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Department of Mathematics
University of Copenhagen
Universitetsparken 5
2100 Copenhagen Ø
Denmark
tommy@math.ku.dk
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Preface

This is my Ph.D. thesis in mathematics at the University of Copenhagen. The thesis
is based on the following three papers:

[2] T. Bülow: Power Residue Criteria for Quadratic Units and the Negative Pell
Equation, Canad. Math. Bull Vol. 46 (1), 2003, 39-53;

[3] T. Bülow: Relative Norms of Units and 4-rank of Class Groups (submitted);

[4] T. Bülow: 4-rank of the Class Group of Certain Biquadratic Number Fields of
Dirichlet Type (preprint).

The structure of the thesis is as follows:

The first introductory chapter deals with the classical negative Pell equation
and indicates two possible ways to continue the classical theory. These matters are
investigated in parts I and II.

In part I, which consists of the chapters 2 and 3, power residue criteria for units
of real quadratic fields are proved by means of class field theory. Part I is based on
[2].

Part II, which consists of the chapters 4 and 5, deals with the surjectivity of
the relative norm map NL/K restricted to unit groups (for certain extensions L/K
of number fields). It turns out that this question is related to concepts which also
influence the structure of the (2–)class group of L, especially the 4–rank of the class
group of L. For certain fields, the 4–rank of the class group is also studied for its
own sake. Part II is based on [3] and [4].

The class field theory that will be used is summarized in an appendix.

I would like to thank my thesis advisor professor Christian U. Jensen, who was
also my master’s thesis advisor, warmly for being an excellent advisor over the years.
He has been a great inspiration and I am glad that he introduced me to the interesting
theory of the classical negative Pell equation.

Tommy Bülow
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Notation

We list some of the notation that will be used.

Z is the set of rational integers;
N is the set of positive integers;
N0 is the set of non-negative integers;
Q is the field of rational numbers;
R is the field of real numbers;
C is the field of complex numbers;
Fq is the finite field with q elements where q is a prime power.
NL/K is the relative norm map for an extension L/K of number fields;
N(·) is the absolute norm map;
Let K be a number field; then:

OK is the ring of integers of K;
O∗

K is the group of units in OK ;
Cl(K) is the class group;
h(K) is the class number;
[a]K is the ideal class in Cl(K) containing the fractional ideal a of K;

∨ is the logical ’or’;
∧ is the logical ’and’;
|| means ’divides exactly’ (for prime powers);(

D
p

)
is the Legendre symbol (or the Kronecker symbol).



Chapter 1

Introduction

1.1 The Classical Negative Pell Equation

Let D be a non-square positive integer. The problem of deciding whether the negative
Pell equation

x2 −Dy2 = −1, (1.1)

has integral solutions is a classical problem in number theory which is not solved in
general. Obvious necessary conditions for the solvability of (1.1) are that 4 - D and
that every odd prime factor of D is congruent to 1 modulo 4; they are not sufficient.

Consider two indefinite integral binary quadratic forms of positive discriminant:
f(x, y) = ax2 + bxy + cy2 and g(x, y) = a′x2 + b′xy + c′y2. Then f and g are

called equivalent if there is a matrix A =

[
α β
γ δ

]
∈ GL2(Z) such that f(x, y) =

g(αx + βy, γx + δy); if this holds and A ∈ SL2(Z), then f and g are called properly
equivalent (these matters where studied by Gauss). The discriminant of f is b2−4ac.
If we consider forms of fixed positive non-square discriminant D, then it is known
that

proper equivalence = equivalence ⇔ x2 −Dy2 = −4 is solvable.

If 4 - D, then these two statements are true if and only if x2−Dy2 = −1 is solvable.

Many mathematicians have made sporadic contributions to the problem about
the solvability of (1.1). Fermat, Euler and Galois were some of the first to study the
equation systematically.

First, suppose that D is square-free.
Dirichlet [5] proved the following result by elementary means (quadratic reci-

procity and simple considerations about biquadratic residues).
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Theorem 1.1. Let p1, p2, p3 be distinct primes ≡ 1 (mod 4). If D is equal to one of
the following, the equation x2 −Dy2 = −1 is solvable:

1. D=p1;

2. D=2p1, where p1 ≡ 5 (mod 8);

3. D=2p1, where p1 ≡ 9 (mod 16) and
(

2
p1

)
4

= −1;1

4. D=p1p2, where
(

p1

p2

)
= −1;

5. D=p1p2, where
(

p1

p2

)
= 1 and

(
p1

p2

)
4

=
(

p2

p1

)
4

= −1;

6. D=p1p2p3, where at least two of
(

p1

p2

)
,
(

p2

p3

)
,
(

p3

p1

)
are =−1;

7. D=p1p2p3, where
(

p1

p2

)
=
(

p3

p1

)
= 1 and

(
p2

p3

)
=
(

p2p3

p1

)
4

=
(

p1

p2

)
4

=
(

p1

p3

)
4

=

−1;

8. D=p1p2p3, where
(

p1

p2

)
=
(

p2

p3

)
=
(

p3

p1

)
= 1 and

(
p2p3

p1

)
4

=
(

p1p3

p2

)
4

=
(

p1p2

p3

)
4

=(
p1

p2

)
4

(
p1

p3

)
4

=
(

p2

p1

)
4

(
p2

p3

)
4

=
(

p3

p1

)
4

(
p3

p2

)
4

= −1.

More recent results about the negative Pell equation can be found in [6], [23], [24],
[25].

We now turn to the connection between the solvability of the negative Pell equa-
tion and class field theory.

From now on, we use the class field theory and the notation in appendix A.
Let K be a number field.
Consider the ideal group S(1) in K; let L1 be the corresponding abelian extension

of K (cf. theorem A.9). Then fL1/K = (1), so that (cf. theorem A.6) S(1) is an ideal
group corresponding to L1. We have

Gal(L1/K) ' A(1)/S(1).

Since any unramified (including at infinity) abelian extension of K has conductor
(1), so that its corresponding ideal group contains S(1), A.11 implies that

L1 = the maximal unramified (including at infinity) abelian extension of K.

1Let a ∈ Z and let p be an odd prime number; in this paper we use
(

a
p

)
4

only in the following

sense: if
(

a
p

)
= 1, then

(
a
p

)
4

=
{

1, if a is a 4th power residue mod p
−1, if a is not a 4th power residue mod p

.
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L1 is the Hilbert class field of K.
Let ∞ be the divisor of K which is the product of the real embeddings of K. Let L2

be the abelian extension of K corresponding to S∞. Then fL2/K | ∞, so that S∞ is
an ideal group corresponding to L1. We have

Gal(L2/K) ' A(1)/S∞.

A(1)/S∞ is the strict class group of K. Since any finitely unramified abelian extension
of K has a conductor dividing ∞, so that its corresponding ideal group contains S∞,
we have that

L2 = the maximal finitely unramified abelian extension of K.

L2 is the strict Hilbert class field of K.
Clearly, L1 ⊆ L2 and L1 = L2 ⇔ S(1) = S∞.

Let p be a prime number. For a finite abelian group G, let Sylp(G) denote the
p–Sylow group of G.

Let L
(p)
1 be the abelian extension of K corresponding to H1 where

A(1)/S(1) = Sylp(A(1)/S(1))H1/S(1).

Let L
(p)
2 be the abelian extension of K corresponding to H2 where

A(1)/S∞ = Sylp(A(1)/S∞)H2/S∞.

(H1/S(1) (resp. H2/S∞) is the product of the other Sylow groups in A(1)/S(1) (resp.
A(1)/S∞).) We have

Gal(L
(p)
1 /K) ' A(1)/H1 ' A1/S(1)

/
H1/S(1) ' Sylp(A(1)/S(1)),

L
(p)
1 = maximal unramified (including at infinity) abelian p− extension of K

Gal(L
(p)
2 /K) ' A(1)/H2 ' A1/S∞

/
H1/S∞ ' Sylp(A(1)/S∞)

and
L

(p)
2 = the maximal finitely unramified abelian p− extension of K.

L
(p)
1 is called the p–class field of K; L

(p)
2 is the strict p–class field of K. It is clear

that L
(p)
1 ⊆ L

(p)
2 .

Sylp(A(1)/S(1)) is called the p–class group of K; Sylp(A(1)/S∞) is the strict p–class
group of K.

Suppose that K ⊆ R. Then L1 ⊆ R (since L1/K is unramified at infinity) and

L
(p)
1 ⊆ R (since L

(p)
1 /K is unramified at infinity). Moreover, it is clear that

L2 ⊆ R ⇔ L2/K is unramified at infinity ⇔ L1 = L2 ⇔ S(1) = S∞.
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Suppose further that K = Q(
√

D) where D > 1 is a square-free integer, and let
εD be the fundamental unit (> 1) of K. Then it is easily seen that S(1) = S∞ ⇔
N(εD) = −1 (N is the norm). If, in addition, p = 2, then

L
(2)
2 ⊆ R ⇔ L

(2)
2 is unramified at infinity

⇔ L
(2)
1 = L

(2)
2

⇔ Syl2(A(1)/S(1)) ' Syl2(A(1)/S∞)

⇔ |A(1)/S(1)| = |A(1)/S∞|
⇔ S(1) = S∞

(we used that |A(1)/S(1)| and |A(1)/S∞| differ by a factor 1 or 2).
These observations are summarized in the following

Proposition 1.2. Let D > 1 be a square-free integer. The following statements are
equivalent:

1. x2 −Dy2 = −1 is solvable;

2. x2 −Dy2 = −4 is solvable;

3. N(εD) = −1;

4. S(1) = S∞;

5. the strict Hilbert class field of Q(
√

D) is real;

6. the strict Hilbert class field of Q(
√

D) = the Hilbert class field of Q(
√

D);

7. the strict 2–class field of Q(
√

D) is real;

8. the strict 2–class field of Q(
√

D) = the 2–class field of Q(
√

D).

In [27], class field theory in connection with the criteria in Proposition 1.2 (espe-
cially those involving 2–class fields) was used to prove the next result about the case
where D has two prime factors (supplementing Dirichlet).

Theorem 1.3. 1) If D = p1p2 where p1, p2 are distinct primes ≡ 1 (mod 4) with(
p1

p2

)
= 1 and

(
p1

p2

)
4

= −
(

p2

p1

)
4
, then x2 −Dy2 = −1 is not solvable.

2) If D=2p where p is a prime ≡ 1 (mod 16) with
(

2
p

)
4

= −1, then x2 −Dy2 = −1

is not solvable.
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1.2 D Not Square-free and Power Residues of Units

In this section, we consider the negative Pell equation x2 − Dy2 = −1 with D not
square-free, and we discuss its relation to certain power residues of units of quadratic
fields which will be the main topic of part I of this thesis.

We write (uniquely) D = dk2 with d > 1 square-free and k > 1.
First we give a formulation of the problem in terms of class field theory:

Consider the two ideal groups in K := Q(
√

d):

H ′ := {(α) ∈ A(k)(K) | ∃r ∈ Q : α ≡ r (mod (k))} and

H ′′ := {(α) ∈ A(k)(K) | ∃r ∈ Q : α ≡ r (mod (k)∞)};

(k) (resp. (k)∞) is clearly a congruence module for H ′ (resp. H ′′); ∞ is, as before,
the divisor of K which is the product of the real embeddings of K. Let L′ (resp.
L′′) be the abelian extension of K corresponding to H ′ (resp. H ′′). By definition
of infinite ramification, L′ ⊆ R. It is also clear that H ′ ⊇ H ′′. Then we have the
following analogue of proposition 1.2:

Proposition 1.4. The following three conditions are equivalent.

1. x2 − dk2y2 = −4 is solvable.

2. H ′ = H ′′.

3. L′′ ⊆ R

If 2 - k, these conditions are equivalent to

4. x2 − dk2y2 = −1 is solvable.

Proof. For β ∈ K let β′ denote the conjugate.

‘1. ⇒ 2.’: Let a2 − dk2b2 = −4, a, b ∈ N, and consider the units

ε =
a + kb

√
d

2
, ε′ =

a− kb
√

d

2
∈ OK

which have opposite signs. If (α) ∈ H ′, r ∈ Q, and α ≡ r (mod k), then (by adding
a suitable integral multiple of k to r, if necessary) we can assume that r and α have
the same sign, and so

α ≡ r (mod k∞) or εα ≡ a

2
r (mod k∞).
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Hence (α) ∈ H ′′. It follows that H ′ = H ′′.

‘2. ⇒ 1.’: Assume that H ′ = H ′′. Put α := 1 + k
√

d; then (α) ∈ H ′ = H ′′. Then
there is a unit ε ∈ OK and (a rational number and (after multiplication by a suitable
power of its denominator) also) an integer g such that εα ≡ g (mod k∞). As, in
particular, εα/g, ε′α′/g > 0, we have

N(ε) =
εα

g

ε′α′

g

g2

N(α)
< 0,

and so N(ε) = −1.

We can write ε = a+b
√

d
2

, a, b ∈ Z; then

2g ≡ 2εα = a + b
√

d + 2k
√

dε ≡ a + b
√

d (mod 2k).

Hence k | b, and so we get −4 = 4N(ε) = a2 − dk2
(

b
k

)2
.

‘2. ⇒ 3.’: H ′ = H ′′ ⇒ L′′ = L′ ⊆ R.

‘3. ⇒ 1.’: Suppose that L′′ ⊆ R, i.e. fL′′/K is an integral ideal. Therefore, we can

choose n ∈ N with fL′′/K | (n). Hence S(nk) ⊆ H ′′. Put α := 1 + nk
√

d. Since
(α) ∈ S(nk) ⊆ H ′′, there is a unit ε ∈ OK and an integer g ∈ Z with

εα ≡ g (mod k∞).

As εα
g

, ε′α′

g
> 0, we have

N(ε)
N(α)

g2
=

εα

g
· ε′α′

g
> 0,

and so N(ε) = −1. From ε ≡ εα ≡ g (mod k) we find that

ε− g = k
x + y

√
d

2
, x, y ∈ Z;

hence −4 = N(2ε) = (kx + 2g)2 − dk2y2.
To finish the proof we note that 2 - k implies that 4 - dk2; so if 2 - k, then

x2 − dk2y2 = −1 is solvable if and only if x2 − dk2y2 = −4 is solvable.

A necessary condition for the solvability of x2 − dk2y2 = −1 is, of course, that
x2−dy2 = −1 has a solution. Hence it is also necessary that k is odd and that every
odd prime dividing dk is ≡ 1 (mod 4). By the next proposition (from [15]) one can
assume that k is a prime ≡ 1 (mod 4).
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Proposition 1.5. 2 Let d > 1 be square-free and let the odd number k have the
prime decomposition k =

∏
i p

νi
i . Then

x2 − dk2y2 = −1 is solvable ⇔ ∀i : x2 − dp2
i y

2 = −1 is solvable.

So it is enough to deal with the equation x2 − dp2y2 = −1 where d > 1 is
square-free and p is a prime ≡ 1 (mod 4). We shall assume that p - d.

First we settle the case
(

d
p

)
= −1 completely.

We shall need the following result from genus theory.

Lemma 1.6. Let K be a quadratic number field where p1, . . . , pw are the (distinct)
prime factors of the discriminant of K. Let pi be the prime ideal in K above pi. The
square of each pi is (of course) a principal ideal with a generator of positive norm.
Moreover,

1. exactly 2 of the 2w ideals

pµ1

1 · · · pµw

1 , µi ∈ {0, 1},

are principal with a generator of positive norm;

2. every fractional ideal B in K whose ideal class has order 1 or 2 (in K’s class
group) is strictly equivalent to one of the ideals

pµ1

1 · · · pµw

1 , µi ∈ {0, 1}

(i.e. B differs from one of these by a principal ideal with a generator of positive
norm).

Lemma 1.7. Let d > 1 be square-free. Assume that x2 − dy2 = −1 has a solution.
Let d1 be a divisor of d. Then

x2 − dy2 = d1 is solvable ⇔ d1 ∈ {±1,±d}.

Proof. ‘⇐’: Obvious.
‘⇒’: It is enough to show that (at most) 4 divisors d1 result in a solvable equation.
Consider Q(

√
d) whose discriminant has the same prime factors as d. Let d =

p1 · · · pw be the prime decomposition of d and consider a divisor d1 = ±
∏

i∈B pi,

B ⊆ {1, . . . , w}, of d. Let pi be the prime ideal in Q(
√

d) above pi. Since

x2 − dy2 = d1 is solvable ⇔
∏
i∈B

pi is a principal ideal

and since (by lemma 1.6) exactly 2 of the ideals pµ1

1 · · · pµw

1 , µi ∈ {0, 1}, are principal,
we are done.

2In [15] only an odd d is considered; however, the proof given there does not use this.
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Theorem 1.8. Let d > 1 be square-free. Assume that x2− dy2 = −1 has a solution.

Let p ≡ 1 (mod 4) be a prime with
(

d
p

)
= −1. Then x2 − dp2y2 = −1 is solvable.

Proof. Assume that x2 − dp2y2 = −1 is not solvable, and let x, y ∈ N be minimal
with x2 − dp2y2 = 1. As dp2 ≡ 1, 2, 5 (mod 8), x must be odd and y even. The
integers x+1

2
and x−1

2
are coprime. From

x + 1

2
· x− 1

2
= d

(
p
y

2

)2

we therefore get
x + 1

2
= d1a

2
1 and

x− 1

2
= d2a

2
2

where d = d1d2 and py
2

= a1a2. Since

(d1a1)
2 − da2

2 = d1(d1a
2
1 − d2a

2
2) = d1,

lemma 1.7 implies that d1 ∈ {±1,±d}, and so (d1, d2) ∈ {(1, d), (d, 1)}. This gives 4
cases, each one being impossible:

i) d1 = d ∧ a1 = pb : a2
2 − dp2b2 = −1.

ii) d2 = d ∧ a2 = pb : a2
1 − dp2b2 = 1 and |a1| =

√
x+1

2
< x.

iii) d1 = d ∧ a2 = pb : da2
1 − p2b2 = 1; hence

(
d
p

)
= 1.

iv) d2 = d ∧ a1 = pb : da2
2 − p2b2 = −1; hence

(
d
p

)
= 1.

This settles the case
(

d
p

)
= −1. From now on, we concentrate on the case(

d
p

)
= 1. In this case, the following result (proved in [15] by elementary means)

transforms the question of solvability of the negative Pell equation into a problem
about a congruence in OQ(

√
d).

Lemma 1.9. Let d > 1 be square-free, let the fundamental unit ε = εd of Q(
√

d)

have norm –1 and let p ≡ 1 (mod 4) be a prime with
(

d
p

)
= 1. Suppose that 2λ||p−1.

Then

x2 − dp2y2 = −1 is solvable ⇔ ε
p−1

2λ−1 ≡ −1 (mod p) (in OQ(
√

d)).
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If c is an integer not divisible by the odd prime p and the Legendre symbol
(

c
p

)
has the value 1, then we define the symbol

(
c
p

)
4

to be be 1 or −1 according as c

is or is not a fourth power modulo p. If
(

d
p

)
= 1, then we can interpret εd as an

integer modulo p and if the norm N(εd) of εd is 1 or if N(εd) = −1 and p ≡ 1

(mod 4), the symbol
(

εd

p

)
is well-defined. When there is no risk of ambiguity we

define, recursively, the symbol
(

εd

p

)
2t+1

as follows:
(

εd

p

)
2t+1

= 1 (resp. = −1) means

that
(

εd

p

)
2t

= 1 and εd is (resp. is not) a 2t+1th power modulo p. For our purposes

it will be sufficient to know that if N(εd) = 1 or if N(εd) = −1 and p ≡ 1 (mod 8),

the symbol
(

εd

p

)
4

is well defined.

Remark 1.10. Let p ≡ 1 (mod 2λ) (λ = 2, 3) be a prime number with
(

d
p

)
= 1 and

let p be one of the two prime ideals in Q(
√
−d) above p. Then for λ = 2, 3:(

εd

p

)
2λ−1

= 1 ⇔ (εd)
p−1

2λ−1 ≡ 1 (mod p)

⇔ p splits totally in Q( 2λ−1√
εd, i),

by theorem 119 in [12]. In particular, we immediately have (cf. lemma 1.9):
A) p ≡ 5 (mod 8) :

x2 − dp2y2 = −1 is solvable ⇔
(

εd

p

)
= −1;

B) p ≡ 9 (mod 16) :

x2 − dp2y2 = −1 is solvable ⇔
(

εd

p

)
4

= −1;

C) p ≡ 1 (mod 16) :

x2 − dp2y2 = −1 is solvable ⇒
(

εd

p

)
4

= 1.

