin

symbol corresponds to a subgroup H ′ of IK(f). For a prime ideal p of K prime

to f , we now have the following decomposition law: p splits in L if and only if

p ∈ H ′ (see [22], Theorem 7.3).

Now consider the group C of classes of forms of discriminant dKf
2 where dK

is the discriminant of K. There is a canonical isomorphism between the ring class

group IK(f)/PK(f) and the form class group C (see [8], Theorem 7.7 and 7.22).

Let H be the subgroup of C corresponding to H ′ under this isomorphism. Then

a prime number p is representable by some form (class) f ∈ H if and only if p is

the norm of an ideal p ∈ H ′ ([8], Theorem 7.7). There follows:

Proposition 11. Consider an imaginary quadratic field K with discriminant

dK . Let L be an abelian extension of K contained in K’s ring class field N(f)

of conductor f . Denote by C the form class group of discriminant dKf
2. Let

H be the subgroup of C corresponding to L under the canonical isomorphism

Gal(N(f)/K) ∼= C . Let p be a prime number dividing neither dK nor f . Then p

splits totally in the generalised dihedral extension L/Q if and only if p is repre-

sentable by a form in H. �

Remark. Antoniadis [1] gives another criterion for the splitting of primes in ring

class fields: For each character ψ on Gal(N(f)/K) with ψ2 6= 1, he considers the

L-series

L(ψ, s) =
∞∑
n=1

aψ(n)n−s

where ψ is viewed as a character on the absolute Galois group of K. This L-series

coincides with the Artin L-series

L(IndQ
K(ψ), s)

coming from a dihedral type Galois representation over Q. Antoniadis then shows

that a prime p - f splits in N(f) if and only if the p’th coefficient satifies aψ(p) = 2
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for all ψ (Satz 2). A main result in Antoniadis’ article is the explicit determination

of all the coefficients aψ(n) (page 204) from which Proposition 11 can be deduced.
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Chapter 2

On Zp-embeddability of cyclic

p-class fields

2.1 Introduction

Let p be an odd prime and consider an imaginary quadratic number field K. As

shown by Iwasawa (Theorem 1), any Zp-extension of K is unramified outside p.

The lower steps of a such extension might well be unramified also at p. In this

chapter the following question is investigated: if the p-class group of K is non-

trivial and cyclic, is the p-Hilbert class field of K (or part of it) then embeddable

in a Zp-extension of K? In doing so, we are led to study the torsion subgroup

of the Galois group over K of the maximal abelian p-extension of K which is

unramified outside p. First fix some notation:

p : an odd prime number

ζ : a primitive p’th root of unity

∆ : a square-free natural number

K : the imaginary quadratic number field Q(
√
−∆)

O : the ring of integral elements in K

K0 : the p-Hilbert class field of K

Ke : the p-part of K’s ray class field with conductor pe, e = 0

K∞ : the union
⋃∞
e=0Ke

T : the torsion subgroup of Gal(K∞/K)

Kcycl : the cyclotomic Zp-extension of K

Kanti : the anti-cyclotomic Zp-extension of K

I : the group of fractional ideals of K prime to p

P : the group of principal fractional ideals of K prime to p

Pe : the ray modulo pe, e ≥ 0
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Note that the ray class field with conductor 1 is exactly the Hilbert class field so

that the notation is consistent. We have the tower

K j K0 j K1 j K2 j · · · ⊂ K∞

and note that the union K∞ is the maximal abelian p-extension of K which

is unramified outside p. Thus, by Iwasawa’s result, any Zp-extension of K is

contained in K∞. It is well known that K∞ is the composite of three fields Kcycl,

Kanti, and KT which are linearly disjoint over K (see chapter 1). The cyclotomic

extension Kcycl is the unique Zp-extension of K which is abelian over Q. The

anti-cyclotomic extension Kanti is the unique Zp-extension of K which is pro-

dihedral over Q. Finally, KT is a finite extension of K with Gal(KT/K) ∼= T and

dihedral over Q (but not unique with these properties). As we shall see, we may

usually for KT take K0 or a subfield of K0. From the above discussion follows

the isomorphism

Gal(K∞/K) ∼= Zp × Zp × T

which will be important in the following. It may also be noted that the composite

KantiK
T is the maximal abelian p-extension of K which is unramified outside p

and dihedral over Q, and hence equals the union of all p-ring class fields over K

with conductor a power of p.

2.2 Criteria for p-rationality

The concept of p-rationality has an obvious connection to the question of Zp-

embeddability:

Lemma 12. Let p > 2 and assume that the imaginary quadratic field K is p-

rational. Then the p-Hilbert class field K0 of K is cyclic (possibly trivial) and

embeddable into an Zp-extension of K.

Proof. Since K0 is dihedral over Q, it is contained in KantiK
T . So if K is p-

rational and the torsion T thus trivial, it will follow that K0 is contained in Kanti.

�

We remark that the situation is more difficult for p = 2. Here a cyclic 2-class

field can be Z2-embeddable even though it is not contained in Kanti. We return

to this problem in section 4.12.

What we need now are criteria for p-rationality.

Theorem 13. (a) Q(
√
−3) is 3-rational. Let K = Q(

√
−∆) with a square-free
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∆ ∈ N. Then K is 3-rational if ∆ 6≡ 3 (mod 9) and the class number of Q(
√

3∆)

is not divisible by 3.

(b) Assume p ≥ 5 and let K be as above. Then K is p-rational if it has the

same p-class number as K(ζ) where ζ is a primitive p’th root of unity.

Proof. (a) We use condition (d) of Theorem 9.

K = Q(
√
−3) contains a primitive third root of unity ζ, and 3 ramifies in K.

If K had a non-trivial hyperprimary element x ∈ VS\K∗3 where S is the set of

primes dividing 3, then K( 3
√
x)/K would be an unramified Z/3-extension. Since

K has class number 1, this is impossible. Thus K is 3-rational.

Now let K = Q(
√
−∆) with ∆ 6= 3. Then K does not contain ζ. We have

the biimplication

ζ ∈ Kp = Q3(
√
−∆) ⇔ ∆ ≡ 3 (mod 9) .

Let K0 be the 3-Hilbert class field of K. By a theorem of Kubota (see [20]), the

p-class number of K(
√
−3) is the product of the p-class numbers of K, Q(

√
−3),

and Q(
√

3∆) for an odd prime p. It then follows from the assumption and the

fact that Q(
√
−3) has trivial class number that K(

√
−3) has the same 3-class

number as K. Hence K0(
√
−3) is the 3-Hilbert class field of K(

√
−3). Clearly

K0(
√
−3)/K is abelian. Assume for a contradiction that K has a non-trivial hy-

perprimary element x ∈ VS\K∗3. Then K(
√
−3, 3
√
x)/K(

√
−3) is an unramified

Z/3-extension (see Remark 5). Therefore 3
√
x is contained in the 3-Hilbert class

field K0(
√
−3). But K( 3

√
x) is not normal over K, a contradiction. Hence K is

3-rational.

(b) In the case p ≥ 5 neither K nor Kp = Qp(
√
−∆) contain ζ. The same

argument as above shows VS = K∗p where S now is the set of primes dividing p.

�

Remarks. (a) We shall later see that K is p-rational for p ≥ 5 when its class

number is not divisible by p.

(b) Note that part (b) of Theorem 10 generalises the similar part of [19],

Corollaire 1.3.

(c) The proof of Theorem 10 shows that it suffices to assume in part (b) that

the p-class groups of K and K(ζ) have the same ranks. However this seems to

happen only when the p-class numbers are also identical.

(d) Theorem 10 never applies when p is an irregular prime, i.e. when the class

number of Q(ζ) is divisible by p.

The below table shows all values of ∆ < 200 for which the 3-part h of the class
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number of K = Q(
√
−∆) is divisible by 3. An asterix means that ∆ ≡ 3 (mod 9).

h′ is the 3-part of the class number of Q(
√

3∆).

∆ 23 26 29 31 38 53 59 61 83 87 89 106 107

h 3 3 3 3 3 3 3 3 3 3 3 3 3

h′ 1 1 1 1 1 1 1 1 1 1 1 1 3

∆ 109 110 118 129∗ 139 157 170 174∗ 182 186 199

h 3 3 3 3 3 3 3 3 3 3 9

h′ 1 1 1 1 1 1 1 1 1 1 1

We see that for ∆ = 23, 26, 29, 31, 38 etc., K0/K is cyclic of degree 3 and

Z3-embeddable. We shall deal with the remaining cases ∆ = 107, 129, 174 in the

next section.

Below is the equivalent table for p = 5. Here H is the 5-part of the class

number of K(ζ) (with ζ a primitive fifth root of unity):

∆ 47 74 79 86 103 119 122 127 131 143 159 166 179 181 194 197

h 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

H 5 5 5 5 5 5 5 25 5 5 5 125 5 5 5 5

We see similarly that the 5-class fieldK0/K is cyclic of degree 5 and Z5-embeddable

for ∆ = 47, 74, 79 etc. We return to the remaining cases ∆ = 127, 166 in the

next section.

Finally a table for p = 7:

∆ 71 101 134 149 151 173

h 7 7 7 7 7 7

H 7 7 73 73 7 7

2.3 Algorithm to determine Zp-embeddability

We shall now see how the cases where Theorem 10 does not apply can be dealt

with. Recall that the ray group modulo pe is the subgroup Pe of P generated

by the principal ideals (α) with integral α ≡ 1 (mod pe). The ray class group

modulo pe is the quotient I/Pe. It is a central result in class field theory that there

is an isomorphism, the Artin symbol, from the p-part of I/Pe to Gal(Ke/K).

It maps the p-part of P/Pe onto Gal(Ke/K0).

Lemma 14. (I) With notation as above, we have for p > 3,

Gal(Ke/K0) ∼=

{
Z/pe−1 × Z/pe−1 if p - ∆ ,

Z/pe−1 × Z/pe if p | ∆ .
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Taking the inverse limit gives Gal(K∞/K0) ∼= Zp × Zp. In particular, T = 0 if

K0 = K.

(II) For p = 3, the above remains valid when ∆ 6≡ 3 (mod 9). Assume

∆ ≡ 3 (mod 9) and ∆ 6= 3. Then

Gal(Ke/K0) ∼= Z/3e−1 × Z/3e−1 × Z/3 .

Taking the inverse limit gives Gal(K∞/K0) ∼= Z3 × Z3 × Z/3. In particular,

T ∼= Z/3 if K0 = K.

Proof. There is a natural exact sequence

1 −→ O∗ −→ (O/pe)∗ −→ P/Pe −→ 1 .

The exclusion of the case p = ∆ = 3 ensures that O∗ has trivial p-part. Hence

Gal(Ke/K0) is isomorphic to the p-part of (O/pe)∗ by the Artin symbol. So we

compute the structure of (O/pe)∗.
To begin with, note that each coset of O/pe has a unique representative of

the form a+ b
√
−∆ with a, b = 0, 1, . . . , pe − 1.

The order of (O/pe)∗, i.e. the norm of the ideal peO, depends on the prime

ideal decomposition of p in K. More precisely, the order of the p-part is

|p-part of (O/pe)∗| =

{
p2e−2 if p - ∆ ,

p2e−1 if p | ∆ .

We note the following two facts:

(∗) Let x ∈ O and write (1 + x)p = 1 + x′. If pi||x for some i = 1 (meaning

that pi|x, but pi+1 - x), then pi+1||x′.
(∗∗) Let a and b be integers with a ≡ 1 (mod p) and pi||b for some i = 1. Write

(a+ b
√
−∆)p = a′ + b′

√
−∆. Then a′ ≡ 1 (mod p) and pi+1||b′.

It follows from (∗) that the cyclic subgroups U := 〈1 + p〉 and V := 〈1 + p
√
−∆〉

of (O/pe)∗ both have order pe−1. It follows from (∗∗) that they have trivial

intersection. So for p - ∆,

(p-part of (O/pe)∗) = U × V ∼= Z/pe−1 × Z/pe−1 .

Assume p | ∆. Then U × V has index p in the p-part of (O/pe)∗. If p > 3, or

p = 3 and ∆ 6≡ 3 (mod 9), the same argument shows

(p-part of (O/pe)∗) = U × V ′ ∼= Z/pe−1 × Z/pe
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for V ′ := 〈1 +
√
−∆〉. In case p = 3 and ∆ ≡ 3 (mod 9), the 3-part of (O/9)∗ is

〈4〉 × 〈1 + 3
√
−∆〉 × 〈1 +

√
−∆〉 ∼= (Z/3)3, and therefore

(3-part of (O/3e)∗) = U × V × (group of order 3) ∼= Z/pe−1 × Z/pe−1 × Z/3 .

This finishes the proof of the lemma. �

The question of Zp-embeddability in the case where the p-class field is cyclic of

degree p can now be answered.

Theorem 15. Assume K0/K is cyclic of degree p. Pick a prime q - p of K of

order p in the class group, and write qp = (α) with α ∈ O.

I. Suppose p > 3.

(a) If α is not a p’th power in (O/p2)∗, then K0/K is Zp-embeddable (in fact

K0 is contained in Kanti), and T = 0.

(b) If α is a p’th power in (O/p2)∗, then K0/K is not embeddable in Z/p2-

extension unramified outside p, and T ∼= Z/p.
II. Now suppose p = 3. If ∆ 6≡ 3 (mod 9), all the above remains valid. Assume

∆ ≡ 3 (mod 9), and write α ≡ a+ b
√
−∆ (mod 9) with a, b ∈ Z.

(c) If (a, b) ≡ (±1, 0) modulo 3, but not modulo 9, then K0/K is Z3-

embeddable (in fact K0 is contained in Kanti), and T ∼= Z/3.

(d) If (a, b) 6≡ (±1, 0) modulo 3, then K0/K is embeddable in a Z/9-extension

unramified outside 3, but not in a Z/27-extension unramified outside 3,

and T ∼= Z/9.

(e) If (a, b) ≡ (±1, 0) modulo 9, then K0/K is not embeddable in a Z/9-

extension unramified outside 3, and T ∼= Z/3× Z/3.

Proof. I. Assume p > 3. By Lemma 14, Gal(K∞/K0) ∼= Zp × Zp. Since

Gal(K0/K) ∼= Z/p, there are two possibilities for T : 0 or Z/p.
(a) If T = 0, i.e. Gal(K∞/K) ∼= Zp × Zp, then K0 is contained in KcyclKanti.

Since K0 is dihedral over Q, it is in fact contained in Kanti. Both I/P2 and P/P2

have p-rank 2. Therefore, qp = (α) is not a p’th power in P/P2. So α is not a

p’th power in (O/p2O)∗.

(b) If T ∼= Z/p, i.e. Gal(K∞/K) ∼= Zp×Zp×Z/p, then K0 is linearly disjoint

from KcyclKanti. So we may for KT take K0. Hence no Z/p2-extension of K inside

K∞ contains K0. Now the p-part of P/P2 is a direct summand in the p-part of

I/P2. Therefore, qp = (α) is a p’th power in P/P2. So α is a p’th power in

(O/p2O)∗.

II. Now assume p = 3. If ∆ 6≡ 3 (mod 9), everything goes like above. Henceforth
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assume ∆ ≡ 3 (mod 9). Then (O/9)∗ ∼= Z/2 × Z/3 × Z/3 × Z/3 (see the proof

of Lemma 14), so that α = a + b
√
−∆ is a cube in (O/9)∗ iff (a, b) ≡ (±1, 0)

modulo 9. Further, (O/3)∗ ∼= Z/2 × Z/3, so that α is a cube in (O/3)∗ iff

(a, b) ≡ (±1, 0) modulo 3. By Lemma 14, Gal(K∞/K0) ∼= Z3 × Z3 × Z/3. Since

Gal(K0/K) ∼= Z/3, there are three possibilities for T : Z/3, Z/9, or Z/3× Z/3.

(c) If T ∼= Z/3, i.e. Gal(K∞/K) ∼= Z3 × Z3 × Z/3, then K0 is contained

in KcyclKanti and therefore also in Kanti. Both I/P2 and P/P2 have 3-rank 3.

Therefore, q3 = (α) is not a cube in P/P2. So α is not a cube in (O/9)∗. On

the other hand, the 3-part of P/P1 is a direct summand in the 3-part of I/P1.

Therefore, q3 = (α) is a cube in P/P1. So α is a cube in (O/3)∗. This shows the

claims about a and b.

The cases (d) where T ∼= Z/9 and (e) where T ∼= Z/3× Z/3 are treated in a

similar manner, so their proofs are omitted. �

The same arguments give a description of the torsion subgroup T in the general

case where K0/K is not necessarily cyclic: If p > 3, or p = 3 and ∆ 6≡ 3 (mod 9),

then K∞ = KcyclKantiK0, and therefore T ∼= Gal(K0/K0 ∩ Kanti), i.e. T is

isomorphic to a subgroup of Gal(K0/K) with cyclic quotient. If p = 3 and

∆ ≡ 3 (mod 9), then K∞ has degree 3 over KcyclKantiK0, and therefore T has a

subgroup of index 3 which is isomorphic to Gal(K0/K0 ∩Kanti).

The following examples answer the questions regarding Zp-embeddability from

the previous section and show that all cases of Theorem 15 occur.

Examples. (i) Let p = 5 and ∆ = 127. The class number of K is 5. The prime

number 2 is divisible by a non-principal prime ideal q of K. Further, q5 = (α)

with α = (1 +
√
−127)/2 since 25 = αᾱ. Since α is not a fifth power in (O/25)∗,

we are in case (a).

(ii) Let p = 5 and ∆ = 166. The class number of K is 10. Here 7 is

divisible by a non-principal prime ideal q such that q5 = (α) is principal, α =

(129 +
√
−166)/2. Modulo 25 we have α ≡ α5 and conclude that we are in case

(b).

(iii) Let p = 3 and ∆ = 107. The class number ofK is 3. Here 11 is divisible by

a non-principal prime ideal q such that q3 = (α) is principal, α = (9+7
√
−107)/2.

Modulo 9 we have α ≡ α3 and conclude that we are in case (b).

(iv) Let p = 3 and ∆ = 237. The class number of K is 12. Here 13 is divisible

by a non-principal prime ideal q such that q3 = (α) is principal, α = 8+3
√
−237.

We are in case (c).

(v) Let p = 3 and ∆ = 129. The class number of K is 12. Here 13 is divisible

by a non-principal prime ideal q such that q3 = (α) is principal, α = 41+2
√
−129.
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We are in case (d).

(vi) Let p = 3 and ∆ = 3387. The class number of K is 12. Here the prime

43 is divisible by a non-principal prime ideal q such that q3 = (α) is principal,

α = (209 + 9
√
−3387)/2 ≡ 1 (mod 9). We are in case (e).

