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Preface

This thesis has been prepared in partial fulfillment of the requirements for the Ph.D.
degree at the Laboratory at Actuarial Mathematics, Institute of Mathematical Sciences,
University of Copenhagen, Denmark. The work has been carried out in the period from
November 2002 to October 2005 under the supervision of Professor Thomas Mikosch, Uni-
versity of Copenhagen, Associate Professor Mogens Steffensen, University of Copenhagen,
and Thomas Møller, PFA Pension (Assistant Professor at University of Copenhagen until
February 2003).

In the thesis each chapter is self-contained and can be read independently of the rest of
the thesis. This structure is chosen to ease the submission of parts of the thesis. The
independence has resulted in some notational discrepancies among the different chapters.

The present version differs from the original version submitted for the Ph.D. degree in
that a minor number of misprints have been corrected and some statements, in particular
in Chapter 8, have been clarified.
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Summary

This thesis is concerned with analyzing the risks faced by a life insurance company. In
general life insurance companies are exposed to a large number of financial and insurance
risks. Usually these risks are well understood, and models have been developed and stud-
ied extensively in the literature. However, some of the risks have received less attention
both in the literature and in practice. In this thesis we study the modelling of these risks
in detail. An important discipline for life insurance companies is to valuate their liabilities.
We apply methods from financial mathematics and in particular the principle of no arbi-
trage. This principle rests on the reasonable assumption that without any initial capital,
it is impossible to obtain a riskfree gain. In complete financial markets this principle leads
to unique prices for all possible contracts. However, since life insurance contracts are not
traded in the financial market, we study an incomplete market, and in this case the no ar-
bitrage principle is not sufficient to obtain unique arbitrage free prices. Hence, in addition
to the no arbitrage principle, we consider the mean-variance indifference pricing principles
developed in order to obtain unique prices in incomplete financial markets. In addition to
valuating their liabilities, life insurance companies are concerned with possible methods
to decrease their risk. In this thesis the main emphasis is on the possibility of hedging
the life insurance contracts in the financial market. However, other possibilities are men-
tioned as well. We apply hedging principles used to determine optimal hedging strategies
in incomplete financial markets. Here focus is on the criterion of risk-minimization and
the optimal hedging strategies associated with the mean-variance indifference principles.
Risk-minimizing strategies have the nice property that they decompose the risk associated
with the contracts into a hedgeable and an unhedgeable part.

In the first part of the thesis we consider the problem of determining a fair distribution
of assets between the equity capital and the portfolio of insured in the case, where the
insurance contracts include a periodic interest rate guarantee. We study a distribution
mechanism, where the equity capital is accumulated with a rate of return, which exceeds
the riskfree rate, in periods where the combined development of the investment return
and the insurance portfolio is favorable. This additional rate represents the price for
the guarantee in the accumulation period. We consider an insurance company whose
insurance portfolio consists of either capital insurances or pure endowments and a simple
financial market given by the complete and arbitrage free Black–Scholes model. Given an
investment strategy we apply the principle of no arbitrage to obtain an implicit equation for
the fair additional rate of return to the equity capital in periods, when such an additional
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rate of return is possible. In the case of a portfolio of pure endowments the equation
depends on the market’s attitude towards unsystematic mortality risk. The investment
strategies considered are: A buy and hold strategy and a strategy with constant relative
portfolio weights, both with and without stop-loss in case solvency is threatened.

In the second part we focus on the so-called systematic mortality risk, which is the uncer-
tainty associated with the future mortality intensity. In order to describe this uncertainty
we model the mortality intensity as a stochastic process. We note that the relative im-
pact of systematic mortality risk cannot be reduced by increasing the size of the portfolio.
Hence, we cannot use the well-established actuarial pricing principle of diversification to
price life insurance contracts in the presence of systematic mortality risk. Instead we apply
the no arbitrage principle to derive market reserves. Since the life insurance contracts are
not traded in the financial market, we do not obtain a unique market reserve. In particular
we have that the market reserves depend on the market’s attitude towards the systematic
mortality risk. In order to obtain a unique reserve we apply the mean-variance indifference
pricing principles. We study different methods for the company to lower the exposure to
the systematic mortality risk. One possibility is to trade in the financial market. Here, we
consider the criteria of risk-minimization and the optimal strategies associated with the
mean-variance indifference prices. Alternatively, the company can trade so-called mortal-
ity derivatives, i.e. contracts which depend on the development of the mortality intensity.
As a last option we discuss the possibility of transferring the systematic mortality risk to
the insured by issuing contracts, where the premiums and/or benefits are linked to the
development of the mortality intensity.

In practice only bonds with a limited time to maturity are traded in the market. Hence,
companies issuing long term contracts are exposed to an uncertainty associated with the
initial price of a new bond issued in the market. In the literature this risk is usually
ignored, since the bond market is assumed to include bonds with all times to maturity.
The third part of thesis is devoted to the modelling of this so-called reinvestment risk.
For financial contracts the reinvestment risk is usually non-existing due to the short term
of the contracts. However, for life insurance companies this risk is of importance, since
life insurance contracts usually are very long term contracts. We propose a discrete-time
model for the reinvestment risk. At each trading time a bond matures and a new long term
bond is introduced in the market. The entry price of the new bond depends on the prices of
existing bonds and a stochastic term independent of the existing bond prices. Within this
purely financial model we determine risk-minimizing strategies. Danish legislation force
the life insurance companies to value their long term liabilities using a level long term
yield curve. In a numerical example we compare this principle to the related principle of
a level long term forward rate curve and the financial principle of super-replication. In
addition to the discrete-time model, we also propose a continuous-time model with fixed
times of issue. Here, the uncertainty of the initial prices of bonds issued in the market is
modelled by letting the extension of the forward rate curve be stochastic. In this case we
also derive risk-minimizing strategies.

In the fourth and last part, we consider a model including a large number of the risks faced
by a life insurance company. In particular, this model includes the systematic mortality
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risk and the reinvestment risk. Within this refined model we determine market reserves
and mean-variance indifference prices for life insurance contracts. Furthermore the hedging
aspect is addressed by the derivation of risk-minimizing strategies and the optimal hedging
strategies associated with the mean-variance indifference principles. A numerical study
of market reserves and the alternative principles of a level long term yield curve, a level
long term forward rate curve and super-replication of reinvestment risk is carried out.
This numerical study also includes the risk measures of Value at Risk and tail conditional
expectation.





Resumé

I denne afhandling analyseres de forskellige risici som et livsforsikringsselskab er eksponeret
for. Generelt er livsforsikringsselskaber eksponeret for et stort antal finansielle og for-
sikringsmæssige risici. Som regel er der et udbredt kendskab til og en indg̊aende forst̊aelse
af disse risici, og der er udviklet modeller, som er studeret detaljeret i litteraturen. Enkelte
risici har dog ikke f̊aet samme opmærksomhed, hverken i litteraturen eller i praksis. I denne
afhandling foretages et detaljeret studie af modelleringen af disse risici. En vigtig opgave
for livsforsikringsselskaber er at værdiansætte deres forpligtigelser. Vi anvender metoder
fra finansmatematikken og specielt princippet om fraværet af arbitragemuligheder. Dette
princip bygger p̊a den rimelige antagelse om, at man uden startkapital ikke kan opn̊a
en risikofri gevinst. I fuldstændige finansielle markeder fører dette princip til entydige
arbitragefri priser for alle kontakter. Da livsforsikringskontrakter ikke handles p̊a det
finansielle marked, betragter vi et ufuldstændigt marked, og i dette tilfælde er princip-
pet om fravær af arbitrage ikke tilstrækkeligt til at sikre entydige arbitragefri priser.
Vi betragter derfor ogs̊a mean-variance indifferens prisfastsættelses principper udviklet
med henblik p̊a at opn̊a entydige priser i ufuldstændige finansielle markeder. Udover at
værdiansætte deres forpligtigelser er livsforsikringsselskaber optaget af mulige metoder
til at mindske deres risiko. I denne afhandling er hovedfokus p̊a muligheden for at hedge
(afdække) livsforsikringskontrakter i det finansielle marked, men andre muligheder vil ogs̊a
blive nævnt. Vi anvender afdækningsprincipper, som normalt anvendes til at bestemme
optimale handelsstrategier i ufuldstændige finansielle markeder. Her er fokus p̊a kriteriet
risiko-minimering og p̊a de optimale handelsstrategier forbundet med mean-variance indif-
ferens principperne. Risiko-minimerende strategier har den pæne egenskab, at de dekom-
ponerer risikoen forbundet med kontrakterne i en del som kan elimineres ved at handle p̊a
det finansielle marked, og en del som ikke kan elimineres.

I den første del af afhandlingen betragter vi problemet med at bestemme en fair for-
deling af aktiverne mellem egenkapitalen og forsikringsporteføljen i det tilfælde, hvor for-
sikringskontakterne indeholder en rentegaranti. Vi betragter en fordelingsmekanisme, hvor
egenkapitalen forrentes med en rente, der er højere end den risikofri rente i perioder, hvor
den samlede udvikling af investeringerne og forsikringsporteføljen er favorabel. Denne
ekstra forrentning af egenkapitalen repræsenterer prisen for garantien i perioden. Vi be-
tragter et forsikringsselskab, hvis forsikringsportefølje udelukkende best̊ar af enten kapital-
forsikringer eller rene overlevelsesforsikringer og et simpelt finansielt marked beskrevet ved
den fuldstændige og arbitragefri Black–Scholes model. For en given investeringsstrategi
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anvender vi princippet om fravær af arbitrage til at bestemme en implicit ligning for den
ekstra forrentning af egenkapitalen i perioder, hvor en s̊adan ekstra rente er mulig. I til-
fældet hvor forsikringsporteføljen best̊ar af rene oplevelsesforsikringer, afhænger ligningen
af markedets attitude til usystematisk dødsrisiko. Vi betragter følgende investeringsstrate-
gier: En buy and hold strategi og en strategi med konstante relative porteføljevægte. I
begge tilfælde betragtes b̊ade tilfældet med og uden stop-loss, hvis selskabets solvens er
truet.

I den anden del fokuserer vi p̊a den s̊akaldte systematiske dødsrisiko, som er usikkerheden
forbundet med den fremtidige dødelighed. For at kunne beskrive denne usikkerhed model-
lerer vi dødeligheden som en stokastisk proces. Vi bemærker at den relative effekt af den
systematiske dødsrisiko ikke kan reduceres ved at øge størrelsen af forsikringsporteføljen.
Vi kan derfor ikke benytte det veletablerede aktuar prisfastsættelsesprincip, diversifika-
tion, til at prisfastsætte livsforsikringskontrakter i forbindelse med systematisk dødsrisiko.
I stedet anvender vi princippet om fravær af arbitrage til at udlede markedsreserver. Da
livsforsikringskontrakter ikke handles p̊a det finansielle marked, giver dette ikke en entydig
markedsreserve. Specielt gælder det, at markedsreserverne afhænger af markedets attitude
til systematisk dødsrisiko. For at opn̊a en entydig reserve anvender vi mean-variance in-
differens prisfastsættelses principperne. Vi betragter forskellige metoder for selskabet til
at mindske eksponeringen til den systematiske dødsrisiko. En mulighed er at handle i
det finansielle marked. Her betragter vi kriteriet risiko-minimering og de optimale han-
delsstrategier forbundet med mean-variance indifferens priserne. Alternativt kan selskabet
handle med s̊akaldte dødelighedsderivater, som er kontrakter, der afhænger af udviklingen
i dødeligheden. Som en sidste mulighed diskuterer vi muligheden for at overføre den sy-
stematiske dødsrisiko til de forsikrede ved at udstede kontrakter, hvor præmierne og/eller
ydelserne er afhængige af udviklingen i dødeligheden.

I praksis handles kun obligationer med en begrænset løbetid p̊a det finansielle marked.
Selskaber, der udsteder kontrakter med lang løbetid, er derfor eksponeret til en usikker-
hed forbundet med introduktionsprisen, n̊ar nye obligationer udstedes p̊a det finansielle
marked. I litteraturen ignoreres denne risiko typisk, da man antager at obligationer med
alle løbetider handles i markedet. Den tredje del af afhandlingen behandler modelleringen
af denne s̊akaldte geninvesteringsrisiko. For rent finansielle kontrakter er geninvesterings-
risikoen normalt ikke eksisterende, da de som regel har en kort tidshorisont. For livsfor-
sikringskontrakter er denne risiko imidlertid af stor vigtighed, da livsforsikringskontrakter
generelt har en meget lang tidshorisont. Vi opstiller en diskret-tids model for geninveste-
ringsrisikoen. P̊a ethvert handelstidspunkt udløber en obligation og en ny obligation
med lang løbetid udstedes i markedet. Udstedelsesprisen afhænger af prisen p̊a de ek-
sisterende obligationer og et stokastisk led uafhængigt heraf. I denne rent finansielle
model bestemmer vi risiko-minimerende strategier. Ifølge dansk lovgivning skal livsfor-
sikringsselskaber anvende en rentekurve, som er flad ved lange løbetider, til at værdi-
ansætte deres forpligtigelser med lang tidshorisont. I et numerisk eksempel sammenligner
vi dette princip med det relaterede princip om at anvende en forwardrentekurve, som
er flad for lange løbetider, og det finansielle princip super-replikering. Udover diskret-
tids modellen opstilles en model i kontinuert tid med faste udstedelsestidspunkter. Her
modellerer vi usikkerheden forbundet med udstedelsesprisen p̊a nye obligationer, ved at
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lade fortsættelsen af forwardrentekurven være stokastisk. I dette tilfælde udledes ogs̊a
risiko-minimerende strategier.

I den fjerde og sidste del betragter vi en model, der inkluderer et stort antal af de risici,
som et livsforsikringsselskab er eksponeret for. Specielt indeholder modellen systematisk
dødsrisiko og geninvesteringsrisko. I denne forfinede model bestemmes markedsreserver og
mean-variance indifferens priser for livsforsikringskontrakter. Yderligere er afdæknings-
problematikken belyst ved udledningen af risiko-minimerende strategier og de optimale
handelsstrategier forbundet med mean-variance indifferens principperne. Der foretages et
numerisk studie af markedsreserver og de alternative principper om en flad rentekurve for
lange tidshorisonter, en flad forwardrentekurve for lange tidshorisonter og super-replikering
af geninvesteringsrisiko. Dette numeriske studie inkluderer ogs̊a risikomålene Value at Risk
and tail conditional expectation.
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Chapter 1

Introduction

In this thesis we focus on the risks to which an insurance company is exposed when selling
life insurance contracts. Here, we use the term risk to describe a source of uncertainty,
even though it may lead to a surplus as well as a loss. We are interested in identifying
and modelling the sources of risk in order to measure and control the risk of the insurance
company, and to value life insurance contracts. The exposition relies heavily on methods
from financial mathematics. In particular we apply the no arbitrage principle and methods
used for valuation and hedging in incomplete markets.

1.1 Risks in life insurance

A life insurance contract specifies a stream of payments between the insured and the in-
surance company contingent on some predetermined insurance events. Payments from the
insured are called premiums, and payments to the insured are referred to as benefits. The
premiums usually consist of a lump sum premium at initiation of the contract and contin-
uous premiums paid until retirement as long as the insured is alive (and active). Standard
textbook examples of benefits are: Pure endowment, term insurance and (temporary or
whole) life annuity. For an explanation of these insurance contracts and an introduction to
life insurance in general, we refer to Gerber (1997), in discrete time, and Norberg (2000),
in continuous time.

When entering the contract the qualitative nature of the premiums and benefits is agreed
upon by the insured and the insurance company. Furthermore, the insured specifies ei-
ther the premiums or benefits quantitatively, and it is left to the insurance company to
calculate the remaining quantity. Hence, both the quantitative and the qualitative nature
of benefits and premiums are stated in the insurance contract. Typically the quantitative
specifications serve as a guarantee to the insured leaving the company unable to lower
benefits, or equivalently increase premiums, if it observes an adverse development of the
financial market and/or the insurance portfolio. Thus, since the company is unable to

1
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alter the specifications in the contract in order to take an unfavorable development of the
financial market and/or the insurance portfolio into account, it is of importance for the
company to understand the risks associated with entering the insurance contract. Hence,
the company should be able to identify and adequately model the (major) sources of risk,
such that it is able to price the contract correctly. However, an adequate description of the
risks is not only of importance when pricing the contract. It is important throughout the
course of the contract, both for internal control purposes and for measuring the impact
of different scenarios as described in the so-called “traffic light system” introduced by the
regulatory authorities in Denmark. Furthermore it is believed that future solvency rules
will require the company to constantly monitor and measure the risks of the company.
Having measured the risks it is natural for the company to consider methods to reduce
the risk, and thereby lower the effect of the different scenarios in the traffic light system
(and in the future the solvency requirements). Here, some possibilities are trading in the
financial market and purchasing reinsurance.

In this chapter we consider the case where the insured specify the benefits quantitatively,
and the company has to calculate the premiums. This is no loss of generality, since the
alternative case can be handled similarly. Throughout the chapter we restrict calculations
to the case of a portfolio of pure endowments paid by single premiums, since these are
the simplest life insurance contract involving a dependence on the death or survival of the
insured. In particular this allows us to consider benefits at a fixed time only, such that we
avoid considering payment processes. However, all qualitative statements in this chapter
hold for payment processes as well.

1.1.1 Types of risk

We focus on two main types of risk for the insurance company: Financial risk and mor-
tality risk. In the literature mortality risk is sometimes referred to as insurance risk. The
company is naturally exposed to other types of risk as well. We mention operational risk
and risk associated with future administration costs, such as wages, purchase of computer
systems, rent and general maintenance of business operations. The Basel Committee’s de-
finition of operational risk is “the risk of losses resulting from inadequate or failed internal
processes, people and systems or from external events”. Hence, the operational risk cov-
ers all losses resulting from errors connected to running the business. This includes both
human and system errors. For a detailed description of, and an approach to modelling,
operational risk we refer to King (2001) and Cruz (2002).

Here, we further split the financial risk into equity risk and interest rate risk. Hence, in this
exposition we disregard other types of risk, such as credit risk, which is the risk associated
with the default of the counterparty in a financial transaction. For a detailed description
of credit risk see e.g. Lando (2004). The equity risk covers the uncertainty associated with
risky investments except bonds, and interest rate risk covers uncertainty associated with
future interest rates and hence bond prices. Here, we further divide the interest rate risk
into standard interest rate risk, which is uncertainty associated with the development of the
currently traded bonds (the currently observable yield curve) and reinvestment risk, which
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measures the additional uncertainty associated with the entry prices, when new bonds are
issued in the market. The reinvestment risk is naturally only of interest if bonds with
sufficiently long time to maturity are not traded at the time of consideration. This use of
the term reinvestment risk differs from the one of e.g. Luenberger (1998), who uses it to
describe the risk associated with the unknown rate of return, when currently owned bonds
mature in the future, and the capital is reinvested in the bond market. Hence, Luenberger
(1998) does not distinguish between whether or not the bonds in which the capital is
reinvested were traded at the time of purchase of the first bonds. In our terminology, the
reinvestment risk only covers the case, where no bonds with sufficiently long time horizon
are traded initially, whereas the risk associated with the future rate of return of bonds
presently traded is covered by the standard interest rate risk.

The mortality risk consists of two fundamentally different sources of risk: Systematic
and unsystematic mortality risk. Here, the unsystematic mortality risk refers to the risk
associated with the random development of an insurance portfolio with known mortality
intensity. From the strong law of large numbers we know that the relative impact of the
unsystematic mortality risk is a decreasing function of the number of insured, and if the
insurance portfolio is infinitely large, the unsystematic mortality risk is eliminated. Thus,
the unsystematic mortality risk is diversifiable. The systematic mortality risk refers to the
uncertainty associated with changes in the underlying mortality intensity. Since changes
in the underlying mortality intensity affect all insured, the systematic mortality risk is an
increasing function of the number of insured with similar contracts. Hence, in contrast to
the unsystematic mortality risk the systematic mortality risk is non-diversifiable. However,
a reduction (elimination) of the systematic mortality risk is possible, if the company both
sells contracts, where the payoff is contingent on survival, and contracts, where the payoff
is contingent on death. Note that similar considerations can be made for other transition
intensities, e.g. disability, recovery etc. Hence, we can interpret the mortality risk as
covering all biometric risks.

1.1.2 A qualitative classification of the types of risk

In order to obtain a qualitative description of the types of risk we classify them according
to the exposure of the company. First we concentrate on the contract and classify the
types of risk according to whether the company is exposed to the risk as a consequence of
entering the contract. Hence, the different types of risk are divided into the following two
classes:

• Contractual risks: The types of risk to which the insurance company is exposed as
a consequence of entering the contract.

• Non-contractual risks: The types of risk, which are not contractual risks.

Note that if entering the contract does not expose the company to a type of risk, it is a
non-contractual risk. Within the class of contractual risks we further distinguish between
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whether the company is able to eliminate the type of risk by trading in the financial market.
We say that a type of risk can be eliminated if all uncertainty associated with the type
of risk can be eliminated by trading in the financial market. To determine whether this
is the case, we consider the contingent model where the particular type of risk accounts
for all uncertainty. Now all uncertainty can be eliminated if the company can invest a
fixed initial amount and trade in the financial market, such that it always has exactly the
desired amount. Hence, the class of contractual risks consists of the following sub-classes:

• Hedgeable contractual risks: The types of contractual risk for which the company,
given a certain fixed initial investment, can eliminate all uncertainty by trading in
the financial market.

• Unhedgeable contractual risks: The types of contractual risk for which the company,
given a certain fixed initial investment, cannot eliminate all uncertainty by trading
in the financial market.

The definitions above are closely related to the definition of hedging in financial theory,
see Section 1.3 for more details. Here, it is important to note that in the contingent model
it may be possible to eliminate the so-called short-fall risk, which is the risk of holding
insufficient funds, related to an unhedgeable contractual risk by investing a sufficiently
large amount at initiation of the contract. However, since the company in this case has a
(large) positive probability of holding more than required to cover the benefits, the risk is
not eliminated. Hence, one cannot turn an unhedgeable contractual risk into a hedgeable
contractual risk by investing a sufficiently large amount. The idea of eliminating the
shortfall risk is closely related to so-called super-replicating (super-hedging) strategies,
see Section 1.3.1.

The classes and sub-classes above are connected to the contract only, so it can be inter-
preted as a classification of the risks on the liability side. However, it is important to
note that the effect of the different types of risk on the balance sheet depends on both the
considered insurance contract and the investment strategy. Hence, in order to correctly
describe the exposure of the company to the different types of risk, one should involve the
asset side as well. Here, the assets only refer to the assets associated with the liabilities,
whereas the assets corresponding to the equity capital is disregarded. The importance of
including the assets has also been observed by the life insurance companies, which in gen-
eral devote a large amount of effort to ALM (asset liability modelling/management). The
necessity to involve the asset allocation arises since the value of the assets and liabilities
may increase or decrease at the same time. Hence, in some cases the company may be able
to reduce a type of unhedgeable contractual risk by traded wisely in the financial market.
On the other hand the company may decide not to eliminate the uncertainty associated
with a hedgeable contractual risk. It may even expose the balance sheet to non-contractual
risks. In order to describe the types of risk to which the insurance company is exposed,
when taking the asset allocation into account, we introduce:

• Business risks: The types of risk to which the combined balance sheet of the company
is exposed.
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As noted above it holds that even for a company, which is aware of the contractual risks
to which it is exposed, the mere possibility to eliminate or reduce a type of risk by trading
in the financial market is not equivalent to the fact that the company actually decides to
do so. Hence, in some cases the company exposes the balance sheet to risk(s) that could
have been avoided. This behavior can be explained by the fact that the company follows
an investment strategy which also focuses on the expected rate of return. In particular,
the belief that the long term return is higher on stocks than on bonds encourages many
insurance companies to invest in stocks even when the financial risk associated with the
contract only consists of interest rate risk. For a specific contract (or portfolio of contracts)
and a given investment strategy the business risks consist of the following three sub-classes:

• Non-hedged hedgeable contractual risks: The types of hedgeable contractual risk,
which the company has not eliminated.

• Unhedgeable contractual risks: The types of contractual risk for which the company,
given a certain fixed initial investment, cannot eliminate all uncertainty by trading
in the financial market.

• Gambling risks: Non-contractual risks to which the company is exposed as a conse-
quence of the investment strategy.

The method available to the company in order to eliminate/convert a certain type of
business risk depends on the sub-class to which the risk belongs. A non-hedged hedgeable
contractual risk can by definition be eliminated by trading in the financial market, whereas
it is impossible to eliminate an unhedgeable contractual risk once the contract is signed.
However, risks, which otherwise would be unhedgeable contractual risks may be transferred
to the insured and thus they may be converted into non-contractual risks by designing
the contract cleverly. The so-called mortality-linked contracts introduced in Chapter 3
is an example of a type of contracts designed to convert an unhedgeable contractual risk
into a non-contractual risk. Here, the systematic mortality risk is transferred from the
insurance company to the insured. The gambling risks can naturally be eliminated simply
by altering the investment strategy, such that is does not include investments in the assets
which expose the company to the non-contractual risk.

The classification of the risks is of importance when pricing and reserving for the contract,
as well as for risk management. The contractual risks influence prices and reserves, whereas
the business risks influence the sensitivity to the different scenarios in e.g. the traffic light
system and in the future possibly the solvency requirements. It could be argued that
the investment strategy, and hence the business risks, also should be of importance when
pricing the contract, since a company which follows a risky investment strategy has a larger
risk of default and hence exposes the policy-holder to a larger credit risk. However, we
ignore this aspect, since the traffic light system and the solvency rules essentially should
eliminate the credit risk of the policy-holders.
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1.1.3 An illustration of risks in life insurance

In order to illustrate the ideas in Sections 1.1.1 and 1.1.2 we now identify and classify
(qualitatively) the different types of risk in a simple example. Consider a portfolio of n
insured of age x all purchasing a pure endowment of K paid by a single premium π at time
0. Hence, at time 0 the company receives the premium π from each of the insured, such
that the total premiums received are nπ, and at the time of maturity, T , the surviving
policy-holders receive K. Let N(T ) denote the number of deaths in the portfolio until
time T . Hence, the number of survivors is given by n−N(T ), such that the total benefits
to the policy-holders are

H = (n−N(T ))K.

Here, we first identify and classify the types of risk associated with the contractual pay-
ments described above. In order to identify possible financial risks, we assume the random
course of the insured lives are known, such that the number of survivors at time T , and
hence the benefits, are known at time 0. Since K is a fixed benefit, no specific dependence
on stocks is stated in the contract, so the equity risk is a non-contractual risk. Hence,
among the financial risks only the interest rate risks may be contractual risks. To classify
the interest rate risks we distinguish between whether the time of maturity of the insur-
ance contract lies before or after the time of maturity of the longest bond traded at time 0.
In the first case the standard interest rate risk is a contractual risk and the reinvestment
risk is a non-contractual risk, whereas both interest rate risks are contractual risks in the
second case. The company is able to eliminate the contractual interest rate risk(s) if it can
invest a fixed amount at time 0 and trade in the financial market, such that it is certain
to hold (n − N(T ))K at time T . This is the case if there exists a so-called zero coupon
bond (a bond, which always pays one at time of maturity) with the same time of maturity
as the insurance contract, since purchasing (n − N(T ))K zero coupon bonds at time 0
leaves the company with exactly (n −N(T ))K at time T . This situation corresponds to
the first case with sufficiently long bonds. Hence, in this case the standard interest rate
risk is a hedgeable contractual risk and the reinvestment risk is a non-contractual risk.
If, on the other hand, both the standard interest rate risk and the reinvestment risk are
contractual risks, then the company is unable to pursue an investment strategy which
guarantees exactly (n−N(T ))K at time T . Hence, in this case at least one of the interest
rate risks is an unhedgeable contractual risk. Considering the two types of interest rate
risk separately, we find that the standard interest rate risk still is hedgeable, since the risk
associated with the movement of the bond prices between the times of issue of new bonds
can be eliminated by trading in the bonds. On the contrary the reinvestment risk cannot
be eliminated by trading in bonds already in the market, such that it is an unhedgeable
contractual risk.

In order to identify and classify the mortality risks we consider the contingent model
where the future stock and bond prices are known. As mentioned in Section 1.1.1, the
uncertainty regarding the number of survivors at time T can be slit into unsystematic and
systematic mortality risk. Here, we first turn our attention to the unsystematic mortality
risk. Hence, we assume that the future mortality intensity is known and consider the
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uncertainty associated with the number of survivors. In this case, the survival probabil-
ity of each individual is known, and we know from a diversification argument that in a
large portfolio the number of survivors is approximately equal to the expected number
of survivors given by the product of the survival probability and the number of insured.
However, since the size of the portfolio is finite the number of survivors is not exactly
equal to the expected number of survivors. Hence, in this case the unsystematic mortal-
ity risk accounts for the uncertainty associated with the number of survivors at time T
given the underlying mortality intensity. In addition to the unsystematic mortality risk
the company is exposed to a risk associated with the actual development of the mortality
intensity, the so-called systematic mortality risk. Here, the company will experience a sur-
plus (loss) if the mortality intensity increases (decreases) more than expected, such that
the realized expected number of survivors is lower (higher) than the expected number of
survivors calculated at time 0. Since we assume that the financial market only consists
of bonds and stocks, the company is unable to eliminate the uncertainty associated with
the number of survivors by trading in the financial market. Hence, the mortality risks are
unhedgeable contractual risks.

Thus, when considering a portfolio of pure endowments with fixed benefits, the contractual
risks include both types of mortality risk and standard interest rate risk, whereas the
equity risk in a non-contractual risk. Whether the reinvestment risk is a contractual or
non-contractual risk depends on the time to maturity of the bonds compared to the time
to maturity of the contracts. The standard interest rate risk is a hedgeable contractual
risk and the mortality risks are unhedgeable contractual risks. If the reinvestment risk is
a contractual risk it is an unhedgeable contractual risk.

As noted in Section 1.1.2, the class of business risks depends on the investment strategy.
In order to illustrate this dependence we consider two different investment strategies. First
consider the case where the company eliminates the standard interest rate risk by investing
in bonds. In this case the business risks consists of the unhedgeable contractual risks: The
mortality risks and possibly the reinvestment risk. The standard interest rate risk, which
is the only hedgeable contractual risk has been eliminated so there are no non-hedged
contractual risks, and since the company does not invest in stocks, there are no gambling
risks. As a second example we consider the case where the company invests in a mixture
of bonds and stocks, such that is does not entirely eliminate the standard interest rate
risk, and thus, since the classification is qualitative, the standard interest rate risk is a
non-hedged contractual risk. The unhedgeable contractual risks are independent of the
investment strategy, so the sub-class is unaltered. The investment in stocks introduces
equity risk as a gambling risk. Hence, in this second example all types of risk are business
risks.

1.2 Traditional approach to risk in life insurance

Traditional life insurance contracts include some guaranteed benefits. The two most com-
mon types of guarantees are maturity guarantees and periodic interest rate guarantees. A
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maturity guarantee states a minimal benefit, whereas a periodic interest rate guarantee
states a minimum return in each accumulation period. In order to calculate the premiums,
the insurance company typically applies the principle of equivalence using a constant in-
terest rate, r̃, and a deterministic mortality intensity, µ̃, which is independent of calender
time (henceforth referred to as time-independent). The pair (r̃, µ̃) is usually referred to
as the technical basis or the first order basis, see e.g. Norberg (1999). The principle of
equivalence states that the expected value of the discounted (guaranteed) benefits and
premiums must be equal. Hence, in the case of deterministic guaranteed benefits the cal-
culations depend on the specification of the future interest rate and mortality intensity.
Since the technical basis is deterministic, the derivation of the premiums is particularly
simple. For a contract with deterministic benefits the calculations necessary to determine
a lump sum premium simply requires the company first to replace the uncertain course
of the random life by the expected development using the technical mortality intensity
and second to determine the present value of the resulting deterministic benefits using the
technical interest rate.

Consider a portfolio consisting of n pure endowments with guaranteed benefits K paid
by a single premium. In this case, the individual premium calculated by the principle of
equivalence using the technical basis is given by

π = e−
R T
0 eµ(x+u)due−erTK. (1.2.1)

Here, µ̃(x + t) is the technical mortality intensity at time t for a person aged x at time

0, where the contract was issued. Hence, exp(−
∫ T
0 µ̃(x+ u)du) is the survival probability

for a person of age x from time 0 to T using the technical basis.

The basic idea in traditional risk management in life insurance is to choose the technical
basis to the safe side, as seen from the company’s point of view, such that the future
interest rate and portfolio-wide mortality intensity never behaves worse (again seen from
the company’s point of view) than the technical basis. In the case of a pure endowment
this corresponds to applying a technical interest rate and mortality intensity, which are
too low. Thus, at any time t the reserve

V (t) = e−
R T

t
eµ(x+u)due−er(T−t)K,

is on average (more than) sufficient to cover the guaranteed benefit K at time T given
survival until time t. However, the company receives the portfolio-wide premium nπ at
time 0, which it invests in the financial market. If we let r̂ denote the rate of return ob-
tained by the company, the portfolio-wide assets at time t are given by nπ exp(

∫ t
0 r̂(u)du).

If we further denote by µ̂(x, u) the observed mortality intensity in the portfolio at time u
for an insured of age x at time 0, then the observed number of survivors at time t is given
by n exp(−

∫ t
0 µ̂(x, u)du). So the assets per survivor are π exp(

∫ t
0 r̂(u) + µ̂(x, u)du). Now

the choice of technical basis ensures that the company is able to choose an investment
strategy, such that the individual assets are sufficient to cover the reserve calculated with
the technical basis, i.e.

πe
R t
0 br(u)+bµ(x,u)du ≥ V (t).
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One such strategy is to invest in very short term bonds. Here, the rate of return is r,
which by assumption is larger than or equal to r̃. Thus, the company is able to generate a
systematic surplus by obtaining an investment return which always exceeds the technical
interest rate and by observing a mortality intensity in the portfolio larger than the tech-
nical mortality intensity. Note that the company measures the surplus generated by the
mortality by comparing the observed mortality in the portfolio with the technical mortal-
ity intensity, so no distinction is made between the systematic and unsystematic mortality
risk. In Danish legislation the so-called contribution principle states that a systematic
surplus must be returned to the group of insured, and the distribution mechanism should
take the contribution of each individual to the surplus into account. This return of surplus
to the insured is usually referred to as bonus, see Norberg (1999). Traditionally bonus has
been used to purchase additional coverage calculated using the technical basis. Thus, the
guaranteed benefits are increased during the course of the contract as bonus is allocated
to the individual insured. However, legislation does not prescribe when the surplus must
be returned as bonus, and since the distribution mechanism is not specified in the contract
either, it is left to the company as a decision parameter within some legislative bounds.
Hence, a company may follow a very aggressive (conservative) bonus strategy by return-
ing bonus immediately (as late as possible). The surplus not distributed to the individual
insured is kept by the company as a portfolio-wide buffer. In the literature this buffer is
often referred to as the bonus reserve and in recent Danish legislation it is known as the
collective bonus potential. This buffer serves two purposes. Firstly, it is used to cover
the deficit in the case, where the company, in an attempt to maximize the investment
return, invests in stocks as well as bonds, and observe an investment return below the
technical interest rate. Secondly, the buffer serves to smooth the bonus to the insured
over the course of the contract, such that the insured observe a steady development of
the individual account. We note that the legislative bounds on the return mechanism
allows for some redistribution among the different generations. Hence, the actual benefits
depend on the investment return obtained by the company, the realized development of
the insurance portfolio, the competition in the market and the capital of the company at
initiation of the contract.

Summing up we conclude that the traditional method of risk management consists of
collecting premiums, which in all circumstances are sufficient to cover the guaranteed
benefits and to redistribute the observed surplus among the insured as bonus. Thus, the
traditional risk management can be viewed as a static risk management, which works as
long as the technical basis really is to the safe side. However, both the interest rate and the
number of survivors are stochastic, so a natural question is whether the company really
is able to determine a deterministic interest rate and mortality intensity, such that the
observed quantities at all times are to the safe side. In the case of a pure endowment this
could be obtained by using an interest rate and a mortality intensity of zero. However, the
guarantee should be of interest to the insured, since they otherwise would seek alternative
methods for saving to retirement, and this is not the case if the guarantee is calculated
with interest rate and mortality intensity zero. Thus, competition forces the companies
to calculate guarantees using strictly positive technical elements, and these are not to the
safe side for all possible future scenarios. Moreover, the fact that the companies often
allocate some of the surplus as bonus immediately after it is observed implies that even
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though the premium includes a large safety loading, the company may find itself unable
to cover the guarantees later. This problem is further enlarged by the use of bonus to
calculate additional guaranteed benefits on the technical basis. The latter problem seems
to be outdated or at least reduced, since recent additional benefits typically either are
unguaranteed or calculated using an interest rate lower than the technical interest rate.
The magnitude of the risk of a company following a traditional risk management approach
naturally depends on the technical basis, the aggressiveness of the bonus strategy and the
investment strategy.

1.3 Financial theory

In this section we describe the approach of modern financial mathematics to risk. Some
recent standard references are Musiela and Rutkowski (1997) and Björk (2004). Let T
denote a fixed finite time horizon and consider a financial market consisting of d+1 traded
assets: A savings account earning a (possibly) stochastic rate of interest and d risky assets
(stocks, bonds, real estate etc.). The price processes, which are given by B = (B(t))0≤t≤T
and X = (X(t))0≤t≤T , respectively, are defined on a probability space (Ω,F , P ) with
filtration F = (F(t))0≤t≤T . Here, F(t) can be interpreted as the information available at
time t. This covers information regarding the price processes, and may in general include
other information as well.

A trading strategy is a process ϕ = (ϑ, η) satisfying certain integrability conditions. Here,
ϑ is predictable, and η is adapted to the filtration F. The pair ϕ(t) = (ϑ(t), η(t)) is
interpreted as the portfolio held at time t. Here, ϑ is a d-dimensional vector denoting the
number of the d risky assets in the portfolio, whereas η is the discounted deposit in the
savings account. The value process V(ϕ) associated with ϕ is defined by

V(t, ϕ) = ϑ(t)X(t) + η(t)B(t), 0 ≤ t ≤ T.

A trading strategy is called self-financing if

V(t, ϕ) = V(0, ϕ) +

∫ t

0
ϑ(u)dX(u) +

∫ t

0
η(u)dB(u). (1.3.1)

Hence, the value of the portfolio at time t is the initial value V(0, ϕ) added trading gains,∫ t
0 ϑ(u)dX(u), and interest on the savings account,

∫ t
0 η(u)dB(u). Thus, no in- or outflow

of capital to/from the portfolio has occurred in (0, t]. A self-financing strategy is a so-
called arbitrage if V(0, ϕ) = 0 and V(T,ϕ) ≥ 0 P -a.s. with P (V(T,ϕ) > 0) > 0. Thus, an
arbitrage is the possibility without an initial investment to obtain a riskfree gain. If the
model allows for arbitrage possibilities an investor has a positive probability to become
infinitely rich, without risking any money. Hence, in practice all investors would pursue
such a strategy and thereby force prices to correct themselves, such that no arbitrage
possibilities would exist. Thus, a reasonable model is arbitrage free.

A contingent claim H with maturity T is an F(T )-measurable random variable, i.e. the
value of H is known at time T . If H only depends on the terminal value of the price
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processes it is called a simple contingent claim. The contingent claim H is called attainable
if there exists a self-financing trading strategy ϕH such that V(T,ϕH ) = H P -a.s. The
strategy ϕH is called the perfect replicating (hedging) strategy for H. From (1.3.1) we see
that H is attainable if and only if there exists a self-financing strategy ϕH such that

H = V(0, ϕH ) +

∫ T

0
ϑH(u)dX(u) +

∫ T

0
ηH(u)dB(u). (1.3.2)

If on the other hand no perfect replicating strategy exists, H is called unattainable. If all
contingent claims are attainable the model is complete, and otherwise it is called incom-
plete. Here, we note that if the market is incomplete there are infinitely many unattainable
claims. To observe this we assume that the claim H is unattainable. However, if H is
unattainable, then it follows from (1.3.2) that cH is unattainable for c ∈ R\{0}. If this
was not the case we could perfectly replicate H by the strategy ϕH = ϕcH/c, where ϕcH

is the perfect replicating strategy for cH.

The fundamental pricing principle in financial mathematics is the no arbitrage principle
due to Black and Scholes (1973) and Merton (1973). The no arbitrage principle states that
the financial market still should be arbitrage free after the introduction of a new asset.
Hence, for an attainable claim H with replicating strategy ϕH , the unique arbitrage free
price is given by V(0, ϕH ), since this is the only price which excludes arbitrage possibilities,
see e.g. Møller (2002) for a simple argument. If on the other hand H is unattainable no
perfect replicating strategy exists and thus no unique arbitrage free price exists. In fact
is can be shown that there exists an interval of arbitrage free prices. We note that the no
arbitrage principle leads to relative prices only, such that prices of new assets rest heavily
on the prices of the original traded assets. Black and Scholes (1973) and Merton (1973)
used the no arbitrage principle to derive partial differential equations for the prices of
attainable claims. They observed that for simple contingent claims the partial differential
equations differ by their boundary conditions only. This way Black and Scholes obtained
the celebrated Black–Scholes formula for the price of a so-called European call option.

Additional insight in no arbitrage pricing was obtained by Harrison and Kreps (1979),
in discrete time, and Harrison and Pliska (1981), in continuous time. They observed a
connection between on one side the properties of completeness and absence of arbitrage and
on the other side so-called equivalent martingale measures. Recall that Q is an equivalent
martingale measure for the model (B,X,F) if Q is a probability measure, Q and P are
equivalent (for all A ∈ F : Q(A) = 0 ⇔ P (A) = 0) and all discounted price processes
associated with traded assets are martingales under Q. They observed that for a complete
and arbitrage free model there exists a unique equivalent martingale measure and all
prices are given by the expectation under this unique equivalent martingale measure of
the discounted value of claim. Hence, in a complete and arbitrage free model the price of
H is given by

FH(0) = EQ
[
B(T )−1H

]
. (1.3.3)

If the model is incomplete there exist infinitely many equivalent martingale measures. In
this case the arbitrage free prices of an unattainable claim, H, are still given by (1.3.3).
However, now Q is an equivalent martingale measure rather than the unique one. Recall
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that in a arbitrage free and incomplete market an attainable claim still has a unique price,
since all equivalent martingale measures actually give the same price. The insight obtained
by the link to equivalent martingale measures have further opened for the connection
between the partial differential equations for prices and the pricing formula in (1.3.3)
given by the Feynman-Kač stochastic representation formula, see e.g. Björk (2004).

In general a model is arbitrage free and complete if it in addition to a (locally) riskfree
savings account includes the same number of risky assets as the number of fundamental
stochastic processes (Wiener processes and counting processes) accounting for the uncer-
tainty. A simple example of an incomplete market is if the contingent claims are allowed
to depend on a complete financial market and independent insurance events.

In the following we shall decorate a discounted claim, price process or value process by an
asterisk (∗).

1.3.1 Valuation and hedging in incomplete markets

As noted above the principle of no arbitrage yields unique prices and perfect replicat-
ing strategies for attainable claims in both complete and incomplete markets. However,
for unattainable claims the principle gives no unique arbitrage free price and replicat-
ing strategy. Hence, in order to determine a unique price and a hedging strategy for an
unattainable claim more structure has to be added. The different criteria proposed in
the literature have their primary focus either on the hedging or the pricing aspect and
consider the other quantity as a secondary information. Here, we review several different
principles proposed in the literature. The principles considered are naturally inspired by
a possible use throughout the thesis. The review is somewhat similar to the one in Møller
(2002).

Super-replication

The basic idea in super-replication (super-hedging) is to determine the lowest possible ini-
tial investment and the corresponding self-financing strategy, which eliminates the shortfall
risk of the hedger. Mathematically this corresponds to

min
ϕ

V(0, ϕ)

under the constraint that P (V(T,ϕ) ≥ H) = 1. Obviously this criterion is not suitable
for determining prices, since it would introduce arbitrage possibilities. For instance the
super-replicating price of a capital insurance and a pure endowment are identical even
though the capital insurance always pays out the benefits at time of maturity, whereas the
pure endowment only pays out the benefits in case of survival of the insured. The theory
of super-replication has been applied in Chapter 5. For more details on super-replication
we refer to El Karoui and Quenez (1995).
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Quadratic hedging

The quadratic hedging approaches focus on hedging in incomplete markets, and as a
secondary result the initial capital necessary to construct the optimal hedging strategy
can be interpreted as a possible price. For a review of quadratic hedging approaches,
see Schweizer (2001a).

Mean-variance hedging
The idea of mean-variance hedging was introduced in Bouleau and Lamberton (1989)
and Duffie and Richardson (1991). With mean-variance hedging the aim is to determine
the self-financing strategy, ϕ̂, which minimizes

EP
[
(H − V(T,ϕ))2

]
.

Since we consider self-financing strategies only, the strategy is uniquely determined by the
pair (V(0, ϕ̂), ϑ̂). Here, V(0, ϕ̂) and ϑ̂ are known as the approximation price for H and the
mean-variance optimal hedging strategy, respectively.

Risk-minimization
The criterion of risk-minimization was originally proposed by Föllmer and Sondermann
(1986) for contingent claims. They considered the special case, where the discounted price
processes are P -martingales. The approach was extended to the general semi-martingale
case by Schweizer (1991), who introduced the idea of local risk-minimization. Schweizer
also observed that the local risk-minimizing strategy essentially corresponds to the risk-
minimizing strategy under the so-called minimal martingale measure, see also Schweizer
(2001a). Møller (2001c) extended the approach in a different direction by allowing for pay-
ment processes. Here, we consider a fixed but arbitrary equivalent martingale measure, Q,
for the considered model, such that discounted price processes indeed are Q-martingales.
The criterion of risk-minimization is closely related to the cost process C(ϕ) defined by

C(t, ϕ) = V∗(t, ϕ) −
∫ t

0
ϑ(u)dX∗(u). (1.3.4)

From (1.3.4) we observe that the accumulated costs C(t, ϕ) at time t are the discounted
value V∗(t, ϕ) of the portfolio reduced by discounted trading gains,

∫ t
0 ξ(u)dX

∗(u). A
strategy is called risk-minimizing, if it minimizes

R(t, ϕ) = EQ
[
(C(T,ϕ) − C(t, ϕ))2

∣∣∣F(t)
]

for all t with respect to all (not necessarily self-financing) strategies and V(T,ϕ) = H.
The process R(ϕ) is called the risk process. Föllmer and Sondermann (1986) realized that
the risk-minimizing strategies are related to the so-called Galtchouk-Kunita-Watanabe
decomposition of the Q-martingale

V ∗,Q(t) = EQ [H∗| F(t)] .

The process V ∗,Q is usually called to as the intrinsic value process. Furthermore they
observed that the cost process is a Q-martingale and that the discounted value process
for the risk-minimizing strategy coincides with the intrinsic value process. In this thesis
risk-minimization is applied in Chapters 4, 5, 6 and 7.
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Utility approaches

Utility functions have traditionally been applied in micro-economics and non-life insurance
to determine prices, and in recent years they have be applied to derive prices in incomplete
financial markets. Here, we focus on marginal utility indifference pricing and a special
case of utility indifference pricing called mean-variance indifference pricing.

Marginal utility indifference pricing
Davis (1997) proposed to value contingent claims in incomplete markets by a “marginal
rate of substitution argument”. Hence, p is a fair price for the claim H if the maximal
achievable expected terminal utility is indifferent to whether an agent at time 0 invests
a small amount of capital in the contingent claim. To express the idea mathematically,
Davis (1997) introduced the function

L(δ, c, p) = sup
ϑ
EP

[
u

(
c− δ +

∫ T

0
ϑ(u)dX(u) +

δ

p
H

)]
,

where u is a utility function, c is the initial capital of the agent and δ is the capital invested
in H. Now provided that the partial derivative of L with respect to δ exists at δ = 0 and
there exists a unique solution, p̂, to

∂

∂δ
L(δ, c, p)|δ=0 = 0,

then p̂ is the price of H.

Mean-variance indifference pricing
Denote by A∗ the discounted wealth of the insurer at time T and consider the mean-
variance utility-functions

ui(A
∗) = EP [A∗] − ai

(
VarP [A∗]

)βi
, (1.3.5)

i = 1, 2, where ai > 0 are so-called risk-loading parameters, and where we take β1 = 1
and β2 = 1/2. It can be shown that calculating premiums using the equations ui(A

∗) =
ui(0) indeed leads to the premiums assigned by the classical actuarial variance (i=1) and
standard deviation premium principle (i=2), respectively, see e.g. Møller (2001b). These
classical actuarial principles have traditionally been applied in non-life insurance.

Schweizer (2001b) proposed to apply the mean-variance utility functions (1.3.5) in an
indifference argument which takes into consideration the possibility to trade in the financial
market. Denote by c the insurer’s initial capital at time 0. The ui-indifference price vi
associated with the claim H is defined via

sup
ϑ
ui

(
c+ vi +

∫ T

0
ϑ(u)dX∗(u) −H∗

)
= supeϑ ui

(
c+

∫ T

0
ϑ̃(u)dX∗(u)

)
. (1.3.6)

The strategy ϑ∗ which maximizes the left hand side of (1.3.6) is called the optimal strategy
for H. The optimal strategies associated with the mean-variance indifference prices are
derived in Møller (2001b). Note that the price assigned to a claim using this criterion is not
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necessarily arbitrage free, see Møller (2002) for an example where the price lies outside
the interval of arbitrage free prices. We determine mean-variance indifference prices in
Chapters 4 and 7.

The idea of mean-variance indifference pricing is slightly different from the general set-up
in utility indifference pricing, since the mean-variance utility functions taken on a random
variable returns deterministic value. In general one considers standard utility functions,
which still return a random variable. In this case the indifference price for a claim H is
the price, which leaves the investor indifferent between purchasing the claim or not. Here,
the indifference refers to the fact that the investor is able to obtain the same maximal
expected utility of terminal wealth in the two cases. For an overview of utility indifference
pricing we refer to Henderson and Hobson (2004). We note that the indifference price
depends on the choice of utility function.

Quantile hedging and minimization of expected shortfall

A major disadvantage of the quadratic hedging approaches is that gains and losses are
considered equally unattractive. In an attempt to eliminate this disadvantage, Föllmer
and Leukert (1999) proposed the criterion of quantile hedging. Here, two related problems
are solved. The first problem is for a given a fixed initial capital, say c, to determine
the maximal obtainable probability of a successful hedge and the associated self-financing
strategy. Hence, one has to solve

max
ϕ

P [V(T,ϕ) ≥ H]

under the constraint V(0, ϕ) ≤ c. The related problem is for a given minimal probability
of a successful hedge, say 1− ε, to determine the minimal necessary initial capital and the
associated self-financing strategy. Here, the agent is interested in determining

min
ϕ

V(0, ϕ)

under the constraint P [V(T,ϕ) ≥ H] ≥ 1 − ε. Here, one easily observes that the initial
investment converges to the super-replicating price as ε converges to zero. A natural
criticism of quantile hedging is that the agent in case of a shortfall is indifferent to the size
of the shortfall. In order to meet this criticism Föllmer and Leukert (2000) and Cvitanić
(2000) introduced the criterion of minimizing the expected shortfall. For a given initial
capital they derived the self-financing strategy, which minimizes the expected losses from
hedging the considered claim. As an alternative they fixed the maximum expected shortfall
and derived the self-financing strategy, which requires the minimal initial capital. Föllmer
and Leukert (2000) introduced a so-called loss function, which is an increasing convex
function with ℓ(0) = 0, such that they solved the problem

min
ϕ
EP

[
ℓ (H − V(T,ϕ))+]

under the constraint V(0, ϕ) ≤ c. Hence, the method of Föllmer and Leukert (2000),
which they refer to as efficient hedging, could be referred to as minimizing the expected
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adjusted shortfall. Here, the special case ℓ(x) = x corresponds to minimizing the expected
shortfall.

Even though the criteria of quantile hedging and especially minimizing the expected short-
fall are advantageous compared to the quadratic approaches they are not pursued in the
thesis, since explicit results are extremely hard to obtain.

1.4 Applying financial methods in life insurance

Even though the fields of (life) insurance and finance originally were separate fields the
interplay between the two fields have increased over the past decades, see e.g. Embrechts
(2000) and Møller (2002). New insurance contracts linked directly to the financial market
have been introduced and old ones have gained increased popularity. In life insurance,
such contracts linked directly to the financial market are called unit-linked contracts.
Similarly financial contracts linked to insurance events have been introduced. We mention
catastrophe insurance (CAT) futures, catastrophe-linked bonds and mortality dependent
bonds.

The increased interplay has in turn increased the need for comparable methods for pricing
and reserving in the fields of financial and insurance, since prices and solvency requirements
should be independent of whether the seller is a bank or an insurance company. Since
financial methods are compatible with observed prices, legislation has forced life insurance
companies to use these methods to calculate prices and reserves. Reserves calculated by
the use of financial mathematics are called market reserves.

1.4.1 Traditional insurance contracts

As mentioned above, legislation has forced life insurance companies to apply methods from
financial mathematics to value their assets and liabilities. Whereas the value of the assets
easily is obtained from the prices quoted, the liabilities represent a greater problem, since
they involve a mixture of financial and insurance elements.

Persson (1998) introduced market reserves in the case of standard interest rate risk and
unsystematic mortality risk. Combining the insurance valuation principle of diversification
(for the unsystematic mortality risk) and the financial valuation principle of no arbitrage
(for the standard interest rate risk), he obtained unique market reserves. The valuation
is carried out in two steps. First, the principle of diversification is applied to replace the
uncertain course of the insured life by the expected development, and second the resulting
purely financial contract is priced uniquely by the no arbitrage principle. For a pure endow-
ment the approach corresponds to exchanging the claim I(T )K by exp(−

∫ T
0 µ(x, t)dt)K,

where I(T ) is an indicator function denoting whether the insured is alive at time T . Now,
under the assumption of the existence of sufficiently long bonds the only remaining risk
is the standard interest rate risk. Thus, the market reserve at time 0 of the guaranteed
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benefit, K, is uniquely given by

V Q(0) = EQ
[
e−

R T
0 µ(x,t)dtB(T )−1K

]
= e−

R T
0 µ(x,t)dtP (0, T )K, (1.4.1)

where P (0, T ) is the price at time 0 of a zero coupon bond maturing at time T . Hence, the
market reserve in (1.4.1) corresponds to the traditional reserve except now the discount
factor is the price of a zero coupon bond. However, the market value in (1.4.1) is only
one of the infinitely many arbitrage free prices for a pure endowment in the case where we
only consider unsystematic mortality risk and standard interest rate risk. In particular, if
we only apply the no arbitrage principle we can define a market reserve by

V Q,g(0) = EQ
[
I(T )B(T )−1K

]
= e−

R T
0 (1+g(u))µ(x,u)duP (0, T )K (1.4.2)

for each choice of stochastic process g > −1 adapted to the filtration generated by the
insurance events, see Steffensen (2000). Here, we essentially calculate the survival prob-
ability with a mortality intensity, (1 + g(u))µ(x, u), which may differ from the real one.
Comparing (1.4.1) and (1.4.2) we observe that (1.4.1) is a special case of (1.4.2) obtained
by letting g = 0. This choice of g corresponds to assuming risk-neutrality with respect to
unsystematic mortality risk.

In this thesis the principle of no arbitrage is applied to determine market reserves in the
case of a stochastic mortality intensity, see Chapter 3. Since we only apply the principle of
no arbitrage, no unique market value is obtained. In this case appealing to diversification
arguments is not sufficient to obtain a unique market reserve, since this only eliminates
the pricing uncertainty regarding the unsystematic mortality risk, whereas the pricing
uncertainty regarding the systematic mortality risk still remains.

Since the insured receive bonus if the investment return exceeds the technical interest
rate and the technical interest rate serves as a guarantee, the contracts have imbedded
an interest rate option. Traditionally these options have been ignored, since they at the
time of issue have been considered highly unlikely to have any effect. For instance a major
part of the Danish life insurance contracts with a technical rate of 4.5% was issued in the
1980’s where the interest rate was 15-20%. However, the decreasing interest rates over the
past years have implied that these options have become very valuable. This, in turn, has
increased the necessity for the derivation of correct prices. However, this is in general not
a simple task, since the benefit of the insured and thus the price of the options depend
on the bonus strategy of the company. Numerous papers consider the simple case where
the investment return immediately after realization is distributed between the individual
accounts of the insured and the equity capital, see e.g. Briys and de Varenne (1997), Aase
and Persson (1997), Miltersen and Persson (1999) and Bacinello (2001). The case including
a bonus reserve is studied in Grosen and Jørgensen (2000), Hansen and Miltersen (2002)
and Miltersen and Persson (2003). These papers differ by considering different distribution
mechanisms. Another feature encountered in practice is the possibility for the insured to
surrender. This has been studied in Grosen and Jørgensen (2000) and Steffensen (2002),
where the similarities with American options from finance are exploited. These similarities
also holds for the free-policy option of the insured, which has been considered in Steffensen
(2002).
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1.4.2 Unit-linked life insurance

Unit-linked (equity-linked) life insurance contracts were introduced as an alternative to
the traditional life insurance contracts in the United States, Netherlands and United King-
dom in the 1950’s, see Turner (1971). In the United States the unit-linked contracts are
known as variable life insurance contracts. In a unit-linked contract the benefits are linked
directly to the development of a specific reference portfolio. The reference portfolio can be
chosen by the insured or the company depending on the desire of the insured, and it may
change during the insurance period. In recent years life insurance companies (at least in
Denmark) have experienced an increasing demand for unit-linked contracts. This increase
was catalyzed by the explosive development of the stock prices in the late 1990’s, since
there is a possibility to invest more in stocks in unit-linked contracts than in traditional
life insurance contracts. Furthermore, from the insured’s point of view, unit-linked con-
tracts have the advantages that the investment profile can be adapted to the desire of the
individual and that the insured easily are able to identify their individual savings, such
that no distribution among the different generations can take place. For the company,
unit-linked contracts are advantageous, since the financial risk is easily eliminated using
the hedging approach of modern financial mathematics. However, they may also prove
disadvantageous for the company, since it cannot use surplus generated by the financial
risks to cover a possible deficit resulting from the mortality risks and vice versa. Hence,
there is an increased need for the insurance company to correctly understand, model and
control the individual risks. Assume that the vector of risky assets X includes a stock with
price process S = (S(t))0≤t≤T and consider a portfolio of unit-linked pure endowments
linked to the development of the stock. In this case the total liability of the company is
given by

H = (n −N(T ))f(S),

where f is a function of the entire path of the stock price, S. Traditionally the literature
distinguish between pure unit-linked life insurance contracts, where f(S) = S(T ) and unit-
linked life insurance contracts with guarantee, where f(S) = max(S(T ), G(T, S)). Some
possible guarantees include: A maturity guarantee of a fixed amount

G(T, S) = K,

a periodic guarantee on the return of the stock

G(T, S) = K

T∏

i=1

max

(
1 +

Si − Si−1

Si−1
, 1 + δi

)
,

where δi is the guarantee in period i and a quantile guarantee

G(T, S) = α sup
0≤t≤T

S(t),

where α ∈ [0, 1]. The fixed and periodic guarantees are common in practice, whereas the
quantile guarantee is quite rare. However, we mention that a product including a discrete
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version of the quantile guarantee is sold by the Danish life and pension company “Danica
Pension”.

In the early years the unit-linked contracts were usually without a guarantee, in which
case no advanced financial mathematics is necessary to eliminate the financial risk of the
company. However, contracts could include a minimum guarantee, and prior to the in-
troduction of the no arbitrage principle, the early approach in order value the guarantees
was to involve statistical methods for the development of the assets and use simulation
studies to determine an adequate reserve, see e.g. Turner (1969), Kahn (1971) and Wilkie
(1978). Inspired by the introduction of modern financial mathematics by Black and Sc-
holes (1973) and Merton (1973), Brennan and Schwartz (1976, 1979a, 1979b) considered
a large portfolio of unit-linked insurance contracts with deterministic mortality intensity
and a Black–Scholes model for the financial market, such that they considered a com-
plete financial market with a constant interest rate. Using a diversification argument they
exchanged the random course of the insured lives by the expected development. Upon
this replacement they obtained a purely financial contract, which could be priced and
hedged using the no arbitrage principle. Hence, their approach essentially corresponds to
considering the claim

H̃ = ne−
R T
0 µ(x,u)duf(S).

They considered the case f(S) = max(S(T ),K) and as in Black and Scholes (1973)
and Merton (1973), they obtained prices by solving a partial differential equation. Delbaen
(1986) was the first to apply the martingale methods of Harrison and Kreps (1979) and
Harrison and Pliska (1981) in order to valuate unit-linked contracts. Since then numerous
papers have used the martingale approach to valuate unit-linked contracts with guarantees.
Bacinello and Ortu (1993a) consider the case of a constant interest rate and endogenous
guarantees. The case of a stochastic interest rate has been considered by Bacinello and
Ortu (1993b), who derive a closed form solution in the case of a single premium pure
endowment and a so-called Vasiček model for the interest rate. Nielsen and Sandmann
(1995) consider a stochastic interest rate in association with periodic premiums and peri-
odic guarantees. They observe that the guarantee introduces a discretely sampled Asian
option. In order to obtain results they use numerical methods. Aase and Persson (1994)
are the first to consider instantaneous death probabilities. However, even though they
consider only one insured, they also quickly insert the expected values regarding survival.

So far the mentioned papers have applied the diversification principle at an early point,
such that the pricing problem reduces to pricing contingent claims in a complete financial
market. Furthermore, the papers considering the hedging aspect all consider the purely
financial contract resulting from the use of the diversification principle. Brennan and
Schwartz (1976) refer to such a strategy as “riskless”, even though it only eliminates the
financial risk, since the company of course still is exposed to unsystematic mortality risk.
Hence, a more appropriate name would be a “financially riskless strategy”.

In contrast to the papers above Møller (1998) does not apply the diversification principle
at an early point in the pricing and hedging problem. Hence, he considers an incomplete
financial market consisting of a complete financial market and a counting process count-
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ing the number of deaths in the portfolio. When assuming risk-neutrality with respect to
mortality, he obtains prices identical to those in the papers above. However, similarly to
traditional insurance contracts, there exists infinitely many arbitrage free prices and the
one mentioned above is just one particular arbitrage free price. The incomplete market
setting becomes particularly important when discussing hedging strategies. Here, Møller
(1998) considers the criterion of risk-minimization and derives risk-minimizing strategies
for unit-linked life insurance contracts payable at a fixed time. Hence, whereas the pre-
vious papers main purpose is to derive prices for unit-linked life insurance contracts the
main purpose of Møller (1998) is to determine a hedging strategy. The hedging result ob-
tained essentially corresponds to the “riskless” hedging strategy of Brennan and Schwartz
(1976). However, now the strategy is adjusted continuously to the expected number of
survivors given the current development of the insurance portfolio. The work is extended
to cover payment processes in Møller (2001c) such that a more realistic insurance contracts
can be considered. Møller (2001a) essentially considers a discrete time version of Møller
(1998). The use of indifference pricing to value insurance contracts in an incomplete
market have been studied in Becherer (2003), who worked with exponential utility func-
tions, and Møller (2001b, 2003a, 2003b), who considered mean-variance indifference utility
functions.

All of the above papers disregard the systematic mortality risk. In this thesis prices and
hedging strategies are pursued in the presence of systematic mortality risk. We determine
prices using the no arbitrage principle only. Similarly to the case of traditional life in-
surance contracts we refer to these prices as market values. Furthermore, we determine
mean-variance indifference prices. For the hedging aspect emphasis is on the criterion
risk-minimization and the optimal hedging strategies associated with the mean-variance
indifference prices.

1.5 Quantifying the types of risk

The qualitative description of the types of risk in Section 1.1.2 provides valuable knowledge
regarding if and how the insurance company is exposed to the different types of risk.
However, the main interest for the company is a quantitative description. In order to
obtain a quantitative description the company has to specify a model for the sources of
risk and the criterion measuring the risk. Hence, the criterion is of great importance
when defining the strategy which minimizes the business risk and in order to compare the
business risk for different strategies. However, the hedging criterion used to determine the
optimal strategy is not necessarily the criterion used to quantify the business risk. Here,
the company often use a different criterion which is more easily interpretable (and perhaps
demanded by the regulators). In order to obtain an adequate model for the sources of risk
it should involve all the relevant (main) sources of risk, and the description of the types
of risk should mirror real life as closely as possible. Methods used to quantify the risk can
be found in Section 1.3.1. In this section we give an overview of the development of the
modelling of the different sources of risk.
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1.5.1 Equity risk

The modelling of stock prices in continuous time was initiated by Bachelier (1900), who
proposed to model the stock price by

dS(t) = αdt+ σdW (t),

where α and σ are constants, and W = (W (t))0≤t≤T is a Wiener process. Hence, the
change in the stock price in a short interval of length ∆t is independent of earlier changes
and follows a normal distribution with mean α∆t and variance σ2∆t. This model however
has the undesirable property that the stock price may become negative. This flaw was
eliminated in Samuelson (1965), who proposed to model the stock price by a so-called
geometric Brownian motion, where the dynamics are given by

dS(t) = αS(t)dt + σS(t)dW (t). (1.5.1)

It was within this framework that Black and Scholes obtained their famous result. Today
this model serves a standard example and reference in financial mathematics. A natural
extension of (1.5.1) is to allow for time-dependent functions α and σ. All results obtained
with constant parameters are easily extended to this case. Also the extension to a multi-
dimensional Wiener process is straightforward. Heston (1993) extended the model to
include stochastic volatility, i.e. he modelled the diffusion parameter σ as a stochastic
process. Despite empirical evidence that an adequate model should allow for jumps most
of the literature on stock prices consider diffusion models, i.e. models where the stock prices
are driven by Wiener processes. However, a model including jumps was already considered
in Merton (1976), who introduced the jumps in a particular nice fashion, such that option
prices are infinite sums of Black–Scholes option prices. Recently Levy processes have
attracted attention, see e.g. Chan (1999), Eberlein (2001) and Cont and Tankov (2004).
The advantage of Levy processes is twofold: They constitute a flexible class of models, such
that they can provide an adequate description of the stock prices and at the same time are
they mathematically “nice”. An interesting simple alternative can be found in Norberg
(2003), who considers a market driven by a finite state Markov chain.

1.5.2 Interest rate risk

Since it is inconvenient to model bond prices directly, the standard approach in the litera-
ture is to model interest rates instead. Here, the first approach was to model the dynamics
of the short rate, r, as a diffusion process, i.e. by

dr(t) = α(t, r(t))dt + σ(t, r(t))dW (t).

Within the class of short rate diffusion models especially those given by

α(t, r(t)) = γα(t) + δα(t)r(t),

σ(t, r(t)) =
√
γσ(t) + δσ(t)r(t).
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have received a lot of attention, since models of this form give an affine term structure,
which is particularly nice from a pricing perspective, see e.g. Björk (2004). The class of
affine short rate models includes the famous Vasiček and Cox–Ingersoll-Ross (CIR) models,
see Vasiček (1977) and Cox, Ingersoll and Ross (1985). Extensions of both models to the
time-inhomogeneous case can be found in Hull and White (1990).

A different approach was proposed in Heath, Jarrow and Morton (1992) who modelled
the entire forward rate curve. For a fixed time of maturity τ they modelled forward rate
dynamics by

df(t, τ) = α(t, τ)dt + σ(t, τ)dW (t),

for some adapted processes α and σ. A related work can be found in Musiela (1993), where
the forward rates are parameterized with time to maturity instead of time of maturity.
For an overview of interest rate models without jumps, we refer to Brigo and Mercurio
(2001). Shirakawa (1991) extended the approach in Heath et al. (1992) to the case, where
the forward rates are driven by a Wiener process and Poisson driven jumps of a fixed
magnitude. A general description of a bond market including jumps can be found in Björk,
Di Masi, Kabanov and Runggaldier (1997) and Björk, Kabanov and Runggaldier (1997).

All of the above papers ignore the reinvestment risk by assuming the existence of suffi-
ciently long bonds. This assumption is usually justified, when considering purely financial
products, since these, as opposed to life insurance contracts, traditionally are short term
contracts. The first attempt to include the reinvestment risk is Sommer (1997). In this
thesis models for the reinvestment risk are proposed in Chapters 5 and 6.

1.5.3 Unsystematic mortality risk

In general the development of a single contract or a portfolio of similar contracts can be
described by a finite state Markov chain, see Hoem (1969). In the single insurance case
the Markov chain describes the different states of health, which are of importance for the
insurance contract. In the portfolio case the insured are assumed to be a homogeneous
group of lives, which are mutually independent given the underlying mortality intensity.
Hence, the Markov chain counts the number of insured in each state of health. We note that
the insured lives not in general are independent, since the underlying mortality intensity
affects all the insured. The unsystematic mortality risk is now the uncertainty related to
the development of the Markov chain with known transition intensities. The case of a
portfolio of identical pure endowments is particularly simple, since the development of the
insurance portfolio in this case can be described by a counting process, N = (N(t))0≤t≤T ,
counting the number of deaths in the portfolio.

Note that while the assumption of conditional independence of the insured lives in general
reasonable when considering the development of a portfolio over a long time horizon, it
may not be applicable, when considering the short term probability of a large number
of deaths, since catastrophes, such as terrorism, hurricanes and earthquakes may affect a
specific group of persons.
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1.5.4 Systematic mortality risk

In the literature the standard approach has been to consider a deterministic (and time-
independent) mortality intensity, such that the model excludes systematic mortality risk.
This is in correspondence with practice, where the life insurance companies, in at least
Denmark, so far have worked with a mortality intensity, which depends on the age of the
insured, only. The companies have been aware that the mortality intensity has decreased
over the years and to incorporate this they have adjusted their mortality intensities yearly.
However, regardless of the frequency of these mortality investigations, the estimation of
a time-homogeneous mortality intensity still only measures the current level. In order to
obtain a more accurate prediction of the future mortality intensity the company has to
capture trends in the mortality intensity, such that a time and age dependent mortality
intensity is necessary. If company also wants to capture the stochastic nature of the
future mortality, the mortality intensity should be modelled as a stochastic process. In
recent years several papers have considered modelling the future mortality and pricing
mortality derivatives. One of the best known models for the future mortality is the Lee-
Carter model, see Lee and Carter (1992) and Lee (2000). Here, the yearly death rates are
modelled by three factors: Two age-dependent and one time-dependent. By modelling
the time-dependent factor as a time-series the model can be used for forecasting. The
first paper to introduce a stochastic mortality intensity is Milevsky and Promislow (2001),
who consider a so-called mean-reverting Gompertz model under the equivalent martingale
measure. Milevsky and Promislow (2001) are also the first to consider a model including
both standard interest rate and systematic mortality risk. Dahl (2004b), see Chapter 3,
considers a general diffusion model and discusses the change of measure with respect to the
mortality. A general affine jump diffusion model for the mortality intensity can be found
in Biffis and Millossovich (2004). These models for the mortality intensity are inspired by
the short rate models used to describe standard interest rate risk, see Section 1.5.2. An
overview over interest rate approaches applicable to describe the systematic mortality risk
can be found in Cairns, Blake and Dowd (2004). An entirely different approach is taken
in Olivieri and Pitacco (2002), where Baysian methods are considered.

1.6 Overview and contributions of the thesis

The aim of the thesis is to analyze risks in life insurance. We propose models for the
different types of risk and use methods from financial mathematics to value and hedge
life insurance contracts. The thesis consists of four main parts. The first part, Chapter
2, considers the problem of determining a fair distribution of assets between the equity
capital and the portfolio of insured in the case where the insurance contract includes a
periodic interest rate guarantee. The second part, Chapters 3 and 4, consider the impact
of modelling the mortality intensity as a stochastic process. Here, Chapter 3 focus on
determining market reserve and on possible ways to transfer the systematic mortality risk
to the insured or agents in the financial market. Chapter 4 includes a derivation of hedging
strategies for life-insurance contracts and a numerical comparison life expectancies using
a time-independent, a time-dependent and a stochastic mortality intensity. In part three
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we propose models for the reinvestment risk, and derive optimal hedging strategies. Here,
Chapter 5 contains a discrete-time model, whereas a continuous-time model is introduced
in Chapter 6. In the fourth and last part, we essentially combine Chapters 4 and 6, such
that we obtain a model including a large number of the risks faced by a life insurance
company. Here, Chapter 7 covers the theoretical derivation of hedging strategies, whereas
Chapter 8 includes a numerical comparison of different reservation principles. Now we
give a more detailed description of the individual chapters.

