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Summary

This thesis deals with certain financial optimization problems connected to life
and pension insurance. We take the perspective of a life insurance company or
a pension fund that aims to optimize certain strategies related to the design and
management of life and pension insurance policies, in particular investment and
bonus strategies, on behalf of the policyholders and/or on behalf of the company
itself (i.e., its owners).

Traditional life insurance mathematics is an actuarial discipline mainly con-
cerned with qualitative and quantitative analyses of various aspects of risks con-
nected to life and pension insurance policies, in particular modelling and assessment
of mortality, calculation of present values and (equivalence) premiums, etc. The
tools and principles for management of (portfolios of) life and pension insurance
policies are to some extent also subjects of this field, but they are traditionally
derived only implicitly from the abovementioned analyses or on the basis of more
or less ad hoc considerations, that is, specific optimization criteria are rarely con-
sidered.

In this thesis we formulate and treat explicit optimization problems that formal-
ize certain objectives of a life or pension insurance company arising from the natural
desire to optimize the management, in a broad sense, of the portfolio of policies
and the company as a whole. We apply and extend methods from mathematical
finance, which is a mathematical/economical discipline concerned with various as-
pects of financial markets, in particular optimization of investment strategies in
different respects.

The first main chapter of the thesis, Chapter 2, presents a survey of the lit-
erature on optimal investment theory. We attempt to cover most of the classical
problems and approaches; we begin with the single-period analyses dating back to
the beginning of the 1950’s and plough our way through the literature chronolog-
ically. The amount of research conducted in this field has increased dramatically
over the past 10-15 years, and we only go through a fraction of the modern litera-
ture. The theory of optimal investment obviously has substantial relevance in life
and pension insurance (in particular pension saving), but we point out that the
application of this theory in life and pension insurance by no means is trivial in
general.

Chapters 3 and 4 deal with optimization problems concerning, in a broad sense,
optimal redistribution of the systematic surplus generated by a generic so-called
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participating life insurance policy, although other interpretations are possible in
the model of Chapter 4. The problems are in some sense similar in nature, but
the chapters represent quite different approaches. In Chapter 3 we work within a
traditional setup of life insurance mathematics; in particular we do not consider
different investment possibilities. In Chapter 4 we consider a fairly general model
that explicitly includes a financial market model, and we propose an overall general
approach to the optimal management of life and pension insurance policies. In
both chapters we take the policy risks explicitly into account, but we treat them
differently.

The last chapter addresses an important problem that arises in connection with
the application of methods of mathematical finance for optimal investment in life
and pension insurance. Life and pension insurance policies are often very long-term
contracts, and from a practical point of view it is therefore quite unrealistic to as-
sume the financial market to be complete over the full term of the policies since
real-world markets in particular typically only offer bonds (and other interest rate
derivatives) of a limited duration. The problem of optimal investment in life and
pension insurance is further complicated by the fact that long-term minimum guar-
antees, for which the natural hedging derivatives are bonds, often are included in
the policies. We consider a purely financial (i.e., no policy risk involved) optimiza-
tion problem of a long-term investor in a fairly simple model of a financial market
that exhibits the lack of long-term bonds (and other interest rate derivatives) in
real-world markets.
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Resumé

Denne afhandling behandler visse finansielle optimeringsproblemer knyttet til livs-
og pensionsforsikring. Vi tager udgangspunkt i perspektivet for et livsforsikrings-
selskab eller en pensionskasse, der sigter mod at optimere visse strategier relateret
til designet og styringen af livs- og pensionsforsikringspolicer, specielt investerings-
og bonusstrategier, p̊a vegne af policetagerne og/eller p̊a vegne af selskabet selv
(dvs. dets ejere).

Traditionel livsforsikringsmatematik er en aktuarmæssig disciplin, der hoved-
sageligt beskæftiger sig med kvalitative og kvantitative analyser af forskellige as-
pekter af risici knyttet til livs- og pensionsforsikringspolicer, specielt modellering
og vurdering af dødelighed, beregning af nutidsværdier og (ækvivalens-)præmier,
etc. Værktøjerne og principperne for styring af (porteføljer af) livs- og pensions-
forsikringspolicer er til en vis grad ogs̊a emner inden for dette felt, men de udledes
traditionelt kun implicit fra ovennævnte analyser eller p̊a basis af mere eller mindre
ad hoc betragtninger, dvs. specificikke optimeringskriterier betragtes sjældent.

I denne afhandling formulerer og behandler vi eksplicitte optimeringsproblemer
der formaliserer visse mål for et livsforsikringsselskab eller en pensionskasse, som
opst̊ar fra det naturlige ønske om at optimere styringen, i en bred forstand, af
porteføljen af policer og selskabet som helhed. Vi anvender og udvider metoder fra
matematisk finansiering, som er en matematisk/økonomisk disciplin, der beskæfti-
ger sig med forskellige aspekter af finansielle markeder, specielt optimering af in-
vesteringsstrategier til forskellige formål.

Det første hovedkapitel i afhandlingen, Kapitel 2, præsenterer en oversigt over
litteraturen om optimal investeringsteori. Vi forsøger at dække de fleste klassiske
problemer og tilgange; vi begynder med en-periode analyserne, der daterer sig til
begyndelsen af 1950’erne, og pløjer os gennem litteraturen kronologisk. Mængden
af forskning der udføres inden for dette felt er vokset dramatisk de sidste 10-15
år, og vi gennemg̊ar kun en del af den moderne litteratur. Teorien om optimal
investering har naturligvis betydelig relevans for livs- og pensionsforsikring (specielt
for pensionsopsparing), men vi gør opmærksom p̊a, at anvendelsen af denne teori i
livs- og pensionsforsikring p̊a ingen måde er triviel generelt.

Kapitel 3 og 4 behandler optimeringsproblemer, der vedrører optimal tilbagefør-
sel, i en bred forstand, af det systematiske overskud, der genereres af en livsfor-
sikringspolice med bonusret, omend andre fortolkninger er mulige i modellen i Kapi-
tel 4. Problemerne ligner i en vis forstand hinanden, men kapitlerne repræsenterer
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ret forskellige tilgange. I Kapitel 3 arbejder vi inden for en traditionel opsæt-
ning i livsforsikringsmatematik; specielt betragter vi ikke forskellige investerings-
muligheder. I Kapitel 4 betragter vi en temmelig generel model, som eksplicit
inkluderer en model af et finansielt marked, og vi foresl̊ar en overordnet tilgang
til optimal styring af livs- og pensionsforsikringspolicer. I begge kapitler tager vi
policerisiciene eksplicit i betragtning, men vi behandler dem forskelligt.

Det sidste kapitel adresserer et vigtigt problem, der opst̊ar i forbindelse med an-
vendelsen af metoder fra matematisk finansieringsteori til optimal investering i livs-
og pensionsforsikring. Livs- og pensionsforsikringspolicer er ofte meget langsigtede
kontrakter, og fra et praktisk synspunkt er det derfor ret urealistisk at antage, at det
finansielle marked er fuldstændigt over policernes fulde løbetider, eftersom virke-
lighedens markeder specielt kun udbyder obligationer (og andre rentederivater) af
begrænset varighed. Problemet om optimal investering i livs- og pensionsforsikring
kompliceres yderligere af det forhold, at langsigtede minimumsgarantier, hvortil de
naturlige afdækningsinstrumenter er obligationer, ofte er inkluderet i policerne. Vi
betragter et rent finansielt (dvs. ingen policerisiko involveret) optimeringsproblem
for en langsigtet investor i en ret simpel model for et finansielt marked, som ud-
stiller manglen p̊a lange obligationer (og andre rentederivater) p̊a virkelighedens
markeder.

vi



Contents

Preface i

Summary iii

Resumé v
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Chapter 1

Introduction

This introductory chapter briefly relates the problems considered in this thesis to
relevant fields of research in a fairly nontechnical manner. Furthermore, the nature
and scope of the considered problems is clarified, without attention to details.
Finally, an overview of the contents of the thesis is provided.

1.1 A brief comparison with related fields of research

The topics of this thesis lie at the interface between life insurance mathematics
and mathematical finance. These two fields of research have, until quite recently,
evolved more or less independently of one another.

Classical topics of life insurance mathematics (see, e.g., Norberg (2000) or Ger-
ber (1997)) are, in broad terms, modelling and estimation of policy risks (i.e.,
mortality risk and other risks associated with the random course of life of the in-
sured under a life or pension insurance policy), the study of particular forms of
policies, calculations and characterizations of reserves (and higher order moments
of present values), premium calculations, etc.

Explicit modelling of the financial market in which a policy is issued is typically
not an issue that is addressed in basic life insurance mathematics, where only a
specific model of the policy risk is considered. As regards the financial aspects of life
insurance, the traditional overall approach (to so-called participating or with-profit
life insurance policies, at least) has been to simply base the calculation of premiums
on a prudent (pessimistic) assessment of the future interest rates, the idea being
that the actual yields from investments should be sufficient to cover the liabilities
under virtually any conceivable economic development over the policy terms, see
e.g. Norberg (1999) (the traditional approach regarding the aspects related to the
policy risks is fairly similar, but we do not go into details since we mainly focus on
the financial aspects). Thus, a formalization of investment strategies employed in
relation to the (portfolio of) policies has traditionally not been studied as a topic
in basic life insurance mathematics.

This approach raises several natural questions: How should life and pension
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2 Chapter 1

insurance companies invest in the financial market? More generally, how should
they manage their policies? How should the systematic surplus that typically
emerges over the policy terms (due to the prudent assessment of future interest
rates) be redistributed to the policyholder(s)? What criteria should be imposed to
ensure that policies are fair? What happens if the actual yields from investments
are insufficient to cover the liabilities? Can this be avoided with certainty? A more
general and fundamental question along these lines is: How should life and pension
insurance policies be designed, and how should they be managed? Let us interpose
the remark that some of these questions are very much of current interest in the
practical world of life and pension insurance.

Classical topics of mathematical finance (see, e.g., Karatzas and Shreve (1998)
or Duffie (1996)) are, in broad terms, modelling and general studies of financial
markets, optimal investment theory, pricing and hedging of various derivatives of
the basic assets in the market, equilibrium studies, etc. In particular, specific
models of financial markets, and investment strategies for various purposes, are
studied explicitly.

Life and pension insurance policies are, of course, financial contracts, and several
well-understood methods of mathematical finance are thus quite naturally very well
suited for providing sound answers to many questions along the lines of the ones
posed above. It is therefore comforting that the field of research concerned with
various aspects of the integration of these methods in life and pension insurance is
rapidly developing. This thesis contributes to this field by applying and extending
methods of mathematical finance to optimization problems in life and pension
insurance.

However, there are still many open problems in this field, but it should be
stressed that the integration of mathematical finance and life insurance mathemat-
ics should be conducted with care. Although life and pension insurance policies
are financial contracts, they are in general not just financial derivatives of the ba-
sic assets in the financial market. Moreover, they typically have certain features
that make valuation, hedging, and optimization problems connected to them highly
nontrivial. There is plenty of research left to be done.

It is worth mentioning that a parallel development currently takes place in
the practical world of life and pension insurance. New types of policies, which to a
larger and larger extent incorporate features of other financial products, are formed
and put on the market. New legislative demands requiring the valuation of both
assets and liabilities to become market based are issued, and so on.

From an accounting perspective it can be argued that the methods of life in-
surance mathematics primarily have addressed the issues pertaining to the liability
side of a life and pension insurance company, whereas the methods of mathemat-
ical finance primarily have addressed the issues pertaining to the asset side. The
integration of these two fields promotes the understanding of and development of
tools for the management of the total economy of the company.
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1.2 General scope and aims of the thesis

Life and pension insurance policies exist in numerous forms and shapes across
(and within) different countries throughout the world. This variety reflects various
differences in the traditional approaches to life and pension insurance and the
development of these approaches in various directions.

There are, however, and quite naturally so, also similarities. This thesis ad-
dresses some financial optimization problems of a life insurance company or pension
fund (in the following referred to as the company) in connection with a wide class
of life and pension insurance policies. The (types of) policies we have in mind are
characterized by the following basic features, stated here in fairly general terms: A
certain stream of (nonnegative) premiums, to be paid by the policyholder, and a
certain stream of basic (nonnegative) benefits, to be paid by the company, are laid
down in agreement between the two parties upon issue of the contract. In addition
to the basic benefits, the company has an obligation to pay a stream of (nonnega-
tive) bonus benefits. The premium payment stream and the basic benefit stream
may (and usually do) depend on the random course of the (life of the insured under
the) policy, but they are laid down upon issue and cannot be changed at a later
stage (unless some intervention option is exercised; see Remark 1.2.1 below). In
particular, the basic benefits cannot be reduced once the contract has been issued,
and they are thus often referred to as guaranteed or contractual (minimum) bene-
fits. In contrast, the bonus benefits are not stipulated in the policy, and they may
(and usually do) depend not only on the random course of the policy, but also in
various ways on exogenous factors such as the economic development.

Obviously, some sort of constraint involving an assessment of the total payments
connected to the policy needs to be imposed in order to ensure that it is a fair
contract in a suitable sense, but we shall not discuss such constraints here.

This somewhat loose characterization involves the features of the policies rather
than particular designations of such policies. This is deliberate, since the terminol-
ogy of life and pension insurance constitutes one of several aspects of the above-
mentioned variety and thus, unfortunately, is not uniform. To avoid confusion we
therefore also make clear, already at this stage, that we use the (admittedly some-
what lengthy) term life and pension insurance in a rather broad sense, that is, we
do not have any particular type of life insurance products or pension schemes in
mind when we use this term.

Nevertheless, we shall briefly mention some types of policies belonging to this
class, using the normal designations. Traditional with-profit or participating life
insurance policies constitute perhaps the main example, and they are, indeed, the
ones we typically have in mind. For such policies the guaranteed benefits and
the premiums are usually settled according to the actuarial equivalence principle
(which states that the expected present value of premiums and benefits should be
equal) under technical, prudent (pessimistic) assumptions (see e.g. Norberg (1999)
for further details). The so-called defined contribution policies constitute another
example. In their purest form they are characterized by the fact that only a stream
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of premium payments is stipulated in the policy. This simply means that in the ter-
minology used above, there are no guaranteed benefits, and all benefits are therefore
bonus benefits. There are also defined contribution policies with minimum guaran-
tees, which are quite similar to with-profit policies. Similarly, unit-linked policies
(and in particular unit-linked policies with guarantees) are also included. Such
policies are characterized by the fact that the benefits are linked explicitly to some
financial index. In comparison, the benefits paid out from a traditional with-profit
or defined contribution policy typically depend on the investment performance of
the company, but are not linked to a specific financial index.

Various optimization problems related to the management of such policies can
be imagined. We shall concern ourselves with problems related mainly to opti-
mization, in a certain sense, of the retirement or pension benefits, which constitute
the main part of the (expected) benefits in most pension schemes. Two types of
strategies will be involved:

Since the bonus benefits are not stipulated in such policies, it is — more or
less — up to the company to decide how the stream of bonus benefits should be
formed, and the number of possibilities is virtually unlimited. Optimization of
the stream of bonus benefits, i.e., the bonus strategy, constitutes a main issue of
this thesis. The company of course has access to the financial market, but the
policyholder typically has no (direct) influence on the investment strategy used
by the company in connection with the policy. Optimization of the investment
strategy of the company in relation to the policy, in a broad sense, constitutes
another main issue of this thesis. However, as we shall argue (in particular in
Chapter 4), the bonus and investment strategies, and the optimization problems
involving them, are intimately related. Moreover, the problems are more complex
in their nature than corresponding purely financial problems because of the policy
risk. We shall in general take the fundamental view throughout this thesis that
the company and the policyholder are two different economic agents and cannot
in general be thought of as one. In other words, the company is not merely an
investment fund for the policyholder in general.

As mentioned above we shall always take the stream of premiums as given. In
particular, problems related to so-called defined benefit policies will not be consid-
ered (such policies are quite different from the abovementioned types of policies;
they are characterized by the fact that only the guaranteed benefits are stipulated
upon issue of the policy, the premiums are then adjusted as time passes, and there
are no bonus benefits). Moreover, we do not discuss microeconomical problems
such as the problem of determining the (optimal) amounts of premiums to be paid
by an individual to an insurance company in order to save for retirement.

Remark 1.2.1 Most policies implicitly include certain natural intervention op-
tions that belong to the policyholder, in particular the surrender and free policy
options. These options allow the policyholder to stop paying premiums at any
given time during the policy term. In loose terms, if the surrender option is exer-
cised the policyholder receives an amount corresponding to the value of the policy
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at the time in question, and the policy is cancelled. If the free policy option is
exercised, the remaining benefits are adjusted to account for the fact that no fur-
ther premiums are paid, but the policy remains in force. Some policies also include
other intervention options allowing the policyholder to e.g. change the profile of
the future benefits without stopping the premium payments. We shall in general
ignore intervention options in this thesis (although we do provide some remarks on
how the can be built into the model of Chapter 4 in Section 4.8). It can be argued
that, when properly dealt with, they constitute an issue of minor importance. We
refer to Steffensen (2002) for a general treatment of the surrender and free policy
options.

1.3 Overview and contributions of the thesis

Apart from this introductory chapter, the thesis consists of four chapters and three
appendices. Each chapter is self-contained and can be read independently of the
other chapters. This has the consequence that certain basics of the models and
problems studied in the chapters may appear more than once, but the subjects of
the chapters vary enough to make this a minor issue.

In Chapter 2 we provide a survey of classical and recent results from the financial
theory of optimal investment. We begin, for convenience, with a presentation of
a fairly general model of a financial market and several important concepts of
mathematical finance. We then discuss some general optimization objectives before
moving on to the survey itself.

Chapter 3 deals with a bonus optimization problem based on the modelling
framework from Norberg (1999). The company is assumed to invest exclusively in
an asset that yields stochastic interest modelled by a finite-state continuous-time
Markov chain that particularly allows the interest rate to become lower than the
technical interest rate used in the calculation of premiums and technical reserves
(some generalizations are considered in Section 3.6). The optimization problem
concerns optimal surplus redistribution in the form of dividends, which, in short,
represent internal reallocations of liabilities from the so-called dividend reserve,
which can be viewed as a shared account owned by the portfolio of policyholders
as a whole, to the individual reserve (account) of the policyholder. We address the
problem by the method of dynamic programming and obtain an explicit solution.
The underlying policy is a general multi-state policy, but we consider the so-called
mean surplus, which does not depend on the policy state.

In Chapter 4 we consider a combined bonus and investment optimization prob-
lem in a fairly general modelling framework. The company can invest in a general
financial market driven by a multidimensional Brownian motion. The valuation
of both assets and liabilities is market based, but the policy risk is assumed to
be unhedgeable. The company aims to optimize the bonus payment stream on
behalf of the insured, according to a fairly general (envisaged) preference structure
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of the latter. We take a very general approach by optimizing over all strategies
satisfying only the basic fairness constraint. Again, the actual bonus payments are
formed through the distribution of dividends, and we obtain in particular a very
general result on dividend optimization. The optimal bonus strategies are obtained
in semi-explicit form. By the approach taken in this chapter, optimization of the
bonus process alone does not lead to a satisfactory solution of the overall problem
faced by the company, as they are left with an unhedgeable payment stream. To
get a unified approach we therefore propose to deal with this payment stream by
use of quadratic hedging strategies.

The financial market considered in Chapter 4 is, by construction, assumed to
be complete (a discussion of a generalization to the incomplete-market case is con-
sidered in Section 4.8, though), which is quite a strong assumption, in particular
since life and pension insurance policies typically have very long terms. In Chap-
ter 5 we consider a purely financial investment problem of a long-term investor
who invests in a financial market without long-term bonds (or other interest rate
derivatives). Of course we have in mind an individual saving for retirement. We
particularly consider optimization problems with terminal wealth constraints, but
we only obtain general results in the unconstrained cases.

Appendix A contains various aspects of utility that are (considered to be) of
interest in relation to this thesis. In particular, we focus on the foundations of the
use of utility theory in decision making.

Appendix B contains some results from convex analysis, which is a mathe-
matical discipline concerned with optimization (minimization) of convex functions
under various constraints.

Finally, for the sake of completeness, Appendix C lists the definition and basic
properties of elliptical distributions, which are mentioned in Chapter 2 but often
do not appear in standard textbooks on probability theory.



Chapter 2

A Survey on Investment Theory

2.1 Introduction

Investment theory constitutes one of the main topics in finance. At its core, it
deals with optimization of investment strategies for one or more investors or agents.
Much advice on this issue can be (and is) provided on the basis of common sense
rather than scientific studies. For example, it is a widely accepted popular advice
nowadays that investments in risky assets should somehow be diversified so as
to reduce risk. However, common sense and intuition can only provide (correct)
answers to relatively simple questions, and often only in terms of general guidelines
rather than specific unambiguous instructions.

Scientific studies on the subject aim at (more) precise statements based on
sound economic principles. In mathematical finance, an investment problem is for-
mulated in terms of some mathematical model of the “investment universe” that the
investor faces, including a financial market comprising the available investment as-
sets, a class of admissible investment strategies, a specification of exogenous income
and/or expenditure, and a criterion for optimization. These ingredients constitute
a setup, which, as we shall see in the following, can take various forms. Different
setups may produce different answers. What is common, though, is that mathe-
matical models can yield precise answers that, within the model, are indisputable.

This chapter presents a survey of some of the classical and also some of the
more modern financial literature on optimal investment strategies. The research in
this field has grown substantially and has been developed in various directions, in
particular over the past few decades. With reference to the overall aims and scope
of this thesis we make no attempt to cover all results and aspects. We take a certain
route through the literature, which, admittedly, is chosen somewhat subjectively
and perhaps to some extent reflects the personal interests of the author. However,
one aim has been to cover at least the “classical” and most fundamental results,
and to explore some generalizations, with a particular focus on aspects that are
considered relevant in connection with life and pension insurance. Many results
and aspects will be discussed only scarcely or not at all, even though they may

7
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be very important in other respects. One such aspect is the entire issue of model
selection and (parameter) estimation from available financial data. In spite of its
tremendous importance in theory as well as in practice it is considered to be outside
the scope of this thesis. The survey is chronological, and comments and remarks
are provided along the way.

Before turning to the actual survey we offer a few technical remarks on the
contents in this chapter. There are, of course, many different styles of notation in
the literature. For the sake of convenience and legibility of this chapter we choose
to work with a common terminology and notation (introduced below) throughout
this chapter, although this has the obvious drawback that our notation will often
differ — in some cases substantially — from the notation in the original works.
To ease the presentation we furthermore take the liberty of sometimes leaving out
certain mathematical technicalities, and we do not always bring up underlying
implicit assumptions unless they need to be discussed explicitly in order to stress
a particular point. For basic terminology from the theory of stochastic processes,
stochastic integrals, etc., we refer to, e.g. Protter (1990) or Jacod and Shiryaev
(2003).

Vectors are always interpreted as column vectors. The transpose of a vector or
matrix A is denoted by A′. The d-dimensional unit vector (1, . . . , 1)′ ∈ R

d is de-
noted by 1d. For any set of d quantities denoted by a common base symbol equipped
with indices 1, . . . , d, the base symbol with no index denotes the d-dimensional (col-
umn) vector composed of the individual quantities when no confusion can arise,
e.g., for given x1, . . . , xd, x denotes the vector (x1, . . . , xd)′. For a d-dimensional
vector x, D(x) denotes the d× d diagonal matrix with the components of x in the
diagonal.

We refer to Appendix A for unexplained notions related to utility theory.

2.2 A general financial market model

A. Prefatory remarks.
We shall deal exclusively with theoretical studies of (optimal) investment strate-
gies in given mathematical models of financial markets, and the general theory
of mathematical finance therefore plays an important role. In order to make the
survey self-contained, and for convenience later on, we shall here present a fairly
general financial market model and the most fundamental concepts associated with
it. Moreover, we discuss the model and some of its properties in Paragraph D be-
low. For proofs and further details we refer to the references that appear below
and to the ever growing financial literature in general.

B. The financial market model.
In general, we consider a model of a financial market with a fixed finite time
horizon T > 0. There is a (locally) risk-free asset, and there are n ∈ N basic
risky assets (see Remark 2.2.2 below for an elaboration of this terminology). The
future development of the market is uncertain. Therefore, the prices-per-share of
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the assets are modelled by stochastic processes defined on an underlying filtered
probability space (Ω,F ,F,P). They are denoted by S0 and S1, . . . , Sn, respectively,
and assumed to be optional and càdlàg. The filtration F = (Ft)t∈[0,T ] represents
the flow of information from the market. In general the price processes are not the
only processes related to the market, there may be other, so-called factor processes
as well (they need not be visualized here, though).

On a technical note, F is assumed to satisfy the usual conditions, i.e., it is
right-continuous, and F0 contains all P-null sets of F (see Paragraph D below for a
comment). We assume, furthermore, that F0 is trivial, i.e., it only contains sets of
measure 0 or 1, meaning that the initial states of all processes under consideration
are known.

Prices are denoted in some common unit; usually (but not necessarily) a mon-
etary currency. We use i and j as indices for the assets, and it is thus always
implicitly understood that i, j ∈ {0, . . . , n}. For simplicity we shall in general take
dividends (on stocks etc.) to be included in the price processes so that only the
characteristics of the actual price processes matter. In particular, the return (or
rate of return) of the i’th asset over the period (s, t] is (Si(t) − Si(s))/Si(s).

Remark 2.2.1 We shall also report a few results from models with an infinite time
horizon and from models, where no (locally) risk-free asset exists. However, to keep
things fairly simple in this section, we shall stick to the model introduced above.
The extension to models with the mentioned properties is fairly straightforward,
although not trivial in all respects.

Remark 2.2.2 Although the usage of the descriptive terms “risky” and “(locally)
risk-free” is fairly standardized in the financial literature, the exact implications are
by no means obvious from their linguistic meanings: Usually, each asset is said to be
either risky or (locally) risk-free, which would seem to indicate that these properties
be of a global nature. However, what they really refer to are the local characteristics
of the asset price process in question at any point in time as long as the asset is still
on the market (loosely speaking, an asset is locally risky (resp. locally risk-free)
if, at the point in time under consideration, the instantaneous return on the asset
over the following (infinitesimally) short time interval is uncertain (resp. known
with certainty)). An asset that is locally risky is thus usually called “risky” even if
it is “terminally risk-free” in the sense that it has a deterministic terminal value at
the time of maturity (the obvious example is a zero coupon bond in a market with
a stochastic interest rate), whereas an asset that is (locally) risk-free is sometimes
simply called “risk-free”, i.e., without the parenthesized qualifier “locally”, even if
it is “terminally risky”.

We shall use the following convention: All assets that are locally risky as long as
they are on the market will commonly be called “risky assets”. When appropriate,
we distinguish between those that are terminally risk-free and terminally risky in
the above sense; the former will be called “zero coupon bonds” whereas the latter
will often be called “stocks” unless specific derivative names are appropriate. The
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(locally) risk-free asset will sometimes be called the “bank account” or the “money
market account”. Unless otherwise is stated, its price process S0 is driven by an
interest rate process, which we denote by r (exceptions occur only in the most
general continuous-time models where S0 need not be absolutely continuous wrt.
Lebesgue measure).

We assume that all price processes are nonnegative (this is not crucial, but
it eases the presentation). Moreover, we assume that S0 is continuous, of finite
variation, and strictly positive. We can then define the discounted price processes
S̃0, . . . , S̃n by S̃i = Si/S0, i = 0, . . . , n; in particular, S̃0 ≡ 1. As is well known
(and explained below), the discounted price processes play an important role in
financial mathematics. We shall work under the following fairly general modelling
assumption.

Assumption 2.2.3 The discounted price processes S̃0, . . . , S̃n are locally bounded
semimartingales.

Note that, due to the regularity assumptions imposed on S0, the undiscounted
price processes S0, . . . , Sn are also locally bounded semimartingales.

C. Investment strategies and related concepts.
We assume that the market is frictionless, i.e., there are no trading costs, no short-
sale constraints, the supply of all assets is unlimited, etc. (see Paragraph D below
for some comments). An investment strategy (of some investor who trades in
the market) is represented by a predictable stochastic portfolio process (η0, η) =
(η0(t), η(t))t∈[0,T ], which is integrable with respect to (S̃0, . . . , S̃n)′; η0(t) ∈ R and
η(t) = (η1(t), . . . , ηn(t))′ ∈ R

n denote the number of shares of the money market
account and the risky assets, respectively, held by the investor at time t. The value
process or wealth process associated with a portfolio process (η0, η) is naturally
given by

X(η0 ,η)(t) = η0(t)S0(t) + η(t)′S(t), t ∈ [0, T ],

where S = (S1, . . . , Sn)′. Its discounted counterpart X̃(η0 ,η) is defined similarly,
with Si replaced by S̃i, i = 0, . . . , n. The discounted gains process G̃(η0 ,η) is defined
by

G̃(η0,η)(t) = S−1
0 (t)

∫

(0,t]

(
η0(s) dS0(s) + η(s)′ dS(s)

)
, t ∈ [0, T ];

it measures the discounted value of the accumulated investment gains from the
portfolio over the interval (0, t].

Definition 2.2.4 A portfolio process (η0, η) is said to be financed by the semi-
martingale Γ(η0,η) given by

Γ(η0 ,η)(t) = S0(t)
(
X̃(η0 ,η)(t) − G̃(η0 ,η)(t)

)
, t ∈ [0, T ],
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and it is called self-financing if

Γ(η0,η)(t) = 0, ∀t ∈ [0, T ].

A portfolio process (η0, η) is said to be admissible if the discounted gains process
G̃(η0 ,η) is almost surely bounded from below.

Remark 2.2.5 Points of increase (decrease) of the financing process Γ(η0,η) of
Definition 2.2.4 correspond to points of capital injection (withdrawal) into (from)
the wealth process. A portfolio process (η0, η) with a given initial value, say x, and
with no further exogenous withdrawals or injections of capital, such that the value
function develops as

dX(η0 ,η)(t) = η0(t) dS0(t) + η(t)′ dS(t), t ∈ [0, T ],

is often called self-financing in the financial literature. However, according to Defi-
nition 2.2.4, such a portfolio process is said to be financed by the process Γ(η0,η) ≡ x,
and we shall simply call it x-financed. We thus use the term “self-financing” only
if x = 0.

For a given financing process Γ(·), any admissible portfolio process (η0, η) is
completely specified by η, (and the price processes), since it can be shown that the
discounted gains process satisfies

G̃(η0 ,η)(t) =

∫

(0,t]

(
Γ(s) dS−1

0 (s) + η(s)′ dS̃(s)
)
, ∀t ∈ [0, T ],

so that η0 is determined residually for every t ∈ [0, T ] by

η0(t) = Γ̃(t) + G̃(η0 ,η)(t) − η(t)′S̃(t)

= Γ̃(t) +

∫

(0,t]

(
Γ(s) dS−1

0 (s) + η(s)′ dS̃(s)
)
− η(t)′S̃(t), (2.1)

where, of course, Γ̃ = S−1
0 Γ. It is seen that the right-hand side of (2.1) does not

depend on η0.
Furthermore, whenever X (η0 ,η)(t) 6= 0, the portfolio process is also uniquely

determined by its corresponding value X (η0,η)(t) and the relative portfolio weights
or proportions w1(t), . . . , wn(t) in the risky assets, defined by

wi(t) =
ηi(t)Si(t)

X(η0 ,η)(t)
.

The relative portfolio weight in the money market account is then 1 −∑n
i=1 wi(t).

These are often easier to work with, and we shall do so quite a bit in the following
(note that since short-sales will be allowed, the relative portfolio weights are not
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restricted to be in the interval [0, 1]). However, the condition X (η0 ,η)(t) 6= 0 should
not be ignored.

For an admissible, self-financing portfolio process (η0, η), the (discounted) value
process always equals the (discounted) gains process, and we have

X̃(η0 ,η)(t) = G̃(η0 ,η)(t) =

∫

(0,t]
η(s)′ dS̃(s), ∀t ∈ [0, T ].

A fundamental concept in modern mathematical finance is the notion of arbi-
trage.

Definition 2.2.6 An arbitrage opportunity is an admissible, self-financing portfo-
lio process (η0, η), such that the discounted terminal value X̃(η0 ,η)(T ) satisfies

X̃(η0 ,η)(T ) ≥ 0, a.s., and P
(
X̃(η0 ,η)(T ) > 0

)
> 0. (2.2)

Thus, an arbitrage opportunity is an investment strategy that requires no initial
capital but generates a nonnegative payoff at time T , which is strictly positive with
strictly positive probability, i.e., a risk-free “money machine”. We shall assume
throughout, as is standard, that the market does not allow arbitrage opportunities
(we use the abbreviation “NA” for this assumption). Real-world markets may at
times allow for small-scale arbitrage opportunities, but a theoretical optimization
problem cannot be well posed if arbitrage is allowed.

As is well known, this basic, purely economical assumption is deeply related to
certain mathematical properties of the financial market model, as it is “essentially”
equivalent to the existence of an equivalent local martingale measure, which is a
probability measure Q that is equivalent to P and turns all the discounted price
processes S̃0, . . . , S̃n into local martingales (see Paragraph D below for more precise
statements). In particular, this allows for “pricing by (no) arbitrage” of derivatives
(options, futures, etc.) of the basic assets (at least if there is only one equivalent
local martingale measure), which constitutes one of the most important tools of the
theory. We denote by P the set of equivalent local martingale measures as defined
above.

Other fundamental concepts are the notions of contingent claims, hedging strate-
gies, and completeness.

Definition 2.2.7 A simple contingent claim is a nonnegative FT -measurable ran-
dom variable. A given simple contingent claim B is said to be attainable or hedge-
able, if there exists an x ∈ R and an admissible x-financed strategy (η0, η) such
that

X(η0 ,η)(T ) = B, a.s.

Such a strategy is called a hedging strategy, and it is said to hedge or generate B.
Finally, if P 6= ∅, then the market is said to be complete if every simple contingent
claim B satisfying the technical condition

sup
Q∈P

EQ (B/S0(T )) <∞ (2.3)
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is attainable.

Under the technical assumption that F = FT it can be shown (see Paragraph D
below) that the market is complete if and only if the set P is a singleton, i.e., if
and only if there is a unique equivalent local martingale measure Q. In particular,
this means that derivatives can be priced uniquely.

Finally, an admissible portfolio process (not necessarily self-financing) (η0, η) is
called simple if each ηi has the form

ηi(t) =
K∑

k=1

ξi(k)1(T (k),T ′(k)](t), t ∈ [0, T ], i = 0, . . . , n,

where K ≥ 1 and, for k = 1, . . . ,K, T (k) and T ′(k) are stopping times with values
in [0, T ], and ξi(k) is an FT (k)-measurable random variable. Loosely speaking, a
simple strategy as in Definition 2.2.4 consists in buying ξi(k) units of the i’th asset
at time Ti(k) and selling them at time T ′

i (k), i = 1, . . . , n, k = 1, . . . ,K.

D. Discussion of the model.
This paragraph contains a discussion of some of the fundamental assumptions and
features of the financial market model presented above. Some of the issues that
we broach below are often not discussed in textbooks on mathematical finance, at
least not introductory ones, but they may be of significant importance and should
therefore not be neglected.

Starting with the basics, let us note that the probability measure P represents
(the investor’s beliefs of) the real probabilities of all events under consideration,
i.e., all events in FT . As is the case in most of the financial literature, it will be
taken as given throughout this chapter. However, as we shall see below, P need
not always be fully specified; in certain models (in particular discrete-time models)
it may be the case that P is just assumed to be in a certain (equivalence) class of
probability measures. In this case it is this class of probability measures that is
taken as given.

The filtration representing the flow of information has been assumed to satisfy
the usual conditions. This is a standard assumption in the literature (hence the
designation), and its motivation is purely technical. However, since filtrations are
typically generated by basic stochastic processes, and since natural filtrations of
many types of processes (e.g. Brownian motions) do not satisfy the usual conditions,
one typically needs to work with an augmentation of the natural filtration, which
thus contains more information than that obtained by observing the basic processes.
This seems unnatural, but it does not cause serious modelling concerns, because
the added “unnatural” information essentially only concerns null sets and therefore
cannot be exploited. We refer to the literature on stochastic processes (e.g. Rogers
and Williams (1987)) for more details.

We have assumed that the (discounted) price processes are locally bounded
semimartingales. In general, any stochastic process representing the price process
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of an asset that can be traded continuously must be a semimartingale. As such, this
is a consequence of pure mathematics: Any càdlàg, adapted process is an integrator
if and only if it is a semimartingale (see, e.g. Rogers and Williams (1987), Theo-
rem IV.16.4), and the only way to represent gains processes in general is through
integrals. If we stick to simple portfolio processes, however, then gains processes are
well defined for any càdlàg, adapted price processes (not necessarily semimartin-
gales), since they are just finite sums of random variables. Mathematically, it thus
poses no problem to work with more general processes as price processes. Econom-
ically, however, it is a different story. To see this, we need the following definition,
slightly extending the notion of arbitrage.

Definition 2.2.8 A free lunch with vanishing risk is a sequence of admissible,

self-financing portfolio processes (η
(k)
0 , η(k))k≥1 such that

X̃ := lim
k→∞

X̃(η
(k)
0 ,η(k))(T )

is well defined as an almost sure limit and satisfies (2.2), and such that

∣∣∣X̃ − X̃(η
(k)
0 ,η(k))(T )

∣∣∣ < 1/k, a.s., ∀k ≥ 1,

in particular X̃(η
(k)
0 ,η(k))(T ) > −1/k, a.s., ∀k ≥ 1.

A free lunch with vanishing risk is almost an arbitrage, as one can get arbitrarily
close to the (discounted) “arbitrage payoff” X̃ uniformly. Assuming that there is
no free lunch with vanishing risk (NFLVR) in the market is therefore only slightly
stronger than assuming NA. Now, if the discounted price processes are merely
càdlàg, adapted, locally bounded processes, and if we just assume that there is
no free lunch with vanishing risk consisting of simple portfolio processes, then
it turns out that the discounted price processes must in fact be semimartingales
(see Delbaen and Schachermayer (1994)). Unfortunately, the condition of local
boundedness is in general necessary, but we shall not discuss this further.

The restriction that a portfolio process must be predictable is basically a math-
ematical way of expressing that the agent cannot be allowed to use “future infor-
mation” to form his decisions, i.e., no insider trading is allowed. However, it is
necessary only if the price processes are discontinuous.

The assumption that the market is frictionless, which will actually be imposed
throughout this thesis, is in many ways a standard assumption in much of the
financial literature (although there also exist many papers adressing problems that
arise when it is relaxed in some way). It is a quite strong assumption, but the
severity of it depends on the investor, and it can be argued that it is somewhat
milder for a pension fund (or a mutual fund) investing on behalf of its members
than it is for an individual.

The definition of admissibility for a portfolio process includes the condition that
the discounted gains process must be bounded from below. With self-financing
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portfolio processes that do not satisfy this condition it is possible in many specific
models — even simple ones such as the Black-Scholes model (see Karatzas and
Shreve (1998)) — to generate payoffs that are arbitrarily large (almost surely),
by use of, e.g., “doubling strategies”. Clearly, allowing for this is absurd, so such
portfolio processes must be excluded from consideration. This was recognized (in
an informal manner) already by Harrison and Kreps (1979).

The exact connection between absence of arbitrage and existence of an equiv-
alent local martingale measure, which we alluded to in the previous paragraph,
was established by Delbaen and Schachermayer (1994): There exists an equiva-
lent local martingale measure Q (for (S̃0, . . . , S̃n)), i.e., P 6= ∅, if and only if the
market satisfies the condition NFLVR. Thus, the purely economical assumption
NFLVR implies that there exists a probability measure Q, equivalent to P, such
that S̃0, . . . , S̃n are local martingales under Q. It can then be shown that also
the discounted gains process corresponding to any self-financing admissible port-
folio processes is a local martingale, and therefore in particular a supermartingale
(Delbaen and Schachermayer (1994), Theorem 2.9).

The equivalence of P 6= ∅ and NFLVR is based on the assumption of local
boundedness of the discounted price processes. Under other conditions the connec-
tion between absence of arbitrage and existence of equivalent martingale measures
is slightly different, and for completeness we list the exact relationships here. In
the general case, where the discounted price processes S̃0, . . . , S̃n are allowed to
be general semimartingales (not necessarily locally bounded), the NFLVR condi-
tion is equivalent to the existence of an equivalent sigma-martingale measure Q
(for (S̃0, . . . , S̃n)), i.e., a probability measure equivalent to P, such that S̃ has the
form S̃(t) = S̃(0) +

∫
(0,T ] φ(s) dM(s) for some [0,∞)-valued predictable process φ

and some R
n-valued Q-martingale M ; see Delbaen and Schachermayer (1998) for

a proof and further details.
If the discounted price processes are continuous, then they are in particular

locally bounded, so the above statement on the NFLVR condition applies. In this
case, however, the milder assumption NA in itself implies that there exists an
absolutely continuous, but not necessarily equivalent, local martingale measure,
i.e., a probability measure Q absolutely continuous with respect to P under which
S̃0, . . . , S̃n are local martingales (see Delbaen and Schachermayer (1995a)).

Finally, if the discounted price processes are pure jump processes (possibly
unbounded) with fixed jump times 0 < t1 < . . . < tK = T , i.e.,

S̃i(t) = S̃i(0) +
∑

k:0<tk≤t

∆S̃i(tk), ∀t ∈ [0, T ], ∀i = 1, . . . , n,

then NA is equivalent to the existence of an equivalent martingale measure, i.e., a
probability measure Q equivalent to P under which S̃0, . . . , S̃n are martingales (see
Schachermayer (1992) and references therein). Note that in this case the discounted
price processes are automatically semimartingales, but they need not be locally
bounded, in particular they are not if the jumps are i.i.d. with a distribution that
has unbounded support.
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Remark 2.2.9 The fact that local boundedness is not required when the dis-
counted price processes are pure jump processes with fixed jump times 0 < t1 <
. . . < tK = T is quite important, in particular since we have, rather surprisingly,
not been able to find conditions for local boundedness of such processes in the liter-
ature. A necessary condition for local boundedness of a càdlàg pure jump process
Y with a fixed, finite number of jump times 0 < t1 < . . . < tK = T is that the
conditional distribution of Y (tk) given Ftk− has bounded support almost surely,
∀k = 1, . . . ,K (note that Ftk− may be strictly larger than Ftk−1

). To see this,
let us first note that if τ is a stopping time such that the stopped process Y τ is
bounded, say |Y (t∧ τ)| ≤ L, ∀t ∈ [0, T ], a.s., for some L ∈ N, then, necessarily, we
must have τ < tk on the set (|Y (tk)| > L), i.e.,

E
(
1(|Y (tk)|>L, τ≥tk)

)
= 0,

for each k = 1, . . . ,K. We have (τ ≥ tk) = (τ < tk)
c ∈ Ftk−, so

0 = E
(
1(|Y (tk)|>L, τ≥tk)

)

= E
(
E
(
1(|Y (tk)|>L, τ≥tk)

∣∣Ftk−

))

= E
(
1(τ≥tk)E

(
1(|Y (tk)|>L)

∣∣Ftk−

))
.

This means that we must have E
(
1(|Y (tk)|>L)

∣∣Ftk−

)
= 0 on the set (τ ≥ tk). Now,

if the conditional distribution of Y (tk) given Ftk− does not have bounded support
almost surely, then the set

A :=
∞⋂

L=1

(
E
(
1(|Y (tk)|>L)

∣∣Ftk−

)
> 0
)

has strictly positive probability. Thus, if (τi)i≥1 were a localizing sequence of
stopping times, then we would have a contradiction, because then

P (A) = P (A ∩ (∪∞
i=1(τi ≥ tk))) = P (∪∞

i=1 (A ∩ (τi ≥ tk))) = 0.

This proves necessity. We believe that the condition is also sufficient, but no proof
has been constructed for the general case (this seems to require quite a bit of
technical fuss). However, if Ftk− = Ftk−1

, i.e., all information is contained in the
price processes, then the condition certainly is sufficient: Put

τi = inf {tk ∈ {t0, . . . , tK−1} : ess sup (Y (tk+1) | Ftk) ≥ i} ∧ tK , i = 1, 2, . . . ,

where

ess sup (Y (tk+1) | Ftk) = inf{L > 0 : P (Y (tk+1) ≤ L | Ftk) = 1}.

Then (τi)i≥1 is a localizing sequence of stopping times.
Let us end this remark by noting that the condition is far from necessary for a

left-continuous pure jump process to be locally bounded, since this is the case for
any left-continuous process with right-hand limits.
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There seems to be a fairly (but not totally) standardized way to define con-
tingent claims and hedging strategies in the financial literature. However, there
seems to be no universally agreed-upon definition of completeness. Our defini-
tion, which has not been encountered in the literature, is inspired by Delbaen and
Schachermayer (1995b), Theorem 16, according to which a simple contingent claim
is hedgeable if and only if there exists an equivalent local martingale measure Q ′ ∈ P

such that

EQ′

(X/S0(T )) = sup
Q∈P

EQ (X/S0(T )) <∞,

provided that S̃0, . . . , S̃n are locally bounded semimartingales, as in the model
above. This means that a contingent claim that does not satisfy (2.3) cannot be
hedged under any circumstances.

For comparison, the definition of completeness in Harrison and Pliska (1981,
1983) is based on a specific equivalent martingale measure Q∗ ∈ P, and the market
is said to be complete (with respect to Q∗) if every contingent claim X satisfying
EQ∗

(X/S0(T )) < ∞ is hedgeable. This is somewhat unsatisfactory, because the
completeness property should, ideally, only depend on the original model (under
P), as is the case with our definition above. Nonetheless, the proof of the theorem in
Harrison and Pliska (1983), which states that the market is complete with respect
to Q∗ if and only if the set of equivalent martingale measures is a singleton (i.e., Q∗

is uniquely determined), can easily be modified to yield the desired property: The
market is complete (according to our definition) if and only if the set P of equivalent
local martingale measures is a singleton. The technical assumption F = FT was
imposed in Paragraph C above. It is indeed necessary for this result to hold, but
the essence of the result is valid also if F 6= FT : Then the market is complete
if and only if the restriction of any equivalent local martingale measure to FT is
unique, and since contingent claims are FT -measurable, the condition F = FT is
just technical.

Let us end this discussion with some bibliographic remarks. The study of the
general theory of trading in financial markets modelled by semimartingales was
initiated by Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983). Har-
rison and Kreps (1979) work with general price processes but only simple trading
strategies and show, under certain square-integrability conditions, that NA is equiv-
alent to the existence of an equivalent martingale measure, implying in particular
that the price processes are semimartingales. Harrison and Pliska (1981, 1983) ex-
tend the theory to general trading strategies and discuss contingent claims pricing,
completeness, etc., under the assumption that an equivalent martingale measure
exists. The general theory has been refined since then (as demonstrated above);
we refer to the abovementioned papers by Delbaen and Schachermayer and their
references for further details.
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2.3 Optimization objectives and solution techniques

A. Objectives.
In order to analyze and solve an optimization problem mathematically it is neces-
sary to consider an optimization objective. Most modern portfolio problems assume
objectives that can be written in the form

sup
((η0 ,η),C)∈A

E (U(C,X(T ))) , (3.1)

where C and X denote, respectively, the consumption stream and the wealth pro-
cess of the agent, A denotes some set of admissible pairs of consumption and
investment strategies, and U is a (generalized) utility functional (taking values in
[−∞,∞)) representing the agent’s preference structure over consumption and ter-
minal wealth. Here and throughout, a consumption stream C = (C(t))t∈[0,T ] is
a positive, increasing, and càdlàg stochastic process. As the name indicates we
typically interpret C(t) as the accumulated consumption of the agent until time
t, but it actually just denotes the accumulated amount that has been withdrawn
from the investment portfolio until time t.

The objective (3.1) is in accordance with the expected utility maxim or hypothe-
sis, by which the aim is to maximize, over all admissible investment and consump-
tion strategies, the expected utility of consumption and/or terminal wealth of the
investor. For a discussion of the expected utility maxim we refer to Appendix A.

As we shall see, certain restrictions (at least technical ones) on (η0, η) and C
are imposed in almost all particular problems studied in the literature (hence the
term “admissible” and the introduction of the set A above).

It is of course necessary to specify U in order to get any specific results. As a
first step in this direction, U is typically assumed to be of the form

U(C,X(T )) = V(C) + u(X(T )), (3.2)

where V (resp. u) is a functional (resp. function) measuring utility of consumption
(resp. terminal wealth). Thus, utility of consumption and utility of terminal wealth
are assumed to be additive.

It is a highly delicate issue to specify V further so as to obtain a functional that
is economically reasonable as well as mathematically tractable. From an economic
point of view it should, for example, be taken into consideration that, for most
agents, the actual utility of consumption at some given time is, in some way or
another, related to the (utility of) consumption in the past (and thus also in the
future). In economic terms there is, e.g., a degree of local substitution, i.e., con-
sumptions at nearby points in time are to some extent substitutes of one another.
Further along these lines, some goods are durable and one thus enjoys a certain
amount of utility from past consumption. It is difficult to capture such effects in
a functional that at the same time is simple enough to make sufficient room for
mathematical tractability. The “classical” and most widely used approach is to



A Survey on Investment Theory 19

assume that utility of consumption is time-additive, i.e., that V has the form

V(C) =

N∑

k=0

v(tk, ck)

if consumption must take place in discrete time, or, if consumption can take place
continuously (in which case C is typically constrained to being absolutely contin-
uous with respect to the Lebesgue measure with dC(t) = c(t) dt),

V(C) =

∫ T

0
v(t, c(t)) dt,

where, for each t ∈ [0, T ], v(t, ·) is some utility function. This specification has the
advantage that it can be highly tractable and yield explicit results. However, the
assumption of time additivity implies that the utility of consumption at any given
time is independent of past consumption and does not affect the utility of future
consumption, which is somewhat implausible.

In the survey below we shall in general avoid dealing further with this issue by
simply focusing on the results concerning investment strategies. This is partly due
to the fact that, as indicated above, the form of V typically has certain somewhat
undesirable — or at least questionable — features, but the main reason is that,
as the subsequent chapters will show, this thesis deals with a certain kind of op-
timization problems where a “consumption stream” has a different interpretation
than it has for a typical economic agent and thus motivates a particular type of
preference structures.

A pure investment problem, where the objective is to maximize the expected
utility of terminal wealth at time T only, is obtained as a special case of the objective
(3.2) by setting V ≡ 0. It could be argued that the objective (3.2), regardless of
the specification of V, has drawbacks similar to those imposed by the assumption
of time additivity of utility of consumption as discussed above. However, a pure
investment problem makes perfect economic sense, as it can be viewed, e.g., as that
of an agent who has exogenously divided his wealth and future income into two
parts in such a way that one part is used for consumption until time T while the
other is used solely for investment purposes, e.g., so as to provide the means for
consumption from time T and onwards. It is in fact particularly apt for life and
pension insurance companies with policies as the ones we deal with in this thesis,
where a certain stream of premium payments from the insured to the company
is prespecified, and where pension benefits are to be paid only from the time of
retirement.

We round off this paragraph by pointing out for the interested reader that
preference structures for consumption aiming to capture some of the economic
features that are ignored by the “classical” one have indeed been studied by several
authors, see, e.g., Epstein and Zin (1989), Hindy and Huang (1993), and references
therein.
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B. Optimization techniques.
There are two main approaches to portfolio optimization in models where the in-
vestor is allowed to change his portfolio over time. The first of these is dynamic
programming, which, for convenience and later reference, will be introduced briefly
in this paragraph. The second is the martingale method, which will be treated in
Section 2.7.

The dynamic programming approach can be used if (and only if) the price
and factor processes constitute a Markov process (denoted here by Z), so that, at
any time, the current state of the Z is all that matters for its conditional future
distribution. Apart from this constraint the approach is (in principle) applicable to
fairly general optimal investment and consumption problems in discrete as well as
continuous time, but for simplicity we focus here on the case of a pure investment
problem in continuous time. The basic idea is to view the initial optimization
problem as part of a much larger family of corresponding optimization problems
obtained by considering every point in the state space of Z (denoted here by E)
as a (hypothetical) starting point of Z. The value function V : [0, T ] × E → R is
then defined as

V (t, z) = sup
(η0 ,η)∈A(z)

E
(
u(X(x,t,η0,η)(T ))

∣∣∣Z(t) = z
)
, (t, z) ∈ [0, T ] ×E,

where A(z) is the set of admissible investment strategies as viewed from (t, z),
and where the wealth process has been equipped with a superscript indicating the
(hypothetical) initial point (x is a component in z).

The dynamic programming principle (DPP) states that for any 0 ≤ t1 < t2 ≤ T
and any z ∈ E,

V (t1, z) = sup
(η0 ,η)∈A(z)

E
(
V
(
t2, X

(x,t1 ,η0,η)(t2)
) ∣∣∣Z(t1) = z

)
. (3.3)

This equation has the interpretation that a strategy is “globally optimal” if and
only if it is “locally optimal” in the sense that it is optimal for the sub-problem
of maximizing the conditional expected value of the value function at time t2 from
time t1, given the state at time t1. Thus, the original problem is decomposed into
(a continuum of) “local problems” (in the discrete-time case this decomposition
consists of a finite number of problems).

Solving the “local problems” requires that the value function is known, and it
is virtually impossible to calculate the value of the value function from its defi-
nition. However, the DPP leads to the so-called Hamilton-Jacobi-Bellman (HJB)
equation(s), which is a (system of) partial differential equation(s) for the value
function containing a supremum-expression involving the values of (η0, η) (at the
different points in [0, T ] ×E). The value function (in closed form) and an optimal
strategy (as a function of the derivatives of the value function) can thus (in prin-
ciple) be obtained from the HJB equation. It is typically impossible to actually
prove that the value function satisfies the HJB equation, however. Fortunately,
one has quite strong verification theorems, which basically say that if a solution



A Survey on Investment Theory 21

φ (possibly in some generalized, non-smooth sense) to the HJB equation can be
found, and if (η0, η) is an admissible strategy that maximizes the abovementioned
supremum-expression, then, under certain (mild) regularity conditions, the value
function equals φ, and (η0, η) is optimal. Note, though, that the HJB equation typ-
ically is non-linear and often impossible to solve, so the approach does not always
lead to concrete results.

We shall not go further into details on the subject of dynamic programming,
for which there is a vast literature. We refer the interested reader to the textbooks
by Fleming and Rishel (1975), Krylov (1980), Davis (1993), Fleming and Soner
(1993), Yong and Zhou (1999), and their references.

However, from an actuarial perspective it is interesting to note the similarities,
as regards the value function, with the classical notion of prospective reserves in
(multi-state) life and pension insurance (see, e.g. Norberg (1991)). Under the
Markov assumption, which is standard, the prospective reserve is, at any time
during the policy term, defined as the conditional expected value of the future
payments pertaining to the contract (benefits less premiums, properly discounted),
given the present state of the policy, and thus corresponds to the value function
above (although, of course, the classical definition of a reserve does not involve an
optimization problem). In general it is impossible to calculate a prospective reserve
directly from the definition. The well-known actuarial approach to calculating them
is based on the fact that the reserves corresponding to different times and different
states are related in a way that is similar to the relationship given by (3.3). As
in the theory of dynamic programming, this relationship leads to a (system of)
differential equations from which the reserves can be obtained. In the life and
pension insurance context these are the classical Thiele differential equations.

