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Preface

This work is the result of the research I have carried out as a ph.d.-student
at the Department of Mathematics at the University of Copenhagen from
the first of May 2001 to the second of April 2004.

The subject of the thesis is application of operator algebra in symbolic
dynamics. More specific, the thesis deals with C∗-algebras associated to
symbolic dynamical systems and invariants of symbolic dynamical systems
of a K-theoretically nature.

The starting point of the research is C∗-algebras associated with one-
sided shift spaces, but we will also deal with C∗-algebras associated to
two-sided shift spaces, to infinite topological Markov chains, k-graph and
higher dimensional shifts on infinite alphabets.

A great effort is put into describing the K-theory of the C∗-algebra
associated to a shift space, which is both a conjugacy and a flow invariant.
Especially for substitutional dynamical systems, where it is shown that the
K-theory contains information not captured by any other know invariant.

The thesis consists of 6 papers and one note. Each paper is precede
and succeed by some remarks which place the paper in the context of the
subject.

Each page in this thesis is numbered in succession. In addition to
this, each paper has its own internal numbering which hopefully makes
navigation easier.
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Chapter 1

Cuntz-Pimsner C∗-algebras
associated with subshifts

This first chapter consists of the preprint Cuntz-Pimsner C∗-algebras as-
sociated with subshifts in which a C∗-algebra OX is associated to every
one-sided shift space (which is called a subshift in the paper).
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Cuntz-Pimsner C∗-algebras associated with

subshifts

Toke Meier Carlsen

Abstract

By using C∗-correspondences and Cuntz-Pimsner algebras, we as-
sociate to every subshift X a C∗-algebra OX, which is a generalization
of the Cuntz-Krieger algebra. We show that OX is the universal C∗-
algebra generated by partial isometries satisfying relations given by X.
We also show that OX is a conjugacy invariant of X.

KEYWORDS: C∗-algebras, subshifts, shift spaces, conjugacy, Cuntz-Krieger
algebras, Cuntz-Pimsner algebras.
2000 MATHEMATICS SUBJECT CLASSIFICATION: Primary: 46L55,
Secondary: 37B10.

1 Introduction

In [3] Cunzt and Krieger introduced a new class of C∗-algebras which in a
natural way can be viewed as universal C∗-algebras associated with subshifts
(also called shift spaces) of finite type. Frome the point of view of operator
algebra these C∗-algebras were important examples of C∗-algebras with new
properties and from the point of view of topological dynamics these C∗-
algebras (or rather, the K-theory of these C∗-algebras) gave new invariants
of subshifts of finite type.

In [12] Matsumoto tried to generalize this idea by constructing C∗-
algebras associated with every subshift and he studied them in [7–11]. Un-
fortunately there is a mistake in [10] which makes many of the results in
[7–11] wrong. This mistake has to do with the identification of an underly-
ing compact space which among other things determine the K-theory of the
C∗-algebras. It turned out that this compact space is not the space Mat-
sumoto thought it was, and thus many of the results of [7–11] are wrong.
To recover these results Matsumoto and the author introduced in [1] a new

1
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class of C∗-algebras associated with subshifts, which has the right underly-
ing compact space and thus satisfies most of the results in [7–12], but these
C∗-algebra don’t have the universal property. Thus one could think of them
as the reduced C∗-algebras associated with subshifts.

In this paper we will construct a new C∗-algebra OX by using C∗-
correspondences (also called Hilbert bimodules ) and Cunzt-Pimsner algeb-
ras, and this new C∗-algebra will both have the right underlying compact
space and have the universal property and hence will satisfy all the results
of [7–12] and has the C∗-algebra defined in [1] s a quotient. Thus is seems
right to think of this C∗-algebra as the universal C∗-algebra associated to a
subshift.

Matsumoto’s original construction associated a C∗-algebra to every two-
sided subshift, but it seems more natural to work with one-sided subshifts,
so we will do that in this paper. We will show that OX is the universal
C∗-algebra associated with partial isometries satisfying relations giving by
X and which resemble the Cuntz-Krieger relations (Theorem 7.2). We will
also show that OX is an invariant of X in the sense that if X and Y are
conjugate one-sided subshifts, then OX and OY are isomorphic (Theorem
8.5). This is a generalization of [12, Proposition 5.8] (see [9, Lemma 4.5] for
a proof), where it is required that X and Y satisfy a certain condition (I).

2 Notation

Let a be a finite set endowed with the discrete topology. We will call this
set the alphabet. Let aN0 be the infinite product spaces

∏∞
n=0 a endowed

with the product topology. The transformation σ on aN0 given by (σ(x))i =
xi+1, i ∈ N0 is called the shift. Let X be a shift invariant closed subset of aN0

(by shift invariant we mean that σ(X) ⊆ X, not necessarily σ(X) = X). The
topological dynamical system (X, σ|X) is called a subshift. We will denote
σ|X by σX or σ for simplicity, and on occasion the alphabet a by aX

A finite sequence µ = (µ1, . . . , µk) of elements µi ∈ a is called a finite
word. The length of µ is k and is denoted by |µ|. We let for each k ∈ N0,
ak be the set of all words with length k and we let Lk(X) be the set of all
words with length k appearing in some x ∈ X. We set Ll(X) =

⋃l
k=0 Lk(X)

and L(X) =
⋃∞
k=0 Lk(X) and likewise al =

⋃l
k=0 ak and a∗ =

⋃∞
k=0 ak, where

L0(X) = a0 denote the set consisting of the empty word ε. L(X) is called the
language of X. Note that L(X) ⊆ a∗ for every subshift.

For a subshift X and a word µ ∈ L(X) we denote by CX(µ) the cylinder

2
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set
CX(µ) = {x ∈ X | (x1, x2, . . . , x|µ|) = µ}.

It is easy to see that
{CX(µ) | µ ∈ L(X)}

is a basis for the topology of X, and that CX(µ) is closed and hence compact
for every µ ∈ L(X). We will allow us self to write C(µ) instead of CX(µ)
when it is clear which subshift space we are working with.

For a subshift X and words µ, ν ∈ L(X) we denote by C(µ, ν) the set

C(ν) ∩ σ−|ν|(σ|µ|(C(µ))) = {νx ∈ X | µx ∈ X}.

If X and Y are two subshifts and φ : X → Y is a homeomorphism such
that ψ ◦ σX = σY ◦ φ, then we say that φ is a conjugacy and that X and Y
are conjugate.

3 Cunzt-Pimsner algebras

We will in this section give a short introduction to Cuntz-Pimsner algebras.
We will follow the universal approach of [4] (see also [13] and [6]).

Let A be a C∗-algebra. A right Hilbert A-module H is a Banach space
with a right action of the C∗-algebra A and an A-valued inner product 〈·, ·〉
satisfying

1. 〈ξ, ηa〉 = 〈ξ, η〉a,

2. 〈ξ, η〉 = 〈η, ξ〉∗,

3. 〈ξ, ξ〉 ≥ 0 and ‖ξ‖ = ‖〈ξ, ξ〉‖1/2,

for ξ, η ∈ H and a ∈ A.
For a Hilbert A-module H, we denote by L(H) the C∗-algebra of all

adjointable operators on H. For ξ, η ∈ H, the operator θξ,η ∈ L(H) is defined
by θξ,η(ζ) = ξ〈η, ζ〉 for ζ ∈ H. We define K(H) ⊆ L(H) by

K(H) = span{θξ,η | ξ, η ∈ H},

where span{· · · } means the closure of the linear span of {· · · }.
Let φ : A → L(H) be a ∗-homomorphism. Then ax := φ(a)x defines a

left action of A on H, and we call H a C∗-correspondence over A (in [13]
and [4] a C∗-correspondence is called a Hilbert bimodule, but it seems that
the term C∗-correspondence has become the preferable).

3
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A Toeplitz representation (ψ, π) of H in a C∗-algebra B consists of a
linear map ψ : H → B and a ∗-homomorphism π : A → B such that

ψ(ξa) = ψ(ξ)π(a), ψ(ξ)∗ψ(η) = π(〈ξ, η〉), and ψ(aξ) = π(a)ψ(ξ)

for ξ, η ∈ H and a ∈ A. Given such a representation, there is a homomorph-
ism π(1) : K(H) → B which satisfies

π(1)(θξ,η) = ψ(ξ)ψ(η)∗

for all ξ, η ∈ H, and we then have

π(1)(T )ψ(ξ) = ψ(Tξ)

for every T ∈ K(H) and ξ ∈ H. If ρ : B → C is a ∗-homomorphism between
C∗-algebras, then (ρ ◦ ψ, ρ ◦ π) is a Toeplitz representation of H, and since

(ρ ◦ π)(1)(θξ,η) = (ρ ◦ ψ(ξ))(ρ ◦ ψ(η))∗ = ρ ◦ π(1)(θξ,η)

for all ξ, η ∈ H, by linearity and continuity we have

(ρ ◦ π)(1) = ρ ◦ π(1).

We denote by J (H) the closed two-sided ideal φ−1(K(H)) in A, and we say
that a Toeplitz representation (ψ, π) of H is Cuntz-Pimsner coinvariant if

π(1)(φ(a)) = π(a)

for all a ∈ J (H).

Theorem 3.1. Let H be a C∗-correspondence over A. Then there is a
C∗-algebra OH and a Cuntz-Pimsner coinvariant Toeplitz representation
(kH, kA) : H → OH which satisfies:

1. For every Cuntz-Pimsner coinvariant Toeplitz representation (ψ, π) of
H, there is a homomorphism ψ × π of OH such that (ψ × π) ◦ kH = ψ
and (ψ × π) ◦ kA = π,

2. OH is generated as a C∗-algebra by kH(H) ∪ kA(A).

Remark 3.2. The triple (OH, kx, kA) is unique: if (X , k′H, k′A) has similar
properties, then there is an isomorphism θ : OH → X such that θ ◦ kH = k′H
and θ ◦ kA = k′A. Thus there is a strongly continuous gauge action γ : T →
AutOH which satisfies γz(kA(a)) = kA(a) and γz(kH(x)) = zkH(x) for a ∈ A
and x ∈ H.

4
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4 C∗-correspondences associated with subshifts

We will now define the C∗-correspondence HX that we associate to a subshift
X.

We start by defining the C∗-algebra which HX is a C∗-correspondence
over.

Definition 4.1. For every subshift X we let B(X) be the abelian C∗-algebra
of all bounded functions on X, and D̃X the C∗-subalgebra of B(X) generated
by {1C(µ,ν) | µ, ν ∈ a∗}.

It turns out that the spectrum of D̃X is the right underlying compact
space for the C∗-algebra that we are going to associate with subshifts, but
since we will not need an explicit description of this compact space we are
not going to give one, but instead work with D̃X.

Definition 4.2. Let X be a subshift. For every a ∈ a let D̃a be the ideal in
D̃X generated by 1σ(C(a)). Let HX be the right Hilbert D̃X-module

⊕a∈aD̃a

with the right action is given by (fa)a∈af = (faf)a∈a and the inner product
by 〈(fa)a∈a, (ga)a∈a〉 =

∑
a∈a f

∗
aga for (fa)a∈a, (ga)a∈a ∈ ⊕a∈aD̃a and f ∈ D̃X.

Proposition 4.3. Let X be a subshift and let a ∈ a. Define a ∗-homomorphism
λ̃a : B(X) → B(X) by letting

λ̃a(f)(x) =
{
f(ax) if ax ∈ X
0 if ax /∈ X

for every f ∈ B(X) and every x ∈ X.
Then λ̃a(D̃X) ⊆ D̃a.

Proof. Let µ, ν ∈ a∗ with |ν| ≥ 1. For every x ∈ X is

λ̃a
(
1C(µ,ν)

)
(x) =

{
1C(µ,ν)(ax) if ax ∈ X

0 if ax /∈ X

=

{
1 if a = ν1, x1 = ν2, . . . , x|ν|−1 = ν|ν|, µσ

|ν|−1(x), ax ∈ X

0 else.

So λ̃a
(
1C(µ,ν)

)
= 0 if a 6= ν1, and

λ̃a
(
1C(µ,ν)

)
= 1C(µ,ν2ν3···ν|ν|)1σ(C(a))

5
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if a = ν1. Hence λ̃a
(
1C(ν,µ)

)
∈ D̃a. In a similar way, we see that λ̃a

(
1C(µ,ε)

)
=

1C(aµ,ε), so λ̃a
(
1C(ν,ε)

)
∈ D̃a. Thus λ̃a(D̃X) ⊆ D̃a, since D̃X is generated by

{1C(µ,ν) | µ, ν ∈ a∗}.

Definition 4.4. Let X be a subshift. We let φ : D̃X → L(HX) be the
∗-homomorphism defined by

φ(f)((fa)a∈a) = (λ̃a(f)fa)a∈a

for every f ∈ D̃X and every (fa)a∈a ∈ HX. With this HX becomes a C∗-
correspondence.

5 The C∗-algebra associated with a subshift

We are now ready to define the C∗-algebra OX associated with a subshift X.

Definition 5.1. Let X be a subshift. The C∗-algebra OX associated with X
is the C∗-algebra OHX

from Theorem 3.1, where HX is the C∗-correspondence
defined above.

We will now take a closer look at OX. First, we show that OX is unital.

Lemma 5.2. Let X be a subshift and let 1 be the unit of D̃X. Then k eDX
(1)

is a unit for OX.

Proof. We have that

kHX
(ξ)k eDX

(1) = kHX
(ξ1) = kHX

(ξ),

and
k eDX

(1)kHX
(ξ) = kHX

(φ(1)ξ) = kHX
(xi)

for every ξ ∈ HX. Since we also have that

k eDX
(1)k eDX

(f) = k eDX
(f)k eDX

(1) = k eDX
(f)

for every f ∈ D̃X, and OX is generated by kHX
(HX)∪ k eDX

(D̃X), we have that
k eDX

(1) is a unit for OX.

We will denote the unit of OX by I.

Definition 5.3. Let X be a shift. For every a ∈ a let ξa be the element
(fa′)a′∈a ∈ HX where fa = 1σ(C(a)) and fa′ = 0 for a′ 6= a, and let for every
µ ∈ a∗, Sµ be the product kHX

(ξµ1)kHX
(ξµ2) · · · kHX

(ξµ|µ|) ∈ OX with the
convention that Sε = I.

6
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Lemma 5.4. Let X be a subshift. Let 1 be the unit of D̃X, and Id the unit
of L(H′

X). Then
k eDX

(1) = k
(1)eDX

(Id) =
∑
a∈a

SaS
∗
a

is the unit of OX.

Proof. It is easy to check that

φ(1) = Id =
∑
a∈a

θξa,ξ∗a ,

so since (kHX
, k eDX

) is a Cuntz-Pimsner coinvariant representation,

k eDX
(1) = k

(1)eDX
(Id) =

∑
a∈a

SaS
∗
a,

and we know from Lemma 5.2 that k eDX
(1) is the unit of OX.

Lemma 5.5. Let X be a shift. Then

k eDX

(
1C(µ,ν)

)
= SνS

∗
µSµS

∗
ν

for every µ, ν ∈ a∗.

Proof. Since

S∗aSa = kHX
(ξa)∗kHX

(ξa)
= k eDX

(〈ξa, ξa〉)

= k eDX

(
1σ(C(a))

)
,

and

S∗ak eDX

(
1σ|µ′|(C(µ′))

)
Sa = kHX

(ξa)∗kHX

(
φ′
(
1σ|µ′|(C(µ′))

)
ξa

)
= kHX

(ξa)∗kHX

(
ξaλ̃a

(
1σ|µ′|(C(µ′))

))
= kHX

(ξa)∗kHX
(ξa)k eDX

(
λ̃a

(
1σ|µ′|(C(µ′))

))
= k eDX

(
1σ(C(a))λ̃a

(
1σ|µ′|(C(µ′))

))
= k eDX

(
1σ|µ′a|(C(µ′a))

)
for every a ∈ a and every µ′ ∈ a∗, we have that

S∗µSµ = k eDX

(
1σ|µ|(C(µ))

)
7
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for every µ ∈ a∗.
It is easy to check that for every f ∈ D̃X is

φ(f) =
∑
a∈a

θ
ξaeλa(f),ξ∗a

.

Let µ, ν ∈ a∗ with |ν| ≥ 1 and a ∈ a. Then as proved in the proof of
Proposition 4.3

λ̃a
(
1(C(µ,ν)

)
= 0

if a 6= ν1, and
λ̃a
(
1C(µ,ν)

)
= 1C(µ,ν2,...ν|ν|)1σ(C(a))

if a = ν1.
So

k eDX

(
1C(µ,ν)

)
= k

(1)eDX

(
φ
(
1C(µ,ν)

))
= k

(1)eDX

(
θξν11C(µ,ν2,...ν|ν|)

,ξν1

)
= kHX

(ξν11C(µ,ν2,...ν|ν|))kHX
(ξν1)

∗

= Sν1k eDX
(1C(µ,ν2,...ν|ν|))S

∗
ν1 .

Hence
k eDX

(
1C(µ,ν)

)
= SνS

∗
µSµS

∗
ν

for all µ, ν ∈ a∗.

Proposition 5.6. Let X be a subshift. Then OX is generated by {Sa}a∈a.

Proof. OX is by Theorem 3.1 generated by kHX
(HX) ∪ k eDX

(D̃X).
First notice that k eDX

(1) =
∑

a∈a SaS
∗
a is in the C∗-algebra generated by

{Sa}a∈a. Since
k eDX

(
1C(µ,ν)

)
= SνS

∗
µSµS

∗
ν

for all µ, ν ∈ a∗, and D̃X is generated by {1C(µ,ν) | µ, ν ∈ a∗}, we have that
k eDX

(D̃X) is in the C∗-algebra generated by {Sa}a∈a.
Let (fa)a∈a ∈ HX. Then

(fa)a∈a =
∑
a∈a

ξafa,

so kHX
((fa)a∈a) =

∑
a∈a Sak eDX

(fa), and kHX
((fa)a∈a) is in the C∗-algebra

generated by {Sa}a∈a. Hence OX is generated by {Sa}a∈a.

8
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6 The structure of C∗-algebras generated by par-
tial isometries

We have now established thatOX is a unital C∗-algebras generated by partial
isometries {Sa}a∈a, which by Lemma 5.4 and 5.5 satisfy

∑
a∈a

SaS
∗
a = I,

S∗µSµSνS
∗
ν = SνS

∗
νS

∗
µSµ,

S∗µSµS
∗
νSν = S∗νSνS

∗
µSµ,

where Sµ = Sµ1 · · ·Sµ|µ| and Sν = Sν1 · · ·Sν|ν| , for every µ, ν ∈ a∗.
We will now take a closer look at unital C∗-algebras generated by partial

isometries {Sa}a∈a that satisfy the 3 relations above.
Let a be an alphabet. In the following we let O be a unital C∗-algebra

generated by partial isometries {Sa}a∈a, such that∑
a∈a

SaS
∗
a = I, (1)

S∗µSµSνS
∗
ν = SνS

∗
νS

∗
µSµ, (2)

S∗µSµS
∗
νSν = S∗νSνS

∗
µSµ, (3)

where Sµ = Sµ1 · · ·Sµ|µ| and Sν = Sν1 · · ·Sν|ν| , for every µ, ν ∈ a∗.

Lemma 6.1. For every µ ∈ a∗, Sµ is a partial isometry.

Proof. We will prove the lemma by induction over the length of |µ|. If
|µ| = 1, then Sµ is a partial isometry by definition. Assume now that Sν is
a partial isometry and a ∈ a. Then

SνaS
∗
νaSνa = SνSaS

∗
aS

∗
νSνSa

= SνS
∗
νSνSaS

∗
aSa

= SνSa

= Sνa.

So Sνa is a partial isometry. Hence Sµ is a partial isometry for every µ ∈
a∗.

For µ ∈ a∗ we set Aµ = S∗µSµ. We notice that since
∑

a∈a SaS
∗
a = I, the

projections {SaS∗a}a∈a are mutually orthogonal, so SaS∗aSbS
∗
b = 0 for a 6= b.

9
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Lemma 6.2. Let µ, ν ∈ a∗ with |µ| = |ν|. If S∗µSν 6= 0, then µ = ν and
S∗µSν = Aµ.

Proof. We will prove the lemma by induction over the length of µ and ν. If
the length is 1 and µ 6= ν, then

S∗µSν = S∗µSµS
∗
µSνS

∗
νSν

= 0

since SµS∗µSνS
∗
ν = 0. So since S∗µSν 6= 0, we have that µ = ν and S∗µSν = Aµ.

Now assume that we have proved the lemma in case |µ| = |ν| = n, and
assume that |µ′| = |ν ′| = n + 1 and S∗µ′Sν′ 6= 0. Set µ = (µ′1, . . . , µ

′
n) and

ν = (ν ′1, . . . , ν
′
n). Then S∗µSν 6= 0, so µ = ν. Since

0 6= S∗µ′Sν′

= S∗µ′n+1
S∗µSνSν′n+1

= S∗µ′n+1
Sµ′n+1

S∗µ′n+1
S∗µSµSν′n+1

S∗ν′n+1
Sν′n+1

= S∗µ′n+1
Sµ′n+1

S∗µ′n+1
Sν′n+1

S∗ν′n+1
S∗µSµSν′n+1

,

we have that µ′n+1 = ν ′n+1, and hence µ′ = ν ′. So the lemma is true.

For each l ∈ N0 we denote by Al(O) the C∗-subalgebra of O gener-
ated by {Aµ}µ∈al

. Since Al(O) is generated by a finite number of mutually
commuting projection, there exist a finite number of mutually orthogonal
projections Eli, i = 1, . . .m(l), such that (Eli)i=1,...m(l) is a basis for Al(O).
We have that

⋃
l∈N0

Al(O) is the C∗-algebra generated by {Aµ}µ∈a∗ . We
denoted this C∗-algebra by A(O). Since Al(O) is finite dimensional and
Al(O) ⊆ Al+1(O) for every l ∈ N0, A(O) is an AF-algebra.

Lemma 6.3. For 1 ≤ k ≤ l, µ ∈ ak and i ∈ {1, 2, . . . ,m(l)}, the following
two conditions are equivalent:

a) SµE
l
iS

∗
µ 6= 0,

b) AµE
l
i 6= 0.

Proof. Since
SµE

l
iS

∗
µ = SµAµE

l
iS

∗
µ,

and
AµE

l
i = S∗µSµE

l
iS

∗
µSµ,

we have that
SµE

l
iS

∗
µ 6= 0 ⇔ AµE

l
i 6= 0.
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Lemma 6.4. Let l ≥ k ≥ 1. Then

a) For i, i′ ∈ {1, 2, . . .m(l)} and µ, µ′ ∈ ak is

SµE
l
iS

∗
µSµ′E

l
i′S

∗
µ′ =

{
SµE

l
iS

∗
µ if µ = µ′ and i = i′

0 if µ 6= µ′ or i 6= i′.

b) (SµEliS
∗
µ)
∗ = SµE

l
iS

∗
µ for i ∈ {1, 2, . . . ,m(l)} and µ ∈ ak.

Proof. a): By Lemma 6.2

SµE
l
iS

∗
µSµ′E

l
i′S

∗
µ′ =

{
SµE

l
iAµE

l
i′S

∗
µ′ if µ = µ′

0 if µ 6= µ′

=

{
SµAµE

l
iE

l
i′S

∗
µ′ if µ = µ′

0 if µ 6= µ′

=

{
SµE

l
iS

∗
µ′ if µ = µ′ and i = i′

0 if µ 6= µ′ or i 6= i′.

b): Obviously.

7 The universal property of OX

We let ÃX be the C∗-subalgebra of D̃X generated by {1σ|µ|(C(,µ)) | µ ∈ a∗}.

Lemma 7.1. Let X be a shift, X a C∗-algebra, ψ : ÃX → X a ∗-homomorphism
and {Sa}a∈a partial isometries in X such that

a)
∑

a∈a SaS
∗
a = ψ(1),

b) S∗µSµSνS
∗
ν = SνS

∗
νS

∗
µSµ,

c) S∗µSµ = ψ
(
1σ|µ|(C(µ))

)
,

where Sµ = Sµ1Sµ2 · · ·Sµ|µ| and Sν = Sν1Sν2 · · ·Sν|ν|, for every µ, ν ∈ a∗.
Then ψ extends to a ∗-homomorphism from D̃X to X , such that

ψ
(
1C(µ,ν)

)
= SνS

∗
µSµS

∗
ν

for every µ, ν ∈ a∗.
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Proof. Let O be the C∗-subalgebra of X generated by {Sa}a∈a. Since
S∗µSµ = ψ

(
1σ|µ|(C(µ))

)
and S∗νSν = ψ

(
1σ|ν|(C(ν))

)
, we have that S∗µSµS

∗
νSν =

S∗νSνS
∗
µSµ for every µ, ν ∈ a∗. Since

Saψ(1) = SaS
∗
aSaψ(1)

= Saψ
(
1C(a)

)
ψ(1)

= Saψ
(
1C(a)

)
= SaS

∗
aSa

= Sa

and

ψ(1)Sa = ψ(1)SaS∗aSa
=

∑
a′∈a

Sa′S
∗
a′SaS

∗
aSa

= SaS
∗
aSa

= Sa

for every a ∈ a, ψ(1) is a unit for O. Hence O and {Sa}a∈a, satisfy (1), (2)
and (3) of section 6.

For each l ∈ N0, denote by Ãl the C∗-subalgebra of ÃX generated by
{1σ|µ|(C(µ)) | µ ∈ al}. Since Ãl is generated by a finite number of mutually
commuting projections, there exists a finite numberm(l) of mutually disjoint
subsets E li , i = 1, 2, . . . ,m(l) of X such that{

1El
i
| i ∈ {1, 2, . . . ,m(l)}

}
is a basis for Ãl.

Then ψ
(
1El

i

)
, i = 1, 2, . . . ,m(l) are mutually orthogonal projections

in O and span
{
ψ(1El

i
) | i ∈ {1, 2, . . . ,m(l)}

}
= Al(O). So by Lemma 6.4

we have that for 1 ≤ k ≤ l are Sνψ(1El
i
)S∗ν , i = 1, 2, . . .m(l) mutually

orthogonal projections in O.
For each 1 ≤ k ≤ l denote by D̃lk the C∗-subalgebra of D̃X generated by

{1C(µ,ν) | ν ∈ ak, µ ∈ al}. It is easy to check that

1C(ν)∩σ−|ν|(El
i)
, ν ∈ ak, i = 1, 2, . . . ,m(l)
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are mutually orthogonal projections in D̃lk, and since

1C(ν)∩σ−|ν|(El
i)

= 0 ⇒ 1σ|ν|(C(ν))1El
i
= 0

⇒ S∗νSνψ(1El
i
) = 0

⇒ Sνψ(1El
i
)S∗ν = 0,

there exists a ∗-homomorphism ψlk : D̃lk → X such that ψlk
(
1C(ν)∩σ−|ν|(El

i)

)
=

Sνψ(1El
i
)S∗ν for every ν ∈ ak and every i ∈ {1, 2, . . . ,m(l)} and hence

ψlk
(
1C(µ,ν)

)
= SνS

∗
µSµS

∗
ν for every ν ∈ ak and every µ ∈ al.

For every k ∈ N0 denote by D̃k the C∗-subalgebra of D̃X generated by
{1C(µ,ν) | ν ∈ ak, µ ∈ a∗}. Then D̃k =

⋃
l≥k D̃lk. Let ιlk denote the inclusion

of D̃lk into D̃l+1
k . Since ψl+1

k ◦ ιlk = ψlk for every l ≥ k, the ψlk’s induce a
∗-homomorphism ψk : D̃k → O such that ψk

(
1C(µ,ν)

)
= SνS

∗
µSµS

∗
ν for every

ν ∈ ak and every µ ∈ a∗.
Since

C(µ, ν) =
⋃
a∈a

C(µa, νa)

for every µ, ν ∈ a∗, D̃k ⊆ D̃k+1 for every k ∈ N0 and the inclusion ιk of D̃k
into D̃k+1 is given by

ιk
(
1C(µ,ν)

)
=
∑
a∈a

1C(µa,νa).

Hence ψk+1 ◦ ιk = ψk and since D̃X =
⋃
k∈N0

D̃k, the ψk’s induce a ∗-
homomorphism ψ : D̃X → O ⊆ X such that

ψ
(
1C(µ,ν)

)
= SνS

∗
µSµS

∗
ν

for every µ, ν ∈ a∗.

We are now ready to state and prove the universel property of OX.

Theorem 7.2. Let X be a subshift. Then OX is the universel unital C∗-
algebra generatede by partial isometries {Sa}a∈a satisfying

a)
∑

a∈a SaS
∗
a = I,

b) S∗µSµSνS
∗
ν = SνS

∗
νS

∗
µSµ,

c) the map 1C(µ) 7→ S∗µSµ extends to a unital ∗-homomorphism from ÃX

to the C∗-algebra generated by {Sa}a∈a,
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where Sµ = Sµ1 · · ·Sµ|µ| and Sν = Sν1 · · ·Sν|ν| for every µ, ν ∈ a∗.

Proof. It follows from Lemma 5.4 and 5.5 and Proposition 5.6 together with
the fact that ÃX is a C∗-subalgebra of D̃X, that OX is generated by partial
isometries {Sa}a∈a satisfying a), b) and c).

Assume now that X is a unital C∗-algebra generated by partial isometries
{Ta}a∈a and that π : ÃX → X is a unital ∗-homomorphism such that

a)
∑

a∈a TaT
∗
a = I,

b) T ∗µTµTνT
∗
ν = TνT

∗
ν T

∗
µTµ,

c) T ∗µTµ = π
(
1σ|µ|(C(,µ))

)
,

where Tµ = Tµ1Tµ2 · · ·Tµ|µ| and Tν = Tν1Tν2 · · ·Tν|ν| , for every µ, ν ∈ a∗.
By Lemma 7.1, π extends to a ∗-homomorphism from D̃X to X , such

that
π
(
1C(µ,ν)

)
= TνT

∗
µTµT

∗
ν

for every µ, ν ∈ a∗. Let

ψ((fa)a∈a) =
∑
a∈a

Taπ(fa)

for every (fa)a∈a ∈ HX. We will show that (ψ, π) is a Cuntz-Pimsner coin-
variant representation of HX.

Then αψ(ξ)+βψ(ζ) = ψ(αξ+βζ) for every α, β ∈ C and every ξ, ζ ∈ HX,
and ψ(ξ)π(f) = ψ(ξf) for every ξ ∈ HX and every f ∈ ÃX.

Recall from the proof of Proposition 4.3 that for µ, ν ∈ a∗ with |ν| ≥ 1 is
λ̃a
(
1C(µ,ν)

)
= 0 if a 6= ν1, and λ̃a

(
1C(µ,ν)

)
= 1C(µ,ν2ν3···ν|ν|)1σ(C(a)) if a = ν1.

Thus

π
(
1C(µ,ν)

)
ψ((fa)a∈a) = π

(
1C(µ,ν)

)∑
a∈a

Taπ(fa)

=
∑
a∈a

TνT
∗
µTµT

∗
ν Taπ(fa)

= TνT
∗
µTµT

∗
ν Tν1π(fν1)

= Tν1Tν2ν3···ν|ν|T
∗
µTµT

∗
ν2ν3···ν|ν|π(fν1)

= Tν1π
(
1C(µ,ν2ν3···ν|ν|)

)
π(fν1)

= ψ
(
ξν11C(µ,ν2ν3···ν|ν|)fν1

)
= ψ

(
(λ̃a(1C(µ,ν))fa)a∈a

)
= ψ

(
φ(1C(µ,ν))(fa)a∈a

)
,
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for (fa)a∈a ∈ HX. We also have that

π
(
1σ|µ|(C(µ))

)
ψ((fa)a∈a) = π

(
1σ|µ|(C(µ))

)∑
a∈a

Taπ(fa)

=
∑
a∈a

T ∗µTµTaπ(fa)

=
∑
a∈a

TaT
∗
µaTµaπ(fa)

=
∑
a∈a

Taπ
(
1σ|µa|(C(µa))

)
π(fa)

= ψ
(
(1σ|µa|(C(µa))fa)a∈a

)
= ψ

(
(λ̃a(1σ|µ|(C(µ)))fa)a∈a

)
= ψ

(
φ(1σ|µ|(C(µ)))(fa)a∈a

)
.

Since D̃X is generated by 1C(µ,ν), µ, ν ∈ a∗, we have that

π(f)ψ((fa)a∈a) = ψ(φ(f)(fa)a∈a)

for every f ∈ D̃X and every (fa)a∈a ∈ HX.
Since

∑
a∈a TaT

∗
a = I, the projections {TaT ∗a }a∈a are mutually ortho-

gonal, so

T ∗aTa′ = T ∗aTaT
∗
aTa′T

∗
a′Ta′

= 0

if a 6= a′. Thus

ψ((fa)a∈a)∗ψ((ga)a∈a) =
∑
a∈a

π(f∗a )T
∗
a

∑
a′∈a

Ta′π(ga′)

=
∑
a∈a

π(f∗a )T
∗
aTaπ(ga)

=
∑
a∈a

π(f∗a )π
(
1σ(C(a))

)
π(ga)

= π(〈(fa)a∈a, (ga)a∈a〉)

for every (fa)a∈a, (ga)a∈a ∈ HX.
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Finally we see that for every f ∈ D̃X is φ(f) =
∑

a∈a θξaeλa(f),ξa
, so

π(1)(φ(f)) =
∑
a∈a

ψ(ξaλ̃a(f))ψ(ξa)∗

=
∑
a∈a

Taπ(λ̃a(f))T ∗a

=
∑
a∈a

π(f)TaT ∗a

= π(f).

Thus (ψ, π) is a Cuntz-Pimsner coinvariant representation of HX, so it
follows from Theorem 3.1 that there exists a ∗-homomorphism ψ × π from
OX to X such that ψ×π(kHX

((fa)a∈a)) = ψ((fa)a∈a) for every (fa)a∈a ∈ HX

and hence
ψ × π(Sa) = ψ × π(kHX

(ξa))) = ψ(ξa) = Ta

for every a ∈ a.

Remark 7.3. Condition b) can be replaced by

b’) S∗µSµSν = SνS
∗
µνSµν ,

because b′) implies that S∗µSµSνS
∗
ν = SνS

∗
µνSµνS

∗
ν = SνS

∗
νS

∗
µSµSνS

∗
ν and

SνS
∗
νS

∗
µSµ = Sν(S∗µSµSν)

∗ = Sν(SνS∗µνSνµ)
∗ = SνS

∗
νS

∗
µSµSνS

∗
ν , and thus

S∗µSµSνS
∗
ν = SνS

∗
νS

∗
µSµ, and b) implies that S∗µSµSν = S∗µSµSνS

∗
νSν =

SνS
∗
νS

∗
µSµSν = SνS

∗
µνSµν . ThusOX has the universal property [12, Theorem

4.9] and also has the right underlying compact space (cf. [10, Lemma 3.1])
and thus satisfy all of the results of [7–12].

Remark 7.4. It follows from Lemma 7.1 that OX also can be characterized
as the universal C∗-algebra generated by partial isometries {Sa}a∈a such that
the map 1C(µ,ν) 7→ SνS

∗
µSµS

∗
ν extends to a ∗-homomorphism from D̃X to C∗-

algebra generated by {Sa}a∈a, where Sµ = Sµ1 · · ·Sµ|µ| and Sν = Sν1 · · ·Sν|ν|
for every µ, ν ∈ a∗.

8 OX is an invariant

We will now show that OX is an invariant for subshifts. We will do that by
showing that if two shift spaces X and Y are conjugate, then HX and HY are
isomorphic as C∗-correspondences, and it then follows that OX and OY are
isomorphic.
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Definition 8.1. Let X and X ′ be C∗-algebras, (H, φ) a C∗-correspondence
over X and (H, φ′) a C∗-correspondence over X ′. If there exist a ∗-isomorphism
ψ : X → X ′ and a bijective map T : H → H such that

〈Tξ, ζ〉 = ψ(〈ξ, T−1ζ〉),

and
T (φ(X)ξ) = φ′(ψ(X))(Tξ)

for all ξ ∈ H, ζ ∈ H′, X ∈ X ; then we say that (T, ψ) is an C∗-correspondence
isomorphism, (H, φ) and (H′, φ′) are isomorphic and we write H ∼= H′.

It easily follows from Theorem 3.1 that if (T, ψ) is an C∗-correspondence
isomorphism from (H, φ) to (H′, φ′), then there exists a ∗-isomorphism T ×ψ
from OH to OH′ such that T × ψ ◦ kH = kH′ ◦ T and T × ψ ◦ kX = kX ′ ◦ ψ.

Lemma 8.2. Let X be a one-sided shift space. Define a ∗-homomorphism
φ̃X : B(X) → B(X) by letting

φ̃X(f)(x) = f(σ(x))

for every f ∈ B(X) and every x ∈ X.
Then φ̃X(D̃X) ⊆ D̃X.

Proof. Let µ, ν ∈ a∗. Then

σ−1(C(µ, ν)) =
⋃
a∈a

C(µ, aν),

so

φ̃X

(
1C(µ,ν)

)
= 1σ−1(C(µ,ν))

= 1S
a∈a C(µ,aν)

=
∑
a∈a

1C(µ,aν) ∈ D̃X.

Thus, since D̃X is generated by {1C(µ,ν) | µ, ν ∈ a∗} and φ̃X is a ∗-homomorphism,
it follows that φ̃X(D̃X) ⊆ D̃X.

Lemma 8.3. Let X be a one-sided shift space. Then we have:

a) If E1, E2 are subsets of X such that 1E1 , 1E2 ∈ D̃X, then 1E1∪E2 ∈ D̃X.

b) If E is a subset of X such that 1E ∈ D̃X, then 1σ(E) ∈ D̃X.
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c) If E is a subset of X such that 1E ∈ D̃X, then 1σ−1(E) ∈ D̃X.

Proof. a) Let E1, E2 be subsets of X such that 1E1 , 1E2 ∈ D̃X, then

1E1∪E2 = 1E1 + 1E2 − 1E11E2 ∈ D̃X.

b) Let E be a subset of X such that 1E ∈ D̃X. Set for each a ∈ a,

Ea = {x ∈ X | ax ∈ E}.

It is easy to check that
σ(E) =

⋃
a∈a

Ea.

Since 1Ea = λ̃a(1E) ∈ D̃X (cf. Proposition 4.3), it follows from a) that
1σ(E) ∈ D̃X.

c) Let E be a subset of X such that 1E ∈ D̃X. It is easy to check that
1σ−1(E) = φ̃X(1E), so 1σ−1(E) ∈ D̃X by Lemma 8.2.

Proposition 8.4. If two subshifts X and Y are conjugate, then D̃X
∼= D̃Y

and HX
∼= HY.

Proof. Let ψ : X → Y be a conjugacy. Then we can define a ∗-isomorphism
Ψ : B(Y) → B(X) by setting Ψ(f)(x) = f(ψ(x)) for every f ∈ B(Y) and
every x ∈ X.

Let µ ∈ L(Y). Since CY(µ) is clopen and ψ is continuous, ψ−1(CY(µ))
is clopen and hence compact. So since CX(ν), ν ∈ L(X) is a basis for the
topology of X, there exist a finite number of words µ1, µ2, . . . , µr ∈ L(X)
such that

ψ−1(CY(µ)) =
r⋃

k=1

CX(µk).

Let µ, ν ∈ L(Y) and let µ1, . . . µr, ν1, . . . , νs ∈ L(X) such that

ψ−1(CY(µ)) =
r⋃

k=1

CX(µk)

and

ψ−1(CY(ν)) =
s⋃

k=1

CX(νk).
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Since both ψ ◦ σX = σY ◦ ψ, we have that

ψ−1(CY(µ, ν)) = ψ−1(CY(ν)) ∩ σ−|ν|X (σ|µ|X (ψ−1(CY(µ))))

=

(
s⋃

k=1

CX(νk)

)⋂(
r⋃

k=1

σ
−|ν|
X (σ|µ|X (CX(µj)))

)
,

so it follows from Lemma 8.3 that

Ψ
(
1CY(µ,ν)

)
= 1ψ−1(CY(µ,ν)) ∈ D̃X.

Hence Ψ(D̃Y) ⊆ D̃X. In the same way we can prove that Ψ−1(D̃X) ⊆ D̃Y, so
Ψ(D̃Y) = D̃X, and thus Ψ| eDY

: D̃Y → D̃X is a ∗-isomorphism.
Define T : HY → HX by

T (fa)a∈aY
=

(∑
a∈aY

λ̃b
(
Ψ
(
1CY(a)

))
Ψ(fa)

)
b∈aX

and S : HX → HY by

S(gb)b∈aX
=

(∑
b∈aX

λ̃a
(
Ψ−1

(
1CX(b)

))
Ψ−1(gb)

)
a∈aY

.

Let a ∈ aY, b ∈ aX and x ∈ Y. If ax ∈ Y and (ψ−1(ax))1 = b, then

ψ−1(ax) = (ψ−1(ax))1σ(ψ−1(ax))
= bψ−1(σ(ax))
= bψ−1(x)

and thus bψ−1(x) ∈ X and (ψ(bψ−1(x)))1 = a.
If bψ−1(x) ∈ X and (ψ(bψ−1(x)))1 = a, then

ψ(bψ−1(x)) = (ψ(bψ−1(x)))1σ(ψ(bψ−1(x)))
= aψ(σ(bψ−1(x)))
= aψ(ψ−1(x))
= ax

and thus ax ∈ Y and (ψ−1(ax))1 = b.
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Hence (ax ∈ Y∧ (ψ−1(ax))1 = b) ⇔ (bψ−1(x) ∈ X∧ (ψ(bψ−1(x)))1 = a).
So

Ψ−1
(
λ̃b
(
Ψ
(
1CY(a)

)))
(x) =

{
Ψ
(
1CY(a)

)
(bψ−1(x)) if bψ−1(x) ∈ X

0 if bψ−1(x) /∈ X

=
{

1 if bψ−1(x) ∈ X ∧ (ψ(bψ−1(x)))1 = a
0 else

=
{

1 if ax ∈ Y ∧ (ψ−1(ax))1 = b
0 else

=
{

Ψ−1
(
1CX(b)

)
(ax) if ax ∈ Y

0 if ax /∈ Y

= λ̃a
(
Ψ−1

(
1CX(b)

))
(x)

and hence Ψ−1
(
λ̃b
(
Ψ
(
1CY(a)

)))
= λ̃a

(
Ψ−1

(
1CX(b)

))
for all a ∈ aY and

b ∈ aX, and thus

〈T (fa)a∈aY
, (gb)b∈aX

〉 =

〈(∑
a∈aY

λ̃b
(
Ψ
(
1CY(a)

))
Ψ(fa)

)
b∈aX

, (gb)b∈aX

〉
=

∑
b∈aX

∑
a∈aY

λ̃b
(
Ψ
(
1CY(a)

))
Ψ(f∗a )gb

=
∑
a∈aY

Ψ(f∗a )
∑
b∈aX

λ̃b
(
Ψ
(
1CY(a)

))
gb

= Ψ

(〈
(fa)a∈aY

,

(∑
b∈aX

λ̃a
(
Ψ−1

(
1CX(b)

))
Ψ−1(gb)

)
a∈aY

〉)
= Ψ(〈(fa)a∈aY

, S(gb)b∈aX
〉)

for all (fa)a∈aY
∈ HY and all (gb)b∈aX

∈ HX.
Let a ∈ aY, b ∈ aX and y ∈ X. If by ∈ X and (ψ(by))1 = a, then

ψ(by) = (ψ(by))1σ(ψ(by))
= aψ(σ(by))
= aψ(y),

and thus aψ(y) ∈ Y.
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So for every f ∈ D̃Y is

λ̃b
(
Ψ
(
1CY(a)

))
Ψ(λ̃a(f))(y) =

{
Ψ
(
1CY(a)

)
(by)Ψ(λ̃a(f))(y) if by ∈ X

0 if by /∈ X

=
{

1CY(a)(ψ(by))λ̃a(f)(ψ(y)) if by ∈ X
0 if by /∈ X

=
{
f(aψ(y)) if by ∈ X, (ψ(by))1 = a and aψ(y) ∈ Y
0 else

=
{
f(ψ(by)) if by ∈ X and (ψ(by))1 = a
0 else

= λ̃b
(
Ψ
(
1CY(a)

))
λ̃b(Ψ(f))(y),

and hence λ̃b
(
Ψ
(
1CY(a)

))
Ψ(λ̃a(f)) = λ̃b

(
Ψ
(
1CY(a)

))
λ̃b(Ψ(f)) for all f ∈

D̃Y, a ∈ aY and b ∈ aX. Thus

T (φ′(f)(fa)a∈aY
) = T (λ̃a(f)fa)a∈aY

=

(∑
a∈aY

λ̃b
(
Ψ
(
1CY(a)

))
Ψ(λ̃a(f)fa)

)
b∈aX

=

(
λ̃b(Ψ(f))

∑
a∈aY

λ̃b
(
Ψ
(
1CY(a)

))
Ψ(fa)

)
b∈aX

= φ′(Ψ(f))T (fa)a∈aY

for all (fa)a∈aY
∈ HY and all f ∈ D̃Y.