In part I of this thesis, we concentrate on the problem of finding
(

εd

p

)
and

(
εd

p

)
4

for certain classes of d. As indicated by remark 1.10, power residue criteria can be
interpreted in terms of the solvability of x2 − dp2y2 = −1.

We now describe some of the known results dealing with the power residue criteria
for εd or the solvability of x2−dp2y2 = −1 with p being a prime. They are almost all
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expressed in terms of one or two representations of powers of p by binary quadratic
forms.

[8] contains several power residue criteria for εd being a 2tth power residue
(t = 1, 2, 3) for special classes of d. A typical example is Potenzrestkriterium 1 in [8]:

Theorem 1.11. Let d ≡ 7 (mod 8), let the prime divisors q of m be ≡ ±1 (mod 8),
let the class group of Q(

√
−d) have no invariant divisible by 4, let m be the odd part

of the class number of Q(
√
−d), let p ≡ 1 (mod 8) be a prime number such that(

q
p

)
= 1 for every prime factor q of d. Then pm = s2 + 16dv2, s, v ∈ Z,(

εd

p

)
= 1 and

(
εd

p

)
4

= (−1)v.

If p ≡ 1 (mod 16) and
(

εd

p

)
4

= 1., i.e. pm = s2 + 64d(v1)
2, s, v1 ∈ Z, then(

εd

p

)
8

= (−1)v1 .

We refer to [8] for references to older power residue criteria in the literature.
Let us now turn to the case which interests us in part I of this paper, namely

N(εd) = −1 (i.e. x2 − dy2 = −1 is solvable), p ≡ 1 (mod 4) and
(

d
p

)
= 1. This is

assumed in the rest of this section.
The old paper [22] contains the following criterion:

Theorem 1.12. Let p ≡ 1 (mod 8) be a prime represented by p = s2 + 2v2; a
necessary condition for the solvability of x2 − 2p2y2 = −1 is that 8|v; for p ≡ 9
(mod 16) this condition is also sufficient.

Remark 1.13. Let p ≡ 1 (mod 8) be a prime. Then (by Gauss) 2 is a biquadratic
residue modulo p if and only if p = x2 + 64y2. If p ≡ 1 (mod 16), then this is
equivalent to p = s2 + 128v2. (See for example [10].)

In [16], theorem 1.12 was extended to a similar criterion when p ≡ 17 (mod 32):

Theorem 1.14. Let p ≡ 1 (mod 16) be a prime satisfying the necessary condition
of theorem 1.12, i.e. representable by the form p = s2 + 128v2

1 and hence also by
p = x2 + 64y2. Then a necessary condition for the solvability of x2 − 2p2y2 = −1 is
that y + v1 ≡ p−1

16
(mod 2); for p ≡ 17 (mod 32) this condition is also sufficient.

In [15], a necessary and sufficient condition was given in the case d = q ≡ 1
(mod 4) a prime and p ≡ 5 (mod 8). For example, for q ≡ 5 (mod 8):

Theorem 1.15. Let q ≡ 5 (mod 8) be a prime. Let p be a prime ≡ 1 (mod 4) with(
d
p

)
= 1. Then ph/2 = u2 + qv2, h being the class number of Q(

√
−q).

A necessary condition for the solvability of x2 − qp2y2 = −1 is that p−1
4

+ v is even;
for p ≡ 5 (mod 8) this condition is also sufficient.
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1.3 Norms of Units and 4-rank of Class Groups

The problem of the solvability of the negative Pell equation, x2−dy2 = −1 with d > 1
square-free can, as we know, be formulated as a question of whether the fundamental
unit εd of Q(

√
d) has norm −1. In other words, we ask whether the relative norm

map between unit groups,

NQ(
√

d)/Q : O∗
Q(
√

d)
→ O∗

Q = {±1},

is surjective.
In general, we could ask the following natural question:

Let L/K be an extension of number fields. What can be said about the relative
norm map

NL/K : O∗
L → O∗

K

between unit groups? (Clearly, units of L are mapped to units of K.)
In particular, can we decide whether this is a surjective map?

In part II of this thesis, we investigate this problem for certain cyclic extensions
of prime degree, mostly quadratic.

Apart from the classical case, the only thing which seems to be known about the
general question is a reformulation (in terms of the ramified primes of L/K) of the
problem given by Hilbert (see [13]) only in the special case of K = Q(i) the Gaussian
field and L = K(

√
d), d an integer. We shall have more to say about this case later

and we use it to illustrate some of the results.

We mention two classical results.

Definition 1.16. Let D be the discriminant of the quadratic number field K. Con-
sider factorizations D = D1D2 of D where each of D1 and D2 is a product of prime
discriminants or equal to 1. The factorizations D = D1D2 and D = D2D1 are con-
sidered the same.
The factorization D = D1D2 is of type 2 (German: Von zweiter Art) if

∀ prime p|D1 :

(
D2

p

)
= 1 and ∀ prime p|D2 :

(
D1

p

)
= 1.

Here
(

Di

·

)
is the Kronecker symbol.

Definition 1.17. For a finite abelian group G, the number of cyclic factors of the
2–Sylow subgroup of G whose order is divisible by 4 is called the 4–rank of G.

In 1934, Redei and Reichardt (see [25] and [26])) proved the following theorem:
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Theorem 1.18. Let the quadratic number field K have discriminant D. If the
number of factorizations D = D1D2 of D of type 2 is 2u, then u is the 4–rank of the
strict class group of K.

They also proved the following

Theorem 1.19. Let d > 1 be a square-free integer. Assume that d is not divisible by
a prime congruent to 3 modulo 4. If only the trivial factorization of the discriminant
of Q(

√
d) is of type 2 (which, by theorem 1.18, means that the strict 2–class group

of Q(
√

d) is elementary abelian), then N(εd) = −1.

Theorems 1.18 and 1.19 are, along with the above-mentioned paper, [13], of
Hilberts, the starting point for the investigations in part II. More precisely, we ask
for possible analogues of these theorems to certain quadratic extensions L/K. In the
case of an analogue of theorem 1.19, we shall also look at certain cyclic extensions
of prime degree.

When studying the 4-rank of class groups, we shall use, among other things,
genus theory of quadratic fields as it can be found in for example [30]. Hilberts
similar theory of ’Geschlechter’ for quadratic extensions L of Q(i) (see [13]) will also
play a part at a certain point. The concepts ’Geschlecht’, ’Hauptgeschlecht’ and
’Geschlechter der Hauptart’ were defined by Hilbert in terms of certain character
symbols.

In general, an ideal class C of Cl(L) was proved (by Hilbert) to be a square if
and only if C is in the ’Hauptgeschlecht’.

Consider quadratic extensions of Q(i) of the special form L = Q(i,
√

d) where d is
an integer. Hilbert proved that the composite of (the natural images of) Cl(Q(

√
d))

and Cl(Q(
√
−d)) in Cl(Q(i,

√
d)) is equal to the ’Geschlechter der Hauptart’.

See also [7] where these concepts are studied in a more general context.



Part I

Power Residue Criteria for
Quadratic Units



Chapter 2

Preparations

2.1 Galois Groups

Let d > 1 be a square-free integer and assume that N(εd) = −1 for the fundamental

unit ε = εd of Q(
√

d). Let p ≡ 1 (mod 4) be a prime number with with
(

d
p

)
= 1,

i.e. p splits totally in Q(
√
−d) and in Q(

√
d). In part I of this thesis, criteria for(

εd

p

)
= 1 and

(
εd

p

)
4

= 1 are proved for certain (infinite) classes of not necessarily

prime d. For example, these criteria will cover all d for which the 2-class group of
Q(
√
−d) is elementary abelian

We are going to use the following

Lemma 2.1. Let L/K be a quadratic extension of number fields; so we can assume
that L = K(

√
α), α ∈ OK. Let p ⊆ OK be a prime ideal not dividing (2α). Then

p splits totally in L ⇔ x2 ≡ α (mod p) is solvable in OK

⇔ α
N(p)−1

2 ≡ 1 (mod p).

Proof. The first equivalence is contained in [12], theorem 118; the second is well
known from the theory of quadratic residues.

Remark 1.10 hints at the possibility of applying class field theory (cf. theo-
rem A.12). In fact, Q(

√
ε, i)

/
Q(
√
−d) turns out to be abelian. Unfortunately,

Q( 4
√

ε, i)
/
Q(
√
−d) is not even a Galois extension for d 6= 2; this will be remedied by

bringing the extension Q( 4
√

2ε, i)
/
Q(
√
−d) into the discussion.
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Proposition 2.2. 1) Q(
√

2ε, i)
/
Q is Galois, and Gal(Q(

√
2ε, i)

/
Q(
√
−d)) ' Z/4.

2) Q( 4
√

2ε, i)
/
Q is Galois, and Gal(Q( 4

√
2ε, i)

/
Q(
√
−d)) ' Z/8.

3) Q(
√

ε, i)
/
Q is Galois, and Gal(Q(

√
ε, i)

/
Q(
√
−d)) ' Z/4.

4) Q( 4
√

ε, i)
/
Q(
√
−d) is not Galois for d 6= 2.

5) Q( 4
√

ε, i)
/
Q is Galois for d = 2, and in this case Gal(Q( 4

√
ε, i)

/
Q(
√
−d)) ' Z/8.

Proof. We first prove 1) and 2). Put 2ε = u + t
√

d, u, t ∈ Z.

The polynomial f(x) := x4 − 2ux2 − 4 has the roots ±
√

u± t
√

d. As

√
u + t

√
d

√
u− t

√
d =

√
−4 = 2i,

Q(
√

2ε, i) is the splitting field of f(x) over Q.

The polynomial g(x) := f(x2) has the roots {±1,±i} 4
√

u± t
√

d. As

4

√
u + t

√
d

4

√
u− t

√
d = 4

√
−4 =

√
2i = 1 + i,

Q( 4
√

2ε, i) is the splitting field of g(x) over Q. We claim that

a)
√

u + t
√

d 6∈ Q(
√

d)), and b)
4
√

u + t
√

d 6∈ Q(
√

u + t
√

d).

Proof of a):

√
u + t

√
d ∈ Q(

√
d)) ⇒ f(x) reducible over Q

⇒ 2i =

√
u + t

√
d

√
u− t

√
d ∈ Q ∨

u + t
√

d =

(√
u + t

√
d

)2

∈ Q.
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Proof of b): Since u + t
√

d > 0, we have (using a)):

4

√
u + t

√
d ∈ (Q(

√
d))

(√
u + t

√
d

)
⇒ 4

√
u + t

√
d = α + β

√
u + t

√
d; α, β ∈ Q(

√
d)

⇒
√

u + t
√

d = (α2 + β2(u + t
√

d)) +

2αβ

√
u + t

√
d

⇒ 0 = α2 + β2(u + t
√

d).

⇒ α = β = 0.

a) implies that [Q(
√

2ε, i) : Q(
√
−d)] = 4; this and b) implies that

[Q( 4
√

2ε, i) : Q(
√
−d)] = 8.

Let Gal(Q(
√

d, i)
/
Q(
√
−d)) = 〈τ〉, i.e. τ(

√
d) = −

√
d (and τ(i) = −i). Let

τ ′, τ ′′ ∈ Gal(Q(
√

2ε, i)
/
Q(
√
−d)) be the two automorphisms restricting to τ . As(

τ ′
(√

u + t
√

d

))2

=

(
τ ′′
(√

u + t
√

d

))2

= τ(u + t
√

d) = u− t
√

d,

we can assume that

τ ′
(√

u + t
√

d

)
=

√
u− t

√
d

(
and τ ′′

(√
u + t

√
d

)
= −

√
u− t

√
d

)
.

Since

(τ ′)2

(√
u + t

√
d

)
= τ ′

(√
u− t

√
d

)
= τ ′

(
2i√

u + t
√

d

)
=

−2i√
u− t

√
d

= −
√

u + t
√

d,

we must have
Gal(Q(

√
2ε, i)

/
Q(
√
−d)) = 〈τ ′〉 ' Z/4.

Let σ, σ′ ∈ Gal(Q( 4
√

2ε, i)
/
Q(
√
−d)) be the two automorphisms restricting to τ ′. As(

σ

(
4

√
u + t

√
d

))2

=

(
σ′
(

4

√
u + t

√
d

))2

= τ ′
(√

u + t
√

d

)
=

√
u− t

√
d,
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we can assume that

σ

(
4

√
u + t

√
d

)
=

4

√
u− t

√
d

(
and σ′

(
4

√
u + t

√
d

)
= − 4

√
u− t

√
d

)
.

Note that

σ

(
4

√
u− t

√
d

)
= σ

(
1 + i

4
√

u + t
√

d

)
=

1− i
4
√

u− t
√

d
.

Since

σ4

(
4

√
u + t

√
d

)
= σ3

(
4

√
u− t

√
d

)
= σ2

(
1− i

4
√

u− t
√

d

)

= σ

(
1 + i

1− i

4

√
u− t

√
d

)
=

(1− i)2

(1 + i)
4
√

u− t
√

d

= − 1 + i
4
√

u− t
√

d

= − 4

√
u + t

√
d,

we conclude that Gal(Q( 4
√

2ε, i)
/
Q(
√
−d)) = 〈σ〉 ' Z/8.

3) The proof of 3) is analogous to that of 1).

4) Suppose that d 6= 2 and that Q( 4
√

ε, i)
/
Q(
√
−d) is Galois; then arguments com-

pletely similar to those in 2) would give that

Gal(Q( 4
√

ε, i)
/
Q(
√
−d)) ' Z/8

and that δ ∈ Q( 4
√

ε, i) where δ is a primitive eighth root of unity. Then

√
2 ∈ Q(

√
2, i) = Q(δ) ⊆ Q( 4

√
ε, i),

and hence Q(
√

2,
√
−d) = Q(

√
−d, i), and so d = 2 which is a contradiction.

5) If d = 2, Q(
√
−d, i) is the eighth cyclotomic field. Therefore, the proof of the fact

that Q( 4
√

ε, i)
/
Q is Galois is analogous to what was done in 2); the computation of

the mentioned Galois group is also similar.
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Now we show that the question of the splitting of prime ideals in Q( 4
√

ε, i)
/
Q(
√
−d)

can be reformulated as a question of the splitting of prime ideals in abelian exten-
sions. First an easy lemma.

Lemma 2.3. Let L/K be a V4 − extension of number fields. Let p be a prime ideal
in OK which is unramified in L. Let L1, L2, L3 be the non-trivial intermediate fields
in L/K. Then p splits totally in exactly one or three of the fields L1, L2, L3.

Proof. Note that p cannot be inert in L1, L2, L3 (for otherwise p would be inert
L, and hence Gal(L/K) would be cyclic). So we can assume that p splits totally in
L1. If p splits totally in L/L1, then p splits totally in L2 and L3. If p does not split
totally in L/L1, p does not split totally in L2 and not in L3.

Proposition 2.4. Assume that p ≡ 1 (mod 8). For a prime ideal p in OQ(
√
−d)

above p we have:

p splits totally in Q( 4
√

ε, i) ⇔

p splits totally in Q(
√

ε, i) ∧(( (
2

p

)
4

= 1 ∧ p splits totally in Q(
4
√

2ε, i)

)
∨( (

2

p

)
4

= −1 ∧ p does not split totally in Q(
4
√

2ε, i)

))
.

Proof. Suppose first that d 6= 2. We begin by proving
a) The extensions Q(

√
ε, i, 4

√
2)
/
Q(
√

ε, i) and Q( 4
√

ε, i)
/
Q(
√

ε, i) are Galois with

Gal(Q(
√

ε, i,
4
√

2)
/
Q(
√

ε, i)) ' Z/4,

Gal(Q( 4
√

ε, i)
/
Q(
√

ε, i)) ' Z/2 and Q( 4
√

ε, i) 6⊆ Q(
√

ε, i,
4
√

2).

Proof of a): As

Gal(Q(
√

ε, i)
/
Q(
√
−d)) ' Z/4,

we have
√

2 ∈ Q(
√

ε, i) ⇒ Q(
√
−d,

√
2) = Q(

√
−d, i) ⇒ d = 2; hence

Gal(Q(
√

ε, i,
√

2)
/
Q(
√

ε, i)) ' Z/2.

The extension Q(
√

ε, i, 4
√

2)
/
Q(
√

ε, i) is clearly Galois, but it is not yet obvious

whether Q(
√

ε, i,
√

2) ( Q(
√

ε, i, 4
√

2). Let

τ ∈ Gal(Q(
√

ε, i,
√

2)
/
Q(
√

ε, i))
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with τ(
√

2) = −
√

2. Consider an automorphism

σ ∈ Gal(Q(
√

ε, i,
4
√

2)
/
Q(
√

ε, i))

restricting to τ (perhaps σ = τ). Since σ( 4
√

2) = (−1)ki 4
√

2, k ∈ {0, 1}, we see that

σ2(
4
√

2) = σ((−1)ki
4
√

2) = i2(−1)k(−1)k 4
√

2 = − 4
√

2;

hence (Q(
√

ε, i,
√

2) ( Q(
√

ε, i, 4
√

2) and) Gal(Q(
√

ε, i, 4
√

2)
/
Q(
√

ε, i)) ' Z/4.

Just as in the proof of 4
√

2ε 6∈ Q(
√

2ε, i) (see the proof of proposition 2.2) we get
4
√

ε 6∈ Q(
√

ε, i). This gives

Gal(Q( 4
√

ε, i)
/
Q(
√

ε, i)) ' Z/2.

Assume that Q( 4
√

ε, i) ⊆ Q(
√

ε, i, 4
√

2). As 4
√

ε 6∈ Q(
√

ε, i) and

Gal(Q(
√

ε, i,
4
√

2)
/
Q(
√

ε, i)) ' Z/4,

it follows that Q( 4
√

ε, i) = Q(
√

ε, i,
√

2) which is a Galois extension of Q(
√
−d), by

proposition 2.2 3). This contradiction (to proposition 2.2, 4)) finishes the proof of
a).

From a) it immediately follows that Q( 4
√

ε, i, 4
√

2)
/
Q(
√

ε, i) is Galois of degree 8.

As
√

2 6∈ Q(
√

ε, i), clearly [Q( 4
√

ε, i, 4
√

2) : Q(
√

ε, i,
√

2)]=4, and then we must have

Gal(Q( 4
√

ε, i,
4
√

2)
/
Q(
√

ε, i,
√

2)) ' V4.

The three (non-trivial) fields between Q( 4
√

ε, i, 4
√

2) and Q(
√

ε, i,
√

2) are

L1 = Q( 4
√

ε, i,
√

2), L2 = Q(
√

ε, i,
4
√

2), L3 = Q(
√

ε, i,
4
√

2ε).

Let p′′ be a prime ideal in Q(
√

ε, i) above p; p′′ is obviously unramified in Q( 4
√

ε, i, 4
√

2)
(the discriminant of Q( 4

√
ε, i, 4

√
2) clearly divides a power of 2), and p′′ splits totally

in Q(
√

ε, i,
√

2) (p ≡ 1 (mod 8)). Let p′ be a prime ideal in Q(
√

ε, i,
√

2) above p′′.

Suppose now that d = 2. We have:

i) 4
√

ε 6∈ Q(
√

ε, i) (as above);
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ii) 4
√

2 6∈ Q(
√

ε, i) (since

4
√

2 ∈ Q(
√

ε, i)

⇒ 4
√

2 ∈ Q(
√

ε, i) ∪ R = Q(
√

ε)

⇒ Q(
√

2)(
√

ε)) = Q(
√

ε) = Q(
4
√

2)) = Q(
√

2)

(√√
2

)
⇒ 1 +

√
2 = ε = (a + b

√
2)2
√

2 = 4ab + (a2 + 2b2)
√

2, a, b ∈ Q
⇒ 4ab = 1 ∧ a2 + 2b2 = 1

⇒ a4 − a2 + 1/8 = 0 (which is impossible));

iii) 4
√

2ε 6∈ Q(
√

ε, i) (since [Q( 4
√

2ε) : Q] = 8 > 4 = [Q(
√

ε) : Q]);

iv) 4
√

2 6∈ Q( 4
√

ε, i) (since

4
√

2 ∈ Q( 4
√

ε, i) ⇒ 4
√

2 ∈ Q( 4
√

ε)

⇒ Q(
√

ε)

(√√
2ε

)
= Q(

√
ε)

(√√
2

)
⇒

√
2ε = γ2

√
2, γ ∈ Q(

√
ε)

⇒ 4
√

ε = ±γ ∈ Q(
√

ε)).

