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Preface

Introduction

Let n ∈ N and k ∈ {1, . . . , n− 1} be given. Let G(k, n) be the space of

all k-planes in Rn. To a function f on Rn we associate the function f̂ on
G(k, n) defined by

f̂(ξ) =

∫

ξ

f(x) dx, ξ ∈ G(k, n).

The map f 7→ f̂ is called the k-dimensional Radon transform in R
n, or

the k-plane transform for short. In connection with the Radon transform
we consider the dual transform ϕ 7→ ϕ̌ which takes functions on G(k, n)
to functions on Rn by

ϕ̌(x) =

∫

{ξ3x}

ϕ(ξ) dξ, x ∈ R
n,

i.e. the dual transform of a function at a point x is the average of that
function over all k-planes passing through x.

It is possible to generalize the Radon transform to e.g. real hyperbolic
space, Hn. When

In,1 =

(

In 0
0 −1

)

,

In being the identity matrix, this space can be realized as the set

M = {x ∈ R
n+1|xtIn,1x = −1 ∧ xn+1 > 0}

equipped with the Riemannian structure

gm(X, Y ) = X tIn,1Y, m ∈M.

Since k-planes are exactly the k-dimensional totally geodesic submanifolds
of R

n, the natural substitute for k-planes when passing to hyperbolic space
is the set of totally geodesic submanifolds thereof, Ξk. From the Riemann-
ian measure on Hn a measure is induced on any submanifold, and applying
this the k-dimensional totally geodesic Radon transform of a function f
on H

n is defined by

f̂(ξ) =

∫

ξ

f(x) dx, ξ ∈ Ξk.

Again a dual transform is considered along side with the Radon transform:

ϕ̌(m) =

∫

{ξ3m}

ϕ(ξ) dξ, x ∈ H
n.

The areas in which the Radon transform plays a role are both multiple
and varied. It is encountered both in pure and applied mathematics -
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in the latter especially in connection with inversion problems as seen in
e.g. CAT-scanners: is it possible to recover a function from it’s Radon
transform? This is an interesting problem in pure mathematics as well,
and a number of inversion formulas are know. In the Euclidean case on
such is the following:

(1) f = (4π)−
k

2

Γ(n−2
2

)

Γ(n
2
)
I−k(f̂ )̌ .

Here I−k is a Riesz potential. These potentials arises when generalizing
the notion of powers of the Laplacian from only positive integer powers to
general complex powers. From the hyperbolic case we draw attention to
the following inversion formula:

(2) f = c

{

Pk(∆)(f̂ )̌ , k even

((2 − n) − ∆)K1
−Pk(∆)(f̂ )̌ , k odd

,

where

Pk(∆) =

[ k

2
]−1

∏

i=0

((k − 2i− n)(k − 2i− 1) − ∆),

[k
2
] denoting the integer part of k

2
, and c = (4π)−

k

2
Γ( n−k

2
)

Γ( n

2
)

, and K1
− is a

certain convolution operator.

The Thesis

This thesis consists of two papers written between summer 2002 and the
end of 2003. The first is to appear in Math. Scand. and deals with the
inversion formula (1) for the Radon transform in the Euclidean case. The
second, which has not yet been submitted, deals with the inversion formula
(2) for the Radon transform in the hyperbolic case. Both papers prove the
relevant inversion formula to hold not just for smooth functions of compact
support, as is usually seen, but for functions of a certain regularity and
meeting certain decay conditions.

When proving the inversion formula in the Euclidean case, Riesz po-
tentials have a prominent place, so the main part of the first paper deals
with the definition and manipulation of Riesz potentials.

The hyperbolic inversion formula is a close imitation of the Euclidean
in the following sense: When deducing the Euclidean inversion formula a
fundamental step is to realize that

(f̂ )̌ (x) =
Ωk−1

Ωn−1

∫

Rn

f(y)|x− y|k−n dy = Ikf(x), x ∈ R
n.

From this equality the inversion formula emerges by inverting Ik. Here
the Riesz potentials play together in such a nice way that I−k does the
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trick. The equivalent equality in the hyperbolic case is

(f̂ )̌ (x) =
Ωk−1

Ωn−1

∫

M

f(y) sinhk−n(d(y,m)) dy = Kαf(m), m ∈M,

where in place of the Euclidean Riesz potential one defines a convolution
operator Kα. This operator is not a generalized Riesz potential in the
sense that it does not, as the Riesz potentials, generalize the notion of
powers of the Laplacian. The inversion of Kα is somewhat less satisfying
than the inversion of Riesz potential, but it is non the less doable by means
of another closely related convolution operator, K−

1. The first half of
the second paper is dedicated to defining hyperbolic spaces, investigating
the totally geodesic submanifolds thereof, and introducing the relevant
integrals. The second half deals with the definition and behavior of the
convolution operators Kα and Kα

−.

Acknowledgements

It is of importance to me to take this opportunity to thank the following
persons:

Thanks to Sigurdur Helgason for inviting me to be a visiting student
at Massachusetts Institute of Technology for the entire year of 2000. I
enjoyed my stay tremendously and benefitted greatly from the interaction
with both him and in general the people I met there.

And thanks to my advisor Henrik Schlichtkrull who has been an ex-
traordinary support throughout my time as first a ’speciale’ student and
later as a Ph.D. student here at the University of Copenhagen. He has
always had time for my questions, and his guidance and advise has been
invaluable to me.





PART I

The Euclidean Case





Sufficient Conditions for the

Inversion Formula for the

k-plane Radon Transform in Rn.

Sine R. Jensen

Abstract: The inversion theorem (1) for the k-plane

Radon transform in Rn is often stated for Schwartz func-

tions, cf. [5, p.110], and lately for smooth functions on

Rn fulfilling that f(x) = O(|x|−N ) for some N > n, cf.

[6, Thm. I.6.2]. In this paper it will be shown, that it

suffices to require that f is locally Hölder continuous and

f(x) = O(|x|−N ) for some N > k (N not necessarily an

integer) in order for (1) to hold, and that the same decay

on f but f only continuous implies an inversion formula

only slightly weaker than (1).

Introduction

An important area in the theory of the k-plane Radon transform on Rn

is the inversion theorems, which gives explicit formulas by which one can
recover a function from its k-plane transform. Here we shall consider the
formula

(1) f = (4π)−
k

2

Γ
(

n−k
2

)

Γ
(

n
2

) I−k(f̂ )̌ ,

where “ ˆ ” denotes the k-plane transform and “ ˇ ” the dual trans-
form, while I−k is a Riesz potential, cf. Section 4. It will be shown in this
paper, that the formula holds for all functions in the space C(k, n) (see
Definition 1.3.), and that the formula with Ik replaced by limα→−k+

Iα

holds if f ∈ Ca(R
n) for some a > k.

Notice, that the decay requirement of C(k, n) (f(x) = O(|x|−N) for
some N > k) on its member functions is, in some sense, the weakest
possible in order for an inversion formula to hold: A sufficient condition
for the integral in the k-plane transform of a continuous function f to
be convergent is, that for every k-plane there exists an ε > 0 such that
f(x) = O(|x|−k−ε) on this k-plane. However this non-uniform decrease of f
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is not enough to make the inversion formula valid. In [14], Zalcman shows
the existence of a smooth function f 6= 0 on R2 satisfying f(x) = O(|x|−2)

on every line, which nonetheless has f̂ = 0. For further examples see e.g.
[1] and [2].

The proof in this paper of the inversion formula is rooted in the basic
definition of the Riesz potential, Iα (α ∈ C), which is

(Iαf)(x) =
1

Hn(α)

∫

Rn

f(y)|x− y|α−n dy.

HereHn is a certain meromorphic function. If f is continuous and O(|x|−a)
for some a > 0, the integral converges if 0 < Reα < a. For values of α
with Reα ≤ 0, the Riesz potential can, depending on the regularity of f ,
be defined by analytic continuation (see e.g. [9, sec. 10.2, 10.7] for various
ways of performing this extension). The key to the proof of the inversion
formula is the identity I−k(Ikf) = f , which will be established exactly for
f in C(k, n).

Inversion formulas for the Radon transform of Lp-functions also ex-
ists, but then the interpretation of the Riesz potentials is quite different.
Examples can be found e.g. in [11] where Rubin verifies two inversion
formulas for the case k = n− 1. One of them is of the same nature as (1),
and the other is of the type, where a suitably interpreted Riesz potential
in applied before the dual transform instead of after. The last mentioned
variant of inversion formula is in [10] proved for Lp-functions in the case of
a general k under the assumption that 1 ≤ p < n

k
. It is interesting to note,

that given f ∈ C(Rn) such that it is O(|x|−N), then f ∈ Lp(Rn) when
−Np < −n, i.e. p > n

N
. Thus Rubin’s inversion formula can be used on

this f when there exists a p ≥ 1 with n
N
< p < n

k
, e.i. when k < N which

is precisely the decay condition in the inversion theorem of this paper.
The paper follows the lines of Helgason’s exposition [6, Chap.V §5]:

After the preliminaries, we study in Section 2 the analytic continuation
of the map α 7→ xα

+(f) = 1
Γ(α+1)

∫ ∞

0
f(x)xα dx. In Section 3 we use this

to study the maps α 7→ rα(f) = 1
Γ(α+1)

∫

Rn f(x)|x|α dx, and in Section 4

we introduce Riesz potentials and establish the identity I−k(Ikf) = f .
Finally, in Section 5, we prove the two versions of the inversion formula.

The inversion formula in (1), expressed as it is in terms of Riesz poten-
tials, holds for k both odd and even. If k is even it is well-known, that a
similar inversion formula can be established using the Laplacian instead of
Riesz potentials (see e.g. [6, p. 29]. Section 6 contains a brief discussion
of the possible impact of the main result of the paper on the domain of
this formula.
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1. Preliminaries

For each a > 0 and n ∈ N we make the following definitions:

1.1. Definition. Define the function space Ca(R
n) by

Ca(R
n) = {f ∈ C(Rn) | f(x) = O(|x|−a)}.

1.2. Definition. For each l ∈ N0 = N ∪ {0}, 0 < ε < 1 and x ∈ Rn define
the space C l+〈ε〉,x(Rn) as the set of functions f on R

n such that f is C l

in some neighborhood O of x with each l’th order derivative of f Hölder
continuous of index ε in that neighborhood, i.e.

(2) ∃M > 0∀x1, x2 ∈ O∀l ∈ N
n
0 , |l| = l :

|(∂lf)(x1) − (∂lf)(x2)| ≤M |x1 − x2|ε.
Put

• C l+〈ε〉(Rn) =
⋂

x∈Rn C l+〈ε〉,x(Rn) ⊂ C l(Rn),

• C l+(Rn) =
⋂

x∈Rn

⋃

ε>0C
l+〈ε〉,x ⊂ C l(Rn)

and

• C
l+〈ε〉,x
a (Rn) = C l+〈ε〉,x(Rn) ∩ Ca(R

n),

• C
l+〈ε〉
a (Rn) = C l+〈ε〉(Rn) ∩ Ca(R

n)
• C l+

a (Rn) = C l+(Rn) ∩ Ca(R
n)

• C l
a(R

n) = C l(Rn) ∩ Ca(R
n)

1.3. Definition. Finally define for each k ∈ {1, . . . , n − 1} the space
C(k, n) as the set of functions f , such that f ∈ C0+

k+δ(R
n) for some δ > 0.