As is the case for the ideal class group, there is numerical evidence that the

torsion subgroup T “prefers” having small rank, so that case (e) occurs quite

rarely. More precisely, there are 260 values of ∆ < 10, 000 with ∆ ≡ 3 (mod 9)

such that the class number of K is divisible by 3, and for these values, case (c)

occurs 55 times, case (d) occurs 199 times, whereas case (e) occurs only 6 times.

Finally a criterion for Zp-embeddability of a cyclic p-class field (or part of it)

of arbitrary degree is given.

Theorem 16. Assume K0/K is cyclic of degree pn > 1, and let F/K be some

subextension

(I) Suppose p > 3. Then F/K is Zp-embeddable if it is embeddable in a

Z/pn+1-extension unramified outside p.

(II) Suppose p = 3. If ∆ 6≡ 3 (mod 9), the above holds. Assume ∆ ≡
3 (mod 9). Then F/K is Z3-embeddable if it is embeddable in a Z/3n+2-extension

unramified outside 3.

Proof. Only (I) is proved since the proof of (II) is very similar. Put F ′ :=

K0 ∩KcyclKanti = K0 ∩Kanti, and let pi be the degree of F ′/K. It is the maximal

Zp-embeddable subextension of K0/K. Then T ∼= Z/pn−i. Assume F/K is not

Zp-embeddable, i.e. that F is a proper extension of F ′. Assume that F/K is

embedded in a cyclic extension L/K inside K∞. Then F ′ = L ∩ KcyclKanti.

Therefore [L : F ′] = [KcyclKantiL : KcyclKanti] 5 pn−i and we conclude that

[L : K] 5 pn. �
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Chapter 3

Prime decomposition in the

anti-cyclotomic extension

3.1 Introduction

Let l be an odd prime number, and denote by Zl the infinite pro-cyclic l-group

lim←− Z/ln. Consider an imaginary quadratic number field K. As is well known,

K has a unique Zl-extension which is pro-dihedral over Q. We call it the anti-

cyclotomic Zl-extension of K (for reasons later to be clear).

The purpose of this chapter is to study the decomposition of primes p of

K in the anti-cyclotomic extension. Since this extension is pro-cyclic, the de-

composition type of p is completely determined by the number of steps of the

anti-cyclotomic extension in which p is unramified, and the number of steps in

which p splits totally. By the n’th step of a Zl-extension we understand the

subextension of degree ln over the ground field.

Such decomposition laws are given in section 3.3 (Theorem 22 and Theorem

24). The laws involve representations of primes p or prime powers ph by certain

quadratic forms of the same discriminant dK as K. Using Gauss’ theory of com-

position of forms, it always suffices to represent p by some form. The whole story

becomes particularly simple when each genus of forms of discriminant dK consists

of a single class. This happens for 65 values of dK closely connected to Euler’s

numeri idonei or convenient numbers.

As we shall see, the decomposition laws also depend on how many steps of

the anti-cyclotomic extension are unramified. This dependence may be turned

around, meaning that if we know how certain primes decompose, then we can

compute the number of unramified steps. In particular, we can answer whether

the Hilbert class field of K is contained in the anti-cyclotomic extension and thus
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is Zl-embeddable.

In section 3.5 we show how to find explicit polynomials whose roots generate

the first step of the anti-cyclotomic extension. When K is not l-rational (to be

defined in section 3.2), this involves using the decomposition laws to identify the

right polynomial f among a finite number of candidates. When this is done, one

obtains nice laws for the splitting of f modulo p. For instance we show that

X5 + 5X2 + 3 splits into linear factor modulo a prime number p 6= 3, 5 if and

only if p is of the form x2 + 5xy + 100y2 (for example p = 379, 439, 571, 631) or

3x2 + 15xy + 50y2 (for example p = 137, 173, 233, 317).

Throughout the article we use the following notation:

l : an odd prime number

∆ : a square-free natural number

K : the imaginary quadratic number field Q(
√
−∆)

dK : the discriminant of K

h, µ, u : we write the class number of K as h = lµu with l - u
O : the ring of integral elements in K

p : a prime of K, i.e. a prime ideal in O
p : the rational prime divisible by p

KH : the Hilbert class field of K

Kmax : the maximal abelian extension of K unramified outside l

K
(n)
anti : the n’th step of the anti-cyclotomic extension Kanti

ν : the non-negative integer defined by Kanti ∩KH = K
(ν)
anti

(·/·) : the Legendre or Kronecker symbol

3.2 The cyclotomic and the anti-cyclotomic ex-

tension

In Iwasawa [18] it is shown that any Zl-extension of K is unramified outside l.

This result motivates the study of the maximal abelian extensionKmax ofK which

is unramified outside l. If Kf denotes the ray class field over K of conductor f ,

then Kmax is the union of the tower

K ⊆ K1 ⊆ K l ⊆ K l2 ⊆ . . .

Here, K1 is the Hilbert class field of K which we also denote KH .

Let τ denote complex conjugation. Clearly, Kmax is normal over Q, so τ op-

erates on Gal(Kmax/K) by conjugation.

Main Lemma 17. We may write Gal(Kmax/K) = U ×W × T × T ′ such that
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(i) U is isomorphic to Zl, and τ operates trivially on U ,

(ii) W is isomorphic to Zl, and τ operates by inversion on W ,

(iii) T is a finite l-group, and τ operates by inversion on T ,

(iv) T ′ is finite of order prime to l.

Further, we may write Gal(Kmax/KH) = U × V × T ∗ × S ′ where

(v) V is isomorphic to Zl, contained in W × T , and has |V : W ∩ V | ≤ |T |,
(vi) T ∗ is trivial unless l = 3, ∆ ≡ 3 (mod 9), and ∆ 6= 3; in this exceptional

case, T ∗ has order 3 and is contained in T ,

(vii) S ′ is contained in T ′ (and thus finite of order prime to l).

Consider a conductor m = le with e ≥ 1. Then Gal(Kmax/K
m) = Um×V m where

(iix) Um is contained in U and has index |U : Um| = le−1,

(ix) V m is contained in V . If l - ∆, then |V : V m| = le−1. If l | ∆, then

|V : V m| = le unless l = 3 and ∆ ≡ 3 (mod 9); in this case, |V : V m| = 3e−1.

The subgroups U , W × T , T , T ′, V , T ∗, S ′, Um, and V m are unique with these

properties.

A proof will be given at the end of the section. At this point, we only note

that the uniqueness statement is seen as follows: U is the maximal subgroup of

the l-part of Gal(Kmax/K) on which τ operates trivially, W × T is the maximal

subgroup of the l-part of Gal(Kmax/K) on which τ operates by inversion, T is

the l-torsion and T ′ is the non-l-part1 (and the non-l-torsion) of Gal(Kmax/K),

V equals Gal(Kmax/KK) ∩ (W × T ), T ∗ is the l-torsion, and S ′ is the non-l-part

of Gal(Kmax/KH). Note that W is not unique if T is non-trivial.

Proposition 18. (a) K has a unique Zl-extension which is pro-cyclic over Q. It

is called the cyclotomic extension and is denoted Kcycl. Adjoin to Q all roots of

unity of l-power-order, and let Qcycl be the l-part of this extension. Then Kcycl

is the composite of K and Qcycl.

(b) K has a unique Zl-extension which is pro-dihedral over Q. It is called the

anti-cyclotomic extension and is denoted Kanti.

(c)Kcycl andKanti are the only absolutely normal Zl-extensions ofK. They are

linearly disjoint over K, and any Zl-extension of K is contained in the composite

KcyclKanti. The l-part of the Hilbert class field KH (or any other part of it) is

embeddable in a Zl-extension of K iff it is contained in Kanti.

(d) The Galois group of the maximal abelian l-extension of K which is un-

1The l-part of an abelian pro-finite group is its Sylow-l-subgroup, the “non-l-part” is the
product of the l′-parts for l′ 6= l. The l-part of an abelian field extension is the fixed field of
the non-l-part of the Galois group, and vice versa.
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ramified outside l is isomorphic to Zl × Zl × T where T is a finite l-group. If T

is trivial, the l-part of KH is cyclic and Zl-embeddable.

Proof. Everything follows from the theorem: Kcycl is the fixed field of W×T×T ′,

and Kanti is the fixed field of U × T × T ′. Any Zl-extension of K is contained in

the fixed field of the torsion T ×T ′, i.e. in KcyclKanti. Kcycl and Kanti are the only

absolutely normal Zl-extensions of K since U and W are the only τ -invariant

subgroups of U ×W with quotient Zl. Since KH is generalised dihedral over Q,

the maximal Zl-embeddable subfield of it is KH ∩Kanti. If T is trivial, the l-part

of KH is contained in Kanti. It is clear that Qcycl is a Zl-extension of Q. Hence

KQcycl is a Zl-extension of K and a (Zl × Z/2)-extension of Q. The uniqueness

of Kcycl implies Kcycl = KQcycl. �

The situation is particularly simple when the torsion T is trivial. If this is the

case, K is called l-rational. This notion was introduced in [19]. Some criteria

for l-rationality are given there and in [3].

Lemma 19. (a) Let X be an infinite abelian pro-l-group, and assume V and

T ∗ are subgroups of X of which V is pro-cyclic with finite index, and T ∗ is finite.

Then we may write X = W × T with W pro-cyclic, T finite containing T ∗, and

|V : V ∩W | ≤ |T |.
(b) Let X be an abelian pro-l-group with a subgroup V . Assume τ is an

automorphism of order 2 on X that operates by inversion both on V and on

X/V . Then τ operates by inversion on X.

(c) Let X be an abelian pro-l-group with a subgroup U . Assume τ is an

automorphism on X that operates trivially on U and by inversion on X/U . Then

X = U × V where V = {x ∈ X | xτ = x−1}.

Proof. (a) Assume V × T ∗ to have index l in X; the general case will then follow

by induction. Pick an x ∈ X\(V × T ∗) and write xl = vt with v ∈ V and t ∈ T ∗.

If v is an l’th power in V , then X = V × T with a T containing T ∗. If vl is not

an l’th power in V , then X = W ×T ∗ where W is the pro-cyclic group generated

by x; from xl·|T
∗| = v|T

∗| follows |V : W ∩ V | ≤ |T ∗|.
(b) Let x ∈ X. Then xτ = x−1v for some v ∈ V . Hence x = xττ = x−τvτ =

xv−2 and therefore v2 = e, v = e (since X has no elements of order 2), and

xτ = x−1.

(c) Let x ∈ X. Then xτ = x−1u for a u ∈ U . Every element inX is a square, so

there is a u0 ∈ U with u2
0 = u−1. Put v = xu0. Then vτ = xτu0 = x−1uu0 = v−1,

i.e. v ∈ V . Hence x = u−1
0 v ∈ U × V . �
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Lemma 20. Let e ≥ 1. The group of units in the ring O/le may be written

(O/le)∗ = U × V × S ′ such that the following hold:

(a) Complex conjugation τ operates trivially on U which is isomorphic to

Z/le−1.

(b) Complex conjugation τ operates by inversion on V , and

V ∼=


Z/le−1 if l - ∆,

Z/le if l | ∆, unless l = 3 and ∆ ≡ 3 (mod 9),

Z/3e−1 × Z/3 if l = 3 and ∆ ≡ 3 (mod 9).

(c) S ′ is the non-l-part of (O/le)∗ and has order

|S ′| =


(l − 1)2 if (−∆/l) = 1,

l2 − 1 if (−∆/l) = −1,

l − 1 if (−∆/l) = 0.

There is a subgroup S ′′ of S ′ of order l − 1 such that (Z/le)∗ = U × S ′′.

Proof. To begin with, note that each coset of O/le has a unique representative

of the form a+ b
√
−∆ with a, b ∈ {0, 1, . . . , le − 1}.

The order of (O/le)∗ depends on the decomposition of l in K as follows:

|(O/le)∗| =


(l − 1)2l2e−2 if l splits,

(l2 − 1)l2e−2 if l is inert,

(l − 1)l2e−1 if l ramifies.

This gives the order of S ′.

The subgroups U := 〈1+l〉 and V ′ := 〈1+l
√
−∆〉 of (O/le)∗ are both ∼= Z/le−1

and have trivial intersection. Clearly, τ operates trivially on U and by inversion

on (U × V ′)/U . So by Lemma 20 (c), U × V ′ = U × V for a group V ∼= Z/le−1

on which τ operates by inversion. This shows (a) and (b) when l - ∆.

When l | ∆ the same arguments work for V ′ := 〈1 +
√
−∆〉 unless l = 3 and

∆ ≡ 3 (mod 9). In the exceptional case l = 3 and ∆ ≡ 3 (mod 9), however,

the 3-part of (O/9)∗ is 〈1 + 3〉 × 〈1 + 3
√
−∆〉 × 〈1 +

√
−∆〉 ∼= (Z/3)3, showing

V ∼= Z/3e−1 × Z/3. This finishes the proof of (b).

To see the last part of (c), note U = {u ∈ (Z/le)∗ | u ≡ 1 (mod le)}. �

Proof of Main Lemma. Consider conductors m = le with e ≥ 1. Let Jm
K be the

group of fractional ideals prime to m (i.e. prime to l) and let Pm
K be the subgroup
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generated by the principal ideals (α) with integral α ≡ 1 (mod m). By class field

theory, the Artin symbol is a surjective homomorphism(
Km/K

)
: Jm

K → Gal(Km/K)

with kernel Pm
K . It maps the group PK of principal ideals prime to l onto

Gal(Km/KH) and behaves nicely when e varies. Moreover, the Artin symbol

satifies (
Km/K

τ(p)

)
= τ

(
Km/K

p

)
τ .

Assume for simplicity ∆ 6= 1, 3. We then have the natural exact sequence

1→ {±1} → (O/le)∗ → PK/P
m
K → 1

where an α ∈ (O/le)∗ is sent to the principal ideal (α). The Artin symbol thus

induces an isomorphism

lim←− (O/le)∗/{±1}
∼=−→ Gal(Kmax/KH) .

Conclude from Lemma 20 that Gal(Kmax/KH) = U × V × T ∗ × S ′ with U , V ,

and T ∗ as in the theorem, and S ′ finite of order

|S ′| =


(l − 1)2/2 if (−∆/l) = 1,

(l2 − 1)/2 if (−∆/l) = −1,

(l − 1)/2 if (−∆/l) = 0.

From Lemma 20 also follows Gal(Kmax/K
m) = Um × V m with Um and V m as in

the theorem.

The rest is group theory: Write Gal(Kmax/K) = X × T ′ with l-part X and

non-l-part T ′. Then X contains U × V × T ∗, and T ′ contains S ′ with index

|T ′ : S ′| = u. It is well known that KH is a generalised dihedral extension of Q,

so that τ operates by inversion on X/(U × V × T ∗). It follows from Lemma 19

(b) that τ operates by inversion on X/U . By Lemma 19 (c), X = U × Y where

Y = {x ∈ X | xτ = x−1}. Clearly, Y contains V × T ∗ with finite index |Y :

V × T ∗| = lµ. By Lemma 19 (a), Y = W × T with W ∼= Zl, T finite containing

T ∗, and |V : W ∩ V | ≤ |V |.
In the case ∆ = l = 3, the occurence of a factor of order 3 in O∗ causes T ∗ to

vanish. So in this situation, we are not in the “exceptional case”. �
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3.3 Prime decomposition laws

Consider a prime ideal p of K, and let p the rational prime it divides. Our main

objective is to give a law for the decomposition or factorisation of p in Kanti. For

the sake of completeness, we start with the cyclotomic extension in which the law

has the simplest form possible.

Proposition 21. If p = l, then p is totally ramified inKcycl. If p 6= l, then p is un-

ramified inKcycl, and p splits totally in the n’th step ofKcycl iff p ≡ ±1 (mod ln+1).

Proof. This is an immediate consequence of Proposition 1 (a) and the law on de-

composition of prime numbers in cyclotomic fields. �

Now we turn to the anti-cyclotomic extension. Recall that Kanti/K is unram-

ified outside l by Iwasawa’s result. Define ν ≥ 0 such that Kanti ∩ KH = K
(ν)
anti.

Then any prime P of K
(ν)
anti dividing l ramifies totally in Kanti.

Class field theory gives that p splits totally in any ring class field Nm of

conductor m prime to l if p is inert in K/Q, and that p splits totally in a subfield

of Nm over which Nm has degree 2 if p ramifies in K/Q. In particular, p splits

totally in Kanti if p is different from l and non-split in K. So the remaining

problem is the case where p 6= l splits in K. We treat first the easier situation

where K is l-rational (as defined in section 3.2).

Theorem 22. Assume K is l-rational, and consider a prime p - dK l and an

integer n ≥ 0. Write the class number of K as h = lµu with l - u. For n ≤ µ, p

splits in K
(n)
anti iff p is representable by a quadratic form of discriminant dK whose

order in the form class group is not divisible by lµ−n+1. For n > µ, p splits in

K
(n)
anti iff p is representable by a quadratic form of discriminant{

dK · l2(n−µ+1) if l - ∆ or ∆ = l = 3

dK · l2(n−µ) otherwise

whose order in the form class group is prime to l.

Proof. First some general observations (see also section 1.10). Consider a ring

class field Nm of K with arbitrary conductor m. The Galois group Gal(Nm/K)

is isomorphic to the ring class group of conductor m via the Artin isomorphism.

This ring class group is again isomorphic to the form class group C of discriminant

−dKf 2. Now let L be any field withK j L j Nm. By the main theorem of Galois

theory and the above isomorphisms, there corresponds to L some subgroup H of

C . For a prime number p dividing neither dK nor f , class field theory gives that
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p splits totally in L iff p is representable by a quadratic form f whose equivalence

class [f ] belongs to H.

Assume n ≤ µ and let N be the ring class field of K with conductor f =

1 (which equals the Hilbert class field). The l-part of N/K is K
(µ)
anti since K

is l-rational. The subgroup H of the form class group C of discriminant dK
corresponding to L := K

(n)
anti consists of the classes of forms of order not divisible

by lµ−n+1. This proves the first claim.

Now assume n > µ. We only prove the case l - ∆. Let N be the ring class field

of K with conductor f = ln−µ+1. By the Main Lemma, the l-part of N/K is K
(n)
anti

since K is l-rational. The subgroup H of the form class group C of discriminant

dKf
2 corresponding to L := K

(n)
anti consists of the classes of forms of order prime

to l. This proves the second claim. �

Antoniadis [1] gives a prime decomposition law for ring class fields and their

subfields involving coefficients of L-series.