Since Ψ−1
(
λ̃b
(
Ψ
(
1CY(a)

)))
= λ̃a

(
Ψ−1

(
1CX(b)

))
for all a ∈ aY and b ∈

aX, Ψ, Ψ−1 and λ̃a are ∗-homomorphisms and

1CX(b)1CX(b′) =
{

1CX(b) if b = b′

0 if b 6= b′

for b, b′ ∈ aX, we have that

λ̃b
(
Ψ
(
1CY(a)

))
λ̃b′
(
Ψ
(
1CY(a)

))
=
{
λ̃b
(
Ψ
(
1CY(a)

))
if b = b′

0 if b 6= b′
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for all a ∈ aY and all b, b′ ∈ aX; and hence

TS(gb)b∈aX
= T

(∑
b∈aX

λ̃a
(
Ψ−1

(
1CX(b)

))
Ψ−1(gb)

)
a∈aY

=

(∑
a∈aY

λ̃b′
(
Ψ
(
1CY(a)

))∑
b∈aX

Ψ
(
λ̃a
(
Ψ−1

(
1CY(b)

)))
gb

)
b′∈aX

=

(∑
a∈aY

λ̃b′
(
Ψ
(
1CX(a)

))∑
b∈aX

λ̃b
(
Ψ
(
1CX(a)

))
gb

)
b′∈aX

=

(∑
a∈aY

λ̃b
(
Ψ
(
1CY(a)

))
gb

)
b∈aX

=

(
λ̃b

(
Ψ

(∑
a∈aY

1CY(a)

))
gb

)
b∈aX

= (λ̃b(1)gb)b∈aX

=
(
1σ(CX(b))gb

)
b∈aX

= (gb)b∈aX

for all (gb)b∈aX
∈ HX.

In the same way one can prove that ST (fa)a∈aY
= (fa)a∈aY

for all
(fa)a∈aY

∈ HY.
Hence (T,Ψ) is a C∗-correspondence isomorphism and HX

∼= HY.

Theorem 8.5. If two subshifts X and Y are conjugate, then there exists a
∗-isomorphism ρ from OX to OY such that γz ◦ ρ = ρ ◦ γz for every z ∈ T.

Proof. It follows from Theorem 8.4 that there exists a C∗-correspondence
isomorphism (T,Ψ) from HX to HY. Thus there exists a ∗-isomorphism ρ :
OX → OY such that ρ(kHX

(ξ)) = kHY
(Tξ) for every ξ ∈ HX and ρ(k eDX

(f)) =

k eDY
(Ψ(f)) for every f ∈ D̃X. Hence

γz(ρ(kHX
(ξ))) = γz(kHY

(Tξ))
= zkHY

(Tξ)
= kHY

(Tzξ)
= ρ(kHX

(zξ))
= ρ(zkHX

(ξ))
= ρ(γz(kHX

(ξ)))
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for every ξ ∈ HX and every z ∈ T, and

γz(ρ(k eDX
(f))) = γz(k eDY

(Ψ(f)))

= zk eDY
(Ψ(f))

= k eDY
(Ψ(zf))

= ρ(k eDX
(zf))

= ρ(zk eDX
(f))

= ρ(γz(k eDX
(f)))

for every f ∈ D̃X and every z ∈ T. Since OX is generated by kHX
(HX) ∪

k eDX
(D̃X), it follows that γz ◦ ρ = ρ ◦ γz for every z ∈ T.

References

[1] Toke Meier Carlsen and Kengo Matsumoto, Some remarks on the C∗-algebras asso-
ciated with subshifts (to appear in Math. Scand).

[2] Joachim Cuntz, Simple C∗-algebras generated by isometries, Comm. Math. Phys. 57
(1977), 173–185. MR 57 #7189

[3] Joachim Cuntz and Wolfgang Krieger, A class of C∗-algebras and topological Markov
chains, Invent. Math. 56 (1980), 251–268. MR 82f:46073a

[4] Neal J. Fowler, Paul S. Muhly, and Iain Raeburn, Representations of Cuntz-Pimsner
algebras, Indiana Univ. Math. J. 52 (2003), 569–605. 1 986 889

[5] Astrid an Huef and Iain Raeburn, The ideal structure of Cuntz-Krieger algebras,
Ergodic Theory Dynam. Systems 17 (1997), 611–624. MR 98k:46098

[6] Takeshi Katsura, A construction of C∗-algebras from C∗-correspondences, Advances
in Quantum Dynamics, 173-182, Contemp. Math, 335, Amer. Math. Soc., Providence,
RI, 2003.

[7] Kengo Matsumoto, On automorphisms of C∗-algebras associated with subshifts, J.
Operator Theory 44 (2000), 91–112. MR 2001g:46147

[8] , Stabilized C∗-algebras constructed from symbolic dynamical systems, Ergodic
Theory Dynam. Systems 20 (2000), 821–841. MR 2001e:46115

[9] , Dimension groups for subshifts and simplicity of the associated C∗-algebras,
J. Math. Soc. Japan 51 (1999), 679–698. MR 2000d:46082

[10] , Relations among generators of C∗-algebras associated with subshifts, Inter-
nat. J. Math. 10 (1999), 385–405. MR 2000f:46084

[11] , K-theory for C∗-algebras associated with subshifts, Math. Scand. 82 (1998),
237–255. MR 2000e:46087

[12] , On C∗-algebras associated with subshifts, Internat. J. Math. 8 (1997), 357–
374. MR 98h:46077

23

32 CHAPTER 1. CUNTZ-PIMSNER C∗-ALGEBRAS



[13] Michael V. Pimsner, A class of C∗-algebras generalizing both Cuntz-Krieger algebras
and crossed products by Z, Free Probability Theory (Waterloo, ON, 1995), Fields
Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 189–212. MR
97k:46069

24

1.9. REFERENCES 33



34 CHAPTER 1. CUNTZ-PIMSNER C∗-ALGEBRAS

1.10 Closing remarks

Matsumoto has in [7–10,12–15] made a thorough investigation of the prop-
erties of the C∗-algebra OX and among other things shown that OX is nuc-
lear and satisfies the universal coefficient theorem, given sufficient condi-
tions for when it is purely infinite, described its ideal structure and given
formulas for computing its K-theory. The author has in [2] shown that
OX is a Cuntz-Krieger algebra when X is a sofic shift.

The invariants Matsumoto introduced in [11] are all based onK-groups
associated with OX.

The C∗-algebra OX can, as most C∗-algebras associated to dynamical
systems, also be constructed in other ways than by C∗-correspondence,
for example by Exel’s crossed product (cf. [5]). In the next chapter we
will construct OX as a groupoid C∗-algebra.

Matsumoto has in [6] generalized the construction of OX to λ-graph
systems.



Chapter 2

A groupoid construction
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A groupoid construction

We will in this chapter construct the C∗-algebra OX defined in the [1]
as a groupoid C∗-algebra. We will stick to the notation used in [1].

A natural approach is to use the groupoid G(X,T ) that Renault in [6]
has associated to a singly generated dynamical system (X,T ), and then
look at the C∗-algebra has defined in [5]. However, this approach has its
obstacles, because a one-sided shift σ : X → X is not in generally a local
homeomorphism which is required for it to be a singly generated dynamical
system (in fact, σ is a local homeomorphism if and only if X is a shift of finite
type). We surmount this obstacle by associating to each one-sided shift space
(X, σ) a cover (X̃, σ̃) which is a singly generated dynamical system ((X, σ)
is a generalization of the left Krieger cover cf. [2, 3]).

1 The cover (X̃, σ̃)

Let (X, σ) be a one-sided shift space, and a its alphabet. Set for every x ∈ X
and every k ∈ N0

Pk(x) = {µ ∈ L(X) | µx ∈ X, |µ| = k}.

Following Matsumoto [4], we define for every l ∈ N0 an equivalence relation
∼l on X called l-past equivalence by

x ∼l y ⇔ ∀k ≤ l : Pk(x) = Pk(y),

and we denote by [x]l the l-past equivalence class of x.
Let I = {(k, l) ∈ N2

0 | k ≤ l}. We define an order ≤ on I by

(k1, l1) ≤ (k2, l2) ⇔ k1 ≤ k2 ∧ l1 − k1 ≤ l2 − k2.

For (k, l) ∈ I we define an equivalence relation k∼l on X by

x k∼l y ⇔ x[0,k[ = y[0,k[ ∧ Pl(x[k,∞[) = Pl(y[k,∞[).

We denote the equivalence class of x by k[x]l and we let kXl be the quotient
of X by k∼l. Notice that kXl is finite. We endow kXl with the discrete
topology.

1
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Let (k1, l1) ≤ (k2, l2) ∈ I. Since

x k2∼l2 y ⇒ x k1∼l1 y,

there exists a map (k1,l1)π(k2,l2) : k1Xl1 → k2Xl2 such that

(k1,l1)π(k2,l2)(k2[x]l2) = k1[x]l1 .

Let X̃ be the projective limit, lim(k,l)∈I(kXl, π). We will identify X̃ with
the closed subset{

(k[kxl]l)(k,l)∈I ∈
∏

(k,l)∈I
kXl | ∀(k1, l1) ≤ (k2, l2) ∈ I : k2xl2 k1 ∼l1 k1xl1

}
of
∏

(k,l)∈I kXl, where
∏

(k,l)∈I kXl is endowed with the product of the dis-
crete topologies.

For (k, l) ∈ I and x ∈ X, we let U(x, k, l) be the set

{(r[rxs]s)(r,s)∈I ∈ X̃ | kxl k∼l x}.

Then U(x, k, l) is open and closed, and {U(x, k, l) | x ∈ X, (k, l) ∈ I}
generates the topology of X̃. Let (k, l) ∈ I. Then

x k∼l y ⇒ σ(x) k−1∼l σ(y),

so there exists a map kσl : kXl → k−1Xl such that kσl(k[x]l) = k−1[σ(x)]l. We
then have that the following diagram commutes for every (k1, l1) ≤ (k2, l2) ∈
I:

k1Xl1
k1
σl1 //

(k1,l1)π(k2,l2)

��

k1−1Xl1

(k1−1,l1)π(k2−1,l2)

��
k2Xl2

k2
σl2 // k2−1Xl2 .

Thus we get a continuous map σ̃ : X̃ → X̃, such that σ̃((k[kxl]l)(k,l)∈I) =
(k[σ(k1xl)]l)(k,l)∈I .

Proposition 1. σ̃ is a local homeomorphism.

Proof. We will first show that σ̃ is open. {U(x, k, l) | x ∈ X, (k, l) ∈ I, k > 0}
generates the topology of X̃, so it is enough to show that

σ̃

(
n⋂
i=1

U(xi, k′i, l
′
i)

)

is open for x1, x2, . . . , xn ∈ X and (k′1, l
′
1), (k

′
2, l

′
2) . . . (k

′
n, l

′
n) ∈ I, where k′1 >

0 for every i ∈ {1, 2, . . . , n}. We can assume that all the xi’s begin with the

2
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same letter, which we denote by a, because otherwise
⋂n
i=1 U(xi, ki, li) = ∅.

We claim that

σ̃

(
n⋂
i=1

U(xi, k′i, l
′
i)

)
=

n⋂
i=1

U(σ(xi), k′i − 1, l′i)).

Clearly

σ̃

(
n⋂
i=1

U(xi, k′i, l
′
i)

)
⊆

n⋂
i=1

U(σ(xi), k′i − 1, l′i)).

Assume that (k[kxl]l)(k,l)∈I ∈
⋂n
i=1 U(σ(xi), k′i − 1, l′i). Then k′1−1xl′1 k′1−1∼l′1

σ(x1), so ak′1−1xl′1 ∈ X, which implies that akxl ∈ X for every (k, l) ∈ I. Let
kyl = akxl+1 for (k, l) ∈ I. Then

(k1,l1)π(k2,l2)(k2[k2yl2 ]l2) =k1[k2yl2 ]l1
=k1[ak2xl2+1]l1
=k1[ak1xl1+1]l1
=k1[k1yl1 ]l1

for (k1, l1) ≤ (k2, l2). Thus (k[kyl]l)(k,l)∈I ∈ X̃.
Since k′i

xl′i k′i−1∼l′i σ(xi),

k′i
yl′i = ak′ixl′i+1 k′i

∼l′i xi

for every i ∈ {1, 2, . . . , n}, so (k[kyl]l)(k,l)∈I ∈
⋂n
i=1 U(xi, k′i, l

′
i). We have

that
k[σ(k+1yl)]l = k[k+1xl+1]l = k[kxl]l

for every (k, l) ∈ I, so

(k[kxl]l)(k,l)∈I = σ̃((k[kyl]l)(k,l)∈I) ∈ σ̃

(
n⋂
i=1

U(xi, k′i, l
′
i)

)
.

Thus

σ̃

(
n⋂
i=1

U(xi, k′i, l
′
i)

)
=

n⋂
i=1

U(σ(xi), k′i − 1, l′i)).

We then claim that σ̃ is injective on U(x, 1, 1) for every x ∈ X, which
shows that σ̃ is locally injective and thus a local homeomorphism.

Assume that (k[kxl]l)(k,l)∈I , (k[kyl]l)(k,l)∈I ∈ U(x, 1, 1) and

σ̃((k[kxl]l)(k,l)∈I) = σ̃((k[kyl]l)(k,l)∈I).

Then
k[kxl]l = k[x0σ(kxl)]l = k[x0σ(kyl)]l = k[kyl]l

for every (k, l) ∈ I, so (k[kxl]l)(k,l)∈I = (k[kyl]l)(k,l)∈I .

3
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Remark 2. There exists a surjective map π from X̃ to X such that π ◦ σ̃ =
σ ◦ π, but since we are not going to need it here, we will not go into details
on this matter.

The dynamical system (X̃, σ̃) is a singly generated dynamical system as
defined in Definition 2.3 of [6]. We also have that X̃ is Hausdorff, second
countable and compact. In [6] Renault constructed for such a dynamical
system a groupoid G(X̃, σ̃) which is Hausdorff locally compact étale group-
oid.

We will show that the corresponding C∗-algebra C∗(X̃, σ̃) is isomorphic
to OX by construction a ∗-homomorphism from OX to C∗(X̃, σ̃) and a ∗-
homomorphism from C∗(X̃, σ̃) to OX and then show that there are each
other inverse.

2 The ∗-homomorphism from OX to C∗(X̃, σ̃)

For every ν ∈ L(X) we let

Uν =
⋃

x∈C(ν)

U(x, |ν|, |ν|).

Then Uν is a open subset of X̃,
⋃
a∈a Ua = X̃, and (σ̃)|Ua

is injective.
Let a ∈ a. Since (σ̃)|Ua

is injective, we can for every f ∈ C(X̃) define a
map λa(f) : X̃ → C by

λa(f)(x) =
{

(f((σ̃)|Ua
)−1(x)) x ∈ σ̃(Ua)

0 x /∈ σ̃(Ua),

and since σ is open and continuous, and Ua is open and compact, λa(f)
is continuous. Hence λa is a ∗-homomorphism from C(X̃) to C(X̃). For
µ = µ1µ2 . . . µn ∈ L(X) we let λµ = λµ1 ◦ λµ2 ◦ · · · ◦ λµn .

Proposition 3. There exists a ∗-isomorphism ψ : D̃X → C(X̃), such that
ψ
(
1C(µ)∩σ−|µ|([x]l)

)
= 1U(µx,|µ|,l) for every µ ∈ L(X), every l ∈ N0 and every

x ∈ X, and such that ψ
(
φ̃X(f)

)
= ψ(f) ◦ σ and ψ(λ̃a(f)) = λa(ψ(f)) for

every a ∈ a and every f ∈ D̃X.

Proof. Let (k, l) ∈ I. It is obvious that there only are finitely many l-past
equivalence classes. Denote these by

E l1, E l2, . . . E lm(l),

and choose for each i ∈ {1, 2, . . . ,m(l)} an xli ∈ E li .
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Denote by D̃l
k the C∗-subalgebra of D̃X generated by 1C(µ,ν), µ, ν ∈

L(X), |µ| ≤ l, |ν| = k. It is easy to check that

1C(ν)∩σ−|ν|(El
i)
, ν ∈ L(X), |ν| = k, i = 1, 2, . . . ,m(l)

are mutually orthogonal projections that generate D̃l
k, and that

1U(νxl
i,k,l)

, ν ∈ L(X), |ν| = k, i = 1, 2, . . . ,m(l)

are mutually orthogonal projections in C(X̃), and since

1C(ν)∩σ−|ν|(El
i)

= 0 ⇔ C(ν) ∩ σ−|ν|(E li) = ∅

⇔ U(νxli, k, l) = ∅
⇔ 1U(νxl

i,k,l)
= 0,

there exists a ∗-monomorphism ψlk : D̃l
k → C(X̃) such that

ψlk

(
1C(ν)∩σ−|ν|(El

i)

)
= 1U(νxl

i,k,l)

for every ν ∈ L(X) with |ν| = k and every i ∈ {1, 2, . . . ,m(l)}.
For every k ∈ N0 denote by D̃k the C∗-subalgebra of D̃Λ generated by

1C(µ,ν), µ, ν ∈ L(X), |ν| = k. Then D̃k =
⋃
l≥k D̃l

k. Let ι̃lk denote the
inclusion of D̃l

k into D̃l+1
k . Since ψl+1

k ◦ ι̃lk = ψlk for every l ≥ k, the ψlk’s

induce a ∗-monomorphism ψk : D̃k → C(X̃) such that ψlk
(
1C(ν)∩σ−|ν|(El

i)

)
=

1U(νxl
i,k,l)

for every ν ∈ L(X) and every i ∈ {1, 2, . . . ,m(l)}.
Denote for every k ∈ N0 by ι̃k the inclusion of D̃k into D̃k+1. Since

ψk+1 ◦ ι̃k = ψk for every k ∈ N0 and D̃X =
⋃
k∈N D̃k, the ψk’s induce a

∗-monomorphism ψ : D̃X → C(X̃) such that ψ
(
1C(ν)∩σ−|ν|(El

i)

)
= 1U(νxl

i,k,l)

for every µ ∈ L(X), every l ∈ N0 and every i ∈ {1, 2, . . . ,m(l)} and hence
ψ
(
1C(µ)∩σ−|µ|([x]l)

)
= 1U(µx,|µ|,l) for every µ ∈ L(X), every l ∈ N0 and every

x ∈ X. By the Stone-Weierstrass Theorem

ψ
(
1C(µ)∩σ−|µ|(El

i)

)
= 1U(|µ|,l,µ,El

i)
, µ ∈ L(X), l ∈ N0, i ∈ {1, 2, . . . ,m(l)}

generates C(X̃), so ψ is surjective.
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Let a′ ∈ a, µ ∈ L(X), l ∈ N0 and x ∈ X. Then

ψ
(
φ̃X

(
1C(µ)∩σ−|µ|([x]l)

))
=
∑
a∈a

ψ
(
1C(aµ)∩σ−|aµ|([x]l)

)
=
∑
a∈a

1U(aµ|x,|µ|+1,l)

= 1∪a∈aU(aµ|x,|µ|+1,l)

= 1(eσ)−1(U(µ|x,|µ|,l))

= 1U(µ|x,|µ|,l) ◦ σ̃

= ψ
(
1C(µ)∩σ−|µ|([x]l)

)
◦ σ̃,

and

ψ
(
λ̃a′
(
1C(µ)∩σ−|µ|([x]l)

))
= ψ

(
1C(σ(µ))∩σ1−|µ|([x]l)∩σ(C(a′))

)
= 1U(σ(µx),|µ|−1,l)∩σ(Ua′ )

= 1σ(U(x,|µ|,l))∩σ(Ua′ )

= λa′(1U(x,|µ|,l))

= λa′
(
ψ
(
1C(µ)∩σ−|µ|([x]l)

))
,

and since D̃X is generated by 1C(µ)∩σ−|µ|([x]l)
, µ ∈ L(X), l ∈ N0, x ∈ X it

follows that ψ(φ̃X(f)) = ψ(f)◦σ and ψ(λ̃a′(f)) = λa′(ψ(f)) for every a′ ∈ a

and every f ∈ D̃X .

We will identify every f ∈ C(X̃) with the function f̃ ∈ CC(G(X̃, σ̃))
given by

f̃(x, n, y) =

{
f(x) if x = y and n = 0,
0 if x 6= y or n 6= 0.

As in [6, Definition 2.4], we let for m,n ∈ N0 and open subsets U and V of
X̃ such that σ̃m is injective on U and σ̃n is injective on V , U(U,m, n, V ) be
the open subset

{(x,m− n, y) | (x, y) ∈ U × V, σ̃m(x) = σ̃n(y)}

of G(X̃, σ̃), and we let for every µ ∈ L(X), Uµ = U(Uµ, |µ|, 0, σ̃|µ|(Uµ)).

Proposition 4. There exists a ∗-homomorphism from OX to C∗(X̃, σ̃) send-
ing Sa to 1Ua for every a ∈ a.

Proof. Let ψ̃ : D̃X → CC(G(X̃, σ̃)) be the ∗-isomorphism from Proposition
3 composed with the inclusion of C(X̃) into CC(G(X̃, σ̃)) and let for every
a ∈ a, T̃a = 1Ua . Let for µ = µ1µ2 · · ·µn ∈ L(X), Tµ = Tµ1Tµ2 · · ·Tµn .
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Since

T̃a1Uµ = T̃a1U(Uν ,|ν|,0,eσ|ν|(Uν))(x, n, y)

=
∑

1U(Ua,1,0,eσ(Ua))(x,m, z)1U(Uν ,|ν|,0,eσ|ν|(Uν))(z, n−m, y)

= 1U(Uaν ,|ν|+1,0,eσ|ν|+1(Uaν))(x, n, y)

= 1Uaν

for every a ∈ a, ν ∈ L(X) and every (x, n, y) ∈ G(X̃, σ̃), we have that

T̃µ = 1Uµ

for every µ ∈ L(X).
Since

T̃µT̃
∗
µ(x, n, y) =

∑
1U(Uµ,|µ|,0,eσ|µ|(Uµ))(x,m, z)1U(Uµ,|µ|,0,eσ|µ|(Uµ))(y,m− n, z)

= 1U(Uµ,0,0,Uµ)(x, n, y)

= ψ̃
(
1C(µ)

)
(x, n, y)

and

T̃ ∗µ T̃µ(x, n, y) =
∑

1U(Uµ,|µ|,0,eσ|µ|(Uµ))(z,−m,x)1U(Uµ,|µ|,0,eσ|µ|(Uµ))(z, n−m, y)

= 1U(eσ(Uµ),0,0,eσ(Uµ))(x, n, y)

= ψ̃
(
1σ|µ|(C(µ))

)
(x, n, y)

for every µ ∈ L(X) and every (x, n, y) ∈ G(X̃, σ̃), we have that

a)
∑

a∈a T̃aT̃
∗
a = ψ̃(I),

b) T̃ ∗µ T̃µT̃ν T̃
∗
ν = T̃ν T̃

∗
ν T̃

∗
µ T̃µ,

c) T̃ ∗µ T̃µ = ψ̃
(
1σ|µ|(C(µ))

)
.

for every µ, ν ∈ L(X). So by Theorem 7.1 in [1], there exists a ∗-homomorphism
from OX to C∗(G(X̃, φX)) sending Sa to T̃a = 1Ua for every a ∈ a.

3 The ∗-homomorphism from C∗(X̃, σ̃) to OX

Lemma 5. Let K be a compact subset of G(X̃, σ̃). Then there exists a finite
subset F of L(X)2 such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F with (µ, ν) 6= (µ′, ν ′), and such that

K ⊆
⋃

(µ,ν)∈F

U(Uµ, |µ|, |ν|, Uν).

7
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Proof. Let K be a compact subset of G(X̃, σ̃). Since

K ⊆ G(X̃, σ̃) =
⋃

(µ,ν)∈L(X)2

U(Uµ, |µ|, |ν|, Uν),

there exists a finite set F ′ of L(X)2 such that

K ⊆
⋃

(µ,ν)∈F ′

U(Uµ, |µ|, |ν|, Uν).

Let
m = max{|µ| | ∃ν ∈ L(X) : (µ, ν) ∈ F ′},

and let

F = {(µα, να) | (µ, ν) ∈ F, α ∈ L(X), |α| = m− |µ|}.

Then F is a finite subset of L(X)2. Since for every (µ, ν) ∈ F ,

U(Uµ, |µ|, |ν|, Uν) =
⋃

|α|=m−|µ|

U(Uµα, |µα|, |να|, Uνα)

and
U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

if |µ| = |µ′| and (µ, ν) 6= (µ′, ν ′), we have that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F with (µ, ν) 6= (µ′, ν ′), and

K ⊆
⋃

(µ,ν)∈F ′

U(Uµ, |µ|, |ν|, Uν) =
⋃

(µ,ν)∈F

U(Uµ, |µ|, |ν|, Uν).

Lemma 6. Let µ, ν ∈ L(X). For every f ∈ CC(G(X̃, σ̃)) with supp f ⊆
U(Uµ, |µ|, |ν|, Uν) is

supp(1∗Uµ
f1Uν ) ⊆ U(σ|µ|(Uµ)∩σ|ν|(Uν), 0, 0, σ|µ|(Uµ)∩σ|ν|(Uν)) ⊆ G0(X̃, σ̃).

Proof. This follows from the fact that

1∗Uµ
f1Uν (x, n, y) =
f(((σ̃)|Uµ

)−|µ|(x), n+ |µ| − |ν|, ((σ̃)|Uν
)−|ν|(y)) if x ∈ σ̃|µ|(Uµ)

and y ∈ σ̃|ν|(Uν),
0 if x /∈ σ̃|µ|(Uµ)

or y /∈ σ̃|ν|(Uν).
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Proposition 7. There exists a ∗-homomorphism from C∗(X̃, σ̃) to OX send-
ing 1Ua to Sa for every a ∈ a.

Proof. Let f ∈ CC(G(X̃, σ̃)). By Lemma 5 there exists a finite subset F of
L(X)2 such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F with (µ, ν) 6= (µ′, ν ′), and such that

supp f ⊆
⋃

(µ,ν)∈F

U(Uµ, |µ|, |ν|, Uν).

Since U(Uµ, |µ|, |ν|, Uν) is open and compact, f|U(Uµ,|µ|,|ν|,Uν) ∈ CC(G(X̃, σ̃))
for every (µ, ν) ∈ F , and

f =
∑

(µ,ν)∈F

f|U(Uµ,|µ|,|ν|,Uν).

By Lemma 6
supp(1∗Uµ

f|U(Uµ,|µ|,|ν|,Uν)1Uν ) ⊆ G0(X̃, σ̃).

Let φ be the isomorphism from C(G0(X̃, σ̃)) to C(X̃) composed with the
inverse of the isomorphism from Proposition 3.

We want to show that a ∗-homomorphism from CC(G(X̃, σ̃)) to OX is
defined by

f 7→
∑

(µ,ν)∈F

Sµφ(1∗Uµ
f|U(Uµ,|µ|,|ν|,Uν)1Uν )S∗ν .

We first show that
∑

(µ,ν)∈F Sµφ(1∗Uµ
f|U(Uµ,|µ|,|ν|,Uν)1Uν )S∗ν is independ-

ent of F . So let F ′ be another finite subset of L(X)2 such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F ′ with (µ, ν) 6= (µ′, ν ′), and such that

supp f ⊆
⋃

(µ,ν)∈F ′

U(Uµ, |µ|, |ν|, Uν).

Let
m = max{|µ| | ∃ν ∈ L(X) : (µ, ν) ∈ F ∨ (µ, ν) ∈ F ′},

and let

F ′′ = {(µα, να) | (µ, ν) ∈ F ∨ (µ, ν) ∈ F ′, α ∈ L(X), |α| = m− |µ|}.

We let for every (µ, ν) ∈ F ,

F ′′
(µ,ν) = {(µα, να) ∈ F ′′ | α ∈ L(X)}.
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Then ∑
(µ′,ν′)∈F ′′

(µ,ν)

Sµ′φ
(
1∗Uµ′

f|U(Uµ′ ,|µ′|,|ν′|,Uν′ )
1Uν′

)
S∗ν′

=
∑

|α|=m−|µ|

Sµαφ
(
1∗Uµα

f|U(Uµα,|µα|,|να|,Uνα)1Uνα

)
S∗να

=
∑

|α|=m−|µ|

SµSαφ
(
λα

(
1∗Uµ

f|U(Uµ,|µ|,|ν|,Uν)1Uν

))
S∗αS

∗
ν

=
∑

|α|=m−|µ|

SµSαS
∗
αφ
(
1∗Uµ

f|U(Uµ,|µ|,|ν|,Uν)1Uν

)
SαS

∗
αS

∗
ν

= Sµφ
(
1∗Uµ

f|U(Uµ,|µ|,|ν|,Uν)1Uν

)
S∗ν .

Since
U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F with (µ, ν) 6= (µ′, ν ′),

F ′′
(µ,ν) ∩ F

′′
(µ′,ν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F with (µ, ν) 6= (µ′, ν ′). Let (µ, ν) ∈ F ′′. If

U(Uµ, |µ|, |ν|, Uν) ∩ supp f 6= ∅,

then since
supp f ⊆

⋃
(µ,ν)∈F

U(Uµ, |µ|, |ν|, Uν)

there exists (µ′, ν ′) ∈ F such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) 6= ∅,

and thus there exist a α ∈ L(X) such that µ = µ′α and ν = ν ′α. Hence
(µ, ν) ∈ F ′′

(µ′,ν′). So∑
(µ,ν)∈F ′′

Sµφ(1∗Uµ
f|U(Uµ,|µ|,|ν|,Uν)1Uν )S∗ν

=
∑

(µ,ν)∈F

∑
(µα,να)∈F ′′

(µ,ν)

Sµαφ(1∗Uµα
f|U(Uµα,|µα|,|να|,Uνα)1Uνα)S∗να

=
∑

(µ,ν)∈F

Sµφ(1∗Uµ
f|U(Uµ,|µ|,|ν|,Uν)1Uν )S∗ν .

In the same way we can prove that∑
(µ,ν)∈F ′′

Sµφ(1∗Uµ
f|U(Uµ,|µ|,|ν|,Uν)1Uν )S∗ν =

∑
(µ,ν)∈F ′

Sµφ(1∗Uµ
f|U(Uµ,|µ|,|ν|,Uν)1Uν )S∗ν .

10

2.3. THE ∗-HOMOMORPHISM FROM C∗(X̃, σ̃) TO OX 45



So the map ψ : CC(G(X̃, σ̃)) → OX given by

ψ(f) =
∑

(µ,ν)∈F

Sµφ(1∗Uµ
f|U(Uµ,|µ|,|ν|,Uν)1Uν )S∗ν

is well defined and is clearly linear.
If supp g ⊆ U(Uµ, |µ|, |ν|, Uν), then supp g∗ ⊆ U(Uν , |ν|, |µ|, Uµ), so if

f ∈ CC(G(X̃, σ̃)) and F is a finite subset of L(X)2 such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F with (µ, ν) 6= (µ′, ν ′), and such that

supp f ⊆
⋃

(µ,ν)∈F

U(Uµ, |µ|, |ν|, Uν),

then F ′ = {(ν, µ) ∈ L(X)2 | (µ, ν) ∈ F} is a finite subset of L(X)2 such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F ′ with (µ, ν) 6= (µ′, ν ′), and such that

supp f∗ ⊆
⋃

(µ,ν)∈F ′

U(Uµ, |µ|, |ν|, Uν).

So

ψ(f)∗ =

 ∑
(µ,ν)∈F

Sµφ
(
1∗Uµ

f|U(Uµ,|µ|,|ν|,Uν)1Uν

)
S∗ν

∗

=
∑

(µ,ν)∈F

Sνφ
(
1∗Uν

(
f|U(Uν ,|ν|,|µ|,Uµ)

)∗ 1Uµ

)
S∗µ

=
∑

(µ,ν)∈F ′

Sµφ
(
1∗Uµ

f∗|U(Uµ,|µ|,|ν|,Uν)1Uν

)
S∗ν

= ψ(f∗).

Let f, g ∈ CC(G(X̃, σ̃)), and let F1 be a finite subset of L(X)2 such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F1 with (µ, ν) 6= (µ′, ν ′), and such that

supp f ⊆
⋃

(µ,ν)∈F1

U(Uµ, |µ|, |ν|, Uν),

and let F2 be a finite subset of L(X)2 such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅
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for (µ, ν), (µ′, ν ′) ∈ F2 with (µ, ν) 6= (µ′, ν ′), and such that

supp g ⊆
⋃

(µ,ν)∈F2

U(Uµ, |µ|, |ν|, Uν).

Let
m = max{|µ| | ∃ν ∈ L(X) : (ν, µ) ∈ F1 ∨ (µ, ν) ∈ F2},

F ′
1 = {(µα, να) | (µ, ν) ∈ F1, α ∈ L(X), |α| = m− |ν|}

and
F ′

2 = {(µα, να) | (µ, ν) ∈ F2, α ∈ L(X), |α| = m− |µ|}.

Then F ′
1 is a finite subset of L(X)2 such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F ′
1 with (µ, ν) 6= (µ′, ν ′), and such that

supp f ⊆
⋃

(µ,ν)∈F ′
1

U(Uµ, |µ|, |ν|, Uν),

and F ′
2 is a finite subset of L(X)2 such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F ′
2 with (µ, ν) 6= (µ′, ν ′), and such that

supp g ⊆
⋃

(µ,ν)∈F ′
2

U(Uµ, |µ|, |ν|, Uν).

Let
k = max{|µ| | ∃ν ∈ L(X) : (µ, ν) ∈ F ′

1}

and set

F = {(µα, να) |∃γ ∈ L(X) : (µ, γ) ∈ F ′
1∧

(γ, ν) ∈ F ′
2, α ∈ L(X), |α| = k − |µ|}.

Then F is a finite subset of L(X)2 such that

U(Uµ, |µ|, |ν|, Uν) ∩ U(Uµ′ , |µ′|, |ν ′|, Uν′) = ∅

for (µ, ν), (µ′, ν ′) ∈ F with (µ, ν) 6= (µ′, ν ′). Since

fg(x, n, y) =
∑

f(x,m, z)g(z, n−m, y)

for every (x, n, y) ∈ G(X̃, σ̃), we have that if (x, n, y) ∈ supp fg, then there
exist a m ∈ N and a z ∈ X̃ such that (x,m, z) ∈ supp f , and (z, n −
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m, y) ∈ supp g, and thus there exist (µ, ν) ∈ F ′
1 and (µ′, ν ′) ∈ F ′

2 such that
(x,m, z) ∈ U(Uµ, |µ|, |ν|, Uν), and (z, n−m, y) ∈ U(Uµ′ , |µ′|, |ν ′|, Uν′). Since
|ν| = |µ′| and z ∈ Uν ∩ Uµ′ , we have that ν = µ′, and thus (µα, ν ′α) ∈ F ,
where α is the unique element in L(X) such that |α| = k− |µ| and such that

σ̃|µ|(x) = σ̃|ν|(z) = σ̃|ν
′|(y) ∈ Uα.

Hence
supp fg ⊆

⋃
(µ,ν)∈F

U(Uµ, |µ|, |ν|, Uν).

So

ψ(f)ψ(g) =
∑

(µ,ν)∈F ′
1

Sµφ
(
1∗Uµ

f|U(Uµ,|µ|,|ν|,Uν)1Uν

)
S∗ν

∑
(µ′,ν′)∈F ′

2

Sµ′φ
(
1∗Uµ′

g|U(Uµ′ ,|µ′|,|ν′|,Uν′ )
1Uν′

)
S∗ν′

=
∑

(µ,ν)∈F ′
1

(ν,ν′)∈F ′
2

Sµφ
(
1∗Uµ

f|U(Uµ,|µ|,|ν|,Uν)1Uν

)
S∗ν

Sνφ
(
1∗Uν

g|U(Uν ,|ν|,|ν′|,Uν′ )
1Uν′

)
S∗ν′

=
∑

(µ,ν)∈F ′
1

(ν,ν′)∈F ′
2

Sµφ
(
1∗Uµ

f|U(Uµ,|µ|,|ν|,Uν)1Uν

)
φ
(
1eσ|ν|(Uν)

)

φ
(
1∗Uν

g|U(Uν ,|ν|,|ν′|,Uν′ )
1Uν′

)
S∗ν′

=
∑

(µ,ν)∈F ′
1

(ν,ν′)∈F ′
2

Sµφ
(
1∗Uµ

f|U(Uµ,|µ|,|ν|,Uν)g|U(Uν ,|ν|,|ν′|,Uν′ )
1Uν′

)
S∗ν′

=
∑

(µ,ν)∈F ′
1

(ν,ν′)∈F ′
2

|α|=k−n

SµSαS
∗
αφ
(
1∗Uµ

f|U(Uµ,|µ|,|ν|,Uν)g|U(Uν ,|ν|,|ν′|,Uν′ )
1Uν′

)
SαS

∗
αS

∗
ν′

=
∑

(µ,ν)∈F ′
1

(ν,ν′)∈F ′
2

|α|=k−n

SµSαφ
(
1∗Uα

1∗Uµ
f|U(Uµ,|µ|,|ν|,Uν)g|U(Uν ,|ν|,|ν′|,Uν′ )

1Uν′1Uα

)
S∗αS

∗
ν′

=
∑

(µ,ν)∈F

Sµφ
(
1∗Uµ

fg|U(Uµ,|µ|,|ν|,Uν)1Uν

)
S∗ν

= ψ(fg)

Hence ψ is a ∗-homomorphism, and since G(X̃, σ̃) is a second countable
locally compact r-discrete groupoid, it follows from Corollary II,1.22 of [5]
that ψ is || · ||I -bounded and hence extends to the C∗-algebra C∗(X̃, σ̃).
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4 OX is isomorphic to C∗(X̃, σ̃)

Lemma 8. Let X be the ∗-subalgebra of C∗(X̃, σ̃) generated by 1Ua , a ∈ a.
Then 1U(µx,|µ|,l) ∈ X for every µ ∈ L(X), l ∈ N0 and every x ∈ X.

Proof. We know that if µ = µ1µ2 · · ·µm ∈ L(X), then 1Uµ = 1Uµ1
1Uµ2

· · · 1Uµm
,

so 1Uµ ∈ X for every µ ∈ L(X).
Let µ ∈ L(X), l ∈ N0 and x ∈ X. Since

U(µx, |µ|, l) =

Uµ ∩ σ̃−|µ|
 ⋂

ν∈∪l
k=0Pk(x)

σ̃|ν|(Uν)

⋂ ⋂
ν∈∪l

k=0ak\Pk(x)

X̃ \ σ̃|ν|(Uν)

 .

we have that

1U(µx,|µ|,l) =

 ∏
ν∈∪l

k=0Pk(x)

1Uµ1∗Uν
1Uν 1Uµ


 ∏
ν∈∪l

k=0ak\Pk(x)

(1Uµ1∗Uµ
− 1Uµ1∗Uν

1Uν 1∗Uµ
)

 ∈ X .

Lemma 9. C∗(X̃, σ̃) is generated by 1Ua , a ∈ a.

Proof. Let X be the ∗-subalgebra of C∗(X̃, σ̃) generated by 1Ua , a ∈ a. We
then have to show that X is dense in C∗(X̃, σ̃). Since CC(G(X̃, σ̃)) is dense
in C∗(X̃, σ̃), and the C∗-norm is dominated by || · ||I , it is enough to show
that X is || · ||I -dense in CC(G(X̃, σ̃)).

From Lemma 5 we know that every f ∈ CC(G(X̃, σ̃)) can be writ-
ten as a finite sum

∑n
i=1 fi, where for each i ∈ {1, 2, . . . , n}, supp fi ⊆

U(Uµi , |µi|, |νi|, Uνi) for some µi, νi ∈ L(X). So we just have to show that
{f ∈ X | supp f ⊆ U(Uµ, |µ|, |ν|, Uν)} is || · ||I -dense in

{f ∈ CC(G(X̃, σ̃)) | supp f ⊆ U(Uµ, |µ|, |ν|, Uν)}

for every µ, ν ∈ L(X). Since U(Uµ, |µ|, |ν|, Uν) is a G-set (i.e. r and s are
injective on U(Uµ, |µ|, |ν|, Uν)), || · ||I is dominated by the uniform norm on
U(Uµ, |µ|, |ν|, Uν). Hence we just have to show that every

f ∈ C(U(Uµ, |µ|, |ν|, Uν))

can be approximated by elements of

{g|U(Uµ,|µ|,|ν|,Uν) | g ∈ X , supp g ⊆ U(Uµ, |µ|, |ν|, Uν)}.

14
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C(U(Uµ, |µ|, |ν|, Uν) is of course a C∗-algebra with pointwise operations and
the uniform norm. Let X(µ,ν) be the ∗-subalgebra of C(U(Uµ, |µ|, |ν|, Uν)
generated by

1U(U(µαx,|µα|,l),|µ|,|ν|,U(ναx,|να|,l)), α ∈ L(X), l ∈ N0, x ∈ X.