Fair Distribution of Assets in Life Insurance
When issuing life insurance contracts with a periodic interest rate guarantee, the equity
capital of the company is exposed to the risk of low or even negative payoffs at the end of an
accumulation period. In the worst case scenario, where the guarantee can not be covered,
all equity capital is lost and the company is declared bankrupt. To compensate the owners
for the risk of low returns on equity capital imposed by the guarantee, the equity capital
should be accumulated by a rate, which exceeds the riskfree rate in periods, where the
investment return and development of the insurance portfolio allows for such a high return
on equity capital. In Chapter 2, based on Dahl (2004a), we consider an insurance company
whose insurance portfolio consists of either capital insurances or pure endowments with
a periodic interest rate guarantee. Since the financial market is given by the complete
and arbitrage free Black–Scholes model, we can for a given investment strategy apply the
principle of no arbitrage to obtain an equation for the fair additional payoff to the equity
capital in periods, when such an additional payoff is possible. The investment strategies
considered are: A buy and hold strategy and a strategy with constant relative portfolio
weights, both with and without stop-loss in case solvency is threatened. In order to study
the magnitude of the fair additional rate of interest and the dependence on parameter
values, initial distribution of capital and investment strategy, we supply numerical results.

Stochastic Mortality in Life Insurance: Market Reserves and Mortality-Linked Insurance
Contracts
In life insurance, actuaries have traditionally calculated premiums and reserves using a
deterministic mortality intensity, which is a function of the age of the insured only. How-
ever, the future mortality intensity is unknown, so it should be modelled as a stochastic
process. In Chapter 3, based on Dahl (2004b), we model the mortality intensity as a diffu-
sion process. This allows us to consider unit-linked contracts in a model including equity
and standard interest rate risk, as well as both types of mortality risks. Within this model
we derive market reserves and study possible ways of transferring the systematic mortality
risk to other parties. One possibility is to introduce mortality-linked insurance contracts.
Here, the premiums and/or benefits are linked to the development of the mortality in-
tensity, thereby transferring the systematic mortality risk to the insured. Alternatively
the insurance company can transfer some or all of the systematic mortality risk to agents
in the financial market by trading derivatives depending on the mortality intensity. We
derive a general partial differential equation for mortality derivatives and show an example
of how a mortality derivative can be used to eliminate or reduce the systematic mortality
risk of the company.
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Valuation and Hedging of Life Insurance Liabilities with Systematic Mortality Risk
Chapter 4 considers the problem of valuating and hedging a portfolio of life insurance
contracts that are subject to systematic mortality risk as well as the usual sources of risk,
namely standard interest rate risk and unsystematic mortality risk. Since the mortal-
ity risks are unhedgeable they cannot be eliminated by trading in the financial market.
Furthermore, since the systematic mortality risk is a non-diversifiable risk it cannot be
reduced by increasing the size of the portfolio and appealing to the law of large num-
bers. Hence, we propose to apply techniques from incomplete markets in order to hedge
and valuate these contracts. We derive market reserves and mean-variance indifference
prices. The hedging aspect is addressed by determining risk-minimizing strategies and
optimal hedging strategies associated with the mean-variance indifference prices. The
chapter includes empirical evidence supporting the modelling of the mortality intensity
as a stochastic process, and a numerical example comparing the life expectancies using a
time-independent, a time-dependent and a stochastic mortality intensity. This chapter is
based on Dahl and Møller (2005).

A Discrete-Time Model for Reinvestment Risk in Bond Markets
In the literature bond markets usually include bonds with all times to maturity. However,
in practice the liquid bonds traded have a fixed maximum time to maturity. Hence, a life
insurance company selling long term contracts is exposed to an unhedgeable reinvestment
risk, associated with the entry prices of newly issued bonds. In Chapter 5, which is
based on Dahl (2005b), we propose a discrete-time model for a bond market, where the
reinvestment risk is present. The analysis is carried out in discrete time in order to explain
the ideas in a framework, where the technical details are kept to a minimum. At each
trading time a bond matures and a new bond is introduced in the market. The entry
price of the new bond depends on the prices of existing bonds and a stochastic term
independent of the existing bond prices. In order to determine optimal hedging strategies
we consider the criteria of super-replication and risk-minimization. Furthermore, a link
between super-replication and the maximal guarantees for which the short fall interest
rate risk can be eliminated is observed. Finally, we consider a numerical example, where
we compare our stochastic analysis with the deterministic pricing principle of a level long
term yield curve. In this example we also introduce the alternative deterministic pricing
principle of a level long term forward rate curve.

A Continuous-Time Model for Reinvestment Risk in Bond Markets
In Chapter 6, based on Dahl (2005a), we propose a continuous bond market model in-
cluding reinvestment risk. We consider a model, where only bonds with a limited time to
maturity are traded in the market. At fixed times new bonds with stochastic initial prices
are introduced in the market. Here, the new price is allowed to depend on the existing
bond prices and all past information, such that we obtain a flexible model. To quantify
and control the reinvestment risk we apply the criterion of risk-minimization.

Valuation and Hedging of Unit-Linked Life Insurance Contracts Subject to Reinvestment
and Mortality Risks
In Chapter 7, based on Dahl (2005d), we consider a model covering a large number of the
risks faced by a company issuing unit-linked life insurance contracts. Here, the financial
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market consists of a bond market including reinvestment risk and a stock, whereas the
insurance part involves a stochastic mortality intensity. Hence, we consider a model,
which combine the systematic mortality risk considered in Chapters 3 and 4 with the
reinvestment risk from Chapters 5 and 6. The valuation and hedging results in Chapter 4
are then extended to this more refined model.

A Numerical Study of Reserves and Risk Measures in Life Insurance
Reserving and risk management are of great importance for life insurance companies.
In Chapter 8, based onDahl (2005c), we provide a numerical investigation of different
reservation principles and risk measures. We consider market reserves calculated by the
no arbitrage principle, only. Furthermore, we consider the following alternative approaches
to pricing the dependence on the reinvestment risk: Super-replication and the principles of
a level long term yield/forward rate curve. Combined with the no arbitrage principle for
the remaining risks, these principles give reserves, which can be compared to the market
reserves. The risk measures considered are Value at Risk and tail conditional expectation.



Chapter 2

Fair Distribution of Assets in Life

Insurance

(This chapter is an adapted version of Dahl (2004a))

When a life insurance company distributes assets between the equity capital and the
portfolio of insured, possible periodic guarantees to the insured must be covered whenever
possible. Hence, depending on the development of the financial market and the portfolio
of insured, the equity capital may experience periods with low or even negative payoffs. In
the worst case scenario, where the guarantee can not be covered, the company is declared
bankrupt, and the entire equity capital is lost. To compensate the owners for the risk
of low returns on equity capital, the equity capital should be accumulated by a rate,
which exceeds the riskfree rate in periods, where the investment return and development
of the insurance portfolio allows for such a high return on equity capital. We consider
an insurance company with a very simple insurance portfolio: It consists of either capital
insurances or pure endowments. The financial market is described by a Black–Scholes
model. Given an investment strategy for the company, the principle of no arbitrage gives
an equation for the fair additional payoff to the equity capital in periods, when such an
additional payoff is possible. The investment strategies considered are: A buy and hold
strategy and a strategy with constant relative portfolio weights, both with and without
stop-loss in case solvency is threatened. To investigate the magnitude of the fair additional
rate of interest and the dependence on parameter values, initial distribution of capital and
investment strategy, we supply numerical results.

2.1 Introduction

When issuing life insurance contracts with a guarantee, the insurance companies are ex-
posed to a risk, since the guarantee must be covered whenever possible. The two most
common types of guarantees are: A maturity guarantee, where the company guarantees a

27
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minimal total accumulation for the entire duration of the contract, and guaranteed periodic
accumulation factors (guaranteed periodic interest rates), where the company guarantees
a minimal accumulation factor for each period. Even though the most common type
of guarantee in Denmark is a maturity guarantee, we consider the case of guaranteed
periodic accumulation factors, since it allows us to consider each accumulation period in-
dependently. When guaranteeing periodic accumulation factors, the equity capital of the
company might experience low or even negative payoffs in periods with low returns on
investments and/or an adverse development of the insurance portfolio. In the extreme
case, where the guarantee can not be covered, the interest of the insured take precedence
over the interests of the company, and all assets are paid to the insured.

Guaranteed periodic accumulation factors implicitly introduce a string of European call
options on the investment gain in the insurance contract. Historically, the guarantees
have in practice been chosen far out of the money, and therefore they have been ignored
when pricing the insurance contracts. However, the decreasing interest rates in recent
years has caused the guarantees to become an important element of some old contracts.
This, in turn, has increased the importance for correct pricing of the options imbedded in
the insurance contracts, see e.g. Briys and de Varenne (1997), Aase and Persson (1997),
Miltersen and Persson (1999) and Bacinello (2001). In practice, insurance companies use a
bonus account for undistributed surplus in order to smooth the accumulation factors over
time. When including a bonus account, the price of an insurance contract depends on
the bonus mechanism. For some different possible bonus mechanisms and their impact on
prices, see Grosen and Jørgensen (2000), Hansen and Miltersen (2002) and Miltersen and
Persson (2003). Another feature encountered in practice is the possibility for the insured to
surrender, which is included e.g. in Grosen and Jørgensen (2000). The bankruptcy of major
life insurance companies in England and Japan have also underlined the importance of
including the risk of the company defaulting. This is done inBriys and de Varenne (1997).

The main purpose of the above mentioned papers is essentially to obtain the arbitrage free
price of an insurance contract by considering the development of the insurance contract
until termination. The aim of the present chapter is slightly different from that of pricing
individual contracts. Here, the goal is to determine a fair distribution of assets between
the owners of the insurance company and the portfolio of insured at the end of each ac-
cumulation period. Thus, the model considered is essentially a 1-period model with one
accumulation period. In the model the accumulation factor, announced by the company
prior to the accumulation period, is viewed as an exogenous parameter. Hence, we avoid
the modelling of the announced accumulation factor, which is quite difficult since compe-
tition seems to play a major role in the decision process. In contrast to many companies,
we do not view the announced accumulation factor as binding. Thus, the actual and
announced accumulation factors may differ when experiencing poor investment returns
and/or an adverse development of the insurance portfolio. To determine the distribution
of the assets between the deposit, the bonus reserve and the equity capital at the end of
the accumulation period, we define a distribution scheme. Within this scheme, the only
unknown parameter is the interest rate used, in addition to the riskfree interest rate, to
accumulate the equity capital in periods when possible. We assume that the company is
allowed to invest in a financial market described by a Black-Scholes model. This market is
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known to be complete and arbitrage free. A distribution scheme is considered as fair, if it
does not introduce arbitrage possibilities for the owners or the insurance portfolio. When
considering a portfolio of capital insurances, the distribution scheme depends entirely on
the development of the financial market, and since the financial market is complete and
arbitrage free, we can derive a simple equation, which has to be fulfilled by a distribution
scheme in order not to introduce arbitrage possibilities. Thus, we are able to find an
equation for the unique fair additional interest rate. For a portfolio of pure endowments
the distribution scheme depends on both the financial market and the development of the
insurance portfolio. Hence, we are in an incomplete market. Thus, infinitely many equiv-
alent martingale measures exist, such that the principle of no arbitrage yields infinitely
many possible equations from which to derive a fair distribution. However, for a fixed
equivalent martingale measure, we again have a unique equation for the fair additional
interest rate. Since the equations derived for the fair additional interest rate are implicit
equations, we have to use numerical techniques to derive the result. Hence, in contrast to
other papers including bonus accounts, no simulation is necessary.

We point out that the results in this chapter for the fair additional interest rate are based
on a simple financial model with constant interest rate and a deterministic mortality in-
tensity. Hence, we only take the financial risk associated with investments in stocks and
the unsystematic mortality risk into account. The fair additional interest rate would be
larger if we were to add interest rate risk and/or systematic mortality risk to the model.
Note that we distinguish between systematic mortality risk, referring to the future devel-
opment of the underlying mortality intensity, and unsystematic mortality risk, referring
to a possible adverse development of the insured portfolio with known mortality intensity,
see Chapter 3. Furthermore expenses and the associated risk have been disregarded in the
study. In addition to the measurable risks mentioned above one could consider operational
risk as well. Thus, the fair additional interest rate determined in this chapter serves as a
lower bound for the fair additional interest rate in practice.

The chapter is organized as follows: In Section 2.2, a simplified balance sheet and a short
description of the accounts are given. The financial model and the relevant financial
terminology is introduced in Section 2.3. In Section 2.4, a company with an insurance
portfolio of capital insurances is considered. Given different investment strategies, we
decompose the terminal equity capital into payoffs from standard options, such that each
investment strategy leads to an equation for the fair additional interest rate. Section
2.5 studies the case of a portfolio of pure endowments. In this case, the value for the
fair additional interest rate depends on the chosen equivalent martingale measure. Since
the equations obtained in Sections 2.4 and 2.5 for the the fair additional interest rate
are implicit equations only, we supply numerical results in Section 2.6. In Section 2.7
we discuss some possible changes to the distribution mechanism and their impact on the
results. A discussion on the realism and versatility of the model is given in Section 2.8,
whereas Section 2.9 contains a conclusion. Proofs and calculations of some technical results
can be found in Section 2.10
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2.2 The balance sheet

To describe the assets and liabilities of the insurance company we use the following sim-
plified balance sheet.

Assets Liabilities

A V
U
E

A A

The asset side consists of the account A only, while the liability side is comprised of three
accounts: V , U and E. The bottom line of the balance sheet just states that the assets
and liabilities must balance, i.e. V + U + E = A. We now give a detailed description of
the individual accounts.

Account V (the deposit) is the total deposit of the insurance portfolio. The deposit is
allocated to the insured on an individual basis. In case of a capital insurance or a pure
endowment, the individual deposit at time of termination is the sum paid to the insured.
Whenever an insurance contract states a guaranteed periodic accumulation factor, the
guarantee applies to the deposit. Capital allocated to the deposit belongs to the individual
owning the actual account, and cannot be transferred to the deposit of another insured or
other accounts on the liability side.

Account U (the bonus reserve) is the undistributed surplus allocated to the insurance
portfolio as a whole. It is used by the company to smooth deposit accumulation factors
over time. Capital allocated to the bonus reserve cannot freely be transferred to the equity
capital. Such a transfer may only take place as a payment to the equity capital for the
risk associated with the insurance contracts.

Account E (the equity capital) is the capital belonging to the owners of the company.

Account A (the assets) describes the value of the assets of the insurance company. We
assume that the insurance company invests in the financial market described in Section
2.3. In order to consider the risk associated with the insurance contracts only, we assume
that the company invests the amount E0 in the savings account, and the amount V0 +U0

in an admissible strategy ϕ = (ϑ, η) with value process V(ϕ). Thus, at time t, t ∈ [0, T ],
we have

At = ertE0 +
Vt(ϕ)

V0(ϕ)
(V0 + U0).

It now follows from the following argument that we without loss of generality may assume
that

V0 + U0 = V0(ϕ) (2.2.1)
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such that At = ertE0 + Vt(ϕ). Assume that (2.2.1) does not hold. Then the self-financing
strategy given by

ϕ̃ =
V0 + U0

V0(ϕ)
ϕ =

(
V0 + U0

V0(ϕ)
ϑ,
V0 + U0

V0(ϕ)
η

)

fulfills

ertE0 + Vt(ϕ̃) = ertE0 +
V0 + U0

V0(ϕ)
Vt(ϕ) = At, t ∈ [0, T ].

A similar simplified balance sheet is used in Grosen and Jørgensen (2000), Hansen and
Miltersen (2002) and Miltersen and Persson (2003). However, the number of accounts on
the liability side of the balance sheet, and their interpretation varies.

2.3 The financial model

We consider a financial market described by the standard Black–Scholes model. Here, the
market consists of two traded assets: A risky asset with price process S and a riskfree asset
with price process B. The risky asset is usually referred to as a stock and the riskfree asset
as a savings account. The price processes are defined on a probability space (Ω,F , P ),
and the P -dynamics of the price processes are given by

dSt = αStdt+ σStdW̃t, S0 > 0, (2.3.1)

dBt = rBtdt, B0 = 1,

where (W̃t)0≤t≤T is a Wiener process on the interval [0, T ] under P , with T being a fixed
finite time horizon. The coefficient σ is a strictly positive constant, while α and r are non-
negative constants. The filtration G = (Gt)0≤t≤T is the P -augmentation of the natural
filtration generated by (B,S), i.e. Gt = G+

t ∨ N , where N is the σ-algebra generated by
all P -null sets and

G+
t = σ{(Bu, Su), u ≤ t} = σ{Su, u ≤ t} = σ{W̃u, u ≤ t}.

Here, we have used the strict positivity of σ in the last equality. We interpret α as the
mean rate of return of the stock, σ as the standard deviation of the rate of return and r
as the short rate of interest. The constant ν defined by ν = α−r

σ is known as the market
price of risk associated with S. It is well-known, see e.g. Musiela and Rutkowski (1997),
that in the Black–Scholes model, the probability measure Q0 defined by

dQ0

dP
≡ OT = e−ν

fWT− 1
2
ν2T

is the unique equivalent martingale measure. Hence, Q0 is a probability measure equiv-
alent to P under which all discounted price processes on the financial market are (local)
martingales. The Q0-dynamics of the price processes are

dSt = rStdt + σStdWt, S0 > 0, (2.3.2)

dBt = rBtdt, B0 = 1,
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where (Wt)0≤t≤T is a Wiener process on the interval [0, T ] under Q0.

A trading strategy is an adapted process ϕ = (ϑ, η) satisfying certain integrability condi-
tions. The pair ϕt = (ϑt, ηt) is interpreted as the portfolio held at time t. Here, ϑt and
ηt, respectively, denote the number of stocks and the discounted deposit in the savings
account in the portfolio at time t. The value process V(ϕ) associated with ϕ is given by

Vt(ϕ) = ϑtSt + ηtBt.

A strategy ϕ is called self-financing if

Vt(ϕ) = V0(ϕ) +

∫ t

0
ϑudSu +

∫ t

0
ηudBu.

Thus, the value at any time t of a self-financing strategy is the initial value added trading
gains from investing in stocks and interest earned on the deposit in the savings account;
withdrawals and additional deposits are not allowed during (0, T ). A self-financing strategy
ϕ = (ϑ, η) is called admissible if (ϑ, η) ≥ 0, which guarantees that Vt(ϕ) ≥ 0 P -a.s.
for all t ∈ [0, T ]. We restrict the investment strategies of the insurance company to
admissible strategies. A self-financing strategy is a so-called arbitrage if V0(ϕ) = 0 and
VT (ϕ) ≥ 0 P -a.s. with P (VT (ϕ) > 0) > 0. A contingent claim (or a derivative) in the
model (B,S,G) with maturity T is a GT -measurable, Q0-square integrable random variable
X. A contingent claim is called attainable if there exists a self-financing strategy such
that VT (ϕ) = X, P -a.s. An attainable claim can thus be replicated perfectly by investing
V0(ϕ) at time 0 and investing during the interval [0, T ] according to the self-financing
strategy ϕ. Hence, at any time t, there is no difference between holding the claim X
and the portfolio ϕt. In this sense, the claim X is redundant in the market, and from the
assumption of no arbitrage it follows that the price of X at time t must be Vt(ϕ). Thus, the
initial investment V0(ϕ) is the unique arbitrage free price of X. If all contingent claims are
attainable, the model is called complete and otherwise it is called incomplete. It is well-
known from the financial literature, see e.g. Björk (2004), that the Black–Scholes model
is complete and arbitrage free, and that the discounted value process associated with any
self-financing trading strategy is a Q0-martingale. Throughout the chapter, we denote by
S∗ the discounted stock price and by V∗(ϕ) the discounted value process. Furthermore
we use the asterisk to denote that a constant or function has been multiplied by e−rT , i.e.
discounted from time T to time 0.

2.4 Capital insurances

Consider a life insurance company whose insurance portfolio constitutes capital insurances
exclusively. A capital insurance pays out a sum insured at a specified time, whether the
insured is alive or not. For simplicity we assume that no payments between the company
and the insured take place during (0, T ). In this case, we can disregard the individual
contracts and focus on the total insurance portfolio.

The aim of this section is, while respecting the general terms of the contracts, to determine
an arbitrage free distribution of the assets at time T among the accounts on the liability
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side. We shall refer to such a distribution as fair, see Section 2.4.2 for more details. We
assume that all insured are promised the same accumulation factor GT on the deposit in
the period (0, T ). In practice, we often have GT ≥ 1. The consequence of the guarantee
is that the total deposit should be at least GTV0 at time T whenever possible. If the
company is unable to cover the guarantee, all assets are allocated to the deposit and paid
to the insured in cash, while the company is declared bankrupt.

Remark 2.4.1 Two possible choices for the guaranteed accumulation factor are 1 + gT
and egT , depending on whether g is expressed in terms of a periodical or a continuously
compounding rate. If T = 1 and time is measured in years, then G1 = 1 + g corresponds
to a guaranteed annual interest rate of g.

�

Remark 2.4.2 For the company to survive in the long run, we should have GT ≤ erT .
However, since we are interested in short term conditions only, also the reverse situation
is relevant.

�

To be consistent with common practice, the company at time 0 announces a deposit
accumulation factor KT , KT ≥ GT , by which they intend to accumulate the deposit
at time T . In contrast to GT , we do not consider KT as legally binding. Hence, at
time T the company is allowed to use an accumulation factor different from KT for the
actual accumulation. However, using an accumulation factor different from KT affects
the credibility of the company, and thus, it is not done frequently in practice. In order
to model this reluctancy in a simple way without removing the possibility of using an
accumulation factor different from KT , we assume that the company uses KT unless the
value of the risky investments at time T , VT (ϕ), is less than KTV0(1+γ). Here, the factor
γ, γ ≥ 0, is the proportion of the deposit which is the target for the minimal bonus reserve,
as decided by the management of the insurance company.

To compensate the equity capital for the exposure to the financial risk inherent in capital
insurances, we introduce the parameter ρ, which represents the interest rate credited to
the equity capital in addition to the riskfree interest rate, whenever such an additional
return is possible.

2.4.1 Distribution scheme

The distribution scheme used by the company to distribute assets at time T between
the three accounts on the liability side depends on the development of the assets of the
company and hence on the financial market. We distinguish between the following three
situations for the development of the assets:

1. AT < GTV0: In this case, the company does not have sufficient assets to cover the
guarantee. Since the interest of the insured takes priority over the interest of the
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owners of the company, all capital is allocated to the deposit, and the equity is set
to 0, that is

VT = AT ,

ET = 0,

UT = 0.

2. GTV0 ≤ AT < KTV0(1 + γ) + erTE0: Here, the assets are sufficient to meet the
guaranteed accumulation of the deposit. However, using the announced deposit ac-
cumulation factor would leave the company with a bonus reserve less than the target
for the minimal bonus reserve, γVT . Hence, the company chooses to accumulate the
deposit by the guaranteed accumulation factor GT . This way, the company obtains
the maximal possible bonus reserve, which in some cases exceeds γVT . The equity
capital at time T is given by the equity capital at time 0 accumulated with the
interest rate r + ρ or the total assets deducted the deposit at time T , whichever is
smallest. The bonus account is calculated residually as the assets subtracted the
deposit and the equity capital. This leads to the following distribution:

VT = GTV0,

ET = min
(
e(r+ρ)TE0, AT − VT

)
,

UT = AT − VT − ET .

3. erTE0 +KTV0(1 + γ) ≤ AT : This outcome leaves the company with a bonus reserve
larger than γVT after accumulating the deposit with KT . The distribution is given
by an expression similar to the one in case 2 with GT substituted by KT . Thus

VT = KTV0,

ET = min
(
e(r+ρ)TE0, AT − VT

)
,

UT = AT − VT − ET .

Note that in the distribution scheme we first use the bonus reserve to cover the accumu-
lation of the deposit, and if this is insufficient, we then use the equity capital.

In the distribution scheme, the only unknown parameter is ρ. Hence, determining the fair
distribution scheme reduces to determining the fair value of ρ. Since ET ≤ e(r+ρ)TE0, a
necessary requirement for a distribution scheme to be arbitrage free is ρ ≥ 0. Hence, the
referral to ρ as the additional rate of return. Furthermore, we immediately observe from
the distribution scheme that ET is non-decreasing in ρ for all ω. If further AT is stochastic,
i.e. if the company invests some capital in the risky asset, then P (AT−VT ≥ e(r+ρ)TE0) > 0
for all finite ρ. Hence the set of ω’s for which ET is strictly increasing in ρ has a positive
probability. We thus have that the fair value of ρ, if it exists, is unique.
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2.4.2 Fair distribution

A distribution scheme is said to be fair if it does not introduce arbitrage opportunities
for the insurance company or the insurance portfolio. Since the size of the accounts on
the liability side of the balance sheet depends on the development of the financial market
only, we can view ET and VT + UT as contingent claims in the complete and arbitrage
free market (B,S,G). Hence, the claims ET and VT + UT have unique prices. Thus, the
distribution scheme is fair, if

E0 = e−rTEQ
0
[ET ] , (2.4.1)

and

V0 + U0 = e−rTEQ
0
[VT + UT ] . (2.4.2)

Note that since we are interested in the distribution of assets between the insurance port-
folio as a whole and the company, and not between the insured individuals, we do not
distinguish between the deposit and the bonus reserve in (2.4.2). Depending on the bonus
strategy of the company, the individual contracts may or may not be fair, but for the
insured portfolio as a whole the contracts are fair if (2.4.2) is fulfilled. Since the assets are
invested in a self-financing portfolio we have

EQ
0
[e−rTAT ] = A0,

such that (2.4.1) is satisfied if and only if (2.4.2) is satisfied. Hence, determining the fair
value of ρ, if it exists, amounts to solve (2.4.1) with respect to ρ.

2.4.3 Buy and hold strategy

Consider a buy and hold strategy, which is the simplest example of a self-financing strategy.
In the buy and hold strategy the company invests ϑS0 and η, respectively, in the risky
and the riskfree asset at time 0 and no trading takes place until time T . Hence, the value
at time T of the risky portfolio is

VT (ϕ) = ϑST + ηerT .

Assume the company follows a buy and hold strategy with ϑ > 0, i.e. with some invest-
ments in the risky asset. We now derive an implicit expression for the fair value of ρ by
decomposing the value of the equity capital at time T into payoffs from standard European
options on the stock.

Define the quantities s1 and s2 as the values of ST which solve the two equations

GTV0 = erTE0 + ϑST + ηerT , (2.4.3)

and

KTV0(1 + γ) = ϑST + ηerT , (2.4.4)
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respectively. Hence, s1 is the lowest stock price at time T , which does not lead to bank-
ruptcy of the insurance company, while s2 is the lowest stock price for which, the company
uses KT as accumulation factor. Solving (2.4.3) and (2.4.4) for ST we get

s1 =
GTV0 − ηerT − erTE0

ϑ
, (2.4.5)

and

s2 =
KTV0(1 + γ) − ηerT

ϑ
. (2.4.6)

Note that even though the stock price is positive, s1 and s2 might be negative. If s1
is negative, the capital invested in the savings account is sufficient to ensure that the
company is not bankrupted, whereas a negative value for s2 corresponds to the case,
where the capital invested in the savings account is sufficient to ensure that the company
always uses KT to accumulate the deposit. Using s1 and s2, we can rewrite the value of
the equity capital at time T as

EBT = 1(ST<s1)E
B
T + 1(s1≤ST<s2)E

B
T + 1(s2≤ST )E

B
T ≡ EB1

T + EB2
T + EB3

T .

Here, the superscript B indicates that we are working with a buy and hold strategy. The
expressions for the equity capital in the different situations can be found in Section 2.4.1.
Since EB1

T is the equity capital in case of bankruptcy, it is equal to 0.

In order to decompose EB2
T , we first recall that

EB2
T = 1(s1≤ST<s2) min

(
e(r+ρ)TE0,VT (ϕ) + erTE0 −GTV0

)
. (2.4.7)

In order to calculate (2.4.7), we determine s3 which is the maximum value of ST for which

VT (ϕ) + erTE0 −GTV0 ≤ e(r+ρ)TE0. (2.4.8)

Hence s3 is the largest value for the stock price at time T for which the assets are insufficient
to accumulate the equity capital with interest rate r + ρ, if we accumulate the deposit
with GT . Solving (2.4.8) we get

s3 =
(eρT − 1)erTE0 +GTV0 − ηerT

ϑ
. (2.4.9)

Rewriting s3 as

s3 = s1 +
e(r+ρ)TE0

ϑ
,

and using that min(r, ρ) > −∞ and ϑ > 0 we observe that s3 > s1, such that inserting in
(2.4.7) gives

EB2
T = 1(s1≤ST<min(s2,s3))

(
erTE0 + VT (ϕ) −GTV0

)
+ 1(min(s2,s3)≤ST<s2)e

(r+ρ)TE0

= 1(s1≤ST<min(s2,s3))ϑ (ST − s1) + 1(min(s2,s3)≤ST<s2)e
(r+ρ)TE0

= ϑ

(
(ST − s1)

+ − (ST − min(s2, s3))
+ − (min(s2, s3) − s1) 1(min(s2,s3)<ST )

)

+ e(r+ρ)TE0

(
1(min(s2,s3)≤ST ) − 1(s2≤ST )

)
. (2.4.10)
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Thus, EB2
T can be decomposed into two terms. The first term is the number of stocks

multiplied by the difference between the payoff from two European call options with strikes
s1 and min(s2, s3) subtracted the payoff from a so-called binary cash call option with strike
min(s2, s3) and cash min(s2, s3) − s1. The second term is the equity capital accumulated
with interest rate r + ρ multiplied by the difference between the payoff from two binary
cash call options with strikes min(s2, s3) and s2. For a description of the these and other
options mentioned in this chapter see Musiela and Rutkowski (1997).

In order to decompose EB3
T we first determine s4, which is the largest value of ST for

which

erTE0 + VT (ϕ) −KTV0 ≤ e(r+ρ)TE0.

Solving for ST we get

s4 =
(eρT − 1)erTE0 +KTV0 − ηerT

ϑ
. (2.4.11)

The interpretation of s4 is similar to that of s3, however here the deposit is accumulated
with KT . Calculations similar to those for EB2

T give

EB3
T = 1(s2≤ST ) min

(
e(r+ρ)TE0, e

rTE0 + VT (ϕ) −KTV0

)

= 1(s2≤ST<max(s2,s4))ϑ (ST − s5) + 1(max(s2,s4)≤ST )e
(r+ρ)TE0

= ϑ

(
(ST − s2)

+ − (ST − max(s2, s4))
+ + 1(s2≤ST )(s2 − s5)

− 1(max(s2,s4)≤ST ) (max(s2, s4) − s5)

)
+ 1(max(s2,s4)≤ST )e

(r+ρ)TE0, (2.4.12)

where we have used the notation

s5 =
KTV0 − ηerT − erTE0

ϑ
. (2.4.13)

Hence, EB3
T can be decomposed into two terms as well. The first term is the number of

stocks multiplied by the payoff from known European options, and the second term is the
equity capital accumulated with interest rate r+ ρ multiplied by the payoff from a binary
cash call option. Denote by BCC and C, respectively, the price of a binary cash call and
a call option. It is well-known that BCC and C are given by

BCC(x, S0, σ) = EQ
0 [
e−rT 1(x≤ST )

]
=





e−rTΦ

(
log
�

S0
x

�
+(r− 1

2
σ2)T

σ
√
T

)
, x > 0,

e−rT , x ≤ 0,

and

C(x, S0, σ) = EQ
0 [
e−rT (ST − x)+

]

=





S0Φ

(
log
�

S0
x

�
+(r+ 1

2
σ2)T

σ
√
T

)
− e−rTxΦ

(
log
�

S0
x

�
+(r− 1

2
σ2)T

σ
√
T

)
, x > 0,

S0 − e−rTx, x ≤ 0,
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where Φ denotes the distribution function for the standard normal distribution. To sim-
plify notation, we use the short hand notation BCC(x) and C(x) in expressions involving
many option prices with the same initial value and volatility. Applying criterion (2.4.1)
we obtain the following proposition

Proposition 2.4.3
If a company invests according to a buy and hold strategy the fair value of ρ satisfies

E0 = e(r+ρ)TE0

(
BCC(min(s2, s3)) −BCC(s2) +BCC(max(s2, s4))

)

+ ϑ

(
C(s1) − C(min(s2, s3)) + C(s2) − C(max(s2, s4))

− (min(s2, s3) − s1)BCC(min(s2, s3))

+ (s2 − s5)BCC(s2) − (max(s2, s4) − s5)BCC(max(s2, s4))

)
,

where s1 − s5 are given by (2.4.5), (2.4.6), (2.4.9), (2.4.11) and (2.4.13) and all option
prices are calculated using initial value S0 and volatility σ.

If ϑ = 0, all assets are invested in the savings account. Hence, the value at time T of
the assets is deterministic and equal to AT = erTA0. In this case we obtain the following
result for the fair value of ρ.

Proposition 2.4.4
If a company invests in the savings account only, a fair value of ρ must satisfy

1. If erTA0 < GTV0 then no values of ρ exist for which the distribution scheme fair.

2. If GTV0 ≤ erTA0 < KTV0(1 + γ) + erTE0, then the distribution scheme is fair, if
either of the following apply

(a) erTE0 < erTA0 −GTV0 and ρ = 0.

(b) GT = erT V0+U0
V0

and ρ ≥ 0.

3. If KTV0(1+γ)+ erTE0 < erTA0, then the distribution scheme is fair, if either of the
following apply

(a) erTE0 < erTA0 −KTV0 and ρ = 0.

(b) KT = erT V0+U0
V0

and ρ ≥ 0.

Proof of Proposition 2.4.4: See Section 2.10.1.

�
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Proposition 2.4.4 has the following interpretation: If the assets and hence the accounts
on the liability side are deterministic at time T the distribution scheme is fair if only if
ET = erTE0. Since this is intuitively clear, the proposition is not particularly interesting
and stated for completeness, only.

We end this section with a result for the probability of ruin of the company at time T .

Proposition 2.4.5
The probability, pruin(ϕ), that a company, using the buy and hold strategy ϕ, is ruined
at time T is given by

pruin(ϕ) = Φ




log
(
s1
S0

)
−
(
α− 1

2σ
2
)
T

σ
√
T


 .

Proof of Proposition 2.4.5: The company is ruined at time T if AT < GTVT . Hence,

pruin(ϕ) = P [AT < GTV0] = P

[
ST <

GTVT − ηerT − erTE0

ϑ

]
= P [ST < s1] .

Here, we have used the definition of s1 from (2.4.5). The result now follows by inserting the

solution, ST = S0e
(α−σ2/2)T+σfWT , to the stochastic differential equation for the dynamics

of S under P given in (2.3.1).
�

2.4.4 Constant relative portfolio weights

Now consider the case where the company continuously adjusts the investment portfolio,
such that at all times, t ∈ [0, T ], the proportion δ ∈ [0, 1] of the portfolio value is invested
in stocks. Hence,

ϑtSt = δVt(ϕ) and ηtBt = (1 − δ)Vt(ϕ).

In this case the dynamics under Q0 of the value process of the self-financing strategy are

dVt(ϕ) = ϑtdSt + ηtdBt

= ϑt(rStdt+ σStdWt) + ηtrBtdt

= rVt(ϕ)dt + δσVt(ϕ)dWt.

We note that the dynamics of the value process are of the same form as the dynamics of
the stock price. For δ > 0 calculations similar to those for a buy and hold strategy give

Proposition 2.4.6
When investing in a portfolio with constant relative portfolio weights the fair value of ρ
solves the following equation

E0 = e(r+ρ)TE0 (BCC(min(v2, v3)) −BCC(v2) +BCC(max(v2, v4)))

+ C(v1) − C(min(v2, v3)) + C(v2) − C(max(v2, v4))

− (min(v2, v3) − v1)BCC(min(v2, v3))

+ (v2 − v5)BCC(v2) − (max(v2, v4) − v5)BCC(max(v2, v4)),
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where

v1 = GTV0 − erTE0,

v2 = KTV0(1 + γ),

v3 = (eρT − 1)erTE0 +GTV0,

v4 = (eρT − 1)erTE0 +KTV0,

v5 = KTV0 − erTE0,

and all option prices are calculated with initial value V0 + U0 and volatility δσ.

If δ = 0 we are in exactly the same situation as in the buy and hold strategy with ϑ = 0,
so Proposition 2.4.4 applies.

Note that under P the dynamics of the value process for a self-financing strategy with
constant relative portfolio weights are

dVt(ϕ) = ϑtdSt + ηtdBt

= ϑt(αStdt + σStdW̃t) + ηtrBtdt

= (r + δ(α − r))Vt(ϕ)dt + δσVt(ϕ)dW̃t.

This leads to the following proposition for the probability of ruin at time T .

Proposition 2.4.7
The probability of ruin, pruin(ϕ), is given by

pruin(ϕ) = Φ




log
(

v1
V0+U0

)
−
(
r + δ(α − r) − 1

2(δσ)2
)
T

δσ
√
T


 .

2.4.5 Buy and hold with stop-loss if solvency is threatened

Consider the case where the regulatory institutions set a solvency requirement for the
insurance company. As in practice, the requirement considered here is a requirement on
the equity capital. After accumulating the deposit at time T , the equity capital should be
at least a proportion β of the deposit, i.e. ET ≥ βVT . Since the solvency requirement must
be satisfied at the end of each accumulation period we know that E0 ≥ βV0. Otherwise
the company would have been declared insolvent already. If further erTE0 ≥ βKTV0

and A0 ≥ e−rTGTV0(1 + β) the company may avoid insolvency by rebalancing the risky
portfolio to include investments in the savings account only, if the value of the assets
reaches the lower boundary

At = e−r(T−t)GTV0(1 + β). (2.4.14)

Now assume the company invests in a buy and hold strategy as introduced in Section 2.4.3,
until a possible intervention. In this case we can write (2.4.14) in terms of the discounted
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stock price

S∗
t =

e−rTGTV0(1 + β) − η − E0

ϑ
≡ H.

Remark 2.4.8 The stop-loss criterion in (2.4.14) is just one of many possible criterions.
If V0 + U0 ≥ e−rTKTV0(1 + γ) the alternative criterion Vt(ϕ) = e−r(T−t)KTV0(1 + γ) in
addition to solvency also guarantees that KT is used as accumulation factor.

�

Decomposing the equity capital we first distinguish between whether the company has
intervened or not

EBST = 1(inf0≤t≤T S
∗
t ≤H)E

BS
T + 1(inf0≤t≤T S

∗
t >H)E

BS
T ≡ E

BS1

T + E
BS2

T .

Here, the superscript BS indicates that the company uses a buy and hold strategy with
stop-loss. When inf0≤t≤T S∗

t ≤ H the asset value is deterministic and equal to GTV0(1+β),
such that

E
BS1

T = 1(inf0≤t≤T S
∗
t ≤H) min

(
e(r+ρ)TE0, βGTV0

)
= 1(inf0≤t≤T S

∗
t ≤H)βGTV0.

Here, we have used that erTE0 ≥ βKTV0 ≥ βGTV0 in both equalities and ρ ≥ 0 in
the last equality. We recognize this as the payoff from a down-and-in barrier option on
the discounted stock price with the deterministic payoff βGTV0 when knocked in. When
inf0≤t≤T S∗

t > H it holds in particular that

ST >
GTV0(1 + β) − ηerT − erTE0

ϑ
≡ sβ1 .

The assumptions on the equity capital and the fact that ρ ≥ 0 gives that s3 ≥ sβ1 . Hence,
calculations similar to those leading to (2.4.10) and (2.4.12) gives

E
BS2

T = 1(inf0≤t≤T S
∗
t >H)

(
e(r+ρ)TE0

(
1(min(s∗2,s

∗
3)≤S∗

T ) − 1(s∗2≤S∗
T ) + 1(max(s∗2,s

∗
4)≤S∗

T )

)

+ ϑ

(
erT
((

S∗
T − sβ,∗1

)+
− (S∗

T − min(s∗2, s
∗
3))

+ + (S∗
T − s∗2)

+ − (S∗
T − max(s∗2, s

∗
4))

+
)

+
(
sβ1 − s1

)
1
(sβ,∗

1 <S∗
T )

− (min(s2, s3) − s1) 1(min(s∗2,s
∗
3)<S∗

T )

+ (s2 − s5)1(s∗2≤S∗
T ) − 1(max(s∗2 ,s

∗
4)≤S∗

T ) (max(s2, s4) − s5)

))
.

Thus, the equity capital can be written in terms of payoffs from barrier options on the
discounted stock price. To indicate that an option is written on the discounted stock price,
we equip the option price by an asterisk (∗). When working with barrier options we equip
the notation for the corresponding European option, or 1 in case of a deterministic value,
with two letters as a sub- or superscript depending on whether we are dealing with a down
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or an up barrier option. The first letter is the barrier and the second describe whether
we are dealing with an out, denoted O, or an in, denoted I, option. Using Björk (2004,
Theorem 18.8) we are able to write prices of the relevant barrier options on the discounted
stock price in terms of prices of European options. For S0 > H we obtain the following
option prices: A down-and-out option with payoff 1

1∗HO(S0, σ) = EQ
0
[
e−rT 1(inf0≤t≤T S

∗
t>H)

]

=





e−rTΦ

(
log
�

S0
H

�
− 1

2
σ2T

σ
√
T

)
−
(
S0
H

)
e−rTΦ

(
log
�

H
S0

�
− 1

2
σ2T

σ
√
T

)
, H > 0,

e−rT , H ≤ 0,

a down-and-out binary cash call option

BCC∗
HO(x, S0, σ) = EQ

0
[
e−rT 1(inf0≤t≤T S

∗
t>H)1(x≤S∗

T )

]

=





BCC∗(x, S0, σ) − S0
H BCC

∗
(
x, H

2

S0
, σ
)
, 0 < H ≤ x,

1∗H0(S0, σ), max(0, x) ≤ H,
BCC∗(x, S0, σ), H ≤ 0 < x,
e−rT , max(x,H) ≤ 0,

and a down-and-out call option

C∗
HO(x, S0, σ) = EQ

0
[
e−rT 1(inf0≤t≤T S

∗
t >H)(S

∗
T − x)+

]

=





C∗(x, S0, σ) − S0
H C

∗
(
x, H

2

S0
, σ
)
, 0 < H ≤ x,

C∗(x, S0, σ), H ≤ 0 < x,
e−rT (S0 − x), max(H,x) ≤ 0,

C∗(H,S0, σ) − S0
H C

∗
(
H, H

2

S0
, σ
)

+ (H − x)1∗HO(S0, σ), max(0, x) ≤ H.

Here the prices BCC∗ and C∗ can be calculated from the formulas for BBC and C using

BCC∗(x, S0, σ) = BCC(erTx, S0, σ),

C∗(x, S0, σ) = e−rTC(erTx, S0, σ).

For S0 ≤ H all down-and-out options have a price equal to 0. For a down-and-in option
with payoff 1 we have for all S0

1∗HI(S0, σ) = e−rT − 1∗HO(S0, σ).

The following proposition now follows from applying criterion (2.4.1).

Proposition 2.4.9
If a company follows a buy and hold strategy with stop-loss in case solvency is threatened
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the fair value of ρ must satisfy

E0 = 1∗HIβGTV0

+ e(r+ρ)TE0

(
BCC∗

HO (min (s∗2, s
∗
3)) −BCC∗

HO (s∗2) +BCC∗
HO (max(s∗2, s

∗
4))

)

+ ϑ

(
erT
(
C∗
HO

(
sβ,∗1

)
− C∗

HO (min (s∗2, s
∗
3)) + C∗

HO (s∗2) − C∗
HO (max(s∗2, s

∗
4))
)

+
(
sβ1 − s1

)
BCC∗

HO

(
sβ,∗1

)
− (min (s2, s3) − s1)BCC

∗
HO (min (s∗2, s

∗
3))

+ (s2 − s5)BCC
∗
HO (s∗2) − (max(s2, s4) − s5)BCC

∗
HO (max(s∗2, s

∗
4))

)
,

where all option prices are calculated with initial value S0 and volatility σ.

2.4.6 Constant relative amount δ in stocks until solvency is threatened

Now assume that a company, whose assets at time 0 fulfill A0 ≥ e−rTGTV0(1+β), initially
invests in a portfolio with constant relative portfolio weights as described in Section 2.4.4.
As in Section 2.4.5 the company rebalances the investment portfolio to include the riskfree
asset only, the first time (2.4.14) holds. Written in terms of the discounted value process
of the investment portfolio the company rebalances the portfolio if

V∗
t (ϕ) = e−rTGTV0(1 + β) − E0 ≡ H̃.

As in Section 2.4.5 we know that E0 ≥ βV0 and further assume that erTE0 ≥ βKTV0. The
following proposition now follows from Proposition 2.4.9 in the same way as Proposition
2.4.6 followed from Proposition 2.4.3

Proposition 2.4.10
For a company investing in a portfolio with constant relative portfolio weights until sol-
vency is threatened the fair value of ρ must satisfy

E0 = 1∗eHIβGTV0

+ e(r+ρ)TE0

(
BCC∗eHO (min (v∗2, v

∗
3)) −BCC∗eHO (v∗2) +BCC∗eHO (max(v∗2 , v

∗
4))
)

+ erT
(
C∗eHO (vβ,∗1

)
− C∗eHO (min (v∗2 , v

∗
3)) + C∗eHO(v∗2) − C∗eHO(max(v∗2 , v

∗
4))
)

+
(
vβ1 − v1

)
BCC∗eHO (vβ,∗1

)
− (min (v2, v3) − v1)BCC

∗eHO (min (v∗2 , v
∗
3))

+ (v2 − v5)BCC
∗eHO(v∗2) − (max(v2, v4) − v5)BCC

∗eHO (max(v∗2 , v
∗
4)) ,

where all option prices are calculated with initial value V0 + U0 and volatility δσ and

vβ1 = GTV0(1 + β) − erTE0.
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2.5 Pure endowments

We now consider a company whose insurance portfolio consists of pure endowments. To
carry out the study we first extend the probabilistic model to include the development of
a portfolio of insured lives. This is done following the approach in Møller (1998).

2.5.1 The model for the insurance portfolio

Consider an insurance portfolio consisting at time 0 of Y0 insured lives of the same age, say
x. We assume that the individual remaining lifetimes at time 0 of the insured are described
by a sequence T1, . . . , TY0 of i.i.d. non-negative random variables defined on (Ω,F , P ). We
further make the natural assumption that the distribution of Ti is absolutely continuous
and P(Ti > T ) > 0, such that the mortality intensity µx+t is well-defined on [0, T ]. The
survival probability from time 0 to t, t ∈ [0, T ] for one individual in the insurance portfolio
is given by

tpx ≡ P(Ti > t) = e−
R t
0 µx+udu.

Denote by tqx the probability of death from time 0 to t, i.e. tqx = 1− tpx. Now define the
processes Y = (Yt)0≤t≤T and N = (Nt)0≤t≤T by

Yt =

Y0∑

i=1

1(Ti>t) and Nt =

Y0∑

i=1

1(Ti≤t).

Then Yt and Nt, respectively, denote the number of survivors and the number of deaths
in the insurance portfolio at time t. The filtration H = (Ht)0≤t≤T is the P -augmentation
of the natural filtration generated by N , i.e. Ht = H+

t ∨ N , where

H+
t = σ{Nu, u ≤ t}.

Since the probability of two individuals dying at the same time is 0, then N is a 1-
dimensional counting process. The i.i.d. assumption on the remaining lifetimes further
gives that N is an H-Markov process. The stochastic intensity process λ = (λt)0≤t≤T of
N under P can now be informally defined by

λtdt ≡ EP [dNt| Ht−] = (Y0 −Nt−)µx+tdt.

Thus, the probability of experiencing a death in the portfolio in the next short interval is
the number of survivors multiplied by the probability of one person dying. It is well-known
that the process M defined by

Mt = Nt −
∫ t

0
λudu = Nt −

∫ t

0
(Y0 −Nu−)µx+udu, 0 ≤ t ≤ T,

is an H-martingale under P .
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2.5.2 The combined model

Now introduce the filtration F = (Ft)0≤t≤T for the combined model of the economy and
the insurance portfolio by

Ft = Gt ∨Ht.

Assume that the economy is stochastically independent of the development of the insurance
portfolio, i.e. Gt and Ht are independent. This ensures that the properties of M and W
are inherited in the larger filtration F.

We now address the choice of equivalent martingale measure in the combined model. For
any F-predictable function h, h > −1, we can define a likelihood process L = (Lt)0≤t≤T
by

dLt = Lt−htdMt,

L0 = 1,

and construct a new measure equivalent to P by

dQh

dP
= OTLT . (2.5.1)

We note that h = 0 corresponds to Q0 defined in Section 2.3. The measure Qh defined
by (2.5.1) is a probability measure if EQ

0
[LT ] = 1, or equivalently, if EP [OTLT ] = 1. To

preserve the independence between Gt and Ht under Qh we restrict ourselves to functions
h which are H-predictable. Under this additional assumption, all measures Qh defined
by (2.5.1) are equivalent martingale measures if EP [LT ] = 1, see Møller (1998) for the
necessary calculations. Girsanov’s theorem for point processes, see e.g. Andersen, Borgan,
Gill and Keiding (1993), gives that the stochastic intensity process λh = (λht )0≤t≤T for N
under Qh is given by

λht = (1 + ht)λt = (Y0 −Nt−)(1 + ht)µx+t.

Hence, changing measure from Q0 to Qh can be interpreted as changing the mortality
intensity from µx+t to (1 + ht)µx+t. With this interpretation the survival probability
under Qh is given by

tp
h
x = Qh(Ti > t) = e−

R t
0 (1+hu)µx+udu.

The probability of death under Qh is given by tq
h
x = 1 − tp

h
x. We note that if h is on

the form h(t,Nt−) then N is a Markov process under Qh as well as under P . Since no
unique equivalent martingale measure exists for the combined model, not all contingent
claims in (B,S,F) have unique prices. However, since (B,S,G) is complete, all contingent
claims depending only on the financial market still have unique prices. To find unique
prices for contingent claims depending on the development of the insurance portfolio, we
henceforth consider a fixed, but arbitrary, equivalent martingale measure Qh. Motivated
by the strong law of large numbers, the measure Q0, corresponding to risk neutrality
with respect to unsystematic mortality risk, is frequently used in the literature to price
insurance contracts with financial risk, see e.g. Aase and Persson (1994) and Møller (1998).
Møller (1998) also recognizes Q0 as the minimal martingale measure for the considered
model.
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2.5.3 The development of the deposit in a 1-period model

Now assume all insured in the portfolio introduced in Section 2.5.1 have purchased identical
pure endowments with termination at time T or later. If premiums are paid before or at
time 0 and the portfolio of insured lives develop exactly as expected, the portfolio-wide
deposit at time T is given by

V det
T = ETV det

0 .

Here, ET ∈ {GT ,KT } is the deposit accumulation factor for the interval (0, T ], and the
superscript det refers to a deterministic development of the insured portfolio. Dividing
by the number of expected survivors we obtain an expression for the development of the
deposit of one insured surviving to time T

V ind
T = ETV ind

0

1

T px
.

Thus, the portfolio-wide deposit at time T is given by

VT = YTV
ind
T = YTETV ind

0

1

T px
. (2.5.2)

2.5.4 Distribution scheme

Using (2.5.2) we define a distribution scheme, similar to the distribution scheme from
Section 2.4.1, which is used by the company in case of a portfolio of pure endowments:

1. AT < YTGTV
ind
0

1
T px

: Here, the assets are insufficient to meet the guaranteed deposit
at time T for all the survivors in the insured portfolio. Hence, the company is
declared bankrupt and all capital is allocated to the deposit.

VT = AT ,

ET = 0,

UT = 0.

2. YTGTV
ind
0

1
T px

≤ AT < YTKTV
ind
0

1
T px

(1 + γ) + erTE0: In this case the assets are
sufficient to meet the guarantee. However, accumulating with the announced ac-
cumulation factor leaves the company with a bonus reserve less than the minimal
target, γVT . Thus, as in the case of capital insurances the company uses GT to
accumulate. Similarly to Section 2.4.1 the capital is distributed as follows

VT = YTGTV
ind
0

1

T px
,

ET = min
(
e(r+ρ)TE0, AT − VT

)
,

UT = AT − VT − ET .
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3. erTE0 + YTKTV
ind
0

1
T px

(1 + γ) ≤ AT : Here, the investments and the development
of the insurance portfolio allow the company to accumulate using the announced
deposit rate and still have a bonus reserve above the minimal target. The distribution
is similar to the one above with GT replaced by KT

VT = YTKTV
ind
0

1

T px
,

ET = min
(
e(r+ρ)TE0, AT − VT

)
,

UT = AT − VT − ET .

Note that we by the above distribution scheme implicitly consider the mortality intensity as
guaranteed, since it is used even if the portfolio of insured behaves worse than anticipated.
Thus, in the present situation the additional interest rate ρ is a compensation for both
financial and unsystematic mortality risk. As in the case of capital insurances, the equity
capital is only used to cover the accumulation of the deposit if the payoff generated by the
deposit and bonus reserve is insufficient.

2.5.5 Fair distribution

From Section 2.5.4 we note that ET and VT +UT can be viewed as contingent claims in the
combined model (B,S,F). As in the case of capital insurances, we define the distribution
scheme as fair if it does not include an arbitrage possibility for either the company or the
portfolio of insured, i.e. if

E0 = e−rTEQ
h

[ET ] , (2.5.3)

and

V0 + U0 = e−rTEQ
h

[VT + UT ] . (2.5.4)

The relation

EQ
h

[e−rTAT ] = A0,

now ensures that (2.5.3) holds if and only if (2.5.4) holds, such that we may consider
(2.5.3) only.

Using the law of iterated expectations we can write (2.5.3) as

EQ
h

[ET ] = EQ
h

EQ
h

[ET |HT ]

=

Y0∑

n=0

(
Y0

n

)
(T p

h
x)
n(T q

h
x)
Y0−nEQ

h

[
1�
AT<nGTV

ind
0

1

T px

�0
+ 1(nGT V

ind
0

1

T px
≤AT<nKTV

ind
0

1

T px
(1+γ)+erTE0)

min

(
e(r+ρ)TE0, AT − nGTV

ind
0

1

T px

)

+ 1(nKT V0
1

T px
(1+γ)≤VT (ϕ)) min

(
e(r+ρ)TE0, AT − nKTV

ind
0

1

T px

)]
. (2.5.5)
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Recall that with respect to the financial market all measures Qh are identical. Thus, the
expectation can be viewed as a weighted average of Y0 + 1 portfolios of capital insurances
with initial deposit nV ind

0
1

T px
, n = 0, 1, . . . , Y0, respectively. Hence, most calculations

necessary to derive an implicit equation for ρ are identical to those already carried out in
Section 2.4.

Remark 2.5.1 Note that since all insured have identical contracts, the individual con-
tracts are fair if the bonus reserve at the time of purchase was 0 and a possible bonus
reserve at time of termination is distributed among the survivors in the insurance portfolio.

�

2.5.6 Buy and hold

When the company follows a buy and hold strategy the fair value of ρ is given by the
following proposition

Proposition 2.5.2
If an insurance company, whose portfolio consists of Y0 pure endowments, follows a buy
and hold strategy, then the fair value of ρ satisfies

E0 =

Y0∑

n=0

(
Y0

n

)
(T p

h
x)
n(T q

h
x)
Y0−n

(
e(r+ρ)TE0

(
BCC(max(sn2 , s

n
4 ))

+BCC(min(sn2 , s
n
3 )) −BCC (sn2 )

)

+ ϑ

(
C(sn1 ) − C(min(sn2 , s

n
3 )) + C(sn2 ) − C(max(sn2 , s

n
4 ))

− (min(sn2 , s
n
3 ) − sn1 )BCC(min(sn2 , s

n
3 ))

+ (sn2 − sn5 )BCC(sn2) − (max(sn2 , s
n
4 ) − sn5 )BCC (max(sn2 , s

n
4 ))

))
,

where

sn1 =
nGTV

ind
0

1
T px

− ηerT − erTE0

ϑ
,

sn2 =
nKTV

ind
0

1
T px

(1 + γ) − ηerT

ϑ
,

sn3 =

(
eρT − 1

)
erTE0 + nGTV

ind
0

1
T px

− ηerT

ϑ
,

sn4 =

(
eρT − 1

)
erTE0 + nKTV

ind
0

1
T px

− ηerT

ϑ
,

sn5 =
nKTV

ind
0

1
T px

− ηerT − erTE0

ϑ
.

Here, all option prices are calculated using initial value S0 and volatility σ.
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Again we are interested in the probability that the company is ruined at time T .

Proposition 2.5.3
The probability of ruin, pruin(ϕ), at time T for a company following a buy and hold
strategy is

pruin(ϕ) =

Y0∑

n=0

(
Y0

n

)
(T px)

n(T qx)
Y0−nΦ




log
(
sn
1
S0

)
−
(
α− 1

2σ
2
)
T

σ
√
T


 .

Proof of Proposition 2.5.3: Using iterated expectations we get

pruin(ϕ) = P

[
AT < YTGTV

ind
0

1

T px

]

= EP
[
P

[
AT < YTGTV

ind
0

1

T px

∣∣∣∣HT

]]

=

Y0∑

n=0

(
Y0

n

)
(T px)

n(T qx)
Y0−nP

[
AT < nGTV

ind
0

1

T px

]
.

The result now follows immediately from Proposition 2.4.5 and the definition of sn1 .

�

2.5.7 Constant relative portfolio

In the case of investments in a portfolio with constant relative portfolio weights we obtain
the following proposition from (2.5.5).

Proposition 2.5.4
For a company investing in a portfolio with constant relative portfolio weights the fair
value of ρ is the solution to the following equation

E0 =

Y0∑

n=0

(
Y0

n

)
(T p

h
x)
n(T q

h
x)
Y0−n

(
e(r+ρ)TE0

(
BCC(max(vn2 , v

n
4 ))

+BCC(min(vn2 , v
n
3 )) −BCC(vn2 )

)

+ C(vn1 ) − C(min(vn2 , v
n
3 )) + C(vn2 ) − C(max(vn2 , v

n
4 ))

− (min(vn2 , v
n
3 ) − vn1 )BCC(min(vn2 , v

n
3 ))

+ (vn2 − vn5 )BCC(vn2 ) − (max(vn2 , v
n
4 ) − vn5 )BCC(max(vn2 , v

n
4 ))

)
,
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where

vn1 = nGTV
ind
0

1

T px
− erTE0, (2.5.6)

vn2 = nKTV
ind
0

1

T px
(1 + γ), (2.5.7)

vn3 =
(
eρT − 1

)
erTE0 + nGTV

ind
0

1

T px
,

vn4 =
(
eρT − 1

)
erTE0 + nKTV

ind
0

1

T px
,

vn5 = nKTV
ind
0

1

T px
− erTE0. (2.5.8)

All option prices above are calculated using initial value V0 + U0 and volatility δσ.

Calculations similar to the case of investments in a buy and hold strategy gives the fol-
lowing result for the ruin probability.

Proposition 2.5.5
If a company, whose insurance portfolio consists of pure endowments, invests in a portfolio
with constant relative portfolio weights, then the probability of ruin at time T is given by

pruin(ϕ) =

Y0∑

n=0

(
Y0

n

)
(T px)

n(T qx)
Y0−nΦ




log
(

vn
1

V0+U0

)
−
(
r + δ(α − r) − 1

2(δσ)2
)
T

δσ
√
T


 .

2.5.8 Buy and hold with stop-loss if solvency is threatened

Assume the solvency requirement determined by the regulatory institutions is given by
ET ≥ βYTV

ind
T . Hence, E0 ≥ βY0V

ind
0 , since the company otherwise would be insolvent

already at time 0. Here, we further assume that the initial assets of the company fulfills

A0 ≥ e−rTY0GTV
ind
0

T p
h
x

T px
(1 + β).

To avoid accumulating with KT in situations where this leads to insolvency, we require
that erTE0 ≥ βKTY0V

ind
0

1
T px

. Thus, the factor 1
T px

makes the assumption on the initial
equity capital stronger than in the case of capital insurances. At time 0 the company
invests in a buy and hold strategy. However, to decrease the probability of insolvency the
company rebalances the investment portfolio to include investments in the savings account
only, if the assets hit the lower boundary

At = EQ
h

[
e−r(T−t)YTGTV

ind
0

1

T px
(1 + β)

]
= e−r(T−t)Y0GTV

ind
0

T p
h
x

T px
(1 + β). (2.5.9)

Thus, disregarding the information at time t about the development of the insurance
portfolio the company rebalances the portfolio if the value of the solvency requirement is
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equal to the assets. The advantage of (2.5.9) is that it can be written as

S∗
t =

e−rTY0GTV
ind
0

T p
h
x

T px
(1 + β) − η − E0

ϑ
≡ Z.

Hence, as in Section 2.4 the requirement on the assets can be transformed into a barrier
problem for the discounted stock price with a constant barrier.

Remark 2.5.6 A natural extension of (2.5.9) is to take the development of the insurance
portfolio into account. This gives the criterion

At = EQ
h

[
e−r(T−t)YTGTV

ind
0

1

T px
(1 + β)

∣∣∣∣Ft
]

= e−r(T−t)YtGTV
ind
0

T−tphx+t
T px

(1 + β).

(2.5.10)

However, this criterion does not allow us to write the problem as a constant barrier
problem. Both criterion (2.5.9) and (2.5.10) leave the company with a positive probability
of insolvency. To avoid insolvency almost surely, we could assume that

A0 ≥ e−rTY0GTV
ind
0

1

T px
(1 + β),

and use the intervention criterion

At = e−r(T−t)YtGTV
ind
0

1

T px
(1 + β),

which corresponds to assuming that all insured persons, which are alive at time t survive
to time T .

�

In order to use (2.5.5) we consider a fixed number of survivors, say n. Given the number
of survivors the equity capital can be decomposed into a term En,BS1

T , which is different

from 0 if the company has intervened and a term En,BS2
T , which is non-zero if the company
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has not intervened. For En,BS1
T we obtain

ET = 1(inf0≤t≤T S
∗
t ≤Z)
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(
1(v6<vn

1 )0 + 1(vn
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2 ) min
(
e(r+ρ)TE0, v6 − vn1

)

+ 1(vn
2 ≤v6) min

(
e(r+ρ)TE0, v6 − vn5

))
,

where vn1 , vn2 and vn5 are given by (2.5.6), (2.5.7) and (2.5.8), respectively, and

v6 = Y0GTV
ind
0

T p
h
x

T px
(1 + β) − erTE0.

For En,BS2
T the calculations in Section 2.4.5 applies. Thus, we get

Proposition 2.5.7
In the situation with stop-loss the fair value of ρ must satisfy
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where

sβ,n1 =
nGTV
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0

1
T px

(1 + β) − ηerT − erTE0

ϑ
.

Here, all option prices are calculated with initial value S0 and volatility σ.
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The probability of insolvency for a company following the investment strategy described
above is given in the following proposition

Proposition 2.5.8
For a company following a buy and hold strategy with stop-loss the probability of insol-
vency is given by

pins(ϕ) =

Y0∑
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n

)
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Proof of Proposition 2.5.8: See Section 2.10.4.
�

2.5.9 Constant relative amount δ in stocks until solvency is threatened

Consider the same set-up as in Section 2.5.8. The only difference is that the company
invests in a strategy with constant relative portfolio weights until a possible intervention.
Written in terms of the discounted value of the portfolio including risky investments the
rebalancing takes place the first time

V∗
t (ϕ) = e−rTY0GTV

ind
0

T p
h
x

T px
(1 + β) − E0 ≡ Z̃.

The result now follows from calculations similar to those in Section 2.5.8.

Proposition 2.5.9
In the situation with stop-loss the fair value of ρ must satisfy
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where

vβ,n1 = nGTV
ind
0

1

T px
(1 + β) − erTE0.

Here, all option prices are calculated with initial value V0 + U0 and volatility δσ.

Now calculations similar to those leading to Proposition 2.5.8 give

Proposition 2.5.10
For a company following a strategy with constant relative portfolio weights with stop-loss
the probability of insolvency is given by
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2.6 Numerical results

Since we obtain implicit equations for ρ only, we now resort to numerical techniques to
obtain fair values of ρ. We rewrite the expressions for the fair value of ρ on the form
ρ = f(ρ) for some function f and use iterations to find fix points for f . For all numerical
calculations we assume that time is measured in years and let T = 1. For an overview of
the notation used in this chapter we refer to Table 2.6.1.

2.6.1 Dependence on investment strategy

In this section we fix the parameters r = 0.06, σ = 0.2, GT = 1.045, KT = 1.06 and
γ = 0.1 and consider the dependence of ρ on the investment strategy.

For now we assume the initial capital is distributed as follows: V0 = 100, U0 = 10 and
E0 = 10. Figure 2.6.1 then shows the dependence of ρ on the relative initial investment in
stocks for a buy and hold strategy and a constant relative portfolio. The relative initial
investment in stocks is given by κ = ϑS0/V0(ϕ) for the buy and hold strategy and by
δ for the constant relative portfolio. The observations to be made from Figure 2.6.1 are
twofold. Firstly, ρ is an increasing function of the relative initial investment in stocks for
both investment strategies. This is not surprising, since ρ is a measure for the risk of
the insurance company and investing in stocks increases the risk. Secondly, comparing
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Symbol Interpretation

V Portfolio-wide deposit
U Bonus reserve
E Equity capital
S Stock price

V(ϕ) Value of investment portfolio ϕ
ρ Fair additional rate of return to equity capital
r Riskfree interest rate
σ Volatility of stock
GT Guaranteed accumulation factor
KT Announced accumulation factor
γ Target for minimal bonus reserve per deposit
T Length of accumulation period
β Solvency requirement on equity capital per deposit
ϑ Number of stocks held in a buy and hold strategy
δ Constant proportion invested in stocks
Y Number of survivors in insurance portfolio
h Market attitude towards unsystematic mortality risk

Table 2.6.1: Overview of notation

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.1

0.2
0.3

0.4 Constant relative portfolio    
Buy and hold

ρ

κ or δ

Figure 2.6.1: ρ as a function of the relative initial investment in stocks.



56 CHAPTER 2. FAIR DISTRIBUTION OF ASSETS IN LIFE INSURANCE

the two investment strategies, we observe that for a relative initial investment in stocks
between 0.2 and 0.7 the fair value of ρ is slightly higher when investing in a constant
relative portfolio rather than following a buy and hold strategy. This may be explained
by the fact that when investing in a portfolio with constant relative portfolio weights a
decrease in the stock price leads to additional investments in stocks and hence an increase
in the capital at risk. Comparing the strategies we also note that the values of ρ coincide
in the extremes where none or all capital is invested in stocks. This relies on the fact that
the strategies coincide in these two situations.

0.00 0.02 0.04 0.06 0.08 0.10

0.0
5

0.1
0

0.1
5

0.2
0

Buy and hold with stop−loss
Buy and hold (without stop−loss)    

β

ρ

Figure 2.6.2: ρ as a function of β for κ = 0.5.

In order to investigate the dependence of β we consider a buy and hold strategy with stop-
loss. The initial distribution of capital is changed such that U0 = 5, since the dependence
is more obvious in this case. The dependence of ρ on the required solvency margin β is
now shown in Figure 2.6.2 for κ = 0.5. We observe that ρ is a decreasing function of β.
This is also intuitively clear since increasing β, within the restrictions given in Section
2.4.5, increases the minimum payoff to the equity capital and hence decreases the risk of
the company. For comparison Figure 2.6.2 also includes a horizontal line showing the fair
value for an ordinary buy and hold strategy. Comparing the two strategies we observe
that for low values of β the stop-loss strategy leads to higher values of ρ than the strategy
without stop-loss. The reason for this is, that for low values of β the equity capital receives
a payoff in case of intervention which is so low that at the time of a possible intervention
the expected increase in the payoff from continuing the buy and hold strategy outweighes
the risk of an even smaller payoff.
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2.6.2 Dependence on parameters

For a company following a buy and hold strategy we now consider the dependence of ρ
on the parameters r, σ, GT , KT and γ for a fixed initial distribution of capital. To study

0.04 0.06 0.08 0.10 0.12 0.14

0.0
0

0.0
5

0.1
0

0.1
5

r

ρ

κ = 0.10
κ = 0.25
κ = 0.50

Figure 2.6.3: ρ as a function of the short rate of interest.

the dependence on r we let σ = 0.2, GT = 1.045, KT = 1.06, γ = 0.1, V0 = 100, U0 = 10
and E0 = 10. Figure 2.6.3 then shows the dependence on r for κ ∈ {0.10, 0.25, 0.50}.
The values of κ are chosen to illustrate a company with a conservative, a moderate and an
aggressive investment strategy, respectively. We observe that ρ is a decreasing function of r
for all values of κ. This is also expected since increasing the riskfree interest rate lowers the
probability of investment returns below the guaranteed/announced accumulation factor,
hence decreasing the risk of the insurance company.

Fixing r = 0.06 and letting U0 = 5 and E0 = 5, we now turn to the dependence on the
guaranteed accumulation factor, GT . The low values of E0 and U0 are chosen in order to
observe a dependence on GT for low values of κ. Figure 2.6.4 now shows the dependence
on GT for the same values of κ as above, i.e. κ ∈ {0.10, 0.25, 0.50}. We observe that ρ is
an increasing function of GT for all three values of κ. The positive dependence of ρ on
GT is intuitively clear, since the larger the guarantee to the insured, the more risky the
contract is for the company.

For a company investing in a constant relative portfolio the constants δ and σ only enter the
implicit equations for ρ as δσ, hence varying σ is identical to varying δ. Thus, we observe
from Figure 2.6.1 that ρ is an increasing function of σ. This seems intuitively clear since
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Figure 2.6.4: ρ as a function of the guaranteed accumulation factor.

increasing the volatility of the stocks increases the risk of the company. Investigating the
dependence of ρ on γ, we find that ρ essentially is independent of γ. However, a slight
negative dependence has been observed for high levels of volatility, low values of γ and
an equity capital which is large compared to the bonus reserve. That ρ is a decreasing
function of γ may be explained by the fact that increasing γ increases the probability
of accumulating using GT . Hence for some outcomes of the stock price there is a small
increase in the payoff to the equity capital, whereas all other outcomes give the same
payoff. Since the dependence is very small and in most cases non-existent, we have left
out a figure illustrating this. Regarding the relationship between ρ and KT we find that
ρ only depends on KT if V0 and E0 are large compared to U0 and the investment strategy
is quite risky. In this case plotting ρ as a function KT shows a shape similar to a 2.
order polynomial with branches pointing downwards. The dependence may be explained
by the fact that, when increasing KT the payoff to the insurance portfolio increases if KT

is used as accumulation factor, but at the same time the probability of accumulation with
KT decreases. Thus, the risk of the company is a tradeoff between two factors working
in opposite directions, such that the value of KT for which the maximum value of ρ is
obtained depends on V0 and U0. Since the equity capital in practice is much smaller than
the deposit, we conclude that ρ for practical purposes is independent of KT , and doing so,
we leave out a graph showing the uninteresting case where a dependence is found.
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2.6.3 Dependence on initial distribution of capital

To study the dependence of ρ on the initial distribution of capital we fix the parameters
r = 0.06, σ = 0.20, GT = 1.045, KT = 1.06 and γ = 0.10 and consider an insurance
company investing according to a buy and hold strategy with κ = 0.25. Since the value of
ρ is indifferent to scaling of the initial distribution of capital, we further fix V0 = 100 and
allow E0 and U0 to vary. Figure 2.6.5 now shows the dependence of ρ on U0 for different

0 5 10 15 20

0.0
0.1

0.2
0.3

0.4

ρ

stoc

U0

E0 = 2
E0 = 5
E0 = 10
E0 = 20
E0 = 100

Figure 2.6.5: ρ as a function of the initial bonus reserve for different values of the initial
equity capital.

values of E0. Comparing the graphs for the different values of E0, we observe that ρ is a
decreasing function of the equity capital. However, since ρ is an additional interest rate
to the entire equity capital, we still observe an increase in the nominal payment for the
increased risk even though ρ is decreasing. A decrease in ρ should thus be interpreted as
a decrease in the average risk of one unit of equity capital in the company. Furthermore,
we observe that ρ is a decreasing function of U0 for all values of E0. In Section 2.10.2
it is shown that ρ → 0 as U0 → ∞. Since the results are indifferent to scaling of the
initial capital, then increasing V0 is similar to decreasing E0 and U0. Hence, since ρ is a
decreasing function of E0 and U0 we have that it, as expected, is an increasing function
of V0.
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2.6.4 Effect from unsystematic mortality risk

Now consider an insurance company whose insurance portfolio consists of identical pure
endowments for a group of persons of age 50. To model the possible deaths of the insured
individuals we use a so-called Gompertz–Makeham form for the mortality intensity. Here,
the mortality intensity can be written as

µx+t = a+ bcx+t.