I.e. f ∈ C(k, n) exactly when f is O(|x|−k−δ) for some δ > 0, and there
for each x ∈ Rn exists a neighborhood O and an ε, 0 < ε < 1, such that
|f(x1) − f(x2)|/|x1 − x2|ε is bounded for x1, x2 ∈ O.

From now on, when the symbols a, n, l and ε are used, the assumption
will be a > 0, n ∈ N, l ∈ N0 and 0 < ε < 1, unless otherwise mentioned.

2. The Map α 7→ xα
+(f)

2.1. Definition. For each α ∈ C with −1 < Reα < a− 1 define the map
xα

+ : Ca(R) → C by

(3) xα
+(f) =

1

Γ(α + 1)

∫ ∞

0

f(x)xαdx.

2.2. Remark. The map xα
+ is well-defined since −1 < Reα and f ∈ C(R)

makes the integrand integrable at 0, while Reα < a − 1 and f(x) =
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O(|x|−a) makes it integrable at ∞. Note, that the Γ-function is a non-
vanishing meromorphic function with poles in −N0 and

(4) lim
α→k

(α− k)Γ(α) =
(−1)−k

(−k)! , k ∈ −N0.

2.3. Proposition. Let f ∈ C
l+〈ε〉,0
a (R). Then the map α 7→ xα

+(f), defined
on

{α ∈ C | −1 < Reα < a− 1},
can be (uniquely) extended to a holomorphic map on

{α ∈ C | −l − ε− 1 < Reα < a− 1}.
This map will likewise be denoted α 7→ xα

+(f). We have

(5) xα
+(f) = (−1)(−α−1)f (−α−1)(0), when α ∈ {−l − 1, . . . ,−1}.

Proof. The integral in (3) is not necessarily convergent in 0, when α ≤ −1.
But if we put

A(x) = f(x) −
l

∑

k=0

f (k)(0)

k!
xk and B(α) =

l
∑

k=0

f (k)(0)ρα+k+1

k!(α + k + 1)
.

then, by calculating the integrals, one realizes that

(6) xα
+(f) =

1

Γ(α + 1)
(

∫ ρ

0

xαA(x) dx+

∫ ∞

ρ

xαf(x) dx+B(α)),

is an extension, cf. [4, p.57]. Here 0 < ρ < 1 fulfills B(0, ρ) ⊂ O, where O
is a neighborhood of 0 in which f (l) is Hölder continuous. This extension
is well-defined on

S = {α ∈ C \ −N | −l − ε− 1 < Reα < a− 1}.
To show this, only the first term needs thought. Since f ∈ C l(O), there
exists, according to Taylors theorem, for any x ∈ B(0, ρ) a y between 0
and x, such that

(7) f(x) =

l
∑

k=0

f (k)(0)

k!
xk +

f (l)(y) − f (l)(0)

l!
xl.

Because f (l) is Hölder continuous of index ε in O we therefore have
∫ ρ

0

|xαA(x)| dx ≤ const

∫ ρ

0

xRe α+l+ε dx <∞(8)

since Reα + l + ε > −l − ε− 1 + l + ε = −1.
Let α0 ∈ S be given. To show that α 7→ xα

+(f) is holomorphic in α0,
choose δ > 0 such that

B(α0, δ) ⊂ {α ∈ C \ −N | −l − ε− 1 + δ < Reα < a− 1 − δ}.
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Clearly α 7→ B(α) is holomorphic in α0. Thus we only need to show, that
the two integrals in (6) are holomorphic in α0. This will follow from the
theorems of Cauchy and Morera, if it can be shown, that for any closed
curve γ in B(α0, δ) the two integrals in each of the following expressions
can be interchanged:

∫

γ

∫ ρ

0

xαA(x) and

∫

γ

∫ ∞

ρ

xαf(x).

But for x ∈]0, ρ[

sup
α∈B(α0 ,δ)

|xαA(x)| ≤ |A(x)|x−l−ε−1+δ,

and this function is, as in (8), integrable over ]0, ρ[. For x ∈]ρ,∞[ we have
the existence of a constant c independent of x, such that

sup
α∈B(α0 ,δ)

|xαf(x)| ≤ c xa−1−δ−a = c x−1−δ.

Now, let m ∈ {−l − 1, . . . ,−1} be given. Choose δ ′ > 0 such that

B(m, δ′) \ {m} ⊂ {α ∈ C \ −N | −l − ε− 1 + δ′ < Reα < a− 1 − δ′}.

As before we have for α ∈ B(m, δ′), that

(9) |
∫ ρ

0

xαA(x) dx| ≤ C <∞ and |
∫ ∞

ρ

xαf(x) dx| ≤ K <∞,

where the constants C and K are independent of α. Thus for α → m we
have

(α−m)

∫ ρ

0

xαA(x) dx→ 0 and (α−m)

∫ ∞

ρ

xαf(x) dx→ 0.

Now (5) follows from (6) and (4). �

2.4. Remark. With the Hölder continuity condition on the derivatives of
f replaced by ordinary continuity, the inequality in (8) changes to

∫ ρ

0

|xαA(x)| dx ≤ const

∫ ρ

0

xRe α+l dx.

Thus when f ∈ C l
a(R), the extension of α → xα

+(f) still exists but only
on

{α ∈ C| − l − 1 < Reα < a− 1}.
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3. The Map α 7→ rα(f)

3.1. Definition. For each α ∈ C with −n < Reα < a− n define the map
rα : Ca(R

n) → C by

(10) rα(f) =
1

Γ(α+ n)

∫

Rn

|x|αf(x) dx.

3.2. Remark. As in Remark 2.2 it is seen, that rα is well-defined.

We will express rα by xα
+. To this end we introduce the mean value

function:

3.3. Definition. For any f ∈ C(Rn) let Mf : R → C denote the mean
value function of f around 0 defined by

(11) Mf (t) =
1

Ωn−1

∫

Sn−1

f(tω) dω.

3.4. Remark. Notice, that t 7→Mf (t) is even, and that Mf (0) = f(0).

3.5. Lemma. When f is in C
l+〈ε〉,0
a (Rn) then Mf is in C

l+〈ε〉,0
a (R).

Proof. Standard arguments. �

3.6. Remark. Transition to polar coordinates in the defining expression
(10) for rα now gives rα(f) in terms of xα

+:

(12) rα(f) = Ωn−1x
α+n−1
+ (Mf ),

when −1 < Reα + n− 1 < a− 1, i.e. −n < Reα < a− n.

3.7. Proposition. Let f ∈ C
l+〈ε〉,0
a (Rn). Then the map α 7→ rα(f), defined

on

{α ∈ C | −n < Reα < a− n},
can be (uniquely) extended to a holomorphic map on

A = {α ∈ C | −l − ε− n < Reα < a− n}.

This map will likewise be denoted α → rα(f), and it satisfies (12). In
specific
(13)

rα(f) = Ωn−1(−1)−α−nM
(−α−n)
f (0), when α ∈ {−l − n, . . . ,−n}.

Proof. Use (12) as definition and apply Proposition 2.3 using Lemma 3.5.
�
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4. Riesz Potentials

4.1. Definition. The meromorphic function Hn on C is defined by

Hn(α) = 2απ
n

2

Γ(α
2
)

Γ(n−α
2

)
.

4.2. Remark. Note that Hn has simple poles at each α ∈ −2N0 and a zero
in each α ∈ n+ 2N0.

4.3. Definition. We put Cn = C \ (n+ 2N0).

4.4. Definition. For each x ∈ Rn, f ∈ Ca(R
n), and α ∈ Cn with 0 <

Reα < a the αth Riesz potential, Iα, of f at x is defined as

(Iαf)(x) =
1

Hn(α)

∫

Rn

f(y)|x− y|α−n dy

=
1

Hn(α)

∫

Rn

f(x− y)|y|α−n dy.(14)

4.5. Remark. As in Remark 2.2 it is seen, that Iαf(x) is well-defined.
Comparing with the defining expression (10) for rα we see, that

(15) (Iαf)(x) =
Γ(α)

Hn(α)
rα−n(τxf)

where τxf(y) = f(x− y).

4.6. Proposition. Let x ∈ Rn be given. Assume that f ∈ C
l+〈ε〉,x
a (Rn).

Then the map α 7→ (Iαf)(x), defined on the set

{α ∈ Cn | 0 < Reα < a},
can be (uniquely) extended to a meromorphic map on

B = {α ∈ C | −l − ε < Reα < a}.
This map will likewise be denoted α→ (Iαf)(x). It satisfies (15) for
α ∈ B \ ((−N0) ∪ (n+ 2N0)). The poles, which are all simple, are in

(n + 2N0) ∪ B.
Proof. Use (15) as definition and apply Proposition 3.7 to obtain a (unique)
meromorphic extension to {α ∈ C | −l − ε < Reα < a}. The possible

poles are those of Γ(α)
Hn(α)

= 1
2
π−n+1

2 Γ(n−α
2

)Γ(α+1
2

). They are α ∈ 2N0 + n

and α ∈ −2N0 − 1, all simple. When α ∈ (−2N0 − 1) ∩ B it follows from
(13), that

rα−n(f) = Ωn−1(−1)−αM
(−α)
f (0) = 0,

since Mf in an even function. Thus α is a removable singularity. �
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4.7. Lemma. Let f ∈ C0+
a . Then x 7→ (I0f)(x) is defined on all of Rn

and

I0f = f.

Proof. It follows from Proposition 4.6, that x 7→ (I0f)(x) is defined on all
of Rn. Since

lim
α→0

αHn(α) =
2π

n

2

Γ(n
2
)

= Ωn−1,

it follows from Proposition 4.6, (13), (4) and Remark 3.4, that

(16) (I0f)(x) = lim
α→0

αΓ(α)

αHn(α)
rα−n(τxf) = Mτxf (0) = f(x).

�

4.8. Lemma. Let f ∈ Ca(R
n). Let α ∈ C with 0 < Reα < min(a, n) be

given. Then

Iαf ∈ Cb−Re α(Rn),

for any b with Reα < b ≤ min(a, n) if a 6= n, and for any b with Reα <
b < n if a = n.

Proof. See [6, Prop. V.5.8.] with natural modifications to the proof in
case a = n. �

4.9. Proposition. Let f ∈ Ca(R
n). For any pair α, β ∈ C satisfying

Reα > 0 and Re β > 0 and Re (α + β) < min(a, n)

we have

(17) IαIβf = Iα+βf.

4.10. Remark. Refer to e.g. [7, p. 43ff] or [8, Satz 9] in order to see how,
when dealing with Riesz potentials as distributions, (17) can be expressed
as a convolution of distributions. The distribution approach can prove
Proposition 4.9 for a smaller class of functions.