For µ = µ1µ2 · · ·µm ∈ L(X), we let η(µ) = µ1µ2 · · ·µm−1. Since the product
of

1U(U(µα1x1,|µα|,l1),|µ|,|ν|,U(να1x1,|να1|,l1))

and
1U(U(µα2x2,|µα2|,l2),|µ|,|ν|,U(να2x2,|να2|,l2))

in C(U(Uµ, |µ|, |ν|, Uν) is

if |α1| ≥ |α2|,
1U(U(µα1x1,|µα1|,l1),|µ|,|ν|,U(να1x1,|να1|,l1)) η(|α1|−|α2|)(α1) = α2, l1 ≥ l2

and [x1]l2 = [x2]l2 ,
if |α1| ≥ |α2|,

1U(U(µα1x2,|µα1|,l2),|µ|,|ν|,U(να1x2,|να1|,l2)) η(|α1|−|α2|)(α1) = α2, l2 ≥ l1

and [x2]l1 = [x1]l1 ,
if |α2| ≥ |α1|,

1U(U(µα2x1,|µα2|,l1),|µ|,|ν|,U(να2x1,|να2|,l1)) η(|α2|−|α1|)(α2) = α1, l1 ≥ l2

and [x1]l2 = [x2]l2 ,
if |α2| ≥ |α1|,

1U(U(µα2x2,|µα2|,l2),|µ|,|ν|,U(να2x2,|να2|,l2)) η(|α2|−|α1|)(α2) = α1, l2 ≥ l1

and [x2]l1 = [x1]l1 ,
0 else.

and

1U(U(µαx,|µα|,l),|µ|,|ν|,U(ναx,|να|,l)) = 1U(U(µαx,|µα|,l),|µ|,|ν|,U(ναx,|να|,l))

we have that

X(µ,ν) =

span{1U(U(µαx,|µα|,l),|µ|,|ν|,U(ναx,|να|,l)) | α ∈ L(X), l ∈ N, x ∈ X}.

By Lemma 8, 1U(µαx,|µα|,l) ∈ X for every α ∈ L(X), l ∈ N, x ∈ X, so

1U(U(µαx,|µα|,l),|µ|,|ν|,U(ναx,|να|,l)) = 1Uµ1U(|α|,l,Uα,[x]l)1
∗
Uν
∈ X

and hence X(µ,ν) ⊆ {g|U(Uµ,|µ|,|ν|,Uν) | supp g ⊆ U(Uµ, |µ|, |ν|, Uν)}. Since
X(µ,ν) contain the constant functions and separate points it follows from the
Stone-Weierstrass Theorem that X(µ,ν) and hence

{g|U(Uµ,|µ|,|ν|,Uν) | g ∈ X , supp g ⊆ U(Uµ, |µ|, |ν|, Uν)}

is uniform dense in C(U(Uµ, |µ|, |ν|, Uν)), and we are done.

15
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Theorem 10. There exists a ∗-isomorphism between OX and C∗(X̃, σ̃) send-
ing Sa to 1Ua for every a ∈ a.

Proof. We know from Proposition 4 that there exists a ∗-homomorphism
fromOX to C∗(X̃, φX) sending Sa to 1Ua for every a ∈ a and from Proposition
7 that there exists a ∗-homomorphism from C∗(X̃, φX) to OX sending 1Ua to
Sa for every a ∈ a, and since OX is generated by Sa, a ∈ a and C∗(X̃, σ̃) is
generated by 1Ua , a ∈ a these ∗-homomorphisms are each other inverse.
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Chapter 3

Symbolic dynamics, partial
dynamical systems, Boolean
algebras and C∗-algebras
generated by partial
isometries

This chapter consists of the preprint Symbolic dynamics, partial dynamical
systems, Boolean algebras and C∗-algebras generated by partial isometries
which is an attempt to relate the C∗-algebra associated to one-sided shift
spaces to other C∗-algebras associated to symbolic dynamical systems and
to unify all these C∗-algebras into a single construction which also applies
to classes of symbolic dynamics to which, as far as I know, no C∗-algebras
have previous been associated.

The preprint also includes a results which connects the crossed product
of a two-sided shift space having a certain property (∗) and the C∗-algebra
associated to the corresponding one-sided shift space. This result is the
foundation for the work presented in the remaining 4 papers.
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SYMBOLIC DYNAMICS, PARTIAL DYNAMICAL
SYSTEMS, BOOLEAN ALGEBRAS AND C∗-ALGEBRAS

GENERATED BY PARTIAL ISOMETRIES

TOKE MEIER CARLSEN

Abstract. We associate to each partial dynamical system a universal
C∗-algebra generated by partial isometries satisfying relations given by
a Boolean algebra. We show that for symbolic dynamical systems like
one-sided and two-sided shift spaces, topological Markov chains with an
arbitrary state space and higher rank graph, the C∗-algebras usually
associated to them, can be obtained in this way.

As a consequence of this, we get that for two-sided shift spaces having
a certain property, the crossed product of the two-sided shift space is
a quotient of the C∗-algebra associated to the corresponding one-sided
shift space.

We also suggest how to associate C∗-algebras to higher dimensional
shifts over an infinite alphabet.

1. Introduction

One-sided and two-sided shift spaces (also called subshifts), topological
Markov chains with an arbitrary state space and higher rank graph are
all symbolic dynamical systems to which C∗-algebras have been associated.
We will in this paper show that all of these C∗-algebras can be obtained as
crossed product of C∗-partial dynamical systems.

The symbolic dynamical systems mentioned here all come with a natural
partial dynamical system, but this system can not in general be turned in
to a C∗-partial dynamical systems in a straight forward way. We surmount
this problem by turning every discrete partial dynamical system into a C∗-
partial dynamical systems by using Boolean algebras and thus associate to
every discrete partial dynamical system a universal C∗-algebra generated by
partial isometries satisfying relations given by a Boolean algebra.

This allows us to associated to shifts with an infinite alphabet and to
higher dimensional shifts C∗-algebras which are generalizations of the C∗-
algebra associated to one-sided shift spaces, the C∗-algebra associated to
higher rank graph and the C∗-algebra associated to 0-1 matrices.

We will also to each discrete partial dynamical system associate a reduced
C∗-algebra, and we will also show that for two-sided shift spaces having a
certain property, the crossed product of the two-sided shift space is a factor
of the C∗-algebra associated to the corresponding one-sided shift space. This
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Key words and phrases. C∗-algebras, partial dynamical systems, symbolic dynamical
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2 TOKE MEIER CARLSEN

lays the ground for a description of theK-theory of the C∗-algebra associated
to the one-sided shift space which is explained in [2, 3].

2. Preliminaries and notation

Throughout this paper e will denote the neutral element of a given group
and IdX will denote the identity map on the set X.

If θ is a map defined on a subset A of some set X, then we will for another
subset B of X by θ(B) mean θ(A∩B). We use span(A) to denote the closure
of the linear span of A. For a subset B of a C∗-algebra we denote the C∗-sub
algebra generated by B, by C∗(B).

For partial isometries S, T we say that S extends T and write S ≥ T if
TT ∗ = TS∗ (cf. [10, Lemma 1.6]).

3. Discrete partial dynamical systems

Definition 1. Given a group G and a set X, a partial action θ of G on X
is a pair

({Dt}t∈G, {θt}t∈G),
where for each t ∈ G, Dt is a subset of X and θt is a bijective map from
Dt−1 to Dt, satisfying for all r and s in G

(1) De = X and θe is the identity map on X,
(2) θr(Ds) = Dr ∩Drs,
(3) θr(θs(x)) = θrs(x) for x ∈ Ds−1 ∩Ds−1r−1 .

The triple (X,G, θ) is called a discrete partial dynamical system.

Let us look at some examples of some symbolic dynamical systems which
all come with a natural discrete partial dynamical systems.

Example 1. Let (X, σ) be a two-sided shift space over the finite alphabet
a (cf. [8]). Let for every a ∈ a, Da = {x ∈ X | x0 = a}, Da−1 = {x ∈ X |
x−1 = a},

θa = σ−1
|Da−1

: Da−1 → Da

and
θa−1 = σ|Da

: Da → Da−1 .

Let Fa be the free group generated by a and let for every t ∈ Fa written on
reduced form u1u2 · · ·un, where u1, u2, . . . , un ∈ a ∪ {a−1 | a ∈ a},

Dt = θu1 ◦ θu2 ◦ · · · ◦ θun(X)

and
θt = θu1 ◦ θu2 ◦ · · · ◦ θun .

Then X = (X,Fa, θ) is a discrete partial dynamical system.

Example 2. Let (X+, σ+) be a one-sided shift space over the finite alphabet
a (cf. [8, §13.8]). Let for every a ∈ a, Da = {x ∈ X+ | x0 = a}, Da−1 =
σ+(Da), θa : Da−1 → Da the map

x 7→ ax,

and θa−1 : Da → Da−1 the map

x 7→ σ+(x).
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Let Fa be the free group generated by a and let for every t ∈ Fa written on
reduced form u1u2 · · ·un, where u1, u2, . . . , un ∈ a ∪ {a−1 | a ∈ a},

Dt = θu1 ◦ θu2 ◦ · · · ◦ θun(X+)

and
θt = θu1 ◦ θu2 ◦ · · · ◦ θun .

Then X+ = (X+,Fa, θ) is a discrete partial dynamical system.

Example 3. Let I be an arbitrary index set and let A = A(i, j)i,j∈I be a
matrix with entries in {0, 1} and having no identically zero rows. Let X+

A be
the set

{(xn)n∈N0 ∈
∏
n∈N0

I | ∀n ∈ N0 : A(xn, xn+1) = 1},

and let σ+ : X+
A → X+

A be the shift mapping defined by

σ+((xn)n∈N0)n = xn+1

for (xn)n∈N0X
+
A and n ∈ N0.

Let for every i ∈ I, Di = {x ∈ X+
A | x0 = i} and Di−1 = σ+(Di), and let

θi : Di−1 → Di be the map
x 7→ ix,

and θi−1 : Di → Di−1 the map

x 7→ σ+(x).

Let FI be the free group generated by I and let for every t ∈ FI written on
reduced form u1u2 · · ·un, where u1, u2, . . . , un ∈ I ∪ {i−1 | i ∈ I},

Dt = θu1 ◦ θu2 ◦ · · · ◦ θun(X+
A)

and
θt = θu1 ◦ θu2 ◦ · · · ◦ θun .

Then X+
A = (X+

A,FI , θ) is a discrete partial dynamical system.

Example 4. Let Λ be a k-graph (cf. [7]) and let G be the quotient of FΛ\Λ0

where we for λ, µ ∈ Λ \Λ0 with s(λ) = r(λ) identify the product of λ and µ
with λµ ∈ Λ.

Let for λ ∈ Λ \ Λ0,

Dλ = {x ∈ Λ∞ | x(0, d(λ)) = λ}.

It follows from [7, Proposition 2.3] that σd(λ)
|Dλ

is injective. Let Dλ−1 =

σ
d(λ)
|Dλ

(Dλ), θλ =
(
σ
d(λ)
|Dλ

)−1
and θλ−1 = σ

d(λ)
|Dλ

. Let for every t ∈ G written on

reduced form u1u2 · · ·un, where u1, u2, . . . , un ∈ Λ \Λ0 ∪{λ−1 | λ ∈ Λ \Λ0},

Dt = θu1 ◦ θu2 ◦ · · · ◦ θun(X+)

and
θt = θu1 ◦ θu2 ◦ · · · ◦ θun .

Then Λ = (Λ, G, θ) is a discrete partial dynamical system.
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4. The reduced C∗-algebra

As mentioned before, the object of this paper is to associate to each
discrete partial dynamical system X = (X,G, θ) a C∗-algebra OX.

Let us first try the naive approach and look at the Hilber space l2(X).
Let (ex)x∈X be an orthonormal basis for l2(X), and define for each t ∈ G
an operator St by setting

St

(∑
x∈X

λxex

)
=
∑
x∈Dt

λθt−1 (x)ex

for every
∑

x∈X λxex ∈ l2(X).

Definition 2. We let, for a discrete partial dynamical system X = (X,G, θ),
Ored

X be the C∗ generated by the operators St, t ∈ G defined above.

We call Ored
X the reduced C∗-algebra associated to X.

In order to define the universal C∗-algebra OX associated to X, we will
first determine a reasonable set of conditions which the generators of OX

should satisfy.
It is straight forward to check that the operators {St ∈ Ored

X | t ∈ G}
are partial isometries and satisfy that Se = 1, S∗t = St−1 , StSs ≤ Sts and
StS

∗
t = proj(span{ex | x ∈ Dt}), where proj(span{ex | x ∈ Dt}) is the

projection of l2(X) onto span{ex | x ∈ Dt}, for every t, s ∈ G.
We will take these relations to be the conditions which the generators of

OX should satisfy.

5. The universal C∗-algebra

Let X = (X,G, θ) be a discrete partial dynamical system. We want OX

to be the universal C∗-algebra generated by partial isometries St, t ∈ G
satisfying Se = 1, S∗t = St−1 , StSs ≤ Sts and StS

∗
t = proj(span{ex | x ∈

Dt}). One way of constructing OX is by using full crossed product of C∗-
partial dynamical systems (cf. [5, 10]).

First we have to turn the discrete partial dynamical system X into a C∗-
partial dynamical system. We will do that by using Boolean algebras (see [6]
for a introduction to Boolean algebras). A Boolean algebra is an algebraic
object with three operations ∪,∩ and ¬ which act like union, intersection
and complement. Examples are the power set of a set, the set of clopen
subsets of a topological space, projections of a unital C∗-algebra, ideals of a
C∗-algebra and the set {0, 1}.

A map φ between two Boolean algebras B and B′ is called a Boolean
homomorphism if φ(A ∪ B) = φ(A) ∪ φ(B), φ(A ∩ B) = φ(A) ∩ φ(B) and
φ(¬A) = ¬φ(A) for every A,B ∈ B.

Let BX be the Boolean algebra generated by Dt, t ∈ G. Notice that
θr(Ds) = Dr ∩ Drs ∈ BX for every r, s ∈ G, so θt(A) ∈ BX for every
A ∈ BX .

Let for each t ∈ G, D̃t be the ideal in BX generated by Dt, i.e.

D̃t = {A ∈ BX | A ⊆ Dt}.
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We define for every t ∈ G a map θ̃t from D̃t to D̃t−1 by

θ̃t(A) = θ
−1

t (A).

It is easy to see that θ̃t is a bijective Boolean homomorphism.
Let X̂ be the dual of BX , i.e. X̂ is the closed subset

{φ ∈ {0, 1}BX | φ is a Boolean homomorphism}

of the Cantor space {0, 1}BX endowed with the product topology of the dis-
crete topology on {0, 1}. Then X̂ is a totally disconnected compact Haus-
dorff space.

For each A ∈ BX we let Â = {φ ∈ X̂ | φ(A) = 1}, and notice that Â is a
clopen subset of X̂.

Lemma 3. The system {D̂t | t ∈ G} separates points in X̂.

Proof. Let φ1, φ2 ∈ X̂ and let

A = {A ∈ BX | φ1(A) = φ2(A)}.

Then A is a Boolean subalgebra of BX . Assume that

φ1 ∈ D̂t ⇔ φ2 ∈ D̂t

for every t ∈ G. This means that Dt ∈ A for every t ∈ G and thus that
A = BX . But then φ1 and φ2 must be equal. �

For each t ∈ G, let θ̂t be the map given by

θ̂t(φ)(A) = φ(θ−1
t (A))

for A ∈ BX and φ ∈ D̂t−1 . It is easy to check that θ̂t is a Boolean homo-
morphism from D̂t−1 to D̂t.

Let X̄ = C(X̂) and let for each t ∈ G,

D̄t = {f ∈ X̄ | f|X̂\D̂t
= 0}

and let θ̄t : D̄t−1 → D̄t be defined by

θ̄t(f)(φ) =

{
f(θ̂t−1(φ)) if φ ∈ D̂t,

0 if φ ∈ X̂ \ D̂t,

for f ∈ D̄t−1 and φ ∈ X̂. Then θ̄ = ({D̄t}t∈G, {θ̄t}t∈G) is a partial action of
G on the C∗-algebra X̄. Thus (X̄,G, θ̄) is a C∗-partial dynamical system.

We define OX to be the full crossed product X̄ oθ̄ G. It is characterized
by the following theorem:

Theorem 4. Let X = (X,G, θ) be a discrete partial dynamical system.
Then OX is the universal C∗-algebra generated by partial isometries {St}t∈G
satisfying

(1) Se = 1,
(2) St−1 = S∗t for every t ∈ G,
(3) Sst extends SsSt for every s, t ∈ G,
(4) the map Dt 7→ StS

∗
t extends to a Boolean homomorphism from BX

to the set of projections in C∗(St | t ∈ G).
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Proof. We will first show that if (π, u) is a covariant representation of (A,G, θ̄),
then St = ut are partial isometries which satisfy (1), (2), (3) and (4), and
we will then show if {St}t∈G are partial isometries on a Hilbert space H and
{St}t∈G satisfy (1), (2), (3) and (4) and span{Stξ | t ∈ G, ξ ∈ H} = H, then
there is a covariant representation of (A,G, θ̄) such that ut = St for every
t ∈ G.

Let (π, u) be a covariant representation of (A,G, θ̄). Let for every t ∈ G,
St = ut. Then clearly (1), (2) and (3) are satisfied.

Denote for every subset B of X̄, the subspace

span{π(T )ξ | T ∈ B, ξ ∈ H}

of H by [B].
Since the map sending an element A of BX to Â, the map sending a clopen

subset U of X̂ to {f ∈ X̄ | f|X̂\U = 0}, and the map sending an ideal I of X̄
to proj[I] all are Boolean homomorphism, so is the map sending an element
A of BX to

proj([{f ∈ X̄ | f|X̂\Â = 0}]),

and since

proj([{f ∈ X̄ | f|X̂\D̂t
= 0}]) = proj([D̄t])

= utu
∗
t

= StS
∗
t

for every t ∈ G, (4) is satisfied.
Now let St, t ∈ G be partial isometries on a Hilbert space H such that

{St}t∈G satisfy (1), (2), (3) and (4) and span{Stξ | t ∈ G, ξ ∈ H} = H. Let
for every t ∈ G, ut = St. Then t 7→ ut is a partial representation of G on H.

It follows from Lemma 3 and the Stone-Weierstrass Theorem that

span{1D̂t
| t ∈ G} = X̄,

so since the map Dt 7→ StS
∗
t extends to a Boolean homomorphism from BX

to the set of projections in C∗(St | t ∈ G), the map∑
t∈G

λt1D̂t
7→
∑
t∈G

λtStS
∗
t , λt ∈ C

extends to a ∗-homomorphism π from X̄ to C∗(St | t ∈ G). Thus π is a
nondegenerated representation of X̄ on H, which satisfies that

proj([D̄t]) = proj(span{StS∗t ξ | ξ ∈ H})
= StS

∗
t

= utu
∗
t .
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Let Ds ⊆ Dt−1 . Then 1D̂s
∈ D̄t−1 , and θ̄t(1D̂s

) = 1D̂t∩D̂ts
. Thus

π(θ̄t(1D̂s
)) = π(1D̂t∩D̂ts

)

= StS
∗
t StsS

∗
ts

= StSsS
∗
ts

= StSsS
∗
sSsS

∗
ts

= StSsS
∗
sS

∗
t

= utπ(1D̂s
)ut−1 ,

and since span{1D̂s
| Ds ⊆ Dt−1} = D̄t−1 , this shows that

π(θ̄(f)) = ut(π(f))ut−1

for every f ∈ D̄t−1 .
Thus (π, u) is a covariant representation of (A,G, θ̄) �

Proposition 5. Let X = (X,G, θ) be a discrete partial dynamical system.
Then there is a ∗-homomorphism from OX to Ored

X , sending St to St for
every t ∈ G.

Proof. This follows from Theorem 4 since {St ∈ Ored
X | t ∈ G} are partial

isometries that satisfy that Se = 1, S∗t = St−1 , StSs ≤ Sts and StS
∗
t =

proj(span{ex | x ∈ Dt}) for all s, t ∈ G, and the map

A 7→ proj(span{ex | x ∈ A})

is a Boolean homomorphism from BX to the set of projections on l2(X). �

Lemma 6. The Boolean homomorphism from BX to the set of projections
in OX that extends the map Dt 7→ StS

∗
t is injective.

Proof. Since the Boolean homomorphism

A 7→ proj(span{ex | x ∈ A})

from BX to the set of projections on l2(X) is injective, the lemma follows. �

6. C∗-algebras associated to symbolic dynamical systems

We will now return to the symbolic dynamical system we looked at in
Section 3 and show that the C∗-algebras associated to them can be realized
as universal C∗-algebras associated with discrete dynamical systems.

Example 1 continued. Let (X, σ) be a two-sided shift space over the
finite alphabet, and let X be the discrete partial dynamical system defined
in Example 1. Let σ? be the automorphism on C(X) defined by f 7→ f◦σ and
let C(X) oσ? Z be the full crossed product (cf. [9, 7.6.5]). Thus C(X) oσ? Z
is the universal C∗-algebra generated by a copy of C(X) and an unitary
operator U which satisfies that UfU∗ = f ◦ σ for every f ∈ C(X). We then
have:

Proposition 7. OX is isomorphic to the crossed product C(X) oσ? Z.
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Proof. We will first show that the Boolean algebra BX generated by {Dt |
t ∈ Fa} is the Boolean algebra of clopen subsets of X. To see this, notice first
that Da and Da−1 are clopen for every a ∈ a. Since σ is a homeomorphism,
Dt is clopen for every t ∈ Fa, so every set in BX is clopen.

In the other direction, we have that

D(a−1a−2···a−n)−1 ∩Da0a1···am =

{x ∈ X | x−n = a−n, x−n+1 = a−n+1, . . . , xm = am} ∈ BX

for a−n, a−n+1, . . . am ∈ a, and that the system consisting of sets of this form
is a basis for the topology of X, so every clopen set is a finite union of sets
of this form and thus belongs to BX.

So it follows from the Stone-Weierstrass theorem that C(X) = span{1Dt |
t ∈ Fa}. Since the map Dt 7→ StS

∗
t extends to a Boolean homomorphism

from BX to the set of projections in OX, the map∑
t∈Fa

λt1D̂t
7→
∑
t∈Fa

λtStS
∗
t , λt ∈ C

extends to a ∗-homomorphism φ from C(X) to OX. Let U =
∑

a∈a Sa ∈ OX.
Then

Uφ(1Dt)U
∗ =

∑
a∈a

SaStS
∗
t

∑
a′∈a

S∗a′

=
∑
a∈a
a′∈a

SaStS
∗
t S

∗
aSaS

∗
a′Sa′S

∗
a′

=
∑
a∈a

SaStS
∗
t S

∗
a

=
∑
a∈a

SaS
∗
aSatS

∗
atSaS

∗
a

=
∑
a∈a

φ(1Da∩Dat)

=
∑
a∈a

φ(1θa(Dt))

= φ(1∪a∈aθa(Dt))

= φ(1σ−1(Dt))

= φ(1Dt ◦ σ)

for every t ∈ Fa. Since C(X) = span{1Dt | t ∈ Fa}, this shows that
Uφ(f)U∗ = φ(f ◦σ) for every f ∈ C(X). Thus there is a ∗-homomorphism φ̃
from C(X)oσ? Z to OX which is equal to φ on C(X) and sends U to

∑
a∈a Sa.

Let for every a ∈ a, Sa = 1DaU ∈ C(X) oσ? Z, Sa−1 = S∗a and let Se = 1
and St = Su1Su2 · · ·Sun , where t = u1u2 · · ·un ∈ Fa is written in reduced
form. Then (1), (2) and (3) of Theorem 4 hold.
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We define a function [·] : Fa → Z recursively by [e] = 0, [at] = [t] + 1 and
[a−1t] = [t]− 1 for a ∈ a and t ∈ Fa. For every t ∈ Fa and a ∈ a are

Sa1DtU
[t] = 1DaU1DtU

[t]

= 1DaU1DtU
∗U [t]+1

= 1Da∩σ−1(Dt)U
[t]+1

= 1DatU
[t]+1

and if t written in reduced form does not begin with an a, thenDa−1t ⊆ Da−1 ,
so

Sa−11DtU
[t] = U∗1Da1DtU

[t]

= 1σ(Da∩Dt)U
[t]−1

= 1θa−1 (Dt)U
[t]−1

= 1Da−1∩Da−1t
U [t]−1

= 1Da−1t
U [t]−1.

This shows that St = 1DtU
[t] and thus StS∗t = 1Dt for every t ∈ Fa. Thus

(4) holds. Hence there is a ∗-homomorphism ψ from OX to C(X)oσ? Z such
that ψ(St) = 1DtU

[t] for every t ∈ Fa.
We have that ψ(φ̃(U)) = ψ(

∑
a∈a Sa) =

∑
a∈a 1DaU = U , and ψ(φ̃(1Dt)) =

ψ(StS∗t ) = 1DtU
[t]U−[t]1Dt = 1Dt for every t ∈ Fa, and since C(X) oσ? Z is

generated by U and 1Dt , t ∈ Fa, this shows that ψ ◦ φ̃ = IdOC(X)oσ? Z .

We also have that φ̃(ψ(St)) = φ̃(1DtU) = StS
∗
t

(∑
a∈a Sa

)[t] for every
t ∈ Fa. Notice that if a 6= b ∈ a, then Dab−1 = θa ◦ θb−1(X) = ∅ and
Da−1b = θa−1 ◦ θb(X) = ∅, so Sab−1 = Sa−1b = 0 in OX. Thus St 6= 0 implies
that t = u1u2 · · ·un where either ui ∈ a for all i ∈ {1, 2, . . . , n} or ui ∈ a−1

for all i ∈ {1, 2, . . . , n}. Hence StS∗t
(∑

a∈a Sa
)[t] = St for every t ∈ Fa,

which shows that φ̃ ◦ ψ = IdOX
.

Thus OX is isomorphic to C(X) oσ? Z. �

Example 2 continued. Let (X+, σ+) be a one-sided shift space over the
finite alphabet a and let X+ be the discrete partial dynamical system defined
in Example 2. Let a∗ denote the set of finite words with letters from a. For
µ, ν ∈ a∗, we let

C(µ, ν) = {νx ∈ X+ | µx ∈ X+}.
We let B(X+) be the abelian C∗-algebra of all bounded functions on X+,
and DX+ the C∗-subalgebra of B(X+) generated by {1C(µ,ν) | µ, ν ∈ a∗}.

The C∗-algebra OX+ is the universal C∗-algebra generated by partial iso-
metries {Sa}a∈a satisfying that the map 1C(µ,ν) 7→ SνS

∗
µSµS

∗
ν extends to a

∗-homomorphism from DX+ to OX+ (cf. [1, Remark 7.3]).
We will for each a ∈ a, by λa denote the map on DX+ given by

λa(f)(x) =

{
f(ax) if ax ∈ X+,

0 if ax /∈ X+,
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and by φa the map on DX+ given by

φa(f)(x) =

{
f(σ+(x)) if x ∈ Da,

0 if x /∈ Da,

for f ∈ DX+ and x ∈ X+ (cf. [1, Proposition 4.3 and Lemma 8.2]).

Proposition 8. OX+ is isomorphic to OX+.

Proof. We claim that span{1Dt | t ∈ Fa} = DX+ . To see this, first notice
that if µ, ν ∈ a∗, then

C(µ, ν) = θν(Dµ−1) = Dν ∩Dνµ−1 ,

so DX+ ⊆ span{1Dt | t ∈ Fa}.
If A is a subset of X+ such that 1A ∈ DX+ , then 1θa(A) = λa(1A) ∈ DX+

and 1θa−1 (A) = φa(1A) ∈ DX+ for a ∈ a, so since

Dt = θu1 ◦ θu2 ◦ · · · ◦ θun(X+),

where t ∈ Fa is written on reduced form u1u2 · · ·un, we have that span{1Dt |
t ∈ Fa} ⊆ DX+ . Thus DX+ = span{1Dt | t ∈ Fa}.

Since the map Dt 7→ StS
∗
t extends to a Boolean homomorphism from BX

to the set of projections in OX+ , the map∑
t∈Fa

λt1D̂t
7→
∑
t∈Fa

λtStS
∗
t , λt ∈ C

extends to a ∗-homomorphism φ from DX+ to OX+ .
For t ∈ Fa and a ∈ a are

φ(1θa(Dt)) = φ(1Da∩Dat)

= SaS
∗
aSatS

∗
at

= SaS
∗
aSatS

∗
atSaS

∗
a

= SaStS
∗
t S

∗
a,

and
φ(1θa−1 (Dt)) = φ(1Da−1∩Da−1t

)

= Sa−1S∗a−1Sa−1tS
∗
a−1t

= Sa−1S∗a−1Sa−1tS
∗
a−1tSa−1S∗a−1

= Sa−1StS
∗
t S

∗
a−1 .

So φ(φa(f)) = Saφ(f)S∗a and φ(λa(f)) = S∗aφ(f)Sa for f ∈ DX+ and a ∈ a.
Thus

φ(1C(µ,ν)) = φ(1Dν(Dµ−1 ))

= φ(φν1 ◦ φν2 · · · ◦ φµn ◦ λµm ◦ · · · ◦ λµ1(1))

= Sν1Sν2 · · ·SνnS
∗
µm
· · ·S∗µ1

Sµ1 · · ·SµmS
∗
νn
· · ·S∗ν1

for µ = µ1µ2 · · ·µm, ν = ν1ν2 · · · νn ∈ a∗. Hence there is a ∗-homomorphism
φ̃ from OX+ to OX+ such that φ̃(Sa) = Sa for every a ∈ a.

Let us now turn towards OX+ . Let Sa−1 = S∗a and let Se = 1 and St =
Su1Su2 · · ·Sun , where t = u1u2 · · ·un ∈ Fa is written in reduced form. Then
(1), (2) and (3) of Theorem 4 hold.
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The map 1C(µ,ν) 7→ SνS
∗
µSµS

∗
ν extends to a ∗-homomorphism ψ from

DX+ to OX+ . It is easy to check that ψ(λa(f)) = S∗aψ(f)Sa and ψ(φa(f)) =
Saψ(f)Sa−1 for a ∈ a and f ∈ DX+ . Thus

ψ(1Dt) = ψ(1θu1◦θu2◦···◦θun (X+))

= ψ(1 ◦ θu−1
n
◦ θu−1

n−1
◦ · · · ◦ θu−1

1
)

= Su1Su2 · · ·SunS
∗
un
· · ·S∗u1

= StS
∗
t

so also (4) of Theorem 4 holds. Hence there is a ∗-homomorphism ψ from
OX+ to OX+ such that ψ(St) = Su1Su2 · · ·Sun for every t ∈ Fa, where
t = u1u2 · · ·un ∈ Fa is written in reduced form.

We have that ψ(φ̃(Sa)) = ψ(Sa) = Sa for every a ∈ a, and since OX+ is
generated by {Sa}a∈a, this shows that ψ ◦ φ̃ = IdOX+ .

We also have that φ̃(ψ(St)) = φ̃(Su1Su2 · · ·Sun) = Su1Su2 · · ·Sun for every
t ∈ Fa, where t = u1u2 · · ·un ∈ Fa is written in reduced form.

If u ∈ a ∪ a−1 and t ∈ Fa written in reduced form does not begin with u,
then Dut ⊆ Du, so

SuSt = SuS
∗
uSut

= SuS
∗
uSutS

∗
utSut

= Sut.

This shows that Su1Su2 · · ·Sun = St for t = u1u2 · · ·un ∈ Fa written in
reduced form. Hence φ̃(ψ(St)) = St for every t ∈ Fa, and since OX+ is
generated by St, t ∈ Fa, this shows that φ̃ ◦ ψ = IdOX+ . Thus OX+ and
OX+ are isomorphic. �

Example 3 continued. Let I be an arbitrary index set and let A =
A(i, j)i,j∈I be a matrix with entries in {0, 1} and having no identically zero
rows. Exel and Laca have in [4] defined a C∗-algebra OA associated with
A. It is the universal C∗-algebra generated by partial isometries {Si}i∈I
satisfying:

(1) for each pair of finite subsets X and Y of I such that

A(X,Y, j) :=
∏
x∈X

A(x, j)
∏
y∈Y

(1−A(y, j))

vanish for all but a finite number of j’s,∏
x∈X

S∗xSx
∏
y∈Y

(1− S∗ySy) =
∑
j∈I

A(X,Y, j)SjS∗j ,

(2) S∗i Si and S∗jSj commute, for all i, j ∈ I,
(3) S∗i Sj = 0, if i 6= j ∈ I,
(4) S∗i SiSj = A(i, j)Sj , for all i, j ∈ I.

Let X+
A be the discrete partial dynamical system defined in Example 3.

We then have the following result:

Proposition 9. OX+
A

is isomorphic to the unitization ÕA of OA.
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Proof. It is easy to check that {Si}i∈I ⊆ OX+
A

satisfy condition (1), (2), (3)
and (4) above. Thus there is a ∗-homomorphism φ from OA to OX+

A
such

that φ(Si) = Si for all i ∈ I.
It follows from Lemma 6 that there is an injective Boolean homomorphism

from BX+
A

to the set of projections in OX+
A

which maps Dt to StS∗t . Thus
there is an Boolean homomorphism from the Boolean algebra generated by
{StS∗t }t∈FI to BX+

A
, mapping StS∗t to Dt.

Let us now turn towards ÕA. We let for every i ∈ I, Sa−1 = S∗a and we
let Se = 1 and St = Su1Su2 · · ·Sun , where t = u1u2 · · ·un ∈ FI is written in
reduced form. Then (1), (2) and (3) of Theorem 4 hold.

The ∗-homomorphism φ induces a Boolean homomorphism from the set
of projections in ÕA to the set of projections in OX+

A
which maps StS∗t to

StS
∗
t . Thus there is a Boolean homomorphism from the set of projections

in OA to BX+
A

which maps StS∗t to Dt. We claim that it is injective.
Let I∗ be the set of finite words with letters from I, and let for every

µ ∈ I∗ and every pair (I, J) of finite subset of I,

C(µ, I, J) = θµ

(⋂
i∈I

Di−1

)⋂⋂
j∈J

¬Dj−1


= {µx ∈ X+

A | ∀i ∈ I : ix ∈ X+
A,∀j ∈ J : jx /∈ X+

A},

and let B′ be the set of subsets of X+
A which is a finite union of sets of the

form

C(µ, I, J) ∩

(
n⋂
k=1

¬C(µk, Ik, Jk)

)
where n ∈ N0, µ, µ1, . . . , µn ∈ I∗ and I, I1, . . . , In, J, J1, . . . , Jn all are finite
subsets of I.

We claim that B′ = BX+
A
. It is clear that B′ ⊆ BX+

A
. We will show that

BX+
A
⊆ B′ by proving that B′ is closed under taking union, intersection and

complement and that θi(B′) ⊆ B′ and θi−1(B′) ⊆ B′ for every i ∈ I.
It is obvious that B′ is closed under union. Suppose that |µ1| ≥ |µ2|.

Then

C(µ1, I1, J1) ∩ C(µ2, I2, J2) =

C(µ1, I1 ∪ I2, J1 ∪ J2) if µ1 = µ2,

if there is a ν such that µ1 = µ2ν,

C(µ1, I1, J1) A(i, ν1) = 1 for all i ∈ I and
A(j, ν1) = 0 for all j ∈ J,

∅ else,

so B′ is closed under intersection and hence closed under complement.
We have for every i ∈ I that

θi(C(µ, I, J)) = C(iµ, I, J),
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so θi(B′) ⊆ B′. If |µ| > 0, then

θi−1(C(µ, I, J)) =

{
C(ν, I, J) if iν = µ,

∅ else,

and

θi−1(C(∅, I, J)) =


C(∅, {i}, ∅) if A(i, ν1) = 1 for all i ∈ I,

and A(j, ν1) = 0 for all j ∈ J,
∅ else,

so θi−1(B′) ⊆ B′.
Thus B′ = BX+

A
, so in order to prove that the Boolean homomorphism is

injective it is enough to show that if

C(µ, I, J) ∩

(
n⋂
k=1

¬C(µk, Ik, Jk)

)
= ∅,

then

Sµ
∏
i∈I

S∗i Si
∏
j∈J

(1−S∗jSj)S∗µ

 n∏
k=1

1− Sµk

∏
i∈Ik

S∗i Si
∏
j∈Jk

(1− S∗jSj)S
∗
µk

 = 0.

Let k ∈ {1, 2, . . . , n}. If |µ| > |µk|, then either C(µ, I, J)∩¬C(µk, Ik, Jk) =
C(µ, I, J) or µ = µkα for some α ∈ I∗ which satisfies that A(i, α1) = 1 for
all i ∈ Ik and A(j, α1) = 0 for all j ∈ Jk. In the later case

SµS
∗
µSµk

∏
i∈Ik

S∗i Si
∏
j∈Jk

(1− S∗jSj)S
∗
µk

= SµkαS
∗
µkα

Sµk

∏
i∈Ik

S∗i Si
∏
j∈Jk

(1− S∗jSj)S
∗
µk

= Sµk
SαS

∗
αS

∗
µk
Sµk

∏
i∈Ik

S∗i Si
∏
j∈Jk

(1− S∗jSj)S
∗
µk

= Sµk
SαS

∗
α

∏
i∈Ik

S∗i Si
∏
j∈Jk

(1− S∗jSj)S
∗
µk

= Sµk
SαS

∗
αS

∗
µk

= SµS
∗
µ

and thus

Sµ
∏
i∈I

S∗i Si
∏
j∈J

(1−S∗jSj)S∗µ

 n∏
k=1

1− Sµk

∏
i∈Ik

S∗i Si
∏
j∈Jk

(1− S∗jSj)S
∗
µk

 = 0.

If |µ| = |µk|, then C(µ, I, J) ∩ ¬C(µk, Ik, Jk) is equal to either C(µ, I, J) or
to ⋃

i∈Ik

C(µ, I, J ∪ {i})

 ∪

 ⋃
j∈Jk

C(µ, I ∪ {j}, J)

 .

If |µ| < |µk| and there is no α ∈ I∗ such that µα = µk, then C(µ, I, J) ∩
¬C(µk, Ik, Jk) = C(µ, I, J).
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Thus we may assume that µk = µαk for every k ∈ {1, 2, . . . , n}. We then
have that

C(∅, I, J)∩

(
n⋂
k=1

¬C(αk, Ik, Jk)

)
= θµ−1

(
C(µ, I, J) ∩

(
n⋂
k=1

¬C(µk, Ik, Jk)

))
,

so if

C(µ, I, J) ∩

(
n⋂
k=1

¬C(µk, Ik, Jk)

)
= ∅,

then

C(∅, I, J) ∩

(
n⋂
k=1

¬C(αk, Ik, Jk)

)
= ∅.

Assume that

C(∅, I, J) ∩

(
n⋂
k=1

¬C(αk, Ik, Jk)

)
= ∅.

Then

C(∅, I, J) ⊆
n⋃
k=1

C(αk, Ik, Jk),

so A(I, J, k) = 0 for all but finitely many k ∈ I. Thus∏
i∈I

S∗i Si
∏
j∈J

(1− S∗jSj) =
m∑
l=1

Skl
S∗kl

and

C(∅, I, J) =
m⋃
l=1

Dkl

for some k1, k2, . . . km ∈ I. Let l ∈ {1, 2, . . . ,m}. Since

Dkl
⊆

n⋃
k=1

C(αk, Ik, Jk),

either kl = αk for some k ∈ {1, 2, . . . , n} or A({kl}, ∅, r) = 0 for all but
finitely many r ∈ I. In the later case, Skl

S∗kl
=
∑h

t=1 SrtS
∗
rt for some

r1, r2, . . . rh ∈ I, and thus

Skl
S∗kl

= Skl
S∗kl

Skl
S∗kl

=
h∑
t=1

Skl
SrtS

∗
rtS

∗
kl
.

Continuing in this way, we get that∏
i∈I

S∗i Si
∏
j∈J

(1− S∗jSj) =
∑
k∈F

Sαk
S∗αk

where F is a subset of {1, 2, . . . , n}. Thus∏
i∈I

S∗i Si
∏
j∈J

(1− S∗jSj)
n∑
k=1

Sαk
S∗αk

=
∏
i∈I

S∗i Si
∏
j∈J

(1− S∗jSj),
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so

Sµ
∏
i∈I

S∗i Si
∏
j∈J

(1−S∗jSj)S∗µ

 n∏
k=1

1− Sµk

∏
i∈Ik

S∗i Si
∏
j∈Jk

(1− S∗jSj)S
∗
µk

 = 0.

Hence there is a Boolean homomorphism from BX+
A

to the set of projec-

tions in ÕA, sending Dt to StS
∗
t . Thus also (4) of Theorem 4 holds. So

there is a unital ∗-homomorphism ψ from OX+
A

to ÕA, such that ψ(St) =
Su1Su2 · · ·Sun , for t = u1u2 · · ·un ∈ FI written in reduced form.

The ∗-homomorphism φ̃ extends to a unital ∗-homomorphism. We then
have that ψ(φ̃(Si)) = ψ(Si) = Si for every i ∈ I and that ψ(φ̃(1)) = 1, and
since ÕA is generated by {Si}i∈I ∪ {1}, this shows that ψ ◦ φ̃ = Id eOA

.
We also have that φ̃(ψ(St)) = φ̃(Su1Su2 · · ·Sun) = Su1Su2 · · ·Sun for every

t ∈ FI , where t = u1u2 · · ·un ∈ FI is written in reduced form.
If u ∈ I ∪ I−1 and t ∈ FI written in reduced form does not begin with u,

then Dut ⊆ Du, so

SuSt = SuS
∗
uSut

= SuS
∗
uSutS

∗
utSut

= Sut.

This shows that Su1Su2 · · ·Sun = St for t = u1u2 · · ·un ∈ FI written in
reduced form. Hence φ̃(ψ(St)) = St for every t ∈ FI , and since OX+

A
is

generated by St, t ∈ FI , this shows that φ̃ ◦ψ = IdO
X+
A

. Thus OX+
A

and ÕA
are isomorphic. �

Example 4 continued. Let Λ be a k-graph which satisfies the standing
hypothesis

0 < #Λn(v) <∞ for every v ∈ Λ0 and n ∈ Nk

of [7]. Kumjian and Pask have in [7] defined a C∗-algebra C∗(Λ) which
is the universal C∗-algebra generated by a family {Sλ | λ ∈ Λ} of partial
isometries satisfying:

(1) {Sv | v ∈ Λ0} is a family of mutually orthogonal projections,
(2) SλSµ = Sλµ for all λ, µ ∈ Λ such that s(λ) = r(µ),
(3) S∗λSλ = Ss(λ) for all λ ∈ Λ,
(4) for all v ∈ Λ0 and n ∈ Nk we have Sv =

∑
λ∈Λn(v) SλS

∗
λ.

Let Λ be the discrete partial dynamical system defined in Example 4. We
then have the following result:

Proposition 10. OΛ is isomorphic to the unitizaation C∗( Λ̃) of C∗(Λ)..

Proof. Let for every v ∈ Λ0, Sv =
∑

λ∈Λp(v) SλS
∗
λ ∈ OΛ, where p is the

element (1, 1, . . . , 1) ∈ Nk. Consider the family {Sλ | λ ∈ Λ} of partial
isometries in OΛ.

Since
{⋃

λ∈Λp(v)Dλ | v ∈ Λ0
}

is a family of mutually disjoint subsets of
Λ∞, condition (1) above is satisfied. For λ ∈ Λ is Dλ−1 =

⋃
µ∈Λp(s(λ))Dµ, so
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condition (3) above is satisfied. If v ∈ Λ0 and n ∈ Nk, then⋃
λ∈Λn(v)

Dλ =
⋃

λ∈Λp(v)

Dλ,

so (4) above is satisfied. If λ, µ ∈ Λ \ Λ0 and s(λ) = r(µ), then Dλµ ⊆ Dλ,
so

SλSµ = SλS
∗
λSλµS

∗
λµSλµ

= Sλµ.

If λ ∈ Λ \ Λ0, v ∈ Λ0 and r(λ) = v, then Dλ ⊆
⋃
µ∈Λp(v)Dµ, so

SvSλ =

 ∑
µ∈Λp(v)

SµS
∗
µ

SλS
∗
λSλ

= Sλ

= Svλ.