2.4 Single-period portfolio selection

In a single-period portfolio selection problem the investor chooses his portfolio at
time 0 and cannot change it until time T , where the new asset prices materialize
and the return on the portfolio is revealed.

A cornerstone of modern investment theory was laid by Markowitz (1952, 1959) and
Tobin (1958). They consider a single-period problem and argue, with no particular
assumptions about the distribution of returns of the individual assets, that one
should only consider investing in portfolios that are efficient. An efficient portfolio
is defined as a portfolio whose return has smaller variance than any other portfolio
with a greater mean return, i.e., a portfolio with a greater mean return than an
efficient portfolio also entails greater risk as measured by its variance. Thus, the
choice of portfolio should only depend on return distributions through their means
and variances.

There are infinitely many efficient portfolios (each feasible value of the variance
of return corresponds to an efficient portfolio), and they constitute what is called
the efficient set or efficient frontier ; the latter designation is due to the fact that
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the efficient set constitutes a frontier (a part of the boundary) in the feasible set
of combinations of means and standard deviations of portfolio returns. Within
the efficient set, the investor should choose a portfolio that somehow reflects his
risk aversion. The abovementioned boundary in the set of feasible combinations
consists of all so-called minimum-variance portfolios, i.e., portfolios with minimum
variance for a given mean. Note that a minimum-variance portfolio is not neces-
sarily efficient.

By elimination of redundant assets (assets that are perfectly correlated with
(a portfolio of) other assets) it can be assumed that the n × n variance matrix
of returns of the risky assets, Σ, is non-singular. It can then be shown that any
efficient portfolio in the general case can be formed as a combination of the risk-free
asset and a single efficient portfolio of risky assets (a “mutual fund”) with asset
proportions determined by the vector

w̃ = Σ−1(α− 1nr), (4.1)

where α and r are, respectively, the vector of mean returns of the risky assets and
the (known) return of the risk-free asset. This result, sometimes called the one-
fund theorem or the separation theorem, was obtained by Tobin (1958) (in the case
r = 0).

An important point is that all investors who optimize according to the mean-
variance criterion can use the same mutual fund (provided, of course, that they
agree on α and Σ) although the fractions of wealth that each investor places in the
fund may differ. In particular, this has tremendous importance for pension funds
because it means that all their members can share the same risky-asset fund (if
they are assumed to be mean-variance optimizers).

Remark 2.4.1 For w̃ to be a genuine vector of portfolio fractions for the mutual
fund it is required that

∑n
i=1 w̃i = 1, but this need not be fulfilled. However,

in realistic situations (particularly if market equilibrium conditions based on the
mean-variance criterion are imposed) one has

∑n
i=1 w̃i > 0, and it is thus possible

to scale w̃ so as to obtain a genuine mutual fund with portfolio fractions adding
up to 1. For the sake of completeness we briefly comment on the case where∑n

i=1 w̃i ≤ 0 (albeit unrealistic). If
∑n

i=1 w̃i = 0, the net balance of the risky assets
is 0. In other words, the short and long positions in risky assets balance out each
other, and therefore they do not form a genuine mutual fund. If

∑n
i=1 w̃i < 0,

the net balance is negative, i.e., the short positions in risky assets dominate the
long positions. In this case a mutual fund determined by −w̃ could be formed,
and the investor would then go short in this fund (which would give him a positive
initial payment allowing him to buy more of the risk-free asset). Note that in
all cases the expected excess return of the fund over the risk-free interest rate,
w̃′(α− 1nr) = (α− 1nr)

′Σ−1(α− 1nr), is strictly positive (as it should be) because
Σ is positive definite.
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Remark 2.4.2 In the case with no risk-free asset one can still obtain efficient
portfolios from the expression (4.1) by letting r vary as a free parameter that
determines the mean return of the portfolios. To ensure that all such portfolios are
genuine it is necessary (and sufficient) that r < r̄ := (1′nΣ−1α)/(1′nΣ−11n). It can
be shown that these relative portfolios, given by

w(r) =
Σ−1(α− 1nr)

1′nΣ−1(α− 1nr)
, r < r̄,

lie on a straight line in the (n − 1)-dimensional hyperplane {x ∈ R
n : 1′nx = 1}.

Thus, any two efficient portfolios w(r1) and w(r2) with r1 < r2 < r̄ can be used
as “mutual funds” in the sense that any other efficient portfolio can be written as
ξw(r1) + (1 − ξ)w(r2) for some ξ ∈ R. This result is sometimes called the two-
fund theorem, and it means that all mean-variance investors can used the same two
funds. Note, however, that not all portfolios of the form ξw(r1) + (1 − ξ)w(r2)
are efficient, some are merely minimum-variance portfolios. The efficient portfolios
therefore only constitute a “half-line”.

Alternatively, all efficient portfolios can be written in the form w∗+ξw̃ for some
ξ ≥ 0, where w∗ and w̃ are given by

w∗ =
(
1′nΣ−11n

)−1
Σ−11n,

w̃ = Σ−1
(
1′nΣ−11nα− 1′nΣ−1α1n

)
.

The portfolio w∗ is the one with minimum variance (of all portfolios), and w̃ is
a zero-sum portfolio (i.e., 1′nw̃ = 0). With this parametrization the factor ξ is a
direct measure of the risk of a given efficient portfolio.

Under the assumption that all investors are mean-variance optimizers and agree on
the return parameters, Sharpe (1964), Lintner (1965), and Mossin (1966) developed
a single-period equilibrium model of the financial market, which is now widely
known as the CAPM (Capital Asset Pricing Model). A key property of this model
is that any investor’s portfolio of risky assets is a fraction of the market portfolio,
i.e., the proportions of the risky assets held by any investor are the same as the
proportions of the risky assets in the market. This is a consequence of the one-
fund theorem and the simple fact that the portfolios held by all investors must
constitute the market portfolio. This property, in turn, implies that any investor
who believes that there is equilibrium in the market can invest optimally by simply
holding a share of the market portfolio, i.e., there is no need for him to perform
any estimation or calculation.

Even though it is not directly based on the expected utility maxim, the mean-
variance approach is actually consistent with it in the single-period problem under
certain conditions:

For an agent who acts according to the expected utility maxim, the optimal
portfolio is mean-variance efficient regardless of the joint distribution of asset re-
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turns if and only if the agent has a quadratic utility function of the form

u(x) = x− k

2
x2, x ∈ R, (4.2)

for some k > 0. This was in fact shown already in Markowitz (1959). Furthermore,
in a given model of asset returns, any mean-variance efficient portfolio is the optimal
portfolio corresponding to some quadratic utility function of the form (4.2), so
any mean-variance optimizer can be assumed to have a suitable quadratic utility
function as long as one works with the given model. However, as is well known,
this utility function has certain properties that are economically implausible, in
particular it is increasing only for x ≤ 1/k and thus only makes sense if the asset
returns are bounded from above so that the wealth stays below 1/k with certainty.

For an agent who acts according to the expected utility maxim the optimal
portfolio is mean-variance efficient if

(i) the risky asset returns all have finite second order moments, and the distri-
bution of any linear combination of the returns is uniquely determined by its
mean and variance, and

(ii) his utility function is increasing, concave, and does not assume the value −∞
within the range of possible return values.

Indeed, if (i) holds then the expected utility is effectively a function, say f , of
the mean and the variance of the portfolio return only. If (ii) also holds then
the monotonicity and concavity of the utility function imply that f is increasing
(resp. decreasing) with respect to the mean (resp. the variance). Thus, if an opti-
mal portfolio (for which f is maximized) exists, it must be mean-variance efficient.
Chamberlain (1983) provides necessary and sufficient conditions on the joint dis-
tribution of the risky asset returns for (i) to hold. In particular, it holds in the
case with a risk-free asset if and only if the joint distribution of the risky asset
returns is a multivariate elliptical distribution with finite second order moment
(see Appendix C), the main example of which is the multivariate normal distri-
bution. It is important in this regard to note that the aptitude of multivariate
elliptical distributions to model return distributions is somewhat questionable. In
particular, the multivariate normal distribution has the apparent flaw (as a model
for asset returns) that it implies that all risky assets have unlimited liability, i.e.,
the returns are not bounded from below, which is not the case for stocks, say, in
reality. Furthermore, as indicated above, a necessary condition for the existence of
an optimal portfolio that includes risky assets is that the utility function does not
assume the value −∞, which rules out, e.g., the CRRA utility functions.

Remark 2.4.3 As in the literature quoted above we have discussed the mean-
variance approach in terms of the return of a portfolio rather than the terminal
wealth corresponding to a portfolio, and this may seem to be inconsistent with the
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expected utility maxim. However, since the terminal wealth X(T ) in a single-period
model corresponds one-to-one to the return R by the formula

X(T ) = X(0)(1 +R),

where X(0), of course, is the (known) initial wealth, it is easily seen that any
quadratic utility function of the form (4.2) corresponds to a quadratic utility func-
tion in R (or, equivalently, in 1+R). Also note that if the distribution of the risky
asset returns is multivariate elliptical, then so is of course the distribution of the
terminal values of the risky assets, and vice versa. Qualitatively, there is therefore
no inconsistency. Quantitavely there is, however: Although the utility functions of
return and terminal wealth are both quadratic, their coefficients (corresponding to
k in (4.2)) are different. Thus, if an agent has a given quadratic utility function of
terminal wealth, the corresponding utility function of return depends on his initial
wealth, and it would therefore in general be inconsistent with the expected utility
maxim for the agent to choose the same relative portfolio at different wealth levels.

Without particular assumptions about the joint distribution of the risky asset re-
turns, little can be said in general about the structure of the optimal portfolio (if
it exists) for an investor with a general non-quadratic utility function. Cass and
Stiglitz (1970) derive conditions on the utility function for separability, i.e., for the
existence of two mutual funds such that the investor can obtain his maximum ex-
pected utility by investing only in the mutual funds regardless of his initial wealth
(the more general case where more than two funds are required is also studied). As
such, the results are of minor interest because the asset allocation in each of the
mutual funds may depend on the utility function of the investor, implying that the
funds are not (necessarily) actually mutual, i.e., an investor with a different utility
function may require a different set of funds. However, by inspection of the results
it can be concluded (as was done in Merton (1992), Ch. 2) that in a general market
with a risk-free asset there exists a single genuine mutual fund of risky assets such
that any number, say K, of investors can obtain their maximum expected utility
by investing only in the risk-free asset and the mutual fund if and only if the k’th
investor has HARA utility with a risk aversion function in the form

a(x) = (cx+ dk)
−1,

k = 1, . . . ,K. Note that c must be the same for all investors, implying that the
utility functions are very similar. Furthermore, in a general market without a risk-
free asset there exist two (genuine) mutual funds providing sufficient investment
possibilities if and only if all investors have quadratic utility functions or all in-
vestors have CRRA utility functions with the same CRRA coefficient. Of course,
these results also require that the investors agree on the joint return distribution.

Various conditions on the joint distribution of asset returns for the existence of
mutual funds can be found in Merton (1992) (Ch. 2), where many of the abovemen-
tioned results in the single-period setup are collected, and in some cases generalized.
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2.5 Multi-period portfolio selection

In a multi-period portfolio selection problem the time set is given by T = {0 =
t0 < . . . < tN = T}. At each time tk < T the investor chooses a portfolio that
he holds until tk+1, where the new asset prices materialize and the return on the
portfolio over the period concerned is thus revealed.

Tobin (1965) appears to be (one of) the first to study optimal multi-period portfo-
lio selection. He extends the Markowitz-Tobin single-period static mean-variance
approach to more than one period and thus argues that the investor’s choice in the
multi-period case is described in the same way as in the single-period case: The
investor should only consider portfolio sequences (i.e. strategies) that are efficient
in terms of the overall return R given by (1 + R) = (1 + R(1)) · . . . · (1 + R(N)),
where, of course, R(1), . . . , R(N) are the N single-period returns. In other words,
the expected value E(1 + R) should be maximized for a given value of the total
risk σ, given by σ2 = V(1 +R). In the general case, where R(1), . . . , R(N) can be
mutually dependent and have different marginal distributions, an efficient portfolio
sequence cannot be derived, but it is claimed that if they are taken to be i.i.d.,
all efficient portfolio sequences should be “stationary”, that is, the expected re-
turns (and thereby the risks) of all single-period portfolios in an efficient portfolio
sequence should be equal. However, as pointed out by Mossin (1968), this is not
correct.

Mossin (1968) begins with a one-period analysis and focuses on the quantitative
difference between the utility functions of return and terminal wealth as discussed in
Remark 2.4.3. It is thus made clear that the single-period mean-variance approach
must be used with caution. He then shows for general asset return distributions
that the only utility functions implying the same preference orderings regardless
of whether the return or the terminal wealth is used as argument are the CRRA
ones. Thus, these are the only utility functions leading to relative portfolio choices
that are independent of initial wealth.

He then turns to the multi-period case and considers the general problem of
maximizing expected utility of terminal wealth. He argues that dynamic program-
ming is appropriate as an approach to the problem. The claim made by Tobin
(1965) about stationarity of mean-variance efficient portfolio sequences is rejected
— Tobin’s analysis is flawed because he does not allow the single-period relative
portfolios to depend on the changing wealth levels over time, which is necessary
in the case of quadratic utility (however, although it is of minor importance we
mention that within the restricted class of portfolio sequences that are not allowed
to depend on the development of the prices, the optimal ones (in terms of the
mean-variance criterion) are indeed the stationary ones).

In a setup with two independent assets and independence between periods
Mossin characterizes the class of utility functions for which optimality is obtained
by optimizing in each period without looking ahead. Such behaviour is termed
“myopic” (i.e., short-sighted). In general, complete myopia, where the agent be-
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haves in each period as if it were the last one and thus simply maximizes utility
of the end-of-period wealth, is optimal if and only if the utility function is in the
CRRA class. It is further shown that if the utility function is in the larger HARA
class and one of the assets is risk-free, then complete myopia is still optimal if the
interest rate is 0, whereas so-called partial myopia, where the agent behaves in each
period as if the entire end-of-period wealth were to be invested in the risk-free asset
for the remaining periods, is optimal if the rate is non-zero. Finally, Mossin shows
that in general, a stationary portfolio policy is optimal if and only if the utility
function is in the CRRA class and the yield distributions in the different periods
are i.i.d.

Samuelson (1969) is apparently the first to study the combined problem of optimal
investment and consumption. He works with a discrete-time model with tk =
k, k = 0, . . . , N (in particular T = tN = N). There is a risk-free asset with rate r
and a risky asset with dynamics

S(t+ 1) = S(t)Z(t), t = 0, . . . , N,

where Z(0), . . . , Z(N) are i.i.d. random variables with values in [0,∞) and an
arbitrary cdf. P . The objective can be written as

sup
C,w

E

[
N−1∑

t=0

(1 + ρ)−tv(∆C(t)) + (1 + ρ)−T v(X(T ))

]

subject to the wealth dynamics

X(t+ 1) = (X(t) − ∆C(t))[(1 + r)(1 − w(t)) + w(t)Z(t)],

withX(0) given. The parameter ρ is a subjective time preference parameter, ∆C(t)
is a consumption lump at time t (consumption thus takes place at the beginning
of each period), v is the utility function, and the w(t) are the fractions of wealth
put into the risky asset. Samuelson derives a solution algorithm for the general
problem.

The important part of the main theorem of Samuelson (1969) states that for
CRRA utility functions the optimal portfolio decision is independent of time,
wealth, and all consumption decisions, leading to a constant optimal fraction w∗,
which is characterized as the solution to

0 = E
(
v′((1 − w)(1 + r) + wZ)(Z − 1 − r)

)
.

This is in perfect accordance with the results of Mossin (1968). The result can
easily be extended to the case with several risky assets, but, of course, no explicit
portfolio expressions can be derived in general.

Hakansson (1970) studies a problem very similar to that of Samuelson (1969) but
works with an infinite time horizon and includes fixed noncapital (e.g., wage) in-
come y ≥ 0 at the end of each period. He obtains explicit results for CRRA and
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CARA utility functions similar to those obtained by Samuelson (1969). With the
inclusion of fixed noncapital income one should consume and invest in the risky
assets exactly as if the future noncapital income were replaced by its present value
and added to the wealth. Thus, the sum S of the current wealth X and the present
value y of future noncapital income should be thought of as the state variable.
The amount to invest in the risk-free asset is then given as the remaining wealth,
which equals the amount to invest if S were the wealth (and there were no future
noncapital income) minus y. With S as the state variable the results regarding
both investment and consumption are as in Samuelson (1969).

Hakansson (1969) extends the setup in Hakansson (1970) by considering the agent’s
lifetime as being uncertain (although the publication years of the two papers would
seem to indicate otherwise, the 1970 paper does precede the 1969 paper). Hakans-
son (1969) works with CRRA utility functions and a finite time horizon, within
which death is assumed to occur (this does not appear to be a crucial assumption,
however). He first considers the case where no utility is assigned to the wealth at
the time of death. The optimal investment strategy is then exactly as the one found
in Hakansson (1970), because the uncertainty regarding the lifetime basically just
changes the preference structure with respect to consumption at different times
and thus only affects the optimal consumption strategy. In particular, the future
noncapital income should still be capitalized on the basis of the risk-free interest
rate only. He then considers the case where nonzero utility, given by a utility
function u, is assigned to the wealth at the time of death. An explicit solution is
found only in the case where u = v and there is no future noncapital income. The
optimal investment strategy is then exactly as in the first case. Hakansson then
studies the problem in the situation where the agent has the possibility of buying
term insurance on his life. He first considers the case where the agent can enter
into an insurance contract, with fixed future premium payments, at the beginning
of the period. Solutions are obtained in special cases, and the optimal investment
strategy is as in the case without insurance apart from the fact that the capitalized
future premiums should be deducted from the wealth before the results from the
case with no noncapital income and no insurance is applied. He finally considers
the case where the agent can decide the amount of term insurance to buy at each
decision point, but no solution is obtained in the general case.

Remark 2.5.1 Markowitz (1952) actually considers the multi-period consump-
tion/investment problem in the general form (3.1) under the restriction that C is
a pure jump process with jumps ∆C(0), . . . ,∆C(T − 1), i.e., only consumption
lumps at times 0 < . . . < T − 1 are allowed), and argues, under the assumption
of i.i.d. risky asset return distributions, that in order to get the correct solution
to the problem the theoretically correct approach is dynamic programming. How-
ever, Markowitz obtains no explicit results because he does not believe that it is
possible in general to determine a reasonable, and yet tractable, utility functional
V and to solve the single-period optimization problems (at least with the available
machinery at the time of his writing) and therefore makes no attempt to study
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the problem in detail. In particular, although he recognizes that the assumption
of time additivity of utility (of consumption as well as terminal weatlh) may ease
the mathematical tractability considerably, he does not pursue the problem under
this assumption because he considers it to be “uneconomical”.

2.6 Continuous-time portfolio selection

In a continuous-time portfolio selection problem the investor chooses a new portfolio
at each time t ∈ [0, T ], and new asset prices materialize continuously over time.
Unless otherwise specified, the consumption stream is restricted to being absolutely
continous wrt. the Lebesgue measure, i.e., of the form C(t) =

∫ t
0 c(s) ds, t ∈

[0, T ], where c is the consumption rate. The continuous-time setup has become the
standard setup in the modern literature on portfolio optimization. It is of course
more general than the single- and multi-period setups, as the investor can still use
a simple (discrete-time) strategy if he likes. However, it should also be noted that
the setup relies (in its purest form, at least) on very strong assumptions, and it
adds complexity to the underlying mathematics.

A large part of the continuous-time models studied in the literature are based on
Brownian motions, and it is therefore convenient to introduce a standard Brownian
motion model of a financial market. In this model the uncertainty is driven by a
standard D-dimensional Brownian motion W = (W1(t), . . . ,WD(t))′t∈[0,T ]. There
is a locally risk-free asset with price dynamics given by

dS0(t)/S0(t) = r(t) dt, 0 ≤ t ≤ T, (6.1)

and n (locally) risky assets with price dynamics of the form

dSi(t)/Si(t) = αi(t) dt+

D∑

d=1

σid(t) dWd(t), 0 ≤ t ≤ T, (6.2)

i = 1, . . . , n. The interest rate, drift, and volatility processes, r, αi, i = 1, . . . , n,
and σid, i = 1, . . . , n, d = 1, . . . , D, respectively, are referred to as the coefficients
of the model; these are in general adapted processes, which must satisfy certain
integrability conditions (see Karatzas and Shreve (1998)). In this model the as-
sumption that the market is free of arbitrage opportunities implies (Karatzas and
Shreve (1998), Theorem 1.4.2) that there exists an adapted D-dimensional process
λ = (λ1(t), . . . , λD(t))′t∈[0,T ′] such that (for Lebesgue-almost-every t ∈ [0, T ′] and

almost surely)

αi(t) = r(t) +

D∑

d=1

λd(t)σid(t), i = 1, . . . , n, (6.3)

in particular, we must have D ≥ n. In general, λ is not uniquely determined from
the price process dynamics (6.1)-(6.2), but for a given process λ satisfying (6.3), the
components λ1, . . . , λD, are interpreted as the market prices of risk related to theD
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risk sources W1, . . . ,WD (the market prices of risk are then also included when we
refer generically to the coefficients of the model, of course). However, if the n×D
matrix σ(t) of volatility coefficients has full rank D (for Lebesgue-almost-every
t ∈ [0, T ′] and almost surely), then λ is uniquely determined.

If the process λ is given, the relation (6.3) is sometimes inserted directly in (6.2)
in a given model. We denote by Σ(t) the n× n variance matrix (σ(t))(σ(t))′. We
refer to Karatzas and Shreve (1998) for details and more properties of this market
model (be ware, however, that they use the term standard model in a slightly more
restrictive way than we have done here).

For notational convenience we shall sometimes use other subscripts than nu-
merical indices on the price processes and Brownian motions, and we may also
equip these with superscripts.

Remark 2.6.1 Some authors allow the components of the Brownian motion to
be correlated. This does not represent an essential generalization of the standard
Brownian motion model introduced above: If Φ denotes the (fixed) instantaneous
correlation matrix (of W ), then there exists a D×D matrix B such that Φ = BB ′ =

BIB′, where I is the D-dimensional unit matrix. Then W
d
= BW̃ , where W̃ is a

standardD-dimensional Brownian motion, so an equivalent model is obtained upon
replacing W by W̃ and the volatility matrix σ(t) by σ(t)B. However, it should be

noted that the interpretation of each W̃i is different from the interpretation of Wi.

Merton (1969) is a companion paper of Samuelson (1969) that deals with the contin-
uous-time version of the problem. Together with Merton (1971) the paper initiated
the study of optimal consumption and investment in continuous time, and these
have been some of the most celebrated papers in the financial literature since then.
The results in Merton (1969) that are of interest here are also included in Merton
(1971), to which we therefore turn our attention.

Merton (1971) works within the standard Brownian motion model. In the basic
setup there are n risky assets with strictly positive price processes governed by the
dynamics

dSi(t)/Si(t) = αi dt+ σi dWi(t), i = 1, . . . , n, (6.4)

where W1, . . . ,Wn may be correlated with coefficients ρij, i, j = 1, . . . , n. The
risky asset coefficients, i.e., the αi’s and σi’s, are in general allowed to depend on
(t, S(t)), but most of the explicit results are obtained when they are assumed to be
constant. In this case the price processes are geometric Brownian motions. There
may or may not be a risk-free asset; both cases are treated. It is assumed that
the variance matrix Σ = (Σij)i,j=1,...,n = (σiρijσj)i,j=1,...,n is non-singular, which
implies that the model is arbitrage free (and complete in the case with a risk-free
asset).

For a given consumption rate process c and a risky asset portfolio fraction
process w the wealth develops according to the dynamics

dX(t) = X(t)(r + w′(t)(α− r1n)) dt− c(t) dt +X(t)w′(t)D(σ) dW (t), t ∈ [0, T ].
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When there is no risk-free asset the constraint w ′(t)1n =
∑n

i=1 wi(t) = 1, ∀t ∈
[0, T ], must be imposed, and r then drops out of the dynamics as it should. No
constraints on w are imposed when there is a risk-free asset; as noted in the intro-
duction the fraction of wealth invested in the risk-free asset at any time t ∈ [0, T ]
is then given residually by 1 − w′(t)1n.

The objective is

max
C,w

E

(∫ T

0
v1(t, c(t)) + v2(T,X(T ))

)
,

where, for each t ∈ [0, T ], v1(t, ·) is a strictly concave utility function, and v2(T, ·)
is a concave utility function.

The first important result is a separation or mutual fund theorem: When the
risky asset coefficients are constant, there exists a unique (up to a nonsingular
transformation) pair of “mutual funds” constructed from linear combinations of
the assets such that, independent of preferences (i.e., the form of the utility func-
tions), wealth, and time, the investor is indifferent between choosing from a linear
combination of these two funds or a linear combination of all the original assets.
Once again we emphasize the importance of such results for pension funds (note in
particular the independence of preferences).

When there is a risk-free asset, the funds can be chosen such that one consists
of the risk-free asset only and the other consists of risky assets only. The “risky”
portfolio is then determined by the vector

w̃ = Σ−1(α− r1n). (6.5)

In the case with no risk-free asset two mutual funds can be obtained by inserting
two arbitrary values r1 < r2 < r̄ := (1′nΣ−1α)/(1′nΣ−11n) of the “free” parameter
r in (6.5) and normalizing by the sum of the obtained vector components to obtain
genuine portfolios. Note that the price (per share) processes of the mutual funds
are geometric Brownian motions themselves.

Apart from the fact that the proportions of risky assets in the risky funds in
the continuous-time case are determined by the instantaneous means and standard
deviations, this is in perfect accordance with the results obtained in the single-
period mean-variance analysis, see (4.1) and also Remarks 2.4.1 and 2.4.2, which
apply here as well. The agreement of the form of the optimal portfolios here with
the form obtained in the single-period mean-variance analysis is, in loose terms, due
to the fact that at any time t ∈ [0, T ), the expected change of utility (as measured
by the value function) over an infinitesimally short interval [t + dt) is determined
uniquely by the mean and variance of the instantaneous return of the portfolio
in that interval. It should be noted, though, that the general assertions of the
mutual fund theorem are based on the necessary first order conditions of optimality
obtained from the dynamic programming principle only, and they therefore need
not hold in full generality.



32 Chapter 2

Remark 2.6.2 In an equivalent standard model, where the Brownian motions are
independent (see Remark 2.6.1), it can be shown, by use of simple linear algebra,

that the loadings on W̃1, . . . , W̃n (note that n = D here) of the mutual fund are
proportional to the market price of risk vector λ (cf. (6.3)). In other words, the
diffusion term of the optimally invested wealth is proportional to

λ′ dW̃ (t)

for each t ∈ [0, T ]. There is no similar characterization when the Brownian motions
are correlated, since there is no meaningful and consistent definition of the market
prices of risk of the individual Brownian motions in this case.

Assume now that there exists a risk free asset and that the risky asset coefficients
are constant. Because of the mutual fund theorem it may then be assumed without
loss of generality that there is just a single risky asset (with price process denoted
by S1). It is furthermore assumed that v1 is given by v1(t, y) = e−ρtV (y), where V
is a HARA utility function parameterized as

V (y) =
1 − γ

γ

(
βy

1 − γ
+ η

)γ

,
βy

1 − γ
+ η > 0,

with β > 0, γ ∈ R \ {0, 1}, and for simplicity that v2(T,X(T )) ≡ 0. Note that for
η = 0, V is logarithmic in the limiting case γ → 0, and for η = 1 it is exponential
in the limiting case γ → −∞.

Under certain feasibility conditions (see Remark 2.6.3 below) the HJB equation
can be solved explicitly, and the value function is given by

J(X, t) =
δ

γ
βγe−ρt

[
δ
(
1 − e−(ρ−γν)(T−t)/δ

)

ρ− γν

]δ [
X

δ
+
η
(
1 − e−r(T−t)

)

βr

]γ

, (6.6)

where δ = 1 − γ, ν = r + (α − r)2/(2δσ2), and (1 − e−r(T−t))/r is interpreted as
T − t if r = 0. At any time t ∈ [0, T ], the optimal amount to hold in the risky asset
is given by

w∗(t)X(t) =
α− r

δσ2
(X(t) + f(t)) , (6.7)

where

f(t) =
δη
(
1 − e−r(T−t)

)

βr
, t ∈ [0, T ].

The optimal amount is affine in the wealth X(t), that is, it is the sum of a deter-
ministic amount and an amount that is proportional to X(t). The deterministic
amount, given by f(t)(α−r)/(δσ2), decreases over time (if η(α−r) > 0) and tends
to 0 as t→ T .

Remark 2.6.3 The feasibility restriction ρ−γν > 0 should be imposed (see Sethi
and Taksar (1988)), as is done in Karatzas et al. (1986). Furthermore, as pointed
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out in Sethi and Taksar (1988), the solution is only correct if γ < 1 and η = 0
(corresponding to CRRA utility). If γ < 1 and η > 0 then V ′(0) < ∞, and
both wealth and consumption may become negative under the optimal strategy
for any t ∈ (0, T ) (but not at time T !), thus violating the feasibility conditions
X(t), c(t) ≥ 0, ∀t ∈ [0, T ], (note, however, that these are not explicitly stated in
Merton (1971) but only in Merton (1969)). Thus, unless one allows for negative
consumption, J is not the value function. It is the value function if the constraints
X(t) ≥ 0, ∀t ∈ [0, T ], and c(t) ≥ 0, ∀t ∈ [0, T ], are replaced by X(T ) ≥ 0 and
c(t) ≥ −δη/β, ∀t ∈ [0, T ], respectively. If γ < 1 and η < 0, the solution is correct
only if the initial wealth satifies

X(0) ≥ −f(0),

with strict inequality if γ ≤ 0. Otherwise the problem has no solution.
If γ > 1, then V is constant on [−δη/β,∞), implying that −δη/β is a con-

sumption satiation level, where maximum utility of consumption is obtained. The
solution is in this case only correct if the wealth and the consumption rate in are
both allowed to become negative and, if so, only for

X(t) < −f(t).

If X(t) ≥ −f(t), the optimal investment strategy is to invest in the risk-free asset
only.

In the case where v1 and v2 both have the form vi(t, y) = e−ρtVi(y) with Vi

given by

Vi(y) =
1 − γ

γ

(
βiy

1 − γ
+ ηi

)γ

,
βiy

1 − γ
+ ηi > 0,

where βi > 0, i = 1, 2, and γ ∈ R\{0, 1}, the value function (which is not provided
in Merton (1971) but merely claimed to be of the same form as above) is given by

J(X, t) =
δβγ

1

γ
e−ρt

(
δ
(
1 − e−(ρ−γν)(T−t)/δ

)

ρ− γν
+

(
β2

β1

)γ/δ

e−(ρ−γν)(T−t)/δ

)δ

×
(
X

δ
+

η1

β1r

(
1 − e−r(T−t)

)
+
η2

β2
e−r(T−t)

)γ

.

Furthermore, if we set v1(t, y) ≡ 0, i.e., only utility of terminal wealth, the terms
δ
(
1 − e−(ρ−γν)(T−t)/δ

)
/(ρ−γν) and η1/β1r

(
1 − e−r(T−t)

)
drop out of the first and

second (large) paranthesis, respectively, and the value function can be written as

J(X, t) =
δ

γ
e−ρT eγν(T−t)

(
β2X

δ
+ η2e

−r(T−t)

)γ

.

The optimal amounts to hold in the risky asset at time t ∈ [0, T ] in the two cases
become, respectively,

w∗(t)X(t) =
α− r

δσ2
(X(t) + f1(t) + g2(t)) ,
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where f1 is as f with η and β replaced by η1 and β1, respectively, and

g2(t) =
δη2

β2
e−r(T−t), t ∈ [0, T ],

and

w∗(t)X(t) =
α− r

δσ2
(X(t) + g2(t)) .

In both cases the optimal amount is still affine in the wealth X(t). However, when
the utility of terminal terminal wealth is nonzero, the deterministic amount tends
to (α− r)η2/(σ

2β2) rather than 0.

Remark 2.6.4 The flaws pertaining to the case η 6= 0 (see Remark 2.6.3) obviously
also apply to the cases with HARA utility of the terminal wealth, and to the
remaining analysis of Merton (1971); we refer to Sethi and Taksar (1988) for proper
reformulations and solutions in this case.

On the other hand, when the solution is correct, the sufficiency conditions of
optimality are fulfilled, and the assertions of optimality are correct. In particular,
this also goes for the mutual fund theorem.

We now briefly compare the optimal strategies in the special cases of CRRA,
exponential, and quadratic utility, when (for simplicity) v1 ≡ 0. They are given,
respectively, by

w∗(t)X(t) = X(t)
α− r

δσ2
, (6.8)

w∗(t)X(t) =
α− r

β2σ2
e−r(T−t),

and

w∗(t)X(t) =
α− r

σ2

(
η2

β2
e−r(T−t) −X(t)

)
,

(as long as X(t) ≤ η2

β2
e−r(T−t)).

There is a considerable difference between the optimal strategies in the three
cases. The CRRA utility functions yield an intuitively appealing strategy, as the
optimal proportion of wealth to hold in the risky asset, w∗(t), is constant and
in particular independent of time and wealth. This in particular would make it
fairly easy to implement for a portfolio manager representing many investors (with
the same degree of risk aversion). Moreover, the wealth never becomes negative
with this strategy. With exponential utility, the optimal amount to hold in the
risky asset is deterministic and in particular independent of the wealth, which is
rather implausible. With quadratic utility, the optimal amount in the risky asset
is proportional to the difference between the (present value of the) satiation level
and the wealth X(t). In other words, the wealthier the investor is, the less should
he invest in the risky assets, which is also counterintuitive. Moreover, the wealth
may become negative in the cases of exponential and quadratic utility.
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We emphasize two important points: First, the form of the utility function plays
an extremely important role, and this is also the case in more general models than
the one considered here. There are very few specific results on optimal investment
that hold for all utility functions. Second, of the three forms considered above,
the CRRA utility functions are by far the most reasonable ones judging by the
intuitive appeal of the optimal strategies, and it is therefore no surprise that they
are the most widely used ones in the modern literature on portfolio optimization.
Note that with CRRA utility the proportion of wealth invested in the risky asset(s)
should be constant; there is no reason (in this basic setup) that it should decrease
when t approaches T , as is commonly stated advice by practitioners.

Different variations of the original problem are also studied, and we shall report
the most interesting results.

If the agent has a positive, non-capital income stream (e.g., salary) with deter-
ministic rate y = (y(t))t∈[0,T ], the optimal amount to hold in the risky asset at any
time t ∈ [0, T ] in the case with utility of both consumption and terminal wealth
becomes

w∗(t)X(t) =
α− r

δσ2
(X(t) + b(t) + f1(t) + g2(t)) , (6.9)

where

b(t) =

∫ T

t
e−r(s−t)y(s) ds, 0 ≤ t ≤ T.

In the case with zero utility of terminal wealth (resp. consumption) the term g2(t)
(resp. f1(t)) simply drops out. Thus, the optimal amount can be calculated as in the
case with no income by simply replacing the wealth by the sum of the wealth and
the present value of the future income, b(t). In particular, in the CRRA utility case,
where f1 ≡ g2 ≡ 0, the fraction of wealth to hold in the risky asset now decreases
over time as the present value of future income decreases. It is also worth making
the somewhat counterintuitive observation that for any fixed t ∈ [0, T ), the optimal
fraction of wealth to invest in risky assets, w∗(t), is decreasing in the wealth X(t)
(regardless of the choice of utility function). Thus, the wealthier one is in terms
of current wealth, the smaller is the optimal fraction of wealth to invest in risky
assets.

The individual may take the uncertainty regarding his lifetime into account. If
the (random) time of death, denoted by τ , is taken to be independent of W and
to have a probability distribution given by P (τ > t) = exp(−

∫ t
0 µ(s) ds), t ≥ 0, for

some deterministic, positive function µ with
∫∞
0 µ(s) ds = ∞, and if the objective

has the form

max
C,w

E

(∫ T∧τ

0
e−ρtV1(c(t)) + 1(τ>T )e

−ρTV2(X(T ))

)
,

where V1 and V2 are given as above, and T ≤ ∞, then the optimization problem can
be solved explicitly (Merton only shows this in the special case when µ is constant
and T = ∞, however). The objective basically just changes the preference structure



36 Chapter 2

with respect to time, as can be seen by recasting it in the form

max
C,w

E

(∫ T

0
e−ρt−

∫ t

0
µ(s) dsV1(c(t)) + e−ρT−

∫ T

0
µ(s) dsV2(X(T ))

)
,

Thus, only the optimal consumption strategy is affected; the optimal investment
strategy is left unchanged (regardless of the involved utility functions). The lat-
ter is also true when a fixed, non-capital income stream is included, that is, the
uncertainty regarding the lifetime plays no role in the evaluation of the future in-
come stream. These results correspond to those obtained by Hakansson (1969).
The more general — and perhaps more interesting — case where a nonzero utility
is assigned to the wealth at the time of death if death occurs before T does not
appear to have a closed-form solution. However, the first order conditions and the
solution to the discrete-time analogue of this problem, which exist and is given by
Hakansson (1969), clearly suggest that it is optimal to invest as in the case with
no uncertainty regarding the lifetime.

More general long term price behaviours, where the risky asset coefficients are
not necessarily constant, are also considered. In the general case it is possible
to obtain an explicit solution with logarithmic utility (only): One should then
always invest as in the case with constant coefficients but with the current values
of the coefficients inserted. Two special cases, one where the drift coefficient is
mean reverting, and one where prices are expected to adjust to a certain long term
“normal” price level, are then considered. Explicit results are obtained only in the
case with just a single risky asset and CARA utility, however (note that since the
mutual fund theorem requires constant coefficients it is a restriction to work with
just one risky asset here), but they indicate that the optimal portfolio rules may
change significantly when the price dynamics change.

Merton (1973) studies optimal consumption and portfolio strategies in a capital
market model, which is an extension of the model employed in Merton (1971). Here,
the investment opportunity set (i.e., the coefficients in the price process dynamics)
are allowed to be stochastic processes with the restriction that the vector X of price
and coefficient processes must be Markovian. Such a model is known as a factor
model, and the components of X are called factors. The main focus is on derivation
of equilibrium asset prices from the optimal asset-demand behaviour of investors,
but general results on investment (and consumption) are obtained in the process.
It should be noted that the entire analysis is based on the first order conditions of
optimality only, however, so the results should be considered with caution.

The optimal investment strategy is such that the demand for the i’th asset
for the k’th investor is given by the sum of the usual term obtained in Merton
(1971) and an additional term reflecting that the investor wants to hedge against
unfavourable changes in the opportunity set. An unfavourable change is one that
leads to a fall in the future consumption for a given level of (future) wealth. It is
shown that if Xk is a component such that a positive change in Xk is unfavourable,
then a risk averse investor will demand more (less) of the i’th asset the more
positively (negatively) correlated its return is with changes in Xk.
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Special attention is paid to two special cases of the general model. In the first
one, the opportunity set is taken to be constant. This is the model also employed
in Merton (1971), where optimal portfolio strategies were derived. It can be shown
under the condition that the market portfolio is efficient in equilibrium that the
returns of the n risky assets will satisfy

αi − r = βi(αM − r), i = 1, . . . , n,

where βi = σiM/σ
2
M , σiM is the covariance of the return on the i’th asset with

the return on the market portfolio, and αM is the expected return on the market
portfolio. This is a continuous-time analogue of the Security Market Line of the
classical CAPM.

The second model is a single-factor model where the factor is taken to be the
interest rate, which is (of course) stochastic. It is furthermore assumed that one of
the assets (the n’th one, by convention) has a return that is perfectly negatively
correlated with changes in r (e.g., a default free zero coupon bond). Merton obtains
a three-fund theorem analogue to the mutual fund theorem in Merton (1971), with
the third fund consisting purely of the n’th asset. In equilibrium one then obtains
the relation

αi − r =
σi(ρiM − ρinρnM )

σM (1 − ρ2
nM )

(αM − r)+
σi(ρin − ρiMρnM)

σn(1 − ρ2
nM )

(αM − r), i = 1, . . . , n−1,

where the ρ’s are the correlation coefficients in the underlying driving Brownian
motion.

Merton then returns to the general model, where m state variables are required
to describe the opportunity set. The utility functions are also allowed to be state
dependent. The three-fund theorem is generalized to an (m + 2)-fund theorem,
i.e., there exist m + 2 mutual funds such that all investors can invest optimally
by investing in the funds only. These funds can be chosen in such a way that the
(m+1)’th one is the classical Merton (1971) portfolio of risky assets given by (6.5)
with the current coefficients inserted, the (m+2)’th consists of the locally risk-free
asset only, and, for i = 1, . . . ,m, the i’th has maximum possible correlation with
the i’th state variable.

Richard (1975) studies a consumption and investment problem for an individual in
a setup similar to the basic one in Merton (1971). However, the agent explicitly
takes the uncertainty regarding his time of death into account and is provided
with the possibility of purchasing (infinitesimal) life insurance coverage with a
variable premium rate p. Furthermore, the agent has a fixed future income stream
with deterministic rate y (contingent upon survival). The problem is akin to the
discrete-time problem studied by Hakansson (1969). Denoting by τ the time of
death (which is assumed to occur in [0, T ]), and by Z(τ) the legacy in case of death
at time τ (i.e., the sum of the wealth and the insurance sum), the objective is given
by

max
c,p,w

E

(∫ τ

0
v1(s, c(s)) ds + v2(τ, Zτ )

)
,
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where c, p, and w are the controllable processes, i.e., the consumption rate, the pre-
mium rate, and the vector of portfolio fractions, respectively. The utility functions
vi(s, ·), i = 1, 2, are assumed to be strictly concave.

The life insurance coverage takes the form of a sum of the amount p(t)/µ(t) to
be paid out upon death at time t. Thus, µ(t), which is taken to be deterministic, is
the price (charged by some life insurance company) per unit of insurance coverage
at time t. Obviously, p must be predictable. It is assumed that µ(t) ≥ λ(t), ∀t ∈
[0, T ], where λ denotes the actual mortality intensity (also deterministic), i.e., the
company is allowed a risk loading. There are no (a priori) restrictions on the size
or sign of p (see Remark 2.6.5 below).

As for general results, a mutual fund theorem also obtains here, and the com-
position of risky assets is as in Merton (1971). Furthermore, it is shown that if the
future income stream is relinquished at time t in favour of the certainty equivalent
value b(t) given by

b(t) =

∫ T

t
e−

∫ s
t

r+µ(τ) dτy(s) ds, (6.10)

which is added to the current wealth, X(t), then the expected future utility and the
optimal strategy remain unchanged. This is analogue to the result in the case with
fixed income in Merton (1971). However, b(t) is here calculated with the discount
factor e−

∫ s

t
r+µ(τ) dτ (whereas the corresponding discount factor in Merton’s result

is e−
∫ s

t
r dτ ). The explanation is that adding b(t) to X(t) reduces the optimal sum

insured by b(t) and thus the optimal premium rate by b(t)µ(t), and since b(t),
placed at the risk free interest rate, finances a certain payment stream with rate
y(s)− b(s)µ(s), t ≤ s ≤ τ , the agent is indifferent (for comparison, Merton’s result
was obtained in a somewhat different setup with no possibility to buy life insurance
and no utility of the legacy upon death).

Explicit solutions are obtained when, for i = 1, 2, vi has the form vi(t, c) =
hi(t)u(c), 0 ≤ t ≤ T , where hi(t) > 0, ∀t ∈ [0, T ], and u is a CRRA utility function
(independent of i). Not surprisingly, the optimal investment strategy corresponds
to (6.9) with b of course given by (6.10) (and δ = 1− γ, f1 ≡ g2 ≡ 0). The optimal
premium rate p∗ is given by the equation

Z∗(t) := X(t) +
p∗(t)

µ(t)
=

(
h2(t)λ(t)

aδ(t)µ(t)

)1/δ

(X(t) + b(t)), 0 ≤ t ≤ T,

where a : [0, T ] → R is given by

a(t) =

∫ T

t

(
(λ(s)/µ(s))γ/δ (λ(s)h2(s))

1/δ + h
1/δ
1 (s)

)
e−

1
δ

∫ s
t

λ(τ)−γ(ν+µ(τ)) dτds,

0 ≤ t ≤ T , with ν = r + (α− r)2/(2δσ2).

A noteworthy feature of the optimal premium rate is that, for any t ∈ [0, T ],
the corresponding (optimal) legacy Z∗(t) is linear in X(t) + b(t). We also see
that if h2(t)λ(t)/(aδ(t)µ(t)) ≥ 1 then p∗(t) ≥ 0. Otherwise the optimal premium
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rate is strictly negative when the wealth is sufficiently large; in this situation the
individual actually sells insurance to the company, i.e., he receives strictly positive
“premiums” from the company, which in turn is entitled to receive a strictly positive
lump sum amount upon his death. However, the optimal legacy will always be
nonnegative, that is, his wealth will always be large enough to cover any sum that
must be paid to the company.

Remark 2.6.5 The premium rate is not only allowed to become strictly negative;
as we have seen it will in fact do so in some circumstances under the optimal
strategy. This may seem unrealistic since selling insurance in this way is not possible
in practice. However, the setup is not at all unrealistic; all that is required is
that the individual has his wealth managed as a reserve by a company under a
highly flexible insurance scheme that at all times allows him to make deposits and
withdrawals and to determine the size of the sum insured, i.e., the total sum to
be paid out should he die within the following small time period, subject only
to the constraint that it must be nonnegative. The difference between the sum
insured and the reserve would then simply constitute the actuarial sum at risk,
from which the actuarial risk premium could be calculated and subtracted from
the reserve. Positive and negative premium rates in Richard’s setup would then
simply correspond to positive and negative risk premiums, and both cases indeed
occur in standard insurance schemes.

Aase (1984) sets up an optimal portfolio (and, secondarily, consumption) prob-
lem in a generalized market, where the price processes have drift, diffusion and
jump parts (with deterministic relative jump sizes), and where the coefficients are
in general allowed to be adapted processes so that the model is not necessarily
Markovian. However, the proposed general solution method is erroneous, and in
a special case with Markovian dynamics, which is also considered, the stated HJB
equation is incorrect and thus leads to incorrect solutions. Nevertheless, the gen-
eral problem is (partly) solved in the cases with logarithmic and linear utility (in
the latter case neither borrowing nor short-selling is allowed), where the solutions
are in fact correct in spite of the erroneous approach due to certain nice proper-
ties of these functions. Only a semi-explicit solution is provided in the logarithmic
utility case, though. In the linear utility case the optimal strategy is, of course, to
invest the entire wealth at any time t ∈ [0, T ] in the asset with the largest expected
instantaneous return.

Karatzas et al. (1986) study a general consumption and investment problem in a
setup similar to the basic one studied in Merton (1971), but with an infinite time
horizon and with the explicit constraint that consumption must be nonnegative.
The objective is to maximize

E

(∫ τ

0
e−ρtv(c(t)) dt + e−ρτP

)
,
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where ρ > 0, τ is the time of bankruptcy, i.e., with X denoting the wealth process,
τ = inf{t ≥ 0 : X(t) = 0} with inf ∅ = ∞, and P ∈ [−∞,∞] is an arbitrary value
assigned to the state of bankruptcy. There are several possibilities for specification
and interpretation of P , a natural one is to set P equal to the “present utility”
of zero consumption from the time of bankruptcy to infinity with the obvious
interpretation that no consumption can take place after bankruptcy.

The utility function v : [0,∞) → [−∞,∞) is assumed to belong to C 3((0,∞))
and to satisfy v(0) = limc↘0 v(c). It is furthermore assumed that v is strictly
increasing and strictly concave with limc→∞ v′(c) = 0.

The model is interesting only if P < 1
ρ limc→∞ v′(c); otherwise there is no

optimal strategy ( one should consume so as to get to bankruptcy as quickly as
possible). On the other hand, if P < 1

ρv(0) then the optimal investment and

consumption strategies are exactly as in the case P = 1
ρv(0), and they never lead

to bankruptcy. It is therefore assumed that 1
ρv(0) ≤ P < 1

ρ limc→∞ v′(c).

Explicit solutions for the optimal strategies and the value function V are ob-
tained under a certain technical feasibility condition, which ensures that V (x) ∈
R, ∀x ∈ (0,∞). It is shown in particular that the value function is twice continu-
ously differentiable. A mutual fund theorem similar to the one obtained in Merton
(1971) holds true, and the optimal proportion to invest in the risky fund is

π = −(α− r)V ′(x)

σ2xV ′′(x)
,

which in general depends on the value function V . In the case where v is a CRRA
utility function with CRRA coefficient 1 − γ, the abovementioned technical feasi-
bility condition is equivalent to the condition ρ− γν > 0, see Remark 2.6.3.

Bajeux-Besnainou and Portait (1998) analyze dynamic mean-variance efficient port-
folios, i.e., portfolios in markets with continuous trading whose return (or terminal
value) has minimum variance for given expectations. They show that in a market
that offers a zero-coupon bond with maturity T but otherwise can be quite gen-
eral in the sense that the price processes are merely semimartingales, the efficient
frontier is generated by the static combinations of the zero coupon bond and some
arbitrarily chosen efficient portfolio, which, if the market is complete, can be cho-
sen to be a short position in the portfolio yielding a payoff equal to the state price
deflator. These results substantially generalize those obtained by Merton (1971) in
the quadratic utility case. Explicit results are obtained in some complete, Brownian
motion-driven models, where the payoff of the state price deflator can be obtained
using constant relative portfolios.

Khanna and Kulldorff (1998) generalize the mutual fund theorem of Merton (1971)
to the case where the utility function of the investors are merely assumed to satisfy
the very mild assumption that they should be nondecreasing (in particular, they
are allowed to be linear or even convex). There exists a mutual fund such that if an
optimal investment strategy exists, then there also exists an optimal strategy that
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invests in the mutual fund and the risk-free asset only, and if no optimal strategy
exists, then for any strategy there is a strategy involving only the mutual fund and
the risk-free asset, which is as good or better.

2.7 The martingale method

A major breakthrough in the field of financial mathematics was achieved with the
seminal papers Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983),
which were mentioned in Paragraph 2.1.D. They have had tremendous impact on
both foundations and applications of the modern theory in this area and have led
to a powerful approach to portfolio optimization, sometimes called the martingale
method, which can be used in general, particularly non-Markovian, models. In
this section we explore some of the literature on this method and thereby make a
slight digression from the main line of this survey in the sense that our focus will
move somewhat from concrete, explicit results on optimal investment strategies to
the methods employed to derive them (although (semi-)explicit results will also
appear).

Pliska (1986) exploits the results of Harrison and Pliska (1981, 1983) to formulate a
new approach to the optimal investment problem within the semimartingale model
of Harrison and Pliska (1981, 1983) and under the assumption that an equivalent
martingale measure (in short, an EMM) exists (the idea behind this approach was
in fact mentioned already in Harrison and Pliska (1981, 1983), though). It begins
with the seemingly simple observation that when viewed as random variables, the
terminal wealths that can be obtained at some time horizon T from a given initial
wealth x0 via admissible and x0-financed portfolio strategies employed over [0, T ]
correspond one-to-one to the attainable contingent claims with initial price x0. The
set of discounted attainable contingent claims with initial price x0 is then identified
as a certain subset A of L1(Ω,F ,Q), where Q is an arbitrary EMM called the
reference measure. The investment problem is then formulated in terms of two
subproblems: The first of these is to determine an optimal (discounted) terminal
wealth (or, equivalently, an optimal (discounted) contingent claim with initial price
x0), according to some preference structure. This amounts to choosing an optimal
element of A, and to this end the theory of convex analysis (see Appendix B) is
utilized. The second is to determine an x0-financed portfolio process generating
this terminal wealth; this is then an optimal portfolio process.

More specifically, Pliska works with the objective of maximizing

E (u(X(ω), ω))

over all X ∈ A, where u : R × Ω → R is a state-dependent utility function, which
is concave and strictly increasing in x ∈ R for each fixed ω ∈ Ω. The first result,
based on results from the theory of convex optimization, gives a sufficient condition
for optimality, which in the general case is somewhat abstract and difficult to apply
but nonetheless deserves to be mentioned.
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Suppose that X∗ ∈ A and that Y ∗ is a bounded random variable such that

EQ (XY ∗) = x0E
Q (Y ∗) , ∀X ∈ A. (7.1)

If

u(X∗(ω), ω)Λ(ω) −X∗(ω)Y ∗(ω) = sup
x∈R

{u(x, ω)Λ(ω) − xY ∗(ω)} , a.s., (7.2)

where Λ = dP/dQ, then X∗ is optimal, i.e.,

E (u(X∗(ω), ω)) ≥ E (u(X(ω), ω)) , ∀X ∈ A. (7.3)

Furthermore, we must have Y ∗ ≥ 0, a.s.
Conversely, it is shown that if the functional

X 7→ E (u(X(ω), ω)) , X ∈ L1(Ω,F ,Q),

is finite and continuous on L1(Ω,F ,Q), then the above condition is also necessary
in the sense that if X∗ ∈ A satisfies (7.3), then there exists a bounded random
variable Y ∗ satisfying (7.1) such that (7.2) holds.

As mentioned, this condition for optimality is not easy to apply because it is
in general difficult to characterize the set A in a way that allows for a method
to determine a candidate for X∗. Furthermore, these results do not settle the
question of whether an optimal terminal wealth exists at all. However, based on a
result from Harrison and Pliska (1981, 1983) Pliska shows that when the market is
complete one has

A = {X ∈ L1(Ω,F ,Q) : EQ (X) = x0},

and if X∗ ∈ A and Y ∗ is a bounded random variable such that (7.1) and (7.2) are
satisfied, then Y ∗ must be a strictly positive constant, i.e., Y ∗ = y, a.s., for some
y > 0. It can then be seen that according to the optimality condition (7.2), any
y > 0 leads to an optimal attainable (discounted) wealth candidate X ∗(ω, y) in
closed form, obtained as the maximizer of the function

x 7→ u(x, ω)Λ(ω) − xy, x ∈ R, (7.4)

(almost surely), provided that this function can be maximized (a.s.). Now, (7.1)
must be satisfied (or, equivalently, we must have X ∗ ∈ A and therefore EQ (X) =
x0). Thus, if y∗ > 0 is a number such that (7.1) is satisfied with Y ∗ = y∗, then
X∗(ω, y∗) is an optimal (discounted) terminal wealth.

It is crucial that the function (7.4) can be maximized (a.s.), and, as is easily
seen, this depends heavily on the utility function u, or more specifically, on the
function x 7→ uω(x) := u(x, ω), x ∈ R, defined for each ω ∈ Ω. Pliska shows in
particular that if uω ∈ C1(R) and satisfies the conditions

lim
x→∞

u′ω(x) = 0,

lim
x→−∞

u′ω(x) = ∞,
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almost surely, then the function (7.4) can be maximized (a.s.), and an optimal
attainable (discounted) wealth candidate X∗(ω, y) can thus be obtained. Further-
more, if there exist finite scalars ε and β such that

0 < ε ≤ u′ω(x0)Λ(ω) < β, a.s.,

then there exists y∗ > 0 such that X∗(ω, y∗) ∈ A. These conditions are therefore
sufficient to ensure that a solution to the problem exists, but they are not necessary.