Proof. That 0 < Re β < min(a, n) implies two things. First we get from
Remark 4.5, that Iβf is well-defined and given by

(Iβf)(z) =
1

Hn(β)

∫

Rn

f(y)|z − y|β−n dy.

Secondly, we get the usage of Lemma 4.8 from which follows, that

Iβf ∈ Cb−Re β(Rn),
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where b is chosen such that Re (α + β) < b < min(a, n). Thus, because
0 < Reα < b− Re β, Iα(Iβf) is well-defined and given by

Iα(Iβf)(x)

=
1

Hn(α)

∫

Rn

(Iβf)(z)|x− z|α−n dz

=
1

Hn(α)

1

Hn(β)

∫

Rn

∫

Rn

f(y)|z − y|β−n dy|x− z|α−n dz.(18)

To show, that the order of integration can be interchanged, consider the
expression

(19)

∫

Rn

|f(y)|
∫

Rn

|z − y|Reβ−n|x− z|Re α−n dz dy.

By substituting v = x−z
|x−y| in the inner integral and using the rotation

invariance of the Lebesgue measure, this expression is rewritten as
∫

Rn

|f(y)||x− y|Reα+Re β−n dy

∫

Rn

|e− v|Reβ−n|v|Reα−n dv,

where e is an arbitrary fixed unit vector. Now 0 < Re (α + β) < a makes
the y-integral convergent. That the v-integral is convergent can be seen
easily. Finally, it can be shown, e.g. using Fourier transform as in [13, p.
117-118], that

∫

Rn

|e− v|β−n|v|α−n dv =
Hn(α)Hn(β)

Hn(α + β)
.

�

4.11. Remark. Let x0 ∈ Rn be given. In what follows, we will often
decompose a given function f on Rn as f = f1 + f2, where f1 = (1 − χ)f
and f2 = χf for some compactly supported C∞-function χ with χ(x) = 1
in some neighborhood of x0. Note that f1 and f2 have the same regularity
as f , but f1 is 0 in the neighborhood of x0 and f2 has compact support.

4.12. Lemma. Let f ∈ C l
a(R

n). Let α ∈ Cn with 0 < Reα < a and
x0 ∈ Rn be given. Write f = f1 + f2 as in Remark 4.11. Then Iαf1

is smooth at x0, and Iαf2 ∈ C l(Rn) with ∂p(Iαf2) = Iα(∂pf2) for any
p ∈ Nn

0 with |p| ≤ l.

Proof. Assume p ∈ Nn
0 to be given. Choose δ > 0 such that f1 = 1 in

B(x0, 2δ) ⊂ U . Then for any x ∈ B(x0, δ)

|f1(y)∂
p
x |x− y|α−n| ≤ c|f1(y)||x− y|Reα−n−|p|

≤ c′1Rn\B(x0,2δ)(y)(|y|+ 1)−a|y − x0|Reα−n−|p|,
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since 1
2
|x0 − y| ≤ |x − y| ≤ 2|x0 − y| for y /∈ B(x0, 2δ). Here c′ does not

depend on x. Since −a+ Reα− n− |p| < −a+ a− n = −n, this gives us
an integrable majorant of ∂p

x (f1(y)|x− y|α−n) and it is independent of x.
To deal with Iαf2 assume |p| ≤ l and let N be any bounded subset of

Rn. Let x ∈ N . Then

|∂p
x (f2(x− y)|y|α−n)|

= |(∂pf2)(x− y)||y|Reα−n|
≤ sup |∂pf2| 1N+(−K)(y)|y|Reα−n, ∀y ∈ R

n.(20)

Since Reα > 0 this is an integrable majorant of ∂p
x (f2(x− y)|y|α−n) and

it is independent of x. Thus ∂p(Iαf2) exists in N , N arbitrary, and thus
in all of R

n, and we see from (20) that ∂p(Iαf2) = Iα(∂pf2). �

4.13. Lemma. Let f ∈ C l
a(R

n). Let α ∈ Cn with 0 < Reα < a be given.
Then

(21) Iαf ∈ C l(Rn)

and for any x ∈ Rn and 0 < ε < 1

(22) f ∈ C l+〈ε〉,x(Rn) ⇒ Iαf ∈ C l+〈ε〉,x(Rn).

Proof. Let x0 ∈ Rn be given. Write f = f1 + f2 as in Remark 4.11. From
the preceeding lemma Iαf1 is smooth at x0 and Iαf2 ∈ C l(Rn). Thus (21)
holds.

Assume now, that f ∈ C l+〈ε〉,x0(Rn). Let l ∈ N
n
0 with |l| = l be given. To

show the Hölder continuity of ∂l(Iαf2) (= Iα(∂lf2) according to Lemma
4.12), let K be a compact neighborhood of x0 in which ∂lf is Hölder
continuous of index ε and assume χ in the decomposition f = f1 + f2 =
(1 − χ)f + χf to have K as its support. Then ∂lf2 is Hölder continuous
of index ε in all of Rn, so for any bounded neighborhood N of x0 and any
x1, x2 ∈ N

|∂l(Iαf2)(x1) − ∂l(Iαf2)(x2)|

≤ 1

Hn(α)

∫

N+(−K)

|∂lf2(x1 − y) − ∂lf2(x2 − y)||y|Reα−n dy

≤ M ′|x1 − x2|ε

for some M ′ > 0. �

4.14. Lemma. Let f ∈ Ca(R
n). Let α ∈ Cn with Reα = 1 be given. If

a > 1 then

f ∈ C l+〈ε〉,x(Rn) ⇒ ∀ε′, 0 < ε′ < ε : Iαf ∈ C(l+1)+〈ε′〉,x(Rn)

for any x ∈ Rn and 0 < ε < 1.
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Proof. Let x0 ∈ Rn be given. Write f = f1 + f2 as in Remark 4.11. Then
from Lemma 4.12 Iαf1 is smooth at x0, so only Iαf2 needs thought.

Pick p ∈ N
n
0 with |p| = l + 1. Write p = l + ei for some l ∈ N

n
0

with |l| = l, and some ei = (0, . . . , 0, 1, 0, . . . , 0). Let K be a compact
neighborhood of x0 in which ∂lf is Hölder continuous and assume χ in
the decomposition f = f1 + f2 = (1 − χ)f + χf to have K as its support.
Put g = ∂lf2. Then g is Hölder continuous of index ε in all of Rn and has
support in K. What needs to be shown is, that ∂p(Iαf2) = ∂i∂

l(Iαf2) =
∂i(I

αg) (Lemma 4.12) exists and is Hölder continuous in a neighborhood
of x0.

Let B be a symmetric, bounded neighborhood of 0 such that K ⊂
B + x = Bx for all x in some bounded, open neighborhood O of x0. Let
β ∈ C with 1 < Re β < 2 be given. Then for any x ∈ O

∂iI
βg(x) = cn(β)

∫

Bx

g(y)(xi − yi)|x− y|β−n−2 dy

= cn(β)

∫

B

g(x− y)yi|y|β−n−2 dy(23)

where cn(β) = β−n
Hn(β)

and where the integral exists since Reβ > 1 and B

is bounded. Furthermore, using the Hölder continuity of g
∫

B

|(g(x− y) − g(x))yi|y|α−n−2| dy ≤M

∫

B

|y|−n+ε dy <∞,

i.e. the integral
∫

B
(g(x − y) − g(x))yi|y|α−n−2 dy exists. Using the sym-

metry of B we get

| 1

cn(β)
∂iI

βg(x) −
∫

B

(g(x− y) − g(x))yi|y|α−n−2 dy|

≤
∫

B

|(g(x− y) − g(x))yi(|y|β−n−2 − |y|α−n−2)| dy

+|g(x)
∫

B

yi|y|β−n−2 dy|

≤ c′
∫

B

||y|β−n−1+ε − |y|α−n−1+ε| dy(24)

for some c′ > 0. Now notice that when n = 1, then cn has a removable
singularity at β = 1, so that for any value of n ∈ N, cn is bounded
and bounded away from 0 in a small enough neighborhood of α, i.e.
limβ→α

1
cn(β)

exists and is not 0. Thus (24) shows that in the limit where

Re β > 1

lim
β→α

∂iI
βg(x) = cn(α)

∫

B

(g(x− y) − g(x))yi|y|α−n−2 dy
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uniformly on O. So ∂iI
αg does exist and

∂iI
αg = cn(α)

∫

B

(g(x− y) − g(x))yi|y|α−n−2 dy

in all of O. Given 0 < ε′ < ε put s = ε′

ε
and t = 1 − s. We then have for

any x1, x2 ∈ O, that

|∂iI
αg(x1) − ∂iI

αg(x2)|

= cn(α)|
∫

B

(g(x1 − y) − g(x1) − (g(x2 − y) − g(x2)))yi|y|α−n−2 dy

≤ cn(α)

∫

B

|(g(x1 − y) − g(x1)) − (g(x2 − y) − g(x2))|t

|(g(x1 − y) − g(x2 − y)) − (g(x1) − g(x2))|s|y|−n dy

≤ cn(α)

∫

B

(2M |y|ε)t(2M |x1 − x2|ε)s|y|−n dy

= cn(α)|x1 − x2|εs2M
∫

B

|y|εt−n dy = M ′|x1 − x2|ε
′

for some constant M ′ > 0. �

4.15. Corollary. Let f ∈ Ca(R
n). Let α ∈ C with 0 < Reα < min(a, n)

be given. Then

f ∈ C l+〈ε〉,x(Rn) ⇒ ∀ε′, 0 < ε′ < ε : Iαf ∈ C(l+[Re α])+〈ε′〉,x(Rn)

for any x ∈ Rn and 0 < ε < 1. Here [Reα] denotes the integer part of
Reα.

Proof. Write α = β + [Reα]. Then 0 ≤ Re β < 1. From Proposition 4.9
combined with Lemma 4.8

Iαf = Iβ(I1(I1(. . . (I1f) . . .))),

I1 applied [Reα] times. The claim now follows from Lemma 4.14 and
Lemma 4.13. �

4.16. Proposition. Let k ∈ {1, . . . , n− 1} and f ∈ C(k, n). Then

I−k(Ikf) = f.

Proof. Let x ∈ Rn be given and choose δ, 0 < δ < 1, such that f ∈
Ck+δ(R

n). From Proposition 4.6 it follows, that there exists an δ ′, 0 < δ′ < 1,
such that the map

α 7→ (Iα+kf)(x)

is holomorphic in {α ∈ C | −k − δ′ < Reα < δ}. Since Lemma 4.8 and
Corollary 4.15 with a = b = k + δ ensures, that

Ikf ∈ Ck+
δ (Rn),
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we likewise get from Proposition 4.6, that there exists a δ ′′, 0 < δ′′ < 1,
such that the map

α 7→ (Iα(Ikf))(x)

is well-defined and holomorphic in {α ∈ C | −k − δ′′ < Reα < δ}.
Proposition 4.9 gives us, that

IαIkf(x) = Iα+kf(x),

when α ∈ {α ∈ C | 0 < Reα < δ}. By analytic continuation this identity
then holds on all of {α ∈ C | −k−min(δ′, δ′′) < Reα < δ}. In particular,
using Lemma 4.7 with a = k + δ

I−kIkf(x) = I0f(x) = f(x).