Finally, if λ ∈ Λ\Λ0, v ∈ Λ0 and s(λ) = v, then SλSv = SλS
∗
λSλ = Sλ = Sλv.

Thus condition (2) above is satisfied. Hence there is a ∗-homomorphism φ
from C∗(Λ) to OΛ such that φ(Sλ) = Sλ for λ ∈ Λ \ Λ0 and φ(Sv) =∑

λ∈Λp(v) SλS
∗
λ ∈ OΛ for v ∈ Λ0.

Let us now turn towards C∗(Λ̃). We let for every λ ∈ Λ \ Λ0, Sλ−1 = S∗λ
and we let Se = 1 and St = Su1Su2 · · ·Sun , where t = u1u2 · · ·un ∈ G is
written in reduced form. Then (1), (2) and (3) of Theorem 4 hold.

The ∗-homomorphism φ induces a Boolean homomorphism from the set
of projections in C∗(Λ̃) to the set of projections in OΛ which maps StS∗t to
StS

∗
t . Since there by Lemma 6 is an injective Boolean homomorphism from

BΛ to the set of projections in OΛ which maps Dt to StS∗t , we get a Boolean
homomorphism from the set of projections in C∗(Λ) to BΛ which maps StS∗t
to Dt. We claim that it is injective.

Let for each v ∈ Λ0, Dv = Λ∞(v) =
⋃
λ∈Λp(v)Dλ ∈ BΛ, and let B′ be the

set of subsets of Λ∞ which is a finite union of sets of the form

Dλ ∩
n⋂
i=1

¬Dλi

where n ∈ N0 and λ, λ1, λ2, . . . , λn ∈ Λ.
We claim that B′ = BΛ. It is clear that B′ ⊆ BΛ. We will show that

BΛ ⊆ B′ by proving that B′ is closed under taking union, intersection and
complement and that θλ(B′) ⊆ B′ and θλ−1(B′) ⊆ B′ for every λ ∈ Λ \ Λ0.

It is clear that B′ is closed under union. Let λ, µ ∈ Λ and let d be the
least upper bound of d(λ) and d(µ) in Nk

0. If there is a ν ∈ Λ with d(ν) = d
such that λν1 = ν and µν2 = ν for some ν1, ν2 ∈ Λ, then Dλ ∩ Dµ = Dν .
Otherwise Dλ ∩ Dµ = ∅. Hence B′ is closed under intersection, and hence
closed under complement.

Let λ ∈ Λ \ Λ0 and µ ∈ Λ. Then

θλ(Dµ) =

{
Dλµ if s(λ) = r(µ),
∅ else.
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Hence θλ(B′) ⊆ B′ for every λ ∈ Λ \ Λ0.
Let λ ∈ Λ \Λ0 and µ ∈ Λ and let as before d be the least upper bound of

d(λ) and d(µ) in Nk
0. If there are ν, ν ′ ∈ Λ such that d(λ) + d(ν) = d(µ) +

d(ν ′) = d and λν = µν ′, then θλ−1(Dµ) = Dν . Otherwise θλ−1(Dµ) = ∅.
Hence θλ−1(B′) ⊆ B′ for every λ ∈ Λ \ Λ0.

Thus B′ = BΛ, so in order to prove that the Boolean homomorphism is
injective it is enough to show that if

Dλ ∩

(
n⋂
k=1

¬Dλk

)
= ∅,

then

SλS
∗
λ

(
n∏
k=1

1− Sλk
S∗λk

)
= 0.

Let k ∈ {1, 2, . . . n}. If there does not exist a µ ∈ Λ such that λµ = λk
then Dλ ∩ ¬Dλk

= Dλ, so we may assume that for every k ∈ {1, 2, . . . n},
λk = λµk for some µk ∈ Λ. We then have that

θλ−1

(
Dλ ∩

(
n⋂
k=1

¬Dλk

))
= Ds(λ) ∩

(
n⋂
k=1

¬Dµk

)
,

so if

Dλ ∩

(
n⋂
k=1

¬Dλk

)
= ∅,

then

Ds(λ) ∩

(
n⋂
k=1

¬Dµk

)
= ∅.

Choose d ∈ Nk such that d ≥ d(µk) for every k ∈ {1, 2, . . . , n}. Let
µ ∈ Λd(s(λ)). Since

Dµ ⊆ Ds(λ) ⊆
n⋃
k=1

Dµk
,

there is a k ∈ {1, 2, . . . , n} and a α ∈ Λ such that µ = µkα. Then

SµS
∗
µSµk

S∗µk
= Sµk

SαS
∗
αS

∗
µk
Sµk

S∗µk
= Sµk

SαS
∗
αS

∗
µk

= SµS
∗
µ,

so

Ss(λ)S
∗
s(λ)

n∑
k=1

Sµk
S∗µk

=
∑

µ∈Λd(s(λ))

SµS
∗
µ

n∑
k=1

Sµk
S∗µk

=
∑

µ∈Λd(s(λ))

SµS
∗
µ

= Ss(λ)S
∗
s(λ),
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and

SλS
∗
λ

(
n∏
k=1

1− Sλk
S∗λk

)
= SλS

∗
λ

(
n∏
k=1

1− SλSµk
S∗µk

S∗λ

)

= Sλ

(
n∏
k=1

1− Ss(λ)S
∗
s(λ)Sµk

S∗µk

)
S∗λ

= Sλ

(
n∏
k=1

1− Ss(λ)S
∗
s(λ)

)
S∗λ

= 0.

Hence there is a Boolean homomorphism from BΛ to the set of projec-
tions in C∗(Λ̃), sending Dt to StS

∗
t . Thus also (4) of Theorem 4 holds.

So there is a unital ∗-homomorphism ψ from OΛ to C∗(Λ̃), such that
ψ(St) = Su1Su2 · · ·Sun , for t = u1u2 · · ·un ∈ G written in reduced form.

The ∗-homomorphism φ : C∗(Λ) → OΛ extends to a unital ∗-homomorphism
from C∗(Λ̃) to OΛ. We then have that ψ(φ̃(Sλ)) = ψ(Sλ) = Sλ for every
λ ∈ Λ, and since C∗(Λ̃) is generated by {Sλ}λ∈Λ ∪ {1}, this shows that
ψ ◦ φ̃ = Id

C∗(eΛ)
.

We also have that φ(ψ(St)) = φ(Su1Su2 · · ·Sun) = Su1Su2 · · ·Sun for every
t ∈ G, where t = u1u2 · · ·un ∈ G is written in reduced form.

If u ∈ Λ \ Λ0∪Λ \ Λ0−1 and t ∈ G written in reduced form does not begin
with u, then Dut ⊆ Du, so

SuSt = SuS
∗
uSut

= SuS
∗
uSutS

∗
utSut

= Sut.

This shows that Su1Su2 · · ·Sun = St for t = u1u2 · · ·un ∈ G written in
reduced form. Hence φ̃(ψ(St)) = St for every t ∈ G, and since OΛ is
generated by St, t ∈ G, this shows that φ̃ ◦ ψ = IdOΛ

. Thus OΛ and C∗(Λ̃)
are isomorphic. �

The hypothesis

0 < #Λn(v) <∞ for every v ∈ Λ0 and n ∈ Nk

is not required for the construction of the partial dynamical system Λ and
thus one can construct the C∗-algebra OΛ also in the case where Λ does not
satisfy the hypothesis. It seems naturally also in this case to think of OΛ as
the C∗-algebra associated to the k-graph Λ.

Example 5. Let k ∈ N and let I be an arbitrary discrete set. Endow INk
0

with the product topology, and let for each n ∈ Nk
0, σ

n : INk
0 → INk

0 be the
shift mapping defined by σn(x)(m) = x(m+ n) for x ∈ INk

0 and m ∈ Nk
0.

Let X be a closed subset of INk
0 such that σn(X ) ⊂ X for every n ∈ Nk

0.
Then X is a k-dimensional shift space over I.

Notice that a k-dimensional shift is a generalization of one-sided shift
spaces, k-graphs and the space X+

A associated to a matrix A.
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Let for i ∈ {1, 2, . . . , k}, i(Nk
0) = {n ∈ Nk

0 | ni = 0} and let for each
x ∈ Ii(Nk

0),

Dx = {y ∈ INk
0 | y|i(Nk

0) = x}.

Let ei be the element in Nk
0 with every entries equal to 0 except the i’th which

is equal to 1. Then σei

|Dx
is injective. Let Dx−1 = σei

|Dx
(Dx), θx = (σei

|Dx
)−1

and θx−1 = σei

|Dx
.

Let J =
⋃k
i=1 i(Nk

0), let FJ be the free group generated by J and let for
every t ∈ FJ written on reduced form u1u2 · · ·un, where u1, u2, . . . , un ∈
J ∪ J −1,

Dt = θu1 ◦ θu2 ◦ · · · ◦ θun(X )

and
θt = θu1 ◦ θu2 ◦ · · · ◦ θun .

Then X = (X ,FJ , θ) is a discrete partial dynamical system which is a
generalization of the discrete partial dynamical systems associated to one-
sided shift spaces, k-graphs and {0, 1}-matrices. Thus OX is a generalization
of the C∗-algebra of one-sided shift spaces, k-graphs and {0, 1}-matrices.

7. A short exact sequence

We will now show how an invariant ideal of BX (i.e. a subset which is a
union of sets from BX) gives raise to an ideal in OX.

At the end of the section, we will apply this to two-sided shift spaces
having a certain property and show that the crossed product of the shift
space is a quotient of the C∗-algebra associated to the corresponding one-
sided shift space.

Theorem 11. Let X = (X,G, θ) be a discrete partial dynamical system and
let Y be an invariant (i.e. θt(Y ) ⊆ Y for all t ∈ G) ideal of BX .

Let OY be the ideal of OX generated by elements of the form St1St2 · · ·Stn
where θt1 ◦ θt2 ◦ · · · ◦ θtn(X) ⊆ Y . Then the map

St +OY 7→ St

extends to a ∗-isomorphism from the quotient OX/OY to OX/Y, where X/Y
is the C∗-partial action ({Dt ∩ (X \ Y )}t∈G, {θt|X\Y }t∈G) of G on X \ Y .

Proof. Let

Ŷ =
⋃
{Â | A ∈ BX , A ⊆ Y }.

Then Ŷ is an open subset of X̂, and for t ∈ G are

θ̂t(Ŷ ) =
⋃
{θ̂t(Â) | A ∈ BX , A ⊆ Y }

=
⋃
{θ̂t(A) | A ∈ BX , A ⊆ Y }

⊆ Ŷ ,

so Ŷ is invariant.

72



20 TOKE MEIER CARLSEN

Let I be the ideal {f ∈ X̄ | f|X̂\Ŷ } of X̄. It follows from lemma 3, the
fact that Y is a union of finite intersection of sets from {Dt | t ∈ G} and
Stone-Weierstrass Theorem, that

I = span{1D̂t1∩D̂t2∩···∩D̂tn
| Dt1 ∩Dt2 ∩ · · · ∩Dtn ⊆ Y }.

Let Y be the C∗-partial action of G on I with ideals D̄t∩I and isomorphisms
θ̄t|I (cf. [5, Proposition 3.1]). We then have that

I oY G = span{fSt | f ∈ D̄t ∩ I, t ∈ G}
= span{1D̂t1∩D̂t2∩···∩D̂tn

Stn | Dt1 ∩Dt2 ∩ · · · ∩Dtn ⊆ Y }.

We claim that OY = I oY G. If Dt1 ∩Dt2 ∩ · · · ∩Dtn ⊆ Y , then

θt1 ◦ θt−1
1
◦ θt2 ◦ θt−1

2
◦ · · · ◦ θtn(X) = Dt1 ∩Dt2 ∩ · · · ∩Dtn ⊆ Y,

so
1D̂t1∩D̂t2∩···∩D̂tn

Stn = St1St−1
1
St2St−1

2
· · ·Stn ∈ OY.

If Dt1 ∩Dt2 ∩ · · · ∩Dtn ⊆ Y , then

θt1 ◦ θt1t2 ◦ · · · ◦ θt1t2···tn(X) = Dt1 ∩Dt2 ∩ · · · ∩Dtn ⊆ Y,

so
St1St2 · · ·Stn = St1S

∗
t1St1St2St3 · · ·Stn

= 1D̂t1
St1t2St3 · · ·Stn

= 1D̂t1
1D̂t1t2

· · · 1D̂t1t2···tn
Stn ∈ I oY G.

Thus OY = I oY G.
It follows from [5, Proposition 3.1] that (AoXG)/(IoYG) is isomorphic

to (A/I) oẊ G, where Ẋ is the partial action ({Ḋt}t∈G, { ˙̄θt}t∈G) of G on
X̄/I, where Ḋt = {f ∈ X̄ | f|X̂\(X̂\Ŷ ∩D̂t)

= 0} and

˙̄θt(f)(φ) =

{
f(θ̂t−1(φ)) if φ ∈ D̂t ∩ X̂ \ Ŷ ,
0 if φ ∈ X̂ \ (D̂t ∩ X̂ \ Ŷ ),

(cf. [5, Page 7]). We claim that (A/I) oẊ G is isomorphic to OX/Y. A/I
is isomorphic to C(X̂ \ Ŷ ), so it is enough to check that there is a Boolean
isomorphism from the Boolean algebra on X \ Y generated by Dt ∩ (X \
Y ), t ∈ G to the Boolean algebra on X̂ \ Ŷ generated by D̂t∩(X̂ \ Ŷ ), t ∈ G
which intertwines θ−1

t and θ̂−1
t , and which maps Dt∩(X \Y ) to D̂t∩(X̂ \ Ŷ )

for every t ∈ G, and the existence of such an isomorphism follows from
the fact that the map A 7→ Â is an Boolean isomorphism from BX to the
Boolean algebra on X̂ generated by D̂t, t ∈ G. �

Let X be a two-sided shift space and let

X+ = {(xn)n∈N0 | (xn)n∈Z ∈ X}

be the corresponding one-sided shift space. We denote the language of X by
L(X). For every x ∈ X+ and every k ∈ N0 we set

Pk(x) = {µ ∈ L(X) | µx ∈ X+, |µ| = k},
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and define for every l ∈ N0 an equivalence relation ∼l on X+ by

x ∼l x′ ⇔ Pl(x) = Pl(x′).
We say (cf. [2]) that a shift space X has property (∗) if for every µ ∈ L(X)

there exists an x ∈ X+ such that P|µ|(x) = {µ}.
Let I = {(k, l) ∈ N2

0 | k ≤ l}. We define an order ≤ on I by

(k1, l1) ≤ (k2, l2) ⇔ k1 ≤ k2 ∧ l1 − k1 ≤ l2 − k2.

For (k, l) ∈ I we define an equivalence relation k∼l on X+ by

x k∼l y ⇔ x[0,k[ = y[0,k[ ∧ Pl(x[k,∞[) = Pl(y[k,∞[).

Denote the inclusion of DX+ into OX+ by ηO and the inclusion of C(X)
into C(X) oσ? Z by ηo. We then have the follow result:

Proposition 12. Let X be a two-sided shift space with the property (∗).
Then there are surjective ∗-homomorphisms κ : DX+ → C(X) and ρ : OX+ →
C(X) oσ? Z making the diagram

DX+

ηO
��

κ // C(X)

ηo

��
OX+

ρ
// C(X) oσ? Z

commute. We furthermore have that

κ(1C(µ,ν)) = 1{x∈X|x−m=µm,x−m+1=µm−1,...x−1=µ1,x0=ν0,...,xn=νn}

for every µ = µ1 · · ·µm, ν = ν0, . . . , νn ∈ L(X).

Proof. Let for every A ∈ BX+ ,

ψ(A) = {z ∈ X | ∀(k, l) ∈ I∃x ∈ A : x[0,k[ = z[0,k[ ∧ Pl(x[k,∞[) = {z[k,∞[}}.
We claim that ψ is a surjective Boolean homomorphism from BX+ to BX,
mapping Dt to Dt for every t ∈ Fa.

We will prove that by establishing a sequence of claims.

Claim 1.

∀A ∈ BX+∃(k, l) ∈ I : x k∼l x′ ∧ x ∈ A⇒ x′ ∈ A.

Proof. Let

A = {A ∈ BX+ | ∃(k, l) ∈ I : x k∼l x′ ∧ x ∈ A⇒ x′ ∈ A}.

We must then show that A = BX+ . Clearly X+ ∈ A. Assume that A,B ∈ A
and choose (ka, la), (kb, lb) ∈ I such that

x ka∼la x′ ∧ x ∈ A⇒ x′ ∈ A
and

x kb
∼lb x

′ ∧ x ∈ B ⇒ x′ ∈ B.
Let k = max{ka, kb} and l = max{la, lb}. Then

x k∼l x′ ∧ x ∈ A ∩B ⇒ x′ ∈ A ∩B,
so A ∩B ∈ A. We also have that

x ka∼la x′ ∧ x ∈ ¬A⇒ x′ ∈ ¬A,
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x ka+1∼la+1 x
′ ∧ x ∈ θa(A) ⇒ x′ ∈ θa(A)

and
x ka∼la+1 x

′ ∧ x ∈ θa−1(A) ⇒ x′ ∈ θa−1(A),

so ¬A, θa(A), θa−1(A) ∈ A. Thus A is a Boolean algebra containing Dt for
every t ∈ Fa, which means that A = BX+ . �

Claim 2. ψ is a Boolean homomorphism.

Proof. Clearly ψ(∅) = ∅. Let A,B ∈ BX+ . It is obvious that ψ(A ∩ B) ⊆
ψ(A) ∩ ψ(B). Assume that z ∈ ψ(A) ∩ ψ(B). Choose (ka, la), (kb, lb) ∈ I
such that

x ka∼la x′ ∧ x ∈ A⇒ x′ ∈ A
and

x kb
∼lb x

′ ∧ x ∈ B ⇒ x′ ∈ B.

Let (k, l) ≥ (ka, la), (kb, lb). Choose xA ∈ A and xB ∈ B such that z[0,k[ =
xA[0,k[ = xB[0,k[ and Pl(xA[k,∞[) = Pl(xB[k,∞[) = {z[k−l,k[}. Then xA ∈ A ∩ B.
Thus z ∈ ψ(A ∩B). So ψ(A ∩B) = ψ(A) ∩ ψ(B).

Assume now that z ∈ ψ(¬A). Let (k, l) ≥ (ka, la). We then have that if
z[0,k[ = x[0,k[ and Pl(x[k,∞[) = {z[k−l,k[}, then x ∈ ¬A. Thus z ∈ ¬ψ(A).

If z ∈ ¬ψ(A), then there is (k, l) ≥ (ka, la) such that z[0,k[ 6= x[0,k[ or
Pl(x[k,∞[) 6= {z[k−l,k[} for every x ∈ A. Since X has property (∗), there is
a x ∈ X+ such that z[0,k[ = x[0,k[ and Pl(x[k,∞[) = {z[k−l,k[}. This x must
belong to ¬A. Thus z ∈ ψ(¬A). So ψ(¬A) = ¬ψ(A). �

Claim 3. ψ(θa(A)) = θa(ψ(A)) for every A ∈ BX+ and every a ∈ a.

Proof. Let z ∈ ψ(θa(A)) and let (k, l) ∈ I. Then there is an x ∈ θa(A) such
that x[0,k+1[ = z[0,k+1[ and Pl(x[k+1,∞[) = {z[k+1−l,k+1[}. Then there is a
y ∈ A ∩ Da−1 such that x = θa(y). Hence z0 = x0 = a, y[0,k[ = x[1,k+1[ =
z[1,k+1[ and Pl(y[k,∞[) = Pl(x[k+1,∞[) = {z[k+1−l,k+1[}. Thus σ(z) ∈ ψ(A)
and z0 = a. Hence z ∈ θa(ψ(A)).

Now let z ∈ θa(ψ(A)). Then there is a z′ ∈ ψ(A) such that z = θa(z′). For
every (k, l) ∈ I, there is a x ∈ A such that z′[0,k[ = x[0,k[ and Pl(x[k,∞[) =
{z′[k−l,k[}. Then z[0,k+1[ = ax[0,k[ and Pl(x[k,∞[) = {z[k+1−l,k+1[}. Thus
z ∈ ψ(θa(A)). �

Claim 4. ψ(θa−1(A)) = θa−1(ψ(A)) for every A ∈ BX+ and every a ∈ a.

Proof. Let z ∈ ψ(θa−1(A)) and let (k, l) ∈ I. Then there is an x ∈ θa−1(A)
such that x[0,k[ = z[0,k[ and Pl+1(x[k,∞[) = {z[k−l+1,k[}. Then there is a
y ∈ A ∩Da such that x = θa−1(y). Hence z−1 = y0 = a, y[0,k[ = x[−1,k−1[ =
z[−1,k−1[ and Pl(y[k,∞[ = Pl(x[k−1,∞[ = {z[k−1−l,k−1[}. Thus σ−1(z) ∈ ψ(A)
and z−1 = a. Hence z ∈ θa(ψ(A)).

Now let z ∈ θa−1(ψ(A)). Then there is a z′ ∈ ψ(A) such that z = θa−1(z′).
For every (k, l) ∈ I, there is a x ∈ A such that z′[0,k[ = x[0,k[ and Pl(x[k,∞[) =
{z′[k−l,k[}. Then z[0,k+1[ = ax[0,k[ and Pl(x[k,∞[) = {z[k+1−l,k+1[}. Thus
z ∈ ψ(θa(A)). �
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It follows from Claim 3 and Claim 4 that
ψ(Dt) = ψ(θu1 ◦ θu2 ◦ · · · ◦ θun(X+))

= θu1 ◦ θu2 ◦ · · · ◦ θun ◦ ψ(X+)

= θu1 ◦ θu2 ◦ · · · ◦ θun(X)
= Dt

for every t = u1u2 · · ·un ∈ Fa written in reduced form. Thus ψ is a surjective
Boolean homomorphism from BX+ to BX.

Let Y be the kernel of ψ, i.e. Y =
⋃
{A ∈ BX+ | ψ(A) = ∅}. Then Y

is invariant and a ideal. Thus it follows from Theorem 11 that the map
St 7→ St extends to a surjective ∗-homomorphism from OX+ to OX+/Y.

Now, ψ induces a Boolean isomorphism from the Boolean algebra BX+/Y =
{A∩ (X+ \ Y ) | A ∈ BX+} to BX which maps Dt ∩ (X+ \ Y ) to Dt for every
t ∈ Fa. Thus it follows from Theorem 4 that there exists a ∗-isomorphism
from OX+/Y to OX which maps St to St for every t ∈ Fa. Thus there is a
surjective ∗-homomorphism ηO from OX+ to OX, which by Proposition 7 is
isomorphic to C(X) oσ? Z.

The image of DX+ inside OX+ is the C∗-subalgebra generated by {StS∗t |
t ∈ Fa}, and the image of C(X) inside OX is the C∗-subalgebra generated
by {StS∗t | t ∈ Fa}. Since ηO maps St to St, the restriction of ηO to
{StS∗t | t ∈ Fa} is surjective onto {StS∗t | t ∈ Fa}. Thus there is a surjective
∗-homomorphism κ : DX+ → C(X) which makes the diagram commute and
which maps 1C(µ,ν) = SνS

∗
µSµS

∗
ν to

SνS
∗
µSµS

∗
ν = 1{x∈X|x−m=µm,x−m+1=µm−1,...x−1=µ1,x0=ν0,...,xn=νn}.

�
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78 CHAPTER 3. PARTIAL DYNAMICAL SYSTEMS

3.9 Closing remarks

The reduced C∗-algebra Ored
X+ associated with one-sided shift spaces has

been studied by Matsumoto and the author in [3]. If the shift spaces satis-
fies a certain condition (I), then the reduced C∗-algebra Ored

X+ is isomorphic
to Ored

X+ , but it is know that this is not generally true.
A thorough discussing of the property (∗) can be found in the next

paper.
I would be interesting to try look at the C∗-algebra associated to a

higher dimensional shift on an infinite alphabet for some concrete ex-
amples and, for example, try to compute its K-theory.



Chapter 4

K0 of the C∗-algebra
associated to certain one-sided
shift spaces

This chapter consists of the preprint Matsumoto K-groups associated to
certain shift spaces which is written together with Søren Eilers.

The result from the previous chapter which connects the crossed product
of a two-sided shift space and the C∗-algebra associated to the correspond-
ing one-sided shift space, is the starting point for an examination of the
K-theory of the C∗-algebra associated to the one-sided shift space corres-
ponding to a two-sided shift space which has property (∗), and its relation
with the K-theory of the crossed product of the two-sided shift space.

In this paper we start the examination by showing that the K0-group
of the crossed product of a two-sided shift space which has the property
(∗) is a factor group of the K0-group of the C∗-algebra associated to
the corresponding one-sided shift space, and by giving a description of
the K0-group of the C∗-algebra associated to the one-sided shift space
corresponding to a two-sided shift space having a certain property (∗∗),
which is a strengthening of the property (∗), in terms of the K0-group
of the crossed product of the two-sided shift space and the left special
elements of the two-sided shift space.

Note that in this paper the K0-group of the crossed product of a two-
sided shift space is called the first cohomology group and is denoted by
C(X,Z)/(Id−(σ−1)?)(C(X,Z)) (cf. [1, Theorem 5.2]), and that the K0-
group of the C∗-algebra associated to the corresponding one-sided shift
space is called the Matsumoto’s K-group and is denoted by K0(X) (cf.
[11]).
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1

Matsumoto K-groups associated to certain shift spaces

Toke Meier Carlsen and Søren Eilers

Abstract. In [24] Matsumoto associated to each shift space (also
called a subshift) an abelian group which is now known as Mat-
sumoto’s K0-group. It is defined as the cokernel of a certain map
and resembles the first cohomology group of the dynamical system
which has been studied in for example [2], [28], [13], [16] and [11]
(where it is called the dimension group).

In this paper, we will for shift spaces having a certain property (∗),
show that the first cohomology group is a factor group of Matsumoto’s
K0-group. We will also for shift spaces having an additional property
(∗∗), describe Matsumoto’s K0-group in terms of the first cohomol-
ogy group and some extra information determined by the left special
elements of the shift space.

We determine for a broad range of different classes of shift spaces if
they have property (∗) and property (∗∗) and use this to show that
Matsumoto’sK0-group and the first cohomology group are isomorphic
for example for finite shift spaces and for Sturmian shift spaces.

Furthermore, the ground is laid for a description of the Matsumoto
K0-group as an ordered group in a forthcoming paper.

2000 Mathematics Subject Classification: Primary 37B10, Secondary
54H20, 19K99.
Keywords and Phrases: Shift spaces, subshifts, symbolic dynamics,
Matsumoto’s K-groups, dimension groups, cohomology, special ele-
ments.

1 Introduction

Invariants for symbolic dynamical systems in the form of abelian groups have
a fruitful history. Important examples are the dimension group defined by
Krieger in [19] and [20], and the Bowen-Franks group defined in [1] by Bowen
and Franks.
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2 Carlsen and Eilers

In [24] Matsumoto generalized the definition of dimension groups and Bowen-
Franks groups to the whole class of shift spaces and introduced what is now
known as Matsumoto’s K-groups.
In another direction, Putnam [29], Herman, Putnam and Skau [16], Giordano,
Putnam and Skau [15], Durand, Host and Skau [11] and Forrest [13] studied
what they called the dimension group (it is not the same as Krieger’s or Mat-
sumoto’s dimension group) for Cantor minimal systems. The same group has
for a broader class of topological dynamical systems been studied in [2], [28]
and [27] where it is shown that it is the first cohomology group of the standard
suspension of the dynamical system in question.
It turns out that Matsumoto’s K0-group and the first cohomology group are
closely related. We will for shift spaces having a certain property (∗), show
that the first cohomology group is a factor group of Matsumoto’s K0-group,
and we will also for shift spaces having an additional property (∗∗), describe
Matsumoto’s K0-group in terms of the first cohomology group and some extra
information determined by the left special elements of the shift space.
We will for a broad range of different classes of shift spaces, which includes
shift of finite types, finite shift spaces, Sturmian shift spaces, substitution shift
spaces and Toeplitz shift spaces, determine if they have property (∗) and prop-
erty (∗∗). This will allow us to show that Matsumoto’s K0-group and the first
cohomology group are isomorphic for example for finite shift spaces and for
Sturmian shift spaces and to describe Matsumoto’s K0-group for substitution
shift spaces in such a way that we in [8] can for every shift space associated
with a aperiodic and primitive substitution present Matsumoto’s K0-group as
a stationary inductive limit of a system associated to an integer matrix defined
from combinatorial data which can be computed in an algorithmic way (cf. [6],
[7]).
Since both Matsumoto’s K0-group and the first cohomology group are K0-
groups of certain C∗-algebras they come with a natural (pre)order structure.
All the results presented in this paper hold not just in the category of abelian
group, but also in the category of preordered groups. Since we do not know
how to prove this without involving C∗-algebras we have decided to defer this
to [9], where we also show that Matsumoto’s K0-group with order is a finer
invariant than Matsumoto’s K0-group without order.
We wish to thank Yves Lacroix for helping us understand Toeplitz sequences.

2 Preliminaries and notation

Throughout this paper Id will denote the identity map. For a map φ between
two sets X and Y , we will by φ? denote the map which maps a function f on
Y to the function f ◦ φ on X.
Let a be a finite set of symbols, and let a] denote the set of finite, nonempty
words with letters from a. Thus with ε denoting the empty word, ε 6∈ a]. By
|µ| we denote the length of a finite word µ (i.e. the number of letters in µ).
The length of ε is 0.
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Matsumoto K-groups associated to certain shift spaces 3

2.1 Shift spaces

We equip
aZ, aN0 , a−N

with the product topology from the discrete topology on a. We will strive to
denote elements of aZ by z, elements of aN0 by x and elements of a−N by y. We
define σ : aZ −→ aZ, σ+ : aN0 −→ aN0 , and σ− : a−N −→ a−N by

(σ(z))n = zn+1 (σ+(x))n = xn+1 (σ−(y))n = yn−1.

Such maps we will refer to as shift maps.
A shift space is a closed subset of aZ which is mapped into itself by σ. We shall
refer to such spaces by “X”.
With the obvious restriction maps

π+ : X −→ aN0 π− : X −→ a−N

we get
σ+ ◦ π+ = π+ ◦ σ σ− ◦ π− = π− ◦ σ−1.

We denote π+(X), respectively π−(X), by X+, respectively X−, and notice that
σ+(X+) = X+ and σ−(X−) = X−. For z ∈ aZ and n ∈ Z, we write

z[n,∞[ = π+(σn(z)).

The language of a shift space is the subset of a] ∪ {ε} given by

L(X) = {z[n,m] | z ∈ X, n ≤ m ∈ Z}

where the interval subscript notation should be self-explanatory. A compact-
ness argument shows that an element z ∈ aZ (respectively x ∈ aN0 , y ∈ a−N)
is in X (respectively X+, X−) if and only if z[n,m] ∈ L(X) for all n < m ∈ Z
(respectively n < m ∈ N0, n < m ∈ −N) (cf. [21, Corollary 1.3.5 and Theorem
6.1.21]).
We say that shift spaces are conjugate, denoted by “'”, when they are home-
omorphic via a map which intertwines the relevant shift maps. The concept of
conjugacy also makes sense for the “one-sided” shift spaces X+. If X+ ' Y+,
then we say that X and Y are one-sided conjugate. It is not difficult to see that
X+ ' Y+ ⇒ X ' Y (cf. [21, §13.8]).
Finally we want to draw attention to a third kind of equivalence between shift
spaces, called flow equivalence, which we denote by ∼=f . We will not define it
here (see [26], [14], [2] or [21, §13.6] for the definition), but just notice that
X ' Y ⇒ X ∼=f Y.
A flow invariant of a shift space X is a mapping associating to each shift
space another mathematical object, called the invariant, in such a way that
flow equivalent shift spaces give isomorphic invariants. In the same way, a
conjugacy invariant of X, respectively X+, is a mapping associating to each
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shift space an invariant in such a way that conjugate, respectively one-sided
conjugate, shift spaces give isomorphic invariants.
Since X ' Y ⇒ X ∼=f Y, a flow invariant of X is also a conjugacy invariant of
X, and since X+ ' Y+ ⇒ X ' Y, a conjugacy invariant of X is also a conjugacy
invariant of X+.

2.2 Special elements

We say (cf. [17]) that z ∈ X is left special if there exists z′ ∈ X such that

z−1 6= z′−1 π+(z) = π+(z′).

It follows from [4, Proposition 2.4.1] (cf. [3, Theorem 3.9]) that a sufficient
condition for a shift space X to have a left special element is that X is infinite.
Conversely, the following proposition shows that this condition is necessary.

Proposition 2.1. Let X be a finite shift space. Then X contains no left special
element.

Proof: Since X is finite, every z ∈ X is periodic. Hence if π+(z) = π+(z′), then
z = z′. �

We say that the left special word z is adjusted if σ−n(z) is not left special for
any n ∈ N, and that z is cofinal if σn(z) is not left special for any n ∈ N.
Thinking of left special words as those which are not deterministic from the
right at index −1, the adjusted and cofinal left special words are those where
this is the leftmost and rightmost occurrence of nondeterminacy, respectively.
Let z, z′ ∈ X. If there exist an n and an M such that zm = z′n+m for all m > M
then we say that z and z′ are right shift tail equivalent and write z ∼r z′. We
will denote the right shift tail equivalence class of z by z.

2.3 The first cohomology group

The first cohomology group (cf. [2]) of a shift space X is the group

C(X,Z)/(Id−(σ−1)?)(C(X,Z)).

Notice that usually σ is used instead of σ−1, but for our purpose it
is more naturally to use σ−1, and we of course get the same group.
C(X,Z)/(Id−(σ−1)?)(C(X,Z)) is the first Čech cohomology group of the stan-
dard suspension of (X, σ) (cf. [27, IV.15. Theorem]). It is also isomorphic
to the homotopy classes of continuous maps from the standard suspension of
(X, σ) into the circle (cf. [27, page 60]).
It is proved in [2, Theorem 1.5] that C(X,Z)/(Id−(σ−1)?)(C(X,Z)) is a flow
invariant of X and thus also a conjugacy invariant of X and X+.
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Matsumoto K-groups associated to certain shift spaces 5

2.4 Past equivalence and Matsumoto’s K-theory

Let X be a shift space. For every x ∈ X+ and every k ∈ N we set

Pk(x) = {µ ∈ L(X) | µx ∈ X+), |µ| = k},

and define for every l ∈ N an equivalence relation ∼l on X+ by

x ∼l x′ ⇔ Pl(x) = Pl(x′).

Likewise we let for every x ∈ X+

P∞(x) = {y ∈ X− | yx ∈ X)},

and define an equivalence relation ∼∞ on X+ by

x ∼∞ x′ ⇔ P∞(x) = P∞(x′).

The set
ND∞(X+) = {x ∈ X+ | ∃k ∈ N : |Pk(x)| > 1}

then consists exactly of all words on the form z[n,∞[ where z is left special and
n ∈ N0.
Following Matsumoto ([23]), we denote by [x]l the equivalence class of x and
refer to the relation as l-past equivalence.
Obviously the set of equivalence classes of the l-past equivalence relation ∼l is
finite. We will denote the number of such classes m(l) and enumerate them E ls
with s ∈ {1, . . . ,m(l)}. For each l ∈ N, we define an m(l + 1)×m(l)-matrix IIIl

by

(IIIl)rs =
{

1 if E l+1
r ⊆ E ls

0 otherwise,

and note that IIIl induces a group homomorphism from Zm(l) to Zm(l+1). We
denote by ZX the group given by the inductive limit

lim
−→

(Zm(l), IIIl).

For a subset E of X+ and a finite word µ we let µE = {µx ∈ X+ | x ∈ E}. For
each l ∈ N and a ∈ a we define an m(l + 1)×m(l)-matrix

(LLLla)rs =
{

1 if ∅ 6= aE l+1
r ⊆ E ls

0 otherwise,

and letting LLLl =
∑
a∈a LLLla we get a matrix inducing a group homeomorphism

from Zm(l) to Zm(l+1). Since one can prove that LLLl+1 ◦ IIIl = IIIl+1 ◦ LLLl, a group
endomorphism λ on ZX is induced.

Theorem 2.2 (Cf. [24], [25, Theorem]). Let X be a shift space. The group

K0(X) = ZX/(Id−λ)ZX ,

is a conjugacy invariant of X and X+, and a flow invariant of X.
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2.5 The space ΩX

We will now give an alternative description of K0(X). K0(X) is defined by
taking a inductive limits of Zm(l), where Zm(l) could be thought of as C(X+/ ∼l
,Z).
We will now do things in different order. First we will take the projective limit
of X+/ ∼l and then look at the continuous functions from the projective limit
to Z.
Since ∼l is coarser than ∼l+1, there is a projection πl of X+/ ∼l+1 on X+/ ∼l.

Definition 2.3 (Cf. [23, page 682]). Let X be a shift space. ΩX is the
compact topological space given by the projective limit lim

←−
(X+/ ∼l, πl).

We will identify ΩX with the closed subspace

{([xn]n)n∈N0 | ∀n ∈ N0 : xn+1 ∼n xn}

of
∏∞
l=0 X+/ ∼l, where

∏∞
l=0 X+/ ∼l is endowed with the product of the discrete

topologies.
Notice that if we identify C(X+/ ∼l,Z) with Zm(l), then IIIl is the map induced
by πl, so C(ΩX ,Z) can be identified with ZX .
If ([xn]n)n∈N0 ∈ ΩX , then

{([x′n]n)n∈N0 ∈ ΩX | x′1 ∼1 x1}

is an clopen subset of ΩX , and if a ∈ P1(x1), then ([ax′n]n)n∈N0 ∈ ΩX for every
([x′n]n)n∈N0 ∈ ΩX with x′1 ∼1 x1, and the map

([x′n]n)n∈N0 7→ ([ax′n]n)n∈N0

is a continuous map on {([x′n]n)n∈N0 ∈ ΩX | x′1 ∼1 x1}. This allows us to define
a map λX : C(ΩX ,Z) → C(ΩX ,Z) in the following way:

Definition 2.4. Let X be a shift space, h ∈ C(ΩX ,Z) and ([xn]n)n∈N0 ∈ ΩX .
Then we let

λX(h)(([xn]n)n∈N0) =
∑

a∈P1(x1)

h([axn]n∈N0).

Under the identification of C(ΩX ,Z) and ZX , λX is equal to λ, thus we have
the following proposition:

Proposition 2.5. Let X be a shift space. Then K0(X) and

C(ΩX ,Z)/(Id−λX)(C(ΩX ,Z))

are isomorphic as groups.
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Matsumoto K-groups associated to certain shift spaces 7

3 Property (*) and (**)

We will introduce the properties (∗) and (∗∗) and show that they are invariant
under flow equivalence and thus under conjugacy. At the end of the section,
we will for various examples of shift spaces determine if they have property (∗)
and (∗∗).

Definition 3.1. We say that a shift space X has property (∗) if for every
µ ∈ L(X) there exists an x ∈ X+ such that P|µ|(x) = {µ}.

Definition 3.2. We say that a shift space X has property (∗∗) if it has property
(∗) and if the number of left special words of X is finite, and no such left special
word is periodic.

Since flow equivalence is generated by conjugacy and symbolic expansion (cf.
[25, Lemma 2.1] and [26]), it is, in order to prove the following proposition,
enough to check that (∗) and (∗∗) are invariant under symbolic expansion and
conjugacy. Although this is easy, it is also tedious, so we will omit it.

Proposition 3.3. The properties (∗) and (∗∗) are invariant under flow equiv-
alence.

Example 3.4. It follows from Proposition 2.1 that if a shift space X is finite,
then it contains no left special element, and thus has property (∗∗).

Example 3.5. An infinite shift of finite type does not have property (∗).

Proof: Let X be a shift of finite type. This means (cf. [21, Chapter 2]) that
there is a k ∈ N0 such that

X = {z ∈ aZ | ∀n ∈ Z : z[n,n+k] ∈ L(X)}.

Suppose that X has property (∗). Let L(X)k = {µ ∈ L(X) | |µ| = k}, and
notice that if µ, ν, ω ∈ L(X)k and µν, νω ∈ L(X), then µνω ∈ L(X).
Let µ ∈ L(X)k. Then there is a x ∈ X+ such that P|µ|(x) = {µ}. Let µ′ = x[0,k[.
Suppose that ν ∈ L(X)k and νµ′ ∈ L(X). Then νx ∈ X+, so ν must be equal
to µ. Thus there is for every µ ∈ L(X)k a µ′ ∈ L(X)k such that

ν ∈ L(X)k ∧ νµ′ ∈ L(X) ⇒ ν = µ.

Since L(X)k is finite and the map µ 7→ µ′ is injective, there is for every ν ∈
L(X)k a µ ∈ L(X)k such that ν = µ′. Hence there is for every µ ∈ L(X)k a
unique µ′ ∈ L(X)k such that µµ′ ∈ L(X) and a unique µ′′ ∈ L(X)k such that
µ′′µ ∈ L(X). Thus every z ∈ X is determined by z[0,k[, but since L(X)k is finite,
this implies that X is finite. �

Example 3.6. An infinite minimal shift space X has property (∗∗) precisely
when the number of left special words of X is finite.
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8 Carlsen and Eilers

Proof: Since no elements in such a shift space is periodic, we only need to prove
that property (∗) follows from finiteness of the number of left special elements.
Let µ ∈ L(X) and pick any x ∈ X+. Since X+ is infinite and minimal, x is
not periodic, and since the set of left special words is finite there exists N ∈ N
such that σn(x) is not left special for any n ≥ N . Since X+ is minimal there
exists a k ≥ N such that x[k+1,k+|µ|] = µ. Hence P|µ|(σk+|µ|+1(x)) = {µ}. �

Example 3.7. If z is a non-regular Toeplitz sequence, then the shift space

O(z) = {σn(z) | n ∈ Z}

has property (∗).

Proof: Let µ ∈ L(O(z)). Since O(z) is minimal (cf. [32, page 97]), there is an
m ∈ N such that z[−m−|µ|,−m[ = µ. We claim that P|µ|(z[−m,∞[) = {µ}.
Assume that z′ ∈ O(z) and z′[−m,∞[ = z[−m,∞[. Then π(z′) = π(z), where π is

the factor map of O(z) onto its maximal equicontinuous factor (G, 1̂) (cf. [32,
Theorem 2.2]), because since z′[−m,∞[ = z[−m,∞[, the distance between σn(z′)
and σn(z), and thus the distance between 1̂n(π(z′)) and 1̂n(π(z)), goes to 0 as
n goes to infinity, but since 1̂ is equicontinuous, this implies that π(z′) = π(z).
Since π is one-to-one on the set of Toeplitz sequences (cf. [32, Corollary 2.4]),
z′ = z. Thus P|µ|(z[−m,∞[) = {µ}. �

The following example shows that property (∗∗) does not follow from property
(∗).

Example 3.8. We will construct a non-regular Toeplitz sequence z ∈ {0, 1}Z

such that the shift space

O(z) = {σn(z) | n ∈ Z}

has infinitely many left special elements and thus does not have property (∗∗).
We will construct z by using the technique introduced by Susan Williams in
[32, Section 4]. We will use the same notation as in [32, Section 4]. We let
Y = {0, 1}Z and defined (pi)i∈N recursively by setting p1 = 3 and pi+1 = 3ri+ipi
for i ∈ N, where ri is as defined in [32, Section 4]. We then have that

piβri

pi+1
=

2ri

3ri+i
< 3−i

so
∞∑
i=1

piβri

pi+1

converges, so z is non-regular by [32, Proposition 4.1].