What remains is to solve the second subproblem, i.e., to determine the opti-
mal investment strategy. General results in this direction are not provided, but
apparently the optimal strategy typically depends heavily on u.

Pliska finally solves the first subproblem in the case of exponential utility, and
the corresponding optimal investment strategy is obtained explicitly in the special
case of a Black-Scholes market. This is a special case of the results of Merton
(1971), to which we refer for concrete expressions.

The approach taken by Pliska (1986) was further developed — and extended so as
to incorporate optimization of consumption — in independent studies by Karatzas
et al. (1987) and Cox and Huang (1989, 1991) in the context of complete standard
Brownian motion models. The objectives considered in these papers can be written
in the form

max
(c,η)∈A(x)

E

(
k1

∫ T

0
H(t)u(t, c(t)) dt + k2H(T )u(X(T ))

)
,

where A(x) denotes the set of admissible pairs of consumption and investment
strategies c and η corresponding to the investor’s initial wealth x; k1, k2 ∈ {0, 1}
are constants, and H is a given, subjective discount factor process of the agent,
which is continuous and strictly positive. As for k1 and k2, all three cases of interest
(k1 = 1 − k2 = 0, k1 = 1 − k2 = 1, and k1 = k2 = 1) are considered by Karatzas
et al. (1987); Cox and Huang (1989, 1991) only consider the last of these. The
factor involving H only appears in Karatzas et al. (1987), where u in turn is not
allowed to depend on t.

The papers differ to some extent in terms of aims and scope as well as technical
assumptions in the setups. Cox and Huang (1989) work with Markovian price pro-
cesses (satisfying certain regularity conditions) and focus on constructing explicit
optimal consumption and portfolio strategies. Karatzas et al. (1987) work with
price processes whose coefficient processes are merely adapted but also uniformly
bounded, and deal with existence issues as well as construction of (semi-)explicit
expressions. Cox and Huang (1991) work with slightly more general price processes
and focus on existence issues. In all cases, existence of an EMM is either explicitly
or implicitly assumed, and it is furthermore unique due to the assumption of mar-
ket completeness. A common requirement in the setups is that the wealth process
of the agent must be nonnegative throughout [0, T ].

Although results on optimal consumption are in general taken to be outside
the aims and scope of this survey, certain aspects of the general method developed
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in Karatzas et al. (1987) and Cox and Huang (1989, 1991) pertaining to the con-
sumption issue as such cannot be ignored. The approach to optimal consumption
is based on an idea quite analogous to the idea behind the approach to optimal
investment of Pliska (1986). The observation that any affordable consumption rate
process can be viewed as an attainable (stochastic) payment stream leads to the
idea that determining an optimal consumption strategy is a matter of determining
an optimal attainable payment stream. If the set of attainable payment streams
can be characterized in a suitably simple way, one then needs to find the optimal el-
ement of this set, according to some optimization objective. If this can be achieved,
then what remains is to find an investment strategy such that the resulting wealth
process exactly finances the chosen consumption process.

We emphasize two important points of this approach: First, the method does
not depend on the preference structure for consumption (although the actual opti-
mization problem involved does, of course), so in this sense it supersedes the main
argument for ignoring consumption rules in this survey. Second, it shows that in
problems involving preferences for consumption, optimal strategies for consump-
tion and investment are in general not only related, they are in a certain sense two
sides of the same story: An optimal investment strategy is, by definition, one that
exactly finances an optimal consumption stream. As a curiosity we mention here
the observations made by Samuelson (1969) and Merton (1969) that in the case of
CRRA utility, the optimal consumption and investment decisions are independent
of one another. This, however, is a consequence of the particular properties of the
CRRA utility functions and only goes for the decisions made at any given point in
time; it does not impose any contradiction.

Having commented on the general results on optimal consumption we once again
turn our attention to the issue of optimal investment strategies under objectives
involving the terminal wealth only. The corresponding optimization problems of
Karatzas et al. (1987) and Cox and Huang (1989, 1991) can then be viewed as
special cases of the problem studied by Pliska (1986), and the proposed approaches
are similar. Both Karatzas et al. (1987) and Cox and Huang (1989, 1991) provide
sufficient conditions on u (and on the market coefficients) for existence of an optimal
terminal wealth X η̂(T ). If it exists, it has the form

X η̂(T ) = I

(
Y(x)

Z(T )

H(T )S0(T )

)
, (7.5)

where I := (u′)−1 is the (generalized) inverse of the derivative of u, Z(T ) is the
Radon-Nikodym derivative of the (unique) EMM with respect to the real proba-
bility measure P, and Y(x) is a strictly positive constant ensuring that X η̂(T ) is
attainable with the initial wealth x, i.e.,

E
(
X η̂(T )Z(T )/S0(T )

)
= x.

In particular, if H(T ) is constant (a fairly plausible assumption), the optimal ter-
minal wealth can be characterized by the property that its marginal utility is pro-
portional to the state price deflator Z(T )/S0(T ). In other words, the marginal
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utility of the optimal wealth divided by the state price is the same in (almost) all
states, which is very appealing intuitively: If this quantity, which can be viewed
as a measure of the (local) additional utility per unit of initial cost in each state,
were larger in some states than in others, then it would be possible to increase the
expected utility with the same initial wealth by, loosely speaking, adding more to
the payoffs in the former states and reducing the payoffs in the latter.

Still, an optimal portfolio cannot easily be obtained explicitly in an applicable
form in general. The assumption of market completeness implies that the optimal
terminal wealth is attainable, but in general the hedging portfolio can only be stated
in a form that involves the (abstract) integrand in the martingale representation
of the Q-martingale (

EQ
(
X η̂(T )/S0(T )

∣∣∣Ft

))
t∈[0,T ]

with respect to the D-dimensional Q-Brownian motion W (·) +
∫ ·
0 λ(s) ds, where λ

is the market price of risk process. However, under further regularity conditions
(slightly different in the two papers) on the utility functions and the coefficient
processes, implying in particular that the price processes are Markovian, Cox and
Huang (1989) and Karatzas et al. (1987) show that two certain functions, from
which explicit expressions of the optimal portfolios as well as the value function
of the problem can be obtained, may be characterized as the unique solutions of
two certain linear SDE’s. In particular, explicit results that are consistent with the
results of Merton (1971, 1973), are derived.

The explicit nonnegativity constraint on the wealth process generally plays an
important role for the problem. If u is defined on all of R (which need not be the
case for the constrained problem, of course), one may consider the corresponding
unconstrained problem (without the nonnegativity constraint). Now, if u ′(0) :=
limx↘0 u

′(x) = ∞ then the constraint is not binding, that is, the solutions of the
two problems coincide. Otherwise it is binding in general, and Cox and Huang
(1989) show that the optimal constrained terminal wealth corresponding to the
initial wealth x0, X̂

x0,c(T ), has the form

X̂x0,c(T ) =
(
X̂y0,u(T )

)+
= X̂y0,u(T ) +

(
X̂y0,u(T )

)−
,

where X̂y0,u(T ) is the optimal unconstrained terminal wealth corresponding to an
initial wealth of y0, which is determined in such a way that X̂x0,c(T ) has the initial
value x0. Thus, the optimal constrained wealth is equivalent to the positive part of
X̂y0,u(T ) or, alternatively, to the sum of X̂y0,u(T ) and its negative part. As for the

latter characterization, X̂y0,u(T ) obviously has the intial price y0, and
(
X̂y0,u(T )

)−

therefore must have the price x0 − y0, in particular we must have y0 ≤ x0. In other
words, the optimal constrained wealth can be obtained by investing a part, y0,
of the initial wealth in a portfolio generating the optimal unconstrained terminal
wealth X̂y0,u(T ) and buying a put option on X̂y0,u(T ) with exercise price 0.
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The martingale method was extended to the case of incomplete markets by He and
Pearson (1991a,b) and independently by Karatzas et al. (1991). He and Pearson
(1991a) consider a discrete-time model with a finite underlying probability space
but otherwise very general price processes, while He and Pearson (1991b) and
Karatzas et al. (1991) consider continuous-time standard Brownian motion models.
For brevity we focus on the latter two papers; the methodology of the former is
similar.

When the market is incomplete there are infinitely many EMM’s and therefore
infinitely many state price deflators. Consequently, it becomes increasingly difficult
to identify an optimal portfolio, but He and Pearson (1991b) and Karatzas et al.
(1991) provide sufficient conditions for optimality and obtain existence results. The
basic idea is as follows: If the optimal terminal wealth that is attainable in some
(fictitious) complete market containing the assets in the actual (incomplete) mar-
ket is such that it is attainable also in the actual market, then it must be optimal
there as well, and the maximum expected utility in the fictitious complete market
must in particular equal the maximum expected utility in the actual market. The
optimal terminal wealth in any (fictitious) complete market can be obtained using
the results from Cox and Huang (1989, 1991) and Karatzas et al. (1987), and the
class of fictitious complete markets, which can be characterized and parameterized
by the market price of risk processes θ, thus yields a class of candidate optimal ter-
minal wealths X̂θ(T ). Karatzas et al. (1991) show, under certain mild regularity
conditions on the utility function, that the abovementioned idea holds true. An-
other equivalent sufficient condition for optimality of a candidate X̂θ(T ) obtained
from a fictitious completion is that

E
(
Z(T )X̂θ(T )

)
≤ x0

for any state price deflator Z(T ) (see Remark 2.7.1 below). This is intuitively rea-
sonable because of the well-known fact that the attainable claims in an incomplete
market are those whose price is the same under all consistent pricing measures.

He and Pearson (1991b) focus on another optimality condition. In order to be
optimal, a candidate terminal wealth X̂θ(T ) obtained from a fictitious completion
must satisfy

E
(
u(X̂θ(T ))

)
≤ E

(
u(X̂ν(T ))

)
(7.6)

for all possible market price of risk processes ν. In other words, θ must represent
the “worst possible completion” of the market in terms of (maximum) expected
utility for the agent. The intuitive explanation since is that since the expected
utility of the optimal terminal wealth must be smaller than the expected utility of
the optimal terminal wealth in any fictitious completion, it must in particular be
smaller than in the worst one. Although this condition is necessary (as is easily seen
and also shown by Karatzas et al. (1991)), it is not sufficient in general. However, it
naturally leads to the so-called dual problem of minimizing the maximum expected
utility over all fictitious completions. He and Pearson (1991b) show that a solution
to the original problem can be obtained from a solution to the dual problem.
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Both He and Pearson (1991b) and Karatzas et al. (1991) obtain results on
existence of a solution to the original problem using results from convex duality
theory. We shall not go into details but simply state the most important results.
Assume that u ∈ C2(0,∞). He and Pearson (1991b) show that a solution exists if
u is bounded from above, and

−xu′′(x)
u′(x)

≥ 1, ∀x > 0.

On the other hand, Karatzas et al. (1991) show, under certain regularity conditions,
that a solution exists if u(0) > −∞ and

−xu′′(x)
u′(x)

≤ 1, ∀x > 0.

In particular, a solution exists for any CRRA utility function (assuming sufficient
regularity).

Remark 2.7.1 The term “state price deflator” is not necessarily fully appropriate
here, because in general we only have

E (S0(T )Z(T )) ≤ 1,

and the inequality may be strict. This does not imply existence of arbitrage oppor-
tunities for the investor, however, due to the explicit restriction that the agent’s
wealth process must remain nonnegative.

As for explicit results, Karatzas et al. (1991) show that in the case of logarith-
mic utility, the optimal relative portfolio strategy is always given by the vector
(6.5), with the now random coefficients inserted. This is a substantial generaliza-
tion of the corresponding result of Merton (1971). Thus, a logarithmic investor
simply adjusts his relative portfolio according to the current coefficient values and
in particular does not care about their (anticipated) future development. In the
case of power utility they show that the relative portfolio obtained by Merton
(1971) (with the random coefficients inserted, of course) is optimal in the special
case where all the market coefficients are totally unhedgeable, i.e., adapted to a
filtration generated by a (multi-dimensional) Brownian motion that is independent
of the (multi-dimensional) Brownian motion involved in the diffusion term of the
risky asset price dynamics. Thus, a power utility investor simply ignores the un-
diversifiable risks. The Merton relative portfolio is also optimal if the market is
complete and the interest rate and the market price of risk (but not necessarily the
volatility matrix) are deterministic.

He and Pearson (1991b) show how a solution may be obtained in the special case
of a Markov factor model by solving a quasi-linear PDE. In particular they obtain
results that are consistent with those obtained by Merton (1973) and generalize
those obtained by Cox and Huang (1989).
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Kramkov and Schachermayer (1999) extend the martingale approach further to the
general case of semimartingale financial markets, treating the incomplete-market
case as well as the complete-market case. They work with the discounted price
processes and consider the problem of maximizing the expected utility of the dis-
counted terminal wealth. It is assumed that the utility function u : (0,∞) → R is
in C1(0,∞) and satisfies the conditions

u′(0) := lim
x↘0

u′(x) = ∞,

u′(∞) := lim
x→∞

u′(x) = 0.

In particular, this means that the derivative, u′, has a well-defined inverse I :=
(u′)−1 : (0,∞) → (0,∞). The main result is that if the asymptotic elasticity of the
utility function u is strictly less than 1, i.e., if

lim supx→∞
xu′(x)

u(x)
< 1, (7.7)

then an optimal (discounted) terminal wealth X̂(T ) exists and is unique. The given
characterization of X̂(T ) is somewhat abstract, and we provide here a characteri-
zation adapted to the present context. The optimal (discounted) terminal wealth
X̂(T ) is given by

X̂(T ) = I
(
Y(x)Ŷ (T )

)
, (7.8)

where Y(x) > 0 is a certain constant, and Ŷ = (Ŷ (t))t∈[0,T ] is the solution (which is
also shown to exist and be unique) to the dual problem of minimizing the expected
value

E (u (I [Y(x)Y (T )]) − Y(x)Y (T )I [Y(x)Y (T )])

over the set of nonnegative supermartingales Y = (Y (t)t)t∈[0,T ] with initial value
Y (0) = 1 and with the property that for any admissible portfolio process with cor-
responding wealth process X, the process Y X is a supermartingale. The constant
Y(x) is determined by

x = E
(
X̂(T )Ŷ (T )

)
= E

(
I
(
Y(x)Ŷ (T )

)
Ŷ (T )

)
,

and X̂Ŷ is a uniformly integrable martingale.
This characterization is of course somewhat abstract. However, the expression

(7.8) is similar to (7.5) apart from the discount factor H(T ) in (7.5), which only
pertains to the setup in Karatzas et al. (1991), and the factor S(T ), which has
dropped out because Kramkov and Schachermayer (1999), as mentioned, work with
the expected utility of the discounted terminal wealth. The random variable Ŷ (T )
corresponds to Z(T ): It is easy to note that the abovementioned set of nonnegative
supermartingales contains the density processes of the equivalent local martingale
measures of the market. In the general semimartingale model it is necessary to
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consider this larger set of supermartingales in order to get an existence result,
but apart from that we have a similar characterization as above ((7.6) and the
remarks following it): The supermartingale Ŷ represents, in a certain sense, the
worst possible completion of the market.

It is worth noting that this existence result relies on the assumptions about
the utility function only, and that the characterization of the optimal terminal
wealth depends on the utility function and the optimal supermartingale Ŷ of the
dual problem. It does not depend on the characteristics of the semimartingale
modelling the market as such. Again, this emphasizes the extremely important
role of the utility function. Kramkov and Schachermayer (1999) also show that the
requirement (7.7) is essentially also necessary for existence of an optimal terminal
wealth in general. In the survey article Schachermayer (2002), utility functions
satisfying (7.7) are therefore said to have reasonable asymptotic elasticity.

Cvitanić et al. (2001) extend the approach to the general case of an incomplete semi-
martingale market where the investor has an unhedgeable, but uniformly bounded
endowment process (not necessarily nondecreasing). They obtain a result on ex-
istence of an optimal strategy under some fairly mild assumptions including the
assumption of reasonable asymptotic elasticity of the investor’s utility function,
but we shall not go into details.

Gerber and Shiu (2000) consider an optimal investment problem in a complete
market with a fixed interest rate. The optimization problem is solved for HARA
utilities using an approach that is based on the so-called Esscher transform but
essentially is similar to the martingale technique. In the case of CRRA utilities
with a positive CRRA coefficient, they allow for a minimum guarantee. Their
setup and results are essentially a special case of earlier studies, but the paper
provides a nice, self-contained exposition of the problem, the solution method, and
the results.

2.8 Problems with stochastic interest rates

Although the general models considered in the various papers on the martingale
methodology (Pliska (1986), Karatzas et al. (1987), Cox and Huang (1989, 1991)
etc.) allow in particular for stochastic interest rates, these papers contain only
a few explicit results that can be readily applied in concrete portfolio optimiza-
tion problems. However, investment problems with specific stochastic interest rate
models, which can lead to explicit strategies, have received a lot of attention in
recent years.

Sørensen (1999), Brennan and Xia (2000), Bouiler et al. (2001), Korn and Kraft
(2001), Jensen and Sørensen (2001), and Bajeux-Besnainou et al. (2003) study pure
investment problems in complete, standard models (as introduced in the beginning
of Section 2.6) with (nondegenerate) Gaussian term structures of interest, i.e., with
all (instantaneous) forward rates, as well as the short rate, normally distributed.
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In particular, Sørensen (1999), Bouiler et al. (2001), Korn and Kraft (2001),
and Bajeux-Besnainou et al. (2003) consider single-factor models, where the short
rate of interest has dynamics of the form

dr(t) = (θ(t) − κr(t)) dt− σr dWr(t), (8.1)

where θ : [0, T ] → R is a deterministic function, and κ, σr ∈ R are constants (to
prevent these models from being extremely unrealistic, the so-called mean reversion
parameter κ should be nonnegative, although this is only assumed explicitly in Korn
and Kraft (2001) and Bajeux-Besnainou et al. (2003)). It is assumed that there is
a locally risk-free asset, with price dynamics given by

dS0(t) = S0(t)r(t) dt,

of course. Sørensen (1999), Bouiler et al. (2001), and Bajeux-Besnainou et al.
(2003) adopt the Vasicek (1977) term structure model, where θ(·) ≡ θ is constant
(for κ > 0, θ/κ is then the long-run mean of the interest rate, so θ should also
be nonnegative, but this is not assumed in these papers). Korn and Kraft (2001)
consider the extended Vasicek (1977) model due to Hull and White (1990) as well as
the Ho and Lee (1986) model where κ = 0; the function θ is in both cases determined
so as to make the model fit the initial term structure. Thus, in each case there is
a T ′-bond (i.e., a zero-coupon bond with maturity T ′) for some T ′ ∈ [T,∞), which
has price dynamics of the form

dST ′

1 (t)/ST ′

1 (t) =
(
r(t) + λrσrB(t, T ′)

)
dt+ σrB(t, T ′) dWr(t), (8.2)

where B(t, T ′) = (1 − e−κ(T ′−t))/κ when κ > 0 and B(t, T ′) = T ′ − t when κ = 0.
Here we have equipped S1 with the topscript T ′ to emphasize the maturity of
the bond. The market price of (interest rate) risk parameter λr is assumed to be
constant (Korn and Kraft (2001) allow λr to vary deterministically over time, but
essentially this is not a generalization).

Furthermore, there is a stock with price dynamics given by

dS2(t)/S2(t) = (r(t) + λrσ2r + λsσ2s) dt+ σ2r dWr(t) + σ2sdWs(t),

where σs, λs ∈ R are constants (or deterministic functions), and Ws is independent
of Wr. Thus, the stock may be correlated with the interest rate (and thus the
bond), but there is also independent stock risk with market price λs.

In terms of the optimal portfolio proportions, the solution for a CRRA investor
with CRRA coefficient δ > 0 is given by

[
w1(t)
w2(t)

]
=

1

δ

[
σ2

rB
2(t, T ′) σ2,rσrB(t, T ′)

σ2,rσrB(t, T ′) σ2
2,r + σ2

2,s

]−1 [
λrσrB(t, T ′)
λrσ2,r + λsσ2,s

]

− 1

δ

[
(1 − δ)B(t, T )/B(t, T ′)

0

]

=
1

δ

[
(λrσ2,s − λsσ2,r)/(σ2,sσrB(t, T ′)) − (1 − δ)B(t, T )/B(t, T ′)

λs/σ2,s

]
,
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and w0(t) = 1−w1(t)−w2(t), where B(T, T )/B(T, T ) is interpreted as 1 if T ′ = T
(note, though, that Korn and Kraft (2001) assume δ < 1). The proportion invested
in the stock, λs/δσ2,s, is the same as in the case with constant interest rate, cf.
(6.7). From the expression in the first line it is seen that the optimal relative
portfolio is the sum of the (generalized) classical Merton (1971) portfolio (cf. (6.5)
and (6.8)), and a hedge term used to hedge the interest rate risk; this term involves
the T ′-bond only. In particular, a high risk averter (with a large δ) will always
have a large proportion in the T ′-bond.

If T ′ = T (as in Sørensen (1999), Bouiler et al. (2001), and Bajeux-Besnainou
et al. (2003)), then the optimal strategy has the somewhat undesirable feature
that the bond position explodes at the time horizon, as B(T ) = 0 (this does not
impose admissibility problems, though). The reason is that the volatility term of
the bond thereby also tends to 0, so that in order to make the interest rate risk
factor stay involved the portfolio, which is necessary for effective diversification
and to benefit from the interest rate risk premium, the position in the bond must
explode. This is of course mostly a theoretical problem. As a sort of remedy, Bouiler
et al. (2001) and Bajeux-Besnainou et al. (2003)) show that the optimal portfolio
can be written in terms of constant fractions by introducing another interest rate
derivative, interpreted as a “rolling horizon bond” with constant time to maturity,
with dynamics given by

dS3(t)/S3(t) = (r(t) + λrσ3,r) dt+ σ3,r dWr(t),

for some constant σ3,r (this derivative is redundant in the sense that it can be
mimicked perfectly in the model by a dynamically managed portfolio in the locally
risk-free asset and the T ′-bond). Then w1(t) becomes −(1−δ)/δ, w2(t) is as before,
w3(t) is given by (λrσ2,s − λsσ2,r)/(δσ2,sσ3,r), and w0(t) = 1 −∑3

i=1 wi(t). In
particular, a mutual fund consisting only of shares of the bank account, the stock,
and the “rolling horizon bond” with stock proportion λs/σ2,s, “rolling horizon
bond” proportion (λrσ2,s − λsσ2,r)/(σ2,sσ3,r), and the rest in the bank, could be
shared by all CRRA investors; an investor with coefficient δ and time horizon T
would then invest a proportion 1/δ in this mutual fund and 1 − 1/δ in a T -bond.

Korn and Kraft (2001), on the other hand, assume that T ′ > T , which prevents
the position in the zero-coupon bond from exploding.

Brennan and Xia (2000) consider a more general two-factor model, in which
the interest rate dynamics are given by

dr(t) = (θ(t) + Y (t) − κr(t)) dt− σr dWr(t),

where Y is a random factor with dynamics

dY (t) = (λY σY − ρY (t)) dt− σY dWY (t).

Here, λY , ρ, σY are constants (ρ should again be strictly positive), and Wr and
WY are allowed to be correlated. There are two zero-coupon bonds with different
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maturities T1 < T2; their price dynamics are given by

dSTi

i (t)/STi

i (t) = (r(t) + λrσrB(t, Ti) + λY σY C(t, Ti)) dt

+ σrB(t, > Ti) dWr(t) + σYC(t, Ti) dWY (t),

i = 1, 2, where C(t, Ti)(t) = e−κ(Ti−t)/(κ(κ − ρ)) − e−ρ(Ti−t)/(ρ(κ − ρ)) + 1/(κρ).
It seems necessary to assume that T1 ≥ T , although this is not done explicitly in
the paper. Moreover, as in the abovementionded papers there is a stock with price
dynamics

dS3(t)/S3(t) = (r(t) + λsσs) dt+ σs dWs(t),

where Ws is in general correlated with Wr and WY . Again, the optimal portfolio
is the sum of the usual (generalized) Merton (1971) portfolio and two portfolios
constructed so as to hedge the two state variables. However, it is shown that this
model effectively reduces to a single-factor model in the sense that a T -bond is
sufficient to hedge the risk inherent in the two state variables. In other words, if
T1 = T , then the hedging portfolio is just the T -bond, and the optimal portfolio
proportions in the (locally) risky assets are given by



w1

w2

w3


 =

1

δ
Σ−1



λrσrB(t, T1) + λY σY C(t, T1)
λrσrB(t, T2) + λY σY C(t, T2)

λsσs


+

(
1 − 1

δ

)


0
1
0


 ,

where Σ is the variance matrix of the instantaneous returns. If T < T1, then two
bonds and the bank account can be used to generate a T -bond.

Jensen and Sørensen (2001) extend the problem studied in Sørensen (1999) to
the general case of Gaussian term structure models without specific assumptions
about the short rate. Furthermore, they allow for n risky assets with volatility
coefficients that are stochastic processes. The market price of risk vector is deter-
ministic, however. They obtain the general result that for a CRRA investor the
optimal asset allocation is obtained by investing a part of the wealth in the risky
assets according to the proportions given by w̃/δ, where w̃ is calculated as in (6.5),
and dividing the remaining proportion of wealth, 1 − 1′nw̃/δ, between the locally
risk-free asset and a zero-coupon bond maturing at the time horizon T in a way
that depends on the interest rate model.

We shall briefly comment on other aspects of these papers. Sørensen (1999)
focuses on implementation issues that would occur in practice, where continuous
trading in particular is impossible. In particular it is shown that one can approx-
imate the solution by solving a series of short-term mean-variance optimization
problems in terms of the short-term drift and variance of the forward price of the
optimal wealth, i.e., X(t)/ST

1 (t), where X is the wealth process of the optimal
investment strategy.

In Bouiler et al. (2001) the optimization problem described above is actually
only a part of a bigger, initial problem, namely that of a (defined contribution)
pension fund that seeks to optimally manage a policy, which specifies a determinis-
tic continuous premium rate and a deterministic minimum annuity rate beginning
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at the time of retirement of the policy holder (who is implicitly assumed to live
until the annuity runs out, i.e., mortality risk is ignored). This initial problem is
formulated with the objective of maximizing the expected utility of the surplus
(total assets minus liabilities) pertaining to the policy at the time of retirement,
subject to the constraint that this surplus must be nonnegative. It is shown that
this problem can be solved by short-selling and buying bonds at time 0 in such
a way that the stream of premiums and minimum annuity benefits are perfectly
matched, and then using the proceeds (which must be nonnegative in order for the
problem to have a solution) as the initial value of a portfolio, which can be man-
aged independently so as to maximize the expected utility. This latter problem is
the one described above.

Korn and Kraft (2001) start out with a more general interest rate model given
by the dynamics

dr(t) = a(t, r(t)) dt− σr dWr(t),

where a : [0, T ] × R → R is an arbitrary function (satisfying certain regularity
conditions). Obviously, (eq:GaussianSingleFactorShortRateDynamics) appears as
a special case. They use the dynamic programming approach and prove a non-
standard verification theorem applicable in this general their model. In this regard
it is worth pointing out that most standard verification theorems (e.g. Fleming and
Rishel (1975), Fleming and Soner (1993), Yong and Zhou (1999)) rely on a certain
Lipschitz assumption, which is not satisfied in optimal investment problems with
an unbounded interest rate.

Jensen and Sørensen (2001) also consider the situation where the investor is
constrained by the requirement that the terminal wealth must exceed a certain
minimum amount, say G. This is also known as portfolio insurance. As in Cox
and Huang (1989), the solution in this case is to take a fixed, long position in
zero-coupon bonds that yield the payoff G and use the remaining initial wealth
to buy a European call option, with strike price G, written on an asset that is
formed by investing an initial amount according to the optimal relative portfolio in
the unconstrained case; the initial amount of this portfolio is determined in such
a way that the price of this option exactly equals the remaining initial wealth.
Of course, if this option is not readily available, one can (in principle, at least)
mimick it perfectly via a self-financing investment strategy. The authors focus on
measuring the loss of expected utility for the investor implied by the constraint and
find that it may be quite severe if G is relatively large and the investor is relatively
risk tolerant. They also measure the implied loss of expected utility imposed on
the investor if the wealth is invested according to a different CRRA coefficient,
which may be the case if many investors with different risk attitudes enter into
a common investment pool, e.g. a pension fund. Their results indicate that such
losses may also be quite severe, in particular for low risk averters. However, in the
case of a minimum guarantee, a high risk averter is somewhat compensated by the
guarantee.

Brennan and Xia (2000) and Bajeux-Besnainou et al. (2003) discuss the optimal
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strategies and compare them with “popular advice” from certain financial advisors.
In particular, both papers address an apparent puzzle pointed out by Canner et al.
(1997), namely that according to many financial advisors the ratio of the bond and
stock proportions in the portfolio of (locally) risky assets should increase with risk
aversion, which seems to contradict the mutual fund theorems. Brennan and Xia
(2000) explain that this advice is consistent with their results when the zero-coupon
bond(s) in the optimal portfolio are taken into account as part of the portfolio of
(locally) risky assets. Bajeux-Besnainou et al. (2003) also demonstrate consistency,
but from a different perspective. Note first that if one considers the T -bond as the
risk-free asset (for an investor with horizon T ) and considers the mutual fund with
constant proportions in the bank account, the stock, and the “rolling horizon bond”
as the risky-asset fund, then there is indeed an inconsistency when CRRA investors
are considered. However, the authors show that the optimal strategy for an investor
with HARA utility with c 6= 0 is to buy and hold a T -bond with payoff equal to
−d/c and invest the remaining wealth in the optimal portfolio of a CRRA investor
with CRRA coefficient 1/c (note that a short position in this portfolio may be
appropriate, as the remaining wealth after the initial purchase of the T -bond may
be negative). This means in particular that the ratio of bond and stock proportions
in the risky asset-fund is no longer constant but does indeed increase with the risk
aversion.

Canestrelli and Pontini (2000) also study a pure investment problem where the
short interest rate follows the Vasicek (1977) dynamics, but in contrast to the
abovementioned papers they assume that there are n risky assets modelled as in
the basic setup in Merton (1971), i.e., with price dynamics given by (6.4) with
constant coefficients. In particular, the market is incomplete. Although the Brow-
nian motion W = (W1, . . . ,Wn)′ (where the components are in general correlated)
is allowed to be correlated with Wr, interest rate derivatives are unattainable in
general, and there is in particularly no zero-coupon bonds available.

An explicit solution is obtained under certain regularity conditions on the mar-
ket coefficients and the CRRA coefficient δ. In consistency with the results of
Merton (1973), the optimal investment strategy can be expressed in terms of three
mutual funds: The first of these is the usual well-diversified Merton (1971) port-
folio given by (6.5) and generalized, as the current interest rate is inserted at any
time; the second is determined by the vector Σ−1Γ′, where Γ is the (row) vector of
covariances between the (instantaneuos) movements in the interest rate and the n
risky asset prices, i.e.,

Γ = (gσ1ηr1, . . . , gσnηrn),

with ηri dt = dWr(t) dWi(t), i = 1, . . . , n; the third consists of the locally risk-free
asset only. The proportion of wealth that should be invested in the Merton (1971)
portfolio at time t is given by 1′nΣ−1(α− r(t)1n)/δ. This is shown to be decreasing
as a function of the interest rate, which is quite natural. The purpose of the second
fund is to hedge against changes in the interest rate. The investor’s demand for the
second and third funds depend on the market coefficients in a somewhat complex
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manner, but it should be noted that the optimal proportions depend randomly on
r(t) and t only. Moreover, the optimal proportion in the second fund tends to zero
as t tends to T , which is also quite natural.

A major drawback of the Gaussian interest rate models considered in Sørensen
(1999), Canestrelli and Pontini (2000), Bouiler et al. (2001), Korn and Kraft (2001),
and Jensen and Sørensen (2001), is that they allow for negative interest rates.
Deelstra et al. (2000) study the pure investment problem in a setup with a Cox-
Ingersoll-Ross interest rate model (Cox et al. (1985)), where r is governed by the
dynamics

dr(t) = (θ − κr(t)) dt− σr

√
r(t) dWr(t),

where σr, θ, κ > 0 are constants, and 2θ ≥ σ2
r so that r(t) > 0, ∀t ∈ [0, T ]. The

market consists of a bank account, a T -bond, and a stock, with price dynamics
given by

dS0(t)/S0(t) = r(t) dt,

dS1(t)/S1(t) = (r(t) + λrσrh(t)r(t)) dt+ σrh(t)
√
r(t) dWr(t),

dS2(t)/S2(t) = (r(t) + λrσ2,rr(t) + λsσ2,s) dt+ σ2,r

√
r(t) dWr(t) + σ2,s dWs(t),

respectively. Here, h : [0, T ] → [0,∞) is a certain differentiable function depending
on the model coefficients with h(T ) = 0. The market price of interest rate risk is
λr

√
r(t), whereas the market price of stock risk is λs; both λr and λs are constants.

An explicit solution is obtained in the CRRA utility case (still with δ > 0 denoting
the CRRA coefficient), under certain conditions on the risk aversion parameter.
The optimal portfolio is given by the bond and stock proportions

w1(t) =
λrσ2,s − λsσ2,r

δσ2,sσrh(t)
+
kδ(t)

h(t)
,

w2(t) =
λs

δσ2,s
,

where kδ : [0, T ] → R is a certain differentiable function, depending on δ (and the
model coefficients), with kδ(T ) = 0. It is seen that the proportion held in the stock
is again the same as in the case with constant interest rate, in particular it is time
independent. The first term in the bond proportion is similar to the first term in
Sørensen (1999), but the hedge term kδ(t)/h(t) is no longer constant. Although
limt↗T (kδ(t)/h(t)) exists and is finite, the bond position once again explodes at
T . However, as in Bouiler et al. (2001), the optimal portfolio can be expressed in
terms of portfolio proportions in the bank account, the stock, and a “rolling bond”
with price dynamics given by

dS3(t)/S3(t) = (r(t) + λrσ3,rr(t)) dt+ σ3,r

√
r(t) dWr(t),

for some K > 0. Then w1(t) = 0, w2 = λ2,s/σ2,s (as above), w3(t) = kδ(t)σr/σ3,r +
(λrσ2,s − λsσ2,r)/(δσ2,sσ3,r), and w0(t) = 1 −∑3

i=1wi(t) (or, equivalently, w1(t) =
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kδ/h(t), w2 = λ2,s/σ2,s, w3(t) = (λrσ2,s − λsσ2,r)/(δσ2,sσ3,r), and w0(t) = 1 −∑3
i=1 wi(t)). It is shown that w1(t) + w3(t) is increasing in t if and only if δ < 1.

Thus, low risk averters will gradually take out money from the bank and increase
their position in bonds, whereas high risk averters (δ > 1) will do the opposite.
Note, however, that investing in the “rolling bond” close to maturity means going
very short in cash and very long in zero coupon bonds, as indicated earlier.

Let us mention a few other papers adressing investment problems in models with
more or less specific stochastic interest rate models. Deelstra et al. (2003) study the
problem in a generalized complete term structure model that includes the Vasicek
and Cox-Ingersoll-Ross models as special cases. Munk and Sørensen (2004) study
the problem in a more general, but still complete, term structure model. Finally,
Korn and Kraft (2004) point out some problems arising in investment problems with
stochastic interest rates if the technical conditions for optimality are not satisfied.

2.9 Effects of inflation

In the investment problems considered so far the objectives have been maximization
of expected utility of terminal wealth. At the end of the day, however, what really
matters is not so much the level of wealth, but rather the purchasing power of
wealth. It is therefore very reasonable to take inflation into account.

Brennan and Xia (2002) study an investment problem under inflation. There
is a money market account, a stock, and two nominal zero-coupon bonds with
different maturities (both exceeding the investor’s time horizon. The price level is
modelled as a diffusion process Π with dynamics given by

dΠ(t)/Π(t) = π(t) dt+ σΠS dWS(t) + σΠr dWr(t) + σΠπ dWπ(t) + σΠu dWu(t),

where π(t) is the instantaneous expected rate of inflation, WS ,Wr,Wπ, and Wu are
Brownian motions, and σΠS , σΠr, σπ, and σΠu are constant correlation coefficients.
The processes WS ,Wr, and Wπ are in general correlated, and they determine the
random development of the stock, the real interest rate, denoted by r, and the pro-
cess π, respectively. The process Wu is an independent risk source. The processes
π and r are both modelled as Ornstein-Uhlenbeck processes, with Wπ and Wr as
the respective “driving” Brownian motions. The stock price process is a geometric
Brownian motion “driven” by WS .

The model is incomplete whenever σΠu 6= 0, as there is no (locally) risk-free
asset in real terms. In real terms, the model is thus a special case of the model
studied by Merton (1971) without a risk-free asset. The investor has the objective
of maximizing the expected utility, according to a CRRA utility function, of his
terminal real wealth. Thus, the results of Merton (1971) in the case of CRRA
utility can be applied to obtain an explicit solution.

Corresponding to the results obtained in the models with stochastic interest
rates of the previous section, the optimal relative portfolio in the stock and the two
bonds can be expressed as a sum of the Merton (1971) portfolio and two hedging
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portfolios aimed at hedging the risks pertaining to real interest rate and the rate
of inflation. Akin to the result obtained by Karatzas et al. (1991) in the special
case with totally unhedgeable coefficients, the optimal portfolio does not depend
on σΠu, the volatility corresponding to the totally unhedgeable risk, i.e., this risk
is ignored. The parts of the inflation risk that can be partially hedged should be
treated similarly as other types of risks in a standard Brownian motion model with
constant coefficients.

2.10 Some concluding remarks

We end this survey by offering a few concluding remarks. However, most of the
abovementioned results are discussed at length by the authors who have obtained
them, and we shall not go into a detailed and exhaustive discussion.

For long-term investors, such as pension savers, the classical single-period ap-
proach is insufficient; multi-period (with many periods) or continuous-time models
are called for. In particular, continuous-time models with Brownian motions as ba-
sic building blocks, which are the most widely used ones in the modern literature,
can often yield explicit results on optimal investment; Merton’s results constitute
the primary example.

Certain specific aspects concerning pension saving should be taken into account.
For example, minimum guarantees are often involved, and the long-term nature
of pension schemes calls for models with a stochastic interest rate in order to
be sufficiently realistic. However, models with a constant interest rate can be
considered very reasonable, even with long time horizons, if the interest rate is
interpreted as the real interest rate, rather than the nominal one, and the wealth
and the asset prices are taken to be denominated in real terms, as they arguably
should be (see also Section 2.9). With this interpretation the assumption is that the
real interest rate, rather than the nominal one, is constant, which is more plausible.

As pointed out, the choice of utility function plays an extremely important
role for the optimal strategy. In particular, what is optimal cannot be stated
without reference to the underlying utility function employed. This also goes for the
many interesting problems that have been left out of this survey. One particularly
nice and simple class of utility functions, which (as we have seen above) has very
desirable features, is the class of CRRA utility functions, possibly extented to allow
for minimum guarantees. It is therefore no coincidence that these utility functions
are the most widely used ones in the literature.





Chapter 3

Optimal Bonus Strategies in
Life Insurance: The Markov
Chain Interest Rate Case

Sections 3.1-3.5 of this chapter constitute an adapted version of Nielsen
(2005), with only minor corrections and modifications. Section 3.6 has
been added for this thesis and thus does not appear in Nielsen (2005).

We study the problem of optimal redistribution of surplus in life and pension in-
surance when the interest rate is modelled as a continuous-time Markov chain with
a finite state space. We work with traditional participating life insurance policies
with payments consisting of a specified contractual payment stream and an un-
specified additional bonus payment stream. Our model allows for interest rates
below the technical interest rate. We apply stochastic control techniques in our
search for optimal strategies, and we prove the dynamic programming principle
for our particular type of problem. Furthermore, we state and prove a verification
theorem and obtain an explicit solution that leads to a characterization of optimal
strategies, indicating that some widely used redistribution schemes are suboptimal.

3.1 Introduction

A participating life or pension insurance contract specifies, at the time of issue, a
premium plan and a fixed stream of (so-called) guaranteed benefits, both depending
randomly only on the future course of life of the insured. On top of this the insured
is entitled to additional bonus benefits, which, on the contrary, are determined by
the company currently during the policy term as the systematic (portfolio) surplus
emerges, as a consequence of the fact that all policies are charged (implicitly) with
a safety loading.
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The bonus payments typically contribute significantly to the total benefits and
thus constitute one of the most important decision problems in traditional life and
pension insurance, because it is up to the company to decide on the dividend/bonus
plan (the distinction between dividends and bonuses is unimportant at this point
and will be explained later, although we make clear that dividends go to the insured,
not to owners or shareholders). Two concerns are involved: On the one hand,
the company is urged to hand out dividends to the insured on a regular basis,
partly to satisfy current customers (the insured) and perhaps even try to gain
shares in the competitive market of the insurance business, and partly by legislative
demands. On the other hand, the companies must see to it that they do not hand
out more than they can afford, that is, they should always be able to meet all
future obligations. It should be noted that dividends and bonuses, which have
been credited/paid out to a policy at one stage, cannot be reclaimed later on.

The purpose of this chapter is to formulate and solve the problem of designing
an optimal dividend plan as a control problem, taking into account the abovemen-
tioned concerns, in a stochastic interest rate environment. The paper is to some
extent related to the comprehensive existing literature on optimal investment and
consumption in continuous-time models, initiated by the classical papers Merton
(1969) and Merton (1971). Virtually countless different variations and general-
izations of investment/consumption problems have been studied since then, see,
e.g. Duffie (1996), Ch. 9, or Karatzas and Shreve (1998), Sec. 3.11, for extensive
surveys.

The problem studied in this paper differs from the vast majority of this litera-
ture in several respects. The interest rate (intensity) is modelled as a continuous-
time Markov chain with a finite state space, and we consider the corresponding
(locally) risk-free asset as the only investment opportunity and thus deal with the
consumption/dividend aspect only. This means that the process under control is
not a diffusion, but a PDP (piecewise deterministic process). Furthermore, our
“agent” faces a certain non-hedgeable stream of positive and negative payments,
but has no initial endowment.

Our objective (formulated in Section 3.3) constitutes another distinction, as
it resembles the type of objectives employed in singular control problems. This,
combined with the fact that our purpose is to find an optimal dividend strategy,
leads to a connection to the class of problems known as dividend optimization
problems, see e.g. Radner and Shepp (1996), or Taksar (2000) for a survey focusing
on insurance companies. Such problems, aiming at maximizing (in some sense)
the value of future dividends to shareholders for a firm with some initial reserve
and a certain stochastic revenue process (typically a diffusion) through control of
dividends and possibly risk exposure and/or investments, are often formulated as
singular control problems. However, the connection is not as apparent as it may
seem. Firstly, dividends play an entirely different role in this paper (as mentioned
above). Secondly, our “revenue process” is not a diffusion, and, as we shall see, the
optimal control process therefore need not have a singular component. Thirdly, our
problem has a known, finite horizon, whereas the time horizon in most dividend
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optimization problems is either infinity or the (random) time of ruin.

Lakner and Slud (1991) study a problem akin to ours: They consider an agent,
who only invests in a locally risk-free asset with an interest rate intensity that is
adapted to a point process, and who seeks to optimize his consumption stream.
However, the objective has a distinctly different form from ours, and there are no
exogenous payment streams involved.

There exists a literature on optimization problems of various kinds within life
insurance and/or pension funding. Optimal contribution (premium) rates for pen-
sion funds with defined benefit (DB) schemes are studied in Haberman and Sung
(1994) and Chang et al. (2003). This problem is extended to include the problem
of optimal asset allocation in Cairns (2000), Josa-Fombellida and Rincon-Zapatero
(2001) and Taylor (2002). As for the contribution rates, the objectives in those
papers are to minimize a certain loss function measuring (in various ways) the
total sum of squared distances to certain targets of the controllable contribution
rate and the aggregate fund level. A different approach, also within DB models,
is taken in Haberman (1994) and Haberman and Wong (1997), where the aim is
to find optimal time periods for distributing surpluses or deficits in the fund level
through adjustment of the contribution rates.

For defined contribution schemes optimal investment strategies constitute the
main issue, and this has been studied in Bouiler et al. (2001), Deelstra et al.
(2003), Devolder et al. (2003), Vigna and Haberman (2001) and Haberman and
Vigna (2002).

The present study is distinct from all the abovementioned: Firstly, we consider
the dividend problem only, as we take the returns from investments as exoge-
nously given (although stochastic). Secondly, our modelling approach is different,
as we consider an individual (generic) policy with certain contractual payments
and consider the associated surplus process throughout the policy term, whereas
the abovementioned papers largely take more of a bird’s eye view and consider the
dynamics of the aggregate fund level without bringing the life history stochastics
of the individual policies to the surface. Thirdly, our objective is (subjective) value
maximization, not risk minimization.

The rest of the chapter is organized as follows: We briefly introduce the basic
setup in Section 3.2 and then go on to state the optimal stochastic control problem
in Section 3.3. We present theoretical results in Section 3.4 and obtain an explicit
characterization of optimal dividend strategies. Section 3.5 contains main discus-
sions and general conclusions. Finally, Section 3.6 contains generalizations of the
results.

A quick word on notation: Integrals of the form
∫
[t,t′] fs dAs for functions or

processes (f predictable, A FV and right-continuous) are interpreted as ft∆At +∫
(t,t′ ] fs dAs, with ∆At = At if As is not defined for s < t. Correspondingly,∫
(t,t′) fs dAs means limτ↗t′

∫
(t,τ ] fs dAs and so on.
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3.2 Basics

A. The insurance policy and the contractual payments.
We work throughout on the basis of the general model in Norberg (1999), which is a
basic reference for notions such as surplus, bonus and dividends, although we make
specializations for the purpose of our study. In this section we briefly recapitulate
the notions and results used in the following, referring to Norberg (1999) for details
and discussions.

Consider a generic multi-state life insurance policy issued at time 0 and termi-
nating at time T > 0. The state of the policy at time t ∈ [0, T ] is denoted by Zt,
and Z = (Zt)t∈[0,T ] is taken to be a right-continuous Markov process defined on
some probability space (Ω,F ,P), with a finite state space Z = {1, . . . , k} and with
a finite number of jumps in [0, T ]. It is assumed that the initial state is 1, Z0 = 1.

The contractual payments associated with the policy, i.e. premiums and guar-
anteed benefits, are represented by a stochastic payment process B = (Bt)t∈[0,T ]

specifying the accumulated payments from the company to the insured, that is, Bt

denotes benefits less premiums payable in [0, t], t ∈ [0, T ]. It is assumed that B has
a form that allows of continuous payments during sojourns in policy states as well
as lump sum payments at a finite number of fixed times and in connection with
jumps between policy states. Thus, B has an absolutely continuous component
and a pure jump component, and all randomness associated with the payments
dBt in a small time interval (t, t + dt] is due to the (random) behaviour of Z in
that interval.

Even though this formalization of the payment process opens up for a wide range
of insurance types, the problem that we deal with in this paper is more relevant
for some types of insurance than others. Typically we have in mind a pension
scheme with the following characteristics: The policyholder pays a level premium
continuously for a certain number of years from the time of issue, possibly until
the time of retirement, and receives a continuous life annuity, possibly temporary,
commencing at a specific time (e.g. the time of retirement); with all payments being
contingent on the policyholder being alive.

The payment process B must satisfy the actuarial equivalence principle under
a technical first order model that lays down a (technical) interest rate r∗ ∈ R and
a (technical) distribution of Z. We assume for simplicity that the distribution of
Z under the first order model coincides with its distribution under P, which, in
the terminology of Norberg (1999), corresponds to the second order model. This
assumption can be justified by the fact that the interest rate risk is considerably
larger than the risk connected to systematic changes in, say, mortality, for pension
schemes as the one outlined above. Thus, upon introducing the first order state-
wise (prospective) reserves V ∗j, j ∈ Z, in this setting given by

V ∗j
t = E

(∫

(t,T ]
e−(τ−t)r∗ dBτ

∣∣∣∣∣Zt = j

)
,
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for t ∈ [0, T ], j ∈ Z, the equivalence principle can be expressed by the equation

V ∗1
0 = −B0.

It is tacitly assumed here, and throughout, that E (Var(B)T ) < ∞, where Var(B)
is the variation process of B. This ensures that the (state-wise) reserves are well-
defined and bounded. Moreover, it is assumed that V ∗j

t ≥ 0, ∀t ∈ [0, T ], j ∈ Z, as
should always be the case in practice.

B. The mean portfolio surplus.
The first order model represents a prudent, conservative estimate of the economic
development. The real development, in contrast, is represented by the probability
measure P introduced above.

It is assumed that the company’s investment portfolio bears interest with inten-
sity r = (rt)t∈[0,T ], which is a stochastic process (defined on (Ω,F)), independent
of Z under P. The information about the development of r is formalized by the
filtration G = {Gt}t∈[0,T ], i.e. Gt = σ{rτ , τ ∈ [0, t]}.

The mean portfolio surplus at time t ∈ [0, T ] is defined by

St = E
(
Sind

t

∣∣∣Gt

)
, (2.1)

where Sind
t is the individual surplus (based on full information about the policy)

defined naturally by

Sind
t = −

∫

[0,t]
e
∫ t

τ
r dBτ − V ∗Zt

t , (2.2)

i.e. as the difference between the value of the net income from the policy in [0, t],
compounded with the experienced interest rate, and the first order reserve at time

t. Here and throughout, e
∫ t

s
r is used as short-hand notation for e

∫ t

s
rτ dτ .

It can now easily be shown (see Norberg (1999)) that for each t ∈ [0, T ] we have

St =

∫ t

0
e
∫ t

τ
r cτ dτ, (2.3)

where, for t ∈ [0, T ],

ct =
∑

j∈Z

P (Zt = j) (rt − r∗)V ∗j
t = (rt − r∗)V ∗

t , (2.4)

with
V ∗

t =
∑

j∈Z

P (Zt = j) V ∗j
t (2.5)

denoting the mean first order reserve at time t. This form shows how the surplus
emerges, with a straightforward interpretation of the contribution rate c: It is the
difference between the rates of actually earned interest and technically accrued
interest on the mean first order reserve.
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Equivalently, from (2.1) we easily obtain

St = −
∫

[0,t]
e
∫ t

τ
r dbτ −

∫

(t,T ]
e−(τ−t)r∗dbτ ,

where b is defined by bt = E(Bt) , t ∈ [0, T ]. Thus, the mean portfolio surplus
is nothing but the difference between the compounded value of past net income
and the present value of future net outgoes (evaluated on the first order basis)
corresponding to the (artificial) deterministic payment stream b.

C. The dividend reserve.
The surplus (or a part of it) is repaid to the insured by crediting dividends to his
or her account. The stream of dividends is represented by the stochastic process
D = (Dt)t∈[0,T ], and as for the payment process B, Dt denotes the accumulated
dividends during [0, t], t ∈ [0, T ]. Dividends can only be credited on the basis
of the information that is currently known, and since we work with the mean
portfolio surplus we must therefore require that D be G-adapted. This means that
D represents the mean dividends per policyholder in the entire portfolio (including
those who have died). Thus, the policy that we consider should be thought of as
a truly generic “mean” policy representing the portfolio, not as a specific policy.
By taking this approach we avoid having to deal with policy state variables in the
control problem addressed below.

Furthermore, dividends must be non-negative and cannot be reclaimed once
they have been credited, so D must be non-negative and non-decreasing. Finally,
D is taken to be right-continuous.

The dividend reserve Ut at time t ∈ [0, T ] is defined as the value at time t of
past contributions less dividends, compounded with interest, i.e.

Ut =

∫

[0,t]
e
∫ t

τ
r (cτ dτ − dDτ ). (2.6)

Credited dividends may be used in various ways and need not be paid out immedi-
ately. The actual payouts, in turn, are called bonuses. In some simple cases, e.g. if
dividends are paid out currently as they are credited, then the distinction between
dividends and bonus payments is not important. In most cases it is, however, and
the distribution and repayment of surplus can then be viewed as a two-step proce-
dure: First, dividends are determined and distributed among the policies according
to some dividend scheme. Then, according to a bonus scheme, it is decided how the
distributed dividends are transformed into bonus payments. We refer to Norberg
(1999, 2001) for more detailed discussions on this quite flexible system.

From (2.6) it is easily seen that U develops as

U0 = −D0, (2.7)

dUt = rtUt dt+ ct dt− dDt, (2.8)



Optimal Bonus Strategies in Life Insurance 65

for t ∈ (0, T ]. These equations have a straightforward interpretation. It is seen
that for any 0 ≤ s ≤ t ≤ T we have

Ut = Us e
∫ t

s
r +

∫

(s,t]
e
∫ t

τ
r (cτ dτ − dDτ ). (2.9)

It is a widely accepted actuarial principle, stated in Norberg (1999), that in order
to reestablish equivalence at time T , the equivalence principle should be exercised
conditionally, given the experienced development. In our setup this amounts to
requiring that

UT = 0. (2.10)

However, this is not possible unless UT− ≥ 0, and in this paper we shall work with
an interest rate model under which the event that UT− < 0 occurs with strictly
positive probability, as is arguably also the case in the real world. We shall thus
ignore the requirement (2.10), since it plays no role in the problem formulation
anyway. For further discussions of this we refer to Section 3.5.

3.3 Statement of the problem

A. Interest rate model.
We adopt the Markov chain interest rate model studied in Norberg (1995) and
Norberg (2003). Thus, only a finite number of interest rate levels are possible.
More specifically, the interest rate (intensity) process is defined by

rt = rYt =
∑

e∈Y

I(Yt=e) r
e, t ∈ [0, T ], (3.1)

where Y = (Yt)t∈[0,T ] is a right-continuous pure jump Markov process with a finite
state space Y = {1, . . . , q}, defined on (Ω,F , P ), which we now assume is complete.

All jump intensities λef , e, f ∈ Y, e 6= f, exist, and for simplicity they are taken
to be constant. Put Ye = Y \ {e} and λe· =

∑
f∈Ye λef , e ∈ Y, and denote by

N ef , e, f ∈ Y, e 6= f, the counting processes counting the jumps from state e to f .
We assume that re ≥ 0, e ∈ Y, and we put r = maxe∈Y r

e and r = mine∈Y r
e.

Let G = (Gt)0≤t≤T denote the natural filtration of Y augmented by the null
sets of F . Then G is right-continuous (see e.g. Davis (1993)).

B. The Markov process under control.
The uncontrolled process (Y,U) = {(Yt, Ut)}t∈[0,T ] assumes its values in the state
space Y×R. It is a piecewise deterministic process (PDP) because Y is a pure jump
process and between jumps of Y , U is governed by the ordinary (deterministic)
differential equation

dUt = Ut r
Yt dt+ cYt

t dt,

where

cet = (re − r∗t )V
∗
t , t ∈ [0, T ], e ∈ Y.
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Control of the dividend reserve process is carried out through the dividend process
D, yielding the (stochastic) dynamics (2.8).

A key reference in the theory of control of PDP’s is Davis (1993), which, for
this chapter, however, has served primarily as a source of inspiration, because the
problem at hand does not quite fit into its framework (e.g. due to the general form
of D).

We denote by E the state space for the triple process {(t, Yt, Ut)}t∈[0,T ], that is,
E = [0, T ]×Y ×R. For notational convenience we also define E0 = [0, T )×Y ×R.