�

5. The Inversion Formula for the Radon Transform

Let k ∈ {1, . . . , n − 1} be given. Let f ∈ Ca(R
n) for some a > k. For

the k-plane transform one arrives, by calculating, at

(25) (f̂ )̌ (x) = (4π)
k

2

Γ
(

n
2

)

Γ
(

n−k
2

)(Ikf)(x),

cf. [3] or [6, p.29]. This will be used in what follows.

5.1. Theorem. Let k ∈ {1, . . . , n− 1}. Assume, that f ∈ C(k, n). Then
f can be recovered from its k-plane transform by

f = (4π)−
k

2

Γ
(

n−k
2

)

Γ
(

n
2

) I−k(f̂ )̌ .

Proof. The claim follows from (25) by means of Proposition 4.16. �

5.2. Remark. Any differentiable function will also be locally Hölder contin-
uous (but the inverse implication is not true). Thus the Hölder condition
could in the entire paper have been replaced by demanding all functions
to be one more time continuously differentiable. E.g. Theorem 5.1 is true
for all f ∈ C1(Rn) with f(x) = O(|x|−k−δ) for some δ > 0.

An even lower regularity requirement on f can be bought at a small
price:

5.3. Theorem. Let k ∈ {1, . . . , n− 1}. Assume, that f ∈ Ck+δ for some
δ > 0. Then f can be recovered from its k-plane transform by

f = (4π)−
k

2

Γ
(

n−k
2

)

Γ
(

n
2

) lim
s→−k+

Is(f̂ )̌ .

We will need the following lemma pointed out to me by Boris Rubin
(cf. [12, Thm. I.2.6]):
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5.4. Lemma. Let f ∈ Ca(R). Then

lim
s→−1+

xs
+(f) = f(0).

Proof. Let ε > 0 be given and choose δ, 0 < δ < 1, such that |f(x) − f(0)| ≤ ε
when |x| ≤ δ. Write

xs
+(f) =

1

Γ(s+ 1)

[
∫ δ

0

(f(x) − f(0))xs dx+

∫ ∞

δ

f(x)xs dx+

∫ δ

0

f(0)xs dx

]

.

Since (when s > −1),

| 1

Γ(s+ 1)

∫ δ

0

(f(x) − f(0))xs dx| ≤ ε

Γ(s+ 2)
δs+1

and (when s− a < −1)

| 1

Γ(s+ 1)

∫ ∞

δ

f(x)xs dx| ≤ c

Γ(s+ 1)|s− a+ 1|δ
s−a+1

for some constant c > 0 and

| 1

Γ(s+ 1)

∫ δ

0

f(0)xs dx− f(0)| ≤ |f(0)(
δs+1

Γ(s+ 2)
− 1)|,

|xs
+(f) − f(0)| can be estimated by e.g. some multiple of ε when s is

sufficiently close to −1. �

Also a parallel of Corollary 4.15 and thus of Lemma 4.14 for functions
with the Hölder continuity of the derivatives replaced by ordinary conti-
nuity is needed:

5.5. Lemma. Let f ∈ C l
a(R

n). Let α ∈ Cn with Reα = 1 be given. If
a > 1, then

Iαf ∈ C l+〈ε〉(Rn)

for any 0 < ε < 1.

Proof. Let x ∈ Rn and 0 < ε < 1 be given. Decompose f = f1 + f2 as
in Remark 4.11. Then Iαf1 is smooth at x according to Lemma 4.12, so
only Iαf2 needs thought.

From Lemma 4.12 Iαf2 is in C l(Rn) with ∂lIαf2 = Iα∂lf2 for any l ∈ N
n
0

with |l| = l. The claim is, that these derivatives are Hölder continuous
of index ε at x. Therfore pick O, a bounded neighborhood of x, and
x1, x2 ∈ O. Since f2 has compact support K, there exists c > 0 such that

|∂lIαf2(x1) − ∂lIαf2(x2)| ≤ c

∫

K

∣

∣|x1 − y|α−n − |x2 − y|α−n
∣

∣ dy.
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Thus it suffices to prove the existence of a constant C > 0 (independent
of x1 and x2) such that

(26)

∫

K

∣

∣|x1 − y|α−n − |x2 − y|α−n
∣

∣ dy ≤ C|x1 − x2|ε.

Put

B1 = B(x1,
2

3
|x1 − x2|) B2 = B(x2,

2

3
|x1 − x2|) A = K \ (B1 ∪B2).

Then K ⊂ B1 ∪B2 ∪A, so (26) holds if it can be proved with K replaced
by each of the three sets B1, B2 and A. But since |x2 − y| > 1

3
|x1 − x2|

when y ∈ B1
∫

B1

∣

∣|x1 − y|α−n − |x2 − y|α−n
∣

∣ dy

≤
∫

B1

|x1 − y|1−n dy +

∫

B1

|x2 − y|1−n dy

≤
∫

B(0, 2
3
|x1−x2|)

|y|1−n dy +

∫

B(0, 2
3
|x1−x2|)

(
1

3
|x1 − x2|)1−n dy ≤ C1|x1 − x2|.

An equivalent calculation can be done for the integral on B2. Thus we
turn to the integral on A.

First let y ∈ A with |x1 − y| 6= |x2 − y| be given. Apply the mean
value theorem to the function t 7→ Re tα−n on the interval with endpoints
|x1 − y| and |x2 − y| to obtain the existence of an s1 ∈]0, 1[ such that

(27)
∣

∣Re |x1 − y|α−n − Re |x2 − y|α−n
∣

∣

≤ c′(s1|x1 − y| + (1 − s1)|x2 − y|)−n
∣

∣|x1 − y| − |x2 − y|
∣

∣.

Then apply the mean value theorem to the function t 7→ Im tα−n to obtain
an s2 and a similar evaluation of |Im |x1−y|α−n−Im |x2−y|α−n|. Conclude
from this that for any y ∈ A

∣

∣|x1 − y|α−n − |x2 − y|α−n
∣

∣ ≤ c′′(min(|x1 − y|, |x2 − y|))−n|x1 − x2|.
Choose K > 0 such that B(y1, K)∩B(y2, K) ⊃ A for all y1, y2 ∈ O. Then
K is independent of x1 and x2 and

∫

A

(min(|x1 − y|, |x2 − y|))−n dy

≤
∫

B(x1,K)\B1

|x1 − y|−n dy +

∫

B(x2,K)\B2

|x2 − y|−n dy

≤ 2Ωn−1(logK − log(
2

3
|x1 − x2|)) ≤ C ′(1 + |x1 − x2|ε−1),

where C ′ is independent of x1 and x2. The last evaluation holds because
ε− 1 < 0. �
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5.6. Corollary. Let f ∈ C l
a(R

n). Let α ∈ C with 1 ≤ Reα < min(a, n) be
given. Then

Iαf ∈ C(l+[Re α]−1)+〈ε〉(Rn)

for any 0 < ε < 1.

Proof. Let 0 < ε < 1 be given. If Reα = 1 the claim is the previous
lemma. If Reα > 1 write α = β + 1. From Proposition 4.9

Iαf = Iβ(I1f).

According to the previous lemma I1f ∈ C l+〈ε〉(Rn), so the claim follows
from Corollary 4.15. �

Proof of Theorem 5.3. Use Remark 2.4 to modify the conclusions of Propo-
sition 3.7 and 4.6 regarding the set of definition of the extension when the
Hölder continuity on the derivatives of f is replaced by ordinary continu-
ity. Use this in following the lines of the proof of Proposition 4.16: Let
x ∈ Rn be given. The map

α 7→ (Iα+kf)(x)

is holomorphic in {α ∈ C| − k < Reα < δ}. Since Lemma 4.8 and
Corollary 5.6 ensures, that

Ikf ∈ C
(k−1)+〈ε〉
δ (Rn)

for all 0 < ε < 1, the map

α 7→ (Iα(Ikf))(x)

is holomorphic in
⋃

0<ε<1

{α ∈ C| − (k − 1 + ε) < Reα < δ} = {α ∈ C| − k < Reα < δ}.

Thus by Proposition 4.9 and analytic extension

(28) Iα(Ikf)(x) = Iα+kf(x),

when −k < Reα < δ. The last step of the proof of Proposition 4.16
requires Lemma 4.7 the conclusion of which does not hold for an arbitrary
f ∈ Ca(R

n) (I0(f) does not necessarily exist). But we can use Lemma 5.4
to replace Lemma 4.7 by (see (16))

lim
s→0+

(Isf)(x) = lim
s→0+

Γ(s)

Hn(s)
rs−n(τxf) = lim

s→−1+

xs
+(Mτxf ) = Mτxf(0) = f(x).

Thus, using (28), we have that

lim
s→−k+

Is(Ikf(x)) = f.

This in connection with (25) proves the theorem. �
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6. The Inversion Formula in Terms of the Laplacian

It is known, cf. [6], that if k is even, the inversion formula can be
stated by means of the Laplacian, ∆, instead of the more complicated
Riesz potentials. In fact

6.1. Theorem. When k is even, and f ∈ C2(Rn), and f and all its first
and second order derivatives are O(|x|−k−ε) for some ε > 0, then

(29) f = (4π)−
k

2

Γ
(

n−k
2

)

Γ
(

n
2

) (−∆)
k

2 (f̂ )̌ .

Proof. Follow the lines of [6, p.16-17]: First notice that it suffices for f to
be continuous and O(|x|−k−ε) for some ε > 0 in order to have formula [6,
(34)] for the k-plane transform; that is,

(30) (f̂ )̌ (x) = Ωk−1

∫ ∞

0

F (r, x)rk−1 dr,

for any x ∈ Rn, where F (r, x) = 1
Ωn−1

∫

Sn−1 f(x + rω) dω. Here dω is the

Haar measure on the unit sphere Sn−1 in Rn with total mass Ωn−1 = 2π
n

2

Γ( n

2
)
.

Then notice, that the demands on the decay of the derivatives of f allows
us to apply the Laplacian (with respect to x) on (30) by interchanging
it with the integration. By means of Darboux’s equation, it can now be
seen, as in [6, p.16-17], that

∆((f̂ )̌ )(x) =

{

−Ωk−1(n− k)f(x) k = 2
−Ωk−1(n− k)(k − 2)

∫ ∞

0
F (r, x)rk−3 dr k 6= 2

.