Here, the parameters, as in the Danish G82 mortality table for males, are given by a =
0.0005, b = 0.000075858 and c = 1.09144. To investigate the dependence on the number of
insured and the choice of equivalent martingale measure we assume the company follows
a buy and hold strategy with κ = 0.25 and keep the parameters and initial capital fixed
as r = 0.06, GT = 1.045, KT = 1.06, σ = 0.20, γ = 0.10, V0 = 100, U0 = 5 and
E0 = 5. Recall that V0 = Y0V

ind
0 , so the total deposit is held constant while the number

of insured individuals increases by decreasing the individual deposits accordingly. From
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Figure 2.6.6: ρ as a function of the number of insured for different values of h.

Figure 2.6.6 we see that ρ is a decreasing function of the number of insured. This is
in correspondence with our intuition, since increasing the size of the insurance portfolio
decreases the unsystematic mortality risk. Furthermore, we observe that ρ is a decreasing
function of h, and that the dependence on h is an increasing function of the number
of insured. That ρ is a decreasing function of h is intuitively clear since decreasing h
corresponds to decreasing the market mortality intensity, and hence increase the survival
probability in the derivation of ρ. The increasing dependence on h can be explained by the
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strong law of large numbers, which says that as the number of insured increases the number
of survivors concentrate increasingly around the mortality intensity. Hence the mortality
intensity used to determine ρ becomes increasingly important as the size of the insured
portfolio is increased. It can be shown, see Section 2.10.3, that if the number of insured
tends to infinity then ρ converges downwards to the solution in case of capital insurances

with GT and KT replaced by GT
T p

h
x

T px
and KT

T p
h
x

T px
, respectively. Hence considering the case

h = 0, we see that adding unsystematic mortality risk to a finite insurance portfolio leads
to a fair value of ρ, which is higher than the fair value of ρ, 0.0322, obtained for capital
insurances.

2.7 Impact of alternative distribution schemes

In this section we discuss how possible changes in the distribution scheme impact the
results for the fair value of ρ.

A major possible change in the distribution scheme would be not to allow any transfer
of capital from the bonus reserve to the equity capital. In the case where GTV0 ≤ AT <
KTV0(1 + γ) + erTE0 this would lead to the following expression for the equity capital

ET = max
(
0,min

(
e(r+ρ)TE0, AT − VT , AT − (V0 + U0)

))
,

A similar change of course applies to the situation where erTE0 + KTV0(1 + γ) ≤ AT .
Here the last term, which ensures that capital is not transferred from the bonus reserve
to the equity capital, might be negative and hence the maximum operator is necessary to
ensure that the equity capital is non-negative. Using this model increases the fair values
of ρ, since the exposure of the equity capital to risk is larger. The increase is easily seen
from the fact, that for a fixed ρ the new model would give an equity capital at time T
which always is less or equal to the equity capital in the original model. Hence, a fair
value of ρ must be higher. This model has been investigated in detail in the case where
the solvency requirement applies to the sum of the equity capital and bonus reserve. Two
important differences between the model above and the model considered in this chapter
are: Firstly, as U0 tends to infinity ρ converges to a strictly positive number, and secondly
the dependence on the solvency parameter is more complex as the equity capital might
receive the same negative payoff in case of intervention for different values of β.

Another possibility is to change the distribution scheme, such that the company use KT to
accumulate the deposit if AT ≥ KTV0(1 + γ). Thus, the company uses the accumulation
factor KT , providing that this leaves it with a minimum of γKTV0 in the sum of the bonus
reserve and equity capital. This criterion is closely related to a solvency requirement of
βVT on the sum of the equity capital and bonus reserve. Here, however the requirement
on the sum of the bonus reserve and equity capital is set by the board of the company and
not by legislation. Using this criterion in association with the model above we obtain a
strange hump around E0 = 20 for low values of U0, when investigating the dependence on
the size of the equity capital. This may be explained by the fact that with the proposed
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criterion the accumulation factor for the deposit depends on the initial equity capital.
Hence, for some outcomes of the investments different values for the initial equity capital
leads to different accumulation factors. Since applying a higher accumulation factor for
the same investment return obviously increases the risk of the company, this leads to a
positive dependence on the equity capital. The hump around E0 = 20 for low values of U0

shows that here this effect is more dominant than the otherwise predominant effect that
increasing the equity capital decreases ρ. For γ = 0 the criterion corresponds to the case
where the company views the announced accumulation factor as binding unless using KT

instead of GT would bankrupt the company. In this case we would obviously expect an
increase in the fair value of ρ.

If the company views the announced accumulation factor as legally binding the company
is bankrupt if AT < KTV0, and for AT ≥ KTV0 the deposit is accumulated using KT .
Applying the proper changes to the distribution scheme all necessary calculations are
similar to those already presented. Since viewing KT as binding obviously increases the
risk for the equity capital, this change should lead to higher fair values of ρ.

2.8 On the realism and versatility of the model

In this section we comment on the chosen model. First we comment on the chosen prob-
abilistic model and the requirement on the investment strategy. Then we discuss the
advantages and versatility of the 1-period model. To end the section we discuss possible
extensions.

The assumption that the financial market can be described by a Black–Scholes model is
not very realistic, since both the interest rate and the volatility changes stochastically
over time. However, if the accumulation period is relatively small the model is likely to be
an acceptable approximation to reality. Hence, working with a more advanced financial
model would make the results unnecessarily complicated. In the model we assume that
the mortality intensity is deterministic, such that only the unsystematic mortality risk
is considered. By unsystematic mortality risk we refer to the risk associated with the
random development of an insured portfolio with known mortality intensity. Thus, the
unsystematic mortality risk is the diversifiable part of the mortality risk. For a more
realistic model we could introduce a stochastic mortality intensity as in Chapter 3. This
would allow us to consider the systematic mortality risk, referring to the risk associated
with changes in the underlying mortality intensity, as well. Since changes in the underlying
mortality intensity affect all insured, the systematic mortality risk is non-diversifiable. On
the contrary it increases as the number of similar contracts in the portfolio of insured
increases. Hence, if we were to add systematic mortality risk to the model the impact on
the fair value of ρ would increase as a function of the length of the accumulation period,
T , and the number of insured, Y0. Since we consider one accumulation period only, the
assumption of deterministic mortality intensity is very close to reality and sufficient for
our purpose.
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Throughout chapter we assume that the company distinguishes between the investments
belonging to the equity capital and the investments belonging to the insurance portfolio.
Furthermore we assume that the assets belonging to the equity capital are invested in the
savings account to keep possible risky investments on behalf of the owners aside from the
risk associated with the insurance contracts. If the company does not make this distinction
when investing, we may obtain the desired distinction by assuming that the equity capital
is invested in the savings account and define the value of the risky portfolio residually as

Vt(ϕ) = At − ertE0.

Now the results in the chapter apply immediately for buy and hold strategies for A,
whereas an investment strategy for A with constant relative portfolio weights would lead
to minor modifications of the results.

Using a model with only one accumulation period has several advantages. Firstly, we, as
seen above, can justify working with a relatively simple probabilistic model. Secondly,
we are able to define a distribution scheme with only one endogenously given parameter,
since we do not have to specify a formula used to anticipate how the company chooses
KT . This is of importance, since in practice the choice of KT is widely influenced by the
competition, and thus, it is difficult to model. As for the versatility of the model we are
particularly interested in answers to the following two questions: Does repeated use of the
1-period model yield fairness in a multi-period setting? And if so, what insight does the
company gain by repeated use of the model? To answer the first question we consider an
arbitrary sequence of accumulation times 0 = T0 < T1 < . . . < Tn. For the distribution of
the assets to be fair in the multi period model it must hold that

EQ
h [
e−rTnETn

]
= E0,

for an arbitrary, but fixed, equivalent martingale measure, Qh. If we at each accumulation
time, Ti, condition on the information FTi

we obtain a string of 1-period models. Thus, if
we determine the fair value of ρ in each 1-period model we obtain:

EQ
[
e−rTnETn

]
= EQ

[
e−r(Tn−Tn−1)EQ

[
e−rTn−1ETn

∣∣FTn−1

]]
= EQ[e−rTn−1ETn−1 ]

= . . . = E0.

Here, the only restriction is, that the initial distribution of capital in one period is the
terminal distribution in the preceding period. Hence, it even holds if the model parameters
r, σ, γ and β and the investment strategy varies for different accumulation periods. Thus,
repeated use of the 1-period criterion for fairness yields fairness in a multi-period setting.
Using the model in a multi-period setting the company can obtain confidence bands for
the development of the balance sheet and long term ruin probabilities by simulating the
development of the financial market and the insurance portfolio. However, using the model
for simulation purposes we need to specify a formula, from which the company determines
the announced accumulation factor in each period. Furthermore the assumptions about
constant parameters in the financial market and a deterministic mortality intensity are
less realistic on a long term basis. This however, could be remedied by applying stochastic
models to determine the constant interest rate and volatility and deterministic mortality
intensity for the next accumulation period.
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Some possible extensions of the model are to include different types of insurance contracts,
insured of different ages and payments during the accumulation period. However, extend-
ing the model to include different types of contracts and different age groups increases the
possibility of a systematic redistribution of capital from one group of insured to another.

2.9 Conclusion

For a company issuing insurance contracts with guaranteed periodic accumulation fac-
tors we consider the problem of distributing the assets fairly between the accounts of
the insured and the equity capital. To derive a fair distribution we consider a 1-period
model representing one accumulation period. In the model the only free parameter in the
distribution scheme is the interest rate ρ, paid to the equity capital in addition to the
riskfree interest rate, when such an additional rate is possible. Using the principle of no
arbitrage, we are able to derive an implicit equation for the fair value of ρ given one of
four different investment strategies. Investigating the dependence of ρ on the investment
strategy, we observe that a constant relative portfolio is slightly more risky than a buy
and hold strategy, and that ρ is an increasing function of the relative initial investment
in stocks. In the case of a solvency requirement and stop-loss strategies we find that ρ
is a decreasing function of β. Considering the dependence of ρ on the parameters, we
observe a positive dependence on the volatility and the guaranteed accumulation factor
and a negative dependence on the riskfree interest rate. As for the announced deposit rate
and the parameter γ we found that the dependence for practical purposes is non-existent.
When considering the initial distribution of capital we find that ρ is an increasing function
of the initial deposit and a decreasing function of the equity capital and the bonus reserve.
Extending the model to include mortality obviously increases the fair value of ρ, since
it adds more uncertainty to the model. As expected we observe that in the case of risk
neutrality with respect to unsystematic mortality risk the fair value of ρ is a decreasing
function of the number of insured tending to the fair value in the case without mortality.
Furthermore we observe that the influence of the market attitude towards mortality risk
on the fair value of ρ increases as the number of insured increases.

2.10 Proofs and technical calculations

2.10.1 Proof of Proposition 2.4.4

If the company invests in the savings account only, the value of the assets at time T is
AT = erTA0. Since the value of the assets is deterministic, the distribution scheme is fair
if and only if ET = erTE0. Considering the different intervals in the distribution scheme
for the possible outcomes of AT , we get

1. If erTA0 < GTV0 then ET = 0, so we cannot have E0 = e−rTET if E0 > 0 since
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r <∞. Thus, no value of ρ gives a fair distribution scheme.

2. If GTV0 ≤ erTA0 < KTV0(1+γ)+erTE0 then each of the two terms in the minimum
operator may be the smallest, and we have to consider each of the possibilities.

(a) If e(r+ρ)TE0 ≤ erTA0−GTV0 then a fair value of ρ satisfies E0 = e−rT e(r+ρ)TE0,
i.e. ρ = 0.

(b) If erTA0 − GTV0 ≤ e(r+ρ)TE0 then we must have E0 = e−rT (erTA0 − GTV0),
i.e. GT = erT V0+U0

V0
. Thus, fair values of ρ must satisfy erTE0 ≤ e(r+ρ)TE0, i.e.

ρ ≥ 0.

3. If KTV0(1+γ)+erTE0 ≤ erTA0 then each of the two terms in the minimum operator
may be the smallest, and we have to consider each of the possibilities.

(a) If e(r+ρ)TE0 ≤ erTA0−KTV0 then a fair value of ρ satisfies E0 = e−rT e(r+ρ)TE0,
i.e. ρ = 0.

(b) If erTA0 −KTV0 ≤ e(r+ρ)TE0 then we must have E0 = e−rT (erTA0 − GTV0),
i.e. KT = erT V0+U0

V0
. Thus, fair values of ρ must satisfy erTE0 ≤ e(r+ρ)TE0, i.e.

ρ ≥ 0.

2.10.2 Determining the limit as U0 → ∞

In this section we derive the fair value of ρ as the bonus reserve tends to ∞. For simplicity
we consider the case of capital insurances. Taking the limit as U0 → ∞ in criterion (2.4.1)
gives

E0 = e−rT lim
U0→∞

EQ
0

[
1(GT V0≤AT<KTV0(1+γ)+erTE0) min

(
e(r+ρ)TE0, AT −GTV0

)

+ 1(KT V0(1+γ)≤VT (ϕ)) min
(
e(r+ρ)TE0, AT −KTV0

)]
(2.10.1)

Assuming ρ < ∞ dominated convergence allows us to interchange limit and expectation.
Since we consider admissible investment strategies only, we have that limU0→∞ VT = ∞.
Hence it holds that

lim
U0→∞

1(GT V0≤AT<KTV0(1+γ)+erTE0) = 0

and

lim
U0→∞

1(KT V0(1+γ)<VT (ϕ)) = 1.

Furthermore we have for ET ∈ {GT ,KT } that

lim
U0→∞

min
(
e(r+ρ)TE0, AT − ETV0

)
= e(r+ρ)TE0 <∞.
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Hence, in the limit we obtain the following equation

E0 = e−rT e(r+ρ)TE0,

such that in the limit ρ = 0. This is also intuitively clear, since increasing the bonus
reserve decreases the probability of the equity capital suffering a loss, and in the limit
where the bonus reserve is infinitely large the equity capital bears no risk and obviously
it should not receive an additional payment compared to the riskfree interest rate.

We end this section by noting that the assumption ρ < ∞ does not impose a restriction,
since ρ = ∞ cannot be a solution to (2.10.1). In order to do so we assume ρ = ∞ solves
(2.10.1). This in turn would lead to

E0 = e−rT lim
U0→∞

EQ
0

[
1(GT V0≤AT<KTV0(1+γ)+erTE0)(AT −GTV0)

+ 1(KT V0(1+γ)≤VT (ϕ)) (AT −KTV0)

]

≥ e−rT lim
U0→∞

EQ
0

[
1(KT V0(1+γ)≤VT (ϕ)) (AT −KTV0)

]

= ∞,

where we have used monotone convergence to interchange limit and integration in the last
equality and considerations similar to those above to determine the limit. However, since
E0 <∞ we have a contradiction, such that ρ = ∞ can not be the solution.

2.10.3 Determining the limit as Y0 → ∞

We now determine the convergence of ρ as Y0 tends to ∞, while keeping V0 = Y0V
ind
0

fixed. Taking the limit in (2.5.3) we get

E0 = e−rT lim
Y0→∞

EQ
h

[
1(YTGT V

ind
0

1

T px
≤AT<YTKTV

ind
0

1

T px
(1+γ)+erTE0)

× min

(
e(r+ρ)TE0, AT − YTGTV

ind
0

1

T px

)

+ 1(YTKT V
ind
0

1

T px
(1+γ)≤VT (ϕ)) min

(
e(r+ρ)TE0, AT − YTKTV

ind
0

1

T px

)]

Assuming that ρ <∞ we can use dominated convergence to interchange limit and integral.
Using the strong law of large numbers we have for an arbitrary accumulation factor ET :

lim
Y0→∞

(
YTETV ind

0

1

T px

)
= lim

Y0→∞

(
YT
Y0

ETV0
1

T px

)
= ETV0

T p
h
x

T px
, Qh − a.s.



2.10. PROOFS AND TECHNICAL CALCULATIONS 67

Since Qh is identical to Q0 with respect to the financial market for all h, we obtain the
following equation in the limit

E0 = e−rTEQ
0

[
1
(GT V0

T ph
x

T px
≤AT<KTV0

T ph
x

T px
(1+γ)+erTE0)

min

(
e(r+ρ)TE0, AT −GTV0

T p
h
x

T px

)

+ 1
(KT V0

T ph
x

T px
(1+γ)≤VT (ϕ))

min

(
e(r+ρ)TE0, AT −KTV0

T p
h
x

T px

)]
.

This is exactly the equation in the case of capital insurances with GT replaced by GT
T p

h
x

T px

and KT replaced by KT
T p

h
x

T px
. Note in particular, that assuming risk neutrality with respect

to unsystematic mortality risk, i.e. h = 0 gives the same results in the limit as in the case
without mortality.

The calculations above are carried out for an arbitrary h. However in the limit the mea-
sures Qh and P are singular rather than equivalent if h 6= 0. Thus, using a Qh with h 6= 0
in an attempt to derive a fair value of ρ for an infinitely large insurance portfolio would
thus result in introducing an arbitrage possibility in the model. However, even though the
limit result for h 6= 0 has no economic interpretation, it still provides useful insight for the
dependence of ρ on h for a large portfolio. Furthermore solving the limit equation gives
an approximation to the fair value in the case of a large portfolio of pure endowments.

2.10.4 Proof of Proposition 2.5.8

In order to prove Proposition 2.5.8, we first note that the probability of insolvency can be
written as:

pins(ϕ) = P
[
ET < YTβV

ind
T

]

=

Y0∑

n=0

(
Y0

n

)
(T px)

n(T qx)
Y0−nP

[
ET < nβV ind

T

]

=

Y0∑

n=0

(
Y0

n

)
(T px)

n(T qx)
Y0−n

(
P

[
ET < nβV ind

T , inf
0≤t≤T

S∗
t > Z

]

+ P

[
ET < nβV ind

T , inf
0≤t≤T

S∗
t ≤ Z

])

=

Y0∑

n=0

(
Y0

n

)
(T px)

n(T qx)
Y0−n

(
P

[
AT < n(1 + β)GTV

ind
0

1

T px
, inf
0≤t≤T

S∗
t > Z

]

+ P

[
AT < n(1 + β)GTV

ind
0

1

T px
, inf
0≤t≤T

S∗
t ≤ Z

])
.

Here, we have use iterated expectations in the second equality, and in the third we split
the probability according to whether the company intervenes or not. The fourth equality
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follows from the relationship erTE0 ≥ βKTY0V
ind
0

1
T px

, since this ensures that the company
never is insolvent if the deposit is accumulated with the factor KT or if the equity capital
at time T is given by ET = e(r+ρ)TE0. Now we insert sβ,n,∗1 and the deterministic value
of AT in case of intervention to obtain

pins(ϕ) =

Y0∑

n=0

(
Y0

n

)
(T px)

n(T qx)
Y0−n

(
P

[
S∗
T < sβ,n,∗1 , inf

0≤t≤T
S∗
t > Z

]

+ P

[
Y0GTV

ind
0

T p
h
x

T px
(1 + β) < nGTV

ind
0

1

T px
(1 + β), inf

0≤t≤T
S∗
t ≤ Z

])

=

Y0∑

n=0

(
Y0

n

)
(T px)

n(T qx)
Y0−n

(
P

[
S∗
T < sβ,n,∗1 , inf

0≤t≤T
S∗
t > Z

]

+ 1(Y0T ph
x<n)P

[
inf

0≤t≤T
S∗
t ≤ Z

])
. (2.10.2)

From (2.10.2) we observe that if the number of survivors if greater that the Qh expectation
then the company is insolvent in case of intervention, whereas this is not necessarily the
case in the situation without intervention. Calculations similar to those in the proof
of Björk (2004, Theorem 18.8) give

P

[
S∗
T < sβ,n,∗1 , inf

0≤t≤T
S∗
t > Z

]
= EP

[
1
(S∗

T
<sβ,n,∗

1 )
1(inf0≤t≤T S

∗
t >Z)

]

= EP
[
1
(Z<S∗

T
<sβ,n,∗

1 )

]
−
(
Z

S0

) 2(α−r)

σ2 −1

EP
[
1
(Z<eS∗

T
<sβ,n,∗

1 )

]
,

where S̃∗ is a process with the same dynamics as S∗, but with initial value S̃∗
0 = Z2

S0
.

Investigating each term separately we get

EP
[
1
(Z<S∗

T
<sβ,n,∗

1 )

]

= 1
(Z<sβ,n,∗

1 )

(
P
[
S∗
T < sβ,n,∗1

]
− P [S∗

T ≤ Z]
)

= 1(Y0T ph
x<n)


Φ




log

(
sβ,n,∗
1
S0

)
−
(
α− r − 1

2σ
2
)
T

σ
√
T


− Φ




log
(
Z
S0

)
−
(
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2σ
2
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σ
√
T





 ,

and

EP
[
1
(Z<eS∗

T
<sβ,n,∗

1 )

]

= 1(Y0T ph
x<n)


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log
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2
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σ
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
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Similarly

P

[
inf

0≤t≤T
S∗
t ≤ Z

]
= 1 − EP

[
1(inf0≤t≤T S

∗
t>Z)

]

= 1 − EP
[
1(Z<S∗

T )

]
+

(
Z

S0

) 2(α−r− 1
2 σ2)

σ2

EP
[
1(Z<S∗

T )

]

= Φ




log
(
Z
S0

)
−
(
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2σ
2
)
T

σ
√
T




+

(
Z

S0

) 2(α−r)

σ2 −1
(

1 − Φ

(
log
(
S0
Z

)
−
(
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2σ
2
)
T

σ
√
T

))
.

Combining the results we get

pins(ϕ) =
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(
Y0

n

)
(T px)

n(T qx)
Y0−n1(Y0T ph
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Chapter 3

Stochastic Mortality in Life

Insurance: Market Reserves and

Mortality-Linked Insurance

Contracts

(This chapter is an adapted version of Dahl (2004b))

In life insurance, actuaries have traditionally calculated premiums and reserves using a
deterministic mortality intensity, which is a function of the age of the insured only. Here,
we model the mortality intensity as a stochastic process. This allows us to capture two
important features of the mortality intensity: Time dependency and uncertainty of the
future development. The advantage of introducing a stochastic mortality intensity is two-
fold. Firstly it gives more realistic premiums and reserves, and secondly it quantifies the
risk of the insurance companies associated with the underlying mortality intensity. Having
introduced a stochastic mortality intensity, we study possible ways of transferring the
systematic mortality risk to other parties. One possibility is to introduce mortality-linked
insurance contracts. Here the premiums and/or benefits are linked to the development of
the mortality intensity, thereby transferring the systematic mortality risk to the insured.
Alternatively the insurance company can transfer some or all of the systematic mortality
risk to agents in the financial market by trading derivatives depending on the mortality
intensity.

3.1 Introduction

Traditionally, actuaries have been calculating premiums and reserves using a deterministic
mortality intensity, which is a function of the age only, and a constant interest rate (rep-

71



72 CHAPTER 3. MARKET RESERVES AND MORTALITY-LINKED CONTRACTS

resenting the payoff of the investments made by the companies). However, since neither
the interest rate nor the mortality intensity is deterministic, life insurance companies are
essentially exposed to three types of risk when issuing contracts: Financial risk, systematic
mortality risk and unsystematic mortality risk. Here, we distinguish between systematic
mortality risk, referring to the future development of the underlying mortality intensity,
and unsystematic mortality risk, referring to a possible adverse development of the insured
portfolio. So far the life insurance companies have dealt with the financial and (system-
atic) mortality risks by choosing both the interest rate and the mortality intensity to the
safe side, as seen from the insurers’ point of view. When the real mortality intensity and
investment payoff are experienced over time, this usually leads to a surplus, which, by
the so-called contribution principle, must be redistributed among the insured as bonus,
see Norberg (1999). Since insurance contracts often run for 30 years or more, a mortal-
ity intensity or interest rate, which seems to be to the safe side at the beginning of the
contract, might turn out not to be so. This phenomenon has in particular been observed
for the interest rate during recent years, where we have experienced large drops in stock
prices and low returns on bonds. However, the systematic mortality risk is of a differ-
ent character than the financial risk. While the assets on the financial market are very
volatile, changes in the mortality intensity seem to occur more slowly. Thus, the financial
market poses an immediate problem, whereas the level of the mortality intensity poses a
more long term, but also more permanent, problem. This difference could be the reason
why emphasis so far has been on the financial markets. We hope to turn some of this
attention towards the uncertainty associated with the mortality intensity by modelling it
as a stochastic process.

In order to obtain a more accurate description of the liabilities of life insurance companies,
market reserves have been introduced, see Steffensen (2000) and references therein. Here,
the financial uncertainty as well as the uncertainty stemming from the development of
an insurance portfolio with known mortality intensity is considered. By modelling the
mortality intensity as a stochastic process, market reserves can be further extended to
include the uncertainty associated with the future development of the mortality intensity.
This should allow for an even more accurate assessment of future liabilities, since possible
trends in the mortality intensity and the market attitude towards systematic mortality risk
can be taken into account. In addition, a stochastic mortality intensity allows for a quan-
tification of the systematic mortality risk of the insurance companies. Having quantified
the systematic mortality risk, we investigate how the insurance companies could manage
the risk. As a first possibility, we introduce a new type of contracts called mortality-linked
contracts. The basic idea is to link and currently adapt benefits (and/or premiums) to
the development of the mortality intensity in general, and thereby transfer the systematic
mortality risk from the insurance company to the group of insured. A second possibility
is to transfer the systematic mortality risk to other parties in the financial market. Here,
the idea is to introduce certain traded assets, which depend on the development of the
mortality intensity.

This chapter is organized as follows: Section 3.2 contains a review of existing literature
on stochastic mortality. Section 3.3 deals with the modelling of the mortality intensity
as a stochastic process, and Section 3.4 introduces the model considered in the rest of
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this chapter. An expression for the market reserve for a general payment stream is given
in Section 3.5. In Section 3.6, we introduce the concept of a mortality-linked insurance
contracts, whereas Section 3.7 includes a discussion of how the systematic mortality risk
could be transferred to other agents in the financial market. Finally, the derivation of
the dynamics of the benefit for a mortality-linked pure endowment in the case of risky
investments is given in 3.8.

3.2 Existing literature on stochastic mortality

In this section we give a brief review on existing literature concerning the uncertainty
associated with the future development of the mortality intensity. For further references
see the referred papers.

Olivieri (2001) assumes that the insurance companies take possible trends in the mortality
intensity into account by estimating a mortality intensity, which is a function of both
time and age. Hence the companies obtain more realistic premiums and reserves than
by using a function of age only. However, the estimated survival function, no matter
how good it is, is only one possible future development. Thus, Olivieri uses the observed
mortality intensities to generate two additional survival functions, which represent very
high and very low future survival probabilities, respectively. Using these three possible
scenarios for the future survival function, Olivieri illustrates the impact of systematic
mortality risk by calculating variances of present values. Marocco and Pitacco (1998)
model the yearly mortality rates via a beta distribution with age and time-dependent
parameters. Hence, they are able to quantify the mortality risk inherent in an insurance
portfolio, since the number of survivors follows a binomial-beta distribution. The approach
in Olivieri and Pitacco (2002) is somewhat different. They describe the future survival
function by a parameterized family of possible future survival functions. However, since
the future is unknown, the parameter is a random variable. In order to obtain prices
and assess the risk they apply Baysian methods to describe the distribution function for
the parameter. Within this model they are able to distinguish between the unsystematic
mortality risk stemming from the randomness for a given parameter (survival function),
and the systematic mortality risk stemming from the uncertainty associated with the
parameter (survival function).

In the above papers no explicit financial market has been introduced and all calculations
are carried out using a constant interest rate. Models involving both interest rate risk
and systematic mortality risk are proposed in Milevsky and Promislow (2001). For a fixed
equivalent martingale measure they propose both a discrete and continuous time model
for the mortality and interest rate. Within the proposed models they are able to obtain
prices and determine hedging strategies for claims that are contingent on the mortality
and interest rate.

The contribution of the present chapter is as follows: Inspired by interest rate modelling
we model the mortality intensity by a fairly general diffusion model, which include the



74 CHAPTER 3. MARKET RESERVES AND MORTALITY-LINKED CONTRACTS

Mean reverting Brownian Gompertz model proposed by Milevsky and Promislow (2001) as
a special case. Taking the incomplete model comprised by the financial market, mortality
intensity and insurance contract as a starting point, we then note that there exist infi-
nitely many equivalent martingale measures corresponding to different market attitudes
towards systematic and unsystematic mortality risk. Hence, contracts involving an insur-
ance element cannot be priced uniquely using a no arbitrage approach. For a fixed but
arbitrary equivalent martingale measure we derive integral expressions and partial differ-
ential equations for market reserves in the presence of stochastic mortality. These results
show how market reserves depend on the expectation to the future mortality intensity
and the market attitude towards systematic mortality risk. The latter seems to be a new
result. Furthermore we introduce a new type of contracts called mortality-linked insur-
ance contracts as a way to transfer the systematic mortality risk to the insured. Finally
a general partial differential equation for mortality derivatives is derived, and it is shown
how the company may use such derivatives to transfer the systematic mortality risk to the
financial market.

3.3 Mortality intensity as a stochastic process

3.3.1 Stochastic versus deterministic mortality

In actuarial practice, statistical methods are usually used to estimate a mortality intensity,
which is a function of the age, x+ t, only. In Denmark, life insurance companies use a so-
called Gompertz–Makeham model for the mortality intensity. Here, the mortality intensity
can be written as

µx+t = a+ bcx+t.

In this chapter more realism is added by viewing the mortality intensity as a stochastic
process, which is adapted to some filtration F. We model the mortality intensities as
diffusion processes such that for every fixed x ≥ 0 the mortality intensity has dynamics of
the form

dµ[x]+t = αµ(t, x, µ[x]+t)dt + σµ(t, x, µ[x]+t)dW̃t, (3.3.1)

where W̃ is a Wiener process (standard Brownian motion) with respect to the filtration F.
Here and throughout we have borrowed the select mortality notation of Norberg (1988).
Since the dynamics of µ depend on the present state of the process only, then µ is a Markov
process. In (3.3.1), we have assumed that the person is of age x at time 0 (which is an
arbitrary calendar time). The parameter t then describes the time that has passed since
time 0. Results similar to those presented in this chapter can be obtained in the case,
where the mortality intensity is driven by a finite state Markov process, see Dahl (2002).

Remark 3.3.1 By modelling mortality intensities by (3.3.1), we have made the following
two rather unrealistic assumptions: Firstly, all sudden changes in the mortality intensities
are of the same type and affect all ages/cohorts and secondly, the mortality intensity for
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each age is a Markov process. A more realistic model would recognize that the mortality
intensities are affected by many different so-called mortality factors and that these factors
affect the mortality intensities differently. Some mortality factor affect all ages/cohorts
while others affect only some ages/cohorts. Furthermore even mortality factors affecting
the same ages/cohorts may have a different impact on the mortality intensities. An appro-
priate model for the dependence on the different mortality factors could be a hierarchical
model. Assume for example that the dynamics of the mortality intensities are given by
the following extension of (3.3.1):

dµ[x]+t = αµ(t, x, µt)dt + (σµ(t, x, µt))
trdW̃ ∗

t ,

where µt denotes the infinite dimensional vector containing the mortality intensities at
time t for all x. Moreover, σµ(t, x, µt) and W̃ ∗ are d-dimensional column vectors, and atr

denotes vector a transposed. Now a hierarchical structures is obtained, if we interpret
each Wiener process as the impact of a specific mortality factor and define σ such that the
Wiener process only affects the appropriate ages/cohorts. However, since we are working
with one value of x only and because no further insight is gained from working with a
multi-dimensional Wiener process, we restrict ourselves to the simple 1-dimensional case
given by (3.3.1).

�

Remark 3.3.2 Instead of modelling the mortality intensity as a diffusion process of the
form in (3.3.1), we could assume a Gompertz–Makeham structure and model the parame-
ters a, b and c as stochastic processes. Dahl (2002) includes some examples, where a and
b are modelled by stochastic processes.

�

In the case with known mortality intensity the survival probability from time t to T for

a person of age x at time 0 is given by e−
R T

t
µ[x]+udu. However, since we do not know

the future development of the mortality intensity, this should be replaced by an expected
value, conditioning on the known development up to time t, represented by Ft. Here,
F = (Ft)0≤t≤T is the filtration for the model describing all the randomness observed,
which in particular contains information about the development of the stochastic process
µ. Informally, Ft is the information available to the insurer at time t. Note that we hereby
assume that µ is observable, which corresponds to assuming that the portfolio of observed
lives is sufficiently large, such that the mortality intensity can be estimated correctly.
Using that µ is a Markov process and iterated expectations, we see that S(t, x, µ[x]+t, T ),
defined by

S(t, x, µ[x]+t, T ) := EP
[
e−

R T

t
µ[x]+τdτ

∣∣∣µ[x]+t

]
,

is the survival probability from time t to T for a person of age x+ t given the information
until time t.

Remark 3.3.3 Note that the mortality intensity, in contrast to the e.g. the interest rate,
is modelled under the objective measure P . For the interest rate modelling usually takes
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place directly under some equivalent martingale measure Q.

�

For fixed x we now define a P -martingale M by

M(t, x) := EP
[
e−

R T

0
µ[x]+τdτ

∣∣∣Ft
]

= e−
R t

0
µ[x]+τdτS(t, x, µ[x]+t, T ),

where µ is defined by (3.3.1). The quantity M(t, x) can be interpreted as the probability
of survival from time 0 to T for a person of age x at time 0 given the development of the
mortality intensity until time t. Provided that S is continuously differentiable in t and
twice continuously differentiable in µ, we can use Itô’s formula on the martingale M , such
that we for fixed x obtain the following partial differential equation (PDE) for S(t, x, µ, T )
on [0, T ] × R+:

0 = ∂tS(t, x, µ, T ) + αµ(t, x, µ)∂µS(t, x, µ, T )

+
1

2
(σµ(t, x, µ))2∂µµS(t, x, µ, T ) − µS(t, x, µ, T ), (3.3.2)

which should be solved with the boundary condition

S(T, x, µ, T ) = 1.

Here, we have used the notation ∂tS = ∂
∂tS, ∂µS = ∂

∂µS and ∂µµS = ∂2

∂µ2S, which will
be used throughout the chapter, whenever the derivatives exist. The differential equation
(3.3.2) is analogous to the differential equation for zero coupon bonds obtained when
working with a stochastic interest rate, see e.g. Björk (1997, Proposition 3.4).

3.3.2 Affine mortality structure

We now concentrate on a special mortality structure, which will be referred to as an affine
mortality structure. The following definition of an affine mortality structure is almost
analogous to the definition of an affine term structure, see e.g. Björk (1997, Definition
3.1):

Definition 3.3.4 (Affine mortality structure)
If, for fixed x, the survival probabilities are given by S(t, x, µ[x]+t, T ), where S has the
form

S(t, x, µ[x]+t, T ) = eA(t,x,T )−B(t,x,T )µ[x]+t , (3.3.3)

for deterministic functions A(t, x, T ) and B(t, x, T ), then the model for the mortality
intensity is said to possess an affine mortality structure for cohort x. If (3.3.3) holds for
all x, then the model is simply said to possess an affine mortality structure.

Affine mortality structures are of interest, since they allow survival probabilities to be
expressed by the relatively simple expression in (3.3.3). However, explicit expressions for
A and B may be quite complicated or even impossible to find.
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Example 3.3.5 A natural question is, whether Definition 3.3.4 includes models with
deterministic mortality intensity. This is indeed the case, as can be seen for example if we
choose A and B by

A(t, x, T ) = −
∫ T

t
µ[x]+τdτ,

B(t, x, T ) = 0,

respectively, such that the survival probability is given by S(t, x, µ[x]+t, T ) = e−
R T

t
µ[x]+τdτ .

If the deterministic mortality intensity only depends on x and t through x + t, this is
recognized as the traditional survival probability, T−tpx+t.

�

The definition of an affine mortality structure does not give a way to determine whether a
given model for the mortality intensity possesses an affine structure. One has to find the
expression for the survival probabilities and determine whether they can be written on the
desired form in (3.3.3). This is not of much help, since the reason for checking whether
we have an affine mortality structure (or at least an affine mortality structure for some
cohorts x) exactly is, that it yields expression (3.3.3) for the probabilities. The following
theorem, which also appears in Björk (1997) for zero coupon bond prices, gives sufficient
conditions for a mortality structure to be affine for cohort x. In addition, it yields a set
of differential equations for the functions A and B for fixed x.

Theorem 3.3.6 (Sufficient conditions for an affine mortality structure)
Assume that αµ and σµ are of the form:

αµ(t, x, µ[x]+t) = δα(t, x)µ[x]+t + ζα(t, x),

σµ(t, x, µ[x]+t) =
√
δσ(t, x)µ[x]+t + ζσ(t, x),

for some deterministic functions δα, ζα, δσ and ζσ. Then the model has an affine mortality
structure for cohort x, where A and B for fixed x satisfy the system

∂tB(t, x, T ) = −δα(t, x)B(t, x, T ) +
1

2
δσ(t, x) (B(t, x, T ))2 − 1, (3.3.4)

B(T, x, T ) = 0,

and

∂tA(t, x, T ) = ζα(t, x)B(t, x, T ) − 1

2
ζσ(t, x) (B(t, x, T ))2 , (3.3.5)

A(T, x, T ) = 0.

Proof of Theorem 3.3.6.
The proof is analogous to the one given in Björk (1997, Proposition 3.5) for an affine term
structure.

�
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For fixed x an affine structure for αµ and (σµ)2 in t is thus sufficient for an affine mortality
structure for cohort x. If in addition αµ and σµ are time independent, the condition is
necessary as well, see Duffie (1992). Thus, provided we can solve (3.3.4) and (3.3.5),
an affine mortality structure for cohort x gives a closed form expression for the survival
probabilities for cohort x.

3.3.3 Model considerations

In this section, properties for the mortality intensity are discussed, and a specific model for
the mortality intensity is considered. In interest rate modelling positivity of the interest
rate is a desirable property. For the mortality intensity this is not only a desirable,
but mandatory, property. While one could imagine having interest rate 0, the mortality
intensity should be strictly positive, since a mortality intensity equal to 0 corresponds to
a survival probability of 1, and this is not realistic for any time interval. One model which
fulfills the requirement of a strictly positive mortality intensity, is the following analogue to
the so-called extended Cox–Ingersoll–Ross model, which was first considered by Hull and
White (1990) as a model for the interest rate. Applying the extended Cox–Ingersoll–Ross
model for the modelling of mortality intensities leads to the following dynamics for fixed
x

dµ[x]+t = (βµ(t, x) − γµ(t, x)µ[x]+t)dt+ ρµ(t, x)
√
µ[x]+tdW̃t, (3.3.6)

where βµ(t, x), γµ(t, x) and ρµ(t, x) are positive bounded functions. It can be shown
that the extended Cox–Ingersoll–Ross model ensures strict positivity of the mortality
intensity for cohort x provided that for fixed x we have 2βµ(t, x) ≥ (ρµ(t, x))2, for all
t ∈ [0, T ], see Maghsoodi (1996). Furthermore, the model is mean reverting around

the time and cohort dependent level βµ(t,x)
γµ(t,x) . Theorem 3.3.6 shows that the mortality

intensity given by (3.3.6) admits an affine mortality structure. Provided that we are able
to solve the PDEs for A and B, we are thus able to find closed form expressions for the
survival probabilities. It would thus be interesting to see whether statistical data supports
modelling the dynamics of the mortality intensity by an extended Cox–Ingersoll–Ross
model, such that the desirable properties for the mortality intensity are obtained.

3.3.4 Forward mortality intensities

When modelling interest rates, important quantities are forward rates defined by

f(t, T ) := −∂T log p(t, T ), 0 ≤ t ≤ T,

or equivalently

p(t, T ) = e−
R T

t
f(t,u)du.

Here p(t, T ) is the price at time t of a zero coupon bond maturing at time T . The forward
rate f(t, u) can thus be interpreted as the riskfree rate of interest, contracted at time t,
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over the infinitesimal interval [u, u+ du). Analogously to the concept of forward rates, we
define the forward mortality intensity for cohort x at time t under the true measure P for
the time T , by

fµ(t, x, T ) := −∂T logS(t, x, µ[x]+t, T ).

Equivalently, we can express the relation between the forward mortality intensities and
survival probabilities by

S(t, x, µ[x]+t, T ) = e−
R T

t
fµ(t,x,u)du.

Thus, the forward mortality intensity function for cohort x, (fµ(t, x, u))t≤u≤T is the
adapted mortality (intensity) function, which makes the survival probability at time t
for a x + t year old equal to e−

R τ

t
fµ(t,x,u)du for all t < τ ≤ T . Instead of modelling the

mortality intensity directly, one could imagine that the life insurance companies would
model the forward mortality intensity. This could be done by replacing the time homoge-
neous deterministic function, which they are using today, with a function of x, t, T and
the observed mortality intensity µ[x]+t. Note that the forward mortality intensities are
stochastic processes, since the forward mortality intensity for cohort x, fµ(τ, x, T ), at τ is
not known in general at t, if t < τ .

3.4 The model

Let (Ω,F , P ) be a probability space with a filtration F = (Ft)0≤t≤T satisfying the usual
conditions of right-continuity, i.e. Ft =

⋂
u>t

Fu, and completeness, i.e. F0 contains all P -

null sets. Here, T is a fixed time horizon. Throughout, Ft describes the total information
available at time t. Below we introduce the three components which constitute the model:
The financial market, the mortality intensity and the insurance contract.

3.4.1 The financial market

We consider a financial market consisting of two traded assets only: A risky asset with
price process S and a locally riskfree asset with price process B. The risky asset is usually
referred to as a stock and the locally riskfree asset as a savings account. The price processes
are defined on the above introduced probability space (Ω,F , P ), and the P -dynamics of
the price processes are given by

dSt = αs(t, St)Stdt+ σs(t, St)StdWt, S0 > 0, (3.4.1)

dBt = r(t, St)Btdt, B0 = 1, (3.4.2)

where r is non-negative, σs is uniformly bounded away from 0 and (Wt)0≤t≤T is a Wiener
process on the interval [0, T ] under P . Throughout the chapter we also use the shorthand
notation exemplified by rt = r(t, St) for coefficient functions from stochastic differential
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equations that have already been introduced. The filtration G = (Gt)0≤t≤T is the P -
augmentation of the natural filtration generated by (B,S), i.e. Gt = G+

t ∨ N , where N is
the σ-algebra generated by all P -null sets and

G+
t = σ{(Bu, Su), u ≤ t} = σ{Su, u ≤ t} = σ{Wu, u ≤ t}, (3.4.3)

since W accounts for all the randomness in the model defined by (3.4.1)–(3.4.2). We note
that the last equality in (3.4.3) only holds if σs does not take the value 0, which is the
case since we have assumed that σs is uniformly bounded away from 0. Assuming that αs

and σs fulfill certain regularity conditions, see Kloeden and Platen (1992, Theorem 4.5.3),
the stochastic differential equation (3.4.1) has a unique solution. Henceforth it is assumed

that these conditions are fulfilled and that
∫ T
0 rτdτ exists and is finite almost surely, such

that the function Bt is defined for all t ∈ [0, T ].

In the model given by (3.4.1)–(3.4.2), the process αs is interpreted as the mean rate of
return of the stock and σs as the standard deviation of the rate of return. The process r
is known as the short rate of interest. Let further the process ν be defined by ν(t, St) =
α(t,St)−r(t,St)

σ(t,St)
. Hence, ν measures the excess return of the stock over the riskfree interest

rate divided by the risk associated with the stock as measured by σs. In the literature, ν
is known as the market price of risk associated with S. In the following we assume that ν
satisfies the so-called Novikov condition

EP
[
e

1
2

R T

0
ν2(t,St)dt

]
<∞,

see Duffie (1992, Appendix D).

3.4.2 The mortality intensity

Let the mortality intensity process be defined on the above introduced probability space
(Ω,F , P ). From here on all dependence on x is left out of the notation (except in µ[x]+t),
since we only consider one fixed, but arbitrary, value of x. As in Section 3.3, we let the
P -dynamics of the mortality intensity be given by

dµ[x]+t = αµ(t, µ[x]+t)dt + σµ(t, µ[x]+t)dW̃t, (3.4.4)

where αµ and σµ are non-negative and (W̃t)0≤t≤T is a Wiener process on the interval
[0, T ] under P . Note that the coefficients are functions of the current value of the mor-
tality intensity only, such that the mortality intensity is a Markov process. The filtration
I = (It)0≤t≤T is the P -augmentation of the natural filtration generated by the mortality
intensity. Thus, we have It = I+

t ∨N , where

I+
t = σ{µ[x]+u, u ≤ t}.

In order to ensure the existence of a solution to (3.4.4), we assume that the coefficients
fulfill the regularity conditions in Yamada and Watanabe (1971), see also Karatzas and
Shreve (1991, Chapter 5, Proposition 2.13). This proposition is more general than Kloeden
and Platen (1992, Theorem 4.5.3) since it allows for “square root diffusions”.
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3.4.3 The insurance contract

Let the development of the life insurance contract be described by an F-adapted right-
continuous Markov process Z = (Zt)0≤t≤T on a finite state space J = {0, 1, . . . , J}. We
assume that Z has at most a finite number of jumps, and let 0 be the initial state of the
process, i.e. Z0 = 0 a.s. For example, J could consist of two states describing whether the
insured is alive or dead. The associated indicator functions Ij are defined by Ijt = 1{Zt=j}.
In addition, we introduce the multivariate counting process N = (N jk)j 6=k defined by

N jk
t = #{u|u ∈ (0, t], Zu− = j, Zu = k}.

The process N jk counts the number of transitions directly from state j to k. Moreover,
assume that the Markov process admits transition rates λjk given by

λjkt = Ijt−µ
jk
[x]+t,

where µjk[x]+t are stochastic processes. In this chapter we restrict ourselves to models where
the transition intensities depend on the mortality intensity only, i.e. we restrict ourselves
to the situation

µjk
[x]+t

= Rjk(t, µ[x]+t),

where Rjk is a deterministic function. However, we could equally well have worked with a
multi-dimensional process µ = (µjk)j 6=k. We obtain the following martingales with respect
to P

M jk
t = N jk

t −
∫ t

0
λjku du = N jk

t −
∫ t

0
Iju−µ

jk
[x]+udu, 0 ≤ t ≤ T.

By construction, the processes N jk do not have simultaneous jumps, hence the martingales
M jk are orthogonal. The filtration H = (Ht)0≤t≤T is defined as the P -augmentation of
the natural filtration generated by the insurance contract, i.e. Ht = H+

t ∨ N , where

H+
t = σ{Zu, u ≤ t} = σ{Nu, u ≤ t}.

Note that the above model can be used to describe both the development of the insurance
contract for one insured individual and for a whole portfolio of insured individuals of the
same age x at time 0.

3.4.4 The combined model

We assume that the filtration F = (Ft)0≤t≤T introduced earlier is given by

Ft = Gt ∨Ht ∨ It.

Thus, F is the filtration for the combined model of the economy, the mortality intensity
and the insurance contract. Moreover, we assume that the economy is stochastically
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independent of the development of the insurance contract and the mortality intensity, i.e.
Gt and (Ht,It) are independent.

We note that the combined model is on the general index-form studied in Steffensen
(2000). However, Steffensen (2000) contains no explicit remarks or calculations regarding
a stochastic mortality intensity.

3.4.5 Change of measure

In this section, we discuss the choice of equivalent martingale measure in the combined
model. An equivalent martingale measure fulfills three requirements. Firstly, it is equiva-
lent to P . Secondly, all discounted price processes on the financial market are martingales
under the new measure and lastly it is a probability measure.

To construct a new measure Q we define a likelihood process by

dΛt = Λt−


hstdWt + hµt dW̃t +

∑

j,k:j 6=k
gjkt dM

jk
t


 ,

Λ0 = 1.

Here hs and hµ are adapted processes, and g = (gjk)j 6=k is a predictable process. We
assume that hs, hµ and g are chosen such that EP [ΛT ] = 1 and such that gjk > −1 for
all j 6= k. Here, hs changes the drift term of S, hµ changes the drift term of µ, and gjk

changes the intensity for a transition from j to k for Z. We can now define a measure Q
by

dQ

dP
= ΛT . (3.4.5)

Remark 3.4.1 We emphasize that Q defined above only changes measure for one value of
x. If we were to consider a portfolio including different ages, we would model the mortality
intensity by a d-dimensional Wiener process as proposed in Remark 3.3.1. Hence changing
measure for the mortality intensity requires hµ to be a d-dimensional Girsanov kernel. In
addition we note that the martingales M jk implicitly depends on x. Thus, we would
need a different martingale M jk and hence a new gjk for each value of x in the portfolio.
However, since we only consider one value of x, this is not necessary here.

�

Girsanov’s theorem shows that under the measureQ defined by (3.4.5), WQ
t = Wt−

∫ t
0 h

s
udu

and W̃Q
t = W̃t−

∫ t
0 h

µ
udu are independent Q-Wiener processes. If we consider the financial

model only, it is well-known that the discounted price process of the stock is a Q-martingale
if and only if

hst =
r(t, St) − αs(t, St)

σs(t, St)
= −ν(t, St), (3.4.6)
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see e.g. Duffie (1992, Chapter 7). In our model, the value of hst in (3.4.6) still allows us
to express the dynamics of the discounted price process of the stock under Q in terms
of the Q-martingale WQ

t , such that Q indeed is a martingale measure for the combined
model. We see that hs is a function of time and the present value of the stock only, such
that the price process of the stock is a Markov process under Q as well. Note that all
discounted price processes of assets tradeable on the market have to be martingales under
the equivalent martingale measure. However, since contracts contingent on the mortality
intensity or transitions of Z are not traded on the financial market, this requirement does
not give further conditions on hµ and gjk than the ones already given by EP [ΛT ] = 1 and
g > −1. We do, however, impose the further condition, that hµ and g must be of the form
hµ(t, µ[x]+t) and gjk(t, µ[x]+t). This preserves the independence between Gt and (Ht,It)
under Q, and ensures that µ and Z are Markov processes under Q. The dynamics of µ
under Q are given by

dµ[x]+t =
(
αµ(t, µ[x]+t) + σµ(t, µ[x]+t)h

µ(t, µ[x]+t)
)
dt+ σµ(t, µ[x]+t)dW̃

Q
t

= αµ,Q(t, µ[x]+t)dt + σµ(t, µ[x]+t)dW̃
Q
t , (3.4.7)

where we have defined

αµ,Q(t, µ[x]+t) := αµ(t, µ[x]+t) + σµ(t, µ[x]+t)h
µ(t, µ[x]+t).

Using Girsanov’s theorem for point processes, see e.g. Andersen et al. (1993), we find that

the transition intensity of Z from j to k under Q is given by λ̃jkt = (1 + gjkt )λjkt . Hence,
the above assumption gjk > −1 is needed in order to ensure that λ̃jk > 0. Changing the
measure from P to Q yields some new natural Q-martingales:

M jk,Q
t = N jk

t −
∫ t

0
λ̃jku du = N jk

t −
∫ t

0

(
1 + gjku

)
Iju−µ

jk
[x]+udu.

This shows that the P -martingales M jk coincide with the corresponding Q-martingales
M jk,Q if and only if gjk = 0.

Remark 3.4.2 The sign of gjk does not have to be the same for all t. In the model, where
we only observe whether one insured individual is alive or dead, represented by states 0
and 1, respectively, we could for example expect g01

t > 0 for low ages (low values of x+ t)
and g01

t < 0 at large ages (large values of x+ t). This leads to a mortality intensity which
is too high at low ages and too low at high ages, such that the mortality intensity at all
times is chosen to the safe side as seen from the insurance companies’ point of view, if the
insurance companies sell term insurance coverage at low ages and life annuities starting
at large ages.

�

Remark 3.4.3 In the rest of the chapter we will be working under some arbitrary, but
fixed martingale measure Q, and therefore it is of importance to be able to find expressions
for the market survival probabilities, see Section 3.4.7 for a definition. Modelling the
mortality intensity by an extended Cox–Ingersoll–Ross model under P , we are interested
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in choices of hµ that lead to an extended Cox–Ingersoll–Ross model under Q as well. We
thus need the dynamics under Q to be of the form

dµ[x]+t =
(
βµ,Q(t) − γµ,Q(t)µ[x]+t

)
dt+ ρµ,Q(t)

√
µ[x]+tdW̃

Q
t ,

where βµ,Q, γµ,Q and ρµ,Q are functions of t, which satisfy the conditions given in Section
3.3.3 in order to ensure strict positivity of the mortality intensity. A comparison of the
dynamics under P and Q shows that hµ must be of the form

hµ(t, µ[x]+t) = δ(t)
√
µ[x]+t +

δ∗(t)
√
µ[x]+t

(3.4.8)

for some deterministic functions δ and δ∗. Since µ[x]+t > 0, this leads to the following
equations

ρµ,Q(t) = ρµ(t), (3.4.9)

βµ,Q(t) = βµ(t) + ρµ(t)δ∗(t), (3.4.10)

γµ,Q(t) = γµ(t) − ρµ(t)δ(t). (3.4.11)

This shows that given an extended Cox–Ingersoll–Ross model under P and a Girsanov
kernel hµ of the form (3.4.8), then the Q-dynamics are in accordance with an extended
Cox–Ingersoll–Ross model, with coefficients given by (3.4.9), (3.4.10) and (3.4.11). More-
over, if we have strict positivity of the mortality intensity under P , then the condition
δ∗(t) ≥ 0 ensures strict positivity under Q as well.

�

3.4.6 A brief review of financial concepts

In this section some concepts from the financial literature are introduced within the present
framework. Under some equivalent martingale measure Q introduced in Section 3.4.5, the
dynamics of the price processes under Q are given by

dSt = r(t, St)Stdt+ σs(t, St)StdW
Q
t , S0 > 0,

dBt = r(t, St)Btdt, B0 = 1,

where (WQ
t )0≤t≤T is a Wiener process on the interval [0, T ] under Q.

A trading strategy is an adapted process ϕ = (ϑ, η) satisfying certain integrability condi-
tions. The pair ϕt = (ϑt, ηt) is interpreted as the portfolio held at time t. Here, ϑt and
ηt, respectively, denote the number of stocks and the discounted deposit on the savings
account in the portfolio at time t. The value process V(ϕ) associated with ϕ is given by

Vt(ϕ) = ϑtSt + ηtBt.

A strategy ϕ is called self-financing if

Vt(ϕ) = V0(ϕ) +

∫ t

0
ϑudSu +

∫ t

0
ηudBu.
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Thus, the value at any time t of a self-financing strategy is the initial value added interest
on the savings account and trading gains; withdrawals and deposits are not allowed during
(0, T ). A contingent claim (or a derivative) with maturity T is an FT -measurable, Q-
square integrable random variable H. Hence, the class of contingent claims depends on
the equivalent martingale measure Q. If H can be written as Φ(ST , µ[x]+T , ZT ) for some
function Φ : R

2
+ × J → R, it is called a simple contingent claim. A contingent claim is

called attainable if there exists a self-financing strategy such that VT (ϕ) = H, P -a.s. An
attainable claim can thus be replicated perfectly by investing V0(ϕ) at time 0 and investing
during the interval [0, T ] according to the self-financing strategy ϕ. Hence, at any time t,
there is no difference between holding the claim H and the portfolio ϕt. In this sense, the
claim H is redundant in the market and from the assumption of no arbitrage it follows
that the price of H must be Vt(ϕ) at any time t. Thus, the initial investment V0(ϕ) is
the unique arbitrage free price of H. Note that if ϕ = (ϑ, η) is a self-financing portfolio
replicating the contingent claim H, then H has the following representation

H = VT (ϕ) = V0(ϕ) +

∫ T

0
ϑtdSt +

∫ T

0
ηtdBt.

If all contingent claims are attainable, the model is called complete and otherwise it is
called incomplete. A self-financing strategy is a so-called arbitrage if V0(ϕ) = 0 and
VT (ϕ) ≥ 0 P -a.s. with P (VT (ϕ) > 0) > 0. It is well known from the financial literature,
see e.g. Björk (2004), that the model (B,S,G) is complete and arbitrage free under the
assumptions on the coefficients given in Section 3.4.1. Thus, a contingent claim specifying
the amount Φ(ST ) to be paid out at time T has a unique arbitrage free price process
(π(t, St))0≤t≤T , which can be characterized by the following PDE on [0, T ] × R+:

∂tπ(t, s) + r(t, s)s∂sπ(t, s) +
1

2
(σs(t, s))2s2∂ssπ(t, s) − r(t, s)π(t, s) = 0, (3.4.12)

with boundary condition π(T, s) = Φ(s).

When we introduce other sources of randomness in the model, which are not tradeable on
the market, we get an incomplete market. This will be the case for (B,S,F). Here, we are
still able to replicate claims which only depend on the randomness from (B,S), whereas
claims containing an element of insurance are not replicable. Thus, insurance contracts
cannot be priced uniquely by a no arbitrage argument. However, for each admissible choice
of hµ and g, we get an equivalent martingale measure Q, which can be used to derive
possible prices for contingent claims, which are consistent with absence of arbitrage. One
possible choice of Q is obtained by letting hµ = 0 and gjk = 0. Here, the market is said
to be risk neutral with respect to systematic and unsystematic mortality risk.

3.4.7 Market survival probabilities

Here, we derive a PDE for the market survival probabilities. Let the dynamics of µ be
given by (3.4.7). Now consider the case where J = {0, 1}, with 0 corresponding to the
policyholder being alive and 1 to the policyholder being dead. Using the notation µ[x]+t
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and gt instead of µ01
[x]+t and g01

t we can define the market survival probability from time t
to T for an x+ t year old by

SQ(t, µ[x]+t, T ) := EQ
[
I0
T

∣∣Zt = 0, µ[x]+t

]
= EQ

[
e−

R T
t

(1+gτ )µ[x]+τdτ
∣∣∣µ[x]+t

]
.

Using Itô’s formula and the fact that Mt given by

Mt = EQ
[
e−

R T
0 (1+gτ )µ[x]+τdτ

∣∣∣Ft
]
,

is a Q-martingale, we can obtain the following PDE on [0, T ] × R+:

0 = ∂tSQ(t, µ, T ) + αµ,Q(t, µ)∂µSQ(t, µ, T )

+
1

2
(σµ(t, µ))2 ∂µµSQ(t, µ, T ) − (1 + g(t, µ))µSQ(t, µ, T ), (3.4.13)

with boundary condition

SQ(T, µ, T ) = 1.

This PDE differs from the one given in (3.3.2) for the survival probabilities by the coeffi-
cient αµ,Q and the loading factor g appearing in the last term only.

Remark 3.4.4 Analogously to the forward mortality intensity we can now define the
market forward mortality intensity by

fµ,Q(t, T ) := −∂T logSQ(t, µ[x]+t, T ).

�

3.5 Market Reserves

In traditional literature on life insurance the (prospective) reserve is determined as the
expected value of future discounted benefits less premiums under a technical probability
measure, which is subjectively chosen and in general different from P and Q. In the
present context, we are working with a market reserve, which is the price at which the
insurance contract could be sold on the financial market. In order to exclude arbitrage
possibilities, the market reserve is the expected value of discounted future benefits less
premiums under some arbitrary, but fixed, market measure Q.

Consider a general payment stream A, where payments are allowed to depend on the
development of the financial market. More precisely, A is assumed to be of the form

dAt =
∑

k


Ikt dAkt +

∑

ℓ:ℓ 6=k
akℓt dN

kℓ
t


 , (3.5.1)

where

dAkt = akt dt+ (Akt −Akt−) = akt dt+ ∆Akt . (3.5.2)
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We thus consider a payment stream, where payments are contingent on the development of
the underlying insurance contract as described by the Markov process Z, see Section 3.4.3.
According to (3.5.1)–(3.5.2), we allow for 3 different types of payments, all of which may

be linked to the stock S. Firstly, there are amounts ajkt = ajk(t, St) payable immediately
upon transition from state j to state k. These are called general life insurances. Secondly,
there are general state-wise annuities payable continuously at rate ajt = aj(t, St) at time
t, contingent on the policy sojourning in state j. Lastly, we allow for lump sum payments
∆Aj(t, St). However, for notational convenience, we restrict lump sum payments to the
initial time 0 and the terminal time T only, i.e. ∆Akt = 0 if t /∈ {0, T}. We note that since all
payments are assumed to be functions of the current value of the stock only, we exclude
path dependent payment functions, such as so-called Asian and Russian options; for a
treatment of these and other exotic options see Musiela and Rutkowski (1997). Assume
that (t, s) 7→ aj(t, s), (t, s) 7→ ajk(t, s) and s 7→ ∆Aj(T, s) are measurable functions, and
that

EQ
[∫ T

0

∣∣∣B−1
u ajku

∣∣∣ λ̃jku du
]
<∞, ∀j 6= k.

Then the processes
∫
B−1ajkdM jk,Q are Q-martingales, see Brémaud (1981, Lemma L3

p. 24).

We use the convention, which is standard in actuarial literature, that the reserve at time
t is the value of future payments after payments due at time t. Let positive amounts
represent benefits and negative amounts represent premiums. The market reserve for a
contract with payment stream A described above and termination at time T can then be
written as

V (t, St, µ[x]+t, Zt) = EQ
[∫ T

t
e−

R τ

t
rududAτ

∣∣∣∣Ft
]
, 0 ≤ t < T,

and

V (T, ST , µ[x]+T , ZT ) = 0.

Note that V is a function of the state of the insurance portfolio and the current value of
the stock and mortality intensity only. This is due to the restrictions on hµ and g, which
ensure that the processes are Markov under Q, and the fact that the payment functions are
restricted to depend on the present value of the stock only. Since the present state of the
policy is known, the relevant quantities are the state-wise market reserves. Using that S
and µ are Markov processes under Q and inserting the definition of A from (3.5.1)–(3.5.2),
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we get the following expression for the state-wise reserves for 0 ≤ t < T :

V j(t, St, µ[x]+t)

= EQ
[∫ T

t
e−

R τ

t
rududAτ

∣∣∣∣Zt = j, St, µ[x]+t

]

= EQ



∫ T

t
e−

R τ
t
rudu

∑

k∈J


Ikτ akτdτ +

∑

ℓ:ℓ 6=k
akℓτ dN

kℓ
τ



∣∣∣∣∣∣
Zt = j, St, µ[x]+t




+EQ

[
e−

R T

t
rudu

∑

k∈J
IkT∆AkT

∣∣∣∣∣Zt = j, St, µ[x]+t

]

=
∑

k∈J

∫ T

t
EQ

[
e−

R τ

t
ruduakτ

∣∣∣St
]
EQ

[
Ikτ

∣∣∣Zt = j, µ[x]+t

]
dτ

+
∑

k∈J

∑

ℓ:ℓ 6=k

∫ T

t
EQ

[
e−

R τ
t
ruduakℓτ

∣∣∣St
]
EQ

[
Ikτ−

(
1 + gkℓτ

)
µkℓ[x]+τ

∣∣∣Zt = j, µ[x]+t

]
dτ

+
∑

k∈J
EQ

[
e−

R T
t
rudu∆AkT

∣∣∣St
]
EQ

[
IkT

∣∣∣Zt = j, µ[x]+t

]
.

Here, we have used the Q-compensators for N jk and the fact that
∫
B−1ajkdM jk,Q are Q-

martingales in the second equality. Moreover, we have used the Q-independence between
S and (Z,µ). Disregarding the random course of the policy, the quantities aj(u, Su),
ajk(u, Su) and ∆Aj(T, ST ) are simple contingent claims in the financial market given by
(B,S,G). Since this market is complete, see Section 3.4.6, the claims can be uniquely
priced. Using that S is a Markov process the corresponding unique arbitrage free price
processes are for 0 ≤ t ≤ u ≤ T given by

F j(t, St, u) = EQ
[
e−

R u

t
rτdτaj(u, Su)

∣∣∣St
]
,

F jk(t, St, u) = EQ
[
e−

R u
t
rτdτajk(u, Su)

∣∣∣St
]
,

F∆j(t, St, T ) = EQ
[
e−

R T
t
rτdτ∆Aj(T, ST )

∣∣∣St
]
.

Defining the functions Hk(t, j, µ[x]+t, u) and Hkℓ(t, j, µ[x]+t, u) by

Hk(t, j, µ[x]+t, u) := EQ
[
Iku

∣∣∣Zt = j, µ[x]+t

]
, 0 ≤ t ≤ u ≤ T,

and

Hkℓ(t, j, µ[x]+t, u) := EQ
[
Iku

(
1 + gkℓu

)
µkℓ[x]+u

∣∣∣Zt = j, µ[x]+t

]
, 0 ≤ t ≤ u ≤ T, k 6= ℓ,
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the state-wise market reserves for 0 ≤ t < T can be written as

V j(t, St, µ[x]+t) =
∑

k∈J

∫ T

t
F k(t, St, τ)H

k(t, j, µ[x]+t, τ)dτ

+
∑

k∈J

∑

ℓ:ℓ 6=k

∫ T

t
F kℓ(t, St, τ)H

kℓ(t, j, µ[x]+t, τ)dτ

+
∑

k∈J
F∆k(t, St, T )Hk(t, j, µ[x]+t, T ).

For similar calculations under deterministic transition intensities, see Møller (2001c).

Using either martingale methods as in Møller (2001c) or the generalized Thiele differential
equation in Steffensen (2000), we obtain the following system of PDEs for the market
reserves on [0, T ) × R

2
+ for all j ∈ J :

aj(t, s) − r(t, s)V j(t, s, µ) + ∂tV
j(t, s, µ) + αµ,Q(t, µ)∂µV

j(t, s, µ)

+
1

2
(σµ(t, µ))2∂µµV

j(t, s, µ) + r(t, s)s∂sV
j(t, s, µ) +

1

2
(σs(t, s))2s2∂ssV

j(t, s, µ)

+
∑

k:k 6=j

(
ajk(t, s) + V k(t, s, µ) − V j(t, s, µ)

)(
1 + gjk(t, µ)

)
µjk = 0, (3.5.3)

with boundary conditions

V j(T−, s, µ) = ∆Aj(T, s).

Since the system of PDEs in general does not have an analytic solution, we have to resort
to numerical techniques in order to solve for V j(t, s, µ) in (3.5.3).

Example 3.5.1 We address the special case where the state space for Z is J = {0, 1},
with 0 corresponding to the policyholder being alive and 1 corresponding to the poli-
cyholder being dead. In this case we have that SQ(t, µ[x]+t, u) = H0(t, 0, µ[x]+t, u) for
0 ≤ t ≤ u ≤ T . Consider a unit-linked endowment insurance paid by a lump sum premium
at time 0. An endowment insurance pays out a specified amount in case the policyholder
dies or survives to time T whichever happens first. Here the state-wise market reserves
for 0 ≤ t < T are given by

V 0(t, St, µ[x]+t) =

∫ T

t
F 01(t, St, τ)H

01(t, 0, µ[x]+t, τ)dτ + F∆0(t, St, T )SQ(t, µ[x]+t, T ),

V 1(t, St, µ[x]+t) = 0.
�

3.6 Mortality-linked contracts

3.6.1 Motivation

In Danish life insurance practice, premiums or benefits, depending on whichever is chosen
in the contract, are determined applying the principle of equivalence with a deterministic
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mortality intensity, known as the first order mortality intensity. The first order mortality
intensity is chosen to be on the safe side as seen from the company’s point of view. This
is usually obtained by working with a mortality intensity which is believed to be too
high at low ages and too low at large ages, see for example the Danish mortality table
G82. Of course, the future mortality intensity is unknown, so this has to be based on the
information available at the time of signing of the contract.

If the mortality intensity behaves as expected, and the insured portfolio behaves according
to the general mortality intensity, this approach leads to a systematic surplus for the entire
portfolio. If the portfolio is large enough, the strong law of large numbers applies, which
implies that the portfolio behaves according to the general mortality intensity, provided
that no selection mechanism has been applied. By the so-called contribution principle,
the systematic surplus must be redistributed among the insured as bonus by taking into
consideration to which extent the insured has taken part in generating the surplus. The
companies typically use the bonus to buy additional insurance cover, similar to the one(s)
already stipulated in the contract.

This procedure is unproblematic as long as the real mortality intensity does not behave
worse, as seen from the insurer’s point of view, than the chosen deterministic mortality
intensity. However, no matter how safe the deterministic mortality intensity is chosen,
there is always a risk that the mortality intensity behaves worse, even though this risk
may be very small. According to the insurance contracts, the companies cannot allocate
negative bonus to the insured, i.e. they cannot reduce benefits (or, equivalently, increase
premiums). Thus, the companies are subject to a systematic mortality risk related to
the future development of the mortality intensity. One possible way for the insurance
companies to reduce this risk is to transfer some or all of it to the insured or other
agents or companies. For example, one could currently adapt premiums or benefits to the
development of the mortality intensity. We shall refer to such contracts as mortality-linked
contracts. More precisely, one could link the premiums or benefits to the development of
some large group of reference individuals. This group might consist of the entire Danish
population, the entire portfolio of the insurance company or a mixed portfolio from all
Danish insurance companies. One could then agree on a specific estimation procedure
from which the “true” mortality intensity is determined in order to avoid misuse from the
companies and possible mistrust from the insured. In this sense, one can view the true
mortality intensity as an observable quantity.

The main idea with mortality-linked insurance contracts is that equivalence between pre-
miums and benefits is established by using the information available at time 0. At time t,
the state-wise retrospective and prospective reserves are calculated using the information
currently available. In order for the expected state-wise retrospective and prospective re-
serves to be equal there are two adjustment possibilities: The premiums and the benefits.
Adjustment of the premium is only a possibility if the contract is not entirely paid by a
lump sum premium. This approach would reduce the companies’ mortality risk to the
risk associated with changes in the mortality intensity that have occurred after the last
adjustment and to unsystematic risk. If the adjustment is done sufficiently often, the
systematic mortality risk can be considered negligible.
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In the following section we present the idea of mortality-linked contracts by means of
a simple example. More general results concerning mortality-linked contracts will be
presented elsewhere.

3.6.2 Pure endowment

The simplest non-trivial contract is a pure endowment paid by a single premium π0 at
time 0 for some policy-holder aged x. Benefits are described by an adapted stochastic
process (Kt)0≤t≤T , which determines the sum to be paid out at time T in case of survival
until age x+ T . In particular K0 is the sum insured calculated at time 0. At time t the
sum insured is given by Kt, which may be smaller or bigger than K0. The exact size of
Kt will depend on the development of the underlying mortality intensity and the financial
market in a specified way described below. In the following, we use the notation µ[x]+t

and gt instead of µ01
[x]+t and g01

t , indicating that we are working with a two state Markov
model for the insurance contract and one policyholder. The principle of equivalence under
Q gives the premium π0 for the pure endowment with sum insured K0:

π0 = K0 p(0, T )SQ(0, µ[x], T ), (3.6.1)

where the processes SQ(t, µ[x]+t, T ) and p(t, T ) are defined by EQ[e−
R T

t
(1+gu)µ[x]+udu|µ[x]+t]

and EQ[e−
R T
t
rudu|Gt] respectively. Thus, the premium is the market price of benefits.

Remark 3.6.1 Using the market forward mortality intensity, the premium can be written
as

π0 = K0 p(0, T ) e−
R T
0 fµ,Q(0,u)du.

The advantage of rewriting the premium this way is twofold. Firstly, we observe that
calculating premiums using the equivalence principle under the market measure is done
using a known mortality intensity. Secondly, working with fµ,Q instead of fµ shows that
the “fair” premium is determined by using a measure, which reflects the market’s attitude
towards both the systematic and the unsystematic mortality risk.

�

Inspired by Norberg (1991) we work with state-wise retrospective reserves at time t, 0 ≤
t ≤ T , defined by

V i,retro
t = π0

Ut
U0

−KT 1{i=0}1{t=T}, (3.6.2)

where (Ut)0≤t≤T is a stochastic process with Q-dynamics of the form

dUt = αUt dt+ σUt dW
Q
t .

Here αUt and σUt are G-adapted (and thus F-adapted) processes. In order for the contract
to be “fair” the process U must fulfill a condition, which will be given later. The state-wise
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retrospective reserves are thus the accumulated value of premiums less benefits in [0, t],
given the present state of the policy. Note that the accumulation is done with an arbitrary
accumulation factor Ut

U0
, 0 ≤ t. For different choices of αUt and σUt we thus have different

state-wise retrospective reserves. One possibility is to choose αUt = r∗tUt and σUt = 0,
where r∗ is some rate of return. Possible choices of r∗ are the actual interest rate or some
rate averaging out the true interest rate (or the investment return of the company) over
time. If all individual contracts are fair, as measured by the no arbitrage principle, this
can be thought of as the deposit rate used in practice. We recall that the prospective
reserves are equal to the market reserves defined in Section 3.5. Let V i,pro

t denote the
prospective reserve at time t given the insured is in state i and the sum insured is Kt

V i,pro
t = EQ

[
e−

R T

t
ruduKtI

0
T

∣∣∣Zt = i,It ∨ Gt
]
, 0 ≤ t < T. (3.6.3)

As a criterion in order to calculate the adapted benefits, Kt, we use

EQ
[
V Zt,pro
t

∣∣∣Gt ∨ It
]

= EQ
[
V Zt,retro
t

∣∣∣Gt ∨ It
]
. (3.6.4)

We note that the expectation operator only refers to the possible states of the insurance
contract, i.e. whether Zt is 0 or 1.