From i), ii), iii) and iv) we deduce that

Gal(Q( 4
√

ε, i,
4
√

2)
/
Q(
√

ε, i)) ' V4.

The three (non-trivial) fields between Q( 4
√

ε, i, 4
√

2) and Q(
√

ε, i) are

L1 = Q( 4
√

ε, i), L2 = Q(
√

ε, i,
4
√

2), L3 = Q(
√

ε, i,
4
√

2ε).

Let p′ be a prime ideal in Q(
√

ε, i) above p; p′ is obviously unramified in
Q( 4
√

ε, i, 4
√

2).

In the rest of the proof we deal with both cases (d 6= 2 and d = 2) at the same
time. By lemma 2.3 p′ splits totally in 1 or 3 of the fields L1, L2, L3.

If
(

2
p

)
4

= 1, then p′ splits totally in L2 and hence (when ’split(s)’ means ’split(s)

totally’):

p splits in Q( 4
√

ε, i) ⇔ p splits in Q(
√

ε, i) ∧ p′ splits in L1

⇔ p splits in Q(
√

ε, i) ∧ p′ splits in L3

⇔ p splits in Q(
√

ε, i) ∧ p splits in Q(
4
√

2ε, i).
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If
(

2
p

)
4

= −1, then p′ does not split totally in L2 and so:

p splits in Q( 4
√

ε, i) ⇔ p splits in Q(
√

ε, i) ∧ p′ splits in L1

⇔ p splits in Q(
√

ε, i) ∧ p′ does not split in L3

⇔ p splits in Q(
√

ε, i) ∧ p does not split in Q(
4
√

2ε, i).

This proves the proposition.

By this proposition and remark 1.10, the problem of finding
(

εd

p

)
and

(
εd

p

)
4

for

d > 1 square-free, N(εd) = −1 and
(

d
p

)
= 1 is thus reduced to the question of the

splitting of prime ideals above p in certain cyclic extensions of Q(
√
−d). By theorem

A.12 this is equivalent to the problem of deciding whether prime ideals in Q(
√
−d)

above p are in the ideal groups in Q(
√
−d) corresponding to these cyclic extensions.

The investigation of these ideal groups will be the main topic of the rest of this
chapter.

2.2 Two Types of Prime Factors of d

The notation and the assumptions introduced here will be maintained throughout
this chapter and the next.

Let d > 1 be square-free and suppose that N(εd) = −1 for the fundamental unit

εd of Q(
√

d). Let p ≡ 1 (mod 4) be a prime number with
(

d
p

)
= 1.

Lemma 2.5. Let n ≡ 1 (mod 4) be a prime number. Then(
−4

n

)
4

= 1.

If n ≡ 1 (mod 8), then 4|h where h is the class number of Q(
√
−n); and(

−4

n

)
8

= (−1)
h
4 .1

Proof. If n ≡ 5 (mod 8), then(
−4

n

)
4

=

(
−1

n

)
4

(
22

n

)
4

= (−1)
n−1

4

(
2

n

)
= (−1)(−1) = 1.

1if
(

a
n

)
4

= 1, we define
(

a
n

)
8

= 1 or −1 according as a is a 8th power residue mod n or not.
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Now let n ≡ 1 (mod 8). First we find(
−4

n

)
4

=

(
−1

n

)
4

(
22

n

)
4

= (−1)
n−1

4

(
2

n

)
= 1 · 1 = 1.

By the help of genus theory it can be proved (see for example [11]) that 4|h and that(
2

n

)
4

= (−1)
n−1

8
+h

4 ;

hence (
−4

n

)
8

= (−1)
n−1

8

(
22

n

)
8

= (−1)
n−1

8

(
2

n

)
4

= (−1)
h
4 .

Write
2ε = u + t

√
d, u, t ∈ Z.

It turns out that odd prime factors (necessarily≡ 1 (mod 4)) of d must be divided
into 2 classes, each class having its own significance for the value of biquadratic

residue symbol
(

εd

p

)
4
. Let d0 be the odd part of d (so d0 = d if d is odd). Write

d0 = q1 · · · qαp1 · · · pβ

where qi and pj are prime numbers such that:

i)
(

u
q1

)
4

= · · · =
(

u
qα

)
4

= 1 (primes of type I);

ii)
(

u
p1

)
4

= · · · =
(

u
pβ

)
4

= −1 (primes of type II).

Remark 2.6. For an odd prime n dividing d we have(u

n

)
=

(
u2

n

)
4

=

(
u2 − dt2

n

)
4

=

(
−4

n

)
4

= 1,

by lemma 2.5. It follows that n satisfies (exactly) one of the conditions i), ii).
For n ≡ 1 (mod 8) it can be checked whether n satisfies i) or ii) without knowing

the fundamental unit ε = u+t
√

d
2

; actually it can be checked without leaving Z. This
follows from (u

n

)
4

=

(
u2

n

)
8

=

(
u2 − dt2

n

)
8

=

(
−4

n

)
8

,

where
(−1

n

)
4

= 1 was used. By lemma 2.5 a knowledge of the class number h(Q(
√
−n))

is also sufficient.
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2.3 The Ideal Groups

In this section we begin the important investigation of the ideal groups in Q(
√
−d)

corresponding to the cyclic extensions

Q(
√

d, i)
/
Q(
√
−d), Q(

√
ε, i)

/
Q(
√
−d), Q(

√
2ε, i)

/
Q(
√
−d), Q(

4
√

2ε, i)
/
Q(
√
−d).

Since each of these extensions is built up from Q(
√
−d) by successively adjoining

square roots of integral elements (such as 2ε) which generate principal ideals all
of whose prime factors lie above 2, it is clear that these extensions have relative
discriminants dividing some power of (the principal ideal generated by) 2. Therefore
these extensions have conductors dividing (2g) for some fixed g ∈ N. In other words:
We can use (2g) as a common congruence module for the corresponding ideal groups
in the sense of theorem A.6 (i.e. we can, in ii) of theorem A.6, take (2g) as a common
divisor M for all four ideal groups). Let these ideal groups be H−1, Hε, H2ε, H where

a) H−1 corresponds to Q(
√

d, i);

b) Hε corresponds to Q(
√

ε, i);

c) H2ε corresponds to Q(
√

2ε, i);

d) H corresponds to Q( 4
√

2ε, i).

By theorem A.11 we have (where, of course, A(2) denotes the group of fractional

ideals in Q(
√
−d) prime to (2))

Hε ⊆ H−1 ⊆ A(2) ⊇ H−1 ⊇ H2ε ⊇ H

where each inclusion indicates that the subgroup has index 2. We also have (where
the exact value of g is yet unknown):

A(2) ⊇ H−1 ⊇ SfQ(
√

d,i)/Q(
√
−d)

⊇ S(2g);

A(2) ⊇ Hε ⊇ SfQ(
√

ε,i)/Q(
√
−d)

⊇ S(2g);

A(2) ⊇ H2ε ⊇ SfQ(
√

2ε,i)/Q(
√
−d)

⊇ S(2g);

A(2) ⊇ H ⊇ SfQ( 4√2ε,i)/Q(
√
−d)

⊇ S(2g).
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Q( 4
√

2ε, i)

hhhhhhhhhhhhhhhhhhhhhh

qqqqqqqqqq

Q( 4
√

2ε) Q(i 4
√

2ε)

rrrrrrrrrr
Q(
√

2ε, i)

hhhhhhhhhhhhhhhhhhhhhh

qqqqqqqqqqq

Q(
√

2ε)
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Q(
√
−2ε) Q(

√
d, i)

qqqqqqqqqq

Q(
√

d)

NNNNNNNNNNNN
Q(
√
−d)

Q

Figure 1: Some subfields of Q(
4
√

2ε, i)

Propositions, 2.7, 2.8 and 2.9 (see below) are true no matter how we choose g.

Proposition 2.7. Assume that p is a prime ideal in Q(
√
−d) above one of the odd

prime factors of d. Then

1. p ∈ H2ε.

2. (
√
−d) ∈ H2ε if d is odd.

Proof. 1. Let n be the odd prime factor of d below p, and let p1 be the prime ideal
in Q(

√
d) above n. Using theorem A.12 and lemma 2.1 (and 2ε = u + t

√
d) we have:

p ∈ H2ε ⇔ p splits totally in Q(
√

2ε, i)

⇔ p1 splits totally in Q(
√

2ε)

⇔ x2 ≡ u + t
√

d (mod p1) is solvable in OQ(
√

d)

⇔ x2 ≡ u (mod p1) is solvable in OQ(
√

d)

⇔ u
N(p1)−1

2 ≡ 1 (mod p1)

⇔ u
n−1

2 ≡ 1 (mod n)

⇔
(u

n

)
= 1.
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And this last statement is true, by remark 2.6.

2. Follows from 1. and the fact that (
√
−d) is the product of the prime ideals in

Q(
√
−d) above the prime factors of d.

Proposition 2.8. Let p be a prime ideal in Q(
√
−d) above the odd prime factor n

of d. Let d0 = q1 · · · qαp1 · · · pβ be as in section 2.2. Then

1. p ∈ H ⇔ n is of type I (i.e. n ∈ {q1, . . . , qα}).

2. For d odd: (
√
−d) ∈ H ⇔ 2|β.

Proof. 1. Let (cf. proposition 2.7) p2 be one of the two prime ideals in Q(
√

2ε)
above n. Using theorem A.12 and lemma 2.1 we have:

p ∈ H ⇔ p splits totally in Q(
4
√

2ε, i)

⇔ p2 splits totally in Q(
4
√

2ε)

⇔ x2 ≡
√

u + t
√

d (mod p2) is solvable in OQ(
√

2ε)

⇔
(√

u + t
√

d

)N(p2)−1
2

≡ 1 (mod p2)

⇔ (u + t
√

d)
n−1

4 ≡ 1 (mod p2)

⇔ u
n−1

4 ≡ 1 (mod p2)

⇔ u
n−1

4 ≡ 1 (mod n)

⇔
(u

n

)
4

= 1.

⇔ n is of type I.

2. As p ∈ H2ε (by proposition 2.7), this follows immediately from 1. and the fact
that |H2ε/H| = 2.

Proposition 2.9. Let p be a prime ideal in Q(
√
−d) above the odd prime factor n

of d. Then

1. p ∈ Hε ⇔ n ≡ 1 (mod 8).

2. (
√
−d) ∈ Hε ⇔ d ≡ 1 (mod 8).
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Proof. 1. Let p1 be the prime ideal in Q(
√

d) above n. Using theorem A.12, lemma
2.1 and remark 2.6 we have:

p ∈ Hε ⇔ p splits totally in Q(
√

ε, i)

⇔ p1 splits totally in Q(
√

ε)

⇔ x2 ≡ u + t
√

d

2
(mod p1) is solvable in OQ(

√
d)

⇔ x2 ≡ 22u

2
(mod p1) is solvable in OQ(

√
d)

⇔ (2u)
N(p1)−1

2 ≡ 1 (mod p1)

⇔ (2u)
n−1

2 ≡ 1 (mod n)

⇔
(

2u

n

)
= 1

⇔
(

2

n

)
= 1

⇔ n ≡ 1 (mod 8).

2. As p ∈ H−1 (by proposition 2.7), this follows immediately from 1. and the fact
that |H−1/Hε| = 2.

The following observation, which we shall use, belongs to class field theory.

Proposition 2.10. Let L/K be a Galois extension of number fields without infinite
ramification; let M be a number field such that M/L is abelian. Let H be the ideal
group in L corresponding to M modulo some integral divisor M . Assume that ∀σ ∈
Gal(L/K) : σ(M ) = M . Then

M/K is Galois ⇔ ∀σ ∈ Gal(L/K) : σ(H) = H.

Proof. ‘⇒’: Assume that M/K is Galois. Let σ ∈ Gal(L/K); let τ ∈ Gal(M/K)
restrict to σ. As σ(M ) = M , we easily get τ(AM ) = AM and τ(SM ) = SM . The
ideal group in L corresponding to τ(M) is τ(H) (cf. theorem A.12 - an extension is
uniquely determined by its set of primes splitting totally). As τ(M) = M , we have
σ(H) = τ(H) = H.

‘⇐’: Assume that ∀σ ∈ Gal(L/K) : σ(H) = H. Let τ be a K-embedding of M in
C. As τ

∣∣
L
∈ Gal(L/K), it follows that τ(H) = τ

∣∣
L
(H) = H. Since the extension

τ(M)/L is abelian, τ(H) = H is the ideal group modulo M in L corresponding to
τ(M). Hence τ(M) = M , and so M/K is Galois.
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2.4 The Principal Ideals

We now turn to the determination of all principal ideals in the four ideal groups.

Proposition 2.11. Let p ≡ 1 (mod 4) be a prime number. Let 2ε = u + t
√

d where
ε = εd is the fundamental unit of Q(

√
d) which has norm −1. Then

1. For p|d :
(p) ∈ H.

2. For
(

d
p

)
= 1 :

(p) ∈ H.

3. For
(

d
p

)
= −1 :

(u + t
√

d)
p2−1

4 ≡ 1 (mod p) in OQ(
√

d) ⇒ (p) ∈ H.

Proof. Let p be a prime ideal in Q(
√
−d) above p, let p′ be the conjugate ideal; let

p1 be a prime ideal in Q(
√

d) above p.

1. p|d: By proposition 2.7 we have p ∈ H2ε; hence (since |H2ε/H| = 2) (p) = p2 ∈ H.

2.
(

d
p

)
= 1: As p and p′ split totally in Q(

√
d, i), the inertial degrees of p and p′ in

L := Q( 4
√

2ε, i) divide 4. So if we put K := Q(
√
−d), then theorem A.12 gives that

ord

((
L/K

p

))
= ord(pH) = ord(p′H) = ord

((
L/K

p′

)) ∣∣ 4

(ord(pH) = ord(p′H) follows from proposition 2.10:

pk ∈ H ⇔ (p′)k ∈ H ′ ⇔ (p′)k ∈ H).

If ord(pH) = ord(p′H) = 1, then (p) = pp′ ∈ H.

If ord(pH) = ord(p′H) = 2, then (since A(2)/H ' Z/8)

(p) ∈ (p)H = (pH)(p′H) = H.

Consider the remaining case: ord(pH) = ord(p′H) = 4; then(
L/K

p

)
,

(
L/K

p′

)
∈ Gal(L/Q(

√
d, i)).
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So
(

L/K
p

)
and

(
L/K

p′

)
are determined by their values on 4

√
2ε. It is clear that

(
L/K

p

)
(

4
√

2ε) = (−1)ai
4
√

2ε,

(
L/K

p′

)
(

4
√

2ε) = (−1)bi
4
√

2ε

for suitable a, b ∈ {0, 1}. By conjugating we get

(
L/K

p

)
(

4
√

2ε) = (−1)ai
4
√

2ε

⇒ (−1)ai
4
√

2ε ≡ (
4
√

2ε)p (mod pOL)

⇒ −(−1)ai
4
√

2ε ≡ (
4
√

2ε)p ≡
(

L/K

p′

)
(

4
√

2ε) (mod p′OL)

⇒
(

L/K

p′

)
(

4
√

2ε) = −(−1)ai
4
√

2ε

⇒
(

L/K

p

)
◦
(

L/K

p′

)
(

4
√

2ε) =
4
√

2ε

⇒
(

L/K

p

)
◦
(

L/K

p′

)
= idL.

Hence, by the isomorphism in theorem A.6 (induced by the Artin map),

(p) ∈ (p)H = (pH)(p′H) = H.

3.
(

d
p

)
= −1: Since p is inert in Q(

√
−d) and in Q(

√
d), we have, using theorem

A.12 and lemma 2.1:

p ∈ H2ε ⇔ p splits totally in Q(
4
√

2ε, i)

⇔ p1 splits totally in Q(
4
√

2ε)

⇐ (u + t
√

d)
N(p1)−1

4 ≡ 1 (mod p)

⇔ (u + t
√

d)
p2−1

4 ≡ 1 (mod p).

We can now determine the principal ideals in the ideal groups.

Recall that d0 = q1 · · · qαp1 · · · pβ is the odd part of d.
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Theorem 2.12. The four ideal groups H−1, Hε, H2ε, H have (8) as a common con-
gruence module, i.e. we can use g=3. The subgroups of principal ideals are as follows:

1. d ≡ 1 (mod 4) :
H−1 ∩ S(1) = A(2) ∩ S(1);

Hε ∩ S(1) =

{
A(2) ∩ S(1), if d ≡ 1 (mod 8)
S(2), if d ≡ 5 (mod 8)

;

H2ε ∩ S(1) = {(1), (
√
−d)}S(4);

H ∩ S(1) =

{
{(1), (5), (

√
−d), (5

√
−d)}S(8), 2|β

{(1), (5), (4 +
√
−d), (4 + 5

√
−d)}S(8), 2 - β

.

2. 2|d :
H−1 ∩ S(1) = S(2);

Hε ∩ S(1) = H2ε ∩ S(1) = S(4);

H ∩ S(1) = {(1), (5)}S(8).

Proof. We prove the case d ≡ 1 (mod 4) for the ideal groups corresponding to
Q( 4
√

2ε, i)/Q(
√
−d) and its sub-extensions; the other assertions are proved in a sim-

ilar way.
Since Q(

√
d, i)/Q(

√
−d) is unramified, we have

H−1 ∩ S(1) = A(2) ∩ S(1).

It is not hard to show (for instance by the conductor-discriminant formula, theo-
rem A.15) that the conductor of the abelian extension Q(

√
2ε, i)/Q(

√
−d) divides (4);

hence S(4) ⊆ H2ε. As Q(
√

2ε, i)/Q(
√
−d) is ramified, we have H2ε ∩ S(1) 6= A(2) ∩ S(1).

We infer that

[A(2) ∩ S(1) : H2ε ∩ S(1)] = [H−1 ∩ S(1) : H2ε ∩ S(1)] = 2.

Since (
√
−d) ∈ H2ε ∩ S(1) (by proposition 2.7), we conclude that

H2ε ∩ S(1) = {(1), (
√
−d)}S(4).

It is not difficult to show (for instance by the conductor-discriminant formula)
that the conductor of the extension Q( 4

√
2ε, i)/Q(

√
−d) divides (8); hence S(8) ⊆ H.

We prove the following

Claim: (5) ∈ H.

Proof of the claim: We consider the possibilities for d modulo 5:
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d ≡ 0, 1, 4 (mod 5): This is in proposition 2.11.

d ≡ 2 (mod 5): From u2 + 3t2 ≡ 1 (mod 5) we get (u2, t2) ≡ (1, 0), (4, 4) (mod 5).
If (u2, t2) ≡ (1, 0) (mod 5), then

(u + t
√

d)
52−1

4 ≡ u6 ≡ 1 (mod 5).

If (u2, t2) ≡ (4, 4) (mod 5), then

(u + t
√

d)3 = u3 + 3dut2 + (3u2t + dt3)
√

d

≡ 4u + 4u + (2t + 3t)
√

d

≡ 3u

≡ ±1 (mod 5),

and so

(u + t
√

d)
52−1

4 ≡ 1 (mod 5).

Hence this case follows from proposition 2.11.

d ≡ 3 (mod 5): From u2 + 2t2 ≡ 1 (mod 5) we get (u2, t2) ≡ (1, 0), (4, 1) (mod 5).
If (u2, t2) ≡ (1, 0) (mod 5), then

(u + t
√

d)
52−1

4 ≡ u6 ≡ 1 (mod 5).

If (u2, t2) ≡ (4, 1) (mod 5), then

(u + t
√

d)3 = u3 + 3dut2 + (3u2t + dt3)
√

d

≡ 4u + 4u + (2t + 3t)
√

d

≡ 3u

≡ ±1 (mod 5),

and so

(u + t
√

d)
52−1

4 ≡ 1 (mod 5).

Hence this case also follows from proposition 2.11. This proves the claim.