When k = 2 this is (29). For k 6= 2 the expression is similar to (30) - the
power of r in the integral has just been reduced and it is still larger than
-1. Thus the Laplacian can be applied once more without inducing further
demands on f or its derivatives. Continued iteration proves (29). �

Can the Theorem 5.1 be used to enlarge the class of functions for which
(29) holds? Not much, I think. Some relevant thoughts are the following:
Let α0 ∈ C be given. Using Definition 4.4 and Green’s formula it is not
hard to see, that for ϕ ∈ C2(Rn) with sufficient decay of ϕ and all it’s first
and second order derivatives (O(|x|−2−ε) for some ε > 0 is enough),

(31) Iα∆ϕ = −Iα−2ϕ

in some strip {α ∈ C|2 < Reα < 2 + δ}. If furthermore ϕ ∈ C l+(Rn) for
some integer l ≥ −Reα0 + 2, Proposition 4.6 can be used to extend both
sides of (31) holomorphically to α0 and thus prove (31) for α = α0.

Iterating (31) and then using Lemma 4.7 proves that when k is even
and positive, and h ∈ Ck+(Rn), and h and all it’s derivatives of order
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less than or equal to k have a certain decay (O(|x|−2−ε) for some ε > 0 is
enough), then

(−∆)
k

2h = I−kh.

Thus we see from Theorem 5.1 that (29) holds also for f ∈ C(k, n) when,
in stead of decay demands on derivatives of f , we demand a certain decay
of (f̂ )̌ and all it’s derivatives of order less than or equal to k (O(|x|−2−ε)

is enough). Notice, that since (f̂ )̌ is proportional to Ikf the derivatives

of (f̂ )̌ do exist according to Corollary 4.15.
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PART II

The Hyperbolic Case





Sufficient Conditions for an Inversion

Formula for the k-dimensional Totally

Geodesic Radon Transform on Real

Hyperbolic Space.

Sine R. Jensen

Abstract: The inversion formula (26) for the k-

dimensional totally geodesic Radon transform on real hy-

perbolic space is indicated by B. Rubin in [26, p.219-221]

for smooth, compactly supported functions. In this paper

it will be shown that it suffices for the function to be twice

continuously differentiable with all derivatives of order up

to and including 2 meeting a certain decay requirement.

Introduction

Geometric integral transforms and inversion formulas in connection with
these are many and varied. Consider e.g. the k-plane Radon transform
in n-dimensional Euclidean space, k ∈ {1, . . . , n − 1}. One of the more
esthetically pleasing inversion formulas for this transform is Helgason’s
formula:

(1) f = c I−k(f̂ )̌

(cf. [12, Thm. I.6.2]). Here (and in the following) f̂ denotes the Radon
transform under consideration applied to f , while ϕ̌ is the dual Radon
transform of the function ϕ. By I−k is meant the (−k)’th Riesz potential,
and c is some constant. For k even I−k is nothing but the Laplacian to the
power of k

2
(cf. [7]). In the hyperplane case (k = n− 1) the formula goes

back to Radon [22] for n = 3, and to John [16] for arbitrary n. Originally,
(1) was proved for f ∈ C∞

c (Rn), the space of smooth compactly supported
functions on Rn. This result has been stepwise expanded (cf. [8], [12] and
others). In [15] the author defines a, in some sense, ’natural maximal’
function space on which to consider the k-plane transform and shows (1)
to hold on this space using the setup in [12].
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In the present paper we will move on from the k-plane transform to
it’s hyperbolic analog. This is the k-dimensional totally geodesic Radon
transform on real hyperbolic space, H

n, as introduced by Helgason in
the fundamental paper [7]. Note that Hn is the classical n-dimensional
Riemannian space of constant curvature −1 realized e.g. as the upper
sheet of the two-sheeted hyperboloid in Rn+1. Helgason proves in that
same paper [7] the following hyperbolic version of (1): For k even and f
in C∞

c (Hn)

(2) f = Pk(∆)(f̂ )̌ ,

where Pk(∆) is some polynomial of degree k
2

in the Laplace-Beltrami oper-
ator. A second formula of Helgason [9, Thm. 3.1] covers all 1 ≤ k ≤ n−1.
It has the form

f(x) = c

[

(

d

d(u2)

)k ∫ u

0

((f̂)∨cosh−1(v−1))(x)(u
2 − v2)

k

2
−1 dv

]

u=1

,

for f ∈ C∞
c (Hn), where ((f̂)∨

cosh−1(v−1)
)(x) is the average of f̂ over all

totally geodesic submanifolds of distance cosh−1(v−1) from x, and c is
some constant. See also [10] for a variation. Meanwhile, it is in fact
possible to generalize (2) to the case k odd. This was done by Berenstein
and Tarabusi [1] and [2] using Fourier transform and distributions: For k
odd and f in C∞

c (Hn)

f = P (∆)S(f̂) ,̌

where P (∆) is again some polynomial in the Laplace-Beltrami operator,
and where S is a convolution operator with kernel r 7→ sinhk−n(r) cosh(r).
An alternative proof was indicated by Rubin [26, p.219-221] and his ap-
proach is the one adopted here.

The goal of this paper is firstly to define (as in the Euclidean case) some
’natural maximal’ function space on which to consider the k-dimensional
totally geodesic Radon transform on Hn. This space will be denoted
Ck(H

n) (cf. Definitions 4.1 and 4.4). It consists, as in the Euclidean case,
of continuous functions of a certain decay at infinity (cf. the Introduction
in [15]), but the decay requirement must be modified according to the
measure on hyperbolic space. Secondly, we will prove (2) for k even and a
generalized version of (2) for k odd, both on a certain subspace of Ck(H

n)
(cf. Theorem 8.2). We would like to imitate the proof of (1) in [15] by
generalizing Riesz potentials starting out from the hyperbolic formula

(3) (f̂ )̌ (x) = c

∫ ∞

0

(M rf)(x)(sinh r)k−1 dr, f ∈ C∞
c (Hn)

(cf. [12, (28) p.92]) and the Euclidean formula (f̂ )̌ = c Ik. Unfortunately,
these generalized Riesz potentials, defined by the right side of (3), turns
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out not to abide by the power rule IαIβ = Iα+β, which is crucial to the
proof of (1). Instead, we have used the approach of Berenstein-Tarabusi
and Rubin which involves not only the kernel r 7→ sinhα−n but also the
kernel r 7→ sinhα−n r cosh r [26]. The different nature of this approach
compared to the one in [15] is reflected in the way the constraints on f
in the hyperbolic inversion formula (Theorem 8.2) deviate from those on
f in the Euclidean inversion formula [15, Thm. 5.1]. In Theorem 8.2
they involve decay requirements not only on f as in [15] but also on the
derivatives of f up to the second order. The precise statement involves
the universal enveloping algebra of the Lie algebra so(n, 1).

We note in passing the viewpoint applied by Kurusa [18]. For k = n−1
he considers any f ∈ C∞

c (Hn) as expressed in terms of a power expansion
in spherical harmonics: f(p, ω) ∼ ∑∞

l,m fl,m(p)Yl,m(ω). Kurusa inverts the

Radon transform by determining the coefficients {fl,m}l,m. In that same
paper he establishes an inversion formula a kind to the Euclidean formula

f = c(Λf̂ )̌ , f ∈ S(Rn)

[12, Thm. I.3.6], where Λ involves differentiations and, when n is even, a
Hilbert transform. In this connection see also [20].

The problem of establishing inversion formulas for larger classes of func-
tions than smooth compactly supported functions has been addressed in
particular by Rubin and Berenstein. In [4] and [5] they consider the k-
dimensional totally geodesic Radon transform on Hn and show that given
f ∈ Lp(Rn) then f̂(ξ) is defined for a.a. totally geodesic submanifolds ξ of
Hn if k−1

n−1
< 1

p
≤ 1. For 1

p
≤ k−1

n−1
they provide a counter example. Instead

of generalizing (2) they prove an inversion formula that relies on the choice
of a suitable ’wavelet’ function. The inversion formula is expressed as a
limit in Lp-norm (cf. [5, Thms. 5.3 and 5.5]) and is thus not a pointwise
formula.

This paper is organized as follows: Section 1 through 3 presents some
well known background material as in [12] but with more details. In
Section 1 the construction of general pseudo-Riemannian hyperbolic space
is carried through. Then, after restricting to the Riemannian case of
negative curvature, Hn, Sections 2 and 3 deals with characterizing the
totally geodesic submanifolds and introducing integration thereon. The
aforementioned space Ck(H

n) is defined in section 4, whereafter the Radon
transform is presented. Section 5 presents the dual transform and proves
(3) on Ck(H

n). In Section 6 the convolution operators of [26], Kα and
Kα

−, which takes the place of Riesz potentials, are carefully defined. This
includes establishing certain mapping properties. Note, that Rubin and
Berenstein in [5, Lemma 4.1] also remarks upon the problem in the first
part of Lemma 6.4 which is, given f ∈ Lp(Hn), to find conditions on p and
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α under which Kαf is well-defined a.e. on Hn. Lemma 6.4 and [5, Lemma
4.1] express the exact same conditions on p and α execpt that Berenstein
and Rubin points out that Kαf is in fact well-defined everywhere on H

n

when Re α−1
n−1

< 1
p
< Re α

n
. In Section 7 the operators Kα and Kα

− are

investigated. The entire section prepares for Proposition 7.6 and Corollary
7.7, which are the versions of [26, Thm. 4.4] and [26, Cor. 4.7] needed
to deal with functions not necessarily of compact support. In Section 8
the inversion formula in finally stated and proved using a result from [26,
p.220-221] concerning a certain convolution.

1. Hyperbolic Spaces

Let p, q ∈ N0 and n ∈ N with p+q = n be given, and make the following

1.1. Definition. Put

Ip,q =

(

Ip 0
0 −Iq

)

∈ GL(Rp+q),

where Im, m ∈ N, denotes the m×m identity matrix. For ε = ±1 define
the quadratic form Bε(x) : R

n+1 → R by

Bε(x) = Bp,q
ε (x) = x1

2 + . . .+ xp
2 + εxp+1

2 − xp+2
2 − . . .− xp+q+1

2

=

{

xtIp+1,qx , ε = +1
xtIp,q+1x , ε = −1

.

Then Bε generates the following subset of Rn+1

Qε = Qp,q
ε = {x ∈ R

n+1|Bεx = ε}.
1.2. Example. For n = 2 the following subsets arises

Q2,0
+1 and Q0,2

−1 are the unit sphere.

Q1,1
+1 and Q1,1

−1 are one-sheeted hyperboloids.

Q0,2
+1 and Q2,0

−1 are two-sheeted hyperboloids.

The set Qε is furnished with the subspace topology.



1. Hyperbolic Spaces 35

1.3. Lemma. If p > 0 then Qp,q
+1 is connected and if p = 0 then Qp,q

+1 has
two components.
If q > 0 then Qp,q

−1 is connected and if q = 0 then Qp,q
−1 has two components.

1.4. Remark. Since Qp,q
+1

∼= Qq,p
−1, the two above claims are equivalent.