Claim. The shift space O(z) has infinitely many left special elements.
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Proof: Let D be as defined on [32, page 103]. If

g ∈ π({z′ ∈ D | −1 ∈ Aper(z′)}),

y, y′ ∈ Y , y[0,∞[ = y′[0,∞[ and y−1 6= y′−1, then φ(g, y)[0,∞[ = φ(g, y′)[0,∞[ and
φ(g, y)−1 6= φ(g, y′)−1, where φ is the map define on [32, page 103]. Thus
φ(g, y) and φ(g, y′) are left special elements, and since

π({z′ ∈ D | −1 ∈ Aper(z′)})× {y ∈ Y | y is left special}

is infinite and contained in π(D)× Y , where φ is 1− 1 on, O(z) has infinitely
many left special elements. �

4 The first cohomology group is a factor of K0(X)

We will now show that if a shift space X has property (∗), then the first coho-
mology group is a factor group of K0(X).
Suppose that a shift space X has property (∗). We can then define a map ιX
from X− into ΩX in the following way: For each y ∈ X− and each n ∈ N0 we
choose an xn ∈ X+ such that Pn(xn) = {y[−n,−1]}. Then ([xn]n)n∈N0 ∈ ΩX ,
and we denote this element by ιX(y). ιX is obviously injective and continuous.
We denote the map

(ιX ◦ π−)? : C(ΩX ,Z) → C(X,Z)

by κ.

Proposition 4.1. Let X be a shift space which has property (∗). Then there
is a surjective group homomorphism κ̄ from C(ΩX ,Z)/(Id−λX)(C(ΩX ,Z)) to
C(X,Z)/(Id−(σ−1)?)(C(X,Z)) which makes the following diagram commute:

C(ΩX ,Z) κ //

����

C(X,Z)

����
C(ΩX ,Z)/(Id−λX)(C(ΩX ,Z)) κ̄ // C(X,Z)/(Id−(σ−1)?)(C(X,Z))

Proof: Let q be the quotient map from C(X,Z) to

C(X,Z)/(Id−(σ−1)?)(C(X,Z)).

We will show that q ◦ κ is surjective and that (Id−λX)(C(ΩX ,Z)) ⊆ ker(q ◦ κ).
This will prove the existence of κ̄.

q ◦ κ is surjective: Given f ∈ C(X,Z). Our goal is to find a function g ∈
C(ΩX ,Z) which is mapped to q(f) by q ◦ κ.
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Since f is continuous, there are k,m ∈ N such that z[−k,m] = z′[−k,m] ⇒ f(z) =
f(z′). Thus

z[−k−m−1,−1] = z′[−k−m−1,−1] ⇒ f ◦ σ−(m+1)(z) = f ◦ σ−(m+1)(z′).

Define a function g from ΩX to Z by

g(([xn]n)n∈N0) =

{
f ◦ σ−(m+1)(z) if Pk+m+1(xk+m+1) = {z[−k−m−1,−1]},
0 if #Pk+m+1(xk+m+1) > 1.

Then g ∈ C(ΩX ,Z), and g ◦ ιX ◦ π− = f ◦ σ−(m+1). Thus q ◦ κ(g) = q(f).

(Id−λX)(C(ΩX ,Z)) ⊆ ker(q ◦ κ): Let g ∈ C(ΩX ,Z) and y ∈ X−. Then
λX(g)(ιX(y)) = g(ιX(σ−(y)), so

κ(λX(g)) = g ◦ ιX ◦ π− ◦ σ−1,

which shows that (Id−λX)(g) ∈ ker(q ◦ κ). �

The following corollary now follows from Theorem 2.5:

Corollary 4.2. Let X be a shift space which has property (∗). Then
C(X,Z)/(Id−(σ−1)?)(C(X,Z)) is a factor group of K0(X).

5 K0 of shift spaces having property (∗∗)

We saw in the last section that if a shift space X has property (∗), then the
first cohomology group is a factor group of K0(X). This stems from the fact
that property (∗) causes an inclusion of X− into ΩX , and thus a surjection of
C(ΩX ,Z) onto C(X−,Z). We will now for shift spaces having property (∗∗)
describe K0 in terms of the first cohomology group and some extra information
determined by the left special elements of the shift space.
We will first define the group GX which is a subgroup of the external direct
product of C(X−,Z) and an infinite product of copies of Z, and isomorphic to
C(ΩX ,Z). Next, we will define the group GX which is a the external direct
product of C(X,Z) and an infinite sum of copies of Z, and has a factor group
which is isomorphic to K0(X). We will round off by relating this with the fact
that the first cohomology group is a factor group of K0(X) and look at some
examples.

Lemma 5.1. Let X be a shift space which has property (∗). Then

ιX(X−) = {([xn]n)n∈N0 ∈ ΩX | ∀n ∈ N0 : #Pn(xn) = 1}.

Proof: Clearly

ιX(X−) ⊆ {([xn]n)n∈N0 ∈ ΩX | ∀n ∈ N0 : #Pn(xn) = 1}.
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Suppose ([xn]n)n∈N0 ∈ ΩX and Pn(xn) = {µn} for every n ∈ N0. Let for every
n ∈ N, y−n be the first letter of µn. Since y[−n,−1] = µn for every n ∈ N,
y ∈ X−, and clearly ιX(y) = ([xn]n)n∈N0 . �

Denote by IX the set ND∞(X+)/ ∼∞. We will now define a map φX from
IX to ΩX . We see that for x ∈ ND∞(X+), ([x]n)n∈N0 ∈ ΩX , and we notice
that x ∼∞ x̃, if and only if ([x]n)n∈N0 = ([x̃]n)n∈N0 . So if we let φX([x]∞) =
([x]n)n∈N0 , then φX is well-defined and injective.

Lemma 5.2. Let X be a shift space which has property (∗). Then ιX(X−) ∩
φX(IX) = ∅, and if X has property (∗∗), then ιX(X−) ∪ φX(IX) = ΩX .

Proof: If ([xn]n)n∈N0 ∈ ιX(X−), then according to Lemma 5.1, #Pn(xn) = 1
for every n ∈ N0, and if ([xn]n)n∈N0 ∈ φX(IX), then #Pn(xn) > 1 for some
n ∈ N0. Hence ιX(X−) ∩ φX(IX) = ∅.
Suppose that X has property (∗∗). If ([xn]n)n∈N0 ∈ ΩX \ιX(X−), then according
to Lemma 5.1, there is an n ∈ N0 such that #Pn(xn) > 1, and since there
only are finitely many left special words, [xn]n is finite. Since [xk]k 6= ∅ and
[xk+1]k+1 ⊆ [xk]k for every k ∈ N0, this implies that

⋂
k∈N0

[xk]k is not empty.
Let x ∈

⋂
k∈N0

[xk]k. Since #Pn(x) = #Pn(xn) > 1, x ∈ ND∞(X+), and since
([xn]n)n∈N0 = φX([x]∞), ([xn]n)n∈N0 ∈ φX(IX). �

5.1 The group GX

We will from now on assume that X has property (∗∗). Let for every function
h : ΩX → Z,

γX(h) = (h ◦ ιX , (h(φX(i)))i∈IX
).

It follows from Lemma 5.2 that γX is a bijective correspondence between func-
tions from ΩX to Z and pairs (g, (αi)i∈IX

), where g is a function from X− to Z
and each αi is an integer.

Lemma 5.3. (g, (αi)i∈IX
) ∈ γX(C(ΩX ,Z)) if and only if there is an n0 ∈ N0

such that

1. ∀y, y′ ∈ X− : y[−n0,−1] = y′[−n0,−1] ⇒ g(y) = g(y′),

2. ∀x, x′ ∈ ND∞(X+) : [x]n0 = [x′]n0 ⇒ α[x]∞ = α[x′]∞ ,

3. ∀x ∈ ND∞(X+), y ∈ X− : Pn0(x) = {y[−n,−1]} ⇒ α[x]∞ = g(y).

Proof: A function from ΩX to Z is continuous if and only if there is an n0 ∈ N0

such that

[xn0 ]n0 = [x′n0
]n0 ⇒ h(([xn]n)n∈N0) = h(([x′n]n)n∈N0)

for ([xn]n)n∈N0 , ([x
′
n]n)n∈N0 ∈ ΩX , and since

[xn0 ]n0 = [x′n0
]n0 ⇔ y[−n0,−1] = y′[−n0,−1]
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for y, y′ ∈ X− if ([xn]n)n∈N0 = ιX(y) and ([x′n]n)n∈N0 = ιX(y′), and

[x]n0 = [x′n0
]n0 ⇔ Pn0(x) = {y[−n0,−1]}

for x ∈ ND∞(X+) and y ∈ X− if ([xn]n)n∈N0 = ιX(y), the conclusion follows.
�

Definition 5.4. Let X be a shift space which has property (∗∗). We denote
γX(C(ΩX ,Z)) by GX , and we let for every function g : X− → Z and (αi)i∈IX

∈
ZIX ,

AX((g, (αi)i∈IX
)) = (g ◦ σ−, (α̃i)i∈IX

),

where
α̃[x]∞ =

∑
x′∈ND∞(X+)

σ+(x′)=x

α[x′]∞ +
∑
z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

g(π−(z)).

Lemma 5.5. AX maps GX into GX , and the following diagram commutes:

C(ΩX ,Z)
γX //

λX

��

GX

AX

��
C(ΩX ,Z)

γX // GX .

Proof: Let h ∈ C(ΩX ,Z) and ([xn]n)n∈N0 ∈ ΩX . Then

λX(h)(([xn]n)n∈N0) =
∑

a∈P1(x1)

h([axn]n∈N0).

If ([xn]n)n∈N0 ∈ ιX(X−), then #P1(x1) = 1 and ιX(σ−(ι−1
X (([xn]n)n∈N0))) =

[axn]n∈N0 , where a ∈ P1(x1). Thus

λX(h)(([xn]n)n∈N0) = h(([axn]n)n∈N0) = γ−1
X ◦ AX ◦ γX(h)(([xn]n)n∈N0).

Now assume that ([xn]n)n∈N0 ∈ φX(IX) and choose x ∈ ND∞(X+) such that
φX([x]∞) = ([xn]n)n∈N0 . We claim that∑
a∈P1(x1)

h([axn]n∈N0) =
∑

x′∈ND∞(X+)

σ+(x′)=x

h(φX([x′]∞)) +
∑
z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

h(ιX(z[−∞,−1])). (1)

To see this, let a ∈ P1(x1).
Assume first that ([axn]n)n∈N0 ∈ ιX(X−), and let z be the element of aZ sat-
isfying z]−∞,0[ = ι−1

X (([axn]n)n∈N0), z0 = a, and z[1,∞[ = x. Then z ∈ X,
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z[0,∞[ /∈ ND∞(X+), z[1,∞[ = x, and ιX(z]−∞,−1]) = [axn]n∈N0 . If on the other
hand z̃ is an element of X which satisfies z̃[0,∞[ /∈ ND∞(X+), and z̃[1,∞[ = x,
then z̃0 ∈ P1(x1), and ιX(z̃]−∞,−1]) = ([z̃0xn]n)n∈N0

Then assume that ([axn]n)n∈N0 ∈ φX(IX). Then ax ∈ ND∞(X+), σ+(ax) =
x, and φX([ax]∞) = [axn]n∈N0 . On the other hand, if x′ ∈ ND∞(X+) and
σ+(x′) = x, then x′0 ∈ P1(x1), and φX([x′]∞) = [x′0xn]n∈N0 .
Thus (1) holds, and

λX(h)(([xn]n)n∈N0) =
∑

a∈P1(x1)

h([axn]n∈N0)

=
∑

x′∈ND∞(X+)

σ+(x′)=x

h(φX([x′]∞)) +
∑
z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

h(ιX(z[−∞,−1]))

= γ−1
X ◦ AX ◦ γX(h)(([xn]n)n∈N0).

This shows that AX = γX ◦λX ◦ γ−1
X , so AX maps GX into GX , and the diagram

commutes. �

Corollary 5.6. Let X be a shift space which has property (∗∗). Then K0(X)
and

GX/(Id−AX)GX

are isomorphic as groups.

5.2 The space IX

In order to get a better understanding of the group GX and the map AX , we
will now try to describe IX in the case where X has properties (∗∗). For that
we will need the concept of right shift tail equivalence.
Denote the set of those right shift tail equivalence classes of X which contains
a left special element by JX . Notice that it is finite. Let for every j ∈ JX , Mj

be the set of adjusted left special elements belonging to j. Notice that there
only is a finite - but positive - number of elements in Mj.
Let us take a closer look at π+(j). It is clear that

π+(j) = {z[n,∞[ | z ∈Mj, n ∈ Z},

and it follows from the definition of adjusted left special elements that z[n,∞[ ∈
ND∞(X+) if and only if n ≥ 0. It is easy to see that if z, z′ ∈Mj and n, n′ < 0,
then

z[n,∞[ = z′[n′,∞[ ⇔ z = z′ ∧ n = n′.

Contrary to this, it might happen that z[n,∞[ = z′[n′,∞[ for z 6= z′ if n, n′ ≥ 0.
In fact, it turns out that j has a “common tail”.

Definition 5.7. Let j ∈ JX . An x ∈ X+ such that there for every z ∈ j is an
n ∈ Z such that z[n,∞[ = x is called a common tail of j.
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Lemma 5.8. Let z be a left special element. Then z[0,∞[ is a common tail of z
if and only if z is cofinal.

Proof: Assume that z is cofinal and let z′ ∈ z. Then there are n, n′ ∈ Z such
that z[n,∞[ = z′[n′,∞[, and since z is cofinal, z[0,n[ = z′[n′−n,n′[ if n > 0. If n ≤ 0,
then obviously z[0,∞[ = z′[n′−n,∞[. Thus z[0,∞[ is a common tail of z.
Assume now that z is not cofinal. Then there is a z′ ∈ z and an n ∈ N such
that z[n,∞[ = z′[n,∞[, but zn−1 6= z′n−1. If z[0,∞[ is a common tail of z, then
there is a n′ ∈ Z such that z′[n′,∞[ = z[0,∞[, and since zn−1 6= z′n−1, n

′ 6= 0.
But we then have for k ≥ n that z′k+n′ = zk = z′k, which cannot be true, since
there are no periodic left special words. �

Definition 5.9. An x ∈ X+ is called isolated if there is a k ∈ N0 such that
[x]k = {x}.

Lemma 5.10. Every j ∈ JX has an isolated common tail.

Proof: Let z be the cofinal left special element of j. Then z[0,∞[, and thus
z[n,∞[ for every n ∈ N0, is a common tail by Lemma 5.8. Since there only are
finitely many left special words, [z[0,∞[]1 is finite. Hence there is an n ∈ N such
that

x ∈ [z[0,∞[]1 ∧ x[0,n] = z[0,n] ⇒ x = z[0,∞[.

Thus [z[n,∞[]n+1 = {z[n,∞[} and therefore z[n,∞[ is an isolated common tail. �

Remark 5.11. In [22] Matsumoto introduced the condition (I) for shift spaces,
which is a generalization of the condition (I) for topological Markov shifts in
the sense of Cuntz and Krieger (cf. [10]).
A shift space X satisfies condition (I) if and only if X+ has no isolated elements
(cf. [22, Lemma 5.1]). Thus, it follows from Lemma 5.10 that a shift space
which has property (∗∗) does not satisfy condition (I).

Choose once and for all, for each j ∈ JX an isolated common tail xj and a zj

such that zj[0,∞[ = xj.

Remark 5.12. Notice that zj[n,∞[ is isolated for every j ∈ JX and every n ∈ N0,

because if [zj[0,∞[]k = {zj[0,∞[}, then [zj[n,∞[]k+n = {zj[n,∞[}.

Let j ∈ JX . Since xj is a common tail of j, there is for every z ∈Mj an nz ∈ N0

such that z[nz,∞[ = xj. Let

Kj = {[z[n,∞[]∞ | z ∈Mj, 0 ≤ n ≤ nz}.

Lemma 5.13. ⋃
j∈JX

(
Kj ∪ {[zj[n,∞[]∞ | n ∈ N0}

)
= IX

and
Kj ∩ {[zj[n,∞[]∞ | n ∈ N0} = {zj[0,∞[}

for each j ∈ JX .
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Proof: Let x ∈ ND∞(X+). Then there are an adjusted left special word z and
an n ∈ N0 such that x = z[n,∞[. If n > nz, then

x = z[n,∞[ = zz[n−nz,∞[.

If n ≤ nz, then [x]∞ ∈ Kz. Thus⋃
j∈JX

(
Kj ∪ {[zj[n,∞[]∞ | n ∈ N}

)
= IX .

Assume that n > 0 and [zj[n,∞[]∞ ∈ Kj. Since zj[n,∞[ is isolated, this implies

that zj[n,∞[ = z[m,∞[ for some z ∈Mj and 0 ≤ m ≤ nz. But then

z[m,∞[ = zj[n,∞[ = z[nz+n,∞[

which cannot be true since there are no periodic left special words.
Thus

Kj ∩ {[zj[n,∞[]∞ | j ∈ JX , n ∈ N0} = {zj[0,∞[}

for each j ∈ JX . �

Lemma 5.14. The map
(j, n) 7→ [zj[n,∞[]∞,

from JX × N0 to IX is injective.

Proof: Assume that [zj1[n1,∞[]∞ = [zj2[n2,∞[]∞. Since zj1[n1,∞[ is isolated, zj1[n1,∞[

must be equal to zj2[n2,∞[. This implies that zj1 and zj2 are right shift tail
equivalent, so j1 = j2, and since there are no periodic left special words, n1

and n2 must be equal. �

We will now look at IX for three examples. First let X be the shift space
associated with the Morse substitution

0 7→ 01, 1 7→ 10.

The shift space X is minimal and has 4 left special elements:

y0.x0 y0.x1 y1.x0 y1.x1

where y0, y1 are the fixpoints in X− of the substitution ending with 0 respec-
tively 1, and x0, x1 are the fixpoints in X+ of the substitution beginning with
0 respectively 1. Thus it follows from Example 3.6 that X has property (∗∗).
We see that JX consists of 2 elements: y0.x0 and y1.x1. Notice that although
all of the 4 left special elements are cofinal (and adjusted) neither x0 nor x1 are
isolated, but σ+(x0) and σ+(x1) are, so we can choose σ(y0.x0) and σ(y1.x1)
as zy0.x0 and zy1.x1 respectively. We then have that IX looks like this:
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[σ3
+(x0)]∞

[σ2
+(x1)]∞

Ky1.x1
Ky0.x0

[σ3
+(x1)]∞

[σ+(x0)]∞
[σ+(x1)]∞

[x0]∞

[σ2
+(x0)]∞

where an arrow from a to b means that in Definition 5.4 α̃b = αa. We notice
further that α̃[x0]∞ = g(σ−(y0)) + g(σ−(y1)).
Our second example is the shift space associated to the substitution

1 7→ 123514, 2 7→ 124, 3 7→ 13214, 4 7→ 14124, 5 7→ 15214.

The shift space X is minimal and has 8 left special elements (4 adjusted and 4
cofinal) as illustrated on this figure:

5

2

4
2

3

x
y1

y2

where x ∈ X+ and y1, y2 ∈ X−. Thus it follows from 3.6 that X has property
(∗∗). The set JX consists of one element y152.x, and since x is isolated, we
can choose y152.x as zy152.x. We then have that IX looks like this:

[4x]∞

[2x]∞

[σ+(x)]∞

[σ2
+(x)]∞

Ky152.x

[x]∞

where an arrow from a to b means that in Definition 5.4 α̃b = αa. We notice
further that α̃[x]∞ = α[2x]∞ + α[4x]∞ , α̃[2x]∞ = 2g(y1) and α̃[4x]∞ = g(y1) +
g(σ−(y2)).
The third example is the shift space associated to the substitution

a 7→ adbac, b 7→ aedbbc, c 7→ ac, d 7→ adac, e 7→ aecadbac.
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a 7→ adbac, b 7→ aedbbc, c 7→ ac, d 7→ adac, e 7→ aecadbac.
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where x ∈ X+ and y1, y2, y3, y4 ∈ X−. Thus it follows from 3.6 that X has
property (∗∗). The set JX consists of one element y1e.x, and since x is isolated,
we can choose y1e.x as zy1e.x. We then have that IX looks like this:
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Loosely speaking, the idea is to simplify GX in three ways. First we replace

X− by X, secondly we collaps for each j ∈ JX , Kj to one point, which makes
it possible to replace IX by JX × N0, and thirdly we replace the continuity
condition of Lemma 5.3 by the condition that the sequence is eventually 0. By
doing this, we of course do not get a group which is isomorphic to GX , but it
turns out that we still get isomorphic cokernels.

Definition 5.15. Let X be a shift space which has property (∗∗). Denote by
GX the group C(X,Z)⊕

∑
n∈N0

ZJX , let AX be the map from GX to itself defined
by
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Loosely speaking, the idea is to simplify GX in three ways. First we replace
X− by X, secondly we collapse for each j ∈ JX , Kj to one point, which makes
it possible to replace IX by JX × N0, and thirdly we replace the continuity
condition of Lemma 5.3 by the condition that the sequence is eventually 0. By
doing this, we of course do not get a group which is isomorphic to GX , but it
turns out that we still get isomorphic cokernels.

Definition 5.15. Let X be a shift space which has property (∗∗). Denote by
GX the group C(X,Z)⊕

∑
n∈N0

ZJX , let AX be the map from GX to itself defined
by

(f, (ajn)j∈JX ,n∈N0) 7→ (f ◦ σ−1, (ãjn)j∈JX ,n∈N0),

where ãj0 =
∑
z∈Mj

f(σ−1(z)) − f(σ−1(zj)), and ãjn = ajn−1 for n > 0, and let
ψ be the map from GX to GX defined by

(g, (αi)i∈IX
) 7→ (g ◦ π−, (ajn)j∈JX ,n∈N0),

where aj0 =
∑

i∈Kj
αi − g(π−(zj)) and ajn = α[zj[n,∞[]∞

− g(zj]−∞,n[) for n > 0.

Proposition 5.16. Let X be a shift space which has property (∗∗). Then there
is an isomorphism

ψ̄ : GX/(Id−AX)(GX) → GX/(Id−AX)
(
GX

)
which makes the following diagram commute:

GX
ψ //

����

GX

����
GX/(Id−AX)(GX)

ψ̄ // GX/(Id−AX)
(
GX

)
Proof: Let ρ be the projection from GX to GX/(Id−AX)

(
GX

)
. We will prove

the existence of ψ̄ by showing the following 3 things about ρ ◦ ψ: a) that it
is surjective, b) that ker(ρ ◦ ψ) ⊆ (Id−AX)(GX), and c) that (Id−AX)(GX) ⊆
ker(ρ ◦ ψ).

a) ρ ◦ ψ is surjective: Let (f, (ajn)j∈JX ,n∈N0) ∈ GX . Our goal is to find an
element of GX which is mapped to ρ((f, (ajn)j∈JX ,n∈N0)) by ρ ◦ ψ.
Since f is continuous, there are n,m ∈ N such that z[−n,m] = z′[−n,m] ⇒ f(z) =
f(z′). Thus

z[−n−m−1,−1] = z′[−n−m−1,−1] ⇒ f ◦ σ−(m+1)(z) = f ◦ σ−(m+1)(z′).

Hence there is an g ∈ C(X−,Z) such that g ◦ π− = f ◦ σ−(m+1).
Choose for each i ∈

⋃
j∈JX

Kj an li ∈ N0 such that Pli(x) > 1 for every x ∈ i,
and let N = n + m + 1 + max{li | i ∈

⋃
j∈JX

Kj}. Let j ∈ JX . Then there is

97



Matsumoto K-groups associated to certain shift spaces 19

an mj ∈ N0 such that PN (zj[n,∞[) > 1 for 0 ≤ n < mj and PN (zj[n,∞[) = 1 for
n ≥ mj.
Set for each j ∈ JX and n ≥ mj,

α[zj[n,∞[]∞
= g(zj]−∞,n[),

and let αi = 0 for

i ∈ IX \ {[zj[n,∞[]∞ | j ∈ JX , n ≥ mj} =
⋃

j∈JX

(
Kj ∪ {[zj[n,∞[]∞ | 0 ≤ n ≤ mj}

)
.

We then have that y[−N,−1] = y′[−N,−1] ⇒ g(y) = g(y′), PN (x) > 1 ⇒ α[x]∞ =
0, and PN (x) = {y[−N,−1]} ⇒ α[x]∞ = g(y) for y, y′ ∈ X− and x ∈ X+. Hence
(g, (αi)i∈IX

) ∈ GX . We also have that

ψ((g, (αi)i∈IX
)) = Am+1

X (f, (ajn)j∈JX ,n∈N0) + (0, (ãjn)j∈JX ,n∈N0)

for some (ãjn)j∈JX ,n∈N0 ∈
∑
n∈N0

ZJX . Since

ρ(f, (ajn)j∈JX ,n∈N0) = ρ(Am+1
X (f, (ajn)j∈JX ,n∈N0)),

it is enough to find (0, (α̃i)i∈IX
) ∈ GX such that ψ(0, (α̃i)i∈IX

) =
(0, (ãjn)j∈JX ,n∈N0), because then

ρ ◦ ψ((g, (αi)i∈IX
)− (0, (α̃i)i∈IX

)) = ρ(f, (ajn)j∈JX ,n∈N0).

Let i ∈ IX . If i ∈
⋃

j∈JX
Kj \ {[xj]∞}, then we let α̃i = 0, and if i = [zj[n,∞[]∞,

j ∈ JX , n ∈ N0, then we let α̃i = ajn. We claim that (0, (α̃i)i∈IX
) ∈ GX and

ψ(0, (α̃i)i∈IX
) = (0, (ãjn)j∈JX ,n∈N0).

Choose an N ∈ N0 such that ãjn = 0 for every j ∈ JX and n ≥ N . Let j ∈ JX .
Since zj[n,∞[ is isolated for every j ∈ JX and every n ∈ N0 (cf. Remark 5.12),

there is for each 0 ≤ n < N a kj
n ∈ N0 such that [zj[n,∞[]kjn = {zj[n,∞[} and by

increasing kj
n if necessary, we may (and will) assume that #Pkjn(zj[n,∞[) > 1.

Let
M = max{kj

n | j ∈ JX , 0 ≤ n < N}.

We then have that [zj[n,∞[]M = {zj[n,∞[} and #PM (zj[n,∞[) > 1 for j ∈ JX and
0 ≤ n < N . Thus if α̃[x]∞ 6= 0, then [x]M = {x} and #PM (x) > 1. So we have
that [x]M = [x′]M ⇒ α̃[x]∞ = α̃[x′]∞ , and PM (x) = {y[−M,−1]} ⇒ α̃[x]∞ = 0.
Hence (0, (α̃i)i∈IX

) ∈ GX .
Let j ∈ JX . Then we have that α̃i = 0 for i ∈ Kj \ {xj} and α̃[zj[n,∞[]∞

= ãjn for

n ∈ N0. Hence ψ(0, (α̃i)i∈IX
) = (0, (ãjn)j∈JX ,n∈N0).
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b) ker(ρ◦ψ) ⊆ (Id−AX)(GX): Assume that (g, (αi)i∈IX
) ∈ ker(ρ◦ψ). We must

then find (g̃, (α̃i)i∈IX
) ∈ GX such that (Id−AX)(g̃, (α̃i)i∈IX

) = (g, (αi)i∈IX
).

Since ρ ◦ ψ((g, (αi)i∈IX
)) = 0, there is (f, (ajn)j∈JX ,n∈N0) ∈ GX such that

(Id−AX)(f, (ajn)j∈JX ,n∈N0) = ψ(g, (αi)i∈IX
). Hence f − f ◦ σ−1 = g ◦ π−. The

function f is continuous, so there are n,m ∈ N such that z[−n,m] = z′[−n,m] ⇒
f(z) = f(z′). We claim that

z[−∞,−1] = z′[−∞,−1] ⇒ f(z) = f(z′).

Assume that there are z, z′ such that z[−∞,−1] = z′[−∞,−1] and f(z) 6= f(z′).
Since f = f ◦ σ−1 + g ◦ π−, f(σ−1(z)) 6= f(σ−1(z′)). Similarly f ◦ σ−1 =
f ◦σ−2+g◦π−◦σ−1, so f(σ−2(z)) 6= f(σ−2(z′)). Continuing in this way we get
that f(σ−m(z)) 6= f(σ−m(z′)), but this can not be true since σ−m(z)[−n,m] =
σ−m(z′)[−n,m].
Thus there is a g̃ ∈ C(X−,Z) such that g̃ ◦ π− = f and hence g̃ − g̃ ◦ σ− = g.
Set for every j ∈ JX and n ∈ N,

α̃[zj[n,∞[]∞
= ajn + g̃(zj]−∞,n[).

Let i ∈
⋃

j∈JX
Kj. Choose xi ∈ ND∞(X+) such that i = [xi]∞. There is for

each z ∈ X which satisfies π+(z) = xi, a unique mz ∈ N0 such that σ−mz (z) is
an adjusted left special word. Let

Li = {[z[−m,∞[]∞ | π+(z) = xi, 0 ≤ m ≤ mz} ⊆ IX ,

Bi = {σ−mz (z) | π+(z) = xi} ⊆ X,

and
α̃i =

∑
i′∈Li

αi′ +
∑
z∈Bi

f(σ−1(z)).

Notice that even though Bi depends on the choice of xi, α̃i does not, because
f = g̃ ◦ π−.
Since (ajn)j∈JX ,n∈N0 ∈

∑
n∈N0

ZJX , there is an N1 such that ajn = 0 for j ∈ JX

and n ≥ N1, and since g̃ is continuous, there is an N2 ∈ N such that

y[−N2,−1] = y′[−N2,−1] ⇒ g̃(y) = g̃(y′)

for y, y′ ∈ X−. Let j ∈ JX . Since zj[n,∞[ is isolated for every j ∈ JX and every
n ∈ N0 (cf. Remark 5.12), there is for each 0 ≤ n < max{N1, N2} a kj

n ∈ N
such that [zj[n,∞[]kjn = {zj[n,∞[}, and by increasing kj

n if necessary, we may (and

will) assume that #Pkjn(zj[n,∞[) > 1. Let

N3 = max{kj
n | j ∈ JX , 0 ≤ n < max{N1, N2}}.

Since
⋃

j∈JX
Kj is finite, there is an N4 such that [x]N4 = [x′]N4 ⇒ [x]∞ = [x′]∞

and PN4(x) > 1 for [x]∞, [x′]∞ ∈
⋃

j∈JX
Kj. Let M = max{N1, N2, N3, N4}.

We claim that
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1. ∀y, y′ ∈ X− : y[−M,−1] = y′[−M,−1] ⇒ g̃(y) = g̃(y′),

2. ∀x, x′ ∈ ND∞(X+) : [x]M = [x′]M ⇒ α̃[x]∞ = α̃[x′]∞ ,

3. ∀x ∈ ND∞(X+), y ∈ X− : PM (x) = {y[−M,−1]} ⇒ α̃[x]∞ = g̃(y),

which implies that (g̃, (α̃i)i∈IX
) ∈ GX . 1. follows from the fact that M ≥ N2.

Notice that if

[x]∞ ∈
⋃

j∈JX

(
Kj ∪ {[zj[n,∞[]∞ | 0 < n < max{N1, N2}}

)
,

then x′ ∈ [x]M ⇒ x ∼∞ x′. This takes care of 2. in the case where [x]∞ ∈⋃
j∈JX

(
Kj ∪ {[zj[n,∞[]∞ | 0 < n < max{N1, N2}}

)
. For n ≥ max{N1, N2},

α[zj[n,∞[]∞
= g̃(zj]−∞,n[), and since

[zj[n,∞[]M = [zj
′

[n′,∞[]M ⇒zj[n−N2,n[ = zj
′

[n′−N2,n′[

⇒g̃(zj]−∞,n[) = g̃(zj
′

]−∞,n′[)

2. and 3. hold.
Let (˜̃g, ( ˜̃αi)i∈IX

) = AX(g̃, (α̃i)i∈IX
). Then ˜̃g = g̃ ◦ σ−, and for j ∈ JX and n ∈ N

˜̃α[zj[n+1,∞[]∞
= α̃[zj[n,∞[]∞

= ajn + g̃(zj]−∞,n[).

Let j ∈ JX . Then L[xj]∞ = Kj and B[xj]∞ = Mj, so

˜̃α[zj[1,∞[]∞
= α̃[xj]∞

=
∑
i∈Kj

αi +
∑
z∈Mj

f(σ−1(z))

= aj0 + g(π−(zj)) + f(σ−1(zj))

= aj0 + g̃(zj]−∞,0[),

where the third equality sign follows from the fact that

(Id−AX)(f, (ajn)j∈JX ,n∈N0) = ψ(g, (αi)i∈IX
),

and the fourth follows from the facts that g̃ ◦ π− = f and g̃ − g̃ ◦ σ− = g.
If [x]∞ ∈ Kj, then L[x]∞ is the disjoint union of L[x′]∞ , where [x′]∞ ∈ IX

and σ+(x′) = x, and {[x]∞}, and B[x]∞ is the disjoint union of B[x′]∞ , where
[x′]∞ ∈ IX and σ+(x′) = x, and {σ(z) | z ∈ X, z[0,∞[ /∈ ND∞(X+), z[1,∞[ = x}.
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Hence

˜̃α[x]∞ =
∑

[x′]∞∈IX

σ+(x′)=x

α̃[x′]∞ +
∑
z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

g̃(z]−∞,−1])

=
∑

i∈L[x]∞

αi − α[x]∞ +
∑

z∈B[x]∞

f(σ−1(z))

= α̃[x]∞ − α[x]∞ .

So g̃ − ˜̃g = g, α̃i − ˜̃αi = α̃i − α̃i + αi = αi for i ∈ Kj, and

α̃[zj[n,∞[]∞
− ˜̃α[zj[n,∞[]∞

= ajn + g̃(zj]−∞,n[)− ajn−1 − g̃(zj]−∞,n−1[) = α[zj[n,∞[]∞
.

for j ∈ JX and n ∈ N. Thus (Id−AX)(g̃, (α̃i)i∈IX
) = (g̃, (α̃i)i∈IX

) −
(˜̃g, ( ˜̃αi)i∈IX

) = (g, (αi)i∈IX
).

c) (Id−AX)(GX) ⊆ ker(ρ ◦ψ): Let (g, (αi)i∈IX
) ∈ GX . Set f = g ◦ π− and ajn =

α[zj[n,∞[]∞
− g(zj]−∞,n[) for j ∈ JX and n ∈ N0. Then (f, (ajn)j∈JX ,n∈N0) ∈ GX ,

and since f − f ◦ σ−1 = (g − g ◦ σ−) ◦ π−,

ajn − ajn−1 = α[zj[n,∞[]∞
− α[σn−1

+ (xj)] − (g − g ◦ σ−)(zj]−∞,n[)

for j ∈ JX and n ∈ N, and

aj0 −
∑
z∈Mj

f(σ−1(z)) = α[xj]∞ −
∑
z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[∈j

g(z]−∞,−1])− g(π−(zj))

for j ∈ JX , we have that

(Id−AX)(f, (ajn)j∈JX ,n∈N0) = ψ((Id−AX)(g, (αi)i∈IX
)).

Thus (Id−AX)(GX) ⊆ ker(ρ ◦ ψ). �

The next theorem now immediately follows from Corollary 5.6:

Theorem 5.17. Let X be a shift space which has property (∗∗). Then K0(X)
and

GX/(Id−AX)
(
GX

)
are isomorphic as groups.
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5.4 examples

Example 5.18. Let X be a finite shift space. Then K0(X) and

C(X,Z)/(Id−(σ−1)?)(C(X,Z))

are isomorphic as groups.

Proof: We saw in Example 3.4, that a finite shift space has property (∗∗) and
has no left special elements. Thus JX = ∅, so GX = C(X,Z) and AX = (σ−1)?

and it follows from 5.17, that K0(X) and

C(X,Z)/(Id−(σ−1)?)(C(X,Z))

are isomorphic as groups. �

Let η be the canonical projection from GX to C(X,Z). We tie things up with
the following proposition:

Proposition 5.19. Let X be a shift space which has property (∗∗). Then there
is a surjective group homomorphism

η̄ : GX/(Id−AX)
(
GX

)
→ C(X,Z)/(Id−(σ−1)?)(C(X,Z))

which makes the following diagram commute:

C(ΩX ,Z)

����

κ //

ψ◦γX

''PPPPPPPPPPPPP
C(X,Z)

����

GX

����

η
66nnnnnnnnnnnnnn

GX/(Id−AX)
(
GX

)
η̄

''OOOOOOOOOOOO

C(ΩX ,Z)

(Id−λX )(C(ΩX ,Z))

κ̄ //

ψ̄◦γ̄X

77ppppppppppp
C(X,Z)

(Id−(σ−1)?)(C(X,Z))

where γ̄X is the map from C(ΩX ,Z)/(Id−λX)(C(ΩX ,Z)) to GX/(Id−AX)GX

induced by γX .

Proof: Since η ◦AX = (σ−1)? ◦ η, η induces a map from GX/(Id−AX)
(
GX

)
to

C(X,Z)/(Id−(σ−1)?)(C(X,Z)). It is easy to check that this map makes the
diagram commute. �

Corollary 5.20. Let X be a shift space which has property (∗∗) and only has
two left special words. Then η̄ is an isomorphism from GX/(Id−AX)

(
GX

)
to

C(X,Z)/(Id−(σ−1)?)(C(X,Z)). Thus K0(X) and

C(X,Z)/(Id−(σ−1)?)(C(X,Z))

are isomorphic as groups.
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Proof: If X only has two left special words, z1 and z2, then they must necessarily
be right shift tail equivalent, so JX = {j}, where j = z1 = z2. We also have
that z1[0,∞[ = z2[0,∞[ is an isolated common tail of j, so we can choose z2 to be
zj. The set Mj is equal to {z1, z2}, so

AX((f, (ajn)n∈N0)) = (f ◦ σ−1, (ãjn)n∈N0),

where ãj0 = f(σ−1(z1)), and ãjn = ajn−1 for n > 0.
Suppose that η((f, (ajn)n∈N0)) ∈ (Id−(σ−1)?)(C(X,Z)). Then there is a g ∈
C(X,Z) such that f = g− g ◦σ−1. Since (ajn)n∈N0 ∈

∑
n∈N0

Z, there is an N ∈
N0 such that ajn = for n > N . Let c = −g(σ−1(z1))−

∑N
n=0 a

j
n and h ∈ C(X,Z)

the function f plus the constant c, and let bjn =
∑n
i=0 a

j
i + g(σ−1(z1)) + c for

n ∈ N0. Then bjn = for n > N , so (h, (bjn)n∈N0) ∈ GX , and

(Id−AX)((h, (bjn)n∈N0)) = (f, (ajn)n∈N0),

which prove that η̄ is injective and thus an isomorphism. �

Example 5.21. As noted in [12], a Sturmian shift space Xα, α ∈ [0, 1]\Q is
minimal and has two special words. Thus it follows from Example 3.6 and
Corollary 5.20 that K0(Xα) and

C(Xα,Z)/(Id−(σ−1)?)(C(Xα,Z))

are isomorphic as groups.
In [31] it is shown that

C(Xα,Z)/(Id−(σ−1)?)(C(Xα,Z))

is isomorphic to Z + Zα as an ordered group. Thus it follows that K0(Xα) and
Z + Zα are isomorphic as groups.
In [9, Corollary 5.2] we prove that K0(Xα) with the order structure mentioned
in the Introduction is isomorphic to Z + Zα.

Example 5.22. It is proved in [30, pp. 90 and 107] that if τ is an aperiodic and
primitive substitution, then the associated shift space Xτ is minimal and only
has a finite number of left special words. Thus by Example 3.6, Xτ has property
(∗∗). It follows from [6, Proposition 3.5] that if τ furthermore is proper and
elementary, then π+(z) is isolated for every left special word z. Thus K0(Xτ )
is isomorphic to the cokernel of the map

Aτ (f, [(a
j
0)j∈JXτ

, (aj1)j∈JXτ
, . . . ]) =f ◦ σ−1,


 ∑

z∈Mj

f(σ−1(z))

− f(σ−1(zj))


j∈JXτ

, (aj0)j∈JXτ
, (aj1)j∈JXτ

, . . .



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defined on

Gτ = C(Xτ ,Z)⊕
∞∑
i=0

ZJXτ ,

where JXτ and Mj are as defined in section 5.2, and zj is a cofinal special
element belonging to the right shift tail equivalence class j.
In the notation of [8], JXτ = {ỹ1, ỹ2, . . . , ỹnτ }, Meyj = {yj1, y

j
2, . . . , y

j
pj+1} and

z
eyj

= ỹj . In [8], this is used for every aperiodic and primitive (but not neces-
sarily proper or elementary) substitution τ , to present K0(Xτ ) as a stationary
inductive limit of a system associated to an integer matrix defined from com-
binatorial data which can be computed in an algorithmic way (cf. [6] and [7]).
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4.7 Closing remarks

One can show that if X is shift space which has property (∗∗), then the
kernel of the quotient map ρ : OX+ → C(X) oσ? Z is a finite number of
copies of the compact operators. In fact the number of copies is the same
as the number of elements in JX.

The description of K0 giving in the paper is the starting point for an
thorough investigation and description of the K0-group of the C∗-algebra
associated to the one-sided shift space of a substitutional dynamical sys-
tems as a stationary inductive limit of finite abelian preordered groups
which is carried out in the last three papers.
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Chapter 5

Special elements in
substitutional dynamical
systems

This chapter consists of the preprint A graph approach to computing non-
determinacy in substitutional dynamical systems which is written together
with Søren Eilers.

In order to give the previously mentioned description of K0 for sub-
stitutional dynamical system, we need an understanding of the structure
of special elements in substitutional dynamical systems. This paper de-
scribes an algorithm for finding them.
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A graph approach to computing
nondeterminacy in substitutional dynamical

systems

Toke M. Carlsen and Søren Eilers

Revised version, February 2004

Abstract

We present an algorithm which for any aperiodic and primitive
substitution outputs a finite representation of each special word in
the shift space associated to that substitution, and determines when
such representations are equivalent under orbit and shift tail equiva-
lence. The algorithm has been implemented and applied in the study
of certain new invariants for flow equivalence of substitutional dynam-
ical systems.

1 Preliminaries

1.1 Introduction

Most elements in substitutional dynamical systems, given as doubly infinite
sequences, have unique pasts and futures in the sense that one one-sided
infinite subsequence determines the other. The importance of those elements
which do not have this property, the special elements, is well understood in
the theory of substitutions and the dynamical systems associated to them.