Note that the policy process Z no longer plays any role, because we work with
the mean portfolio surplus.

C. Objective.
We want to design a control strategy that is optimal in some sense, and to this end
we wish to maximize

E

(∫

[0,T )
e−

∫ s

0
r dDs + e−

∫ T

0
rψ(UT−)

)
, (3.2)

the sum of the expected discounted dividends and the expected discounted “utility”
of the dividend reserve immediately before T as measured by some concave and
strictly increasing function ψ : R → R. Note that we only integrate over [0, T )
because any terminal dividend lump sum ∆DT is taken directly from UT− and
thus (indirectly) measured by ψ. In other words, all control action takes place in
[0, T ). We refer to Section 3.5 for a discussion of this objective as well as principles
regarding UT−.

3.4 Control theory

A. Dynamic programming framework.
We apply the method of dynamic programming, and to this end we need to consider
each point (t, e, u) ∈ E0 as an (imaginary) initial point for the controlled process.
For technical reasons (needed in the proof of the dynamic programming principle,
Theorem 3.4.5 below) we set up the dynamic programming framework rigorously,
as in Fleming and Rishel (1975) or Yong and Zhou (1999).

For any (t, e) ∈ [0, T )×Y we define D(t, e) as the set of all 5-tuples (Ω,F ,P, Y,D)
such that (Ω,F ,P) is a complete probability space, Y = (Ys)s∈[t,T ] is a continuous-
time Markov chain defined on (Ω,F ,P) with state space Y and transition intensities
λef , e, f ∈ Y, e 6= f, and with Yt = e (P-a.s.), and D = (Ds)s∈[t,T ] : Ω × [t, T ] →
[0,∞) is a measurable, G-adapted, right-continuous and increasing process with
E(t,e) (DT ) <∞. Here, G = (Gs)s∈[t,T ] denotes the filtration generated by Y (aug-
mented by all the P-null sets of F), r = (rs)s∈[t,T ] is defined as in (3.1) on [t, T ],
and E(t,e) (·) is the expectation operator corresponding to P, equipped with the
subscript (t, e) to emphasize the initial point.

For notational simplicity we shall usually write D ∈ D(t, e) as shorthand for
(Ω,F ,P, Y,D) ∈ D(t, e) when no confusion can arise. Now, for any (t, e, u) ∈ E 0
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and any D ∈ D(t, e) we define

U
(t,e,u,D)
t′ = ue

∫ t′

t
r +

∫

[t,t′]
e
∫ t′

τ
r(cτ dτ − dDτ ), t

′ ∈ [t, T ], (4.1)

i.e. the dividend reserve at time t′ corresponding to the starting point (t, e, u) and
the dividend strategy D (see (2.9)), and

ΦD(t, e, u) = E(t,e)

(∫

[t,T )
e−

∫ s
t

r dDs + e−
∫ T
t

r ψ
(
U

(t,e,u,D)
T−

))
. (4.2)

In addition we put ΦD(T, e, u) = ψ(u), (e, u) ∈ Y×R, and we have thereby defined
the performance function ΦD : E → R. Note that in (4.1) u acts only as a

parameter, and in (4.2) it therefore appears only in U
(t,e,u,D)
T− , not in the subscript

of the expectation operator.

We define correspondingly the value function Φ : E → R by

Φ(t, e, u) = sup
D∈D(t,e)

ΦD(t, e, u), (t, e, u) ∈ E0,

which is well defined by Assumption 3.4.1 below, and Φ(T, e, u) = ψ(u), (e, u) ∈
Y × R. For a given starting point (t, e, u) ∈ E0 the objective is to find an optimal
control, i.e. a control D ∈ D(t, e) satisfying

Φ(t, e, u) = ΦD(t, e, u),

and for our original problem the objective is thus expressed by letting t = 0, e = Y0

and u = 0.

Assumption 3.4.1 We assume throughout that

(i) ψ ∈ C1(R),

(ii) there exists a u0 ∈ R such that ψ′(u0) > 1,

(iii) L := limu→−∞ ψ′(u) <∞.

Condition (i) can be weakened, but it is enforced because it simplifies the results
and proofs in the following. Condition (ii) ensures that the control problem is well
posed: Under this condition it is fairly easy to show that the value function is finite.
Conversely, if it is not fulfilled, then any control D ′ ∈ D(t, e) can be dominated by
a “larger” one, that is, if we define D ′′ := D′ +K for some constant K > 0 then
ΦD′′

(t, e, u) ≥ ΦD′

(t, e, u), leading to a highly counter-intuitive dividend strategy.
The interpretation of this condition is that ultimate losses must not be punished
too lightly. Condition (iii) is purely technical and is needed in certain proofs in the
following. This condition ensures that ψ is Lipschitz continuous (with Lipschitz
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constant L). However, as we shall see, it has no effect on the optimal strategies (if
properly applied).

We shall need the following technical result. For t ∈ [0, T ], let A[t, T ] denote
the space of right-continuous functions d : [t, T ] → Y, equipped with the σ-algebra
generated by the coordinate projections {(d 7→ ds)d∈A[t,T ]}s∈[t,T ].

Lemma 3.4.2 Let D ∈ D(t, e) for fixed (t, e) ∈ [0, T )×Y. There exists a measur-
able mapping η : [t, T ] ×A[t, T ] → [0,∞) such that

Ds(ω) = η (s, Y·∧s(ω)) , ∀s ∈ [t, T ], P − a.s.

Proof. Since D is G-adapted, there exists for each s ∈ [t, T ] a measurable mapping
ηs : A[t, T ] → [0,∞) such that Ds = ηs(Y·∧s) P − a.s. Now, for n ≥ 1, put
tk = t+ (T − t)k/2n, k = 0, . . . , 2n, and define ηn : [t, T ] ×A[t, T ] → [0,∞) by

ηn(s, d) = 1{t}(s)ηt(d) +

2n∑

k=1

1(tk−1 ,tk](s)ηtk(d), (s, d) ∈ [t, T ] ×A[t, T ].

Each ηn is clearly measurable, and we have Dtk = ηn(tk, Y·∧tk), ∀k = 0, . . . , 2n, P−
a.s. Since D is also right-continuous, the mapping η : [t, T ]×A[t, T ] → [0,∞) given
by

η(s, d) = lim
n→∞

ηn(s, d), (s, d) ∈ [t, T ] ×A[t, T ],

is well defined and fulfills the assertion. 2

B. Basic properties of the value function.
The following results are hardly surprising.

Proposition 3.4.3 For any (t, e) ∈ [0, T ] ×Y, Φ(t, e, ·) is increasing and concave
as a function of u ∈ R.

Proof. Let (t, e) ∈ [0, T )×Y (for t = T the assertions are obvious). It is obvious that
Φ(t, e, ·) is increasing. To prove concavity, let u′ < u′′ ∈ R, and let D′, D′′ ∈ D(t, e).
Let 0 ≤ γ ≤ 1, and put

uγ = γu′ + (1 − γ)u′′.

We now claim that there exists a Dγ ∈ D(t, e) such that

ΦDγ

(t, e, uγ) ≥ γΦD′

(t, e, u′) + (1 − γ)ΦD′′

(t, e, u′′). (4.3)

Then, for any ε > 0, by choosing D′ and D′′ such that ΦD′

(t, e, u′) ≥ Φ(t, e, u′)− ε
and ΦD′′

(t, e, u′′) ≥ Φ(t, e, u′′) − ε, the inequality (4.3) yields

Φ(t, e, uγ) ≥ γΦ(t, e, u′) + (1 − γ)Φ(t, e, u′′) − ε,

from which concavity follows because ε is arbitrary.
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To prove the existence of Dγ ∈ D(t, e) fulfilling (4.3) we may, by suitable use of
Lemma 3.4.2, assume that the underlying probability spaces and Y -processes cor-
responding to D′ and D′′ are identical. Thus, we can define Dγ on this probability
space by

Dγ = γD′ + (1 − γ)D′′.

It is now easily seen that

U
(t,e,uγ ,Dγ)
T− = γU

(t,e,u′,D′)
T− + (1 − γ)U

(t,e,u′′,D′′)
T− ,

and by concavity of ψ we therefore get (4.3). 2

Proposition 3.4.4 For any (t, e) ∈ [0, T ] × Y and any D ∈ D(t, e), Φ(t, e, ·) and
ΦD(t, e, ·) are Lipschitz continuous as functions of u ∈ R.

Proof. Let (t, e) ∈ [0, T ) × Y (for t = T the assertions are obvious, cf. Assump-
tion 3.4.1). Let u′ < u′′ ∈ R, and let D ∈ D(t, e). We have
∣∣ΦD(t, e, u′′) − ΦD(t, e, u′)

∣∣ ≤
∣∣∣E(t,e)

(
e−

∫ T

t
r
[
ψ(U

(t,e,u′′,D)
T− ) − ψ(U

(t,e,u′,D)
T− )

])∣∣∣

≤ E(t,e)

∣∣∣ψ(U
(t,e,u′′,D)
T− ) − ψ(U

(t,e,u′,D)
T− )

∣∣∣

≤ LeTr|u′′ − u′|,
which shows that ΦD(t, e, ·) is Lipschitz continuous with Lipschitz constant LeT r̄.
Since D ∈ D(t, e) was arbitrary, we conclude that the same goes for Φ(t, e, ·). 2

Measurability of Φ follows from the fact that also Φ(·, e, u) is continuous on
[0, T ) for any (e, u) ∈ Y × R. We choose to omit the proof of this, however, since
it is tedious and technically rather complicated, and since continuity in t on [0, T )
is intuitively obvious.

C. The dynamic programming principle.
The following theorem establishes the dynamic programming principle (DPP) for
the control problem considered in this chapter. A rigorous proof covering this
type of problem has not been found in the literature. The proof, which is rather
technical, is highly inspired by the proof of Yong and Zhou (1999), Theorem 4.3.3.

Theorem 3.4.5 For any (t, e, u) ∈ E0 and any t′ ∈ [t, T ],

Φ(t, e, u) = sup
D∈D(t,e)

E(t,e)

(∫

[t,t′)
e−

∫ s

t
rdDs + e−

∫ t′

t
r Φ
(
t′, Yt′ , U

(t,e,u,D)
t′−

))
.

Proof. Let (t, e, u) ∈ E0 and t′ ∈ [t, T ]. To ease notation we write E instead of
E(t,e) throughout this proof. For any D ∈ D(t, e),

ΦD(t, e, u) = E

(∫

[t,t′)
e−

∫ s

t
rdDs

)

+ E

(
e−

∫ t′

t
r E

(∫

[t′,T )
e−

∫ s

t′
rdDs + e−

∫ T

t′
rψ
(
U

(D,t,e,u)
T−

) ∣∣∣∣∣G
t
t′

))
.
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We now claim that we almost surely have

E

(∫

[t′,T )
e−

∫ s
t′

rdDs + e−
∫ T

t′
rψ
(
U

(D,t,e,u)
T−

) ∣∣∣∣∣G
t
t′

)
≤ Φ

(
t′, Yt′ , U

(D,t,e,u)
t′−

)
, (4.4)

leading to

ΦD(t, e, u) ≤ E

(∫

[t,t′)
e−

∫ s
t

rdDs + e−
∫ t′

t
rΦ
(
t′, Yt′ , U

(D,t,e,u)
t′−

))
,

which in turn implies the inequality “≤”. Although (4.4) may seem intuitively very
reasonable, it takes a few lines of technicalities to prove it with some degree of rigor:
Since Y and D are right-continuous, there exists a set Ω0 ∈ F with P (Ω0) = 1
such that the following holds true: For any fixed ω0 ∈ Ω0, Y and D are (almost
surely) deterministic on [t, t′] under P

(
· | Gt

t′
)
(ω0), where P

(
· | Gt

t′
)

denotes a regu-
lar conditional probability (of P) given G t

t′ . And furthermore, by Lemma 3.4.2 we
can deduce that under P

(
· | Gt

t′
)
(ω0), the process D restricted to [t′, T ] is adapted

to the process Y restricted to [t′, T ], and the latter is a continuous-time Markov
process starting in the state Yt′(ω0) and otherwise inheriting the distributional
properties of Y . Thus, (Ω,P

(
· | Gt

t′
)
(ω0),F , Y |[t′,T ], D) ∈ D(t′, Yt′(ω0)). Further-

more, we have

U
(D,t,e,u)
T− = U

(D,t′,Yt′ ,U
(D,t,e,u)

t′−
)

T− , (4.5)

with Yt′ and U
(D,t,e,u)
t′− being deterministic under (Ω,P

(
· | Gt

t′
)
(ω0),F). Substi-

tuting (4.5) into the left hand side of (4.4) and using the rule E
(
· | Gt

t′
)
(ω0) =

EP( · |Gt
t′
)(ω0) (·) yields the desired inequality.

Conversely, for any ε > 0, by Proposition 3.4.4 there exists δ > 0 such that for
any e ∈ Y and u1, u2 ∈ R with |u1 − u2| < δ we have
∣∣ΦD(t′, e, u1) − ΦD(t′, e, u2)

∣∣+
∣∣Φ(t′, e, u1) − Φ(t′, e, u2)

∣∣ ≤ ε, ∀D ∈ D(t′, e).

Let (In)n≥1 be a partition of R with each In being an interval of length m(In) ≤ δ.
Now choose, for each n ≥ 1, a un ∈ In. For any e ∈ Y and n ≥ 1 there exists
De,n ∈ D(t′, e) such that

ΦDe,n

(t′, e, un) ≥ Φ(t′, e, un) − ε.

Thus, for any u ∈ In we have

ΦDe,n

(t′, e, u) ≥ ΦDe,n

(t′, e, un) − ε ≥ Φ(t′, e, un) − 2ε ≥ Φ(t′, e, u) − 3ε.

For each e ∈ Y and n ≥ 1 there exists by Lemma 3.4.2 a measurable mapping
ηe,n : [t′T ] × A[t′, T ] → [0,∞) such that De,n

s = ηe,n(s, Y·∧s), P − a.s. Now, take
any control D ∈ D(t, e), and define a new control D̃ ∈ D(t, e) by D̃s = Ds for s < t′

and

D̃s = Dt′− +
∑

f∈Y

∑

n≥1

1{(e,In)}

(
(Yt′ , U

(D,t,e,u)
t′ )

)
ηe,n (s, (Yτ∧s)t′≤τ≤T ) , t′ ≤ s ≤ T.
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This new control is seen to be admissible, and

Φ(t, e, u) ≥ ΦD̃(t, e, u)

= E

(∫

[t,T )
e−

∫ s

t
rdD̃s + e−

∫ T

t
rψ
(
U

(D̃,t,e,u)
T−

))

= E

(∫

[t,t′)
e−

∫ s

t
rdDs

)

+ E

(
e−

∫ t′

t
r E

(∫

[t′,T )
e−

∫ s
t′

rdD̃s + e−
∫ T
t′

rψ
(
U

(D̃,t,e,u)
T−

) ∣∣∣∣∣G
t
t′

))
.

Now, with arguments similar to the ones used in the proof of (4.4), we almost surely
have

E

(∫

[t′,T )
e−

∫ s

t′
rdD̃s + e−

∫ T

t′
rψ
(
U

(D̃,t,e,u)
T−

) ∣∣∣∣∣G
t
t′

)
≥ Φ(t′, Yt′ , U

(D,t,e,u)
t′− ) − 3ε,

and thus, by arbitraryness of ε > 0,

Φ(t, e, u) ≥ E

(∫

[t,t′)
e−

∫ s
t

rdDs + e−
∫ t′

t
rΦ
(
t′, Yt′ , U

(D,t,e,u)
t′−

))
,

This proves the inequality “≥”, because D ∈ D(t, e) was arbitrary. 2

D. Variational inequalities and heuristically optimal controls.
The value function can be viewed as a function with q components, namely the
state-wise value functions Φe(·, ·) = Φ(·, e, ·) : [0, T ]×R → R, e ∈ Y, corresponding
to the different states in Y. Dropping the generic argument (t, u) to ease notation,
the HJB equation of dynamic programming becomes a system of variational in-
equalities for these functions, which can be expressed (using the notation φ for the
generic function argument) by

0=max


 ∂

∂t
φe − φe re +

∂

∂u
φe (reu+ cet ) +

∑

f∈Ye

λef (φf − φe), 1 − ∂

∂u
φe


 , e ∈ Y,

(4.6)
with the boundary condition

φe(T, u) = ψ(u), (e, u) ∈ Y × R. (4.7)

A heuristic argument for this system of equations goes as follows: Assume for a
moment that only absolutely continuous dividend processes are allowed, such that
any control is of the form dDt = δt dt for some dividend rate process δ. Then,
assuming furthermore that Φ ∈ C1(E0), the dynamic programming principle leads
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to the HJB equation

0 =
∂

∂t
Φe(t, u) − Φe(t, u)re +

∂

∂u
Φe(t, u) (reu+ cet )

+
∑

f∈Ye

λef (Φf (t, u) − Φe(t, u)) + sup
δ≥0

(
δ − ∂

∂u
Φe(t, u)δ

)
. (4.8)

It is seen that if ∂
∂uΦYt(t, Ut) > 1, the optimum is obtained by putting δt = 0.

However, if ∂
∂uΦYt(t, Ut) < 1 then no optimum exists, but obviously δ should be

chosen as large as possible.
Now, allowing dividend strategies that are not absolutely continuous, we can in

fact achieve an intuitively optimal strategy by including lump sum dividends when
appropriate, i.e. when ∂

∂uΦYt(t, Ut) < 1. Since such a lump sum has an effect on the

value equal to the jump size, it is seen that we actually cannot have ∂
∂uΦe(t, u) < 1,

but rather must have ∂
∂uΦe(t, u) = 1 for u sufficiently large.

Thus, for any (t, e, u) ∈ E0 we have

0 ≥ 1 − ∂

∂u
Φe,

0 ≥ ∂

∂t
Φe − Φe re +

∂

∂u
Φe (reu+ cet ) +

∑

f∈Ye

λef (Φf − Φe),

with at least one of the inequalities being an equality, and these variational in-
equalities are combined in (4.6).

E. A verification theorem.
We now state a verification theorem that identifies (4.6) as the appropriate equation
to study and yields sufficient conditions for optimality, and we apply it in Paragraph
F below to find an optimal control strategy. However, the classical notion of a
solution turns out to be insufficient and therefore needs to be generalized slightly.
Thus, by a generalized solution to (4.6)-(4.7) we shall mean a function φ = (φe)e∈Y :
E → R satisfying the following requirements:

(i) There exists a finite partition 0 = t0 < t1 < . . . < tn = T such that each φe is
continuously differentiable and fulfills (4.6) on (ti−1, ti) × R for i = 1, . . . , n.

(ii) Each φe fulfills (4.7) and is continuous on [0, T ] × R except possibly on the
subset {(T, u) : ψ′(u) < 1}.

A solution is necessarily unique.

Theorem 3.4.6 If φ is a generalized solution to (4.6)-(4.7), which is concave in
u, then φ ≥ Φ. Furthermore, for any (t, e, u) ∈ E0, if D ∈ D(t, e) and the corre-
sponding dividend reserve process UD ≡ U (t,e,u,D) satisfy (a.s.)

lim
t↗T

φYt(t, UD
t ) = φYT (T,UD

T−) = ψ(UD
T−) (4.9)
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and ∫

[t,T )
e−

∫ s

t
r
∑

e∈Y

I(Ys=e)(dA
e
s + dJe

s ) = 0, (4.10)

where

dAe
s =

(
∂

∂t
φe(s, UD

s ) − reφe(s, UD
s ) +

∂

∂u
φe(s, UD

s )(reUD
s + ces)

)
ds

+
∑

f∈Ye

(
φf (s, UD

s−) − φe(s, UD
s−)
)
λef ds+

(
1 − ∂

∂u
φe(s, UD

s−)

)
dDs,

dJe
s = φe(s, UD

s ) − φe(s, UD
s−) − ∂

∂u
φe(s, UD

s−)∆UD
s

= φe(s, UD
s ) − φe(s, UD

s + ∆Ds) +
∂

∂u
φe(s, UD

s + ∆Ds)∆Ds,

then ΦD(t, e, u) = φ(t, e, u) = Φ(t, e, u), i.e. D is optimal.

Proof. Let φ be as stated in the theorem. Let (t, e, u) ∈ E0, and let D ∈ D(t, e) be
arbitrary. Define the process X = (Xs)s∈[t,T ] by

Xs = e−
∫ s

t
r φYs(s, UD

s ), s ∈ [t, T ].

Note that Xt = φe(t, u+Dt). By Itô’s formula (applied on each interval (ti−1, ti]),

XT− − φe(t, u) =

∫

[t,T )
e−

∫ s

t
r
∑

e∈Y

[
I(Ys=e)(dA

e
s + dJe

s − dDs) + dM e
s

]
,

where

dM e
s =

∑

f∈Ye

(
φf (s, UD

s−) − φe(s, UD
s−)
)(

dN ef
s − I(Ys−=e)λ

efds
)
.

Now, φ satisfies (4.6), so we have dAe
s ≤ 0, and dJe

s ≤ 0 because φe is concave in u.
Furthermore, since φ has continuous partial derivatives on E0 and ∂

∂uφ
e(t, u) ≥ 1

on E0,

XT− = e−
∫ T

t
r lim

t↗T
φYt(t, UD

t ) ≥ e−
∫ T

t
rψ(UD

T−).

Thus, by taking expectations we obtain

φe(t, u) ≥ E(t,e)

(∫

[t,T )
e−

∫ s
t

rdDs + e−
∫ T
t

rψ(UD
T−)

)
= ΦD(t, e, u). (4.11)

Since D ∈ D was arbitrary we conclude that Φ ≤ φ.
Now, assume thatD ∈ D satisfies (4.9) and (4.10). Then, by similar calculations

the inequality (4.11) becomes an equality, i.e. φe(t, u) = ΦD(t, e, u) and thereby
φe(t, u) = Φ(t, e, u). 2
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Now, suppose that we have found a solution φ as stated in Theorem 3.4.6. An
analysis of the expressions for dAe

s and dJe
s then shows that the optimal strategy can

be characterized (loosely) as follows: We decompose the state space into disjoint
regions as

E = K◦ ∪ ∂K ∪ (E \K),

where K = {(t, e, u) ∈ E : ∂
∂uφ

e(t, u) ≤ 1}. At any time the dividend allocation
should be based on the state of the controlled process. We first note that one

should always put dDs = 0 if (s, Ys, U
(t,e,u,D)
s− ) ∈ E\K. Furthermore, to ensure that

dJe
s ≡ 0, lump sum dividends should not be credited unless (s, Ys, U

(t,e,u,D)
s− ) ∈ K◦,

and then only to the extent that the resulting state (s, Ys, U
(t,e,u,D)
s− −∆Ds) is kept

out of E \K (note that for any (t, e, u) ∈ K we actually have ∂
∂uφ

e(t, u) = 1).
The condition (4.9) means that as we reach the terminal time T , the dividend

reserve must not exceed the boundary. Thus, although we have not yet specified
precisely the optimal behaviour in K◦ ∪ ∂K, we interpret K◦ as the “jump re-
gion”, E \ K as the “no action region”, and ∂K as the “optimal boundary”: If

(s, Ys, U
(t,e,u,D)
s− ) ∈ K◦ we immediately make a jump to ∂K, if (s, Ys, U

(t,e,u,D)
s− ) ∈

E \K we put dDs = 0, and if (s, Ys, U
(t,e,u,D)
s− ) ∈ ∂K we choose dDs in such a way

that the process stays in ∂K (if possible).
For (t, e) ∈ [0, T ) × Y we can consider the (t, e)-sections (K ◦)(t,e), (∂K)(t,e)

and (E \ K)(t,e) consisting, respectively, of those u ∈ R such that (t, e, u) is in
K◦, ∂K and E \ K. Since φ is concave in u, they are of the form (ũ(t, e),∞),
{ũ(t, e)} and (−∞, ũ(t, e)), respectively, for some ũ(t, e) ∈ R ∪ {∞}. Thus, for
each e ∈ Y, the e-section (K◦)e (if non-empty) “sits on top of” (E \ K)e, with
(∂K)e = {ũ(t, e), t ∈ [0, T ]} constituting the boundary.

F. A closed-form solution.
Let

ũ = inf
u∈R

{u ∈ R : ψ′(u) ≤ 1}

with inf ∅ = ∞, and define ψ̃ : R → R by

ψ̃(u) =

{
ψ(u), if u ≤ ũ,
ψ(ũ) + u− ũ, otherwise.

It is easily seen that ψ̃′(u) ≥ 1 for all u ∈ R.

Proposition 3.4.7 Let φ = (φe)e∈Y : E → R be given by

φe(t, u) = E(t,e)

(
e−

∫ T
t

r ψ̃

(
ue
∫ T
t

r +

∫ T

t
e
∫ T

τ
r cτ dτ

))
, (t, e, u) ∈ E0, (4.12)

and φe(T, u) = ψ(u), (e, u) ∈ Y×R. Then φ is a generalized solution to (4.6)-(4.7),
which is concave in u. Furthermore, for t ∈ [0, T ], let

ũ(t) = ũe−r(T−t) −
∫ T

t
e−r(τ−t) (r − r∗)V ∗

τ dτ, (4.13)
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and let D ∈ D(t,e) be such that for all s ∈ [t, T ] (with UD ≡ U (t,e,u,D)),

dDs =
(
rYs − r

)
(ũ(s) + V ∗

s ) I(UD
s =ũ(s)) ds+

(
UD

s− − ũ(s)
)
I(UD

s−>ũ(s)). (4.14)

Then D is optimal.

Remark 3.4.8 The expression on the right-hand side of (4.12) does not depend
on the underlying probability space in the 5-tuple (Ω,F ,P, Y,D) ∈ D(t, e), and φ
is therefore well defined.

Proof. It is easily seen that φ is concave in u. Since ψ̃′ is bounded by Assump-
tion 3.4.1 (iii) we have for (t, e, u) ∈ E0 that

∂

∂u
φe(t, u) = E(t,e)

(
ψ̃′

(
ue
∫ T

t
r +

∫ T

t
e
∫ T

τ
r cτ dτ

))
.

Thus, each φe has continuous partial derivatives in u with ∂
∂uφ

e(t, u) ≥ 1, (t, u) ∈
(0, T ) × R.

To examine the smoothness properties of the φe wrt. t we adopt the ideas of
Norberg (2005). By conditioning on whether Y leaves the initial state e in (t,T)
and, in case it does, on the transition, we get the integral equations

φe(t, u) = e−(λe·+re)(T−t) ψ̃
(
Ũ

(t,e,u,0)
T

)

+

∫ T

t
e−(λe·+re)(τ−t)

∑

f∈Ye

λefφf
(
τ, Ũ (t,e,u,0)

τ

)
dτ, (4.15)

where Ũ
(t,e,u,0)
τ is the (deterministic) dividend reserve at time τ ∈ (t, T ] when the

initial state is (t, e, u) and when no jumps occur and no dividends are credited in
[t, τ ], i.e.

Ũ (t,e,u,0)
τ = uer

e(τ−t) +

∫ τ

t
er

e(τ−s)ces ds.

Now, introduce the transformed state-wise functions we : [0, T ) × R → R, e ∈ Y,
given by

we(t, u) = e−(λe·+re)tφe

(
t, uer

et +

∫ t

0
er

e(t−τ) ceτ dτ

)
= e−(λe·+re)tφe

(
t, Ũ

(0,e,u,0)
t

)
,

(t, e, u) ∈ E0. The integral equations for the φe can be expressed in terms of the
we as

we(t, u) = e−(λe·+re)T ψ̃
(
Ũ

(0,e,u,0)
T

)
+
∑

f∈Ye

∫ T

t
eκ

ef τ λefwf (τ,W ef
τ (u))dτ, (4.16)

where κef = λf · + rf − λe· − re, and

W ef
τ (u) = ue(r

e−rf )τ −
∫ τ

0
e−rf s cfs ds+ e(r

e−rf )τ

∫ τ

0
e−res ces ds, τ ∈ (0, T ).
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The advantage of working with the transformed functions is that the integral equa-
tions (4.16) are much simpler than (4.15) because the variable t only appears as
the lower limit of the integral on the right hand side of (4.16). It is thus easy to
see that each we has continuous partial derivatives wrt. t given by

∂

∂t
we(t, u) = −

∑

f∈Ye

eκ
ef t λefwf (t,W ef

t (u)), (t, u) ∈ (0, T ) × R.

Now, from the expression of φe in terms of we,

φe(t, u) = e(λ
e·+re)twe

(
t, ue−ret −

∫ t

0
e−reτ ceτ dτ

)
,

it is seen that the partial derivative of φe wrt. t exists for all (t, u) ∈ (0, T ) × R,
and after some calculations one arrives at

∂

∂t
φe(t, u) = reφe(t, u) − ∂

∂u
φe(t, u)(reu+ cet ) −

∑

f∈Ye

λef
(
φf (t, u) − φe(t, u)

)
.

(4.17)
The partial derivative is discontinuous exactly when ce is discontinuous, which is
the case at most at a finite number of time points where fixed contractual lump
sum payments are due.

We conclude that φ is a generalized solution to (4.6)-(4.7).
To show that D given by (4.14) is optimal we verify that (4.9) and (4.10) are

fulfilled. Since ψ̃′(u) ≥ 1, u ∈ R, we see that

∂

∂u
φe(t, u) = E(t,e)

(
ψ̃′

(
ue
∫ T

t
r +

∫ T

t
e
∫ T

τ
r cτ dτ

))
= 1

if and only if

ue
∫ T

t
r +

∫ T

t
e
∫ T

τ
r cτ dτ ≥ ũ, a.s.,

which holds only if u ≥ ũ(t). By inspection of D, and by (4.17), we see that (4.10)
holds. Now, for s ∈ (t, T ] we have

dũ(s) = (rũ(s) − (r∗ − r)V ∗
s ) ds.

By using (2.8) it is straightforward to verify that if the dividend reserve is at the

boundary at some time, say U
(t,e,u,D)
t = ũ(t), it will remain at the boundary during

(t, T ], implying that (4.9) holds. We skip the details. 2

The outlined optimal control process consists of an absolutely continuous part
and a jump part. With the terminology from Paragraph E the optimal boundary
is given by ũ(·) — it is in particular independent of e ∈ Y. It is seen that ũ(T ) = ũ,
which explains the choice of notation. Furthermore we have ũ(t) <∞, ∀t ∈ [0, T ],
if and only if ũ <∞.
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From (4.13) we see that ũ(t) can be interpreted as the present value of ũ minus
the future surplus contributions in the worst case scenario (where rs = r for t <
s ≤ T ). Thus, dividends should be credited only if the total wealth V ∗ +U (t,e,u,D)

is sufficient to ensure that the contractual payments can be met and that ũ can
be reached at time T in the worst case scenario. From (4.14) we then see that in
this case all interest earned on the wealth in excess of what would be earned in the
worst case scenario should be credited as dividends. This will keep the dividend
reserve at the boundary for the remaining part of the policy term (as shown in the
proof of Proposition 3.4.7).

A lump sum payment should be made if UD
s− > ũ(s), but this will actually never

happen under the outlined optimal strategy D (unless ũ(0) < 0), which is therefore
absolutely continuous. However, we admit that our choice of objective function
actually allows for (infinitely) many optimal strategies if the boundary is reached
(at time t, say) because the optimal value is retained if dividends are withheld and
credited (with compounded interest) at a later point s ∈ (t, T ).

In most realistic situations the surplus contributions will be negative in the
worst case scenario, and the optimal boundary will therefore be decreasing in t
(except possibly in the very beginning of the policy period). A considerate amount
of time will normally pass before the boundary is reached. In return, dividends
can be credited quite aggressively towards the end of the policy term. This is
contrary to what has traditionally been common practice, namely that dividends
are credited throughout the entire policy terms.

Finally, as mentioned in the introduction, the objective (3.2) makes our problem
look like a singular control problem, and the optimal strategy is indeed similar to
what is usually obtained in singular control problems, since in both cases it is
characterized by the different regions of the state space and the optimal control
to perform in those regions. However, since our controlled process U is of finite
variation, the optimal control processD need not have a singular component, as it is
possible to absorb U at the boundary. In contrast, in problems where the controlled
wealth process is a diffusion it is only possible to reflect it at the boundary, and
the optimal dividend process typically has a non-zero singular component.

3.5 Discussions and conclusion

A. The objective function.
The control problem considered in this paper has been formulated on the basis
of two objectives. Firstly, dividends should be credited concurrently, more or less,
with the realization of surplus during the term of the policy. Secondly, the company
should always make sure that all future obligations can be met, even in scenarios
with very poor investment performance.

The second objective is quite obvious, whereas the first one may not be, de-
pending on what type of insurance one has in mind and also on how the dividends
are converted into bonus payments: For an insured with, say, a life annuity serving
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as his or her retirement benefits, a large terminal bonus lump sum upon termina-
tion of the contract (at the time of death) would be somewhat useless, as opposed
to bonus payments handed out along with the retirement benefits. On the other
hand, for a life insurance or an endowment insurance, where the benefits consist
of a single lump sum payment upon termination of the contract (due to death of
the insured or expiration of the policy), a terminal bonus payment would be quite
appropriate.

However, the problem addressed in this paper is much more relevant for those
types of insurance for which large reserves are built up, and they typically have
a large element of retirement benefits of some kind, e.g. life annuities. Therefore,
the first objective is indeed reasonable. There are other reasons as well, see the
introduction, but we shall not discuss this any further.

One could work with a fixed or deterministic interest rate instead of r in the
discounting factor. However, for several reasons we have chosen not to do so.
Although there are numerous possible bonus schemes, the prevailing ones share the
property that no bonuses are paid out prior to the benefit period, since there is
no particular need for this. Hence, all dividends credited before the benefit period
gain interest by the rate r until they are paid out. So, even from the insured’s
point of view, r is a relevant interest rate under such bonus schemes, at least until
the beginning of the benefit period.

The case with a fixed interest rate β > 0, say, might be considered more relevant
for specific insurance types, or if all dividends were paid out immediately as cash
bonus upon allotment. A major drawback is that (in reasonable specifications of
the interest rate model) it would lead to optimal dividend schemes, which, at least
from an actuarial point of view, would be counter-intuitive: One would again obtain
the variational inequalities (4.6)-(4.7) with the term −φere replaced by −φeβ, thus
yielding the same types of optimal strategies. However, it can then be shown that
if e, f ∈ Y with re > rf , then

∂

∂u
φe >

∂

∂u
φf ,

from which it is seen that the “optimal boundary” corresponding to re would be
above the one corresponding to rf . In particular, it might be optimal, at a given
point (t, Ut), to put dDt = 0 if rt = re and dDt > 0 if rt = rf !

The majority of papers on optimal investment and consumption only allow for
absolutely continuous consumption, and the utility of the consumption stream is
then measured by the expected value of an integral of the (discounted) utility of
the consumption rate for some utility function. By this approach it is implicitly
assumed that this utility function is time additive.

In some cases the use of a strictly concave utility function on consumption
rates makes it possible to provide an analytical solution to the problem. However,
measuring dividend or consumption rates with a strictly concave utility function
must be done with care. As pointed out above, a large part of the dividends credited
to a life insurance policy are typically accumulated and not paid out immediately.
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Therefore, the abovementioned assumption about time additivity is hard to justify,
and we have thus preferred to work with linear utility of dividends, which yields a
local substitution effect.

Another issue is that if the marginal utility of consumption is large when the
rate is close to zero (for power utility laws it tends to infinity), then the resulting
optimal consumption rate may be strictly positive even when the wealth is close to
0. That is certainly not what an actuary would consider optimal.

We also point out that our choice of objective function yields optimal controls
that are easy to characterize and understand.

On the other hand, it is quite reasonable to let ψ be strictly concave. Firstly,
UT− is a lump sum payment or loss, so the abovementioned time additivity problem
is not an issue here. Secondly, since our problem is most relevant for pension
schemes such as life annuities as opposed to life insurances, the insured’s utility of
a lump sum (extra) bonus payment at time T will typically be small compared to
his or her utility of (extra) dividends (if, of course, they are converted into bonus
payments prior to T ), and this interest is being considered by choosing a strictly
concave ψ.

B. Principles governing the dividends.
As mentioned, it is a widely accepted actuarial principle that one should reestablish
equivalence at time T when the economic-demographic development during the
policy term is known. This can be expressed by the requirement UT = 0, which in
the setup in Norberg (1999, 2001) can be fulfilled, since it is assumed there that
ST− is always non-negative.

In contrast, the model considered in this paper can lead to a negative terminal
dividend reserve, and thus a loss for the company, in particular if dividends have
been credited too aggressively in the past. Also in practice, this risk is present.

Thus, one may have to allow for the possibility that UT > 0 so that the com-
pany makes a positive expected profit (as is typically the case in practice anyway)
to establish fairness, e.g. by paying out max(0, UT− −K) for some suitable K > 0.
In this paper we have more or less ignored this issue and simply taken ψ as a given
function (which of course should depend on the terminal payout function) measur-
ing the utility of the dividend reserve just before T . Alternatively, as proposed in
Norberg (2001), profits could be covered by expenses.

As a different theoretical approach to this delicate issue one could employ the
principle of no arbitrage, which is fundamental in mathematical finance, see e.g.
Duffie (1996). A general framework for this approach (within life and pension
insurance) is provided in Steffensen (2001), where the redistribution of surplus
for a traditional life insurance policy is taken to be a part of the contract terms
so that the policy as a whole becomes a contingent claim in a financial market.
More precisely, a policy does not only lay down a first order payment stream at
issue, but also a dividend stream, both with payments that are functions of time
and the current (random) state of an underlying index S, which is an observable,
uncontrollable Markov vector process of a certain form. In short, the idea is that
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some of the component processes of S are traded on a financial market Z, whereas
others may be non-marketed processes, representing e.g. the life history of the
policyholder. It is then assumed that this market is free of arbitrage, and the
model therefore provides a way to specify contracts that are fair for the insurance
company as well as the policyholders in the sense that they are consistent with
market prices of different kinds of risk in the index S. The model also explicitly
yields reserves at market value.

This is of course very appealing from a theoretical point of view. However,
we have chosen another approach, which reflects perhaps a more pragmatic view
on life insurance: Typically, the durations of life and pension insurance contracts
exceed those of even the longest term bonds available in the markets (which, by the
way, partly explains why we have considered the first order payment stream as non-
hedgeable). For this reason alone there are no unique arbitrage free values of such
contracts. Furthermore, for traditional life and pension insurance contracts the
dividends are not explicitly linked to some underlying index, but rather determined
throughout the policy term by the company. In addition, assumptions of idealized
financial markets such as unlimited and frictionless trading in both long and short
positions are not fully met in reality.

Nevertheless, we shall briefly outline how the control problem addressed in this
paper could be formulated within the framework in Steffensen (2001). One would
have to introduce an equivalent martingale measure Q, which would amount to
specifying an equivalent set of transition intensities of Y (see e.g. Norberg (2003)).
Then, all dividend strategies would have to fulfill the requirement

EQ
(
e−

∫ T

0
r UT

)
= 0. (5.1)

In particular, strictly positive values of the terminal surplus UT would have to be
allowed, in contrast to the situation in Norberg (1999), where (5.1) would imply
that UT = 0 always. Thus, one could try to find optimal dividend streams among
those fulfilling (5.1). However, we shall not pursue this further.

C. Concluding remarks.
The overall aim of this paper has been to investigate the problem of fixing dividends
in life and pension insurance, which is a problem with two obviously conflicting
interests: The company wants to hand out as much as possible, but it does not
want to lose money systematically. The main motivation for this problem has been
the fact that over the past few years many large companies have faced an increasing
risk of losing money in this respect. This situations has been triggered by decreasing
interest rates, but one could argue that it is also caused by too aggressive dividend
strategies. The obtained results indicate that the prevailing strategies, by which
dividends are credited to the insured throughout the entire term, are suboptimal.
This hardly comes as a surprise, as dividends handed out early on in the policy
term certainly increase the risk of a terminal loss, while the benefit for the insured
is relatively small.
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3.6 Generalizations

A. Synopsis.
In this section we explore some possibilities for generalizations of the results of
this chapter to other and more general interest rate models. We continue to work
with Markovian models throughout this section in order to be able to apply results
from the theory of dynamic programming. We leave all components of the problem
(i.e., setup, assumptions, notation, etc.) as they stand, unless they are explicitly
modified below. In particular, we stick to the objective (3.2).

In Paragraph B we consider a fairly general Brownian motion-driven (diffusion)
interest rate model and show that the results concerning optimal dividend strate-
gies obtained in the finite-state Markov chain case carry over with straightforward
modifications.

In Paragraph C we discuss further generalizations of the interest rate model
and argue that similar results hold for general (suitably well-behaved) Markovian
interest rate models as long as the interest rate is bounded from below, which is
crucial. In this paragraph we leave out rigorous proofs and technical details and
keep the discussion fairly loose in order to ease the readability.

B. A diffusion interest rate model.
In this paragraph we leave our finite-state Markov chain model and turn to a
quite different class of interest rate models by assuming that r = (rt)t∈[0,T ] is a
nonnegative continuous-time Markov diffusion process with dynamics of the form

drt = α(t, rt) dt+ σ(t, rt) dWt, (6.1)

where α, σ : [0, T ]×R → R are measurable functions andW is a standard Brownian
motion. We need to impose a few technical conditions. First, to ensure existence
and uniqueness of a solution to the SDE (6.1), we assume that, for some K > 0,

|α(t, e) − α(t, f)| + |σ(t, e) − σ(t, f)| ≤ K |e− f | ,
α2(t, e) + σ2(t, e) ≤ K2(1 + e2),

for every t ∈ [0, T ], e, f ∈ [0,∞). These requirements also ensure that r is square
integrable, and thus that the process

(∫ t

0
σ(s, rs) dWs

)

t∈[0,T ]

is a (square-integrable) martingale (see, e.g. Karatzas and Shreve (1991)). Obvi-
ously, this model includes various popular short rate models as special cases.

The interest rate process is now continuous, and its state space, denoted by
I, is therefore an interval in [0,∞). As in the finite-state Markov chain case, the
greatest lower bound for the interest rate process, given here by

r = sup{e ≥ 0 : r(t) ≥ e, ∀t ∈ [0, T ], a.s.},
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turns out to play an important role for the optimal dividend strategy. For simplicity
we assume that r is the greatest lower bound for any initial condition, that is,
conditionally, given (rt = e) for some (t, e) ∈ [0, T )× I, rs may get arbitrarily close
to r with strictly positive probability for s ∈ (t, T ].

The state space for the triple process (t, rt, Ut)t∈[0,T ], which (with a slight abuse
of notation) is still denoted by E, is now given by E = [0, T ] × I × R. Corre-
spondingly, we maintain the notation (t, e, u) for a generic argument for the value
function Φ : [0, T ] × I × R → R. The definitions of E0 and D(t, e) in Section 3.4
are modified in an obvious way.

Remark 3.6.1 The performance and value functions are well defined. To see this,
note first that for any (t, e, u) ∈ E0 and D ∈ D(t, e),

E(t,e)

∣∣∣e−
∫ T

t
rU

(t,e,u,D)
T−

∣∣∣ = E(t,e)

∣∣∣∣∣e
−
∫ T
t

ru+

∫

(t,T )
e−

∫ s
t

r(cs ds− dDs)

∣∣∣∣∣

≤ |u| + E(t,e)

(∫

(t,T )
|rs − r∗||V ∗

s | ds
)

+ Et,e (DT )

< ∞.

The assertion now follows from Assumption 3.4.1 (iii).

The HJB equation becomes (skipping the generic argument (t, e, u) for nota-
tional convenience)

0 = max

(
Lφ− φ e, 1 − ∂

∂u
φ

)
, (6.2)

where

Lφ =
∂

∂t
φ+

∂

∂u
φ (eu + ct) +

∂

∂e
φα(t, e) +

1

2

∂2

∂e2
φσ2(t, e),

with the boundary condition

φ(T, e, u) = ψ(u), (e, u) ∈ I × R. (6.3)

As in Section 3.4 we define correspondingly a generalized solution to (6.2)-(6.3) to
be a function φ : [0, T ] × I × R → R satisfying the following requirements:

(i) There exists a finite partition 0 = t0 < t1 < . . . < tn = T such that φ is of
class C1,2,1 and fulfills (6.2) on (ti−1, ti) × I◦ × R for i = 1, . . . , n.

(ii) The condition (6.3) is fulfilled, and φ is continuous on [0, T ] × I × R except
possibly on the subset {(T, e, u) : ψ′(u) < 1}.

A solution is necessarily unique.

The following verification theorem, along with its proof, corresponds to Theo-
rem 3.4.6.
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Theorem 3.6.2 Let φ be a generalized solution to (6.2)-(6.3), which is concave in
u. Assume that, for any (t, e, u) ∈ E0 and D ∈ D(t, e), we have

E(t,e)

(∫ T

t

(
∂

∂e
φ(s, rs, U

D
s )σ(s, rs)

)2

ds

)
<∞, (6.4)

where UD ≡ U (t,e,u,D) is the the corresponding dividend reserve process. Then
φ ≥ Φ. Furthermore, for any (t, e, u) ∈ E0, if D ∈ D(t, e) and UD satisfy (a.s.)

lim
t↗T

φ(t, rt, U
D
t ) = φ(T, rT , U

D
T−) = ψ(UD

T−) (6.5)

and ∫

[t,T )
e−

∫ s
t

r(dAs + dJs) = 0, (6.6)

where

dAs = Lφ(s, rs, U
D
s ) ds− rsφ(s, rs, U

D
s ) ds+

(
1 − ∂

∂u
φ(s, rs, U

D
s−)

)
dDs,

dJs = φ(s, rs, U
D
s ) − φ(s, rs, U

D
s−) − ∂

∂u
φ(s, rs, U

D
s−)∆UD

s

= φ(s, rs, U
D
s ) − φ(s, rs, U

D
s + ∆Ds) +

∂

∂u
φ(s, rs, U

D
s + ∆Ds)∆Ds,

then ΦD(t, e, u) = φ(t, e, u) = Φ(t, e, u), i.e. D is optimal.

Proof. Let φ be as stated in the theorem. Let (t, e, u) ∈ E0, and let D ∈ D(t, e) be
arbitrary. Define the process X = (Xs)s∈[t,T ] by

Xs = e−
∫ s

t
r φ(s, rs, U

D
s ), s ∈ [t, T ].

Note that Xt = φ(t, e, u+Dt). By Itô’s formula (applied on each interval (ti−1, ti]),

XT− − φ(t, e, u) =

∫

[t,T )
e−

∫ s
t

r(dAs + dJs + dMs − dDs),

where

dMs =
∂

∂e
φ(s, rs, U

D
s )σ(s, rs) dWs.

Now, φ satisfies (6.2), so we have dAs ≤ 0, and dJs ≤ 0 because φ is concave in
u. Moreover, M = (Ms)s∈[t,T ] is a zero-mean martingale due to (6.4). Since φ has

continuous partial derivatives on E0 and ∂
∂uφ(t, e, u) ≥ 1 on E0,

XT− = e−
∫ T
t

r lim
t↗T

φ(t, rt, U
D
t ) ≥ e−

∫ T
t

rψ(UD
T−).

Thus, by taking expectations we obtain

φ(t, e, u) ≥ E(t,e)

(∫

[t,T )
e−

∫ s

t
rdDs + e−

∫ T

t
rψ(UD

T−)

)
= ΦD(t, e, u). (6.7)
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Since D ∈ D was arbitrary we conclude that Φ ≤ φ.
Now, assume that D ∈ D satisfies (6.5) and (6.6). Then, by similar calculations

the inequality (6.7) becomes an equality, i.e. φ(t, e, u) = ΦD(t, e, u) and thereby
φ(t, e, u) = Φ(t, e, u). 2

As already stated, Theorem 3.6.2 corresponds to Theorem 3.4.6, and the (ab-
stract) characterization of the optimal dividend strategy following the latter in
Section 3.4 applies here as well, with straightforward modifications.

Similarly, the following result corresponds to Proposition 3.4.7. To avoid blur-
ring the picture with technicalities we state the proposition in a somewhat im-
precise fashion. As a consequence, the proof becomes a bit sketchy. We refer to
Remark 3.6.5 below for some technical details on how rigorousness can be obtained.

Proposition 3.6.3 Let φ : E → R be given by

φ(t, e, u) = E(t,e)

(
e−

∫ T
t

r ψ̃

(
ue
∫ T

t
r +

∫ T

t
e
∫ T
τ

r cτ dτ

))
, (t, e, u) ∈ E0, (6.8)

and φ(T, e, u) = ψ(u), (e, u) ∈ I × R, where ψ̃ is defined as in Paragraph 3.4.F.
Then, under certain regularity conditions, φ is a generalized solution to (6.2)-(6.3),
which is concave in u.

Furthermore, assume that for any (t, e, u) ∈ E0 and D ∈ D(t, e), condition
(6.4) is satisfied. For t ∈ [0, T ], let

ũ(t) = ũe−r(T−t) −
∫ T

t
e−r(τ−t) (r − r∗)V ∗

τ dτ, (6.9)

and let D ∈ D(t,e) be such that for all s ∈ [t, T ] (with UD ≡ U (t,e,u,D)),

dDs = (rs − r) (ũ(s) + V ∗
s ) I(UD

s =ũ(s)) ds+
(
UD

s− − ũ(s)
)
I(UD

s−>ũ(s)). (6.10)

Then D is optimal.

Remark 3.6.4 The expression on the right-hand side of (6.8) does not depend on
the underlying probability space in the 5-tuple (Ω,F ,P, Y,D) ∈ D(t, e). Moreover,
the expectation exists (cf. Remark 3.6.1), and φ is therefore well defined.

Proof. It is easily seen that φ is concave in u. Since ψ̃′ is bounded by Assump-
tion 3.4.1 (iii) we have for (t, e, u) ∈ (0, T ) × I◦ × R that

∂

∂u
φ(t, e, u) = E(t,e)

(
ψ̃′

(
ue
∫ T

t
r +

∫ T

t
e
∫ T

τ
r cτ dτ

))
.

Thus, ∂
∂uφ(t, e, u) ≥ 1, (t, e, u) ∈ (0, T ) × I◦ × R.

The first assertion of the proposition will follow if we can show that

Lφ− φ e = 0 (6.11)
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on (ti−1, ti) × I◦ × R for i = 1, . . . , n. But (6.11) follows from the Feynman-
Kac formula, which is valid under certain regularity conditions (see Remark 3.6.5
below), so we conclude that φ is a generalized solution to (6.2)-(6.3) under such
conditions.

The proof that D given by (6.10) is optimal goes exactly as in the proof of
Proposition 3.6.3. 2

Remark 3.6.5 The proof rests on the validity of the formula (6.11), which, as
stated, follows from the Feynman-Kac formula (see, e.g. Karatzas and Shreve
(1991)). However, the Feynman-Kac formula is a stochastic representation for-
mula akin to (6.8), which is valid for a given (sufficiently regular) solution to some
PDE. In the context of the problem at hand, the Feynman-Kac result says that
if some function φ̃ were known to be a (sufficiently regular) solution to the PDE
(6.11) with the boundary condition φ̃(T, e, u) = ψ̃(u), then (6.8) would hold (with
φ̃ in the place of φ, of course). One cannot deduce that the converse is true in
general, i.e., we cannot be sure that φ, which is defined by (6.8), satisfies (6.11).
Although there also exist various results in this direction in the literature, we have
not been able to find one that covers the situation at hand. We shall therefore
content ourselves with a proof that (6.11) is valid under a smoothness assumption
on φ and a technical integrability condition ((6.12) below).

Thus, assume that there exists a finite partition 0 = t0 < t1 < . . . < tn = T such
that φ is of class C1,2,1 on (ti−1, ti)×I◦×R for i = 1, . . . , n. This assumption can be
checked in special cases of the general interest model (6.1). For any (t, e, u) ∈ E 0,

the process Y (t,e,u) = (Y
(t,e,u)
s )s∈[t,T ] defined by

Y (t,e,u)
s = e−

∫ s
t

r φ (s, rs, Us) , t ≤ s ≤ T,

where we have used the short-hand notation Us for U
(t,e,u,0)
s , is a martingale, be-

cause
Y (t,e,u)

s = E(t,e)

(
e−

∫ T

t
r ψ̃ (UT )

∣∣∣Gs

)
, t ≤ s ≤ T.

By Itô’s formula we have

dY (t,e,u)
s = e−

∫ s
t

r

(
Lφ(s, rs, Us) +

∂

∂e
φ(s, rs, Us)σ(s, rs) dWs − φ(s, rs, Us) rs

)
.

We now assume that, for any (t, e, u) ∈ E0 and any stopping time τ taking values
in [t, T ], we have

E(t,e)

(∫ τ

t

∂

∂e
φ(s, rs, Us)σ(s, rs) dWs

)
= 0, ∀(t, e, u) ∈ E0. (6.12)

This condition is satisfied if

E(t,e)

(∫ T

t

(
∂

∂e
φ(s, rs, Us)σ(s, rs)

)2

ds

)
<∞, ∀(t, e, u) ∈ E0.
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For any (t, e, u) ∈ E0 and any stopping time τ as above we then have, by the
optional sampling theorem,

E(t,e)

(∫ τ

t
e−

∫ s
t

r (Lφ(s, rs, Us) − φ(s, rs, Us) rs) ds

)
= 0. (6.13)

Now, let (t, e, u) ∈ E0 be a point such that t ∈ (ti−1, ti) for some i = 1, . . . , n, and
assume that

Lφ(t, e, u) − φ(t, e, u) e > 0.

Put

τ = inf {s ∈ [t, T ] : Lφ(s, rs, Us) − φ(s, rs, Us) rs ≤ 0} ∧ T.

Since φ ∈ C1,2,1((ti−1, ti) × I◦ × R, we have τ > t, a.s., so (6.13) cannot be true,
and we have a contradiction. A similar argument shows that we cannot have

Lφ(t, e, u) − φ(t, e, u) e < 0,

so we conclude that (6.11) holds.

Once again, the (precise) characterization of the optimal dividend strategy fol-
lowing Proposition 3.4.7 applies here as well, with straightforward modifications.

C. Further generalizations of the interest rate model.
We have seen in Paragraph B that the results concerning the optimal dividend
strategy in the finite-state Markov chain case carry over with obvious modifications
to the present case. In this paragraph we discuss further generalizations.

We begin by arguing that it is very reasonable to believe that our results hold in
general for any nonnegative Markov interest rate model as long as it is reasonably
well behaved. To see this, assume that r is modelled simply as some continuous-
time nonnegative Markov process, for which r is the greatest lower bound for any
initial condition, as was assumed above in the diffusion case. Assume that

E(t,e)

(∫ T

t
r(t) dt

)
<∞, ∀(t, e) ∈ [0, T ] × I,

where I again denotes the state space of the interest rate. Now, the explicit results
obtained in the two cases we have studied are based on the simple observation that,
due to the form of the objective (3.2), one can obtain an almost-optimal dividend
strategy by holding back all dividends in the dividend reserve until t is very close to
T and then simply hand out (Ut− ũ)+ once and for all. More precisely, if (tn)n≥1 is
an increasing sequence of time points in [0, T ) with limn→∞ tn = T , and (D(n))n≥1

is a sequence of dividend strategies given by

D(n)(s) =

{
0, s < tn,
(Utn − ũ)+, s ≥ tn,
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then it is intuitively very reasonable that, for any (t, e, u) ∈ E0,

lim
n→∞

ΦD(n)
(t, e, u) = Φ(t, e, u). (6.14)

There is no reason why this should not be the case in general. Moreover, by
definition we have

ΦD(n)
(t, e, u) = E(t,e)

(∫

[t,T )
e−

∫ s

t
r dD(n)

s + e−
∫ T

t
r ψ
(
U

(t,e,u,D(n))
T−

))
,

and it is fairly easy to verify, from the form of the D(n), that for n→ ∞ we almost
surely have

∫

[t,T )
e−

∫ s

t
r dD(n)

s + e−
∫ T

t
r ψ
(
U

(t,e,u,D(n))
T−

)
→ e−

∫ T

t
r ψ̃
(
U

(t,e,u,0)
T

)
.