Since H(A(2) ∩ S(1))
/
H is cyclic and H2ε 6= H(A(2) ∩ S(1)), we have

[{(1), (
√
−d)}S(4) : H ∩ S(1)] = 1

⇒ [H2ε ∩ S(1) : H ∩ S(1)] = 1

⇒ [A(2) ∩ S(1) : H ∩ S(1)] = [A(2) ∩ S(1) : H2ε ∩ S(1)] = 2

⇒ ∀a = h(α) ∈ H(A(2) ∩ S(1)) : a2 = h2(α)2 ∈ H(H ∩ S(1)) ⊆ H

⇒ [H(A(2) ∩ S(1)) : H] = 2

⇒ H−1

/
H is not cyclic.
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Hence [{(1), (
√
−d)}S(4) : H ∩ S(1)] = 2. As

A(2) ∩ S(1) = {(1), (1 + 2
√
−d), (2 +

√
−d), (

√
−d)}S(4)

and
(
√
−d)2 ≡ −1, (1 + 2

√
−d)2 ≡ 1 (mod 4),

it follows that A(2) ∩ S(1)

/
S(4) ' V4. Hence H ∩ S(1) 6= S(4). From (5) ∈ H and

{(1), (5), (1 + 4
√
−d), (5 + 4

√
−d), (

√
−d), (5

√
−d), (4 +

√
−d), (4 + 5

√
−d)}S(8)

= {(1), (
√
−d)}S(4) ⊇ H ∩ S(1) ⊇ S(8)

it follows that
H ∩ S(1) = {(1), (5), (

√
−d), (5

√
−d)}S(8)

or
H ∩ S(1) = {(1), (5), (4 +

√
−d), (4 + 5

√
−d)}S(8).

Since

H ∩ S(1) = {(1), (5), (
√
−d), (5

√
−d)}S(8) ⇔ (

√
−d) ∈ H ∩ S(1) ⇔ 2|β

(cf. proposition 2.8), we have proved what was asserted about H ∩ S(1).

2.5 Indices of the Subgroups of Principal Ideals

Let d0 be the odd part of d. Write, as before,

d0 = q1 · · · qαp1 · · · pβ

where the qi are prime numbers of type I and the pj are prime numbers of type II.

Let r := α + β (the number of odd prime factors of d).

Let the class number of Q(
√
−d) be h = h(Q(

√
−d)) = 2zm, 2 - m (by genus

theory r ≤ z, cf. lemma 1.6).

In order to make the statements of the next chapter (and the rest of this) easier
to read we use an additional numbering of the odd prime factors of d: Let

p̄1, . . . , p̄r

be the odd prime factors of d in some arbitrary, but fixed, order.
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Let P0 be the prime ideal in Q(
√
−d) above 2. Let Pi be the prime ideal in

Q(
√
−d) above p̄i, 1 ≤ i ≤ r.

We shall write Pi ≡ a (mod b) (resp. say that Pi is of type I/II) if p̄i ≡ a (mod b)
(resp. if p̄i is of type I/II), 1 ≤ i ≤ r.

Lemma 2.13. The indices of the subgroups of principal ideals in the ideal groups
are given by:

1. d ≡ 1 (mod 4) :

[H−1 : H−1 ∩ S(1)] = [H : H ∩ S(1)] = h/2;

[Hε : Hε ∩ S(1)] =

{
h/4, d ≡ 1 (mod 8)
h/2, d ≡ 5 (mod 8)

.

2. 2|d :
[H−1 : H−1 ∩ S(1)] = [Hε : Hε ∩ S(1)] = [H : H ∩ S(1)] = h.

Proof. As [A(2) : A(2) ∩ S(1)] = [A(1) : S(1)] = h (by proposition A.4), we calculate,
using theorem 2.12:

8[H : H ∩ S(1)] = [A(2) : H][H : H ∩ S(1)]

= [A(2) : A(2) ∩ S(1)][A(2) ∩ S(1) : H ∩ S(1)]

= h

{
4, d ≡ 1 (mod 4)
8, 2|d ;

4[Hε : Hε ∩ S(1)] = [A(2) : Hε][Hε : Hε ∩ S(1)]

= [A(2) : A(2) ∩ S(1)][A(2) ∩ S(1) : Hε ∩ S(1)]

= h


1, d ≡ 1 (mod 8)
2, d ≡ 5 (mod 8)
4, 2|d

;

2[H−1 : H−1 ∩ S(1)] = [A(2) : H−1][H−1 : H−1 ∩ S(1)]

= [A(2) : A(2) ∩ S(1)][A(2) ∩ S(1) : H−1 ∩ S(1)]

= h

{
1, d ≡ 1 (mod 4)
2, 2|d .
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Definition 2.14. Let G be a finite abelian group. Put

G2 :=
{
g ∈ G|g2 = e

}
.

G2 is clearly an elementary abelian 2-group; a basis for G2 will be called a 2-basis
for G (or for G2). The 2-rank of G (i.e. the number of elements in a 2-basis) will be
denoted by rank2(G).

Proposition 2.15. With notation as above we have:

1. d ≡ 1 (mod 4) :
rank2(A(2)/(A(2) ∩ S(1))) = r,

and {
P0

(
1 +

√
−d

2

)
, P1, . . . , Pr−1

}
(A(2) ∩ S(1))

is 2-basis for A(2)/(A(2) ∩ S(1)).

2. 2|d :
rank2(A(2)/A(2) ∩ S(1)) = r,

and
{P1, . . . , Pr} (A(2) ∩ S(1))

is a 2–basis for A(2)/(A(2) ∩ S(1)).

3. d ≡ 5 (mod 8) :
rank2(H/(H ∩ S(1))) = r − 1,

and
{Pi|Pi is of type I, 1 ≤ i ≤ r − 1} (H ∩ S(1)) ∪{

Pi(1 + 4
√
−d)|Pi is of type II, 1 ≤ i ≤ r − 1

}
(H ∩ S(1))

is a 2–basis for H/(H ∩ S(1)).

4. 2|d :
rank2(H/(H ∩ S(1))) = r,

and
{Pi|Pi is of type I, 1 ≤ i ≤ r} (H ∩ S(1)) ∪{

Pi(1 + 4
√
−d)|Pi is of type II, 1 ≤ i ≤ r

}
(H ∩ S(1))

is a 2–basis for H/(H ∩ S(1)).
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5. d ≡ 1 (mod 8) :
rank2(H/H ∩ S(1)) = r.

6. d ≡ 5 (mod 8) :
rank2(Hε/(Hε ∩ S(1))) = r − 1,

and {
Pi(
√
−d)|Pi ≡ 5 (mod 8), 1 ≤ i ≤ r − 1

}
(Hε ∩ S(1)) ∪

{Pi|Pi ≡ 1 (mod 8), 1 ≤ i ≤ r − 1} (Hε ∩ S(1))

is a 2–basis for Hε/(Hε ∩ S(1)).

7. 2|d :
rank2(Hε/(Hε ∩ S(1))) = r,

and {
Pi(1 + 2

√
−d)|Pi ≡ 5 (mod 8), 1 ≤ i ≤ r

}
(Hε ∩ S(1)) ∪

{Pi|Pi ≡ 1 (mod 8), 1 ≤ i ≤ r} (Hε ∩ S(1))

is a 2–basis for Hε/(Hε ∩ S(1)).

Proof. First we make two important observations:

i) Let d be odd. Then P1 · · ·Pr = (
√
−d) is a principal ideal with a generator of

positive norm (which, of course, is the case for every principal ideal). As 2, p̄1, . . . , p̄r

are the prime numbers dividing the discriminant of Q(
√
−d), it follows from lemma

1.6 that P0 and any r − 1 of P1, . . . , Pr constitute a 2–basis for A(1)/S(1).

ii) Let d be even. Then P0P1 · · ·Pr = (
√
−d) is a principal ideal. As 2, p̄1, . . . , p̄r

are the prime numbers dividing the discriminant of Q(
√
−d), it follows from lemma

1.6 that any r of P0, P1, . . . , Pr constitute a 2–basis for A(1)/S(1).

1. d ≡ 1 (mod 4) :

Since
A(2)/(A(2) ∩ S(1)) ' A(1)/S(1),

via the map A(A(2)∩S(1)) 7→ AS(1) (by proposition A.4), the assertion follows from
i) and the fact that

P0

(
1 +

√
−d

2

)
, P1, . . . , Pr−1 ∈ A(2)(

2 - 1+d
2

= N
(
P0

(
1+

√
−d

2

))
⇒ P0

(
1+

√
−d

2

)
∈ A(2)

)
.
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2. 2|d :

Since
A(2)/(A(2) ∩ S(1)) ' A(1)/S(1),

via the map A(A(2)∩S(1)) 7→ AS(1) (by proposition A.4), the assertion follows from
ii) and the fact that

P1, . . . , Pr ∈ A(2).

4. 2|d :

We have the isomorphism

H/(H ∩ S(1)) ' A(2)/(A(2) ∩ S(1)), A(H ∩ S(1)) 7→ AS(1),

since the embedding H/(H ∩ S(1)) ↪→ A(2)/(A(2) ∩ S(1)), A(H ∩ S(1)) 7→ AS(1),
must be surjective by lemma 2.13.

By theorem 2.12 and propositions 2.8, 2.9, we have, for i ≥ 1,

a) Pi ∈ H for Pi of type I, and

b) Pi(1 + 4
√
−d) ∈ H for Pi of type II

(since, for Pi of type II, we have Pi, (1 + 4
√
−d) ∈ H2ε\H). Hence 4. follows from 2.

3. and 5. d ≡ 1 (mod 4) :

By lemma 2.13 we get, as above,

H/(H ∩ S(1)) ' H−1/(H−1 ∩ S(1)) = H−1/(A(2) ∩ S(1))

where the equality is from theorem 2.12. From theorem 2.12 we have

(
P0

(
1 +

√
−d

2

))2

=

(
1− d

2
+
√
−d

) {
6∈ H2ε, d ≡ 5 (mod 8)
∈ H2ε, d ≡ 1 (mod 8)

.

Hence, as A(2)/H2ε ' Z/4, we get

P0

(
1 +

√
−d

2

) {
6∈ H−1, d ≡ 5 (mod 8)
∈ H−1, d ≡ 1 (mod 8)

.

Since also P1, . . . , Pr−1 ∈ H−1 (cf. proposition 2.7),
(
H−1/(A(2) ∩ S(1)

)
2
must, for d ≡

5 (mod 8), be a (r − 1)-dimensional Z/2-subspace of
(
A(2)/(A(2) ∩ S(1))

)
2

because
exactly one of the r basis vectors
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P0

(
1 +

√
−d

2

)
(A(2) ∩ S(1)), P1(A(2) ∩ S(1)), . . . , Pr−1(A(2) ∩ S(1))

is not in the subspace. Hence for d ≡ 5 (mod 8) the 2-rank must be r−1. For d ≡ 1
(mod 8) the 2-rank is clearly r.

From theorem 2.12 we have (1 + 4
√
−d) ∈ H2ε\H; hence 3. follows from propo-

sitions 2.7 and 2.8.

6. d ≡ 5 (mod 8) :

By lemma 2.13 we get, as above,

H/(H ∩ S(1)) ' Hε/(Hε ∩ S(1));

hence, by 3., rank2(Hε/(Hε∩S(1))) = r−1. As (
√
−d) ∈ H−1\Hε (by theorem 2.12),

the claim about the 2–basis follows from propositions 2.7 (H2ε ⊆ H−1) and 2.9.

7. 2|d :

By lemma 2.13 we get, as above,

Hε/(Hε ∩ S(1)) ' A(2)/(A(2) ∩ S(1));

hence, by 2., rank2(Hε/(Hε ∩ S(1))) = r. As (1 + 2
√
−d) ∈ H−1\Hε (by theorem

2.12), the rest follows from propositions 2.7 and 2.9.

Remark 2.16. In the next chapter we shall, from proposition 2.15, only use 1., 2.
and the fact that the basis ideals in H and Hε are contained in the given ideal group.



Chapter 3

Power Residue Criteria

We recall the relevant notation and assumptions.
Let d > 1 be a square-free integer. Let p̄1, . . . , p̄r be the odd prime factors of d.

Let εd = u+t
√

d
2

> 1 (u, t ∈ Z) be the fundamental unit of Q(
√

d). Assume that

N(εd) = −1. We know that
(

u
p̄i

)
= 1, by remark 2.6. If u is a biquadratic residue

modulo p̄i, we say that p̄i is of type I; otherwise, p̄i is of type II. Let β be the number
of p̄i of type II.
The symbol ∧ will denote the logical ‘and’; the symbol ∨ is the logical ‘or’. Recall
the discussion of the residue symbols just before remark 1.10.

3.1 The Criteria

Proofs of the results in this section can be found in the subsequent section.

Lemma 3.1. Let d > 1 be a square-free integer and assume that N(εd) = −1. Let

p ≡ 1 (mod 4) be a prime number such that
(

d
p

)
= 1; let p be one of the two prime

ideals in Q(
√
−d) above p. Let the class number of Q(

√
−d) be h(Q(

√
−d)) = 2zm,

2 - m.
For d ≡ 5 (mod 8) or 2 | d : Assume that p2m is a principal ideal;
For d ≡ 1 (mod 8) : Assume that pm is a principal ideal
Then the following assertions hold:

1) d ≡ 5 (mod 8) : There is a relation

pm0 = d1s
2 + d2v

2, s, v ∈ Z\{0}, d1, d2 ∈ N, d1d2 = d, p̄r - d1, (3.1)

with m0 minimal (this implies m0 | m). With this m0 the absolute values |s|, |v| in
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a relation as in (3.1) are uniquely determined. Put

Σ1 := the number of prime factors of d1 of type II (with respect to d).

2) 2 | d : There is a relation

pm0 = d1s
2 + d2v

2, s, v ∈ Z\{0}, d1, d2 ∈ N, d1d2 = d, 2 - d1, (3.2)

with m0 minimal (this implies m0 | m). With this m0 the absolute values |s|, |v| in
a relation as in (3.2) are uniquely determined. Put

Σ2 := the number of prime factors of d1 of type II (with respect to d).

3) d ≡ 1 (mod 8) : ∃ s, v ∈ Z\{0}, minimal odd n0 ∈ N : pn0 = s2 + dv2.

And this is equivalent to pm being a principal ideal

Theorem 3.2. Let the assumptions and the notation be as in lemma 3.1. Then(
εd

p

)
= (−1)

p−1
4

+ sv
2 .

Remark 3.3. Clearly, if 2 | d, then this can be written as
(

εd

p

)
= (−1)

p−1
4

+ v
2 ; and

if d ≡ 1 (mod 8), then we have
(

εd

p

)
= 1.

Theorem 3.4. Let the assumptions and the notation be as in lemma 3.1. Let d ≡ 5
(mod 8). Let p ≡ 1 (mod 8) and write p = a2 + 16b2, a, b ∈ Z. Then for

i) 2 | β : (
εd

p

)
4

= 1 ⇔

(2 | b ∧ ((2 | Σ1 ∧ 8 | sv) ∨ (2 - Σ1 ∧ 4||sv))) ∨

(2 - b ∧ ((2 | Σ1 ∧ 4||sv) ∨ (2 - Σ1 ∧ 8 | sv)));

ii) 2 - β : (
εd

p

)
4

= 1 ⇔

(2 | b ∧ ((2 | Σ1 ∧ (4||s ∨ 8 | v)) ∨ (2 - Σ1 ∧ (8 | s ∨ 4||v)))) ∨

(2 - b ∧ ((2 | Σ1 ∧ (8 | s ∨ 4||v)) ∨ (2 - Σ1 ∧ (4||s ∨ 8 | v)))).
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Theorem 3.5. Let the assumptions and the notation be as in lemma 3.1. Let 2|d.
Let p ≡ 1 (mod 8) and write p = a2 + 16b2, a, b ∈ Z. Then(

εd

p

)
4

= 1 ⇔

(2 | b ∧ ((2 | Σ2 ∧ 8 | v) ∨ (2 - Σ2 ∧ 4||v))) ∨
(2 - b ∧ ((2 | Σ2 ∧ 4||v) ∨ (2 - Σ2 ∧ 8 | v))).

Theorem 3.6. Let the assumptions and the notation be as in lemma 3.1. Let d ≡ 1
(mod 8). Let p ≡ 1 (mod 8) and write p = a2 + 16b2, a, b ∈ Z. Then for

i) 2 | β : (
εd

p

)
4

= 1 ⇔ (2 | b ∧ 8 | sv) ∨ (2 - b ∧ 8 - sv);

ii) 2 - β :(
εd

p

)
4

= 1 ⇔ (2 | b ∧ (4||s ∨ 8 | v)) ∨ (2 - b ∧ 4 6 ||s ∧ 8 - v).

Remark 3.7. If N(εd) = −1 and the 2-class group of Q(
√
−d) is elementary abelian,

then the condition about p2m being principal is clearly fulfilled for all p and it is not
hard to show that d ≡ 5 (mod 8) or 2 | d. So the theorems 3.4 and 3.4 cover this
case.

3.2 Proofs of the Criteria

We now turn to the proofs of the results of the previous section. We concentrate on
d ≡ 5 (mod 8); the other cases are similar.

In Q(
√
−d), conjugation is denoted by α′ etc.

We work in the group G := A(2)/(A(2) ∩ S(1)). The assumption about p2m means
that pm(A(2) ∩ S(1)) has order 1 or 2 in G. Hence, by proposition 2.15, we have

pm

(
P0

(
1 +

√
−d

2

))a0

P a1
1 · · ·P ar−1

r−1 = (s + v
√
−d) ∈ A(2) ∩ S(1) (3.3)

for suitable a0, . . . , ar−1 ∈ {0, 1} and s, v ∈ Z. (Recall that, by the notation of section
2.5, d = p̄1 · · · p̄r, and if we put p0 = 2, then Pi is the prime ideal in Q(

√
−d) above

pi, i = 0, 1, . . . , r.) By taking norms, we get

pm

(
1 + d

2

)a0

p̄a1
1 · · · p̄ar−1

r−1 = s2 + dv2. (3.4)
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Since 1+d
2
≡ 3 (mod 4) and s2 + dv2, p̄i, p ≡ 1 (mod 4), we must have a0 = 0 (this

is where we use that d ≡ 5 (mod 8) and not just d ≡ 1 (mod 4)). We can not have
v = 0; for then, as P ′

i = Pi, (3.3) would imply that p′ = p. If s = 0, (3.4) would
imply that p = p̄r. This proves the existence of a minimal m0 as claimed.

Now we prove the asserted uniqueness. Let an equation as (3.1) be given. By
considering the norm map, it follows that

px0(p′)y0P a1
1 · · ·P ar−1

1 = (s + v
√
−d) (3.5)

for some x0, y0 ∈ N0 with x0 + y0 = m0 and a0, . . . , ar−1 ∈ {0, 1}. Since

x0 = y0 ⇒ (s + v
√
−d) = (s + v

√
−d)′ ⇒ sv = 0,

we have x0 6= y0. Since a change of sign of v conjugates the ideal (s + v
√
−d), it

follows from (3.5) that we can assume that y0 < x0. We can write (3.5) as

px0−y0P a1
1 · · ·P ar−1

1 =

(
s

py0
+

v

py0

√
−d

)
where necessarily s

py0
, v

py0
∈ Z\{0} since the ideal on the left is an integral ideal and

since −d ≡ 3 (mod 4). From the minimality of m0 we conclude that x0 − y0 = m0,
i.e. x0 = m0 and y0 = 0. Hence

pm0P a1
1 · · ·P ar−1

r−1 = (s + v
√
−d). (3.6)

Since, because of this equation, pm0(A(2)∩S(1)) has order 1 or 2 in G, the uniqueness
of the ai follows from proposition 2.15; the uniqueness of the absolute values |s|, |v|
now follows from (3.6).

We need to show that m0|m. We first show that m0 is odd. Assume that 2|m0.
As 4 - ord(p(A(2) ∩ S(1))), it follows from (3.6) that a1 = · · · = ar−1 = 0; hence

pm0 = (s+v
√
−d). Since pm(A(2)∩S(1)) has order 1 or 2, there are b1, . . . , br−1 ∈ {0, 1}

and s′, v′ ∈ Z\{0} with

pmP b1
1 · · ·P br−1

r−1 = (s′ + v′
√
−d). (3.7)

(We remove a factor
(
P0

(
1+

√
−d

2

))b0
as before.) Since m0 - m, we can write

m = km0 + g, 0 < g < m0.