For the contract to be fair the expected discounted value under Q of the actual payments
should be 0, i.e.

EQ
[
π0 − I0

T e
−
R T
0 ruduKT

]
= 0, (3.6.5)

which means that the principle of equivalence under Q should apply. As we shall see
below, this leads to a condition on the accumulation process U . First, we express KT in
terms of U : At time T we have by definition that

V 0,pro
T = V 1,pro

T = 0,

whereas (3.6.2) gives

V 0,retro
T = π0

UT
U0

−KT

and

V 1,retro
T = π0

UT
U0

.

Criterion (3.6.4) applied at time T thus gives

KT = π0
UT
U0

1

e−
R T
0 (1+gu)µ[x]+udu

.

Inserting this into (3.6.5) and using iterated expectations we find that the process U must
fulfill:

0 = EQ
[
π0 − I0

T e
−
R T

0
ruduKT

]

= EQ
[
π0 − I0

T e
−
R T
0
ruduπ0

UT
U0

1

e−
R T
0 (1+gu)µ[x]+udu

]

= π0

(
1 − EQ

[
e−

R T

0
ruduUT

U0

])
,
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which is equivalent to

EQ
[
e−

R T

0
ruduUT

U0

]
= 1. (3.6.6)

Hence the expected discounted value of accumulation factor from 0 to T should be 1. As

expected, we note that if Ut = e
R t

0
rudu, i.e. if we accumulate with the real interest rate,

then U fulfills (3.6.6).

Having resolved the problem of defining a “fair” contract, we now turn our attention
towards the development of benefits. Applying criterion (3.6.4) at time t < T gives

e−
R t
0 (1+gu)µ[x]+uduKtp(t, T )SQ(t, µ[x]+t, T ) = π0

Ut
U0
.

Inserting the expression for the premium from (3.6.1) we find the following relationship
between the benefits decided at time 0 and time t:

Kt

K0
=

p(0, T )SQ(0, µ[x], T )Ut

U0

e−
R t

0
(1+gu)µ[x]+udup(t, T )SQ(t, µ[x]+t, T )

. (3.6.7)

We see that the ratio between the new sum insured and the old sum insured is the ratio
between the market value at time 0 of a pure endowment contract with expiration T
accumulated to time t using the accumulation factor Ut

U0
, and the market value at time t of

a pure endowment with expiration T multiplied by the (at time t known) market survival
probability from time 0 to t.

For simplicity we restrict ourselves to the situation where r is deterministic and Ut

U0
is equal

to e
R t
0 rudu. We can thus consider the impact of the mortality intensity only. This implies

that (3.6.7) reduces to

Kt

K0
=

SQ(0, µ[x], T )

e−
R t
0 (1+gu)µ[x]+uduSQ(t, µ[x]+t, T )

.

To see how the benefit evolves in connection with changes in the mortality intensity, we
derive the dynamics for Kt. First note that Kt can be written as

Kt = K0SQ(0, µ[x], T )e
R t

0
(1+gu)µ[x]+udu

1

SQ(t, µ[x]+t, T )
.

In the following we use the simplified notation SQt = SQ(t, µ[x]+t, T ). Using the partial

differential equation (3.4.13) for SQt we find the dynamics of 1

SQ
t

:

d

(
1

SQt

)
=

1

SQt




− (1 + gt)µ[x]+t +

(
σµt
∂µSQt
SQt

)2

 dt − σµt

∂µSQt
SQt

dW̃Q
t


 . (3.6.8)
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Using (3.6.8) we arrive at the following dynamics of Kt under P :

dKt =


σµt

∂µSQt
SQt

hµt +

(
σµt
∂µSQt
SQt

)2

Ktdt− σµt

∂µSQt
SQt

KtdW̃t. (3.6.9)

The benefit thus increases or decreases by a fraction which is proportional to the current
benefit. This proportion factor consists of two terms: The first term comes from changing
measure with respect to the mortality intensity. This term is the risk associated with the
relative change in market survival probability multiplied by hµ, which is minus 1 times the
market price of systematic mortality risk. The second drift term is the squared relative
change in market survival probability associated with a change in mortality intensity.
The last term in the expression is the product of the relative change in market survival
probability, the present benefit and the change in the Wiener process driving the mortality

intensity. Since
∫
σµ

∂µSQ

SQ dW̃ is a (local) P -martingale, the stochastic exponential formula
gives that the differential equation (3.6.9) has the solution

Kt = K0 exp



∫ t

0


σµu

∂µSQu
SQu

hµu +
1

2

(
σµu
∂µSQu
SQu

)2

 du−

∫ t

0
σµu
∂µSQu
SQu

dW̃u




Note that the dynamics are expressed under P instead of Q, since these are the dynamics
to be observed by the insured and the insurer.

Development of the benefit when allowing for risky investments

Steffensen (2001) works with the value of past contractual payments accumulated by the
development of the investment portfolio of the insurance company. Using this idea, we
assume that the insurance company invests in a self-financing portfolio ϕ = (ϑ, η), which
leads to the strictly positive value process V(ϕ). Choosing Ut = Vt(ϕ) the retrospective
reserves are calculated using the accumulation factor obtained by the risky investments of
the company, i.e. we have

V i,retro
t = π0

Vt(ϕ)

V0(ϕ)
−KT 1{i=0}1{t=T}. (3.6.10)

Using the retrospective reserve in (3.6.10) together with criterion (3.6.4) leaves the in-
sured with both the risk associated with the development of the financial market and the
systematic mortality risk, hence leaving the insurance company with the unsystematic
mortality risk only. In Section 3.8 we show that in this case the P -dynamics of Kt are
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given by

dKt =

((
σstSt

∂sp(t, T )

p(t, T )

)2

+

(
σµt
∂µSQt
SQt

)2

−
(
σst

ϑtSt
Vt(ϕ)

σstSt
∂sp(t, T )

p(t, T )

)

+ hst

(
σstSt

∂sp(t, T )

p(t, T )
− σst

ϑtSt
Vt(ϕ)

)
+ hµt

(
σµt
∂µSQt
SQt

))
Ktdt

+

(
σst

ϑtSt
Vt(ϕ)

− σstSt
∂sp(t, T )

p(t, T )

)
KtdWt −

(
σµt
∂µSQt
SQt

)
KtdW̃t. (3.6.11)

The drift thus consists of five terms. The second and last drift term relate to the mortality
intensity and are recognized as the drift in (3.6.9). The first term is the square of the rela-
tive change in zero coupon prices, and the third term comes from the correlation between
the investment portfolio and the zero coupon prices. This term is positive (negative) if the
interest rate has a positive (negative) dependence of the stock price. The fourth term is
minus the market price of financial risk, hst , multiplied by the sum of the relative change in
zero coupon prices and minus the relative change in the value of the investment portfolio.
The last two terms in the dynamics are related to the Wiener processes driving the stock
and mortality intensity, respectively.

3.7 Securitization of systematic mortality risk

As a way to control the mortality risk inherent in an insurance portfolio the company may
purchase reinsurance cover. Reinsurance contracts usually consider the specific insurance
portfolio of the company, and hence provide coverage for both systematic and unsystematic
mortality risk. An example of a mortality dependent reinsurance contract sold in practice
is a so-called mortality swap. Prices of reinsurance contracts concerning both systematic
and unsystematic mortality risk can be found using the methods already established in
Section 3.5. However it seems that many life insurance companies are hesitant to buy
long term reinsurance coverage. One reason could be that the riskiness of the reinsurance
business would leave the insurance companies with a substantial credit risk.

As an alternative to reinsurance we consider securitization. Here, the company trades
contracts on the financial market, which depend on the development of the mortality in-
tensity. An important difference between reinsurance and securitization is, that mortality
contracts sold on the financial market depend on the general development of the mortality
intensity, and hence only offer protection for the systematic mortality risk. Introducing
products contingent on the mortality intensity naturally raises questions regarding the es-
timation of the mortality intensity. Since, these questions are similar to those in the case
of mortality-linked contracts, we refer to the discussion in Section 3.6. The advantages
of securitization over traditional reinsurance is the possible lower cost when standardizing
products and the larger capacity of the financial market. More details on securitization
of mortality risk can be found in Lin and Cox (2005). For treatments of securitization of
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catastrophe losses, which seems to be the most developed area of securitization, see Chris-
tensen (2000), Cox, Fairchild and Pedersen (2000) and references therein.

In this section we first derive a PDE for the price process of a wide class of derivatives on
the mortality intensity. Then we examine different possibilities for an insurance company,
which is interested in hedging a pure endowment, and finally we investigate contracts with
a risk premium.

3.7.1 Pricing mortality derivatives

Inspired by Björk (2004, Chapter 8) we consider derivatives of the mortality intensity with
a payoff of the form

Φ(T, µ[x]+T ,Ψ
1
T ,Ψ

2
T ),

where the processes Ψi, i = 1, 2, are given by

Ψi
t =

∫ t

0
qi(τ, µ[x]+τ )dτ,

for positive functions qi. The notation above indicates that the derivative is payable at
time T , and that it may depend on the mortality intensity at expiration time T and on
the integral over (0, T ] of two different functions of the mortality intensity. This type of
contract covers standard European and Asian options, and thus includes most contracts.
Using the independence between the financial market and the mortality intensity, the price
process can be written as

π(t, St, µ[x]+t,Ψ
1
t ,Ψ

2
t ) = p(t, T )EQ

[
Φ(T, µ[x]+T ,Ψ

1
T ,Ψ

2
T )
∣∣It
]
.

Given an expression for p(t, T ) it is thus sufficient to derive a PDE for the Q-martingale
Υ defined by

Υ(t, µ[x]+t,Ψ
1
t ,Ψ

2
t ) = EQ

[
Φ(T, µ[x]+T ,Ψ

1
T ,Ψ

2
T )
∣∣ It
]
.

Using Itô’s formula and the product rule, we can now find the dynamics of Υ. Since Υ is a
Q-martingale, the drift term must be 0, such that we get the following PDE on [0, T ]×R

3
+:

0 = ∂tΥ(t, µ, ψ1, ψ2) + αµ,Q(t, µ)∂µΥ(t, µ, ψ1, ψ2) + q1(t, µ)∂ψ1Υ(t, µ, ψ1, ψ2)

+ q2(t, µ)∂ψ2Υ(t, µ, ψ1, ψ2) +
1

2
(σµ(t, µ))2 ∂µµΥ(t, µ, ψ1, ψ2), (3.7.1)

with boundary condition

Υ(T, µ, ψ1, ψ2) = Φ(T, µ, ψ1, ψ2).
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3.7.2 Possible ways of hedging

The fair premium for a pure endowment contract with sum insured K can be written as

π0 = KEQ
[
e−

R T
0 (1+gu)µ[x]+udu

]
p(0, T ).

In the following we examine some possibilities for hedging/controlling the systematic mor-
tality risk associated with a pure endowment on the financial market. One possibility is

to buy a derivative with payout Ke−
R T

0
µ[x]+udu at time T . The price for such a derivative

at time 0 is

π(0, µ[x],Ψ0) = KEQ
[
e−

R T

0
µ[x]+udu

]
p(0, T ), (3.7.2)

where the process Ψ = (Ψt)0≤t≤T is given by Ψt =
∫ t
0 µ[x]+u, i.e. q(t, µ[x]+t) = µ[x]+t.

This derivative hedges the financial risk and systematic mortality risk and leaves the
company with the unsystematic mortality risk only. From (3.7.2), we see that the price
of the derivative is larger than the premium obtained from the insured if and only if

EQ[e−
R T

0
µ[x]+udu] > EQ[e−

R T

0
(1+gu)µ[x]+udu]. Since the companies want a premium in order

to carry a risk, the above hedging possibility only becomes interesting if the price of the
derivative is less than the premium paid by the insured.

Often the companies are interested in carrying parts of the systematic mortality risk
themselves. In this case the companies can buy a call option on the survival probability
with strike C. The payoff from the call option is given by

Φ(T, µ[x]+T ,ΨT ) =
(
e−ΨT − C

)+
. (3.7.3)

Here, as in (3.7.2), the process Ψ = (Ψt)0≤t≤T is defined by Ψt =
∫ t
0 µ[x]+udu. The

derivative with payoff (3.7.3) leads to a payment if the real survival probability is above
some predefined level C. This leaves the insurance company with the systematic mortality
risk up to a certain level. Here, the strike C could be the survival probability calculated by
using some known mortality intensity, for example the market forward mortality intensity.
The price process π(t, St, µ[x]+t,Ψt) for the call option can be found by solving (3.7.1) with
boundary condition Υ(T, µ, ψ) = Φ(T, µ, ψ) and multiplying by p(t, T ).

3.7.3 Contracts with a risk premium

Assume that the company calculates the premium of a pure endowment with sum insured
K using some specified mortality intensity (µ∗[x]+u)0≤u≤T , which satisfies

e
−
R T
0 µ∗

[x]+u
du
> e−

R T

0
fµ,Q(0,u)du.

The mortality intensity (µ∗[x]+u)0≤u≤T can be interpreted as the first order mortality in-

tensity used in practice. Using (µ∗[x]+u)0≤u≤T the company charges a premium π∗0, which
is larger than the fair premium π0, given by the market price under Q. This is similar to
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charging a risk premium. The systematic surplus generated by pricing with (µ∗[x]+u)0≤u≤T
instead of (fµ,Q(0, u))0≤u≤T must be returned to the policyholders, and this could be ob-
tained by increasing benefits if the mortality intensity behaves as expected. For example,
the company could pay

KT = K

(
1 + a

(
e
−
R T

0
µ∗

[x]+u
du − e−

R T
0 µ[x]+udu

)+
)
, (3.7.4)

if the person survives. Here, a ∈ (0, 1) is the proportion of the surplus which is paid to
the policyholder. A natural restriction for contracts of the form (3.7.4) is that they are
fair as measured by the market measure. This gives the following equation

π∗0 = EQ
[
I0
TKT e

−
R T
0 rudu

]

= EQ
[
I0
TKe

−
R T

0
rudu

]
+ EQ

[
I0
TaKe

−
R T

0
rudu

(
e
−
R T
0 µ∗

[x]+u
du − e−

R T

0
µ[x]+udu

)+
]

= π0 + aKp(0, T )EQEQ

[
I0
T

(
e
−
R T
0 µ∗

[x]+u
du − e−

R T

0
µ[x]+udu

)+
∣∣∣∣∣ IT

]

= π0 + aKp(0, T )EQ

[
e−

R T

0
(1+gu)µ[x]+udu

(
e
−
R T
0 µ∗

[x]+u
du − e−

R T

0
µ[x]+udu

)+
]
.

Here,

p(0, T )EQ

[
e−

R T
0 (1+gu)µ[x]+udu

(
e
−
R T

0
µ∗

[x]+u
du − e−

R T
0 µ[x]+udu

)+
]

is the price at time 0, henceforth denoted π(0, S0, µ[x], 0, 0), for a derivative with the
following payoff at time T

Φ(T, µ[x]+T ,Ψ
1
T ,Ψ

2
T ) = e−Ψ1

T

(
e
−
R T

0
µ∗

[x]+u
du − e−Ψ2

T

)+

,

where

Ψ1
t =

∫ t

0
(1 + gu)µ[x]+udu and Ψ2

t =

∫ t

0
µ[x]+udu.

Hence, the price at time 0 can be found by solving (3.7.1) with the boundary condi-
tion Υ(T, µ, ψ1, ψ2) = Φ(T, µ, ψ1, ψ2) and multiply by p(0, T ). We obtain the following
expression for the “fair” value of a

a =
π∗0 − π0

Kπ(0, S0, µ[x], 0, 0)
.

This formula can be interpreted in the following way: The benefit is increased with a num-
ber of put options on the survival probability, which corresponds to the excess premium
over the fair premium divided by the price of the put option.
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3.8 Dynamics of the benefit with risky investments

In this section we derive (3.6.11). We assume that the insurance company invests in a
self-financing portfolio ϕ = (ϑ, η), which leads to the value process V(ϕ) given by

Vt(ϕ) = ϑtSt + ηtBt.

We require that Vt(ϕ) > 0 for all t. For 0 ≤ u ≤ t ≤ T , the ratio Vt(ϕ)
Vu(ϕ) describes the value

at time t of one unit deposited at time u. In the present case, the state-wise retrospective
reserves are given by

V i,retro
t = π0

Vt(ϕ)

V0(ϕ)
−KT 1{i=0}1{t=T}.

The state-wise prospective reserve given the insured is alive is still given by (3.6.3). At
time t < T the benefit must satisfy the following equation

Kt = π0e
R t

0
(1+gu)µ[x]+udu

Vt(ϕ)

V0(ϕ)p(t, T )SQ(t, µ[x]+t, T )

=
π0

V0(ϕ)
e
R t

0
(1+gu)µ[x]+uduVt(ϕ)

1

p(t, T )

1

SQ(t, µ[x]+t, T )
. (3.8.1)

Note that π0 and V0(ϕ) are determined at time 0, and thus they are independent of t. In
order to find the dynamics for Kt, we need to find the dynamics of each of the last four
factors and possible quadratic covariations. Since ϕ is self-financing, the dynamics of the
value process are

dVt(ϕ) = ϑtdSt + ηtdBt

= ϑt

(
rtStdt + σstStdW

Q
t

)
+ ηtrtBtdt

= rtVt(ϕ)dt + σstϑtStdW
Q
t .

For 1
p(t,T ) we obtain

d

(
1

p(t, T )

)
= − 1

(p(t, T ))2
dp(t, T ) +

1

(p(t, T ))3
d〈p(t, T )〉. (3.8.2)

First we find dp(t, T )

dp(t, T ) =

(
∂tp(t, T ) + rtSt∂sp(t, T ) +

1

2
(σst )

2S2
t ∂ssp(t, T )

)
dt+ σstSt∂sp(t, T )dWQ

t

= rtp(t, T )dt + σstSt∂sp(t, T )dWQ
t , (3.8.3)

where we have used (3.4.12). The predictable quadratic variation is given by

d〈p(t, T )〉 = (σstSt∂sp(t, T ))2 dt. (3.8.4)
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Inserting (3.8.3) and (3.8.4) into (3.8.2), we get

d

(
1

p(t, T )

)
= − 1

(p(t, T ))2

(
rtp(t, T )dt + σstSt∂sp(t, T )dWQ

t

)

+
1

(p(t, T ))3
(σstSt∂sp(t, T ))2 dt

=
1

p(t, T )

(
−rtdt+

(
σstSt

∂sp(t, T )

p(t, T )

)2
)
dt

− 1

p(t, T )

(
σstSt

∂sp(t, T )

p(t, T )

)
dWQ

t .

The dynamics of 1
SQ(t,µ[x]+t,T )

are given in (3.6.8). Since WQ and W̃Q are independent,

we only need to find

d

[
Vt(ϕ),

1

p(t, T )

]
= −ϑtσstSt

1

p(t, T )

(
σstSt

∂sp(t, T )

p(t, T )

)
dt.

Itô’s formula gives the following dynamics of Kt:

dKt =
π0

V0(ϕ)
Vt(ϕ)

1

p(t, T )

1

SQ(t, µ[x]+t, T )
d
(
e
R t
0 (1+gu)µ[x]+udu

)

+
π0

V0(ϕ)
e
R t
0 (1+gu)µ[x]+udu

1

p(t, T )

1

SQ(t, µ[x]+t, T )
dVt(ϕ)

+
π0

V0(ϕ)
e
R t

0
(1+gu)µ[x]+uduVt(ϕ)

1

SQ(t, µ[x]+t, T )
d

(
1

p(t, T )

)

+
π0

V0(ϕ)
e
R t
0 (1+gu)µ[x]+uduVt(ϕ)

1

p(t, T )
d

(
1

SQ(t, µ[x]+t, T )

)

+
π0

V0(ϕ)
e
R t
0 (1+gu)µ[x]+udu

1

SQ(t, µ[x]+t, T )
d

[
Vt(ϕ),

1

p(t, T )

]
.

Inserting the above expressions and using (3.8.1), we get

dKt = Kt(1 + gt)µ[x]+tdt+Ktrtdt+Ktσ
s
t

ϑtSt
Vt(ϕ)

dWQ
t

+Kt

(
−rtdt +

(
σstSt

∂sp(t, T )

p(t, T )

)2
)
dt−Kt

(
σstSt

∂sp(t, T )

p(t, T )

)
dWQ

t

+Kt


−(1 + gt)µ[x]+t +

(
σµt
∂µSQ(t, µ[x]+t, T )

SQ(t, µ[x]+t, T )

)2

 dt

−Kt

(
σµt
∂µSQ(t, µ[x]+t, T )

SQ(t, µ[x]+t, T )

)
dW̃Q

t −Kt

(
σst

ϑtSt
Vt(ϕ)

σstSt
∂sp(t, T )

p(t, T )

)
dt.

Simplifying, rearranging terms and changing to P -martingales now gives (3.6.11).



Chapter 4

Valuation and Hedging of Life

Insurance Liabilities with

Systematic Mortality Risk

This chapter considers the problem of valuating and hedging life insurance contracts that
are subject to systematic mortality risk in the sense that the mortality intensity of all
policy-holders is affected by some underlying stochastic processes. In particular, this im-
plies that the insurance risk cannot be eliminated by increasing the size of the portfolio
and appealing to the law of large numbers. We propose to apply techniques from incom-
plete markets in order to hedge and valuate these contracts. We consider a special case
of the affine mortality structures considered in Chapter 3, where the underlying mortality
process is driven by a time-inhomogeneous Cox-Ingersoll-Ross (CIR) model. Within this
model, we study a general set of equivalent martingale measures, and determine market
reserves by applying these measures. In addition, we derive risk-minimizing strategies and
mean-variance indifference prices and hedging strategies for the life insurance liabilities
considered. Numerical examples are included, and the use of the stochastic mortality
model is compared with deterministic models.

4.1 Introduction

During the past years, expected lifetimes have increased considerably in many countries.
This has forced life insurers to adjust expectations towards the underlying mortality laws
used to determine reserves. Since the future mortality is unknown, a correct description
requires a stochastic model, as it has already been proposed by several authors, see e.g.
Marocco and Pitacco (1998), Milevsky and Promislow (2001), Dahl (2004b) (see Chapter
3), Cairns et al. (2004), Biffis and Millossovich (2004) and references therein. For a survey
on current developments in the literature and their relation to our results, we refer the
reader to Section 3.2. The main contribution of the present chapter is not the introduction

101
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of a specific model for the mortality intensity, but rather the study of the problem of
valuating and hedging life insurance liabilities that are subject to systematic changes in
the underlying mortality intensity.

In Chapter 3, a general class of Markov diffusion models are considered for the mortality
intensity, and the affine mortality structures are recognized as a class with particular nice
properties. Here, we study a special case of the general affine mortality structures and
demonstrate how such models could be applied in practice. As starting point we take some
smooth initial mortality intensity curve, which is estimated by standard methods. We then
assume that the mortality intensity at a given future point in time at a given age is obtained
by correcting the initial mortality intensity by the outcome of some underlying mortality
improvement process, which is modelled via a time-inhomogeneous Cox-Ingersoll-Ross
(CIR) model. Our model implies that the mortality intensity itself is described by a time-
inhomogeneous CIR model as well. As noted in Chapter 3, the survival probability can
now be determined by using standard results for affine term structures.

Within this setting, we consider an insurance portfolio and assume that the individual
lifetimes are affected by the same stochastic mortality intensity. In particular, this implies
that the lifetimes are not stochastically independent. Hence, the insurance company is
exposed to systematic as well as unsystematic mortality risk. Here, as in Chapter 3,
systematic mortality risk refers to the risk associated with changes in the underlying
mortality intensity, whereas unsystematic mortality risk refers to the risk associated with
the randomness of deaths in a portfolio with known mortality intensity. The systematic
mortality risk is a non-diversifiable risk, which does not disappear when the size of the
portfolio is increased, whereas the unsystematic mortality risk is diversifiable. Since the
systematic mortality risk typically cannot be traded efficiently in the financial markets or
in the reinsurance markets, this leaves open the problem of pricing insurance contracts.
Here, we follow Chapter 3 and apply financial theories for pricing the contracts, and study
a fairly general set of martingale measures for the model. We work with a simple financial
market, consisting of a savings account and a zero coupon bond and derive market reserves
for general life insurance liabilities. These market reserves depend on the market’s attitude
towards systematic and unsystematic mortality risk. Based on an investigation of some
Danish mortality data, we propose some pragmatic parameter values and calculate market
reserves by solving appropriate versions of Thiele’s differential equation.

Furthermore, we investigate methods for hedging and valuating general insurance liabilities
in incomplete financial markets. One possibility is to apply risk-minimization, which
has been suggested by Föllmer and Sondermann (1986) and applied for the handling of
insurance risks by Møller (1998, 2001a, 2001c). We demonstrate how risk-minimizing
hedging strategies may be determined in the presence of systematic mortality risk. These
results generalize the results in Møller (1998, 2001c), where risk-minimizing strategies were
obtained without allowing for systematic mortality risk. In addition, this can be viewed as
an extension of the work in Section 3, where market reserves were derived in the presence
of systematic mortality risk, but without considering the hedging aspect.

Utility indifference valuation and hedging has gained considerable interest over the last
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years as a method for valuation and hedging in incomplete markets, see e.g. Schweizer
(2001b) and Becherer (2003) and references therein. These methods have been applied for
the handling of insurance contracts by e.g. Becherer (2003), who worked with exponential
utility functions, and by Møller (2001b, 2003a, 2003b), who worked with mean-variance
indifference principles. We derive mean-variance indifference prices within our model and
compare the results with the ones obtained in Møller (2001b).

The present chapter is organized as follows. Section 4.2 contains a brief analysis of some
Danish mortality data. In Section 4.3, we introduce the model for the underlying mortality
intensity and derive the corresponding survival probabilities and forward mortality inten-
sities. The financial market used for the calculation of market reserves, hedging strategies
and indifference prices is introduced in Section 4.4, and the insurance portfolio is described
in Section 4.5. Section 4.6 presents the combined model, the insurance payment process
and the associated market reserves. Risk-minimizing hedging strategies are determined in
Section 4.7, and mean-variance indifference prices and hedging strategies are obtained in
Section 4.8. Numerical examples are provided in Section 4.9, and Section 4.10 contains
proofs and calculations of some technical results.

4.2 Motivation and empirical evidence

We briefly describe typical empirical findings related to the development in the mortal-
ity during the last couple of decades. The results in this section are based on Danish
mortality data, which have been compiled and analyzed by Andreev (2002). A more
detailed statistical study is carried out in Fledelius and Nielsen (2002), who applied ker-
nel hazard estimation. From the data material, we have determined the exposure times
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Figure 4.2.1: To the left: Development of the expected lifetime of 30 year old females
(dotted line at the top) and 30 year old males (solid line at the bottom) from year 1960 to
2003. To the right: Expected lifetimes for age 65. Estimates are based on the last 5 years
of data available at calendar time.

W ∗
y,x and number of deaths N∗

y,x for each calendar year y, and age x, and calculated the
occurrence-exposure rates µ∗y,x = N∗

y,x/W
∗
y,x. For each fixed y, we have determined a

smooth Gompertz-Makeham curve µ̃y,x = αy + βy(cy)
x based on the last 5 years of data

available at calendar time by using standard methods as described in Norberg (2000).

We have visualized in Figure 4.2.1 the development in the total expected lifetime of 30-
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Figure 4.2.2: Estimated mortality intensities for males (to the left) and females (to the
right). Solid lines are 1970-estimates, dashed lines correspond to 1980, dotted lines 1990
and dot-dashed lines 2003.

and 65-year old males and females based on the historical observations from the year
1960 to 2003. These numbers are based on raw occurrence-exposure rates. The figure
shows that this method leads to an increase in the remaining lifetime from 1980 to 2003 of
approximately 2.5 years for males and 1.5 years for females aged 30. Using this method,
the expected lifetime in 2003 is about 75.3 years for 30 year old males and 79.5 for 30 year
old females. If we alternatively use only one year of data we see an increase from 72.5
to 75.5 for males and from 77.9 to 79.9 for females. Figure 4.2.2 contains the estimated
Gompertz-Makeham mortality intensities µ̃y,x for males and females, respectively, for 1970,
1980, 1990 and 2003. These figures show how the mortality intensities have decreased
during this period. A closed study of the parameters (αy, βy, cy) indicate that αy has
decreased. The estimates for βy increase from 1960 to 1990, where the estimates for cy
decrease. In contrast, βy decreases and cy increases from 1990 to 2003. This approach
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Figure 4.2.3: Changes in the mortality intensity from 1980 to 2003 for males (solid lines)
and females (dotted lines) at fixed ages. The numbers have been normalized with the 1980
mortality intensities and are based directly on the occurrence-exposure rates.

does not involve a model that takes changes in the underlying mortality patterns into
consideration. Another way to look at the mortality intensities is to consider changes in
the mortality intensities at fixed ages, for example age 30 and 65, see Figure 4.2.3. For
both ages, we see periods where the mortality increases and periods where it decreases.
However, the general trend seems to be that mortality decreases. Moreover, we see that
the mortality behaves differently for different ages and for males and females. Finally,
we consider the situation, where we fix the initial age and compare the fitted Gompertz-
Makeham curve for 1980 with the subsequent ones as the age increases with calendar
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Figure 4.2.4: Changes in the mortality intensity from 1980 to 2003 for males (solid lines)
and females (dotted lines) as age increases. The numbers have been normalized with the
1980 mortality intensities and are based on the estimated Gompertz-Makeham curves.

time. This is presented in Figure 4.2.4. Again, we see periods where the ratio between
the current mortality and the 1980-estimate increases and periods where it decreases.

4.3 Modelling the mortality

4.3.1 The general model

We take as starting point an initial curve for the mortality intensity (at all ages) µ◦,g(x)
for age x ≥ 0 and gender g =male, female. It is assumed that µ◦,g(x) is continuously
differentiable as a function of x. We neglect the gender aspect in the following, and simply
write µ◦(x). For an individual aged x at time 0, the future mortality intensity is viewed as
a stochastic process µ(x) = (µ(x, t))t∈[0,T ] with the property that µ(x, 0) = µ◦(x). (Here,
T is a fixed, finite time horizon.) In principle, one can view µ = (µ(x))x≥0 as an infinitely
dimensional process.

We model changes in the mortality intensity via a strictly positive infinite dimensional
process ζ = (ζ(x, t))x≥0,t∈[0,T ] with the property that ζ(x, 0) = 1 for all x. Here and in the
following, we take all processes and random variables to be defined on some probability
space (Ω,F , P ) equipped with a filtration F = (F(t))t∈[0,T ], which contains all available
information. In addition, we work with several sub-filtrations. In particular, the filtration
I = (I(t))t∈[0,T ] is the natural filtration of the underlying process ζ. The mortality intensity
process is then modelled via:

µ(x, t) = µ◦(x+ t)ζ(x, t). (4.3.1)

Thus, ζ(x, t) describes the change in the mortality from time 0 to t for a person of age
x+ t. The true survival probability is defined by

S(x, t, T ) = EP
[
e−

R T
t
µ(x,τ)dτ

∣∣∣I(t)
]

= EP
[
e−

R T
t
µ◦(x+τ) ζ(x,τ)dτ

∣∣∣ I(t)
]
, (4.3.2)

and it is related to the martingale

SM (x, t, T ) = EP
[
e−

R T
0 µ(x,τ)dτ

∣∣∣ I(t)
]

= e−
R t
0 µ(x,τ)dτS(x, t, T ). (4.3.3)
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In general, we can consider survival probabilities under various equivalent probability
measures. This is discussed in more detail in section 4.6.1.

4.3.2 Deterministic changes in mortality intensities

As a special case, assume that ζ(x, t) = e−eγ(x)t, where γ̃(x) is fixed and constant. Thus,
the mortality intensity at time t of an x + t year old is defined by changing the known
mortality intensity at time 0 of an x+ t-year old by the factor exp(−γ̃(x)t). If γ̃(x) > 0,
this model implies that the mortality improves by the factor exp(−γ̃(x)) each year. In
particular, taking all γ̃(x) equal to one fixed γ̃ means that all intensities improve/increase
by the same factor.

If µ◦ corresponds to a Gompertz-Makeham mortality law, i.e.

µ◦(x+ t) = α+ β cx+t, (4.3.4)

then the mortality intensity µ is given by

µ(x, t) = αe−eγ(x)t + β cx(ce−eγ(x))t, (4.3.5)

which no longer is a Gompertz-Makeham mortality law.

4.3.3 Time-inhomogeneous CIR models

The empirical findings in Section 4.3.1 indicate that the deterministic type of model con-
sidered above is too simple to capture the true nature of the mortality. We propose instead
to model the underlying mortality improvement process via

dζ(x, t) = (γ(x, t) − δ(x, t)ζ(x, t))dt + σ(x, t)
√
ζ(x, t)dW µ(t), (4.3.6)

where W µ is a standard Brownian motion under P . This is similar to a so-called time-
inhomogeneous CIR model, originally proposed by Hull and White (1990) as an extension
of the short rate model in Cox et al. (1985), see also Rogers (1995). We assume that
2γ(x, t) ≥ (σ(x, t))2 such that ζ is strictly positive, see Maghsoodi (1996). Here, γ, δ and
σ are assumed to be known, continuous functions. It now follows via Itô’s formula that

dµ(x, t) = (γµ(x, t) − δµ(x, t)µ(x, t))dt + σµ(x, t)
√
µ(x, t)dW µ(t), (4.3.7)

where

γµ(x, t) = γ(x, t)µ◦(x+ t), (4.3.8)

δµ(x, t) = δ(x, t) −
d
dtµ

◦(x+ t)

µ◦(x+ t)
, (4.3.9)

σµ(x, t) = σ(x, t)
√
µ◦(x+ t). (4.3.10)
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This shows that µ also follows an time-inhomogeneous CIR model, a property which
was also noted by Rogers (1995). In particular, we note that γµ(x, t)/(σµ(x, t))2 =
γ(x, t)/(σ(x, t))2 , such that µ is strictly positive as well. If γ(x, t)/(σ(x, t))2 , and thus
γµ(x, t)/(σµ(x, t))2, is independent of t, then numerical calculations can be simplified
considerably, see Jamshidian (1995). The following proposition regarding the survival
probability follows e.g. from Björk (2004, Proposition 22.2); see also Chapter 3.

Proposition 4.3.1 (Affine mortality structure)
The survival probability S(x, t, T ) is given by

S(x, t, T ) = eA
µ(x,t,T )−Bµ(x,t,T )µ(x,t),

where

∂

∂t
Bµ(x, t, T ) = δµ(x, t)Bµ(x, t, T ) +

1

2
(σµ(x, t))2(Bµ(x, t, T ))2 − 1, (4.3.11)

∂

∂t
Aµ(x, t, T ) = γµ(x, t)Bµ(x, t, T ), (4.3.12)

with Bµ(x, T, T ) = 0 and Aµ(x, T, T ) = 0. The dynamics of the survival probability are
given by

dS(x, t, T ) = S(x, t, T )
(
µ(x, t)dt − σµ(x, t)

√
µ(x, t)Bµ(x, t, T )dW µ(t)

)
.

Forward mortality intensities
Inspired by interest rate theory we introduced the concept of forward mortality intensities
in Chapter 3. In an affine setting, the forward mortality intensities are given by

fµ(x, t, T ) = − ∂

∂T
logS(x, t, T ) = µ(x, t)

∂

∂T
Bµ(x, t, T ) − ∂

∂T
Aµ(x, t, T ). (4.3.13)

The importance of forward mortality intensities is underlined by writing the survival prob-
ability on the form

S(x, t, T ) = e−
R T

t
fµ(x,t,u)du.

4.4 The financial market

In this section, we introduce the financial market used for the calculations in the following
sections. The financial market is essentially assumed to exist of two traded assets: A
savings account and a zero coupon bond with maturity T . The price processes are given
by B and P (·, T ), respectively. The uncertainty in the financial market is described via a
time-homogeneous affine model for the short rate. Hence, the short rate dynamics under
P are

dr(t) = αr(r(t))dt + σr(r(t))dW r(t), (4.4.1)
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where

αr(r(t)) = γr,α − δr,αr(t),

σr(r(t)) =
√
γr,σ + δr,σr(t).

Here, W r is a standard Brownian motion under P and γr,α, δr,α, γr,σ and δr,σ are constants.
Denote by G = (G(t))t∈[0,T ] the natural filtration generated by W r. The dynamics under
P of the price processes are given by

dB(t) = r(t)B(t)dt, (4.4.2)

dP (t, T ) = (r(t) + ρ(t, r(t)))P (t, T )dt + σp(t, r(t))P (t, T )dW r(t), (4.4.3)

where

ρ(t, r(t)) = σp(t, r(t))

(
c̃

σr(r(t))
+ cσr(r(t))

)
. (4.4.4)

Here, c and c̃ are constants satisfying certain conditions given in Remark 4.4.1. With this
choice of ρ, σp is uniquely determined from standard theory for affine short rate models,
see (4.4.11).

If we restrict the model to the filtration G, the unique equivalent martingale measure for
the financial market is

dQ

dP
= Λ̂(T ), (4.4.5)

where dΛ̂(t) = Λ̂(t)hr(t)dW r(t), Λ̂(0) = 1, and where

hr(t) = − ρ(t, r(t))

σp(t, r(t))
= −

(
c̃

σr(r(t))
+ cσr(r(t))

)
. (4.4.6)

Under Q given by (4.4.5) the dynamics of the short rate are given by

dr(t) =
(
γr,α,Q − δr,α,Qr(t)

)
dt+

√
γr,σ + δr,σr(t)dW r,Q(t), (4.4.7)

where W r,Q is a standard Brownian motion under Q and

γr,α,Q = γr,α − cγr,σ − c̃,

δr,α,Q = δr,α + cδr,σ.

Since the drift and squared diffusion terms in (4.4.7) are affine in r, we have an affine term
structure, see Björk (2004, Proposition 22.2). Thus, the bond price is given by

P (t, T ) = eA
r(t,T )−Br(t,T )r(t),

where Ar(t, T ) and Br(t, T ) solves

∂

∂t
Br(t, T ) = δr,α,QBr(t, T ) +

1

2
δr,σ(Br(t, T ))2 − 1, (4.4.8)

∂

∂t
Ar(t, T ) = γr,α,QBr(t, T ) − 1

2
γr,σ(Br(t, T ))2, (4.4.9)
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with Br(T, T ) = 0 and Ar(T, T ) = 0. The bond price dynamics underQ can be determined
by applying Itô’s formula:

dP (t, T ) = r(t)P (t, T )dt − σr(r(t))Br(t, T )P (t, T )dW r,Q(t), (4.4.10)

which in turn gives that

σp(t, r(t)) = −σr(r(t))Br(t, T ). (4.4.11)

Remark 4.4.1 Recall that if δr,σ 6= 0 and

γr,α

δr,σ
+
δr,αγr,σ

(δr,σ)2
<

1

2
, (4.4.12)

then P (r(t) = 0) > 0. Hence, we immediately get from (4.4.4) that c̃ = 0 in this case.
If δr,σ 6= 0 and (4.4.12) does not hold, then, exploiting the results of Cheridito, Filipović
and Kimmel (2003), gives that (4.4.5) defines an equivalent martingale measure if

c̃ ≤ γr,α +
δr,αγr,σ

δr,σ
− δr,σ

2
. (4.4.13)

No restrictions apply to c in any case or to c̃ if δr,σ = 0.

�

Remark 4.4.2 If δr,σ = 0 the short rate is described by a Vasiček model, see Vasiček
(1977). In this case the functions Ar and Br are given by

Br(t, T ) =
1

δr,α,Q

(
1 − e−δ

r,α,Q(T−t)
)
,

Ar(t, T ) =
(Br(t, T ) − T + t)(γr,α,Qδr,α,Q − 1

2γ
r,σ)

(δr,α,Q)2
− γr,σ(Br(t, T ))2

4δr,α,Q
.

Letting γr,σ = 0, we get a time-homogeneous CIR model (for the short rate), see Cox et al.
(1985), which gives the following expressions for Ar and Br

Br(t, T ) =
2
(
eξ

r,Q(T−t) − 1
)

(ξr,Q + δr,α,Q)(eξr,Q(T−t) − 1) + 2ξr,Q
,

Ar(t, T ) =
2γr,α,Q

δr,σ
log

(
2ξr,Qe(ξ

r,Q+δr,α,Q)T−t
2

(ξr,Q + δr,α,Q)
(
eξr,Q(T−t) − 1

)
+ 2ξr,Q

)
,

where ξr,Q =
√

(δr,α,Q)2 + 2δr,σ. For both models, the functions Ar and Br depend on t
and T via the difference T − t, only.

�
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4.5 The insurance portfolio

Consider an insurance portfolio consisting of n insured lives of the same age x. We assume
that the individual remaining lifetimes at time 0 of the insured are described by a sequence
T1, . . . , Tn of identically distributed non-negative random variables. Moreover, we assume
that

P (T1 > t|I(T )) = e−
R t
0 µ(x,s)ds, 0 ≤ t ≤ T,

and that the censored lifetimes T ∗
i = Ti1{Ti≤T} + T1{Ti>T}, i = 1, . . . , n, are i.i.d. given

I(T ). Thus, given the development of the underlying process ζ, the mortality intensity at
time s is simply µ(x, s).

Now define a counting process N(x) = (N(x, t))0≤t≤T by

N(x, t) =
n∑

i=1

1(Ti≤t),

which keeps track of the number of deaths in the portfolio of insured lives. We denote
by H = (H(t))0≤t≤T the natural filtration generated by N(x). It follows that N(x) is an
H ∨ I-Markov process, and the stochastic intensity process λ(x) = (λ(x, t))0≤t≤T of N(x)
under P can be informally defined by

λ(x, t)dt ≡ EP [dN(x, t)| H(t−) ∨ I(t)] = (n−N(x, t−))µ(x, t)dt, (4.5.1)

which is proportional to the product of the number of survivors and the mortality intensity.
It is well-known, that the process M(x) = (M(x, t))0≤t≤T defined by

dM(x, t) = dN(x, t) − λ(x, t)dt, 0 ≤ t ≤ T, (4.5.2)

is an (H ∨ I, P )-martingale.

4.6 The combined model

The filtration F = (F(t))0≤t≤T introduced earlier is given by F(t) = G(t) ∨ H(t) ∨ I(t).
Thus, F is the filtration for the combined model of the financial market, the mortality
intensity and the insurance portfolio. Moreover, we assume that the financial market is
stochastically independent of the insurance portfolio and the mortality intensity, i.e. G(T )
and (H(T ),I(T )) are independent. In particular, this implies that the properties of the
underlying processes are preserved. For example, M(x) is also an (F, P )-martingale, and
the (F, P )-intensity process is identical to the (H ∨ I, P )-intensity process λ(x). We note
that the combined model is on the general index-form studied in Steffensen (2000). How-
ever, Steffensen (2000) contains no explicit remarks or calculations regarding a stochastic
mortality intensity.
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4.6.1 A class of equivalent martingale measures

If we consider the financial market only, i.e. if we restrict ourselves to the filtration G,
we found in Section 4.4 that (given some regularity conditions) there exists a unique
equivalent martingale measure. This is not the case when analyzing the combined model
of the financial market and the insurance portfolio, see e.g. Møller (1998, 2001c) for a
discussion of this problem. In the present model, we can also perform a change of measure
for the counting process N(x) and for the underlying mortality intensity; we refer to
Chapter 3 for a more detailed treatment of these aspects. Consider a likelihood process
on the form

dΛ(t) = Λ(t−)

(
hr(t)dW r(t) + hµ(t)dW µ(t) + g(t)dM(x, t)

)
, (4.6.1)

with Λ(0) = 1. We assume that EP [Λ(T )] = 1 and define an equivalent martingale
measure Q via dQ

dP = Λ(T ). In the following, we describe the terms in (4.6.1) in more
detail. The process hr, which is defined in (4.4.6), is related to the change of measure for
the underlying bond market. It is uniquely determined by requiring that the discounted
bond price process is a Q-martingale.

The term involving hµ leads to a change of measure for the Brownian motion which drives
the mortality intensity process µ. Hence, dW µ,Q(t) = dW µ(t)−hµ(t)dt defines a standard
Brownian motion under Q. Here, we restrict ourselves to hµ’s of the form

hµ(t, ζ(x, t)) = −β(x, t)

√
ζ(x, t)

σ(x, t)
+

β∗(x, t)

σ(x, t)
√
ζ(x, t)

(4.6.2)

for some continuous functions β and β∗. In this case, the Q-dynamics of ζ(x, t) are given
by

dζ(x, t) =
(
γQ(x, t) − δQ(x, t)ζ(x, t)

)
dt+ σ(x, t)

√
ζ(x, t)dW µ,Q(t),

where

γQ(x, t) = γ(x, t) + β∗(x, t), (4.6.3)

δQ(x, t) = δ(x, t) + β(x, t). (4.6.4)

Hence, ζ also follows a time-inhomogeneous CIR model underQ. A necessary condition for
the equivalence between P and Q is that ζ is strictly positive under Q. Thus, we observe
from (4.6.3) that we must require that β∗(x, t) ≥ (σ(x, t))2/2 − γ(x, t). The Q-dynamics
of µ(x) are now given by

dµ(x, t) = (γµ,Q(x, t) − δµ,Q(x, t)µ(x, t))dt + σµ(x, t)
√
µ(x, t)dW µ,Q(t), (4.6.5)

where γµ,Q(x, t) and δµ,Q(x, t) are given by (4.3.8) and (4.3.9) with γ(x, t) and δ(x, t)
replaced by γQ(x, t) and δQ(x, t), respectively. If hµ = 0, i.e. if the dynamics of ζ (and
thus µ) are identical under P and Q, we say the market is risk-neutral with respect to
systematic mortality risk.
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The last term in (4.6.1) involves a predictable process g > −1. This term affects the
intensity for the counting process. More precisely, it can be shown, see e.g. Andersen
et al. (1993), that the intensity process under Q is given by λQ(x, t) = (1 + g(t))λ(x, t).
Using (4.5.1), we see that

λQ(x, t) = (n−N(x, t−))(1 + g(t))µ(x, t),

such that µQ(x, t) = (1 + g(t))µ(x, t) can be viewed as the mortality intensity under Q.
Hence the process MQ(x) = (MQ(x, t))0≤t≤T defined by

dMQ(x, t) = dN(x, t) − λQ(x, t)dt, 0 ≤ t ≤ T, (4.6.6)

is an (F, Q)-martingale. If g = 0, the market is said to be risk-neutral with respect
to unsystematic mortality risk. This choice of g can be motivated by the law of large
numbers. In this chapter, we restrict the analysis to the case, where g is a deterministic,
continuously differentiable function. Combined with the definition of hr in (4.4.6) and
the restricted form of hµ in (4.6.2), this implies that the independence between G(T ) and
(H(T ),I(T )) is preserved under Q.

Now define the Q-survival probability and the associated Q-martingale by

SQ(x, t, T ) = EQ
[
e−

R T
t
µQ(x,τ)dτ

∣∣∣ ζ(x, t)
]

and

SQ,M(x, t, T ) = EQ
[
e−

R T

0
µQ(x,τ)dτ

∣∣∣ ζ(x, t)
]

= e−
R t

0
µQ(x,τ)dτSQ(x, t, T ).

Calculations similar to those in Section 4.3.3 give the following Q-dynamics of µQ(x)

dµQ(x, t) = (γµ,Q,g(x, t) − δµ,Q,g(x, t)µQ(x, t))dt + σµ,Q,g(x, t)
√
µQ(x, t)dW µ,Q,

where

γµ,Q,g(x, t) = (1 + g(t))γµ,Q(x, t),

δµ,Q,g(x, t) = δµ,Q(x, t) −
d
dtg(t)

1 + g(t)
,

σµ,Q,g(x, t) =
√

1 + g(t)σµ(x, t).

Since the drift and squared diffusion terms for µQ(x, t) are affine in µQ(x, t), we have the
following proposition

Proposition 4.6.1 (Affine mortality structure under Q)
The Q-survival probability SQ(x, t, T ) is given by

SQ(x, t, T ) = eA
µ,Q(x,t,T )−Bµ,Q(x,t,T )(1+g(t))µ(x,t) ,

where Aµ,Q and Bµ,Q are determined from (4.3.11) and (4.3.12) with γµ(x, t), δµ(x, t) and
σµ(x, t) replaced by γµ,Q,g(x, t), δµ,Q,g(x, t) and σµ,Q,g(x, t), respectively. The dynamics
of the Q-martingale associated with the Q-survival probability are given by

dSQ,M (x, t, T ) = −(1 + g(t))σµ(x, t)
√
µ(x, t)Bµ,Q(x, t, T )SQ,M (x, t, T )dW µ,Q(t). (4.6.7)
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Similarly to the forward mortality intensities, the Q-forward mortality intensities are given
by

fµ,Q(x, t, T ) = − ∂

∂T
log SQ(x, t, T ) = µQ(x, t)

∂

∂T
Bµ,Q(x, t, T ) − ∂

∂T
Aµ,Q(x, t, T ).

(4.6.8)

4.6.2 The payment process

The total benefits less premiums on the insurance portfolio is described by a payment
process A. Thus, dA(t) are the net payments to the policy-holders during an infinitesimal
interval [t, t+ dt). We take A of the form

dA(t) = −nπ(0)dI{t≥0} + (n−N(x, T ))∆A0(T )dI{t≥T }

+ a0(t)(n −N(x, t))dt + a1(t)dN(x, t), (4.6.9)

for 0 ≤ t ≤ T . The first term, nπ(0) is the single premium paid at time 0 by all policy-
holders. The second term involves a fixed time T ≤ T , which represents the retirement
time of the insured lives. This term states that each of the surviving policy-holders receive
the fixed amount ∆A0(T ) upon retirement. The third term involves a piecewise continuous
function

a0(t) = −πc(t)1{0≤t<T } + ap(t)1{T≤t≤T},

where πc(t) are continuous premiums paid by the policy-holders (as long as they are alive)
and ap(t) corresponds to a life annuity benefit received by the policy-holders. Finally, the
last term in (4.6.9) represents payments immediately upon a death, and we assume that
a1 is some piecewise continuous function.

4.6.3 Market reserves

In the following we consider an arbitrary, but fixed, equivalent martingale measure Q from
the class of measures introduced in Section 4.6.1 and define the process

V ∗,Q(t) = EQ

[∫

[0,T ]
e−

R τ

0
r(u)dudA(τ)

∣∣∣∣∣F(t)

]
, (4.6.10)

which is the conditional expected value, calculated at time t, of discounted benefits less
premiums, where all payments are discounted to time 0. Using that the processes A and
r are adapted, and introducing the discounted payment process A∗ defined by

dA∗(t) = e−
R t

0
r(u)dudA(t),

we see that

V ∗,Q(t) =

∫

[0,t]
e−

R τ
0 r(u)dudA(τ) + e−

R t
0 r(u)duEQ

[∫

(t,T ]
e−

R τ
t
r(u)dudA(τ)

∣∣∣∣∣F(t)

]

= A∗(t) + e−
R t
0 r(u)duṼ Q(t). (4.6.11)
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In the literature, the process V ∗,Q is called the intrinsic value process, see Föllmer and
Sondermann (1986) and Møller (2001c). The process Ṽ Q(t) introduced in (4.6.11) repre-
sents the conditional expected value at time t, of future payments. We shall refer to this
quantity as the market reserve. We have the following result:

Proposition 4.6.2
The market reserve Ṽ Q is given by

Ṽ Q(t) = (n−N(x, t))V Q(t, r(t), µ(x, t)), (4.6.12)

where

V Q(t, r(t), µ(x, t)) =

∫ T

t
P (t, τ)SQ(x, t, τ)

(
a0(τ) + a1(τ)f

µ,Q(x, t, τ)
)
dτ

+ P (t, T )SQ(x, t, T )∆A0(T ). (4.6.13)

This can be verified by using methods similar to the ones used in Møller (2001c) and
Chapter 3. A sketch of proof is given below.

Some comments on this results: The quantity V Q(t, r(t), µ(x, t)) is the market reserve at
time t for one policy-holder who is alive, given the current level for the short rate and
the mortality intensity. The market reserve has the same structure as standard reserves.
However, the usual discount factor has been replaced by a zero coupon bond price P (t, T )
and the usual (deterministic) survival probability of the form exp(−

∫ τ
t µ

◦(x, u)du) has
been replaced by the term SQ(x, t, τ). In addition, the Q-forward mortality intensity,
fµ,Q(x, t, τ), now appears instead of the deterministic mortality intensity µ◦(x, τ) in con-
nection with the sum a1(τ) payable upon a death.

Sketch of proof of Proposition 4.6.2: The proposition follows by exploiting the indepen-
dence between the financial market and the insured lives. In addition, we use that for any
predictable, sufficiently integrable process g̃,

∫ t

0
g̃(s)(dN(x, s) − λQ(x, s)ds) (4.6.14)

is an (F, Q)-martingale. For example, this implies that

EQ
[∫ T

t
e−

R τ

t
r(u)dua1(τ)dN(x, τ)

∣∣∣∣F(t)

]

= EQ
[∫ T

t
e−

R τ
t
r(u)dua1(τ)λ

Q(x, τ)dτ

∣∣∣∣F(t)

]

=

∫ T

t
P (t, τ)a1(τ)E

Q
[
(n −N(x, τ))µQ(x, τ)

∣∣F(t)
]
dτ. (4.6.15)
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Here, the second equality follows by changing the order of integration and by using the
independence between r and (N,µ). By iterated expectations, we get that

EQ [ (n−N(x, τ))| F(t)] = EQ
[
EQ [ (n−N(x, τ))| F(t) ∨ I(T )]

∣∣F(t)
]

= EQ
[
(n −N(x, t))e−

R τ
t
µQ(x,u)du

∣∣∣F(t)
]

= (n −N(x, t))SQ(x, t, τ), (4.6.16)

where the second equality follows by using that, given I(T ), the lifetimes are i.i.d. under
Q with mortality intensity µQ(x), and the third equality is the definition of the Q-survival
probability. Similarly, we have that

EQ
[
(n−N(x, τ))µQ(x, τ)

∣∣F(t)
]

= EQ
[
EQ

[
(n−N(x, τ))µQ(x, τ)

∣∣F(t) ∨ I(T )
]∣∣F(t)

]

= EQ
[
(n−N(x, t))µQ(x, τ)e−

R τ
t
µQ(x,u)du

∣∣∣F(t)
]

= (n−N(x, t))
∂

∂τ
SQ(x, t, τ)

= (n−N(x, t))SQ(x, t, τ)fµ,Q(x, t, τ). (4.6.17)

Here, the third equality follows by differentiating SQ(x, t, τ) under the integral. The result
now follows by using (4.6.15)–(4.6.17).

�

We emphasize that the market reserve depends on the choice of equivalent martingale
measure Q.

In the remaining of the paper we work under the following assumption

Assumption 4.6.3 V Q(t, r, µ) ∈ C1,2,2, i.e. V Q(t, r, µ) is continuously differentiable with
respect to t and twice differentiable with respect to r and µ.

�

4.7 Risk-minimizing strategies

The discounted insurance payment process A∗ is subject to both financial and mortality
risk. This implies that the insurance liabilities typically cannot be hedged and priced
uniquely by trading on the financial market. Møller (1998) applied the criterion of risk-
minimization suggested by Föllmer and Sondermann (1986) for the handling of this com-
bined risk for unit-linked life insurance contracts. This analysis led to so-called risk-
minimizing hedging strategies, that essentially minimized the variance of the insurance
liabilities calculated with respect to some equivalent martingale measure. Here, we fol-
low Møller (2001c), who extended the approach of Föllmer and Sondermann (1986) to the
case of a payment process. Further applications of the criterion of risk-minimization to
insurance contracts can be found in Møller (2001a, 2002).
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4.7.1 A review of risk-minimization

Consider the financial market introduced in Section 4.4 consisting of a zero coupon bond
expiring at T and a savings account. We denote by X(t) = P ∗(t, T ) the discounted price
process of the zero coupon bond. A strategy is a process ϕ = (ξ, η), where ξ is the number
of zero coupon bonds held and η is the discounted deposit on the savings account. The
discounted value process V (ϕ) associated with ϕ is defined by V (t, ϕ) = ξ(t)X(t) + η(t),
and the cost process C(ϕ) is defined by

C(t, ϕ) = V (t, ϕ) −
∫ t

0
ξ(u)dX(u) +A∗(t). (4.7.1)

The accumulated costs C(t, ϕ) at time t are the discounted value V (t, ϕ) of the portfolio
reduced by discounted trading gains (the integral) and added discounted net payments to
the policy-holders. A strategy is called risk-minimizing, if it minimizes

R(t, ϕ) = EQ
[
(C(T,ϕ) − C(t, ϕ))2

∣∣∣F(t)
]

(4.7.2)

for all t with respect to all strategies, and a strategy ϕ with V (T,ϕ) = 0 is called 0-
admissible. The process R(ϕ) is called the risk process. Föllmer and Sondermann (1986)
realized that the risk-minimizing strategies are related to the so-called Galtchouk-Kunita-
Watanabe decomposition,

V ∗,Q(t) = EQ [A∗(T )| F(t)] = V ∗,Q(0) +

∫ t

0
ξQ(u)dX(u) + LQ(t), (4.7.3)

where ξQ is a predictable process and where LQ is a zero-mean Q-martingale orthogonal to
X. It now follows by Møller (2001c, Theorem 2.1) that there exists a unique 0-admissible
risk-minimizing strategy ϕ∗ = (ξ∗, η∗) given by

ϕ∗(t) = (ξ∗(t), η∗(t)) =
(
ξQ(t), V ∗,Q(t) − ξQ(t)X(t) −A∗(t)

)
. (4.7.4)

In particular, it follows that the cost process associated with the risk-minimizing strategy
is given by

C(t, ϕ∗) = V ∗,Q(0) + LQ(t). (4.7.5)

The risk process associated with the risk-minimizing strategy, the so-called intrinsic risk
process, is given by

R(t, ϕ∗) = EQ
[
(LQ(T ) − LQ(t))2

∣∣F(t)
]
. (4.7.6)

It follows from (4.7.4) that V (t, ϕ∗) = V ∗,Q(t) − A∗(t), i.e. the discounted value process
associated with the risk-minimizing strategy coincides with the intrinsic value process
reduced by the discounted payments.

Note that the risk-minimizing strategy depends on the choice of martingale measure
Q. In the literature, the minimal martingale measure has been applied for determin-
ing risk-minimizing strategies, since this essentially corresponds to the criterion of local
risk-minimization, which is a criterion in terms of P , see Schweizer (2001a).
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4.7.2 Risk-minimizing strategies for the insurance payment process

As noted in Section 4.6.3, the intrinsic value process V ∗,Q associated with the payment
process A is given by

V ∗,Q(t) = A∗(t) + (n−N(x, t))B(t)−1V Q(t, r(t), µ(x, t)), (4.7.7)

where V Q(t, r(t), µ(x, t)) is defined by (4.6.13). The Galtchouk-Kunita-Watanabe decom-
position of V ∗,Q is determined by the following lemma:

Lemma 4.7.1
The Galtchouk-Kunita-Watanabe decomposition of V ∗,Q is given by

V ∗,Q(t) = V ∗,Q(0) +

∫ t

0
ξQ(τ)dP ∗(τ, T ) + LQ(t), (4.7.8)

where

V ∗,Q(0) = −nπ(0) + nV Q(0, r(0), µ(x, 0)), (4.7.9)

LQ(t) =

∫ t

0
νQ(τ)dMQ(x, τ) +

∫ t

0
κQ(τ)dSQ,M (x, τ, T ), (4.7.10)

and

ξQ(t) = (n−N(x, t−))

(∫ T

t

Br(t, τ)P ∗(t, τ)
Br(t, T )P ∗(t, T )

SQ(x, t, τ)
(
a0(τ) + a1(τ)f

µ,Q(x, t, τ)
)
dτ

+
Br(t, T )P ∗(t, T )

Br(t, T )P ∗(t, T )
SQ(x, t, T )∆A0(T )

)
, (4.7.11)

νQ(t) = B(t)−1
(
a1(t) − V Q(t, r(t), µ(x, t))

)
, (4.7.12)

κQ(t) = (n−N(x, t−))

(∫ T

t
P ∗(t, τ)

Bµ,Q(x, t, τ)SQ(x, t, τ)

Bµ,Q(x, t, T )SQ,M (x, t, T )

×
(
a0(τ) + a1(τ)

(
fµ,Q(x, t, τ) −

∂
∂τB

µ,Q(x, t, τ)

Bµ,Q(x, t, τ)

))
dτ

+ P ∗(t, T )
Bµ,Q(x, t, T )SQ(x, t, T )

Bµ,Q(x, t, T )SQ,M (x, t, T )
∆A0(T )

)
. (4.7.13)

Proof of Lemma 4.7.1: See Section 4.10.1.

�

In the decomposition obtained in Lemma 4.7.1, the integrals with respect to the com-
pensated counting process MQ(x) and the Q-martingale SQ,M(x, ·, T ) associated with the
Q-survival probability comprise the non-hedgeable part of the payment process. The factor
νQ(t) appearing in the integral with respect toMQ(x) in (4.7.10) represents the discounted
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extra cost for the insurer associated with a death within the portfolio of insured lives. It
consists of the discounted value of the amount a1(t) to be paid out immediately upon death,
reduced by the discounted market reserve of one policy-holder B(t)−1V Q(t, r(t), µ(x, t)).
In traditional life insurance, νQ(t) is known as the (discounted) sum at risk associated
with a death in the insured portfolio at time t, see e.g. Norberg (2001); in Møller (1998),
a similar result is obtained with deterministic mortality intensities.

Changes in the mortality intensity lead to new Q-survival probabilities, and this affects
the expected present value under Q of future payments. This sensitivity is described
by the process κQ(t) appearing in (4.7.10), which can be interpreted as the change in the
discounted value of expected future payments associated with a change in theQ-martingale
associated with the Q-survival probability. It follows from (4.7.6) that the intrinsic risk
process is given by

R(t, ϕ) = EQ

[(∫ T

t
νQ(u)dMQ(x, u) + κQ(u)dSQ,M (x, u, T )

)2
∣∣∣∣∣F(t)

]

= EQ
[∫ T

t

(
νQ(u)

)2
d〈MQ〉(x, u) +

(
κQ(u)

)2
d〈SQ,M (x, u, T )〉

∣∣∣∣F(t)

]

= EQ
[ ∫ T

t

(
νQ(u)

)2
(n−N(x, u−)) (1 + g(u))µ(x, u)du

+
(
κQ(u)(1 + g(u))σµ(x, u)

√
µ(x, u)Bµ,Q(x, u, T )SQ,M (x, u, T )

)2
du
∣∣∣F(t)

]
.

Here, we have used the square bracket processes, that MQ(x) is an adapted process with
finite variation, and that SQ,M(x, ·, T ) is continuous (hence predictable), such that the
martingales are orthogonal.

Using the general results on risk-minimization and Lemma 4.7.1, we get the following
result.

Theorem 4.7.2
The unique 0-admissible risk-minimizing strategy for the payment process (4.6.9) is

(ξ∗(t), η∗(t)) =
(
ξQ(t), (n −N(x, t))B(t)−1V Q(t, r(t), µ(x, t)) − ξQ(t)P ∗(t, T )

)
,

where ξQ is given by (4.7.11).

This result is similar to the risk-minimizing hedging strategy obtained in Møller (2001c,
Theorem 3.4). However, our results differ from the ones obtained there in that the market
reserves depend on the current value of the mortality intensity. The fact that the strategies
are similar is reasonable, since we are essentially adding a stochastic mortality to the model
of Møller, and this does not change the market in which the hedger is allowed to trade.
As in Møller (2001c), the discounted value process associated with the risk-minimizing
strategy ϕ∗ is

V (t, ϕ∗) = (n−N(x, t))B(t)−1V Q(t, r(t), µ(x, t)), (4.7.14)
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where V Q(t, r(t), µ(x, t)) is given by (4.6.13). This shows that the portfolio is currently
adjusted, such that the value at any time t is exactly the market reserve. Inserting (4.7.9)
and (4.7.10) in (4.7.5) gives

C(t, ϕ∗) = nV Q(0, r(0), µ(x, 0)) − nπ(0) +

∫ t

0
νQ(τ)dMQ(x, τ) +

∫ t

0
κQ(τ)dSQ,M (x, τ, T ).

Hence the hedger’s loss is driven by MQ(x) and SQ,M(x, ·, T ). The first three terms are
similar to the ones obtained by Møller (2001c). The last term, which accounts for costs
associated with changes in the mortality intensity, did not appear in his model, since he
worked with deterministic mortality intensities.

Example 4.7.3 Consider the case where T = T , and where all n insured purchase a pure
endowment of ∆A0(T ) paid by a single premium at time 0. In this case, the Galtchouk-
Kunita-Watanabe decomposition (4.7.8) of V ∗,Q is determined via

ξQ(t) = (n −N(x, t−))SQ(x, t, T )∆A0(T ),

νQ(t) = −P ∗(t, T )SQ(x, t, T )∆A0(T ),

κQ(t) = (n −N(x, t−))P ∗(t, T )e
R t
0 µ

Q(x,u)du∆A0(T ),

since V Q(t, r(t), µ(x, t)) = P (t, T )SQ(x, t, T )∆A0(T ), and

SQ(x, t, T )

SQ,M(x, t, T )
= e

R t
0 µ

Q(x,u)du.

This gives the 0-admissible risk-minimizing strategy

ξ∗(t) = (n−N(x, t−))SQ(x, t, T )∆A0(T ),

η∗(t) = (N(x, t−) −N(x, t))P ∗(t, T )SQ(x, t, T )∆A0(T ).

The risk-minimizing strategy has the following interpretation: The number of bonds held
at time t is equal to the Q-expected number of bonds needed in order to cover the benefits
at time T , conditional on the information available at time t−. The investments in the
savings account only differ from 0 if a death occurs at time t, and in this case it consists
of a withdrawal (loan) equal to the market reserve for one insured individual who is alive.

�

4.8 Mean-variance indifference pricing

Methods developed for incomplete markets have been applied for the handling of the com-
bined risk inherent in a life insurance contract in Møller (2001b, 2002, 2003a, 2003b) with
focus on the mean-variance indifference pricing principles of Schweizer (2001b). In this
section, these results are reviewed and indifference prices and optimal hedging strategies
are derived.
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4.8.1 A review of mean-variance indifference pricing

Denote by K∗ the discounted wealth of the insurer at time T and consider the mean-
variance utility-functions

ui(K
∗) = EP [K∗] − ai(VarP [K∗])βi , (4.8.1)

i = 1, 2, where ai > 0 are so-called risk-loading parameters and where we take β1 = 1
and β2 = 1/2. It can be shown that the equations ui(K

∗) = ui(0) indeed lead to the
classical actuarial variance (i=1) and standard deviation principle (i=2), respectively, see
e.g. Møller (2001b).

Schweizer (2001b) proposes to apply the mean-variance utility functions (4.8.1) in an
indifference argument which takes into consideration the possibilities for trading in the
financial markets. Denote by Θ the space of admissible strategies and let GT (Θ) be the

space of discounted trading gains, i.e. random variables of the form
∫ T
0 ξ(u)dX(u), where

X is the price process associated with the discounted traded asset. Denote by c the
insurer’s initial capital at time 0. The ui-indifference price vi associated with the liability
H is defined via

sup
ϑ∈Θ

ui

(
c+ vi +

∫ T

0
ϑ(u)dX(u) −H∗

)
= supeϑ∈Θ

ui

(
c+

∫ T

0
ϑ̃(u)dX(u)

)
, (4.8.2)

where H∗ is the discounted liability. The strategy ϑ∗ which maximizes the left side
of (4.8.2) will be called the optimal strategy for H. In order to formulate the main
result, some more notation is needed. We denote by P̃ the variance optimal martingale

measure and let Λ̃(T ) = d eP
dP . In addition, we let π(·) be the projection in L2(P ) on the

space GT (Θ)⊥ and write 1 − π(1) =
∫ T
0 β̃(u)dX(u). It follows via the projection theorem

that any discounted liability H∗ allows for a unique decomposition on the form

H∗ = cH +

∫ T

0
ϑH(u)dX(u) +NH , (4.8.3)

where
∫ T
0 ϑHdX is an element of GT (Θ) and where NH is in the space (IR+GT (Θ))⊥.

From Schweizer (2001b) and Møller (2001b) we have that the indifference prices for H are:

v1(H) = E
eP [H∗] + a1VarP [NH ], (4.8.4)

v2(H) = E
eP [H∗] + a2

√
1 − VarP [Λ̃(T )]/a2

2

√
VarP [NH ], (4.8.5)

where (4.8.5) is only defined if a2
2 ≥ VarP [Λ̃(T )]. The optimal strategies associated with

these two principles are:

ϑ∗1(t) = ϑH(t) +
1 + VarP [Λ̃(T )]

2a1
β̃(t), (4.8.6)

ϑ∗2(t) = ϑH(t) +
1 + VarP [Λ̃(T )]

a2

√
1 − VarP [Λ̃(T )]/a2

2

√
VarP [NH ]β̃(t), (4.8.7)
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where (4.8.7) is only well-defined if a2
2 > VarP [Λ̃(T )]. For more details, see Møller (2001b,

2003a, 2003b).

4.8.2 The variance optimal martingale measure

In order to determine the variance optimal martingale measure P̃ we first turn our atten-
tion to the minimal martingale measure, which loosely speaking is “the equivalent martin-
gale measure which disturbs the structure of the model as little as possible”, see Schweizer
(1995). The minimal martingale measure is obtained by letting hµ = 0 and g = 0. Hence,
we have from Section 4.4 that the Radon-Nikodym derivative Λ̂(T ) for the minimal mar-
tingale measure is given by

Λ̂(T ) = exp

(∫ T

0
hr(u)dW r(u) − 1

2

∫ T

0
(hr(u))2du

)
,

where hr is defined by (4.4.6).

In general, the variance optimal martingale measure P̃ and the minimal martingale mea-
sure P̂ differ. However, we find below that they coincide in our model. Since hr(t) is
G(t)-measurable, the density Λ̂(T ) is G(T )-measurable, and therefore it can be repre-
sented by a constant D and a stochastic integral with respect to P ∗(·, T ), see e.g. Pham,
Rheinländer and Schweizer (1998, Section 4.3). Thus, we have the following representation
of Λ̂(T )

Λ̂(T ) = D +

∫ T

0
ζ̃(u)dP ∗(u, T ). (4.8.8)

Schweizer (1996, Lemma 1) gives that Λ̂(T ) is the density for the variance optimal mar-
tingale measure as well, i.e.

dP̃

dP
= Λ̂(T ),

such that P̂ = P̃ . Hence, under the equivalent martingale measure P̃ , the dynamics of
the mortality intensity and the intensity of the counting process N(x) are unaltered. For
later use, we introduce the P̃ -martingale

Λ̃(t) := E
eP [Λ̂(T )|F(t)] = E

eP [Λ̂(T )|G(t)].

Note that Λ̂(T ) = Λ̃(T ). If hr is constant, calculations similar to those in Møller (2003b)
for the Black-Scholes case give that

Λ̂(t)

Λ̃(t)
= e−(hr)2(T−t).
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4.8.3 Mean-variance indifference pricing for pure endowments

Let T = T and consider a portfolio of n individuals of the same age x each purchasing a
pure endowment of ∆A0(T ) paid by a single premium at time 0. Thus, the discounted
liability is given by

H∗ = (n−N(x, T ))B(T )−1∆A0(T ).

Explicit expressions for the mean-variance indifference prices can be obtained under ad-
ditional integrability conditions. More precisely, we need that certain local P̃ -martingales
considered in the calculation of VarP [NH ] are (true) P̃ -martingales. In this case we have
the following proposition.

Proposition 4.8.1
The indifference prices are given by inserting the following expressions for E

eP [H∗] and

VarP (NH) in (4.8.4) and (4.8.5):

E
eP [H∗] = nP (0, T )S(x, 0, T )∆A0(T ), (4.8.9)

and

VarP [NH ] = n

∫ T

0
Υ1(t)Υ2(t)dt + n2

∫ T

0
Υ1(t)Υ3(t)dt, (4.8.10)

where

Υ1(t) = EP

[
Λ̂(t)

Λ̃(t)
(P ∗(t, T )∆A0(T ))2

]
,

Υ2(t) = EP
[
(S(x, t, T ))2 e−

R t
0 µ(x,u)duµ(x, t)

(
1 + (σµ(x, t)Bµ(x, t, T ))2(1 − e−

R t
0 µ(x,u)du)

)]
,

Υ3(t) = EP
[(
σµ(x, t)

√
µ(x, t)Bµ(x, t, T )S(x, t, T )e−

R t
0 µ(x,u)du

)2
]
.