This convergence is in fact dominated, so we have

lim
n→∞

ΦD(n)
(t, e, u) = E(t,e)

(
e−

∫ T
t

r ψ̃
(
U

(t,e,u,0)
T

))

= E(t,e)

(
e−

∫ T
t

r ψ̃

(
ue
∫ T
t

r +

∫ T

t
e
∫ T

τ
r cτ dτ

))
.

Thus, we are led to conclude (or at least believe) that

Φ(t, e, u) = E(t,e)

(
e−

∫ T
t

r ψ̃

(
ue
∫ T

t
r +

∫ T

t
e
∫ T
τ

r cτ dτ

))
, (t, e, u) ∈ E0. (6.15)

Indeed, this identity is exactly what has been verified in the finite-state and dif-
fusion cases (recall (4.12) and (6.8)). It is therefore natural to believe that our
characterization of the optimal dividend strategy is valid in general.

It is crucial for our results that the interest rate is bounded from below (we
have even assumed that it is nonnegative, but this is not important). As we have
seen, the lower bound r actually plays an important role for the optimal dividend
strategy. Economically, this condition is not only meaningful, it is even desirable.
Mathematically, however, it may be interesting to drop this condition and consider
the case where the interest rate is unbounded and may assume any negative value,
as is the case for Gaussian models such as the well-known Vasicek (1977) model.
The calculations above are still valid (at least if all technicalities are in place), so it is
still reasonable to believe (6.15) to hold. However, the situation is entirely different:
There is no optimal dividend strategy. To see this, recall from the discussion
following Theorem 3.4.6 that dividends should never be credited if the current state
of the controlled process is not in the set K = {(t, e, u) ∈ E : ∂

∂uφ(t, e, u) ≤ 1}.
However, with an unbounded interest rate we have K = ∅ (as can be seen by
arguments similar to the ones used in the last part of the proof of Theorem 3.4.7),
so dividends should never be credited!
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The intuitive explanation as to why there is no optimal strategy is, of course,
that with an interest rate that is unbounded from below there is always a chance
(however small it may be) that a severe loss is suffered, and if dividends have been
handed out before T , then a loss may be punished harder than if this were not the
case. On the other hand, since (6.14) still holds, almost-optimal strategies can be
obtained from the sequence (D(n))n≥1.



Chapter 4

Utility Maximization and Risk
Minimization in Life and
Pension Insurance

Sections 4.1-4.7 of this chapter constitute an adapted and modified ver-
sion of Nielsen (2004). An abridged and modified version of Nielsen
(2004) without Section 4.6 appears as Nielsen (2006). Sections 4.8-4.9
have been added for this thesis and thus do not appear in Nielsen (2004)
or Nielsen (2006).

We consider a life insurance company that seeks to optimize the pension benefits on
behalf of an insured. We take the uncertain course of life of the insured explicitly
into account and thus have a non-standard financial optimization problem for which
we propose a two-step approach: First, according to a certain preference structure
and under a certain fairness constraint, an optimal pension payment process is
obtained. This leaves the company with a non-hedgeable liability, for which we then
discuss two quadratic hedging approaches. We obtain general results on dividend
optimization, indicating that some widely used strategies are suboptimal, and semi-
explicit expressions for the optimal bonus and investment strategies.

4.1 Introduction

The theory of optimal dynamic investment and consumption strategies in contin-
uous time deals with the problem of an agent equipped with an initial endowment
(and/or an income stream), who can invest in a financial market modelled by some
multi-dimensional stochastic process, and who wants to maximize the expected
utility, according to some preference structure, of consumption and/or terminal
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wealth. Beginning with the classical papers Merton (1969, 1971), where Marko-
vian dynamics were assumed and dynamic programming methods were employed,
the theory has developed extensively over the past few decades, and virtually count-
less variations and generalizations of Merton’s problems have been analyzed and
studied. A more modern approach, which allows of more general (in particular
non-Markovian) structures, is the martingale method developed by Pliska (1986),
Karatzas et al. (1987), and Cox and Huang (1989, 1991). Initially this method
rested on the assumption of a complete market, but it has been generalized by the
use of duality theory to incomplete markets by Karatzas et al. (1991) and further
by Kramkov and Schachermayer (1999) and Cvitanić et al. (2001). We shall not
give an account of the literature here; the reader is referred to, e.g. Karatzas and
Shreve (1998), Sect. 3.11, or Duffie (1996), Ch. 9, for extensive surveys.

Merton’s theory and its generalizations are clearly relevant for life and pension
insurance companies acting on behalf of their policyholders who, apart from buying
insurance coverage, are saving for retirement and thus may be thought of as eco-
nomic agents. In the major part of the literature the agent is (implicitly) assumed
to outlive the time horizon in consideration, and the agent’s wealth and income are
unambiguously defined and depend on the evolution of the financial market only.
This assumption is certainly justifiable in many situations, but the payments —
and thus the wealth and income — pertaining to a life insurance policy depend in
general not only on the evolution of the financial market but also on the (uncertain)
course of life of the insured. Ignoring this uncertainty corresponds to the implicit
assumption that the non-financial part of the risk associated with a policy can be
“diversified away” so that one can work with the financial part only. However,
it is not clear in general exactly how the “financial part” is to be identified, and,
furthermore, the implicit diversification assumption need not be well founded.

In this chapter we consider an optimization problem where the individual policy
risk is taken explicitly into account. More specifically, we consider a life insurance
company or a pension fund (henceforth referred to as the company) aiming at
maximizing the expected utility of the pension benefits for a policyholder through
dividend allocation and investment. We work with a general multi-state policy,
for which the case with an uncertain life time is just one of several possible spe-
cializations. The company can invest in a complete financial market driven by a
d-dimensional Brownian motion and with random coefficients. We do not assume
that the market provides hedging opportunities regarding the policy risk, however,
so the financial market is only complete when looked at in isolation. In other words,
the policy payment process is not assumed to be put on the market.

For the company it is therefore not just a matter of investing for the insured
as if he or she were an economic agent. Rather, the genuine risk associated with
the policy must be taken into account, and it is not clear in general how this risk
should be handled and how the company should invest. The company faces an
overall problem involving two concerns: optimization on behalf of the insured and
optimization for the company itself, according to suitable criteria. We propose a
two-step solution approach that, to our knowledge, has not been proposed in the
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existing literature. The first step consists in utility maximization of the benefit
stream for the insured (as explained in more detail below), taking his or her ob-
jective as given. The second step consists in treating the optimal benefit stream
obtained in the first step as a given (random) liability for the company and deter-
mine an investment strategy that takes this liability into account and is optimal
for the company in a suitable sense. We consider risk minimization as the chosen
criterion.

Although our life insurance policy model is quite general and allows for var-
ious specifications (in particular purely financial ones), it is set-up as a general
so-called participating or with-profit policy, characteristic of which are its contrac-
tual payment streams with built-in safety margins. These lead to the emergence
of a systematic surplus, which forms the source of bonus benefits paid to the pol-
icyholder in addition to the contractual benefits, see, e.g. Norberg (1999). This
chapter deals with optimization of strategies for bonus distribution and investment
within the class of strategies satisfying a certain fairness constraint based on a
technical assessment of a fair price of the policy risk.

A widely used method in practice is to allocate parts of the emerged surplus
to the policyholder during the policy term through dividends, which are then con-
verted into future bonus benefits. Focusing solely on the premium payment period
(sometimes referred to as the accumulation phase) of the policy term we obtain
some very general results on optimal dividend allocation. Apart from being of in-
terest in their own right they allow of a simplification of the optimization problem,
which is then approached using the martingale methodology in the sense that we
consider the problem as a static optimization problem and use methods from con-
vex analysis to obtain a bonus strategy that is optimal in terms of our objective.
This analysis constitutes the first of the abovementioned two steps.

As mentioned, perfect hedging of the optimal payment streams is impossible
due to the policy risk. Consequently, the company is left with a genuine risk that
we propose to address by quadratic hedging methods known from the theory of
risk minimization in incomplete markets. This consitutes the second step.

A related problem in a Markovian model is studied in Steffensen (2004), where
dynamic programming techniques are applied. He works with the surplus process
only (using a different notion of surplus than the traditional “actuarial” one, see
Norberg (1999)) and focuses on dividend and investment strategies optimizing the
bonus benefits, allowing for path-dependent utility in a certain form but not for
dividend schemes that impose a genuine risk for the company. We allow for path-
dependent utility in a general form as well as dividend schemes imposing a genuine
risk. Furthermore, our approach is not based on a specific surplus or wealth process
and thus appears to be less restrictive. We take into account the total payments
and consider an objective in a general form that can be specialized, e.g. to involving
the total pension benefits or the bonus benefits only.

Although our main focus is on optimization we also provide a generalized and
detailed analysis of the total financial impact that a life insurance policy has on
the company, without ignoring the policy risk.
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The chapter is organized as follows. In Section 4.2 we present the model of the
financial market and the insurance policy. We formulate the optimization problem
in Section 4.3 and determine optimal dividend strategies in Section 4.4. We discuss
two hedging approaches in Section 4.5. Section 4.6 is dedicated to an example
covering the combined results to a large extent, and Section 4.7 concludes. Finally,
Section 4.8 contains some discussions, and Section 4.9 compares our approach with
the one taken in Steffensen (2004).

4.2 The model

A. Prefatory remarks on notation etc.
We consider throughout a time interval [0, T ′] for some T ′ ∈ (0,∞). We shall have
occasion also to include time 0−, interpreted as the time point immediately before
0; this should cause no confusion as the expressions involved will have an obvious
interpretation and therefore need no further explanation.

All random variables are defined on a complete and filtered probability space
(Ω,F ,F = (Ft)t∈[0,T ′],P). We denote by V (resp. A) the set of càdlàg, F-adapted
processes A with finite (resp. integrable) variation over [0, T ′] and A0− ≡ 0 (but,
possibly, A0 6= 0). Clearly, A ⊆ V. For A ∈ V and an A-integrable process H,∫
[0,t]Hs dAs is interpreted as H0∆A0 +

∫
(0,t]Hs dAs = H0A0 +

∫
(0,t]Hs dAs.

The transpose of a vector or matrix A is denoted by A′. For a matrix A, Ai·

denotes the i’th row, interpreted as a row vector. Relations are stated in weak
form, i.e., “increasing” means “non-decreasing” etc.

B. The financial market.
We adopt a standard financial market model where all uncertainty is generated
by a d-dimensional standard Brownian motion W = (W 1, . . . ,W d)′, and where
trading occurs without friction, i.e., there is unlimited supply of the available assets,
no short-sale constraints, no trading costs etc. We shall make use of well-known
fundamental results from mathematical finance without explicit references; the
reader is referred to Karatzas and Shreve (1998), Ch. 1, for details and proofs.

The filtration generated by W and augmented by the P-null sets of F is denoted
by F

W = (FW
t )t∈[0,T ′]. The market consists of a locally risk-free asset with price

dynamics given by
dS0

t

S0
t

= rt dt, S
0
0 = 1,

i.e., S0
t = e

∫ t
0 rs ds, 0 ≤ t ≤ T ′, and d risky assets with price processes S1, . . . , Sd

given by the dynamics

dSi
t

Si
t

= (rt + σi·
t λt) dt+ σi·

t dWt, S
i
0 > 0, i = 1, . . . , d. (2.1)

The (short) interest rate process r, the “market price of risk” vector process λ =
(λ1, . . . , λd)′, and the volatility matrix process σ = (σij)1≤i,j≤d are the coefficients
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of the model. We assume that they are progressively measurable with respect to
F

W and that r is integrable and all components of λ and σ are square integrable
with respect to the Lebesgue measure, almost surely.

We assume that σ is non-singular for Lebesgue-a.e. t ∈ [0, T ′], a.s., and that
the process Λ = (Λt)t∈[0,T ′] given by

Λt = exp

(
−
∫ t

0
λ′s dWs −

1

2

∫ t

0
‖λs‖2 ds

)
, 0 ≤ t ≤ T ′,

is a square-integrable martingale.

Remark 4.2.1 Under suitable assumptions on admissibility of portfolio processes
and contingent claims this market is arbitrage free and complete. In the following,
such assumptions will be imposed when appropriate.

C. The insurance policy and its contractual payments.
We consider a life insurance policy issued at time 0 and terminating at time T ′.
We shall make use of well-known fundamentals and common terminology of par-
ticipating life and pension insurance without explaining all details. Although our
approach is somewhat different, we refer readers, to whom this is unfamiliar terri-
tory, to e.g. Norberg (1999, 2001) or Steffensen (2001, 2004), where further details
and discussions on issues such as reserves, surplus, dividends and bonus are pro-
vided.

The (uncertain) course of life of the insured under the policy is represented
by a stochastic policy state process Z = (Zt)t∈[0,T ′] with a finite state space Z =
{0, . . . , k}. We assume that Z and W are independent and for simplicity that
Z0 ≡ 0. The filtration generated by Z and augmented by the P-null sets of F is
denoted by F

Z = (FZ
t )t∈[0,T ′]. We further assume that Z ∈ A, so that it has a

compensator.
Upon issue of the policy, the company and the insured agree upon a stream

of premiums and a stream of contractual or guaranteed benefits. By counting
premiums as negative and benefits as positive these payment streams can be merged
into a single stochastic payment process B̂ counting the accumulated payments from
the company to the insured (see e.g. Norberg (1999)). We assume for simplicity
that B̂ is driven by Z (i.e., F

Z-adapted) and further that B̂ ∈ V.
Apart from the stated technical assumptions on Z and B̂ we impose no par-

ticular restrictions on the distribution of Z or on the form of B̂, and our model is
therefore quite general. To avoid confusion we stress that B̂ is a fixed F

Z-adapted
process that will not be subject to optimization in this chapter.

D. Valuation.
At any time t ∈ [0, T ′] the future contractual payments constitute a liability on
the part of the company. Valuation of this liability is taken to be market based
and carried out on the basis of a probability measure Q, defined on (Ω,FT ′), and
the available information at time t. Mathematically, this information is given by



94 Chapter 4

Ft; F is taken to be the filtration generated by W and Z and augmented by the
P-null sets of F , in particular (Ω,F ,F,P) then satisfies the “usual conditions” of
right-continuity and completeness. We assume that Q ∼ P and, more specifically,
that

dQ

dP
= ΛT ′ΓT ′ ,

where Γ = (Γt)t∈[0,T ′] is a strictly positive square-integrable F
Z -adapted martingale.

This means that purely financial quantities are evaluated at market value, and
it is well-known (Girsanov’s Theorem) that WQ = (WQ,1, . . . ,WQ,d)′ given by

WQ
t = Wt +

∫ t

0
λs ds, t ∈ [0, T ′],

is a standard d-dimensional Wiener process under Q. Note also that dQ/dP ∈
L2(Ω,FT ′ ,P), and that the independence between Z and W is preserved under Q.

We assume throughout that

E

(∫

[0,T ′]

1

S0
s

∣∣∣dB̂s

∣∣∣
)2

<∞, (2.2)

and define the market reserve at time t ∈ [0, T ′] corresponding to the contractual
payment process B̂ as

V̂t = S0
t EQ

(∫

(t,T ′]

1

S0
s

dB̂s

∣∣∣∣∣Ft

)
. (2.3)

Note that the reserve is in respect of strictly future payments; this implies that V̂
is also right-continuous.

Remark 4.2.2 We have made no particular assumptions about the (marginal)
distribution of Z under Q, denoted by QZ , which calls for a comment: Since V̂t

has been labelled as the market reserve, QZ should, ideally, be determined on
the basis of market prices. This may not be fully possible due to the lack of a
(sufficiently) liquid market, and QZ could instead be an estimated distribution
based on historical data, possibly adjusted to allow for a risk loading. The actual
form of QZ is not important for our purposes. However, for clarity it may be
nice to think of the standard model in multi-state life insurance mathematics (see
e.g. Hoem (1969) or Norberg (1991)), where Z is a continuous-time Markov chain.
In simple special cases one can obtain closed-form expressions for the state-wise
(market) reserves and thus for V̂t.

Remark 4.2.3 The condition (2.2) is sufficient to ensure that the reserve is well
defined. Furthermore, square integrability is necessary for the methods employed
in Section 4.5 and thus for the overall approach in this chapter.
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In participating life insurance it is usually required that the contractual pay-
ments (as given by B̂) be determined in accordance with the actuarial equivalence
principle applied under prudent conditions (on interest, mortality etc.), which lead
to comfortable safety loadings on the premiums, see, e.g. Norberg (1999). However,
we only impose the (weaker) condition

V̂0− ≤ 0, (2.4)

that is, the initial market reserve must be negative. In Section 4.4 we shall require
that the inequality (2.4) be strict, but this is not needed in the general setup.

E. Bonus benefits and fair contracts.
In addition to the guaranteed benefits the insured is entitled to bonus benefits be-
cause the policy would otherwise be unfair (due to (2.4)). However, these benefits
are typically not stipulated in the policy; they are in fact determined by the com-
pany concurrently during [0, T ′] and depend in general on the development of the
financial market. This chapter deals with optimization of the bonus strategy.

Certain principles must be adhered to. The bonus payments must be non-
anticipative, i.e., they must always be paid out on the basis of the information at
hand, that is, the observed history of the involved processes. Mathematically, this
means that the payment process B̃ representing the accumulated bonus benefits
must be F-adapted. Naturally, we must have B̃0− ≡ 0. Furthermore, bonus pay-
ments cannot be reclaimed once they have been paid out, so B̃ must be increasing.
We also assume that B̃ ∈ V (i.e., B̃T ′ <∞, a.s.) and that

E

(∫

[0,T ′]

1

S0
s

dB̃s

)2

<∞. (2.5)

Remark 4.2.4 Remark 4.2.3 (with suitable modifications) obviously also applies
to condition (2.5).

We require the policy, viewed in its entirety, to form a fair game in the sense
that it must not create a risk-free profit (or loss) for the company. To this end we
impose the condition that

EQ

(∫

[0,T ′]

1

S0
t

(
dB̂t + dB̃t

))
= 0. (2.6)

Since the contractual payments are specified in the policy and therefore cannot be
altered, this can also be interpreted as a condition on the bonus benefits, as is seen
explicitly from the equivalent condition

EQ

(∫

[0,T ′]

1

S0
t

dB̃t

)
= −V̂0−, (2.7)

obtained from (2.6) by use of (2.3).
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The fairness condition says nothing about the form of B̃ and in that sense it is
therefore quite weak; it should be taken only as necessary in order to avoid unfair
insurance schemes. It is certainly not sufficient to ensure that B̃ is reasonable; one
can easily construct rather obscure bonus schemes that satisfy (2.6) but are neither
reasonable nor fair in the usual sense of the word. On the other hand it is perhaps a
strict condition from a practical point of view, as it represents a somewhat idealized
insurance market. For a further discussion on the principle underlying (2.6) and
a comparison with a more traditional “actuarial” principle we refer to Steffensen
(2001).

F. The total market reserve.
Being F-adapted, any given bonus process B̃ can be treated as if it were a contrac-
tual obligation. Therefore we can define the total market reserve at time t ∈ [0, T ′],

Vt = S0
t EQ

(∫

(t,T ′]

1

S0
s

(
dB̂s + dB̃s

) ∣∣∣∣∣Ft

)
. (2.8)

By (2.6) we must have V0− = 0.

G. Examples.
We provide a few examples that may be nice to keep in mind.

Example 4.2.5 Suppose that under Q, Z is a continuous-time Markov chain that
admits deterministic transition intensity functions (measurable and positive, of

course) denoted by µef = (µef
t )t∈[0,T ′], e 6= f ∈ Z. Suppose further that B̂ has the

form

dB̂t =
∑

e∈Z

1(Zt−=e) dB̂
e
t +

∑

e,f∈Z

b̂eft dN ef
t ,

where, for each e, f ∈ Z, B̂e and b̂ef are deterministic functions (and B̂e ∈ V), and
N ef is the counting process counting the number of jumps from e to f , e 6= f ∈ Z.
This is a standard model in multi-state life insurance mathematics, see e.g. Hoem
(1969) or Norberg (1991).

Then the market reserve at time t ∈ [0, T ′], V̂t, is given by

V̂t =
∑

e∈Z

1(Zt=e) V̂
e
t ,

where the V̂ e
t are the state-wise reserves, defined for each e ∈ Z by

V̂ e
t = S0

t

∫

(t,T ′]
EQ

(
1

S0
s

∣∣∣∣Ft

) ∑

f∈Z

Q(Zs = f |Zt = e)


dB̂f

s +
∑

g∈Z, g 6=f

µfg
s b̂fg

s ds


 .

Note that the state-wise reserves are (FW
t )t∈[0,T ′]-adapted processes.
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Example 4.2.6 (Example 4.2.5 continued). Let Z = {0, 1}, where 0 and 1 are
interpreted as the states “alive” and “dead”, respectively, so that µ10 ≡ 0. Assume
further (for simplicity) that B̂1 ≡ 0, i.e., there are no payments after the time of
death. Then V̂ 1 ≡ 0, and

V̂ 0
t = S0

t

∫

(t,T ′]
EQ

(
1

S0
s

∣∣∣∣Ft

)
e−

∫ s
t

µ01
u du

(
dB̂0

s + µ01
s b̂

01
s ds

)
, t ∈ [0, T ′].

Here we put e−
∫ s
t

µ01
u du = 0 if

∫ s
t µ

01
u du = ∞.

Example 4.2.7 (Example 4.2.6 continued). Let µ01 ≡ 0, i.e., no uncertainty
regarding Z is taken into account. This corresponds to the situation usually con-
sidered in the literature on investment and consumption. Then V̂ 1 is irrelevant,
and

V̂ 0
t = S0

t

∫

(t,T ′]
EQ

(
1

S0
s

∣∣∣∣Ft

)
dB̂0

s , t ∈ [0, T ′],

i.e., the reserve is just the market value of the (future part of the) payment stream
B̂0, which is deterministic and thus in particular “purely financial”.

H. Some general remarks on the model.
Virtually all traditional life insurance products meet the assumption imposed in
Paragraph C that B̂ be F

Z-adapted. However, our framework also covers unit-
linked products (with contractual payments linked to some financial index), even
unit-linked products with F

Z -adapted (e.g. state-dependent) guarantees. It is pos-
sible — albeit at the expense of more complex notation — to extend all results
in this chapter to a more general situation with F-adapted guarantees so as to
allow, e.g., for products guaranteeing that the investments will outperform some
stochastic benchmark strategy.

In practice a policy often provides the insured with certain intervention options,
but we ignore this feature in order to ease the presentation. Once again we note
that it is possible to include such options in a consistent manner that leaves the
results of this chapter practically unaffected.

The financial market model is quite general in the sense that all its coefficients
are random, but since life insurance policies are typically long-term contracts, the
implied market completeness is admittedly somewhat unrealistic. However, more
realistic long-term market models as such are beyond the aim and scope of the
present chapter.

4.3 The optimization problem

A. The dividend method.
In this section we address the problem of determining optimal bonus strategies.
However, instead of allowing for all strategies satisfying (2.6) and (2.7) we restrict
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ourselves to a particular — yet fairly general — class of strategies to be character-
ized below. This is due to a widely established practice but it will also facilitate
the optimization problem considerably.

The bonus payments are usually not determined directly, but through allocation
of dividends and subsequent conversion(s) of dividends into future bonus payments
according to a certain conversion procedure laid down by the company. Thus, it
is the dividends (and the conversion procedure) rather than the bonus payments
that are subject to direct control, and we adopt this method here. The conversion
procedure can be quite complex, but we shall focus on a method that can be
characterized as a variant of a bonus scheme known as additional benefits.

More specifically, we first assume that B̂ can be decomposed as

B̂ = B̂p + B̂r,

where B̂p, B̂r ∈ V, and where B̂r is increasing and satisfies B̂r
t ≡ 0, ∀t ∈ [0, T ),

for some fixed T ∈ (0, T ′]. We think of T as the time of retirement of the insured
(hence the superscript r), which therefore marks the end of the premium payment
period. The (major part of the) contractual retirement or pension benefits from
time T onwards are accounted for by B̂r, whereas B̂p accounts for premiums and
any remaining part of the benefits not accounted for by B̂r, i.e., term insurance,
disability insurance etc. We shall sometimes refer to B̂p and B̂r as the premium
(payment) stream and the pension or retirement (benefit) stream, respectively.

Obviously, (2.2) is satisfied with B̂ replaced by B̂p or B̂r, since it holds for
B̂. We define V̂ p and V̂ r as the market reserves corresponding to B̂p and B̂r,
respectively, (as in (2.3)) so that V̂ = V̂ p + V̂ r.

As mentioned in the introduction we shall only consider optimal strategies dur-
ing the premium payment period, and we therefore assume that dividends can only
be allocated during [0, T ]. Next, we assume that the company uses all dividends
allocated during [0, T ) to purchase additional units of the pension benefit stream
as specified by B̂r and add these to the original one so as to proportionally raise
the guaranteed future pension benefits. A dividend lump sum allocated at time T ,
on the other hand, can be split into two parts, one that goes to increase the future
pension benefits further, and one that is paid out to the insured.

In mathematical terms, we let Dt and Kt represent, respectively, the accu-
mulated dividends and the accumulated number of guaranteed units of the basic
payment process B̂r at time t, t ∈ [0, T ′]. As was the case for the bonus process
we must have D0− ≡ 0 and thus K0− ≡ 1, and both D and K must be increasing.
Furthermore, D, and thus also K, must be F-adapted. We assume that D,K ∈ V.

Since all dividends must be allocated by time T we must have

Dt = DT , ∀t ∈ [T, T ′], (3.1)

Kt = KT , ∀t ∈ [T, T ′]. (3.2)

As for the specific conversion procedure we adopt a very natural one, by which the
number of additional units of guaranteed pension benefits added in a small time
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interval equals the amount of allocated dividends divided by the present value of a
single unit. More precisely, we put

dKt =
dDt

V̂ r
t

, t ∈ [0, τ),

where τ is the (FZ
t )t∈[0,T ]-stopping time

τ = inf{t ∈ [0, T ′] : V̂ r
t = 0} ∧ T.

We need the restriction t ∈ [0, τ) because it obviously makes no sense to add
additional units of B̂r if V̂ r

t = 0. If τ < T we must have dDt = dKt = 0 for
τ ≤ t < T . In integral form we have

Kt = 1 +

∫

[0,t]

1

V̂ r
s

dDs, t ∈ [0, T ). (3.3)

As mentioned, any remaining dividends to be allocated at time T , ∆DT , can be
used to additionally increase the future pension benefits by adding ∆KT units of
B̂r (unless τ < T ) and/or to pay out an additional bonus lump sum (positive, of
course), which consequently must equal

∆DT − ∆KT V̂
r
T , (3.4)

the dividend lump sum minus the value of the additional units of future pension
benefits. Note that if a lump sum payment at time T is included in the pension
benefits B̂r, i.e., if B̂r

T = ∆B̂r
T > 0, this payment is not affected by an increase in

the future pension benefits made at time T , as “future” is to be interpreted in the
strict sense.

To make things clear, the bonus payment process is given by

dB̃t = 0, 0 ≤ t < T,

∆B̃T = (KT− − 1) ∆B̂r
T + ∆DT − ∆KT V̂

r
T , (3.5)

dB̃t = (KT − 1) dB̂r
t , T < t ≤ T ′. (3.6)

Methods similar to the one outlined here are widely used in practice. Although this
is mainly due to practical issues, it can also be supported theoretically inasmuch
as B̂r — considered as the policyholder’s desired payment profile — is maintained
(see also the discussion in Paragraph C below). Of course, the possibility of an
additional lump sum bonus payment at time T , which is included for the purpose
of generality, may admittedly disturb this feature of the method. More general
methods could be considered, but only at the expense of added complexity.

With a fixed conversion procedure (as the one described above) we consider the
bonus payments process B̃ as being secondary in the overall decision problem in the
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sense that it is the dividend process D that is immediately controllable. However,
also ∆KT is directly controllable, subject to the restriction

∆KT ≤ ∆DT

V̂ r
T

, (3.7)

which is due to the fact that the additional bonus lump sum at time T , given by
(3.4), must be positive.

B. A relation for the dividend process.
Inserting (3.5) and (3.6) in (2.7) leads to the equation

EQ

(∫

[0,T ′]

1

S0
t

(Kt− − 1) dB̂r
t +

1

S0
T

(
∆DT − ∆KT V̂

r
T

))
= −V̂0−. (3.8)

Now, using (3.2), and the fact that B̂r
t ≡ 0, ∀t ∈ [0, T ), we have

∫

[0,T ′]

1

S0
t

(Kt− − 1) dB̂r
t = (KT− − 1)

∫

[T,T ′]

1

S0
t

dB̂r
t + ∆KT

∫

(T,T ′]

1

S0
t

dB̂r
t .

By (3.3) and the law of iterated expectations (recall (2.3)) we can thus write (3.8)
as

EQ

(
1

S0
T

V̂ r
T−

∫

[0,T )

1

V̂ r
t

dDt +
1

S0
T

∆DT

)
= −V̂0−.

Since D is increasing and fulfills (3.1), and (V̂ r
t /S

0
t )t∈[0,T ) is a positive martingale

under Q, we arrive at

EQ

(∫

[0,T ′]

1

S0
t

dDt

)
= −V̂0−, (3.9)

which corresponds to (2.6). In particular, the dividend and bonus processes must
have the same initial market value, which is quite natural.

With a slight abuse of terminology we shall refer to a (D,∆KT )-pair satisfying
(3.7) and (3.9) (and the regularity conditions imposed in Paragraph A) as a dividend
strategy, and we denote by D the set of dividend strategies. For a given (D,∆KT ) ∈
D the corresponding K and B̃ are determined through (3.3) and (3.5). If another
dividend strategy is considered all quantities pertaining to it will be equipped with
the same superscript in an obvious way, e.g. D ′,∆K ′

T ,K
′, B̃′, and so on.

C. Objectives.
Our aim is to find optimal dividend and investment strategies from the point of
view of the insured, i.e., strategies that maximize the expected total utility of the
payments. We take an approach based on the basic idea of the martingale method
of optimal consumption and investment, which is a two-stage procedure that (in
principle, at least) works as follows: First, combinations of consumption processes
and terminal wealths are considered as elements of a suitable linear space, and an
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optimal element among those that satisfy a natural budget constraint is identified
(by use of methods from convex analysis). Second, an investment strategy that
replicates the optimal consumption process/terminal wealth-pair is determined.

At this point we disregard the problem of finding a replicating strategy (which is
impossible anyway; we turn to this issue in Section 4.5) and focus on finding optimal
dividend strategies. We assume throughout this section that the inequality (2.4) is
strict. Otherwise the whole issue of dividend optimization would be void because,
as can be seen from (3.9), we would then be forced to put Dt ≡ 0, ∀t ∈ [0, T ].

We shall work with a rather special definition of a utility function, which will
be motivated below.

Definition 4.3.1 A utility function is a function u : R → [−∞,∞) such that

x0 := inf A ∈ [0,∞), (3.10)

where A = {x ∈ R |u(x) > −∞}, and such that on A, u is either constant and
equal to 0 or strictly concave and increasing with limx→∞ u′(x) = 0.

We consider a preference structure given by

Φ(D,∆KT ) = U
(
Y ′,∆B̂r

T + ∆B̃T

)
+ U

(
Y ′′,KT

)
, (3.11)

where Y ′ and Y ′′ are FZ
T -measurable random variables and U : R

2 → [−∞,∞) is
a measurable function such that, for each y ∈ R, U(y, ·) : R → [−∞,∞) is a utility
function. Our objective is

sup
(D,∆KT )∈DA

E (Φ(D,∆KT )) ,

where DA ⊆ D denotes the set of admissible dividend strategies, i.e.,

DA =

{
(D,∆KT ) ∈ D

∣∣∣∣ E

([
U
(
Y ′,∆B̂r

T + ∆B̃T

)]−
+
[
U
(
Y ′′,KT

)]−
)
<∞

}
,

where [·]− = −min(0, ·) is the negative part.
Some technical conditions are imposed below, but first we comment on the

objective. The purpose of Y ′ and Y ′′ is to allow the preferences to be policy-path
dependent. We think of the preference structure as being parameterized by Y ′ and
Y ′′, and it is thus quite general (an example with two possible specifications is
given below in Paragraph D). In particular, the insured may wish not to receive
anything in some policy states in order to increase the benefits in others — the
former then correspond to constant utility functions.

The utilities of the lump sum payment at time T and the pension benefit stream
B̂r are assumed to be additive. However, the utility of the latter is measured
entirely through KT . One could have formulated the objective in terms of some
utility functional (of the benefit stream), but this is a very delicate issue. The



102 Chapter 4

standard type of objective used in optimal consumption/investment problems in
continuous time (as originally formulated in Merton (1969, 1971)) relies on the
somewhat questionable assumption of time-additivity of utility. Other types of
objectives with features such as local time substitution, habit formation, etc. have
been proposed (see, e.g. Karatzas and Shreve (1998), Sect. 3.11 for references). By
the dividend method considered in this chapter the policyholder’s desired benefit
profile is maintained, and we therefore completely avoid having to deal with this
issue.

Now, some technical conditions. Put

C = {y ∈ R : U(y, ·) is constant on A(y)}, (3.12)

where A(y) is defined as A in Definition 4.3.1. To make sure the objective is sensible
we assume that

P
(
Y ′ ∈ C, Y ′′ ∈ C

)
< 1.

On the other hand we assume that Y ′′ ∈ C if V̂ r
T = 0 (this assumption is well posed

since {V̂ r
T = 0} ∈ FZ

T ) because in that case the insured does not care about the
value of KT .

It is convenient also to define E (Φ(D,∆KT )) for inadmissible strategies, so we
set E (Φ(D,∆KT )) = −∞ for any dividend strategy (D,∆KT ) ∈ D \ DA. Note
that, at this stage, we have not imposed conditions ensuring that

sup
(D,∆KT )∈DA

E (Φ(D,∆KT )) <∞ (3.13)

nor that DA 6= ∅.
D. Example.
We provide an example of the preference structure that, although still fairly general,
is suitable in most situations.

Example 4.3.2 We can work with a preference structure that corresponds to
state-wise utility (as in Steffensen (2004)), which is often natural, e.g. in the situa-
tion of Examples 4.2.5, 4.2.6, and 4.2.7. To this end, it is easy to construct U such
that

E (Φ(D,∆KT )) =
∑

e∈Z

E
(
1(ZT =e)

[
ue
(
∆B̂r

T + ∆B̃T

)
+ ve (KT )

])
(3.14)

or

E (Φ(D,∆KT )) =
∑

e∈Z

E
(
1(ZT =e)

[
ue
(
∆B̃T

)
+ ve (KT − 1)

])
, (3.15)

where ue, ve : R → [−∞,∞), e ∈ Z, are utility functions. Here, (3.14) measures
utility of the total payments, whereas (3.15) measures utility of the bonus payments.
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4.4 General results on dividend optimization

A. A special class of dividend strategies.
In this paragraph we present a first result, which is based on a simple observa-
tion. Assume that DA 6= ∅ and consider an arbitrary admissible dividend strategy
(D,∆KT ) ∈ DA. Since it is F-adapted, the same goes for the corresponding pro-
portionality factor process K, as already noted. In particular, DT and KT are
FT -measurable. Therefore we can construct another admissible dividend strategy
(D′,∆K ′

T ) by setting

D′
t ≡ 0, t ∈ [0, T ),

∆K ′
T = KT − 1,

∆B̃′
T = ∆B̃T .

It follows immediately that K ′
t ≡ 1, t ∈ [0, T ), and, after a few simple calculations,

that
D′

T = ∆D′
T = (KT− − 1)V̂ r

T− + ∆DT .

We have ∆D′
T 6= ∆DT and D′

T 6= DT in general, but, by construction, (D,∆KT )
and (D′,∆K ′

T ) yield exactly the same payment streams, so in particular we have
E (Φ(D′,∆K ′

T )) = E (Φ(D,∆KT )). We formulate this result as a proposition. Let

DA
0 = {(D,∆KT ) ∈ DA |Dt ≡ 0, ∀t ∈ [0, T )}.

Proposition 4.4.1 For any (D,∆KT ) ∈ DA there exists a (D′,∆K ′
T ) ∈ DA

0 that
yields the same expected utility, i.e.,

E
(
Φ(D′,∆K ′

T )
)

= E(Φ(D,∆KT )) .

Because of this result we need only consider DA
0 in our search for optimal

strategies. However, we cannot rule out the possibility that in general DA \ DA
0

may also contain optimal strategies.

B. Optimal dividend strategies in DA
0 .

Our aim in this paragraph is to find an optimal dividend strategy in DA
0 . For

(D,∆KT ) ∈ DA
0 , (3.5) becomes

∆B̃T = ∆DT − ∆KT V̂
r
T ,

and (3.9) may therefore be written as

EQ

(
1

S0
T

(
∆B̃T + ∆KT V̂

r
T

))
= −V̂0−,

or equivalently

V̂0− + E
(
HT

(
∆B̃T + ∆KT V̂

r
T

))
= 0, (4.1)
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where H = (Ht)t∈[0,T ′] is the state price deflator process,

Ht =
ΛtΓt

S0
t

, t ∈ [0, T ′].

With a slight abuse of notation regarding Φ the optimization problem can now be
formulated in terms of the FT -measurable random variables ∆B̃T and ∆KT as

sup
(∆B̃T ,∆KT )

E
(
Φ(∆B̃T ,∆KT )

)
,

where

Φ(∆B̃T ,∆KT ) = U
(
Y ′,∆B̂r

T + ∆B̃T

)
+ U

(
Y ′′, 1 + ∆KT

)
, (4.2)

subject to the constraint (4.1) and

∆B̃T ≥ 0, a.s., (4.3)

∆KT ≥ 0, a.s. (4.4)

In order to enforce the constraints (4.3)-(4.4) we introduce the generalized utility
function Υ : R

2 × [0,∞) → [−∞,∞) given by

Υ(y, x, z) =

{
U(y, x), x ≥ z,
−∞, x < z,

and — once again with a slight abuse of notation — replace the expression for Φ
in (4.2) by

Φ(∆B̃T ,∆KT ) = Υ
(
Y ′,∆B̂r

T + ∆B̃T ,∆B̂
r
T

)
+ Υ

(
Y ′′, 1 + ∆KT , 1

)
. (4.5)

From the theory of convex optimization under constraints (see e.g. Holmes (1975) or
Kreyszig (1978)) it can be deduced that the problem reduces to the unconstrained
maximization problem

sup
(∆B̃T ,∆KT )

E
(
L(∆B̃T ,∆KT , ξ)

)
,

where

L(∆B̃T ,∆KT , ξ) = Φ(∆B̃T ,∆KT ) − ξ
[
V̂0− +HT

(
∆B̃T + ∆KT V̂

r
T

)]
,
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and ξ > 0 is a Lagrange/Kuhn-Tucker multiplier. We have

L(∆B̃T ,∆KT , ξ) = Υ
(
Y ′,∆B̂r

T + ∆B̃T ,∆B̂
r
T

)
− ξHT ∆B̃T

+ Υ
(
Y ′′, 1 + ∆KT , 1

)
− ξHT ∆KT V̂

r
T

− ξV̂0−

= Υ
(
Y ′,∆B̂r

T + ∆B̃T ,∆B̂
r
T

)
− ξHT

(
∆B̂r

T + ∆B̃T

)

+ Υ
(
Y ′′, 1 + ∆KT , 1

)
− ξHT V̂

r
T (1 + ∆KT )

− ξ
(
V̂0− −HT ∆B̂r

T −HT V̂
r
T

)

≤ Υ̃
(
Y ′, ξHT ,∆B̂

r
T

)
(4.6)

+ Υ̃
(
Y ′′, ξHT V̂

r
T , 1
)

− ξ
(
V̂0− −HT ∆B̂r

T −HT V̂
r
T

)
,

where Υ̃ is the generalized convex dual of Υ given by

Υ̃(y, w, z) = sup
x∈R

(Υ(y, x, z) − wx) , (y, w, z) ∈ R
2 × [0,∞).

As functions of ξ > 0 our candidate optimal choices of ∆B̃T and ∆KT , ∆B̃∗
T and

∆K∗
T , become (recall (3.10) and (3.12))

∆B̃∗
T (ξ) =





(
x0(Y

′) − ∆B̂r
T

)+
, Y ′ ∈ C,

(
(U ′)−1(Y ′, ξHT ) − ∆B̂r

T

)+
, Y ′ /∈ C,

(4.7)

∆K∗
T (ξ) =

{
(x0(Y

′′) − 1)+ , Y ′′ ∈ C,(
(U ′)−1(Y ′′, ξHT V̂

r
T ) − 1

)+
, Y ′′ /∈ C,

(4.8)

where (U ′)−1 = (U ′)−1(y, ·) is the inverse of U ′ = U ′(y, ·), defined for y /∈ C
and extended if necessary from its natural domain (0, U ′(x0(y)+)) to (0,∞) by
(U ′)−1(y, w) = x0(y), w ≥ U ′(x0(y)+).

Indeed, a few calculations show that the expressions (4.7)-(4.8) are sufficient for
the inequality (4.6) to become an equality. However, only (4.7) and the expression
for ∆K∗

T (ξ) when Y ′′ /∈ C are also necessary. If Y ′′ ∈ C one has to take the

value of V̂ r
T into account because if V̂ r

T = 0 it is only necessary that ∆K∗
T (ξ) ≥

(x0(Y
′′) − 1)+, i.e., ∆K∗

T (ξ) can then be chosen arbitrarily in [(x0(Y
′′) − 1)+ ,∞).

We need some technical assumptions in order to actually prove that our can-
didates are admissible and optimal. We define the function ψ : (0,∞) → (0,∞]
by

ψ(ξ) = E
(
HT

(
∆B̃∗

T (ξ) + ∆K∗
T (ξ)V̂ r

T

))
, ξ > 0. (4.9)
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Assumption 4.4.2 For every ξ > 0,

ψ(ξ) <∞.

This assumption holds under certain conditions on U andH, but we shall not go
into a detailed study here. If it holds, then ψ is easily seen to be strictly decreasing
and fulfill ψ(ξ) → ∞ for ξ ↘ 0.

Assumption 4.4.3 The function ψ satisfies

lim
ξ→∞

ψ(ξ) < −V̂0−.

This assumption is necessary to ensure that the problem is well posed; it is
easily verified that DA = ∅ if it does not hold.

Assumption 4.4.4 There exists a function F : R → [0,∞) such that

∆B̂r
T ≤ F (Y ′), 1 ≤ F (Y ′′), a.s.,

and

E
(
HF (Y ′) + [U(Y ′, F (Y ′))]− +HF (Y ′′) + [U(Y ′′, F (Y ′′)]−

)
<∞.

In combination, Assumptions 4.4.3 and 4.4.4 ensure the existence of admissible
strategies.

Proposition 4.4.5 Under Assumptions 4.4.2, 4.4.3, and 4.4.4, the dividend strat-
egy given by (∆B̃∗

T (ξ∗),∆K∗
T (ξ∗)), where ξ∗ > 0 is uniquely determined by ψ(ξ∗) =

−V̂0−, is admissible and optimal. If (3.13) also holds, then this strategy is the only
optimal one in DA

0 (except for the abovementioned arbitrariness regarding ∆K ∗
T (ξ)

on the set (V̂ r
T = 0)).

Proof. Under Assumptions 4.4.2 and 4.4.3, the strategy (∆B̃∗
T (ξ∗),∆K∗

T (ξ∗)) is well
defined. To see that it is admissible (i.e., belongs to DA), consider the strategy

(∆B̃T ,∆KT ) := (L(Y ′) − ∆B̂r
T , L(Y ′′) − 1).

From the analysis above we have

Υ
(
Y ′,∆B̂r

T + ∆B̃∗
T (ξ∗),∆B̂r

T

)
− ξ∗HT

(
∆B̂r

T + ∆B̃∗
T (ξ∗)

)
= Υ̃

(
Y ′, ξ∗HT ,∆B̂

r
T

)

(4.10)
and

Υ̃
(
Y ′, ξ∗HT ,∆B̂

r
T

)
≥ Υ

(
Y ′,∆B̂r

T + ∆B̃T ,∆B̂
r
T

)
− ξ∗HT

(
∆B̂r

T + ∆B̃T

)
(4.11)

= Υ
(
Y ′, F (Y ′),∆B̂r

T

)
− ξ∗HTF (Y ′)

= U(Y ′, F (Y ′)) − ξ∗HTF (Y ′).
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Thus,

[
Υ
(
Y ′,∆B̂r

T + ∆B̃∗
T (ξ∗),∆B̂r

T

)]−
≤
[
U(Y ′, F (Y ′))

]−
+ ξ∗HTF (Y ′),

so by Assumption 4.4.4 we have

E

([
U(Y ′,∆B̂r

T + ∆B̃∗
T (ξ∗))

]−)
<∞.

Similar calculations show that

E
([
U(Y ′′, 1 + ∆K∗

T (ξ∗))
]−)

<∞,

and we conclude that (∆B̃∗
T (ξ∗),∆K∗

T (ξ∗)) ∈ DA.

Now, consider an arbitrary admissible strategy (∆B̃′
T ,∆K

′
T ). Using (4.10) and

(4.11) with (∆B̃T ,∆KT ) replaced by (∆B̃′
T ,∆K

′
T ), and the fact that (4.1) must

be satisfied by (∆B̃∗
T (ξ∗),∆K∗

T (ξ∗)) as well as (∆B̃′
T ,∆K

′
T ), it is easily seen that

E
(
Φ(∆B̃∗

T (ξ∗),∆K∗
T (ξ∗))

)
≥ E

(
Φ(∆B̃′

T ,∆K
′
T )
)
,

i.e., (∆B̃∗
T (ξ∗),∆K∗

T (ξ∗)) is optimal.

Finally, the inequality (4.11) is strict unless ∆B̃T = ∆B̃∗
T (ξ∗), and the cor-

responding inequality involving Y ′′ is strict unless ∆KT = ∆K∗
T (ξ∗) (except on

(V̂ r
T = 0), where the condition is ∆KT ≥ ∆K∗

T (ξ∗)). Thus, the asserted uniqueness
in DA

0 regarding the optimal strategy is valid if (3.13) also holds. 2

Proposition 4.4.5 provides optimal strategies, albeit only in a somewhat semi-
explicit fashion. If Y ′ /∈ C, the total lump sum payment at time T is given by

∆B̂r
T + ∆B̃∗

T (ξ) = ∆B̂r
T +

(
(U ′)−1(Y ′, ξ∗HT ) − ∆B̂r

T

)+

= (U ′)−1(Y ′, ξ∗HT ) +
(
∆B̂r

T − (U ′)−1(Y ′, ξ∗HT )
)+

.

It is seen to resemble the combined payoff from a zero-coupon bond and a European
call option on the unconstrained optimal (total) payment (which is obtained by
putting ∆B̂r

T ≡ 0) with strike price equal to the payoff from the zero-coupon
bond, or, equivalently, the combined payoff from the unconstrained optimal (total)
payment and a corresponding European put option. Thus, it generalizes the well-
known structure of the optimal wealth obtained in purely financial optimization
problems with portfolio insurance constraining the terminal wealth to be greater
than or equal to some K ≥ 0, which can be a deterministic constant as in, e.g. Cox
and Huang (1989) (K = 0) and Grossman and Zhou (1996) (K ≥ 0), or a general
stochastic benchmark as in, e.g. Tepla (2001). Similar remarks are valid also for
the optimal total number of units of pension benefits, 1 + ∆K ∗

T (ξ∗).
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Remark 4.4.6 If (3.13) does not hold, there may be several optimal strategies,
which is an unsatisfactory situation. We do not provide general conditions ensur-
ing that (3.13) holds, but we stress that it should be checked in applications of
Proposition 4.4.5.

C. Optimal dividend strategies in DA.
The remark made after Proposition 4.4.1 stating that DA\DA

0 may contain optimal
strategies in general, i.e., that it may not be strictly suboptimal in general to
allocate dividends before T , leads to the question of when this is actually the case.
The following corollary settles this issue.

Corollary 4.4.7 Under Assumptions 4.4.2, 4.4.3, and 4.4.4, a dividend strategy
(D,∆KT ) ∈ DA is optimal if

KT = 1 + ∆K∗
T (ξ∗) on (V̂ r

T > 0), (4.12)

∆DT = ∆B̃∗
T (ξ∗) − (KT− − 1)∆B̂r

T + ∆KT V̂
r
T , (4.13)

and (4.12)-(4.13) are necessary conditions for optimality if (3.13) also holds. Fur-
thermore, (4.12) can be met if and only if

P
(

(V̂ r
T > 0) ∩ (Kt > 1 + ∆K∗

T (ξ∗))
∣∣∣Ft

)
= 0, a.s., ∀t ∈ [0, T ]. (4.14)

Proof. Under Conditions (4.12) and (4.13) the bonus payments exactly match those
obtained by using the optimal strategy in DA

0 given in Proposition 4.4.5. For the
bonus pension benefits this follows immediately from (4.12), which easily translates
into a condition on D and ∆KT by use of (3.3). For the lump sum bonus at time
T it easily follows from (3.5). The first two assertions are then easy consequences
of Propositions 4.4.1 and 4.4.5.

The last assertion follows from the fact that K must be increasing. 2

Condition (4.14) tells us to what extent it is possible to allocate dividends during
[0, T ) and still obtain an optimal strategy. As long as the pension benefits are
non-null with strictly positive probability (conditionally, given all current informa-
tion), the total number of guaranteed units of the pension benefits must be smaller
than (1 + ∆K∗

T (ξ∗)) on (V̂ r
T > 0) (except possibly on a null-set), that is, smaller

than the conditional essential infimum of (1 + ∆K ∗
T (ξ∗)) given (V̂ r

T > 0) and all

current information. It can be shown that unless HT V̂
r
T is bounded from above

(conditionally), which is typically not the case, this conditional essential infimum
is 1, and it is thus strictly suboptimal to allocate dividends during [0, T ).

D. Examples.
The following example specifies a particular preference structure featuring constant
relative risk aversion in a generalized form. We put up the optimal DA

0 -strategy.
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Example 4.4.8 Suppose U is given by

U(y, x) = α(y)u(γ(y))(x− x0(y)), (y, x) ∈ R
2,

where α(y) ∈ [0,∞), and u(γ) is a CRRA utility function with relative risk aversion
coefficient γ ≥ 0, i.e.,

u(γ)(x) =

{
x1−γ

1−γ , γ 6= 1,

log(x), γ = 1,

for x > 0, u(γ)(0) = limx↘0 u
(γ)(x), and u(γ)(x) = −∞ for x < 0. Then C = {y ∈

R : α(y) = 0}, and

∆B̃∗
T (ξ) =





(
x0(Y

′) − ∆B̂r
T

)+
, α(Y ′) = 0,

(
(ξHT /α(Y ′))−1/γ(Y ′) + x0(Y

′) − ∆B̂r
T

)+
, α(Y ′) > 0,

(4.15)

∆K∗
T (ξ) =

{
(x0(Y

′′) − 1)+ , α(Y ′′) = 0,(
(ξHT V̂

r
T /α(Y ′′))−1/γ(Y ′′) + x0(Y

′′) − 1
)+

, α(Y ′′) > 0.
(4.16)

4.5 Quadratic hedging strategies

A. The investment issue.
While the previous section dealt with optimization of the dividend strategy, this
section deals with optimization of the company’s investment strategy in relation to
the policy. These issues are intimately related; in fact, in purely financial problems
of this type the investment issue and the consumption/wealth issue are essentially
two sides of the same story because the optimal investment strategy, by definition,
is the one that yields the optimal consumption/wealth process. In the problem
studied here, however, there is an unhedgeable risk source, Z, and therefore the
overall optimization problem faced by the company is not settled by the results of
the previous section.

Motivated by this informal discussion we proceed to consider the company’s
investment problem from scratch, taking the bonus payment process B̃ as given.
It is assumed that B̃ satisfies (2.7), but for the purpose of generality we do not
assume that B̃ is optimal with respect to our objective (although it may be, of
course) as this is unnecessary for the analysis.

B. Risk minimization.
Our objective will be to find strategies that hedge the payments as closely as
possible in some sense. To this end we shall consider quadratic hedging approaches,
by which the aim is risk minimization. More precisely, we consider the Q-risk-
minimizing and P-locally risk-minimizing strategies. Our aim is to make a brief
comparison of the two strategies and their implications. Thus, we shall not go into
a detailed study of the general theory but just give a sketchy presentation that is
sufficient to get an understanding of the ideas. For details and discussions we refer
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to Schweizer (2001) and its references (see in particular Møller (2001) for numerous
applications in insurance).

Let us first present the ideas. A risk-minimizing strategy is an investment
strategy that, at any time during the policy term, minimizes the expected value of
the squared discounted total remaining net costs pertaining to the policy. However,
risk-minimizing strategies only exist in general when the discounted price processes
are (local) martingales, so this forces us to work under Q (which explains the term
Q-risk-minimizing). A locally risk-minimizing strategy is an investment strategy
that, at any time during the policy term, minimizes the expected value of the
squared discounted net costs incurred over the next (infinitesimally) small time
interval, loosely speaking. Such a strategy exists in general, so we can work under
P, which is perhaps more natural from a theoretical point of view. This also
explains the term P-locally risk-minimizing.

Now, the total payment process pertaining to the policy is given by B = B̂+B̃,
and the value of the discounted (net) payments from the company to the policy-
holder in [0, t] is

At =

∫

[0,t]

1

S0
s

dBs, t ∈ [0, T ′].

In order to hedge the policy payments as closely as possible the company employs
an investment strategy formalized by a stochastic process (π0

t , πt)t∈[0,T ′], where π0

is real-valued and π = (π1, . . . , πd)′ is R
d-valued, and both are assumed to be

progressively measurable with respect to F. For i = 0, . . . , d and t ∈ [0, T ′], πi
t

represents the discounted amount invested in the i’th asset at time t. Thus, the
discounted total value of the investment portfolio at time t ∈ [0, T ′] is given by

Xt(π
0, π) =

d∑

i=0

πi
t.

Since d(S0
t /S

0
t ) = 0, and

d(Si
t/S

0
t ) = Si

t/S
0
t

(
σi·

t λt dt+ σi·
t dWt

)
= Si

t/S
0
t σ

i·
t dW

Q
t ,

for i = 1, . . . , d, the discounted gains process, measuring the accumulated dis-
counted investment gains of the portfolio, is given by

Gt(π
0, π) =

∫ t

0
π′sσs dW

Q
s , t ∈ [0, T ′].