Combining the equations (3.6) and (3.7), we find

pgP b1
1 · · ·P br−1

r−1 = (s′ + v′
√
−d)/(s + v

√
−d)k =: (e + f

√
−d)
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where necessarily e, f ∈ Z since the ideal on the left is an integral ideal and since
−d ≡ 3 (mod 4). Taking norms, we get

pgp̄b1
1 · · · p̄

br−1

r−1 = e2 + df2.

We have f 6= 0 since the left-hand side is not a square (as 2 - g); and e 6= 0 since
otherwise the last equation would imply that p = p̄r. As g < m0, we have obtained
a contradiction to the minimality of m0. Hence m0 is odd.

Put A:=ord(p(A(2) ∩ S(1))). Put

A′ :=

{
A, 2 - A
A/2, 2|A .

As before we choose c1, . . . , cr−1 ∈ {0, 1} and e, f ∈ Z with

pA′
P c1

1 · · ·P cr−1

r−1 = (e + f
√
−d).

From

pA′
p̄c1

1 · · · p̄
cr−1

r−1 = e2 + df2

we easily get e, f 6= 0 (A′ is odd); and hence, by minimality of m0, the inequality
A′ ≥ m0 holds. If 2 - A, then

m0 ≤ A′ = A ≤ m0,

hence A = m0 (and all ai = 0); if 2|A, then

2m0 ≤ 2A′ = A ≤ 2m0,

hence A = 2m0 (and there is an i with ai = 1) (we used (3.6) to get the last inequality
in both cases). From m0|A|2m and the fact that m0 is odd it follows that m0|m.

We now put d1 := p̄a1
1 · · · p̄ar−1

r−1 (and d2 = d/d1). Let ar := 0. Note that

Σ1 =
∑

pi of type II

ai.

Put

Σa :=
∑

pi≡5 (mod 8)

ai.

First we claim that

v ≡ Σa (mod 2) ⇔ (4|sv ∧ p ≡ 1 (mod 8)) ∨ (4 - sv ∧ p ≡ 5 (mod 8)).
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Since s 6≡ v (mod 2) and m0 is odd, we have (from (3.1)) the following 4 observations
which prove the claim:

v ≡ Σa ≡ 0 (mod 2) ⇒ 2|v ∧ s2 + dv2 ≡ p (mod 8)

⇒
{

2||v, p ≡ 5 (mod 8)
4|v, p ≡ 1 (mod 8)

;

v ≡ Σa ≡ 1 (mod 2) ⇒ 2|s ∧ s2 + dv2 ≡ 5p (mod 8)

⇒
{

2||s, p ≡ 5 (mod 8)
4|s, p ≡ 1 (mod 8)

;

v 6≡ Σa ≡ 0 (mod 2) ⇒ 2|s ∧ s2 + dv2 ≡ p (mod 8)

⇒
{

4|s, p ≡ 5 (mod 8)
2||s, p ≡ 1 (mod 8)

;

v 6≡ Σa ≡ 1 (mod 2) ⇒ 2|v ∧ s2 + dv2 ≡ 5p (mod 8)

⇒
{

4|v, p ≡ 5 (mod 8)
2||v, p ≡ 1 (mod 8)

.

Since m0 is odd, we get, using proposition 2.15 and theorem 2.12,

p ∈ Hε ⇔ pm0 ∈ Hε

⇔ pm0 ·
∏

pi≡5 (mod 8)

(Pi(
√
−d))ai ·

∏
pi≡1 (mod 8)

P ai
i ∈ Hε

⇔ (2 | Σa ∧ (s + v
√
−d) ∈ Hε) ∨

(2 - Σa ∧ (s + v
√
−d)(

√
−d) ∈ Hε)

⇔ (2 | Σa ∧ 2 | v) ∨ (2 - Σa ∧ 2 - v)

⇔ v ≡ Σa (mod 2)

⇔ (4 | sv ∧ p ≡ 1 (mod 8)) ∨ (4 - sv ∧ p ≡ 5 (mod 8))

and

p ∈ H ⇔ pm0 ∈ H

⇔ pm0 ·
∏

pi of type I

P ai
i ·

∏
pi of type II

(Pi(1 + 4
√
−d))ai ∈ H

⇔ (2 | Σ1 ∧ (s + v
√
−d) ∈ H) ∨

(2 - Σ1 ∧ (s + v
√
−d)(1 + 4

√
−d) ∈ H)

⇔
{

(2 | Σ1 ∧ 8 | sv) ∨ (2 - Σ1 ∧ 4||sv), 2 | β
(2 | Σ1 ∧ (4||s ∨ 8 | v)) ∨ (2 - Σ1 ∧ (8 | s ∨ 4||v)), 2 - β

.
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Note that
(

εd

p

)
= 1 if and only if p ∈ Hε and that

(
εd

p

)
4

= 1 if and only if

p ∈ Hε ∧ ((2 | b ∧ p ∈ H) ∨ (2 - b ∧ p 6∈ H)), cf. observation 1.10 and proposition
2.4. From this it is routine to deduce the criteria in the previous section. Note that(

2
p

)
4

= 1 is equivalent to 2 | b (if p = a2 + 16b2), cf. remark 1.13.

3.3 A Similar Result

We give a general result for d even.

Theorem 3.8. Let d > 1 be square-free and even, and assume that N(εd) = −1. Let

p ≡ 1 (mod 4) be a prime number with
(

d
p

)
= 1. Let the class number of Q(

√
−d) be

h = h(Q(
√
−d)) = 2zm, 2 - m. For p ≡ 1 (mod 8) we write p = a2 + 16b2, a, b ∈ Z.

1) There are prime ideals p1, . . . , pr ∈ H such that

p1(A(2) ∩ S(1)), . . . , pr(A(2) ∩ S(1))

is a basis for the finite abelian group

Syl2(A(2)/(A(2) ∩ S(1))).

In fact, each of p1, . . . , pr can be chosen in infinitely many ways. Let p1, . . . , pr be
fixed in what follows. Put gi := ord(pi(A(2) ∩ S(1)))− 1.
2) There are prime ideals q1, . . . , qr ∈ Hε such that

q1(A(2) ∩ S(1)), . . . , qr(A(2) ∩ S(1))

is a basis for the finite abelian group

Syl2(A(2)/(A(2) ∩ S(1)));

In fact, each of q1, . . . , qr can be chosen in infinitely many ways. Let q1, . . . , qr be
fixed. Put g′i := ord(qi(A(2) ∩ S(1)))− 1.
3) The norms of p1, . . . , pr, q1, . . . , qr are prime numbers; put p̂i := N(pi) and q̂i :=
N(qi).
4) Let p 6∈ {p̂1, . . . , p̂r}. There is a minimal odd m0 ∈ N such that

pm0 p̂a1
1 · · · p̂ar

r = s2 + dv2 (3.8)

for suitable ai ∈ {0, 1, . . . , gi}; s, v ∈ Z\{0}. This minimal odd m0 satisfies m0 ≤ m.
Let a relation (3.8) (with minimal odd m0) be fixed.
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5) Let p 6∈ {q̂1, . . . , q̂r}. There is a minimal odd m′
0 ∈ N such that

pm′
0 q̂

a′1
1 · · · q̂a′r

r = (s′)2 + d(v′)2 (3.9)

for suitable a′i ∈ {0, 1, . . . , g′i}; s′, v′ ∈ Z\{0}. This minimal odd m′
0 satisfies m′

0 ≤
m. Let a relation (3.9) (with minimal odd m′

0) be fixed.
6) Let p 6∈ {q̂1, . . . , q̂r}. Then, with the above notation,(

εd

p

)
= 1 ⇔ 4 | v′.

7) Let {p̂1, . . . , p̂r, q̂1, . . . , q̂r} 63 p ≡ 1 (mod 8). Then, with the above notation,(
εd

p

)
4

= 1 ⇔ 4 | v′ ∧ ((2 | b ∨ 8 | v) ∨ (2 - b ∨ 8 - v)).

Proof. 1)+2) The two maps

H/(H ∩ S(1)) → A(2)/(A(2) ∩ S(1)),

A(H ∩ S(1)) 7→ A(A(2) ∩ S(1))

and
Hε/(Hε ∩ S(1)) → A(2)/(A(2) ∩ S(1)),

A(Hε ∩ S(1)) 7→ A(A(2) ∩ S(1))

are clearly well defined and injective. By lemma 2.13 they must be surjective.
Hence 1) (resp. 2)) follows from the fact that every coset of H/(H ∩ S(1)) (resp.
Hε/(Hε ∩ S(1))) contains infinitely many prime ideals.
3) None of p1, . . . , pr, q1, . . . , qr is a principal ideal, and hence none of them is above
an inert prime number; this proves 3).
4) Let p be one of the two prime ideals in Q(

√
−d) above p. Since

pm(A(2) ∩ S(1)) ∈ Syl2(A(2)/(A(2) ∩ S(1))),

there are ki ∈ {0, 1, . . . , gi}; e, f ∈ Z such that

pmpk1
1 · · · pkr

r = (e + f
√
−d).

Taking norms we get
pmp̂k1

1 · · · p̂kr
r = e2 + df2

So we can consider a relation (3.8) with minimal odd m0 and s, v ∈ Z; as m0 is odd,
p, p̂1, . . . , p̂r 6= 2, and 2|d, we must have s, v 6= 0.
5) This is completely analogous to 4).
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6)+7) By considering the norm map we get from (3.8) for suitable bi, ci ∈ N0 with
bi + ci = ai that

px0(p′)y0pb1
1 (p′1)

c1 · · · pbr
r (p′r)

cr = (s + v
√
−d)

where x0, y0 ∈ N0 with x0 + y0 = m0. By changing sign (if necessary) of sv we can
assume that x0 ≥ y0. The minimality of m0 implies that p - sv; hence y0 = 0 and
x0 = m0 (otherwise (p) = pp′|(s + v

√
−d) and so p|s, v).

From (3.9) we get (in a similar way) for a suitable choice of sign of s′v′ and
suitable b′i, c

′
i ∈ N0 with b′i + c′i = a′i that

qm′
0q

b′1
1 (p′1)

c′1 · · · pb′r
r (p′r)

c′r = (s′ + v′
√
−d).

Hence (since p′i ∈ H and q′i ∈ Hε by proposition 2.10)

p ∈ H ⇔ pm0 ∈ H

⇔ pm0pb1
1 (p′1)

c1 · · · pbr
r (p′r)

cr ∈ H

⇔ (s + v
√
−d) ∈ H

⇔ 8|v,

and

p ∈ Hε ⇔ pm′
0 ∈ Hε

⇔ pm′
0q

b′1
1 (q′1)

c′1 · · · qb′r
r (q′r)

c′r ∈ Hε

⇔ (s′ + v′
√
−d) ∈ Hε

⇔ 4|v′.

6) and 7) follow from this.





Part II

Relative Norms of Units and
4-rank of Class Groups



Chapter 4

Cyclic Extensions of Prime Degree

4.1 General Observations

In this section, we see that the problem about surjectivity of the relative norm map
between unit groups for certain cyclic extensions of prime degree is related to the
ambiguous ideals of the extension.

Definition 4.1. Let L/K be a cyclic extension of number fields with Galois group
Gal(L/K) =< σ >.

An ideal a of L is called ambiguous (with respect to K) if it is fixed by σ: σ(a) = a.

An ideal class [a] of L is called ambiguous (with respect to K) if it is fixed by σ:
σ([a]) = [a]. The group of ambiguous ideal classes is denoted by Am(L/K).

An ideal class [a] of L is called strongly ambiguous (with respect to K) if it con-
tains an ambiguous ideal. The group of strongly ambiguous ideal classes is denoted
by Ams(L/K). Clearly, Ams(L/K) ⊆ Am(L/K).

We begin by citing Holzer [14] (Satz 2, p. 115):

Lemma 4.2. Let L/K be a cyclic extension of number fields of prime degree. Then
the following are equivalent

1) O∗
K ∩NL/K(L∗) = NL/K(O∗

L),
i.e. every unit of OK which is a relative norm of a number of L is a relative norm
of a unit of OL.

2) Ams(L/K) = Am(L/K),
i.e. every ambiguous ideal class is strongly ambiguous.

The following lemma is well known and easily proved.
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Lemma 4.3. Let L/K be a quadratic extension of algebraic number fields. Suppose
that 2 - h(K). Then the 2-Sylow subgroup Am2(L/K) of the group of ambiguous
ideal classes is given by

Am2(L/K) =
{
[a]L ∈ Cl(L)

∣∣[a]2L = [(1)]L
}

;

and hence

|Am2(L/K)| = [Cl(L) : Cl(L)2] = 2rank2(Cl(L)).

In particular,

2 | h(L) ⇔ 2 | |Am2(L/K)|.

Proposition 4.4. Let L/K be a cyclic extension of number fields with [L : K] = l a
prime. Assume that l - h(K). Let t′ be the number of (not necessarily finite) ramified
primes of L/K. (By class field theory, we must have t′ ≥ 1.) Let p1, . . . pt ⊆ OL be
the finite, ramified primes of the extension L/K (possibly t = 0). For l odd, suppose
that t′ = t. Then

|
{
[pa1

1 . . . pat
t ]L
∣∣0 ≤ ai ≤ l − 1

}
| ≤ lt

′−1;

and the following are equivalent:

1) NL/K(O∗
L) = O∗

K.

2) |
{
[pa1

1 , . . . pat
t ]L
∣∣0 ≤ ai ≤ l − 1

}
| = lt

′−1

Proof. Using the ambiguous class number formula (§ 13, lemma 4.1 of [18]),

|Am(L/K)| = h(K)lt
′−1

[O∗
K : NL/K(L∗) ∩ O∗

K ]
,

and the fact that the map Cl(K) → Cl(L), [a]K 7→ [a]L, is injective (since l - h(K),
cf. [20], Corollary p. 190) it is not hard to see that the group Ams(L/K) of strongly
ambiguous ideal classes of L/K is the product of the subgroups{

[pa1
1 , . . . pat

t ]L
∣∣0 ≤ ai ≤ l − 1

}
and

{
[a]L
∣∣ a fractional ideal in K

}
where the first factor is the l-Sylow subgroup (allowing the trivial subgroup if t = 0)
of Ams(L/K) and the second factor has order h(K).

It follows that
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|
{
[pa1

1 , . . . pat
t ]L
∣∣0 ≤ ai ≤ l − 1

}
|h(K) = |Ams(L/K)|

≤ |Am(L/K)|

=
h(K)lt

′−1

[O∗
K : NL/K(L∗) ∩ O∗

K ]

This and lemma 4.2 give:

NL/K(O∗
L) = O∗

K

⇔ NL/K(O∗
L) = NL/K(L∗) ∩ O∗

K and NL/K(L∗) ∩ O∗
K = O∗

K

⇔ |Ams(L/K)| = |Am(L/K)| and NL/K(L∗) ∩ O∗
K = O∗

K

⇔ |
{
[pa1

1 , . . . pat
t ]L
∣∣0 ≤ ai ≤ l − 1

}
| = lt

′−1

Corollary 4.5. Let L/K be a cyclic extension of number fields with [L : K] = l
a prime number. Assume that l - h(K). Assume that exactly one prime (which is
assumed to be finite, if l is odd) of K ramifies in L. Then

NL/K(O∗
L) = O∗

K

Remark 4.6. In particular, we get the well-known result that if p is a prime number
congruent to 1 modulo 4, then the negative Pell equation x2 − py2 = −1 is solvable.

4.2 A Sufficient Condition for Surjectivity

In this section, we prove a theorem which is a generalization of theorem 1.19.
Let l be a prime number. Let K be an algebraic number field that contains

the l’th roots of unity and assume that l - h(K); let π1, . . . , πt ∈ OK , t ≥ 2, such
that (π1), . . . , (πt) are distinct prime ideals. Assume that no prime different from
(πi) is ramified in the extension K( l

√
πi)/K. Let β1, . . . , βt ∈ {1, . . . , l − 1}; put

α := πβ1

1 · · ·πβt
t . Let pi ⊆ OK( l√α) be the prime ideal above (πi).

Definition 4.7. Let the notation be as above.
i) We use the Artin symbol to define the t×t left Redei matrix M = [Mij] = MK( l√α)/K

with coefficients in Fl (the field with l elements) corresponding to the extension
K( l
√

α)/K in the following way:



4.2 A Sufficient Condition for Surjectivity 57

For i 6= j, we let Mij := k if(
K( l
√

α, l
√

πj)/K( l
√

α)

pi

)
( l
√

πj)
/

l
√

πj = e
2πj

l
·k.

The diagonal elements of M are then defined by the matrix relation

[β1 · · · βt]M = [0 · · · 0]. (4.1)

ii) For l = 2 (and hence β1 = · · · = βt = 1) we define the right Redei matrix
M = [Mij] = MK( l√α)/K just as in i) but by replacing the matrix condition (4.1) by:

M

 1
...
1

 =

 0
...
0

 .

iii) For l = 2 (and β1 = · · · = βt = 1) consider a factorization α = α1α2 where
α1 =

∏
i∈A1

πi and α2 =
∏

i∈A2
πi with disjoint A1 and A2 whose union is {1, . . . , t}.

We think of α = α1α2 and α = α2α1 as the same factorization of α; hence there are
2t−1 distinct factorizations of α. We say that α = α1α2 is a factorization of α of type
2 if the right Redei matrix M = MK( l√α)/K satisfies:

∀i ∈ A1 :
∑
j∈A2

Mij = 0 and ∀i ∈ A2 :
∑
j∈A1

Mij = 0.

Clearly, a (left or right) Redei matrix has rank at most t − 1 over Fl. Also, the
concepts left Redei and right Redei coincide for symmetric matrices.

Remark 4.8. Let l = 2. Our definition iii) is a generalization of the concepts in
[26]. It is easily seen that

the F2-rank of MK( l√α)/K is t− 1− u

⇔ the number of factorizations of α of type 2 is 2u.

Theorem 4.9. Let l be a prime number. Let K be an algebraic number field that
contains the l’th roots of unity and assume that l - h(K); let π1, . . . , πt ∈ OK , t ≥ 2,
such that (π1), . . . , (πt) are distinct prime ideals. Let β1, . . . , βt ∈ {1, . . . , l − 1};
put α := πβ1

1 · · ·πβt
t . Assume that no prime different from (πi) is ramified in the

extension K( l
√

πi)/K.
Consider the left Redei matrix M = MK( l√α)/K. Assume that rankFl

(M) = t− 1.
Then the relative norm map

NK( l√α)/K : O∗
K( l√α) → O∗

K

is surjective.
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Proof. Put L := K( l
√

α). Let pi be the prime ideal in OL above (πi). Consider a
vector (γ1, . . . , γt) ∈ Ft

l\Fl(β1, . . . , βt). By proposition 4.4, it is enough to show that
a = pγ1

1 · · · pγt
t is not a principal ideal:

The linear map, Ft
l → Ft

l , x 7→ xM , has kernel Fl(β1, . . . , βt). Hence there
is a j ∈ {1, . . . , t} such that

∑t
i=1 γiMij 6= 0. We can, by multiplying a with a

suitable power of pβ1

1 · · · pβt
t = ( l

√
α), if necessary, assume that γj = 0. If we put

L′ := K( l
√

π1, . . . , l
√

πt), then we have

(
L′/L

a

)
( l
√

πj) =

((
L′/L

p1

)γ1

◦ · · · ◦
(

L′/L

pt

)γt
)

( l
√

πj)

= e
2πi

l
·
∑t

i=1 γiMij · l
√

πj

6= l
√

πj.

Since the extension L′/L is unramified, it follows, by class field theory, that a is not
a principal ideal.

We shall illustrate the quadratic case in the next chapter; here we give one ex-
ample for l = 3:

Proposition 4.10. Let p be a prime number congruent to 1 modulo 9; so we can
write p = a2 +3b2; a, b ∈ Z. Assume that 3||b. Then the following two relative norm
maps are surjective:

NK( 3√3p)/K : O∗
K( 3√3p) → O∗

K ,

N
K( 3
√

3p2)/K
: O∗

K( 3
√

3p2)
→ O∗

K ,

where K = Q(
√
−3).

Proof. Write p = ππ̄, π = a + b
√
−3, π̄ = a − b

√
−3; we can assume that a ≡ 1

(mod 9). Since also 3|b, it is easy to see that
(

π
π̄

)
3

=
(

π̄
π

)
3

= 1. The fact that 3|| b

implies that (
√
−3) is inert in each of K( 3

√
π)/K and K( 3

√
π̄)/K.