Proof of Lemma 1.3. Consider the case ε = −1.
If p = 0 then q > 0 and Q−1 is the unit sphere in Rn+1 which is connected.
If p ≥ 1 let x ∈ Q−1 be given. Put

a = sign(x1)

√

√

√

√

p
∑

i=1

xi
2 and b = sign(xp+q+1)

√

√

√

√

p+q+1
∑

i=p+1

xi
2,

where the definition of sign(0) as either 1 or −1 is not essential. Note that
|b| ≥ 1, and define ψ+ : [1, b] → Q−1 for b ≥ 1 and ψ− : [b,−1] → Q−1 for
b ≤ −1 by

ψ±(t) = (sign(x1)
√
t2 − 1, 0, . . . , 0, t).

Then ψ+ is a continuous curve in Q+
−1 = {y ∈ Q−1|yp+q+1 ≥ 0} connect-

ing o with (a, 0, . . . , 0, b), and ψ− is a continuous curve in Q−
−1 = {y ∈

Q−1|yp+q+1 ≤ 0} connecting −o with (a, 0, . . . , 0, b). If p = 1 then a = x1.
If p ≥ 2 then (a, 0, . . . , 0) can be connected to (x1, . . . , xp) by a continuous
curve within the sphere with center 0 and radius |a| in Rp, Sp

|a|, since this

is a connected set exactly when p ≥ 2. If q = 0 then b = xp+q+1. If

q ≥ 1 then (0, . . . , 0, b) can be connected to (xp+1, . . . , xp+q+1) within Sq+1
|b|

as before. From this follows, that Q+
−1 and Q−

−1 are connected subsets of
Q−1. For q ≥ 1, Q+

−1 ∩Q−
−1 6= ∅ so Q−1 is connected. For q = 0, Q+

−1 and
Q−

−1 are separated by the plane {y ∈ Rp+q+1|yp+q+1 = 0}. �

Consider the Lie group

O(p, q) = {g ∈ GL(p + q)|gtIp,qg = Ip,q}.
Then O(p + 1, q) respectively O(p, q + 1) is the group of all linear maps
on Rn+1 that preserves Bp,q

+1 respectively Bp,q
−1 . Put

oε =

{

(1, 0, . . . , 0) ∈ Q+1 , ε = +1
(0, . . . , 0, 1) ∈ Q−1 , ε = −1

.

1.5. Lemma.

The group Oe(p+ 1, q) acts transitively on the o+1-component of Qp,q
+1.

The group Oe(p, q + 1) acts transitively on the o−1-component of Qp,q
−1.

Here the subfix e denotes identity component, and the action is that of
matrix multiplication on the left.

In connection with this and the following lemma, it will be useful to
note that (see [12, Lemma IV.1.4]):
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1.6. Lemma. When p, q ≥ 1 the four components of O(p, q) are deter-
mined by

det gp ≥ 1 and det gq ≥ 1,
det gp ≤ 1 and det gq ≤ −1,
det gp ≥ −1 and det gq ≥ 1,
det gp ≤ −1 and det gq ≤ −1,

where gp is the sub-matrix (gij)1≤i,j≤p and gq is the sub-matrix (gij)p+1≤i,j≤p+q

for any g ∈ O(p, q).

Proof of Lemma 1.5. Consider the case ε = −1. Let x ∈ Q−1 be given.

Put a =
√

∑p
1=1 xi

2 and b =
√

∑p+q+1
i=p+1 xi

2. Use the transitivity of

SO(m) = {g ∈ O(m)|det g = 1} on any sphere in Rm with center 0
for m = p and m = q + 1 to construct g ∈ SO(p, q + 1) = {g ∈
O(p, q + 1)|det g = 1} such that g · (0, . . . , 0, a, b, 0, . . . , 0)t = x. Then
construct g′ ∈ SO(p, q+1) such that g′ · o = (0, . . . , 0, a, b, 0, . . . , 0)t. This
shows that the separable Lie group SO(p, q + 1) acts transitively on the
connected manifold which is the o−1-component of Q−1. Thus so does the
identity component of that group ([11, Thm. II.3.2 and Prop. II.4.3]). �

1.7. Lemma.

The isotropy subgroup of Oe(p+ 1, q) at o+1 is isomorphic to Oe(p, q).
The isotropy subgroup of Oe(p, q + 1) at o−1 is isomorphic to Oe(p, q).
The isomorphisms are given by

(4)
Oe(p, q) 3 g 7→

(

1 0
0 g

)

∈ Oe(p+ 1, q),

Oe(p, q) 3 g 7→
(

g 0
0 1

)

∈ Oe(p, q + 1).

Proof. Consider the case ε = −1. Then 4 is easily seen to be an isomor-
phism between O(p, q) and the isotropy subgroup of O(p, q + 1) at o−1.
From Lemma 1.6 Oe(p, q + 1) ∩ O(p, q) = Oe(p, q). �

In order to simplify notation we assume ε ∈ {±1} to be given and make
the following

1.8. Definition. Put

o = oε

M = the o-component of Qp,q
ε

G =

{

Oe(p+ 1, q) , ε = +1
Oe(p, q + 1) , ε = −1

H = Oe(p, q)

Furthermore, for each g ∈ G denote the action of g on m ∈ M by g ·m,
and let lg : M →M denote the diffeomorphism lg(m) = g ·m.
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Give M the obvious differential structure (note that dim(M) = n).
Then G is a transitive Lie transformation group of M . Thus ([11, Thm.
II.3.2] and [11, Thm. II.4.3]) H is closed in G and the map gH 7→ g · o of
G/H onto M is a diffeomorphism, when G/H is given the unique differ-
ential structure with the property that G is a Lie transformation group of
G/H ([11, Tmh. II.4.3]);

G/H 'M (diffeomorphism).

1.9. Remark. A tangent space Tm(M) of M will always be thought of as
a subspace of Rn+1. As an example let m ∈M and g ∈ G be given. Then
the differential (dlg)m : Tm(M) → Tg·m(M) is left matrix multiplication of
g on X ∈ Tm(M) ⊂ Rn+1. That is (dlg)m(X) = gX ∈ Tg·m(M) ⊂ Rn+1.

1.10. Definition. Let σ : G→ G be the involutive isomorphism

g
σ7−→

{

I1,p+qgI1,p+q , ε = +1
Ip+q,1gIp+q,1 , ε = −1

.

1.11. Remark. The effect of σ on a matrix is the following change of sign
of the entries of that matrix:





+ −

− +



 when ε = +1,





+ −

− +



 when ε = −1.

1.12. Lemma. The triple (G,H, σ) is a symmetric space.

Proof. Use Remark 1.11 to see, that the fixed point group for σ in G
consists of those elements of G which has the form









±1 0 . . . 0
0 ∗ . . . ∗
...

...
...

0 ∗ . . . ∗









when ε = +1









∗ . . . ∗ 0
...

...
...

∗ . . . ∗ 0
0 . . . 0 ±1









when ε = −1.

From this and Lemma 1.6 it follows, that the identity component of the
fixed point subgroup for σ is H. �

1.13. Remark. Let g be the Lie algebra of G and h that of H. Let
ϕ : G→M be defined by ϕ(g) = g · o. Since (G,H, σ) is a symmetric
space, the Lie algebra of G can be written as a direct sum, g = h ⊕ m,
where m is the (−1)-eigenspace of (dσ)e, and where (dϕ)e|m : m → To(M)
is an isomorphism ([17, Thm.s XI.3.3 and XI.3.2]). This identification will
be used often in what follows.

1.14. Lemma. A basis for m is

Yi =

{

−E1,i + Ei,1 , 2 ≤ i ≤ p+ 1
E1,i + Ei,1 , p+ 2 ≤ i ≤ p+ q + 1
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when ε = +1 and

Yi =

{

Ei,p+q+1 + Ep+q+1,i , 1 ≤ i ≤ p
Ei,p+q+1 − Ep+q+1,i , p+ 1 ≤ i ≤ p+ q

when ε = −1. Here Ei,j denotes the matrix with the ij’th entry equal to 1
and 0 elsewhere.

Proof. Note that for X ∈ g

X ∈ m ⇔ (dσ)e(X) = −X ⇔ σ(X) = −X.
Thus from Remark 1.11 it follows that X ∈ m exactly when X ∈ g and
has the form









0 ∗ . . . ∗
∗ 0 . . . 0
...

...
...

∗ 0 . . . 0









when ε = +1









0 . . . 0 ∗
...

...
...

0 . . . 0 ∗
∗ . . . ∗ 0









when ε = −1.

The lemma follows, since g = so(p+1, q) if ε = +1, and g = so(p, q+1)
if ε = −1. �

Let m ∈ M be given. Restrict the quadratic form Bε to Tm(M). This
restriction induces a bilinear, symmetric map, gm, on Tm(M):

gm(X, Y ) =

{

X tIp+1,qY , ε = +1
X tIp,q+1Y , ε = −1

.

1.15. Lemma. The 2-form, which restricted to each tangent space Tm(M)
of M is gm, defines a G-invariant pseudo-Riemannian structure on M .

Proof. For notational convenience assume ε = −1. Let g ∈ G be given
and put m = g · o. For each X, Y ∈ To(M) (cf. Remark 1.9)

gm((dlg)o(X), (dlg)o(Y )) = gm(gX, gY )

= (gX)tIp,q+1(gY ) = X tIp,q+1Y = go(X, Y ),

which shows the G-invariance. To see that gm is non-degenerate for each
m ∈M , note that this is true for m = o and use the G-invariance. �

1.16. Remark. Note, that the proof in fact proved any element of SO(p+ 1, q)
respectively SO(p, q + 1) to be an isometry of M .

1.17. Remark. For each X ∈ g

(dϕ)e(X) = (dϕ)e( d

dt
|t=0 exp(tX)) = d

dt
|t=0ϕ(exp(tX))

= d

dt
|t=0 exp(tX) · o = Xo,
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exp being matrix exponentiation. Thus (dϕ)e(Yi) = ei for all i (2 ≤ i ≤
p+ q + 1 for ε = +1, 1 ≤ i ≤ p+ q for ε = −1), so the bases from Lemma
1.14 are orthonormal in the sense that

go(dϕe(Yi), dϕe(Yj)) =







0 for i 6= j
1 for i = j, i ≤ p
−1 for i = j, i > p

.

When a pseudo-Riemannian structure on a differentiable manifold is
represented on some tangent space by a matrix, this matrix will be diag-
onalizable because of the symmetry of the pseudo-Riemannian structure.
It can, in fact, be uniquely diagonalized (up to rearrangement of the di-
agonal entries) to a diagonal matrix with only ±1 on the diagonal (the
non-degeneracy prevents zeros from appearing on the diagonal). Let p′ be
the number of occurrences of 1 on the diagonal and q ′ that of −1. Then
(p′, q′) is the same for all points of a connected manifold and is called the
signature of the pseudo-Riemannian manifold. Note that the manifold is
actually Riemannian if and only if q′ = 0 (note p′ = 0: negative definite).
By considering the pseudo-Riemannian structure of M at o, it is seen that
the signature of M is (p, q).

Introduce on M the (pseudo-)Riemannian connection and the curvature
tensor derived thereof, R.