Remark 4.5.1 This choice of terminology may, unfortunately, be somewhat mis-
leading: In general, Gt(π

0, π) is not equal to the discounted value of the accumu-
lated investment gains over (0, t] (this is only the case in general for self-financing
investment strategies starting at 0). The term gains process seem to be standard in
the theory of quadratic hedging approaches (see, e.g. Schweizer (2001)), where one
always works with discounted price processes. Since we have worked with undis-
counted price processes so far, we have added the qualifier “discounted” here in
order to emphasize that G is not the (undiscounted) gains process.
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Let L2(W ) denote the set of progressively measurable d-dimensional processes

θ = (θt)t∈[0,T ′] such that E
(∫ T ′

0 ‖θt‖2 dt
)
<∞. We impose the restriction that the

company is only allowed to use investment strategies (π0, π) satisfying

σ′π ∈ L2(W ), (5.1)

E

(∫ T ′

0
|π′tσtλt| dt

)2

<∞,

and
E
(
Xt(π

0, π)
)2
<∞, ∀t ∈ [0, T ′]. (5.2)

Since dQ/dP ∈ L2(Ω,FT ′ ,P), the condition (5.1) ensures in particular that the
gains process, G(π0, π), is a (Q,F)-martingale, so arbitrage is ruled out.

Now we define the cost process, which measures the discounted accumulated
total net costs and thus the total financial impact that the policy has on the
company. It is given by

Ct(π
0, π) = At +Xt(π

0, π) −Gt(π
0, π), t ∈ [0, T ′],

i.e., the (discounted) accumulated policy payments plus the (discounted) value of
the investment portfolio minus the (discounted) accumulated investment gains. It
is important to note that the investment strategy (π0, π) is not assumed to be self-
financing; if this were the case we would have Xt −Gt = X0, ∀t ∈ [0, T ′]. We also
emphasize that Xt(π

0, π) does not represent the company’s total assets, but only
the assets allocated to cover the (future) net payments pertaining to the policy.

At time T ′, when the contract is finally settled, this investment portfolio is
liquidated and added to the company’s other assets, i.e.,

XT ′(π0, π) = 0, a.s. (5.3)

Now, the aim is to minimize the (squared) fluctuations of C in some sense. As
already mentioned, a Q-risk-minimizing (resp. P-locally risk-minimizing) strategy
is one that, at any time t ∈ [0, T ′], minimizes the expected squared total discounted
net costs over the remaining period (t, T ′] (resp. over an (infinitesimally) small
interval (t, t+ dt)).

Square integrability (under P) of the components of C is ensured by the as-
sumptions made so far. When we work under Q we need to assume that (2.2),
(2.5), (5.1), and (5.2) all hold with E (·) replaced by EQ (·).

In both cases the sought strategy can be obtained from the Galtchouk-Kunita-
Watanabe decomposition of the so-called intrinsic value process, calculated under a
suitable equivalent martingale measure. In the case of Q-risk-minimizing strategies
this measure is Q itself, and in the case of P-locally risk-minimizing strategies it is
the so-called minimal martingale measure P̌, which in our model is given by

dP̌

dP
= ΛT ′ ,
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that is, P̌|FW
T

= Q|FW
T

and P̌|FZ
T

= P|FZ
T
.

For R ∈ {Q, P̌}, the intrinsic value process M(R) = (Mt(R))t∈[0,T ′ ] is given by

Mt(R) = ER (AT ′ | Ft) = ER

(∫

[0,T ′]

1

S0
s

dBs

∣∣∣∣∣Ft

)
, t ∈ [0, T ′].

Being a square-integrable (F,R)-martingale, it admits a unique Galtchouk-Kunita-
Watanabe decomposition, i.e., there exists a g(R) = (g1(R), . . . , gd(R))′ ∈ L2(WQ)
and a zero-mean square-integrable martingale L(R) orthogonal to

∫
θ dWQ for any

θ ∈ L2(WQ), such that

Mt(R) = ER (AT ′ | F0) +

∫ t

0
g′s(R) dWQ

s + Lt(R), a.s., ∀t ∈ [0, T ′]. (5.4)

Now, the Q-risk-minimizing strategy (π0(Q), π(Q)) and the P-locally risk-minimiz-
ing strategy (π0(P̌), π(P̌)) are given by

πt(R) =
(
g′t(R)σ−1

t

)′
, (5.5)

π0
t (R) = Mt(R) −At −

d∑

i=1

πt, (5.6)

with R = Q and R = P̌, respectively. This follows from Schweizer (2001), Theorems
2.4 and 3.5 (although the latter only guarantees that (π0(P̌), π(P̌)) is P-pseudo-
locally risk-minimizing).

Note that M0(Q) = EQ (AT ′ | F0) = 0 by (2.6), whereas, in general, M0(P̌) =

EP̌ (AT ′ | F0) 6= 0. The total market reserve V can be written as

Vt = S0
t EQ

(∫

(t,T ′]

1

S0
s

dBs

∣∣∣∣∣Ft

)
= S0

t (Mt(Q) −At). (5.7)

Thus, at any time t ∈ [0, T ′] the value of the Q-risk-minimizing portfolio is equal
to the total market reserve, and in particular it is 0 at time 0−. In comparison, the
value of the P-locally risk-minimizing portfolio is given by S0

t (Mt(P̌) −At), which
in general differs from Vt unless Q = P̌, in particular its value is in general different
from 0 at time 0−. Therefore, the Q-risk-minimizing strategy may be considered
more natural from a practical point of view.

Usually, the valuation measure Q has a (strictly positive) built-in risk loading
due to the non-hedgeable policy risk, which means that

Vt = S0
t EQ

(∫

(t,T ′]

1

S0
s

dBs

)
> S0

t EP̌

(∫

(t,T ′]

1

S0
s

dBs

)
, a.s.,∀t ∈ [0−, T ′]. (5.8)

In this case the Q-risk-minimizing strategy is thus also the more prudent of the
two.
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From (5.7) it is further seen that

d
(
Vt/S

0
t

)
= dMt(Q) − dAt = π′t(Q)σt dW

Q
t + dLt(Q) − 1/S0

t dBt,

so if the company employs the Q-risk-minimizing strategy, then at any time t ∈
[0, T ′] the position in the risky assets, π ′

t(Q), is chosen such that the part of the
changes in the reserve caused by fluctuations in W in a small time interval (t, t+dt)
is hedged by the investment gains in that interval. It is intuitively clear (and
it has been proved under certain regularity conditions in Møller (2001); see also
Example 4.6.1 in Section 4.6 below) that this amounts to choosing π ′

t(Q) as if the
remaining payment stream (dBs)s∈(t,T ′] were replaced by the conditional expected
remaining payment stream (with respect to Q), given all current information and
the (future) information in F

W , i.e.,

(
EQ
(
dBs | Ft ∨ FW

s

))
s∈(t,T ′]

.

In other words, π′t(Q) is obtained by “integrating out” the remaining uncertainty
regarding Z and then forming the initial portfolio of the hedging strategy of this
artificial payment stream — such a strategy exists because the artificial payment
stream is (FW

s )s∈(t,T ′]-adapted. In particular, F
Z-adapted payments (e.g. the con-

tractual ones given by B̂), must be backed by zero-coupon bonds. Furthermore,
explicit expressions for the Q-risk-minimizing portfolio strategy when B̃ has the
optimal form obtained in Section 4.4 can be obtained in many special cases of
interest, see, e.g. Cox and Huang (1989), Grossman and Zhou (1996), and Tepla
(2001). Note, however, that the artificial payment streams change constantly, so
the portfolio must be updated accordingly.

We also see that the reserve, which is a liability that “belongs” to the insured, is
maintained by adding investment gains from the corresponding assets, subtracting
payments to the insured and then adding (the undiscounted value of) dLt(Q); this
last term must be financed by the equity of the company.

Similar observations can be made for the P-locally risk-minimizing strategy. In
particular the portfolio is in that case chosen so as to hedge the fluctuations with
respect to W of what could appropriately be called the P̌-reserve.

As for the cost process, we find by use of (5.4) and (5.6) that

Ct(π
0(R), π(R)) = At +Xt(π

0(R), π(R)) −Gt(π
0(R), π(R))

= M0(R) + Lt(R), t ∈ [0, T ′],

i.e., C is a (F,R)-martingale as it should be (Schweizer (2001)). If the company
follows the Q-risk-minimizing strategy, the cost process will thus be the zero-mean
(F,Q)-martingale L(Q), but it will not be a martingale in general under the real
measure P. In particular it will have a systematic drift term representing the policy
risk loading. In comparison, if the company follows the P-locally risk-minimizing
strategy, the cost process will be a martingale under P, but with a non-zero initial
value. More explicit results in this direction are presented in Section 4.6.
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Remark 4.5.2 If Z also has integrable variation under Q, then, for R ∈ {Q, P̌},
it follows from Jacod and Shiryaev (2003), Theorem 4.29, that Lt(R) has the form

Lt(R) =

∫

[0,t]
hs(R) d(Z − ZR)s, 0 ≤ t ≤ T ′,

for some predictable process h(R), where ZR is the R-compensator of Z. In prac-
tice, life insurance companies typically have a large number (say n) of policies, and
apart from systematic risks such as increasing longevity, which is currently a major
issue in pension insurance, it is reasonable to assume that the individual policy
processes Z1, . . . , Zn are mutually independent. The corresponding loss processes
L1, . . . , Ln are then mutually uncorrelated (but not independent!) martingales;
this forms the foundation for the fundamental diversification argument in actuarial
mathematics.

4.6 A worked-out example

We dedicate this entire section to an example with Z in its perhaps simplest non-
trivial and fairly realistic form, that is, an intensity-driven survival model. Still, it
is probably the most important special case, and sufficient to illustrate our results
to a great extent.

Example 4.6.1 Suppose we are in the situation of Example 4.2.6. Let T 01 denote
the time of death, and assume that Q

(
T 01 > T

)
> 0. It is well-known (e.g. Jacod

and Shiryaev (2003), Theorem 5.43) that Γ has the form

Γt =

{
e
∫ t

0
κsµ01

s ds, Zt = 0,

e
∫ T01

0
κsµ01

s ds (1 + κT 01)−1 , Zt = 1,

for some deterministic, measurable function κ : [0, T ′] → (−1,∞) such that
∫ t

0
µ01

s ds <∞ ⇒
∫ t

0
µ01

s (1 + κs) ds <∞, t ∈ [0, T ′],

and Z admits the mortality intensity (µ01
t (1 + κt))t∈[0,T ′] under P. Put Γ0

T =

e
∫ T
0 κsµ01

s ds.
We begin with a discussion of the Q-risk-minimizing and P-locally risk-mini-

mizing strategies and thus take the total payment process B = B̂ + B̃ as given at
this point (as in Section 4.5). In this example B has a particularly simple form,
and it can be shown that the last two components of (5.4) are given by

gt(R) =
1(Zt=0)

R(Zt = 0)
ηt(R), R = Q, P̌, (6.1)

Lt(Q) =

∫

[0,t]

1(Zs−=0)

S0
s

(b01s − V 0
s )
(
dN01

s − µ01
s ds

)
, (6.2)

Lt(P̌) =

∫

[0,t]

1(Zs−=0)

S0
s

(b01s − V 0
s )
(
dN01

s − µ01
s (1 + κs) ds

)
, (6.3)
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t ∈ [0, T ′], where η(R) is the integrand in the stochastic representation MW
t (R) =

M0(R) +
∫ t
0 η

′
s(R) dWQ

s of the (FW ,R)-martingale MW (R) = (MW
t (R))t∈[0,T ′] de-

fined by MW
t (R) = ER

(
AT ′ | FW

t

)
, t ∈ [0, T ′], b01t denotes the total amount payable

upon death at time t, and V 0
t denotes the total market reserve if the insured is alive

at time t. The Q-risk-minimizing strategy and the P-locally risk-minimizing strat-
egy are given by (5.5)-(5.6) with g(R) given by (6.1).

In agreement with the observations made in the general case in Section 4.5, we
see that according to the Q-risk-minimizing strategy the company should always
invest as if the remaining total policy payments were replaced by the conditional
expected payments (wrt. Q) given all current information and the (future) infor-
mation in F

W , that is, as if the remaining uncertainty with respect to Z was
“integrated out”. The same goes for the P-locally risk-minimizing strategy except
for the fact that P (or P̌) should be used instead of Q. In particular we note that
F

Z -adapted components of the payment process should be backed by zero-coupon
bonds and that the investment portfolio should be liquidated at the time of death
of the insured.

The dynamics of the (discounted) total market reserve can be written as

d(Vt/S
0
t ) = gt(Q)dWQ

t −
1(Zt−=0)

S0
t

(b01t −V 0
t )µ01

t dt−
1(Zt−=0)

S0
t

V 0
t dN

01
t −

1(Zt−=0)

S0
t

dB0
t .

The first term is matched by the (discounted) return on the portfolio if the Q-risk-
minimizing strategy is used, the second term represents subtraction of the actuarial
risk premium, the third term accounts for the change in the reserve upon death,
and the fourth term constitutes the state-wise payments. Note that if the P-locally
risk-minimizing strategy is used, the (discounted) gains on the portfolio will not
match the first term (unless Q = P̌).

Now, from the previous section we know that the cost process associated with
the Q-risk-minimizing strategy is the zero-mean (F,Q)-martingale L(Q), which,
however, is not a martingale under P. We can now elaborate on these observations.
From (6.2)-(6.3) we get

Lt(Q) = Lt(P̌) −
∫

[0,t]

1(Zs−=0)

S0
s

(V 0
s − b01s )µ01

s κs ds, t ∈ [0, T ′],

and since P̌|FZ
T ′

= P|FZ
T ′

, it is seen that the cost process has a non-zero compensator

under P (unless κ ≡ 0). As mentioned in the previous section this represents
the risk loading: In any small time interval (t, t + dt) the company makes the
systematic profit 1(Zt−=0)(V

0
t − b01t )µ01

t κt dt (which is positive if, e.g. sgn(κt) =
sgn(V 0

t − b01t ), ∀t ∈ [0, T ′]) to compensate for the genuine risk it has taken on.
Accordingly, κ can be interpreted as the company’s assessment of a fair price of
mortality risk, cf. Remark 4.2.2). In comparison, if the company follows the P-
locally risk-minimizing strategy, the cost process will be the (F,P)-martingale L(P̌),
which in general has non-zero mean. In the case with a strictly positive risk loading
we have C0 = M0(P̌) < 0 (this follows from (5.8) and (2.6)). Thus, the company
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initiates the policy with a strictly negative cost (i.e., a strictly positive surplus) but
makes no expected profits during the term of the policy.

We now turn our attention to the issue of optimality of the (bonus) payments,
and to this end we adopt the preference structure of Example 4.4.8. We suppose
further that α(Y ′) = α(Y ′′) = 1(ZT =0) and γ(Y ′) = γ(Y ′′) = γ for some γ > 0, so
that

∆B̃∗
T (ξ) =

{
0, ZT = 1,(
(ξHT )−1/γ + x0(Y

′) − ∆B̂r,0
T

)+
, ZT = 0,

(6.4)

∆K∗
T (ξ) =

{
0, ZT = 1,(
(ξHT V̂

r,0
T )−1/γ + x0(Y

′′) − 1
)+

, ZT = 0,
(6.5)

where ∆B̂r,0
T and V̂ r,0

T are, respectively, the lump sum paid out at time T and the
reserve at time T if the insured is alive.

We consider two cases corresponding to the preference structures in Exam-
ple 4.3.2, that is, in Case 1 (resp. Case 2) we measure utility of the total payments
(as in (3.14)) (resp. bonus payments (as in (3.15))).

Case 1: Here, x0(Y
′) = x0(Y

′′) = 0, and

∆B̃∗
T (ξ) = 1(ZT =0)

[(
ξ
ΛT Γ0

T

S0
T

)−1/γ

− ∆B̂r,0
T

]+

, (6.6)

∆K∗
T (ξ) = 1(ZT =0)



(
ξ
ΛT Γ0

T V̂
r,0
T

S0
T

)−1/γ

− 1




+

. (6.7)

Case 2: Here, x0(Y
′) = ∆B̂r,0

T , x0(Y
′′) = 1, and

∆B̃∗
T (ξ) = 1(ZT =0)

(
ξ
ΛT Γ0

T

S0
T

)−1/γ

, (6.8)

∆K∗
T (ξ) = 1(ZT =0)

(
ξ
ΛT Γ0

T V̂
r,0
T

S0
T

)−1/γ

. (6.9)

In both cases ∆B̃∗
T (ξ) and ∆K∗

T (ξ) are products of the indicator 1(ZT =0) and a

purely financial (i.e., FW
T -measurable) random variable. Letting ψi denote the

function ψ given by (4.9) in Case i, i = 1,2, we have

ψi(ξ) = Q
(
T 01 > T

)
EQ

(
Φi(ξ)

S0
T

)
, ξ > 0,
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where

Φ1(ξ) =

[(
ξ
ΛT Γ0

T

S0
T

)−1/γ

− ∆B̂r,0
T

]+

+



(
ξ
ΛT Γ0

T V̂
r,0
T

S0
T

)−1/γ

− 1




+

,

Φ2(ξ) =

(
ξ
ΛT Γ0

T

S0
T

)−1/γ

+

(
ξ
ΛT Γ0

T V̂
r,0
T

S0
T

)−1/γ

.

Note that Φ1(ξ) and Φ2(ξ) are FW
T -measurable. Assumption 4.4.2 is met if and

only if

EQ
(
Φi(ξ)/S0

T

)
<∞, ∀ξ > 0, (6.10)

and for this to hold it is easily seen to be sufficient (and obviously necessary)
that EQ

(
Φi(ξ)/S0

T

)
< ∞ for some ξ > 0. This condition also implies that As-

sumption 4.4.3 holds, and Assumption 4.4.4 holds due to (2.2). Therefore, the
assertions in Proposition 4.4.5 and Corollary 4.4.7 hold if (6.10) holds.

In Case 1 the optimal (bonus) payment structure is formed by the product of
1(ZT =0) and European call options on two financial derivatives,

X ′(ξ) := (ξΛT Γ0
T /S

0
T )−1/γ ,

and

X ′′(ξ) := (ξΛT Γ0
T V̂

r,0
T /S0

T )−1/γ ,

with strike prices ∆B̂r,0
T and 1, respectively. According to the analysis above the

company’s investment portfolio at time t ∈ [0, T ] should, if the insured is still alive,
be formed as if the actual payment streams were replaced by the artificial ones
given by

e−
∫ s

t
µ01

τ dτ (dB̂0
s + µ01

s b̂
01
s ds), s ∈ (t, T ′],

and

e−
∫ T

t
µ01

τ dτ (X ′(ξ∗) − ∆B̂r,0
T )+ d1[T,T ′](s)

+ (X ′′(ξ∗) − 1)+ 1(T,T ′](s)e
−
∫ s
t

µ01
τ dτ (dB̂r,0

s + µ01
s b̂

r,01
s ds), s ∈ (t, T ′],

corresponding to the contractual and the bonus payments, respectively (here we
have assumed for simplicity that the Q-risk-minimizing strategy is used). The point
is, of course, that these artificial payment streams are adapted to (FW

s )t≤s≤T ′ when
viewed at time t. In particular, the one corresponding to the contractual payments
is deterministic and should therefore, as already mentioned, be backed by zero-
coupon bonds. The one corresponding to the bonus payments can be hedged by
appropriate positions in the abovementioned European call options. We emphasize
that the artificial payments streams themselves change constantly, of course, so the
portfolios must be updated accordingly.
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The only random factors in X ′ and X ′′ are (ΛT /S
0
T )−1/γ and (ΛT V̂

r,0
T /S0

T )−1/γ ,
respectively, and explicit hedging portfolios can be obtained in many cases of inter-
est. We shall not pursue this here, however; the interested reader is referred to the
literature. Note that since the portfolio hedging a European call option typically
involves a short position in zero-coupon bonds, the overall portfolio need not be
dominated by bonds.

In Case 2 the optimal (bonus) payment structure is formed by the product
of 1(ZT =0) and two financial derivatives of the exact same forms as X ′ and X ′′.
However, the value of ξ ensuring fairness, ξ∗, will of course be smaller than in Case
1. Also here, an investment in zero-coupon bonds is made as if the contractual
payment stream were replaced by its artificial counterpart. The investment strategy
corresponding to the bonus payments is determined without consideration for the
contractual payments, it has the same form as if one were simply to invest the
amount −V̂ 0

0− so as to maximize

E
(
1(ZT =0)

[
u(γ)(∆B̃T ) + u(γ)(∆KT )

])
.

We end this example by applying the last assertion of Corollary 4.4.7. A few simple
calculations show that as long as the insured is alive, early dividend allocation can
be made during [0, T ) without loss of utility to the extent that

P

(
Kt ≤ 1 +

[(
ξΛT Γ0

T V̂
r,0
T /S0

T

)−1/γ
− 1

]+
∣∣∣∣∣Ft

)
= 1, a.s., t ∈ [0, T ),

in Case 1, and

P

(
Kt ≤ 1 +

(
ξΛT Γ0

T V̂
r,0
T /S0

T

)−1/γ
∣∣∣∣Ft

)
= 1, a.s., t ∈ [0, T ),

in Case 2. In particular, it must be the case that the conditional essential infimum
of S0

T /ΛT is strictly greater than 0. Early dividend allocation is thus strictly
suboptimal if S0

T /ΛT can get arbitrarily close to 0 (given the current information),
which is the typical situation.

4.7 Conclusions

We shall briefly summarize and comment on the main results of this chapter. We
have shown that with a preference structure given by (3.11), dividend allocation
during the accumulation phase is in general suboptimal under dividend schemes as
the one studied in this chapter, where dividends are converted into future bonus
benefits. The natural explanation is that allocation of dividends has no immediate
value for the insured; only the bonus benefits paid out at a later stage do. And
for any optimal strategy under which early dividends can be allocated with no
loss of utility there is a strategy with no early dividend allocation that is just as
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good. Furthermore, the suboptimality is often strict because the optimal (bonus)
payment structure cannot be met if dividends have been allocated prematurely.
Early dividend allocation leads to more fixed investments in zero-coupon bonds
and thus restricts the freedom that the company has regarding investments on
behalf of the insured.

Nevertheless, early dividend allocation is often encountered in practice. There
may be several practical concerns playing a role in this regard, e.g. tradition, legisla-
tion, simplicity etc. Furthermore, the fairness constraint (2.6) is not (yet!) fulfilled
in practice, and it should also be admitted that our bonus conversion scheme does
not work exactly as in practice. However, although some degree of relevance can
be attached to these issues, they do not seem sufficient to reject our result that
early dividend allocation is in general suboptimal. It should be mentioned, though,
that in recent years many companies have introduced variations of the traditional
dividend schemes that are more flexible and less vulnerable to criticism and adverse
financial scenarios.

We have also shown how the theory of risk minimization in incomplete markets
can be used to find optimal hedging strategies for the company, aiming at mini-
mizing the squared fluctuations of the total net costs, either globally or locally. It
was found that the value of the company’s investment portfolio associated with the
policy should always be equal to the total market reserve (or the total P̌-reserve in
the case of local risk minimization). This is of course quite natural. However, the
important point is that it serves as a building block in the foundation on which
most papers on the investment aspect of optimal pension fund management rest,
in the sense that it provides a criterion-based argument that one can, to some
extent, ignore the individual policy risk, and thus supports the usual (implicit)
diversification argument.

4.8 Discussions and generalizations

A. On the dividend and bonus schemes.
An important part of the overall problem treated in this chapter has been opti-
mization of the bonus strategy. As explained in Section 4.3 we have used a certain
method, by which the bonus payment stream as such is not determined directly, but
through the dividend stream and a certain, fixed conversion procedure. As men-
tioned, this is similar to a traditional method that has been widely used in practice
(at least until recently, where quite a few new methods have been introduced).
However, there are also dissimilarities, and we therefore discuss our approach in
more detail.

By the mentioned traditional method, dividends allocated to the individual
policyholder are converted into (future) bonuses by a proportional increase of all
future guaranteed benefits to the policyholder. This means that not only the guar-
anteed pension benefits, but also insured sums to be paid out, e.g. upon death of the
insured, are increased. By the method employed in this chapter it is only what we
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have referred to as the pension benefits that are (proportionally) increased when
dividends are allocated. Moreover, dividends are typically allocated throughout
the entire policy term in practice, whereas we have assumed that no dividends are
allocated after the time of retirement (of course, other interpretations of T than
as “the time of retirement” are possible, though). However, these differences are
of minor importance: Although this chapter does not contain results on optimal
dividend allocation for the purpose of increasing insurance benefits to be paid out
at random times before the time of retirement (such as a sum upon death), our
results concerning allocation of dividends during the premium payment period for
the purpose of increasing the pension benefits are certainly valid (under all other
modelling assumptions, of course) and important in their own right, since the (value
of the) pension benefits typically outweigh the (value of the) insurance benefits in
pension schemes.

Another dissimilarity lies in the calculation of the increase of the (future) guar-
anteed benefits triggered by the dividend allocations. As explained in Section 4.3
the dividends dDt allocated in a small time interval around t lead to an increase
in the future benefits through an increase dKt in the number of units of the ba-
sic future guaranteed benefit stream. By the method used in this chapter, dKt is
determined from dDt according to the equation

dKt =
dDt

V̂ r
t

.

The increase in the number of units equals the added amount of dividends divided
by the value of a single unit, V̂ r

t . The traditional method is similar, but the value
of a single unit is calculated under technical, prudent assumptions (constituting
the actuarial so-called first order basis), that is, V̂ r

t , which in our model is the
market reserve corresponding to a single unit of the future benefits, is replaced by
the technical corresponding first order reserve, which, by statute, is larger (the first
order basis may have to be adjusted over time to ensure this). This means that for
a given value of dDt, dKt is smaller by the traditional method than by the method
we have employed.

However, this is actually just a technicality: At the end of the day it is K,
rather than D, that matters, which is also reflected by our objective (4.2). In other
words, what is important is the number of units, dKt, that is added, not the way
this number of units is calculated. Thus, using the traditional method would not
change our results. In fact, we could have dropped the process D from the model
altogether and simply worked directly with K instead.

B. Intervention options.
It was claimed in Paragraph 4.2.H that certain intervention options could be in-
cluded in the problem setup without affecting the results. We shall now briefly
explain how this could be done.

The intervention options in question are the surrender and the free policy op-
tions, which are, of course, options held by the policyholder (in financial terms,
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the policyholder has the long position). Both are, quite naturally, included auto-
matically in most life insurance or pension policies. The surrender option gives the
policyholder the right to cancel the policy prematurely; the company then pays
out a surrender value. The free policy option gives the policyholder the right to
stop paying premiums (before the end of the planned premium payment period);
the policy then remains in force, but the (total) future benefit stream is adjusted.

There are no uniformly used principles governing the calculation of the surren-
der value and the adjustment of the future benefits connected to the surrender and
free policy option, respectively. We shall not discuss the issue in detail; for a gen-
eral and detailed treatment of these options we refer to Steffensen (2002) and the
references therein. Here we just propose a simple (and natural) principle, namely
that the abovementioned calculations and adjustments should always be based on
the current market value of (the remaining payments connected to) the policy.

The total market reserve, defined by (2.8), therefore plays an important role,
as it is the current market value of the total future benefits minus the contractual
future premiums. If the surrender option is exercised, then the company should
simply pay out an amount equal to the market reserve. If the free policy policy
option is exercised, then the company should simply reduce the total future benefits
so as to make the market value of the total future benefit equal to the current market
reserve (there are several ways to do this in general, but we shall not discuss them
here).

Remark 4.8.1 In the presence of these intervention options it is of course neces-
sary to assume that the total market reserve is nonnegative throughout the policy
term. This is a standard assumption in life insurance, both in theory and practice,
but it is only necessary because of the intervention options. We have not imposed
it in the (otherwise general) model of this chapter, where intervention options were
not included.

It is intuitively clear that with this approach to the intervention options, the
qualitative features of the overall problem of this chapter are not affected, since
the financial balance between the company and the policyholder is not disturbed
if one of the options is exercised. It is also a very natural approach, and it makes
it meaningless for the policyholder to speculate against the company in order to
exercise (one of) the options when the time is right, so to speak. If, for example,
the surrender value to be paid out exceeds the market value of the future payments,
then the policyholder can make a profit (in terms of market values) by exercising
his surrender option (Steffensen (2002) studies this aspect in particular). However,
this opportunity is not (and has never been) the purpose of the surrender option.

C. Generalization of the market model.
This paragraph contains a discussion of some possible generalizations of the finan-
cial market model. We shall focus mostly on ideas and principles and thus leave
out technicalities.
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Let us begin by noting that a generalization of the Brownian motion-driven
market model employed in this chapter to a general semimartingale market model
as in Schweizer (2001) is fairly straightforward as long as the financial market
is assumed complete. The basic setup is easily generalized, Proposition 4.4.1 goes
through without changes, and the optimization methods used in Section 4.4 are well
established for the general semimartingale model (Kramkov and Schachermayer
(1999)). As for the quadratic hedging approaches, certain regularity conditions may
have to be imposed in order to ensure the existence of P-locally risk-minimizing
strategies (see Schweizer (2001)), but we shall not go into details on this.

Much more complex issues arise if the assumption about completeness of the
financial market is dropped. Let us briefly recapitulate the basic structural model
assumptions: We assumed the financial market in itself to be complete, by taking
the market price of risk process λ to be given. In particular this implied the
existence of a unique equivalent martingale measure for the discounted marketed
asset price processes. In contrast, the insurance policy risk was considered to be
(completely) unhedgeable, but it was assumed that the company had chosen a
pricing measure for the policy risk (given by the martingale Γ).

The assumption of completeness of the financial market is rather strong, in
particular since we are dealing with life and pension insurance with (typically)
very long-term contracts. In the following discussion we consider a relaxation of
the assumption that the financial market is complete, but we keep the assumption
regarding the pricing of policy risk. For simplicity we also stick to the general
Brownian motion framework, which is rich enough for this discussion.

When the financial market is incomplete the set of equivalent local martingale
measures is no longer a singleton (but we assume that it is nonempty). In other
words, there is more than one market price of risk process λ for which the dynamics
of the risky asset price processes satisfy (2.1). Therefore, the basic fairness con-
straint (2.6) is no longer well specified, and the issue of fairness becomes an open
question. To ease the discussion we shall employ a somewhat inaccurate terminol-
ogy by referring to an equivalent probability measure Q with a Radon-Nikodym
derivative of the form

dQ

dP
= Γ(T )Λ̃(T ),

where Λ̃ is the density process of an equivalent local martingale measure for the

financial market, i.e., an F
W -martingale with E

(
Λ̃(T )

)
= 1, as an equivalent lo-

cal martingale measure, although we stress that the policy risk is still considered
unmarketed and therefore unhedgeable.

Now, it is clearly a necessary requirement for fairness that (2.6) must hold for
at least one equivalent local martingale measure. A natural question, therefore,
is whether this condition is also sufficient. In general that would depend on the
(attitudes towards risk of the) company and the policyholder: If it were possible
for them to come to an agreement on some bonus payment process such that (2.6)
were satisfied just for some equivalent local martingale measure, then, of course,
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this could not be considered to be unfair. However, this hardly corresponds to the
normal situation in practice, where the policyholder only specifies a certain stream
of desired guaranteed benefits, agrees to pay a certain stream of premiums, and
otherwise leaves the decisions regarding the bonus payment process more or less to
the company.

We propose here, as a (sort of) fairness constraint, that the optimization should
be performed over the class of bonus payment processes satisfying

EQ

(∫

[0,T ′]

1

S0
t

(
dB̂t + dB̃t

))
≤ 0, ∀Q ∈ P, (8.1)

where P denotes the set of equivalent local martingale measures in the above sense.
If the payment processes were purely financial and thus did not depend on the
policy process Z, then (8.1) would be a natural budget constraint. Since the price
of the policy risk (the risk associated with Z) is given, the budget constraint should
simply carry over to the general case. However, we stress that (8.1) is not a general
fairness constraint in itself; it is a part of the fairness constraint that the company
should optimize the bonus payment process.

Apart from being fairly justifiable in itself, this constraint would also facili-
tate the application of the established methodology for portfolio optimization in
incomplete markets (see e.g. Karatzas et al. (1991), He and Pearson (1991b), and
Kramkov and Schachermayer (1999)) to the dividend/bonus optimization problem
of the present chapter. We shall not go into details, but the idea is that it should
be possible to formulate a generalized dual problem (as in the mentioned papers)
by simply letting the domain of the dual problem be the set P of equivalent local
martingale measures in the above sense. This, in turn, should lead to the existence
and characterization of an optimal bonus/dividend strategy (at least under the
mild assumption that the contractual payment processes be bounded, see Cvitanić
et al. (2001)).

For a given bonus/dividend strategy (optimal or not) the company would still
be left with an unhedgeable total payment process, and to handle this problem we
would argue that quadratic hedging approaches would still be quite natural.

Formalizing these ideas would be an interesting topic for future research.

Let us end this discussion with the important observation that the message of
Proposition 4.4.1 does not depend on the assumption of market completeness. This
is not obvious, because the market reserve, which is based on the unique equivalent
martingale measure in the complete-market model, is used in the conversion from
dividends into future bonuses. However, as mentioned in Paragraph A above, we
could work directly with K rather than D as the controlled process. This would
mean that the market reserve would no longer be involved, and the proposition
would hold true. Thus, whether the market is complete or not, it is always sufficient
to look for an optimal dividend strategy in the class DA

0 of admissible dividend
strategies satisfying Dt ≡ 0, ∀t ∈ [0, T ) or, equivalently, Kt ≡ 1, ∀t ∈ [0, T ).
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4.9 A comparison with Steffensen (2004)

A. Outline and purpose.
As mentioned in the introduction to this chapter, Steffensen (2004) studies a re-
lated problem. In particular, he also considers optimization of the bonus payments
through allocation of dividends but obtains explicit solutions in this regard only
in a few special cases based on rather strong conditions on the life insurance pol-
icy and the dividend/bonus scheme. The purpose of this paragraph is to analyze
Steffensen’s problem with the results of this chapter in mind. More precisely, we
shall see if our result concerning optimal dividend allocation, namely that dividends
need not be allocated before the time of retirement under certain (relatively mild)
conditions on the policy and the dividend/bonus scheme, carry over and lead to an
explicit solution to Steffensen’s problem under simimlar conditions.

In contrast to what one might expect, it turns out that a certain amount of
dividends should be allocated before the time of retirement according to the model
studied here, but this does not make the situation less interesting. We provide a
self-contained account of the relevant parts of the general problem; to some extent
it differs from the presentation in Steffensen (2004).

B. Problem setup.
The basic model is a special case of the model in this chapter. As the title of Stef-
fensen’s paper suggests, the financial market is as in Merton (1969); it is obtained
in our model by setting d = 1 (i.e., just a single Brownian motion and a single risky
asset) and letting the market coefficients r, λ, and σ, be constant. The model of the
insurance policy and the contractual payments are of the same type as the one in
Example 4.2.5, with the (minor) restriction that the state-wise payment functions
B̂e, e ∈ Z, must be piece-wise absolutely continuous and have a finite number of
jumps.

The combined model is thus Markovian, and as in Steffensen (2004) we take
a dynamic programming approach to the optimization problem considered below.
We refer to Appendix B for an introduction to this issue and for further details.

The so-called free reserve process X = (Xt)t∈[0,T ′], the exact definition of which
follows below, plays the role of the wealth process in consideration. Initially (i.e.,
at time 0−), the free reserve is, by definition, the difference between the total
market reserve (cf. (2.8)) and the market reserve corresponding to the guaranteed
payments (cf. (2.3)), that is,

X0− = V0− − V̂0−, (9.1)

which is nonnegative by (2.4). We assume here that it is strictly positive. The free
reserve is invested in the financial market according to an adapted stock proportion
process w = (wt)t∈[0,T ′], i.e., wt denotes here the proportion of Xt invested in the
risky asset at time t, and it finances the dividends allocated to the policyholder (in
a sense that is made precise below). An important principle of the model is that
all guaranteed payments are assumed to be taken care of independently, i.e., they
have no effect on the free reserve process.
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Now, in order to define X in the case that is relevant here (Steffensen considers
another case as well), we introduce a certain fixed “payment process” A, which is a
non-decreasing, non-null, F

Z-adapted process of the same form as the contractual
payment process B̂. This process is interpreted as the policyholder’s desired bonus
payment profile, and allocated dividends are thus used throughout to purchase
units of the (remaining part of the) payment process A (as described in more detail
below). In this respect the framework is quite general as it allows for various
specifications of A. In particular, in the model of this chapter we assumed in
Section 4.3 that dividends were used to purchase additional units of the retirement
benefit stream; this is just a special case corresponding to A = B̂r. The same goes
for the “traditional” method mentioned in Paragraph 4.8.A, which, with a slightly
sloppy notation, corresponds to dA = (dB̂)+.

More precisely, we shall assume that dividends allocated at time t lead to an
(additional) bonus payment process, which is proportional to

(
∑

e∈Z

1(Zt=e) ∆Ae
t +As −At

)

s∈[t,T ′]

, (9.2)

where the notation corresponds to that of Example 4.2.5. It is important to note
here that if a state-wise lump sum (which is not triggered by jumps of Z) is to be
paid at time t according to A, then it is taken into account here. This approach
distinguishes itself from the one taken in Steffensen (2004), where only the strictly
future bonus payments are affected by dividend allocations. See Remark 4.9.1
below for a motivation of our approach, which we believe is more natural.

Corresponding to the process A we define the quantities

V̂ A
t = E

(∫

(t,T ′]
e−r(t−s) dAs

∣∣∣∣∣Ft

)
+
∑

e∈Z

1(Zt=e) ∆Ae
t ,

V ∗A
t = EP∗

(∫

(t,T ′]
e−r∗(t−s) dAs

∣∣∣∣∣Ft

)
+
∑

e∈Z

1(Zt=e) ∆Ae
t ,

for t ∈ [0, T ′]. Here, r∗ ∈ R is a technical interest rate, and P∗ is a technical
probability measure equivalent to P; in combination they constitute the actuarial
first order basis.

The first terms (i.e., the conditional expectations) in the definitions of V̂ A
t and

V ∗A
t are the market reserve and the first order reserve, respectively, at time t,

corresponding to (the “strictly future” remaining part of) A. Corresponding to
the way in which bonus payments are added upon dividend allocation (explained
below), we have added state-wise lump sums paid at time t, so V̂ A

t and V ∗A
t can be

interpreted as reserves for the payment process (9.2). Note that due to the Markov
assumption on Z and the structure of A one can replace Ft with Zt.
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Now, X is defined as the solution to the SDE

dXt = (r + λσwt)Xt dt+ σwtXt dWt − 1(t<τ)
V̂ A

t

V ∗A
t

dDt − 1(t≥τ)dDt, (9.3)

(with the initial condition (9.1)), where τ is the stopping time

τ = inf{t ∈ [0, T ′] : V ∗A
t = 0} ∧ T ′.

According to (9.3), upon allocation of dividends of the amount dDt before τ , the
term

V̂ A
t

V ∗A
t

dDt (9.4)

is subtracted from the free reserve. The factor V̂ A
t /V

∗A
t appears because we work

here (as in Steffensen (2004)) with the “traditional” calculation method described
in Paragraph 4.8.A above: The (additional) number of units of A obtained with the
amount dDt is thus given by dKt = dDt/V

∗A
t . The net (market) cost of allocating

dDt is given by V̂ A
t dKt, which equals (9.4). Once the dividends dDt have been

allocated, the corresponding bonus payments, which are given by dKt units of the
process defined in (9.2), are considered as guaranteed and therefore, in keeping with
the abovementioned principle, assumed to be taken care of independently. This is
why a subtraction of the term (9.4) from the free reserve is made although nothing
is actually paid out.

Remark 4.9.1 As explained above, our approach differs from the one taken by
Steffensen (2004), because he assumes that allocated dividends only affect the
strictly future payments. We believe our approach to be more natural, because
it makes it possible to allocate dividends so as to increase an anticipated state-wise
lump sum bonus payment to be made at time t, say, without increasing the bonus
payments paid out continuously immediately before t, by simply putting dDt > 0.
This is particularly relevant for the terminal lump sum at time T ′.

For t > τ we have dAt ≡ 0, i.e., the desired bonus payment profile contains no
further payments. This means that conversion of dividends into bonuses as specified
by A becomes meaningless. At this point we therefore assume that dividends
allocated after τ are simply paid out directly.

As in Steffensen (2004), we shall consider a stock proportion/dividend-pair
(w,D) to be admissible if the corresponding free reserve process X is well defined
(by the SDE given by (9.1) and (9.3), of course) and nonnegative. We denote by C
the set of all such pairs.

Obviously, by the nonnegativity constraint on X, a necessary requirement for
admissibility of (w,D) is that

1(t<τ)
V̂ A

t

V ∗A
t

dDt + 1(t≥τ)dDt ≤ Xt−, (9.5)

in particular dDt = 0 if Xt− = 0.
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Remark 4.9.2 What is less obvious is that the constraint (9.5) is in fact also
sufficient to ensure that X is well defined and nonnegative under the very mild
assumption that

inf

{
t ∈ [0, T ′] :

∫ t

0
w2(s) ds = ∞

}
> 0, a.s. (9.6)

We refer to Karatzas and Shreve (1998), Section 6.2, for elaborations on this (note,
however, that they actually do not even assume (9.6), at least not explicitly, but it
is a necessary condition). With this observation, the set C is characterized explicitly
rather than implicitly.

To ensure fairness, Steffensen imposes the requirement that the free reserve
must eventually be “emptied”, i.e., D must be such that

XT ′ = 0. (9.7)

To enforce this requirement we shall for simplicity assume that the entire free
reserve is simply paid out at time τ , i.e., that

dDτ = Xτ−,

so that Xt ≡ 0, ∀t ∈ [τ, T ′]. In particular, no dividends are paid out (strictly) after
τ .

It can be shown that the requirement (9.7) makes the total payment process
comply with our fairness constraint (2.6) (or, equivalently, (2.7)). However, it is a
stronger requirement than the one imposed by (2.6) because (9.7) makes dividend
redistribution across different policies inadmissible. The bonus payments resulting
from the conversion of dividends into bonuses may lead to redistributions, though.

Remark 4.9.3 It is interesting to note that the relation (3.9) involving the divi-
dend process does not hold in the present model. This is due to the abovementioned
fact that the calculation method employed when converting dividends into bonuses
is based on the technical “reserve” V ∗A rather than the market “reserve” V̂ A.

C. Objective.
Now, let u : [0,∞) → [−∞,∞) be a CRRA utility function, i.e.,

u(x) = xγ/γ, x > 0,

and u(0) = limx↘0 u(x), for some γ < 1 (for γ = 0, u(x) = log(x), x > 0).
With a denoting the continuously-paid rate (defined between jumps of A), and
aef , e, f ∈ Z, e 6= f , denoting the (deterministic) lump sum payments upon jumps
of Z, we consider the objective

sup
(w,D)∈C

E
(
U c

[0,T ′] + U j
[0,T ′]

)
,
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where, for t ∈ [0, T ′],

U c
[t,T ′] =

∫

[t,T ′]
1(as>0)u(Ksas) ds,

U j
[t,T ′] =

∫

(t,T ′]

∑

e,f∈Z

1
(aef

s >0)
u
(
Ks−a

ef
s

)
dN ef

s

+
∑

s∈[t,T ′], e∈Z

1(Zs=e)1(∆Ae
s>0)u(Ks∆A

e
s).

The terms U c
[0,T ′] and U j

[0,T ′] measure the total utility of the continuous bonus
payments and the lump sum bonus payments, respectively. The indicators 1(as>0),
1
(aef

s >0)
, and 1(∆Ae

s>0) appear in order to ensure that the objective is well posed

for γ ≤ 0, where u(0) = −∞.

Remark 4.9.4 It is tacitly assumed that the expectation in the objective is well
defined for all admissible (w,D)-pairs. Otherwise the admissibility condition should
be strenghtened so as to ensure this to be the case for admissible pairs. It is also
assumed that the value function is finite. We do not elaborate on these assumptions.

We define correspondingly the state-wise value functions Φe : [0, T ′]× [0,∞)2 →
R by

Φe(t, x, k) = sup
(w,D)∈C

E(t,e,x,k)

(
U c

[t,T ′] + U j
[t,T ′]

)
, (t, x, k) ∈ [0, T ′] × [0,∞)2,

where E(t,e,x,k) (·) = E ( · |Zt = e,Xt− = x,Kt− = k), and, with a slight abuse of
notation, C is now the set of admissible strategies in respect of the initial state
(e, t, x, k).

It is important to note that the utility of a lump sum state-wise payment made
at time t, ∆Ae

t , is included in U j
[t,T ′]. This is due to our setup, by which it is

possible to increase a state-wise lump sum payment at time t by making a lump
sum dividend allocation at time t. This also has the consequence that we can
expect Φe to be left-continuous in t at the fixed jump times of Ae.

D. Variational inequalities.
As in the problem considered in Chapter 3, the HJB equation of dynamic program-
ming becomes a system of variational inequalities for the state-wise value functions,
which are here given by (with the generic argument (t, x, k) skipped for notational
convenience)

0 ≥ ∂φe

∂k
− ∂φe

∂x
V̂ A,e

t , (9.8)

0 ≥ 1(ae
t >0)u(ka

e
t ) +

∂φe

∂t
+ sup

w∈R

(
∂φe

∂x
(r + λσw)x+

1

2

∂2φe

∂x2
σ2w2x2

)

+
∑

f∈Z\{e}

λef
t R

ef , (9.9)
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for e ∈ Z, where the λef denote the transition intensity, the Ref are given by

Ref(t, x, k) = φf (t, x, k) − φe(t, x, k) + 1
(aef

t >0)
u(aef

t k),

and the notation is otherwise obvious. For each e ∈ Z, one of the above inequalities
must hold with equality. We have used the notation φ rather than Φ in order to
make clear the value function Φ need not be a solution to this system.

We refer to Steffensen (2004) for a heuristic derivation of this system and an
abstract characterization of the (expected) form of the optimal dividend strategy.
The boundary conditions are given by

φe(T ′, x, k) = 1(∆Ae
T ′

>0)u(∆A
e
T ′k + x)), (x, k) ∈ [0,∞)2. (9.10)

Moreover, at each (e, t) ∈ Z × [0, T ) for which ∆Ae
t > 0, the value function is only

left-continuous in t. This means that we also have side conditions, which can be
seen to be given (implicitly) by

φe(t, x, k) = sup
∆k∈[0,xV̂ A,e

t ]

[
u((k + ∆k)∆Ae

t ) + φe(t+, x− ∆k/V̂ A,e
t , k + ∆k)

]
.

E. A special case.
Steffensen (2004) obtains explicit solutions to the problem in the special two-state
cases of a life annuity and a term insurance on an infinite time horizon under the
assertion of constant mortality intensity.

We shall here consider the general case of a multi-state policy with arbitrary
contractual payment processes and transition intensities (adhering to the imposed
regularity assumptions, of course). However, as in the problem otherwise considered
in this chapter we assume that all bonus payments are paid out in the time interval
[T, T ′] for some fixed T ∈ (0, T ′). In the present framework this amounts to the
assumption that AT− ≡ 0. Of course we think of the case where A = B̂r. Moreover,
we impose again the restriction that all dividends must be allocated by time T ,
which in the present setting means that we must have XT = 0, almost surely.
Consequently we have

Kt ≡ KT , ∀t > T. (9.11)

This changes the setup slightly, because all control terminates at time T , so we
must replace T ′ by T in the boundary condition.

Under these restrictions the state-wise value functions become

Φe(t, x, k) = sup
(w,D)∈C

E(t,e,x,k)

(
U c

[T,T ′] + U j
[T,T ′]

)
, (t, x, k) ∈ [0, T ] × [0,∞)2.

Remark 4.9.5 The remaining analysis below is carried under the assumption that
γ 6= 0. The analysis for γ = 0 is similar.
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By inserting the expression for u and using (9.11) we get

Φe(t, x, k) = sup
(w,D)∈C

E(t,e,x,k)

(
Kγ

T /γ
(
Ũ c

[T,T ′] + Ũ j
[T,T ′]

))
,

where

Ũ c
[T,T ′] =

∫

[T,T ′]
1(as>0)a

γ
s ds,

Ũ j
[T,T ′] =

∫

(T,T ′]

∑

e,f∈Z

1
(aef

s >0)

(
aef

s

)γ
dN ef

s +
∑

s∈[T,T ′], e∈Z

1(Zs=e)1(∆Ae
s>0)(∆A

e
s)

γ .

Further, using the rule E (·) = E (E ( · | FT )) we get

Φe(t, x, k) = sup
(w,D)∈C

E(t,e,x,k)


Kγ

T /γ
∑

f∈Z

1(ZT =f)J
f


 ,

where

Jf = E
(
Ũ c

[T,T ′] + Ũ j
[T,T ′]

∣∣∣ZT = f
)
, f ∈ Z.

The value function has been simplified considerably, but it is still quite difficult to
make a qualified guess at its form. To ease things further we therefore assume that
there is a subset Z ′ ⊆ Z such that for e ∈ Z ′, V̂ A,e

T and Je do not depend on the
state e, i.e., for e ∈ Z ′,

V̂ A,e
T = V̂ A,Z′

T ,

Je = JZ′

,

and that for e ∈ Z \ Z ′, V̂ A,e
T = 0 (of course we assume V̂ A,Z′

T > 0). This assump-
tion is perhaps not as strong as it may seem: No loss of generality is implied in the
single-state (purely financial) and classical two-state policy models. Moreover, in
the three-state disability model (illustrated in Steffensen (2004)) the contractual
payments are often constructed in such a way that the retirement benefits only
depend on whether the insured is alive or not (disability may simply imply a re-
duction of the premiums), and if the same goes for the mortality intensity (often
assumed in practice), then the imposed assumption is met.

F. Solution proposal and analysis.
We shall now see if the result on dividend allocation from the main model of this
chapter (as mentioned in Paragraph A above) carries over to the present setting.
If it were optimal to hold back dividends until T and then simply convert the
obtained wealth XT− into bonus payments at time T (provided that ZT ∈ Z ′),
then the value function would be given by

Φe(t, x, k) = JZ′

P
(
ZT ∈ Z ′

∣∣Zt = e
)
ψ(t, x, k), (t, x, k) ∈ [0,∞)2, (9.12)
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where

ψ(t, x, k) = sup
(w,D0)∈C

E(t,x,k) (u (k + ∆KT ))

= sup
(w,D0)∈C

E(t,x)

((
k +XT−/V̂

A,Z′

T

)γ
/γ
)

=
(
V̂ A,Z′

T

)−γ
sup

(w,D0)∈C
E(t,x)

((
kV̂ A,Z′

T +XT−

)γ
/γ
)
. (9.13)

Here, D0 denotes the fixed outlined dividend strategy (exercised from time t), i.e.,

dD0
s ≡ 0 for t ≤ s < T , and dDT = ∆DT = XT−V

∗A,Z′

T /V̂ A,Z′

T .

Now, the idea is to simply check whether the function defined by the expression
on the right-hand side of (9.12) satisfies the HJB variational inequalities, and to this
end we shall derive a semi-explicit expression for ψ. We first note that ψ is the value
function corresponding to another problem, namely a pure investment problem, in
which k just appears as a parameter in the utility function (this explains why k
dropped out of the subscript of the expectation operator above). This problem
can be solved for each starting point (t, x) by use of the martingale method. We
directly apply Karatzas and Shreve (1998), Theorem 3.7.6, from which we have
that the optimal attainable terminal wealth, starting from the initial point (t, x),
is given by

XT− = ξ(t,x,k) :=

(
h(t, x, k)

(
e−r(T−t)ΛT /Λt

)1/(γ−1)
− kV ∗A,Z′

T

)+

,

where Λs = exp
(
−λWs − λ2s/2

)
, s ∈ [0, T ], and h(t, x, k) is determined in such a

way that ξ(t,x,k) has the market value x at time t. Now, ξ(t,x,k) has the form of a

European call option with strike price kV ∗A,Z′

T written on the contingent claim

YT := h(t, x, k)
(
e−r(T−t)ΛT /Λt

)1/(γ−1)
.

The price process of this claim has the dynamics

dYs = Ys

(
r + λ2/(1 − γ)

)
ds+ Ys λ/(1 − γ) dWs, t < s ≤ T, (9.14)

starting at Yt = h(t, x, k)m(t), where

m(t) = exp

(
γr(T − t)

1 − γ
+
γλ2(T − t)

2(1 − γ)2

)
.

It is seen from (9.14) that, in combination with the bank account, this claim forms
another Black-Scholes market, so we must have

F
(
t, h(t, x, k)m(t), kV̂ A,Z′

T

)
= x,
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where F (t, s, q) denotes the (well-known) Black-Scholes price at time t of a Euro-
pean call option with strike price q on a stock with price s (at time t) and volatility
coefficient λ/(1 − γ), given by

F (t, s, q) = sN(d1(t, s/q)) − e−r(T−t)qN(d2(t, s/q)), (t, s, q) ∈ [0, T ) × (0,∞)2,

where N is the standard normal distribution function, and

d1(t, y) =
1 − γ

λ
√
T − t

(
log y +

(
r +

λ2

2(1 − γ)2

)
(T − t)

)
,

d2(t, y) = d1 − λ/(1 − γ)
√
T − t.

Since we may have k = 0, we extend the definition of F to [0, T ) × (0,∞) × [0,∞)
in the natural way by setting F (t, s, 0) = s, (t, s) ∈ [0, T ] × (0,∞). Then, for
each fixed (t, q) ∈ [0, T ) × [0,∞) the function s 7→ F (t, s, q), s ∈ (0,∞), is strictly
increasing and maps (0,∞) onto itself, so it has an inverse, which also maps (0,∞)
onto itself. With a somewhat sloppy notation we may therefore define the function
F−1 as the unique function satisfying

F (t, F−1(t, x, q), q) = x, (t, x, q) ∈ [0, T ) × (0,∞) × [0,∞).

We can interpret F−1(t, s, q) as the price of the stock at time t corresponding to
the price x of a European call option with strike price q. We then have

h(t, x, k) = F−1
(
t, x, kV̂ A,Z′

T

)
/m(t), (t, x, k) ∈ [0, T ) × (0,∞) × [0,∞).

Now, inserting ξ(t,x,k) on the right-hand side of (9.13) yields

ψ(t, x, k) =
(
V̂ A,Z′

T

)−γ
E(t,x)

((
kV̂ A,Z′

T + ξ(t,x,k)
)γ
/γ
)

=
1

γ

(
h(t, x, k)/V̂ A,Z′

T

)γ
E(t,x)

(
1G

(
e−r(T−t)ΛT /Λt

)γ/(γ−1)
)

+
kγ

γ
P(t,x)

(
GC
)
,

where

G =

(
h(t, x, k)

(
e−r(T−t)ΛT /Λt

)1/(γ−1)
> kV̂ A,Z′

T

)
.

Some straightforward calculations yield

ψ(t, x, k) =
1

γ

(
h(t, x, k)/V̂ A,Z′

T

)γ
m(t)N

([
r +

λ2

2(1 − γ)

] √
T − t

|λ| − d(t, x, k)

)

+
kγ

γ
N(d(t, x, k)),
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where

d(t, x, k) =
1 − γ

|λ|
√
T − t

(
log k + log V̂ A,Z′

T − log h(t, x, k)
)
.