If we let α1 :=
√
−3 ·π · π̄ and α2 :=

√
−3 ·π2 · π̄2, we therefore have that the left

Redei matrices M1 = MK( 3
√

α1)/K and M2 = MK( 3
√

α2)/K have the forms

M1 =

 ∗ x y
∗ −x 0
∗ 0 −y

 , M2 =

 ∗ x y
∗ x 0
∗ 0 y

 ,

where x and y are non-zero. Hence M1 and M2 have rank 2 = 3 − 1 over F3.
By theorem 4.9 it is enough to note that K( 3

√
α1) = K( 3

√
3p2) and K( 3

√
α2) =

K( 3
√

3p).
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4.3 4-rank of Class Groups

In this section, we prove a more general version of theorem 1.19.

We shall use the following result which is a version of the Elementary Divisor
Theorem:

Lemma 4.11. Let p be a prime number. Let G be a finite abelian p-group with
rankp(G) = n. Let H be a subgroup of G where (necessarily) rankp(H) = m ∈
{0, 1, . . . , n}. Then there exist g1, . . . , gn ∈ G and a1, . . . , am ∈ N such that

G = 〈g1, . . . , gn〉 and H = 〈ga1
1 , . . . , gam

m 〉.

We shall use e4(L) to denote the 4–rank of the class group of the number field L
(cf. definition 1.17).

Theorem 4.12. Let K be an algebraic number field and assume that 2 - h(K);
let π1, . . . , πt ∈ OK , t ≥ 2, such that (π1), . . . , (πt) are distinct prime ideals. Put
α := π1 · · ·πt. Assume that no prime different from (πi) is ramified in the extension
K(
√

πi)/K. Put L := K(
√

α).
Assume that every unit of K is the relative norm of a number from L, i.e. O∗

K ⊆
NL/K(L). So the 2-rank of Cl(L) is t − 1 (cf. lemma 4.3 and the ambiguous class
number formula).
Let the right Redei matrix ML/K have F2-rank t− 1− u, u ≥ 0. Then the following
statements hold:

1) If NL/K(O∗
L) = O∗

K, then e4(L) = u

2) If NL/K(O∗
L) 6= O∗

K, then we can write

rank2

({
[pa1

1 , . . . pat
t ]L
∣∣ai ∈ {0, 1}

})
= t− 1− w, w ∈ {1, . . . , t− 1}

where pi is the prime ideal in L above (πi).

i) u− w ≤ e4(L) ≤ u.

ii) Since the 2-rank of Cl(L) is t− 1, we can choose prime ideals p̃1, . . . , p̃w in L not
dividing (2) such that

rank2

({
[pa1

1 , . . . pat
t p̃ã1

1 , . . . p̃ãw
w ]L

∣∣ai, ãj ∈ {0, 1}
})

= t− 1,
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then

∀α = α1α2 of type 2 and j ∈ {1, . . . , w} :

(
α1

p̃j

)
=

(
α2

p̃j

)
= 1

⇒ e4(L) = u.

And if, in addition, u = t− 1, then

∀α = α1α2 of type 2 and j ∈ {1, . . . , w} :

(
α1

p̃j

)
=

(
α2

p̃j

)
= 1

⇔ e4(L) = u.

3) In particular, if rankF2(ML/K) = t − 1 (i.e. if only the trivial factorization of α
is of type 2), then the 2-class group of L is elementary abelian.

Proof. First, note that if NL/K(O∗
L) 6= O∗

K , then by proposition 4.4 we can write

rank2

({
[pa1

1 , . . . pat
t ]L
∣∣ai ∈ {0, 1}

})
= t− 1− w, w ∈ {1, . . . , t− 1}

where pi is the prime ideal in L above (πi).
The idea of the proof is the same as in Reichardt [26] but with a few adjustments

to our case. Class field theory will be used.
Note first that for a non-trivial factorization α = α1α2 of α:

α = α1α2 is of type 2 ⇔

each prime in L dividing (α) splits totally in K(
√

α1,
√

α2).

Put A := the group of fractional ideals of L and S := the group of fractional
principal ideals of L.

As the 2-rank of Cl(L) is t − 1 ≥ 1, there is (by class field theory) at least
one ideal group H1 (modulo S) in L of index 2 in A. The corresponding class
field L1 is a quadratic and unramified extension of L and hence has the form L1 =
K(
√

α1,
√

α2) where α = α1α2 is a non-trivial factorization of α. Conversely, for
every such non-trivial factorization of α the field K(

√
α1,

√
α2) is a quadratic and

unramified extension of L and is, therefore, the class field for an ideal group (modulo
S) in L of index 2 in A.

By class field theory, e4(L) ≥ 1 if and only if there exists an unramified Z/4-
extension L2 of L. If this is the case, there is exactly one field L1 between L and
L2 such that L1/L is a quadratic and unramified extension; L1 must have the form
L1 = K(

√
α1,

√
α2); the unique non-trivial factorization α = α1α2 of α will be called

the factorization of α attached to L2.
We now prove some claims:
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a) If the non-trivial factorization α = α1α2 is attached to L2 where L2 is unramified
and Z/4 over L, then α = α1α2 is of type 2.

Let H2 be the ideal group (modulo S) in L corresponding to L2. Let cH2 be
a generator of A/H2(' Z/4). Fix an i ∈ {1, . . . , t}. Since, in L, (πi) = p2

i and
(πi) ∈ H2, we have pi ∈ 〈(cH2)

2〉 =: H1. As the class field L1 corresponding to H1 is
unramified and quadratic over L and contained in L2, we have that pi splits totally
in L1 = K(

√
α1,

√
α2). Hence α = α1α2 is of type 2. This proves a).

b) Let the non-trivial factorization α = α1α2 be of type 2. Let H1 be the ideal group
(modulo S) in L corresponding to K(

√
α1,

√
α2). Then

K(
√

α1,
√

α2)/L is contained in an unramified Z/4− extension

⇔ rank2(H1/S) = t− 1.

And we have p1, . . . , pt ∈ H1.

G := A/S has 2-rank t − 1; let G1 := H1/S have 2-rank m(∈ {0, 1, . . . , t − 1}).
By lemma 4.11 (applied to 2-Sylow groups) we can write

G = 〈g1S, . . . , gt−1S〉H̄/S, gi ∈ A

and

G1 = 〈(g1S)a1 , . . . , (gmS)am〉H̄/S, ai ∈ Z

where [H̄ : S] is odd. Note that G/G1 ' A/H1 ' Z/2.
Let m = t− 1. We see that (with a suitable numbering)

H1 = 〈g2
1, . . . , gt−1〉H̄.

We must have g2
1 6∈ S. Put H2 := 〈g4

1, . . . , gt−1〉H̄. Then A/H2 ' Z/4
Let m < t − 1. As G/G1 ' Z/2, we must have m = t − 2 and (with a suitable

numbering) ord(gt−1S) = 2 and

H1 = 〈g1, . . . , gt−2〉H̄.

From this we see that if H1 ⊇ N ⊇ S and [H1 : N ] = 2, then A/N 6' Z/4. (For
A = H1 ∪ gt−1H1.) This proves the first part of b). The second part is clear since
each pi splits totally in K(

√
α1,

√
α2).

c) Let the non-trivial factorization α = α1α2 be of type 2. If NL/K(O∗
L) = O∗

K , then
K(
√

α1,
√

α2)/L is contained in an unramified Z/4–extension.
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This follows from b) and proposition 4.4.

d) Assume that NL/K(O∗
L) 6= O∗

K and that (cf. proposition 4.4)

rank2

({
[pa1

1 , . . . pat
t ]L
∣∣ai ∈ {0, 1}

})
= t− 1− w, w ≥ 1.

If prime ideals p̃1, . . . , p̃w in L not dividing (2) are chosen such that

rank2

({
[pa1

1 , . . . pat
t p̃ã1

1 , . . . p̃ãw
w ]L

∣∣ai, ãj ∈ {0, 1}
})

= t− 1,

then, for a non-trivial factorization α = α1α2 of type 2,

K(
√

α1,
√

α2)/L is contained in an unramified Z/4− extension ⇔

∀j ∈ {1, . . . , w} :

(
α1

p̃j

)
=

(
α2

p̃j

)
= 1.

Let H1 be as in b). Then d) follows from:

K(
√

α1,
√

α2)/L is contained in an unramified Z/4− extension

⇔ ∀j ∈ {1, . . . , w} : pj ∈ H1

⇔ ∀j ∈ {1, . . . , w} : pj splits totally in K(
√

α1,
√

α2)

⇔ ∀j ∈ {1, . . . , w} :

(
α1

p̃j

)
=

(
α2

p̃j

)
= 1.

The proof of the theorem can now be finished as follows:
Put

n := the number of non-trivial factorizations α = α1α2 of type 2 where

K(
√

α1,
√

α2)/L is contained in an unramified Z/4− extension

= the number of non-trivial factorizations α = α1α2 where

K(
√

α1,
√

α2)/L is contained in an unramified Z/4− extension

= the number of subgroups of G := A/S of index

2 containing a subgroup in G with factor group Z/4

= 2e4(G) − 1

= 2e4(L) − 1;

here the third equality sign follows from class field theory and the fourth is group
theory of finite abelian groups.
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From a) we get
n ≤ 2u − 1.

For a given j ∈ {1, . . . , w} we have

xj :=
∣∣∣ {α = α1α2 of type 2

∣∣∣ (α1

p̃j

)
=

(
α2

p̃j

)
= 1

} ∣∣∣ ∈ {2u−1, 2u};

in particular, xj = 2u if NL/K(O∗
L) = O∗

K . Since

n + 1 =
∣∣∣ {α = α1α2 of type 2

∣∣∣∀j ∈ {1, . . . , w} :

(
α1

p̃j

)
=

(
α2

p̃j

)
= 1

} ∣∣∣,
we conclude that

n + 1 ≥ 2u−y

where y is the number of j with xj = 2u−1, and we find that for u = t− 1

n + 1 = 2u ⇔ x1 = · · · = xw = 2u.

This completes the proof of the theorem.



Chapter 5

Quadratic Extensions

5.1 Quadratic Extensions of Q(i)

Let (π1), . . . , (πt) be distinct prime ideals in OQ(i) = Z[i]. Put α := π1, . . . , πt. Since
we are asking whether x2 − αy2 = i is solvable in Z[i], we shall assume that the
necessary condition for solvability,

∀j ∈ {1, . . . , t} : NQ(i)/Q(πj) ≡ 1 (mod 8),

is fulfilled. This means that i ∈ O∗
Q(i) is the relative norm of a number in Q(i,

√
α),

and so this is also a necessary (and sufficient) condition for

rank2(CL(Q(i,
√

α))) = t− 1

(cf. lemma 4.3 and the ambiguous class number formula).

We begin by considering the case where α := d = π1 · · ·πt where d 6= ±1 is a
square-free rational integer. Let p̄i be the prime ideal in L := K(

√
d) above (πi).

Remark 5.1. According to [13],

rank2

({
[p̄1

a1 · · · p̄t
at ]L
∣∣ai ∈ {0, 1}

})
∈ {t− 2, t− 1}

and the following statements are equivalent:

1) i ∈ NQ(i,
√

d)/Q(i)(O
∗
Q(i,

√
d)

)

2) ∃ε ∈ O∗
Q(
√

d)
∃γ ∈ OQ(

√
d) : γ2 = 2ε

3) rank2

({
[p̄1

a1 , . . . p̄t
at ]L
∣∣ai ∈ {0, 1}

})
= t− 1

Note that the equivalence of 1) and 3) also follows from Proposition 4.4
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From the equivalence of 1) and 2) we deduce a rational (and complete) criterion
for i being in NQ(i,

√
d)/Q(i)(O

∗
Q(i,

√
d)

):

Theorem 5.2. 1) i ∈ NQ(i,
√

2)/Q(i)(O
∗
Q(i,

√
2)

).

Let d ∈ Z\{±1, 2} be square-free.

2) If d ≡ 1 (mod 4), then i 6∈ NQ(i,
√

d)/Q(i)(O
∗
Q(i,

√
d)

).

3) If the negative Pell equation x2 − dy2 = −1 is solvable (in Z), then
i 6∈ NQ(i,

√
d)/Q(i)(O

∗
Q(i,

√
d)

).

4) If d 6≡ 1 (mod 4) and x2 − dy2 = −1 is not solvable (in Z), then:

i ∈ NQ(i,
√

d)/Q(i)(O
∗
Q(i,

√
d)

) ⇔ ∃x, y ∈ Z : x2 − dy2 = ±2.

Proof. 1) This is immediate from remark 5.1.

2) Assume that γ2 = 2ε, γ ∈ OQ(
√

d), ε ∈ O∗
Q(
√

d)
; write γ = x+y

√
d

2
. We see that

x2 − dy2 = ±8. Since also

2ε = γ2 = ±2 +
y2d + xy

√
d

2
,

we conclude that 2 | x, y. But an equation (x′)2 − d(y′)2 = ±2 is impossible modulo
4.

3) Let x2 − dy2 = −4 be solvable and let ε be a fundamental unit of Q(
√

d) which
has norm −1. If i ∈ NQ(i,

√
d)/Q(i)(O

∗
Q(i,

√
d)

), then we have an equation γ2 = ±2εk

with k ∈ {0, 1}. As
√

2 6∈ Q(
√

d), we must have k = 1. This gives the following
contradiction:

0 < (NQ(
√

d)/Q(γ))2 = NQ(
√

d)/Q(2ε) = −4.

4) As OQ(
√

d) = Z[
√

d], the implication “⇒” is clear.

So assume that x2 − dy2 = 2(−1)k; put γ := x + y
√

d. Just note that

γ2 = x2 + dy2 + 2xy
√

d = 2((−1)k + dy2 + xy
√

d)

and

NQ(
√

d)/Q((−1)k + dy2 + xy
√

d) = 1 + d2y4 + 2dy2(−1)k − dx2y2

= 1 + dy2(dy2 + 2(−1)k − x2) = 1.
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Remark 5.3. Let d ∈ Z\{±1, 2} be square-free and assume that d 6≡ 1 (mod 4)
and that x2 − dy2 = −1 not solvable (in Z). If q1, . . . qc ≡ 3 (mod 4) are (some of
the) prime factors of d and if ∃x, y ∈ Z : x2 − dy2 = ±2, then, clearly, q1 ≡ · · · ≡ qc

(mod 8) and exactly one of the equations is solvable; in that case, x2 − dy2 = 2 is
solvable if qi ≡ 7 (mod 8) and x2 − dy2 = −2 is solvable if qi ≡ 3 (mod 8).

Corollary 5.4. For a prime number p ≡ 1 (mod 8) with the prime factorization
p = ππ̄ in Z[i] we have (π

π̄

)
= 1.

Proof. We use theorem 4.9. The assertion corollary follows from the fact that the

matrix

[
1 1
1 1

]
has rank 1 (over F2) and that i 6∈ NQ(i,

√
p)/Q(i)(O

∗
Q(i,

√
p)).

Corollary 5.5. Let q ≡ 3 (mod 4) be a prime number. Then

i ∈ NQ(i,
√

q)/Q(i)(O
∗
Q(i,

√
q)) and i ∈ NQ(i,

√
2q)/Q(i)(O

∗
Q(i,

√
2q)).

Proof. It is well known that one of the equations x2 − qy2 = ±2 and one of the
equations x2 − 2qy2 = ±2 is solvable (see for instance [21]).

Lemma 5.6. Let K ′/K be an abelian and unramified extension of number fields.
Let l be a prime number and let k ∈ N0. Consider an ideal a ⊆ OK. Suppose that

i) lk ‖ [K ′ : K];

ii) lk+1 - h(K);

iii)
(

K′/K
a

)
= idK′;

iv) alm is a principal ideal in K for some m ∈ N0.

Then a is a principal ideal.
So, in particular, if p ⊆ OK is a prime ideal that splits totally in the l-class field of
K and whose ideal class in Cl(K) has l-power order, then p is a principal ideal.

Proof. Let K̃ be the Hilbert class field of K and put σ :=
(

K̃/K
a

)
. According to

class field theory it is enough to show that σ = idK̃ .

From iv) we get σlm =
(

K̃/K

alm

)
= idK̃ . By iii), σ ∈ Gal(K̃/K ′). As

|Gal(K̃/K ′)| = h(K)

[K ′ : K]

is not divisible by l (by i) and ii)), we have σ = idK̃ .
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Proposition 5.7. Let a, b ∈ N0 and let q1, . . . , qa, p1, . . . , pb be prime numbers with
p1 ≡ · · · ≡ pb ≡ 1 (mod 8) and q1 ≡ · · · ≡ qa ≡ 3 (mod 8) or q1 ≡ · · · ≡ qa ≡ 7
(mod 8). Suppose that D ∈ N is one of the following:

i) D = 2q1 · · · qap1 · · · pb with q1 ≡ · · · ≡ qa ≡ 7 (mod 8) (possibly a = 0); or
ii) D = q1 · · · qap1 · · · pb with a odd.

If the 2–class group Cl2(Q(
√

D)) is elementary abelian, then the following (equi-
valent) statements hold:

1) i ∈ NQ(i,
√

d)/Q(i)(O
∗
Q(i,

√
D)

);

2) one of the equations x2 −Dy2 = ±2 is solvable in Z.

Proof. Let K := Q(
√

D) have an elementary abelian 2-class group and let p0 ⊆ OK

be the prime ideal above 2. It is enough to show that p0 is a principal ideal:

i) p0 splits totally in K(
√
−qi) and in K(

√
pj), and hence p0 splits totally in

K(
√
−q1, . . . ,

√
−qa,

√
p1, . . . ,

√
pb) ∩ R which is the 2–class field of K.

ii) Let a be odd. p0 splits totally in K(
√

pj). If qi ≡ 7 (mod 8), then, clearly, p0

splits totally in K(
√
−qi). If qi ≡ 3 (mod 8), then

−q1 · · · qi−1qi+1 · · · qap1 · · · pb ≡ −(32)
a−1
2 · 1 · · · 1 ≡ 7 (mod 8),

and so p0 splits totally in K(
√
−q1 · · · qi−1qi+1 · · · qap1 · · · pb) = K(

√
−qi). Hence p0

splits totally in K(
√
−q1, . . . ,

√
−qa,

√
p1, . . . ,

√
pb) ∩ R which is the 2-class field of

K.

In both i) and ii), we conclude that p0 is a principal ideal, by lemma 5.6.

We give an example of the result in proposition 5.7:

Corollary 5.8. 1) Let q1, q2, q3 be prime numbers with q1 ≡ q2 ≡ q3 ≡ 3 (mod 8) or

q1 ≡ q2 ≡ q3 ≡ 7 (mod 8) such that
(

q1

q2

)
=
(

q2

q3

)
=
(

q3

q1

)
.

Then i ∈ NQ(i,
√

q1q2q3)/Q(i)(O
∗
Q(i,

√
q1q2q3)) and the equation x2 − q1q2q3y

2 = (−1)
q2
1−1

8 · 2
is solvable in Z.

2) If q ≡ 3 (mod 4), p1 ≡ p2 ≡ 1 (mod 8) are prime numbers with
(

q
p1

)
=
(

q
p2

)
=(

p1

p2

)
= −1, then i ∈ NQ(i,

√
qp1p2)/Q(i)(O

∗
Q(i,

√
qp1p2)) and the equation

x2 − qp1p2y
2 = (−1)

q2−1
8 · 2 is solvable in Z.

Proof. It is easily checked that even the strict 2-class group of each of the fields
Q(
√

q1q2q3) and Q(
√

qp1p2) is elementary abelian.
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Lemma 5.9. Let K be a quadratic number field with discriminant D, let q and
p1, p2 be prime numbers such that (q) is inert in K and p1, p2 are split with prime
(principal) ideal factorizations

(p1) = (π1)(π̃1) and (p2) = (π2)(π̃2)

in K. Assume that each of π1 and π2 is congruent to a square modulo 4 in OK. Then
the following statements about quadratic residue symbols hold:

1)
(

q
πi

)
=
(

q
π̃i

)
=
(

q
pi

)
where the last symbol is an ordinary (rational) Legendre

symbol.