Determining K-groups of certain C∗-algebras we found, as described in
[4], an invariant of flow equivalence (cf. [16]) — akin and related to the di-
mension groups considered in [8] — of substitutional systems based on com-
binatorial and textual properties of the special elements. For each primitive
and aperiodic substitution τ on an alphabet a this invariant is an ordered

1

110 CHAPTER 5. SPECIAL ELEMENTS



group defined as a stationary inductive limit of group endomorphisms on
Z|a| ⊕ Znτ induced from a (|a|+ nτ )× (|a|+ nτ ) block matrix[

AAAτ 0
BBBτ IdIdId

]
where the block AAAτ is the abelianization matrix of the substitution in ques-
tion. To compute the integer nτ and the matrix BBBτ one needs a coherent finite
representation of all the special words of the substitution, and to determine
which among the special words are equivalent under the natural relations of
orbit and right shift tail equivalence (see Definition 1.4). In a recent paper
[7] we prove by example that the resulting invariant contains information not
accessible by any other flow invariant known to us, such as the dimension
groups in [8], the configuration graph (see page 6 below), or the numerical
index used in conjuction with the notion of weak equivalence in [1]. The
example is an explicit substitution τ on {a, b, c, d} such that the matrices
associated to τ and its opposite τ−1, respectively, become

6 9 3 9 0 0
12 18 6 18 0 0
6 9 3 9 0 0
36 54 18 54 0 0
10 13 4 12 1 0
6 8 2 8 0 1

 and


6 9 3 9 0 0
12 18 6 18 0 0
6 9 3 9 0 0
36 54 18 54 0 0
2 7 2 7 1 0
2 7 2 7 0 1


Needless to say, having computer based tools to compute these compo-

nents of our invariant is very useful in the study of it. The project described
above thus naturally lead us to concern ourselves with computability of the
aforementioned words and quantities associated to the class of special ele-
ments associated to a given substitution, and failing to find algorithms meet-
ing our needs in the literature, we developed the approach presented in the
present note. Our algorithm outputs a finite representation of each special
word, and determines when such representations are equivalent under shift
tail equivalence, a naturally occurring relation of importance in our invariant.

We wish to acknowledge [2], to which our work is closely related. Al-
though the ends and ambitions of the present note and [2] do not overlap,
the means seem to do. Our method was developed independently, but we
recieved [2] before writing up this note. Although we have not attempted
to do so, the results in our Section 3 could most likely be developed using

2
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the methods in [2], and vice versa. The series of reductions based on replac-
ing the substitutions in [2] is, however, computationally inconvenient for our
purposes. Our Section 4 has no analogue there.

Our paper is organized as follows. In Section 2, after having singled
out the class of elementary substitutions and explained how to reduce the
problem to this case, we associate certain graphs to such substitutions and
explain how they give rise to a class of adjusted left special words. We
also define a class of adjusted left special words arising from τ -periodic one-
sided words. In Section 3 we then proceed to prove that each adjusted left
special word is on the list generated in the previous section, and prove a
separation result of importance in our forthcoming paper [6]. The main
technical tool is the one-sided substitute for injectivity of τ considered as a
map on its two-sided shift space, cf. Lemma 1.2 below, which we shall be
able to derive from the work of Mossé ([14]). In Section 4 we describe an
algorithm for determining shift tail and orbit equivalence of the output of
the algorithm described and proved in the previous section. The paper ends
with a summary of the algorithm and a few remarks of relevance to related
work.

1.2 Substitutions

We refer to [9], [8], and [17] for a thorough introduction to this subject and
shall here only lay out notation. Letting a denote a finite set or alphabet,
we denote by a] the set of nonempty finite words in a. For w ∈ a], we let |w|
denote the number of letters and index the letters of w from 0 to |w| − 1. A
substitution is simply a map τ : a −→ a]. We can extend τ to a] or to

aZ, aN0 , a−N (1)

(with N0 = {0, 1, . . . },−N = Z\N0) in the obvious way, and define powers
of τ recursively. To define the action of τ on aZ we need to specify that
the word resulting from the substitution of the letter at index 0 of a doubly
infinite sequence x will be placed starting at index 0 in τ(x). We thus have

τ(y.x) = τ(y).τ(x)

where, as we will do in the following, we have used a dot to indicate the
position separating −N and N0. We denote by τ−1 the opposite substitution
defined by reversing each word τ(·). Finally, an abelianization matrix AAAτ is

3
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associated to τ as the |a| × |a|-matrix counting at row b and column a the
number of occurrences of b in τ(a).

We equip the sequence spaces mentioned in (1) with the product topology
from the discrete topology on a, and define σ : aZ −→ aZ by (σ(x))n = xn+1.
Maps of this type we will refer to as shift maps. A two-sided shift space is
a closed subset of aZ which is mapped onto itself by σ. We shall refer to
such spaces by “X” with possible subscripts. Generally speaking, a one-sided
shift space is a closed subset of aN0 or a−N which is mapped into itself by
the unique shift map. We are only interested in those one-sided shift spaces
which can be produced from two-sided shift spaces by projection, and denote
these spaces by X+ and X−, respectively. There is a rich theory of shift spaces;
we refer to [12] and [11].

For −∞ ≤ i < j ≤ ∞ we use interval notation x[i,j] to denote the
(possibly infinite) subword of x corresponding to the indices between i and
j. We write x[i,j[ = x[i,j−1] when it makes sense and is convenient. Unless
specified otherwise, we index finite words by nonnegative indices starting
with 0, and right or left infinite words by N0 or −N.

The language of a two-sided shift space is the subset of a] ∪ {ε}, where ε
denotes the empty word, given by

L(X) = {x[i,j] | x ∈ X, i ≤ j ∈ Z}.

Conversely, a subset G ⊆ a] ∪ {ε} defines a shift space; the smallest shift
space XG such that G ⊆ L(XG). With G = {τn(a) | n ∈ N, a ∈ a} we arrive
at the substitutional dynamical systems denoted Xτ which will be our main
concern in the present paper.

We single out two important properties of substitutions below. The no-
tation “AAA > 0” indicates that the matrix AAA has only positive entries.

Definition 1.1 A substitution τ is primitive if |a| > 1 and

∃n ∈ N : AAAnτ > 0.

A substitution τ is aperiodic if |Xτ | = ∞.

It is decidable when a given substitution has these properties, cf. [15]
and [19]. Primitive and aperiodic substitutions yield minimal shift spaces:
all orbits {σn(x) | n ∈ Z} are dense, cf. [17]. Consequently, there are no
(ultimately) σ-periodic words in Xτ ,X

+
τ or X−τ for such τ : if xk+n = xm+n for

all n in the various index sets, then k = m. Further, we have

4
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Lemma 1.2 [[14], cf. [8, Corollary 10]] The map induced by τ on Xτ is
injective, when τ is primitive and aperiodic.

Example 1.3 The following substitutions are all primitive and aperiodic:

τ1 :1 7→ 12, 2 7→ 13, 3 7→ 123;

τ2 :0 7→ 003210, 1 7→ 00, 2 7→ 00, 3 7→ 00220;

τ3 :a 7→ aba, b 7→ baab;

τ4 :0 7→ 10, 1 7→ 0;

τ5 :a 7→ accdadbb, b 7→ acdcbadb, c 7→ aacdcdbb, d 7→ accbdadb;

τ6 :a 7→ accbbadd, b 7→ accdbabd, c 7→ aacbbcdd, d 7→ acbcdabd.

The following notation is convenient. When w0, . . . , wn−1 is a finite list of
words in L(Xτ ), we define

[w0, . . . , wn−1]
+ = w0τ(w1) · · · τn−1(wn−1)τ

n(w0)τ
n+1(w1) · · · ∈ aN0 ,

[wn−1, . . . , w0]
− = · · · τn+1(w1)τ

n(w0)τ
n−1(wn−1) · · · τ(w1)w0 ∈ a−N.

1.3 Orbit classes and special elements

Definition 1.4 Let X be a two-sided shift space. We define three equiva-
lence relations on x, y ∈ X in the following way:

(i) If there exists an n such that xm = yn+m for all m ∈ Z then we say that
x and y are orbit equivalent and write x ∼o y.

(ii) If there exist an n and an N such that xm = yn+m for all m > N then
we say that x and y are right shift tail equivalent and write x ∼r y.

(iii) If there exist an n and an N such that xm = yn+m for all m < N then
we say that x and y are left shift tail equivalent and write x ∼l y.

Notice that x ∼o y implies that x ∼r y, x ∼l y, so ∼r and ∼l induce
equivalence relations on X/∼o which we also will denote by ∼r and ∼l. We
call an orbit class [x] in X/∼o left special ([10, ¶5]) if there exists [y] ∈ X/∼o

5
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such that [x] 6= [y], but [x] ∼r [y]. A left special word x ∈ X is a representative
of such an orbit class with the property that y ∈ X exists with

x−1 6= y−1 x[0,∞[ = y[0,∞[.

We say that the left special word x is adjusted if σ−n(x) is not left special
for any n ∈ N.

The symmetric definition defines a class of (adjusted) right special words.
Classical results ([17, p. 107], [3, Theorem 3.9]) give:

Theorem 1.5 When τ is aperiodic and primitive, then the number of (left
or right) special orbit classes is finite, but nonzero.

Note that as a consequence of this, there is always an adjusted special
word representing each special orbit class. Clearly this word is unique.

A nice way of describing the structure of special words using the equiva-
lence relations ∼r and ∼l on X/∼o, suggested to us by an electronic exchange
with Charles Holton, is by means of a bipartite graph defined as follows. The
vertex set of the graph will be contained in the disjoint union of X/∼r and
of X/∼l, and for each orbit class [x]o with x a special element, we let an edge
connect A ∈ X/∼r with B ∈ X/∼l if [x]o ∈ A and [x]o ∈ B, and we label
that edge [x]o. Removing all vertices with no edges, we arrive at a bipartite
graph which we shall denote as the configuration graph of X. The theorem
above shows that this is a finite graph when the shift space arises from a
substitution. Examples are given in 4.7 below.

Lemma 1.6 The configuration graph is an invariant of conjugacy and flow
equivalence ([16]) of the substitutional dynamical systems.

Proof: Since a conjugacy is a sliding block code (cf. [12, 1.5]), one easily sees
that it must preserve special words and all the relevant equivalence relations.
Similarly, any expansion map induced by

a0 7→ a0b ai 7→ ai, i > 0

sending biinfinite sequences on the alphabet a = {a0, a1, . . . , an} to biinfinite
sequences on a ∪ {b} will take special words to special words in a manner
preserving all the relations, and since the same can be said about the inverse
of this map which deletes all occurrences of b, we get that expansion maps

6
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preserve configuration graphs. This proves the second claim since flow equiv-
alence on shift spaces is generated by conjugacy and expansion according to
[13, Lemma 2.1]. �

Note that the lemma implies that also the number of orbit or shift tail
classes of special elements is a flow invariant.

2 Collecting special elements

2.1 Elementary and simplifiable substitutions

We recall from [18, p. 17] that a substitution τ on the alphabet a is simplifiable
if it can be factored τ = f ◦ g for maps

f : b −→ a] g : a −→ b]

where |b| < |a|. We say that the substitution υ = g ◦ f is a simplification of
τ in this case. In case τ is not simplifiable, we call it elementary.

It is decidable whether a substitution is simplifiable or elementary, cf.
[18, p. 17], and a succession of simplifications, ending with an elementary
substitution, can be computed in the simplifiable case. Composing the 2n
maps involved in a simplification in n steps to the elementary substitution
υ, we get f, g with the property

τn = f ◦ g υn = g ◦ f. (2)

This was used in [15] to provide an algorithm for deciding aperodicity by
reducing to the elementary case. We shall use a similar strategy to compute
the set of special elements for a given substitution, based on Proposition 2.2
below.

First, however, we need to concern ourselves with establishing our key
substitution properties for simplifications. Simplifications preserve aperiod-
icity – this is a key observation in [15] – but a simplification of a primitive
substitution may fail to be primitive. However, the following holds:

Lemma 2.1 If a primitive and aperiodic substitution τ is simplified to an
elementary substitution υ, then υ is primitive and aperiodic.

Proof: It follows easily that AAAτ and AAAυ are strongly shift equivalent, cf. [12].
Note further that AAAυ must be essential, as otherwise a letter could be deleted
from the alphabet. Applying [12, Proposition 4.5.10], we get the desired
result. �

7
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Proposition 2.2 Let τ be a primitive and aperiodic simplifiable substitu-
tion and let υ be an elementary simplification with maps f, g satisfying (2)
above. The map from Xυ to Xτ induced by f preserves orbit and shift tail
equivalences, and maps the (left, right) special orbits of Xυ bijectively onto
the set of (left, right) special orbits of Xτ .

Proof: Clearly the maps induced by f and g preserve all three kinds of
equivalence. Note also that they are injective because of Lemma 1.2; in the
case of f because υ (and υn) is primitive by Lemma 2.1.

Clearly, then, both maps send special elements to special elements. Let
x1, . . . , xn be a choice of orbit inequivalent special words of Xτ , representing
all such orbit classes. We have that τ(x1), . . . , τ(xn) are orbit inequivalent
special words of Xτ , since τ is injective and Xτ is aperiodic. Hence each orbit
class of special elements is realized by a representative of the form f(g(xi)),
where g(xi) is special. �

Example 2.3 The substitutions τ1, τ3, τ4, τ5 and τ6 are elementary, but τ2 is
simplifiable to

p 7→ ppqp, q 7→ pprrppppp, r 7→ pp

using f given by p 7→ 0, q 7→ 321, r 7→ 2 and g given by 0 7→ ppqp, 1 7→
pp, 2 7→ pp, 3 7→ pprrp.

2.2 NS-covers and their graphs

In the following, we assume that the alphabet a is equipped with some well-
ordering “>”; in the examples, we just use alphabetical or numerical order.

Let W be a finite set of nonempty words. By W×̂W we denote the set

{(v, w) | v, w ∈ W , v|v|−1 > w|w|−1}

consisting of pairs of words from W which end in different letters, arranged
so that the word ending in the first letter according to “>” is first among
the two.

Definition 2.4 Let τ be a primitive and aperiodic substitution. We say
that the finite family W ⊆ L(Xτ ) is an NS-cover of τ (a nonsuffix cover) if

Cyl−(w) = {x ∈ Xτ | x[−|w|,−1] = w}, w ∈ W

8
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forms a disjoint partition of Xτ , and if for every pair (v, w) ∈ W×̂W one can
write

τ(v) = tv′z τ(w) = uw′z (3)

where t, u, z ∈ L(Xτ ) with t, u 6= ε, and where either

(v′, w′) ∈ W×̂W (+)

or
(w′, v′) ∈ W×̂W . (−)

Not every primitive and aperiodic substitution posseses an NS-cover –
our example τ2 provides an example of this behavior as seen in Example 5.2
below. However, the following shall suffice for our purposes:

Proposition 2.5 If a primitive and aperiodic substitution is elementary, it
posseses an NS-cover. Indeed, there is a computable integer n such that the
set

{w ∈ L(Xτ ) | |w| = n}

is an NS-cover.

Proof: By [18, Theorem 1.6, p. 126], the integer

p =
∑
a∈a

(|τ(a)| − 1) + max
a∈a

|τ(a)|

has the property that if words v, w ∈ L(Xτ ) end in different letters, and both
τ(v) and τ(w) have the suffix z, then |z| ≤ p.

By primitivity, one letter a ∈ a has the property |τ(a)| ≥ 2, and we may
find m such that a occurs in τm(b) for every b ∈ a, and with

n = 2(p+ 1) max{|τm(b)| | b ∈ a}

we thus have that a occurs p+ 1 times in v if |v| = n. Thus

|τ(v)| ≥ p+ 1 + |v| = p+ n+ 1

for each such v. In (3), this leaves n letters to read off v′, w′ ending in different
letters, and at least one more letter to read off t, u. �

9

118 CHAPTER 5. SPECIAL ELEMENTS



Implementation remark 2.6 In practice one finds that the value of n de-
termined above is often much larger than needed. It is hence recommendable
to simply try n = 1, n = 2, etc. until one reaches a sufficiently large length.
We do not know whether the bound given is reachable.

Example 2.7 For the substitutions considered in Example 1.3, the smallest
number n such that the set of all words in the associated language is an
NS-cover is

τ1 τ−1
1 υ2 υ−1

2 τ3 = τ−1
3 τ4 τ−1

4

2 3 3 4 1 4 2

Let now τ be a primitive and aperiodic substitution with an NS-cover
W . We define a multiply labeled graph Gτ,W of τ and W as follows. Choose
as vertex set Vτ,W = W×̂W and define for each (v, w) ∈ W×̂W a threefold
labeled edge

(v′, w′)
z,t,u−→ (v, w),

where v′, w′ and z, t, u are the (obviously unique) elements satisfying (3). Let
Eτ denote the set of all such edges with (v, w) ranging over W×̂W and define
labelings

L : E −→ L(Xτ ),L+ : E −→ L(Xτ ),L− : E −→ L(Xτ )

accordingly, associating z, t, u, respectively, to the edge in question. Finally,
we label any edge of Gτ by

L′ : E −→ s = {+,−},

according to which of the alternatives in Definition 2.4 is met. We will need
to consider {+,−} as the group Z2, but find this notation more suggestive.

In the following definition, the essential part of a given graph is the
subgraph defined by deleting all vertices which do not have both incoming
and outgoing edges.

Definition 2.8 The graph Gτ,W is the essential part of (Vτ,W , Eτ,W) labeled
by the restrictions of the labelings.

Corollary 2.9 For every primitive and aperiodic substitution τ with anNS-
cover W , Gτ,W is a nonempty forest of cycles.

10
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Proof: By construction, each vertex of Gτ has only one incoming edge. Since
Gτ is essential, each vertex has at least one, and thus exactly one, outgoing
edge. We conclude that Gτ is a forest of cycles. Since (Vτ , Eτ ) defined above
has at least one cycle, so does Gτ . �

Example 2.10 For each substitution in Example 1.3 we state Gτ associated
to the NS-covers consisting of all words of a certain length, as found in
Example 2.7. The graphs are decorated with L,L′.

τ1 : (21, 12)
3,+

--
(12, 13)

ε,+
mm

τ−1
1 : (321, 213)

21,+
--
(131, 213)

21,+
mm (132, 213)

1,−

��

υ2 : (ppp, ppq)
pp,− // (ppp, prr)

pp,−wwooooooooooo

(ppq, prr)

pp,+

hhPPPPPPPPPPPP

υ−1
2 : (pppq, pprr)

p,−

��
(pppp, pppq)

ppppp,−

��

τ3 : (a, b)

ε,+

��

τ4 : (1010, 1001)

0,−

��

τ−1
4 : (10, 01)

ε,−

��

Lemma 2.11 Let τ be a primitive and aperiodic substitution. When W
is an NS-cover for τ , then it is also an NS-cover for τN for N ≥ 1. The
underlying graph of GτN ,W is identical to the higher power graph (Gτ,W)N ,

11
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with edges representing paths on GτW of length N . It is labeled by

L(e0, . . . , eN−1) = L(e0)τ(L(e1)) · · · τN−1(L(en−1)),

L′(e0, . . . , eN−1) =
N−1∏
i=0

L′(ei),

and

L±(e0, . . . , eN−1) = τN−1(LsN−1
(eN−1)) · · · τ(Ls1(e1))Ls0(e0),

where si ∈ {+,−} is defined recursively by s0 = ± and si+1 = L′(ei)si.

Proof: To see the first claim, note that when (v, w) ∈ W×̂W

τ 2(v) = τ(tv′z) = τ(t)τ(v′)τ(z) = τ(t)t′v′′z′τ(z),

τ 2(w) = τ(tw′z) = τ(u)τ(w′)τ(z) = τ(u)u′w′′z′τ(z),

where (v′, w′) and (v′′, w′′) are elements of W×̂W . This forms the basis of an
induction argument proving that W is an NS-cover for τN . The remaining
claims are straightforward. �

Proposition 2.12 Let τ be a primitive and aperiodic substitution. There
is an N such that GτN ,W is a forest of loops all labeled + by L′.

Proof: As seen in the proof of Corollary 2.9, Gτ,W is a forest of cycles. The
power m defined as the least common multiple of all the lengths of cycles
will lead to a graph with loops only. Then N = 2m will suffice. �

We shall say that N is a W-basic power of the primitive and aperiodic
substitution τ (relative to the NS-cover W) if GτN ,W meets the conditions of
Proposition 2.12. Our result above proves that every primitive and aperiodic
substitution with an NS-cover W has an W-basic power. Suppose further
that τ−1 has an NS-cover W ′. We say that N is an W ,W ′-bibasic power if
N is W-basic for τ and W ′-basic for τ−1.

A class of left special words on bracket form can be read of the graph thus
associated to a W-basic power of a substitution. Indeed, whenever (v, w) is
a vertex in the graph, e is the loop at that vertex, and whenever L(e) 6= ε
we have that

τmN(v) = τN(m−1)(L+(e)) · · · τN(L+(e))L+(e)vL(e)τN(L(e)) · · · τN(m−1)(L(e))

τmN(w) = τN(m−1)(L−(e)) · · · τN(L−(e))L−(e)wL(e)τN(L(e)) · · · τN(m−1)(L(e))

12
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are words growing to infinity in both directions, as L+(e) 6= ε,L−(e) 6= ε by
definition of NS-covers. Thus both

[
N−1︷ ︸︸ ︷

ε, . . . , ε,L+(e)]−v.[L(e),
N−1︷ ︸︸ ︷

ε, . . . , ε]+

and

[
N−1︷ ︸︸ ︷

ε, . . . , ε,L−(e)]−w.[L(e),
N−1︷ ︸︸ ︷

ε, . . . , ε]+

are elements of Xτ . Since v and w end in different letters, these elements are
left special. We shall denote the class of such left special words by SW (lat.
sinister). By considering opposite substitutions and reverting the output of
the procedure described above, we get a set of right special elements which
we denote by DW (lat. dexter).

Implementation remark 2.13 It is a theoretical convenience to work with
special words read off a graph associated to basic powers, but as a conse-
quence of our construction the words may also be read off graphs associated
to smaller powers, notably N = 1.

When the graph is no longer a forest of +-labeled loops, one proceeds as
follows. For each vertex (v, w) in Gτ,W , one follows outgoing edges

e0, . . . , en

until en ends at (v, w). One defines si ∈ {+,−} recursively by

s0 = +, si+1 = L′(ei)si.

If sn = + one records

[Lsn(en), . . . ,Ls0(e0)]
−v.[L(e0), . . . ,L(en)]

+,

[L−sn(en), . . . ,L−s0(e0)]
−w.[L(e0), . . . ,L(en)]

+.

If sn = − one needs to consider

[L−sn(en), . . . ,L−s0(e0),Lsn(en), . . . ,Ls0(e0)]
−v.[L(e0), . . . ,L(en)]

+,

[Lsn(en), . . . ,Ls0(e0),L−sn(en), . . . ,L−s0(e0)]
−w.[L(e0), . . . ,L(en)]

+.

Obviously, we just get different – shorter – bracket representations of the
elements of SW this way.

13
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Example 2.14 Reading off elements on the graphs found in Example 2.10
we get

τ1 :SW2 = {[1, 13]−12.[ε, 3]+, [12, 12]−13.[ε, 3]+, [13, 1]−21.[3, ε]+, [12, 12]−12.[3, ε]+};
DW3 = {[12, 12]−.123[12, 23]+, [12, 12]−.312[13, 13]+,

[12, 12]−.131[23, 12]+, [1, 1]−.231[213, 312]+,

[1, 1]−.312[312, 213]+};
υ2 :SW3 = {[pqpppqp, pqpppqpppppp, pqp]−ppp.[pp, pp, pp]+,

[pqp, pqpppqp, pqpppqpppppp]−prr.[pp, pp, pp]+,

[pqpppqpppppp, pqp, pqpppqp]−ppq.[pp, pp, pp]+};
DW4 = {[ppppp, ppppp]−.qppp[qpp, pqpppqpppqpp]+,

[ppppp, ppppp]−.rrpp[pqpppqpppqpp, qpp]+,

[p, p]−.pppp[rrpppqpppqpppqpp, qpppqpppqpp]+,

[p, p]−.qppp[qpppqpppqpp, rrpppqpppqpppqpp]+};
τ3 :SW1 = ∅;

DW1 = ∅.
τ4 :SW4 = {[0, 0]−1010.[0, 0]+, [0, 0]−1001.[0, 0]+}

DW4 = ∅.

2.3 τ-periodic points

We call elements y ∈ X+, respectively x ∈ X−, τ -periodic when τn(y) = y,
respectively τn(x) = x, for some n ≥ 1. Let a be the last letter of a τ -
periodic x and b the first letter of a τ -periodic y. If ab ∈ L(Xτ ), then because
every finite subword of x.y is contained in τnk(ab) for some k, we have that
x.y ∈ Xτ . And if another τ -periodic word x′ ∈ X− ends in a′ 6= a for which
a′b ∈ L(Xτ ), then x.y and x′.y are left special elements.

The class Sp of left special elements obtained this way is computable. For
a letter a ∈ a gives rise to a τ -periodic word precisely when τn(a) begins or
ends in a, and there is a computable smallest integer N such that all possible
first and last letters are attained at some power n ≤ N . Furthermore, the
set of two-letter words of L(Xτ ) is computable.

14
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Definition 2.15 For any NS-cover W we write

SpW = SW ∪ Sp.

The symmetric notation is applied to D as well.

We also note that such a left special element can be written on bracket
form. Indeed,

x.y = [
N−1︷ ︸︸ ︷

ε, . . . , ε, v]−a.b[w,
N−1︷ ︸︸ ︷

ε, . . . , ε]+

where τN(a) = va and τN(b) = bw. Note that v, w 6= ε by primitivity.

Example 2.16 Sp and Dp are empty for τ1, τ2, τ5, τ6, but

τ3 :Sp = {[ab]−a.a[ba]+, [baa]−b.a[ba]+};
Dp = {[ab]−a.a[ba]+, [ab]−a.b[aab]+};

τ4 :Sp = ∅
Dp = {[1]−0.0[10, ε]+, [1]−0.1[0, ε]+}.

3 The structure of special words

In the previous section we defined two classes of left special words which we
denoted by SW and Sp, respectively, and let SpW denote their union. In the
present section we are going to prove that SpW coincides with the set of left
special words.

3.1 Auxiliary results

The following is a one-sided substitute for Lemma 1.2. It is proved using
techniques from [14].

Lemma 3.1 For a primitive and aperiodic substitution τ , let x, y ∈ Xτ . If
τ(x) ∼r τ(y), then x ∼r y.

Proof: We first note, as in [14], that there exists M ∈ N such that

τM(a) = τM(b) ⇐⇒ τM−1(a) = τM−1(b)

15
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for any a, b ∈ a. Since τ is primitive, we may choose M so large that an
element u ∈ Xτ has the property τM(u) = u. As a consequence of [14], cf. [8,
Corollary 12], we may choose x′, y′ ∈ Xτ such that

x ∼o τ
M−1(x′) y ∼o τ

M−1(y′).

By assumption, τM(x′) ∼r τ
M(y′). We fix i, j ∈ Z such that τM(x′)i+n =

τM(y′)j+n for all n ∈ N0.
We define for each k ∈ N0

ak = |τM(x′[0,k[)| − i bk = |τM(y′[0,k[)| − j

and let A = {a0, a1, . . . }, B = {b0, b1, . . . }. Our first goal is to prove that
A ∩ [L,∞[= B ∩ [L,∞[ for an L ∈ N chosen according to Mossé’s two-
sided reckognizability property for τM . This property states that with eMh =
|τM(u[0,h[)| and

u[eM
h −L,eM

h +L] = u[l−L,l+L]

then l ∈ {eMk | k ∈ N0}, cf. [14, Définition 1.2]. Hence let k ∈ A, k ≥ L and
choose, using minimality, integers r, s such that

u[r,r+k+L+i] = x′[0,k+L+i] u[s,s+k+L+j] = y′[0,k+L+j].

Then

{h+ eMr + i | h ∈ {a0, . . . , ak+i+L}} = {eMh | r ≤ h ≤ r + k + i+ L}, (4)

and

{h+ eMs + j | h ∈ {b0, . . . , bk+j+L}} = {eMh | s ≤ h ≤ s+ k + j + L}. (5)

Choose by (4) h ∈ {r, . . . , r + k + i+ L} such that eMh = k + eMr + i. Since

u[eM
h −L,eM

h +L] = u[eM
r +k+i−L,eM

r +k+i+L]

= τM(x′)[k+i−L,k+i+L]

= τM(y′)[k+j−L,k+j+L]

= u[eM
s +k+j−L,eM

s +k+j+L]

it follows by [14, Théorème 3.1 bis] that eMs + k + j = eMh for some h, where
obviously s ≤ h ≤ s + k + j. Using (5) we get that k ∈ B, as required to

16
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prove A ∩ [L,∞[⊆ B ∩ [L,∞[. The symmetric argument proves the other
inclusion.

Let

n = min{h ∈ N0 | ah ≥ L} m = min{h ∈ N0 | bh ≥ L}.

By what we have already proved, {an, an+1, . . . } = {bm, bm+1, . . . }, so

τM(x′n+d) = τM(x′)[an+d+i,an+d+1+i[

= τM(y′)[an+d+j,an+d+1+j[

= τM(y′)[bm+d+j,bm+d+1+j[

= τM(y′m+d)

for every d ∈ N0. By our initial assumption on M , also τM−1(x′n+d) =
τM−1(y′m+d). Consequently, x ∼r y, as desired. �

3.2 The main theorem

Lemma 3.2 Let τ be a primitive and aperiodic substitution with an NS-
cover W , and assume that N is a W-basic power for τ . Suppose that x1, x2 ∈
Xτ are elements of the form

xi = x̃ivi.x̃

where (v1, v2) ∈ W×̂W . Then there exist y1, y2 ∈ Xτ of the form

yi = ỹivi.ỹ

such that xi = σ−|L(e)|(τN(yi)), where e is the unique loop at (v1, v2) ∈ GτN ,W .

Proof: Let xi be of the described form. As a consequence of [14], cf. [8,
Corollary 12], there exist wi ∈ Xτ , and integers mi with 0 ≤ mi < |τN((wi)0)|
such that

xi = σmi(τN(wi)).

We get that

(τN(w1))[m1,∞[ = (x1)[0,∞[ = (x2)[0,∞[ = (τN(w2))[m2,∞[

and since τN is also aperiodic and primitive, Lemma 3.1 applies to yield
ni ∈ Z such that

(w1)[n1,∞[ = (w2)[n2,∞[. (6)

17
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We may and shall assume that among the pairs (n1, n2) ∈ Z2 satisfying (6),
the sum n1 +n2 is minimal. For if (nj1, n

j
2) satisfied (6) with nj1 +nj2 −→ −∞,

we could use the fact that there are no σ-periodic points in X+
τ to prove that

nj1−n
j
2 is constant and then conclude that w1 ∼o w2. This would lead to the

contradiction x1 ∼o x2.
Now by minimality

(w1)n1−1 6= (w2)n2−1.

Choose `i ∈ Z and u1, u2 ∈ W such that

(wi)[`i,∞[ = uiỹ

where ỹ = (w1)[n1,∞[ = (w2)[n2,∞[. Since we are working with a W-basic
power N for τ , we have

τN(uiỹ) = tiuizτ
N(ỹ),

and since this is a segment of xi, we get that z begins at index 0. Con-
sequently, (u1, u2) = (v1, v2), and since z = L(e), the result is established.
�

Theorem 3.3 Let τ be a primitive and aperiodic substitution with an NS-
cover W . If x ∈ Xτ is a left special word, then x ∈ SpW .

Proof: Choose a W-basic power N for τ . Let x1, x2 ∈ Xτ be given with
(x1)[0,∞[ = (x2)[0,∞[, but (x1)−1 6= (x2)−1. By definition of NS-covers, xi ∈
Cyl−(vi) for some unique vi ∈ W . Note that after interchanging x1 and x2 if
necessary, we may assume that (v1, v2) ∈ W×̂W . Apply Lemma 3.2 to get
elements yi and an edge e with the properties stated there, and note that
these elements are also left special and satisfy that yi ∈ Cyl−(vi).

When |L(e)| = 0, Lemma 3.2 can be iterated to get that

xi ∈
∞⋂
i=1

τ iN(Xτ ),

and this in turn implies that the xi are τ -periodic. When |L(e)| > 0, we let
z = L(e) and note that Lemma 3.2 may be iterated to prove that

xi = [
N−1︷ ︸︸ ︷

ε, . . . , ε, ti]
−ui.[z,

N−1︷ ︸︸ ︷
ε, . . . , ε]+.

We note that this word lies in SW by construction. �
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Remark 3.4 Note that when |L(e)| > 0 for all edges of GτN ,W the first case
does not occur and every left special word can be found in SW . This will
always be the case when τ is proper in the sense that there exists M ∈ N and
letters r, l ∈ a such that every word τM(a), a ∈ a begins in l and ends in r.
This leads to the following separation result of importance in our forthcoming
paper [6].

Proposition 3.5 Let τ be a proper, primitive and aperiodic substitution
with an NS-cover W . For every left special word x of X+

τ two words v1, v2 ∈
W may be chosen with the property

∀y ∈ X+
τ : v1y, v2y ∈ X+

τ =⇒ x = y.

Proof: As seen in Remark 3.4, x ∈ SW . Let (v1, v2) be a node of GτN ,W ,
where N is a W-basic power, from which we may initiate an infinite walk on
GτN ,W with labels yielding x. Using Lemma 3.2 as in the proof of Theorem
3.3 we get that when viy ∈ X+

τ , then y will coincide with the labels read off
this infinite walk, and hence y = x. �

4 Deciding shift tail and orbit equivalence

We have managed to generate all special words of an aperiodic and primitive
substitution. We have not yet, however, given an algorithm to decide which
special words are adjusted. Similarly, since our method may output two or
more elements which are orbit equivalent, or even identical, we have not yet
explained how to count the number of orbit classes of special words or to
compute the configuration graph. We solve these problems in the present
section.

4.1 A decidable relation

In this section we consider the following auxiliary relation, prove that it is
decidable on words on the form [v]−u.[w]+, and that it is closely related to
right shift tail equivalence.

Definition 4.1 Let τ be aperiodic and primitive, and consider x, y ∈ Xτ .
We write x ↪→ y when there exists n ∈ N0 such that x[0,∞[ = y[n,∞[.
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We first see in Lemma 4.2 that it is decidable when [v]+ = ([w]+)[k,∞[ for
k up to a certain predefined integer, and then pass to general k in Lemma
4.3.

Lemma 4.2 Let τ be aperiodic and primitive, and let v, w ∈ L(Xτ )\{ε} and
0 ≤ k ≤ |w| be given. We have

[v]+ = ([w]+)[k,∞[

if and only if
v = w[k,|w|[τ(w[0,k[).

Proof: If the equality of words holds, we get

[v]+ = [w[k,|w|[τ(w[0,k[)]
+

= w[k,|w|[τ(w[0,k[)τ(w[k,|w|[τ(w[0,k[))τ
2(w[k,|w|[τ(w[0,k[)) · · ·

= w[k,|w|[τ(w)τ 2(w) · · · .

In the other direction, first note that if [v]+ = [w]+[k,∞[ and 0 ≤ k ≤ |w|,

([v]+)[|v|+k,∞[ = τ([v]+)[k,∞[

= τ([w]+[k,∞[)[k,∞[

= τ([w]+)[k+|τ(w[0,k[)|,∞[

= [w]+[k+|τ(w[0,k[)|+|w|,∞[

= ([v]+)[τ(w[0,k[)|+|w|,∞[

using the assumption on k in the third step. Since otherwise a subword of
[v]+ would be σ-periodic, the two segments must agree, so the length of v
must coincide with the length of w[k,|w|[τ(w[0,k[). Reading off letters from the
left we get equality of the words themselves. �

Lemma 4.3 Let τ be aperiodic and primitive, and consider v, w ∈ L(Xτ )\{ε}.
If [v]+ ↪→ [w]+ then

v = (τ i(w)τ i+1(w))[j,j+|v|[

where i ∈ N0 satisfies |τ i(w)| ≤ |v| ≤ |τ i+1(w)| and 0 ≤ j ≤ |τ i(w)|.
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Proof: Assume that [v]+ = ([w]+)[n,∞[ and write

n =
i−1∑
k=0

|τ k(w)|+ j

with j ∈ {0, . . . , |τ i(w)| − 1}. Then [v]+ = ([w]+)[n,∞[ = ([τ i(w)]+)[j,∞[, and
by Lemma 4.2 applied with τ i(w) in place of w we get that v is a subword
of τ i(w)τ i+1(w), and that

|v| = |τ i(w)| − j + |τ(τ i(w)[0,j[)|.

Since |τ(τ i(w)[0,j[)| ≥ j we have |v| ≥ |τ i(w)|, and since we have, for any
word u and any ` ≤ |u|,

`+ |τ(u[`,|u|[)| ≥ |u|

we can apply this to u = τ i(w) and get that

|τ i+1(w)| = |τ(τ i(w)[0,j[)|+ |τ(τ i(w)[j,|τ i(w)|[)|
= |v| − |τ i(w)|+ j + |τ(τ i(w)[j,|τ i(w)|[)|
≥ |v|,

as desired. �
Note that when w and v are given in the lemma above, there is only a

finite number of i satisfying

|τ i(w)| ≤ |v| ≤ |τ i+1(w)|.

Thus “↪→” becomes decidable for elements of Xτ given on the form [v]−u.[w]+.
To tie this in with right shift tail equivalence, we note:

Proposition 4.4 Let τ be aperiodic and primitive, and consider a finite set
B ⊆ Xτ which contains all left special words of Xτ . Then the equivalence
relation induced by ↪→ on B coincides with right shift tail equivalence.

Proof: Since the other implication is obvious, let x, x′ ∈ B and assume
that x ∼r x

′ to find a series of elements in B, related by “↪→”, passing
between x and x′. More precisely, assume that x[m,∞[ = x′[m′,∞[, where we

may and shall assume that the pair (m,m′) is chosen such that among pairs
of nonnegative integers with this property, m+m′ is least possible. If m = 0
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or m′ = 0 we have x ↪→ x′ or x′ ↪→ x. If m,m′ > 0, we get by the minimality
assumption that x[m−1,∞[ 6= x′[m′−1,∞[ holds, whence σm(x) is left special, and
thus x[m,∞[ = x′[m′,∞[ = x′′[0,∞[ with x′′ ∈ B. Consequently, x′′ ↪→ x and
x′′ ↪→ x′, wherefrom it follows that x and x′ are related by any symmetric
and transitive relation extending “↪→”. �

Example 4.5 For τ4 our algorithm has produced a set

{[0, 0]−1010.[0, 0]+, [0, 0]−1001.[0, 0]+, [1]−0.0[10, ε]+, [1]−0.1[0, ε]+}

of special words which we enumerate x1, . . . , x4. Applying the results of the
present section to τ 2

4 we get that x1 ↪→ x2, x2 ↪→ x1, x3 ↪→ x1, x4 ↪→ x1, but
x3 6↪→ x4 and x4 6↪→ x3. This demonstrates that the symmetrized relation
induced by “↪→” is not an equivalence relation, and hence not the same as
right shift tail equivalence.

4.2 Deciding equivalences

Theorem 4.6 Let τ be a primitive and aperiodic substitution with an NS-
cover W , and with an NS-cover W ′ given for τ−1. On a finite set B with

SpW ∪ DpW ′ ⊆ B ⊆ Xτ

of elements finitely presented on the form [v]−u.[w]+, right and left shift tail
equivalence, as well as orbit equivalence, is decidable. Furthermore, it is
decidable which special words are adjusted.

Proof: Let x = [v]−u.[w]+ and x′ = [v′]−u′.[w′]+ denote generic elements of B.
We have seen in Proposition 4.4 that right shift tail equivalence is generated
by a relation which is decidable by Lemma 4.3. By symmetry, the same is
true for left shift tail equivalence. To decide orbit equivalence, we first decide
whether the shift tail equivalences hold, noting that the algorithms described
above provide us with integers satisfying

([v]−)]−∞,l] = ([w′]−)]−∞,l′] ([w]+)[m,∞[ = ([w′]+)[m′,∞[.

Checking orbit equivalence is hence reduced to comparing finite segments
containing u and u′. The adjusted left special words are then those left
special words x with the property that y ↪→ x for each other left special
y ∈ B in the same orbit class. �
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Example 4.7 Our algorithm leads to the following configuration data graphs:

τ1 : • • τ3 : • •

•

qqqqqqqqqqqqq

MMMMMMMMMMMMM • •

qqqqqqqqqqqqq •

• • τ4 : • •

τ2, υ2 : • • τ5, τ6 : • •

•

qqqqqqqqqqqqq • •

qqqqqqqqqqqqq •

•

�����������������
• •

ppppppppppppp •

•

�����������������

ppppppppppppp • •

NNNNNNNNNNNNN •

•

ppppppppppppp • •

5 Conclusion

In conclusion, our algorithm is laid out as follows. We have implemented it
as a Java applet, see [5].

(a) Check that τ is aperiodic and primitive ([15],[19]).

(b) Decide whether τ is simplifiable or elementary ([18]).

(c) If τ is elementary, let υ = τ . If τ is simplifiable, compute a simplification
υ of τ ([18]).

(d) Compute an integer such that Wn is an NS-cover for υ (2.5).

(e) Compute graphs Gυ,Wn and Gυ−1,Wn
and read off sets SW and DW ′ (2.8,

2.13).

(f) Compute sets Sp and Dp (2.15).
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(g) Determine shift tail and orbit equivalence among elements in SpW ∪DpW ′

(4.6).

(h) If τ 6= υ, transfer special elements back to the alphabet of τ (2.2).

Remark 5.1 Obviously steps (c) and (h) are redundant when τ is already
elementary. And as noted in Remark 3.4, we may skip step (f) and work
directly with SW andDW ′ when L(e) 6= ε for all edges of GτN ,W and G(τ−1)N ,W ′ ,
when N is an W ,W ′-bibasic power. This will always be the case when τ is
proper in the sense defined there.

Example 5.2 Applying step (h) of the algorithm one gets that two of the
right special elements of τ2 are [00000]−.123000[12300, 012300012300012300]+

and [00000]−.2200[012300012300012300, 12300]+. This proves that τ2 has no
NS-cover, for since [00000]−1 and [00000]−2 are mapped to the same se-
quence under τ2, there are words of any length with this problematic behav-
ior.

Remark 5.3 Our paper [4] shows how finer data associated to special words
may be used to distinguish the flow classes of τ5 and τ6 even though their
configuration graphs coincide.
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Chapter 6

K0 of the C∗-algebra
associated to substitutional
dynamical systems

This chapter consists of the paper Augmenting dimension group invari-
ants for substitution dynamics in which the promised description of the
K0-group of the C∗-algebra associated to the one-sided shift space of a
substitutional dynamical systems as a stationary inductive limit of finite
abelian groups is given.

Notice that as in Chapter 4, the K0-group of the C∗-algebra associated
to the corresponding one-sided shift space is denoted by K0(X), but that
the K0-group of the crossed product of a two-sided shift space is called
the dimension group and is denoted by DG(X) (cf. [4]).

The paper is written together with Søren Eilers and has been accepted
for publication in Ergodic theory and dynamical systems.
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Abstract. We present new invariants for substitutional dynamical systems. Our

main contribution is a flow invariant which is strictly finer than, but related and

akin to, the dimension groups of Herman, Putnam and Skau. We present this

group as a stationary inductive limit of a system associated to an integer matrix

defined from combinatorial data based on the class of special words of the dynamical

system.

1. Introduction

The topics of topological dynamics and operator algebras are tied together in a

way allowing fruitful bidirectional (although asymmetrical) transport of ideas from

one area of research to another. The main benefit for operator algebras from

this transport of ideas seems to be the definition of several important classes of

C∗-algebras associated to dynamical systems. The main benefit for topological

dynamics seems to be the discovery of conjugacy invariants, especially ordered

groups arising from K-theory for operator algebras.

The contribution in the present paper is of the latter kind, based on a

contribution by Matsumoto of the former. Indeed, computing the K-groups of

C∗-algebras associated to certain shift spaces, we shall arrive at a flow (and hence

conjugacy) invariant for these. This invariant is closely related to, but finer than,

the dimension groups for substitutional shift spaces defined by Herman, Putnam

and Skau in [18], and studied in this particular setting by Durand, Host and Skau

in [14].