For k = 0 all expressions are understood in the limiting sense; in particular,
d(t, x, 0) = −∞, and

ψ(t, x, 0) =
1

γ

(
x

m(t)V̂ A,Z′

T

)γ

m(t).

Now, by partial differentiation with respect to x and k we find that for any (t, x) ∈
[0, t) × (0,∞),

∂ψ

∂x
(t, x, k) = A(t, x)

m(t)

V̂ A,Z′

T

∂h

∂x
(t, x, k) + o(k),

∂ψ

∂k
(t, x, k) = A(t, x)

m(t)

V̂ A,Z′

T

∂h

∂k
(t, x, k) + o(k),

for k ↘ 0, where

A(t, x) =
(
x/
(
m(t)V̂ A,Z′

T

))γ−1
.

By using the fact that

F (t, s, q) = qh(t, s/q), ∀(t, s, q) ∈ [0, T ) × (0,∞)2,

where

h(t, y) = yN(d1(t, y)) − e−r(T−t)N(d2(t, y)), (t, y) ∈ [0, T ) × (0,∞),

it is seen that

F−1(t, x, q) = qh−1(t, x/q), (t, x, q) ∈ [0, T ) × (0,∞)2,

where h−1(t, ·) denotes the inverse of h(t, ·). With this expression for F −1 it can
be shown that

lim
k↘0

∂h

∂x
(t, x, k) = 1/m(t),

lim
k↘0

∂h

∂k
(t, x, k) = e−r(T−t)V̂ A,Z′

T /m(t),

so we get

lim
k↘0

(
∂ψ

∂k
(t, x, k) − ∂ψ

∂x
(t, x, k)V̂ A,e

t

)
= A(t, x)

(
e−r(T−t) − V̂ A,e

t

V̂ A,Z′

T

)

= A(t, x)e−r(T−t)
(
1 − Q(t,e)

(
ZT ∈ Z ′

))

≥ 0. (9.15)
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Here we have used the identity

V̂ A,e
t = e−r(T−t)Q(t,e)

(
ZT ∈ Z ′

)
V̂ A,Z′

T .

G. Conclusion and discussion.
The inequality (9.15) is strict whenever Q(t,e) (ZT ∈ Z ′) < 1, and in this case
we thus have that if Kt is sufficiently small, then the inequality (9.8) is not sat-
isfied. Therefore, we conclude that φ is not the value function for our original
problem, so it is optimal to allocate dividends when Kt is sufficiently small (and
Q(t,e) (ZT ∈ Z ′) < 1), even though it leads to a reduction of the free reserve, and
the dividends, once they have been allocated, cannot be reclaimed. In particular,
since K0 = 0 (in the present setting), it is in fact optimal to allocate a certain lump
sum dividend at time 0.

Since allocation of dividends corresponds to buying and holding units of a fixed,
nonnegative payment process, which is adapted to F

Z and thus independent of the
financial market, this result might seem to contradict the well-known solution of the
purely financial problem of maximizing the expected utility of the terminal wealth
for a CRRA investor, which is characterized by a constant stock proportion and thus
leads to a terminal wealth that is not bounded away from 0. However, in the purely
financial problem, which in terms of the policy state process Z is characterized by
Zt ≡ 0, ∀t ∈ [0, T ′], we have Q(t,e) (ZT ∈ Z ′) = 1 (since, necessarily, 0 ∈ Z ′), and
(9.15) thus holds with equality. Thus, the inequality (9.8) holds (with equality)
(and it can easily be verified that (9.9) also holds).

Still, it is somewhat counterintuitive that dividend allocation is optimal when
Kt is small. Moreover, we note that the effect dies out when t is close to T ; that
is, for t→ T ,

A(t, x)e−r(T−t)
(
1 − Q(t,e)

(
ZT ∈ Z ′

))
→ 0.

This indicates that if t is close to T , then Kt should be smaller than if t is far
away from T for dividend allocation to be optimal (i.e., the boundary between the
“no-action region” and the “jump region” in the state space is decreasing in t (in
the k-dimension)). In other words, dividend allocation may be optimal early on
in the policy term, but if no dividends are allocated early on, then the optimal
amount to allocate becomes smaller as the time passes.

What makes dividend allocation optimal when Kt is small in this problem
is exactly the fact that the factor Q(t,e) (ZT ∈ Z ′), which is strictly smaller than
1, appears in the price paid at time t for a unit of the payment process A and
thus makes it strictly smaller than the corresponding price of a fixed payment in
the purely financial problem. Since dividend redistribution across policies is not
allowed, the policyholder can only obtain non-financial gains by turning current
wealth into units of the bonus payment process A. The above-mentioned time-
dependence is due to the fact that Q(t,e) (ZT ∈ Z ′) is increasing in t, i.e., the later
the dividends are allocated, the less is the non-financial gain.

We end this discussion with a comment on the seemingly contradictory results
obtained in this section and otherwise in the chapter. There is no contradiction.
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The difference in the results is due to the difference of the models. In the main
model considered in this chapter there is no free reserve process, which is restricted
to stay nonnegative. Therefore, although a similar dividend/bonus conversion pro-
cedure is employed, and the “price” at time t of a unit of the bonus payment
process is therefore significantly lower early on in the policy term, there is no need
to allocate dividends early because the dividend allocations that can be made later
on are not bounded from above.





Chapter 5

On Optimal Long-term
Investment in a Market
Without Long-term Bonds

We study an optimal investment problem for a long-term investor in an incom-
plete financial market model, where the interest rate is stochastic, but where the
investor’s time horizon exceeds the maturities of all the initially available interest
rate derivatives (e.g. bonds). New derivatives are issued along the way, but at ini-
tial prices that are affected by unhedgeable randomness. In the special case of an
extended Vasicek term structure model we obtain an optimal investment strategy
in explicit form, which corresponds to the natural generalization of the optimal
strategy in a certain reduced complete market. We demonstrate that a similar
result does not hold in an extended Cox-Ingersoll-Ross model, but we show how
an optimal strategy can be obtained.

5.1 Introduction

The theory of optimization of investment (and consumption) strategies in con-
tinuous time dates back to the seminal papers by Merton (1969, 1971), where
explicit results were obtained for the fairly broad class of HARA (hyperbolic abso-
lute risk aversion) utility functions under the assumption that the (short) interest
rate is constant (or deterministic). Merton (1973) extended the analysis to allow
for stochastic interest rates, but obtained only semi-explicit results.

Merton’s results were based on the methodology of dynamic programming,
which relies in particular on the assumption of Markovian dynamics of all factors af-
fecting the price processes of the available assets. Based on the connection between
absence of arbitrage and existence of equivalent martingale measures established
in Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983), and the the-
ory of convex analysis, another, arguably more powerful, approach to investment
(and consumption) optimization, which allows for quite general (in particular non-
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Markovian) price processes, was proposed and studied by Pliska (1986), Karatzas
et al. (1987), and Cox and Huang (1989, 1991) under the assumption of complete
markets. This approach, sometimes referred to as the martingale approach, was
developed further and in particular generalized to the case of incomplete markets
by Karatzas et al. (1991) and He and Pearson (1991a,b). However, although the
results of these papers are quite strong in some respects, they only characterize
the optimal portfolio processes in a semi-explicit fashion in general (involving the
abstract integrand processes in certain martingale representations).

The theory of investment optimization problems with specific stochastic interest
rate models has been developed quite recently. Sørensen (1999), Brennan and Xia
(2000), Bouiler et al. (2001), Korn and Kraft (2001), Jensen and Sørensen (2001),
and Bajeux-Besnainou et al. (2003) study pure investment problems under the
assumption of a (nondegenerate) Gaussian term structure of interest (i.e., a Vasicek
term structure (Vasicek (1977)) or some generalization of it), and Deelstra et al.
(2000) assume a Cox-Ingersoll-Ross term structure (Cox et al. (1985)). Deelstra
et al. (2003) generalize to a term structure that includes the Vasicek as well as the
Cox-Ingersoll-Ross term structures as special cases.

A common feature of the models in these papers is that the markets are assumed
to be complete. In particular, it is implied that zero-coupon bonds of any maturity
are available in the market, and, moreover, these play an important role for the
solutions. Canestrelli and Pontini (2000) study an incomplete market model with
Vasicek dynamics of the short rate and otherwise risky price processes, none of
which is assumed to have relative returns that are perfectly (negatively) correlated
with the movements of the short rate. This implies, in contrast, that no zero-coupon
bonds (of any maturity) are available.

For a long-term investor, such as a pension saver, the assumption of complete-
ness over the full time horizon may be somewhat unrealistic, since the time horizon
may exceed the maturity of the longest available bonds (or other interest rate
derivatives) in real-world markets. On the other hand, the implied assumption of
Canestrelli and Pontini (2000), that no zero-coupon bonds are available, is quite
restrictive.

The purpose of this paper is to formulate and solve an optimal investment
problem for a long-term investor who can invest in a market where the interest
rate is stochastic, but where only short-term bonds are available. More precisely,
it is assumed that the longest available interest rate derivatives (such as bonds)
mature before the investor’s time horizon. New interest rate derivatives (bonds)
are issued along the way, however, but it is assumed that the initial prices of the
new bonds are affected by unobservable (and thus unhedgeable) randomness.

The modelling of financial markets in which new interest rate derivatives are
introduced as time passes (as is the case in practice) is an issue that has received
very little attention in the literature. Sommer (1997) proposes a model in which
the new derivatives are issued in a continuous fashion and studies the issues of
pricing and hedging of contingent claims. Dahl (2005) proposes discrete-time and
continuous-time models, where new derivatives are issued at fixed time points,



Optimal Long-term Investment Without Long-term Bonds 139

and studies quadratic hedging strategies for (unattainable) contingent claims. Our
model is a special case of the continuous-time model of Dahl (2005). To the author’s
knowledge, optimal investment strategies under the described market conditions
have not been studied previously in the literature.

We consider the optimization problem of an investor who seeks to maximize
expected utility of terminal wealth. In the general case we allow for constraints on
the terminal wealth, that is, we allow for the situation where the terminal wealth
must exceed some strictly positive value. Such constraints appear particularly
in the investment problem of a pension fund that has issued long-term minimum
benefit guarantees to its policyholders, as is the case with, e.g., most participating or
with-profit pension schemes. Investment problems with terminal wealth constraints,
also referred to as problems with portfolio insurance, are well understood as long
as the financial market is complete, see, e.g. Basak (1995), Grossman and Zhou
(1996), Korn (1997), Bouiler et al. (2001), and their references. However, the
incomplete-market case is much more complicated, and to the author’s knowledge,
no explicit results exist in the literature in non-trivial cases.

The remaining part of the chapter is organized as follows. We put up the
general model of an incomplete financial market in Section 5.2 and formulate the
investor’s optimization problem in Section 5.3. For convenience in the subsequent
sections, and for completeness of the exposition, we treat the problem in a reduced,
complete market in Section 5.4 in some detail. We address the incomplete-market
problem in special cases in Sections 5.5 (an extended Vasicek model) and 5.6 (an
extended Cox-Ingersoll-Ross model). However, only the unconstrained problems
will be treated in detail.

5.2 The general market

A. Financial market model.
We consider a financial market in which an investor can trade continuously during
[0, T ], where T > 0 is the investor’s time horizon. We shall work within the general
framework of Karatzas and Shreve (1998), Chapter 3, and make use of their results.

Let (Wr,Ws,Wm)′ = (Wr(t),Ws(t),Wm(t))′t∈[0,T ] be a standard Brownian mo-

tion in R
3 defined on a probability space (Ω,F ,P). The following notation will

be employed throughout: For any stochastic process X = (X(t))t∈[0,T ] defined on

(Ω,F ,P) we denote by F
X = (FX(t))t∈[0,T ] the augmentation (by the null-sets of

F) of the filtration generated by X.

The market offers three basic assets with strictly positive price (per-share) pro-
cesses S0, S1, and S2, with fixed initial values. The dynamics of the price processes
are given by the SDE’s

dS0(t)/S0(t) = r(t) dt,

dS1(t)/S1(t) = (r(t) + λr(t)σ1r(t)) dt+ σ1r(t) dWr(t)

dS2(t)/S2(t) = (r(t) + λr(t)σ2r(t) + λsσ2s) dt+ σ2r(t) dWr(t) + σ2s dWs(t),
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for 0 ≤ t ≤ T , where r, λr, σ1r and σ2r are F
(Wr,Ws,Wm)′ -progressively measurable

processes satisfying

∫ T

0

(
|r(t)| + λ2

r(t) + σ2
1r(t) + σ2

2r(t)
)
dt <∞, a.s.,

and λs, σ2s ∈ R are constants. The volatility matrix,

(
σ1r(t) 0 0
σ2r(t) σ2s 0

)
, (2.1)

is assumed to have full rank, 2, (almost surely) for Lebesgue-almost-every t ∈ [0, T ].
The process r and the asset with price process S0 are, of course, interpreted

as the short interest rate process and the money market account, respectively.
The asset with price process S1 is an interest rate derivative (described in more
detail below), and the asset with price process S2 is interpreted as a stock (or a
portfolio of stocks). The money market (account) is locally risk-free, the interest
rate derivative is locally risky, but may be “terminally” risk-free (e.g. if it is a
zero-coupon bond with maturity T ), and the stock is a risky asset, whose price
process is in general correlated with the interest rate process but also influenced
by an independent (stock) risk source. The Brownian motions Wr and Ws are the
sources of interest rate and stock risk, respectively (hence the subscripts), and the
corresponding market prices of interest rate and stock risk are given by λr(·) and λs,
respectively. Our focus is on interest rate risk rather than stock risk, and we have
therefore, for simplicity, chosen to work only with a single stock and furthermore
taken λs and σ2s to be constant; this can obviously be generalized.

We shall immediately specify the model further in order to make it exhibit the
special kind of risk that we have in focus. Let T1 < . . . < Tn be fixed time points
in (0, T ), and put T0 = 0, Tn+1 = T . We shall refer to the intervals [Ti, Ti+1), i =
0, . . . , n, as sub-periods.

The following assumption will be in force throughout.

Assumption 5.2.1 The processes r, σ1r, and σ2r are F
(Wr,Ws)′-progressively mea-

surable. The process λr has the form

λr(t) = µ(r,s)(t, ξ(t)), ∀t ∈ [0, T ],

where ξ(·) is a piece-wise constant R-valued F
Wm-adapted process with possible

jumps only at T1, . . . , Tn, and, for each fixed ξ0 ∈ R, the process

µ(r,s)(·, ξ0) = (µ(r,s)(t, ξ0))t∈[0,T ]

is F
(Wr,Ws)′-progressively measurable.

The second statement basically means that the random behaviour of λr in each
sub-period (Ti−1, Ti) is determined entirely by Wr and Ws, whereas it may be
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affected at each time Ti by a jump in the parameter process ξ(·), which in turn is
determined by the independent process Wm.

The motivation for this specification is as follows. We imagine that the market
incompleteness arises due to purely random “shocks” affecting the market price
of interest rate risk, i.e., the process λr, at the fixed time points T1, . . . , Tn. The
process Wm is thus considered to be observable only at these time points (and only
through the jumps in ξ). We have in mind the following interpretation: Initially,
and during [0, T1], the market price of interest rate risk is fully determined by
the market, since there is an interest rate derivative (e.g. a zero-coupon bond)
maturing at time T1. At time T1 the derivative matures, and a new one (e.g., a
new zero-coupon bond) is issued, the opening price (per share) of which is affected
by a random shock. This new derivative, in turn, is available during (T1, T2] and
thus determines the market price of interest rate risk during (T1, T2); it matures
at time T2, where a new derivative is issued, and so forth. We interpret the price
process S1 as the price process of an asset that is obtained by a “rolling-over”
strategy in these derivatives sub-period by sub-period. The random shocks affecting
the opening prices (per share) of the newly-issued derivatives is then modelled by
random shocks to the market price of interest rate risk. However, during (Ti−1, Ti),
i.e., between the random shocks, the market price of interest rate risk depends
stochastically only on Wr and Ws, as is the case for the other market coefficients
as well, so the market is “piece-wise complete”.

We interpose a remark on terminology: In general the market does not offer
(hedging possibilities for) a zero-coupon bond maturing at T . To avoid confusion
we shall therefore refer to the asset with price process S1 as an “interest rate
derivative” rather than a bond. It may represent a bond in each sub-period (as
explained above), but these bonds have different maturities, so using the term
“bond” would be ambiguous. However, various zero-coupon bonds will play a role
in the following, and to ease the presentation we shall simply refer to a zero-coupon
bond with maturity T ′ ∈ (0, T ] as a T ′-bond.

Modelling the market price of interest rate risk in this way may seem somewhat
unmotivated, since there is no particular reason that it should be affected by un-
hedgeable risk sources only at the times T1, . . . , Tn. However, we aim for a fairly
simple — and not necessarily perfectly realistic — model of the situation where the
investment horizon is longer than the maturities of all the initially available inter-
est rate derivatives (such as bonds). Single-factor term structure models typically
imply completeness over the full time horizon in question and may therefore be
quite unrealistic if the time horizon is long. Our model is arguably more realistic
in this regard.

It should be noted that the interpretation can be relaxed: Nothing prevents the
interest rate derivatives (bonds) belonging to the sub-periods from overlapping,
i.e., the maturity of the derivative issued at time Ti may exceed Ti+1, i = 1, . . . , n.
Similarly, the time points T1, . . . , Tn need not coincide with the issuance of new
derivatives. The important feature of the model is that the process λr is affected
by random shocks at times T1, . . . , Tn, and this need not have anything to do with
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specific events. We shall not discuss the model further, apart from the following
technical remark.

Remark 5.2.2 The random shocks could as well be modelled by some R
n-valued

random vector independent of Wr and Ws, rather than through the independent
Brownian motion Wm. The technical motivation for our somewhat special model
is simply that it allows us to work within the Brownian motion framework, and it
implies virtually no loss of generality.

B. A family of local martingales.
We introduce here a family of exponential local martingales, which will play an
important role in the following (the paragraph can be skipped at the first reading).
First, for t ∈ [0, T ], we set

Zr(t) = exp

(
−
∫ t

0
λr(u) dWr(u) −

1

2

∫ t

0
λ2

r(u) du

)
,

Zs(t) = exp

(
−λsWs(t) −

1

2
λ2

st

)
.

Next, letting L(Wm) denote the set of R-valued F
(Wr,Ws,Wm)′ -progressively mea-

surable process λm = (λm(t))t∈[0,T ] satisfying

∫ T

0
λ2

m(t) dt <∞, a.s.,

we define for any λm ∈ L(Wm) the process Zλm by

Zλm(t) = exp

(
−
∫ t

0
λm(u) dWm(u) − 1

2

∫ t

0
λ2

m(u) du

)
, 0 ≤ t ≤ T.

The processes Zr, Zs, and Zλm are exponential local martingales (not independent
in general!), and for any λm ∈ L(Wm), the process Z defined by

Z(r,s,λm) = ZrZsZλm ,

is also an exponential local martingale, and in particular a supermartingale.
To motivate the introduction of this family of exponential local martigales let

us note that for any λm ∈ L(Wm) such that E
(
Z(r,s,λm)

)
= 1, the probability

measure Qλm defined by

Qλm(A) = E
(
1AZ(r,s,λm)

)
, A ∈ F ,

is an equivalent martingale measure for the market. However, in general we do not
assume that E

(
Z(r,s,λm)

)
= 1 for any λm ∈ L(Wm).

C. Investment strategies.
The investor’s initial wealth is denoted by x0 and assumed to be strictly positive.
He can invest his wealth continuously and without frictions in the three assets
according to any admissible investment strategy.
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Definition 5.2.3 A portfolio process is an F
(S0,S1,S2)′ -progressively measurable

process π = (π1(·), π2(·))′ with values in R
2 such that

∫ T

0

(
(π1(t)σ1r(t))

2 + (π2(t)σ2r(t))
2 + π2

2(t)
)
dt <∞, a.s. (2.2)

Remark 5.2.4 Not all portfolio processes are considered to be admissible (an
admissibility constraint will be imposed below).

The components π1(t) and π2(t) denote the amounts invested in the interest
rate derivative and the stock, respectively, at time t, t ∈ [0, T ]. The measurability
condition imposed on π1(t) and π2(t) is important; it reflects the assumption that
the investor can only observe the price processes of the assets and therefore must
base his decisions on them. The flow of information from the market is represented
by F

(S0,S1,S2)′ . Clearly,

F (S0,S1,S2)′(t) ⊆ F (Wr ,Ws,Wm)′(t), ∀t ∈ [0, T ],

and in general we have strict inclusion for t ∈ (0, T ].

We only consider strategies that are financed by the initial wealth x0, so for a
given portfolio process π = (π1, π2)

′ the corresponding wealth process Xπ develops
according to

Xπ(0) = x0, (2.3)

dXπ(t) = Xπ(t)r(t) dt+ dIπ(t), (2.4)

where Iπ is the process given by

Iπ(0) = 0, (2.5)

dIπ(t) = π1(t)σ1r(t) dW̃r(t) + π2(t)
(
σ2r(t) dW̃r(t) + σ2s dW̃s(t)

)
, (2.6)

with

W̃r(t) = Wr(t) +

∫ t

0
λr(u) du, (2.7)

W̃s(t) = Ws(t) + λst. (2.8)

The amount invested in the money market account at time t ∈ [0, T ] is given by
π0(t) = Xπ(t) − π1(t) − π2(t). We shall of course allow π to be specified through
X as long as the resulting SDE (2.3)-(2.4) has a unique solution.

We impose the following admissibility constraint, which will be briefly discussed
in the last part of Remark 5.4.2 below.
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Definition 5.2.5 A portfolio process π is said to be admissible if the corresponding
wealth process satisfies (almost surely)

Xπ(t) ≥ 0, ∀t ∈ [0, T ]. (2.9)

The set of admissible portfolio processes is denoted by A.

It is straightforward to verify, by Itô’s formula, that for any λm ∈ L(Wm) and
any π ∈ A′, the deflated wealth process,

XπS−1
0 Z(r,s,λm),

is a nonnegative local martingale, and therefore a supermartingale. In particular,
this implies that if the wealth hits zero, then it stays there, i.e., if

τπ
0 := T ∧ inf{t ∈ [0, T ] : Xπ(t) = 0}, (2.10)

with inf ∅ = ∞, then
Xπ(t) = 0, ∀t ∈ [τπ

0 , T ], a.s.

This can be seen by the same argument as used in Karatzas and Shreve (1998),
Remark 3.3.4.

Any admissible portfolio process π ∈ A is uniquely determined for t < τ π
0 by

the corresponding relative risk loadings process hπ = (hπ
r (t), hπ

s (t))′t∈[0,T ] given by

hπ
r (t)Xπ(t) = π1(t)σ1r(t) + π2(t)σ2r(t), (2.11)

hπ
s (t)Xπ(t) = π2(t)σ2s, (2.12)

for t ∈ [0, τπ
0 ) (and defined arbitrarily for t ∈ [τ π

0 , T ]). It is seen from (2.4) and
(2.6) that hπ

r and hπ
s are the relative loadings of the portfolio process π on the risk

sources Wr and Ws, respectively, i.e.,

dXπ(t)/Xπ(t) = r(t) dt+ hπ
r (t) dW̃r(t) + hπ

s (t) dW̃s(t), 0 < t ≤ T. (2.13)

The uniqueness of the portfolio process corresponding to a given relative risk load-
ings process is due to the fact that the volatility matrix (2.1) has full rank.

5.3 The optimization problem

A. Utility functions and objective.
The preferences of the investor are determined by his utility function U : R →
[−∞,∞). We assume that, for some x̄ ∈ [0,∞) and γ < (−∞, 1), U is given either
by

U(x) = u(γ)(x− x̄), x ∈ R, (3.1)

or by

U(x) =

{
u(γ)(x), x ≥ x̄,
−∞, x < x̄,

(3.2)
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where u(γ) : R → [−∞,∞) denotes the standard CRRA utility function with
relative risk aversion coefficient 1 − γ, i.e.,

u(γ)(x) =

{
xγ/γ, if γ ∈ (−∞, 1) \ {0},
log(x), if γ = 0,

for x > 0, u(γ)(x) = −∞ for x < 0, and u(γ)(0) = limx↘0 u
(γ)(x). We think of x̄ as

a minimum permitted level of the terminal wealth; this constraint on the terminal
wealth is sometimes referred to as portfolio insurance.

In the special case where x̄ = 0, the utility functions given by (3.1) and (3.2)
coincide and equal u(γ). We refer to this as the unconstrained case.

We denote by I : (0,∞) → [x̄,∞) the function

I(y) =

{
(U ′)−1(y), 0 < y < U ′(x̄+),
x̄, U ′(x̄+) ≤ y <∞,

i.e., I is the inverse of the derivative U ′, extended if necessary to (0,∞). For U of
the form (3.1) resp. (3.2), it is given by

I(y) = x̄+ y1/(γ−1), 0 < y <∞, (3.3)

resp.

I(y) = max
(
x̄, y1/(γ−1)

)
= x̄+

(
y1/(γ−1) − x̄

)+
, 0 < y <∞. (3.4)

By maximizing the function x 7→ U(x) − yx, x > 0, for fixed y > 0, it is easy to
verify the important inequality

U(I(y)) ≥ U(x) + y(I(y) − x), ∀x ≥ 0, y > 0. (3.5)

The investor has the objective of maximizing the expected utility of terminal
wealth, and the value function V is thus defined as

V (x) := sup
π∈A′

E (U(Xπ(T ))) ,

where

A′ = {π ∈ A : E
(
U(Xπ(T ))−

)
<∞}.

Remark 5.3.1 The set A′ is always non-empty in the unconstrained case, since
the portfolio process given by π1 ≡ π2 ≡ 0 is seen to belong to A′. However, it
need not be non-empty in the general case with x̄ > 0. If it is empty, then the
problem clearly has no solution.



146 Chapter 5

5.4 The complete-market case

A. A reduced market.
In this section we consider the reduced market obtained by removing the risk
source Wm, and thus taking ξ to be constant throughout [0, T ]. Assumption 5.2.1
is then automatically strengthened to the assumption that λr itself is F

(Wr,Ws)′ -
progressively measurable, which is then the case for all the market coefficients.
Moreover, the third column of the volatility matrix (2.1) drops out, and the family
of local martingales introduced in Paragraph 5.2.B becomes a singleton with the
process ZrZs as its only member.

This means that the market is complete (when only F (Wr ,Ws)′(T )-measurable
contingent claims are allowed), and the state price density process H is given by

H(t) = S−1
0 (t)Zr(t)Zs(t), 0 ≤ t ≤ T.

We shall work in this section under the following very mild assumption.

Assumption 5.4.1 The state price density process H satisfies

E (H(T )) <∞.

Due to Assumption 5.4.1 it follows from Karatzas and Shreve (1998), Theo-
rem 3.3.5, that it is possible to hedge a T -bond, starting with the initial wealth
E (H(T )). As we shall see, this particular interest rate derivative will play an im-
portant role in this section. In fact, one may assume without loss of generality
that the interest rate derivative with price process S1 is a T -bond; but this is not
necessary.

Remark 5.4.2 The process ZrZs is a supermartingale, and it may in general be
strict (i.e., not a martingale). In that case there is no equivalent martingale mea-
sure, and since the volatility matrix is non-singular (for Lebesgue-almost-every
t ∈ [0, T ], a.s.) the market consequently admits arbitrage opportunities, even with
tame portfolios, i.e., portfolios for which the discounted wealth process is uniformly
bounded from below (see Levental and Skorohod (1995)). However, the admissibil-
ity constraint (2.9) prevents the investor from exploiting them (severely, at least):
Since XπH a supermartingale for any π ∈ A, we have the inequality

E (Xπ(T )H(T )) ≤ x0, ∀π ∈ A. (4.1)

This calls for a discussion of the constraint (2.9). As is well known, in general
financial market models it is necessary to require portfolio processes to be tame in
order to avoid arbitrage via “doubling strategies” and similar “outrageous” portfo-
lios (see, e.g. Karatzas and Shreve (1998), Ex. 1.2.3): If an equivalent martingale
measure exists, then this requirement implies that the discounted wealth process
corresponding to a tame portfolio is a supermartingale under the equivalent mar-
tingale measure, so that arbitrage is ruled out. In an optimization problem with
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a nonnegativity constraint on the terminal wealth (imposed either explicitly or
implicitly through the investor’s utility function) it is therefore necessary (and suf-
ficient) to impose the nonnegativity constraint (2.9). When there is no equivalent
martingale measure, this constraint cannot be justified by the same economic ar-
guments. However, allowing the investor to employ any tame portfolio process
would lead to an ill-posed optimization problem, because the arbitrage opportu-
nities (which exist in the model in this case) could be exploited in any scale. We
shall not discuss this further; we simply take (2.9) as a given constraint and accept
the fact that our market model may allow arbitrage in some cases.

B. Solution.
Now, for notational convenience, put

x∗ = x̄E (H(T )) , (4.2)

(recall Assumption 5.4.1), and consider the function X : (0,∞) → (x∗,∞] given by

X (y) = E (H(T )I(yH(T ))) , 0 < y <∞.

Corresponding to (3.1) and (3.2), we have

X (y) = x∗ + y1/(γ−1)E
(
H(T )γ/(γ−1)

)
, 0 < y <∞, (4.3)

and

X (y) = x∗ + E

(
H(T )

(
(yH(T ))1/(γ−1) − x̄

)+
)
, 0 < y <∞, (4.4)

respectively. In both cases it is easily seen that X (y) < ∞, ∀y ∈ (0,∞), if and
only if

E
(
H(T )γ/(γ−1)

)
<∞, (4.5)

and that X is strictly decreasing and maps (0,∞) onto (x∗,∞) in this case. From
Karatzas and Shreve (1998), Theorem 3.7.6, we now have that if (4.5) holds, and
x0 ∈ (x∗,∞), then there exists an optimal portfolio π̂ ∈ A′, and the corresponding
optimal terminal wealth is given by

X π̂(T ) = I(H(T )Y(x0)), (4.6)

where Y : (x∗,∞) → (0,∞) is the inverse of X , i.e., X (Y(x)) = x, ∀x ∈ (0,∞).
Corresponding to (3.1) and (3.2), we have

X π̂(T ) = x̄+ (H(T )Y(x0))
1/(γ−1)

and

X π̂(T ) = x̄+
(
(H(T )Y(x0))

1/(γ−1) − x̄
)+

,

respectively (note that Y is different in the two cases, of course).
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Remark 5.4.3 For completeness we briefly consider the case x0 ≤ x∗ (note that
we must have x∗ > 0 and x̄ > 0 in this case since x0 > 0 by assumption):

If x0 = x∗, then it follows from (4.1) that the only way to ensure that the
terminal wealth Xπ(T ) satisfies Xπ(T ) ≥ x̄, a.s., is to put Xπ(T ) = x̄, that is, to
buy (and hold) a T -bond with payoff x̄. In the case of (3.1) this is then optimal if
and only if γ ∈ (0, 1); if γ ≤ 0, then there is no solution (i.e., A′ = ∅). In the case
of (3.2) this is optimal for any γ < 1.

If x0 < x∗, then no solution exists (i.e., A′ = ∅) in either case ((3.1) or (3.2))
for any γ ∈ (−∞, 1).

Remark 5.4.4 The solution to the problem as given by (4.6) is satisfactory only
if

E
(
U(X π̂(T ))

)
< sup

x∈R

U(x) =

{
∞, γ ∈ [0, 1),
0, γ ∈ (−∞, 0),

(4.7)

and the optimal investment strategy is in particular unique in this case. It is easily
seen that (4.7) is valid for γ ∈ (−∞, 0). It need not hold for γ = 0, so although
(4.5) obviously is satisfied in this case so that an optimal strategy exists, it need not
be unique. For γ ∈ (0, 1) it is straightforward to verify that (4.7) holds if and only
if (4.5) holds, so in this case the solution is satisfactory, and the optimal strategy
is unique under condition (4.5).

Now, assume that condition (4.5) holds, and that x0 > x∗. From (4.3) and
(4.4) it transpires that in both cases the optimal portfolio can be viewed as a two-
component portfolio: In both cases a T -bond with payoff x̄ should be bought at
time 0 and held throughout [0, T ]. As for the remaining wealth, which initially is
given by x0 − x∗, the investment strategies are different, but the contingent claim
Y := H(T )1/(γ−1) and the constant α := Y(x0)

1/(γ−1) (which is different in the two
cases!) play a role in both of them:

In the case of (4.3), resp. (4.4), the investor should buy α units of Y , resp. a
European call option on αY with strike price x̄; in both cases it is easily shown
that this can be done at the price x0 − x∗. In the unconstrained case the optimal
terminal wealth is proportional to Y , that is, the optimal strategy is to buy as
many units of Y as possible and hold them until time T .

Note that if the contingent claim Y is not readily available in the market it can
of course be replicated using the basic assets.

5.5 An extended Vasicek term structure

A. Model specification.
In this section we consider an extended Vasicek (1977) term structure model. The
interest rate process is assumed to be given by the dynamics

dr(t) = κ(θ − r(t)) dt− σr dWr(t), 0 < t ≤ T,
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where κ > 0 and θ, σr ∈ R are constants. We shall make use of the well-known
identity

∫ T

0
r(t) dt = (r(0) − θ)B(t, T ) + θT − σr

∫ T

0
B(t, T ) dWr(t), (5.1)

where B(·, T ) : [0, T ] → R is given by

B(t, T ) =
1 − e−κ(T−t)

κ
, t ∈ [0, T ].

We assume in this section that the market price of interest rate risk, λr, is con-
stant in each sub-period (in the terminology of Assumption 5.2.1 one can thus set
µ(r,s)(·, ξ) ≡ ξ and let ξ be the market price of interest rate risk). Moreover, we
assume that the volatility of the interest rate derivative is deterministic (but pos-
sibly time-dependent), and, finally, that σ2r is constant. This means that the only
random behaviour of the market coefficients may take place at the times T1, . . . , Tn

and only affects λr.

B. The complete-market case.
In this paragraph we briefly consider the reduced complete-market case of Sec-
tion 5.4, where Wm is removed from the model. This means that λr is constant
throughout [0, T ] in this paragraph. We may and shall assume that the interest
rate derivative is a T -bond. The volatility of the T -bond is then given by

σ1r(t) = σrB(t, T ), 0 ≤ t ≤ T.

The unconstrained problem has been solved explicitly by Sørensen (1999), Brennan
and Xia (2000), Korn and Kraft (2001) (in the case γ ∈ (0, 1)), and Bajeux-
Besnainou et al. (2003). The constrained problem given by the utility function
(3.1) has been solved explicitly by Bouiler et al. (2001) and Deelstra et al. (2003).

For t ∈ [0, T ] we have

Zr(t) = exp
(
−λrWr(t) − λ2

r t/2
)
.

The processes Zr and Zs are here independent martingales, and ZrZs is therefore
also a martingale. In particular, there is an equivalent martingale measure (with
Radon-Nikodym derivative given by Zr(T )Zs(T )), and the model precludes arbi-
trage opportunities. Moreover, by use of (5.1) it is easily seen that the (unique)
state price density H is given by

H(T ) = e−
∫ T
0 r(t) dtZr(T )Zs(T )

= exp

(
−
∫ T

0
(λr − σrB(t, T )) dWr(t)

)
exp

(
−λ2

r T/2 − C
)
Zs(T ),

where
C = (r(0) − θ)B(t, T ) + θT. (5.2)
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Thus, H(T ) has a log-normal distribution, and Assumption 5.4.1 is clearly satisfied.
Similarly, condition (4.5) is immediately seen to hold, so there exists an optimal
portfolio π̂ ∈ A′ with corresponding terminal wealth given by (4.6). Finally, it is
easily verified that (4.7) holds for γ = 0 and thus for all γ ∈ (−∞, 1).

In the unconstrained case the optimal investment strategy, π̂, is given explicitly
in terms of the corresponding risk loadings process ĥ by

ĥr(t) =
λr − γσrB(t, T )

1 − γ
, (5.3)

ĥs(t) =
λs

1 − γ
, (5.4)

for t ∈ [0, T ] (see, e.g. Bouiler et al. (2001)). We refer to the abovementioned
references for a closer analysis of the optimal portfolio process.

In the general constrained cases (where x̄ > 0) the optimal strategy can, as ex-
plained in Section 5.4, be viewed as a two-component strategy involving x̄ T -bonds
and a sub-portfolio corresponding either to the optimal unconstrained portfolio or
to a European call option with strike price x̄ on the optimal unconstrained terminal
wealth. We shall not go further into detail here.

C. The incomplete-market case, unconstrained problem.
We now turn our attention to the incomplete market of Paragraph A, and we first
consider the unconstrained problem (with x̄ = 0). We shall immediately state and
prove a result that yields the optimal portfolio process (see Remark 5.5.3 for some
comments).

Proposition 5.5.1 The portfolio process π̂ defined by

π̂1(t) =
Xπ(t)

1 − γ

(
λr(t)σ2s − λsσ2r

σ2sσrB(t, T )
− γ

)
, (5.5)

π̂2(t) =
Xπ(t)

1 − γ

λs

σ2s
, (5.6)

t ∈ [0, T ], is optimal in the extended, incomplete Vasicek market.

Remark 5.5.2 From (2.11)-(2.12) it is easily verified that the risk loadings process
corresponding to π̂ is as in (5.3)-(5.4), with λr replaced by λr(t) for each t ∈ [0, T ].

Note that the result is quite general in the sense that no particular assumptions
(e.g. distributional) about the jumps of λr at T1, . . . , Tn have been imposed.

Proof. In terms of the risk loadings process corresponding to π̂ (see Remark 5.5.2),
the wealth process X π̂ is given by

X π̂(t) = x0 exp

(∫ t

0

(
r(u) du+

λr(u) − γσrB(u, T )

1 − γ
dW̃r(u) +

λs

1 − γ
dW̃s(u)

))

× exp

(
−
∫ t

0

1

2

(
λr(u) − γσrB(u, T )

1 − γ

)2

du− λ2
st

2(1 − γ)2

)
, (5.7)
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for every t ∈ [0, T ], as can be seen by use of (2.13).
We first argue that π̂ ∈ A. It is straightforward to verify that π̂ satisfies (2.2)

and (2.9). Moreover, π̂ is F
(S0,S1,S2)′ -progressively measurable. This is not obvi-

ous, since, for i = 1, . . . , n, π̂(Ti) depends on λr(Ti), which in turn depends on
the history of the unobservable process Wm. However, it follows from the fact
that F

(S0,S1,S2)′ is right-continuous and λ(Ti) is F (S0 ,S1,S2)′(Ti + ε)-measurable for
each ε > 0 (the last assertion, in turn, follows from the structure of the mar-
ket). Note that, in contrast, π̂(Ti) is in general not measurable with respect to
σ((S0(t), S1(t), S2(t)); t ∈ [0, Ti]), the natural σ-algebra generated by the price pro-
cesses over [0, Ti].

By use of (5.1), (5.2), and some straightforward calculations, we obtain

X π̂(T ) = x0e
C exp

(∫ T

0

λr(t) − σrB(t, T )

1 − γ
dW̃r(t) +

λs

1 − γ
(Ws(T ) + λsT )

)

= x0e
C exp

(∫ T

0

λr(t) − σrB(t, T )

1 − γ
dW̃r(t)

)
Zs(T )1/(γ−1)eλ

2
sT/(2(1−γ)).

Now, consider the process H defined by

H(t) = S−1
0 (t)Zr(t)Zs(t), 0 ≤ t ≤ T. (5.8)

It belongs to the family of exponential local martingales of Paragraph 5.2.B; it is
obtained by setting λm ≡ 0. We have, using (3.3) (or (3.4)) with x̄ = 0,

I(H(T )) = H(T )1/(γ−1)

= (S−1
0 (T )Zr(T ))1/(γ−1)Zs(T )1/(γ−1)

= eC/(1−γ)Zs(T )1/(γ−1)

× exp

(∫ T

0

λr(t) − σrB(t, T )

1 − γ
dWr(t) +

λ2
r(t)

2(1 − γ)
dt

)
,

where (5.1) has been used, once again, in the last equality.
By inserting (2.7) in the expression forX π̂(T ) and performing a few calculations

we see that
X π̂(T ) = I(H(T ))M, a.s., (5.9)

where

M = x0e
Cγ/(γ−1)+λ2

sT/(2(1−γ)) exp

(∫ T

0

λ2
r(t)/2 − λr(t)σrB(t, T )

1 − γ
dt

)
.

We note that M is a strictly positive, FWm(T )-measurable random variable.
Now, let π be an arbitrary strategy in A′ (recall Remark 5.3.1), with corre-

sponding terminal wealth denoted by Xπ(T ). From (3.5), (5.9), and the obvious
identity I(H(T ))M = I(H(T )M γ−1), we have (almost surely)

U(X π̂(T )) = U(I(H(T ))M) = U
(
I
(
H(T )Mγ−1

))

≥ U (Xπ(T )) +H(T )M γ−1
[
I
(
H(T )Mγ−1

)
−Xπ(T )

]

= U (Xπ(T )) +H(T )M γ−1
[
X π̂(T ) −Xπ(T )

]
.
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From (5.7) and (5.8) it is fairly straightforward to verify, by Itô’s formula, that
conditionally, given FWm(T ), X π̂H = (X π̂(t)H(t))t∈[0,T ] is an F

(Wr ,Ws)′ -martingale
(almost surely), because λr is a square-integrable deterministic process condition-
ally (almost surely). Therefore,

E
(
H(T )Mγ−1X π̂(T )

)
= E

(
Mγ−1 E

(
H(T )X π̂(T )

∣∣∣FWm(T )
))

= x0E
(
Mγ−1

)
,

and it is easily seen that E
(
Mγ−1

)
< ∞. As for XπH, one can similarly show

that conditionally, given FWm(T ), XπH is an F
(Wr,Ws)′ -supermartingale (almost

surely), so we get

E
(
H(T )Mγ−1Xπ(T )

)
= E

(
Mγ−1 E

(
H(T )Xπ(T ) | FWm(T )

))
≤ x0E

(
Mγ−1

)
.

Thus we can conclude that

E
(
U(X π̂(T ))

)
≥ E (U(Xπ(T ))) .

Since π ∈ A′ it follows that π̂ ∈ A′, and optimality of π̂ follows from arbitrariness
of π. 2

Thus, in terms of the relative risk loadings, the optimal portfolio process is
exactly as in the complete-market case (although, of course, the market price of
interest rate risk is no longer constant, so the risk loadings have to be “updated” at
the beginning of each sub-period). However, one should be careful as regards the
interpretation of this result. Since the model can be viewed as being “piece-wise”
complete, one might think that it would be optimal to invest in each sub-period
in accordance with the optimal complete-market strategy (in respect of the time
horizons of the sub-periods). This is true in terms of the relative risk loadings, but
it does not necessarily mean that the optimal amounts invested in each of the three
assets should be the same as in the piece-wise complete markets: If the interest
rate derivative in a given sub-period, say (Ti−1, Ti), is a Ti-bond, then the volatility
of the derivative (bond) in that period is not given by σrB(t, T ), but by σrB(t, Ti).
Thus, the optimal amount (or proportion of wealth) invested in the bond does not
equal the amount (or proportion of wealth) that would be invested in the bond if
only that sub-period were considered.

Remark 5.5.3 The result (as well as its proof) is inspired by (but does not follow
from) similar results in Karatzas et al. (1991) and in Karatzas and Xue (1991).

D. The incomplete-market case, general problem.
The general problem is more difficult to handle because of the terminal wealth
constraint. We shall not pursue it in detail; we content ourselves with a brief
treatment of the terminal wealth constraint.

The contingent claim given by the constant x̄ is not attainable. To see this we
note that if π ∈ A were a hedging portfolio for x̄, i.e.,

Xπ(T ) = x̄, a.s.,
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then, during the last sub-period, i.e., for t ∈ (Tn, T ], Xπ(t)/x̄ would necessarily
have to equal the well-known value of a T -bond in the (complete) market of the
last sub-period. But the value at time Tn of a T -bond certainly depends on λr(Tn),
which is affected by unobservable (and thus unhedgeable) randomness. Since the
wealth process of any portfolio is continuous (in particular at Tn), it is not possible
to hit the correct time Tn-price with certainty (or almost surely).

However, it may be possible to find super-replicating strategies, i.e., portfolio
processes π ∈ A such that

Xπ(T ) ≥ x̄, a.s.,

which would in particular imply A′ 6= ∅.
In fact, we shall argue briefly (and somewhat heuristically) that this is the case

if λr is bounded from below (or, equivalently, if the jumps of λr at T1, . . . , Tn are
all bounded from below), which is a relatively mild condition from a practical point
of view (we believe that it can be weakened, but we shall not pursue this). Thus,
assume that the the jumps of λr at T1, . . . , Tn are bounded from below. Then there
is an upper limit for the conditional price at time Tn of a T -bond, given r(Tn).
Moreover, as a function of r(Tn) this upper limit has the form

Cne
−B(Tn ,T )r(Tn),

where Cn is an F (S0,S1,S2)′(Tn−1)-measurable positive random variable. This upper
limit is attainable in the complete market of the sub-period (Tn−1, Tn], and there
is, in turn, an upper limit for its conditional price at time Tn−1, given r(Tn−1),
which, in turn, is attainable in the complete market of the sub-period (Tn−2, Tn−1].
By reusing this argument it can be seen that a super-replicating strategy exists.

Although we have not provided a solution of the general problem, the fact
that super-replicating strategies may exist is interesting in its own right, because
it shows that it may be possible to obey (non-trivial) terminal wealth constraints
even when T -bonds are initially unavailable.

5.6 An extended Cox-Ingersoll-Ross term structure

A. Model specification.
In this section we consider the term structure model of Cox et al. (1985). The short
rate of interest is given by the dynamics

dr(t) = κ(θ − r(t)) dt− σr

√
r(t) dWr(t), r(0) > 0, (6.1)

where κ, θ, σr > 0 are constants satisfying κθ ≥ σ2
r/2 so that r(t) > 0, ∀t ∈ [0, T ],

almost surely.

We assume in this section that the market price of interest rate risk, λr(·), has
the form

λr(t) = ξ(t)
√
r(t), ∀t ∈ [0, T ], (6.2)
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where ξ(·) is as in Assumption 5.2.1 (which is then clearly satisfied). Moreover, we
assume that the volatility of the interest rate derivative is given by

σ1r(t) = σrB(t, T )
√
r(t), t ∈ [0, T ], (6.3)

for some deterministic (but possibly time-dependent) function B(·, T ) : [0, T ] →
[0,∞), and, finally, that σ2r has the form

σ2r(t) = σ0
2r

√
r(t), t ∈ [0, T ],

for some constant σ0
2r ∈ R.

B. The complete-market case.
In this paragraph we consider the reduced complete-market case of Section 5.4,
where Wm is removed from the model. This means that ξ(·) is constant throughout
[0, T ] in this paragraph. We may and shall assume that the interest rate derivative
is a T -bond. The volatility of the T -bond is then given by (6.3), with

B(t, T ) =
2(eδ(T−t) − 1)

δ − (κ− σrξ) + eδ(T−t)(δ + κ− σrξ)
, t ∈ [0, T ],

where δ =
√

(κ− σrξ)2 + 2σ2
r .

The unconstrained problem has been studied by Deelstra et al. (2000), who
provided explicit solutions under certain restrictions on the investor’s risk aver-
sion. The constrained problem given by the utility function (3.1) has been solved
explicitly by Deelstra et al. (2003) (under similar restrictions).

For t ∈ [0, T ] we have

Zr(t) = exp

(
−
∫ t

0
ξ
√
r(t) dWr(t) −

1

2

∫ t

0
ξ2r(t) dt

)
. (6.4)

The processes Zr and Zs are here independent, and Zs is clearly a true martin-
gale. The following proposition shows that this goes for Zr as well, so ZrZs is
also a martingale. In particular, there is an equivalent martingale measure (with
Radon-Nikodym derivative given by Zr(T )Zs(T )), and the model precludes arbi-
trage opportunities.

Proposition 5.6.1 The process Zr is a true martingale.

Remark 5.6.2 It is by no means trivial from (6.4) that Zr is a true martingale,
and in much of the existing literature on the Cox-Ingersoll-Ross model this issue is
actually not addressed at all. Some authors simply assume that Zr is a martingale,
either implicitly or explicitly, or state this without proof or reference to a known
proof, while others work directly with a risk neutral measure (and assume the short
rate dynamics (6.1) under this measure) and therefore avoid having to address the
issue because no particular assumptions about the market price of interest rate risk
(such as (6.2)) are imposed. However, a proof that Zr is a martingale (in a slightly
more general model) can be found in Shirakawa (2002). We provide a somewhat
different and simpler proof.
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Proof. It is well known (see, e.g. Pitman and Yor (1982) or Rogers (1995)) that
the distribution of the process r = (r(t))t∈[0,T ] can be characterized as follows: Let
τ : [0, T ] → [0,∞) be the strictly increasing function defined by

τ(t) =
σ2

r (e
κt − 1)

4κ
, 0 ≤ t ≤ T,

and let Y (δ) = (Y (δ)(u))u∈[0,τ(T )] be a squared Bessel process with dimension δ =
4κθ/σ2 ≥ 2, defined on an auxiliary probability space (Ω◦,F◦,P◦), and starting at
r(0). This process satisfies the SDE

Y (δ)(0) = r(0), (6.5)

dY (δ)(u) = δ dt+ 2
√
Y (δ)(u) dW ◦(u), (6.6)

where W ◦ = (W ◦(u))u∈[0,τ(T )] is a Brownian motion on (Ω◦,F◦,P◦). Then

r
d
= Ỹ ,

where Ỹ = (Ỹ (t))t∈[0,T ] is the process given by

Ỹ (t) = e−κtY (δ)(τ(t)), 0 ≤ t ≤ T.

This can also be verified directly by using the Itô and time-change formulae (see,
e.g., Karatzas and Shreve (1991)) to show that Ỹ satisfies the same SDE as r (recall
(6.1)), with (Ω◦,F◦,P◦) as the underlying probability space, of course.

Now, let δ◦ = min{2n ∈ N : 2n ≥ δ} be the smallest even integer greater than
δ. From a comparison theorem for solutions of SDE’s (Karatzas and Shreve (1991),
Theorem 5.2.18) we almost surely have

Y (δ)(u) ≤ Y (δ◦)(u), ∀0 ≤ u ≤ τ(T ),

where, of course, Y (δ◦) denotes the solution to the SDE (6.5)-(6.6) with δ replaced
by δ◦. Moreover, we have

Y (δ◦)(·) d
= r(0) + ‖B(·)‖2,

where B = (B1(t), . . . , Bδ◦(t))
′
t∈[0,τ(T )] is a δ◦-dimensional standard Brownian mo-

tion (defined on (Ω◦,F◦,P◦)).
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Let 0 ≤ t1 ≤ t2 ≤ T , and put ui = τ(ti), i = 1, 2. We have

E

(
exp

(
1

2

∫ t2

t1

ξ2rr(s) ds

))
= EP◦

(
exp

(
ξ2r
2

∫ t2

t1

Ỹ (s) ds

))

= EP◦

(
exp

(
2ξ2r
σ2

r

∫ u2

u1

Y (δ)(s)

(1 + 4κs/σ2
r )2

ds

))

≤ EP◦

(
exp

(
2ξ2r
σ2

r

∫ u2

u1

Y (δ)(s) ds

))

≤ EP◦

(
exp

(
2ξ2r
σ2

r

∫ u2

u1

Y (δ◦)(s) ds

))

= exp

(
2ξ2r (u2 − u1)x

σ2
r

)
C(u1, u2),

where

C(u1, u2) = EP◦

(
exp

(
2ξ2r
σ2

r

∫ u2

u1

‖(B(s)‖2 ds

))
.

Thus, if C(u1, u2) < ∞, then E
(
exp

(
1
2

∫ t2
t1
ξ2rr(s) ds

))
< ∞. Since B1, . . . , Bδ◦

are independent, the validity of the condition C(u1, u2) < ∞ does not depend on
δ◦, so we may assume δ◦ = 2. Furthermore, using the exponential series expansion
it is clear that C(u1, u2) <∞ if and only if

∞∑

n=2

1

n!

(
2ξ2r
σ2

r

)n

EP◦

((∫ u2

u1

‖B(s)‖2 ds

)n)
<∞.

For n ≥ 2, the Hölder and Jensen inequalities yield

(∫ u2

u1

‖B(s)‖2 ds

)n

≤ (u2 − u1)
n/2

(∫ u2

u1

‖B(s)‖4 ds

)n/2

≤ (u2 − u1)
n−1

∫ u2

u1

‖B(s)‖2n ds,

and thus

EP◦

((∫ u2

u1

‖B(s)‖2 ds

)n)
≤ (u2 − u1)

n−1

∫ u2

u1

EP◦ (‖B(s)‖2n
)
ds

= (u2 − u1)
n−1

∫ u2

u1

(2s)nn! ds

≤ 2n(u2 − u1)
nun

2n!,

where we have used the fact that ‖B(s)‖2 has a χ2-distribution with δ◦ = 2 degrees
of freedom and scale parameter 2s. Hence, we have C(u1, u2) <∞ if

∞∑

n=2

(
4ξ2r
σ2

r

)n

(u2 − u1)
nun

2 <∞,
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i.e., if

(u2 − u1)u2 <
σ2

r

4ξr
.

Thus, if we let 0 = t0 < t1 < . . . < tm = T be a finite partition of [0, T ] (not to be
confused with the partition given by T1, . . . , Tn) such that

(τ(ti) − τ(ti−1))τ(ti) <
σ2

r

4ξr
, ∀i = 1, . . . ,m,

then

E

(
exp

(
1

2

∫ ti

ti−1

ξ2rr(s) ds

))
<∞, ∀i = 1, . . . ,m,

which is sufficient to ensure that Zr is a martingale (Karatzas and Shreve (1991),
Corollary 3.5.14). 2

We note that since ZrZs is a martingale and r is positive it is clear that As-
sumption 5.4.1 is met. As for condition (4.5), let us first note that for γ ≤ 0 it
is immediately verified that the condition holds by use of Assumption 5.4.1 and
Jensen’s inequality. For γ ∈ (0, 1) the situation is much more complicated, but we
shall here try to provide conditions for (4.5) when γ ∈ (0, 1). The reader with no
interest in this can jump directly to the end of Remark 5.6.6 below.

Let us begin with the observation that

E
(
H(T )γ/(γ−1)

)
= ea E

(
ebr(T )+c

∫ T

0
r(t) dt

)
,

where

a = − γ

γ − 1

(
T

[ −λ2
s

2(γ − 1)
+
ξκθ

σr

]
+
ξr(0)

σr

)
,

b =
γ

γ − 1

ξ

σr
, (6.7)

c = − γ

γ − 1

(
1 +

ξ2

2
− ξκ

σr

)
, (6.8)

which can be verified by straightforward calculations, using (6.1) in integral form
and the independence between Wr and Ws. Now, from Lamberton and Lapeyre
(1996), Prop. 6.2.5, we have, for any β, η ≤ 0,

E
(
eβr(t)+η

∫ t

0
r(u) du

)
= exp (κθφβ,η(t) + r(0)ψβ,η(t)) , t ≥ 0, (6.9)

where

φβ,η(t) =
2

σ2
r

log

(
2ρe(ρ+κ)t/2

−σ2
rβ(eρt − 1) + ρ− κ+ eρt(ρ+ κ)

)
,

ψβ,η(t) =
β(ρ+ κ+ eρt(ρ− κ)) + 2η(eρt − 1)

−σ2
rβ(eρt − 1) + ρ− κ+ eρt(ρ+ κ)

,
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with ρ =
√
κ2 − 2σ2

rη. The following lemma extends (6.9) in the case η = 0.