1.18. Proposition. The manifold M has constant sectional curvature ε.

Proof. The sectional curvature of any two-dimensional subspace, ν, of
To(M) is

(5) K(ν) = K(X, Y ) = − go(R(X, Y )X, Y )

go(X,X)go(Y, Y ) − go(X, Y )2

independently of X, Y ∈ ν, {X, Y } linearly independent (cf. [11, p.65]).
Thus if

(6) go(R(X, Y )X, Y ) = −ε(go(X,X)go(Y, Y ) − go(X, Y )2)

for all X, Y ∈ To(M), then K(ν) = ε for all 2-dimensional subspaces ν of
To(m). In fact it is enough to show (6) for a basis for To(M), everything
being linear. But since (G,H, σ) is a symmetric space, the curvature
tensor at o ∈M is given by

R(X, Y )Z = −[[X, Y ], Z]

for all X, Y, Z ∈ To(M) when To(M) is identified with m by means of dϕe

as in Remark 1.13 (cf. [11, p.215]). Direct calculation now proves (6) for
all X, Y in the basis {dϕe(Yi)}i (see Lemma 1.14 and Remark 1.17), so all
sectional curvatures of M at o is ε.

Since G/H is symmetric the curvature tensor is invariant under parallel
translation ([17, Thm.s XI.3.3 and XI.3.2]) and then so is the sectional



40 The Hyperbolic Case

curvature as defined by (5). Thus all sectional curvatures at o equal to ε
implies all sectional curvatures at any point equal to ε. �

The spaces Qp,q
±1 with the structures introduced so fare are called hy-

perbolic spaces and are denoted by Hp,q
±1 , and the special case q = 0

and ε = −1 is also denoted Hp. They are (up to a constant factor on
the pseudo-Riemannian structure and local isometries) the only pseudo-
Riemannian manifolds of constant curvature and signature (p, q) (cf. [12,
Thm. IV.1.3]).

2. Totally Geodesic Submanifolds of Hn

In what follows let

n ∈ N \ {1} and k ∈ {1, . . . , n− 1}
be given. The intention is to define a Radon transform on a hyperbolic
space of dimension n a kind to the k-plane Radon transform on Rn. For
this recall that a totally geodesic submanifold ξ of a manifold M is a
submanifold of M such that any M -geodesic tangential to ξ at some point
is in fact a curve in ξ (see e.g. [11, p. 79]). Thus the k-planes of Rn are
exactly the k-dimensional totally geodesic submanifolds of Rn, so it is an
obvious choice to let the set of k-dimensional totally geodesic submanifolds
of M take the place of the set of k-planes.

2.1. Definition. The space of k-dimensional totally geodesic submanifolds
of M will be denoted Ξ (or Ξk when the specification seems necessary).

In order to work with as simple a setup as possible consider from now on
only the Riemannian hyperbolic space of negative curvature of dimension
n. That is

M = Hn,0
−1 = H

n, G = Oe(n, 1), H = Oe(n).

Then the restriction of the Riemannian structure on M to any ξ ∈ Ξ gives
a Riemannian structure and thus a Riemannian measure on ξ. Note that
the restriction of a pseudo-Riemannian structure on a manifold to some
submanifold does not necessarily give a pseudo-Riemannian structure on
that submanifold. To be sure of this, the structure must be either positive
definite, which happens for Hp,q

−1 exactly when q = 0, or negative definite,

which happens for Hp,q
−1 exactly when p = 0. But H0,q

−1 is the unit sphere
and thus compact, which makes what follows later mostly irrelevant if
M = H0,q

−1 = Sq. For a discussion of that case we refere to e.g. [25], [24]
and [9, Thm. 3.2].

2.2. Remark. Under the new assumption - that isM = Hn,0
−1 - the (pseudo-)

Riemannian structure on Tm(M) is seen to correspond to the Riemannian
structure induced from Rn+1 exactly when m = o.
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2.3. Lemma. The geodesics of M are exactly the non-empty intersections
of M with 2-dimensional subspaces of Rn+1.

Proof. As isometries of M , G preserves the space of geodesics on M . As
linear maps on Rn+1, G preserves the space of 2-dimensional subspaces of
Rn+1. The subgroup H ' Oe(n) of G (see Lemma 1.7) acts transitively
on Sn−1 ⊂ To(M) ⊂ Rn+1 (see Remark 1.9). Thus H acts transitively on
both the set of geodesics on M through o and the set of 2-dimensional
subspaces of R

n+1 containing o. From the transitivity of G it now follows
that G acts transitively on both the set of geodesics on M and the set of
2-dimensional subspaces of Rn+1. Thus it is enough to show ξ = M ∩ U
for just one geodesic ξ through o and one 2-dimensional subspace U of
R

n+1 containing o.
Let γ be the geodesic such that γ(0) = o and γ ′(0) = e = (1, 0, . . . , 0),

and put U = span {o, e}. Note that γ is pointwise fixed by the isometry
x 7→ Ax where

A =













1
−1

. . .
−1

1













∈ O(n, 1)

(see Remark 1.16). Thus γ ⊂ M ∩ U = {(t, 0, . . . , 0,
√
t2 + 1) ∈ Rn+1|t ∈

R}. As a closed subspace of Rn, M is complete as a topological space.
Hence it is geodesically complete (cf. [6, Thm. VII.2.8]), so γ has infinite
length on both sides of o. Thus equality must hold: γ = M ∩ U . �

2.4. Remark. This lemma cannot hold when M is a general hyperbolic
space, because then the intersection of M and some 2-dimensional sub-
space of Rn+1 can have more than one component (consider e.g. H1,1

±1 ).
The proof fails in the general case because H ' Oe(n) was invoked.

2.5. Definition. For each m ∈M put Gm = {g ∈ G|g ·m = m}.
2.6. Lemma. The group G acts transitively on the set

{Expm(V )|m ∈M,V is a k-dimensional subspace of Tm(M)}.
Furthermore, for each m ∈M , the group Gm acts transitively on the set

{Expm(V )|V is a k-dimensional subspace of Tm(M)}.
Proof. Let m1, m2 ∈ M and V1, V2 k-dimensional subspaces of Tm1

(M)
respectively Tm2

(M) be given. Pick g1, g2 ∈ G such that gi · o = mi for
i = 1, 2. Then

g−1
i · Expmi

(Vi) = Expo(dlg−1

i

(Vi)), i = 1, 2.
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The subgroup H = Oe(n) of G (cf. Lemma 1.7) acts transitively on the
set of k-dimensional subspaces of To(M), so it is possible to pick h ∈ H
such that

dlh(dlg−1

1
(V1)) = dlg−1

2
(V2).

Now g2hg
−1
1 Expm1

(V1) = Expm2
(V2).

If m1 = m2 let (with notation as before) g1 = g = g2. Then g2hg
−1
1 =

ghg−1 ∈ gHg−1 = Gm. �

2.7. Lemma. Let m ∈ M and V a k-dimensional subspace of Tm(M)
be given. Put ξ = Expm(V ). Then there exists an isomorphism between
G′ = Oe(k, 1) and a subgroup of G such that

ξ ' H
k (G′-invariant isometry)

when the submanifold ξ of M is given the Riemannian structure induced
from M , and when G′ is considered as a subgroup of G through this iso-
morphism. In particular G′ acts transitively on ξ.

Proof. Because G is a group of isometries of M which acts transitively on
{Expm(V )|m ∈ M,V is a k-dimensional subspace of Tm(M)} according
to Lemma 2.6, it can be assumed that m = o and V = {x ∈ Rn+1|x1 =
. . . = xn−k = xn+1 = 0}. But according to Lemma 2.3, the geodesics of M
through o whose tangent vector at o lies in V are exactly the intersections
of M with subspaces of the form span {o, v}, v ∈ V . Thus

ξ = M ∩ (∪v∈V span {o, v})
= M ∩ {x ∈ R

n+1|x1 = . . . = xn−k = 0}
= {x ∈ R

n+1|x1 = . . . = xn−k = 0

and xn+1−k
2 + . . .+ xn

2 − xn+1
2 = −1}

which is diffeomorphic to H
k by the projection

ξ 3 (x1, . . . , xn+1)
Π7→ (xn+1−k, . . . , xn+1) ∈ H

k.

Consider G′ = Oe(k, 1) as a subgroup of G by

G′ 3 g′
ι7→

(

In−k 0
0 g′

)

∈ G.

That Π isG′-linear is seen through explicit calculations verifying g ′ · Π(m)=
Π(ι(g′) ·m) for all g′ ∈ G′ and m ∈ ξ. Further calculations show that the
induced Riemannian structure on ξ equals

(X, Y ) 7→ (dΠ(X))tIk,1(dΠ(Y ))

on To(ξ). This corresponds to the Riemannian structure of Hk on To(H
k)

which is (X ′, Y ′) 7→ (X ′)tIk,1Y . But since Π is a G′-linear bijection, G′

acts transitively not only on Hk but also on ξ, in both cases as an isometry.
Thus it follows that Π is an isometry. �
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2.8. Lemma. The space of k-dimensional totally geodesic submanifolds of
M is given by

Ξk = {Expm(V )|m ∈M,V is a k-dimensional subspace of Tm(M)}.
Proof. Let ξ ∈ Ξk be given. Pick m ∈ ξ, and put V = Tm(ξ) ⊂ Tm(M).
Then ξ ⊃ Expm(V ), since ξ is a totally geodesic submanifold of M . That
ξ is a totally geodesic submanifold of M also implies that any curve in
ξ which is an M -geodesic, is a ξ-geodesic, and that any ξ-geodesic is an
M -geodesic (cf. [11, Lemmas I.14.2 and I.14.3]). Thus Expm(V ) consists
of all ξ-geodesics through m. Now, ξ is a complete Riemannian manifold
as a totally geodesic submanifold of the complete Riemannian manifold M
(cf. [11, Lemma I.14.3]). Since any two points in a complete Riemannian
manifold can be joined by a geodesic (cf. [6, Thm. VII.2.8]), it follows
that ξ ⊂ Expm(V ). We have proved ξ = Expm(V ).

Let m ∈ M and V a k-dimensional subspace of Tm(M) be given. Put
ξ = Expm(V ). Then V = Tm(ξ). It is to be proved that ξ is totally
geodesic. Let γ be a geodesic of M tangential to ξ at m′ ∈ ξ. According
to Lemma 2.7 there exists a subgroup G′ of G that acts transitively on ξ.
Pick g ∈ G′ such that g ·m = m′. Then ξ = g · ξ, since G′ acts on ξ, so
ξ = g · Expm(V ) = Expm′(dlgV ) ⊃ γ. �

2.9. Definition. For each m ∈M put Ξ(m) = {ξ ∈ Ξ|m ∈ ξ}.
2.10. Corollary. The group G acts transitively on Ξ. Furthermore, for
each m ∈M , the group Gm acts transitively on Ξ(m).

Proof. Combine the previous lemma with Lemma 2.6. �

3. Integration on Totally Geodesic Submanifolds of Hn

From e.g. [11, p.215] it is known that

3.1. Proposition. The differential of Expo : To(M) →M at X ∈ To(M)
is

(dExpo)X = (dlexp X)o ◦
∞

∑

n=0

T n
X

(2n + 1)!
.