Example 23. (a) Let l = 3 and ∆ = 3. We seek the primes p 6= 3 that split

in K
(1)
anti. The form class group of discriminant −3 · 34 = −243 has order 3. So p

splits iff it is representable by the principal form x2 + xy + 61y2.

(b) Let l = 7 and ∆ = 1. The form class group of discriminant −4·74 = −9604

is cyclic of order 28. So a prime p 6= 2, 7 splits in K
(1)
anti iff it is representable by

either the principal form x2 + 2401y2, or the form 2x2 + 2xy + 1201y2 of or-

der 2, or the form 41x2 + 20xy + 61y2 of order 4 (the other form of order 4 is

41x2 − 20xy + 61y2 which represents the same numbers).

When K is not l-rational, the l-part of the the ring class fields of l-power

conductor is not contained in Kanti, and the problem lies in identifying the inter-

section.

Theorem 24. Assume that p is different from l and splits in K. We may then

write

ph =

{
a2 + ∆b2 if ∆ 6≡ 3 (mod 4),

a2 + ab+ ((∆ + 1)/4)b2 if ∆ ≡ 3 (mod 4),
(3.1)

with relatively prime a, b ∈ Z. Put ω :=
√
−∆ if ∆ 6≡ 3 (mod 4), otherwise

ω := (1 +
√
−∆)/2. Let n ≥ 0 be an integer.

(a) Suppose l splits in K. Write (a+ bω)l−1 = a∗ + b∗ω. Then p splits totally

in K
(n)
anti iff b∗ ≡ 0 (mod ln+1+µ−ν).
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(b) Suppose l is inert in K. Write (a+ bω)l+1 = a∗+ b∗ω. Then the conclusion

of (a) holds.

(c) Suppose l is ramified in K and we are not in the exceptional case (d).

Then p splits totally in K
(n)
anti iff b ≡ 0 (mod ln+µ−ν).

(d) Suppose l = 3 and ∆ ≡ 3 (mod 9). Write (a + bω)3 = a∗ + b∗ω. Then p

splits totally in K
(n)
anti iff b∗ ≡ 0 (mod 3n+2+µ−ν).

Proof. Write (p) = pq with conjugate prime ideals p, q of K. By definition of h, ph

and qh are principal, i.e. ph = (a+bω) and qh = (a+bω̄) for some a, b ∈ Z. When

∆ 6≡ 3 (mod 4), we have (ph) = phqh = (a + b
√
−∆)(a − b

√
−∆) = (a2 + ∆b2)

and consequently ph = a2 +∆b2. The representation of ph in case ∆ ≡ 3 (mod 4)

is seen similarly. If a and b were not relatively prime, then ph = (a + bω) and

qh = (a+ bω̄) would not be relatively prime either, a contradiction.

Now assume a representation

ph = (u+ vω)(u+ vω̄)

is given with relatively prime u, v ∈ Z. Then phqh = (ph) = (u+ vω)(u+ vω̄). If

(u + vω) and (u + vω̄) were not relatively prime, then one of these ideals would

be divisible by pq = (p) which is not the case since u and v are relatively prime.

Hence the ideal (u+ vω) equals either ph or qh, say (u+ vω) = ph = (a+ bω).

The remainder of the proof relies on Main Lemma 17 whose notation we adopt.

The different cases are now treated separately.

(a) Assume l splits in K. It follows immediately from the definition of ν that

Gal(Kmax/K
(ν)
anti) = U × V × T × T ′. Hence lν = |W × T : V × T | and |T | = lµ−ν

since |W × T : V | = lµ.

Consider the conductor m = le with e = n + 1 + µ − ν. By Main Lemma 17

(v) and (ix), V m is contained in W and hence

Gal(Km/K) = Ū × W̄ × T × T ′

where Ū = U/Um is cyclic of order le−1 = ln+µ−ν , W̄ = W/V m is cyclic of order

le−1+ν = ln+µ, and T ′ has order prime to l. The fixed field of Ū×T ×T ′ is K
(n+µ)
anti

It follows from Lemma 20 that he image of (Z/le)∗ under the Artin symbol(
Km/K

)
: (O/le)∗ → Gal(Km/K)

is Ū × S ′′ where S ′′ is a subgroup of T ′ with index u(l − 1).
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Let W0 be the subgroup of W̄ of order lµ. Then K
(n)
anti is the fixed field of

Ū ×W0 × T × T ′. Now class field theory yields (see Neukirch [22]),

p splits in K
(n)
anti ⇔

(
Km/K

p

)
∈ Ū ×W0 × T × T ′

⇔
(
Km/K

ph(l−1)

)
∈ Ū × S ′′

⇔ b∗ ≡ 0 (mod le)

if we write ph(l−1) = (a∗ + b∗ω).

(b) If l is inert in K, everything goes the same way except that T ′ has now

order u(l2 − 1)/2.

(c) Suppose l ramifies in K and we are not in the exceptional case. Then T ′

has order u(l − 1)/2, and everything goes as above using the conductor m = le

with e = n+ µ− ν.
(d) Suppose we are in the exceptional case. Then |T | = 3µ−ν+1 and |T ′| =

u(l−1)/2. Using the conductor m = le with e = n+2+µ−ν, the same arguments

hold if we write p3h = (a∗ + b∗ω). �

Remark. Everything goes the same way if one uses the exponent of K’s class

group instead of h.

When the l-Hilbert class field of K is non-trivial, the decomposition law de-

pends on how much of it is contained in Kanti, expressed by the number ν. Since

all primes trivially split in in the zero’th step K
(0)
anti = K, but not all primes split

in K
(1)
anti, we can give the following description of ν (here stated in the case where

l splits in K, the other cases are similar): Let p run through all primes 6= l that

split in K, and compute b∗ as in Theorem 24 (a). Then ν is the minimal integer

such that l1+µ−ν divides all the b∗. We illustrate this principle by three examples.

Example 25. Let l = 5 and K = Q(
√
−599). The class group of K is cyclic

of order 25. Thus µ = 2 and ν = 0, 1, or 2. The prime p = 2 splits in K since

(−599/2) = 1. We therefore write 225 = a2 +ab+150b2 with a = 5737 and b = 49

and find b∗ = 37079430566955 (Theorem 24 (a)). Since b∗ is divisible by 5, but

not by 25, we conclude ν = 2. In other words: the entire Hilbert class field KH

of K is contained in Kanti.

Example 26. Let l = 5 and K = Q(
√
−479). Again, the class group of

K is cyclic of order 25, so µ = 2 and ν = 0, 1, or 2. Further, p = 2 again

splits in K. Writing 225 = a2 + ab + 120b2 with a = −56 and b = 529 gives
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b∗ = −14765386940175 which is divisible by 25, but not by 125. This shows

ν ≥ 1, so KH contains at least K
(1)
anti. Now class field theory gives a simple de-

composition law for K
(1)
anti: a prime ideal p of K splits in K

(1)
anti iff it has order 1

or 5 in the ideal class group. Since 25 is not of the form a2 + ab+ 120b2, a prime

p of K dividing 2 has order 25 in the class group, so it does not split in K
(1)
anti. If

ν were equal to 2, Theorem 24 (a) would contradict this. Hence ν equals 1, and

we conclude: Kanti contains the subfield of KH of degree 5 over K, but not the

entire KH .

Example 27. Let l = 5 and K = Q(
√
−2887). The class group of K is cyclic

of order 25. Writing 225 = a2 + ab + 722b2 with a = 4771 and b = 119 gives

b∗ = −503658527236874547125 which is divisible by 125. The same arguments as

in Example 26 show that p = 2 is inert in HK . This implies ν = 0 and therefore:

KH and Kanti are linearly disjoint over K.

Finding a primitive representation of ph by the principal binary quadratic form

of discriminant dK requires some thought when h is large. Since p is assumed

to split in K, p is representable by some primitive form of discriminant dK .

For ∆ = −599, for example, the class group of K = Q(
√
−599) is cyclic of

order 25, and there are 25 reduced forms of discriminant −599. One of these

is 2x2 + xy + 75y2, representing p = 2, 103, 211 etc. What we need now is

some way of getting a representation of p25 by the form a2 + ab + 150b2 from

the representation of p by 2x2 + xy + 75y2. The classical theory of composition

of forms as developed by Lagrange, Legendre, and Gauss solves this problem.

Indeed, Gauss writes in Disquisitiones Arithmeticae (1801), paragraph 244:

Si per formam aliquam f repraesentari potest numerus a, per formam

f ′ numerus a′, atque forma F in ff ′ est transformabilis: nullo negotio

perspicitur, productum aa′ per formam F repraesentabile fore.

If the number a can be represented by some form f , the number a′

by the form f ′, and the form F is transformable into ff ′ (i.e. F is

equivalent to ff ′): the product aa′ is with no difficulty seen to be

representable by the form F .

Working this out explicitly in our example gives the identity

(2x2 + xy + 75y2)25 = a2 + ab+ 150b2
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with the formidable expressions

a = 5737x25 − 91875x24y−
65092500x23y2 + 67447500x22y3+

103112996250x21y4 + 158110895250x20y5−
53870804872500x19y6 − 126755146072500x18y7+

12194776755129375x17y8 + 31718890562926875x16y9−
1356699586464321000x15y10 − 3520204400465145000x14y11+

78886011398262967500x13y12 + 193451948219481577500x12y13−
2452713817135817565000x11y14 − 5459267179075675053000x10y15+

40449997738560715944375x9y16 + 78446421200576378131875x8y17−
339479206707433788682500x7y18 − 544224194572452405742500x6y19+

1325418345983101131704250x5y20 + 1615531276650390507251250x4y21−
2004786679367985817042500x3y22 − 1567484258719010395702500x2y23+

751856639324745597343125xy24 + 210972665126371211409675y25,

b = 49x25 + 72325x24y−
117300x23y2 − 249970900x22y3−
501939350x21y4 + 215483219490x20y5+

622656857900x19y6 − 72265343734100x18y7−
223898051032425x17y8 + 11305829887202675x16y9+

34419776360103640x15y10 − 901554415980148200x14y11−
2579359309593087700x13y12 + 38153326044334939900x12y13+

99259403255921364600x11y14 − 862933285089295273480x10y15−
1975687645051553227025x9y16 + 10184376201223013660475x8y17+

19695732755955420398300x7y18 − 58907482043693383631300x6y19−
90469751492421868406070x5y20 + 147017689820318959916450x4y21+

160231724224609951560700x3y22 − 120297062291959295574900x2y23−
70324221708790403803225xy24 + 13630648352319103870798y25

and shows the not evident fact that a and b are relatively prime when 2x2 +xy+

75y2 is prime. This formula gives the expression for 225 in Example 25, but also

for instance

10325 = a2 + ab+ 150b2

with
a = 14043642806391076826648713,

b = −335286245481473128025202,

by writing 103 = 2x2 + xy + 75y2 with x = 4 and y = −1 and inserting these

values in the expressions for a and b above.
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3.4 Discriminants with one class per genus

Given a negative discriminant D, i.e. a negative integer D ≡ 0, 1 (mod 4), one

may consider the property that each genus of primitive, positive definite quadratic

forms of discriminant D consists of a single class. Dickson [9] is the first to give

a list of 101 such D, and it is now known that there exists at most one more (see

[8] and the references therein). Of these, 65 are of the form D = −4n, and these

n are the convenient numbers or numeri idonei studied by Euler. It is a strange

coincidence that there are also 65 numbers in Dickson’s list that are fundamental

discriminants.

D h(D)

− 4 1

−8 1

−12 1

−16 1

−20 2

−24 2

−28 1

−32 2

−36 2

−40 2

−48 2

−52 2

−60 2

D h(D)

−64 2

−72 2

−84 4

−88 2

−96 4

−100 2

−112 2

−120 4

−132 4

−148 2

−160 4

−168 4

−180 4

D h(D)

−192 4

−228 4

−232 2

−240 4

−280 4

−288 4

−312 4

−340 4

−352 4

−372 4

−408 4

−420 8

−448 4

D h(D)

−480 8

−520 4

−532 4

−660 8

−672 8

−708 4

−760 4

−840 8

−928 4

−960 8

−1012 4

−1092 8

−1120 8

D h(D)

−1248 8

−1320 8

−1380 8

−1428 8

−1540 8

−1632 8

−1848 8

−2080 8

−3040 8

−3360 16

−5280 16

−5460 16

−7392 16

Table 1: Negative discriminants D ≡ 0 (mod 4) with one class per genus.
Fundamental discriminants are bold.

D h(D)

−3 1

−7 1

−11 1

−15 2

−19 1

−27 1

−35 2

−43 1

D h(D)

−51 2

−67 1

−75 2

−91 2

−99 2

−115 2

−123 2

−147 2

D h(D)

−163 1

−187 2

−195 4

−235 2

−267 2

−315 4

−403 2

−427 2

D h(D)

−435 4

−483 4

−555 4

−595 4

−627 4

−715 4

−795 4

−1155 8

D h(D)

−1435 4

−1995 8

−3003 8

−3315 8

Table 2: Negative discriminants D ≡ 1 (mod 4) with one class per genus.
Fundamental discriminants are bold.
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As we shall now see, the anti-cyclotomic decomposition law takes a more

elegant form when dK is one of the 65 fundamental discriminants in Dickson’s

list.

Theorem 28. Assume that each genus of primitive, positive forms of discriminant

dK consists of a single class, and that l divides ∆. If l = 3, assume further

∆ 6≡ 3 (mod 9). Consider a prime number p with (dK/p) = 1.

(a) Assume ∆ is even. We may then write

p = dx2 + (∆/d)y2 (3.2)

with some positive d dividing ∆/l.

(b) Assume ∆ ≡ 1 (mod 4). We may then write either p = dx2 + (∆/d)y2 as

above or

p = 2dx2 + 2dxy +
∆/d+ d

2
y2 (3.3)

with some positive d dividing ∆/l.

(c) Assume ∆ ≡ 3 (mod 4). We may then write

p = dx2 + dxy +
∆/d+ d

4
y2 (3.4)

with some positive d dividing ∆/l.

(d) A prime p of K dividing p splits totally in K
(n)
anti iff ln divides y.

Proof. It is well known that a prime p splitting in K is representable by a (unique)

primitive, positive quadratic form of discriminant dK . The assumption that each

genus consists of a single class implies that K’s class group has exponent at most

2, an observation due to Gauss. The list of reduced forms of order ≤ 2 is also

well known, see [8].

To show (d), we must find a primitive representation of p2 (the case h = 1 is

trivial and can be excluded) by the principal form of discriminant dK in order to

use Theorem 24. Squaring (3.2) gives the identity or “duplication formula”

p2 = (dx2 − (∆/d)y2)2 + ∆(2xy)2 .

Primitivity is evident. Since l divides ∆/d, but not p, it follows from (3.2) that l

does not divide x either. Hence the maximal power of l dividing 2xy equals the

maximal power of l dividing y.

Squaring (3.3) gives

p2 =

(
d(2x+ y)2 − (∆/d)y2

2

)2

+ ∆
(
(2x+ y)y

)2

.
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Again, primitivity is clear. If we put a = d(2x+ y) and b = y, then

2dp = a2 + ∆b2 . (3.5)

By (3.5), l does not divide a and consequently not 2x + y = a/d either. Hence

the maximal power of l dividing (2x+y)y equals the maximal power of l dividing

y.

Squaring (3.4) gives

p2 =

(
dx2 + (d− 1)xy − ∆/d− d+ 2

4
y2

)2

+(
dx2 + (d− 1)xy − ∆/d− d+ 2

4
y2

) (
(2x+ y)y

)
+

∆ + 1

4

(
(2x+ y)y

)2

.

Note that ∆/d+ d is divisible by 4 since ∆ ≡ 3 (mod 4). If we put a = (d(2x+

y)− y)/2 and b = y, then

dp = a2 + ab+

(
∆ + 1

4

)
b2 . (3.6)

Multiplication with 4 gives

4dp = (2a+ b)2 + ∆b2 . (3.7)

From (3.7) follows p - (2a + b)b and hence p - (2x + y)y. This gives primitivity.

Also by (3.7), l does not divide 2a+ b and consequently not 2x+ y = (2a+ b)/d

either. Hence the maximal power of l dividing (2x + y)y equals the maximal

power of l dividing y. �

Example 29. (a) Let K = Q(
√
−10) and l = 5. Consider prime numbers p

with (−10/p) = 1. Then a prime p of K dividing p splits in the first step of Kanti

iff p is of the form x2 + 250y2 or 2x2 + 125y2.

(b) Let K = Q(
√
−5) and l = 5. Consider prime numbers p with (−5/p) = 1.

Then a prime p of K dividing p splits in the first step of Kanti iff p is of the form

x2 + 125y2 or 2x2 + 10xy + 75y2.

(c) Let K = Q(
√
−15) and l = 5. Consider prime numbers p with (−15/p) =

1. Then a prime p of K dividing p splits in the first step of Kanti iff p is of the

form x2 + 5xy + 100y2 or 3x2 + 15xy + 50y2.

3.5 The first step of the anti-cyclotomic exten-

sion

In this section we address the problem of finding the first step K
(1)
anti of the anti-

cyclotomic extension Kanti/K. By “finding” we understand displaying explicitly
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a polynomial f over Q of degree l having K
(1)
anti as its splitting field. The decom-

position laws from section 3.3 then dictate the factorisation of f modulo p. In

some cases we will actually use this knowledge of the factorisation to identify f

among a number of candidates.

To begin with, recall that K
(1)
anti is a dihedral extension of Q of degree 2l hav-

ing K as its quadratic subfield, and that K
(1)
anti/K is unramified outside l. If K is

l-rational, K
(1)
anti is unique with these properties. We state without proof a lemma

that allows us easily to determine if a given dihedral extension is unramified, or

unramified outside l, over its quadratic subfield.

Lemma 30. Consider a dihedral extension M/Q of degree 2l having K as its

quadratic subfield. Let L be one of the l subfields of M of absolute degree l.

Then the cyclic extension M/K is unramified iff the field discriminants satisfy

dL = d
(l−1)/2
K . Further, M/K is unramified outside l iff dL = (power of l)·d (l−1)/2

K .

So when K is l-rational, we can find K
(1)
anti by guessing a Dl-polynomial f

whose splitting field contains K, and such that the discriminant condition of the

lemma is satisfied. Some examples are given in the following table.