Idea of proof of Proposition 4.8.1: The independence between r and (N,µ) under P̃
immediately gives (4.8.9). The expression for the variance of NH in (4.8.10) follows from
calculations similar to those in Møller (2001b). For completeness the calculations are
carried out in Section 4.10.2 under certain additional integrability conditions.

�

We see from (4.8.10) that the variance of NH can be split into two terms. The first term,
which is proportional to the number of insured, stems from both the systematic and un-
systematic mortality risk. Møller (2001b) also obtained a term proportional to the number
of insured in the case with deterministic mortality intensity and hence only unsystematic
mortality risk. The second term which is proportional to the squared number of survivors
stems solely from the systematic mortality risk. Hence, the uncertainty associated with
the future mortality intensity becomes increasingly important, when determining indif-
ference prices for a portfolio of pure endowments, as the size of the portfolio increases.
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There are two reasons for this. Firstly, changes in the mortality intensity, as opposed to
the randomness associated with the deaths within the portfolio, are non-diversifiable; in
particular they affect all insured individuals in the same way. Secondly, this risk is not
hedgeable in the market.

Proposition 4.8.2
The optimal strategies are given by inserting (4.8.10) and the following expression for ϑH

in (4.8.6) and (4.8.7):

ϑH(t) = ξ
eP (t) − ζ̃(t)

∫ t−

0

1

Λ̃(u)

(
ν
eP (u)dM(x, u) + κ

eP (u)dSM (x, u, T )
)
, (4.8.11)

where

ξ
eP (t) = (n−N(x, t−))S(x, t, T )∆A0(T ),

ν
eP (t) = −P ∗(t, T )S(x, t, T )∆A0(T ), (4.8.12)

κ
eP (t) = (n−N(x, t−))P ∗(t, T )e

R t
0 µ(x,u)du∆A0(T ). (4.8.13)

Proof of Proposition 4.8.2: Expression (4.8.11) follows from Schweizer (2001a, Theo-
rem 4.6) (Theorem 4.10.1), which relates the decomposition in (4.8.3) to the Galtchouk-

Kunita-Watanabe decomposition of the P̃ -martingale V ∗, eP (t) = E
eP [H∗|F(t)] given in

Example 4.7.3.

�

4.8.4 Mean-variance hedging

We now briefly mention the principle of mean-variance hedging used for hedging and
pricing in incomplete financial markets. This short review follows a similar review in
Møller (2001b). With mean-variance hedging, the aim is to determine the self-financing
strategy ϕ̂ = (ϑ̂, η̂) which minimizes

EP
[
(H∗ − V (T,ϕ))2

]
.

The main idea is thus to approximate the discounted claim H∗ as closely as possible in
L2(P ) by the discounted terminal value of a self-financing portfolio ϕ. Since we consider
self-financing portfolios only, the optimal portfolio is uniquely determined by the pair
(V (0, ϕ̂), ϑ̂), where V (0, ϕ̂) is known as the approximation price for H and ϑ̂ is the mean-
variance optimal hedging strategy. Schweizer (2001a, Theorem 4.6) gives that V (0, ϕ̂) =

E
eP [H∗] and ϑ̂ = ϑH . Thus, we recognize the approximation price and the mean-variance

hedging strategy as the first part of the mean-variance indifference prices and optimal
hedging strategies, respectively. Note that even though the minimization criterion is in
terms of P , the solution is given (partly) in terms of P̃ .
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4.9 Numerical examples

In this section, we present some numerical examples with calculations of the market re-
serves of Proposition 4.6.2. Furthermore, we investigate two different parameterizations
within the class of time-inhomogeneous CIR models and compare these to the 2003 mor-
tality intensities and a deterministic projection for the mortality intensities.

Calculation method
A useful way of evaluating the expression (4.6.13) is to define auxiliary functions

V̂ Q(t, t′) =

∫ T

t
e−

R τ
t

(fr(t′,u)+fµ,Q(x,t′,u))du
(
a0(τ) + a1(τ)f

µ,Q(x, t′, τ)
)
dτ

+ e−
R T

t
(fr(t′,u)+fµ,Q(x,t′,u))du∆A0(T ), (4.9.1)

where the zero coupon bond price and the Q-survival probabilities are expressed in terms
of the relevant forward rates and Q-forward mortality intensities. Note moreover, that we
have introduced the additional parameter t′. We note that V Q(t, r(t), µ(x, t)) = V̂ Q(t, t),
whereas these two quantities differ if t 6= t′. It follows immediately, that on the set
(0, T ) ∪ (T , T ), V̂ Q(t, t′) satisfies for fixed t′ the differential equation

∂

∂t
V̂ Q(t, t′) = (f r(t′, t) + fµ,Q(x, t′, t))V̂ Q(t, t′) − a0(t) − a1(t)f

µ,Q(x, t′, t), (4.9.2)

subject to the terminal condition V̂ Q(T, t′) = 0 and with

V̂ Q(T−, t′) = ∆A0(T ) + V̂ Q(T , t′).

Alternatively, the expression (4.6.13) can be determined by solving the following partial
differential equation on (0, T ) ∪ (T , T ) × IR× IR+

0 =
∂

∂t
V Q(t, r, µ) + (γµ,Q(x, t) − δµ,Q(x, t)µ)

∂

∂µ
V Q(t, r, µ) +

1

2
(σµ(x, t))2µ

∂2

∂µ2
V Q(t, r, µ)

+
(
γr,α,Q − δr,α,Qr

) ∂
∂r
V Q(t, r, µ) +

1

2
(γr,σ + δr,σr)

∂2

∂r2
V Q(t, r, µ) − rV Q(t, r, µ)

+ a0(t) + (1 + g(t))µ(a1(t) − V Q(t, r, µ)),

with terminal condition V Q(T, r, µ) = 0 and with

V Q(T−, r, µ) = ∆A0(T ) + V Q(T , r, µ).

The partial differential equation follows either as a byproduct from the proof of Lemma
4.7.1 in Section 4.10.1 or as a special case of the generalized Thiele’s differential equation
in Steffensen (2000). A similar partial differential equation can be found in Chapter 3.

Parameters for financial market
We now present the parameters which will be used in the numerical examples. The
financial market will be described via a standard Vasiček model with parameters γr,α =
0.008, δr,α = 0.2, γr,σ = 0.0001, δr,σ = 0, c̃ = −0.003 and r0 = 0.025. Given these
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Figure 4.9.1: Forward rate curve for the Vasiček model.

parameters, the mean reversion level for the short rate is γr,α/δr,α = 0.04 under P and
(γr,α− c̃)/δr,α = 0.055 under Q. The short rate volatility is given by

√
γr,σ = 0.01 and the

speed of mean reversion is δr,α = 0.2. The parameter −c̃/δr,α = 0.015 can be interpreted
as the typical difference between the long and short term zero coupon yield, see Poulsen
(2003) for more details. The initial short rate is given by r0 = 0.025, which corresponds to
the present short rate level. The forward rate curve f r(0, τ) can be found in Figure 4.9.1.

Parameters for insurance portfolio
We have fitted the parameters for the underlying Gompertz-Makeham distributions at
various time. In Table 4.9.1 below, we present the numbers for 1980 and 2003 which
have been obtained by standard methods. We now list some parameters for the under-

Males Females

Year α β c α β c
1980 0.000233 0.0000658 1.0959 0.000220 0.0000197 1.1063
2003 0.000134 0.0000353 1.1020 0.000080 0.0000163 1.1074

Table 4.9.1: Estimated Gompertz-Makeham parameters for 1980 and 2003.

lying mortality improvement process ζ defined by (4.3.6), which is supposed to capture
the variation present in Figure 4.2.4 from Section 4.2. We consider two different para-
meterizations, Case I and Case II, see Table 4.9.2. Case I: We take δ(x, t) = δ̃ constant

δ(x, t) γ(x, t) σ(x, t)

Case I δ̃ δ̃e−eγt σ̃

Case II γ̃ 1
2 σ̃

2 σ̃

Table 4.9.2: Parametrization for the underlying process ζ.

and assume that γ(x, t) = δ̃e−eγt, where log(1 + γ̃) represents the expected yearly relative
decline in the mortality intensity. Thus, e−eγt is the (time-dependent) level to which the
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process ζ adapts and δ̃ controls how fast it adapts to this level. Finally, we propose to let
σ(x, t) = σ̃, which describes the “noise”. Case II: Here, we let δ(x, t) = γ̃, γ(x, t) = 1

2 σ̃
2

and σ(x, t) = σ̃. This means that we expect a relative yearly decline in ζ of approximately
γ̃. Note that Case II has one parameter less than case I. The choice γ(x, t) = 1

2 σ̃
2 in

Case II ensures that ζ remains strictly positive. Quantiles for the mortality improvement

δ̃ γ̃ σ̃ 5% 25% 50% 75% 95%

Case I 0.2 0.008 0.02 0.838 0.867 0.887 0.907 0.937
1 0.008 0.02 0.837 0.850 0.859 0.868 0.881

0.2 0.008 0.03 0.814 0.856 0.886 0.917 0.962
1 0.008 0.03 0.827 0.846 0.859 0.872 0.892

Case II 0.008 0.02 0.726 0.801 0.854 0.909 0.990

Table 4.9.3: Quantiles for the mortality improvement process ζ for time horizon 20 years.
(Numbers are based on 100000 simulations with 100 steps per year in an Euler scheme.
The results are indistinguishable if we altenatively use a Milstein scheme).

process ζ for the two parameterizations can be found in Table 4.9.3. In Case II, the mean
reversion level is γ(t, x)/δ(t, x) = 1

2 σ̃
2/γ̃. With γ̃ = 0.008 and σ̃ = 0.02, this leads to the

mean reversion level of 0.025, which is negligible. A comparison of the mortality for 2003
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Figure 4.9.2: Top pictures are Case I and bottom pictures are Case II. To the left: Mortality
intensity curve for 30 year old males for 2003 (solid line), exponentially corrected with
factor exp(−γ̃t) (dashed line) and forward mortality intensities (dotted line). To the right:
The corresponding survival probabilities.

for males and the corresponding forward mortality intensities in Case I with parameters
(δ̃, γ̃, σ̃) = (0.2, 0.008, 0.02) can be found at the top of Figure 4.9.2. The figure shows a
rather limited difference between the forward mortality intensities and the exponentially
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corrected intensities (they essentially coincide), whereas there is a big difference between
these two curves and the 2003 estimate for the mortality intensities. For Case II, there is a
more substantial difference between the forward mortality intensities and the exponentially
corrected mortality intensities at very high ages.

Expected lifetimes
Figure 4.9.3(a) shows the histogram for the expected lifetime of a policyholder aged 30 for
case I with parameters (0.2, 0.008, 0.03). As a comparison, the expected lifetime for a male
policyholder aged 30 is 75.8, 79.0 and 78.6 if we use the 2003 estimate, the exponentially
corrected mortality and the forward mortality intensities, respectively. The variability in
the figure reflects the uncertainty related to changes in the future mortality intensities.
The histogram shows that there is a relatively small uncertainty associated with the ex-
pected lifetime in Case I. This is explained by the fact that the model for the mortality
improvement process is mean-reverting with a relatively small volatility. If we instead

(a)
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Figure 4.9.3: Histograms for the expected lifetime for a policy-holder aged 30 for Case I
with parameters (0.2, 0.008, 0.03) (figure a) and Case II (figure b). (Histograms are based
on 10000 simulations with 100 steps per year in an Euler scheme.)

consider case II, the expected lifetime changes to 79.2, and we now get substantially big-
ger variation into the expected lifetimes, see the histogram for the expected lifetime in
Figure 4.9.3(b).

Market reserves
In Figure 4.9.4, we have plotted the functions V̂ Q(t, t′|x) for fixed t = t′ = 0 as a function
of age x in the case where Q is the minimal martingale measure. (Here, we have added an
x to the function V̂ Q in order to underline its dependence on the initial age x.) We have
considered Case I with parameters (0.2, 0.008, 0.03) and studied a life annuity starting at
age 65. Moreover, we have compared this with the reserves obtained by using the 2003
estimate without any correction for future mortality improvements, and the mortality
intensities obtained by reducing the mortality intensities exponentially. For each initial age
x, we have calculated the relevant forward mortalities and solved the differential equation
for V̂ Q(t, t′). We see only very little difference between the reserves obtained by using the
forward mortality intensities and the exponentially corrected mortality intensities.

Risk-minimizing strategies and mean-variance indifference pricing
The risk-minimizing strategies and mean-variance indifference hedging strategies obtained
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Figure 4.9.4: Reserves for a life annuity starting at age 65. Reserve based on 2003-
estimate for males (solid line), exponentially corrected mortality intensities (dashed line)
and forward mortalities (dotted line).

in Section 4.7 and 4.8 can also be determined numerically. Møller (2001b) contains a
section with numerical examples for a similar contract (without systematic mortality risk),
where the strategies have been determined for a couple of simulations. In addition, the
methods listed there may be used for determining the mean-variance indifference prices of
Proposition 4.8.1.

4.10 Proofs and technical calculations

4.10.1 Proof of Lemma 4.7.1

Recall from (4.7.7) that the Q-martingale V ∗,Q can be written as

V ∗,Q(t) = A∗(t) + (n−N(x, t))B(t)−1V Q(t, r(t), µ(x, t)).

Differentiating under the integral gives

∂

∂r
V Q(t, r, µ) = −

∫ T

t
Br(t, τ)P (t, τ)SQ(x, t, τ)

(
a0(τ) + a1(τ)f

µ,Q(x, t, τ)
)
dτ

−Br(t, T )P (t, T )SQ(x, t, T )∆A0(T ), (4.10.1)

and

∂

∂µ
V Q(t, r, µ) = −(1 + g(t))

(∫ T

t
P (t, τ)Bµ,Q(x, t, τ)SQ(x, t, τ)

×
(
a0(τ) + a1(τ)

(
fµ,Q(x, t, τ) −

∂
∂τB

µ,Q(x, t, τ)

Bµ,Q(x, t, τ)

))
dτ

+ P (t, T )Bµ,Q(x, t, T )SQ(x, t, T )∆A0(T )

)
, (4.10.2)
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where we have used

∂

∂µ
fµ,Q(x, t, τ) = (1 + g(t))

∂

∂τ
Bµ,Q(x, t, τ).

Integration by parts used on (n−N(x, t))B(t)−1V Q(t, r(t), µ(x, t)) yields

V ∗,Q(t) = A∗(t) + nV Q(0, r(0), µ(x, 0))

+

∫ t

0
(n−N(x, u))V Q(u, r(u), µ(x, u))dB(u)−1

+

∫ t

0
B(u)−1(n−N(x, u−))dV Q(u, r(u), µ(x, u))

−
∫ t

0
B(u)−1V Q(u, r(u), µ(x, u))dN(x, u). (4.10.3)

In order to calculate the fourth term in (4.10.3), we need to find dV Q(u, r(u), µ(x, u)).
Recall from (4.4.7) and (4.6.5) that the dynamics of r and µ(x) under Q are given by

dr(t) = αr,Q(r(t))dt + σr(t, r(t))dW r,Q(t),

dµ(x, t) = αµ,Q(t, µ(x, t))dt + σµ(t, µ(x, t))
√
µ(x, t)dW µ,Q(t),

where

αr,Q(r(t)) = γr,α,Q − δr,α,Qr(t),

αµ,Q(t, µ(x, t)) = γµ,Q(x, t) − δµ,Q(x, t)µ(x, t).

In the rest of the proof we use the shorthand notation V Q(u) = V Q(u, r(u), µ(x, u)).
Furthermore we only include explicitly the time argument in the coefficient functions.
The assumption V Q(t) ∈ C1,2,2 allows us to apply Itô’s formula. We obtain

dV Q(u) =

(
∂

∂u
V Q(u) + αµ,Q(u)

∂

∂µ
V Q(u) +

1

2
(σµ(u))2µ(x, u)

∂2

∂µ2
V Q(u)

+αr,Q(u)
∂

∂r
V Q(u) +

1

2
(σr(u))2

∂2

∂r2
V Q(u)

)
du+ σr(u)

∂

∂r
V Q(u)dW r,Q(u)

+ σµ(u)
√
µ(x, u)

∂

∂µ
V Q(u)dW µ,Q(u)

=

(
∂

∂u
V Q(u) + αµ,Q(u)

∂

∂µ
V Q(u) +

1

2
(σµ(u))2µ(x, u)

∂2

∂µ2
V Q(u)

+αr,Q(u)
∂

∂r
V Q(u) +

1

2
(σr(u))2

∂2

∂r2
V Q(u)

)
du−

∂
∂rV

Q(u)

Br(u, T )P ∗(u, T )
dP ∗(u, T )

−
∂
∂µV

Q(u)

(1 + g(u))Bµ,Q(x, u, T )SQ,M (x, u, T )
dSQ,M(x, u, T ).

In the first equality we have used the dynamics of r and µ(x) and that the Brownian
motions W r,Q and W µ,Q are independent, such that we do not get any mixed second order
terms. In the second equality we use (4.10.1) and (4.10.2) together with the dynamics of
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SQ,M(x, ·, T ) and P ∗(·, T ) given in (4.6.7) and (4.4.10), respectively. Rewriting A∗ in
terms of the Q-martingale MQ(x) we get

A∗(t) = −nπ(0) +

∫ t

0
B(τ)−1

(
a0(τ)(n −N(x, τ)) + a1(τ)(n −N(x, τ−))µQ(x, τ)

)
dτ

+

∫ t

0
B(T )−1(n−N(x, T ))∆A0(T )dI{τ≥T } +

∫ t

0
B(τ)−1a1(τ)dM

Q(x, τ).

Collecting the terms from (4.10.3) involving integrals with respect to P ∗(·, T ), SQ,M(x, ·, T )
and MQ(x), respectively, we get the last three terms in (4.7.8). Since these three terms and
V ∗,Q are Q-martingales, the remaining terms constitute a Q-martingale as well. Since this
process is continuous (hence predictable) and of finite variation, it is constant. Inserting
t = 0 we immediately get that V ∗,Q(0) = −nπ(0) + nV Q(0, r(0), µ(x, 0)). Thus, we have
proved the decomposition in (4.7.8).

4.10.2 Calculation of VarP [NH ]

The following theorem due to Schweizer (2001a, Theorem 4.6) relates the decomposition in

(4.8.3) to the Galtchouk-Kunita-Watanabe decomposition of the P̃ -martingale V ∗, eP (t) =

E
eP [H∗|F(t)]; see also Møller (2000).

Theorem 4.10.1
Assume that H∗ ∈ L2(F(T ), P ) and consider the Galtchouk-Kunita-Watanabe decompo-

sition of V ∗, eP (t) given by

V ∗, eP (t) = E
eP [H∗] +

∫ t

0
ξ
eP (u)dP ∗(u, T ) + L

eP (t), 0 ≤ t ≤ T . (4.10.4)

We can now express cH , ϑH and NH from (4.8.3) in terms of decomposition (4.10.4) by

cH = E
eP [H∗],

ϑH(t) = ξ
eP (t) − ζ̃(t)

∫ t−

0

1

Λ̃(u)
dL

eP (u),

NH = Λ̃(T )

∫ T

0

1

Λ̃(u)
dL

eP (u).

Since

L
eP (t) =

∫ t

0
ν
eP (u)dM(x, u) +

∫ t

0
κ
eP (u)dS(x, u, T ),

where ν
eP and κ

eP are given by (4.8.12) and (4.8.13), respectively, Theorem 4.10.1 gives
the following expression for NH :

NH = Λ̃(T )

∫ T

0

1

Λ̃(t)
dL

eP (t) = Λ̃(T )

∫ T

0

1

Λ̃(t)

(
ν
eP (t)dM(x, t) + κ

eP (t)dSM (x, t, T )
)
.



4.10. PROOFS AND TECHNICAL CALCULATIONS 131

Since EP [NH ] = 0, we first note that

VarP [NH ] = EP [(NH)2] = E
eP [Λ̃(T )

(
L̃(T ) + R̃(T )

)2
]

= E
eP [Λ̃(T )(L̃(T ))2 + 2Λ̃(T )L̃(T )R̃(T ) + Λ̃(T )(R̃(T ))2

]
, (4.10.5)

where we have defined L̃(t) =
∫ t
0
ν
eP (u)eΛ(u)

dM(x, u) and R̃(t) =
∫ t
0
κ
eP (u)eΛ(u)

dSM (x, u, T ). The

three terms appearing in (4.10.5) can be rewritten using Itô’s formula. For the first term
we get

Λ̃(T )(L̃(T ))2 =

∫ T

0
(L̃(t−))2dΛ̃(t) + 2

∫ T

0
Λ̃(t)L̃(t−)dL̃(t) +

∫ T

0
Λ̃(t)

(
ν
eP (t)

Λ̃(t)

)2

dN(x, t),

and for the last term we find that

Λ̃(T )(R̃(T ))2 =

∫ T

0
R̃(t)2dΛ̃(t) + 2

∫ T

0
Λ̃(t)R̃(t)dR̃(t) +

∫ T

0
Λ̃(t)d〈R̃〉(t)

=

∫ T

0
R̃(t)2dΛ̃(t) + 2

∫ T

0
Λ̃(t)R̃(t)dR̃(t)

+

∫ T

0
Λ̃(t)

(
κ
eP (t)

Λ̃(t)
σµ(x, t)

√
µ(x, t)Bµ(x, t, T )SM (x, t, T )

)2

dt.

The mixed term becomes

Λ̃(T )R̃(T )L̃(T ) =

∫ T

0
Λ̃(t)R̃(t)dL̃(t) +

∫ T

0
L̃(t)R̃(t)dΛ̃(t) +

∫ T

0
Λ̃(t)L̃(t)dR̃(t)

+

∫ T

0
L̃(t)d[R̃, Λ̃](t).

Assuming all the local martingales are martingales, and using that the Brownian motions
driving r and µ are independent, we get

VarP
[
NH

]
= E

eP [∫ T

0

(ν
eP (t))2

Λ̃(t)
dN(x, t)

]

+ E
eP ∫ T

0

(
κ
eP (t)σµ(x, t)

√
µ(x, t)Bµ(x, t, T )SM (x, t, T )

)2

Λ̃(t)
dt


 . (4.10.6)

We now investigate the two terms in (4.10.6) separately. The first term can be rewritten
as

E
eP [∫ T

0

(ν
eP (t))2

Λ̃(t)
dN(x, t)

]

=

∫ T

0
E
eP [(P ∗(t, T )∆A0(T ))2

Λ̃(t)

]
E
eP [(S(x, t, T ))2 (n−N(x, t−))µ(x, t)

]
dt

=

∫ T

0
EP

[
Λ̂(t)

Λ̃(t)
(P ∗(t, T )∆A0(T ))2

]
EP

[
(S(x, t, T ))2 (n−N(x, t−))µ(x, t)

]
dt,
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where we have used the expression for ν
eP (t) from (4.8.12) and the independence between

r and (N,µ). The second term is given by

E
eP ∫ T

0

(
κ
eP (t)σµ(x, t)

√
µ(x, t)Bµ(x, t, T )SM (x, t, T )

)2

Λ̃(t)
dt




= E
eP ∫ T

0

(
(n−N(x, t−))P ∗(t, T )σµ(x, t)

√
µ(x, t)Bµ(x, t, T )S(x, t, T )∆A0(T )

)2

Λ̃(t)
dt




=

∫ T

0
EP

[
Λ(t)

Λ̃(t)
(P ∗(t, T )∆A0(T ))2

]

× EP
[(

(n−N(x, t−))σµ(x, t)
√
µ(x, t)Bµ(x, t, T )S(x, t, T )

)2
]
dt,

where we have used the expression for κ
eP (t) from (4.8.13) and once again the independence

between r and (N,µ). Using that conditioned on I(t) the number of survivors at time t

is binomially distributed with parameters (n, e−
R t

0
µ(x,u)du) under P , we get

EP
[(

(n−N(x, t−))σµ(x, t)
√
µ(x, t)Bµ(x, t, T )S(x, t, T )

)2
]

= EPEP
[(

(n−N(x, t−))σµ(x, t)
√
µ(x, t)Bµ(x, t, T )S(x, t, T )

)2
∣∣∣∣ I(t)

]

= EP
[(
σµ(x, t)

√
µ(x, t)Bµ(x, t, T )S(x, t, T )

)2
EP

[
(n−N(x, t−))2

∣∣I(t)
]]

= EP
[(
σµ(x, t)

√
µ(x, t)Bµ(x, t, T )S(x, t, T )

)2

×
(
ne−

R t
0 µ(x,u)du

(
1 − e−

R t
0 µ(x,u)du

)
+ n2

(
e−

R t
0 µ(x,u)du

)2
)]

,

and

EP
[
(S(x, t, T ))2 (n−N(x, t−))µ(x, t)

]
= EPEP

[
(S(x, t, T ))2 (n−N(x, t−))µ(x, t)

∣∣∣ I(t)
]

= EP
[
(S(x, t, T ))2 µ(x, t)EP [n−N(x, t−)| I(t)]

]

= nEP
[
(S(x, t, T ))2 µ(x, t)e−

R t
0 µ(x,u)du

]
.

Collecting the terms proportional to n and n2, respectively, we arrive at (4.8.10).



Chapter 5

A Discrete-Time Model for

Reinvestment Risk in Bond

Markets

(This chapter is an adapted version of Dahl (2005b))

In this chapter we propose a discrete-time model with fixed maximum time to maturity
of traded bonds. At each trading time, a bond matures and a new bond is introduced
in the market, such that the number of traded bonds is constant. The entry price of the
newly issued bond depends on the prices of the bonds already traded and a stochastic
term independent of the existing bond prices. Hence, we obtain a bond market model for
the reinvestment risk, which is present in practice, when hedging long term contracts. In
order to determine optimal hedging strategies we consider the criteria of super-replication
and risk-minimization.

5.1 Introduction

In the literature, bond markets are usually assumed to include all bonds with time of
maturity less than or equal to time of maturity of the considered claim. However, this
is in contrast to practice, where only bonds with a limited (sufficiently short) time to
maturity are traded. Hence, a standard model is the correct framework for pricing and
hedging so-called short term contracts, where the payoff depends on bonds with time to
maturity less than or equal to the longest traded bond. However, when considering long
term contracts, i.e. contracts, whose payoffs depend on bonds with longer time to maturity
than the longest traded bond, the bond market does not in general include bonds, which
at all times allow for a perfect hedge of the contract. Thus, in practice, an agent interested
in pricing and hedging a long term contract, such as a life insurance contract, where the
payments may be due 50 years or more into the future, is in general not able to eliminate
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the reinvestment risk associated with the contract. Since the reinvestment risk is ignored
in standard bond market models, they do not seem to be the right framework for pricing
and hedging long term contracts. Here, we propose a model, which behaves similarly to a
standard model when hedging and pricing short term contracts, and at the same time it
includes reinvestment risk, when hedging long term contracts.

A first idea in order to introduce reinvestment risk would be to consider a standard bi-
nomial model for the bond prices and restrict the investment strategies to bonds with a
limited time to maturity only. However, this simple approach does not introduce rein-
vestment risk, since a long term bond can be perfectly replicated by a dynamic trading
strategy, where we at all times invest in two short term bonds. Hence, we have to ex-
tend the standard model to include an additional unhedgeable stochastic term, whose
uncertainty determines the reinvestment risk.

To describe the reinvestment risk, we propose a discrete-time bond market model, where
the traded bonds have a fixed maximum time to maturity, T̃ . Hence, at time 0 all bonds
with time of maturity v, v ∈ {1, . . . , T̃ } are traded. At any time t, the bond with maturity
t matures and a new bond with time to maturity T̃ is introduced in the market. Thus,
after the issue of the new bond, the model is similar to the one at time 0. At any time t,
the entry price of the new bond depends on all past information, current prices of bonds
already traded and an additional stochastic term. In this model the class of attainable
claims depends on time. Hence, a claim which is unattainable at time t may be attainable
at time t+1. Consider for example a claim of 1 at time t+ T̃ +1, which is unattainable at
time t, whereas it is clearly attainable at time t+ 1, where a bond with time of maturity
t + T̃ + 1 is issued. At time t + 1 the unique arbitrage free price is equal to the price
of the bond with maturity t + T̃ + 1, and the replicating strategy consists of purchasing
exactly one such bond. The idea of fixing the maximum time to maturity of the traded
assets and introducing new assets as time passes can also be found in Neuberger (1999),
who considers a market for futures on oil prices. To model the initial price of the new
future, Neuberger assumes that it is a linear function of the prices of traded futures and
a normally distributed error term.

To the author’s knowledge, the only other papers to consider the problem of modelling
the prices of newly issued bonds are Sommer (1997) and Dahl (2005a) (see Chapter 6),
who both consider models in continuous time. In Sommer (1997), new bonds are issued
continuously, whereas in Dahl (2005a) new bonds are issued at fixed times only, since this
is the case in practice. In order to control and quantify the reinvestment risk, both authors
consider the criterion of risk-minimization.

The chapter is organized as follows: In Section 5.2, a bond market model including rein-
vestment risk is introduced. This is done in two steps: First we describe a complete
and arbitrage free standard bond market model. Then we extend the model to include
reinvestment risk. Since the extended model is incomplete, there exist infinitely many
equivalent martingale measures. We identify the equivalent martingale measures for the
extended model and define the considered price processes, which for notational conve-
nience are different from the bond prices. Given the considered price processes we review
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the relevant financial terminology. Optimal hedging strategies with respect to the criteria
of super-replication and risk-minimization are determined in Section 5.3. Here, we also
remark on the relationship between the criterion of super-replication and the maximal
guarantees for which the shortfall risk can be eliminated. The chapter is concluded by
a numerical illustration in Section 5.4. The numerical illustration includes a comparison
with practice in Danish life insurance, where long term contracts are common.

5.2 A bond market model

Let T̂ ∈ N be a fixed time horizon and (Ω,F , P ) a probability space with a filtration
F = (Ft)t∈{0,1,..., bT} satisfying the usual condition of completeness, i.e. F0 contains all

P -null sets.

5.2.1 A standard bond market model

Prior to the introduction of the bond market model with reinvestment risk, we now describe
a standard discrete-time bond market model. For a thorough description of discrete-time
bond market models we refer to Jarrow (1996).

Consider a bond market where trading takes place at times t = 0, 1, . . . , T̃ , for a fixed time
horizon T̃ ∈ N, T̃ < T̂ . At time t we assume that all zero coupon bonds with maturity
v = t, . . . , T̃ are traded in the bond market. For t ∈ {0, . . . , T̃} and v ∈ {t, . . . , T̃} we
denote by P (t, v) the price at time t of a zero coupon bond maturing at time v. To avoid
arbitrage we assume P (t, v) is strictly positive and P (t, t) = 1 for all t. For non-negative
interest rates P (t, v) is a decreasing function of v for fixed t. An important quantity when
modelling bond prices is the forward rate, ft,v, contracted at time t for the period [v, v+1]
defined by

ft,v =
P (t, v)

P (t, v + 1)
− 1, t ∈ {0, . . . , T̃ − 1} and v ∈ {t, . . . , T̃ − 1}, (5.2.1)

or, stated differently,

P (t, v) =
1∏v−1

i=t (1 + ft,i)
, t ∈ {0, . . . , T̃ − 1} and v ∈ {t+ 1, . . . , T̃}. (5.2.2)

The forward rate ft,v can be interpreted as the riskfree interest rate contracted at time
t for the interval [v, v + 1]. Now introduce the short rate process r = (rt)t∈{0,1,..., eT−1}
given by rt = ft,t. Since (5.2.1) and (5.2.2) establish a one-to-one correspondence between
forward rates and bond prices, modelling the development of the bond prices and the
forward rates is equivalent. As it is standard in the literature, we model the forward rates.
Let ft = (rt, ft,t+1, . . . , ft,eT−1) denote the (T̃ − t)-dimensional forward rate vector at time
t. To model the development of the forward rate vector we assume

ft = gt(f0, . . . , ft−1, ρt), t ∈ {1, . . . , T̃ − 1}, (5.2.3)
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for some function gt : R
eT × R

eT−1 × · · · × R
eT−(t−1) × {u, d} 7→ R

eT−t and an i.i.d. sequence
ρ1, . . . , ρ eT−1 of random variables with distribution P (ρ1 = u) = 1 − P (ρ1 = d) = p,
p ∈ (0, 1). A natural restriction would be to consider strictly positive forward rates, only.

In this case we would have gt : R
eT
+ × R

eT−1
+ × · · · × R

eT−(t−1)
+ × {u, d} 7→ R

eT−t
+ . We observe

from (5.2.3) that contingent on the development of the forward rates until time t − 1,
the forward rate vector at time t takes one of two possible values: gt(f0, . . . , ft−1, u) or
gt(f0, . . . , ft−1, d). If ft = gt(f0, . . . , ft−1, u) we say that the forward rates have moved up,
and likewise, if ft = gt(f0, . . . , ft−1, d) we say they have moved down. We note from (5.2.2)
that the bond prices move in the opposite direction of the forward rates. The development
of the forward rates (and bond prices) can be represented by non-recombining binomial
tree, see Figure 5.2.1 for a visualization of the first three possible values of the forward
rates.
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Figure 5.2.1: Development of the forward rate vector.

Remark 5.2.1 If gt only depends on (f0, . . . , ft−1) through ft−1, then the forward rate
vector is a discrete time-inhomogeneous Markov chain.

�
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The natural filtration G = (Gt)t∈{0,..., eT} generated by the forward rates is given by

G0 = {∅,Ω} and Gt = σ{ρ1, . . . , ρt∧( eT−1)}, t ∈ {1, . . . , T̃}.

Introduce the notation ξt, ξt ∈ Ξt = {all possible sequences of u’s and d’s of length t}.
This allows us to denote the generic value of for instance the forward rate vector at time
t by f ξtt and the forward rate vector at time t+ 1 given ρt+1 = d by f ξt,dt+1 .

Risk-neutral probabilities

It is well known that the bond market model described above is arbitrage free if there
exists a so-called equivalent martingale measure Q. Recall that an equivalent martingale
measure is a probability measure equivalent to P , such that all discounted bond prices are
martingales. The discounted bond prices are Q-martingales if for t ∈ {0, . . . , T̃ − 1} and
v ∈ {t+ 1, . . . , T̃} it holds that

P (t, v) =
1

1 + rt
EQ [P (t+ 1, v)| Gt] . (5.2.4)

If further the equivalent martingale measure Q is unique, the model is complete; see also
Section 5.2.3 for the definition of arbitrage and completeness. Denote by qξtt+1 the Q-
probability of the event ρt+1 = u given the present information ξt. Since (5.2.4) is trivially

fulfilled for v = t + 1, we have T̃ − (t + 1) equations for qξtt+1, t ∈ {0, . . . , T̃ − 2}. Thus,

if a solution exists, it is unique, provided there exists a v ∈ {t + 2, . . . , T̃}, such that
P ξt,d(t+ 1, v) 6= P ξt,u(t+ 1, v). For t ∈ {0, . . . , T̃ − 2}, solving (5.2.4) gives the following

expressions for qξtt+1:

qξtt+1 =
P ξt,d(t+ 1, v) − (1 + rξtt )P ξt(t, v)

P ξt,d(t+ 1, v) − P ξt,u(t+ 1, v)
, v ∈ {t+ 2, . . . , T̃ }. (5.2.5)

Here, we have used the notation rξtt and P ξt(t, v) to denote explicitly the dependence on the
past. From (5.2.5) we observe that the Q-probability of ρt+1 = u depends on ξt and hence
in general differs for different outcomes of (ρ1, . . . , ρt). Furthermore, (5.2.5) gives that the
Q-probability of an upward movement is small (large) if the difference P ξt,d(t + 1, v) −
(1+ rξtt )P ξt(t, v) is small (large) compared to the difference P ξt,d(t+1, v)−P ξt,u(t+1, v).
The measure Q given by (5.2.5) for all t ensures that all discounted bond price processes

are Q-martingales. If further qξtt+1 ∈ (0, 1) for all t and ξt, then P and Q are equivalent
measures, such that Q indeed is an equivalent martingale measure. From (5.2.5) we get
that Q and P are equivalent if for all t ∈ {0, . . . , T̃ − 2} and ξt it holds that

P ξt,u(t+ 1, v) < (1 + rξtt )P ξt,u(t, v) < P ξt,d(t+ 1, v), v ∈ {t+ 2, . . . , T̃}. (5.2.6)

Here, we have used that P ξt,u(t + 1, v) < P ξt,d(t + 1, v), since an upward movement of
the forward rates corresponds to a downward move of the bond prices. Using (5.2.2)
one can alternatively express (5.2.5) and (5.2.6) in terms of the forward rates. Condition
(5.2.6) can be interpreted as follows: No bond with time to maturity larger than one must
dominate or be dominated by the 1-period bond. If this was the case we could make
arbitrage by trading in the particular bond and the 1-period bond.
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5.2.2 A bond market model with reinvestment risk

Now, we extend the standard model in Section 5.2.1 to include reinvestment risk. The
idea is as follows: Assume that at any time t only bonds with time to maturity less than
or equal to T̃ are traded, and the development of the bond prices from time t to t+ 1 can
be described by a binomial model. Hence, at time t the one period development of the
traded bonds is the same as in the standard model introduced in Section 5.2.1. At time
t + 1 the bond with maturity t + 1 matures and a new bond with time to maturity T̃ is
issued, such that after the introduction of the new bond the model considered is similar
to the one at time t. To model the reinvestment risk we assume that conditional on the
past and the prices at time t + 1 of the bonds traded at time t, the entry price at time
t+ 1 of the new bond with time to maturity T̃ can take two different values.

Consider a bond market where trading takes place at times t = 0, 1, . . . , T̂ . In this bond
market not all zero coupon bonds with maturity less than or equal to T̂ are traded at all
times t = 0, 1, . . . , T̂ . Instead we fix the maximum time to maturity, T̃ , for bonds traded in
the market. Hence, the zero coupon bond prices P (t, v) are defined for t ∈ {0, . . . , T̂} and
v ∈ {t, . . . , (t+ T̃ )∧ T̂}. In addition to T̂ and T̃ we introduce the fixed time horizon T ∈ N,
which is the time of maturity of the considered contract. Figure 5.2.2 shows the possible
orderings of T , T̃ and T̂ . Without loss of generality we assume that T̂ = T + T̃ , such that
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Figure 5.2.2: Possible orderings of T , T̃ and T̂ . In case (a) all fixed claims with maturity
T are attainable. In (b) they are unattainable.

the bond market at all times t, t ∈ {0, . . . , T}, includes the T̃ bonds with time of maturity
v, v ∈ {t + 1, . . . , t + T̃}. From (5.2.1) we observe that the forward rates are defined for
t ∈ {0, . . . , T̂ − 1} and v ∈ {t, . . . , (t+ T̃ − 1)∧ (T̂ − 1)}, so the forward rate vector at time
t (which we still denote by ft) is given by ft = (rt, ft,t+1, . . . , ft,(t+ eT−1)∧( bT−1)). Define the

((u − t + 1) ∧ T̃ )-dimensional vector f̃t,u of forward rates defined at time t with time of
maturity less than or equal to u. Now assume that

f̃t,(t+ eT−2)∧( bT−1) = g̃t(f0, . . . , ft−1, ρt), (5.2.7)

where g̃t : R
eT × R

eT∧( bT−1) × . . . × R
eT∧( bT−(t−1)) × {u, d} 7→ R, and ρ1, . . . , ρ bT−1, similarly

to Section 5.2.1, is an i.i.d. sequence of random variables with distribution P (ρ1 = u) =
1 − P (ρ1 = d) = p, p ∈ (0, 1). The filtration G = (Gt)t∈{0,..., bT} is now given by

G0 = {∅,Ω} and Gt = σ{ρ1, . . . , ρt∧( bT−1)
}, t ∈ {1, . . . , T̂}.
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At time t the maturities of the forward rates given by (5.2.7) are those where a forward
rate with the same maturity is defined at time t− 1. Hence, the forward rates at time t
given by (5.2.7) determine the bond prices at time t for bonds with time of maturity v,
v ∈ {t+1, . . . , (t+ T̃ −1)∧ T̂ }, which are the bonds traded at time t−1 (when disregarding
the bond maturing at time t). Thus, the uncertainty associated with the development of
the forward rates (bond prices) from time t − 1 to t is described by ρt. However, the
uncertainty associated with the price of the new bond with time to maturity T̃ introduced
in the market at time t, t ∈ {1, . . . , T}, cannot be described entirely by ρt; it depends on
an additional source of risk. In order to model this additional uncertainty we assume that
at time t, t ∈ {1, . . . , T}, the (T̃ − 1)-period forward rate, ft,t+ eT−1, is given by

f
t,t+eT−1

= ct(f0, . . . , ft−1, f̃t,t+ eT−2
, εt) (5.2.8)

for some function ct : (R
eT )t × R

eT−1 × {h, ℓ} 7→ R and an i.d.d. sequence ε1, . . . , εT
of random variables independent of (ρt)t∈{1,..., bT−1}. The distribution of ε1 is given by

P (ε1 = h) = 1 − P (ε1 = ℓ) = p̃, p̃ ∈ (0, 1). Hence, for t ∈ {1, . . . , T} it holds that
given the past forward rates and the (T̃ − 1)-dimensional forward rate vector f̃

t,t+ eT−2
=

(rt, ft,t+1, . . . , ft,t+ eT−2) at time t, the (T̃ − 1)-period forward rate, ft,t+ eT−1, can attain

two different values: ct(f0, . . . , ft−1, f̃t,t+ eT−2, h) and ct(f0, . . . , ft−1, f̃t,t+ eT−2, ℓ). We refer
to these values as the high and low value, respectively. Analogously to ξt we now intro-
duce λt, λt ∈ Λt = {all possible sequences of h’s and ℓ’s of length t} for all t = 0, . . . , T .
Thus, λt keeps track of whether the past values of the (T̃ − 1)-period forward rate has
attained the high or the low value. Hence, ξt and λt∧T determine the development of the
entire forward rate vector until time t, t ∈ {1, . . . , T̂ − 1}, such that we can denote the

generic value of the forward rate vector at time t by f ξt,λt∧T
t . Now introduce the filtration

H = (Ht)t∈{0,...,bT} by

H0 = {∅,Ω} and Ht = σ{ε1, . . . , εt∧T }, t ∈ {1, . . . , T̂}.

We now assume the filtration F = (Ft)t∈{0,1,...,bT} introduced earlier is given by

Ft = Gt ∨Ht.

Hence, F is the filtration for the extended bond market. We note that it is sufficient

to consider the state space for ω given by Ω = {u, d}bT−1 × {h, ℓ}T and the σ-algebra
F = FbT = FbT−1.

At time t, t ∈ {T + 1, . . . , T̂} the development of the bond market is essentially identical
to the binomial model in Section 5.2.1, whereas the model is non-standard at time t,
t ∈ {1, . . . , T}. Here, we have that contingent on ξt−1 and λt−1 there are four possible
forward rate vectors at time t and hence 4t possible states at time t. Thus, for t ≤ T
the development of the forward rate vector can be represented using a non-recombining
quadrinomial tree, see Figure 5.2.3 for a visualization of the forward rates with T̃ = 2.

From (5.2.7) we observe that the forward rate at time t with maturity τ , τ ∈ {t, . . . , (t+
T̃−2)∧(T̂−1)}, is allowed to depend on all past forward rates, such that the (T̃−1)-period
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forward rate at time t− 1 may influence the entire forward rate vector at time t. Hence,
the forward rate ft,τ , τ ∈ {t, . . . , (t+ T̃ −2)∧ (T̂ −1)}, is (Ft−1 ∨Gt)-measurable, which in

turn gives that P (t, τ) also is (Ft−1 ∨ Gt)-measurable for τ ∈ {t+ 1, . . . , (t+ T̃ − 1) ∧ T̂}.
For an illustration of the dependence of the forward rates on the ρ’s and ε’s we again refer
to Figure 5.2.3, where the dependence is shown explicitly.

Note that if we contingent on the outcome of the vector (ε1, . . . , εT ), the development
can be described by a binomial model, and hence the conditional model is complete,
such that in the conditional model zero coupon bonds with all maturities have unique
prices (even before they are traded). Hence, in the conditional model we, at all times,
have a forward rate vector for all maturities. However, in the unconditional model the
future values of εt+1, . . . , εT are unknown at time t, such that it is uncertain which of
the conditional forward rate vectors in retrospect will turn out to have been “the correct
one”, when εt+1, . . . , εT have been observed at time T . Thus, the reinvestment risk can
be interpreted as the uncertainty associated with which of the conditional forward rate
vectors in retrospect has turned out to have been “the correct one”. This in turn gives
that the magnitude of the reinvestment risk is related to how much the conditional forward
rate vectors differ.

Example 5.2.2 Consider the case where T̃ = 2 and T = 3. Hence, the time to maturity
of the longest bond in the market is 2 and the time of maturity of the considered claim is
3. The development of the forward rate vector can be visualized by Figure 5.2.3. Here, the
superscripts denote the dependence of the forward rates on the outcome of the variables
ρ and ε. As an example the notation ruu,ℓ2 denotes the short rate in period 2 if ρ1 = u,
ρ2 = u and ε1 = ℓ. We end the example by noting that all examples in this chapter are
one continuing example.

�

Risk-neutral probabilities

We now aim at determining the equivalent martingale measures in the extended model.
Here, the uncertainty is generated by (ρt)t∈{1,..., bT−1} and (εt)t∈{1,...,T}, such that the mea-

sure Q is uniquely determined by (q
ξt−1,λ(t−1)∧T

t )
t∈{1,...,bT−1} and (q̃

ξt,λt−1
t )t∈{1,...,T}, where

q
ξt−1,λ(t−1)∧T

t denotes the probability of ρt = u given ξt−1 and λ(t−1)∧T , and q̃
ξt,λt−1
t de-

notes the probability of εt = h given ξt and λt−1. Recall that for t ∈ {0, . . . , T̂ − 1} and
v ∈ {t + 1, . . . , (t + T̃ ) ∧ T̂}, a necessary condition for Q to be an equivalent martingale
measure is

P (t, v) =
1

1 + rt
EQ [P (t+ 1, v)| Ft] , (5.2.9)

such that the discounted bond prices are martingales. Now note that (5.2.9) is trivially
fulfilled if v = t+ 1. Since P (t+ 1, v) in (5.2.9) is Ft ∨ Gt+1-measurable, i.e. independent

of εt+1, then (5.2.9) yields (T̃ − 2) ∧ (T̂ − t − 1) equations for qξt,λt∧T

t+1 . Hence, if there

exists an equivalent martingale measure, then qξt,λt∧T

t+1 is unique for all t ∈ {0, . . . , T̂ − 2},
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Figure 5.2.3: Development of the forward rates in the extended model with T̃ = 2.

provided there for each t exists a v ∈ {t+2, . . . , (t+ T̃ )∧ T̃}, such that P ξt,λt,d(t+ 1, v) 6=
P ξt,λt,u(t + 1, v). For t ∈ {0, . . . , T − 1} no information regarding q̃

ξt+1,λt

t+1 can be derived

from (5.2.9), so any Q for which qξt,λt∧T

t+1 fulfills (5.2.9) for all t ∈ {0, . . . , T̂ − 2} ensures

that the discounted bond prices are martingales. If further both qξt,λt∧T

t+1 and q̃
ξt+1,λt

t+1 lie

in the interval (0, 1), then Q is an equivalent martingale measure. If q̃
ξt+1,λt

t+1 = p̃, we say
the market is risk-neutral with respect to reinvestment risk. This measure is known as
the minimal martingale measure for the extended model, i.e. the equivalent martingale
measure which “disturbs the structure of the model as little as possible”, see Schweizer
(1995). Here, we restrict ourselves to Q’s given by q̃

ξt+1,λt

t+1 = q̃λt

t+1, such that under Q the
distribution of the ε’s is independent of the realization of the ρ’s. Henceforth we consider
a fixed, but arbitrary, equivalent martingale measure Q.

Remark 5.2.3 Note that for t ∈ {0, . . . , T̂ − 1} and v ∈ {t+ 1, . . . , (t+ T̃ )∧ T̂} repeated
use of (5.2.9) gives the equation

P (t, v) =
1

1 + rt
EQ

[
1

1 + rt+1
EQ [P (t+ 2, v)| Ft+1]

∣∣∣∣Ft
]
. (5.2.10)

Hence, since P (t+2, v) is (Ft+1∨Gt+2)-measurable it seems as if (5.2.10) gives an equation

from which to determine q̃
ξt+1,λt

t+1 for t ∈ {0, . . . , T − 1}. However, this is not the case,
since the (Ft ∨ Gt+1)-measurability of P (t + 1, v) ensures that EQ [P (t+ 2, v)| Ft+1] is
independent of εt+1.

�
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Model considerations

Consider the case where we for fixed t model the forward rate ft,u, u ∈ {t, . . . , (t + T̃ −
2) ∧ (T̂ − 1)} by

ft,u = gt,u(f̃0,u, . . . , f̃t−1,u, ρt), t ∈ {1, . . . , T̂ − 1}, (5.2.11)

where gt,u : R
(u+1)∧ eT × · · · × R

(u−t+2)∧ eT × {u, d} 7→ R. Hence, the development of the
forward rates given by (5.2.11) is a special case of (5.2.7), where we have restricted the
possible dependence on the past forward rates. Here, the forward rate at time t with
maturity τ , τ ∈ {t, . . . , (t + T̃ − 2) ∧ (T̂ − 1)}, is allowed to depend on the past forward
rates with maturity less than or equal to τ only. This in turn gives that ft,τ is independent

of εv for v > ((τ − T̃ + 1) ∨ 0). With this restriction we have that the price at time t of a
bond with time of maturity τ ∈ {t, . . . , (t+T̃−1)∧T̂ } is (Fτ− eT ∨Gt)-measurable. Here, and
throughout the chapter, we adopt the convention that F−τ = F0 for τ ∈ N. Within this
model we have that once a bond is introduced in the market, the development of the price
process is entirely described by the outcome of the ρ’s. Hence, at time t we essentially are
in the complete and arbitrage free model from Section 5.2.1 when considering the filtration
G and the time horizon (t+ T̃ − 1) ∧ T̂ .

5.2.3 Discrete-time trading

Since the bonds traded in the bond market depend on the time considered, it is incon-
venient to define trading strategies in terms of the bonds. Hence, we define T̃ new price
processes (Sk)k=1,...,eT , which are defined for all t = 0, 1, . . . , T , by

Sk0 = 1 and Skt =
P (t, t− 1 + k)

P (t− 1, t− 1 + k)
Skt−1 =

t−1∏

i=0

P (i+ 1, i+ k)

P (i, i+ k)
, t ∈ {1, . . . , T}.

(5.2.12)

We note that until time T these price processes include exactly the same information as
the original bond prices. The price process Sk is generated by investing 1 unit at time 0
in bonds with time to maturity k and at times t = 1, . . . , T selling the bonds with time to
maturity k − 1 purchased at time t− 1 and reinvesting the money in bonds with time to
maturity k. Hence, for k ∈ {1, . . . , T̃} the price process Sk is the value process generated
by a roll-over strategy in bonds with time to maturity k. Such a value process is usually
referred to as a rolling-horizon bond, see Rutkowski (1999). Recall that in a discrete-time
model, the 1-period bond is equal to a savings account, so the price process S1 corresponds
to investing in a savings account with a locally riskfree interest rate. Note that given Ft−1,
the future value of the price process vector at time t, (Skt )k∈{1,...,eT}, depends on ρt only,

such that it is sufficient for hedging purposes to consider any two of the rolling-horizon
bonds defined by (5.2.12). Here, we consider the savings account, henceforth denoted B,

and S
eT , henceforth simply denoted S. We shall refer to the asset with price process S as

the risky asset. Note that the measurability conditions on the bond prices give that Bt
and St, respectively, are (Ft−2 ∨ Gt−1)- and (Ft−1 ∨ Gt)-measurable.
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A trading strategy with respect to (B,S) is an adapted two-dimensional process ϕ = (ϑ, η).
Hence, ϑt and ηt are Ft-measurable for all t. The pair ϕt = (ϑt, ηt) is interpreted as the
portfolio established at time t and held until time t+ 1. Here, ϑt denotes the number of
risky assets held in the portfolio, and ηt is the discounted deposit in the savings account.
The value process associated with the trading strategy ϕ is denoted V(ϕ). Here, Vt(ϕ),
which is the value at time t of holding the portfolio (ϑt, ηt), is given by

Vt(ϕ) = ϑtSt + ηtBt. (5.2.13)

With the definition of ϑ and η above the value process is seen to be the value after any
in- or outflow of capital at time t. A trading strategy is called self-financing if for all t

Vt(ϕ) = V0(ϕ) +

t−1∑

u=0

ϑu∆Su+1 +

t−1∑

u=0

ηu∆Bu+1, (5.2.14)

where we have introduced the notation exemplified by ∆Su = Su− Su−1. Thus, the value
at time t of a self-financing strategy is the initial value added interest and investment
gains from trading in the bond market. Hence, withdrawals or deposits are not allowed
at intermediate times t = 1, . . . , T − 1. A self-financing strategy is a so-called arbitrage
if V0(ϕ) = 0 and VT (ϕ) ≥ 0 P -a.s. with P (VT (ϕ) > 0) > 0. A contingent claim (or a
derivative) with maturity T is an FT -measurable random variable H. A contingent claim
is called attainable if there exists a self-financing strategy ϕ such that VT (ϕ) = H P -a.s.
An attainable claim can thus be replicated perfectly by investing V0(ϕ) at time 0 and
adjusting the portfolio at times t = 1, . . . , T −1, according to the self-financing strategy ϕ.
Hence, at any time t, there is no difference between holding the claim H and the portfolio
ϕt. In this sense, the claim H is redundant in the market and from the assumption of no
arbitrage it follows that the price ofH at time tmust be Vt(ϕ). Thus, the initial investment
V0(ϕ) is the unique arbitrage free price of H. Note that if ϕ is a self-financing portfolio
replicating the contingent claim H, then (5.2.14) gives the following representation for H:

H = VT (ϕ) = V0(ϕ) +

T−1∑

u=0

ϑu∆Su+1 +

T−1∑

u=0

ηu∆Bu+1. (5.2.15)

If all contingent claims are attainable, the model is called complete and otherwise it is
called incomplete. Throughout the chapter, we denote by S∗, V∗(ϕ) andH∗ the discounted
price process of the risky asset, the discounted value process and the discounted claim,
respectively.

Remark 5.2.4 The definition of trading strategies in discrete time is not uniform in
the literature. Harrison and Kreps (1979), Jarrow (1996) and Musiela and Rutkowski
(1997) define trading strategies as adapted processes, whereas Harrison and Pliska (1981)
and Björk (2004) consider predictable processes. The different measurability conditions
lead to one significant difference, namely, whether the value process defined by (5.2.13)
denotes the value before or after a possible withdrawal or deposit. A third possibility is
the definition in Föllmer and Schweizer (1988). They consider a predictable process ϑ
and an adapted process η. Hence, the portfolio at time t is given by the number of risky
assets held in the portfolio from time t− 1 to t and the discounted deposit in the savings
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account after a possible withdrawal or deposit. Since they define the value process after
a possible withdrawal or deposit their value process coincides with the value process in
the present chapter. Hence, we have the following connection between our definition of
trading strategies and the Föllmer–Schweizer definition:

ϑt = ϑFSt+1 (5.2.16)

ηt = ηFSt +
(
ϑFSt − ϑFSt+1

)
S∗
t . (5.2.17)

Here, (ϑFSt , ηFSt ) denotes the portfolio at time t using the Föllmer–Schweizer definition.

�

Example 5.2.5 If T̃ = 2 and T = 3 then the price processes for the savings account and
the risky asset are given by

B0 = 1, Bt =

t−1∏

i=0

(1 + ri), t ∈ {1, 2, 3} and S0 = 1, St =

t−1∏

i=0

P (i+ 1, i + 2)

P (i, i+ 2)
, t ∈ {1, 2, 3},

respectively. Here, one easily observes that, as noted above, Bt is (Ft−2∨Gt−1)-measurable
and St is (Ft−1 ∨ Gt)-measurable.

�

5.3 Hedging strategies

Consider a company interested in hedging the claim H with maturity T . IfH only depends
on bonds with time of maturity at time T̃ or earlier, it has a unique arbitrage free price
and can be replicated perfectly leaving the company without any risk. However, if H
depends on bonds maturing after time T̃ , then H does in general not have a perfect
replicating strategy, and hence in general it does not have a unique arbitrage free price.
For unattainable claims we determine the optimal hedging strategies for the criteria of
super-replication and risk-minimization.

5.3.1 Super-replication

A strategy ϕ is called super-replicating for the claim H with maturity T if the value
process is of the form

Vt(ϕ) = V0(ϕ) +

t−1∑

u=0

ϑu∆Su+1 +

t−1∑

u=0

ηu∆Bu+1 − Ut, (5.3.1)

where U is a non-decreasing process, and the terminal value of the value process satisfies
VT (ϕ) ≥ H P -a.s. Here, the process U is the accumulated outflow of capital when using
the strategy ϕ. Thus, when following a super-replicating strategy no inflow of capital is
needed in addition to the initial investment in order to guarantee that at time of maturity,
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the value of the portfolio is at least as large as the considered claim. Hence, following a
super-replicating strategy allows the hedger to eliminate the risk of falling short of the
claim. The smallest initial value needed at time t to construct a super-replicating strategy
is referred to as the super-replicating price at time t, henceforth denoted π̂t(H). Hence,
the super-replicating price at time t is the smallest initial investment at time t allowing the
company to hedge the considered claim without any risk of falling short. For more details
on super-replication see El Karoui and Quenez (1995) and Föllmer and Schied (2002). Now
define the super-replicating price process as the process of the super-replicating prices, i.e.
the value of the super-replicating price process at time t is exactly the super-replicating
price at time t. At any time t the optimal super-replicating strategy is defined as the
super-replicating strategy corresponding to the super-replicating price process. Prior to
the general result for the super-replicating price process and optimal super-replicating
strategy for a claim H with maturity T , we first consider super-replication in a 1-period
model.

Lemma 5.3.1
At time t, t ∈ {0, . . . , T − 1}, the optimal super-replicating strategy, ϕ̂t = (ϑ̂t, η̂t), for a
claim H with time of maturity t+ 1 is given by

ϑ̂t =
Ĥ(d) − Ĥ(u)

Sdt+1 − Sut+1

and η̂t =
Ĥ(u)Sdt+1 − Ĥ(d)Sut+1

Bt+1(Sdt+1 − Sut+1)
,

where

Ĥ(ρt+1) = max(H(ρt+1, h),H(ρt+1, ℓ)), ρt+1 ∈ {u, d}.

The super-replicating price is

π̂t(H) =
1

1 + rt

(
qt+1Ĥ(u) + (1 − qt+1)Ĥ(d)

)
.

Proof of Lemma 5.3.1: Consider an agent holding the portfolio (ϑt, ηt) at time t. Before
any adjustments at time t + 1 the value of the portfolio can take one of two values:
ϑtS

u
t+1 + ηtBt+1 or ϑtS

d
t+1 + ηtBt+1. Hence, the value of the portfolio is the same in

the states (u, h) and (u, ℓ), as well as in (d, h) and (d, ℓ). Thus, for (ϑt, ηt) to be super-
replicating it must hold that

ϑtS
u
t+1 + ηtBt+1 ≥ max(H(u, h),H(u, ℓ)),

ϑtS
d
t+1 + ηtBt+1 ≥ max(H(d, h),H(d, ℓ)),

where the H(i, j) denotes the payoff from H if ρt+1 = i and εt+1 = j, where i ∈ {u, d}
and j ∈ {h, ℓ}. Define the contingent claim Ĥ with payoff

Ĥ(ρt+1) = max(H(ρt+1, h),H(ρt+1, ℓ)), ρt+1 ∈ {u, d},

and note that the strategy

ϑt =
Ĥ(d) − Ĥ(u)

Sdt+1 − Sut+1

and ηt =
Ĥ(u)Sdt+1 − Ĥ(d)Sut+1

Bt+1(Sdt+1 − Sut+1)
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replicates Ĥ. A no arbitrage argument now gives that the replicating strategy and the
unique arbitrage free price for Ĥ is the optimal super-replicating strategy and super-
replicating price, respectively.

�

Lemma 5.3.1 has the following interpretation: The dependence of H on εt+1 is unhedge-
able. Hence, for each outcome of ρt+1 we assume the outcome of εt+1 which leads to
the highest value of H and replicate this claim. The replicating strategy and the unique
arbitrage free price of this “worst scenario” claim are then equal to the optimal super-
replicating strategy and super-replicating price, respectively.

Remark 5.3.2 The main result in Aliprantis, Polyrakis and Tourky (2002) states that in
a 1-period model the optimal super-replicating strategy shall be found among the repli-
cating strategies in the complete sub-models arising from eliminating states of the world.
Hence, Lemma 5.3.1 can be seen as a special case, where the optimal super-replicating
strategy is easily identifiable.

�

Theorem 5.3.3
Consider a claim H with time of maturity T . For t ∈ {0, . . . , T − 1} the portfolio, ϕ̂t =

(ϑ̂t, η̂t) held in the optimal super-replicating strategy is given by

ϑ̂ξt,λt

t =
π̂ξt,d,λt

t+1 (H) − π̂ξt,u,λt

t+1 (H)

Sξt,d,λt

t+1 − Sξt,u,λt

t+1

and η̂ξt,λt

t =
π̂ξt,u,λt

t+1 Sξt,d,λt

t+1 − π̂ξt,d,λt

t+1 Sξt,u,λt

t+1

B
ξt,λt−1

t+1

(
Sξt,d,λt

t+1 − Sξt,u,λt

t+1

) ,

where

π̂
ξt,ρt+1,λt

t+1 (H) = max
(
π̂
ξt,ρt+1,λt,h
t+1 (H), π̂

ξt,ρt+1,λt,ℓ
t+1 (H)

)
, ρt+1 ∈ {u, d}.

Starting with the terminal value

π̂ξT ,λT

T (H) = H,

the super-replicating price process at time t, t ∈ {0, . . . , T − 1}, is given by the following
recursive formula

π̂ξt,λt

t (H) =
1

1 + r
ξt,λ(t−1)∨0

t

(
qξt,λt

t+1 π̂
ξt,u,λt

t+1 (H) + (1 − qξt,λt

t+1 )π̂ξt,d,λt

t+1 (H)
)
.

Proof of Theorem 5.3.3: First note that at time T the super-replicating price is trivial
and equal to H. At time t, t ∈ {0, . . . , T − 1} we may consider the super-replicating price
at time t+ 1, π̂t+1(H), as the payoff from at contingent claim with maturity t+ 1. Thus,
Lemma 5.3.1 gives the super-replicating price and optimal super-replicating strategy at
time t in terms of the super-replicating price at time t+ 1.

�
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Note that we in Theorem 5.3.3 explicitly denote the dependence on the past through ξt
and λt in order to emphasize the dependence of the optimal super-replicating strategy and
super-replicating price process on the past.

For sufficiently nice claims, such as fixed claims, the following corollary allows for an
easy calculation of the super-replicating price process and the optimal super-replicating
strategy.

Corollary 5.3.4
If for each t, t ∈ {0, . . . , T − 1}, it holds, for fixed kt+1 ∈ {h, ℓ} that

π̂
ξt,ρt+1,λt

t+1 (H) = π̂
ξt,ρt+1,λt,kt+1

t+1 (H)

for all ξt, ρt+1 and λt, then the super-replicating price and optimal super-replicating
strategy at time τ are, respectively, the unique arbitrage free price and the replicating
strategy in the conditional model given (ετ+1, . . . , εT ) = (kτ+1, . . . , kT ).

Denote by Û the process U from (5.3.1) associated with the optimal super-replicating
strategy. Hence, Û denotes the accumulated outflow of capital, when using the opti-
mal super-replicating strategy. Combining (5.3.1) and Theorem 5.3.3 gives the following
explicit expression for the change in Û at time t

∆Û
ξt−1,ρt,λt−1,εt

t = π̂
ξt−1,ρt,λt−1
t (H) − π̂

ξt−1,ρt,λt−1,εt

t (H). (5.3.2)

Investigating (5.3.2) we observe that the withdrawal is the difference between the value
at time t of the optimal super-replicating portfolio purchased at time t− 1 and the super-
replicating price at time t. Hence, when using the optimal super-replicating strategy
the withdrawal from the portfolio at time t depends on the outcome of the two random
variables observed at time t, ρt and εt. Given (5.3.2), one easily derives the conditional

expectation under P of ∆Û
ξt−1,ρt,λt−1,εt

t given Ft−1, namely,

EP
[
∆Û

ξt−1,ρt,λt−1,εt

t

∣∣∣Ft−1

]

= EP
[
π̂
ξt−1,ρt,λt−1
t (H) − π̂

ξt−1,ρt,λt−1,εt

t (H)
∣∣∣Ft−1

]

= p
(
π̂
ξt−1,u,λt−1
t (H) −

(
p̃π̂

ξt−1,u,λt−1,h
t (H) + (1 − p̃)π̂

ξt−1,u,λt−1,ℓ
t (H)

))

+ (1 − p)
(
π̂
ξt−1,d,λt−1

t (H) −
(
p̃π̂

ξt−1,d,λt−1,h
t (H) + (1 − p̃)π̂

ξt−1,d,λt−1,ℓ
t (H)

))
.

Thus, the expected withdrawal from the optimal super-replicating portfolio is the proba-
bility of an upward jump multiplied by the expected withdrawal contingent on an upward
jump added the probability of a downward jump multiplied by the expected withdrawal
in this case.

Example 5.3.5 Let T̃ = 2, T = 3 and H = 1. Since H is attainable at time 1 and
π̂ρ11 = π̂ρ1,ℓ1 , we have from Corollary 5.3.4 that the super-replicating price and the super-
replicating strategy at time 0 corresponds to using the conditional forward rate vector
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given ε1 = ℓ. Hence, we obtain the following super-replicating price process, expressed in
terms of bond prices:

π̂ξ3,λ3
3 (1) = 1,

π̂ξ2,λ2
2 (1) =

1

1 + rξ2,λ1
2

(
qξ2,λ2
3 +

(
1 − qξ2,λ2

3

))
=

1

1 + rξ2,λ1
2

= P ξ2,λ1(2, 3),

π̂ξ1,λ1
1 (1) =

1

1 + rξ11

(
qξ1,λ1
2 P ξ1,u,λ1(2, 3) +

(
1 − qξ1,λ1

2

)
P ξ1,d,λ1(2, 3)

)
= P ξ1,λ1(1, 3),

π̂0(1) =
1

1 + r0

(
q1P

u,ℓ(1, 3) + (1 − q1)P
d,ℓ(1, 3)

)
.

The optimal super-replicating strategy is given by

(
ϑ̂0, η̂0

)
=

(
P (0, 2)(P d,ℓ(1, 3) − P u,ℓ(1, 3))

P d(1, 2) − P u(1, 2)
,
P d(1, 2)P u,ℓ(1, 3) − P u(1, 2)P d,ℓ(1, 3)

(1 + r0)(P d(1, 2) − P u(1, 2))

)
,

(
ϑ̂ξ1,λ1

1 , η̂ξ1,λ1
1

)
=

(
P (0, 2)P ξ1,λ1(1, 3)

P ξ1(1, 2)
, 0

)
and

(
ϑ̂ξ2,λ2

2 , η̂ξ2,λ2
2

)
=

(
0,

1

Bξ2,λ1
3

)
.

�

Relation to guarantees

Apart from the nice property of allowing the hedger to eliminate the shortfall risk the
super-replicating price process relates to the maximal possible guarantees for which the
risk of falling short can be eliminated. Here, we consider two types of guarantees: Maturity
guarantees and periodic interest rate guarantees. Given a deposit at time t the maturity
guarantee is the minimal possible payoff at time T , whereas the periodic interest guarantee
is the minimum interest earned on the deposit in each period until time T . We shall refer
to the maximal guarantees for which the short fall risk can be eliminated as the maximal
riskfree maturity guarantee and maximal riskfree periodic interest rate guarantee.

Proposition 5.3.6
Given an initial deposit of 1 at time t, the maximal riskfree maturity guarantee, GTt , at
time T is given by

GTt =
1

π̂t(1)
. (5.3.3)

The maximal riskfree periodic interest rate guarantee is

gTt =

(
1

π̂t(1)

) 1
T−t

− 1. (5.3.4)

Proof of Proposition 5.3.6: At time t the super-replicating price of 1 unit at time T is
given by π̂t(1). Hence, by investing 1 at time t we may purchase 1/π̂t(1) units of the
super-replicating strategy. This guarantees a payoff at time T of at least 1/π̂t(1). Hence,
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since the super-replicating price per definition is the lowest initial deposit for which a
certain payoff is guaranteed, the maximal riskfree maturity guarantee at time T is given
by (5.3.3). Now, the maximal riskfree periodic interest rate guarantee is the constant short
rate which gives a payoff of GTt at time T , when depositing 1 unit at time t. Hence, gTt is
the unique solution greater than −1 to

(1 + gTt )T−t = GTt .

Inserting (5.3.3) and isolating gTt now gives (5.3.4).
�

Proposition 5.3.6 is of importance to for instance life insurance companies, since it gives
the maximal guarantees, which the companies should promise the insured at initiation of
the contract.

5.3.2 Risk-minimizing strategies

As an alternative to the hedging criterion of super-replication we now consider risk-
minimization. Here, we give a brief review of risk-minimization and determine risk-
minimizing strategies in the presence of reinvestment risk. We note that since we define
trading strategies differently than Föllmer and Schweizer (1988) and Møller (2001a) our
results cannot be compared directly to their results.

A brief review of risk-minimization

In this section we review the criterion of risk-minimization introduced in discrete time
by Föllmer and Schweizer (1988). The presentation is based on Møller (2001a).

The idea of risk-minimization is closely related to the introduction of the cost process
defined by

Ct(ϕ) = V∗
t (ϕ) −

t−1∑

u=0

ϑu∆S
∗
u+1. (5.3.5)

Thus, the cost process is the discounted value of the portfolio reduced by discounted
trading gains. The cost process measures the accumulated discounted cost of an agent
following the strategy ϕ. Comparing (5.2.15) and (5.3.5) we note that the cost process
is constant P -a.s. if and only if the strategy ϕ is self-financing. To measure the risk
associated with the strategy ϕ we introduce the risk process defined by

Rt(ϕ) = EQ
[
(CT (ϕ) −Ct(ϕ))2

∣∣Ft
]
. (5.3.6)

Hence, the risk process is the conditional expected value of the future costs associated with
the strategy ϕ. A trading strategy ϕ is called risk-minimizing for the contingent claim H
if for all t ∈ {0, . . . , T} it minimizes Rt(ϕ) over all trading strategies with V∗

T (ϕ) = H∗.
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The construction of risk-minimizing strategies is based on the Q-martingale

V ∗
t = EQ [H∗| Ft] ,

known as the intrinsic value process. Using the so-called Kunita–Watanabe decomposition
for martingales, V ∗ can be uniquely decomposed as

V ∗
t = V ∗

0 +
t∑

u=1

ϑHu ∆S∗
u + LHt , (5.3.7)

where ϑH is predictable, and LH is a zero-mean Q-martingale orthogonal to S∗, i.e. S∗LH

is a Q-martingale as well. For more details on the Kunita–Watanabe decomposition we
refer to Föllmer and Schied (2002). Shifting the index in (5.3.7) and defining the adapted
process ϑ̃H by ϑ̃Hu = ϑHu+1 we have the following decomposition

V ∗
t = V ∗

0 +

t−1∑

u=0

ϑ̃Hu ∆S∗
u+1 + LHt . (5.3.8)

Comparing (5.2.15) and (5.3.8) we observe that H is attainable if and only if LHT = 0 Q-a.s.
Using (5.2.16) and (5.2.17) we obtain the following theorem, due to Föllmer and Schweizer
(1988), which relates the Kunita–Watanabe decomposition to the risk-minimizing strategy.

Theorem 5.3.7
There exists a unique risk-minimizing strategy, ϕ∗, with V∗

T (ϕ) = H∗ given by

(ϑ∗t , η
∗
t ) =

(
ϑHt+1, V

∗
t − ϑHt+1S

∗
t

)
. (5.3.9)

Inserting (5.3.9) in (5.3.5) and using the Kunita-Watanabe decomposition from (5.3.7) we
obtain the following expression for the cost process associated with the risk-minimizing
strategy:

Ct(ϕ
∗) = V ∗

t −
t−1∑

u=0

ϑHu+1∆S
∗
u+1 = V ∗

0 + LHt . (5.3.10)

Combining (5.3.10) and (5.3.6) now gives the following expression for the so-called intrinsic
risk process, which is the risk process associated with the risk-minimizing strategy:

Rt(ϕ
∗) = EQ

[(
LHT − LHt

)2∣∣∣Ft
]
. (5.3.11)

Note that when determining the risk-minimizing strategy we consider all admissible strate-
gies. This is in contrast to many other quadratic hedging criteria, such as mean-variance
hedging, where only self-financing strategies are allowed. From (5.3.11) we observe that
risk-minimizing strategies are not self-financing for non-attainable claims. However, they
are mean-self-financing, i.e. the corresponding cost processes are Q-martingales.