The ground-breaking work of Cuntz and Krieger [13] showed how to associate, in

a natural and conjugacy invariant way, a C∗-algebra to a shift space of finite type.
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2 T.M. Carlsen and S. Eilers

There has been a large amount of attention in the operator algebra community

to endeavors to generalize this construction, as the Cuntz-Krieger class holds a

pivotal position in the theory of purely infinite C∗-algebras. Some work has taken

the graph picture of such a shift space as a starting point of generalization to a

non-finite setting. Other work, notably that of K. Matsumoto, has looked towards

the full class of shift spaces on a finite alphabet. Indeed, in a series of papers [24]–

[28] Matsumoto has managed to associate a certain C∗-algebra to any such shift

space, and to gather much information about the algebras.

At the core of the interplay between operator algebras and dynamics lies an idea

originating with Krieger to study the K-groups of the operator algebras in question,

employing the fact that these will be invariants of the shift spaces when the C∗-

algebras are. This idea allowed the realization of the dimension groups originating

in Elliott’s work [15] on AF algebras as the conjugacy invariant now well known.

Such a strategy has been successfully pursued in work of Matsumoto ([24]-[29])

(and of Krieger and Matsumoto ([21])) leading to a complete description of theseK-

groups which does not involve C∗-algebras, and to new insight in several important

classes of shift spaces. Taking the vastness of the class covered by Matsumoto’s work

into account, it is no surprise that the best general description of such algebras —

given in terms of “past equivalence” — is not readily computable. However, for the

class of substitutional dynamical spaces which is the focus of the present paper, a

very concrete description of this group can be given taking into account the ordered

group arising as the K-theory of a completely different C∗-algebraic construction.

Indeed, such shift spaces will give rise to minimal topological dynamical systems,

and as shown in work by Putnam [33] and Giordano, Putnam and Skau [17],

the canonical crossed product associated hereto falls in a well studied class of C∗-

algebras. This work was the starting point for work by Durand, Host and Skau [14]

and by Forrest [16] leading to new and readily computable conjugacy invariants for

such systems.

In the present paper, we shall compute the Matsumoto K-groups for any

primitive and aperiodic substitution shift space in terms of an integer matrix giving

rise to a dimension group through a standard inductive limit construction. The

starting point of our work is the intermediate presentation of the K-groups given

in [10] which then, in the present paper, leads to a complete description of the

Matsumoto K-group as an inductive limit of a stationary system just like the K-

groups considered in [14]. Indeed, this part of our computation is a (not completely

trivial) adaptation of methods from that paper.

1.1. A recurring example Throughout the paper we shall use the substitutions

τ(a) = accdadbb τ(b) = acdcbadb

τ(c) = aacdcdbb τ(d) = accbdadb
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Augmenting dimension group invariants 3

and

υ(a) = accbbadd υ(b) = accdbabd

υ(c) = aacbbcdd υ(d) = acbcdabd

to illustrate the nature of our invariant, and to demonstrate how it is computed. The

corresponding shift spaces are strong orbit equivalent and hence indistinguishable

by the invariant of Durand, Host and Skau. This pair of examples is also resistant

to the method of comparing the configuration of the special elements or asymptotic

orbits (cf. [1]), suggested to us by Charles Holton. Indeed, the “configuration

data” of all right or left tail equivalence classes of special elements (see [10])

are identical. From [1, 3.10] τ and υ are flow equivalent precisely when the

derived substitutions τ∗ and υ∗ defined there are weakly equivalent. However,

since computer experiments indicate that both τ∗ and υ∗ allow squares ww but no

triples www in their respective languages, the method given in [1] for establishing

flow inequivalence does not seem to work here.

Nevertheless, we can use our invariant to prove that the shift spaces associated

to these two substitutions are not flow equivalent. We will return to this example

in 2.9, 3.4, 3.6, 3.8 and 5.17 below.

1.2. Acknowledgments This work is the result of a long process starting when

we were both visiting The Mathematical Sciences Research Institute, Berkeley,

CA, in the fall of 2000. We wish to thank the Danish Science Research Counsil

and Herborgs Fond for making this visit possible. We are also grateful to Klaus

Thomsen for directing our attention to the class of shift spaces considered in the

paper, and to Ian Putnam for hospitality and suggestions during a visit by the

first author to University of Victoria. We are also grateful to Charles Holton for a

productive email exchange during the process.

2. Preliminaries and notation

Let a be a finite set of symbols, and let a
] denote the set of finite, nonempty words

with letters from a. Thus with ε denoting the empty word, ε 6∈ a
].

2.1. Substitutions and shifts We refer to [14] and [34] for an introduction to this

subject. A substitution is simply a map

τ : a −→ a
].

We can extend τ to a
] in the obvious way, and thereby define powers of τ recursively

by

τn(a) = τ(τn−1(a)).

We find the following notation convenient:

Definition 2.1. Let v, w ∈ a
]. We say that v occurs in w and write

v a w

when w = w′vw′′ for suitable w′, w′′ ∈ a
] ∪ {ε}.
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4 T.M. Carlsen and S. Eilers

For w ∈ a
], we call the number of letters in w the length and denote it |w|.

We set N0 = N ∪ {0} and −N = Z\N0, and equip a
Z and a

N0 with the

product topology from the discrete topology on a, and define σ : a
Z −→ a

Z and

σ+ : a
N0 −→ a

N0 by

(σ(x))n = xn+1, (σ+(x))n = xn+1.

Such maps we will refer to as shift maps. A two-sided shift space is a closed subset

of a
Z which is mapped onto itself by σ. We shall refer to such spaces by “X” with

possible subscripts; note that σ(X) = X. A one-sided shift space is a closed subset

of a
N0 which is mapped into itself by σ+. We refer to such spaces by X+, and

remark that σ+(X+) 6= X+ is possible. There is a rich theory of shift spaces; we

refer to [23] and [20] and shall not give details here, but just establish notation.

However, the method for describing such spaces by way of languages and forbidden

words deserves explicit mentioning here.

We can further extend τ to a
N0 , a−N and a

Z in the obvious way. It is necessary

in the last case, however, to specify that the word resulting from the substitution

of the letter at index 0 of a doubly infinite sequence x will be placed starting at

index 0 in τ(x). Using a dot to indicate the position separating −N and N0, as we

will do in the following, we thus have

τ(y.x) = τ(y).τ(x)

The language of a shift space is the subset of a
] ∪ {ε} given by

L(X) = {w ∈ a
] ∪ {ε} | ∃x ∈ X : w a x}

(extending the notation “a” in the obvious way). With the obvious restriction maps

π+ : X −→ a
N0 ,

we get

σ+ ◦ π+ = π+ ◦ σ

and immediately note that π+(X) is a one-sided shift space. Sometimes it is more

suggestive to write

x[n,∞[ = π+(σn(x))

for n ∈ Z.

Whenever F ⊆ a
] is given, we define a two-sided shift space by

XF = {(xi) ∈ a
Z | ∀i < j ∈ Z : xi · · ·xj 6∈ F}.

One can prove that every two-sided shift space has such a description.

We say that shift spaces are conjugate, denoted by “'”, when they are

homeomorphic via a map which intertwines the relevant shift maps. A conjugacy

invariant is a mapping associating to a class of shift spaces another mathematical

object, called the invariant, in such a way that conjugate shift spaces give

isomorphic invariants.
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The weaker notion of flow equivalence among two-sided shift spaces is also of

importance here. This notion is defined using the suspension flow space of (X, σ)

defined as SX = (X × R)/ ∼ where the equivalence relation ∼ is generated by

requiring that (x, t+ 1) ∼ (σ(x), t). Equipped with the quotient topology, we get a

compact space with a continuous flow consisting of a family of maps (φt) defined

by φt([x, s]) = [x, s+ t]. We say that two shift spaces X and X′ are flow equivalent

and write X ∼=f X′ if a homeomorphism F : SX −→ SX′ exists with the property

that for every x ∈ SX there is a monotonically increasing map fx : R −→ R such

that

F (φt(x)) = φ′fx(t)(F (x)).

In words, F takes flow orbits to flow orbits in an orientation-preserving way. It is

not hard to see that conjugacy implies flow equivalence.

We derive shift spaces from substitutions as follows:

Definition 2.2. With τ a substitution, we set

Fτ = a
]\{w ∈ a

] | ∃n ∈ N, a ∈ a : w a τn(a)}.

We abbreviate XFτ
= Xτ .

Clearly the maps derived from τ above sends Xτ back in itself.

2.2. Classes of substitutions In this section, we single out and discuss some

important properties of substitutions:

Definition 2.3. A substitution τ is primitive if |a| > 1 and

∃n ∈ N∀a, b ∈ a : b a τn(a).

Note that Fτ = Fτn and (hence Xτ = Xτn) irrespective of n ∈ N, when τ is

primitive. Furthermore, in the primitive case, Xτ is minimal in the sense that

every orbit {σm(x) | m ∈ Z} is dense, see [34, p. 90].

We are not interested in the case where Xτ is finite, and hence consider only the

following class.

Definition 2.4. A substitution τ is aperiodic if Xτ is infinite.

The following concepts are useful in determining whether or not a substitution

is aperiodic.

Definition 2.5. A substitution τ on the alphabet a is intertwined with a

substitution υ on the alphabet b if τ = g ◦ f and υ = f ◦ g for some maps

f : a −→ b
] g : b −→ a

].

We say that υ is a simplification of τ if |b| < |a|. In case τ has no simplification,

we call it elementary.
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6 T.M. Carlsen and S. Eilers

It is computable whether a substitution is elementary or not, and there is an

algorithmic way to produce a sequence of simplifications ending with an elementary

substitution in the latter case, cf. [35, p. 17]. Since simplification preserves

aperiodicity, this reduces the problem of deciding aperiodicity to the elementary

case, in which it is readily decidable, cf. [32].

The final property we shall consider is perhaps less natural than the others:

Definition 2.6. A substitution τ is proper if for some τ ′ : a −→ a
] ∪ {ε},

∃n ∈ N∃l, r ∈ a∀a ∈ a : τn(a) = lτ ′(a)r.

In [14, Proposition 20, Lemma 21] an algorithmic way is given for passing

from a primitive and aperiodic substitution τ ′ to a primitive, aperiodic and proper

substitution τ such that Xτ ′ ' Xτ . There is hence no restriction, when the goal

is to discuss conjugacy or flow equivalence of aperiodic and primitive substitution

shift spaces, in working with the proper ones among them.

Furthermore, when a proper, primitive and aperiodic substitution τ ′ is simplified

to an elementary substitution τ ′′, the resulting substitution will also be proper,

primitive and aperiodic. That properness is preserved after incrementing the power

n in Definition 2.6 is obvious, and the other two claims are proved in [8, Lemma

2.1] and [32]. Observe that Xτ ′ and Xτ ′′ may fail to be conjugate, but we do have

Proposition 2.7. If τ and υ are intertwined primitive substitutions, then Xτ
∼=f

Xυ.

Proof: Assume that g ◦ f = τ and f ◦ g = υ with notation as in Definition 2.5. We

prove the claim by defining

F : SXτ −→ SXυ

by F ([x, s]) = [f(x), s|f(x0)|] when s ∈ [0, 1[ and x ∈ Xτ . Checking that F is

defined and continuous is straightforward; we shall give details for injectivity and

surjectivity of F .

Suppose first that [f(x), s|f(x0)|] = [f(y), t|f(y0)|] for some s, t ∈ [0, 1[ and

x, y ∈ Xτ . By definition, there is an n ∈ Z with the property

σn(f(x)) = f(y) s|f(x0)| = t|f(y0)| + n.

Reversing the roles of x and y if necessary, we may assume that n ≥ 0. Choose

m ∈ N0 maximal with the property that

|τ(x[0,m[)| ≤ |g(f(x)[0,n[)|

and set i = |g(f(x)[0,n[)| − |τ(x[0,m[)|. Since 0 ≤ i < |τ(xm)| and

σi(τ(σm(x))) = σ|g(f(x)[0,n[)|(τ(x))

= σ|g(f(x)[0,n[)|(g(f(x)))

= g(σn(f(x)))

= g(f(y))

= τ(y),
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Augmenting dimension group invariants 7

we get by Mossé recognizability ([30], cf. [14, Corollary 12]) that i = 0, σm(x) = y

and |τ(x[0,m[)| = |g(f(x)[0,n[)|. Hence |f(x[0,m[)| = n. We conclude that m = n = 0

because if m > 0, then

s|f(x0)| < |f(x0)| ≤ |f(x[0,m[)| = n,

which would make it impossible for s|f(x0)| to equal t|f(y0)| + n. Hence x = y,

and s|f(x0)| = t|f(y0)| so that s = t as desired.

To see that F is surjective, let x ∈ Xυ and s ∈ [0, 1[ be given. Choose y ∈ Xυ

and k ∈ [0, |υ(y0)|[ such that x = σk(υ(y)). Let

n = max{n′ ∈ N0 | |f(g(y)[0,n′[)| ≤ s+ k}

and

r =
s+ k − |f(g(y)[0,n[)|

|f(g(y)n)|
.

Then r ∈ [0, 1[, and

F ([σn(g(y)), r]) = [f(σn(g(y))), r|f(g(y)n)|]

= [σ|f(g(y)[0,n[))|(f(g(y))), r|f(g(y)n)|]

= [σ|f(g(y)[0,n[))|(υ(y)), r|f(g(y)n)|]

= [σk(υ(y)), s] = [x, s]

because k + s = |f(g(y)[0,n[))| + r|f(g(y)n)|.

We have established that F is a homeomorphism. Since it obviously maps orbits

to orbits in an orientation-preserving way, Xτ and Xυ are flow equivalent. �

Corollary 2.8. If τ is simplified to τ ′, then Xτ
∼=f Xτ ′ .

Example 2.9. The substitutions τ and υ are aperiodic, elementary, primitive, and

proper on {a, b, c, d}.

3. Components of the invariant

3.1. Basic quantities Fix a primitive and aperiodic substitution τ . In this

section, we shall associate a collection of combinatoric data to τ which we shall

employ in our theoretical work, as well as in our invariants, below.

As we are navigating mathematical waters close to known undecidable quantities,

the reader might worry about computability of these data. Fortunately, we have

been able to find efficient algorithms for computing all the data described below.

The algorithms are suffiently simple that we have found ourselves capable of

implementing them in a Java applet ([9]), and although we have not studied the

complexity of these algorithms, we have found that they can compute invariants

for substitutions such as τ and υ in a matter of seconds. A presentation of

our algorithmic results, proved by methods partially related to [2], will appear

elsewhere, in [8].

We say (cf. [19]) that y ∈ Xτ is left special if there exists y′ ∈ Xτ such that

y−1 6= y′−1 π+(y) = π+(y′).
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2

3

5

...5141141241235141

...4124132141521412351

1412412351414124...

41241235141241412412351..

2

4

Figure 1. Special words for ω

By [34, p. 107] and [3, Theorem 3.9], there is a finite, but nonzero, number of left

special words.

We say that the left special word y is adjusted if σ−n(y) is not left special for

any n ∈ N, and that y is cofinal if σn(y) is not left special for any n ∈ N. Thinking

of left special words as those which are not deterministic from the right at index

−1, the adjusted and cofinal left special words are those where this is the leftmost

and rightmost occurrence of nondeterminacy, respectively.

Let x, y ∈ Xτ . If there exist an n and an M such that xm = yn+m for all m > M

then we say that x and y are right shift tail equivalent and write x ∼r y. One

defines right special elements using

y0 6= y′0 π−(y) = π−(y′),

and left shift tail equivalence and ∼l in the obvious way. When a left special word

y is cofinal, every word in its right shift tail equivalence class will end in π+(y).

Remark 3.1. Quite often, all the special words of a substitution are simultaneously

adjusted and cofinal. There are exceptions, though, as illustrated by Figure 1

which indicates the relations among all the special words of the aperiodic and

primitive substitution ω on {1, 2, 3, 4, 5} given by ω(1) = 123514, ω(2) = 124, ω(3) =

13214, ω(4) = 14124, ω(5) = 15214. The element

...514114124123514152.1412412351414124...

is an example of a cofinal left special element which is not adjusted left special.

Shifting it to

...51411412412351415.21412412351414124...

one achieves an element which is adjusted left special, but not cofinal. Shifting

once more, one gets an element which is simultaneously adjusted and cofinal right

special.
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Definition 3.2. When τ is an aperiodic and primitive substitution, we denote the

number of right shift tail equivalence classes of left special elements of Xτ by nτ .

It is not hard to see directly that this number is a flow invariant for substitutional

systems, but in fact it will follow from our main result as noted in Theorem 6.2.

As described in Section 2.2 there is an algorithmic way of passing from a given

aperiodic and primitive substitution τ ′ to an aperiodic, elementary, primitive and

proper substitution τ in the same flow equivalence class. Now as concluded in [8,

Remark 5.1] (cf. also [1], [2]), there is an integer n such that each left special word

y can be represented (nonuniquely) as

· · · τ3n(v)τ2n(v)τn(v)vu.wτn(w)τ2n(w)τ3n(w) . . .

for some n ∈ N and some v, u, w ∈ L(Xτ )\{ε} with the property that τn(u) = vuw.

Since Xτ = Xτn we shall in the following, with no loss of generality, pass to τn and

assume that n = 1. Our definition below becomes more complicated by the fact

that elementarity does not always pass to powers.

Definition 3.3. We say that a substitution τ is basic if it has the form (τ ′)n for

some aperodic, elementary, primitive and proper substitution τ ′, and if all its left

special words have the form

· · · τ3(v)τ2(v)τ(v)vu.wτ(w)τ2 (w)τ3(w) . . . (3.1)

for suitable u, v, w ∈ L(Xτ )\{ε} such that

τ(u) = vuw. (3.2)

As outlined above, there is an algorithm yielding for every aperiodic and

primitive substitution υ a basic substitution τ = (τ ′)n with Xυ
∼=f Xτ . We may

hence work only with basic substituions as long as we are interested in invariants

of flow equivalence.

Our paper [8] provides algorithms for computing and representing each left

special element in Xτ as in (3.1) and (3.2), to determine which of these elements

are adjusted or cofinal, and which among them are right shift tail equivalent. Thus

we may, in what follows, use the convenient notation

[w]− = · · · τn+1(w)τn(w)τn−1(w) · · · τ(w)w ∈ a
−N

[w]+ = wτ(w) · · · τn−1(w)τn(w)τn+1(w) · · · ∈ a
N0

to describe all the (adjusted, cofinal) left special words.

Example 3.4. Both τ and υ are basic substitutions. The left special elements of

Xτ are

[accd]−a.[dbb]+, [aacd]−c.[dbb]+, [acdc]−b.[adb]+, [accb]−d.[adb]+.

which are all simultaneously adjusted and cofinal. The left special elements of Xυ

are

[accbb]−a.[dd]+, [aacbb]−c.[dd]+, [acbc]−d.[abd]+, [accd]−b.[abd]+,

also all adjusted and cofinal. Since [dbb]+ 6∼r [adb]+ and [dbb]+ 6∼r [adb]+,

nτ = nυ = 2.
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Definition 3.5. When τ is a basic substitution, equipped with some ordering of

the right shift tail equivalence classes containing left special elements, we define

pτ ∈ Nnτ by

pτ = (p1, . . . , pnτ
),

where pi + 1 is the number of adjusted left special words in each such class.

Note that by the definition of right special words, pi ≥ 1 for all i.

Enumerating the output of our algorithm we organize all the adjusted left special

words as

y1
1, y

1
2, . . . , y

1
p1+1

y2
1, y

2
2, . . . , y

2
p2+1

...

ynτ

1 , y
nτ

2 , . . . , y
nτ

pnτ +1

where

y
j
k = [vj

k]−u
j
k.[w

j
k]+, τ(uj

k) = v
j
ku

j
kw

j
k.

Finally, we denote the last letter of each word u
j
k by a

j
k.

We further choose one cofinal left special element in each right tail equivalence

class, and denote it ỹ
j . As above, we write

ỹ
j = [̃vj ]−ũ

j .[w̃j ]+, τ(ũj) = ṽ
j
ũ

j
w̃

j .

and denote by ã
j the last letter of ũ

j .

3.2. Matrices The number #[a,w] counts the number of occurrences of the letter

a in the word w. As usual (cf. [14]) one associates to any substitution τ the

abelianization matrix which is the |a| × |a|-matrix AAAτ given by

(AAAτ )a,b = #[b, τ(a)].

Example 3.6.

AAAτ = AAAυ =




2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2


 .

We shall define a rectangular matrix based on different data of the same nature.

The reader may share our initial surprise that this definition will eventually lead

to an invariant of conjugacy and flow equivalence.

Definition 3.7. To a basic substitution τ one associates the nτ × |a|-matrix EEEτ

given by

(EEEτ )j,b =

(pj+1∑

k=1

eτ,aj
k
,wj

k
(b)

)
− e

τ,eaj
, ewj (b)
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with

eτ,a,w(b) = max(0,#[b, τ(a)] − #[b, aw])

and with a
j
k, ã

j and w
j
k, w̃

j given as in Section 3.1.

In all the applications of eτ,a,w we either have that τ(a) is a proper subword of

aw, in which case the term vanishes, or that τ(a) ends in aw, in which case the

contribution of the term is a count of the remaining letters in τ(a)

Example 3.8. Enumerating the elements given Example 3.6 in the order y1
1, y

1
2 =

ỹ
1, y2

1, y
2
2 = ỹ

2, we would have

EEEτ =

[
#[•, accd] + #[•, aacd] − #[•, aacd]

#[•, acdc] + #[•, accb]− #[•, accb]

]
=

[
1 0 2 1

1 0 2 1

]

and similarly

EEEυ =

[
#[•, accbb]

#[•, acbc]

]
=

[
1 2 2 0

1 1 2 0

]
.

Definition 3.9. To a basic substitution τ one associates the (|a|+nτ )× (|a|+nτ )-

matrix

ÃAAτ =

[
AAAτ 0

EEEτ IdIdId

]
.

4. Matsumoto K-groups

The Matsumoto K-groups with which we are concerned in the present paper can

be efficiently defined directly, using the concept of past equivalence. They were,

however, discovered as the (ordered) K-groups associated to certain classes of C∗-

algebras. The results in the present paper do not depend directly or indirectly on

an analysis of C∗-algebras, so we shall employ the most fundamental definition and

repeat it for the benefit of the reader in section 4.1 below.

However, since our results were developed in this category and subsequently

translated to a more basic setting, and since we do have further results (see Section

6) which we do not know how to get without this machinery, we find that a brief

outline of how our work is positioned in an operator algebraic setting may be in

order. We do this in section 4.3 below, which may be skipped by any reader not

operator algebraically inclined.

4.1. Past equivalence Let X be a two-sided shift space. For every x ∈ π+(X) and

every k ∈ N we set

Pk(x) = {µ ∈ L(X) | µx ∈ π+(X), |µ| = k},

and define for every l ∈ N an equivalence relation ∼l on π+(X) by

x ∼l y ⇔ Pl(x) = Pl(y).

Following Matsumoto ([25], [27]), we denote by [x]l the equivalence class of x and

refer to the relation as l-past equivalence.
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Obviously the set of equivalence classes of the l-past equivalence relation ∼l is

finite. We will denote the number of such classes m(l) and enumerate them E l
s with

s ∈ {1, . . . ,m(l)}. For each l ∈ N, we define an m(l + 1) ×m(l)-matrix IIIl by

(IIIl)rs =

{
1 if E l+1

r ⊆ E l
s

0 otherwise,

and note that IIIl induces a group homomorphism from Zm(l) to Zm(l+1). We denote

by ZX the group given by the inductive limit

lim
−→

(Zm(l), IIIl).

For a subset E of π+(X) and a finite word µ we let µE = {µx ∈ π+(X) | x ∈ E}.

For each l ∈ N and a ∈ a we define an m(l + 1) ×m(l)-matrix

(LLLl
a)rs =

{
1 if ∅ 6= aE l+1

r ⊆ E l
s

0 otherwise,

and letting LLLl =
∑

a∈a
LLLl

a we get a matrix inducing a group homeomorphism from

Zm(l) to Zm(l+1). Since one can prove that LLLl+1◦IIIl = IIIl+1◦LLLl, a group endomorphism

λ on ZX is induced.

Definition 4.1. [Cf. [25, Theorem 4.9], [27], [29, Theorem], [5, pp. 67-68]] Let

X be a two-sided shift space. The group

K0(X) = ZX/(Id−λ)ZX ,

is a conjugacy invariant of X and π+(X), and a flow invariant of X.

4.2. An intermediate description The dimension group DG(X,σ) of a Cantor

minimal system (X,σ) — a dynamical system where X is a Cantor set in which

every σ-orbit is dense — is the cokernel of the map

Id−(σ−1)] : C(X,Z) −→ C(X,Z),

equipped with the quotient order induced from C(X,N0).

When τ is an aperiodic and primitive substitution, (Xτ , σ) is a Cantor minimal

system. The technical basis of our results is a similar description of the Matsumoto

K0-group of a basic substitution as the cokernel of a certain map, based on a set

of choices made as described in Section 3.1. Such a description can, for the special

kind of shift spaces considered here, be inferred from a theoretically straightforward,

but rather technical, analysis of l-past equivalence relation (or the lambda-graph)

of the substitutional dynamics, noting that it may be correlated with the structure

of the left special words. It is not the same cokernal description as the – much more

general – basic tool in [27]. We defer the proofs of this to our paper [10], and shall

here just present the results, laying out notation along the way.

Fix a basic substitution τ . We shall work extensively with elements of Znτ , and

fix here notation for such. We shall prefer the index j ∈ {1, . . . , nτ} and write

x =
(
xj
)nτ

j=1
, y =

(
yj
)nτ

j=1
, xi =

(
xj

i

)nτ

j=1
,
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etc., for such vectors. The vector δj0 has zero entries except at index j0, where the

entry is 1.

We now define a group

Gτ = C(Xτ ,Z) ⊕
∞∑

i=0

Znτ

and, based on a set of choices made as described in Section 3.1, a map Aτ : Gτ −→

Gτ given hereon by

Aτ (f, [x0, x1, . . . ]) =
f ◦ σ−1,



((pj+1∑

k=1

f(σ−1(yj
k))

)
− f(σ−1(ỹj))

)nτ

j=1

, x0, x1, . . .




 ,

with y
j
k and ỹ

j defined as in Section 3.1 above. The following result of [10] forms

the basis of our alternative characterization of K0(Xτ ) involving Gτ and Aτ .

Proposition 4.2. When τ is a basic substitution, then K0(Xτ ) is isomorphic to

the cokernel of the map Aτ .

4.3. Related C∗-algebras There is a universal construction associating to most

dynamical systems a C∗-algebra called the crossed product. In the seminal case

of a Z-action given by a homeomorphism φ of a compact Hausdorff space X ,

one first passes to the C∗-dynamical system of the transpose φ] acting on C(X)

by composition, and constructs therefrom a C∗-algebra denoted C(X) oφ] Z

which captures the dynamics in non-commutative structure. A crossed product

algebra C(X) oσ] Z can hence be associated to each two-sided shift space, and

the universality of the construction proves that such an associated C∗-algebra is

a conjugacy invariant. But in this special case, another invariant C∗-algebra is

available to us via the one-sided shift π+(X).

The C∗-algebras first considered by Matsumoto can be constructed from such a

one-sided shift space in several equivalent ways – by a universal construction based

on generators and relations, or by invoking standard constructions in C∗-algebras

based on either groupoids ([7]) or Hilbert C∗-bimodules ([5]). The original approach

in [24] based on a Fock space construction may in some cases lead to a different

algebra, see [12]. Each of these approaches have independent virtues and add to the

accumulated value of this concept. When a one-sided shift space X+ is given, we

denote this C∗-algebra by OX+ . Such C∗-algebras can be used to provide conjugacy

invariants up to either one-sided or two-sided conjugacy as follows. Here and below,

K denotes the C∗-algebra of compact operators on a separable Hilbert spaces.

Theorem 4.3. [[5, Theorem 4.1.4], [6]] Let X+ and Y+ be one-sided shift spaces.

We have

X+ ' Y+ =⇒ OX+ ' OY+ .

Furthermore, when X and Y are two-sided shift spaces, we have

X ' Y =⇒ X ∼=f Y =⇒ Oπ+(X) ⊗ K ' Oπ+(Y) ⊗ K.

Prepared using etds.cls

150



14 T.M. Carlsen and S. Eilers

This observation goes back to Matsumoto for a large family of shift spaces with

the so-called property (I), see [24, Proposition 5.8], [28, Corollary 6.2] and [26,

Lemma 4.5]. However, the one-sided shift spaces associated to the two-sided shifts

under investigation, those of the form π+(Xτ ), rarely have this property.

Definition 4.4. Oτ = Oπ+(Xτ ).

These C∗-algebras bear relevance for the groups considered in the present paper

through a K-functor. In fact,

DG(Xτ ) = K0(C(Xτ ) oσ] Z)

K0(Xτ ) = K0(Oτ ).

In general, the C∗-algebras C(X) oσ] Z and Oπ+(X) will be very different. For

instance, when X = XF where F is a finite set (a so-called shift of finite type), the

crossed product will always have a very rich ideal structure, whereas the algebra

considered by Matsumoto becomes the Cuntz-Krieger algebra associated to F ,

which is a simple C∗-algebra under modest assumptions. When F = Fτ , as proved

in [7], there is an extension of C∗-algebras

0 Knτ Oτ C(Xτ ) oσ] Z 0 (4.3)

showing that Oτ is non-simple, with the crossed product as a quotient.

Since C(Xτ )oσ] Z is simple because the underlying dynamical system is minimal,

this gives a complete description of the ideal structure of Oτ . However, a reader

unfamiliar with the extension theory of C∗-algebras should probably be explicitly

warned that such a description offers very little concrete information about the

algebra in general. In many cases, the theorem of Brown-Douglas-Fillmore in

conjunction with the Universal coefficient theorem in Kasparov’s theory proved

by Rosenberg and Schochet shows that there are uncountably many nonisomorphic

algebras having such a decomposition.

5. Inductive limit descriptions

A main accomplishment in [14] is the description of DG(Xτ ) (see Section 4.2) as a

stationary inducetive limit with matrices for the connecting maps read off directly

from the substitution. A main result is the following.

Theorem 5.1. [[14], Theorem 22(i)] There is an order isomorphism

DG(Xτ ) ' lim
−→

(Z|a|,AAAτ )

where each Z|a| is ordered by

(xa) ≥ 0 ⇐⇒ ∀a ∈ a : xa ≥ 0.

We have found analogous results for the ordered group K0(Xτ ), but will in the

present paper restrain ourselves to give, in Theorem 5.8 below, an inductive limit

description of K0(Xτ ) as a group.
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Computing the order structure requires a deeper analysis of the interrelations

among certain C∗-algebras, employing the fact that DG(Xτ ) = K0(C(Xτ ) oσ] Z)

and K0(Xτ ) = K0(Oτ ), cf. Section 4.3. We defer this to [11], but the interested

reader is referred to Section 6 for a brief overview of our results.

5.1. Kakutani-Rohlin partitions Theorem 5.1 is achieved from the cokernal

description of the dimension group (see Section 4.2 above) using a sequence of

Kakutani-Rohlin partitions of Xτ and direct computations of the actions hereupon

by τ . We are going to follow the lead of [14], adapting crucial techniques to our

somewhat more complicated setting. As in that paper, we abbreviate

[a] = {x ∈ Xτ | x0 = a},

and note that by [14, Corollary 13] — a consequence of the work by Mossé [31],

[30] — the family of sets

σ−iτm[a], a ∈ a , i ∈ {0, . . . , |τ(a)m| − 1}, (5.4)

forms a (clopen) disjoint partition of Xτ for each m ∈ N, when τ is any aperiodic

substitution.

To set up notation and motivate our adaptation, we will sketch how the

Kakutani-Rohlin partitions are used in [14] to prove Theorem 5.1 in the case of

proper substitutions. We do this to allow references to parts of this proof in our

proof of Theorem 5.8 below.

For any fixed m ∈ N, we use the notation Ξ = (ξi,a) to denote a collection of

integers where a ∈ a, i ∈ {0, . . . , |τm(a)| − 1}. For each such collection, we define a

function on Xτ by

fΞ =
∑

a∈a

|τm(a)|−1∑

i=0

ξi,a1σ−iτm[a].

Definition 5.2. Fix m ∈ N. We define CEτ [m] as the set all integer collections

defined above, and let

rkτ [m] = {fΞ ∈ C(Xτ ,Z) | Ξ ∈ CEτ [m]}.

The subset of CEτ [m] with the further property that

ξ0,a = ξ0,b ∀a, b ∈ a

we denote by CEc
τ [m], and let rkc

τ [m] be the corresponding subspace of rkτ [m].

Our properness assumption enters our proof as follows, cf. [14, Proposition

14(iv)]:

Proposition 5.3. If τ is a proper, primitive and aperiodic substitution, then

∞⋃

m=1

rkτ [m] =

∞⋃

m=1

rkc
τ [m] = C(Xτ ,Z).
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As the family generates C(Xτ ,Z), the proof of Theorem 5.1 may be reduced to

check that ψm+1 = AAAτ ◦ ψm where

ψm : rkτ [m] −→ Z|a|, ψm



∑

a∈a

|τm(a)|−1∑

i=0

αi,a1σ−iτm[a]


 =




|τm(a)|−1∑

i=0

αi,•




•∈a

so that a map

ψ∞ : C(Xτ ,Z) −→ lim
−→

(Z|a|,AAAτ )

is induced, and to check that this map is surjective and has the property that

ker(ψ∞) = Im(Id−(σ−1)]). An isomorphism

ψ∞ : C(Xτ ,Z)/ Im(Id−(σ−1)]) −→ lim
−→

(Z|a|,AAAτ )

is then induced.

We need to consider the interrelations between sets of the form σ−nτm+1[a] and

σ−n′

τm[a′]. Doing so is eased by the following perhaps somewhat counterintuitive

notation, which we shall use for the remainder of Section 5.

Notation 5.4. Let w ∈ a
]. By w[h] we denote the letter at position h in w from

right to left, starting with index 0 at the rightmost letter. By w]h,0] we denote the

subword of w consisting of the h rightmost letters.

It is straightforward (but tedious) to check that

σ−(|τm(τ(a)]h,0])|+k)τm+1[a] ⊆ σ−kτm[τ(a)[h]] (5.5)

for any a ∈ a, m ∈ N0, h ∈ {0, . . . , |τ(a)| − 1} and k ∈ N0. Letting

k ∈ {0, . . . , |τm(τ(a)[h])|} one covers the sets in the (m + 1)st level of the

Rohlin-Kakutani partition exactly once. Consequently, rkτ [m] ⊆ rkτ [m + 1] and

rkc
τ [m] ⊆ rkc

τ [m+ 1].

We end this section by defining a numerical quantity associated to the kind of

words used to describe right special elements and observing two basic properties of

it:

Definition 5.5. For w ∈ L(Xτ ), and m ∈ N we set `(m,w) =
∑m−1

i=0 |τ i(w)|. We

also let `(0, w) = 0.

Observation 5.6. When [v]−u.[w]+ ∈ X for u, v, w ∈ L(Xτ )\{ε} with τ(u) = vuw,

and u ends in a ∈ a,

[v]−u.[w]+ ∈ σ−`(m,w)τm[a]

for every m ∈ N0.

Proof: An inductive argument based on

τ([v]−u.[w]+) = [τ(v)]−vuw.[τ(w)]+ = σ|w|([v]−u.[w]+).

�
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Observation 5.7. Let u, v, w ∈ L(Xτ )\{ε} with τ(u) = vuw, and assume that u

ends in a ∈ a. For any m ∈ N0 and h ≤ |τ(a)|, we have

|τm(τ(a)]h,0])| ≥ `(m+ 1, w) + 1

if and only if h ≥ |w| + 1.

Proof: Suppose first that h ≤ |w|. Then τ(a)]h,0] a w so that

|τm(τ(a)]h,0])| ≤ |τm(w)| ≤ `(m+ 1, w).

Induction after m is required to prove the other implication, so assume that

h ≥ |w| + 1 and note that this assumption is equivalent with the case m = 0. For

m > 0 we further note that aw a τ(a)]h,0] because of the way that u, a and w are

interrelated. Thus

|τm(τ(a)]h,0])| ≥ |τm(a)| + |τm(w)|

≥ |τm−1(τ(a)]h,0])| + |τm(w)|

≥ `(m,w) + 1 + |τm(w)|

= `(m+ 1, w) + 1

using the induction hypothesis at the third inequality sign. �

5.2. A stationary inductive system The main result of our paper is the following:

Theorem 5.8. Let τ be a basic substitution. There is a group isomorphism

K0(Xτ ) ' lim
−→

(Z|a| ⊕ Znτ/pτZ, ÃAAτ ).

We recall that there is an algorithmic way of passing from any aperiodic and

primitive substitution to one which is basic, staying in the same flow equivalence

class. Since K0 is an invariant of flow equivalence, the result above can be used to

compute the Matsumoto K0-group of any aperiodic and primitive substitution.

We note right away that the group K0(Xτ ) has the group DG(Xτ ) computed in

[14], as a quotient. The corresponding kernel is simply Znτ/pτZ. But as we shall

see, this extension is not split in general, making room for storage of additional

information in the non-vanishing cross-term EEEτ .

Corollary 5.9. Let τ be a basic substitution. The short exact sequence

0 Znτ/pτZ
P

Z|a| ⊕ Znτ/pτZ
R

Z|a| 0

induces a short exact sequence

0 Znτ/pτZ
P∞

K0(Xτ )
R∞

DG(Xτ ) 0 .

Proof: Observe that P ◦ IdZnτ/pτ Z = ÃAAτ ◦ P and R ◦ ÃAAτ = AAAτ ◦R. �
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Definition 5.10. When Ξ ∈ CEτ [m], we define Ξ̃, Ξ̂ ∈ CEτ [m] by

ξ̃i,a =

{
ξi+1,a 0 ≤ i < |τm(a)| − 1

ξ0,a i = |τm(a)| − 1,

ξ̂i,a =

|τm(a)|−1∑

k=i

ξk,a.

Lemma 5.11. If Ξ ∈ CEc
τ [m] then feΞ = fΞ ◦ σ−1.

Proof: Let c denote the mutual value at the lower level of Ξ. First note that if

x ∈ σ−iτm[a] is given with i < |τm(a)| − 1, σ−1(x) ∈ σ−(i+1)τm[a]. Further, if

x ∈ σ−(|τm(a)|−1)τm[a], say with x = σ−(|τm(a)|−1)(y) where y ∈ τm([a]), we can

write

σ−1(x) = σ−|τm(a)|τm(y) = τm(σ−1(y))

such that σ−1(x) ∈ σ−0τm[b] for b chosen as the second letter of y. Thus for any

x ∈ Xτ , we have

feΞ(x) =

{
ξi+1,a x ∈ σ−iτm[a], i < |τm(a)| − 1

c x ∈ σ−iτm[a], i = |τm(a)| − 1
= fΞ(σ−1(x)).

�

Lemma 5.12. If Ξ ∈ CEτ [m] and satisfies

|τm(a)|−1∑

i=0

ξi,a = 0 ∀a ∈ a, (5.6)

then Ξ̂ ∈ CEc
τ [m], and

(Id−Aτ )(fbΞ, [0, 0, . . . ]) =

fΞ,







|τm(eaj

)|−1∑

i=`(m, ewj
)+1

ξ
i,eaj −

pj+1∑

k=1

|τm(aj

k
)|−1∑

i=`(m,wj
k
)+1

ξi,aj
k




nτ

j=1

, 0, 0, . . .





 .

Proof: By (5.6), Ξ̂ ∈ CEc
τ [m]. So we get by Lemma 5.11 that fbΞ ◦ σ−1 = febΞ

. By

(5.6) again,

Ξ̂ −
˜̂
Ξ = Ξ.

Finally according to Observation 5.6,

fbΞ(σ−1(yj
k)) = ξ̂`(m,wj

k
)+1,aj

k
=

|τm(aj
k
)|−1∑

i=`(m,wj
k
)+1

ξi,aj
k

and similarly for ỹ
j . �

We are now ready to define the family of maps which shall give the desired

identification between Gτ/ Im(Id−Aτ ) and a stationary inductive system.
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Definition 5.13. The maps

Ψm : rkτ [m] ⊕
m∑

i=0

Znτ −→ Z|a| ⊕ Znτ/pτZ

are given by

Ψm(fΞ, [x0, x1, . . . , xm]) =


|τm(aj
k
)|−1∑

i=0

ξi,a,




m∑

i=0

xj
i +

pj+1∑

k=1

|τm(aj
k
)|−1∑

i=`(m,wj
k
)+1

ξi,aj
k
−

|τm(eaj
)|−1∑

i=`(m, ewj
)+1

ξ
i,eaj




nτ

j=1

+ pτ Z


 .

Note that Ψm is well-defined because σ−iτm[a] 6= ∅.

We have seen in Lemma 5.11 that (σ−1)] maps rkc
τ [m] to rkτ [m]. Therefore, Aτ

restricts to a map

rkc
τ [m] ⊕

m−1∑

i=0

Znτ rkτ [m] ⊕
m∑

i=0

Znτ

which we shall also denote by Aτ .

Proposition 5.14. The sequence

rkc
τ [m] ⊕

m−1∑

i=0

Znτ
Id−Aτ rkτ [m] ⊕

m∑

i=0

Znτ
Ψm

Z|a| ⊕ Znτ/pτZ

is exact.

Proof: Direct computations, using among other things that there are pj +1 positive

ξ-terms and one negative ξ-term in the j entry of the second coordinate of the image

of Ψm, show that Ψm ◦ (Id−Aτ ) = 0. And if

(fΞ, [x0, . . . , xm]) ∈ kerΨm,

then the conditions of Lemma 5.12 are met for Ξ, and Ξ̂ ∈ CEc
τ [m]. Note also that

for suitable c ∈ Z,

m∑

i=0

xj
i +




pj+1∑

k=1

|τm(aj
k
)|−1∑

i=`(m,wj

k
)+1

ξi,aj

k



−

|τm(eaj
)|−1∑

i=`(m, ewj
)+1

ξ
i,eaj = pjc
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for each j ∈ {1, . . . , nτ}. With C ∈ CEc
τ [m] a constant scheme which each entry set

to c, we have that Ξ̂ + C induces a function g ∈ rkc
τ [m] for which

(Id−Aτ )

(
g,

[
−

m∑

i=1

xi,−
m∑

i=2

xi, . . . ,−
m∑

i=m−1

xi,−
m∑

i=m

xi

])

=



fΞ,



−
m∑

i=1

xi −




pj+1∑

k=1

|τm(aj
k
)|−1∑

i=`(m,wj
k
)+1

ξi,aj
k
−

|τm(eaj
)|−1∑

i=`(m, ewj
)+1

ξ
i,eaj + cpτ



 , x1, . . . , xm









= (fΞ, [x0, x1, . . . , xm]).

�

We shall work with the following basic elements of rkτ [m]⊕
∑m

i=0 Znτ . For each

• ∈ a, we let

em
• = (1τmd•e, [0, . . . , 0])

fm
i = (0, [δi, 0, . . . , 0])

with δi referring to Kronecker delta. Further, we define a vector ∆• ∈ Z|a| using

Kronecker delta again.