∆ h f (for l = 3) f (for l = 5)

1 1 X3 − 3X − 4 X5 + 2500X + 120000

2 1 X3 − 3X − 10 X5 + 6875X + 17500

3 1 X3 − 3 X5 + 10X3 − 15X2 + 10X − 12

5 2 X3 − 3X − 8 X5 + 20X + 32

6 2 X3 + 3X − 2 X5 + 15X3 − 70X2 + 60X − 24

7 1 X3 − 3X − 5 X5 + 15X3 − 5X2 + 35X − 91

10 2 X3 − 3X − 22 X5 − 5X + 12

11 1 X3 + 6X − 1 X5 − 15X3 − 15X2 + 110X + 143

13 2 X3 + 9X − 36 X5 + 25772500X − 395460000

14 4 X3 − 3X − 26 X5 + 10X3 − 140X2 + 585X − 532

15 2 X3 + 3X − 1 X5 + 5X2 + 3

17 4 X3 + 6X − 28 X5 − 35X3 − 30X2 + 1060X − 2616

19 1 X3 + 6X − 5 X5 + 35X3 − 40X2 + 160X − 232

Consider one of the polynomials f from the table, and let p be a prime not

dividing the discriminant of f . If p is inert in K, then it splits in K
(1)
anti. It follows

that f is the product of one linear and (l−1)/2 irreducible quadratic polynomials

modulo p. If, on the other hand, p splits as pq in K, then f is either irreducible

modulo p, or f is the product of linear factors modulo p – and this happens

according to whether p is inert or splits in K
(1)
anti.
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For example, the result mentioned in the introduction about the factorisation

of the polynomial X5 + 5X2 + 3 modulo p follows immediately from the above

table (∆ = 15) and Example 29 (c).

When K is not l-rational, finding K
(1)
anti is harder since it is no longer unique

with the property of being dihedral over Q and unramified outside l over K. But

this case can be dealt with by first finding all fields with that property, and then

identifying K
(1)
anti using our knowledge of which primes split in that field. This

method always leads to a conclusive answer, for different Galois extensions have

different sets of splitting primes by a theorem of Bauer (see [22], page 572). We

illustrate by two examples.

Example 31. Let l = 3 and consider K = Q(
√
−21). This field is not 3-rational,

indeed it has (two linearly disjoint and hence) four Z/3-extensions which are

unramified outside 3 and dihedral over Q (see [3]). Using Lemma 30 and a

computer, we easily find four polynomials f1, . . . , f4 whose splitting fields are the

above-mentioned four dihedral fields. The polynomials are shown in the below

table together with all primes < 200 modulo which they split into linear factors.

These prime lists are the “finger prints” of the polynomials, and we shall use

them to uncover the culprit among our four suspects.

i fi primes < 200 modulo which fi splits

1 X3 − 3X + 16 17, 101, 107, 139, 179, 193

2 X3 + 9X + 12 11, 19, 89, 103, 191

3 X3 + 9X + 30 5, 71, 109, 199

4 X3 + 18X + 12 23, 31, 37, 41, 173

Now consider a prime p that splits in K, i.e. with (−21/p) = 1. The class group

of K has exponent 2, so we may write

p2 = a2 + 21b2

with relatively prime a, b ∈ N. This is shown in the table below for all p < 200.

We have

(a+ b
√
−21)3 = (a3 − 63ab2) + (3a2b− 21b3)

√
−21 .

Therefore, by Theorem 24 (d), p splits in K
(1)
anti iff b∗ = 3a2b− 21b3 is divisible by
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27. The primes for which this is the case are typed in bold in the table.

p a b b∗

5 2 1 −9

11 10 1 279

17 10 3 333

19 5 4 −1044

23 2 5 −2565

31 25 4 6156

37 5 8 −10152

41 34 5 14715

71 50 11 54549

89 86 5 108315

p a b b∗

101 74 15 175545

103 47 20 −35460

107 82 15 231705

109 59 20 40860

139 85 24 229896

173 170 7 599697

179 10 39 −1233999

191 170 19 1503261

193 185 12 1195812

199 185 16 1556784

Comparing the bold primes with the ones in the previous table reveals f4 as the

wanted polynomial.

Let us note additionally that p splits in the 3-part of K’s ray class field of

conductor 3 iff b is divisible by 3. The table shows that this is the case for the

primes 17, 101, 107 etc., i.e. the primes modulo which the polynomial f1 splits.

So this ray class field is the splitting field of f1. Finally, all four polynomials fi
split modulo p iff b is divisible by 9.

Example 32. We now aim at finding the first step of the anti-cyclotomic ex-

tension of K = Q(
√
−107) for l = 3. Again, there are four Z/3-extensions of K

which are unramified outside 3 and dihedral over Q (see [3]), and we find four

candidate polynomials:

i fi primes < 200 modulo which fi splits

1 X3 −X + 4 29, 47, 83, 137

2 X3 + 6X − 17 23, 37, 47, 61, 79, 101, 149

3 X3 + 15X − 28 11, 19, 47, 151, 163, 197

4 X3 + 18X − 45 13, 41, 47, 53, 89, 193, 199

The class number of K is 3, and since f1 generates a cubic field with discriminant

−107, the splitting field of f1 is the Hilbert class field of K by Lemma 30. The

anti-cyclotomic decomposition law depends on whether this class field is contained

in Kanti (and thus equals K
(1)
anti) or not.

Let p 6= 3 be a prime that splits in K. Since K has class number 3, we write

p3 = a2 + ab+ 27b2
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with relatively prime a, b ∈ Z. This representation is shown in the table below

for all p < 200. We are in case (a) of Theorem 24 and must compute

(a+ bω)2 = (a2 − 27b2) + (2ab+ b2)ω .

Thus, p splits in K
(1)
anti iff b∗ = 2ab+ b2 is divisible by 33−ν .

p a b b∗

11 1 7 63

13 1 9 99

19 64 9 1233

23 89 11 2079

29 107 20 4680

37 163 27 9531

41 118 43 11997

47 253 34 18360

53 341 29 20619

61 442 27 24597

79 523 81 91287

p a b b∗

83 109 142 51120

89 694 79 115893

101 962 47 92637

137 163 304 191520

149 953 281 614547

151 1412 207 627417

163 1360 279 836721

193 1189 441 1243179

197 2690 83 453429

199 316 531 617553

Now if the Hilbert class field were contained in Kanti, that is if ν = 1, then all the

primes in the table would split in K
(1)
anti since all the b∗ are divisible by 9. Not only

does this seem unlikely, it is also demonstrably false since none of the polynomials

fi splits modulo all these primes. Hence ν = 0, and the Hilbert class field is not

contained in Kanti. So the p that split in K
(1)
anti are the ones for which 27 divides

b∗. These primes (typed in bold in the table) are the ones in the second line of

the previous table, thereby identifying f2 as the polynomial whose splitting field

is K
(1)
anti.
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Chapter 4

The ring class field of conductor

2∞ over imaginary quadratic

number fields

4.1 Introduction

Consider an imaginary quadratic number field K with Hilbert class field KH . The

ring class field N = N(2∞) over K of conductor 2∞ is the maximal 2-ramified

(i.e. unramified outside 2) abelian extension of K which is generalised dihedral

over Q.

We determine the structure of the Galois group Gal(N/KH) and, in some

cases, Gal(N/K).

N/K has a unique Z2-subextension which we call the anti-cyclotomic Z2-

extension Kanti. We give a law for the decomposition of primes p in Kanti. This

law involves a representation of a power of p by a binary quadratic form as well as

the degree 2ν of Kanti ∩KH over K. The exponent ν is the number of unramified

steps of Kanti.

The first step of the anti-cyclotomic extension is of the form K(
√
a) with

an a ∈ Z. When the 2-class group of K is cyclic (possibly trivial), we give an

algorithm to compute both ν and a. In most cases we can even give an explicit

expression for ν and a. This involves some formulae of Hasse giving the 2-class

number 2µ ofK. We give here alternative proofs of Hasse’s results using quadratic

forms rather than ideals. The key ingredient in the proofs presented here are two

new explicit expressions (4.10 and 4.12) for a form representing a class of order

4.

When the 2-class field of K is non-trivial and cyclic, one can ask if it can be
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embedded into a Z2-extension of K. We answer this question completely.

Finally, some interrelations between the class groups and anti-cyclotomic ex-

tensions of the two fields Q(
√
−l) and Q(

√
−2l) are given, some of which are

conjectural.

Throughout the article we use the following notation:

Z2 : the additive group of dyadic integers

∆ : a square-free natural number

K : the imaginary quadratic number field Q(
√
−∆)

O : the ring of integral elements in K

ω :
√
−∆ if ∆ ≡ 1, 2 (mod 4), otherwise (1 +

√
−∆)/2

dK : the discriminant of K

r : the number of odd primes l1, . . . lr dividing ∆

s : the number of primes dividing dK
h, µ, u : we write the class number of K as h = 2µu with odd u

N(f) : the ring class field over K of conductor f

KH : the Hilbert class field of K, i.e. KH = N(1)

K
(n)
anti : the n’th step of the anti-cyclotomic Z2-extension Kanti

ν : the non-negative integer defined by Kanti ∩KH = K
(ν)
anti

4.2 The ring class field of conductor 2∞ and the

anti-cyclotomic extension

Let N(2∞) denote the union of all N(2e), e ≥ 1. We call it the ring class field

of conductor 2∞ over K. It is the maximal 2-ramified (i.e. unramified outside 2)

abelian extension of K which is generalised dihedral over Q.

Lemma 33. Let e ≥ 1 if ∆ ≡ 1, 2 (mod 4), otherwise e ≥ 2. For ∆ 6= 1, 3 we have

Gal(N(2e)/KH) ∼=


Z/2e if ∆ ≡ 2 (mod 4),

Z/2e−1 × Z/2 if ∆ ≡ 1 (mod 4),

Z/2e−2 × Z/2 if ∆ ≡ 7 (mod 8),

Z/2e−2 × Z/6 if ∆ ≡ 3 (mod 8),

and further

Gal(N(2∞)/KH) ∼=


Z2 if ∆ ≡ 2 (mod 4),

Z2 × Z/2 if ∆ ≡ 1, 5, 7 (mod 8),

Z2 × Z/6 if ∆ ≡ 3 (mod 8).
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In addition,

Gal(N(2e)/KH) ∼=

{
Z/2e−1 for ∆ = 1,

Z/2e−2 × Z/2 for ∆ = 3

and

Gal(N(2∞)/KH) ∼=

{
Z2 for ∆ = 1,

Z2 × Z/2 for ∆ = 3.

Proof. Class field theory gives a surjective homomorphism (the “Artin symbol”)(
N(f)/K

)
: (O/f)∗ −→ Gal(N(f)/KH)

whose kernel is generated by (Z/f)∗ and O∗. One shows that (O/2e)∗/(Z/2e)∗
equals

〈1 +
√
−∆〉 ∼= Z/2e if ∆ ≡ 2 (mod 4),

〈1 + 2
√
−∆〉 × 〈

√
−∆〉 ∼= Z/2e−1 × Z/2 if ∆ ≡ 1 (mod 4),

〈1 + 4ω〉 × 〈
√
−∆〉 ∼= Z/2e−2 × Z/2 if ∆ ≡ 7 (mod 8),

〈1 + 4ω〉 × 〈
√
−∆〉 × 〈a〉 ∼= Z/2e−2 × Z/2× Z/3 if ∆ ≡ 3 (mod 8),

where in the last case a is some element of order 3. From this everything follows.

The exceptions for ∆ = 1, 3 are due to the fact that O∗ in these cases is greater

than {±1}. �

It follows from the lemma that we have an isomorphism

Gal(N(2∞)/K) ∼= Z2 × T

with a finite abelian group T . Hence K has a unique Z2-extension which is

dihedral over Q. We call it the anti-cyclotomic Z2-extension of K and denote

it Kanti. Its n’th step K
(n)
anti is the subextension of degree 2n over K.

Being a subfield of N(2∞), the anti-cyclotomic extension is 2-ramified. How-

ever, its lower steps may well be unramified also at 2. The number of unramified

steps of Kanti is expressed by the number ν defined by

Kanti ∩KH = K
(ν)
anti.

The order of T depends on ν. If ∆ 6= 1, 3, then

|T | =


2µ−ν · u if ∆ ≡ 2 (mod 8),

2µ−ν+1 · u if ∆ ≡ 1, 5, 7 (mod 8),

3 · 2µ−ν+1 · u if ∆ ≡ 3 (mod 8),
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and in the two exceptional cases,

|T | =

{
1 if ∆ = 1,

2 if ∆ = 3.

We note en passant that N(2∞) is obtained by adjoining
√
−1 to Kanti in the case

∆ = 3.

When the 2-Hilbert class field of K is (non-trivial) cyclic, one may ask if it

can be embedded in a Z2-extension of K. This happens of course when it is

contained in the anti-cyclotomic extension, i.e. when ν = µ. In contrast to the

case of Zp-embeddability for odd p, however, this is not a necessary condition.

As we shall see, a cyclic 2-Hilbert class field might also be Z2-embeddable when

ν = µ − 1. In the following, we give various ways of determining ν and use this

to give a complete answer to the question of Z2-embeddability in section 4.12.

4.3 The genus field and other elementary abelian

extensions of K

Let l1, . . . , lr be the odd primes dividing ∆. The genus field Kgen of K =

Q(
√
−∆) is the maximal unramified elementary abelian 2-extension of K. It is

an elementary abelian 2-extension of Q and is given explicitly as

Kgen =

{
K(

√
l∗1, . . . ,

√
l∗r) if ∆ ≡ 1, 2 (mod 4)

K(
√
l∗1, . . . ,

√
l∗r−1) if ∆ ≡ 3 (mod 4)

where l∗ denotes (−1)(l−1)/2p for an odd prime l. Thus Gal(Kgen/K) has 2-rank

s− 1 =

{
r if ∆ ≡ 1, 2 (mod 4),

r − 1 if ∆ ≡ 3 (mod 4),

where s denotes the number of primes dividing K’s discriminant dK .

We note that the imaginary quadratic fields with trivial 2-class group are

Q(
√
−1), Q(

√
−2), and Q(

√
−l) with a prime l ≡ 3 (mod 4).

The imaginary quadratic fields with non-trivial cyclic 2-class group are Q(
√
−l)

with a prime l ≡ 1 (mod 4), Q(
√
−2l) with a prime l > 2, and Q(

√
−ll′) with

two primes l ≡ 1 (mod 4) and l′ ≡ 3 (mod 4). For these fields, the genus field is
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the first step of the 2-class field and explicitly given by

Q(
√
−l)gen = Q(

√
−l,
√
−1) ,

Q(
√
−2l)gen =

{
Q(
√
−2l,

√
−2) if l ≡ 1 (mod 4),

Q(
√
−2l,

√
2) if l ≡ 3 (mod 4),

Q(
√
−ll′)gen = Q(

√
−ll′,

√
l) .

Define Kelem as the maximal 2-ramified extension of K which is an elementary

abelian 2-extension of Q. It is the maximal elementary abelian 2-subextension of

N(2∞)/K. A short consideration gives

Kelem =


Kgen(

√
−1,
√

2) if ∆ ≡ 3 (mod 4)

Kgen(
√
−1) if ∆ ≡ 2 (mod 4) (

√
2 or

√
−2 is in Kgen)

Kgen(
√

2) if ∆ ≡ 1 (mod 4) (
√
−1 is in Kgen)

Thus Gal(Kelem/K), and therefore also Gal(N(2∞)/K), has 2-rank r + 1.

4.4 Prime decomposition in the anti-cyclotomic

extension

Consider a prime p of K (i.e. a prime ideal in O) dividing an odd rational prime p.

In this section we investigate the prime decomposition of p in the anti-cyclotomic

Z2-extension of K.

If p is inert in K, then p is a principal ideal prime to 2. It then follows that p

splits totally in N(2∞) (see the Primzerlegungsgesetz (7.3) in [22]) and hence also

in Kanti. Similarly, if p ramifies in K, then p splits totally in a subextension of

N(2∞)/K over which N(2∞) has degree 2; in particular p splits totally in Kanti.

So we are left with the case where p splits in K.

Theorem 34. Let p be an odd rational prime that splits in K = Q(
√
−∆).

Assume at first ∆ 6= 1, 3. If h denotes the class number of K, we may write
ph = a2 + ∆b2 for ∆ ≡ 2 (mod 4),

p2h = a2 + ∆b2 for ∆ ≡ 1 (mod 4),

p2h = a2 + ab+ ((∆ + 1)/4)b2 for ∆ ≡ 7 (mod 8),

p6h = a2 + ab+ ((∆ + 1)/4)b2 for ∆ ≡ 3 (mod 8),

(4.1)
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with relatively prime a, b ∈ Z. Then for an integer n ≥ 0, p splits totally in K
(n)
anti

iff

v2(b) ≥


n+ µ− ν when ∆ ≡ 2 (mod 4)

n+ µ− ν + 2 when ∆ ≡ 1 (mod 4)

n+ µ− ν + 3 when ∆ ≡ 3 (mod 4)

where v2 denotes the dyadic valuation.

Now assume ∆ = 1. An (odd) rational prime p that splits in K = Q(i) may

be written

p = a2 + 4b2,

and then

p splits totally in K
(n)
anti ⇔ v2(b) ≥ n.

Assume finally ∆ = 3. An (odd) rational prime p that splits in K = Q(
√
−3)

may be written

p = a2 + ab+ b2 with odd a, b,

and then

p splits totally in K
(n)
anti ⇔

{
v2(a+ b) ≥ n+ 2 for p ≡ 1 (mod 4),

v2(a− b) ≥ n+ 2 for p ≡ 3 (mod 4).

Proof. First assume ∆ ≡ 2 (mod 4). Write (p) = pq with primes p, q of K. Then

ph is principal with generator a+ bω.

Consider the ring class field N = N(2e) over K with e = n + µ − ν. By

Lemma 33 we may write

Gal(N/K) = W × T

such that W is cyclic of order 2e+ν = 2n+µ, T has order 2µ−νu, and K
(n+µ)
anti is the

fixed field of T .

Let W0 be the subgroup of W of order 2µ. Then K
(n)
anti is the fixed field of

W0 × T . Now class field theory gives

p splits in K
(n)
anti ⇔ (N/K, p) ∈ W0 × T

⇔ (N/K, p)h = 1

⇔ a+ bω ∈ (Z/2e)∗

⇔ b ≡ 0 (mod 2e).

This finishes the proof for ∆ ≡ 2 (mod 4).

The other cases with ∆ 6= 1, 3 are proved similarly using the ring class fields

N(2e) with e = n+ µ− ν + 2 and e = n+ µ− ν + 3.
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Now assume ∆ = 1. Then K
(n)
anti equals the ring class field N(2n+1) over K

and the claim follows.

Finally assume ∆ = 3. Then the ring class field N = N(2n+2) over K is the

composite of K
(n)
anti with a quadratic extension of K. A prime p that splits in K

may be written

p = a2 + ab+ b2.