2)
(

π̃1

π2

)
=
(

π1

π̃2

)
;

3) If the Legendre symbol
(

pi

p2

)
has the value 1, then

(
π1

π2

)
=
(

π̃1

π2

)
and

(
π1

π̃2

)
=
(

π̃1

π̃2

)
;

if the Legendre symbol
(

pi

p2

)
has the value −1, then

(
π1

π2

)
6=
(

π̃1

π2

)
and

(
π1

π̃2

)
6=
(

π̃1

π̃2

)
.

If K 6⊆ R, each of these quadratic residue symbols retains its value when reversed.

Proof. 1), 2) and 3) are clear. The last claim follows from the Quadratic Reciprocity
Law in quadratic fields (theorem 165 of [12]).

The (left or right) Redei matrices we encounter in the rest of this chapter will be
symmetric because of the Quadratic Reciprocity Law in quadratic fields.

We shall now give some applications of theorem 4.12 for K = Q(i) and α := d =
π1 · · ·πt where d is a rational integer.

Note that if q ≡ 3 (mod 4) is a prime number and a ∈ Z, then, in OK = Z[i], a
is a quadratic residue modulo q.

Recall that e4(L) denotes the 4–rank of the class group of the number field L.
Also, recall that if the odd d satisfies that i ∈ NQ(i,

√
d)/Q(i)(O

∗
Q(i,

√
d)

), then d ≡ 3

(mod 4).

The first application is immediate:

Theorem 5.10. Let q1, . . . , qt ≡ 3 (mod 4) be prime numbers. Put d := q1 · · · qt.
Then the following statements hold:

1) e4(Q(i,
√

d)) ∈ {t− 2, t− 1}.

2) If i ∈ NQ(i,
√

d)/Q(i)(O
∗
Q(i,

√
d)

), then t is odd and

e4(Q(i,
√

d)) = t− 1;

in particular, e4(Q(i,
√

d)) is even.
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Proof. The right Redei matrix MQ(i,
√

d)/Q(i) is the zero-matrix.

Theorem 5.11. Let q1, . . . , qt ≡ 3 (mod 4), p ≡ 1 (mod 8) be prime numbers. Put
d := q1 · · · qtp. Then the following statements hold:

1) e4(Q(i,
√

d)) ∈ {t− 2, t− 1, t, t + 1}.

2) If i ∈ NQ(i,
√

d)/Q(i)(O
∗
Q(i,

√
d)

), then t is odd and

e4(Q(i,
√

d)) ∈ {t− 1, t + 1};

in particular, e4(Q(i,
√

d)) is even.

Proof. In Q(i), let the prime factorization of p be p = ππ̄ where we can assume
that π ≡ π̄ ≡ 1 (mod 4). We only have to prove that the number of factorizations
of α = q1 · · · qtππ̄ of type 2 is 2t−1 or 2t+1; the other assertions follow from this.

We can write
α = q1 · · · qaq

′
1 · · · q′bππ̄

where
(

π
qi

)
=
(

π̄
qi

)
= 1 and

(
π
q′j

)
=
(

π̄
q′j

)
= −1.

Consider a factorization α = α1α2 of α.

Assume that π|α1 and π̄|α2. If b > 0, then (for example) q′1|α1 and hence
(

α2

q′1

)
=(

π̄
q′1

)
= −1 and so α = α1α2 is not of type 2.

If b = 0, then, clearly, α = α1α2 is of type 2; and there are 2t of these factorizations
of type 2.

For factorizations of the form

α1 = qi1 · · · qicq
′
j1
· · · q′jd

,

α2 = qic+1 · · · qiaq
′
jd+1

· · · q′jb
ππ̄

where
(

π
qik

)
=
(

π̄
qik

)
= 1 and

(
π

q′jk

)
=
(

π̄
q′jk

)
= −1 it easily seen that

α = α1α2 is of type 2 ⇔ 2|d.

Hence
the number of factorizations of type 2 of this kind

= (number of subsets of {1, . . . , b} with an even number of elements)·
(number of subsets of {1, . . . , a})

=

{
1 · 2a = 2t, if b = 0
2b−1 · 2a = 2t−1, if b > 0
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Therefore, the total number of factorizations of type 2 is{
2t + 2t = 2t+1, if b = 0
0 + 2t−1 = 2t−1, if b > 0

.

Theorem 5.12. Let q1, . . . , qt ≡ 3 (mod 4), p1, . . . , pa ≡ 1 (mod 8) be prime num-

bers and suppose that all the Legendre symbols
(

qi

pj

)
and

(
pk

pj

)
are equal to 1. Put

d := q1 · · · qtp1 · · · pa. Then the following statements hold:

1) e4(Q(i,
√

d)) ∈ {t + a− 2, . . . , t + 2a− 1}.

2) If i ∈ NQ(i,
√

d)/Q(i)(O
∗
Q(i,

√
d)

), then t is odd and e4(Q(i,
√

d)) is even.

Proof. We have

α = q1 · · · qtπ1π̄1 · · ·πaπ̄a;

here the prime factorization of pi is pi = πiπ̄i where we can assume that π ≡ π̄ ≡ 1
(mod 4).

Put β := π1π̄1 · · ·πaπ̄a. Since, clearly,

α = (qi1 · · · qicβ1)(qic+1 · · · qitβ2) is of type 2 ⇔ β = β1β2 is of type 2

(because the Legendre symbols
(

qi

pj

)
are equal to 1), the number of factorizations

of type 2 of α is 2t multiplied by the number of factorizations of type 2 of β. The
right Redei matrix MQ(i,

√
β)/Q(i) is a block matrix built of 2 × 2 blocks of the form[

x x
x x

]
(because the Legendre symbols

(
pk

pj

)
are equal to 1). If we replace each

such block with the entry x, we get an anti-symmetric a × a matrix of the same
F2-rank as MQ(i),

√
β)/Q(i). By § 91 of [29], this rank is even. Hence the number of

factorizations of type 2 of α is of the form 2t · 22a−1−2k where 2k ∈ {0, 1, . . . , a}. The
theorem follows.

Let d be a product of t prime numbers congruent to 3 modulo 4. As noted in
theorem 5.10, e4(Q(i,

√
d)) = t − 2 or t − 1. So, it would be natural to ask if we,

just by looking at the prime factors of d modulo 8, can decide exactly when the case
e4(Q(i,

√
d)) = t− 1 occurs? This is done in the next theorem.
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Remark 5.13. Let d > 1 be a square-free integer. Consider the natural map

φ : Cl(Q(
√

d))× Cl(Q(
√
−d)) → Cl(Q(i,

√
d)),

([a]Q(
√

d), [b]Q(
√
−d)) 7→ [a]Q(i,

√
d)[b]Q(i,

√
d).

1) In [17], it is proved that the kernel and the co-kernel of φ are elementary abelian
2-groups.

2) It follows from [13] that when d is a product of prime numbers congruent to
3 modulo 4, the image of φ is exactly the subgroup of Cl(Q(i,

√
d)) consisting of

squares of ideal classes. (More precisely, this follows from the fact that, in this
case, the concepts ’Hauptgeschlecht’ and ’Geschlechter der Hauptart’ coincide for
the extension Q(i,

√
d)/Q(i); cf. the discussion at the end of section 1.3.)

For the (unique) factorization D = D1 · · ·Dm of the discriminant D of a quadratic
field K as a product of prime discriminants Di, let χi be the genus character of the
strict class group Cls(K) corresponding to Di. A strict ideal class C ∈ Cls(K) is the
square of a strict class if and only if at least m− 1 of χ1(C), . . . , χm(C) are equal to
1 (since χ1 · · ·χm = 1); see [30]. We can now state and prove:

Theorem 5.14. Let t ∈ N. Let the positive integer d have the prime factorization

d = q1 · · · qsqs+1 · · · qt

with prime numbers q1 ≡ · · · ≡ qs ≡ 3, qs+1 ≡ · · · ≡ qt ≡ 7 (mod 8).

1) If s = 0, then e4(Q(i,
√

d)) = t− 1.

2) If s = t, then e4(Q(i,
√

d)) =

{
t− 1, if 2 6 |t
t− 2, if 2|t

3) If 0 < s < t, then

e4(Q(i,
√

d)) = t− 1

⇔ ∀i ∈ {1, . . . , s} :
(

qs+1···qt

qi

)
= (−1)t−1

and ∀j ∈ {s + 1, . . . , t} :
(

q1···qs

qj

)
= 1

where the above symbols are the ordinary Legendre symbols.

Proof. First note that for t = 1 the class number of Q(i,
√

d) is odd, so the assertion
is true in this case. So suppose that t ≥ 2. Put

K1 := Q(
√

d) and K2 := Q(
√
−d).
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In this proof, we shall use a superscript ’s’ to denote strict ideal classes: [a]sKi
∈

Cls(Ki). The (ramified) primes in K1 and in K2 above q1, . . . , qs, qs+1, . . . , qt are
inert in L := Q(i,

√
d). Put q0 := 2. In K1 resp. K2, we shall denote the prime

above qi by pj resp. qj for j = 0, . . . , t. Note that [p0]L = [q0]L = [(1 + i)]L = 1 and
[pi]L = [qi]L for i = 1, . . . , t.

Note that if i ∈ NQ(i,
√

d)/Q(i)(O
∗
Q(i,

√
d)

), then t is odd and e4(Q(i,
√

d)) = t− 1 and

s = 0 or s = t. If t is odd, then:

p0 is a principal ideal ⇒ x2 − dy2 = ±2 is solvable ⇒ e4(Q(i,
√

d)) = t− 1.

Let t be odd and assume that x2 − dy2 = ±2 is not solvable; so p0 is not a
principal ideal. Then we have (with φ as above):

e4(Q(i,
√

d)) = t− 1

⇔ rank2(Im(φ)) = t− 1

⇔ ∃y ∈ Im(φ)\
{
[pa1

1 · · · pat
t ]L
∣∣ai ∈ {0, 1}

}
: ord(y) = 2

⇔ ∃x ∈ Cl(K1)× Cl(K2) : ord(x) = 4 and ord(φ(x)) = 2

⇔ ∃z ∈ Cl(K1)× Cl(K2) : z is a square, ord(z) = 2 and φ(z) = 1

⇔ ∃a0, a1, . . . , at, b1, . . . , bt ∈ {0, 1} : ([pa0
0 pa1

1 · · · pat
t ]K1 , [q

b1
1 · · · qbt

t ]K2) is

a square in Cl(K1)× Cl(K2) of order 2 and [pa1
1 qb1

1 · · · pat
t qbt

t ]L = 1

⇔ ([p0p1 · · · ps]K1 , [q1 · · · qs]K2) is a square in Cl(K1)× Cl(K2) of order 2.

The first ”⇔” follows from remark 5.13 2). The third ”⇔” follows from remark
5.13 1) (about the kernel of φ).

The last ”⇒” requires a proof: Assume that

z1 := [pa0
0 pa1

1 · · · pat
t ]K1 ∈ Cl(K1) and z2 := [qb1

1 · · · qbt
t ]K2 ∈ Cl(K2)

are squares with ord((z1, z2)) = 2 and [pa1
1 qb1

1 · · · pat
t qbt

t ]L = 1.

We have

rank2

({
[px1

1 · · · pxt
t ]K1

∣∣xi ∈ {0, 1}
})
∈ {t− 2, t− 1};

Let r be this 2-rank. (For t even it is always the case that r = t− 2.)

Consider the equation [pa1
1 qb1

1 · · · pat
t qbt

t ]L = 1, i.e. [pa1+b1
1 · · · pat+bt

t ]L = 1.

If r = t − 2, then, by remark 5.1, we must have [pa1+b1
1 · · · pat+bt

t ]K1 = 1, i.e.
[pa1

1 · · · pat
t ]K1 = [pb1

1 · · · pbt
t ]K1 ; hence we can assume that (a1, . . . , at) = (b1, . . . , bt).
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In the case we are considering, i.e. t odd, another way, which covers both of the
cases r = t − 2 and r = t − 1, of realizing that we can assume that (a1, . . . , at) =
(b1, . . . , bt) is the following: As p0 is not a principal ideal, then the map{

[px0
0 px1

1 · · · pxt
t ]K1

∣∣xi ∈ {0, 1}
}
→

{
[px1

1 · · · pxt
t ]L
∣∣xi ∈ {0, 1}

}
,

[px0
0 px1

1 · · · pxt
t ] 7→ [px1

1 · · · pxt
t ]L

has kernel {1, [p0]K1}. Hence [pa1+b1
1 · · · pat+bt

t ]K1 = [p0]
γ
K1

for a γ ∈ {0, 1}, and

this implies that [pa0
0 pa1

1 · · · pat
t ]K1 = [pa0+γ

0 pb1
1 · · · pbt

t ]K1 ; and we can assume that
(a1, . . . , at) = (b1, . . . , bt).

Since [pa0
0 pa1

1 · · · pat
t ]K1 is a square in Cl(K1), we have that [pa0

0 pa1
1 · · · pat

t ]sK1
or

[pa0
0 pa1+1

1 · · · pat+1
t ]sK1

is a square in Cls(K1). As z2 = z2 · [q1 · · · qt]K2 , we can assume
that [pa0

0 pa1
1 · · · pat

t ]sK1
is a square in Cls(K1).

Let χ
(1)
k resp. χ

(2)
k be the k’th genus character of K1 resp. K2 (χ

(i)
0 corresponds

to the prime discriminant −4 if 2 is ramified in Ki/Q).
If (a1, . . . , at) = (0, . . . , 0), then ord((z1, z2)) = 2 implies that a0 = 1; hence

[p0]
s
K1

= [pa0
0 pa1

1 · · · pat
t ]sK1

is a square in Cls(K1). As

χ
(1)
i ([p0]

s
K1

) =

(
−qi

2

)
, i = 1, . . . t,

we conclude that q1 ≡ · · · ≡ qt ≡ 7 (mod 8), i.e. s = 0, and so ”⇒” is proved in this
case.

Let (a1, . . . , at) 6= (0, . . . , 0) and consider a j ∈ {1, . . . , t} with aj = 1. We have

1 = χ
(1)
j ([pa0

0 pa1
1 · · · pat

t ]sK1
) =

t∏
i=0
i6=j

χ
(1)
j ([pai

i ]sK1
) ·

t∏
k=0
k 6=j

χ
(1)
k ([pj]

s
K1

)

and

1 = χ
(2)
j ([qa1

1 · · · qat
t ]K2) =

t∏
i=1
i6=j

χ
(2)
j ([qai

i ]K2) ·
t∏

k=1
k 6=j

χ
(2)
k ([qj]K2).

For i, k ∈ {1, . . . , t}, i 6= k, we have

χ
(1)
k ([pi]

s
K1

) =

(
−qk

qi

)
= χ

(2)
k ([qi]K2).

This and the above equations imply that

1 = χ
(1)
j ([pa0

0 ]sK1
) · χ(1)

0 ([pj]
s
K1

) =

(
−qj

2

)a0

·
(
−4

qj

)
=

(
−qj

2

)a0

· (−1),



74 Quadratic Extensions

and hence a0 = 1 and qj ≡ 3 (mod 8). In particular, as+1 = · · · = at = 0.

Assume now that j ∈ {1, . . . , s} and aj = 0. Then

1 = χ
(1)
j ([p0p

a1
1 · · · pas

s ]sK1
) = χ

(1)
j ([p0]

s
K1

) ·
s∏

i=1
i6=j

χ
(1)
j ([pai

i ]sK1
)

and

1 = χ
(2)
j ([qa1

1 · · · qas
s ]K2) =

s∏
i=1
i6=j

χ
(2)
j ([qai

i ]K2)

which implies that 1 = χ
(1)
j ([p0]

s
K1

) =
(−qj

2

)
= −1 which is a contradiction; hence

a1 = · · · = as = 1. This completes the proof of ”⇒”.

For t even it is proved in a similar way (without the assumption about p0 not
being principal) that

e4(Q(i,
√

d)) = t− 1

⇔ ([p1 · · · ps]K1 , [q0q1 · · · qs]K2) is a square in Cl(K1)× Cl(K2) of order 2.

We now go through the cases of the theorem:

1) q1 ≡ · · · ≡ qt ≡ 7 (mod 8):

Let t be odd: If p0 is a principal ideal, we are done; so assume that p0 is not a
principal ideal, i.e. ord([p0]K1) = 2. We just have to note that

χ
(1)
j ([p0]

s
K1

) =

(
−qj

2

)
= 1, j = 1, . . . t.

Let t be even: We have ord([q0]K1) = 2 since q1 · · · qt is the only non-trivial
principal ideal in

{
qx0

0 qx1
1 · · · qxt

t

∣∣xi ∈ {0, 1}
}
. Note that

χ
(2)
j ([q0]K1) =

(
−qj

2

)
= 1, j = 1, . . . t.

2) q1 ≡ · · · ≡ qt ≡ 3 (mod 8):

Let t be odd: If p0 is a principal ideal, we are done; so we can assume that
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ord([p0]K1) = 2. Note that [p0]K1 = [p0p1 · · · pt]K1 . For j = 1, . . . , t we have

χ
(1)
j ([p0p1 · · · pt]

s
K1

) =
t∏

i=0
i6=j

χ
(1)
j ([pi]

s
K1

) ·
t∏

k=0
k 6=j

χ
(1)
k ([pj]

s
K1

)

=

(
−qj

2

) t∏
i=1
i6=j

(
−qj

qi

)
·
(
−4

qj

) t∏
k=1
k 6=j

(
−qk

qj

)

= (−1) · (−1) · (−1)t−1 · (−1)t−1

t∏
m=1
m6=j

((
qj

qm

)(
qm

qj

))
= (−1) · (−1) · (−1)t−1 · (−1)t−1 · (−1)t−1 = 1

and

χ
(2)
j ([q1 · · · qt]K2) = χ

(2)
j (1) = 1,

as required.

Let t be even: As

χ
(2)
1 ([q0q1 · · · qt]K2) =

t∏
i=0
i6=1

χ
(2)
1 ([qi]K2) ·

t∏
k=0
k 6=1

χ
(2)
k ([q1]

s
K1

)

=

(
−q1

2

) t∏
i=2

(
−q1

qi

)
·
(
−4

q1

) t∏
k=2

(
−qk

q1

)

= (−1) · (−1) · (−1)t−1 · (−1)t−1

t∏
m=2

((
q1

qm

)(
qm

q1

))
= (−1) · (−1) · (−1)t−1 · (−1)t−1 · (−1)t−1 = −1,

[q0q1 · · · qt]K2 is not a square in Cl(K2), as required.

3) q1 ≡ · · · ≡ qs ≡ 3, qs+1 ≡ · · · ≡ qt ≡ 7 (mod 8) and 0 < s < t:

First note that ord([q1 · · · qs]K2) = 2 for t odd and that ord([q0q1 · · · qs]K2) = 2
for t even.
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Let j ∈ {1, . . . , s}. For t odd we have

χ
(1)
j ([p0p1 · · · ps]

s
K1

)

=
s∏

i=0
i6=j

χ
(1)
j ([pi]

s
K1

) ·
t∏

k=0
k 6=j

χ
(1)
k ([pj]

s
K1

)

=

(
−qj

2

) s∏
i=1
i6=j

(
−qj

qi

)
·
(
−4

qj

) t∏
k=1
k 6=j

(
−qk

qj

)

= (−1) · (−1) · (−1)s−1 · (−1)t−1

s∏
m=1
m6=j

((
qj

qm

)(
qm

qj

))
·
(

qs+1 · · · qt

qj

)

= (−1)t−1

(
qs+1 · · · qt

qj

)
.

Similar computations show that χ
(2)
j ([q1 · · · qs]K2) = (−1)t−1

(
qs+1···qt

qj

)
for t odd and

χ
(1)
j ([p1 · · · ps]

s
K1

) = χ
(2)
j ([q0q1 · · · qs]K2) = (−1)t−1

(
qs+1···qt

qj

)
for t even.

Finally, let j ∈ {s + 1, . . . , t}. Then it is easily seen that χ
(1)
j ([p0p1 · · · ps]

s
K1

) =

χ
(2)
j ([q1 · · · qs]K2) =

(
q1···qs

qj

)
for t odd and χ

(1)
j ([p1 · · · ps]

s
K1

) = χ
(2)
j ([q0q1 · · · qs]K2) =(

q1···qs

qj

)
for t even. The assertion in 3) of the theorem follows from this. This

completes the proof of the theorem.