Lemma 5.6.3 For any t > 0 we have

E
(
eβr(t)

)
= exp (κθφβ,0(t) + r(0)ψβ,0(t))

= eβr(0)e−κt/(1−2βL(t))(1 − 2βL(t))−2κθ/σ2

for β < 1/(2L(t)), where L(t) = σ2
r(1 − e−κt)/(4κ). If β ≥ 1/(2L(t)), then

E
(
eβr(t)

)
= ∞.

Proof. It follows from (6.9) with η = 0 (see, e.g. Lamberton and Lapeyre (1996),
Ch. 6) that

r(t)
D
= L(t)Y (t), ∀t > 0,

where Y (t) has a non-central chi-squared distribution with 4κθ degrees of freedom
and (non-centrality) parameter ζ(t) = r(0)e−κt/L(t) = 4r(0)κ/(σ2(eκt − 1)). One
easily finds

E
(
eµY (t)

)
=

{
eµζ(t)/(1−2µ)(1 − 2µ)−2κθ/σ2

, µ < 1/2,
∞, µ ≥ 1/2,

and the assertion follows immediately. 2

The following lemma gives a sufficient condition for integrability of eη
∫ t
0 r(u) du,

which is valid for some η > 0.

Lemma 5.6.4 Let t > 0. If

η ≤ κ2

2σ2
, (6.10)

or if

η <
κ

σ2(1 − e−κt)t
=

1

2L(t)t
, (6.11)

with L(·) defined as in Lemma 5.6.3, then E
(
eη
∫ t
0 r(u) du

)
<∞. On the other hand,

if

η ≥ 2κ3teκt

σ2(2eκt − (1 + κt)2 − 1)
,

then E
(
eη
∫ t

0
r(u) du

)
= ∞.

Proof. Straightforward calculations show, by use of (6.1) in integral form and the
independence between Wr and Ws, that

E (Z(t)) = ek(t)E
(
eξr(t)/σr+(ξκ/σr−ξ2/2)

∫ t
0 r(u) du

)
, t ≥ 0,
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where k(t) = −ξ(κθt + r(0))/σr . It is easily seen that ξκ/σr − ξ2/2 ≤ κ2/(2σ2)
(with equality if and only if ξ = κ/σ). Therefore, since Z is a martingale, we have
in particular

E

(
exp

(
κ2

2σ2

∫ t

0
r(u) du

))
<∞,

and thus E
(
eη
∫ t

0
r(u) du

)
<∞ for any η ≤ κ2

2σ2 .

Now, let 0 < η < 1/(2L(t)t). We first note that for n ≥ 2 the Hölder and
Jensen inequalities imply

[∫ t

0
r(u) du

]n

≤ tn/2

[∫ t

0
r2(u) du

]n/2

≤ tn−1

∫ t

0
rn(u) du.

Therefore,

E
(
eη
∫ t

0
r(u) du

)
=

∞∑

n=0

ηn

n!
E

([∫ t

0
r(u) du

]n)

≤ 1 + ηE

(∫ t

0
r(u) du

)
+

1

t

∞∑

n=2

(ηt)n

n!
E

(∫ t

0
rn(u) du

)

≤ 1 + ηE

(∫ t

0
r(u) du

)
+

1

t

∫ t

0
E
(
eηtr(u)

)
du <∞,

since ηt < 1/(2L(t)) ≤ 1/(2L(u)), ∀u ∈ [0, t]. The second assertion is taken from
Korn and Kraft (2004). 2

Lemma 5.6.5 Condition (4.5) is satisfied for any γ ≤ 0. For γ ∈ (0, 1), (4.5) is
satisfied if

(i) ξ > 0 and κ ≥ σr/ξ + ξσr/2, or

(ii) ξ > 0, κ < σr/ξ + ξσr/2, and E
(
ec
∫ T

0
r(t) dt

)
<∞, or

(iii) ξ = 0 and E
(
ec
∫ T
0 r(t) dt

)
<∞, or

(iv) ξ < 0 and E
(
ebr(T )+c

∫ T

0
r(t) dt

)
<∞,

where b and c are given by (6.7) and (6.8).

Proof. For γ ≤ 0 the validity of (4.5) follows directly from Jensen’s inequality.
For γ ∈ (0, 1) each of the conditions (i)-(iv) is easily seen to be sufficient: Under
condition (i) we have b, c ≤ 0. Under conditions (ii) and (iii) we have b ≤ 0. Under
condition (iv) we have b, c > 0, but the second part of the condition is equivalent
to (4.5). 2
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Lemmas 5.6.3, 5.6.4, and 5.6.5 can be applied to provide a few simple conditions
for the validity of (4.5). An exact necessary and sufficient condition under which
it holds is not easy to identify and, to the author’s knowledge, nowhere to find in
the literature.

Remark 5.6.6 Deelstra et al. (2000) claim that (6.9) holds for β = b and η = c
if only c ≤ κ2/(2σ2

r ), but they do not prove it (and no proof of this is given in
the cited references either). They argue that since ρ is well-defined (in R) if only
c ≤ κ2/(2σ2

r ), then (6.9) is also valid in this case (presumably with the limiting
expressions for φb,c and ψb,c obtained for c ↗ κ2/(2σ2), which are in fact finite,
inserted for c = κ2/(2σ2)). However, this need not be the case. Indeed, choosing
t, c, and b, such that

κ2

2σ2
< c <

2κ

σ2(1 − e−κt)t
,

and b ≤ 0 (which is clearly possible), we have E
(
ec
∫ t
0 r(u) du

)
<∞ by Lemma 5.6.4

and thus E
(
ebr(t)+c

∫ t
0 r(u) du

)
< ∞, so (6.9) cannot be valid in this case. This

suggests (but does not prove) that it is not valid in general for 0 < c ≤ κ2/(2σ2)
either.

Now, it is fairly easy to show that (4.7) is satisfied for γ = 0. Thus, in the
unconstrained case the optimal investment strategy, π̂, is, (at least) for γ ≤ 0,
given explicitly in terms of the corresponding risk loadings process ĥ by

ĥr(t) =
ξ
√
r(t) − γσr

√
r(t) k(t)

1 − γ
=
λr(t) − γσr

√
r(t) k(t)

1 − γ
, (6.12)

ĥs(t) =
λs

1 − γ
, (6.13)

for t ∈ [0, T ], where

k(t) =
(eδ

′(T−t) − 1)(2 + ξ2/(1 − γ))

δ′ − κ− ξσrγ/(1 − γ) + eδ′(T−t)(δ′ + κ+ ξσrγ/(1 − γ))
, 0 ≤ t ≤ T,

with δ′ =
√
κ2 + 2σ2

rc (and c given by (6.8)), see e.g. Deelstra et al. (2000).
Note the similarity with the optimal relative risk loadings, (5.3)-(5.4), in the

unconstrained complete-market Vasicek case. In particular, the relative stock risk
loading, ĥs, is the same in the two models.

As for the general constrained cases (where x̄ > 0) we refer to the remarks at
the end of Paragraph 5.5.B, which are also valid here.

C. The incomplete-market case, unconstrained problem.
We now turn our attention to the incomplete market of Paragraph A, and we first
consider the unconstrained problem. For simplicity, we assume γ < 0 (the case
γ = 0 is the case of logarithmic utility, and it is well known that in this case
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the optimal portfolio is given by the generalized forms of the optimal relative risk
loadings of the complete-market case, see e.g. Karatzas et al. (1991)).

It turns out that the result obtained in the extended Vasicek model does not
carry over to the extended Cox-Ingersoll-Ross model. In other words, the general-
ized forms of the optimal relative risk loadings of the complete-market case are (in
general) suboptimal in the incomplete-market case.

We shall now construct a method for obtaining an optimal portfolio process,
based on ideas from discrete-stage dynamic programming. Thus, we construct
optimal sub-portfolios (i.e., portfolios for each sub-period) such that the portfolio
obtained by concatenating them is optimal. With a slight abuse of notation, the
sets A and A′ will be used to characterize sub-portfolios in an obvious way.

Let us begin by considering the situation at time Tn, i.e., at the beginning of
the last sub-period. Mathematically, we work under the conditional probability,
given the σ-algebra F (S0,S1,S2)′(Tn). To ease the notation we denote F (S0 ,S1,S2)′(Ti)
by FS

i , i = 1, . . . , n, in this paragraph. As viewed from time Tn, the “remaining
market” of the sub-period [Tn, T ] is complete, and we can therefore use the general
methodology and results of Section 5.4 to determine the optimal strategy in [Tn, T ].
The state price density process of this sub-period, which we denote by H(Tn, ·) =
(H(Tn, ·))t∈[Tn ,T ], is given by

H(Tn, t) =
H(t)

H(Tn)
, Tn ≤ t ≤ T,

where

H(t) = S−1
0 (t)Zr(t)Zs(t), 0 ≤ t ≤ T.

We have H(Tn, Tn) ≡ 1, and

H(Tn, t) = e−
∫ t

Tn
r(s) ds exp

(
−
∫ t

Tn

ξ(Tn)
√
r(s) dWr(s) −

1

2

∫ t

Tn

ξ2(Tn)r(s) ds

)

× exp

(
−λs(Ws(t) −Ws(Tn)) − λ2

s

2
(t− Tn)

)
, Tn < t ≤ T.

From the analysis of Paragraph 5.4.B it follows that there exists an optimal portfolio
π̂ ∈ A′ (for the sub-period), and the corresponding optimal terminal wealth is given
by

X π̂(T ) = (H(Tn, T )Y(Tn, X(Tn)))1/(γ−1), (6.14)

where X(Tn) is, of course, the wealth at time Tn, and Y(Tn, ·) : (0,∞) → (0,∞) is
given by

Y(Tn, x) = xγ−1
[
E
(
H(Tn, T )γ/(γ−1)

∣∣∣FS
n

)]1−γ
, 0 < x <∞.

The optimal portfolio in [Tn, T ] is of course given by the relative risk loadings
(6.12)-(6.13), with ξ(Tn) in the place of ξ.
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Now, inserting the expression for Y(Tn, ·) in (6.14) and taking the conditional
expected utility yields

E
(
U(X π̂(T ))

∣∣∣FS
n

)
=
[
E
(
H(Tn, T )γ/(γ−1)

∣∣∣FS
n

)]1−γ
X(Tn)γ/γ. (6.15)

The value function at time Tn therefore has the form

V (Tn, x) = Y (Tn)xγ/γ, x > 0,

where

Y (Tn) =
[
E
(
H(Tn, T )γ/(γ−1)

∣∣∣FS
n

)]1−γ
.

Now, consider the situation at time Tn−1. By the dynamic programming principle
we have

V (Tn−1, x) = sup
π∈A′

E
(
V (Tn, X

π(Tn)) | FS
n−1

)

= sup
π∈A′

E
(
Y (Tn)(Xπ(Tn))γ/γ | FS

n−1

)
,

where the supremum is taken over all admissible strategies for the sub-period
[Tn−1, Tn], financed by x. A portfolio process for which the supremum is achieved
is optimal. We shall now show how the methodology of Section 5.4, slightly gener-
alized, can be used to obtain an optimal portfolio process.

First, we note, as above, that, when viewed from time Tn−1, the market of the
sub-period [Tn−1, Tn] is complete (as long as only FS(Tn−)-measurable contingent
claims are allowed), with state price density process H(Tn−1, ·) given by

H(Tn−1, t) =
H(t)

H(Tn−1)
, Tn−1 ≤ t ≤ T,

where H is as above.
Now, if we set

Y (Tn−) = E
(
Y (Tn) | FS(Tn−)

)
,

then it suffices to find an optimal portfolio process π̂ ∈ A′ for the sub-problem of
maximizing the (conditional) expected value of Y (Tn−)(Xπ(Tn))γ/γ (rather than
Y (Tn)(Xπ(Tn))γ/γ); in other words, if

E
(
Y (Tn−)(X π̂(Tn))γ/γ

∣∣∣FS
n−1

)
≥ E

(
Y (Tn−)(Xπ(Tn))γ/γ | FS

n−1

)
, ∀π ∈ A′,

then also

E
(
Y (Tn)(X π̂(Tn))γ/γ

∣∣∣FS
n−1

)
≥ E

(
Y (Tn)(Xπ(Tn))γ/γ | FS

n−1

)
, ∀π ∈ A′.

This follows from the identity

E
(
Y (Tn)(Xπ(Tn))γ/γ | FS

n−1

)
= E

(
E
(
Y (Tn)(Xπ(Tn))γ/γ | FS(Tn−)

) ∣∣FS
n−1

)

= E
(
Y (Tn−)(Xπ(Tn))γ/γ | FS

n−1

)
,
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which holds for every π ∈ A′.

Note that Y (Tn) is in general not FS(Tn−)-measurable, because ξ(Tn) is FS
n -

measurable but in general not FS(Tn−)-measurable. In contrast we have that
Y (Tn−) is FS(Tn−)-measurable by construction.

We thus consider the sub-problem of maximizing the (conditional) expected
value of Y (Tn−)(Xπ(Tn))γ/γ, given FS

n−1. This corresponds to the complete-
market problem of Section 5.4 with the utility function U(·) replaced by ΓU(·)
for some strictly positive FS(T )-measurable random variable Γ. The generaliza-
tion of the methodology needed to allow for such a factor is straightforward (note,
however, that it is crucial that it is Y (Tn−), and not Y (Tn), that enters as a factor
in the maximization problem in order for the generalization to work).

Therefore, there is an optimal portfolio process π̂ ∈ A′, and after some tedious
calculations it can be shown that the corresponding optimal time Tn wealth has
the form

X π̂(Tn) = X π̂(Tn−1)L(Tn),

where L(Tn) is a certain strictly positive FS(Tn−)-measurable random variable.
Thus, the value function at time Tn−1 has the form

V (Tn−1, x) = Y (Tn−1)x
γ/γ, x > 0,

where

Y (Tn−1) = E
(
L(Tn)γ | FS

n−1

)
.

The value function at time Tn−1 thus has the same form as at time Tn, so by reusing
this argument for each sub-period one can obtain an optimal portfolio process.

We have thus outlined a method by which an optimal portfolio process can be
obtained (in principle, at least). In order to obtain the optimal portfolio explicitly
one would have to solve each of the sub-period problems recursively. We shall not
pursue this here (we could, without much difficulty, have gone a bit further so as
to characterize the optimal relative risk loadings in an abstract form in terms of
certain martingale representations, but this would not in itself be of much benefit).
It is clear, though, that the optimal portfolio in general will depend on how the
parameter process ξ is specified.

D. The incomplete-market case, general problem.
As in the Vasicek case (see Paragraph 5.5.D), the general problem is more difficult
to handle because of the terminal wealth constraint, and apart from the following
simple observations we do not treat it here.

Once again, the contingent claim given by the constant x̄ is unattainable. How-
ever, super-replicating strategies may exist in general in this case, i.e., without
particular assumptions about λr: If x̄ ≤ x, then the portfolio process given by
π1 ≡ π2 ≡ 0 is super-replicating and belongs to A′, since r(t) > 0, ∀t ∈ [0, T ], a.s.
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5.7 Conclusion

We have shown that the optimal portfolio of an investor with a CRRA (constant
relative risk aversion) utility function in a fairly general extended and incomplete
Vasicek market (with partial information) is given by the same relative risk loadings
as in the complete-market case (except for the fact that the market price of interest
risk parameter has to be updated in the incomplete-market case).

This result does not carry over to the extended Cox-Ingersoll-Ross market.
There, the investor takes the future uncertainty into account in a somewhat more
complex manner.

We have not obtained explicit results in the general cases with terminal wealth
constraints, so this is a subject for future research. However, we have demonstrated
that super-replicating strategies may exist, so that it is possible to obey a long-term
guarantee in a market without long-term bonds.



Appendix A

Some Utility Theory

Motivated by the fact that in most (if not all) financial optimization problems,
the considered objective plays a crucial role for the solution (see the discussion
in Section 2.10), we offer in this appendix an account of some relevant aspects of
utility theory, which forms the basis for the objectives considered in this thesis (as
well as in most of the financial literature). The main purpose is to bring forward
the logical foundations for using the so-called expected utility maxim (explained
below). Apart from this we broach a few other important aspects and provide
some comments on various issues that are often neglected in the literature.

The appendix may enlighten the reader with an actuarial or mathematical back-
ground, who may be only vaguely familiar with utility theory. However, for the
reader who is well informed on the topic (such as an economist), most or all of
the material here may be well known. We make absolutely no attempt to cover all
relevant aspects; nor do we mention all the relevant literature (and we apologize
for any obviously relevant references that have been omitted).

A.1 The expected utility maxim: Basics

Utility theory has been a topic of much debate in the economic literature. Basically,
it forms a part of the general theory of (rational) decision making (decision theory),
but in order to ease the presentation we shall not discuss the topic from the most
general perspective.

We consider, for simplicity, an (economic) agent (e.g., an individual or an in-
surance company), who faces a set of different alternatives, each of which has a
specified, but possibly random, effect on the wealth of the individual. An obvious
example is that of an investor who invests in a financial market and can choose
between different investment strategies. Other examples are those of an individual,
who is to decide whether or not he wants to buy a lottery ticket, or whether or not
he wants to buy insurance coverage against some risk.

To formalize the problem, we denote the agent’s wealth (prior to making his
decision) by W , and we denote by P the set of alternatives. Each alternative is

165
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formalized by a probability distribution P on (R,B(R)), which is the distribution of
the agent’s resulting (random) wealth corresponding to the alternative in question.
It is assumed that the probability distribution P corresponding to each alternative
is known.

In the abovementioned investment example each P ∈ P could denote the distri-
bution of the wealth at some fixed time horizon T corresponding to an admissible
investment strategy. In the insurance example there could be only two alterna-
tives, i.e., P = {P1,P2}, with P1 given by P1 ({W − π}) = 1, corresponding to
the alternative where the insurance was purchased at the premium π, yielding the
wealth W − π with certainty, and P2 given by the distribution of W − Y , with
Y representing the total loss incurred, corresponding to the alternative without
insurance.

Of course, the assumed probability distributions of the various alternatives play
an important role. It should be mentioned that they need not be objective (univer-
sally agreed-upon); rather, they represent the agent’s own probability assessments.
In either case the are taken to be given, so it is assumed that, e.g., any necessary
statistical estimations have been carried out.

Remark A.1.1 Witout loss of generality, one could work with random variables
(defined on some underlying probability space) instead of probability distributions.
However, since the distribution of each alternative is all that matters for the agent,
we work with distributions, as in most of the literature on utility theory.

Now, the expected utility maxim or hypothesis basically states that the agent
should choose the alternative with the greatest expected utility according to some
(measurable) utility function u : R → [−∞,∞) assigning a numerical value of util-
ity to each possible outcome under consideration (the assumed range of u, [−∞,∞),
will be discussed below). In other words, the agent should act so as to maximize

EP (u(X)) =

∫

R

u(x) dP(x) (1.1)

over all P ∈ P. Here, X is simply the random variable given as the identity function
on (R,B(R)). It is tacitly assumed that the expectation is well defined for all P ∈ P;
we discuss this further below.

We shall discuss the expected utility maxim at some length in Section A.4 below.
Here we just provide a few comments. The agent’s utility function represents his
general preferences concerning his wealth and the risks associated with a set of
alternatives. Nothing more, nothing less. One should be careful not to overinterpret
the utility function and take it to be, e.g., a measure of “happiness”, which is
somewhat meaningless.
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A.2 Definition and basic properties of utility functions

In this section we shall, as is the usual approach to optimization problems, take
the expected utility maxim for granted. We provide a fairly general definition of
utility functions and discuss a few basic properties.

Definition A.2.1 A utility function is a nondecreasing and concave function u :
R → [−∞,∞) with a nonempty proper domain, i.e.,

dom(u) := {x ∈ R : u(x) > −∞} 6= ∅.

The condition that a utility function must be nondecreasing is due to the ob-
vious assumption that the agent prefers “more money” to “less money”. The
concavity condition is less obvious (and has indeed been debated in the literature,
see, e.g. Machina (1982) and the references therein); an interpretation is that the
wealthier the agent is, the smaller is his marginal utility, which is fairly plausible.
It also implies that the agent is risk averse, i.e., prefers “less risk” to “more risk”,
everything else being equal. It should be noted that these properties are not im-
plied by the expected utility maxim, though. Thus, from a mathematical point of
view, nothing prevents the use of a “pseudo-utility” function without the properties
of Definition A.2.1, but this may lead to very counterintuitive results. Apart from
a few more comments below this will not be discussed further.

For the remaning part of this section, let u be a given utility function. We
impose in this section the technical assumption that

∫

{x∈R:u(x)≥0}
u(x) dP(x) <∞, ∀P ∈ P. (2.1)

Then
∫

R
u(x) dP(x) is well defined as a value in [−∞,∞).

We set x0 = inf (dom(u)) (with inf R = −∞). Then x0 constitutes a lower
bound on feasible values of x in the sense that

u(x) = −∞, ∀x < x0. (2.2)

This means that, with the terminology of Section A.1, any alternative P for which
there is even the slightest chance of ending up with a terminal wealth below x0,
i.e., P((−∞, x0)) > 0, has an expected utility of −∞ and is therefore at least as
“bad” as any other alternative.

If x0 = −∞, then dom(u) = R. Otherwise, we have

dom(u) =

{
(x0,∞) if u(x0) = −∞,
[x0,∞) if u(x0) > −∞,

By concavity, u is continuous on (dom(u))◦, the interior of dom(u).
We have included the element −∞ in the assumed range of u. This allows for

a natural definition of u on the entire set R of real numbers by (2.2), also if u is
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“originally” defined only on dom(u). It is also often quite convenient, in particular
in an optimal investment problem with an explicit constraint on the terminal wealth
that it must exceed som fixed level x0 almost surely; this can be turned into an
implicit constraint simply by setting u(x) = −∞ for x < x0.

If ũ is another utility function, then u and ũ are said to be equivalent if they
yield the same preference system according to the expected utility maxim (we give
precise meaning to the notion of a “preference system” in Section A.4 below). This
is the case if and, in general, only if they are (positive) affine transformations of
each other, which means that there exist a > 0, b ∈ R such that ũ = au + b.
In particular this also shows that the particular values of a utility function are
completely irrelevant; only the differences between the values at different points
matter.

If u is strictly increasing and belongs to C2(dom(u)◦), we define the (absolute)
risk aversion function a : dom(u)◦ → R by

a(x) = −u
′′(x)

u′(x)
, x ∈ dom(u)◦.

The absolute risk aversion function is motivated and studied in Pratt (1964) (which,
incidentally, is largely based on “actuarial” arguments). This function is positive
and measures the degree of risk aversion (locally at x). If u is only piece-wise twice
continuously differentiable we can of course define a in a piece-wise fashion.

The definition of a does not rely on the concavity of a utility function, and one
could therefore define a risk aversion function ã corresponding to any increasing
“pseudo-utility” function ũ. An agent with a preference structure given by ũ would
then be called risk averse, risk loving or risk neutral (locally at x), according
to whether ã(x) were strictly positive, strictly negative or 0, respectively. The
requirement that a utility function u must be concave is equivalent to requiring
that the corresponding risk aversion function must be positive.

We note that the risk aversion functions corresponding to equivalent utility
functions are identical.

A certainty equivalent of an alternative P is an alternative P̃ ∈ P for which the
outcome is known with certainty, i.e., P̃ is degenerate with P̃({x0}) = 1 for some
x0 ∈ [−∞,∞), and

∫

R

u(x) dP̃(x) = u(x0) =

∫

R

u(x) dP(x),

meaning that the agent is indifferent as to a choice between P and P̃. Note that a
certainty equivalent need not exist, and need not be unique if it exists.

A.3 HARA utility functions

In this section we consider a widely used parameterized class of utility functions
known as HARA (hyperbolic absolute risk aversion) utility functions. This class
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consists of utility functions in C2(dom(u)◦) for which the corresponding risk aver-
sion function a is strictly positive and hyperbolic (on its domain of defintion), i.e.,
takes the form

a(x) =
1

cx+ d
, cx+ d > 0. (3.1)

If d = 0 (and c > 0), one speaks of constant relative risk aversion (CRRA) or
isoelastic utility, because in this case a(x)x is constant on (0,∞) (see Pratt (1964)
for at motivation of the notion of relative risk aversion). If c = 0 we speak of con-
stant absolute risk aversion (CARA) utility, because in this case a is constant (the
abbreviation “CARA” does not appear to be standard in the literature, though).
From (3.1) it can be deduced that, up to positive affine transformations, HARA
utility functions have either of the forms

u(x) =





−e−x/d, if c = 0, d > 0, (x ∈ R),
log(x+ d), if c = 1, d ∈ R, (x > −d),
c (x+d/c)1−

1
c −1

1− 1
c

, if c ∈ R \ {0, 1}, d ∈ R, (cx+ d > 0),

with u(x) = −∞ for cx + d < 0 and u(−d/c) = limx↘−d/c u(x) in the case c < 0;
u(x) = u(−c/d) = −c2/(c− 1) for cx+ d < 0 in the case c > 0.

For c ∈ (0,∞), d ∈ R, we have dom(u) = (−d/c,∞) if 0 < c ≤ 1 and dom(u) =
[−d/c,∞) if c > 1, and the risk aversion function a is defined (in both cases) on
(−d/c,∞). The CRRA utility functions correspond to the case d = 0, and they are
often referred to as power utility functions (if c 6= 1) or logarithmic utility functions
(if c = 1). The CRRA coefficient is given by 1/c.

The CARA utility functions correspond to the case c = 0, d > 0, and they are
usually referred to as exponential utility functions. In this case dom(u) = R, and
the risk aversion function a is defined on all of R.

The quadratic utility functions correspond to the case c = −1, d ∈ R. The
utility functions corresponding to the case c ∈ (−∞, 0) \ {−1} are rarely used. In
general, for c < 0, we have dom(u) = R, and the risk aversion function a is only
defined on (−∞,−d/c). Note that u is constant on [−d/c,∞), which means that
−d/c represents a satiation level, i.e., a level where the maximum utility level is
attained. In particular, for c = −1, u is only quadratic on (−∞, d/c].

Finally we note that the expression for c ∈ R\{0, 1} can obviously be simplified,
but it is convenient in the stated form because

lim
c→1

c
(x+ d/c)1−

1
c − 1

1 − 1
c

= log(x+ d).

A.4 The expected utility maxim: Discussion

The expected utility maxim is widely accepted by most economists (but not all,
as discussed below) and widely used in portfolio optimization problems as well
in other areas of finance. As stated in Section A.1 it is by no means objectively
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obvious that it is a “correct” optimization objective, though. In particular, as
already mentioned, it does not in itself imply rational behaviour.

However, the expected utility maxim enjoys substantial support from the fact
that it can, at least under certain regularity conditions, be deduced from a fairly
simple set of axioms concerning the agent’s preferences among the alternatives
in P, as we shall now explain. The classical axiomatic approach considered here
appears in several versions (which seem to differ only in minor respects, though) in
the economic literature, see e.g. von Neumann and Morgenstern (1947), Samuelson
(1952), Herstein and Milnor (1953), Savage (1954), Markowitz (1959), and their
references. We adopt the version of Herstein and Milnor (1953).

To state the axioms we first assume that P is closed with respect to “finite
mixtures”, i.e., for any P1,P2 ∈ P and any α ∈ [0, 1], the mixture distribution
αP1 +(1−α)P2 is also in P. We introduce an order relation � on P that represents
the agent’s preferences. Thus, for P1,P2 ∈ P, P1 � P2 means that the agent
considers P1 at least as “good” as P2. Note that, by the definition of an order
relation, we have P � P, ∀P ∈ P (reflectivity), and if P1 � P2 and P2 � P3, then
P1 � P3, ∀P1,P2,P3 ∈ P (transitivity). The axioms can now be stated as follows:

I The set (P,�) is totally ordered, i.e., for any two alternatives P1,P2 ∈ P we
have either P1 � P2, P2 � P1, or both P1 � P2 and P2 � P1. In the latter
case we write P1 ∼ P2.

II For any P1,P2,P3 ∈ P, the sets {α ∈ [0, 1] : αP1 + (1 − α)P2 � P3} and
{α ∈ [0, 1] : P3 � αP1 + (1 − α)P2} are closed.

III For any P1,P2,P3 ∈ P such that P1 ∼ P2 we have 1
2P1 + 1

2P3 ∼ 1
2P2 + 1

2P3.

Some comments are in order. Axiom I may be difficult to accept at first glance
because of the seemingly implied practical problem of actually having the agent
specify his preferences among all alternatives. However, it can be argued that this
is not a serious problem: The important thing is the assumption that the agent
would be able to state his preferences among any two (well-behaved) alternatives if
he were confronted with them, which is fairly plausible. It would indeed constitute
quite a problem if a preference system was to be fully determined in such a way in
practice, but this is somewhat irrelevant.

As we shall see below, a much more serious problem is the assumption that the
agent has preferences concerning any pair of alternatives, due to which the axiom
is called the completeness axiom. It may very well be the case that there exist
alternatives, which are not well behaved (in a sense that we specify below) and
thus cannot be compared to others.

On a more technical note, (P,�) is not necessarily well ordered, i.e., if P1 ∼ P2,
then this does not imply that P1 = P2. However, if each P ∈ P is identified with
its equivalence class {P′ ∈ P : P ∼ P′}, then the set is well ordered.

Axiom II is equivalent to assuming that for any P1,P2,P3 ∈ P and any conver-
gent sequence (αn)n≥1 ∈ [0, 1]N we have that if αnP1 + (1 − αn)P2 � P3, ∀n ≥ 1,
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then αP1 + (1 − α)P2 � P3, where, of course, α = limn→∞ αn. Thus, it basi-
cally states that the agent’s preference ordering is continuous with respect to the
mixing distribution, and it is known as the continuity axiom. It might seem a bit
unmotivated, but it is necessary for the result that is reported below.

Axiom III can be interpreted as a statement that if the agent is indifferent
as to the choice between P1 and P2, then he is also indifferent as to the choice
between the alternative consisting in a fifty-fifty chance of either P1 or P3 and
the alternative consisting in a fifty-fifty chance of either P2 or P3, regardless of
his preferences regarding P3. It is known as the independence axiom, because the
choice between the two fifty-fifty alternatives is independent of P3.

These axioms are discussed further below. Before we continue with the deriva-
tion of the expected utility maxim we interpose the remark that the axioms are
necessarily obeyed if the expected utility maxim is taken as given (and the (as-
sumed) utility function is integrable with respect to every P ∈ P). That is, if � is
defined by

P1 � P2 ⇔
∫

R

u(x) dP1 ≥
∫

R

u(x) dP2,

then the axioms are satisfied.
Now, Herstein and Milnor (1953) show that the axioms imply the existence of

a functional U : P → R such that for any P1,P2 ∈ P and α ∈ [0, 1] we have

P1 � P2 ⇔ U(P1) ≥ U(P2), (4.1)

and
U(αP1 + (1 − α)P2) = αU(P1) + (1 − α)U(P2). (4.2)

Moreover, U is unique up to a positive affine transformation, i.e., if Ũ : P → R is
another functional with these properties, then there exist a > 0, b ∈ R, such that

Ũ ≡ aU + b.

The functional U thus represents the preference ordering numerically. We shall
show below that, under certain regularity assumptions, U can be (uniquely) repre-
sented by a (measurable) function u : R → R in the sense that

U(P) = EP (u(X)) =

∫

R

u(x) dP(x), ∀P ∈ P, (4.3)

(where it is implicitly understood that u is integrable with respect to every P ∈ P).
In combination with (4.1) this leads us to the conclusion that the axioms imply
the validity of the expected utility maxim (under the regularity assumptions), cf.
(1.1).

Now, for each P ∈ P we let FP : R → R denote the corresponding distribution
function. We can and shall consider U as a functional on the set of distribution
functions

F := {FP : P ∈ P}.
We need the following lemma.
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Lemma A.4.1 Let U : F → R be a functional satisfying (4.1) and (4.2) with FPi

in the place of Pi, i = 1, 2. If U is bounded, then there exists a unique bounded
finitely additive set function ν : B(R) → R such that

U(F ) =

∫

R

F (x) dν(x), ∀F ∈ F. (4.4)

Remark A.4.2 Since ν is not necessarily a measure on B(R), the integral on the
right-hand side of (4.4) is not defined in the usual sense. We refer to Dunford and
Schwartz (1958) for the definition of the integral and for other “simple” properties
of the integral and bounded finitely additive set functions used below.

Proof. Consider the set

F
∗ := {β1FP1 − β2FP2 : P1,P2 ∈ P, β1, β2 ≥ 0}.

Clearly, F ⊆ F
∗, and we can obviously extend U to a linear functional U ∗ : F

∗ → R

such that U ∗|F = U by setting

U∗(F ) = β1U(FP1) − β2U(FP2), F ∈ F
∗, (4.5)

where F = β1FP1 − β2FP2 is the minimal decomposition of F in this form. It is
straightforward to verify that F

∗ is a linear space, and we can equip it with the
supremum norm, which is given by

‖F‖ = max(β1, β2), F ∈ F
∗.

It is then easily seen that

sup
F∈F∗:‖F‖≤1

|U∗(F )| = sup
F∈F:‖F‖≤1

|U(F )| = sup
F∈F

|U(F )|,

and since U is bounded (by assumption) this shows that U ∗ is bounded as a linear
functional. Since F is a subspace of the linear space B(R,B(R)) of measurable,
bounded functions on (R,B(R)) with values in R, it follows from the Hahn-Banach
theorem (Dunford and Schwartz (1958), Theorem II.3.10) that U ∗ can be (further)
extended to a bounded linear functional U ∗∗ : B(R,B(R)) → R such that U ∗∗|F∗ =
U∗.

Now, according to Dunford and Schwartz (1958), Theorem IV.5.1, there is a
unique bounded finitely additive set function ν : B(R) → R satisfying (4.4) for
every F ∈ B(R,B(R)). Since F ⊆ B(R,B(R)), the assertion follows. 2

The set function ν has bounded variation, and it can therefore be decomposed
as

ν = ν+ − ν−,

where ν+, ν− : B(R) → [0,∞) are bounded finitely additive nonnegative set func-
tions. The corresponding functions G+, G− : R → [0,∞), defined by

G±(x) = ν±((−∞, x]), x ∈ R,
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are increasing and therefore have left-hand limits at each x ∈ R, denoted by
G±(x−). Note that G± is right-continuous if and only if ν± is countably addi-
tive.

Now, if all distibutions in P have finite support (a much milder assumption from
a practical point of view than from a theoretical point of view), then each F ∈ F

is simple, and it is easily shown that

U(F ) = a+

∫

R

(G−(x−) −G+(x−)) dF (x), ∀F ∈ F,

where a = G+(∞) − G−(∞) = ν(R). This identity also holds in general if ν is
countably additive, which can be verified by use of the product rule. Thus, under
either of these conditions we have

U(F ) =

∫

R

u(x) dF (x), ∀F ∈ F,

i.e., the expected utility maxim is valid; we have the representation (4.3) with

u(x) = a+G−(x−) −G+(x−), x ∈ R.

In general, however, ν is only finitely additive, and when P contains distributions
that do not have finite support, a representation of U of the form (4.3) may not
exist. Moreover, we had to impose the somewhat strict assumption in Lemma A.4.1
that U was bounded. These imperfections indicate that the axiomatic approach
(at least the one taken here) is not flawless. However, Fishburn (1976) and Wakker
(1993) have studied the case where U is not bounded (but still finite) and shown
that the expected utility maxim remains valid under certain additional conditions
(or axioms). We shall not go into more detail on the issue of axiomatic deduction
of the expected utility maxim, though, as it is considered to be beyond the scope
and purpose of this appendix.

We shall, however, comment on the issue of boundedness under the assumption
that the expected utility maxim is taken as given. In this case one must be careful
when working with unbounded utility functions such as the HARA ones, which
are all unbounded. If a utility function is unbounded from below (resp. above),
then an “infinitely bad” (resp. “infinitely good”) probability distribution P with∫

R
u(x) dP(x) = −∞ (resp.

∫
R
u(x) dP(x) = ∞) will always exist. Naturally, all

“infinitely bad” distributions should be excluded from the set of alternatives P, but
in many cases this must be done explicitly, i.e., they need not be excluded auto-
matically by the problem setup. Similarly, “infinitely good” distributions should
be excluded; a problem setup that allows of “infinitely good” alternatives cannot
be meaningful (Samuelson (1977) discusses this, as well as other aspects). Again
we note that this must be done explicitly in many cases (Korn and Kraft (2004)
point out examples from the financial literature where these issues have not been
taken care of, and wrong conclusions have been drawn). We also note that if “in-
finitely good” and “infinitely bad” were not excluded from P, then the expected
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utility maxim would no longer necessarily obey the axioms, as Axiom II would be
violated in general. Finally, distributions for which both the integrals of the posi-
tive and negative parts of u are infinite should also be excluded, as they cannot be
compared to any other alternative by the expected utility criterion.

The independence axiom (Axiom III) has been the subject of many discussions
in the literature (for an early discussion, see Wold et al. (1952), Manne and Charnes
(1952), Samuelson (1952), and Malinvaud (1952)). The main (modern) argument
against it seems to be that it does not conform with observed behaviour and, in
particular, experimental studies, where a large number of individuals have been
asked to specify their preferences among certain (hypothetical) alternatives. We
refer to Machina (1982) for an elaboration of this and for an axiomatic approach
to utility without the independence axiom. However, this argument can (to some
extent, at least) be rejected by the presumption that such observations are mainly
due to the fact that individuals with a very limited knowledge of probability theory
cannot be expected to make rational decisions even in a fairly simple setup, because
they do not have the insight to analyze the setup sufficiently. Whatever stand one
takes, the axiom can certainly be considered rational, and we shall not discuss it
further.

An argument against utility theory, which is sometimes put forth, is that the
notion of a utility function is too abstract and theoretical, and that it is very
difficult, if not impossible, to state one’s preferences in terms of some specific
utility function. However, although this may be true in some degree, it hardly
constitutes an argument against the expected utility maxim as such, nor against
the use of utility theory as a theoretical way to study rational behaviour and
determine theoretically optimal strategies.

Other approaches to decision making under uncertainty do exist, of course.
In particular, in the theory of optimal investment, some authors have advocated
that in multi-period problems one should employ the strategy that maximizes the
expected geometric mean rate of return, at least when the number of periods, say
n, is large, and the returns in the periods are i.i.d. The argument is based on the
fact that as n→ ∞, the geometric mean rate of return obtained with this strategy
has an almost sure limit (by the law of large numbers), which is larger than the
geometric mean rate of return obtained with any other strategy. However, this
only holds in the limit. If the number of periods is finite, which is always the case
in practice, the situation changes dramatically. Although the probability, that the
abovementioned strategy will lead to a larger geometric mean return, and hence
a larger terminal wealth, than any other strategy, is close to 1 for large n, the
criterion totally neglects the outcomes in the event that it does not, and they may
lead to extremely losses. It should be noted that maximizing the expected mean
rate of return corresponds to maximizing the expected utility with the logarithmic
utility function, and as such does not violate the expected utility maxim, but this
is a consequence of pure mathematics, which should not disturb the discussion of
principles. For an interesting an easily accessible discussion of the two approaches
we refer to Ophir (1978, 1979), Latané (1978, 1979), and Samuelson (1979).
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We end this section with a few additional remarks. To be able to state the
axioms we assumed that P was closed with respect to finite mixtures. As such,
this is a rather strong assumption, which is not satisfied by most natural sets of
alternatives (of course, finite mixtures can be constructed (or approximated) in
practice if it is possible to conduct an independent random experiment, which
has a certain outcome with a given probability α ∈ (0, 1), but this is somewhat
irrelevant). However, it is not necessary. The crucial assumption is that the order
relation is defined for any two distributions in the set of convex linear combinations
of distributions in P (which is the smallest set of distributions containing P that is
closed with respect to finite mixtures). Thus, the set of alternatives need not be
closed with respect to finite mixtures; it is sufficient that the agent has preferences
as to any pair of (hypothetical) mixture of alternatives.

Finally, the notion of a certainty equivalent (cf. Section A.2) does not rest on
the validity of the expected utility maxim and can be defined in the general case
(we do not elaborate on this, though).

A.5 Proper risk aversion

In this section we briefly discuss a concept called proper risk aversion — defined
and studied in Pratt and Zeckhauser (1987) — mainly because it has some features
of actuarial interest. As in Pratt and Zeckhauser (1987) we work here with random
variables rather than probability distributions, as it is more convenient, and we
use � as an order relation between random variables in an obvious sense. All
expectations appearing below are implicitly assumed to be well defined.

Consider an agent with the utility function u (this implicitly means that he
obeys the expected utility maxim). Let W denote the agent’s wealth, which may
be random, and let X and Y be independent random variables, which can be inter-
preted as the (random) outcomes of risky prospects. It is assumed that X and Y are
independent of W . We have in mind the following particular interpretation: The
agent is an insurance company, X and Y represent the net profits corresponding to
two particular insurance policies covering independent risks, and W represents the
company’s wealth (i.e., equity or reserve, depending on the terminology) stemming
from all other economic activities of the company (over some specific time period).

The agent’s utility function u is said to be proper if

W �W +X + Y whenever W �W +X and W �W + Y. (5.1)

The interpretation of properness is that if the agent prefers not to take either of
the risks X or Y on their own (as opposed to doing nothing), then he also prefers
not to take both risks. In the insurance interpretation, if the company prefers not
to issue either of the policies on their own, then it also prefers not to issue both of
them. It is immediately seen that properness implies similar preference relations
in the presence of any finite number of independent prospects X1, . . . , Xn, i.e., if u
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is proper, then

W �W +
n∑

i=1

Xi whenever W �W +Xi, ∀i = 1, . . . , n. (5.2)

Thus, if the insurance company has a proper utility function, then a diversification
argument alone is not sufficient to ensure that having a large portfolio of policies
increases the company’s expected utility. Each individual policy must in itself
represent an increase in expected utility, even in the (hypothetical) case where it
is the company’s only policy.

Moreover, if u is proper, then (5.1) (resp. (5.2)) also hold if X and Y (resp.
X1, . . . , Xn) are positively correlated (but still jointly independent of W ). This is
particularly relevant for an insurance company, where many policies are positively
correlated because they are affected by the same systematic background risks.

It seems fairly reasonable for an individual to have a proper utility function.
However, in the case of a typical insurance company it could be argued that it is the
effect of diversification (having many similar policies) that makes it desirable for the
company to issue policies at the premiums they charge. In other words, it could be
argued that if the company had to choose between (A) not having any policies and
(B) having only a single policy in its portfolio at a given (competitive) premium,
then it might choose (A) (most individuals certainly would choose not to take on
an insurance obligation for a competitive premium), whereas if it had to choose
between (A) and (B’) having a large portfolio of similar, independent policies at
the same premium rate as in (B) above, then it might prefer (B’). Indeed, this is
ideally the purpose of an insurance company: To insure individuals against risks
they do not want by pooling a large number of independent risks so as to make it
profitable. If this argument is deemed valid, then the insurance company cannot
have a proper utility function.

It adds considerable interest to the concept of proper risk aversion, in particular
in respect of the above discussion in relation to insurance, that all commonly used
parametric utility functions are proper. Indeed, Pratt and Zeckhauser (1987) show
that all exponential (CARA) and CRRA utility functions are proper, and it is
easily shown that this goes for all quadractic utility functions as well.

This raises some interesting questions. In particular, one might ask: Could it
be the case that the utility function of an insurance is not even concave? Trying to
provide a good answer to this question is way beyond the scope of this appendix,
so we leave it as an open question.
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Convex Analysis

In this appendix we give a brief account of some results from convex analysis,
which play an important role in mathematical finance, in particular in the so-called
martingale approach to optimal investment problems.

B.1 Convex analysis

Convex analysis is a mathematical subject concerned with optimization (i.e., mim-
imization) of complex functions (or functionals) under constraints. It forms a part
of the more general discipline of mathematical analysis known as nonlinear pro-
gramming, which deals with constrained optimization of general (not necessarily
convex) function(al)s. The theory of convex analysis is in many ways much nicer
than the general theory, and it is sufficient for our purposes. For the results quoted
here we refer to Holmes (1975) and Kreyszig (1978).

Let X be a Banach space (i.e., a complete, normed linear space) over the scalar
field R. Let X ′ and X∗ denote, respectively, its algebraic conjugate (dual) and
its (topological) conjugate (dual) space, that is, X ′ (X∗) is the space of linear
(linear and continuous) functionals or operators φ : X → R. (Note that in general,
linearity does not imply continuity, so X∗ is a proper subset of X ′. In fact, a linear
operator is continuous if and only if it is bounded (in the linear operator sense).
Furthermore, continuity at a single point is a sufficient (and of course necessary)
condition for continuity of a linear operator). Both X ′ and X∗ are linear spaces,
and X∗ is a Banach space with norm defined by ‖φ‖X∗ = supx∈X, ‖x‖X≤1 |φ(x)|
(this is actually the case even if X is not a Banach space but just a normed linear
space).

Now, let f : A→ R be a convex functional defined on a convex subset A ⊆ X,
i.e.,

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y), ∀x, y ∈ A, t ∈ [0, 1].

If A◦ 6= ∅ and f is locally bounded above on a neighbourhood of a point x ∈ A◦,
then f is continuous at every point in A◦. A subgradient of f at a point x ∈ A is
a linear operator φ ∈ X ′ such that φ(y − x) = φ(y) − φ(x) ≤ f(y) − f(x), ∀y ∈ A.

177
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The set of subgradients of f at x ∈ A is called the subdifferential and is denoted
by ∂f(x). Note that a subgradient is a generalization of a derivative or gradient: If
X = R

n and f is differentiable at x, then ∂f(x) = {∇f(x)}. If ∂f(x) 6= ∅ then f is
said to be subdifferentiable at x, and ∂f(x) is clearly seen to be convex. For x ∈ A
the set ∂f(x)∩X∗ of continuous subgradients is a convex set, which is non-empty
if x ∈ A◦ and f is continuous at x.

The directional derivative of f at x0 ∈ A◦ in the direction x ∈ X is

f ′(x0;x) = lim
t↘0

f(x0 + tx) − f(x0)

t
.

For any x0 the directional derivative exists for any x ∈ X and is a sublinear function
of x, i.e. f ′(x0;x + y) ≤ f ′(x0;x) + f ′(x0; y), x, y ∈ X. If f ′(x0;x) = −f ′(x0;−x)
for all x ∈ X, then f ′(x0; ·) is linear and is called the gradient of f at x0, and one
writes f ′(x0) = ∇f(x0).

The following result (Holmes (1975), Section 14D) establishes a relationship
between directional derivatives and subdifferentials.

Theorem B.1.1 If f is continuous at x0 ∈ A◦ then for every x ∈ X we have

f ′(x0;x) = max{ψ(x) : ψ ∈ ∂f(x0)},
−f ′(x0;−x) = min{ψ(x) : ψ ∈ ∂f(x0)}.

It is seen that if f has a gradient at x0 then ∂f(x0) = {∇f(x0)}.
Now, consider the convex optimization problem

min
x∈A

f(x),

for which we use the shorthand notation (A, f).
For x ∈ A we denote by F (x;A) the set of feasible directions of A at x as the

set of y ∈ X for which there exists δ > 0 such that x + ty ∈ A for 0 ≤ t < δ,
intuitively it is the set of directions in which we can move from x without leaving
A immediately. Then F (x;A) is a wedge, i.e. it is closed under multiplication by
non-negative scalars. We let F (x;A)∗ denote the continuous dual wedge, that is,
the wedge {φ ∈ X∗ |φ(y) ≥ 0, ∀y ∈ F (x;A)}.

We have (Holmes (1975), Section 14E)

Theorem B.1.2 If f is continuous at x̂ ∈ A then x̂ is a solution to (A, f) if and
only if

∂f(x̂) ∩ F (x̂;A)∗ 6= ∅.

The continuity assumption is only needed to prove necessity of the condition
(the “only if” part).

Now, suppose that g : X → R is convex and continuous and that A = {x ∈ X :
g(x) ≤ 0}. Let x̂ ∈ A be a candidate for a solution. If x̂ ∈ A◦ then F (x̂;A) = X
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and thus F (x̂;A)∗ = {0}, so x̂ is a solution if and only if 0 ∈ ∂f(x̂) (this conclusion
does not depend on the form of A). If x̂ is a boundary point, then g(x̂) = 0 by
continuity of g. Assume that {x ∈ X : g(x) < 0} 6= ∅ (Slater’s condition, which
is needed to show necessity, i.e. the “only if” parts in the conclusion that follows
below). It can then be shown that

F (x̂;A)∗ = (−∞, 0] ∂g(x̂),

i.e. F (x̂;A)∗ is the set of φ ∈ X∗ of the form φ = −λ̂ψ for some λ̂ ≥ 0 and
ψ ∈ ∂g(x̂). Thus, in this case x̂ is a solution if and only if there exist φ ∈ ∂f(x̂),
ψ ∈ ∂g(x̂) and a multiplier λ̂ ≥ 0 such that φ+ λ̂ψ = 0.

The overall conclusion is that x̂ (whether it is a boundary point or not) is a
solution to (A, f) if and only if there are subgradients φ ∈ ∂f(x̂), ψ ∈ ∂g(x̂) and a
multiplier λ̂ ≥ 0 such that φ+λ̂ψ = 0 and λ̂g(x̂) = 0. This can be generalized to the
case where A = {x ∈ X : gi(x) ≤ 0, i = 1, . . . , n} for convex, continuous functions
gi : X → R. Slater’s condition (which is still only needed to show the “only if”
parts below) is that {x ∈ X : gi(x) < 0, i = 1, . . . , n} 6= ∅. Then x̂ is a solution to
(A, f) if and only if there exist subgradients φ ∈ ∂f(x̂), ψi ∈ ∂gi(x̂) and multipliers
λ̂i ≥ 0 such that λ̂igi(x̂) = 0, i = 1, . . . , n and φ+

∑n
i=1 λ̂iψi = 0, or, equivalently,

if and only if there exist multipliers λ̂i ≥ 0 such that λ̂igi(x̂) = 0, i = 1, . . . , n, and
(x̂, λ̂) is a saddle point for the Lagrangian L : A× [0,∞)n → R given by

L(x, λ) = f(x) +

n∑

i=1

λigi(x), x ∈ A, λ ∈ [0,∞)n,

that is, for all (x, λ) ∈ A× [0,∞)n,

L(x̂, λ) ≤ L(x̂, λ̂) ≤ L(x, λ̂).

B.2 Some remarks on intuition

The results of the previous section are somewhat abstract, and we shall therefore
briefly provide some remarks to promote the intuitive understanding of the results.
To allow for a geometric illustration we consider the case where X = R

2, and both
f and g are differentiable (and convex). Then ∂f(x̂) = {∇f(x)} and ∂g(x̂) =
{∇g(x)} for every x ∈ R

2. We assume that A◦ 6= ∅, where A = {x ∈ X : g(x) ≤ 0}
(otherwise the problem is trivial). From the previous section we then have that
x̂ ∈ R

2 is a solution to the problem of minimizing f over the set A if and only if
x̂ ∈ A, and there exists a λ̂ ≥ 0 such that λ̂g(x̂) = 0 and

∇f(x̂) = −λ̂∇g(x̂). (2.1)

To see this inuitively, let us first note that there are two possibilities: Either x̂ is
also an unconstrained minimum, or it is an effectively constrained minimum. It is
well known that x̂ is an unconstrained minimum of f if and only if ∇f(x̂) = 0,
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where 0 is the zero vector in R
2, so in this case the condition is clearly necessary and

sufficient (and λ̂ = 0). If x̂ is an effectively constrained minimum, then ∇f(x̂) 6= 0,
and x̂ must be a boundary point of A. Then the geometric interpretation of (2.1)
is that the gradients of f and g point in opposite directions (in R

2). The gradients
of a differentiable function always points in the direction of its steepest slope from
the point in question. In particular, the gradient of g points “out of” A, and it
is orthogonal to the boundary of A at x̂. Thus, (2.1) says that at the point x̂ the
gradient of f must be orthogonal to the boundary of A and point “into” A. The
condition that it must point into A is clear, as it it simply means that f must be
increasing in the direction into A. The condition that it must be orthogonal to the
boundary of A is also natural: If the direction of the steepest slope of f were not
orthogonal to the boundary of A, then it would be possible to find a point along
the slope at which f were smaller, because it would have to be “going downhill”
from x̂ in one of the directions along the boundary.



Appendix C

Elliptical Distributions

In this appendix we summarize some results about elliptical distributions. All
definitions and results that appear below can be found in Fang et al. (1990).

C.1 Definition and properties

Definition C.1.1 A random vector X with values in R
n is said to have a spheri-

cally symmetric (or just spherical) distribution if

X
d
= OX

for any orthogonal n× n matrix O.

Theorem C.1.2 For a random vector X with values in R
n, the following state-

ments are equivalent:

(i) X has a spherical distribution.

(ii) The characteristic function of X, ψ : R
n → C, has the form

ψ(t1, . . . , tn) = φ(t21 + . . .+ t2n), (t1, . . . , tn) ∈ R
n,

for some function φ : R → C.

(iii) X has a distributional representation of the form

X
d
= RU,

where R and U are independent random variables with values in [0,∞) and
R

n, respectively, and U is uniformly distributed on the unit sphere {x ∈ R
n :

‖x‖ = 1}.

The representation X
d
= RU is of course unique in the sense that if X

d
= R̃Ũ is an-

other similar representation then R
d
= R̃. The function φ is called the characteristic

generator of the spherical distribution.
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Definition C.1.3 A random vector X with values in R
n is said to have an ellip-

tically symmetric (or just elliptical) distribution with parameters µ, Σ and φ, and
we write X ∼ ECn(µ,Σ, φ), if

X
d
= µ+AY,

where µ ∈ R
n, A is an n× k matrix such that AA′ = Σ and rank(Σ) = k, and Y

has a spherical distribution in R
k with characteristic function given by

(t1, . . . , tk) 7→ φ(t21 + . . .+ t2k), (t1, . . . , tk) ∈ R
k.

Note that the Σ, A, φ and Y in Definition C.1.3 are not unique. However, we have

Theorem C.1.4 If X ∼ ECn(µ,Σ, φ) and X ∼ ECn(µ̃, Σ̃, φ̃), then µ = µ̃. Fur-
thermore, if X is not degenerate, then there exists a constant c > 0 such that

Σ̃ = cΣ, φ̃(t) = φ(t/c), t ∈ R.

In particular, rank(Σ) is unique.

Theorem C.1.5 If X ∼ ECn(µ,Σ, φ), B is a k × n matrix, and ν ∈ R
k, then

ν +BX ∼ ECk(ν +Bµ,BΣB ′, φ).

Theorem C.1.6 Let X ∼ ECn(µ,Σ, φ) and assume that E
(
‖X‖2

)
<∞. Then

E (X) = µ, Var (X) = −2φ′(0)Σ.
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