We may assume that b is odd. The identity

a2 + ab+ b2 = (−b)2 + (−b)(a+ b) + (a+ b)2

shows that we may also assume that a is odd. We have the representation

p2 = (2ab+ b2)2 + (2ab+ b2)(a2 − b2) + (a2 − b2)2.

Hence

p splits in K
(n)
anti ⇔ v2(a

2 − b2) ≥ n+ 3

Both a + b and a − b are even. If p ≡ 1 (mod 4), then a + b, but not a − b is

divisible by 4. If p ≡ 3 (mod 4), then a− b, but not a + b is divisible by 4. The

claim follows. �

Remark 35. Theorem 34 can be formulated in a slightly different manner in

some cases.

(a) Assume ∆ ≡ 1 (mod 4), ∆ 6= 1. We may write

ph = u2 + ∆v2

and get p2h = (u2 −∆v2)2 + ∆(2uv)2. Either u or v is odd, so

p splits in K
(n)
anti ⇔ u or v is divisible by 2n+µ−ν+1.

The proof of Theorem 34 shows that v is odd iff the ring class field extension

N(2)/K is cyclic, and p is inert in its first step (which is then necessarily Kgen =

K(
√
−1)). Thus

v is odd ⇔ ∆ is prime and p ≡ 3 (mod 4).

(b) Assume ∆ ≡ 7 (mod 8). Then we can write

ph = u2 + uv + ((∆ + 1)/4)v2

with necessarily odd u and even v. Thus p2h = a2 + ab + ((∆ + 1)/4)b2 with

a = u2 − ((∆ + 1)/4)v2 and b = 2v(u+ v/2). Either v/2 or u+ v/2 is odd, so

p splits in K
(n)
anti ⇔ v/2 or u+ v/2 is divisible by 2n+µ−ν+1.
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Computing modulo 8 shows that v/2 is odd iff ph ≡ 3, 7 (mod 8), i.e.

v/2 odd ⇔ ∆ is prime and p ≡ 3 (mod 4).

(c) Assume ∆ ≡ 3 (mod 8). We can write

ph = u2 + uv + ((∆ + 1)/4)v2

and get a representation p6h = a2 + ab+ ((∆ + 1)/4)b2 with

b = v(2u+ v)

(
u2 + uv +

1− 3∆

4
v2

) (
3u2 + 3uv +

3−∆

4
v2

)
. (4.2)

Computing modulo 4 shows that two of the four factors in (4.2) are odd, one is

2 modulo 4, and one is 0 modulo 4. So

p splits in K
(n)
anti ⇔ one of the factors in (4.2) is divisible by 2n+µ−ν+2.

There does not seem to be a simple criterion showing which of the factors are

odd.

4.5 The norm form of the eighth cyclotomic field

An odd prime number l can be written as u2 + v2 or x2 − 2y2 or z2 + 2w2 iff

l ≡ 1, 5 (mod 8) or l ≡ 1, 7 (mod 8) or l ≡ 1, 3 (mod 8), respectively. When

l ≡ 1 (mod 8) and all three representations are at hand, there are some relations

between them that we summarise in the following lemma.

Lemma 36. Consider a prime number l ≡ 1 (mod 8). We can write

l = u2 + v2 = x2 − 2y2 = z2 + 2w2 (4.3)

with integers u, v, x, y, z, w satisfying

u odd, 4 | v, x > 0 odd, y even, z odd, w even. (4.4)

In this situation we have

8 | v ⇔ x ≡ 1, 3 (mod 8) ⇔ z ≡ 1, 7 (mod 8). (4.5)

If l ≡ 1 (mod 16), there holds in addition

u ≡ 1, 7 (mod 8) ; x ≡ 1, 7 (mod 8) ⇔ 4 | y ; z ≡ 1, 7 (mod 8) ⇔ 4 | w. (4.6)
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If l ≡ 9 (mod 16), there holds in addition

u ≡ 3, 5 (mod 8) ; x ≡ 1, 7 (mod 8) ⇔ 4 - y ; z ≡ 1, 7 (mod 8) ⇔ 4 - w. (4.7)

In particular, a prime number congruent to 1 modulo 16 is representable by both

or none of the formsX2+32Y 2 andX2+64Y 2, whereas a prime number congruent

to 9 modulo 16 is representable by one, but not both of these forms.

Proof. Consider the eighth cyclotomic field Q(ξ) = Q(i,
√

2) where ξ = (1+i)/
√

2.

Since l splits in Q(ξ) which is a PID, l is the norm of an integer in Q(ξ). This

means that l is of the form

l = NQ(ξ)/Q(aξ3 + bξ2 + cξ + d)

= a4 + b4 + c4 + d4 + 2a2c2 + 2b2d2 + 4a2bd+ 4acd2 − 4ab2c− 4bc2d

with a, b, c, d ∈ Z. We now get the three identities

l = u2 + v2 with u = a2 − c2 + 2bd and v = d2 − b2 + 2ac

l = x2 − 2y2 with x = a2 + b2 + c2 + d2 and y = ab− ad+ bc+ cd

l = z2 + 2w2 with z = a2 − b2 + c2 − d2 and w = ab+ ad− bc+ cd


(4.8)

So we have showed the (well-known) existence of the three representations (4.3).

The conditions (4.4) are easily checked, replacing (a, b, c, d) by (b, c, d,−a) if nec-

essary.

The statements (4.6) and (4.7) follow directly from (4.3) and (4.4).

To show (4.5), first note that v and z are unique modulo change of sign. So

the conditions 8 | v and z ≡ 1, 7 (mod 8) are independent of the representations

(4.3). The positive fundamental unit of Q(
√

2) is 3 + 2
√

2. So if l = x2 − 2y2

is one representation with x > 0, then all such representations come from the

transformation (x, y) 7→ (3x ± 4y,±2x + 3y). It follows that the condition x ≡
1, 3 (mod 8) is also independent of the representation (4.4). So to show (4.5), we

may assume that the representations (4.3) are of the form (4.8). Notice that a

and c must have opposite parity, whereas b and d have the same parity (because

u is odd, and v is even). It is now seen that all three conditions of (4.5) are

equivalent to

4 | ac ⇔ b2 ≡ d2 (mod 8).

The last statement of the lemma follows immediately from (4.5), (4.6), and

(4.7). �
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4.6 The form class group of discriminant −4l for

a prime l ≡ 1 (mod 4)

Consider a prime l ≡ 1 (mod 4) and put D = −4l. Let C be the group of

equivalence classes of positive definite quadratic forms of discriminant D. The

class number h = h(D) is the order of C . The 2-part of C is cyclic and

2 | h.

We investigate when 4 | h and when 8 | h.
The neutral element in C , i.e. the principal class, is represented by the prin-

cipal form

(1, 0, l) := X2 + lY 2.

The unique element of order 2 in C is the class represented by the form

f = (2, 2, (l + 1)/2).

The principal genus of C is the subgroup of squares C 2. We also say that a form

is in the principal genus if its class is. So

4 | h ⇔ f is in the principal genus.

The assigned characters modulo D are the two Kronecker symbols(
−4

)
and

(
l
)
.

Let m be an arbitrary integer representable by f and with (m,D) = 1. Then f is

in the principal genus iff the assigned characters (−4/m) and (l/m) are both 1.

Since the product of the assigned characters is (D/m) = 1, it suffices to compute

one of them. The form f clearly represents m = (l + 1)/2 which is prime to D.

Thus

4 | h ⇔
(
−4

m

)
= 1 ⇔ m ≡ 1 (mod 4) ⇔ l ≡ 1 (mod 8)

by quadratic reciprocity. This criterion goes back to Rédei and Reichardt [23].

Henceforth assume l ≡ 1 (mod 8). To see when 8 | h, we construct a form

class of order 4 and investigate when it is in the principal genus. We may write

l = x2 − 2y2 with x > 0 (4.9)

since l splits in the principal ideal domain Q(
√

2) (or by Lemma 36). Clearly x

is odd, y is even, and (x, y) = 1.
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Consider the form

g = (x+ y, 2y, x− y) (4.10)

which is positive definite of discriminant 4y2− 4(x+ y)(x− y) = D. We have the

following equivalences of forms:

g ∼ (x− y,−2y, x+ y) ∼ (x− y,−2x, 8x+ 8y) =: g0

where g0 is “composable” with g (see [8], for instance). Dirichlet composition

gives

g2 ∼ g · g0 = (4x2 − 4y2,−2x, 2) ∼ (2, 2x, 4x2 − 4y2) ∼ (2, 2, (l + 1)/2) = f.

I.e. g represents a form class of order 4. So

8 | h ⇔ g is in the principal genus.

Since g represents x+ y which is prime to D, we conclude

8 | h ⇔
(
−4

x+ y

)
= 1 ⇔ x+ y ≡ 1 (mod 4).

This criterion is due to Hasse [13].

Combining the above with Lemma 36 gives the alternative criterion

8 | h ⇔ l is of the form X2 + 32Y 2

due to Barrucand and Cohn [2].

The principal class in C is related to the unique class of order 2 by the following

duplication formula (as an identity in Z[U, V ]):(
2U2 + 2UV +

l + 1

2
V 2

)2

= X2 + lY 2

with

X = 2U2 + 2UV − l − 1

2
V 2 and Y = 2UV + V 2.

Now assume that l ≡ 1 (mod 8). Then 4 divides the class number h(D).

Write l as in (4.9). Then the form

(x+ y)S2 + 2yST + (x− y)T 2

has order 4, and we have the duplication formula(
(x+ y)S2 + 2yST + (x− y)T 2

)2
= 2U2 + 2UV +

l + 1

2
V 2 (4.11)

with

U = ((x−1)/2+y)S2 +(x+1)ST +((1−x)/2+y)T 2 and V = S2−2ST −T 2.

60



4.7 The form class group of discriminant −8l for

an odd prime l

Let l be an odd prime and put D′ = −8l. Consider the group C ′ of equivalence

classes of positive definite quadratic forms of discriminant D′. The class number

h′ = h(D′) is the order of C ′. The 2-part of C ′ is cyclic and

2 | h′.

We give criteria for 4 | h′ and 8 | h′.
The principal form

(1, 0, 2l)

represents the principal class in C ′. The unique element of order 2 in C ′ is the

class represented by the form

f ′ := (2, 0, l).

So

4 | h′ ⇔ f ′ is in the principal genus.

The assigned characters modulo D′ are the two Kronecker symbols(
d1

)
and

(
d2

)
where

d1 = (−1)(l+1)/28 and d2 = l∗ = (−1)(l−1)/2l.

The form f ′ clearly represents 2 + l which is prime to D′. Thus

4 | h′ ⇔
(

2

l

)
=

(
d2

2 + l

)
= 1 ⇔ l ≡ 1, 7 (mod 8).

by quadratic reciprocity. This criterion is due to Rédei and Reichardt [23].

Henceforth assume l ≡ 1, 7 (mod 8). Then we again have a representation

(4.9). Clearly x is odd and prime to y.

Consider the form

g′ = (x, 4y, 2x) (4.12)

which is positive definite of discriminant 16y2 − 8x2 = D′. Composition of forms

gives

g′ · g′ = (x2, 4y, 2) ∼ (2,−4y, x2) ∼ (2, 0, l).
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I.e. g′ represents a form class of order 4. So

8 | h′ ⇔ g′ is in the principal genus.

Since g′ represents x which is prime to D′,

8 | h′ ⇔
(
d1

x

)
= 1.

If l ≡ 7 (mod 8), then d1 = 8 and(
8

x

)
= 1 ⇔ x ≡ 1, 7 (mod 8) ⇔ l ≡ 15 (mod 16)

where the last implication follows elementarily from (4.9). If l ≡ 1 (mod 8), then

d1 = −8 and (
−8

x

)
= 1 ⇔ x ≡ 1, 3 (mod 8).

We conclude

8 | h′ ⇔

{
l ≡ 15 (mod 16) for l ≡ 7 (mod 8),

x ≡ 1, 3 (mod 8) for l ≡ 1 (mod 8).

This criterion is due to Hasse [14]. Combining this with Lemma 36 gives an

alternative criterion when l ≡ 1 (mod 8):

8 | h′ ⇔ l is of the form X2 + 64Y 2.

Hasse credits Barrucand for deducing this alternative criterion from his own1.

The principal class in C ′ is related to the unique class of order 2 by the

following duplication formula(
2U2 + lV 2

)2
= X2 + 2lY 2

with

X = 2U2 − lV 2 and Y = 2UV.

Now assume that l ≡ 1, 7 (mod 8). Then 4 divides the class number h′ =

h(D′). Write l as in (4.9). Then the form

xS2 + 4yST + 2xT 2

has order 4, and we have the duplication formula(
xS2 + 4yST + 2xT 2

)2
= 2U2 + lV 2

with

U = yS2 + 2xST + 2yT 2 and V = S2 − 2T 2.

1There is a typo in the statement, however, so that the relevant form erroneously appears
to be X2 + 16Y 2.
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4.8 The form class group of discriminant −ll′

with two primes l, l′

Let l, l′ be primes with l ≡ 1 (mod 4) and l′ ≡ 3 (mod 4) and put D′′ = −ll′.
The principal form of discriminant D′′ is(

1, 1,
ll′ + 1

4

)
.

The form

f ′′ =

(
l, l,

l + l′

4

)
represents the unique class of order 2. The assigned characters modulo D′′ are

(l/·) and (−l′/·). Since f ′′ represents m = (l+ l′)/4, we get the following criterion

for the class number h′′ = h(D′′):

4 | h′′ ⇔ (l/m) = 1 ⇔ (l/l′) = 1.

Hasse gives in [15] a criterion for 8 | h′′ analogous to the criteria for 8 | h and

8 | h′. However it seems not possible to display a “canonical” form of order 4 and

thus giving an alternative proof of Hasse’s criterion in this case.

The principal class of discriminant D′′ is related to the class of order 2 by the

duplication formula(
lU2 + lUV +

l + l′

4
V 2

)2

= X2 +XY +
ll′ + 1

4
Y 2

with

X = lU2 + (l − 1)UV +
l − l′ − 2

4
V 2 and Y = (2U + V )V.

4.9 The fields Q(
√
−l) with an odd prime l

Let K = Q(
√
−l) with an odd prime l. The 2-class group of K is cyclic (possibly

trivial), and we write its order as 2µ. There holds

µ ≥ 1 ⇔ l ≡ 1 (mod 4).

In case l ≡ 1 (mod 4), K’s genus field

Kgen = K(
√
−1)

is the first step of the 2-class field. From section 4.6 we have

µ ≥ 2 ⇔ l ≡ 1 (mod 8)
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and

µ ≥ 3 ⇔ l is of the form x2 + 32y2

We give first an algorithm that determines ν andK
(1)
anti. We then use this algorithm

to give an explicit expression for ν and K
(1)
anti in most cases.

Theorem 37. Consider the field K = Q(
√
−l) with a prime l ≡ 1 (mod 4).

Pick a prime p with p ≡ 3 (mod 4) and (−l/p) = 1. Write

ph = X2 + lY 2

with relatively prime X, Y ∈ Z and let t = v2(X) be the dyadic valuation of X.

If t < µ+ 1, then the number of unramified steps of Kanti is

ν = µ+ 1− t > 0,

and the first step is K
(1)
anti = K(

√
−1).

If t = µ + 1, then the number of unramified steps of Kanti is ν = 0, and the

first step is

K
(1)
anti =

{
K(
√

2) if p ≡ 3 (mod 8)

K(
√
−2) if p ≡ 7 (mod 8)

If t > µ + 1, then the number of unramified steps of Kanti is ν = 0, and the

first step is

K
(1)
anti =

{
K(
√
−2) if p ≡ 3 (mod 8)

K(
√

2) if p ≡ 7 (mod 8)

Proof. By assumption p is inert in Q(
√
−1) and Q(

√
l), whereas p = pq splits in

K. The 2-class field of K is cyclic, and p is inert in it because p is inert in its

first step K(
√
−1)/K.

It follows from Theorem 34 (or rather from Remark 35 (a)) that p splits in

K
(n)
anti iff t ≥ n+ µ− ν + 1. In particular t ≥ µ− ν + 1.

If ν ≥ 1, then p is inert in K
(1)
anti = K(

√
−1) and hence t = µ− ν + 1 < µ+ 1.

If on the other hand ν = 0, then t ≥ µ+ 1. From this follows the determination

of ν.

Further, if t = µ + 1, then p is inert in K
(1)
anti = K(

√
a) where a ∈ {2,−2}.

Since p is inert in Q(
√
a), we have (a/p) = −1 which determines a.

Finally, if t > µ + 1, then p splits in K
(1)
anti = K(

√
a) where still a ∈ {2,−2}.

Since p now splits in Q(
√
a), we have (a/p) = 1 which again determines a. �

Theorem 38. Let K = Q(
√
−l) with an odd prime l. The number of unramified
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steps of Kanti satisfies

ν =



0 for l ≡ 3 (mod 4),

1 for l ≡ 5 (mod 8),

0 for l ≡ 1 (mod 8) and µ = 2,

µ− 2 for l ≡ 9 (mod 16) and µ ≥ 3,

0 for l ≡ 1 (mod 16) and µ = 3,

0, . . . , µ− 3 for l ≡ 1 (mod 16) and µ ≥ 4.

Proof. The theorem is clear for l ≡ 3 (mod 4) since then µ = 0. So assume

l ≡ 1 (mod 4) and thus µ ≥ 1. Pick a prime p satisfying the conditions of

Theorem 37. Then p = pq splits in K, and the order of p in K’s class group is

divisible by 2µ (since p is inert in K’s 2-class field). Write

ph = X2 + lY 2 (4.13)

with relatively prime X, Y ∈ Z and put t = v2(X). Then

ν = max{µ+ 1− t, 0}

by Theorem 37. Necessarily

t ≥ 1,

so X is even, and Y is odd (this also follows directly from Remark 35(a)). Note

that ph ≡ 1 (mod 8) since h is even. If l ≡ 5 (mod 8), then (4.13) gives 1 ≡
X2 + 5 (mod 8). This implies 4 - X, i.e. t = 1 and thus ν = µ = 1.

Now assume l ≡ 1 (mod 8) and thus µ ≥ 2. The ideal power ph/2 has order

2 in the class group. Hence ph/2 is primitively representable by a form of order 2

in the class group. We know from section 4.6 that (2, 2, (l+ 1)/2) is a such form,

i.e.

ph/2 = 2U2 + 2UV +
l + 1

2
V 2

with some relatively prime U, V ∈ Z. Clearly V is odd. Note that ph/2 ≡
1 (mod 8) since 4 | h. The duplication formula from section 4.6 gives the primitive

representation

ph =

(
2U2 + 2UV +

l + 1

2
V 2

)2

=

(
2U2 + 2UV − l − 1

2
V 2

)2

+ l
(
2UV + V 2

)2

and thus

X = 2U2 + 2UV − l − 1

2
V 2 = ph/2 − lV 2. (4.14)
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This expression implies X ≡ 1− V 2 ≡ 0 (mod 8) and therefore

t ≥ 3.