Lemma 5.15. For each m,

Ψm(em
• ) = (∆•, 0) Ψm(fm

j ) = (0, δj + pτZ),

and under the imbedding rkτ [m] ↪→ rkτ [m+ 1]

Ψm+1(e
m
• ) = (AAA∆•,EEE∆• + pτ Z) Ψm+1(f

m
j ) = (0, δj + pτZ).

Proof: The set of claims concerning fm
j are straightforward; the second coordinate

of Ψm(em
• ) vanishes as described because evaluation begins at a nonzero index. To

compute Ψm+1(e
m
• ), we note that as a consequence of (5.5)

τm d•e =
⋃

a ∈ a

j ∈ {1, . . . , |τ (a)|}

τ (a)[j] = •

σ−|τm(τ(a)]j,0])|τm+1[a].

This means that the element in CEτ [m+ 1] inducing the function of em
• is given by

ξi,a =

{
1 ∃h : τ(a)[h] = •, i = |τm(τ(a)]h,0])|

0 otherwise.
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Now

|τm+1(a)|−1∑

i=0

ξi,a =

|τm+1(a)|−1∑

i=0

#{h | τ(a)[h] = •, i = |τm(τ(a)]h,0])|}

= #{h | τ(a)[h] = •}

= #[•, τ(a)] = (AAA)a,•

and similarly

|τm+1(aj
k
)|−1∑

i=`(m+1,wj
k
)+1

ξi,aj
k

=

|τm+1(aj
k
)|−1∑

i=`(m+1,wj
k
)+1

#{h | τ(aj
k)[h] = •, i = |τm(τ(a)]h,0])|}

= #{h | τ(aj
k)[h] = •, |τm(τ(aj

k)]h,0])| ≥ `(m+ 1,wj
k) + 1}

= #{h | τ(aj
k)[h] = •, h ≥ |wj

k| + 1}

according to Lemma 5.7. If |τ(aj
k)| ≤ |wj

k| + 1 this sum evaluates to 0, otherwise

we get a count of the letter • in what is to the left of a
j
kw

j
k in τ(aj

k), corresponding

to our Definition 3.7. The same argument applies to ã
j and w̃

j . Thus



pj+1∑

k=1

|τm+1(aj

k
)|−1∑

i=`(m+1,wj
k
)+1

ξi,aj
k



−

|τm(eaj
)|−1∑

i=`(m, ewj
)+1

ξ
i,eaj = (EEEτ )j,•

as desired. �

Proposition 5.16. The diagram

rkτ [m] ⊕
∑m

i=0 Znτ
Ψm

Z|a| ⊕ Znτ/pτZ

eAAA

rkτ [m+ 1] ⊕
∑m+1

i=0 Znτ

Ψm+1
Z|a| ⊕ Znτ/pτZ

commutes.

Proof: By Lemma 5.15 and the definition of ÃAAτ , the diagram commutes on em
•

and fm
j , and on the subgroup that they generate. For a general (f, [x0, . . . , xm]) ∈

rkτ [m]⊕
∑m

i=0 Znτ we note that Proposition 5.14 proves the claim as the images of

em
• and fm

j generate Z|a| ⊕ Znτ/pτZ. �

Proof of 5.8: By Proposition 5.14 and Proposition 5.16, the diagram

rkc
τ [m] ⊕

m−1∑

i=0

Znτ
Id−Aτ rkτ [m] ⊕

m∑

i=0

Znτ
Ψm

Z|a| ⊕ Znτ/pτZ

eAAA

rkc
τ [m+ 1] ⊕

m∑

i=0

Znτ
Id−Aτ

rkτ [m+ 1] ⊕
m+1∑

i=0

Znτ

Ψm+1
Z|a| ⊕ Znτ/pτZ
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is commutative and exact for each m. Furthermore, since Lemma 5.15 shows that

Ψm is surjective for each m, the rightmost horizontal maps in the diagram are

surjections. Since taking inductive limits is an exact functor, we get that

Gτ
Id−Aτ

Gτ
Ψ∞ lim

−→
(Z|a| ⊕ Znτ/pτZ, ÃAAτ ) 0

is exact, where we have used Lemma 5.3 to identify

⋃

m∈N

(
rkc

τ [m] ⊕
m−1∑

i=0

Znτ

)
=
⋃

m∈N

(
rkτ [m] ⊕

m−1∑

i=0

Znτ

)
= Gτ .

�

Example 5.17. The matrices

[
1 1 1 1 0 0

0 0 0 0 1 −1

]




2 0

2 0

2 0

2 0

0 1

0 0




induce maps χ : Z4 ⊕ Z2/(1, 1)Z −→ Z2 and η : Z2 −→ Z4 ⊕ Z2/(1, 1)Z with the

property that χ ◦ η = [ 8 0
0 1 ] and η ◦ χ = ÃAAτ ; the latter since

[
0 0 0 0 1 −1

0 0 0 0 0 0

]
=

[
1 0 2 1 1 0

1 0 2 1 0 1

]

as a map from Z4 ⊕ Z2/(1, 1)Z to Z2/(1, 1)Z. Similarly, we may reduce our

description of K0(Xυ) to a stationary system with [ 8 0
2 1 ].

One now easily finds that

K0(Xτ ) ' Z[
1

2
] ⊕ Z

and, by
[

8−k 0
−2 7

]
[ 8 0
2 1 ] =

[
81−k 0
−2 7

]
, that

K0(Xυ) = {(8−kx, 7y − 2x) ∈ Q2 | k ∈ N, x, y ∈ Z}.

One sees that K0(Xτ ) 6' K0(Xυ) – and hence that Xτ 6∼=f Xυ – by proving that any

element in K0(Xυ) which is divisibe by any power of two is also divisible by seven.

This is not the case for K0(Xτ ).

6. Finer invariants

6.1. Symmetrized invariants Our focus on left special elements makes our

invariant non-symmetric. It is easy to find examples of pairs of substitutions

τ, υ which cannot be distinguished by our invariant, but such that their opposites

τ−1, υ−1 – the same substitutions, but read from right to left – can.

Thus a strictly finer flow invariant may be achieved by considering K0(Xτ ) ⊕

K0(Xτ−1).
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6.2. Pointed groups The K0-group associated to a unital C∗-algebra posseses a

distinguished element [1] corresponding to the unit of the C∗-algebra. This element

is an invariant of isomorphism of such algebras, so according to Theorem 4.3 we

have that (K0(Xτ ), [1]) is an invariant of one-sided conjugacy of π+(Xτ ).

When τ is basic, [1] is the image of (1, . . . , 1) ⊕ 0 from the first copy of

Z|a| ⊕ Znτ/pτZ in our description of K0(Xτ ). Since this distinguished element is

not an invariant of flow equivalence we do not at present know how to compute it

when τ is simplifiable.

6.3. Ordered groups The K0-group associated to any C∗-algebra posseses a

canonical order structure stemming from the fact that it is given as a Grothendieck

group of a semigroup of equivalence classes of self-adjoint projections. The order

structure may be degenerate in the sense that elements can be simultaneously

positive and negative, but often holds important and natural information on the

algebras in question.

In the case of crossed products associated to Cantor minimal systems, for

instance, the order on the K0-group is part of the complete invariant for (strong)

orbit equivalence given in [17]. Similarly, since it can be given as the K0-groups

of a C∗-algebra, K0(Xτ ) has an order structure which is a flow invariant for the

underlying substitutional dynamics.

In our paper [11] we give examples showing that this ordered group carries more

information than the group itself, by proving that K0(Xτ ) may fail to be order

isomorphic to K0(Xτ−1), even though the K-groups are isomorphic as groups. We

also give the following complete description of this ordered group:

Theorem 6.1. Let τ be a basic substitution. There is an order isomorphism

K0(Xτ ) ' lim
−→

(Z|a| ⊕ Znτ/pτZ, ÃAAτ )

where each Z|a| ⊕ Znτ/pτZ is ordered by

[(xa), (yi)] ≥ 0 ⇐⇒ ∀a ∈ a : xa ≥ 0.

This result shows in particular that the order on K0(Xτ ) is the quotient order

induced by the order on DG(Xτ ) via the map R∞ considered in the proof of

Theorem 5.9. As will be explained in [11], this phenomenon extends beyond

substitutional shift spaces.

Let us quote another result from [11], stating the potentially finest invariant

conceivable to us from our work above. Such an invariant can be extracted from

the six term exacty sequence associated to the extension (4.3), which becomes

Znτ K0(Xτ ) DG(Xτ )

Z 0 0.
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To describe the maps, apart from pτ and R∞, we use Q : Znτ −→ Z|a| ⊕Znτ/pτZ

defined by

Q(x) = (0, x+ pτZ),

and its composition Q1 with the canonical mapping from the first instance of

Z|a| ⊕ Znτ/pτZ in the inductive system to the inductive limit in our description

of K0(Xτ ):

Corollary 6.2. Let τ be a basic substitution. The exact complex

Kτ : 0 Z
pτ

Znτ
Q1

K0(Xτ )
R∞

DG(Xτ ) 0,

where Z,Znτ ,K0(Xτ ) and DG(Xτ ) should be considered as ordered groups and

pτ , Q1, R∞ as positive homomorphisms, is a flow invariant of Xτ .

6.4. Open questions It would be most interesting to know exactly which relation

on the substitution shift spaces Xτ is induced by isomorphism of the stabilized

algebra Oτ⊗K, or by isomorphism of the invariants mentioned above. Our examples

above show that this relation is stronger than strong orbit equivalence, cf. [17].

There are classification results, notably those of Lin and Su ([22]), which could

apply to the class of C∗-algebras in question, but we have not yet attempted to

pursue this question.

As mentioned above, and documented in [8], the constituents of our invariants

are effectively computable. However, this does not in itself lead to the conclusion

that isomorphism of our invariants is decidable. Related work by Bratteli et al ([4])

proves decidability of the invariant which is complete for strong orbit equivalence

– it would seem reasonable to expect that the result can be extended.
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6.8 Closing remarks

In the next chapter we show that the description of K0 in fact also holds
if we regard it as a preordered group.

It would be interesting to conduct a similar description of K0 for other
classes of shift spaces. Toeplitz flows seems as a natural candidate. They
have property (∗), but not necessarily property (∗∗) (cf. Example 3.7 and
3.8 of Chapter 4), but there seems to be a connection between the l-past
equivalence structure used to describe K0 and the periodic structure of a
Toeplitz flow (cf. [16]).
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Chapter 7

Ordered K0 of the C∗-algebra
associated to certain one-sided
shift spaces

We round off with the preprint Ordered K-groups associated to substitu-
tional dynamics which is written together with Søren Eilers.

It contains a description of the order onK0 of the C∗-algebra associated
to the one-sided shift space corresponding to a two-sided shift space which
has property (∗). It also proofs that the description of the K0-group of
the C∗-algebra associated to the one-sided shift space of a substitutional
dynamical systems given in the previous chapter also holds in the cat-
egory of preordered groups and it shows that the ordered K0-group of
the C∗-algebra associated to the one-sided shift space of a substitutional
dynamical systems is a finer invariant than the K0-group without order.

Noticed that in this paper the C∗-algebra associated to the one-sided
shift space X+ corresponding to a two-sided shift space X is denoted OX.
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Ordered K-groups associated to substitutional
dynamics

Toke M. Carlsen and Søren Eilers

Final version, March 2004

1 Introduction

The Matsumoto K0-group ([25]) is an invariant of flow equivalence (cf. [29])
associated to any shift space in a fashion closely related to the way the groups
of Bowen and Franks are associated to shifts of finite type ([3]). This group is
not always easily computable, but in a previous paper ([9]), we have given a
concrete inductive limit description of the Matsumoto K0-groups associated
to substitutional shift spaces, proved that they contain the dimension groups
of the system (cf. [15]), and demonstrated by examples that the Matsumoto
K0-group often carries more information than the dimension group.

Using the fact that the Matsumoto K0-group can be defined as the K0-
group associated to a certain stabilized C∗-algebra ([23], [22], [13]) which is
itself a flow invariant of the shift space, one sees that it carries an ordered
structure which is also a flow invariant. It is well known in the theory of
C∗-algebras associated to shifts of finite type, the so called Cuntz-Krieger
algebras ([14]), that in this case the order structure is degenerate and redun-
dant. The main goal of the present paper is to perform a further analysis of
our previous description of the Matsumoto K0-group of substitutional shift
spaces, leading to a complete description of the order it carries as well (The-
orem 6.1). In contrast to the case for shifts of finite type, we shall give an
example proving that we hence arrive at a finer flow invariant than what the
group, in itself, offers.

Many of the methods employed in this paper apply to a much wider class
of shift spaces. However, we can not at present point to other classes of
shift spaces where this ordered group is manifestly new and important. In

1
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some classes, like the class of Sturmian shift spaces ([17]), the order structure
is already present in the well studied dimension group (Corollary 5.2). In
other classes, like the class of Toeplitz flows ([34]) we conjecture that the
order structure carries interesting information, but the group it sits in is too
complex for us to understand it well enough to prove that this is in fact the
case. Nevertheless, to pave the way for future applications, we shall state our
main results (Theorems 4.3, 5.1) in the most general framework known to
us, making only the requirements of properties (∗) and (∗∗) defined below.
Outside of the class of shifts of finite type, which only meet these properties
when they are finite, these properties can often be established. The properties
are automatic for primitive substitutional systems.

Since we know of no way to define a flow invariant order structure on the
Matsumoto K0-groups without referring to its operator algebraic origin, we
in an essential fashion need to work with C∗-algebras in the present paper.
This is in contrast to our description of the Matsumoto K0-group as a group
([9]), which could employ a more direct description of these groups using the
past equivalence structure (or the closely related lambda-graph) of the shift
spaces in question.

We wish to thank Ken Goodearl for suggesting to us where to look for
the counterexample given in Section 6.

2 General preliminaries

Let N0 = {0, 1, . . . } and −N = Z\N0. We equip

aZ, aN0 , a−N

with the product topology from the discrete topology on a, and define σ :
aZ −→ aZ, σ+ : aN0 −→ aN0 , and σ− : a−N −→ a−N by

(σ(x))n = xn+1 (σ+(x))n = xn+1 (σ−(x))n = xn−1.

Such maps we will refer to as shift maps.
A two-sided shift space is a closed subset of aZ which is mapped onto itself

by σ. We shall refer to such spaces by “X” with possible subscripts; note
that σ(X) = X. A one-sided shift space is either a closed subset of aN0 which
is mapped into itself by σ+, or a closed subset of a−N which is mapped into
itself by σ−. We refer to such spaces by X+ and X−, respectively.

2
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With the obvious restriction maps

π+ : X −→ aN0 π− : X −→ a−N

we get
σ+ ◦ π+ = π+ ◦ σ σ− ◦ π− = π− ◦ σ−1, (1)

and immediately note that X+ = π+(X) and X− = π−(X) are one-sided shift
spaces. In general, σ+(X+) 6= X+ (or σ−(X−) 6= X−) is possible, but as a
consequence of (1) we always have σ+(X+) = X+.

Let a] be the set of finite nonempty words with letters from a, equipped
with the length map | · | : a] −→ N. The language of a shift space is the
subset of a] ∪ {ε} given by

L(X) = {x[n,m] | x ∈ X, n ≤ m ∈ Z}

where the interval subscript notation should be self-explanatory. Each µ in
the language gives rise to a non-empty cylinder set

Cyl+(µ) = {x ∈ X+ | x[0,|µ|−1] = µ}

Clearly these sets form a base for the topology of X+. Similar bases can be
given for the topologies of X− and X, but we will not need this here.

We call x, y ∈ X right shift tail equivalent and write x ∼r y when there
exist n,M ∈ Z with

xm = yn+m, m ≥M.

We say that a pair of (one- or two-sided) shift spaces are conjugate when
there is a homeomorphism between them which intertwines the relevant shift
maps. We indicate conjugacy by the symbol “'” and write “X ∼=f Y when
two-sided shift spaces are flow equivalent in the sense considered, e.g., in [29],
[18], [4] or [21, §13.6]. As noted in Theorem 3.2 below there is a hierarchy
among one-sided conjugacy, two-sided conjugacy and flow equivalence.

Let X+ be a one-sided shift space. As in [24], for every x ∈ X+ and every
k ∈ N we set

Pk(x) = {µ ∈ ak | µx ∈ X+},

and write x ∼k y or [x]k = [y]k if Pk(x) = Pk(y). We say (cf. [20]) that y ∈ X
is left special if there exists y′ ∈ X such that

y−1 6= y′−1 π+(y) = π+(y′).

3
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Definition 2.1 [12] We say that a shift space X has property (∗) if for every
µ ∈ L(X) there exists an x ∈ X+ such that P|µ|(x) = {µ}.

Definition 2.2 [12] We say that a shift space X has property (∗∗) if it has
property (∗) and if the number of left special words of X is finite, and no
such left special word is periodic.

It is proved in [12, Example 3.6] that an infinite minimal shift space X
has property (∗∗) precisely when the number of left special words of X is
finite. Further, we see

Type of shift space (∗) (∗∗) Reference in [12]

Finite shift Yes Yes 3.4
Infinite shift of finite type No No 3.5
Sturmian shift Yes Yes 5.21
Primitive substitutional shift Yes Yes 5.22 or 3.4
Non-regular Toeplitz flow Yes Not always 3.7, 3.8

3 C∗-algebras associated to shift spaces

In this section we shall introduce certain C∗-algebras and describe their K-
theory. We recommend [28],[30] as general sources for the theory of C∗-
algebras and [2],[32] for general sources of the K-theory of C∗-algebras.

One of the easiest K-theory computations in C∗-algebra theory is that
of C(X), where X is a zero-dimensional compact Hausdorff space. Indeed,
one gets that K0(C(X)) = C(X,Z) in a way which associates to any class
[p] ∈ K0(C(X)) with p a projection in C(X) the function p with values in
{0, 1}. The map thus induced is an order isomorphism, so we shall identify
K0(C(X)) and C(X,Z) is such cases considered below.

Whenever a homeomorphism T of a compact Hausdorff space X is given,
the adjoint action T ? on C(X) gives rise to a C∗-algebraic crossed product
C(X) oT ? Z. There is a canonical ∗-homomorphism

ηo : C(X) −→ C(X) oT ? Z

which we shall denote as indicated. When (X,T ) is a two-sided shift space
(X, σ), the ordered K0-groups of such systems are completely described by
the following result:

4
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Theorem 3.1 [[4, Theorem 5.2], cf. [19]] Let (X,T ) be a dynamical system
with X a zero-dimensional, metrizable and compact space. There exists an
order isomorphism χo making the diagram

K0(C(X))

(ηo)∗
��

C(X,Z)

����
K0(C(X) oT ? Z) χo

// C(X,Z)/ Im(Id−(T−1)?)

commute, where the rightmost map is the canonical quotient map.

Here and below, we use the notation (·)∗ to indicate the group homomor-
phism functorially associated to a ∗-homomorphism. We shall use repeatedly
that such induced maps are always positive.

Another C∗-algebra, introduced in the work by K. Matsumoto in [22] (cf.
[13] and [7]), is available in the special case where (X,T ) is a shift space
(X, σ). This algebra can be defined in several equivalent ways – we shall
briefly outline the construction based on Hilbert C∗-bimodules, see [6] for a
detailed exposition.

Starting with a two-sided shift space X, we define a C∗-algebra

B = {f : X+ −→ C | f is bounded}.

Inside this algebra, we have elements

gµ = 1
σ
|µ|
+ (Cyl+(µ))

, µ ∈ L(X)

and we will define a C∗-subalgebra AX of B by

AX = C∗(gµ | µ ∈ L(X))

We also let Aa be the ideal of AX generated, for a fixed a ∈ a, by ga. We
may equip HX =

⊕
a∈aAa as a Hilbert C∗-bimodule over AX by letting AX

act by multiplication on the right and through the map φ : AX −→ L(HX)
defined by

φ(f)((fa)a∈a) = (λa(f)fa)a∈a

where

λa(f)(x) =

{
f(ax) ax ∈ X+

0 ax 6∈ X+
.

5
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A construction of great and growing importance in C∗-algebra theory,
the (augmented!) Cuntz-Pimsner algebra defined in [31], now leads to a
C∗-algebra

OX

for which we have:

Theorem 3.2 [[22, Proposition 5.8], [26, Corollary 6.2], [27, Proposition
9.2]] Let X and Y be two-sided shift spaces. We have

X+ ' Y+ +3

��

X ' Y +3 X ∼=f Y

��
OX ' OY

%-TTTTTTTTTTTTTTT

TTTTTTTTTTTTTTT
OX ⊗K ' OY ⊗K

px hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

[K0(OX), K0(OX)+] ' [K0(OY), K0(OY)+]

Parallel to the situtation for crossed products, the construction above
leaves us with a canonical ∗-homomorphism

ηO : AX −→ OX .

By construction, AX is a unital commutative AF algebra ([5]). It may
hence be written C(ΩX) where the spectrum ΩX is a totally disconnected
compact Hausdorff space (cf. [24, Corollary 4.7]). As explained in [12, §2.4]
we can give a concrete description of ΩX as the space

{([xn]n)n∈N0 | ∀n ∈ N0 : xn+1 ∼n xn} .

On C(ΩX), we consider λX given by

λX(h)(([xn]n)n∈N0) =
∑

a∈P1(x1)

h([axn]n)n∈N0

Further we see that property (∗) allows the definition of a continuous and
injective map ιX : X− −→ ΩX by

ιX(y) = ([xn]n)n∈N0

6
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where xn is chosen with Pn(xn) = {y[−n,0[}. We set

κ = (ι ◦ π−)? : C(ΩX) −→ C(X)

and note that this map may also be considered as a map from C(ΩX ,Z) to
C(X,Z). Using this structure, the first author proves the following result,
which is the key to our results in this paper:

Theorem 3.3 [[8]] Let X be a two-sided shift space with property (∗). There
is a surjective ∗-homomorphism

ρ : OX −→ C(X) oσ? Z,

making the diagram

AX

ηO
��

C(ΩX) κ // C(X)

ηo

��
OX ρ

// C(X) oσ? Z

commute.

4 Quotient order

In [23, Theorem 4.9] Matsumoto establishes a group isomorphism

χO : K0(OX) −→
C(ΩX ,Z)

Im(Id−λX)

with the property

χO ◦ (ηO)∗([p]) = p+ Im(Id−λX) (2)

for any projection in AX , considered as a {0, 1}-valued continuous function
on ΩX . Since the group on the right hand side may be described directly in
terms of the shift space, this characterization allows a more direct analysis
of the group K0(OX) which in this context is often denoted simply K0(X).
A wide ranging analysis along these lines is carried out in Matumoto’s work,
and under extra assumptions such as property (∗), (∗∗) or the shift space
being substitutional, we have contributed in [9] and [12].

Returning to the origin of K0(OX) as an ordered group – and under the
assumption of property (∗) – we shall prove that χO is in fact an order
isomorphism. Our starting point is the following diagram:

7
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Proposition 4.1 Let X be a shift space with property (∗). Then the dia-
gram

K0(C(ΩX))

(ηO)∗

��

κ∗

''OOOOOOOOOOO
C(ΩX ,Z)

����

κ

%%KKKKKKKKKK

K0(C(X))

(ηo)∗

��

C(X,Z)

����

K0(OX) χO
//

ρ∗
&&LLLLLLLLLLLLL

C(ΩX ,Z)

Im(Id−λX )

κ ##HH
HH

HH
HH

H

K0(C(X) oσ? Z) χo
// C(X,Z)

Im(Id−(σ−1)?)

is commutative, where all double-headed arrows indicate canonical quotient
maps.

Proof: Commutativity of the back face follows from (2) since elements of
the form [p] generate K0(C(ΩX)). The left face of the diagram commutes
because of Theorem 3.3, and commutativity of the right face is noted in [12,
Proposition 4.1]. Further, the front face commutes according to Theorem
3.1.

Since commutativity of the top square is obvious, the bottom face may
now be seen to commute by a diagram chase since, as seen on the back face
of the diagram, (ηO)∗ is onto as a consequence of the fact that χO is an
isomorphism. �

Proposition 4.2 Let X be a shift space with property (∗). The canonical
order on C(ΩX ,Z)/ Im(Id−λX) is the order induced via κ by the canonical
order on C(X,Z)/ Im(Id−(σ−1)?) in the sense that

f + Im(Id−λX) ≥ 0 ⇐⇒ κ(f + Im(Id−λX)) ≥ 0.

Proof: Since κ is induced by the positive map κ the forward implication is
obvious. Thus assume that κ(f +Im(Id−λX)) ≥ 0 and note that this means
that there exists g ∈ C(X,Z) with the property that

f ◦ ιX ◦ π− + (g − g ◦ σ−1) ≥ 0.

8
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We shall find h1, h2, h3 ∈ C(ΩX ,Z) and N1, N2, N3 ∈ N such that

f +
3∑
i=1

(Id−λNi
X )(hi) ≥ 0. (3)

This proves positivity since we then have

f + (Id−λX)

[
3∑
i=1

Ni−1∑
n=0

λnX(hi)

]
≥ 0.

By continuity of g, there exists an N1 such that g ◦ σ−N1(x) depends
only on π−(x). Thus as seen in the proof of [12, Proposition 4.1] there is
g̃ ∈ C(ΩX ,Z) with the property that g̃ ◦ ιX ◦ π− = g ◦ σ−N1 . We have that

f ◦ ιX ◦ π− ◦ σ−N1 + g ◦ σ−N1 − g ◦ σ−N1−1 ≥ 0,

so since π− is surjective and we have proved in [12, Proposition 4.1] that

(ιX)? ◦ λX = (ιX ◦ σ−)? = (σ−)? ◦ (ιX)?.

we get

0 ≤ f ◦ ιX ◦ σN1
− + g̃ ◦ ιX − g̃ ◦ ιX ◦ σ−

=
(
(σ−)?N1 ◦ (ιX)?

)
(f) + (ιX)?(g̃)−

(
(σ−)? ◦ (ιX)?

)
(g̃)

= (ιX)? ◦ λN1
X (f) + (ιX)?(g̃)− (ιX)? ◦ λX(g̃)

= (ιX)?
(
f − (Id−λN1

X )(f) + (Id−λX)(g̃)
)
.

Let
f̃ = f − (Id−λN1

X )(f) + (Id−λX)(g̃).

We have seen that f̃ ◦ ιX is a nonnegative function.

By continuity of f̃ we get an N3 such that

xN3 ∼N3 x
′
N3

=⇒ f̃(([xn])n∈N0) = f̃(([x′n])n∈N0).

Thus, if ([xn])n∈N0 is given with #PN3(xN3) = 1 we get that

f̃(([xn])n∈N0) = f̃(ιX(y)) ≥ 0,

9

174 CHAPTER 7. ORDERED K0 OF CERTAIN SHIFT SPACES



where y ∈ X− is chosen with PN3(xN3) = {y]−N3,0[}. Note that in every point

([xn])n∈N0 where we do not know that f̃ is nonnegative, we have #PN3(xN3) >
1.

Define, for any c ∈ Z, kc ∈ C(ΩX ,Z) as the constant function with value
c. One sees by induction that

(λX)N3(kc)(([xn]n)n∈N0) = c#PN3(xN3),

so with c = min(0,minΩX
f̃) we get

f̃ + (Id−(λX)N3)(kc) ≥ 0.

This proves (3) with N2 = 1, h1 = −f, h2 = g̃, and h3 = kc. �

Theorem 4.3 Let X be a shift space with property (*). Then χO is an order
isomorphism

χO : K0(OX) −→
C(ΩX ,Z)

Im(Id−λX)
.

when the codomain is equipped with quotient order.

Proof: If x ∈ K0(OX)+ we get that

κ ◦ χO(x) = χo ◦ ρ∗(x) ≥ 0

which proves positivity of χO(x) by Proposition 4.2.
In the other direction, lift χO(x) to f ∈ C(ΩX ,Z)+ and note that

0 ≤ (ηO)∗(f) = x.

�
As noted in [12, Proposition 2.5] the map χO is a group isomorphism

regardless of property (∗). One may check that it is also an order isomorphism
for certain shifts of finite type, but we do not know if it could fail to be an
order isomorphism in general. A completely different approach would seem
to be needed outside of the case with property (∗).

Several useful corollaries can be deduced from this result.

Corollary 4.4 Let X be an shift spaces with property (∗). The order of
K0(OX) is the quotient order induced by ρ∗ in the sense that

z ∈ K0(OX)+ ⇐⇒ ρ∗(z) ∈ K0(C(X) oσ? Z)+.

10
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Proof: Since we now know that both maps χo and χO are order isomor-
phisms, we can establish the claim by the diagram

K0(OX)

χO
��

ρ∗ // K0(C(X) oσ? Z)

χo

��
C(ΩX ,Z)

Im(Id−λX ) κ
// C(X,Z)

Im(Id−(σ−1)?)

by appealing to Proposition 4.2. �
The previous result describes K0(OX) as an ordered group by proving

that the order it carries is given as the quotient order induced by ρ∗ and the
order on K0(C(X) oσ? Z). Note that this means that as soon as ρ∗ is not
injective, then [K0(OX), K0(OX)+] will be degenerate in the sense that ele-
ments besides 0 are simultaneously positive and negative. It is, in particular,
not a dimension group in the strict sense of [16].

This does not, however, mean that the order on K0(OX) is redundant or
completely determined by the order on K0(C(X)oσ? Z). Indeed, the example
given in Section 6 shows that for substitutional systems X and Y we may have

K0(OX) ' K0(OY)

as well as

[K0(C(X) oσ? Z), K0(C(X) oσ? Z)+] ' [K0(C(Y) oσ? Z), K0(C(Y) oσ? Z)+],

yet
[K0(OX), K0(OX)+] 6' [K0(OY), K0(OY)+].

The following result gives an algebraic reformulation of the extra infor-
mation captured by the order on K0(OX).

Corollary 4.5 Let X and Y both be minimal shift spaces with finitely many
left special words. The following are equivalent

(i) [K0(OX), K0(OX)+] ' [K0(OY), K0(OY)+]

(ii) There exist group isomorphisms ψ, ψ′, ψ′′ with ψ′ an order isomorphism
such that

0 // kX
� � //

ψ′′

��

K0(OX)

ψ
��

ρ∗ // K0(C(X) oσ? Z)

ψ′

��

// 0

0 // kY
� � // K0(OY) ρ∗

// K0(C(Y) oσ? Z) // 0

11
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commutes, where kX and kY denote the kernels of the respective ρ∗-
maps.

Proof: The shift spaces have property (∗) as seen in [12, Example 3.6]. Sup-
pose the K0-groups are order isomorphic via ψ. Further note that, as seen
in [19], K0(C(X) oσ? Z) is a dimension group and hence in particular has no
nonzero element which is simultaneously positive and negative.

This means, by Corollary 4.4, that

kX = {x ∈ K0(OX) | 0 ≤ x ≤ 0}.

Since the same charancterization may be given for Y, we get that ψ(kX) = kY .
Thus isomorphisms ψ′′ and ψ′ are induced, and clearly ψ′ will be an order
isomorphism.

In the other direction, we see that ψ will be an order isomorphism by

ψ(z) ≥ 0 ⇐⇒ ρ∗(ψ(z)) ≥ 0 ⇐⇒ ψ′(ρ∗(z)) ≥ 0 ⇐⇒ ρ∗(z) ≥ 0 ⇐⇒ z ≥ 0.

�
Note that the condition in (ii) above is not the one defining equivalence

in Ext(K0(C(X) oσ? Z), kX). Hence, even though there would seem to be a
relation between the condition and the theory of extensions of C∗-algebras,
the order description remains more useful for our purposes than one involving
KK1(C(X) oσ? Z, ker ρ).

5 Finer descriptions

We will now concentrate on the case when the shift space X has property
(∗∗). In this case, as seen in [12, Section 5.3], we can give a description of
K0(OX) as a cokernel of a map on

GX = C(X,Z)⊕
∑
n∈N0

ZJX ,

where the index set JX is the set of those right shift tail equivalence classes
of X which contains a left special element. Notice that it is finite.

We say that a left special words is adjusted when σ−n(y) is not left special
for any n ∈ N. As a consequence of property (∗∗) each right shift tail class

12
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j of a left special word contains at least one, and at most finitely many,
adjusted left special word. We call that set Mj.

We let AX be the map from GX to itself defined by

(f, (aj
n)j∈JX ,n∈N0) 7→ (f ◦ σ−1, (ãj

n)j∈JX ,n∈N0),

where ãj
0 =

∑
z∈Mj

f(σ−1(z))− f(σ−1(zj)), and ãj
n = aj

n−1 for n > 0.

We have proved in [12, Proposition 5.16] that K0(OX) is isomorphic to
GX/ Im(Id−AX). The advantage of this description over the one available
for property (∗) is that GX manifestly contains C(X,Z) via the canonical
restriction map η : GX −→ C(X,Z). Indeed, we prove in [12, Proposition
5.19] that there is a group homomorphism φ : C(ΩX ,Z) −→ GX such that

C(ΩX ,Z)

����

κ //

φ

##FF
FF

FF
FF

F
C(X,Z)

����

GX

����

η
::uuuuuuuuuu

GX

Im(Id−AX )

η

""EE
EE

EE
EE

E

C(ΩX ,Z)

Im(Id−λX )
κ //

φ
>>||||||||

C(X,Z)

Im(Id−(σ−1)?)

commutes and φ is an isomorphism. We conclude:

Theorem 5.1 Let X be a shift space with property (∗∗). When

GX

Im(Id−AX)

is equipped with quotient order from the (degenerate) order

(f, (αj
n)j∈JX ,n∈N0) ≥ 0 ⇐⇒ f ≥ 0,

the map χ̃O = φ ◦ χO becomes an order isomorphism.

13
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Proof: According to Theorem 4.3 it suffices to prove that φ is an order
isomorphism. Because of our choice of order on GX we clearly have

f ≥ 0 =⇒ κ(f) ≥ 0 =⇒ η(φ(f)) ≥ 0 =⇒ φ(f) ≥ 0

so that φ is positive.
In the other direction, since η is positive, we get

y ≥ 0 =⇒ η(y) ≥ 0 =⇒ κ(φ
−1

(y)) ≥ 0 =⇒ φ
−1

(y)

according to Proposition 4.2. �
From [12, Corollary 5.20] we immediately get the following:

Corollary 5.2 When X is a shift space which has property (∗∗) and only
has two left special words K0(OX) and K0(C(X) oσ? Z) are isomorphic as
ordered groups.

Example 5.3 For a Sturmian shift space with parameter α (see [17, §6]),we
get

K0(OXα
) ∼= Z + αZ,

cf. [33].

6 Substitutional shift spaces

We now consider shift spaces Xτ associated to aperiodic and primitive sub-
stitutions τ via

L(Xτ ) = {τN(a)[n,m] | a ∈ a, N ∈ N, 1 ≤ n ≤ m ≤ |τN(a)|}.

In [12] we found a representation of K0(OXτ
) as a stationary inductive

limit of finitely generated groups. We may now prove that this description
also captures the order structure. We refer the reader to [9, 3.3] for the
definition of the class of basic substitutions, for a discussion of why working
with this class is no restriction, and for the definitions of the combinatorial
data AAAτ , nτ , pτ and ÃAAτ associated with the substitution τ on the alphabet a.

Theorem 6.1 Let τ be a basic substitution. There is an order isomorphism

K0(OXτ
) ' lim

−→
(Z|a| ⊕ Znτ/pτZ, ÃAAτ )

where each Z|a| ⊕ Znτ/pτZ is ordered by

((xa), (yi) + pτZ) ≥ 0 ⇐⇒ ∀a ∈ a : xa ≥ 0.

14
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Proof: The identification in [15] and [9], respectively, of K0(C(Xτ ) oσ Z)
and K0(OXτ

) as limits of stationary inductive systems of finitely generated
groups, was found using a Kakutani-Rohlin partition

∞⋃
m=1

rkτ [m] = C(Xτ ,Z)

and maps

ψm : rkτ [m] −→ Z|a| Ψm : rkτ [m] −→ Z|a| ⊕ Znτ/pτZ

defined in such a way that AAAτ ◦ψm = ψm+1 and ÃAAτ ◦Ψm = Ψm+1. Thus maps

ψ∞ : C(Xτ ,Z) −→ lim
−→

(Z|a|,AAAτ ) Ψ∞ : GXτ
−→ lim

−→
(Z|a| ⊕ Znτ/pτZ, ÃAAτ )

are induced, and since we know by the proofs of [15, Theorem 22] and [9,
Theorem 5.8] (cf. [9, Proposition 5.14]) that

kerψ∞ = Im(Id−(σ−1)?) ker Ψ∞ = Im(Id−AX) (4)

this establishes the stated isomorphisms.
Let R : Z|a| ⊕ Znτ/pτZ −→ Z|a| be the projection map. Since we have

directly by definition that

rkτ [m]⊕
m∑
i=0

Znτ

Ψm

��

η // rkτ [m]

ψm

��
Z|a| ⊕ Znτ/pτZ R

// Z|a|

we may pass to limits and get that

GX
η //

Ψ∞
��

C(X,Z)

ψ∞
��

lim
−→

(Z|a| ⊕ Znτ/pτZ, ÃAAτ )
R∞

// lim
−→

(Z|a|,AAAτ )

15
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is commutative. Comparing (4) and Theorem 5.1 we get a diagram

K0(OX)
eχO // GX

Im(Id−AX )

η //

Ψ∞
��

C(X,Z)

Im(Id−(σ−1)?)

ψ∞
��

lim
−→

(Z|a| ⊕ Znτ/pτZ, ÃAAτ )
R∞

// lim
−→

(Z|a|,AAAτ )

where from [15, Theorem 22], ψ∞ is an order isomorphism. Thus Ψ∞ ◦ χ̃O
becomes an order isomorphism when lim

−→
(Z|a| ⊕ Znτ/pτZ, ÃAAτ ) is equipped with

the order induced from lim
−→

(Z|a|,AAAτ ) via R∞. This is the same as equipping

each Z|a| ⊕ Znτ/pτZ in the inductive system with the order induced from Z|a|

via R, as required. �
The remainder of the paper is devoted to proving by example that the

ordered groups thus obtained carry information which is not available by
any other flow equivalent means known to us. For this end, we consider a
substitution τ given on the alphabet a = {a, b, c, d} by

τ(a) = dbdbaaaaaddddddbbbbbbcccabd

τ(b) = d11b10cccca10bdbbbddddbbbbccaadd

τ(c) = dbdbaaaacddddddbbbbbbcaacbd

τ(d) = d11b10cccca10dddddbd31b39c12a24dddddbbbbccaadd

where “•i” is just an abbreviation of the concatenation of i instances of “•”.
Surely shorter examples could be found – the repeated letters are only used
to get computationally convenient invariants.

Computations using our program [11], cf. [10], show that this substitution
is aperiodic, elementary and basic with nτ = 2 and pτ = (1, 1). Using the
notation

[w]+ = wτ(w) · · · τn(w) · · · ∈ aN0

[w]− = · · · τn(w) · · · τ(w)w ∈ a−N

as in [10], we may choose cofinal representatives (cf. [9, §3.1])

[d11b10cccca10dddddbd31b39c12a24]−d.[ddddbbbbccaadd]+

[dbdbaaaaaddddddbbbbbbccc]−a.[bd]+
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for the two orbit classes of special words, and hence arrive at the augmented
matrix

ÃAAτ =


6 9 3 9 0 0
12 18 6 18 0 0
6 9 3 9 0 0
36 54 18 54 0 0
10 13 4 12 1 0
6 8 2 8 0 1

 .

Now consider

R =

[ 1 0 0
1 1 0
1 0 0
4 2 0
1 1 1
0 0 0

]
S =

[
1 1 0 1 0 0
1 0 1 1 0 0
−1 0 0 0 1 0

]
noting that

RS =

[ 1 1 0 1 0 0
1 2 1 2 0 0
1 1 0 1 0 0
4 6 2 6 0 0
1 2 1 1 1 0
0 0 0 0 0 1

]

has the property that (RS)2 induces the same map as ÃAAτ on Z4⊕Z2/(1, 1)Z.
Since

SR =
[

6 3 0
6 3 0
−3 −1 1

]
=

[
2 1 0
2 1 0
−1 0 1

]2

we have shown that K0(OXτ
) is isomorphic, as an ordered group, to the

stationary inductive limit of Z3 equipped with the order

(x1, x2, x3) ≥ 0 ⇐⇒ x1 ≥ 0 ∧ x2 ≥ 0

and the matrix
B =

[
2 1 0
2 1 0
−1 0 1

]
.

We define
Xn =

[
0 1 2

3−n (1−3−n)/2 1

]
and note that Xn+1B = Xn. Hence a map

X∞ : K0(OXτ
) −→ Q2

is defined. One easily sees that X∞ is an isomorphism onto Z⊕ Z[1/3], and
that

X∞ ◦ P∞ = X1

[
0
0
1

]
= [ 2

1 ]

17
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whence we get that the short exact sequence associated to τ becomes

0 // Z
[ 2
1 ]

// Z⊕ Z[1
3
] // Z[1

3
] // 0

This short exact sequence does not split.
Now consider the oppostite substitution τ−1 with τ−1(•) equalling τ(•)

read from right to left. Again the substitution is aperiodic, elementary and
basic, with nτ = 2 and pτ = (1, 1), and it has augmented matrix

ÃAAτ−1 =


6 9 3 9 0 0
12 18 6 18 0 0
6 9 3 9 0 0
36 54 18 54 0 0
2 7 2 7 1 0
2 7 2 7 0 1


if one chooses

[ddaaccbbbbddddda24c12b39d31bdddd]−d.[a10ccccb10ddddddddddd]+

[dbacccbbbbbbdddddd]−a.[aaaabdbd]+

Similar computations with

Rop =

[ 1 0 0
1 1 0
1 0 0
4 2 0
0 0 1
0 0 0

]
Sop =

[
1 1 0 1 0 0
0 1 1 1 0 0
0 0 0 0 1 −1

]
Bop =

[
2 1 0
2 1 0
0 0 1

]
Xop,n =

[
0 0 1

3−n 3−n/2 0

]
show that we get

0 // Z
[ 1
0 ]

// Z⊕ Z[1
3
] // Z[1

3
] // 0

whence the short exact sequence splits and the two ordered groups K0(OXτ
)

and K0(OXτ−1 ) are nonisomorphic by Corollary 4.5 above, even though they
are identical as groups.

We have chosen the example so that no other flow invariant known to
us can tell the flow equivalence classes of Xτ and Xτ−1 apart. Indeed, since
the abelianization matrices of τ and τ−1 are identical, the invariant of [15]
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cannot detect any difference. Similarly we get in the notation of [1, Theorem
3.10] that

(τ−1)∗ = (τ ∗)−1

so that

sup{n ∈ N | ∃w : wn ∈ L(Xτ∗)} = sup{n ∈ N | ∃w : wn ∈ L(X(τ−1)∗)},

rendering the method of [1] inapplicable here. And finally, the configuration
data graph (cf. [10]) of τ is symmetric; indeed it is given by

• •
•

ffffffffffff •
•

ffffffffffff •
•

mmmmmmmmmmmm •
•

ffffffffffff

mmmmmmmmmmmm •
•

ffffffffffff •
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7.8 Closing remarks

Since the statement of Theorem 4.3 does not depend on property (∗), it is
natural to ask if the results is true in generale and not just for shift spaces
having property (∗).

Off other interesting questions in this area is what equivalence relation
does the C∗-algebra OX+ induce on shift spaces? Said in another way:
Is there a symbolic dynamical condition for when to shift spaces have
isomorphic (or Morita equivalent) C∗-algebras OX?
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