Since (5.3.6) involves an expectation with respect to Q, the risk-minimizing strategy de-
pends on the chosen equivalent martingale measure. Furthermore we observe from (5.3.6)
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that the criterion of risk-minimization, like other quadratic hedging criteria, penalizes
gains and losses equally. This is of course disadvantageous, however, when using a crite-
rion penalizing only losses, explicit results are hard to obtain; see the discussion in Møller
(2001a) and references therein.

In general, the risk-minimizing strategy is given by the (predictable) Q-expectation of the
replicating strategy given the unhedgeable uncertainty, see Schweizer (1994) for a proof in a
continuous-time setup. A particular simple risk-minimizing strategy is obtained in Møller
(2001a), since he considers an unhedgeable risk, which is stochastically independent of
the financial market. As we shall see below in Theorem 5.3.9, the expression for the
risk-minimizing strategy is slightly more complicated in the present model than in Møller
(2001a), since the unhedgeable risk is in the financial market.

Risk-minimizing strategies in the presence of reinvestment risk

We now turn to the derivation of risk-minimizing strategies in the present model including
reinvestment risk. In order to determine the Kunita–Watanabe decomposition of V ∗ we
introduce the Q-martingales

MλT
t = EQ

[
1((ε1,...,εT )=λT )

∣∣Ft
]

= EQ
[
1((ε1,...,εT )=λT )

∣∣Ht

]
(5.3.12)

for all λT ∈ ΛT . Here, we have used that under Q the distribution of the ε’s is independent
of the filtration G. Using the quantities defined in (5.3.12), we get the following expression
for V ∗

t :

V ∗
t = EQ [H∗| Ft] = EQ

[
EQ [H∗| Ft ∨HT ]

∣∣Ft
]

=
∑

λT∈ΛT

MλT
t πλT ,∗

t (H), (5.3.13)

where πλT ,∗
t (H) is the unique discounted arbitrage free price for H given (ε1, . . . , εT ) = λT .

Using (5.3.13) we obtain the following expression for the development of V ∗ from time
t− 1 to t,

∆V ∗
t = V ∗

t − V ∗
t−1

=
∑

λT∈ΛT

MλT
t πλT ,∗

t (H) −
∑

λT ∈ΛT

MλT

t−1π
λT ,∗
t−1 (H)

=
∑

λT∈ΛT

(
MλT
t πλT ,∗

t (H) −MλT

t−1π
λT ,∗
t−1 (H)

)

=
∑

λT∈ΛT

((
MλT
t −MλT

t−1

)
πλT ,∗
t (H) +MλT

t−1

(
πλT ,∗
t (H) − πλT ,∗

t−1 (H)
))

=
∑

λT∈ΛT

(
πλT ,∗
t (H)∆MλT

t +MλT
t−1∆π

λT ,∗
t (H)

)

=
∑

λT∈ΛT

(
πλT ,∗
t (H)∆MλT

t +MλT

t−1ϑ
λT

t−1∆S
∗
t

)
,
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where ϑλT is the number of risky assets in the replicating strategy in the complete model
given (ε1, . . . , εT ) = λT . Hence, we have the following decomposition of V ∗:

V ∗
t = V ∗

0 +

t∑

u=1


 ∑

λT ∈ΛT

MλT

u−1ϑ
λT

u−1


∆S∗

u +

t∑

u=1

∑

λT ∈ΛT

πλT ,∗
u (H)∆MλT

u . (5.3.14)

In order to show that (5.3.14) actually is the Kunita–Watanabe decomposition of V ∗, we
first note that

∑
λT ∈ΛT

MλT

t−1ϑ
λT

t−1 is Ft−1-measurable, such that the process ϑH defined by

ϑHt =
∑

λT ∈ΛT

MλT
t−1ϑ

λT
t−1

is predictable. Now define the process LH by

LHt =

t∑

u=1

∑

λT ∈ΛT

πλT ,∗
u (H)∆MλT

u . (5.3.15)

Using the law of iterated expectations we see that

EQ
[
∆LHt

∣∣Ft−1

]
= EQ


 ∑

λT ∈ΛT

πλT ,∗
t (H)∆MλT

t

∣∣∣∣∣∣
Ft−1




=
∑

λT ∈ΛT

EQ
[
πλT ,∗
t (H)∆MλT

t

∣∣∣Ft−1

]

=
∑

λT ∈ΛT

EQ
[
πλT ,∗
t (H)EQ

[
∆MλT

t

∣∣∣Gt ∨Ht−1

]∣∣∣Ft−1

]

= 0,

since MλT is a martingale stochastically independent of the filtration G. Hence, LH is a
Q-martingale. To show that that LHS∗ is a Q-martingale we first observe that

∆
(
LHS∗)

t
= LHt S

∗
t − LHt−1S

∗
t−1 = LHt−1∆S

∗
t + S∗

t−1∆L
H
t + ∆LHt ∆S∗

t .

Thus, since LH and S∗ are Q-martingales, it is sufficient to show that

EQ[∆Lt∆S
∗
t |Ft−1] = EQ


 ∑

λT ∈ΛT

πλT ,∗
t (H)∆MλT

t ∆S∗
t

∣∣∣∣∣∣
Ft−1




=
∑

λT ∈ΛT

EQ
[
πλT ,∗
t (H)∆MλT

t ∆S∗
t

∣∣∣Ft−1

]

=
∑

λT ∈ΛT

EQ
[
πλT ,∗
t (H)∆S∗

tE
Q
[
∆MλT

t

∣∣∣Gt ∨Ht−1

]∣∣∣Ft−1

]

= 0.

Hence, we have proved the following.
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Lemma 5.3.8
For a claim H with time of maturity T the Kunita–Watanabe decomposition is given by

V ∗
t = V ∗

0 +
t∑

u=1


 ∑

λT ∈ΛT

MλT
u−1ϑ

λT
u−1


∆S∗

u +
t∑

u=1

∑

λT ∈ΛT

πλT ,∗
u (H)∆MλT

u .

Combining Lemma 5.3.8, Theorem 5.3.7 and the expression for the intrinsic risk process
in (5.3.11) we obtain the following theorem regarding the risk-minimizing strategy and
the intrinsic risk process.

Theorem 5.3.9
The risk-minimizing strategy, ϕ∗, for H is given by

(ϑ∗t , η
∗
t ) =


 ∑

λT ∈ΛT

MλT
t ϑλT

t ,
∑

λT ∈ΛT

MλT
t πλT ,∗

t (H) −


 ∑

λT ∈ΛT

MλT
t ϑλT

t


S∗

t


 .

The intrinsic risk process is given by

Rt(ϕ
∗) = EQ






T∑

u=t+1

∑

λT ∈ΛT

πλT ,∗
u (H)∆MλT

u




2∣∣∣∣∣∣
Ft


 .

Thus, the number of risky assets held in the risk-minimizing strategy at time t is the
average under Q of the replicating strategies for H in the conditional models given the
outcome of (ε1, . . . , εT ). The deposit in the savings account is adjusted each period ac-
cording to the realization of the unhedgeable variables, such that the discounted value
process is equal to the intrinsic value process.

Inserting (5.3.15) in (5.3.10) gives the following expression for the cost process associated
with ϕ∗:

Ct(ϕ
∗) = V ∗

0 +

t∑

u=1

∑

λT ∈ΛT

πλT ,∗
u (H)∆MλT

u . (5.3.16)

From (5.3.16) we see that the change in the cost process at time t for an agent following
the risk-minimizing strategy depends on the change in the Q-martingales MλT associated
with the outcome of εt. If the claim is attainable at some time t prior to T , then the cost
process is constant P -a.s. from time t, and hence, the intrinsic risk process is zero from
time t.

Example 5.3.10 Let T̃ = 2, T = 3 and H = 1. For the fixed Q-measure given by
q̃λt−1 = q̃ ∈ (0, 1) we now obtain the risk-minimizing strategy from Theorem 5.3.9. At
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time 0 the risk-minimizing strategy is given by

ϑ∗0 = P (0, 2)

(
q̃
P d,h(1, 3) − P u,h(1, 3)

P d(1, 2) − P u(1, 2)
+ (1 − q̃)

P d,ℓ(1, 3) − P u,ℓ(1, 3)

P d(1, 2) − P u(1, 2)

)
,

η∗0 = p̃
P d(1, 2)P u,h(1, 3) − P u(1, 2)P d,h(1, 3)

(1 + r0)(P d(1, 2) − P u(1, 2))

+ (1 − p̃)
P d(1, 2)P u,ℓ(1, 3) − P u(1, 2)P d,ℓ(1, 3)

(1 + r0)(P d(1, 2) − P u(1, 2))
,

whereas it at time 1 and 2 is given by

(
ϑξ1,λ1,∗

1 , ηξ1,λ1,∗
1

)
=

(
P (0, 2)P ξ1 ,λ1(1, 3)

P ξ1(1, 2)
, 0

)
and

(
ϑξ2,λ2,∗

2 , ηξ2,λ2,∗
2

)
=

(
0,

1

Bξ2,λ1
3

)
.

We note that since the claim is attainable from time 1, the risk-minimizing strategy and
super-replicating strategies coincide at times 1 and 2. Moreover, since the strategies
coincide so do the super-replicating price and the value of the portfolio held in the risk-
minimizing strategy.

�

5.4 A numerical illustration

Here, the purpose is to provide some numbers in the continuing example considered in
Sections 5.2 and 5.3. Hence, T̃ = 2, T = 3 and H = 1. Now assume that given the initial
forward rate vector (r0, f0,1) the forward rates at time t, t ∈ {1, 2, 3}, are given by

r
ξt,λt−1

t = r0

t∏

i=1

(
a11(ρi=u) + a21(ρi=d)

) t−1∏

i=1

(
a31(εi=h) + a41(εi=ℓ)

)
,

f ξt,λt

t,t+1 = r
ξt,λt−1

t

(
b11(εt=h) + b21(εt=ℓ)

)
,

where a1, . . . , a4, b1, b2 are positive constants, and
∏u
i=1 is interpreted as 1 if u = 0. The

constants a1 and a2 describe the movement of the forward rate vector due to the outcome
of the ρ’s, whereas a3 and a4 describe the dependence of the forward rate vector on past
values of the ε’s, and finally b1 and b2 describe the unhedgeable uncertainty associated
with the newly issued bonds. In this simple model the dependence on ξt is given by the
number of u’s and not by the ordering of the u’s. Hence, the number of states at time 2
is reduced from 16 to 12. However, this is still a large number of states compared to the 4
in a binomial model (3 if the binomial model is recombining). In contrast to an additive
structure, the multiplicative structure above ensures that the forward rates are strictly
positive. Now let the initial forward rate curve and the constants be given by r0 = 0.03,
f0,1 = 0.031, a1 = 1.25, a2 = 0.8, a3 = 1.01, a4 = 0.99, b1 = 1.0325 and b2 = 1.015.

Recall from Examples 5.3.5 and 5.3.10 that the optimal super replicating and risk-minimizing
strategies for H = 1 depend on ξ2 and λ1, only. Thus, Figure 5.4.1 shows the forward
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rates relevant for determining the hedging strategies. Furthermore, Example 5.3.5 gives
that the super-replicating price at time 0 corresponds to the zero coupon bond price in the
conditional model given ε1 = ℓ, which in turn corresponds to a 2-period forward rate of
0.03142. Here, and in the remaining of the section, all numbers are given with 4 significant
digits.

(
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Figure 5.4.1: Relevant forward rates at time 0, 1 and 2. At time 0 and 1 the vector shows
the short rate and 1-period forward rate, whereas at time 2 only the short rate is relevant.

From Example 5.3.10 we furthermore note that the risk-minimizing strategy depends on
q̃. Thus, to obtain some numbers we have to specify Q. Henceforth, we let p̃ = 0.5
and consider risk-minimization under the minimal martingale measure, i.e. q̃ = p̃. The
optimal super-replicating and risk-minimizing strategies and the corresponding prices are
illustrated in Figure 5.4.2. Here, the first column gives the super-replicating price, ϑ̂ and η̂,
and the second column shows the risk-minimizing price, ϑ∗ and η∗. Here, and henceforth
we refer to the value of the risk-minimizing strategy as a price, since it is the arbitrage free
price under the chosen equivalent martingale measure. Since the super-replicating price
is an upper bound for the interval of arbitrage free prices, the price using the criterion
of risk-minimization is obviously lower than or equal to the super-replicating price. In
particular it is strictly lower if there is a reinvestment risk, i.e. if b1 6= b2. In addition
to the hedging strategies we may apply Proposition 5.3.6 to obtain the maximal riskfree
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maturity guarantee G3
0 = 1.095 and the maximal riskfree periodic interest rate guarantee

g3
0 = 0.03081.




0.9130
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Figure 5.4.2: Hedging strategies and associated prices. First column: Super-replicating
price, ϑ̂ and η̂. Second column: Price using risk-minimization, ϑ∗ and η∗.

Now we are interested in how the prices using the criteria of super-replication and risk-
minimization are affected by changing b1 and b2, which determine the shape of the forward
rate curve at time t, t ∈ {1, 2, 3}. Investigating Table 5.4.1 we observe that the price at time
0 using risk-minimization is decreasing in both b1 and b2. This is intuitively clear since a
steeper positive slope leads to lower bond prices and hence a smaller initial investment. The
super-replicating price is also decreasing in b2, however, in contrast to the risk-minimizing
price, it is independent of b1. The independence can be explained by the fact that the
criterion of super-replication considers the “worst scenario” only. Furthermore, we observe
that, as anticipated above, the risk-minimizing and super-replicating prices coincide when
b1 = b2, i.e. when there is no reinvestment risk.

A comparison with practice in Danish life insurance
The Danish life insurance companies are forced by legislation to disregard the reinvestment
risk and value their long term liabilities using a yield curve, which is level beyond 30 years.
Here, we consider the similar principle of a level yield curve beyond the time of maturity
of the longest traded bond. We shall refer to this approach as the principle of a level long
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b1 b2 Risk-minimization Super-replication

1.05 1.015 0.9125 0.9130
1.0325 1.015 0.9128 0.9130
1.015 1.015 0.9130 0.9130

1.0325 1.015 0.9128 0.9130
1.0325 1 0.9130 0.9134
1.0325 0.99 0.9131 0.9137
1.0325 0.98 0.9132 0.9140

Table 5.4.1: A comparison of prices at time 0 using risk-minimization and super-
replication. Top: Dependence on b1. Bottom: Dependence on b2.

term yield curve (even though we in discrete time have a yield vector rather than a yield
curve). In this setting with discrete compounding the yield at time 0 of a zero coupon
bond with maturity t is defined by

y0,t =

(
1

P (0, t)

) 1
t

− 1.

Here, the yield vector at time 0 is given by (y0,1, y0,2) = (0.03000, 0.03050). Thus, the
principle of a level long term yield curve corresponds to assuming y0,3 = y0,2 = 0.03050,
which leads to a price of 0.9138. In addition to the level long term yield curve principle
we introduce the analogous principle of a level long term forward rate curve, where we
price using a forward rate curve, which is level beyond the time of maturity of the longest
traded bond. Here, this leads to the price 0.9134. We note that both principles only
depend on the present forward rate curve, and thus they are independent of the possible
future developments. Furthermore none of the principles are based on the no arbitrage
principle.

We now turn to the relationship between the yield vector and the forward rate vector.
When the yield vector is increasing (decreasing) the forward rate vector lies above (below)
the yield vector. Thus, if we have a level long term yield vector, the long term forward rate
vector is level and equal to the yield vector. On the other hand an increasing (decreasing)
forward rate vector which is level for long times to maturity corresponds to a yield vector
which increases (decreases) and tends towards the forward rate vector as the time to
maturity increases. The increase (decrease) in the yield vector on the interval, where the
forward rate vector is level, is given by

y0,t − y0,t−1 = (1 + y0,t−1)

((
1 + f0,t−1

1 + y0,t−1

) 1
t

− 1

)
.

In this example the forward rate vector at time 0 is increasing, such that the principle of
a level long term forward rate curve leads to a lower price than the level long term yield
curve principle.

Now we are interested in whether the principles lead to prices in the interval of arbitrage
free prices. In this simple example, where we consider a fixed claim and the time horizons
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T̃ = 2 and T = 3 a principle leads to a price in the interval of arbitrage free prices if
and only if the value of f0,2 implied by the principle lies above the 2-period forward rate
implied by the super-replicating price and below the 2-period forward rate implied by the
“best scenario” price (which is a lower bound for the interval of arbitrage free prices).
From Table 5.4.2 we observe that if we allow for increasing forward rate vectors only, both

b1 b2 “Best scenario” Super-replication Level forward Level yield

1.05 1.015 0.03250 0.03142 0.03100 0.03050
1.0325 1.015 0.03196 0.03142 0.03100 0.03050
1.015 1.015 0.03142 0.03142 0.03100 0.03050

1.0325 1.015 0.03196 0.03142 0.03100 0.03050
1.0325 1 0.03196 0.03096 0.03100 0.03050
1.0325 0.99 0.03196 0.03065 0.03100 0.03050
1.0325 0.98 0.03196 0.03034 0.03100 0.03050

Table 5.4.2: Values of f0,2 implied by, respectively, the “best scenario” price, the super-
replicating price and the principles of a level long term forward rate/yield curve. Top:
Dependence on b1. Bottom: Dependence on b2.

principles lead to a 2-period forward rate below the one implied by the super-replicating
price, and hence they lead to a price higher than the super-replicating price. Thus, in this
case both principles clearly overestimate the price. If we allow for a level or decreasing
forward rate vector, the 2-period forward rate implied by the super-replicating price is
lower than the one implied by a the principle of a level long term forward rate curve, and
if the possible decrease is sufficiently large also lower than the one implied by using a level
long term yield curve, such that the principles lead to prices, which lie in the interval
of arbitrage free prices. However, especially the price obtained using a level long term
yield curve is in the high end of the interval of arbitrage free prices. Note that the same
information also could have been observed from Table 5.4.1. Based on the discussion above
we conclude that the principles should not be used in situations where a decreasing forward
rate curve is very unlikely. If one uses one of the principles anyhow, we recommend using
the level long term forward rate principle and at the same time to keep in mind that the
price (most likely) is overestimated. In situations where a decreasing forward rate vector
is more likely, the principles are more likely to be accurate. The accuracy depends heavily
on the situation and in particular on the correspondence between the present forward rate
vector and the conditional forward rate vectors. The conclusion regarding the principles
is that even though they are easy to use, their results should be used as guidelines only.



Chapter 6

A Continuous-Time Model for

Reinvestment Risk in Bond

Markets

(This chapter is an adapted version of Dahl (2005a))

We propose a bond market model, where, as in practice, only bonds with a limited time
to maturity are traded in the market. As time passes, new bonds with stochastic initial
prices are introduced in the market. Hence, we are able to model the reinvestment risk
present in practice, when considering long term contracts. To quantify and control the
reinvestment risk we apply the criterion of risk-minimization.

6.1 Introduction

In the literature, bond markets are usually assumed to include all bonds with time of
maturity less than or equal to the time of maturity of the considered claim. However,
in practice only bonds with a limited (sufficiently short) time to maturity are traded.
Hence, standard models are only adequate to describe pricing and hedging of so-called
short term contracts, where the payoff depends on bonds with time to maturity less than
or equal to the longest traded bond. When considering long term contracts, where the
payoff depends on bonds with longer time to maturity than the longest traded bond, the
bond market does not in general include bonds which at all times allow for a perfect
hedge of the contract. Thus, in practice, an agent interested in pricing and hedging
long term contracts is exposed to a reinvestment risk, which is ignored in standard bond
market models. Here, the reinvestment risk refers to the uncertainty associated with the
obtainable rate of return, when reinvesting in bonds not yet traded in the market. An
example of long term contracts sold in practice are life insurance contracts, where the
liabilities of the insurance companies often extend 50 years, or more, into the future. In
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this chapter, we propose a model, where pricing and hedging of short term contracts is
similar to a standard bond market model, whereas the model includes reinvestment risk,
when considering long term contracts.

In order to describe the reinvestment risk, we initially consider a standard continuous-time
bond market model with some fixed finite time horizon, which is less than (or equal to) the
time horizon of the considered payment process. At fixed times new bonds are issued in the
market, such that we immediately after the issue of new bonds consider a standard model
identical to the initial one. The entry prices of the new bonds depend on the prices of the
bonds already traded and a stochastic term. As is standard in bond market literature,
we model the forward rates rather than the bond prices themselves. Between the times of
issue, the forward rates follow a standard Heath–Jarrow–Morton model, see Heath et al.
(1992). When new bonds are issued, the forward rate curve is extended. We assume that
at each time of issue the extension is continuous and depends on a single random variable.
The idea of fixing the maximum time to maturity of the traded assets and introducing
new assets as times passes can also be found in Neuberger (1999), who considers a market
for futures on oil prices. Neuberger (1999) models the initial price of the new future as a
linear function of prices on traded futures and a normally distributed error term.

To the author’s knowledge the only other papers considering the problem of modelling the
prices of newly issued bonds are Sommer (1997) and Dahl (2005b) (see Chapter 5). Dahl
(2005b) considers a discrete-time model for the reinvestment risk, whereas Sommer (1997)
considers a continuous-time bond market. A major difference between Sommer (1997) and
this chapter is the way new bonds are issued and priced in the market. While Sommer
(1997) considers the case where new bonds are issued continuously, this chapter, as is the
case in practice, considers a set of fixed times, where new bonds are issued. Hence, the
present model should be more apt to describe practice. Within his setup Sommer derives
conditions on the forward rate dynamics in order to have sufficiently smooth forward rate
curves and risk-minimizing strategies.

To quantify and control the reinvestment risk associated with long term contracts, we ap-
ply the criterion of risk-minimization introduced by Föllmer and Sondermann (1986) for
contingent claims and extended in Møller (2001c) to the case of payment processes. The
derivation of the risk-minimizing strategies are based on the ideas of Schweizer (1994) re-
garding risk-minimization under restricted information. Hence, the risk-minimizing strate-
gies are given in terms of the replicating strategies in the case without reinvestment risk.

The chapter is organized as follows: In Section 6.2 a bond market model including rein-
vestment risk is introduced. This is done in two steps: First we describe a standard
bond market model, and then the model is extended to include reinvestment risk. In this
section we also introduce the considered class of equivalent martingale measures and the
relevant financial terminology. Risk-minimizing strategies are derived in Section 6.3, and
we conclude the chapter by describing a possible implementation of the model in Section
6.4.
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6.2 The bond market model

Let T̂ be a fixed finite time horizon and (Ω,F , P ) a probability space with a filtration
F = (Ft)0≤t≤ bT satisfying the usual conditions of right-continuity, i.e. Ft =

⋂
u>t

Fu, and

completeness, i.e. F0 contains all P -null sets.

6.2.1 A standard model

Consider another fixed time horizon T̃ , T̃ ≤ T̂ , and a bond market, where at time t,
0 ≤ t ≤ T̃ all zero coupon bonds with maturity τ , t ≤ τ ≤ T̃ are traded. Let P (t, τ)
denote the price at time t of a zero coupon bond maturing at time τ . To avoid arbitrage
we assume that P (t, τ) is strictly positive and P (t, t) = 1 for all t. For non-negative
interest rates the price P (t, τ) is a decreasing function of τ for fixed t. An important
quantity when modelling bond prices is the (instantaneous) forward rate with maturity τ
contracted at time t defined by

f(t, τ) = −∂ logP (t, τ)

∂τ
, (6.2.1)

or, stated differently,

P (t, τ) = e−
R τ
t
f(t,u)du. (6.2.2)

The forward rate f(t, τ) can be interpreted as the riskfree interest rate, contracted at time
t over the infinitesimal interval [τ, τ + dτ). The short rate process (rt)0≤t≤ eT is defined
as rt = f(t, t). Since it is inconvenient to model the dynamics of bond prices directly,
the common approach in the literature is to model interest rates. Here, we take the
approach of Heath et al. (1992) where the dynamics of not only the short rate but the
entire forward rate curve are modelled. The connection between the forward rates and
bond prices established in (6.2.1) and (6.2.2) then gives the dynamics of the bond prices.
For fixed τ , 0 ≤ t ≤ τ ≤ T̃ , the P -dynamics of the forward rates are given by

df(t, τ) = αP (t, τ)dt + σ(t, τ)dWP
t , (6.2.3)

whereWP is a Wiener process under P . For simplicity WP is assumed to be 1-dimensional.
The processes αP and σ are adapted to the filtration G = (Gt)0≤t≤ eT , which is the P -

augmentation of the natural filtration generated by the Wiener process, i.e. Gt = G+
t ∨N ,

where N is the σ-algebra generated by all P -null sets and

G+
t = σ

{
WP
u , u ≤ t

}
.

Using Björk (2004, Proposition 20.5) we obtain the following P -dynamics for the price
process of a bond with maturity τ :

dP (t, τ) =

(
rt −

∫ τ

t
αP (t, u)du +

1

2

(∫ τ

t
σ(t, u)du

)2
)
P (t, τ)dt

−
∫ τ

t
σ(t, u)duP (t, τ)dWP

t , 0 ≤ t ≤ τ ≤ T̃ . (6.2.4)
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In addition to the bonds, we assume that the financial market includes a savings account
earning the short rate r. The dynamics of the savings account are

dBt = rtBtdt, B0 = 1. (6.2.5)

Remark 6.2.1 The existence of a savings account with drift r can be proven if we allow
for investments in infinitely many different bonds. In this case, investing in a roll-over
strategy in just-maturing bonds produces a value process, whose dynamics are given by
(6.2.5), see Björk, Kabanov and Runggaldier (1997).

�

For any G-adapted process h we may define a likelihood process (Λt)0≤t≤ eT by

Λt = e−
1
2

R t

0
h2

udu+
R t

0
hudWP

u .

It is well known, see e.g. Musiela and Rutkowski (1997) and Björk (2004), that if there
exists an h such that EP [Λ eT ] = 1 and, for all 0 ≤ t ≤ τ ≤ T̃ , the Heath–Jarrow–Morton
(HJM) drift condition

αP (t, τ) = σ(t, τ)

(∫ τ

t
σ(t, u)du − ht

)
(6.2.6)

holds, then there exists a unique equivalent martingale measure Q given by

dQ

dP
= Λ eT . (6.2.7)

Here, it is important that for fixed t, (6.2.6) holds simultaneously for all τ , 0 ≤ t ≤ τ ≤
T̃ . Recall that an equivalent martingale measure fulfills three requirements: Firstly, it
is equivalent to P . Secondly, all discounted price processes are martingales under the
new measure and lastly, it is a probability measure. If there exists a unique equivalent
martingale measure the model is arbitrage free and complete, see e.g. Björk (2004, Chapter
10).

6.2.2 Extending the standard model to include reinvestment risk

We now extend the standard model in Section 6.2.1 to include reinvestment risk. The idea
is as follows: Assume that at time 0 the bond market can be described by the standard
model introduced in Section 6.2.1. At some predetermined times new bonds are issued in
the market, such that immediately after the issue the bond market is given by a standard
model identical to the one at time 0. To introduce reinvestment risk in the model the
initial prices of the new bonds issued depend on a random variable independent of the
observable bond prices.

In order to extend the bond market we introduce the fixed time horizon T , T̃ ≤ T ≤ T̂ .
The interpretation of the time horizons is as follows: T̂ is the last time where trading is
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possible in the bond market, i.e. T̂ may be thought of as “the end of the world”, T is the
last time at which we allow payments and T̃ is the upper limit for the time to maturity of a
bond traded in the market. Hence, at any time t the time to maturity of the longest traded
bond is less than or equal to T̃ . Now define the sequence 0 = T0 < T1 < . . . < Tn ≤ T of
times, where new bonds are issued in the market. At time Ti new bonds are issued such
that all bonds with time to maturity less than or equal to T̃ are traded. To ensure that
at any time, bonds are traded in the market, we assume that T̃ ≥ maxi=1,...,n(Ti − Ti−1)

and T̂ = Tn + T̃ .

The illustration in Figure 6.2.1 shows one possible ordering of T1, . . . , Tn, T and T̃ in the
case n = 3.

?

Today

T0 = 0 T1

?

Issue of new bonds
with maturity
τ ∈ ( eT , T1 + eT ]

?

Maturity of longest
bond traded today

eT T2

?

Issue of new bonds
with maturity
τ ∈ (T1 + eT, T2 + eT ]

T1 + eT?

Maturity of longest
bond issued at time T1

T = T3

?

Terminal time of
payment process

T2 + eT?

Maturity of longest
bond issued at time T2 bT = T + eT?

“End of the world”

Figure 6.2.1: Illustration of T1, T2, T3, T̃ , T and T̂ .

For fixed t we define

it = sup {0 ≤ i ≤ n|Ti ≤ t} ,

such that Tit is the last time new bonds are issued prior to time t (time t included).
Thus, at time t the time of maturity, τ , of the bonds traded in the bond market satisfies
t ≤ τ ≤ Tit + T̃ . For an illustration of Tit see Figure 6.2.2.

T1 = Tit

?

Issue of new bonds
with maturity
τ ∈ ( eT , T1 + eT ]

t

?

Fixed time considered

?

Issue of new bonds
with maturity
τ ∈ (T1 + eT, T2 + eT ]

T2

Figure 6.2.2: Illustration of Tit.

When the forward rates are defined, i.e. for 0 ≤ t ≤ τ ≤ Tit + T̃ , their dynamics are given
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by

df(t, τ) = αP (t, τ)dt + σ(t, τ)dWP
t ,

where the processes αP and σ are F-adapted, and WP is a 1-dimensional Wiener process
under P . As in Section 6.2.1 the filtration G = (Gt)0≤t≤ bT is the P -augmentation of the
natural filtration generated by the Wiener process. Note that G and the short rate process
(rt)0≤t≤ bT are defined until time T̂ . As noted above, forward rates for all maturities are not
defined at time 0. They are introduced at the times of issue of new bonds. To model the
initial value of the new forward rates at time Ti, i ∈ {1, . . . , n}, we introduce a sequence
Y = (Yi)i=1,...,n of mutually independent random variables with distribution functions
(FPi )i=1,...,n. Assume that Y and WP are independent (as discussed below this is no
restriction). Here, Yi, which is revealed at time Ti, describes the uncertainty independent
of the observed bond prices associated with the initial prices of bonds issued at time Ti.
The filtration H = (Ht)0≤t≤ bT is defined as the P -augmentation of the natural filtration

generated by the random variables (Yi)i=1,...,n, i.e. Ht = H+
t ∨ N , where

H+
t = σ{(Yi)i=1,...,it}.

We now assume that F is the total filtration generated by the bond market, such that

Ft = Gt ∨Ht.

For Ti−1 + T̃ < τ ≤ Ti + T̃ we model the forward rates by

f(Ti, τ) = f(Ti, Ti−1 + T̃ ) +

∫ τ

Ti−1+ eT γiudu, (6.2.8)

where γi is an FTi
-measurable function, i.e. each γiu is FTi

-measurable for u ∈ (Ti−1+T̃ , Ti+
T̃ ]. The interpretation is that the new forward rates introduced at time Ti depend on the
past forward rates and some noise represented by the random variable Yi. The assumed
independence between WP and Y is no restriction, since we otherwise could define a vector
of random variables Ỹ = (Ỹi)i=1,...,n independent of WP and functions γ̃1, . . . , γ̃n, such

that f̃(Ti, τ) given by (6.2.8) with γ and Y replaced by γ̃ and Ỹ , respectively, has the
same distribution as f(Ti, τ) for Ti−1 + T̃ < τ ≤ Ti + T̃ . We note from (6.2.8) that the
forward rate curve is continuous at all times. In addition to F we consider the filtrations
F
Ti , i ∈ {0, 1, . . . , n}, given by

F
Ti = (FTi

t )0≤t≤ bT = (HTi
∨ Ft)0≤t≤ bT .

We immediately note that F = F
T0 = F

0. For i ≥ 1 the interpretation of the filtration
F
Ti is that the sequence (Yj)j=1,...,i is known at time 0. When considering F

Tn the entire
vector Y is known at time 0, so the model is complete. Furthermore, we note that if we
for i ∈ {0, . . . , n − 1} consider the filtration F

Ti and the time interval [0, Ti+1), then the
model is complete.

In the extended bond market we have that for any i the outcome of the random variable Yi
affects the initial prices of bonds issued at time Ti, and once it is realized it may affect the
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drift and the volatility of the forward rates. Thus, prior to time Ti, where Yi is realized,
we are unable to trade in assets depending on the outcome of Yi. Hence, the vector Y is
unhedgeable. Once the forward rates are introduced, the dynamics of the bonds are driven
solely by WP . Thus, the model can be viewed as a series of complete models on [Ti, Ti+1)
and a vector of independent random variables realized at times Ti, i ∈ {1, . . . , n}.

Remark 6.2.2 As noted above the model is complete when considering F
Tn . Hence,

contingent on the outcome of Y , all zero coupon bonds have unique prices at all times (even
before they are traded). Thus, at time t, 0 ≤ t < Tn, where the unconditional model is
incomplete, we have a forward rate curve for all maturities in the conditional model. Here,
we note that all conditional forward rate curves, of which there may be infinitely many,
are identical until time Tit + T̃ . However, in the unconditional model, the future values
of Yit+1, . . . , Yn are unknown. Hence, it is uncertain which of the conditional forward rate
curves will turn out in retrospect to have been “the correct one” when Yit+1, . . . , Yn have
been observed at time T . Thus, we can interpret the reinvestment risk as the uncertainty
associated with which of the conditional forward rate curves in retrospect has turned out
to have been “the correct one”. This in turn gives that the magnitude of the reinvestment
risk is related to how much the conditional forward rate curves differ.

�

We now derive an expression for future forward rates, and in particular future short rates,
in terms of the present forward rates and the future uncertainty. For fixed τ we define

īτ = inf
{

0 ≤ i ≤ n
∣∣∣Ti + T̃ ≥ τ

}
,

such that Tīτ is the first time a bond with maturity τ is traded. Hence, the initial time

a forward rate with maturity τ is defined. For 0 ≤ t ≤ u ≤ τ ≤ Tit + T̃ we have the
well-known relation

f(u, τ) = f(t, τ) +

∫ u

t
df(s, τ). (6.2.9)

However, as can be seen from the following proposition, the relationship between the
forward rates is in general more involved, since the future forward rates depend on the
entry prices of bonds yet to be issued. In the proposition, and throughout the chapter, we
interpret

∑ℓ
k=j as 0 if ℓ < j.

Proposition 6.2.3
For 0 ≤ t ≤ u ≤ τ we have the following relation between the forward rates:

f(u, τ) = f(t, (Tit + T̃ ) ∧ τ) +

īτ−1∑

k=it

(∫ Tk+1

t∨Tk

df(s, Tk + T̃ ) +

∫ τ∧(Tk+1+ eT )

Tk+ eT γk+1
s ds

)

+

∫ u

Tīτ
∨t
df(s, τ). (6.2.10)
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In particular it holds for the short rate that

ru = f(t, (Tit + T̃ ) ∧ u) +

īu−1∑

k=it

(∫ Tk+1

t∨Tk

df(s, Tk + T̃ ) +

∫ u∧(Tk+1+ eT )

Tk+ eT γk+1
s ds

)

+

∫ u

Tīu
∨t
df(s, u). (6.2.11)

Proof of Proposition 6.2.3: Formula (6.2.10) follows by repeated use of relations (6.2.8)
and (6.2.9), whereas the expression for the short rate in (6.2.11) is obtained by setting
τ = u in (6.2.10).

�

A class of equivalent martingale measures

In this section we introduce the considered class of equivalent martingale measures. First
we determine the unique Girsanov kernel with respect to the Wiener process and define
the equivalent martingale measure corresponding to a change of measure with respect to
the Wiener process only. We then consider a change of measure with respect to Y as well.
Since Y is unhedgeable there exist infinitely many equivalent martingale measures. Here,
we consider a class of measures with particular nice properties.

Similarly to the standard model we observe that the existence of an equivalent martingale
measure depends on the existence of an F-adapted process h, such that for all 0 ≤ t ≤ τ ≤
Tit + T̃ the HJM drift condition

αP (t, τ) = σ(t, τ)

(∫ τ

t
σ(t, u)du − ht

)

is satisfied, and the likelihood process Λ = (Λt)0≤t≤ bT defined by

Λt = e−
1
2

R t

0
h2

udu+
R t

0
hudWP

u

fulfills EP [Λ bT ] = 1. Hence, if such an h exists, we may define an equivalent martingale
measure Q0 by

dQ0

dP
= Λ bT . (6.2.12)

However, the equivalent martingale measure Q0 is not unique. In particular we can define
another likelihood process U = (Ut)0≤t≤ bT by

Ut =

it∏

j=1

(1 + uj(Yj)) ,

for some functions uj , j ∈ {1, . . . , n}, satisfying uj(y) > −1 for all y in the support of

Yj and EP [uj(Yj)] = 0. Here, and henceforth,
∏ℓ
j=k is interpreted as 1 if k > ℓ. If
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EQ
0
[U bT ] = 1 (or equivalently EP [Λ bTU bT ] = 1), we can define an equivalent martingale

measure Q by

dQ

dQ0
= U bT . (6.2.13)

Girsanov’s theorem gives that for any Q of the form (6.2.13), the process

WQ
t = WP

t −
∫ t

0
hudu (6.2.14)

is a Wiener process. Moreover, the distribution function of Yi, i ∈ {1, . . . , n}, under Q,
FQi , is given by

FQi (y) =

∫ y

−∞
(1 + ui(z))dF

P
i (z).

Here, we restrict ourselves to the case, where h is G-adapted, such that the measures
considered are particularly simple, since Y and WQ are independent under Q and the
mutual independence of the Yi’s is preserved under Q. Using (6.2.14) we find that the
dynamics of the forward rates under Q are given by

df(t, τ) = αQ(t, τ)dt + σ(t, τ)dWQ
t , (6.2.15)

where we have defined

αQ(t, τ) = σ(t, τ)

∫ τ

t
σ(t, u)du. (6.2.16)

Now, Björk (2004, Proposition 20.5) gives the following bond price dynamics for 0 ≤ t ≤
τ ≤ Tit + T̃ under Q:

dP (t, τ) = rtP (t, τ)dt −
∫ τ

t
σ(t, u)duP (t, τ)dWQ

t . (6.2.17)

Remark 6.2.4 It can be shown that Q0 defined by (6.2.12) is the so-called minimal
martingale measure for the extended model, i.e. the equivalent martingale measure which
“disturbs the structure of the model as little as possible”, see Schweizer (1995).

�

6.2.3 Model considerations

In this section we comment on the model specification in Section 6.2.2. At any time t the
prices of bonds with maturity τ , t < τ ≤ Tit + T̃ , must satisfy both

P (t, τ) = e−
R τ
t
f(t,u)du

and

P (t, τ) = EQ
[
e−

R τ
t
rudu

∣∣∣Ft
]
. (6.2.18)
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Furthermore inserting (6.2.15) and (6.2.16) in Proposition 6.2.3 gives the following expres-
sion for the short rate at at time u, t ≤ u ≤ Tit + T̃ :

ru = f(t, u) +

∫ u

t
df(s, u)

= f(t, u) +

∫ u

t
σ(s, u)

∫ u

s
σ(s, v)dv ds +

∫ u

t
σ(s, u)dWQ

s .

Hence, since σ is F-adapted, we have that in addition to the present information Ft and the
future development of WQ the future short rate at time u, ru, may depend on the future
outcome of Yj, j ∈ {it + 1, . . . , iu}. Thus, at a first glance it seems as if the expectation
in (6.2.18) depends on the distribution of Yj, j ∈ {it + 1, . . . , iτ} under Q, such that the
distribution of Yj, j ∈ {it + 1, . . . , i

Tit+
eT } under Q may be (partly) given at time t by

(6.2.18). However, as we shall see below, this is not the case. First observe that

∫ τ

t

∫ u

t
σ(s, u)

∫ u

s
σ(s, v)dv ds du =

∫ τ

t

∫ u

t

1

2

∂

∂u

(∫ u

s
σ(s, v)dv

)2

ds du

=
1

2

∫ τ

t

∫ τ

s

∂

∂u

(∫ u

s
σ(s, v)dv

)2

du ds

=
1

2

∫ τ

t

(∫ τ

s
σ(s, v)dv

)2

ds

and
∫ τ

t

∫ u

t
σ(s, u)dWQ

s du =

∫ τ

t

∫ τ

s
σ(s, u)du dWQ

s .

Now, use that provided
∫ τ
s σ(s, u)du is sufficiently integrable it holds for fixed τ that

EQ
[
e−

1
2

R τ
t (
R τ
s
σ(s,u)du)

2
ds−

R τ
t

R τ
s
σ(s,u)du dWQ

s

∣∣∣Ft
]

= 1,

such that

EQ
[
e−

R τ
t
rudu

∣∣∣Ft
]

= e−
R τ
t
f(t,u)du.

Hence, no undesirable restrictions on the class of equivalent martingale measures occur
when σ is F-adapted.

Since σ is F-adapted the volatility (and hence the drift under Q) of all forward rates at
time t may depend on Yi if Ti < t. Hence, the initial bond prices of the newly issued
bonds at time Ti may influence the future prices of not only the newly issued bonds, but
also bonds with shorter time to maturity. As an alternative model consider the case where
the dependence on Yi is restricted to the volatility of the forward rates (bond prices)
introduced at time Ti (and later). In this case the future development of the bond prices
depend on the information at the time of issue and the future development of WQ only.
As a last example we mention the (quite restrictive) case where σ is G-adapted, such that
the information gathered from the issue of new bonds does not influence the volatility of
the forward rates (bond prices).
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6.2.4 Trading in the bond market

When trading in the extended bond market introduced in Section 6.2.2 two problems
arise: Firstly, at any time infinitely many bonds are traded in the bond market and
secondly, the bonds traded at time t depend on the time considered. Regarding the first
problem we note that since the forward rates are driven by a 1-dimensional Wiener process
only, it is sufficient if we at all times are allowed to invest in two assets, which are not
linearly dependent. Furthermore, we note that the second problem may be overcome by
considering a new set of price processes defined for all t including the same information as
the original price processes. Thus, both problems are solved by considering the following
two assets: A savings account with dynamics given by (6.2.5) and an asset, with price
process X, generated by investing 1 unit at time 0 and at time t, 0 ≤ t ≤ T̂ , investing in
the longest bond traded in the market. The dynamics of X are given by

dXt = Xt
dP (t, Tit + T̃ )

P (t, Tit + T̃ )
, X0 = 1.

Inserting the bond price dynamics from (6.2.17) we get the following Q-dynamics of X

dXt = rtXtdt−
∫ Tit+

eT
t

σ(t, u)duXtdW
Q
t . (6.2.19)

The price process X can be seen as the best available approximation to the value process
generated by a roll-over strategy in bonds with time to maturity T̃ . Such a value process
is usually referred to as a rolling-horizon bond, see Rutkowski (1999). The idea of roll-over
strategies is closely related to the Musiela parametrization of forward rates, see Musiela
(1993), where the forward rates are parameterized by time to maturity instead of time
of maturity. In a continuous-time setting where bonds with all maturities are traded,
a rolling-horizon bond requires investments in infinitely many different bonds. However,
here we only adjust the portfolio, when new bonds are issued, such that X requires a finite
number of bonds, n+ 1, only.

Following the ideas of Møller (2001c) we now define trading in the presence of payment
processes. Henceforth fix an arbitrary equivalent martingale measure Q for the model
(B,X,F), that is, we are working with the probability space (Ω,F , Q) and the filtrations
(FTi)i∈{0,...,n}. We note that for all i, i ∈ {0, . . . , n}, the discounted price process X∗

is a (Q,FTi)-martingale. Here, and throughout the chapter, we use an asterisk (∗) to
denote discounted price processes. Let 〈X∗〉 denote the predictable quadratic variation
process for X∗ associated with Q and F

Tn , i.e. the unique predictable process such that
(X∗)2−〈X∗〉 is a (Q,FTn)-martingale. For any i we now introduce the space L2(QX∗ ,FTi)
of F

Ti-predictable processes ϑ satisfying

EQ

[∫ bT
0
ϑ2
ud〈X∗〉u

]
<∞.

An F
Ti-trading strategy is any process ϕ = (ϑ, η), where ϑ ∈ L2(QX∗ ,FTi) and η is

F
Ti-adapted such that the value process V(ϕ) defined by

Vt(ϕ) = ϑtXt + ηtBt, 0 ≤ t ≤ T̂ ,
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is RCLL (Right Continuous with Left Limits) and Vt(ϕ) ∈ L2(Q) for all t ∈ [0, T̂ ]. The
pair ϕt = (ϑt, ηt) is interpreted as the portfolio held at time t. Here, ϑ denotes the number
of assets with price processX, and η denotes the discounted deposit in the savings account.

A payment process is an F-adapted process A = (At)0≤t≤T describing the liabilities of the
seller of a contract towards the buyer. Note that A is defined on [0, T ] only, such that
no payments take place after time T . Moreover, we note that since A is F-adapted, it
is F

Ti-adapted for all i ∈ {1, . . . , n}. We assume that A is square integrable, i.e. that
EQ[A2

t ] <∞ for all t, and RCLL. For 0 ≤ s ≤ t ≤ T , we let At −As be the total outgoes
less incomes in the interval (s, t]. In the following we shall consider the discounted payment
process A∗ defined by

dA∗
t = e−

R t

0
rududAt.

The cost process associated with the pair (ϕ,A) is given by

Ct(ϕ) = V∗
t (ϕ) −

∫ t

0
ϑudX

∗
u +A∗

t . (6.2.20)

Thus, the cost process is the discounted value of the portfolio reduced by discounted
trading gains and added the total discounted outgoes less incomes of the payment process.
The cost process is interpreted as the seller’s accumulated discounted costs during [0, t].
The cost process is square integrable due to the square integrability of the payment process
A and the assumptions on the strategy ϕ and X. Furthermore the cost process is adapted
to the same filtration as the trading strategy.

We say that a strategy ϕ is F
Ti-self-financing for the payment process A, if the cost process

is constant Q-a.s. with respect to F
Ti . In contrast to the classical definition of self-financing

strategies, we thus allow for exogenous deposits and withdrawals as represented by A. The
two definitions of self-financing strategies are equivalent if and only if the payment process
is constant Q-a.s. with respect to the considered filtration. The interpretation of a self-
financing strategy in the presence of payment processes is that all fluctuations of the
value process are either trading gains/losses or due to the payment process. A payment
process is called F

Ti-attainable, if there exists an F
Ti-self-financing strategy ϕ for A such

that V∗
T (ϕ) = 0 Q-a.s. with respect to F

Ti . A payment process is thus F
Ti-attainable, if

investing the initial amount C0(ϕ) according to the trading strategy ϕ leaves us with a
portfolio value of 0 after the settlement of all liabilities. Hence, the unique arbitrage free
price in (B,X,FTi) of an F

Ti-attainable payment process is C0(ϕ). At any time t, there is
no difference between receiving the future payments of the F

Ti-attainable payment process
A and holding the portfolio ϕt and investing according to the F

Ti-replicating strategy ϕ.
Thus, a no arbitrage argument gives that at any time t the price of future payments from
A in (B,X,FTi) must be Vt(ϕ). It can be shown that the payment process A is attainable
if and only if the contingent claim H = AT with maturity T is (classically) attainable. If
all contingent claims, and hence all payment processes, are attainable, the model is called
complete and otherwise it is called incomplete.
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6.3 Risk-minimization

As noted above, an F
Ti-attainable payment process has a unique arbitrage free price C0(ϕ)

in (B,X,FTi). However, for a non-attainable payment process, we do not have a unique
arbitrage free price. Thus, for non-attainable processes, quantifying and controlling the
risk becomes important. Here, we apply the criterion of risk-minimization. We give a
review of risk-minimization and determine risk-minimizing strategies in the presence of
reinvestment risk.

6.3.1 A review of risk-minimization for payment processes

In this section we review the concept of risk-minimization introduced by Föllmer and
Sondermann (1986) for contingent claims, and further developed in Møller (2001c) to
cover payment processes. For more details we refer to Møller (2001c). Throughout this
section, we consider a fixed but arbitrary filtration F

Ti , such that we are working with the
filtered probability space (Ω,F , Q,FTi).

For a given payment process A we define the F
Ti-risk process associated with ϕ by

RTi
t (ϕ) = EQ

[
(CT (ϕ) − Ct(ϕ))2

∣∣∣FTi
t

]
, (6.3.1)

where the cost process is defined in (6.2.20). Thus, the risk process is the conditional
expectation of the discounted squared future costs given the current available information.
We will use this quantity to measure the risk associated with (ϕ,A). An F

Ti-trading
strategy ϕ = (ϑ, η) is called F

Ti-risk-minimizing if for any t ∈ [0, T ] it minimizes RTi
t (ϕ)

over all F
Ti-trading strategies with the same value at time T . With the interpretation

of the cost process in mind, we note that V∗
t (ϕ) is the discounted value of the portfolio

ϕt after possible payments at time t. In particular, V∗
T (ϕ) is the discounted value of the

portfolio ϕT upon settlement of all liabilities. Thus, a natural restriction is to consider
so-called 0-admissible strategies which satisfy

V∗
T (ϕ) = 0, Q-a.s.

The construction of risk-minimizing strategies is based on the so-called Galtchouk–Kunita–
Watanabe decomposition for martingales. Define the (Q,FTi)-martingale V Ti,∗ by

V Ti,∗
t = EQ

[
A∗
T

∣∣∣FTi
t

]
, 0 ≤ t ≤ T. (6.3.2)

The process V Ti,∗, which is known as the intrinsic value process with respect to F
Ti , can

now be uniquely decomposed using the Galtchouk–Kunita–Watanabe decomposition

V Ti,∗
t = V Ti,∗

0 +

∫ t

0
ϑTi,A
u dX∗

u + LTi,A
t . (6.3.3)

Here, LTi,A is a zero-mean square integrable (Q,FTi)-martingale which is orthogonal toX∗,
i.e. the process X∗LTi,A is a (Q,FTi)-martingale, and ϑTi,A is an F

Ti-predictable process
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in L2(QX∗ ,FTi). We note that if A is F
Ti-attainable, then V Ti,∗

t is the discounted unique
arbitrage free price in (B,X,FTi) at time t of the future payments specified by the payment
process A and LTi,A = 0 Q-a.s. with respect to F

Ti . The following theorem relates the risk-
minimizing strategy and the associated risk process to the Galtchouk–Kunita–Watanabe
decomposition.

Theorem 6.3.1 (Møller (2001c))
There exists a unique 0-admissible F

Ti-risk-minimizing strategy ϕTi = (ϑTi , ηTi) for A
given by

(ϑTi
t , η

Ti
t ) =

(
ϑTi,A
t , V Ti,∗

t −A∗
t − ϑTi,A

t X∗
t

)
, 0 ≤ t ≤ T.

The associated F
Ti-risk process is given by

RTi
t (ϕTi) = EQ

[(
LTi,A
T − LTi,A

t

)2
∣∣∣∣F

Ti
t

]
. (6.3.4)

When determining the risk-minimizing strategy, we minimize over all admissible strate-
gies. This is in contrast to many other quadratic hedging criteria such as mean-variance
indifference principles and mean-variance hedging, where only self-financing strategies are
allowed. For more details on and a comparison of these criteria see Møller (2001b). As
noted earlier, risk-minimizing strategies are not self-financing for non-attainable payment
processes. However, they can be shown to be mean-self-financing, i.e. the correspond-
ing cost processes are Q-martingales with respect to the considered filtration, see Møller
(2001c, Lemma A.4).

Note that the risk-minimizing strategy depends on the choice of equivalent martingale
measure Q. In the literature, the minimal martingale measure has been applied for deter-
mining risk-minimizing strategies, since this, in the case whereX∗ is continuous, essentially
corresponds to the criterion of local risk-minimization, which is a criterion in terms of P ,
see Schweizer (2001a).

Remark 6.3.2 We note that since FTi
t and FTj

t coincide for t ≥ max(Tj , Ti) so do the
intrinsic value processes. This is also intuitively clear, since for t ≥ max(Tj , Ti) the
additional information at time 0 in the larger of the filtrations has been revealed, and thus
is included in the σ-algebra in the smaller filtration as well.

�

6.3.2 Risk-minimization in the presence of reinvestment risk

From Section 6.3.1 it follows that if we determine the Galtchouk–Kunita–Watanabe decom-
position of V Ti,∗, then the unique 0-admissible F

Ti-risk-minimizing strategy, i ∈ {0, . . . , n},
is given by Theorem 6.3.1. However, since it is often difficult to determine the Galtchouk–
Kunita–Watanabe decomposition we take a different approach. We apply the main result
in Schweizer (1994) regarding risk-minimization under restricted information in order to
obtain the following theorem, allowing us to determine the F

Ti-risk-minimizing strategy
in terms of the F

Tn-risk-minimizing strategy.
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Theorem 6.3.3
The unique 0-admissible F

Ti-risk-minimizing strategy ϕTi = (ϑTi , ηTi) for A given by

(
ϑTi
t , η

Ti
t

)
=
(
EQ

[
ϑTn
t

∣∣∣FTi
t−

]
, V Ti,∗

t −A∗
t − ϑTi

t X
∗
t

)
, 0 ≤ t ≤ T,

and the process LTi,A is given by

LTi,A
t = V

Ti∨Tit ,∗
0 − V Ti,∗

0 + EQ
[∫ t

0
ϑTn
u dX∗

u

∣∣∣FTi
t

]
−
∫ t

0
ϑTi
u dX

∗
u. (6.3.5)

Proof of Theorem 6.3.3: Since FTi
t ⊆ FTn

t for all t and X∗ is F-adapted with X∗
T being

FTi

T -measurable, Schweizer (1994, Theorem 3.1) gives the F
Ti-risk-minimizing strategy for

any FTi

T -measurable contingent claim in terms of the F
Tn-risk-minimizing strategy. Since

both X∗ and A are F
Ti-adapted for all i, the result for contingent claims carries over to the

present framework with payment processes. Using the fact that X∗ furthermore is F
Ti-

predictable for all i, we have from Schweizer (1994, Section 4), that the F
Ti-risk-minimizing

strategy is given by

ϑTi
t = EQ

[
ϑTn
t

∣∣∣FTi
t−

]

and

ηTi
t = EQ

[
V Tn,∗
t −A∗

t − ϑTi
t X

∗
t

∣∣∣FTi
t

]

= EQ
[
V Tn,∗
t

∣∣∣FTi
t

]
−A∗

t − ϑTi
t X

∗
t

= V Ti,∗
t −A∗

t − ϑTi
t X

∗
t .

Here, we have used that ϑTi is F
Ti-predictable, and that A∗ and X∗ are F

Ti-adapted in
the second equality, and iterated expectations in the third. To derive an expression for
LTi,A we first note that V Tn,∗

T = V Ti,∗
T , see Remark 6.3.2. Inserting the expressions from

(6.3.3) and isolating LTi,A
T we obtain

LTi,A
T = V Tn,∗

0 − V Ti,∗
0 +

∫ T

0

(
ϑTn
u − ϑTi

u

)
dX∗

u.

Using that LTi,A is a (Q,FTi)-martingale we get

LTi,A
t = EQ

[
LTi,A
T

∣∣∣FTi
t

]

= EQ
[
V Tn,∗

0 − V Ti,∗
0 +

∫ T

0

(
ϑTn
u − ϑTi

u

)
dX∗

u

∣∣∣∣F
Ti
t

]

= V
Ti∨Tit ,∗
0 − V Ti,∗

0 + EQ
[∫ t

0
ϑTn
u dX∗

u

∣∣∣∣F
Ti
t

]
−
∫ t

0
ϑTi
u dX

∗
u.

Here, we have used that X∗ is a martingale and ϑTj lies in L2(QX∗ ,FTj ) such that the

integral EQ[
∫ T
t ϑ

Tj
u dX∗

u|FTi
t ] = 0 for all j. Furthermore, we have used that FTi

t = FTi∨Tit
t
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to obtain

EQ
[
V Tn,∗

0

∣∣∣FTi
t

]
= EQ

[
V Tn,∗

0

∣∣∣FTi∨Tit
t

]
= EQ

[
V Tn,∗

0

∣∣∣FTi∨Tit
0

]
= V

Ti∨Tit ,∗
0 .

�

From Theorem 6.3.3 we get that the F
Ti-risk-minimizing strategy is the predictable con-

ditional expectation of the risk-minimizing strategy in the complete model (B,X,FTn)
given the present information, FTi

t . Thus, Theorem 6.3.3 provides an alternative to Theo-
rem 6.3.1 when determining the F

Ti-risk-minimizing strategy. The advantage of Theorem
6.3.3 is that, since (B,X,FTn) is a complete model, the F

Tn-risk-minimizing strategy for
any payment process coincides with the F

Tn-replicating strategy. Hence, using Theorem
6.3.3 to determine the F

Ti-risk-minimizing strategy requires the derivation of a replicating
strategy in a complete model and a conditional expectation instead of the derivation of a
Galtchouk–Kunita–Watanabe decomposition for a non-attainable payment process.

Remark 6.3.4 Investigating the risk minimizing strategies in Theorem 6.3.3 we observe

that since FTi
t and FTj

t coincide for t ≥ max(Ti, Tj), then the F
Ti- and F

Tj -risk-minimizing
strategies coincide for t > max(Ti, Tj). The intuitive interpretation is that the strategies
are based on the same information, and hence they are identical.

�

Corollary 6.3.5
If we restrict ourselves to payment processes for which ϑTn is uniformly bounded then

LTi,A
t is given by

LTi,A
t = V

Ti∨Tit ,∗
0 − V Ti,∗

0 +

∫ t

0

(
ϑ
Ti∨Tit
u − ϑTi

u

)
dX∗

u.

Proof of Corollary 6.3.5: Since ϑTn is uniformly bounded we may use stochastic Fubini,
see Protter (2004, Chapter IV, Theorem 64), to interchange the order of integration in
(6.3.5).

�

The expression for LTi,A in Corollary 6.3.5 has the following nice interpretation: At any
time the unhedgeable part of V Ti,∗ consists of two terms. The first term is the difference
between the initial deposit given the information at time 0 and the current information,
respectively, whereas the second term is the difference between the trading gains generated
by the risk-minimizing strategy given the present information regarding Y and the F

Ti-
risk-minimizing strategy. In particular we note from Corollary 6.3.5 that for t < Ti+1,
we have that LTi,A

t = 0. This is also intuitively clear, since no additional information
concerning the Yj’s has been revealed.

Corollary 6.3.6
In the case where ϑTn is uniformly bounded we have the following alternative expression
for the process LTi,A:

LTi,A
t =

it∑

j=i+1

(
V
Tj ,∗
Tj

− EQ
[
V Tn,∗
Tj

∣∣∣FTj−1

Tj−

])
.
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This leads to the following expression for the F
Ti-risk process associated with ϕTi

RTi
t (ϕTi) = EQ






T∑

j=it+1

(
V
Tj ,∗
Tj

− EQ
[
V Tn,∗
Tj

∣∣∣FTj−1

Tj−

])



2∣∣∣∣∣∣
FTi
t


 . (6.3.6)

Proof of Corollary 6.3.6: From Corollary 6.3.5 we have the following expression for LTi,A
t :

LTi,A
t = V

Ti∨Tit ,∗
0 − V Ti,∗

0 +

∫ t

0

(
ϑ
Ti∨Tit
u − ϑTi

u

)
dX∗

u.

Now, write V
Ti∨Tit ,∗
0 − V Ti,∗

0 and ϑ
Ti∨Tit
u − ϑTi

u as telescoping sums and use that, as noted
above, the F

Ti- and F
Tj -risk-minimizing strategies coincide for t > max(Ti, Tj) to obtain

LTi,A
t =

it∑

j=i+1

(
V
Tj ,∗
0 − V

Tj−1,∗
0 +

∫ t

0

(
ϑ
Tj
u − ϑ

Tj−1
u

)
dX∗

u

)

=

it∑

j=i+1

(
V
Tj ,∗
0 − V

Tj−1,∗
0 +

∫ Tj

0

(
ϑ
Tj
u − ϑ

Tj−1
u

)
dX∗

u

)
.

Using iterated expectations in order to express all quantities as expectations of the respec-
tive F

Tn-quantities, we get

LTi,A
t =

it∑

j=i+1

(
EQ

[
V Tn,∗

0

∣∣∣FTj

0

]
− EQ

[
V Tn,∗

0

∣∣∣FTj−1

0

]

+

∫ Tj

0

(
EQ

[
ϑTn
u

∣∣∣FTj

u−

]
−EQ

[
ϑTn
u

∣∣∣FTj−1

u−

])
dX∗

u

)
.

The result now follows from

LTi,A
t =

it∑

j=i+1

(
EQ

[
V Tn,∗

0

∣∣∣FTj

Tj

]
− EQ

[
V Tn,∗

0

∣∣∣FTj−1

Tj−

]

+

∫ Tj

0

(
EQ

[
ϑTn
u

∣∣∣FTj

Tj

]
− EQ

[
ϑTn
u

∣∣∣FTj−1

Tj−

])
dX∗

u

)

=

it∑

j=i+1

(
EQ

[
V Tn,∗

0 +

∫ Tj

0
ϑTn
u dX∗

u

∣∣∣∣F
Tj

Tj

]
− EQ

[
V Tn,∗

0 +

∫ Tj

0
ϑTn
u dX∗

u

∣∣∣∣F
Tj−1

Tj−

])

=

it∑

j=i+1

(
EQ

[
V Tn,∗
Tj

∣∣∣FTj

Tj

]
− EQ

[
V Tn,∗
Tj

∣∣∣FTi−1

Tj−

])

=

it∑

j=i+1

(
V
Tj ,∗
Tj

− EQ
[
V Tn,∗
Tj

∣∣∣FTj−1

Tj−

])
.

Here, we have used EQ[V Tn,∗
0 |FTj

0 ] = EQ[V Tn,∗
0 |FTj

t ] for t < Tj+1 and EQ[ϑTn
u |FTj

u−] =

EQ[ϑTn
u |FTj

t ] for u ≤ t < Tj+1 in the first equality. The uniform boundedness of ϑTn
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allows us to use stochastic Fubini, see Protter (2004, Chapter IV, Theorem 64), to inter-
change the order of integration in the second equality. Furthermore we have used that
ϕTn is self-financing in the third equality and the definition of V Tj ,∗ in the last equality.
The expression for the F

Ti-risk process associated with ϕTi in (6.3.6) is now obtained by
inserting the expression for LTi,A in (6.3.4).

�

From Corollary 6.3.6 we observe that LTi,A, which measures the deposits or withdrawals
to/from the risk-minimizing portfolio in addition to those generated by the payment
process, only changes value at times Tj, j > i. Hence, the risk-minimizing strategy is
self-financing between the times of issue. At time Tj the information revealed by the is-
sued bonds, i.e. the observed value of Yj , affects the weights given to the different outcomes
of Y , and hence it leads to a change in LTi,A.

6.3.3 F-risk-minimizing strategies

We now derive the F-risk-minimizing strategy for a general payment process of the form

dAt = ∆A0d1(t≥0) + atdt+ ∆ATd1(t≥T ).

Here, ∆A0 is a constant, whereas at is Ft-measurable for all t, and ∆AT is FT -measurable.
We note that the payment process is F- and F

Tn-adapted. In order to derive the risk-
minimizing strategy we consider the discounted payment process

A∗
t = A0 +

∫ t

0
e−

R s

0
rududAs = A0 +

∫ t

0
e−

R s

0
ruduasds+ e−

R T

0
rsds∆AT 1(t=T ).

Since the model (B,X,FTn) is complete, we have the following expression for A∗:

A∗
t = A0 +

∫ t

0

(
F Tn,s

0 +

∫ s

0
ϑTn,s
u dX∗

u

)
ds+

(
F Tn,∆T

0 +

∫ T

0
ϑTn,∆T
u dX∗

u

)
1(t=T ),

where (ϑTn,s)0≤s≤T and ϑTn,∆T are the replicating strategies in (B,X,FTn) for (as)0≤s≤T
and ∆AT , respectively, and we for 0 ≤ t ≤ s ≤ T have defined

F Tn,s
t = EQ

[
e−

R s

t
ruduas

∣∣∣FTn
t

]
and F Tn,∆T

t = EQ
[
e−

R T

t
rudu∆AT

∣∣∣FTn
t

]
.

Hence, F Tn,s
t and F Tn,∆T

t are the unique arbitrage free prices at time t in the model
(B,X,FTn) for the claims as and ∆AT , respectively. Now use that (B,X,FTn) is complete
to obtain

V Tn,∗
t = EQ

[
A∗
T

∣∣∣FTn
t

]

= EQ
[
A0 +

∫ T

0

(
F Tn,s

0 +

∫ s

0
ϑTn,s
u dX∗

u

)
ds+

(
F Tn,∆T

0 +

∫ T

0
ϑTn,∆T
u dX∗

u

)∣∣∣∣F
Tn
t

]

= A0 +

∫ T

0
F Tn,s

0 ds+ F Tn,∆T
0 + EQ

[∫ T

0

∫ s

0
ϑTn,s
u dX∗

uds+

∫ T

0
ϑTn,∆T
u dX∗

u

∣∣∣∣F
Tn
t

]
.
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Here, we restrict ourselves to payment processes for which (ϑTn,s)0≤s≤T are uniformly
bounded, such that we may use stochastic Fubini, see Protter (2004, Chapter IV, The-
orem 64), to interchange the order of integration above. Hence, we obtain the following
Galtchouk–Kunita–Watanabe decomposition of V Tn,∗:

V Tn,∗
t = V Tn,∗

0 + EQ
[∫ T

0

∫ T

u
ϑTn,s
u ds dX∗

u +

∫ T

0
ϑTn,∆T
u dX∗

u

∣∣∣∣F
Tn
t

]

= V Tn,∗
0 +

∫ t

0

∫ T

u
ϑTn,s
u ds dX∗

u +

∫ t

0
ϑTn,∆T
u dX∗

u

= V Tn,∗
0 +

∫ t

0
ϑTn,A
u dX∗

u,

where

ϑTn,A
u =

∫ T

u
ϑTn,s
u ds+ ϑTn,∆T

u . (6.3.7)

Recall that ϑTn = ϑTn,A. The F-risk-minimizing strategy ϕ0 = (ϑ0, η0) and the associated
risk process are now given by inserting (6.3.7) in Theorem 6.3.3.

F-risk-minimizing strategies when Y has finite support

Consider the case where Yi, i ∈ {1, . . . , n}, has finite support, hence Yi ∈ {yi1, . . . , yimi
}.

Let K =
∏n
i=1mi denote the possible number of outcomes of the vector Y . To simplify

the expression for the risk-minimizing strategies we introduce the notation

M δk
t = EQ

[
1((Y1,...,Yn)=δk)

∣∣Ft
]

= EQ
[
1((Y1,...,Yn)=δk)

∣∣Ht

]
,

where δ1, . . . , δK are the possible outcomes of the vector (Y1, . . . , Yn). Here, we have used
the Q-independence between Y and WQ in the second equality. If we further introduce the
notation ϑδk and V δk ,∗ to denote, respectively, the replicating strategy and the intrinsic
value process given Y = δk, then the F-risk-minimizing strategy is given by

(
ϑ0
t , η

0
t

)
=

(
K∑

k=1

M δk
t−ϑ

δk
t ,

K∑

k=1

M δk
t V

δk,∗
t −A∗

t − ϑ0
tX

∗
t

)
, 0 ≤ t ≤ T. (6.3.8)
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In this case the expression for the process L0,A in Corollary 6.3.6 simplifies to

L0,A
t =

it∑

j=1

(
V
Tj ,∗
Tj

−EQ
[
V Tn,∗
Tj

∣∣∣FTj−1

Tj−

])

=

it∑

j=1

(
EQ

[
V Tn,∗
Tj

∣∣∣FTj

Tj

]
− EQ

[
V Tn,∗
Tj

∣∣∣FTj−1

Tj−

])

=
it∑

j=1

(
K∑

k=1

M δk
Tj
V δk ,∗
Tj

−
K∑

k=1

M δk
Tj−1

V δk,∗
Tj

)

=

it∑

j=1

K∑

k=1

V δk,∗
Tj

(
M δk
Tj

−M δk
Tj−1

)

=
K∑

k=1

∫ t

0
V δk,∗
u dM δk

u .

Here, we have used that the probabilities change at times Ti, i = 1, . . . , n, only, in the
last equation, and that we are allowed to interchange summation and integration. Hence,
in the case where Y has finite support we have the following simple Galtchouk–Kunita–
Watanabe decomposition:

V 0,∗
t =

K∑

k=1

M δk
0 V δk ,∗

0 +

∫ t

0

K∑

k=1

M δk
u−ϑ

δk
u dX

∗
u +

K∑

k=1

∫ t

0
V δk ,∗
u dM δk

u . (6.3.9)

Example 6.3.7 Consider the case where Y = Y1 follows a binomial distribution, i.e.
Y ∈ {0, 1} with 1 − P (Y = 0) = P (Y = 1) = p, p ∈ (0, 1). Now the goal is to determine
the risk-minimizing strategy under the minimal martingale measure, Q0. In this simple
example with just two possible outcomes of Y we have δi = i − 1, i ∈ {1, 2}. We do not
specify the payment process, the forward rate dynamics and γ. Here, the quantities M δk

simplify to

M δ1
t = EQ

0 [
1(Y=δ1)

∣∣Ft
]

= (1 − p)1(0≤t<T1) + (1 − Y )1(T1≤t≤T ), (6.3.10)

M δ2
t = EQ

0 [
1(Y=δ2)

∣∣Ft
]

= p1(0≤t<T1) + Y 1(T1≤t≤T ), (6.3.11)

where we have used that the distribution of Y is unaffected by the change to the minimal
martingale measure. Furthermore, the intrinsic value process V 0,∗ given by

V 0,∗
t = 1(0≤t<T1)

(
(1 − p)V δ1,∗

t + pV δ2,∗
t

)
+ 1(T1≤t≤T )

(
(1 − Y )V δ1,∗

t + Y V δ2,∗
t

)
. (6.3.12)

Inserting (6.3.10) and (6.3.11) into (6.3.8) gives the following risk-minimizing strategy

ϑ0
t = 1(0≤t≤T1)

(
(1 − p)ϑδ1t + pϑδ2t

)
+ 1(T1<t≤T )

(
(1 − Y )ϑδ1t + Y ϑδ2t

)
, (6.3.13)

and

η0
t = V 0,∗

t −A∗
t −

(
1(0≤t≤T1)

(
(1 − p)ϑδ1t + pϑδ2t

)
+ 1(T1<t≤T )

(
(1 − Y )ϑδ1t + Y ϑδ2t

))
X∗
t ,
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where V 0,∗
t is given by (6.3.12). Now, inserting (6.3.10)–(6.3.13) in (6.3.9) gives the fol-

lowing Galtchouk–Kunita–Watanabe decomposition

V 0,∗
t = (1 − p)V δ1,∗

0 + pV δ2,∗
0 +

∫ t

0

(
1(0≤u≤T1)

(
(1 − p)ϑδ1u + pϑδ2u

)

+1(T1<u≤T )

(
(1 − Y )ϑδ1u + Y ϑδ2u

))
dX∗

u + 1(T1≤t≤T )(Y − p)
(
V δ2,∗
T1

− V δ1,∗
T1

)
.

�

Example 6.3.8 We now extend Example 6.3.7 by specifying the payment process, the
forward rate dynamics and the function γ. Hence, we still assume that Y = Y1 ∈ {0, 1}
with 1 − P (Y = 0) = P (Y = 1) = p, p ∈ (0, 1). Consider a company, which at time 0
wants to hedge a claim of 1 at time T , i.e. ∆AT = 1. Without loss of generality we assume
T = T̃ + T1. To model the dynamics of the forward rates, we let σ be given by

σ(t, τ) = ce−a(τ−t),

for some positive constants c and a. Here, as in practice, fluctuations of the forward rates
dampen exponentially as a function of time to maturity. Using that

∫ τ

t
σ(t, u)du =

∫ τ

t
ce−a(u−t)du =

c

a

(
1 − e−a(τ−t)

)
,

we obtain the following forward rate dynamics under Q for 0 ≤ t ≤ τ ≤ Tit + T̃ :

df(t, τ) =
c2

a
e−a(τ−t)

(
1 − e−a(τ−t)

)
dt+ ce−a(τ−t)dWQ

t . (6.3.14)

To model the extension of the forward rate curve at time T1 we assume γ is given by

γs =
1

T − T̃
(k1Y + k2(1 − Y )) , (6.3.15)

for some constants k1 and k2. Thus, the forward rate curve is continued by a straight line
with slope k1/(T − T̃ ) or k2/(T − T̃ ). In order to obtain the F-risk-minimizing strategy
under Q0 we now consider the complete model (B,S,FT1), where Y is known. Proposition
6.2.3 gives the following expression for the short rate

rt =

{
f(0, t) +

∫ t
0 df(s, t), t ≤ T̃ ,

f(0, T̃ ) +
∫ T1

0 df(s, T̃ ) +
∫ teT γsds+

∫ t
T1
df(s, t), t > T̃ .