This proves the theorem when µ = 2.

Finally assume l ≡ 1 (mod 8) and µ ≥ 3. We must show

16 | X ⇔ l ≡ 1 (mod 16). (4.15)

Note that ph/2 ≡ 1 (mod 16) and therefore X ≡ 1− lV 2 (mod 16) by (4.14). So

(4.15) amounts to showing

V 2 ≡ 1 (mod 16) (4.16)

or, equivalently, V ≡ 1, 7 (mod 8). We can write l = x2 − 2y2 with x > 0 odd

and y even by Lemma 36. (Actually Hasse’s criterion gives x + y ≡ 1 (mod 4)

since 8 | h, but we don’t need this). By the same argument as above, ph/4 is

primitively representable by a form of order 4 in the form class group. We have

earlier found that (x+ y, 2y, x− y) is a such form and therefore get

ph/4 = (x+ y)S2 + 2yST + (x− y)T 2 (4.17)

with relatively prime S, T ∈ Z. It is clear from (4.17) that S and T have opposite

parity. Using the duplication formula (4.11) shows

V = S2 − 2ST − T 2. (4.18)

Now V ≡ 1, 7 (mod 8) follows from (4.18) and the fact that S and T have opposite

parity, and we are done. �

Corollary 39. Let K = Q(
√
−l) with an odd prime l. Regarding K’s ring

class field of conductor 2∞, we have

Gal(N(2∞)/K) ∼=


Z2 × Z/2× U for l ≡ 3, 5, 7 (mod 8),

Z2 × Z/8× U for l ≡ 1 (mod 8) and µ = 2,

Z2 × Z/8× U for l ≡ 9 (mod 16) and µ ≥ 3,

Z2 × Z/2t × U for l ≡ 1 (mod 16) and µ ≥ 3,

where U is either the non-2-part of K’s class group, or a triple cover thereof. In

the last case t is an integer with 4 ≤ t ≤ µ+ 1. �

Proof. Gal(N(2∞)/KH) is isomorphic to either Z2×Z/2 or Z2×Z/6 by Lemma 33.

By definition, Gal(KH/K) ∼= Z/2µ× (non-2-part). The 2-rank of Gal(N(2∞)/K)
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is r+ 1 = 2 by section 4.3. This gives Gal(N(2∞)/K) ∼= Z2×Z/2µ+1−ν ×U , and

the corollary follows from Theorem 38. �

The first step ofK’s anti-cyclotomic extension is contained inKelem = K(
√
−1,
√

2)

by section 4.3. Hence it is of the form K = Q(
√
a) with a ∈ {−1, 2,−2}. Prime

decomposition allows us to determine a for l 6≡ 1 (mod 8).

Theorem 40. Consider the field K = Q(
√
−l) with an odd prime l 6≡ 1 (mod 8).

Then the first step of the anti-cyclotomic extension is

K
(1)
anti =


K(
√
−2) if l ≡ 3 (mod 8),

K(
√
−1) if l ≡ 5 (mod 8),

K(
√

2) if l ≡ 7 (mod 8).

Proof. Since l = l2 ramifies in K, l splits in Kanti, and therefore (a/l) = 1. This

determines a whenever l 6≡ 1 (mod 8). �

When l ≡ 1 (mod 8), using Theorem 37 and Theorem 38 gives the following

partial result:

Theorem 41. Consider the field K = Q(
√
−l) with a prime l ≡ 1 (mod 8).

Then the first step of the anti-cyclotomic extension is

K
(1)
anti =



K(
√
−2) if l ≡ 9 (mod 16) and µ = 2,

K(
√
−1) if l ≡ 9 (mod 16) and µ ≥ 3,

K(
√

2) if l ≡ 1 (mod 16) and µ = 2,

K(
√

2), K(
√
−2) if l ≡ 1 (mod 16) and µ = 3,

K(
√
−1), K(

√
2), K(

√
−2) if l ≡ 1 (mod 16) and µ ≥ 4.

Proof. If l ≡ 9 (mod 16) and µ ≥ 3, then ν > 0 by Theorem 38 and hence

K
(1)
anti = Kgen = K(

√
−1).

If l ≡ 1 (mod 16) and µ = 3, then ν = 0 by Theorem 38 and hence K
(1)
anti 6=

K(
√
−1).

Finally assume µ = 2. Then Theorem 38 again gives K
(1)
anti 6= K(

√
−1), but

we can say more than this. Pick a prime p ≡ 7 (mod 8) as in Theorem 37. Then

ph/2 ≡ 1 (mod 16). The proof of Theorem 38 shows t ≥ 3 and

t ≥ 4 ⇔ l ≡ 1 (mod 16).
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Theorem 37 now gives the claim. �

Theorem 40 and Theorem 41 are proved samewhat differently in [12].

4.10 The fields Q(
√
−2l) with an odd prime l

Let K = Q(
√
−2l) with an odd prime l. The 2-class group of K is cyclic of order

2µ with µ ≥ 1 (see the section 4.7). The first step of K’s 2-class field is its genus

field

Kgen =

{
K(
√
−2) if l ≡ 1 (mod 4),

K(
√

2) if l ≡ 3 (mod 4).

We give first an algorithm that determines ν andK
(1)
anti. We then use this algorithm

to give an explicit expression for ν and K
(1)
anti in most cases.

Theorem 42. Consider the field K = Q(
√
−2l) with an odd prime l. Pick a

prime p with (−2l/p) = 1 and

p ≡

{
5, 7 (mod 8) if l ≡ 1 (mod 4)

3, 5 (mod 8) if l ≡ 3 (mod 4)

Write

ph = X2 + 2lY 2

with relatively prime X, Y ∈ Z and let t = v2(Y ) be the dyadic valuation of Y .

If t < µ, then the number of unramified steps of Kanti is ν = µ − t > 0, and

the first step is

K
(1)
anti =

{
K(
√
−2) if l ≡ 1 (mod 4)

K(
√

2) if l ≡ 3 (mod 4)

If t = µ, then the number of unramified steps of Kanti is ν = 0, and the first

step is

K
(1)
anti =


K(
√
−1) if p ≡ 3, 7 (mod 8)

K(
√

2) if p ≡ 5 (mod 8), l ≡ 1 (mod 4)

K(
√
−2) if p ≡ 5 (mod 8), l ≡ 3 (mod 4)

If t > µ, then the number of unramified steps of Kanti is ν = 0, and the first

step is

K
(1)
anti =


K(
√
−1) if p ≡ 5 (mod 8)

K(
√

2) if p ≡ 7 (mod 8)

K(
√
−2) if p ≡ 3 (mod 8)
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Proof. By assumption p splits in K (p = pq). The 2-class field of K is cyclic, and

p is inert in it because p is inert in its first step K(
√
±2)/K.

It follows from Theorem 34 that p splits in K
(n)
anti iff t ≥ n+µ−ν. In particular

t ≥ µ− ν.
If ν ≥ 1, then p is inert in K

(1)
anti = K(

√
±2) and hence t = µ − ν < µ. If on

the other hand ν = 0, then t ≥ µ. From this follows the determination of ν.

Further, if t = µ, then p is inert in K
(1)
anti = K(

√
a). Since p is inert in Q(

√
a),

we have (a/p) = −1 which determines a.

Finally, if t > µ, then p splits in K
(1)
anti = K(

√
a). Since p now splits in Q(

√
a),

we have (a/p) = 1 which again determines a. �

Theorem 43. Let K = Q(
√
−2l) with an odd prime l. The number of unrami-

fied steps of Kanti satifies

ν =



0 for l ≡ 3, 5 (mod 8),

µ− 1 for l ≡ 7 (mod 8),

0 for l ≡ 1 (mod 8) and µ = 2,

µ− 2 for l ≡ 9 (mod 16) and µ ≥ 3,

0 for l ≡ 1 (mod 16) and µ = 3,

0, . . . , µ− 3 for l ≡ 1 (mod 16) and µ ≥ 4.

Proof. Pick a prime p satisfying the conditions of Theorem 42. Then p = pq

splits in K, and the order of p in K’s class group is divisible by 2µ since p is inert

in the 2-class field. We write

ph = X2 + 2lY 2

with relatively prime integers X,Y and put t = v2(Y ). Then

ν = max{µ− t, 0}

by Theorem 42. Computing modulo 4 shows that X is odd, Y is even, and thus

t ≥ 1.

So for l ≡ 3, 5 (mod 8) we are done since then µ = 1.

Assume l ≡ 1, 7 (mod 8). Then µ ≥ 2 by section 4.7. The ideal power ph/2

has order 2 in the class group. Hence we can primitively represent ph/2 by a form

of order 2 in the form class group:

ph/2 = 2U2 + lV 2.
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Clearly V is odd, and U is even iff l ≡ 1 (mod 8). Composition of forms gives

the primitive representation

ph = (U2 − 2lV 2)2 + 2l(2UV )2.

So we may assume Y = 2UV . This gives

t ≥ 2 ⇔ l ≡ 1 (mod 8).

The claim follows unless l ≡ 1 (mod 8) and µ ≥ 3.

Now assume l ≡ 1 (mod 8) and µ ≥ 3. Then we can write

l = x2 − 2y2

with

x > 0 , x ≡ 1, 3 (mod 8) , y even

by section refsectionfem. By the same argument as above, ph/4 is primitively

representable by a form of order 4 in the form class group. We have earlier found

that (x, 4y, 2x) is a such form, and therefore get

ph/4 = xS2 + 4yST + 2xT 2.

One sees that S is odd, and that T is even iff x ≡ 1 (mod 8).

The duplication formula gives

ph/2 = 2(yS2 + 2xST + 2yT 2)2 + l(S2 − 2T 2)2.

So we may assume

U = yS2 + 2xST + 2yT 2.

If l ≡ 1 (mod 16), then

x ≡ 1 (mod 8) ⇔ 4 | y ⇔ T even,

showing 4 | U and hence

t ≥ 3. (4.19)

If l ≡ 9 (mod 16), then

x ≡ 1 (mod 8) ⇔ 4 - y ⇔ T even,

showing 4 - U and hence

t = 2.

This finishes the proof. �
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Similarly to Corollary 39, we get:

Corollary 44. Let K = Q(
√
−2l) with an odd prime l. Regarding K’s ring

class field of conductor 2∞, we have

Gal(N(2∞)/K) ∼=


Z2 × Z/2× U for l ≡ 3, 5, 7 (mod 8),

Z2 × Z/4× U for l ≡ 1 (mod 8) and µ = 2,

Z2 × Z/4× U for l ≡ 9 (mod 16) and µ ≥ 3,

Z2 × Z/2t × U for l ≡ 1 (mod 16) and µ ≥ 3,

where U is the non-2-part of K’s class group. In the last case t is an integer with

3 ≤ t ≤ µ. �

As in the previous section, the first step of the anti-cyclotomic extension is of

the form K(
√
a) with a ∈ {−1, 2,−2}, and using that l ramifies in K and thus

(a/l) = 1 determines a when l 6≡ 1 (mod 8):

Theorem 45. Consider the field K = Q(
√
−2l) with an odd prime l 6≡

1 (mod 8). Then the first step of the anti-cyclotomic extension is

K
(1)
anti =


K(
√
−2) if l ≡ 3 (mod 8),

K(
√
−1) if l ≡ 5 (mod 8),

K(
√

2) if l ≡ 7 (mod 8). �

When l ≡ 1 (mod 8), using Theorem 42 and Theorem 43 gives the following

partial result:

Theorem 46. Consider the field K = Q(
√
−2l) with an odd prime l ≡

1 (mod 8). Then the first step of the anti-cyclotomic extension is

K
(1)
anti =



K(
√
−1) if l ≡ 9 (mod 16) and µ = 2,

K(
√
−2) if l ≡ 9 (mod 16) and µ ≥ 3,

K(
√

2) if l ≡ 1 (mod 16) and µ = 2,

K(
√
−1), K(

√
2) if l ≡ 1 (mod 16) and µ = 3,

K(
√
−1), K(

√
2), K(

√
−2) if l ≡ 1 (mod 16) and µ ≥ 4.
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Proof. If l ≡ 9 (mod 16) and µ ≥ 3, then ν > 0 by Theorem 43 and hence

K
(1)
anti = Kgen = K(

√
−2).

If l ≡ 1 (mod 16) and µ = 3, then ν = 0 by Theorem 43 and hence K
(1)
anti 6=

K(
√
−2).

Finally assume µ = 2. Then Theorem 43 again gives K
(1)
anti 6= K(

√
−2), but

we can say more than this. Pick a prime p ≡ 5 (mod 8) as in Theorem 42. Then

ph/4 ≡ 5 (mod 8). The same type of argument as in the proof of Theorem 43

shows t ≥ 3 when l ≡ 9 (mod 16), and t = 2 when l ≡ 1 (mod 16). Theorem 42

gives the claim. �

Theorem 45 and Theorem 46 are proved samewhat differently in [12].

4.11 The fields Q(
√
−ll′) with two primes l ≡

1 (mod 4) and l′ ≡ 3 (mod 4)

Let K = Q(
√
ll′) with two primes l ≡ 1 (mod 4) and l′ ≡ 3 (mod 4). Note that

the following Legendre symbols are equal:(
l

l′

)
=

(
l′

l

)
.

The 2-class group of K is cyclic of order 2µ with µ ≥ 1 (section 4.8). The first

step of K’s 2-class field is its genus field

Kgen = K(
√
l).

Theorem 47. Consider the field K = Q(
√
−ll′) with primes l ≡ 1 (mod 4) and

l′ ≡ 3 (mod 4). Pick an odd prime p with (l/p) = (−l′/p) = −1. Write

X2 +XY +
ll′ + 1

4
Y 2 =

{
p2h if ll′ ≡ 7 (mod 8),

p6h if ll′ ≡ 3 (mod 8),

with relatively prime X, Y ∈ Z, and let t = v2(Y ) be the dyadic valuation of Y .

If t < µ+3, then the number of unramified steps of Kanti is ν = µ+3− t > 0,

and the first step is K
(1)
anti = K(

√
l).

If t = µ + 3, then the number of unramified steps of Kanti is ν = 0, and the
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first step is one of two possibilities:

K
(1)
anti =


K(
√

2l), K(
√
−2l) if p ≡ 1 (mod 8)

K(
√

2), K(
√
−2l) if p ≡ 3 (mod 8)

K(
√

2), K(
√
−2) if p ≡ 5 (mod 8)

K(
√
−2), K(

√
2l) if p ≡ 7 (mod 8)

If t > µ + 3, then the number of unramified steps of Kanti is ν = 0, and the

first step is one of two possibilities:

K
(1)
anti =


K(
√

2), K(
√
−2) if p ≡ 1 (mod 8)

K(
√
−2), K(

√
2l) if p ≡ 3 (mod 8)

K(
√

2l), K(
√
−2l) if p ≡ 5 (mod 8)

K(
√

2), K(
√
−2l) if p ≡ 7 (mod 8)

Proof. It follows from the assumptions that p = pq splits in K. Since p is inert

in Q(
√
l), p is inert in Kgen = K(

√
l) and hence in the entire 2-class field. By

Theorem 34, p splits in K
(n)
anti iff t ≥ n+ µ− ν + 3. In particular t ≥ µ− ν + 3.

If ν ≥ 1, then p is inert in K
(1)
anti = K(

√
l), and so t = µ − ν + 3 < µ + 3. If

ν = 0, then t ≥ µ+ 3. This allows to compute ν from t.

K
(1)
anti is contained in K(

√
−1,
√

2,
√
l) and hence of the form K(

√
a) with a

unique a ∈ {−1, 2,−2, l,−l, 2l,−2l}. Since l′ ramifies in K, it splits in Q(
√
a)

and so (a/l′) = 1. This gives a 6= −1. Similarly one sees a 6= −l. If ν = 0,

then a 6= l. If t = µ + 3, then p is inert in K(
√
a) and hence (a/p) = −1. If

t > µ + 3, then similarly (a/p) = 1. Using all of the above information leaves

only the stated possibilities for a. �

Theorem 48. Let K = Q(
√
−ll′) with primes l ≡ 1 (mod 4) and l′ ≡ 3 (mod 4).

If (l/l′) = −1, the number of unramified steps of Kanti is

ν = 0.

If (l/l′) = 1, then

ν =

{
µ− 1 for l ≡ 5 (mod 8),

0, . . . , µ− 2 for l ≡ 1 (mod 8).

Proof. We may write

ph/2 = lS2 + lST +
l + l′

4
T 2. (4.20)
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Then

ph = U2 + UV +
ll′ + 1

4
V 2

with U = lS2 + (l − 1)ST + ((l − l′ − 2)/4)T 2 and V = (2S + T )T . Now by

Remark 35 we get an expression of p2h or p6h as

X2 +XY +
ll′ + 1

4
Y 2

where Y = V (2U + V ) if ll′ ≡ 7 (mod 8), and

Y = V (2U + V )

(
U2 + UV +

1− 3ll′

4
V 2

) (
3U2 + 3UV +

3− ll′

4
V 2

)
if ll′ ≡ 3 (mod 8). We must show

16 | Y, and 32 | Y ⇔ l ≡ 1 (mod 8). (4.21)

This can be done by brute force as follows: Let S, T run through all residue

classes modulo 32, and let l, l′ run through all residue classes modulo 128 such

that l ≡ 1 (mod 4) and l′ ≡ 3 (mod 4). If (4.20) is ≡ 1 (mod 8), compute Y and

check (4.21). �

The statement of Theorem 48 is somewhat less detailed than the analogous

theorems 38 and 43. Numerical examples suggest that Theorem 48 can in fact

not be refined. This is perhaps “caused” by the absence of a “canonical” form of

order 4, as discussed at the end of section 4.8.