Before we give an application of theorem 4.9, we prove the following

Lemma 5.15. Let a, b ∈ N0. Consider the (2a + 2b + 1)× (2a + 2b + 1) matrix over
F2:

M =



0 1 · · · · · · · · · 1
1 |
... M11 | M12
... − − + − −
... M21 | M22

1 |


where M11 is a 2a× 2a matrix, M12 is a 2a× 2b matrix, M21 is a 2b× 2a matrix and
M22 is a 2b × 2b matrix; these four matrices are constructed as block-matrices built
of 2× 2 matrices in the following way:
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M11 has the form



[
∗ x1

x1 ∗

]
. . . [

∗ xa

xa ∗

]


with

[
∗ xi

xi ∗

]
-blocks on the main diagonal, xi ∈ F2, and where every other block is

of the form

[
y y + 1

y + 1 y

]
, y ∈ F2 (not necessarily the same y).

Every block of M12 or of M21 is of the form

[
z z
z z

]
, z ∈ F2 (not necessarily the

same z).

M22 comes in two types:

I) Every block on the main diagonal of M22 is of the form

[
∗ x
x ∗

]
, x ∈ F2 (not

necessarily the same x), and every other block is of the form[
y y
y y

]
, y ∈ F2 (not necessarily the same y).

II) Every block on the main diagonal of M22 is of the form

[
∗ x
x ∗

]
, x ∈ F2 (not

necessarily the same x), and every other block is of the form[
z z + 1

z + 1 z

]
, z ∈ F2 (not necessarily the same z).

Finally, and in all cases, the entries on the main diagonal of M are chosen such
that all column sums of M are 0.

Then the following statements hold:

i) If a is even and if M22 is of type I, then M has maximal F2-rank, namely 2a + 2b.

ii) If both a and b are even and if M22 is of type II, then M has maximal F2-rank,
2a + 2b.
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Proof. Put t := 1 + 2(a + b). Note that

M has maximal F2-rank

⇔ ker(x 7→ xM) = {[0, . . . , 0], [1, . . . , 1]}
⇔ ∀A ( {1, . . . t}, A 6= ∅, ∃j ∈ {1, . . . t} :

∑
i∈A

mij = 1.

(Note that
∑

i∈A mij = 1 if and only if
∑

i∈{A mij = 1 where {A = {1, . . . t}\A.) If
for ∅ 6= A ( {1, . . . t} ∃j ∈ {1, . . . t} :

∑
i∈A mij = 1, then we say that column j

works for A if j ∈ {A and that column j works for {A if j ∈ A. (This usage just
focuses on the fact that we do not want to sum over diagonal elements of M .)

Let 1 ∈ A ( {1, . . . , t}.
If 2 | |A|, then column 1 of M works for {A; so suppose that 2 - |A|.

Put A1 := A ∩ {1, . . . , 2a + 1} and A2 := A ∩ {2a + 2, . . . , t}. For a subset B ⊆
{1, . . . , t} we let M(B) denote the sub-matrix of M consisting of the rows of M with
a row number in B; for i ∈ {1, . . . , t} let M(B)i be the i’th column of M(B) and
put

mi :=


1, if the diagonal block of M in the columns 2i, 2i + 1 is

[
∗ 1
1 ∗

]
0, if the diagonal block of M in the columns 2i, 2i + 1 is

[
∗ 0
0 ∗

] ;

We treat two cases separately:

1) ∃i0 ∈ {1, . . . , a + b} : |{2i0, 2i0 + 1} ∩ A| = 1:

Assume (for example) that 2i0 ∈ A 63 2i0 + 1. There are now two possibilities:

1’) i0 ∈ {1, . . . , a} (and similarly if i0 ∈ {1, . . . , a + b} and M22 is of type II):

Put
n1 := number of “1“s in M(A1\{2i0})2i0+1;

n2 := number of “0“s in M({2, . . . , 2a + 1}\(A1 ∪ {2i0}))2i0+1

= (number of “1“s in M({2, . . . , 2a + 1}\A1)2i0)−mi0 ;

n3 := number of “1“s in M(A2)2i0+1

≡ number of “1“s in M({2a + 2, . . . , t}\A2)2i0 (mod 2).
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Note that n1 ≡ n2 (mod 2) (since 2|a).

Assume that column 2i0 + 1 does not work for A. As 1 ∈ A, we have

1 + n1 + n3 + mi0 ≡ 0 (mod 2);

therefore

number of “1“s in M({A)2i0

= (number of “1“s in M({1, . . . , 2a + 1}\A1)2i0)

+(number of “1“s in M({2a + 2, . . . , t}\A2)2i0)

= (n2 + mi0) + n3

≡ n1 + n3 + mi0

≡ 1 (mod 2).

Hence column 2i0 works for {A. The second possibility is

1”) i0 ∈ {a + 1, . . . , a + b} and M22 is of type I:

Let k be the number of

[
1 1
1 1

]
–blocks in the columns 2i0, 2i0 + 1 of M , which

are different from the main diagonal block in these columns, and having exactly one
row with a number in A.

Assume that column 2i0 + 1 does not work for A. Since 1 ∈ A, this means that
k + mi0 is odd. But then column 2i0 works for {A.

2) ∀i ∈ {1, . . . , a + b} : 2 | |{2i, 2i + 1} ∩ A|:

Choose an i0 ∈ {1, . . . , a + b} with {2i0, 2i0 + 1} ∩ A = ∅.

If i0 ∈ {a + 1, . . . , a + b} and M22 is of type I, then column 2i0 works for A.

So we only need to consider the case i0 ∈ {1, . . . , a} (as the case where i0 ∈
{a + 1, . . . , a + b} and M22 is of type II is completely similar). If there is an even
number of j ∈ {1, . . . , a} with 2j, 2j + 1 ∈ A, then column 2i0 works for A. If there
is an odd number of j ∈ {1, . . . , a} with 2j, 2j + 1 ∈ A and if j0 is such a j, then
column 2j0 works for {A.

We can now give the promised application of theorem 4.9 (and theorem 4.12, for
the claim about 2–class groups):
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Theorem 5.16. Let a, b ∈ N0 and let a be even.
Let q ≡ 3 (mod 4), p1 ≡ · · · ≡ pa ≡ p′1 ≡ · · · ≡ p′b ≡ 1 (mod 8) be prime numbers
such that:

1)
(

q
p1

)
= · · · =

(
q
pa

)
=
(

q
p′1

)
= · · · =

(
q
p′b

)
= −1;

2) for i, j ∈ {1, . . . , a}, i 6= j:
(

pi

pj

)
= −1;

3) for i ∈ {1, . . . , a}, u ∈ {1, . . . , b}:
(

pi

p′u

)
= 1;

4) for u, v ∈ {1, . . . , b}, u 6= v:

i) all the Legendre symbols
(

p′u
p′v

)
have the value 1; or

ii) b is even and all the Legendre symbols
(

p′u
p′v

)
have the value −1.

Then i ∈ NQ(i,
√

qp1···pap′1···p′b)/Q(i)
(O∗

Q(i,
√

qp1···pap′1···p′b)
) and the 2-class group

Cl2(Q(i,
√

qp1 · · · pap′1 · · · p′b)) is elementary abelian.

(And one of the equations x2 − qp1 · · · pap
′
1 · · · p′by2 = ±2 is solvable in Z).

Proof. We can write pi = πiπ̄i and p′u = π′uπ̄
′
u where (πi), (π̄i), (π

′
u), (π̄

′
u) are prime

ideals of K := Q(i) and πi ≡ π′i ≡ πu ≡ π′u ≡ 1 (mod 4). Then

α = d = qπ1π̄1 · · ·πaπ̄aπ
′
1π̄

′
1 · · ·πbπ̄b.

Note that for γ ∈ {q, π1, π̄1, · · · , πa, π̄a, π
′
1, π̄

′
1, · · · , πb, π̄b}, the prime ideal (1+ i) and

hence every prime of K different from (γ) is unramified in the extension K(
√

γ)/K.
So by theorem 4.9 it is enough to show that the (left or right) Redei matrix MQ(i,

√
α)/Q(i)

has maximal rank: This follows immediately from lemma 5.9 and lemma 5.15.

Note that the result in 2) of corollary 5.8 also follows by putting a = 2 and b = 0
in theorem 5.16.

We now investigate the case where (α) = (π) is a prime of OQ(i) = Z[i]. By the
above, we only need to consider the split case, i.e. π has the form π = a+bi; a, b ∈ Z,
where NQ(i)/Q(π) = a2 + b2 ≡ 1 (mod 8) is a prime number; hence 4 | ab.

The following lemma is from the unpublished paper [19].
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Lemma 5.17. Let π = a + bi be a prime of Z[i] with 2|a and a + b ≡ ±1 (mod 8).
Then

4|h(Cl(Q(i,
√

π))) ⇔ 8|a.

Proof. For the convenience of the reader, we sketch the proof from [19]:
Put K := Q(i,

√
π) and L := Q(

√
i,
√

π). As L/K is unramified, we have 2 | h(K).
Since also the 2–class group Cl2(Q(i,

√
π)) is cyclic, we have

4 | h(K) ⇔ 2 | h(L).

By the ambiguous class number formula, applied to the extension L/F where F =
Q(
√

i), we have
2 | h(L) ⇔ [O∗

F : NL/F (L∗) ∩ O∗
F ] = 1

since h(F ) is odd. A calculation of this index gives the result.

Theorem 5.18. Let π = a + bi be a prime of Z[i].

i) If 4 | b, then i ∈ NQ(i,
√

π)/Q(i)(O
∗
Q(i,

√
π)

).

ii) If 4 | a and a + b ≡ ±3 (mod 8), then i ∈ NQ(i,
√

π)/Q(i)(O
∗
Q(i,

√
π)

).

iii) If 4||a and a + b ≡ ±1 (mod 8), then i 6∈ NQ(i,
√

π)/Q(i)(O
∗
Q(i,

√
π)

).

Proof. i) By [13], (π) is the only ramified prime ideal of the extension Q(i,
√

π)/Q(i).
Hence the assertion follows from corollary 4.5.

ii) By [13], there are exactly two ramified primes of the extension Q(i,
√

π)/Q(i),
namely (π) and (1 + i). Let p ⊆ OQ(i,

√
π) be the prime ideal above (1 + i). By

proposition 4.4, it is enough to show that p is not principal:
As (1 + i) is inert in Q(i,

√
iπ) (by [13]), p is inert in L := Q(

√
i,
√

π). Since the
extension L/Q(i,

√
π) is unramified, it follows from class field theory that p is not

principal.

iii) As 2||h(Cl(Q(i,
√

π))) (by lemma 5.17) and Q(
√

i,
√

π)/Q(i,
√

π) is unramified,
Q(
√

i,
√

π) must be the 2-class field of Q(i,
√

π). By [13], (1 + i) splits totally in
Q(i,

√
iπ) and (1 + i) is ramified in Q(i,

√
π). Hence the prime p ⊆ OQ(i,

√
π) above

(1 + i) splits totally in Q(
√

i,
√

π); so p must be principal. Since NQ(i)/Q(π) ≡ 1

(mod 8), the prime (π) splits totally in Q(
√

i); hence the prime p1 ⊆ OQ(i,
√

π) above

(π) splits totally in Q(
√

i,
√

π); so p1 is also principal. The theorem now follows from
proposition 4.4.

Remark 5.19. In the remaining case, 8|a and a + b ≡ ±1 (mod 8), there seems
to be no simple answer. For example, for some π of this kind it is true that i ∈
NQ(i,

√
π)/Q(i)(O

∗
Q(i,

√
π)

) and for some π this is false.
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5.2 Quadratic Base Field with One Ramified Prime

Theorem 5.16 has the following analogue for quadratic fields with discriminant D of
the form D = −q where q ≡ 3 (mod 4) is a prime number:

Theorem 5.20. Let q ≡ 3 (mod 4) be a prime number and let a, b ∈ N0 where a is
even. Let p, p1, . . . , pa, p

′
1, . . . , p

′
b be odd prime numbers with

p1 ≡ · · · ≡ pa ≡ p′1 ≡ · · · ≡ p′b ≡ 1 (mod 4). Assume that(
−q

p

)
= −1, pi = µ2

i + qν2
i , p′j = (µ′j)

2 + q(ν ′j)
2 for some µi, νi, µ

′
j, ν

′
j ∈ Z

and

1)
(

p
p1

)
= · · · =

(
p
pa

)
=
(

p
p′1

)
= · · · =

(
p
p′b

)
= −1;

2) for i, j ∈ {1, . . . , a}, i 6= j:
(

pi

pj

)
= −1;

3) for i ∈ {1, . . . , a}, u ∈ {1, . . . , b}:
(

pi

p′u

)
= 1;

4) for u, v ∈ {1, . . . , b}, u 6= v:

i) all the Legendre symbols
(

p′u
p′v

)
have the value 1; or

ii) b is even and all the Legendre symbols
(

p′u
p′v

)
have the value −1.

Put p∗ := (−1)
p−1
2 p.

Then NQ(
√
−q,
√

p∗p1···pap′1···p′b)/Q(
√
−q)

(O∗
Q(
√
−q,
√

p∗p1···pap′1···p′b)
) = O∗

Q(
√
−q) and the 2-class

group Cl2(Q(
√
−q,

√
p∗p1 · · · pap′1 · · · p′b)) is elementary abelian.

Proof. This is analogous to the proof of theorem 5.16; the only thing which is not
obvious is the fact that we can choose factorizations of pi and p′u such that the first
(and hence also the other) factor is congruent to a square modulo 4 in OQ(

√
−q):

Consider a prime number p = w2 + qz2 ≡ 1 (mod 4). If p ≡ 1 (mod 8), then
4 | z and we choose the sign of w so that w ≡ 1 (mod 4); then

w + z
√
−q = 1 + 4(

w − 1

4
+

z

4

√
−q) ≡ 1 (mod 4).

If p ≡ 5 (mod 8), then 2||z and we choose the sign of w so that w ≡ 3 (mod 4); then

w + z
√
−q = 1 + 4

w−1
2

+ z
2

√
−q

2
≡ 1 (mod 4).

This completes the proof.





Appendix A

Class Field Theory

We give here the necessary definitions and results from class field theory. The theo-
rems are stated without proofs. The appendix is based on [9] and the appendix
in [28].

A.1 Congruences and Ideal Groups

Let K be a number field. Let M (0) =
∏

Pei
i be an integral ideal in K (Pi prime

ideal) and let M∞ =
∏

φj be a formal square-free (possibly empty) product of real
infinite primes (i.e. embeddings φj : K → R). The formal product M = M (0)M∞
is called a divisor of K.

Definition A.1. For α, β ∈ K define α ≡ β (mod M ) to mean:
(i) (α− β) = A B−1 for coprime integral ideals A , B with M (0)|A ,
(ii) φj(α/β) > 0 for all φj in M∞.

Note that i) is clearly equivalent to (i’) ∀i : ei ≥ 1 ⇒ vPi
(α− β) ≥ ei where vPi

is the Pi-adic valuation in K.
It is elementary to show that α1 ≡ β1, α2 ≡ β2 (mod M ) ⇒ α1α2 ≡ β1β2

(mod M ) and that for α 6= 0: α ≡ 1 (mod M ) ⇒ 1/α ≡ 1 (mod M ). The last
statement ensures that the relation in the following definition is symmetric.

Definition A.2. For α, β ∈ K\{0} define α ≡ β (mod∗M ) to mean that α/β ≡ 1
(mod M ).

A fractional ideal A B−1 in K (A , B coprime integral ideals) is said to be rela-
tively prime to M if A and B are relatively prime to M (0). So, for α, β ∈ K\{0}
with (α), (β) relatively prime to M we clearly have: α ≡ β (mod M ) ⇔ α ≡
β (mod∗M ).
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Definition A.3. AM = AM (K) = {F |F frac. ideal in K rel. prime to M } ,
SM = SM (K) = {(α)|α ∈ K, α ≡ 1 (mod M )}.

AM is an abelian group, and SM is (by the above) a subgroup of AM . One can
show that the factor group AM /SM is finite.

A group H with AM ⊇ H ⊇ SM is called an ideal group (modulo M ), and M is
called a congruence module for H. The factor group AM /H is called a (generalized)
class group. A(1)/S(1) is, of course, the usual class group for K. If ∞ denotes the
product of the real embeddings of K, then A(1)/S∞ is called the strict class group for
K. It can easily be shown that every coset in AM /H is represented by an integral
ideal (in AM ).

Proposition A.4. Every coset of AM /H contains an integral ideal in AM ∩ AT =
AMT for any given integral ideal T . Therefore, with the obvious map,

AMT /(AMT ∩H) ' AM /H.

A.2 The Main Theorems

Let L be a number field containing K and let NL/K : A(1)(L) → A(1)(K) denote the
relative norm map.

Definition A.5. An infinite prime P (i.e. an embedding K → C ) is unramified in
L if either 1) P is not real, or 2) P is real and P cannot be prolonged to a non-real
embedding L → C .

Theorem A.6. Let L/K be a finite abelian extension. Then there exists a divisor f

of K such that the following hold:
(i) a prime P (finite or infinite) in K ramifies in L ⇔ P|f.

(ii) If M is a divisor of K with f|M , then the subgroup H = NL/K(AM (L))SM (K)
of AM (K) is such that AM (K) ⊇ H ⊇ SM (K) and

AM (K)/H ' Gal(L/K).

Definition A.7. The minimal divisor f making (i) and (ii) in theorem A.6 true is
called the conductor of L/K and is denoted by fL/K .

Remark A.8. One can show (with the notation as in theorem A.6 where, in par-
ticular, H depends on M ) that
a) if L1/K, L2/K are abelian with L1 ⊆ L2, then fL1/K |fL2/K ;
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b) if exactly one finite prime p in K ramifies in L and if M is chosen as some power
of p times ∞ (the product of the real embeddings of K), then

H ⊇ Spm∞ ⇒ f
(0)
L/K |p

m

where f
(0)
L/K is the finite part of fL/K ;

c) H ⊇ AM (K) ∩ SfL/K
(K);

d) if some finite prime of K ramifies in L, then H 6⊇ AM (K) ∩ S(1)(K). (we note
that d) follows from Satz (61) p. 80 in [9].)

Theorem A.9. Let M be a divisor of K and let H be a subgroup of AM with
AM ⊇ H ⊇ SM . Then there exists a unique abelian extension L/K with fL/K |M ,
such that H = NL/K(AM (L))SM (K) and

AM (K)/H ' Gal(L/K).

Remark A.10. Let L/K be abelian. Let M be a divisor of K with fL/K |M . Let p

be a prime ideal in K prime to M . Then there is a unique σ ∈ Gal(L/K) with

∀ α ∈ OL : σ(α) ≡ αN(p) (mod pOL).

This σ is called the Artin symbol corresponding to p and is denoted by
(

L/K
p

)
. By

extending this symbol multiplicatively to all of AM (K), we get a homomorphism:
AM (K) → Gal(L/K) called the Artin map. The isomorphisms mentioned in theo-
rems A.6 and A.9 are induced by the Artin map.

Theorem A.11. Let L1/K and L2/K be abelian extensions, let M be a multiple of
fL1/K and fL2/K, and let (cf. theorem A.6) H1, H2 ⊆ AM (K) be the corresponding
ideal groups. Then

H1 ⊆ H2 ⇔ L1 ⊇ L2.

Theorem A.12. Let p - M be a prime ideal in K, unramified in the abelian extension
L/K and below the prime ideal P in L; let (cf. theorem A.6) H be the ideal group
in AM (K) corresponding to L (where fL/K |M ). Then the order of the Artin symbol,
the inertial degree, and the order of pH (in AM /H) are equal:

ord

((
L/K

p

))
= fP|p = ord(pH).

In particular,
p splits totally in L ⇔ p ∈ H.

Theorem A.13. Let H be an ideal group (modulo M ). Then every coset of AM /H
contains infinitely many prime ideals.
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Definition A.14. For an ideal group H in K define the conductor of H: fH = fL/K

where L is the unique abelian extension in theorem A.9.

Let L/K be a finite abelian extension and let H be the corresponding ideal group
(modulo M ) in K. Let χ1, . . . , χn be the group characters of AM /H (of course, n is
the order of AM /H). For each i, write kerχi = Hχi

/H where Hχi
is an ideal group

(modulo M ) and let fi = fHχi
.

Theorem A.15 (Conductor-Discriminant Formula). The relative discriminant
of the finite abelian extension L/K is given by

DL/K =
n∏

1=1

f
(0)
i .
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