(6.3.16)

We note from (6.3.16) that rt depends on Y for t > T̃ . Inserting (6.3.14) and (6.3.15) in
(6.3.16) gives

rt =

{
m(t) +

∫ t
0 ce

−a(t−s)dWQ
s , t ≤ T̃ ,

m(t, Y ) +
∫ t
T1
ce−a(t−s)dWQ

s , t > T̃ ,

where we have defined

m(t) = f(0, t) +
c2

2a2

(
1 − e−at

)2
, t ≤ T̃ ,
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and

m(t, Y ) = f(0, T̃ ) +
c2

2a2

((
1 − e−a

eT)2
−
(
1 − e−a(

eT−T1)
)2

+
(
1 − e−a(t−T1)

)2
)

+
t− T̃

T − T̃
(k1Y + k2(1 − Y )) +

∫ T1

0
ce−a(

eT−s)dWQ
s , t > T̃ .

Using Itô’s formula we now obtain the short rate dynamics

drt =

{
(φ(t) − art) dt + cdWQ

t , t ≤ T̃ ,

(φ(t, Y ) − art) dt+ cdWQ
t , t > T̃ ,

(6.3.17)

where

φ(t) = am(t) +
∂

∂t
m(t) and φ(t, Y ) = am(t, Y ) +

∂

∂t
m(t, Y ).

Hence, given Y the short rate follows an extended Vasiček model under Q. The result is
well-known for t ≤ T̃ , where rt is independent of Y , see e.g. Musiela and Rutkowski (1997).
From (6.3.17) we observe that the drift and the squared diffusion both are affine in r, such
that an extended Vasiček model for the short rate leads to an affine term structure, see
e.g. Björk (2004, Proposition 22.2). Thus, in the conditional model we have the following
expression for the unique arbitrage free price at time t for 1 unit at time T :

P δY +1(t, T ) = exp(A(t, T, Y ) −B(t, T )rt), (6.3.18)

with A(t, T, Y ) and B(t, T ) given by

B(t, T ) =
1

a

(
1 − e−a(T−t)

)
, (6.3.19)

A(t, T, Y ) =

∫ T

t

1

2
c2B2(s, T )ds −

∫ eT
t
φ(s)B(s, T )ds−

∫ TeT φ(s, Y )B(s, T )ds.

Even though B in general is allowed to depend on Y , it is not the case here, so we
have omitted Y in the notation for B. Note that we have used the notation P δY +1(t, T )
even though the bond is not traded. Applying Itô’s formula to (6.3.18) and using the
differential equations for A and B from Björk (2004, Proposition 22.2), we obtain the
following Q-dynamics for the price process P δY +1(t, T ):

dP δY +1(t, T ) = rtP
δY +1(t, T )dt − cB(t, T )P δY +1(t, T )dWQ

t . (6.3.20)

Combining (6.2.19), (6.3.19) and (6.3.20) gives

dXt = rtXtdt− cB(t, Tit + T̃ )XtdW
Q
t . (6.3.21)

Note that at time t, t > T̃ , we have that Xt depends on Y through the short rate process.
However, if we consider the discounted price process, X∗, the dynamics are given by

dX∗
t = −cB(t, Tit + T̃ )X∗

t dW
Q
t ,
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such that X∗ is independent of Y . Comparing (6.3.20) and (6.3.21) we find that given Y
the replicating strategy is given by

ϑ
δY +1

t =
B(t, T )P δY +1(t, T )

B(t, Tit + T̃ )Xt

=
B(t, T )P δY +1,∗(t, T )

B(t, Tit + T̃ )X∗
t

. (6.3.22)

Since

V
δY +1,∗
t = e−

R t
0 ruduP δY +1(t, T ) = P δY +1,∗(t, T ),

we have

V 0,∗
t = 1(0≤t<T1)

(
(1 − p)P δ1,∗(t, T ) + pP δ2,∗(t, T )

)

+ 1(T1≤t≤T )

(
(1 − Y )P δ1,∗(t, T ) + Y P δ2,∗(t, T )

)
. (6.3.23)

Inserting (6.3.22) and (6.3.23) in the results from Example 6.3.7 gives the following risk-
minimizing strategy:

ϑ0
t =

1

X∗
t

(
1(0≤t≤T1)

B(t, T )

B(t, Tit + T̃ )

(
(1 − p)P δ1,∗(t, T ) + pP δ2,∗(t, T )

)

+ 1(T1<t≤T )

(
(1 − Y )P δ1,∗(t, T ) + Y P δ2,∗(t, T )

))
, (6.3.24)

and

η0
t =





(1 − p)P δ1,∗(t, T ) + pP δ2,∗(t, T ) −
(
(1 − p)ϑδ1t + pϑδ2t

)
X∗
t , 0 < t < T1,

(1 − Y )P δ1,∗(t, T ) + Y P δ2,∗(t, T ) −
(
(1 − p)ϑδ1t + pϑδ2t

)
X∗
t , t = T1,

0, T1 < t ≤ T.

(6.3.25)

Investigating (6.3.24) and (6.3.25) we note that for t > T1 the risk-minimizing strategy
consists of P δY +1,∗(t, T )/X∗

t units of the risky asset, which at this time corresponds to
investing in bonds with maturity T . Hence, holding P δY +1,∗(t, T )/X∗

t units of the risky
asset is equivalent to holding one bond with maturity T , which in turn is the replicating
strategy. The Galtchouk–Kunita–Watanabe decomposition is given by

V 0,∗
t = (1 − p)P δ1,∗(0, T ) + pP δ2,∗(0, T )

+

∫ t

0

1

X∗
u

(
1(0≤u≤T1)

B(u, T )

B(u, Tiu + T̃ )

(
(1 − p)P δ1,∗(u, T ) + pP δ2,∗(u, T )

)

+1(T1<u≤T )

(
(1 − Y )P δ1,∗(u, T ) + Y P δ2,∗(u, T )

))
dX∗

u

+ 1(T1≤t≤T )(Y − p)
(
P δ2,∗(T1, T ) − P δ1,∗(T1, T )

)
.

�
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6.4 A practical implementation of the model

In this section we discuss a possible implementation of the model. Without loss of gen-
erality we assume that new bonds are issued at time 0, such that at time 0 the time to
maturity of the longest traded bond is T̃ .

At time 0 we observe the bond prices in the market. Assuming the forward rates are
given by a parametric model, with parameter θ ∈ Θ, we estimate the value of θ, say
θ0, which gives the best correspondence with the observed bond prices. For a possible
parametrization we refer to Svensson (1995), who considers an extension of the so-called
Nelson–Siegel parametrization; see Nelson and Siegel (1987) for the original Nelson–Siegel
parametrization. Now let the initial forward rate curve at time 0, (f(0, τ))

0≤τ≤ eT , be given

by the estimated forward rate curve (f θ0(0, τ))0≤τ≤ eT . In addition to the initial forward

rate curve we, for later purpose, use θ0 to estimate f θ0(0, T1 + T̃ ). Given a model for
the forward rate dynamics we simulate the forward rate vector (f(T1, τ))T1≤τ≤eT and the

point f θ0(T1, T1 + T̃ ). The forward rate f(T1, T1 + T̃ ) is now drawn from a distribution
(estimated from historical data) with mean f θ0(T1, T1 + T̃ ). To obtain the forward rate
curve at time T1 after the issue of new bonds we combine f(T1, T̃ ) and f(T1, T1 + T̃ ) by
a method giving a smooth extension of the forward rate curve. One possibility is the
method of cubic splines, see e.g. Press, Flannery, Teukolsky and Vetterling (1986). Using
the parametric forward rate model, we now estimate the parameter θ1, which gives the
best correspondence with the forward rate curve at time T1. The estimated parameter is
only used to estimate f θ1(T1, T2 + T̃ ). Starting from the forward rate curve at time T1,
(f(T1, T1 + τ))0≤τ≤ eT , and f θ1(T1, T2 + T̃ ) the procedure above is repeated to determine
the forward rate curve at time T2, and in turn the forward rate curve at any future time.

When implementing the model as described above we have the standard problems of es-
timating the initial forward rate curve from the observed bond prices and modelling the
forward rates. In addition we have the model related problem of determining the distrib-
ution of f(Ti, Ti + T̃ ), i ∈ {1, . . . , n}. We note, however, that we avoid a direct modelling
of γi. Instead γi is given indirectly by f θi−1(Ti, Ti + T̃ ), the estimated distribution with
mean f θi−1(Ti, Ti + T̃ ) and the chosen smoothing method.



Chapter 7

Valuation and Hedging of

Unit-Linked Life Insurance

Contracts Subject to

Reinvestment and Mortality Risks

(This chapter is an adapted version of Dahl (2005d))

This paper considers the problem of valuating and hedging a portfolio of unit-linked life
insurance contracts, which are subject to several hedgeable and unhedgeable sources of
risk. In Chapter 4 we consider a portfolio of life insurance contracts with deterministic
payoffs which are subject to hedgeable interest rate risk as well as unhedgeable systematic
and unsystematic mortality risk. Here, we extend this setup by considering a portfolio
of unit-linked life insurance contracts, which are subject to both hedgeable and unhedge-
able financial risk, as well as unhedgeable systematic and unsystematic mortality risk.
The unhedgeable financial risk is the reinvestment risk, described in Chapter 6, which is
present in bond markets, where only bonds with a limited time to maturity are traded. In
addition to the bond market, the financial market consists of a stock, whose price process
is correlated to the bond prices. To model the underlying mortality intensity we apply
a time-inhomogeneous Cox–Ingersoll–Ross model, as proposed in Chapter 4. Within the
combined model, we study a general set of equivalent martingale measures and determine
market reserves by applying these measures. As an alternative to the market reserves we
derive mean-variance indifference prices. To quantify and control the risk of the insurance
company, we derive risk-minimizing strategies and the optimal strategies associated with
the mean-variance indifference prices.
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7.1 Introduction

In Chapter 4 we derive optimal hedging strategies and market values for standard life
insurance contracts with fixed payments, in the presence of systematic and unsystematic
mortality risk. Here, we extend this work by considering unit-linked life insurance con-
tracts, which in addition to hedgeable financial risk and unhedgeable systematic and un-
systematic mortality risk, are subject to an unhedgeable financial risk. This unhedgeable
financial risk is the so-called reinvestment risk present in bond markets, where only bonds
with a limited time to maturity are traded. The extension to unit-linked life-insurance
contracts without reinvestment risk is trivial, since the financial market remains complete
after the addition of a stock. Hence, the main contribution of this paper is the inclusion
of the unhedgeable reinvestment risk, such that we obtain a more refined model for the
uncertainty associated with (unit-linked) life insurance contracts.

In order to model the reinvestment risk we apply the model proposed in Chapter 6. Hence,
we initially consider a standard continuous-time bond market model with some fixed finite
time horizon, which is smaller than the time horizon of the considered payment process.
At fixed times new bonds are issued in the market, such that we immediately after the
issue of new bonds consider a standard model similar to the initial one. The entry prices
of the new bonds depend on the prices of existing bonds and some independent random
variable, whose outcome determines the extension of the forward rate curve. In addition to
the bonds, the financial market consists of a stock, which is correlated to the bonds. As in
Chapter 4 we model the mortality intensity by a time-inhomogeneous Cox–Ingersoll–Ross
(CIR) model, such that we obtain an affine mortality structure, see Chapter 3.

Within this setting, we apply financial theory for pricing and hedging the payment process
generated by a portfolio of unit-linked life insurance contracts. We study a fairly general
set of equivalent martingale measures for the model and derive market reserves, which
depend on the market’s attitude towards systematic and unsystematic mortality risk as
well as reinvestment risk. Similarly to Chapter 4 we derive risk-minimizing strategies
and mean-variance indifference prices and optimal hedging strategies. The derivation of
risk-minimizing strategies consists of a two-step procedure. First we disregard the rein-
vestment risk and derive the risk-minimizing strategies in the case of a complete financial
market. The strategies obtained here are essentially identical to the ones in Chapter 4.
The second step is to apply the result of Schweizer (1994) for risk-minimization under
restricted information to derive the risk-minimizing strategies in the case, where we also
consider reinvestment risk. This two-step procedure has also been applied in Chapter 6.

The paper is organized as follows: In Section 7.2 we introduce the various sub-models.
These include the financial market and the mortality and insurance portfolio. Section 7.3
introduces the combined model, the payment process, market reserves and the financial
terminology necessary to define trading strategies in the present model. Risk-minimizing
strategies are obtained in Section 7.4, and in Section 7.5 we derive mean-variance indiffer-
ence prices and optimal hedging strategies for a portfolio of unit-linked pure endowments.
Proofs and calculations of some technical results can be found in Section 7.6.
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7.2 The sub-models

Let T̂ be a fixed time horizon and (Ω,F , P ) a probability space with a filtration F =
(F(t))0≤t≤ bT satisfying the usual conditions of right-continuity and completeness. In addi-
tion to the filtration F, which contains all available information, we shall consider several
sub-filtrations.

7.2.1 The financial market

The model for the financial market consists of the bond market model in Chapter 6 with
the inclusion of a stock. Here, we first give a brief introduction to the model. A detailed
review of the bond market model is then given in Section 7.2.1.

Consider a financial market consisting of three traded assets: A savings account with price
process B and two risky assets with price processes Z and S. Here, Z is a price process
generated by investing in bonds (see Section 7.2.1 for more details), and S is the price
process for a stock. The P -dynamics of the traded assets are

dB(t) = r(t)B(t)dt, B(0) = 1, (7.2.1)

dZ(t) =
(
r(t) + hf (t)σz(t)

)
Z(t)dt− σz(t)Z(t)dW f (t), Z(0) = 1, (7.2.2)

dS(t) = (r(t) + ρs(t))S(t)dt − σs(t)S(t)dW f (t) + βs(t)S(t)dW s(t), S(0) > 0, (7.2.3)

where

ρs(t) = σs(t)hf (t) − βs(t)hs(t). (7.2.4)

Here, (W f (t))0≤t≤ bT and (W s(t))0≤t≤ bT are independent Wiener processes under P on the

interval [0, T̂ ]. In (7.2.2)–(7.2.4) the process r is the stochastic rate of interest. The dy-
namics of r are assumed to be driven by W f only. Furthermore we introduce the notation
X = (Z,S)tr , where atr denotes the vector a transposed, and let G

x = (Gx(t))
0≤t≤ bT be the

filtration generated by X , i.e. by W f and W s. In addition to the uncertainty generated
by the traded assets, we observe a sequence Y = (Yi)i=1,...,m of mutually independent
random variables independent of W f and W s. The observation times of Y are given by
the sequence 0 = T0 < T1 < . . . < Tm ≤ T , where Ti is the observation time for Yi and T ,
T ≤ T̂ , is the terminal time of the considered payment process, see Section 7.3.2. Let G

y

be the natural filtration generated by Y , i.e.

Gy(t) = σ{(Yi)i=1,...,m, Ti ≤ t}.
The outcome of the Yi’s influences the future values of the stochastic short rate r through
the coefficient functions in the dynamics of r. We are now in a position to define G, which
is the total filtration generated by the financial market, i.e. G(t) = Gy(t)∨Gx(t). In (7.2.2)–
(7.2.4) the processes σz, σs and βs are G-adapted, whereas hf and hs are G

x-adapted. In
addition to the filtrations above we shall consider the enlarged filtrations

G
Ti = (GTi(t))0≤t≤ bT = (G(t) ∨ Gy(Ti))0≤t≤ bT , i ∈ {0, . . . ,m}.
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We immediately note that G = G
T0 = G

0. For i ∈ {1, . . . ,m} the interpretation of
the filtration G

Ti is that (Yj)j=1,...,i are known at time 0. Furthermore, we note that if
we consider the filtration G

Ti and the time interval [0, Ti+1) then the financial market is
complete. Hence in particular, when considering G

Tm the financial market is complete.

Remark 7.2.1 The fact that hf and hs are G
x-adapted is an assumption, which we

impose in order to simplify the calculations in Section 7.5.
�

The bond market

Here, we review the bond market model including reinvestment risk proposed in Chapter
6.

Let P (t, τ) denote the price at time t of a zero coupon bond maturing at time τ . To avoid
arbitrage we assume P (t, τ) is strictly positive and P (t, t) = 1 for all t. An important
quantity when modelling bond prices is the (instantaneous) forward rate with maturity
date τ contracted at time t defined by

f(t, τ) = −∂ logP (t, τ)

∂τ
, (7.2.5)

or, stated differently,

P (t, τ) = e−
R τ

t
f(t,u)du. (7.2.6)

The forward rate f(t, τ) can be interpreted as the riskfree interest rate, contracted at time
t over the infinitesimal interval [τ, τ + dτ). The short rate process (r(t))0≤t≤ bT is defined
as r(t) = f(t, t).

Now introduce two additional fixed time horizons T̃ and T , where T̃ ≤ T ≤ T̂ . Here, T̃ , T
and T̂ , respectively, describe the upper limit for the time to maturity of a bond traded in
the market, the terminal time of the considered payment process and the last time where
trading is possible in the bond market, i.e. “the end of the world”. Thus, at any time t
the time to maturity of the longest traded bond is less than or equal to T̃ . The sequence
0 = T0 < T1 < . . . < Tm ≤ T describes the times, where new bonds are issued in the
market. At time Ti new bonds are issued such that all bonds with time to maturity less
than or equal to T̃ are traded. To ensure that at all times, bonds are traded in the market,
we assume that T̃ ≥ maxi=1,...,m(Ti − Ti−1) and T̂ = Tm + T̃ . The illustration in Figure

7.2.1 shows one possible ordering of T1, . . . , Tm, T and T̃ in the case m = 3.

For fixed t we define

it = sup {0 ≤ i ≤ m|Ti ≤ t} , (7.2.7)

such that Tit is the last time new bonds are issued prior to time t (time t included).
Thus, the time of maturity, τ , of the bonds traded in the bond market at time t satisfy
t ≤ τ ≤ Tit + T̃ .
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?

Today

T0 = 0 T1

?

Issue of new bonds
with maturity
τ ∈ ( eT , T1 + eT ]

?

Maturity of longest
bond traded today

eT T2

?

Issue of new bonds
with maturity
τ ∈ (T1 + eT, T2 + eT ]

T1 + eT?

Maturity of longest
bond issued at time T1

T = T3

?

Terminal time of
payment process

T2 + eT?

Maturity of longest
bond issued at time T2 bT = T + eT?

“End of the world”

Figure 7.2.1: Illustration of T1, T2, T3, T̃ , T and T̂ .

Since it is inconvenient to model the bond prices directly, we model the forward rate
dynamics, as proposed in Heath et al. (1992). The connection between forward rates and
bond prices established in (7.2.5) and (7.2.6) then gives the dynamics of the bond prices.
For 0 ≤ t ≤ τ ≤ Tit + T̃ we assume that the forward rate dynamics under P are given by

df(t, τ) = σf (t, τ)

(∫ τ

t
σf (t, u)du − hf (t)

)
dt+ σf (t, τ)dW f (t), (7.2.8)

where σf is G-adapted. As noted above forward rates for all maturities are not defined
at time 0. They are introduced at the times of issue of new bonds. To model the initial
value of the forward rates introduced at time Ti, i ∈ {1, . . . ,m}, we assume that for
Ti−1 + T̃ < τ ≤ Ti + T̃ it holds that

f(Ti, τ) = f(Ti, Ti−1 + T̃ ) +

∫ τ

Ti−1+eT γi(u)du. (7.2.9)

Here, γi is an G(Ti)-measurable function, i.e each γi(u) is G(Ti)-measurable for u ∈
(Ti−1 + T̃ , Ti + T̃ ], and Y = (Yi)i=1,...,m is sequence of mutually independent random
variables independent of W f with distribution functions (FPi )i=1,...,m. Hence, Yi describes
the unhedgeable uncertainty associated with the initial prices of bonds issued at time Ti.

Using Björk (2004, Proposition 20.5) we obtain the following P -dynamics for the price
process of a bond with maturity τ , 0 ≤ t ≤ τ ≤ Tit + T̃ :

dP (t, τ) =
(
r(t) + hf (t)σp(t, τ)

)
P (t, τ)dt − σp(t, τ)P (t, τ)dW f (t), (7.2.10)

where we have defined

σp(t, τ) =

∫ τ

t
σf (t, u)du.

When trading in the bond market it is sufficient to consider investments in a savings
account with dynamics (7.2.1), and an asset with price process Z generated by investing 1
unit at time 0 and at times 0 ≤ t ≤ T̂ investing in the longest bond traded in the market.
The dynamics of Z are given by

dZ(t) = Z(t)
dP (t, Tit + T̃ )

P (t, Tit + T̃ )
, Z(0) = 1.
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Inserting the bond price dynamics from (7.2.10) and defining

σz(t) = σp(t, Tit + T̃ ),

we get the dynamics in (7.2.2).

7.2.2 Modelling the mortality

In order to model the uncertainty associated with the future mortality intensities we use
the model proposed in Chapter 4. Let µ◦ = (µ◦(x))x≥0 be a given initial curve for the
mortality intensity at all ages. It is assumed that µ◦(x) is continuously differentiable
as a function of x. Here, and in the following we neglect the gender aspect. For an
individual aged x at time 0, the future mortality intensity is viewed as a stochastic process
µ(x) = (µ(x, t))

0≤t≤ bT with the property that µ(x, 0) = µ◦(x). In principle, one can view
µ = (µ(x))x≥0 as an infinitely dimensional process.

We model changes in the mortality intensity via a strictly positive infinite dimensional
process ζ = (ζ(x, t))

x≥0,t∈[0, bT ]
with the property that ζ(x, 0) = 1 for all x. The filtration

I = (I(t))t∈[0, bT ] is the natural filtration of the underlying process ζ. The mortality intensity

process is then modelled via

µ(x, t) = µ◦(x+ t)ζ(x, t). (7.2.11)

Thus, ζ(x, t) describes the relative change in the mortality intensity from time 0 to t for
a person of age x+ t. The true survival probability is defined by

S(x, t, T ) = EP
[
e−

R T

t
µ(x,τ)dτ

∣∣∣ I(t)
]
, (7.2.12)

and the related martingale is given by

SM (x, t, T ) = EP
[
e−

R T

0
µ(x,τ)dτ

∣∣∣ I(t)
]

= e−
R t

0
µ(x,τ)dτS(x, t, T ). (7.2.13)

In general, we can consider survival probabilities under various equivalent probability
measures. This is discussed in more detail in Section 7.3.1.

The process ζ(x) is modelled via a so-called time-inhomogeneous CIR model

dζ(x, t) =
(
γζ(x, t) − δζ(x, t)ζ(x, t)

)
dt+ σζ(x, t)

√
ζ(x, t)dW µ(t), (7.2.14)

where γζ , δζ and σζ are known functions and W µ is a Wiener process under P on the
interval [0, T̂ ]. Here, and in the following, we assume that 2γζ(x, t) ≥ (σζ(x, t))2, such
that ζ is strictly positive, see Maghsoodi (1996). It now follows via Itô’s formula that

dµ(x, t) = (γµ(x, t) − δµ(x, t)µ(x, t)) dt + σµ(x, t)
√
µ(x, t)dW µ(t), (7.2.15)
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where

γµ(x, t) = γζ(x, t)µ◦(x+ t), (7.2.16)

δµ(x, t) = δζ(x, t) −
d
dtµ

◦(x+ t)

µ◦(x+ t)
, (7.2.17)

σµ(x, t) = σζ(x, t)
√
µ◦(x+ t). (7.2.18)

This shows that µ also follows an time-inhomogeneous CIR model. Furthermore µ is
strictly positive as well. Since we have an affine mortality structure, see Theorem 3.3.6,
the survival probability is given by

S(x, t, T ) = eA
µ(x,t,T )−Bµ(x,t,T )µ(x,t),

where

∂

∂t
Bµ(x, t, T ) = δµ(x, t)Bµ(x, t, T ) +

1

2
(σµ(x, t))2(Bµ(x, t, T ))2 − 1, (7.2.19)

∂

∂t
Aµ(x, t, T ) = γµ(x, t)Bµ(x, t, T ), (7.2.20)

with Bµ(x, T, T ) = 0 and Aµ(x, T, T ) = 0. In this case the forward mortality intensities
are given by

fµ(x, t, T ) = − ∂

∂T
logS(x, t, T ) = µ(x, t)

∂

∂T
Bµ(x, t, T ) − ∂

∂T
Aµ(x, t, T ). (7.2.21)

7.2.3 The insurance portfolio

Consider an insurance portfolio consisting of n insured lives of the same age x. We assume
that the individual remaining lifetimes at time 0 of the insured are described by a sequence
D1, . . . ,Dn of identically distributed non-negative random variables. Moreover, we assume
that

P (D1 > t|I(T̂ )) = e−
R t
0 µ(x,s)ds, 0 ≤ t ≤ T̂ ,

and that the censored lifetimes Dc
i = Di1(Di≤ bT ) + T̂1(Di> bT ), i = 1, . . . , n, are i.i.d. given

I(T̂ ). Thus, given the development of the underlying process ζ(x), the mortality intensity
at time s is µ(x, s).

Now define a counting process N(x) = (N(x, t))0≤t≤ bT by

N(x, t) =
n∑

i=1

1(Di≤t).

Hence, N(x) keeps track of the number of deaths in the portfolio of insured lives. We
denote by H = (H(t))

0≤t≤ bT the natural filtration generated by N(x). It follows that N(x)



190 CHAPTER 7. A MODEL WITH REINVESTMENT AND MORTALITY RISKS

is an (H ∨ I)-Markov process. The stochastic intensity process λ(x) = (λ(x, t))0≤t≤ bT of
N(x) under P can now be informally defined by

λ(x, t)dt ≡ EP [dN(x, t)| H(t−) ∨ I(t)] = (n−N(x, t−))µ(x, t)dt, (7.2.1)

which is given by the product of the number of survivors and the mortality intensity. It
is well-known that the compensated counting process M(x) = (M(x, t))

0≤t≤ bT defined by

dM(x, t) = dN(x, t) − λ(x, t)dt, 0 ≤ t ≤ T̂ , (7.2.2)

is an (H ∨ I, P )-martingale.

7.3 The combined model

Assume that the filtration F = (F(t))0≤t≤ bT introduced earlier is given by

F(t) = G(t) ∨H(t) ∨ I(t).

Thus, F is the filtration for the combined model of the financial market, the mortality
intensity and the insurance portfolio. Moreover, we assume that the financial market is
stochastically independent of the development of the insurance portfolio and the mortality
intensity, i.e. G(T̂ ) and (H(T̂ ),I(T̂ )) are independent. In particular, this implies that the
properties of the underlying processes are preserved. For example, M(x) is also an (F, P )-
martingale, and the (F, P )-intensity process is identical to the (H∨ I, P )-intensity process
λ(x).

7.3.1 A class of equivalent martingale measures

The combined model allows for infinitely many equivalent martingale measures, such that
the model is arbitrage free, but not complete, see e.g. Björk (2004, Chapter 10). In order
to perform a simultaneous change of measure for the Wiener processes W f , W s and W µ,
and the counting process N(x), we consider the likelihood process

dΛ(t) = Λ(t−)

(
hf (t)dW f (t) + hs(t)dW s(t) + hµ(t)dW µ(t) + g(x, t)dM(x, t)

)
, (7.3.1)

with Λ(0) = 1. In addition to Λ, we define the likelihood process O, which leads to a
change of measure for Y , by

O(t) =

it∏

j=1

(1 + oj(Yj)) , (7.3.2)

for some functions oj , j ∈ {1, . . . ,m}, satisfying oj(y) > −1 for all y in the support of Yj
and EP [oj(Yj)] = 0. Here, it is defined in (7.2.7) and

∏it
j=1 is interpreted as 1 if t < T1
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(and thus it = 0). We assume that EP [Λ bTObT ] = 1 and define an equivalent martingale
measure Q via

dQ

dP
= Λ(T̂ )O(T̂ ). (7.3.3)

In the following, we describe the terms in (7.3.1) and (7.3.2) in more detail. The processes
hf and hs are related to the change of measure for the financial market. Girsanov’s
theorem gives that under Q defined by (7.3.1)–(7.3.3), W f,Q(t) = W f (t) −

∫ t
0 h

f (u)du

and W s,Q(t) = W s(t) −
∫ t
0 h

s(u)du are independent Wiener processes, such that the Q-
dynamics of Z and S are given by

dZ(t) = r(t)Z(t)dt− σz(t)Z(t)dW f,Q(t), (7.3.4)

dS(t) = r(t)S(t)dt − σs(t)S(t)dW f,Q(t) + βs(t)S(t)dW s,Q(t). (7.3.5)

Hence, the specification of the financial market ensures that under any Q given by (7.3.3)
the discounted price processes are Q-martingales.

The term involving hµ leads to a change of measure for the Wiener process which drives
the mortality intensity process µ. Hence, W µ,Q(t) = W µ(t)−

∫ t
0 h

µ(u)du defines a Wiener
process under Q. Here, as in Chapter 4, we restrict ourselves to hµ’s of the form

hµ(t, ζ(x, t)) = −β(x, t)

√
ζ(x, t)

σζ(x, t)
+

β∗(x, t)

σζ(x, t)
√
ζ(x, t)

(7.3.6)

for some continuous functions β and β∗. In this case the Q-dynamics of ζ(x) are given by

dζ(x, t) =
(
γζ,Q(x, t) − δζ,Q(x, t)ζ(x, t)

)
dt+ σζ(x, t)

√
ζ(x, t)dW µ,Q(t),

where

γζ,Q(x, t) = γζ(x, t) + β∗(x, t), (7.3.7)

δζ,Q(x, t) = δζ(x, t) + β(x, t). (7.3.8)

Hence, ζ follows a time-inhomogeneous CIR under Q as well. For (7.3.1) and (7.3.2) to
define an equivalent martingale measure it must hold that ζ is strictly positive under Q.
Thus, we observe from (7.3.7) that a necessary condition is β∗(x, t) ≥ (σζ(x, t))2/2 −
γζ(x, t). The Q-dynamics of µ(x) are given by

dµ(x, t) =
(
γµ,Q(x, t) − δµ,Q(x, t)µ(x, t)

)
dt+ σµ(x, t)

√
µ(x, t)dW µ,Q(t), (7.3.9)

where γµ,Q(x, t) and δµ,Q(x, t) are given by (7.2.16) and (7.2.17) with γζ(x, t) and δζ(x, t)
replaced by γζ,Q(x, t) and δζ,Q(x, t), respectively. If hµ = 0, i.e. if the dynamics of ζ
(and µ) are identical under P and Q, we say the market is risk-neutral with respect to
systematic mortality risk.

The last term in (7.3.1) involves a predictable process g(x) > −1. This term affects the
intensity for the counting process. More precisely, it can be shown, see e.g. Andersen
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et al. (1993), that the intensity process under Q is given by λQ(x, t) = (1 + g(x, t))λ(x, t).
Using (7.2.1), we see that

λQ(x, t) = (n−N(x, t−))(1 + g(x, t))µ(x, t),

such that µQ(x, t) = (1+g(x, t))µ(x, t) can be interpreted as the mortality intensity under
Q. Hence, the process MQ(x) = (MQ(x, t))0≤t≤ bT defined by

dMQ(x, t) = dN(x, t) − λQ(x, t)dt, 0 ≤ t ≤ T̂ , (7.3.10)

is an (F, Q)-martingale. If g(x) = 0, the market is said to be risk-neutral with respect
to unsystematic mortality risk. This choice of g can be motivated by the law of large
numbers. In this paper, we restrict the analysis to the case, where g(x) is a deterministic,
continuously differentiable function.

With O given by (7.3.2) the distribution function of Yi, i ∈ {1, . . . ,m}, under Q is given
by

FQi (y) =

∫ y

−∞
(1 + oi(z))dF

P
i (z).

If oi = 0 for all i the market is called risk-neutral with respect to reinvestment risk. The
measures considered are particularly simple, since the independence between Gx(T̂ ), Gy(T̂ )
and (H(T̂ ),I(T̂ )) as well as the mutual independence of the Yi’s are preserved under Q.

Now define the Q-survival probability and the associated Q-martingale by

SQ(x, t, T ) = EQ
[
e−

R T
t
µQ(x,τ)dτ

∣∣∣ ζ(x, t)
]

and

SQ,M(x, t, T ) = EQ
[
e−

R T
0 µQ(x,τ)dτ

∣∣∣ ζ(x, t)
]

= e−
R t
0 µ

Q(x,τ)dτSQ(x, t, T ).

Calculations similar to those in Section 7.2.2 give the following Q-dynamics of µQ(x):

dµQ(x, t) =
(
γµ,Q,g(x, t) − δµ,Q,g(x, t)µQ(x, t)

)
dt+ σµ,g(x, t)

√
µQ(x, t)dW µ,Q, (7.3.11)

where

γµ,Q,g(x, t) = (1 + g(x, t))γµ,Q(x, t),

δµ,Q,g(x, t) = δµ,Q(x, t) −
∂
∂tg(x, t)

1 + g(x, t)
,

σµ,g(x, t) =
√

1 + g(x, t)σµ(x, t).

Since the drift and squared diffusion terms in (7.3.11) are affine in µQ(x, t) we have an
affine mortality structure under Q. Hence, we have the following expression for the Q-
survival probability:

SQ(x, t, T ) = eA
µ,Q(x,t,T )−Bµ,Q(x,t,T )(1+g(x,t))µ(x,t),
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where Aµ,Q and Bµ,Q are determined from (7.2.19) and (7.2.20) with γµ(x, t), δµ(x, t) and
σµ(x, t) replaced by γµ,Q,g(x, t), δµ,Q,g(x, t) and σµ,g(x, t), respectively. Furthermore, the
dynamics of SQ,M(x, ·, T ) are given by

dSQ,M(x, t, T ) = −(1 + g(x, t))σµ(x, t)
√
µ(x, t)Bµ,Q(x, t, T )SQ,M (x, t, T )dW µ,Q(t),

(7.3.12)

and the Q-forward mortality intensities by

fµ,Q(x, t, T ) = − ∂

∂T
log SQ(x, t, T ) = µQ(x, t)

∂

∂T
Bµ,Q(x, t, T ) − ∂

∂T
Aµ,Q(x, t, T ).

(7.3.13)

7.3.2 The payment process

The total benefits less premiums on the insurance portfolio is described by a payment
process A, where dA(t) are the net payments to the policy-holders during an infinitesimal
interval [t, t+ dt). For 0 ≤ t ≤ T we let A be of the form

dA(t) = −nπ(0)d1(t≥0) + (n−N(x, T ))∆A0(T )d1(t≥T )

+ a0(t)(n−N(x, t))dt + a1(t)dN(x, t), (7.3.14)

where π(0) is a constant, a0 and a1 are G-adapted processes and ∆A0(T ) is G(T )-
measurable. The first term, nπ(0) is the single premium paid at time 0 by all policy-
holders. The second term involves a fixed time T ≤ T , which represents the retirement
time of the insured. This term states that each of the surviving policy-holders receive the
amount ∆A0(T ) upon retirement. The third term involves the process a0 given by

a0(t) = −πc(t)1(0≤t<T ) + ap(t)1(T≤t≤T ),

where πc(t) are continuous premiums paid by the policy-holders (as long as they are alive)
and ap(t) corresponds to a life annuity benefit received by the policy-holders. Finally, the
last term states that a1 is paid immediately upon a death.

Henceforth we consider an arbitrary but fixed equivalent martingale measure Q from the
class of measures introduced in Section 7.3.1. Since the payments a0(u) and a1(u) are G(u)-
measurable for all u ∈ [0, T ] and ∆A0(T ) is G(T )-measurable we can define the arbitrage
free prices with respect to the filtration G

Ti under the fixed equivalent martingale measure
Q by

F Ti,0(t, u) = EQ
[
e−

R u

t
r(τ)dτa0(u)

∣∣∣GTi(t)
]
,

F Ti,1(t, u) = EQ
[
e−

R u

t
r(τ)dτa1(u)

∣∣∣GTi(t)
]
,

F Ti,∆(t, T ) = EQ
[
e−

R T

t
r(τ)dτ∆A0(T )

∣∣∣∣GTi(t)

]
.

We note that since the model (B,X,GTm) is complete the functions (F Tm,0(t, u))t≤u≤T ,
(F Tm,1(t, u))t≤u≤T and F Tm,∆(t, T ) are unique for all t; in particular they are independent
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of the fixed equivalent martingale measure Q. Here, we restrict ourselves to payment
processes, where (F Tm,0(t, u))t≤u≤T , (F Tm,1(t, u))t≤u≤T and F Tm,∆(t, T ) are functions of
t and X(t), only. Henceforth, we shall apply the notation

ϑTi,c =
(
ϑTi,c,z, ϑTi,c,s

)
=

(
∂

∂z
F Ti,c,

∂

∂s
F Ti,c

)
=

∂

∂x
F Ti,c

for c ∈ {0, 1,∆}.

7.3.3 Market reserves

For each i, i ∈ {0, . . . ,m}, we define the process V Ti,∗ by

V Ti,∗(t) = EQ

[∫

[0,T ]
e−

R τ

0
rududA(τ)

∣∣∣∣∣F
Ti(t)

]
. (7.3.15)

Hence, V Ti,∗(t) is the conditional expected value with respect to the filtration F
Ti , calcu-

lated at time t, of discounted benefits less premiums, where all payments are discounted
to time 0. Using that the processes A and r are F

Ti-adapted for all i, and introducing the
discounted payment process A∗ defined by

dA∗(t) = e−
R t
0 r(u)dudA(t),

we see that

V Ti,∗(t) =

∫

[0,t]
e−

R τ

0
r(u)dudA(τ) + e−

R t

0
ruduEQ

[∫

(t,T ]
e−

R τ

t
r(u)dudA(τ)

∣∣∣∣∣F
Ti(t)

]

= A∗(t) + e−
R t

0
r(u)duṼ Ti(t). (7.3.16)

In the literature, the process V Ti,∗ has been called the intrinsic value process (with respect
to F

Ti), see Föllmer and Sondermann (1986) and Møller (2001c). The process Ṽ Ti repre-
sents the conditional expected value with respect to F

Ti , of future discounted payments.
We shall refer to this quantity as the F

Ti-market reserve. Using methods similar to those
in Møller (2001c) and Chapters 3 and 4, we obtain the following result.

Proposition 7.3.1
The F

Ti-market reserve, Ṽ Ti , is given by

Ṽ Ti(t) = (n−N(x, t))V̂ Ti(t), (7.3.17)

where

V̂ Ti(t) =

∫ T

t
SQ(x, t, τ)

(
F Ti,0(t, τ) + fµ,Q(x, t, τ)F Ti,1(t, τ)

)
dτ

+ SQ(x, t, T )F Ti,∆(t, T ). (7.3.18)



7.3. THE COMBINED MODEL 195

Here, the process V̂ Ti is interpreted as the individual F
Ti-market reserve given the insured

is alive.

In the remaining of the paper we work under the following assumption

Assumption 7.3.2 V̂ Tm(t, x, µ) ∈ C1,2,2, i.e. V̂ Tm(t, x, µ) is continuously differentiable
with respect to t and twice differentiable with respect to x and µ.

�

7.3.4 Trading in the financial market

As in Chapter 6 we follow the ideas of Møller (2001c) and define trading in the presence
of payment processes. Since we consider a fixed arbitrary equivalent martingale measure
Q for the model (B,X,F), we are working with the probability space (Ω,F , Q) and the
filtrations (FTi)i∈{0,...,m}.

An F
Ti-trading strategy is a process ϕ = (ϑ, η) satisfying certain integrability conditions,

where ϑ is F
Ti-predictable and η is F

Ti-adapted. The value process V(ϕ) associated with
ϕ is defined by

V(t, ϕ) = ϑ(t)X(t) + η(t)B(t), 0 ≤ t ≤ T̂ .

The pair ϕ(t) = (ϑ(t), η(t)) is interpreted as the portfolio held at time t. Here, ϑ = (ϑz, ϑs)
is a vector denoting, respectively, the number of assets with price process Z and S, and η
denotes the discounted deposit in the savings account.

The cost process associated with the pair (ϕ,A) is given by

C(t, ϕ) = V∗(t, ϕ) −
∫ t

0
ϑ(u)dX∗(u) +A∗(t). (7.3.19)

Here, and throughout, we denote by V∗ and X∗, respectively, the discounted value process
and the discounted price process of the risky assets. Thus, the cost process is the dis-
counted value of the investment portfolio reduced by discounted trading gains and added
the total discounted net payments to the policy-holders. The cost process is interpreted
as the company’s accumulated discounted costs during [0, t].

We say that a strategy ϕ is F
Ti-self-financing for the payment process A, if the cost process

is constant Q-a.s. with respect to F
Ti . In contrast to the classical definition of self-financing

strategies, we thus allow for exogenous deposits and withdrawals as represented by A. The
two definitions of self-financing strategies are equivalent if and only if the payment process
is constant Q-a.s. with respect to F

Ti . The interpretation of a self-financing strategy in
the presence of payment processes is that all fluctuations of the value process are either
generated by the trading strategy or due to the payment process. The payment process
A is called F

Ti-attainable, if there exist an F
Ti-self-financing strategy ϕ for A such that

V∗(T,ϕ) = 0 Q-a.s. with respect to F
Ti . Thus, A is F

Ti-attainable, if investing the initial
amount C(0, ϕ) according to the F

Ti-trading strategy ϕ leaves us with a portfolio value of 0
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after the settlement of all liabilities. Hence, if A is F
Ti-attainable the unique arbitrage free

price in (B,X,FTi) is C(0, ϕ). At any time t, there is no difference between receiving the
future payments of the F

Ti-attainable payment process A and holding the portfolio ϕ(t)
and investing according to the F

Ti-replicating strategy ϕ. Thus, a no arbitrage argument
gives that at any time t the price of future payments from A in (B,X,FTi) must be V(t, ϕ).
It can be shown that the payment process A is attainable if and only if the contingent
claim H = A(T ) with maturity T is (classically) attainable. If all contingent claims, and
hence all payment processes, are attainable, the model is called complete and otherwise it
is called incomplete.

7.4 Risk-minimization for unit-linked insurance contracts

The insurance payment process A may be subject to both unhedgeable reinvestment and
mortality risks. This implies that A typically cannot be replicated perfectly and priced
uniquely by trading in the financial market. In order to quantify and control the risk
associated with A we apply the criterion of risk-minimization proposed by Föllmer and
Sondermann (1986) for contingent claims and extended in Møller (2001c) to payment
processes. Here, we give a review of risk-minimization and derive risk-minimizing strategies
in the present set-up. The derivation consists two steps. First, we derive risk-minimizing
strategies in the case of a complete financial market and unhedgeable systematic and
unsystematic mortality risk; a study which also was carried out in Chapter 4 in a slightly
different financial market. Second, we extend to the case where A also is subject to
unhedgeable reinvestment risk.

7.4.1 A review of risk-minimization

Throughout this section, we consider a fixed but arbitrary filtration F
Ti , such that we are

working with the filtered probability space (Ω,F , Q,FTi).

The F
Ti-risk process associated with ϕ is defined by

RTi(t, ϕ) = EQ
[
(C(T,ϕ) − C(t, ϕ))2

∣∣FTi(t)
]
, (7.4.1)

where the cost process is defined in (7.3.19). Thus, the F
Ti-risk process is the conditional

expectation of the discounted squared future costs given the current available information
given by F

Ti . We shall use this quantity to measure the risk associated with (ϕ,A).
An F

Ti-trading strategy ϕ = (ϑ, η) is called F
Ti-risk-minimizing if for any t ∈ [0, T ] it

minimizes RTi(t, ϕ) over all F
Ti-trading strategies with the same value at time T . Since

V∗(T,ϕ) is the discounted value of the portfolio ϕ(T ) upon settlement of all liabilities a
natural restriction is to consider so-called 0-admissible strategies which satisfy

V∗(T,ϕ) = 0, Q-a.s.
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The construction of risk-minimizing strategies is based on the Galtchouk–Kunita–Wata-
nabe decomposition of the intrinsic value process

V Ti,∗(t) = V Ti,∗(0) +

∫ t

0
ϑTi,A(u)dX∗(u) + LTi(t). (7.4.2)

Here, LTi is a zero-mean square integrable (Q,FTi)-martingale which is orthogonal to X∗,
i.e. the process X∗LTi is a (Q,FTi)-martingale, and ϑTi,A is an F

Ti-predictable process.
We note that if A is F

Ti-attainable, then V Ti,∗(t) is the discounted unique arbitrage free
price at time t in (B,X,FTi) of future payments, and LTi = 0 Q-a.s. with respect to F

Ti .
The following theorem relates the risk-minimizing strategy and the associated risk process
to the Galtchouk–Kunita–Watanabe decomposition.

Theorem 7.4.1 (Møller (2001c))
There exists a unique 0-admissible F

Ti-risk-minimizing strategy ϕTi = (ϑTi , ηTi) for A
given by

(
ϑTi(t), ηTi(t)

)
=
(
ϑTi,A(t), V Ti,∗(t) −A∗(t) − ϑTi,A(t)X∗(t)

)
.

From Theorem 7.4.1 we immediately get that

V∗(t, ϕTi) = V Ti,∗(t) −A∗(t) (7.4.3)

such that the discounted value process associated with the F
Ti-risk-minimizing strategy

coincides with the F
Ti-intrinsic value process reduced by the discounted payments. In-

serting (7.4.1) and (7.4.3) in (7.3.19) it follows that the cost process associated with the
F
Ti-risk-minimizing strategy is given by

C(t, ϕTi) = V Ti,∗(0) + LTi(t). (7.4.4)

Hence, the cost process associated with the F
Ti-risk-minimizing strategy is an (FTi , Q)-

martingale. Inserting (7.4.4) in (7.4.1) we get that the so-called F
Ti-intrinsic risk process,

which is the risk process associated with the F
Ti-risk-minimizing strategy, is given by

RTi(t, ϕTi) = EQ
[(
LTi(T ) − LTi(t)

)2∣∣∣FTi(t)
]
. (7.4.5)

Note that the risk-minimizing strategy depends on the equivalent martingale measure Q.
In the literature, the so-called minimal martingale measure, see Section 7.5.2, has been
applied in order to determine risk-minimizing strategies, since this essentially corresponds
to the criterion of local risk-minimization, which is a criterion in terms of P , see Schweizer
(2001a).

7.4.2 Unhedgeable mortality risk

In this section we consider risk-minimization with respect to F
Tm . Hence, for now we

disregard the reinvestment risk, such that the only unhedgeable risks are the systematic
and unsystematic mortality risk. In this case we have the following result with respect to
the Galtchouk–Kunita–Watanabe decomposition of V Tm,∗.
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Lemma 7.4.2
The Galtchouk–Kunita–Watanabe decomposition of V Tm,∗ is given by

V Tm,∗(t) = V Tm,∗(0) +

∫ t

0
ϑTm,A(τ)dX∗(τ) + LTm(t), (7.4.6)

where

V Tm,∗(0) = −nπ(0) + nV̂ Tm(0), (7.4.7)

LTm(t) =

∫ t

0
νTm(τ)dMQ(x, τ) +

∫ t

0
κTm(τ)dSQ,M (x, τ, T ), (7.4.8)

and

ϑTm,A(t) = (n−N(x, t−))

(∫ T

t
SQ(x, t, τ)

(
ϑTm,0(t, τ) + fµ,Q(x, t, τ)ϑTm,1(t, τ)

)
dτ

+ SQ(x, t, T )ϑTm,∆(t, T )

)
, (7.4.9)

νTm(t) = B(t)−1
(
a1(t) − V̂ Tm(t)

)
, (7.4.10)

κTm(t) = (n−N(x, t−))B(t)−1

(∫ T

t

Bµ,Q(x, t, τ)SQ(x, t, τ)

Bµ,Q(x, t, T )SQ,M (x, t, T )

×
(
F Tm,0(t, τ) + F Tm,1(t, τ)

(
fµ,Q(x, t, τ) −

∂
∂τB

µ,Q(x, t, τ)

Bµ,Q(x, t, τ)

))
dτ

+
Bµ,Q(x, t, T )SQ(x, t, T )

Bµ,Q(x, t, T )SQ,M (x, t, T )
F Tm,∆(t, T )

)
. (7.4.11)

Proof of Lemma 7.4.2: The proof, which is similar to the proof of Lemma 4.7.1, is carried
out in Section 7.6.1.

�

The Galtchouk–Kunita–Watanabe decomposition of V Tm,∗ in Lemma 7.4.2 is essentially
the same as the one obtained in Lemma 4.7.1. The process LTm describes the un-
hedgeable risk associated with the payment process. The integral with respect to the
Q-compensated counting process, MQ(x), is related to the unsystematic mortality risk,
whereas the integral with respect to the martingale associated with the Q-survival proba-
bility, SQ,M(x, ·, T ), is related to the systematic mortality risk. Combining Theorem 7.4.1
and Lemma 7.4.2 we get the following result regarding the F

Tm-risk-minimizing strategy
for the payment process A in (7.3.14).

Theorem 7.4.3
For the payment process given by (7.3.14), the unique 0-admissible F

Tm-risk-minimizing
strategy ϕTm is

(
ϑTm(t), ηTm(t)

)
=
(
ϑTm,A(t), (n −N(x, t))B(t)−1V̂ Tm(t) − ϑTm(t)X∗(t)

)
,

where ϑTm,A is given by (7.4.9).
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The importance of Lemma 7.4.2 and Theorem 7.4.3 is twofold. Firstly, they give the
risk-minimizing strategy and the process LTm for the payment process A in the case of a
complete financial market and unhedgeable systematic and unsystematic mortality risk.
Secondly, they are of importance, since the F-risk-minimizing strategies determined in
Section 7.4.3 are given in terms of the F

Tm-risk-minimizing strategies.

7.4.3 Unhedgeable mortality and reinvestment risks

Now consider the case where the company, in addition to the unhedgeable mortality risks,
is exposed to reinvestment risk. We can now apply Schweizer (1994, Theorem 3.1) to
the case of payment processes to obtain the F-risk-minimizing strategies in terms of the
F
Tm-risk-minimizing strategies. Hence, calculations similar to those leading to Theorem

6.3.3 give the following theorem, which we state without given a proof.

Theorem 7.4.4
The unique 0-admissible F-risk-minimizing strategy ϕ0 = (ϑ0, η0) for A is given by

(
ϑ0(t), η0(t)

)
=
(
EQ

[
ϑTm(t)

∣∣F(t−)
]
, (n −N(x, t))B(t)−1V̂ 0(t) − ϑ0(t)X∗(t)

)
.

In the following we shall use the quantities given by

ϑTi(t) = EQ
[
ϑTm(t)

∣∣FTi(t−)
]
, (7.4.12)

νTi(t) = EQ
[
νTm(τ)

∣∣FTi(t)
]
, (7.4.13)

κTi(t) = EQ
[
κTm(τ)

∣∣FTi(t)
]
, (7.4.14)

and the notation exemplified by ∆iϑ(t) = ϑTi(t) − ϑTi−1(t). The Galtchouk–Kunita–
Watanabe decomposition of V 0,∗ is given by the following proposition.

Proposition 7.4.5
If ϑTi , νTi and κTi are sufficiently integrable for all i ∈ {0, . . . ,m} then the Galtchouk–
Kunita–Watanabe decomposition of V 0,∗ is given by

V 0,∗(t) = V 0,∗(0) +

∫ t

0
ϑ0(τ)dX∗(τ) + L0(t), (7.4.15)

where

V 0,∗(0) = −nπ(0) + nV̂ 0(0),

L0(t) = My,Q(t) +

∫ t

0
ν0(τ)dMQ(x, τ) +

∫ t

0
κ0(τ)dSQ,M (x, τ, T ), (7.4.16)

and

My,Q(t) =

it∑

i=1

(
∆iV

∗(0) +

∫ Ti

0
∆iϑ(τ)dX∗(τ) +

∫ Ti

0
∆iν(τ)dM

Q(x, τ)

+

∫ Ti

0
∆iκ(τ)dSQ,M (x, τ, T )

)
.
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Proof of Proposition 7.4.5: See Section 7.6.2

�

Investigating the expression for L0 in (7.4.16) we observe that the two integrals, which are
associated with the mortality risks are similar to ones from Lemma 7.4.2. However, the
sum, My,Q, which is related to the reinvestment risk, is new. It describes the additional
in- or outflow to/from the investment strategy upon the realization of the prices of newly
issued bonds bonds.

Example 7.4.6 Consider the case where T = T and all n insured have purchased a pure
endowment of ∆A0(T ) paid by a single premium at time 0. In this case, the Galtchouk–
Kunita–Watanabe decomposition of V 0,∗ is determined via the processes

ϑTi(τ) = (n−N(x, τ−))SQ(x, τ, T )ϑTi,∆(τ), (7.4.17)

νTi(τ) = −B(τ)−1SQ(x, τ, T )F Ti,∆(τ, T ), (7.4.18)

κTi(τ) = (n−N(x, τ))e
R τ

0
µQ(x,u)duB(τ)−1F Ti,∆(τ, T ). (7.4.19)

Using Theorem 7.4.4 we obtain the 0-admissible F-risk-minimizing strategy

ϑ0(t) = (n−N(x, t−))SQ(x, t, T )ϑ0,∆(t),

η0(t) = (n−N(x, t))SQ(x, t, T )B(t)−1F 0,∆(t, T ) − ϑ0(t)X∗(t).

Inserting (7.4.17)–(7.4.19) in Proposition 7.4.5 gives the following expressions for the terms
in the Galtchouk–Kunita–Watanabe decomposition of V 0,∗:

V 0,∗(0) = −nπ(0) + nSQ(x, 0, T )F 0,∆(0, T )

and

L0(t) = My,Q(t) −
∫ t

0
B(τ)−1SQ(x, τ, T )F 0,∆(τ, T )dMQ(x, τ)

+

∫ t

0
(n −N(x, τ))e

R τ
0 µQ(x,u)duB(τ)−1F 0,∆(τ, T )dSQ,M (x, τ, T ),

where

My,Q(t) =
it∑

i=1

(
nSQ(x, 0, T )∆iF

∆(0, T ) +

∫ Ti

0
(n−N(x, τ−))SQ(x, τ, T )∆iϑ

∆(τ)dX∗(τ)

−
∫ Ti

0
B(τ)−1SQ(x, τ, T )∆iF

∆(τ, T )dMQ(x, τ)

+

∫ Ti

0
(n−N(x, τ))e

R τ
0 µQ(x,u)duB(τ)−1∆iF

∆(τ, T )dSQ,M (x, τ, T )

)
. (7.4.20)

�
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Example 7.4.7 Assume each of the entries in the vector Y has finite support, i.e. Yi takes
values in yi1, . . . , y

i
ci , i = 1, . . . ,m, for some ci ∈ N. Now introduce the Q-martingales

M δk ,Q(t) = EQ
[
1((Y1,...,Ym)=δk)

∣∣F(t)
]

= EQ
[
1((Y1,...,Ym)=δk)

∣∣Gy(t)
]
,

where δ1, . . . , δK are the possible outcomes of the vector (Y1, . . . , Ym), such that K =∏m
i=1 ci. Here, we have used that Y is Q-independent of all other sources of randomness

in the second equality. Throughout this example we use the notation exemplified by ϑδk

for ϑTm in the case where Y = δk. This allows us to write the F-risk-minimizing strategy
as

ϑ0(t) =

K∑

k=1

M δk,Q(t−)ϑδk(t), (7.4.21)

η0(t) = (n−N(x, t))B(t)−1
K∑

k=1

M δk ,Q(t)V̂ δk(t) − ϑ0(t)X∗(t).

Since dM δk ,Q
t = 0 for t /∈ {T1, . . . , Tm} the expression for L0 in Proposition 7.4.5 simplifies

to

L0(t) =

K∑

k=1

∫ t

0
V δk,∗(τ)dM δk ,Q(τ) +

∫ t

0
ν0(τ)dMQ(x, τ) +

∫ t

0
κ0(τ)dSQ,M (x, τ, T ).

�

7.5 Mean-variance indifference pricing

The mean-variance indifference pricing principles of Schweizer (2001b) have been applied
for the handling of the combined risk inherent in life insurance contracts in Møller (2001b,
2002, 2003a, 2003b) and Dahl and Møller (2005) (see Chapter 4). In this section, we
present a review of mean-variance indifference pricing (almost) identical to the one in
Chapter 4 and derive indifference prices and optimal hedging strategies for a portfolio of
unit-linked pure endowments.

7.5.1 A review of mean-variance indifference pricing

Denote by K∗ the discounted wealth of the insurer at time T and consider the mean-
variance utility functions

ui(K
∗) = EP [K∗] − ai(VarP [K∗])βi , (7.5.1)

i = 1, 2, where ai > 0 are so-called risk-loading parameters and where we take β1 = 1
and β2 = 1/2. It can be shown that the equations ui(K

∗) = ui(0) indeed lead to the
classical actuarial variance (i=1) and standard deviation principle (i=2), respectively, see
e.g. Møller (2001b).
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Schweizer (2001b) proposes to apply the mean-variance utility functions in (7.5.1) in an
indifference argument, which takes the possibility for trading in the financial market into
consideration. Denote by Θ the space of admissible strategies and let G(T,Θ) be the space

of discounted trading gains, i.e. random variables of the form
∫ T
0 ϑ(u)dX∗(u), where X∗

is the discounted price process associated with the risky assets. Denote by c the insurer’s
initial capital at time 0. The ui-indifference price vi associated with the liability H is
defined via

sup
ϑ∈Θ

ui

(
c+ vi +

∫ T

0
ϑ(u)dX∗(u) −H∗

)
= supeϑ∈Θ

ui

(
c+

∫ T

0
ϑ̃(u)dX∗(u)

)
, (7.5.2)

where H∗ is the discounted liability. The strategy ϑ∗ which maximizes the left side
of (7.5.2) will be called the optimal strategy for H. In order to formulate the main
result, some more notation is needed. We denote by P̃ the variance optimal martingale

measure and let Λ̃(T ) = d eP
dP |FT

. In addition, we let π(·) be the projection in L2(P ) on

the space G(T,Θ)⊥ and write 1 − π(1) =
∫ T
0 β̃(u)dX∗(u). It follows via the projection

theorem that any discounted liability H∗ allows for a unique decomposition on the form

H∗ = cH +

∫ T

0
ϑH(u)dX∗(u) +NH , (7.5.3)

where
∫ T
0 ϑHdX∗ is an element of G(T,Θ), and NH lies in the space (R +G(T,Θ))⊥.

From Schweizer (2001b) and Møller (2001b) we have that the indifference prices for H are:

v1(H) = E
eP [H∗] + a1VarP [NH ], (7.5.4)

v2(H) = E
eP [H∗] + a2

√
1 − VarP [Λ̃(T )]/a2

2

√
VarP [NH ], (7.5.5)

where (7.5.5) only is defined if a2
2 ≥ VarP [Λ̃(T )]. The optimal strategies associated with

these two principles are:

ϑ∗1(t) = ϑH(t) +
1 + VarP [Λ̃(T )]

2a1
β̃(t), (7.5.6)

ϑ∗2(t) = ϑH(t) +
1 + VarP [Λ̃(T )]

a2

√
1 − VarP [Λ̃(T )]/a2

2

√
VarP [NH ]β̃(t), (7.5.7)

where (7.5.7) only is well-defined if a2
2 > VarP [Λ̃(T )]. For more details, see Møller (2001b,

2003a, 2003b).

7.5.2 The variance optimal martingale measure

In order to determine the variance optimal martingale measure P̃ we first turn our at-
tention to the minimal martingale measure, P̂ , which loosely speaking is “the equiva-
lent martingale measure which disturbs the structure of the model as little as possible”,
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see Schweizer (1995). It is easily seen that the minimal martingale measure is obtained
by letting hµ = 0, g = 0 and oi = 0 for all i. Hence, the likelihood process for the change
of measure to the minimal martingale measure is given by

Λ̂(t) = exp

(∫ t

0
hf (u)dW f (u) +

∫ t

0
hs(u)dW s(u) − 1

2

∫ t

0
((hf (u))2 + (hs(u))2)du

)
.

Since hf (u) and hs(u) are assumed to be Gx(u)-measurable, the density Λ̂(t) is Gx(t)-
measurable, and therefore it can be represented by a constant C and a stochastic integral
with respect to X∗, see e.g. Pham et al. (1998, Section 4.3). Thus, we have the following
representation of Λ̂(t)

Λ̂(t) = C +

∫ t

0
ζ̃(u)dX∗(u). (7.5.8)

Schweizer (1996, Lemma 1) now gives that Λ̂(T̂ ) is the density for the variance optimal
martingale measure as well, such that P̂ = P̃ and Λ̃(T ) = Λ̂(T ). For later use, we
introduce the P̃ -martingale Λ̃ by

Λ̄(t) = E
eP [ Λ̂(T̂ )

∣∣∣F(t)
]

= E
eP [ Λ̂(T̂ )

∣∣∣Gx(t)
]
.

Hence, even though the variance optimal martingale measure P̃ and the minimal martin-
gale measure P̂ in general differ, they coincide in our model.

7.5.3 Mean-variance indifference pricing for pure endowments

Let T = T and consider a portfolio of n individuals of the same age x each purchasing a
unit-linked pure endowment of ∆A0(T ) paid by a single premium at time 0. Thus, the
discounted liability of the company is given by

H∗ = (n−N(x, T ))B(T )−1∆A0(T ).

Explicit expressions for the mean-variance indifference prices can be obtained under ad-
ditional integrability conditions. More precisely, we need that certain local P̃ -martingales
considered in the calculation of VarP [NH ] are (true) P̃ -martingales. In this case we have
the following proposition.

Proposition 7.5.1
The indifference prices are given by inserting the following expressions for E

eP [H∗] and

VarP (NH) in (7.5.4) and (7.5.5):

E
eP [H∗] = nS(x, 0, T )F 0,∆(0, T ), (7.5.9)

and

VarP [NH ] = n

∫ T

0
Υ1(t)Υ2(t)dt + n2

∫ T

0
Υ1(t)Υ3(t)dt

+ n

m∑

i=1

Υ4(Ti) + n2
m∑

i=1

Υ5(Ti), (7.5.10)
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where

Υ1(t) = EP

[
Λ̂(t)

Λ̄(t)
(B(t)−1F 0,∆(t, T ))2

]
,

Υ2(t) = EP
[
(S(x, t, T ))2 e−

R t
0 µ(x,u)duµ(x, t)

×
(
1 + (σµ(x, t)Bµ(x, t, T ))2

(
1 − e−

R t
0 µ(x,u)du

))]
,

Υ3(t) = EP
[
µ(x, t)

(
σµ(x, t)Bµ(x, t, T )SM (x, t, T )

)2]
,

Υ4(Ti) = EP

[
Λ̂(Ti)

Λ̄(Ti)

∫ Ti

0
e−

R τ

0
µ(x,u)du (S(x, τ, T ))2

(
(
B(τ)−1∆iF

∆(τ, T )
)2

× µ(x, τ)
(
1 +

(
1 − e−

R τ
0
µ(x,τ)

)
(σµ(x, τ)Bµ(x, τ, T ))2

)

+
(
1 − e−

R τ
0 µ(x,τ)

)(
2∆iϑ

∆,z(τ)∆iϑ
∆,s(τ)σz(τ)σs(τ)Z∗(τ)S∗(τ)

+
(
(σs(τ))2 + (βs(τ))2

) (
∆iϑ

∆,s(τ)S∗(τ)
)2

+
(
∆iϑ

∆,z(τ)σz(τ)Z∗(τ)
)2
))

dτ

]
,

Υ5(Ti) = EP

[
Λ̂(Ti)

Λ̄(Ti)

(
(
S(x, 0, T )∆iF

∆(0, T )
)2

+

∫ Ti

0

(
SM (x, τ, T )

)2

×
(
(
∆iϑ

∆,z(τ)σz(τ)Z∗(τ)
)2

+ ((σs(τ))2 + (βs(τ))2)
(
∆iϑ

∆,s(τ)S∗(τ)
)2

+ 2∆iϑ
∆,z(τ)∆iϑ

∆,s(τ)σz(τ)σs(τ)Z∗(τ)S∗(τ)

+ µ(x, τ)
(
B(τ)−1∆iF

∆(τ, T )σµ(x, τ)Bµ(x, τ, T )
)2
)
dτ

)]
.

Idea of proof of Proposition 7.5.1: The P̃ -independence between the financial market and
the insurance elements immediately gives (7.5.9). The expression for the variance of NH

in (7.5.10) follows from calculations similar to those in Møller (2001b) and Chapter 4.
For completeness the calculations are carried out in Section 7.6.3 under certain additional
integrability conditions.

�

The first two terms in (7.5.10) are essentially the same as those obtained in Proposition
4.8.1. The first term, which is proportional to the number of insured, stems from both
the systematic and unsystematic mortality risk, whereas the second term, which is pro-
portional to the squared number of survivors, stems solely from the systematic mortality
risk. The last two terms are related to the reinvestment risk. Each of these terms involve a
sum measuring adjustments of the intrinsic value process upon the realization of the Yi’s.
The reinvestment risk at time Ti is the difference between the intrinsic value process be-

fore and after the observation of Yi, as measured by ∆M
eP,y(Ti). Investigating the terms
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in M
eP ,y we find that the difference in the initial investments, the difference in trading

gains/losses due to different trading strategies and the difference in gains/losses generated
by changes in the survival probability all contribute to the term proportional to n2. The
last two sources along with the difference in gains/losses generated by the development
of the compensated counting process M(x) give rise to the terms proportional to n. The
reason for collecting the terms with respect to n and n2, respectively, is that it enables us
to distinguish the importance of the terms as the size of the portfolio of insured increases.

Concerning the optimal strategies we have the following proposition.

Proposition 7.5.2
The optimal strategies are given by inserting (7.5.10) and the following expression for ϑH

in (7.5.6) and (7.5.7):

ϑH(t) = ϑ0(t) − ζ̃(t)

∫ t−

0

1

Λ̄(u)

(
dM

eP ,y(u) + ν0(u)dM(x, u) + κ0(u)dSM (x, u, T )
)
,

(7.5.11)

where

ν0(τ) = −B(τ)−1S(x, τ, T )F 0,∆(τ, T ), (7.5.12)

κ0(τ) = (n−N(x, τ))e
R τ
0 µ(x,u)duB(τ)−1F 0,∆(τ, T ), (7.5.13)

and M
eP ,y is given by

M
eP,y(t) =

it∑

i=1

(
nS(x, 0, T )∆iF

∆(0, T ) +

∫ Ti

0
(n −N(x, τ−))S(x, τ, T )∆iϑ

∆(τ)dX∗(τ)

−
∫ Ti

0
B(τ)−1S(x, τ, T )∆iF

∆(τ, T )dM(x, τ)

+

∫ Ti

0
(n−N(x, τ))e

R τ
0 µ(x,u)duB(τ)−1∆iF

∆(τ, T )dSM (x, τ, T )

)
. (7.5.14)

Proof of Proposition 7.5.2: Expression (7.5.11) follows from Schweizer (2001a, Theo-
rem 4.6) (Theorem 7.6.1), which relates the decomposition in (7.5.3) to the Galtchouk–

Kunita–Watanabe decomposition of the P̃ -martingale V 0,∗(t) = E
eP [H∗|F(t)] given in

Example 7.4.6.
�

7.6 Proofs and technical calculations

7.6.1 Proof of Lemma 7.4.2

Recall from (7.3.16) and (7.3.17) that the Q-martingale V Tm,∗ can be written as

V Tm,∗(t) = A∗(t) + (n−N(x, t))B(t)−1V̂ Tm(t,X(t), µ(x, t)). (7.6.1)
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Here, we explicitly denote the dependence of V̂ Tm on X and µ. Differentiating under the
integral gives

∂

∂x
V̂ Tm(t, x, µ) =

∫ T

t
SQ(x, t, τ)

(
∂

∂x
F Tm,0(t, τ) + fµ,Q(x, t, τ)

∂

∂x
F Tm,1(t, τ)

)
dτ

+ SQ(x, t, T )
∂

∂x
F Tm,∆(t, T ), (7.6.2)

and

∂

∂µ
V̂ Tm(t, x, µ) = −(1 + g(x, t))

(∫ T

t
Bµ,Q(x, t, τ)SQ(x, t, τ)

×
(
F Tm,0(t, τ) + F Tm,1(t, τ)

(
fµ,Q(x, t, τ) −

∂
∂τB

µ,Q(x, t, τ)

Bµ,Q(x, t, τ)

))
dτ

+Bµ,Q(x, t, T )SQ(x, t, T )F Tm,∆(t, T )

)
, (7.6.3)

where we have used

∂

∂µ
fµ,Q(x, t, τ) = (1 + g(x, t))

∂

∂τ
Bµ,Q(x, t, τ).

Using integration by parts on (n −N(x, t))B(t)−1V̂ Tm(t,X(t), µ(x, t)) allows us to write
(7.6.1) as

V Tm,∗(t) = A∗(t) + nV̂ Tm(0,X(0), µ(x, 0))

+

∫ t

0
(n−N(x, u))V̂ Tm(u,X(u), µ(x, u))dB(u)−1

+

∫ t

0
B(u)−1(n −N(x, u−))dV̂ Tm(u,X(u), µ(x, u))

−
∫ t

0
B(u)−1V̂ Tm(u,X(u), µ(x, u))dN(x, u). (7.6.4)

In order to calculate the fourth term in (7.6.4), we need to find dV̂ Tm(u,X(u), µ(x, u)).
Recall from (7.3.9) that the dynamics of µ(x, t) under Q are given by

dµ(x, t) = αµ,Q(t, µ(x, t))dt + σµ(t, µ(x, t))
√
µ(x, t)dW µ,Q(t),

where

αµ,Q(t, µ(x, t)) = γµ,Q(x, t) − δµ,Q(x, t)µ(x, t).

In the rest of the proof we return to the shorthand notation V̂ Tm(u). Furthermore in
the coefficient functions we explicitly include the time argument only. The assumption
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V̂ Tm(t) ∈ C1,2,2 allows us to apply Itô’s formula to obtain

dV̂ Tm(u) =

(
∂

∂u
V̂ Tm(u) + αµ,Q(u)

∂

∂µ
V̂ Tm(u) + r(u)S(u)

∂

∂s
V̂ Tm(u) + r(u)Z(u)

∂

∂z
V̂ Tm(u)

+
1

2
(σµ(u))2µ(x, u)

∂2

∂µ2
V̂ Tm(u) +

1

2

(
(σs(u))2 + (βs(u))2

)
(S(u))2

∂2

∂s2
V̂ Tm(u)

+
1

2
(σz(u)Z(u))2

∂2

∂z2
V̂ Tm(u) + σs(u)σz(u)S(u)Z(u)

∂2

∂z∂s
V̂ Tm(u)

)
du

+ σµ(u)
√
µ(x, u)

∂

∂µ
V̂ Tm(u)dW µ,Q(u) − σz(u)Z(u)

∂

∂z
V̂ Tm(u)dW f,Q(u)

− σs(u)S(u)
∂

∂s
V̂ Tm(u)dW f,Q(u) + βs(u)S(u)

∂

∂s
V̂ Tm(u)dW s,Q(u)

=

(
∂

∂u
V̂ Tm(u) + αµ,Q(u)

∂

∂µ
V̂ Tm(u) + r(u)S(u)

∂

∂s
V̂ Tm(u) + r(u)Z(u)

∂

∂z
V̂ Tm(u)

+
1

2
(σµ(u))2µ(x, u)

∂2

∂µ2
V̂ Tm(u) +

1

2

(
(σs(u))2 + (βs(u))2

)
(S(u))2

∂2

∂s2
V̂ Tm(u)

+
1

2
(σz(u)Z(u))2

∂2

∂z2
V̂ Tm(u) + σs(u)σz(u)S(u)Z(u)

∂2

∂z∂s
V̂ Tm(u)

)
du

+B(u)
∂

∂z
V̂ Tm(u)dZ∗(u) +B(u)

∂

∂s
V̂ Tm(u)dS∗(u)

−
∂
∂µ V̂

Tm(u)

(1 + g(x, u))Bµ,Q(x, u, T )SQ,M (x, u, T )
dSQ,M(x, u, T ).