Similarly to Corollary 39, we get:

Corollary 49. Let K = Q(
√
−ll′) with two primes l ≡ 1 (mod 4) and l′ ≡

3 (mod 4). Regarding K’s ring class field of conductor 2∞, we have

Gal(N(2∞)/K) ∼=

{
Z2 × Z/2× Z/2× U for (l/l′) = −1 or l ≡ 5 (mod 8),

Z2 × Z/2t × Z/2× U for (l/l′) = 1 and l ≡ 1 (mod 8),

where U is either the non-2-part of K’s class group, or a triple cover thereof. In

the last case t is an integer with 2 ≤ t ≤ µ. �

The first step of K’s anti-cyclotomic extension is contained in

Kelem = K(
√
−1,
√

2,
√
l) (see section 4.3). Hence it is of the form K(

√
a) with

an a ∈ {−1, 2,−2, l,−l, 2l,−2l}.
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Theorem 50. Consider the field K = Q(
√
−ll′) with primes l ≡ 1 (mod 4) and

l′ ≡ 3 (mod 4). If (l/l′) = 1, then the first step of K’s anti-cyclotomic extension

satifies

K
(1)
anti =



K(
√
−2), K(

√
−2l) for l ≡ 1 (mod 8), l′ ≡ 3 (mod 8), and µ = 2,

K(
√

2), K(
√

2l) for l ≡ 1 (mod 8), l′ ≡ 7 (mod 8), and µ = 2,

K(
√
−2), K(

√
l), K(

√
−2l) for l ≡ 1 (mod 8), l′ ≡ 3 (mod 8), and µ ≥ 3,

K(
√

2), K(
√
l), K(

√
2l) for l ≡ 1 (mod 8), l′ ≡ 7 (mod 8), and µ ≥ 3,

K(
√
l) for l ≡ 5 (mod 8).

If (l/l′) = −1, then the first step of K’s anti-cyclotomic extension is

K
(1)
anti =


K(
√
−2) for l ≡ 1 (mod 8) and l′ ≡ 3 (mod 8),

K(
√

2) for l ≡ 1 (mod 8) and l′ ≡ 7 (mod 8),

K(
√

2l) for l ≡ 5 (mod 8) and l′ ≡ 3 (mod 8),

K(
√
−2l) for l ≡ 5 (mod 8) and l′ ≡ 7 (mod 8).

Proof. Use that both l and l′ ramify in K. Moreover, if l ≡ 1 (mod 8) and µ = 2,

then ν = 0 by Theorem 48 and hence a 6= l. �

Note that Theorem 47 and Theorem 50 together uniquely determine a.

4.12 Embeddability of 2-class fields into Z2-extensions

Theorem 51. The imaginary quadratic fields K whose 2-class field L is non-

trivial and embeddable into a Z2-extension of K which is prodihedral over Q are

the fields K = Q(
√
−l) with a prime l ≡ 5 (mod 8).

The imaginary quadratic fields K whose 2-class field L is non-trivial and

embeddable into a Z2-extension of K are, in addition to the above, the fields

K = Q(
√
−2l) with a prime l ≡ 3, 5 (mod 8) and the fields K = Q(

√
−ll′) with

two primes l ≡ 5 (mod 8) and l′ ≡ 3 (mod 8).

Proof. Since L/K must be non-trivial cyclic, K is of the form Q(
√
−l) with

l ≡ 1 (mod 4), Q(
√
−2l) with l odd, or Q(

√
−ll′) with l ≡ 1 (mod 4) and

l′ ≡ 3 (mod 4). The anti-cyclotomic extension Kanti is the unique Z2-extension of

K which is prodihedral over Q, and L is contained inKanti iff ν = µ. Theorems 38,

43, and 48 show that this only occurs for K = Q(
√
−l) with l ≡ 5 (mod 8).

The composite M = KcyclKanti is the unique Z2×Z2-extension of K, and any

Z2-extension of K is contained in M . Further, any finite cyclic subextension of
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M/K is Z2-embeddable. If L is contained in M , then L is contained in M ∩
N(2∞) = Kanti(

√
2). Conclude

L/K is Z2-embeddable ⇔ L is contained in Kanti(
√

2). (4.22)

A necessary condition for (4.22) is that ν = µ − 1 (we ignore the case ν = µ

which is already treated). The remainder of the proof is divided into four cases

according to the type of K.

Case 1. Assume K = Q(
√
−l). Then the equation ν = µ − 1 never holds by

Theorem 38.

Case 2. Assume K = Q(
√
−2l). Then ν = µ − 1 holds for l ≡ 3, 5, 7 (mod 8)

by Theorem 43.

If l ≡ 3 (mod 8), then L = K(
√

2) is the first step of Kcycl and hence Z2-

embeddable.

If l ≡ 5 (mod 8), then L = K(
√
−2) and K

(1)
anti = K(

√
−1), so L is contained

in Kanti(
√

2) (but neither in Kanti nor Kcycl).

If l ≡ 7 (mod 8), then L is not contained in Kanti(
√

2) = Kanti since ν < µ,

see Theorem 40.

Case 3. AssumeK = Q(
√
−ll′) with (l/l′) = −1. Then ν = µ−1 by Theorem 48.

Now L = K(
√
l) is contained Kanti(

√
2) exactly when K

(1)
anti = K(

√
2l). This

happens when l ≡ 5 (mod 8) and l′ ≡ 3 (mod 8) by Theorem 50.

Case 4. Finally assume K = Q(
√
−ll′) with (l/l′) = 1. Then ν = µ − 1 holds

for l ≡ 5 (mod 8) by Theorem 48. So assume l ≡ 5 (mod 8). From ν = µ − 1

follows that the composite KantiL is a Z2×Z/2-extension of K (and prodihedral

over Q). Both Kanti and L have K(
√
l) as their first step over K (Theorem 50).

The socle (i.e. the maximal elementary abelian 2-subextension) of KantiL over

K is contained in K(
√
−1,
√

2,
√
l). It follows that KantiL = Kanti(

√
a) for an

a ∈ {−1, 2,−2}.
The prime l = l2 ramifies in K, and hence l splits totally in Kanti by section

4.4. Since l has order 2 modulo K’s principal ideals, l does not split totally in L.

So l cannot split in K(
√
a). This shows (a/l) 6= 1 and thus a 6= −1. A similar

argument gives (a/l′) 6= 1 and therefore

a =

{
2 for l′ ≡ 3 (mod 8),

−2 for l′ ≡ 7 (mod 8).

Conclude that L is contained in Kanti(
√

2) if and only if l′ ≡ 3 (mod 8). �
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Of the quadratic fields K mentioned in the theorem, only the K = Q(
√
−ll′)

with two primes l ≡ 5 (mod 8) and l′ ≡ 3 (mod 8) satisfying (l/l′) = 1 have

2-class field L of degree [L : K] > 2.

The question of Zp-embeddability of p-class fields is somewhat different for

p = 2 compared to the case of an odd prime p. In the latter case, Zp-embeddability

of the p-class field is equivalent to the p-class field being contained in K’s anti-

cyclotomic extension.

For all (odd or even) primes p, it seems that there exist imaginary quadratic

fields with Zp-embeddable p-class field of arbitrarily high degree, although proving

this is probably difficult.

4.13 Interrelations between Q(
√
−l) and Q(

√
−2l)

Consider a prime l ≡ 1 (mod 8) and put K = Q(
√
−l) and K ′ = Q(

√
−2l). There

are some quite surprising interrelations between these two fields. Let h and h′ be

the class numbers of K and K ′, respectively, and put µ = v2(h) and µ′ = v2(h
′).

Recall that h and h′ are both divisible by 4 (section 4.6 and 4.7).

Theorem 52. If l ≡ 1 (mod 16), then

8 | h ⇔ 8 | h′.

If l ≡ 9 (mod 16), then

8 | h ⇔ 8 - h′.

Proof. We have

8 | h ⇔ l is of the form X2 + 32Y 2,

8 | h′ ⇔ l is of the form X2 + 64Y 2

by section 4.6 and 4.7. Combining this with Lemma 36 gives the statement. �

There are also some interrelations between the anti-cyclotomic extensions of

K and K ′ as we shall now see. The following lemma is proved along with the

next two theorems at the end of the section.

Lemma 53. Assume l ≡ 1 (mod 16) and that h and h′ are divisible by 8. Pick

a prime number p ≡ 7 (mod 8) such that (−l/p) = 1. Write

ph = X2 + lY 2 and ph
′
= U2 + 2lV 2
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with relatively prime X, Y ∈ Z and relatively prime U, V ∈ Z. Put t = v2(X) and

t′ = v2(V ). Then t ≥ 4 and t′ ≥ 3. Further, the truth or falsity of the implication

t = 4 ⇔ t′ = 3 (∗)

is independent of the choice of p.

So (∗) only depends on l. We will have more to say later on the question which

primes l in fact have property (∗).

Theorem 54. Assume l ≡ 1 (mod 16) and that h and h′ are both divisible by

16. Assume further that l has the property (∗) of Lemma 53. Let ν and ν ′ be

the number of unramified steps of Kanti and K ′
anti, respectively. Then

ν = µ− 3 ⇔ ν ′ = µ′ − 3.

This should be seen in light of Theorem 38 and Theorem 43. The next result

relates to Theorem 41 and Theorem 46.

Theorem 55. Assume l ≡ 1 (mod 16) and that h and h′ are both divisible by 8.

Assume further that l has the property (∗) of Lemma 53. Let a, a′ ∈ {−1, 2,−2}
be such thatK(

√
a) andK ′(

√
a′) are the first steps ofKanti andK ′

anti, respectively.

(i) If µ = 3 and µ′ = 3, then (a, a′) ∈ {(2, 2), (−2,−1)}.
(ii) If µ = 3 and µ′ = 4, then (a, a′) ∈ {(2,−1), (2, 2), (−2,−2)}.
(iii) If µ = 3 and µ′ ≥ 5, then (a, a′) ∈ {(2,−1), (2, 2), (2,−2), (−2,−2)}.
(iv) If µ = 4 and µ′ = 3, then (a, a′) ∈ {(−1,−1), (2, 2), (−2, 2)}.
(v) If µ ≥ 5 and µ′ = 3, then (a, a′) ∈ {(−1,−1), (−1, 2), (2, 2), (−2, 2)}.
(vi) If µ = 4 and µ′ = 4, then

(a, a′) ∈ {(−1,−2), (2,−1), (2, 2), (−2,−1), (−2, 2)}.

(vii) If µ = 4 and µ′ ≥ 5, then

(a, a′) ∈ {(−1,−2), (2,−1), (2, 2), (2,−2), (−2,−1), (−2, 2), (−2,−2)}.

(iix) If µ ≥ 5 and µ′ = 4, then

(a, a′) ∈ {(−1,−1), (−1, 2), (−1,−2), (2,−1), (2, 2), (−2,−1), (−2, 2)}.

Proof of Lemma 53, Theorem 54, and Theorem 55. Pick a prime p as in Lemma 53.

Then

t ≥ µ− ν + 1 ≥ 4
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by Theorem 34 and Theorem 38. Theorem 37 gives

for µ = 3: t = 4 ⇔ a = −2,

for µ = 4: t = 4 ⇔ ν = µ− 3 ⇔ a = −1,

for µ ≥ 5: t = 4 ⇔ ν = µ− 3 ⇒ a = −1.

This shows that in fact the property t = 4 is independent of the choice of p.

Similarly, Theorem 34 and Theorem 43 give

t′ ≥ µ′ − ν ′ ≥ 3,

and Theorem 42 gives

for µ′ = 3: t′ = 3 ⇔ a′ = −1,

for µ′ = 4: t′ = 3 ⇔ ν ′ = µ′ − 3 ⇔ a′ = −2,

for µ′ ≥ 5: t′ = 3 ⇔ ν ′ = µ′ − 3 ⇒ a′ = −2.

This shows that the property t′ = 3 is also independent of the choice of p. If l

satisfies (∗), i.e. if t = 4 ⇔ t′ = 3, the conclusions of Theorem 54 and Theorem 55

follow from the above implications. �

Theorem 54 and Theorem 55 are perhaps more interesting given the following:

Conjecture 56. All primes l satisfying the assumptions of Lemma 53 have

property (∗).

The author has verified this conjecture for all l less than 14 millions, but has not

found a proof.

4.14 Numerical examples

The purpose of this section is to show by numerical examples that the results

of the previous sections are strongest possible – or at least that they have no

immediate strengthenings.

Consider a prime l ≡ 1 (mod 16) and put K = Q(
√
−l) and K ′ = Q(

√
−2l).

Let h and h′ be the class numbers of K and K ′, respectively, and put µ = v2(h)

and µ′ = v2(h
′). Let ν and ν ′ be the number of unramified steps of the anti-

cyclotomic extension of K and K ′, respectively. When µ ≥ 4, we only know ν =

0, . . . , µ − 3 (Theorem 38), and similarly for ν ′ when µ′ ≥ 4 (Theorem 43). The
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following two tables give good evidence that these statements are best possible:

l µ µ′ ν

353 4 3 0

1201 4 3 1

1249 5 3 0

7393 5 3 1

18593 5 3 2

53201 6 3 0

30881 6 3 1

13441 6 3 2

8273 6 3 3

l µ µ′ ν ′

2593 3 4 0

4273 3 4 1

5393 3 5 0

3089 3 5 1

1553 3 5 2

3361 3 6 0

33569 3 6 1

48337 3 6 2

2689 3 6 3

If µ ≥ 4 and µ′ ≥ 4 simultaneously, Theorem 54 in conjunction with Conjec-

ture 56 gives that ν = µ − 3 if and only if ν ′ = µ′ − 3. This also seems to be

optimal, as the following table (and the two tables above) shows:

l µ µ′ ν ν ′

9473 4 4 0 0

257 4 4 1 1

36097 5 4 0 0

8609 5 4 1 0

2833 5 4 2 1

48497 4 5 0 0

44449 4 5 0 1

l µ µ′ ν ν ′

4289 4 5 1 2

25409 5 5 0 0

236449 5 5 1 0

1217 5 5 0 1

103393 5 5 1 1

2657 5 5 2 2

Now let a, a′ ∈ {−1, 2,−2} be such that K(
√
a) and K ′(

√
a′) are the first

steps of Kanti and K ′
anti, respectively. Theorem 41 rules out one value for a

when µ = 3 and says nothing when µ ≥ 4. Similarly for the value of a′ by

Theorem 46. Further, Theorem 55 and Conjecture 56 rule out some (a priori

expectable) combinations (a, a′) when µ = 3, 4 or µ′ = 3, 4. The following table

shows that these results are best possible. For example it is seen that all 9 pairs
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(a, a′) occur when µ = µ′ = 5.

l µ µ′ a a′

337 3 3 2 2

113 3 3 −2 −1

2593 3 4 2 −1

12641 3 4 2 2

4273 3 4 −2 −2

5393 3 5 2 −1

44129 3 5 2 2

3089 3 5 2 −2

1553 3 5 −2 −2

1201 4 3 −1 −1

12161 4 3 2 2

353 4 3 −2 2

18593 5 3 −1 −1

7393 5 3 −1 2

10337 5 3 2 2

1249 5 3 −2 2

257 4 4 −1 −2

31649 4 4 2 −1

9601 4 4 2 2

12577 4 4 −2 −1

9473 4 4 −2 2

4289 4 5 −1 −2

l µ µ′ a a′

84449 4 5 2 −1

243137 4 5 2 2

44449 4 5 2 −2

116881 4 5 −2 −1

48497 4 5 −2 2

58337 4 5 −2 −2

26177 5 4 −1 −1

8609 5 4 −1 2

2833 5 4 −1 −2

36097 5 4 2 −1

175361 5 4 2 2

299393 5 4 −2 −1

57697 5 4 −2 2

236449 5 5 −1 −1

412193 5 5 −1 2

2657 5 5 −1 −2

159857 5 5 2 −1

809569 5 5 2 2

1217 5 5 2 −2

586433 5 5 −2 −1

444529 5 5 −2 2

670177 5 5 −2 −2

Finally consider the fields K = Q(
√
−ll′) with two primes l ≡ 1 (mod 8) and

l′ ≡ 3 (mod 4). Let µ = v2(h) be the dyadic valuation of K’s class number h.

When µ ≥ 3, the number ν is one of 0, . . . , µ− 2 by Theorem 48. It appears that

ν can take all of these values:

l l′ µ ν

41 83 3 0

41 31 3 1

73 71 4 0

17 47 4 1

41 23 4 2

41 163 5 0

97 103 5 1

113 227 5 2

113 7 5 3
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One can obtain tables similar to the above where l and l′ belong to prescribed

residue classes modulo higher powers of 2.
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Chapter 5

Non-abelian fibre products as

Galois groups

5.1 Introduction: rank, socle, fibre product

Let G be a pro-p-group. Recall that the Frattini subgroup Φ(G) of G is the

closed subgroup generated by all p’th powers and commutators. It is the minimal

closed normal subgroup of G such that the quotient is elementary abelian. The

rank of G is the dimension over Fp of G/Φ(G). By Burnside’s “Basis Theorem”,

the rank of G is equal to the cardinality of any minimal generating subset. The

example Z/6 shows that the assumption that G is a p-group is essential.

If the Galois group G = Gal(L/K) of some Galois extension L/K is a pro-

p-group, the socle of L/K is defined as the fixed field of Φ(G). In other words,

the socle of L/K is the composite of all Z/p-subextensions.

Let ϕ : X → Z and ψ : Y → Z be group homomorphisms. Define the fibre

product with respect to these homomorphisms as the group

X ×Z Y := {(x, y) ∈ X × Y | ϕ(x) = ψ(y)}

(see also [17] or [10]).

As an example, consider the sign homomorphism Sn → Z/2 and reduction

modulo 2: Z/4→ Z/2. Then the fibre product

Sn ×Z/2 Z/4 = {(σ, a) ∈ Sn × Z/4 | sign(σ) ≡ a (mod 2)}

is a non-split double cover1 of the symmetric group Sn.

1Non-split double cover of Sn: group, other than Sn × Z/2, of order 2 · n! having Sn as a
homomorphic image. See for instance [25].
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Fibre products play a role in Galois theory for the following reason. Let L/K

and M/K be Galois extensions contained in the same algebraic closure of K.

Then there is an natural isomorphism

Gal(LM/K) ∼= Gal(L/K)×Z Gal(M/K)

where the fibre product is defined with respect to the restrictions from Gal(L/K)

and Gal(M/K) onto Z = Gal(L ∩M/K).

We shall be concerned with the realisation of certain fibre products of pro-p-

groups as Galois groups over number fields. For a fieldK and a pro-finite groupG,

let us denote by ν(G,K) the number of G-extensions ofK (inside a fixed algebraic

closure of K). This number might well be zero, for instance ν(Z2 × Z2,Q) = 0.

We will also see examples where ν(G,K) is non-zero, but finite. So the situation

of infinite, pro-finite groups is quite different compared to that of finite groups.

5.2 The p-adic prodihedral groups Dp

For a prime p, define the p-adic prodihedral group Dp as the natural projective

limit of the dihedral groups of order 2pn, n ≥ 1:

Dp = lim←− Dpn .

Dp contains the procyclic group Zp as the unique abelian subgroup of index 2.

Any element τ ∈ Dp\Zp has order 2 and inverts Zp by conjugation. So we may

write Dp as the semidirect product

Dp = Zp o Z/2.