In the first equality we have used the dynamics of Z, S and µ, whereas we in the second
use (7.6.2) and (7.6.3) together with the dynamics of Z∗, S∗ and SQ,M(x, ·, T ). Rewriting
A∗ in terms of the Q-martingale MQ(x) we get

A∗(t) = −nπ(0) +

∫ t

0
B(τ)−1

(
a0(τ)(n −N(x, τ)) + a1(τ)(n −N(x, τ−))µQ(x, τ)

)
dτ

+

∫ t

0
B(T )−1(n−N(x, T ))∆A0(T )d1(τ≥T ) +

∫ t

0
B(τ)−1a1(τ)dM

Q(x, τ).

Now collect the terms from (7.6.4) involving integrals with respect to X∗, SQ,M(x, ·, T )
and MQ(x), respectively. Since these three terms and V Tm,∗ are Q-martingales, the re-
maining terms constitute a Q-martingale as well. Since this process is continuous (hence
predictable) and of finite variation, it is constant. Inserting t = 0 we immediately get that
V Tm,∗(0) = −nπ(0) + nV̂ Tm(0,X(0), µ(x, 0)). Thus, we have proved the decomposition in
(7.4.6).

7.6.2 Proof of Proposition 7.4.5

The expression for V ∗,0(0) follows immediately from (7.3.16) and (7.3.17). Now, use that
V Tm,∗(T ) = V 0,∗(T ) and the Galtchouk–Kunita–Watanabe decomposition of V Tm,∗ in
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Lemma 7.4.2 to get

L0(T ) = V Tm,∗(0) +

∫ T

0
ϑTm(τ)dX∗(τ) +

∫ T

0
νTm(τ)dMQ(x, τ)

+

∫ T

0
κTm(τ)dSQ,M (x, τ, T ) −

(
V 0,∗(0) +

∫ T

0
ϑ0(τ)dX∗(τ)

)
.

Since L0 is an (F, Q)-martingale we get

L0(t) = EQ
[
V Tm,∗(0) − V 0,∗(0) +

∫ T

0
(ϑTm(τ) − ϑ0(τ))dX∗(τ) +

∫ T

0
νTm(τ)dMQ(x, τ)

+

∫ T

0
κTm(τ)dSQ,M (x, τ, T )

∣∣∣∣F(t)

]

=

m∑

i=1

EQ
[
V Ti,∗(0) − V Ti−1,∗(0) +

∫ T

0
(ϑTi(τ) − ϑTi−1(τ))dX∗(τ)

+

∫ T

0

(
νTi(τ) − νTi−1(τ)

)
dMQ(x, τ) +

∫ T

0

(
κTi(τ) − κTi−1(τ)

)
dSQ,M(x, τ, T )

+

∫ T

0
ν0(τ)dMQ(x, τ) +

∫ T

0
κ0(τ)dSQ,M (x, τ, T )

∣∣∣∣F(t)

]

=
m∑

i=1

(
V Ti∧Tit ,∗(0) − V Ti−1∧Tit ,∗(0) +

∫ t

0
(ϑTi∧Tit (τ) − ϑTi−1∧Tit (τ))dX∗(τ)

+

∫ t

0

(
νTi∧Tit (τ) − νTi−1∧Tit (τ)

)
dMQ(x, τ)

+

∫ t

0

(
κTi∧Tit (τ) − κTi−1∧Tit (τ)

)
dSQ,M(x, τ, T )

)

+

∫ t

0
ν0(τ)dMQ(x, τ) +

∫ t

0
κ0(τ)dSQ,M (x, τ, T ).

Here, the second equality follows by writing the differences as telescoping sums using
the quantities defined in (7.4.12)–(7.4.14). In the third equality we use the assumption
that ϑTi , νTi and κTi are sufficiently integrable for all i ∈ {0, . . . ,m} to ensure that
all the considered local Q-martingales are Q-martingales. Furthermore, we use iterated
expectations together with the structure of the filtrations F

Ti . The result now follows by
observing that for i > it all terms in the sum are zero and that FTi(τ) = FTi−1(τ) for
τ ≥ Ti.

7.6.3 Calculation of VarP [NH ]

The following theorem due to Schweizer (2001a, Theorem 4.6) relates the decomposition in
(7.5.3) to the Galtchouk-Kunita-Watanabe decomposition of the P̃ -martingale V 0,∗(t) =

E
eP [H∗|F(t)]; see also Møller (2000).
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Theorem 7.6.1
Assume that H∗ ∈ L2(F(T ), P ) and consider the Galtchouk–Kunita–Watanabe decompo-
sition of V 0,∗ given by

V 0,∗(t) = E
eP [H∗] +

∫ t

0
ϑ0(u)dX∗(u) + L0(t), 0 ≤ t ≤ T. (7.6.5)

Then cH , ϑH and NH from (7.5.3) are given in terms of decomposition (7.6.5) by

cH = E
eP [H∗],

ϑH(t) = ϑ0(t) − ζ̃(t)

∫ t−

0

1

Λ̄(u)
dL0(u),

NH = Λ̄(T )

∫ T

0

1

Λ̄(u)
dL0(u).

Here, we have

L0(t) =

∫ t

0
dM

eP ,y(u) +

∫ t

0
ν0(u)dM(x, u) +

∫ t

0
κ0(u)dSM (x, u, T ),

where ν0, κ0 and M
eP,y are given by (7.5.12)–(7.5.14). Thus, Theorem 7.6.1 gives the

following expression for NH

NH = Λ̄(T )

∫ T

0

1

Λ̄(t)

(
dM

eP ,y(t) + ν0(t)dM(x, t) + κ0(t)dSM (x, t, T )
)
.

Since EP [NH ] = 0, we first note that

VarP [NH ] = EP
[
(NH)2

]
= E

eP [Λ̄(T )
(
M̃y(T ) + L̃(T ) + R̃(T )

)2
]

= E
eP [Λ̄(T )(M̃y(T ))2 + Λ̄(T )(L̃(T ))2 + Λ̄(T )(R̃(T ))2 + 2Λ̄(T )M̃y(T )R̃(T )

+2Λ̄(T )L̃(T )R̃(T ) + 2Λ̄(T )M̃y(T )R̃(T )
]
, (7.6.6)

where we have defined M̃y(t) =
∫ t
0

1
Λ̄(u)

dM
eP ,y(u), L̃(t) =

∫ t
0
ν0(u)
Λ̄(u)

dM(x, u) and R̃(t) =
∫ t
0
κ0(u)
Λ̄(u)

dSM (x, u, T ). The six terms appearing in (7.6.6) can be rewritten using Itô’s

formula, see Jacod and Shiryaev (2003) for a version that applies in this setting. For the
first term we get

Λ̄(T )(M̃y(T ))2 =

∫ T

0
(M̃y(t−))2dΛ̄(t) +

m∑

i=1

Λ̄(Ti)



(
M

eP ,y(Ti)
Λ̄(Ti)

)2

−
(
M

eP ,y(Ti−1)

Λ̄(Ti)

)2



=

∫ T

0
(M̃y(t−))2dΛ̄(t) + 2

m∑

i=1

Λ̄(Ti)M̃
y(Ti−1)∆M̃

y(Ti)

+

m∑

i=1

Λ̄(Ti)

(
∆M

eP ,y(Ti)
Λ̄(Ti)

)2

,
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where the second equality follows from rearranging the terms. For the second term similar
rearrangements gives

Λ̄(T )(L̃(T ))2 =

∫ T

0
(L̃(t−))2dΛ̄(t) + 2

∫ T

0
Λ̄(t)L̃(t−)dL̃(t) +

∫ T

0
Λ̄(t)

(
ν0(t)

Λ̄(t)

)2

dN(x, t),

whereas we for the last term find that

Λ̄(T )(R̃(T ))2 =

∫ T

0
R̃(t)2dΛ̄(t) + 2

∫ T

0
Λ̄(t)R̃(t)dR̃(t) +

∫ T

0
Λ̄(t)d〈R̃〉(t)

=

∫ T

0
R̃(t)2dΛ̄(t) + 2

∫ T

0
Λ̄(t)R̃(t)dR̃(t)

+

∫ T

0
Λ̄(t)

(
κ0(t)

Λ̄(t)
σµ(x, t)

√
µ(x, t)Bµ(x, t, T )SM (x, t, T )

)2

dt.

Assuming all the local martingales are martingales, and using that the Wiener processes
are independent, we get

VarP
[
NH

]
= E

eP [ m∑

i=1

(M
eP ,y(Ti))2
Λ̄(Ti)

]
+E

eP [∫ T

0

(ν0(t))2

Λ̄(t)
dN(x, t)

]

+ E
eP ∫ T

0

(
κ0(t)σµ(x, t)

√
µ(x, t)Bµ(x, t, T )SM (x, t, T )

)2

Λ̄(t)
dt


 . (7.6.7)

Note that given I(T ) the number of survivors at time t, n−N(x, t), follows a binomial dis-

tribution under P (and P̃ ) with parameters (n, e−
R t
0 µ(x,u)du). Hence, calculations similar

to those in Chapter 4 give

E
eP [∫ T

0

(ν0(t))2

Λ̄(t)
dN(x, t)

]

= n

∫ T

0
EP

[
Λ̂(t)

Λ̄(t)
(B(t)−1F 0,∆(t, T ))2

]
EP

[
(S(x, t, T ))2 e−

R t

0
µ(x,u)duµ(x, t)

]
dt

and

E
eP ∫ T

0

(
κ0(t)σµ(x, t)

√
µ(x, t)Bµ(x, t, T )SM (x, t, T )

)2

Λ̄(t)
dt




= n

∫ T

0
EP

[
Λ̂(t)

Λ̄(t)
(B(t)−1F 0,∆(t, T ))2

]

× EP
[
(S(x, t, T ))2 e−

R t
0 µ(x,u)duµ(x, t) (σµ(x, t)Bµ(x, t, T ))2

(
1 − e−

R t
0 µ(x,u)du

)]
dt

+ n2

∫ T

0
EP

[
Λ̂(t)

Λ̄(t)
(B(t)−1F 0,∆(t, T ))2

]
EP

[
µ(x, t)

(
σµ(x, t)Bµ(x, t, T )SM (x, t, T )

)2]
dt.
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The first term, which relates to the reinvestment risk is new, so we investigate this term
in more detail. First we introduce the notation

My
1 (Ti) = nS(x, 0, T )∆iF

∆(0, T ),

My
2 (Ti) =

∫ Ti

0
(n−N(x, τ−))S(x, τ, T )∆iϑ

∆(τ)dX∗(τ),

My
3 (Ti) = −

∫ Ti

0
B(τ)−1S(x, τ, T )∆iF

∆(τ, T )dM(x, τ),

My
4 (Ti) =

∫ Ti

0
(n−N(x, τ))e

R τ

0
µ(x,u)duB(τ)−1∆iF

∆(τ, T )dSM (x, τ, T ).

Thus, the first term in (7.6.7) can be written as

E
eP [ m∑

i=1

(M
eP ,y(Ti))2
Λ̄(Ti)

]

=
m∑

i=1

EP

[
Λ̂(Ti)

Λ̄(Ti)
(M

eP ,y(Ti))2]
=

m∑

i=1

EP

[
Λ̂(Ti)

Λ̄(Ti)
(M

eP ,y
1 (Ti) +M

eP ,y
2 (Ti) +M

eP,y
3 (Ti) +M

eP,y
4 (Ti))

2

]

=

m∑

i=1

EP

[
Λ̂(Ti)

Λ̄(Ti)

(
(M

eP ,y
1 (Ti))

2 + (M
eP ,y

2 (Ti))
2 + (M

eP ,y
3 (Ti))

2 + (M
eP ,y

4 (Ti))
2
)]

.

Here, the third equality follows by assuming that all local martingales are martingales.
Hence, we can investigate the four terms separately. For the first term we immediately
obtain

EP

[
Λ̂(Ti)

Λ̄(Ti)

(
nS(x, 0, T )∆iF

∆(0, T )
)2
]

= n2(S(x, 0, T ))2EP

[
Λ̂(Ti)

Λ̄(Ti)

(
∆iF

∆(0, T )
)2
]
.

For the second term we first use the process 〈X∗〉, which makes the process (X∗)2 − 〈X∗〉
a Q-martingale, to obtain

EP

[
Λ̂(Ti)

Λ̄(Ti)

(∫ Ti

0
(n−N(x, τ−))S(x, τ, T )∆iϑ

∆(τ)dX∗(τ)

)2
]

= EP

[
Λ̂(Ti)

Λ̄(Ti)

∫ Ti

0
((n−N(x, τ−))S(x, τ, T ))2

(
(
(σs(τ))2 + (βs(τ))2

) (
∆iϑ

∆,s(τ)S∗(τ)
)2

+
(
∆iϑ

∆,z(τ)σz(τ)Z∗(τ)
)2

+ 2∆iϑ
∆,z(τ)∆iϑ

∆,s(τ)σz(τ)σs(τ)Z∗(τ)S∗(τ)

)
dτ

]
.



212 CHAPTER 7. A MODEL WITH REINVESTMENT AND MORTALITY RISKS

Now the following result follows from the use of iterated expectations

EP

[
Λ̂(Ti)

Λ̄(Ti)

(∫ Ti

0
(n−N(x, τ−))S(x, τ, T )∆iϑ

∆(τ)dX∗(τ)

)2
]

= nEP

[
Λ̂(Ti)

Λ̄(Ti)

∫ Ti

0
e−

R τ

0
µ(x,u)du

(
1 − e−

R τ

0
µ(x,u)du

)
(S(x, τ, T ))2

(
((σs(τ))2 + (βs(τ))2)

(
∆iϑ

Ti,∆,s(τ)S∗(τ)
)2

+
(
∆iϑ

∆,z(τ)σz(τ)Z∗(τ)
)2

+2∆iϑ
∆,z(τ)∆iϑ

∆,s(τ)σz(τ)σs(τ)Z∗(τ)S∗(τ)

)
dτ

]

+ n2EP

[
Λ̂(Ti)

Λ̄(Ti)

∫ Ti

0

(
SM (x, τ, T )

)2
(
(
(σs(τ))2 + (βs(τ))2

) (
∆iϑ

∆,s(τ)S∗(τ)
)2

+
(
∆iϑ

∆,z(τ)σz(τ)Z∗(τ)
)2

+ 2∆iϑ
∆,z(τ)∆iϑ

∆,s(τ)σz(τ)σs(τ)Z∗(τ)S∗(τ)

)
dτ

]
.

Similar calculations give

EP

[
Λ̂(Ti)

Λ̄(Ti)

(∫ Ti

0
(n −N(x, τ))e

R τ
0 µ(x,u)duB(τ)−1∆iF

∆(τ, T )dSM (x, τ, T )

)2
]

= EP

[
Λ̂(Ti)

Λ̄(Ti)

∫ Ti

0

(
(n−N(x, τ))e

R τ
0 µ(x,u)duB(τ)−1∆iF

∆(τ, T )

×σµ(x, τ)
√
µ(x, τ)Bµ(x, τ, T )SM (x, τ, T )

)2

dτ




= nEP

[
Λ̂(Ti)

Λ̄(Ti)

∫ Ti

0
µ(x, τ)e−

R τ
0 µ(x,u)du

(
1 − e−

R τ
0 µ(x,u)du

)

×
(
B(τ)−1∆iF

∆(τ, T ))σµ(x, τ)Bµ(x, τ, T )S(x, τ, T )

)2

dτ




+ n2EP


 Λ̂(Ti)

Λ̄(Ti)

∫ Ti

0
µ(x, τ)

(
B(τ)−1∆iF

∆(τ, T )σµ(x, τ)Bµ(x, τ, T )SM (x, τ, T )

)2

dτ


 ,

and

EP

[
Λ̂(Ti)

Λ̄(Ti)

(∫ Ti

0
B(τ)−1S(x, τ, T )∆iF

∆(τ, T )dM(x, τ)

)2
]

= EP

[
Λ̂(Ti)

Λ̄(Ti)

∫ Ti

0

(
B(τ)−1S(x, τ, T )∆iF

∆(τ, T )
)2

(n−N(x, τ−))µ(x, τ)dτ

]

= nEP

[
Λ̂(Ti)

Λ̄(Ti)

∫ Ti

0

(
B(τ)−1S(x, τ, T )∆iF

∆(τ, T )
)2
e−

R τ
0 µ(x,u)duµ(x, τ)dτ

]
.
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Collecting the terms in the sum with respect to n and n2, respectively, completes the
proof.





Chapter 8

A Numerical Study of Reserves

and Risk Measures in Life

Insurance

(This chapter is an adapted version of Dahl (2005c))

In this chapter we study different methods for calculating reserves for life insurance con-
tracts with deterministic benefits in a slight simplification of the model in Section 7. Hence,
the model considered includes the equity, standard interest rate and reinvestment risks on
the financial side and the systematic and unsystematic mortality risks on the insurance
side. We consider market reserves calculated by the no arbitrage principle, only. Further-
more, we consider the following alternative approaches to pricing the dependence on the
reinvestment risk: Super-replication and the principles of a level long term yield/forward
rate curve. Combined with the no arbitrage principle for the remaining risks, these prin-
ciples give reserves, which can be compared to the market reserves. Moreover, the risk
measures of Value at Risk and tail conditional expectation are considered. These different
reservation principles and the relationship to the risk measures are compared numerically.

8.1 Introduction

In recent years legislation has forced life insurance companies to value both assets and
liabilities at market value. Here, the value of the assets is easily obtained from the financial
market. Life insurance contracts, on the other hand, are not traded in the financial market,
so determining market values for the liabilities represents a greater problem.

We consider a model including a large number of risks faced by a life insurance company.
The model, which is a simplification of the model in Chapter 7 to the case of determin-
istic coefficient functions, consists of two independent parts: A financial market and an
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insurance portfolio. In the financial market the company is allowed to invest in a savings
account, bonds with a limited time to maturity and a stock. Hence, the following three
financial risks are included in the model: Equity risk, standard interest rate risk and rein-
vestment risk. In the insurance portfolio the mortality intensity is modelled as a stochastic
process, so we consider both systematic and unsystematic mortality risk, see Chapter 3
for an explanation of the different types of mortality risk. Within this model we study dif-
ferent reservation principles. As a first approach we apply the no arbitrage principle from
financial mathematics in order to obtain market reserves. Since the insurance contracts
are not traded in the financial market the market reserve depends on the market’s attitude
towards reinvestment risk as well as systematic and unsystematic mortality risk. Danish
legislation force the life insurance companies to disregard the reinvestment risk and value
their long term liabilities using a yield curve, which is level beyond 30 years. Here, we
consider the similar principle of a level yield curve beyond the time of maturity of the
longest traded bond. Combined with the no arbitrage principle for the remaining risks
this principle yields a (semi) market reserve. Moreover, we consider two alternatives to
the principle of a level long term yield curve. The first alternative is the principle of a level
long term forward rate curve, which was first considered in Dahl (2005b) (see Chapter 5)
in discrete time. The second alternative is to super-replicate the reinvestment risk.

In addition to determining reserves the life insurance companies are concerned with mea-
suring the riskiness of their business. Here, we consider two measures for the riskiness of
the insurance portfolio. Firstly, we consider the Value at Risk, which for a given invest-
ment strategy describes the initial capital necessary to meet the liability with a certain
probability, and secondly, we consider the tail conditional expectation which measures the
average necessary initial capital given it exceeds a certain threshold.

We emphasize that the main focus of this chapter is not of theoretical nature. On the
contrary we keep all technicalities to an absolute minimum to improve the readability.
Hence, the aim is to provide an easily readable overview of different reservation principles
and risk measures in the presence of a large number of risks. A main part of the insight
is gained through a numerical section, where we compare the different principles and
illustrate the impact of the market’s attitude toward the different unhedgeable risks.

The chapter is organized as follows: Section 8.2 contains an introduction of the model. In
Section 8.3 the different reservation principles are considered. The risk measures Value at
Risk and tail conditional expectation are considered in Section 8.4. Section 8.5 contains
the numerical results. Furthermore, this section contains an explanation of the simulation
procedure used to calculate the risk measures, and an overview of and motivation for the
parameters used in the numerical calculations.

8.2 The Model

Since the model considered in this chapter is a slight simplification of the one in Chapter
7, we refer the reader to that chapter for details. In general the simplification consists
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of restricting all parameter processes to deterministic functions and to consider a specific
model for the development of the mortality intensity. Furthermore, the present exposition
deviates from Chapter 7 by a particularly simple approach to the modelling of bond prices
at the time of issue. An approach, which is suitable for numerical calculations.

8.2.1 The financial market

Let P (t, u) denote the price at time t of a zero coupon bond maturing at time u, f(t, u)
the forward rate with maturity date u contracted at time t and r(t) = f(t, t) the short
rate of interest.

Now consider two fixed time horizons T̃ and T , where T̃ ≤ T . Here, T̃ and T , respectively,
describe the upper limit for the time to maturity of traded bonds and the terminal time
of the considered payment process. Thus, at any time t the time to maturity of the
longest traded bond is less than or equal to T̃ . In addition to T̃ and T , we consider the
sequence 0 = T0 < T1 < . . . < Tm = T − T̃ , which describes the times, where new bonds
are issued in the market. At time Ti new bonds are issued, such that all bonds with
time to maturity less than or equal to T̃ are traded. To ensure that at all times, bonds
are traded in the market, we assume that T̃ ≥ maxi=1,...,m(Ti − Ti−1). Now introduce
a sequence Y = (Yi)i=1,...,m of mutually independent and identically distributed random
variables with finite support. Without loss of generality we assume the support is given by
{1, . . . , b} and let pj = P (Y1 = j) ∈ (0, 1). To model the initial price of new bonds issued
at time Ti, we assume the forward rate curve (and hence the zero coupon bond price curve)
generated by existing bonds is continued in a nice continuous fashion. Here, the outcome of
Yi determines the continuation at time Ti. Instead of modelling the continuation directly
as in Chapters 6 and 7, we present an indirect approach, which is particularly suitable for
obtaining numerical results.

Let δ1, . . . , δbm denote the bm different possible outcomes of the vector Y . Given Y = δk
the bond market is complete (since the development of the bond prices is assumed to be
driven by one Wiener process, see (8.2.1)). Hence, we are able to obtain zero coupon bond
prices P δk(0, t) and forward rates f δk(0, t) for all maturities 0 ≤ t ≤ T . Since all bonds
with time of maturity less than or equal to T̃ are traded at time 0, all conditional forward
rate curves are identical for 0 ≤ t ≤ T̃ . Furthermore, all conditional forward rate curves
conditioned on the same values of Y1, . . . , Yi are identical for 0 ≤ t ≤ Ti + T̃ . Now assume
that the dynamics under P of the conditional forward rate curves are given by

df δk(t, τ) = σf (t, τ)

(∫ τ

t
σf (t, u)du− hf (t)

)
dt+ σf (t, τ)dW f (t), (8.2.1)

where

σf (t, τ) = ce−a(τ−t) (8.2.2)

for some constants a and c. Here, W f is a Wiener process under P independent of Y .
Hence, the dynamics of the conditional forward rate curves are identical, such that the
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only difference between the conditional forward rate curves is the initial long term forward
rates. With σf given by (8.2.2) the fluctuations of the forward rates, as in practice, dampen
exponentially as a function of time to maturity. Furthermore, it is well known that the
conditional short rates follow an extended Vasiček model, see Musiela and Rutkowski
(1997). At time Ti the value of Yi is observed and the extension of the forward rate curve
is given by (f δk(Ti, u))Ti−1+eT≤u≤Ti+ eT , where the observed outcome of (Y1, . . . , Yi) are the

first i values in the vector δk. We note that all bm−i values of k for which the observed
outcome of (Y1, . . . , Yi) are the first i values give the same extension of the forward rate
curve at time Ti.

One way to interpret this model is that an investor knows that the initial price of long
term bonds should be calculated with one of bm different forward rate vectors. At times
Ti more information is revealed regarding which curve initially was the correct one. This
additional information uniquely determines part of the initial forward rate curve and
narrows the possibilities for the remaining part of the initial forward rate curve.

For fixed t we define

it = sup {0 ≤ i ≤ m|Ti ≤ t} ,

such that Tit is the last time new bonds are issued prior to time t (time t included).
Thus, the time of maturity, τ , of the bonds traded in the bond market at time t satisfy
t ≤ τ ≤ Tit + T̃ .

When trading in the bond market it is sufficient to consider investments in a savings
account with price process B earning the stochastic rate of interest r, and an asset with
price process Z generated by investing 1 unit at time 0 and at times 0 ≤ t ≤ T investing
in the longest bond traded in the market. Now assume that the financial market includes
a stock with price process S, whose development is correlated with the development of the
bond market. The P -dynamics of the traded assets are

dB(t) = r(t)B(t)dt, B(0) = 1,

dZ(t) =
(
r(t) + hf (t)σz(t)

)
Z(t)dt− σz(t)Z(t)dW f (t), Z(0) = 1,

dS(t) = (r(t) + ρs(t))S(t)dt − σs(t)S(t)dW f (t) + βs(t)S(t)dW s(t), S(0) = 1,

where

ρs(t) = σs(t)hf (t) − βs(t)hs(t),

σz(t) =

∫ Tit+
eT

t
σf (t, u)du =

c

a

(
1 − e−a(Tit+

eT−t)) ,
and hf , hs, σs and βs are known functions. Here, W s is a Wiener process under P
independent of W f and Y .

A trading strategy is a three-dimensional vector process ϕ = (ϑs, ϑz, η). The triplet
ϕ(t) = (ϑs(t), ϑz(t), η(t)) is interpreted as the portfolio held at time t. Here, ϑs and ϑz
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denote, respectively, the number of assets with price process S and Z, whereas η is the
discounted deposit in the savings account. The value process V(ϕ) associated with the
strategy ϕ is defined by

V(t, ϕ) = ϑs(t)S(t) + ϑz(t)Z(t) + η(t)B(t), 0 ≤ t ≤ T.

In this chapter, we restrict ourselves to so-called self-financing strategies, where no in- or
outflow of capital to/from the portfolio is allowed.

8.2.2 Modelling the mortality

Let µ(x, t) denote the mortality intensity at time t of an insured of age x at time 0.
If we further let µ◦ describe the initial mortality curve for all ages, then it holds that
µ(x, 0) = µ◦(x). For a fixed initial age x we assume the mortality intensity follows the
following time-inhomogeneous Cox–Ingersoll–Ross model

dµ(x, t) = (γµ(x, t) − δµ(x, t)µ(x, t)) dt+ σµ(x, t)
√
µ(x, t)dW µ(t), (8.2.3)

where

γµ(x, t) =
1

2
σ̃2µ◦(x+ t),

δµ(x, t) = δ̃ −
d
dtµ

◦(x+ t)

µ◦(x+ t)
,

σµ(x, t) = σ̃
√
µ◦(x+ t).

Here, σ̃ and δ̃ are non-negative constants, W µ is a Wiener process under P indepen-
dent of the financial market, δµ(x, t) is the time-dependent speed of mean-reversion and
γµ(x, t)/δµ(x, t) is the time-dependent level of mean-reversion. Note that 2γµ(x, t) ≥
(σµ(x, t))2, such that the mortality intensity is strictly positive, see Maghsoodi (1996).
Now define the survival probability by

S(x, t, T ) = EP
[
e−

R T

t
µ(x,u)du

∣∣∣µ(x, t)
]
.

From Proposition 4.3.1 we have the following expression for the survival probability

S(x, t, T ) = eA
µ(x,t,T )−Bµ(x,t,T )µ(x,t),

where

∂

∂t
Bµ(x, t, T ) = δµ(x, t)Bµ(x, t, T ) +

1

2
(σµ(x, t))2(Bµ(x, t, T ))2 − 1, (8.2.4)

∂

∂t
Aµ(x, t, T ) = γµ(x, t)Bµ(x, t, T ), (8.2.5)

with Bµ(x, T, T ) = 0 and Aµ(x, T, T ) = 0. The forward mortality intensities are given by

fµ(x, t, T ) = µ(x, t)
∂

∂T
Bµ(x, t, T ) − ∂

∂T
Aµ(x, t, T ).
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8.2.3 The insurance portfolio

Consider an insurance portfolio consisting of n insured lives of the same age x, and let
the mortality intensity in Section 8.2.2 describe the probability of the death of an insured
in a small time interval. The insured lives are obviously not independent, since the sur-
vival/death of all insured depend on the development of the mortality intensity. However,
conditioned on the development of the mortality intensity, we assume the insured lives
are independent. To keep track of the number of deaths in the insurance portfolio we
introduce the counting process N . The stochastic intensity process λ of N under P , which
describes the probability of experiencing a death in the portfolio within the next small
time interval, is given by the number of survivors multiplied by the mortality intensity.
The independence between the mortality intensity and the financial market then ensures
that the insurance portfolio is independent of the financial market as well.

8.2.4 A class of equivalent martingale measures

In the model described in Sections 8.2.1–8.2.3 there exists infinitely many equivalent mar-
tingale measures, such that the model is arbitrage free, but not complete, see e.g. Björk
(2004, Chapter 10). Here, we only consider a specific class of equivalent martingale mea-
sures. The class is particularly nice, since any independence under P is preserved under
Q and the Q-properties of N , µ and Y are closely related to the P -properties.

For all equivalent martingale measures it holds that the discounted price processes of
traded assets are Q-martingales.

To account for the unsystematic mortality risk we let the intensity process for N under
Q be given by λQ(x, t) = (1 + g)λ(x, t), for some constant g > −1. This essentially
corresponds to changing the mortality intensity to µQ(x, t) = (1 + g)µ(x, t). If g = 0, the
market is called risk-neutral with respect to unsystematic mortality risk. This choice of g
can be motivated by the law of large numbers.

Now introduce the constants β and β∗, which affect the market price of systematic mor-
tality risk, and let the Q-dynamics of µQ(x) be given by

dµQ(x, t) =
(
γµ,Q,g(x, t) − δµ,Q,g(x, t)µQ(x, t)

)
dt + σµ,g(x, t)

√
µQ(x, t)dW µ,Q, (8.2.6)

where

γµ,Q,g(x, t) = (1 + g)

((
1

2
σ̃2 + β∗

)
µ◦(x+ t)

)
, (8.2.7)

δµ,Q,g = δ̃ + β −
d
dtµ

◦(x+ t)

µ◦(x+ t)
,

σµ,g(x, t) =
√

1 + g σ̃
√
µ◦(x+ t). (8.2.8)

Hence, β∗ affects the level of mean-reversion, whereas β affects both the level and speed
of mean-reversion. If β and β∗ are equal to zero, we say the market is risk-neutral with
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respect to systematic mortality risk. From (8.2.7) and (8.2.8) we get that µQ is strictly
positive under Q if and only if β∗ ≥ 0. Now define the Q-survival probability by

SQ(x, t, T ) = EQ
[
e−

R T

t
µQ(x,u)du

∣∣∣µQ(x, t)
]
.

Since (8.2.6) has the same form as (8.2.3) we have an affine mortality structure under Q
as well. Hence, we have the following expression for the Q-survival probability:

SQ(x, t, T ) = eA
µ,Q(x,t,T )−Bµ,Q(x,t,T )µQ(x,t),

where Aµ,Q and Bµ,Q are determined from (8.2.4) and (8.2.5) with γµ(x, t), δµ(x, t) and
σµ(x, t) replaced by γµ,Q,g(x, t), δµ,Q,g(x, t) and σµ,g(x, t), respectively. Furthermore, the
Q-forward mortality intensities are given by

fµ,Q(x, t, T ) = µQ(x, t)
∂

∂T
Bµ,Q(x, t, T ) − ∂

∂T
Aµ,Q(x, t, T ).

Under all considered equivalent martingale measures it still holds that Y1, . . . , Ym are
identically distributed. For any j ∈ {1, . . . , b} it holds that under the equivalent martingale
measure the probability of Y1 = j is changed to from pj to qj, where qj ∈ (0, 1). If qj = pj
for all j the market is called risk-neutral with respect to reinvestment risk.

8.2.5 The payment process

The total benefits less premiums on the insurance portfolio is described by a payment
process A. Thus, dA(t) are the net payments to the policy-holders during an infinitesimal
interval [t, t+ dt). We take A of the form

dA(t) = −nπ(0)d1(t≥0) + (n−N(T ))∆A0(T )d1(t≥T )

+ a0(t)(n −N(t))dt + a1(t)dN(t), (8.2.9)

for 0 ≤ t ≤ T . The first term nπ(0) is the single premium paid at time 0 by all policy-
holders. The second term involves a fixed time T ≤ T , which represents the retirement
time of the insured. This term states that each of the surviving policy-holders receive the
fixed amount ∆A0(T ) upon retirement. Hence, ∆A0(T ) corresponds to a pure endowment.
The third term involves a piecewise continuous function

a0(t) = −πc(t)1(0≤t<T ) + ap(t)1(T≤t≤T ),

where πc(t) are continuous premiums paid by the policy-holders (as long as they are alive),
and ap(t) corresponds to a life annuity benefit received by the policy-holders. Finally, the
last term in (8.2.9) represents payments immediately upon a death, and we assume that
a1 is some piecewise continuous function.
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8.3 Reserving

In this section we consider different reservation principles applicable in life insurance. We
note that all reserves calculated at time 0 are calculated after a possible initial premium,
so an obtained reserve at time 0 can be interpreted as the initial premium implied by the
considered criterion.

8.3.1 Market reserves

For any equivalent martingale measure Q from the class of measures considered in Sec-
tion 8.2.4 we can define a market reserve by

V Q(t) = EQ
[∫ T

t
e−

R u

t
r(s)dsdA(u)

∣∣∣∣F(t)

]
,

where F(t) represents all information available at time t. Calculations similar to those in
Chapter 4 give the following simplification of the market reserve in Chapter 7:

V Q(t) = (n−N(t))V Q,i(t),

where

V Q,i(t) =

bm∑

k=1

Q(Y = δk)

(∫ T

t
P δk(t, u)SQ(x, t, u)

(
a0(u) + a1(u)f

µ,Q(x, t, u)
)
du

+ P δk(t, T )SQ(x, t, T )∆A0(T )

)
.

Here, the quantity V Q,i(t) is the individual market reserve at time t for a policy-holder
who is alive.

8.3.2 Super-replication

The super-replicating (super-hedging) price for a liability is the minimal initial capital
necessary to guarantee the existence of a trading strategy, which always leaves the company
with sufficient capital to cover the liability. Hence, for a contingent claim H the super-
replicating price, F sr(0,H), is given by

F sr(0,H) = inf
V(0,ϕ)

(P (V(T,ϕ) ≥ H) = 1).

In the case of a payment process the super-replicating price is given by

F sr(0, A) = inf
V(0,ϕ)

(
P

(
V(T,ϕ) ≥

∫ T

0

V(T,ϕ)

V(u, ϕ)
dA(u)

)
= 1

)
. (8.3.1)
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Here, it is sufficient to consider the terminal time only, since an initial capital and a
trading strategy, which ensures sufficient capital to cover the accumulated payments at
terminal time T also is sufficient at time t to cover the accumulated benefits and the time
t super-replicating price. In (8.3.1) the payments are accumulated with the rate of return
obtained by the super-replicating strategy, since they can be interpreted as in- or outflow
to/from the portfolio.

Note that the super-replicating price is upper boundary for the open interval of arbitrage
free prices. Hence, the super-replicating price can be interpreted as the lowest price which
allows the seller of the contract to make arbitrage.

In the considered model with deterministic benefits and a finite number of conditional
forward rate curves the super-replicating prices are particularly simple to calculate, if the
benefits only are contingent on either survival or death.

Proposition 8.3.1
The super-replicating price for a pure endowment of ∆A0(T ) at time T and a temporary

life annuity with a continuous time-dependent rate ap from time T to T is given by

F sr(0, Ape,a) = max
k∈{1,...,bm}

(
P δk(0, T )∆A0(T ) +

∫ T

T
P δk(0, u)ap(u)du

)
.

For a term insurance of a constant amount a1 payable upon death prior to time T the
super-replicating price is

F sr(0, Ati) = a1.

The super-replicating prices above can be interpreted as follows: If the benefits are con-
tingent on survival we assume the insured never dies, and if the benefits are contingent on
death, we assume the insured dies immediately. This corresponds to using a survival prob-
ability over any time interval of 1 or 0, respectively. The resulting purely financial claim
is now priced in the conditional models without reinvestment risk. The super-replicating
price is then the maximum of these conditional prices.

In general the criterion of super-replication is not suitable to determine reserves for life
insurance contracts, and hence it shall not be pursued further in this chapter. However,
for a financial risk, such as the reinvestment risk, the criterion of super-replication may
provide valuable information. Hence, this idea is pursued in Section 8.3.3.

8.3.3 Alternative approaches to the reinvestment risk

Instead of calculating reserves by the no arbitrage principle only, we now consider three
alternative approaches to handling the reinvestment risk. Combined with the no arbitrage
principle for the remaining risks these principles yield reserves, which serve as alternatives
to the market reserves determined in Section 8.3.1. We note that the reserves in this section
also depend on the market’s attitude towards systematic and unsystematic mortality risk,
and hence the considered equivalent martingale measure Q.



224 CHAPTER 8. A NUMERICAL STUDY OF RESERVES AND RISK MEASURES

Super-replication of reinvestment risk

Consider the case where the company determines reserves using the criterion of super-
replicating for the reinvestment risk. In this case, the company for a fixed Q determines
the market reserves in the conditional models without reinvestment risk. The reserve
based on the criterion super-replication of the reinvestment risk is then the maximum of
the conditional market reserves. Mathematically this corresponds to

F srr(0, A) = max
k∈{1,...,bm}

n

(∫ T

t
P δk(0, u)SQ(x, 0, u)

(
a0(u) + a1(u)f

µ,Q(x, 0, u)
)
du

+ P δk(0, T )SQ(x, 0, T )∆A0(T )

)
.

Level long term yield and forward rate curves

In order to handle the reinvestment risk we, inspired by Danish legislation, consider the
principle of a level long term yield curve. Here, the companies value their liabilities using
a yield curve, which is level after time of maturity of the longest bond currently traded in
the market. In addition we also consider the related principle of a level long term forward
rate curve, where reserves are obtained using a forward rate curve which is level beyond
the time of maturity of the longest traded bond. This principle was introduced in discrete
time in Dahl (2005b) (see Chapter 5). Denote the bond prices using a level long term yield
and forward rate curve by P y(0, ·) and P f (0, ·), respectively. For a fixed Q the reserves
using these principles are given by

F c(0, A) = n

(∫ T

t
P c(0, u)SQ(x, 0, u)

(
a0(u) + a1(u)f

µ,Q(x, 0, u)
)
du

+ P c(0, T )SQ(x, 0, T )∆A0(T )

)
,

where c ∈ {y, f}. Note that the reserves calculated by these principles not necessarily lie
in the interval of arbitrage free prices.

Connection between yield and forward rate curves
In order to compare the principles of a level long term yield curve and a level long term
forward rate curve, we study the shape of the forward rate (yield) curve implied by a level
long term yield (forward rate) curve.

The yield from time u to t is defined as the constant rate of interest, y(u, t), implied by
the price at time u of a zero coupon bond maturing at time t. Hence, y(u, t) is given by

y(u, t) = − logP (u, t)

t− u
,
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or stated differently

P (u, t) = e−y(u,t)(t−u).

Björk (2004) refers to the yield for the period [u, t] as the continuously compounded spot
rate for the period [u, t]. For 0 ≤ u ≤ t we have the following connection between yields
and forward rates

e−y(u,t)(t−u) = e−
R t

u
f(u,s)ds. (8.3.2)

Since we are interested in applying the principles of a level long term yield or forward rate
curve to obtain reserves at time 0, we henceforth restrict ourselves to the case u = 0.

First consider the yield curve corresponding to a level long term forward rate curve. To
be more specific we assume the forward rate curve is level from time T̃ , such that we for
any t ≥ T̃ have

e−y(0,t)t = e−
R eT
0 f(0,s)ds−f(0, eT )(t− eT ).

Using (8.3.2) with t = T̃ and isolating y(0, t) gives

y(0, t) = f(0, T̃ ) +
(y(0, T̃ ) − f(0, T̃ ))T̃

t
. (8.3.3)

From (8.3.3) we observe that if y(0, T̃ ) is smaller (larger) than f(0, T̃ ) then y(0, t) converges
upwards (downwards) to f(0, T̃ ) as t→ ∞.

Now consider the implications on the forward rate curve of a level long term yield curve.
Assuming the yield curve is level from time T̃ gives the following equation for any t ≥ T̃ :

e−y(0,
eT )t = e−

R t
0
f(0,s)ds.

Again we apply (8.3.2) with t = T̃ to obtain

e−y(0,
eT )(t− eT ) = e−

R teT f(0,s)ds. (8.3.4)

Since (8.3.4) holds for all t ≥ T̃ we get f(0, t) = y(0, T̃ ). Hence, the long term forward rate
curve is level as well and equal to the yield curve. We note that if y(0, T̃ ) 6= f(0, T̃ ) then
the forward rate curve is discontinuous at T̃ , which is counter intuitive and in contrast
to standard financial literature. Figure 8.3.1 contains an illustration of the principles of a
level long term forward rate curve and a level long term yield curve. In this example the
principle of a level long term yield curve would lead to a discontinuity in the forward rate
curve.

Regarding the general relationship between the yield curve and the forward rate curve it
holds that when the yield curve is increasing (decreasing) the forward rate curve lies above
(below) the yield curve. Furthermore it holds that if the forward rate curve is increasing
(decreasing) for all maturities then it lies above (below) the yield curve.
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Figure 8.3.1: An illustration of the principles of a level long term forward rate curve and
a level long term yield curve.

8.4 Risk measures

In order to measure the risk of the company associated with the insurance portfolio we
consider the risk measures of Value at Risk and tail conditional expectation. We note that
both risk measures are calculated after a possible initial premium. In this exposition we
follow Artzner, Delbaen, Eber and Heath (1999) and define the risk measures in terms of
the initial capital instead of the terminal capital. The mean excess function from actuarial
literature (the expected short fall in the financial literature) measures the overshoot for
a given level. However, since we consider the necessary initial capital and not just the
additional necessary initial capital exceeding a specific level we prefer the term tail con-
ditional expectation, which stems from Artzner et al. (1999). For an overview of Value at
Risk written especially for practitioners we refer to Duffie and Pan (1997).

8.4.1 Value at Risk

Given a trading strategy the terminal Value at Risk at confidence level κ, V aRtκ, is the
initial capital necessary to meet a given liability with probability κ. Hence, for a contingent
claim H with maturity T we have

V aRtκ(ϕ,H) = inf
V(0,ϕ)

(P (V(T,ϕ) ≥ H) ≥ κ) . (8.4.1)
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However, it is not enough for a company to hold sufficient funds at the time of maturity
of the claim, it should hold sufficient funds throughout the course of the contract. Hence,
in addition to the terminal Value at Risk given by (8.4.1) we consider the barrier Value
at Risk, V aRbκ, given by

V aRbκ(ϕ,H) = sup
0≤t≤T

inf
V(0,ϕ)

(P (V(t, ϕ) ≥ V (t,H)) ≥ κ) . (8.4.2)

Here, V (t,H) describes a capital requirement at time t for the claim H. Hence, V (t,H)
could be a solvency requirement or a market reserve. From (8.4.1) and (8.4.2) we observe
that V aRbκ(ϕ,H) ≥ V aRtκ(ϕ,H), which also is intuitively clear since the barrier Value
at Risk should be sufficient to meet requirements at any time prior to (and including)
maturity, while the terminal Value at Risk is sufficient to fulfill a requirement at maturity
only.

Since we consider a payment process we need slightly different formulas than those in
(8.4.1) and (8.4.2) to calculate the Value at Risk. For a payment process the terminal and
barrier Value at Risk are given by

V aRtκ(ϕ,A) = inf
V(0,ϕ)

(
P

(
V(T,ϕ) ≥

∫ T

0

V(T,ϕ)

V(t, ϕ)
dA(t)

)
≥ κ

)
, (8.4.3)

and

V aRbκ(ϕ,A) = sup
0≤t≤T

inf
V(0,ϕ)

(
P

(
V(t, ϕ) ≥

(∫ t

0

V(t, ϕ)

V(u, ϕ)
dA(u) + V (t, A)

))
≥ κ

)
,

(8.4.4)

respectively. Here, a natural idea is to let

V (t, A) = EQ
[∫ T

t
e−

R u
t
r(s)dsdA(u)

]

for some equivalent martingale measure Q. Note that, as in (8.3.1), the payments in
(8.4.3) and (8.4.4) are accumulated with the relative return on the investments. In practice
companies calculate the short term Value at Risk for their liabilities. Here, the fixed short
term time-horizon usually lies between one day and one year. Hence, in addition to (8.4.3)
and (8.4.4) we define the time s terminal and barrier Value at Risk for s < T , by

V aRt,sκ (ϕ,A) = inf
V(0,ϕ)

(
P

(
V(s, ϕ) ≥

∫ s

0

V(s, ϕ)

V(t, ϕ)
dA(t) + V (s,A)

)
≥ κ

)
,

and

V aRb,sκ (ϕ,A) = sup
0≤t≤s

inf
V(0,ϕ)

(
P

(
V(t, ϕ) ≥

(∫ t

0

V(t, ϕ)

V(u, ϕ)
dA(u) + V (t, A)

))
≥ κ

)
.

Example 8.4.1 Consider the case, where a company follows either a buy and hold strat-
egy or a strategy with constant relative portfolio weights. In a buy and hold strategy no
adjustments are made to the initial portfolio during the considered time-period, whereas a
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company following a strategy with constant relative portfolio weights continuously adjusts
the investment portfolio, such that at all times, t ∈ [0, T ] the same proportion of the value
process is invested in the different assets. We observe that in both cases the dynamics
under P of the value process are of the form

dV(t, ϕ) =
(
r(t) + ρV(t)

)
V(t, ϕ)dt + σV(t)V(t, ϕ)dW f (t) + βV(t)V(t, ϕ)dW s(t),

for some functions ρV , σV and βV . Now we are interested in calculating V aRtκ for a capital
insurance of K at time T . Hence, we have to determine

inf
V(0,ϕ)

(P (V(T,ϕ) ≥ K) ≥ κ)

⇔ inf
V(0,ϕ)

bm∑

k=1

P (Y = δk)
(
P (Vδk(T,ϕ) ≥ K) ≥ κ

)
, (8.4.5)

where Vδk(ϕ) is the value process in the conditional model given Y = δk. In order to
determine P (Vδk(T,ϕ) ≥ K) we note that the conditional model given Y = δk the short
rate is given by

rδk(u) = f δk(0, u) +
c2

2a2
(1 − e−au)2 +

∫ u

0
ce−a(u−s)dW f (s).

Hence, we have

log Vδk(t, ϕ) = logV(0, ϕ) +

∫ t

0

(
f δk(0, u) + αV(u)

)
du

+

∫ t

0

∫ u

0
ce−a(u−s)dW f (s)du+

∫ t

0
σV(u)dW f (u) +

∫ t

0
βV(u)dW s(u)

= logV(0, ϕ) +

∫ t

0

(
f δk(0, u) + αV(u)

)
du

+

∫ t

0

c

a

(
1 − e−a(t−u)

)
dW f (u) +

∫ t

0
σV(u)dW f (u) +

∫ t

0
βV(u)dW s(u),

where we have defined αV(u) = c2

2a2
(1− e−au)2 + ρV(u)− 1

2(σV(u))2 − 1
2(βV(u))2 and used

Fubini’s theorem for stochastic processes to interchange integrals in the double integral.
This gives

logVδk(t, ϕ) ∼ N(log V(0, ϕ) + αδk(t), (σ(t))2),

where

αδk(t) =

∫ t

0

(
f δk(0, u) +

c2

2a2
(1 − e−au)2 + ρV(u) − 1

2
(σV(u))2 − 1

2
(βV(u))2

)
du,

σ(t) =

√∫ t

0

( c
a

(
1 − e−a(t−u)

)
+ σV(u)

)2
+ (βV(u))2 du.
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Thus, it holds that

P (Vδk(T,ϕ) ≥ K) = P
(
log Vδk(T,ϕ) ≥ log(K)

)

= Φ

(
logV(0, ϕ) + αδk(T ) − log(K)

σ(T )

)
, (8.4.6)

where Φ is the standard normal distribution function. Inserting (8.4.6) in (8.4.5) we obtain
the following implicit expression for V aRtκ for a capital insurance of K at time T

inf
V(0,ϕ)

(
bm∑

k=1

P (Y = δk)Φ

(
log V(0, ϕ) + αδk(T ) − log(K)

σ(T )

)
≥ κ

)
. (8.4.7)

Similar arguments give that in the case without systematic mortality risk and reinvestment
risk the V aRtκ for a portfolio of n identical pure endowments with sum insured ∆A0(T )
and maturity T is given by

inf
V(0,ϕ)

(
n∑

ℓ=0

(
n

ℓ

)
T p

n−ℓ
x (1 − T px)

ℓ Φ

(
log V(0, ϕ) + α(T ) − log ((n− ℓ)∆A0(T ))

σ(T )

)
≥ κ.

)

(8.4.8)

where T px = exp(−
∫ T
0 µ(x, u)du).

We note that in these simple cases no simulation is necessary, since we (at least numeri-
cally) are able to calculate the value at risk explicitly from (8.4.7) and (8.4.8).

�

8.4.2 Tail conditional expectation

The V aRκ’s measure the initial capital necessary to cover a future liability (and possible
intermediate requirements) with probability κ. However, the criterion provides no infor-
mation regarding the magnitude of the necessary capital in the cases, which occur with
probability 1−κ, where this initial capital is insufficient. Thus, in addition to the Value at
Risk we now consider the tail conditional expectation, which for a fixed trading strategy
measures the average initial investment necessary to cover the liabilities provided that a
given initial investment is insufficient.

Let ω denote a possible state of the world. For each ω we now define the initial capital
necessary to cover the time s value of the benefits by

Vt,smin(0, ϕ, ω) = inf
V(0,ϕ)

(
V(s, ϕ) ≥

∫ s

0

V(s, ϕ)

V(t, ϕ)
dA(t) + V (s,A)

)
.

For a given initial investment, u, we are now able to define the time s terminal tail
conditional expectation by

Vt,su (0, ϕ) = EP
[
Vt,smin(0, ϕ, ω)

∣∣∣ Vt,smin(0, ϕ, ω) > u
]
.
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If s = T we simply refer to the value as the terminal tail conditional expectation. Similarly
we can define

Vb,smin(0, ϕ, ω) = sup
0≤t≤s

inf
V(0,ϕ)

(
V(t, ϕ) ≥

∫ t

0

V(t, ϕ)

V(u, ϕ)
dA(u) + V (t, A)

)

and the time s barrier tail conditional expectation at level u by

Vb,su (0, ϕ) = EP
[
Vb,smin(0, ϕ, ω)

∣∣∣ Vb,smin(0, ϕ, ω) > u
]
.

If we let u be equal to V aRκ for some κ then we obtain the so-called tail Value at Risk.

Remark 8.4.2 Note that since all calculations for the Value at Risk and tail conditional
expectation are carried out under P the only possible dependence on Q is through the
capital requirement V (t, A).

�

8.5 Numerics

8.5.1 Simulation of Value at Risk and tail conditional expectation

Here, we explain the simulation procedure used to calculate the Value at Risk and tail
conditional expectation for a fixed trading strategy and payment process. At time-step
j the necessary capital to cover the accumulated benefits and the reserve for the future
liabilities is given by

V(j∆t, ϕ) =

j∑

i=1

∆A(i∆t)
V(j∆t, ϕ)

V(i∆t, ϕ)
+ V (j∆t, A) (8.5.1)

where ∆A(i∆t) = A(i∆t)−A((i−1)∆t) and V (j∆t, A) is the capital requirement. We as-
sume the capital requirement is given by the market reserve calculated with risk-neutrality
with respect to all unhedgeable sources of risk (reinvestment, systematic and unsystematic
mortality risks), i.e. under the so-called minimal martingale measure, see Schweizer (1995).
Now let V1(t, ϕ) be the value of 1 invested at time 0. The necessary initial investment to
cover the requirement at time-step j is then given by

Vj(0, ϕ) =

∑j
i=1 ∆A(i∆t)V

1(j∆t,ϕ)
V1(i∆t,ϕ)

+ V (j∆t, A)

V1(j∆t, ϕ)
. (8.5.2)

Hence, in order to calculate (8.5.2) we keep track of the value process generated by invest-
ing 1 at time 0, and of the past benefits accumulated by the rate of return obtained by the
investment strategy. In each simulation we can now for a fixed time-horizon s calculate

Vb,smin(0, ϕ) = max
j∈{0,...,s/∆t}

Vj(0, ϕ).
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and

Vt,smin(0, ϕ) = Vs/∆t(0, ϕ).

For any time horizon s the barrier and terminal Value at Risk and tail conditional expecta-
tion for different κ’s and u’s can now be calculated from the vectors containing Vb,smin(0, ϕ)
and Vt,smin(0, ϕ) from each simulation.

Note that in the simple case of a pure endowment the first term on the right hand side in
(8.5.1) disappears, such that the calculations simplify considerably.

8.5.2 Parameters

In this section we motivate the choice of parameters in the numerical calculations. It is
important to note that we have no empirical ambitions, but the parameters should be
reasonable.

All conditional short rates follow an extended Vasiček model with the same speed of mean-
reversion, a, and volatility, c. Hence, we may use the values used in Poulsen (2003) for a
standard Vasiček model. Furthermore, the market price of standard interest rate risk, hf ,
is determined such that it is identical to the one in Poulsen (2003), namely hf = 0.3125.
Consider a so-called Nelson–Siegel parametrization, see Nelson and Siegel (1987), for the
initial forward rate curve

f(0, t) = α0 + α1 exp

(
− t

τ

)
+ α2

t

τ
exp

(
− t

τ

)
.

Here, α0, α1, α2 and τ are some constants of which α0 and τ strictly positive. As a basis
for the initial conditional forward rate curves we estimate the parameters in the Nelson–
Siegel parametrization from the prices of Danish government bonds early 2005. Let Y = δ1
correspond to the conditional initial curve, where Yi = 1 for all i. This curve is obtained
by multiplying the estimated forward rates f(0, t) by (ψd)i for Ti−1 + T̃ < t ≤ Ti + T̃ .
We now restrict ourselves to the case b = 2 and obtain the remaining conditional initial
forward rate curves by multiplying the forward rates (f δ1(0, t))

Ti−1+ eT<t≤Ti+ eT by (ψu)j if

j of the i’th first values in δk is equal to 2. To describe the probabilistic nature of the Yi’s,
we let p = P (Y1 = 2) = 0.5 and q = Q(Y1 = 2).

In general, empirical evidence shows that there is a positive correlation between bonds and
stocks, such that increasing interest rates lead to a decrease in both bond and stock prices.
We calibrate the parameters σs and βs, such that the correlation, σs/

√
(σs)2 + (βs)2, is

equal to 0.5 and the volatility of the stock,
√

(σs)2 + (βs)2, is 0.2. This gives σs = 0.02
and βs ≈ 0.19. Furthermore, we let hs = −0.2, such that the additional expected rate of
return on the stock compared to the long term bonds is approximately 0.03, which seems
reasonable, see e.g. Graham and Harvey (2005).

The initial mortality curve is described by a so-called Gompertz–Makeham curve, where
the mortality intensity is of the form µ◦(x + t) = a◦ + b◦(c◦)x+t, for some constants



232 CHAPTER 8. A NUMERICAL STUDY OF RESERVES AND RISK MEASURES

a◦, b◦ and c◦. We use the parameters estimated in Chapter 4 for males in year 2003.
The stochastic model (including parameters) for the future development of the mortality
intensity is identical to so-called “case II”-model in Chapter 4.

Table 8.5.1 provides an overview of the interpretation of the different parameters and the
values used in the numerical calculations.

Parameter Interpretation Value

T Terminal time of payments 30 (varies)

T Time of retirement 30
α0 Parameter Nelson–Siegel parametrization of forward rates 0.044556
α1 Parameter Nelson–Siegel parametrization of forward rates -0.0224
α2 Parameter Nelson–Siegel parametrization of forward rates -0.0231
τ Time-parameter Nelson–Siegel 1.97184
a Speed of mean-reversion of r 0.25
c Volatility of r 0.012
hf Market price of interest rate risk 0.3125

T̃ Maximum time to maturity of traded bonds 20
∆Ti Time between issue of new bonds 2 (varies)
m Number of issues of new bonds 2
p Probability under P of Yi = 2 0.5
q Probability under Q of Yi = 2 0.5 (varies)
σs Volatility parameter stock 0.02
βs Volatility parameter stock 0.19
hs Related to market price of risk associated to the stock -0.2
a◦ Gompertz–Makeham parameter 0.000134
b◦ Gompertz–Makeham parameter 0.0000353
c◦ Gompertz–Makeham parameter 1.1020
x Initial age 30

δ̃ Speed of mean-reversion for µ under P 0.008
σ̃ Volatility parameter for µ 0.02
β Affects level and speed of mean-reversion for µ under Q 0 (varies)
β∗ Affects level of mean-reversion for µ under Q 0
g Affects market price of unsystematic mortality risk 0
ψu Multiplication factor up 1.05 (varies)
ψd Multiplication factor down 0.99 (varies)

Table 8.5.1: Parameters used in the numerical calculations. A number followed by
“(varies)” means that where nothing else is stated the parameter is equal to the value,
and in at least one case this is not the case.
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8.5.3 Numerical results

In this section we, unless stated otherwise, consider a portfolio of pure endowments paid
by a single initial premium. Furthermore, in order to ease comparison all numbers in this
section, unless explicitly explained, are scaled by the market reserve under the minimal
martingale measure, i.e. where q = p and β = β∗ = g = 0.

Dependence on market’s attitude towards reinvestment risk

From Figure 8.5.1 we observe that the market reserve is a decreasing function of q. This
relies on the fact that we consider a pure endowment paid by a single initial premium.
In this case, the conditional reserve is an increasing function of the conditional price of a
zero coupon bond maturing at time T , and since increasing q increases the weight assigned
to the low conditional bond prices the market reserve is decreasing in q. The alternative
reservation principles are independent of the choice of martingale measure with respect to
reinvestment risk, so they are independent of q. Note that as q → 0 the market reserve
converges to the reserve calculated by the principle of reinvestment risk super-replication.
This is also intuitively obvious since the weight assigned to the largest conditional zero
coupon bond price, which is exactly the price used to calculate the reinvestment risk
super-replicating reserve, approaches 1. The initial forward rate curve is increasing for
all maturities, so the principle of a level long term yield curve gives a larger reserve than
the reserve calculated with a level long term forward rate curve. Furthermore, we observe
that in this case the principle of reinvestment risk super-replicating gives a larger reserve
than the principle of a level long term forward rate curve. A necessary requirement for
this is that (at least) one conditional forward rate curve is decreasing for some maturities.

Investigating Figure 8.5.2 we observe that the relative magnitude of the dependence on q
depends on the number of issues of new bonds. This is also intuitively clear since increasing
the number of issues for fixed ψu and ψd increases the diversity between the conditional
bond prices. Hence, the weights assigned to the different conditional bond prices become
increasingly important. We note that since the reserves depend on the number of issues
the scaling factors differ for the three lines i Figure 8.5.2, so the figure can only be used
to observe the impact of the number of issues on the relative dependence on q.

Dependence on market’s attitude towards mortality risk

For the considered portfolio of pure endowments the reserves are given by the product of
the number of insured, the Q-survival probability, the fixed benefit per insured and the
price of a zero coupon bond maturing at time T under the assumptions imposed by the
reservation principle. Hence, the relative impact of changing β is the same for all four
reservation principles. This fact is easily observed form Figure 8.5.3. Furthermore Figure
8.5.3 shows that the reserves have a positive dependence on β. This is also intuitively
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Figure 8.5.1: Initial market reserve as a function of market’s attitude to reinvestment risk.
For comparison the reserves calculated by the principles of a level long term yield/forward
rate curve and super-replication of reinvestment risk are plotted as well.
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Figure 8.5.2: Initial market reserves as a function of market’s attitude to reinvestment
risk for three different time intervals between the time of issue of new bonds.

clear, since increasing β increases the speed of mean-reversion and decreases the level of
mean-reversion for µ under Q, such that the Q-survival probability increases.

Similarly we have that increasing β∗ increases the level of mean reversion of µ under Q,
such that the reserves decrease. Since β∗ = 0 is the lowest possible value ensuring a strictly
positive mortality intensity under Q, other values of β∗ would lead to lower reserves. The
parameter g, which is related to the unsystematic mortality risk changes the level of mean-
reversion and the volatility of µ under Q. However, since the level of mean-reversion is
very small the effect of g (for reasonable values) is negligible.

Dependence on the multiplication factors

From Table 8.5.2 we observe that for a fixed Q the market reserve is a decreasing function
of both ψu and ψd. This corresponds to our intuition, since increasing ψu and/or ψd

decreases the conditional bond prices and hence the market reserve. Since the principle
of super-replication of reinvestment risk only considers the largest conditional bond price,
this reserve is independent of ψu and a decreasing function of ψd. The principles of a level
long term yield/forward rate curve are independent of the long term conditional bond
prices and thus of ψu and ψd. We observe that if ψd is small enough (0.96 in this case)
then the principle of reinvestment risk super-replication gives a reserve larger than the
principle of a level long term yield curve. Likewise we have that if ψd is large enough (1 in
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Figure 8.5.3: Initial reserves as a function of β, which is associated with market’s attitude
to systematic mortality risk.

ψu ψd Market reserve Super-replication Level forward Level yield

1.05 0.99 254.63 263.16 259.75 271.59
1.04 0.99 256.35 263.16 259.75 271.59
1.03 0.99 258.07 263.16 259.75 271.59
1.02 0.99 259.77 263.16 259.75 271.59

1.05 1 251.01 259.73 259.75 271.59
1.05 0.99 254.63 263.16 259.75 271.59
1.05 0.98 258.21 266.54 259.75 271.59
1.05 0.97 261.74 269.87 259.75 271.59
1.05 0.96 265.22 273.15 259.75 271.59

Table 8.5.2: Dependence of initial reserves on the multiplication factors ψu and ψd. Top:
Dependence on ψu. Bottom: Dependence on ψd. All values with two decimals. No scaling
is applied in this table.
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this case) the principle of reinvestment risk super-replicating gives a smaller reserve than
the principle of a level long term forward rate curve.

Value at Risk and tail conditional expectation

We now turn to the risk measures of Value at Risk and tail conditional expectation.
Since we only consider the tail conditional expectation at levels given by V aRκ’s, we,
as explained in Section 8.4.2, refer to the considered tail conditional expectations as tail
Value at Risk. All results in this section are based on investment strategies with constant
relative portfolio weights and 1000 simulations using the Euler method.
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Figure 8.5.4: Terminal/barrier (tail) Value at Risk as a function of κ.

Figure 8.5.4 shows the dependence of the terminal and barrier Value at Risk and tail
Value at Risk on κ for a fixed investment strategy with 40% invested in stocks and bonds,
respectively, and 20% in the savings account. From Figure 8.5.4 we immediately note
that for fixed κ the barrier (tail) Value at Risk is larger than the terminal (tail) Value
at Risk and that the tail Value at Risk is larger than the corresponding Value at Risk.
Furthermore, we observe that in this case the barrier Value at Risk is larger than the
terminal tail Value at Risk. For any κ it holds that the barrier Value at Risk is greater than
or equal to the market reserve under the minimal martingale measure, which corresponds
to a horizon line at 1. This is due to the fact that the market reserve under the minimal
martingale measure is equal to the barrier restriction. For all four risk measures we observe
a steep slope for very large values of κ.
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Figure 8.5.5: 1-year terminal/barrier (tail) Value at Risk as a function of κ.

Figure 8.5.5 is essentially identical to Figure 8.5.4, except here the risk measures are
considered on a one year time horizon. We observe that on a one year time-horizon
the barrier Value at Risk lies below the terminal tail Value at Risk. Apart from the
terminal Value at Risk for small κ’s we observe a considerably smaller magnitude of the
risk measures on a one year time horizon than when considering the time horizon of the
contract. This is also intuitively clear since the amount of uncertainty on a one year
scale is considerably smaller than on a long term scale. As an example we mention that
on a one year time-horizon, both the barrier and terminal Value at Risk at level 0.99
are approximately 1.35 times the market reserve under the minimal martingale measure,
whereas on a 30 year time-horizon this only corresponds to a barrier Value at Risk at level
0.35 and a terminal Value at Risk at level 0.85.

To consider the dependence of the (tail) Value at Risk on the investment strategy we
investigate Tables 8.5.3 and 8.5.4. Here, we have restricted ourselves to strategies without
short selling and borrowing. We observe that the proportion in the savings account is
unchanged by moving one cell up and to the right.

Investigating Table 8.5.3 we find that for a fixed proportion invested in stocks, all risk
measures decrease as the proportion in bonds increases. This is not surprising, since the
bonds most closely resembles the financial nature of the benefits. Furthermore we observe
that for fixed proportion in bonds, all risk measures, except the barrier (tail) Value at
Risk, decrease, when the proportion in stocks increases. The barrier (tail) Value at Risk
also indicate that it is better to hold some stocks than none. For a fixed proportion in the
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Stocks
Bonds 0 0.2 0.4 0.6 0.8 1

0 4.84 (5.84) 3.10 (3.68) 2.64 (3.42) 2.44 (3.46) 2.52 (3.96) 2.81 (5.11)
4.54 (5.59) 2.66 (3.26) 1.97 (2.71) 1.58 (2.47) 1.44 (2.60) 1.44 (3.23)
3.01 (3.43) 2.12 (2.32) 1.69 (1.80) 1.42 (1.54) 1.24 (1.37) 1.14 (1.29)
3.01 (3.43) 2.15 (2.35) 1.73 (1.84) 1.48 (1.59) 1.32 (1.43) 1.22 (1.35)

0.2 3.16 (3.64) 2.30 (2.69) 2.15 (2.32) 2.44 (3.46) 2.19 (3.33)
2.95 (3.48) 1.95 (2.35) 1.97 (2.71) 1.58 (2.47) 1.15 (2.20)
2.15 (2.32) 1.69 (1.78) 1.69 (1.80) 1.42 (1.54) 1.10 (1.22)
2.15 (2.32) 1.71 (1.80) 1.73 (1.84) 1.48 (1.59) 1.16 (1.27)

0.4 2.27 (2.49) 1.77 (2.00) 1.72 (2.08) 1.76 (2.38)
2.10 (2.35) 1.45 (1.72) 1.18 (1.57) 1.08 (1.67)
1.67 (1.74) 1.37 (1.43) 1.19 (1.25) 1.07 (1.15)
1.67 (1.75) 1.40 (1.45) 1.23 (1.27) 1.12 (1.19)

0.6 1.75 (1.84) 1.48 (1.63) 1.44 (1.70)
1.61 (1.72) 1.19 (1.36) 0.97 (1.25)
1.37 (1.41) 1.17 (1.21) 1.05 (1.11)
1.38 (1.42) 1.19 (1.23) 1.08 (1.13)

0.8 1.42 (1.46) 1.26 (1.38)
1.25 (1.30) 0.95 (1.09)
1.17 (1.20) 1.03 (1.07)
1.18 (1.21) 1.05 (1.08)

1 1.23 (1.27)
1.01 (1.03)
1.03 (1.06)
1.04 (1.07)

Table 8.5.3: The risk measures as a function of the proportion invested in the different
assets for κ = 0.75. First line for a fixed investment strategy: Barrier Value at Risk
(barrier tail Value at Risk). Second line: Terminal Value at Risk (terminal tail Value at
Risk). Third line: 1-year terminal Value at Risk (1-year terminal tail Value at Risk) and
fourth line: 1-year barrier Value at Risk (1-year barrier tail Value at Risk). All values
with two decimals.
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Stocks
Bonds 0 0.2 0.4 0.6 0.8 1

0 7.98 (8.90) 4.89 (5.15) 5.61 (6.33) 5.53 (7.27) 7.45 (12.60) 11.49 (18.05)
7.90 (8.72) 4.39 (4.82) 4.71 (5.56) 4.38 (5.67) 4.97 (9.75) 7.53 (12.95)
4.27 (4.44) 2.67 (2.76) 2.00 (2.08) 1.74 (1.80) 1.59 (1.69) 1.53 (1.65)
4.27 (4.44) 2.70 (2.77) 2.04 (2.12) 1.78 (1.83) 1.62 (1.72) 1.56 (1.71)

0.2 4.50 (5.00) 3.38 (3.78) 3.66 (4.39) 4.99 (6.62) 6.06 (9.90)
4.38 (4.82) 3.15 (3.55) 3.10 (3.62) 3.83 (5.51) 4.84 (8.50)
2.61 (2.71) 1.91 (1.99) 1.62 (1.66) 1.43 (1.49) 1.40 (1.52)
2.62 (2.71) 1.92 (2.01) 1.64 (1.67) 1.47 (1.52) 1.47 (1.55)

0.4 2.98 (3.10) 2.47 (2.81) 2.83 (3.07) 3.76 (4.54)
2.86 (3.01) 2.25 (2.58) 2.30 (2.51) 3.03 (3.52)
1.88 (1.92) 1.53 (1.55) 1.35 (1.38) 1.28 (1.33)
1.89 (1.92) 1.54 (1.56) 1.37 (1.39) 1.30 (1.34)

0.6 2.00 (2.05) 1.89 (1.97) 2.21 (2.36)
1.94 (1.99) 1.64 (1.73) 1.77 (2.02)
1.48 (1.51) 1.28 (1.30) 1.21 (1.23)
1.48 (1.52) 1.28 (1.30) 1.22 (1.24)

0.8 1.52 (1.53) 1.62 (1.72)
1.38 (1.41) 1.36 (1.45)
1.25 (1.27) 1.12 (1.15)
1.15 (1.28) 1.13 (1.15)

1 1.35 (1.38)
1.07 (1.08)
1.11 (1.12)
1.12 (1.13)

Table 8.5.4: The risk measures as a function of the proportion invested in the different
assets for κ = 0.99. First line for a fixed investment strategy: Barrier Value at Risk
(barrier tail Value at Risk). Second line: Terminal Value at Risk (terminal tail Value at
Risk). Third line: 1-year terminal Value at Risk (1-year terminal tail Value at Risk) and
fourth line: 1-year barrier Value at Risk (1-year barrier tail Value at Risk). All values
with two decimals.
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savings account it is hard to say anything in general.

From Table 8.5.4 we observe that for a fixed proportion in bonds, the terminal and barrier
(tail) Value at Risk indicate that holding some stocks usually lead to a lower risk measure
than holding no stocks. However, a large investment in stocks is clearly more dangerous
than none or few stocks. This is especially obvious from the tail Value at Risks. The 1-year
risk measures are (almost) all decreasing as a function of the proportion in stocks. For a
fixed proportion in stocks all risk measures are decreasing as a function of the proportion in
bonds and for a fixed proportion in the savings account, they are decreasing as a function
of the proportion in bonds.

Life annuities
Now consider a portfolio of life annuities, where the insured contingent on survival receives
a continuous benefit from age 60 to 90. In order to illustrate the dependence of the risk
measures on κ, we, as in the case of a pure endowment, consider an investment strategy
with 40% invested in stocks and bonds, respectively, and 20% in the savings account.
Investigating Figures 8.5.6 and 8.5.7 we observe the same behavior for the risk measures
as in Figures 8.5.4 and 8.5.5 for the pure endowment. Comparing the relative magnitude
of the risk measures for the two different contracts, we observe that for all risk measures
the relative size is larger for the annuity than for the pure endowment. This indicates that
the annuity is a more risky contract than the pure endowment, which corresponds to our
intuition, since the longer time horizon of the annuity exposes the company to more risk.
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Figure 8.5.6: Terminal/barrier (tail) Value at Risk for a life annuity as a function of κ.
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Figure 8.5.7: 1-year terminal/barrier (tail) Value at Risk for a life annuity as a function
of κ.
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Cheridito, P., Filipović, D. and Kimmel, R. L. (2003). Market Price of Risk Specifications
for Affine Models: Theory and Evidence, Working Paper, Princeton University.

Christensen, C. V. (2000). Securitization of Insurance Risk, Ph.D. thesis, University of
Aarhus.

Cont, R. and Tankov, P. (2004). Financial Modelling With Jump Processes, Chapman &
Hall/CRC.



BIBLIOGRAPHY 245

Cox, J., Ingersoll, J. and Ross, S. (1985). A Theory of the Term-Structure of Interest
Rates, Econometrica 53, 385–408.

Cox, S. H., Fairchild, J. R. and Pedersen, H. W. (2000). Econometric Aspects of Securi-
tization of Risk, ASTIN Bulletin 30, 157–193.

Cruz, M. G. (2002). Modeling, Measuring and Hedging Operational Risk, John Wiley &
Sons Ltd.
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Föllmer, H. and Schied, A. (2002). Stochastic Finance: An Introduction in Discrete Time,
de Gruyter Series in Mathematics 27, Berlin.
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