Let us write Dp additively. If a field extension L/K has Gal(L/K) ∼= Dp, we

denote the subfield corresponding to the subgroup Zp as the (quadratic) base

of the Dp-extension.

We now turn to the dyadic prodihedral group D2. The Frattini subgroup of

D2 coincides with the commutator subgroup

Φ(D2) = D′
2 = 2Z2.

The quotient D2/2Z2 is isomorphic to Klein’s 4-group and has representatives

0, 1, τ, 1 + τ .

Example. Let p be an odd prime and consider two imaginary quadratic number

fields K and K ′. Then the cyclotomic p-extension Qcycl and the anti-cyclotomic
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extensions Kanti and K ′
anti (as defined in section 1.6) are linearly disjoint over Q.

Hence their composite M has Gal(M/Q) ∼= Zp×Dp×Dp. Further, the composite

KK ′ has Iwasawa number a(KK ′) = 3, and M is the (Zp)
3-extension of KK ′.

If K ′′ is the real quadratic subfield of KK ′, the dihedral Iwasawa number of

KK ′/K ′′ is a(KK ′/K ′′) = a(KK ′) − a(K ′′) = 2, and KantiK
′′ and K ′

antiK
′′ are

independent Dp-extensions with quadratic base KK ′/K ′′.

The situation is more complicated for p = 2. This is the subject of the next

section.

5.3 Realising fibre products of D2 with itself

We now consider 2-extensions. Let K and K ′ be distinct imaginary quadratic

fields. Let N denote the composite of the anti-cyclotomic 2-extensions Kanti and

K ′
anti. There are now four possibilities for Gal(N/Q):

Case 1. Kanti and K ′
anti are linearly disjoint over Q. Then Gal(N/Q) ∼= D2×D2.

Case 2. The intersection of Kanti and K ′
anti is a quadratic field different from K

and K ′. Then Gal(N/Q) is isomorphic to the fibre product D2 ×Z/2 D2 defined

by the single homomorphism ϕ : D2 → Z/2 given by ker(ϕ) = 2Z2 ∪ τ + 2Z2.

Case 3. The intersection of Kanti and K ′
anti is either K or K ′. Then Gal(N/Q)

is isomorphic to the fibre product D2 ×Z/2 D2 defined by the homomorphism ϕ

above and the homomorphism ϕ′ : D2 → Z/2 given by ker(ϕ′) = Z2.

Case 4. The socles of Kanti and K ′
anti coincide and thus equal the intersection of

Kanti and K ′
anti. Then Gal(N/Q) is isomorphic to the fibre product

H := D2 ×V D2

defined by two surjective homomorphisms

ψ, ψ′ : D2 → V = Z/2× Z/2

with ψ(Z2) 6= ψ′(Z2).

The composite of N with Qcycl is a Z2×Z2×Z2-extension of the biquadratic

field KK ′, but even more possibilities for the Galois group over Q appear accord-

ing to the intersection of N with Qcycl. We do not go into further details about

this.

85



In the next section we investigate realisations of the fibre product H over Q.

Let us first note that H can be represented by generators and relations as follows2:

H ∼= 〈a, b | ba = a−1b−1, ba−1 = ab−1〉.

Lemma 57. Regarding the commutator subgroup of H, one has

H/H′ ∼= Z/4× Z/2.

Proof. We use that H is generated by two elements a, b satisfying the relations

ba = a−1b−1 and ba−1 = ab−1. Let H∗ be the closed normal subgroup of H

generated by the 3 commutators

[a2, b] = a4 , [b2, a] = b4 , [a, b−1] = a2b2.

Then

H/H∗ = 〈a〉 × 〈ab〉 ∼= Z/4× Z/2.

It follows that H∗ is the commutator subgroup H′ of H, and we are done. �

5.4 D2-extensions with different base, but com-

mon socle

Consider an imaginary field K = Q(
√
−∆) and put K ′ = Q(

√
−2∆). As-

sume that the anti-cyclotomic 2-extensions Kanti and K ′
anti have common socle

Q(
√
−∆,

√
2). Then

Gal(KantiK
′
anti/Q) ∼= H

as defined in the previous section. Hence the maximal abelian subextension F of

KantiK
′
anti has Galois group

Gal(F/Q) ∼= Z/4× Z/2

by Lemma 57. There are two subfields E and E ′ of F that are Z/4-extensions of

Q. They both contain Q(
√

2) since neither K/Q nor K ′/Q is Z/4-embeddable.

Thus F is a Z/4-extension of K and K ′ and a Z/2 × Z/2-extension of Q(
√

2).

We have the following diagram of subfields:

2This is to be understood thus: Let F be the free pro-2-group with 2 generators. Let N be
the closed, normal subgroup generated by the relations. Then H is isomorphic to F/N . For a
definition of the free pro-2-group, see [10] section 15.5.
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K ′(2)
anti F K

(2)
anti

K ′
anti

K
(2)
antiK

′(2)
anti

Kanti

Example 58. Assume ∆ = 1, i.e. K = Q(i) and K ′ = Q(
√
−2). We know that

both Kanti and K ′
anti have socle Q(i,

√
2) = Q(8), the 8’th cyclotomic field. The

Z/4×Z/2-extension F/Q is unramified outside {2,∞}. Only one such extension

exists, namely the 16’th cyclotomic field, so F = Q(16). Consider a prime p that

splits in Q(8), i.e. with p ≡ 1 (mod 8). We have

p splits in K
(2)
anti ⇔ p is of the form X2 + 64Y 2,

p splits in K ′(2)
anti ⇔ p is of the form X2 + 32Y 2,

p splits in F = Q(16) ⇔ p ≡ 1 (mod 16)

by Theorem 34. We see again (see Lemma 36) that p is representable by both

or none of the forms X2 + 32Y 2 and X2 + 64Y 2 if p ≡ 1 (mod 16), whereas p is

representable by one, but not both of these forms if p ≡ 9 (mod 16). However, this

second proof also shows that there are no such relations for the forms X2+128Y 2,

X2 + 256Y 2 etc. that can be expressed by congruence conditions, say modulo 32,

since KantiK
′
anti contains no abelian subfield greater than Q(16).

Let us computeK
(2)
anti andK ′(2)

anti explicitly. First, K
(2)
anti is a Z/2×Z/2-extension
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of K ′ = Q(
√
−2) unramified outside 2. Only one such extension exists, namely

K
(2)
anti = Q(i, 4

√
−2) = Q(i,

4
√

2).

Similarly,

K ′(2)
anti = Q(

√
2,
√

1 + i)

is the unique Z/2× Z/2-extension of K = Q(i) unramified outside 2.

Combining the above gives the following criteria for an odd prime p:

p is of the form X2 + 32Y 2 ⇔ x4 − 2x2 + 2 has 4 roots modulo p,

p is of the form X2 + 64Y 2 ⇔ x4 − 2 has 4 roots modulo p.

This ends our Example 58. �

Now assume that ∆ equals an odd prime l. Then l is tamely ramified in

F/Q. It follows that l is unramified in either E or E ′, say in E. So E/Q is a

Z/4-extension unramified outside {2,∞}. The only such extensions are the two

subfields

E = Q
(√√

2 + 2

)
and E = Q

(√√
2− 2

)
of Q(16). We have proved:

Lemma 59. Let K = Q(
√
−l) and K ′ = Q(

√
−2l) with an odd prime l such that

Kanti and K ′
anti have common socle. Then the composite KantiK

′
anti contains a

square root of either
√

2 + 2 or
√

2− 2. �

Let h and h′ be the class numbers of K and K ′, respectively. The assumption

of the lemma, that Kanti and K ′
anti have the same socle, is satisfied when l ≡

7 (mod 8), when l ≡ 1 (mod 16) and h and h′ are not divisible by 8, and

sometimes when l ≡ 1 (mod 16) and h and h′ are divisible by 8 (see section 4.9

and 4.10). The determination of the right square root in these cases is not trivial.

Theorem 60. LetK = Q(
√
−l) andK ′ = Q(

√
−2l) with a prime l ≡ 7 (mod 8).

Pick a prime p ≡ 7 (mod 8) with (−l/p) = 1. Write

ph = X2 +XY +
l + 1

4
Y 2 and ph

′
= U2 + 2lV 2

with relatively prime X,Y ∈ Z and relatively prime U, V ∈ Z. Put t = v2(X +

Y/2) and t′ = v2(V ). Then t, t′ ≥ 2. Further, the statement

for p ≡ l (mod 16) : t = 2 ⇔ t′ = 2

for p 6≡ l (mod 16) : t = 2 ⇔ t′ > 2

}
(∗∗)
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is equivalent to the statement that the composite KantiK
′
anti contains a square

root of {√
2 + 2 if l ≡ 15 (mod 16),
√

2− 2 if l ≡ 7 (mod 16).

Proof. First note (again) that Kanti and K ′
anti have the same socle by Theorems 40

and 45. Pick a prime p as in the theorem. Theorem 34, Remark 35, Theorem 38,

and Theorem 43 give

p splits in K
(n)
anti ⇔ t ≥ n+ µ− ν + 1 = n+ 1,

p splits in K ′(n)
anti ⇔ t′ ≥ n+ µ′ − ν ′ = n+ 1.

It follows from the assumptions that p splits in K and K ′ and hence in

KK ′ = Q(
√

2,
√
−l) = K

(1)
anti = K ′(1)

anti.

There follows t, t′ ≥ 2. Now note

p splits in Q
(√√

2 + 2
)
⇔ p ≡ 1, 15 (mod 16),

p splits in Q
(√√

2− 2
)
⇔ p ≡ 1, 7 (mod 16)

(this follows from the law about prime decomposition in cyclotomic fields). Let

F be the maximal abelian subfield of KantiK
′
anti.

If p splits in F , i.e. if either
√√

2 + 2 ∈ F and p ≡ 15 (mod 16), or
√√

2− 2 ∈
F and p ≡ 7 (mod 16), then

p splits in K
(2)
anti ⇔ p splits in K ′(2)

anti

and thus

t > 2 ⇔ t′ > 2.

If, on the other hand, p does not split in F , i.e. if either
√√

2 + 2 ∈ F and

p ≡ 7 (mod 16), or
√√

2− 2 ∈ F and p ≡ 15 (mod 16), then p splits in one, but

not both of K
(2)
anti and K ′(2)

anti and thus

t = 2 ⇔ t′ > 2.

The theorem follows. �

The theorem gives in particular that (∗∗) only depends on l. We put forth a

conjecture at the end of the section regarding which primes l have property (∗∗).
The proof of the next theorem is quite similar to the above and is therefore

omitted.
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Theorem 61. Let K = Q(
√
−l) and K ′ = Q(

√
−2l) with a prime l ≡

1 (mod 16) such that the class numbers h and h′ of K and K ′ are not divisi-

ble by 8. Pick a prime number p ≡ 7 (mod 8) such that (−l/p) = 1. Write

ph = X2 + lY 2 and ph
′
= U2 + 2lV 2

with relatively prime X, Y ∈ Z and relatively prime U, V ∈ Z. Put t = v2(X)

and t′ = v2(V ). Then t ≥ 4 and t′ ≥ 3. Furhter, the statement

for p ≡ 15 (mod 16) : t = 4 ⇔ t′ = 3

for p ≡ 7 (mod 16) : t = 4 ⇔ t′ > 3

}
(∗ ∗ ∗)

is equivalent to the statement that the composite KantiK
′
anti contains a square

root of
√

2 + 2. �

Again we se that the property (∗ ∗ ∗) only depends on l.

Conjecture 62. All primes l ≡ 7 (mod 16) have property (∗∗) of Theorem 60.

All primes l ≡ 1 (mod 16) such that the class numbers of Q(
√
−l) and Q(

√
−2l)

are not divisible by 8 have property (∗ ∗ ∗) of Theorem 61.

This conjecture has been confirmed by the author for all l up to 8 millions. Note

the similarity with Conjecture 56.

Theorem 60 and 61 give an easy, effective method (which is independent of

the truth or falsity of Conjecture 62) to determine whether KantiK
′
anti contains a

square root of
√

2 + 2 or of
√

2− 2.

When l ≡ 1 (mod 16) and the class numbers h and h′ are divisible by 8,

there seems to be no simple criterion giving the right square root as the following

example shows.

Example. (a) Let l = 337 with l ≡ 1 (mod 16). Then h = 8 and h′ = 24 are

divisible by 8, and Kanti and K ′
anti have common socle. The same argument as

in the proof of Theorem 60 gives that the composite KantiK
′
anti contains a square

root of
√

2− 2.

(b) Let l = 593 with l ≡ 1 (mod 16). Then h = 24 and h′ = 24 are divisible by

8, and Kanti and K ′
anti have common socle. One sees similarly that now KantiK

′
anti

contains a square root of
√

2 + 2. �
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5.5 Realising the fibre product of Z2×Z2 and D2

Consider the pro-2-groups Z2 × Z2 and D2. They both have rank 2, so there are

surjective homomorphisms

ϕ : Z2 × Z2 → Z/2× Z/2 , ψ : D2 → Z/2× Z/2

with the respective Frattini subgroups as kernels. We may therefore define the

fibre product

G := (Z2 × Z2)×Z/2×Z/2 D2

with respect to ϕ and ψ. This pro-2-group is independent of the choice of ϕ and

ψ since any automorphism of (Z2 × Z2)/ker(ϕ) = Z/2× Z/2 can be lifted to an

automorphism of Z2 × Z2.

We can also represent G (as pro-2-group) by generators and relations:

G ∼= 〈x, y | xy2 = y2x, x2y = yx2〉.

Since Z2 × Z2 and D2 have no common homomorphic image greater than

Z/2 × Z/2, the problem of realising G as Galois group over some field K is

equivalent to realising both Z2×Z2 and D2 over K in such a way that the socles

of the two extensions coincide.

Clearly the number of G-extensions of Q is ν(G,Q) = 0, since Q has no

Z2 × Z2-extension. Similarly, ν(G, K) = 0 for a real quadratic field K.

Theorem 63. Let K = Q(
√
−l) with an odd prime l. If l ≡ 3, 5 (mod 8) or

l ≡ 9 (mod 16), then

ν(G, K) = 3.

If l ≡ 15 (mod 16) and l has property (∗∗) of Theorem 60, then

1 ≤ ν(G, K) ≤ 3.

If l ≡ 7 (mod 16) and l has property (∗∗) of Theorem 60, then

0 ≤ ν(G, K) ≤ 2.

The same statements hold for the field K = Q(
√
−2l).

Proof. We prove the theorem only for K = Q(
√
−l). K has a unique Z2 × Z2-

extension KZ2 . Note that G has only one quotient isomorphic to D2. Hence

ν(G, K) equals the number of D2-extensions ofK having the same socle asKZ2/K.
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Each of the three quadratic subextensions Ki of KZ2/K has dihedral Iwasawa

number

a(Ki/K) = a(Ki)− a(K) = 3− 2 = 1,

i.e. there is a unique D2-extension Li/K with quadratic base Ki. So to compute

ν(G, K), we must compare the socles of KZ2/K and Li/K for each i = 1, 2, 3. In

particular,

ν(G, K) = 0, 1, 2, 3.

Also note that a G-extension is necessarily unramified outside 2 since Z2-extensions

are unramified outside 2.

First assume l ≡ 3, 5 (mod 8). Then the socle of KZ2/K is K(
√
−1,
√

2) by

Theorem 40. Since K is 2-rational by Theorem 10, this is the only Z/2 × Z/2-

extension of K unramified outside 2. Hence this socle coincides with the socles

of all three D2-extensions Li, and we get ν(G, K) = 3.

Assume l ≡ 9 (mod 16). By Theorem 41, the socle of KZ2/K is again

K(
√
−1,
√

2). The anti-cyclotomic extension Q(
√
−1)anti is a D2-extension of Q

with base Q(
√
−1) and socle Q(

√
−1,
√

2). Hence the composite of Q(
√
−1)anti

and K is a D2-extension of K with base K(
√
−1) and socle K(

√
−1,
√

2). This

gives one G-extension of K.

Similarly, Q(
√
−2)antiK is a D2-extension of K with base K(

√
−2) and socle

K(
√
−1,
√

2). This gives a second G-extension of K.

Q(
√
−2l)anti is a D2-extension of Q with base Q(

√
−2l) and socle Q(

√
−1,
√
−2l)

or Q(
√
−2,
√
−2l) by Theorem 46. Hence Q(

√
−2l)antiK is a D2-extension of K

with base K(
√

2) and socle K(
√
−1,
√

2). This gives a third G-extension of K.

Finally assume l ≡ 7 (mod 8). Then both Kcycl and Kanti have K(
√

2) as

their first step. So the socle of KZ2/K is a D4-extension of Q contained in the

composite of

K
(2)
cycl = K

(√√
2 + 2

)
and K

(2)
anti.

Q(
√
−2l)anti is a D2-extension of Q with base Q(

√
−2l) and socle K(

√
2).

Hence Q(
√
−2l)anti is a D2-extension ofK with baseK(

√
2) and socle Q(

√
−2l)

(2)
anti.

The question is whether this socle coincides with that of KZ2/K. By the above,

this happens exactly when the composite of K
(2)
anti and Q(

√
−2l)

(2)
anti contains√√

2 + 2. Now Theorem 60 gives the claim. �

Example. We show ν(G, K) = 2 for K = Q(
√
−353). We know from section

4.14 that KZ2/K has socle K(
√
−1,
√

2). The D2-extensions of K with bases
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K(
√
−1) and K(

√
−2) both have socle K(

√
−1,
√

2) as in the proof above, so

this gives two G-extensions of K.

From section 4.14 follows that Q(
√
−2 · 353)anti is a D2-extension of K with

base K(
√

2) and socle Q(
√
−2 · 353)

(2)
anti. Since this socle is a D4-extension of Q,

it does not coincide with that of KZ2/K. Hence there is no third G-extension of

K. �

Remark. When K = Q(
√
−l) or K = Q(

√
−2l) with a prime l ≡ 3, 5 (mod 8),

thenK is 2-rational (Theorem 10). Hence the Galois group overK of the maximal

2-extension unramified outside 2 has rank 2. It follows from another result of

Shafarevich (Theorem 5 in [26]) that the number of relations in this Galois group

is 0. Thus it is isomorphic to the free pro-2-group F of rank 2. Now one gets

immediately from Theorem 63 that F has exactly 3 closed, normal subgroups N

with F/N ∼= G (although this of course could also be demonstrated directly). It

follows that F can not be realised over a number field K if ν(G, K) < 3 which is

the case for instance for K = Q(
√
−353) by the above example. It is not clear if

there are any non-2-rational quadratic fields over which F is realisable.
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