Here the identifications TX(To(M)) ' To(M) ' m (Remark 1.13) is used
to define exp X, and to define TX : TX(To(M)) → To(M) by

TX(Y ) = [X, [X, Y ]].

3.2. Remark. It is worthwhile to note that

Expo((dϕ)e(X)) = exp(X) · o
for all X ∈ m (see e.g. [11, p.208]), where as previously ϕ : G → M is
given by ϕ(g) = g · o.
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3.3. Remark. Let h ∈ H, X ∈ m and f ∈ C∞(M) be given. Then

(dlh)o((dϕ)eX)(f) =
d

dt

∣

∣

∣

0
f(h exp(tX) · o)

=
d

dt

∣

∣

∣

0
f(exp(tAd(h)X) · o) = (dϕ)e(Ad(h)X)(f),

i.e. h((dϕ)eX) = (dϕ)e(Ad(h)X) (see Remark 1.9).

3.4. Lemma. Let m ∈M and X ∈ Tm(M) be given. Then

det (dExpm)X =

(

sinh |X|
|X|

)n−1

, |X| =
√

gm(X,X).

Proof. It will be enough to consider the case m = o, since dExpg·o =
dlg dExpo d(dlg−1), where det d(dlg−1) = det dlg−1 = 1 and det dlg = 1,
because lg−1 and lg are isometries.

Define the linear map AX on To(M) by

AX =

∞
∑

n=0

T n
X

(2n + 1)!
,

where TX(Y ) = [X, [X, Y ]] using the identification To(M) ' m (Remark
1.13). Then det (dExpo)X = det (dlexp (X))o detAX = detAX according to

Lemma 3.1 (again since lexp(X) is an isometry). Put c =
√

go(X,X). For
each h ∈ H (cf. Remark 3.3)

ThX(Y ) = [Ad(h)X, [Ad(h)X, Y ]]

= Ad(h)[X, [X,Ad(h−1)Y ]] = Ad(h)TXAd(h
−1)(Y ).

Thus detAX = detAhX for each h ∈ H, and therefore, since H ' Oe(n)
acts transitively on Sn−1

c = {x ∈ Rn||x| = c} ⊂ To(M), it suffices to
consider detAcY1

, where Y1 stems from the basis {Yi}i from Lemma 1.14.
But calculations show that

TcY1
(Yi) =

{

0 i = 1
c2Yi i 6= 1

,

so the linear map TcY1
on To(M) has the eigenvalues 0 of multiplicity 1

and c2 of multiplicity n − 1. Thus detAcY1
is equal to the determinant

of a diagonal matrix with
∑∞

n=0
0n

(2n+1)!
= 1 as one diagonal entry and

∑∞
n=0

c2n

(2n+1)!
= sinh c

c
as the other n− 1 diagonal entries. �

3.5. Remark. Let m ∈ M be given. Since M is a complete Riemannian
manifold any two points can be joined by a geodesic (cf. [6, Thm. VII.2.8]),
so Expm : Tm(M) → M is surjective. According to Lemma 2.3 it is also
injective. Thus from Lemma 3.4 and the inverse function theorem, Expm

is a diffeomorphism.
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3.6. Remark. Since Expm is a diffeomorphism according to Remark 3.5, it
is seen by Lemma 3.4 and transition to polar coordinates that integration
of f ∈ L1(M) with respect to the Riemannian measure on M can be
expressed by

∫

M

f dm =

∫

Rn

f ◦ Expm(x)

(

sinh |x|
|x|

)n−1

dx

=

∫ ∞

0

∫

Sn−1

f ◦ Expm(rω) dω sinh(r)n−1 dr

for any m ∈M .

3.7. Lemma. Integration with respect to the Riemannian measure dm on
ξ ∈ Ξk is given by

(7)

∫

ξ

f dm =

∫

Rk

f ◦ Expm(x)

(

sinh |x|
|x|

)k−1

dx, f ∈ L1(ξ),

for any m ∈ ξ.

Proof. Integration with respect to the Riemannian measure on Hk can be
expressed by the right hand side of (7) according to Remark 3.6. But
ξ ' Hk (isometry) according to Lemmas 2.7 and 2.8, so the lemma follows
from the transformation theorem for integration on Riemannian spaces
(cf. [13, Thm. I.1.3]). �

3.8. Remark. A Riemannian measure is invariant under isometries, so for
any ξ ∈ Ξk the map L1(ξ) 3 f 7→

∫

ξ
f dm is invariant under the sub-

group of G which preserves ξ. In particular L1(M) 3 f 7→
∫

M
f dm is

G-invariant.

4. A Radon Transform on Hn

Let d denote the geodesic distance on M . Then d is continuous on
M ×M because the topology induced by d is the same as the original (cf.
[6, Thm.VII.2.8]). Furthermore

(8) d(m,Expm(X)) = gm(X,X)
1

2

for all m ∈ M and X ∈ Tm(M), because M is a normal neighborhood of
each of its points (Remark 3.5), so that all geodesics are globally minimiz-
ing. Note that d is G-invariant in the sense that

d(g ·m1, g ·m2) = d(m1, m2),

for all g ∈ G and m1, m2 ∈M , because any g ∈ G is an isometry. Define

|m| := d(m, o), m ∈M,
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and let f(m) = O(g(m)) signify the existence of constants c, c′ > 0 such
that

|f(m)| ≤ c′ |g(m)| for |m| > c,

when f and g are functions on M .

4.1. Definition. For each a, b ∈ R and each m ∈M put

Ca,b(M) = {f ∈ C(M)|f(m) = O(sinha(d(m, o))(d(m, o))b)}.
It will be useful to note the following

4.2. Lemma. Let a, b ∈ R be given. For each compact subset K of G and
each m0 ∈M there exists constants c, c′ > 0 such that

sinha(d(k ·m,m0))(d(k ·m,m0))
b ≤ c′ sinha(d(m,m0))(d(m,m0))

b

for all k ∈ K and m ∈M with |m| > c.

Proof. It suffices to prove the existence of constants c1, c2 and C1, C2 such
that

c1 d(k ·m,m0) ≤ d(m,m0) ≤ c2 d(k ·m,m0)

and

C1 sinh(d(k ·m,m0)) ≤ sinh(d(m,m0)) ≤ C2 sinh(d(k ·m,m0))

(and such that d(k ·m,m0) is bounded away from 0) for all k ∈ K and
m ∈ M with |m| big enough, because then, no matter whether a and b
are positive or negative, there exists c, c′ > 0 depending on a and b such
that

(d(k ·m,m0))
b < c′ (d(m,m0))

b

and
sinha(d(k ·m,m0)) < c′ sinha(d(m,m0))

for all k ∈ K and m ∈M with |m| > c.
Put s = sup{d(k · m0, m0)|k ∈ K} < ∞. Use the triangle inequality

and the G-invariance of d to see that

d(m,m0) − s ≤ d(m,m0) − d(k ·m0, m0)

≤ d(k ·m,m0)

≤ d(m,m0) + d(k ·m0, m0) ≤ d(m,m0) + s

for all k ∈ K and m ∈M . Since

d(m,m0) ≥ d(m, o) − d(m0, o)

on M , it is possible to pick C > 0 such that

d(m,m0) − s > 0 when |m| > C.

It follows that

(9)
d(m,m0)

d(m,m0) + s
≤ d(m,m0)

d(k ·m,m0)
≤ d(m,m0)

d(m,m0) − s
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and

(10)
sinh(d(m,m0))

sinh(d(m,m0) + s)
≤ sinh(d(m,m0))

sinh(d(k ·m,m0))
≤ sinh(d(m,m0))

sinh(d(m,m0) − s)
,

for all k ∈ K and all m ∈M with |m| > C. The left and right hand sides
of (9) has limit 1 for |m| → ∞. The left respectively right hand side of
(10) has limit e−s respectively es for |m| → ∞. �

4.3. Corollary. Given a, b ∈ R and g ∈ G the space Ca,b(M) is invariant
under lg, i.e. f ∈ Ca,b(M) ⇒ f ◦ lg ∈ Ca,b(M).

Proof. Let f ∈ Ca,b(M) be given. Then

f ◦ lg(m) = f(g ·m) = O(sinha(d(g ·m, o))(d(g ·m, o))b),

so it follows from the lemma with K = {g} and m0 = o that

f ◦ lg(m) = O(sinha(d(m, o))(d(m, o))b),

i.e. f ◦ lg ∈ Ca,b(M). �

4.4. Definition. For each a ∈ R put

Ca(M) =
⋃

ε>0

C1−a,−1−ε(M).

4.5. Remark. Given a ∈ R and g ∈ G the space Ca(M) is invariant under
lg according to Corollary 4.3.

4.6. Definition. Let f ∈ Ck(M). Then the integral on the right hand side
of (7) exists and is finite for each ξ ∈ Ξk, so f

∣

∣

ξ
∈ L1(ξ) for each ξ ∈ Ξk.

The k-dimensional totally geodesic Radon transform of f ∈ Ck(M) is now

defined to be the function f̂ on Ξk given by

f̂(ξ) =

∫

ξ

f dm.

5. The Dual Transform on Hn

The group G acts transitively on Ξ (cf. Corollary 2.10). Thus, as was
the case with M ' G/H, Ξ can be identified with G/L when L is the
isotropy subgroup of G at some chosen ξ0 ∈ Ξ (let us assume that ξ0 3 o).
Give Ξ the final topology induced by gL 7→ g · ξ0.
5.1. Lemma. Let m ∈ M be given. Then Ξ(m) is compact in Ξ, and Ξ(m)
is a homogeneous space under the compact group Gm (cf. Definitions 2.5
and 2.9).
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Proof. Pick g ∈ G such that g · o = m. Then Gm = gHg−1, so Gm is
compact. Since H acts transitively on Ξ(o) and G acts transitively on Ξ
(cf. Corollary 2.10), we have Ξ(g · o) = g ·Ξ(o) = {gh · ξ0|h ∈ H}. But the
map H 3 h 7→ gh · ξ0 ∈ Ξ is continuous. Thus Ξ(m) is compact.

To see that Ξ(m) is a homogeneous space under Gm only the require-
ment that Gm 3 g 7→ g · ξ ∈ Ξ(m) is open for each ξ ∈ Ξ(m) needs
consideration. Given ξ ∈ Ξ(m) put Gξ = {g ∈ G|g · ξ = ξ}. Use the
compactness of Gm to see that Gm/Gξ 3 gGξ 7→ g · ξ ∈ Ξ(m) takes closed
sets to closed sets. As a bijective map it is then open. And the projection
Gm 3 g 7→ gGξ ∈ Gm/Gξ is open as well. �

Similar to the Euclidean case, a transform dual to the Radon transform
is introduced:

5.2. Definition. Let ϕ ∈ C(Ξ). The dual transform of ϕ is defined by

ϕ̌(m) =

∫

Ξ(m)

ϕ(ξ) dξ, m ∈M,

where
∫

Ξ(m)
dξ is the normalized Haar integral on Ξ(m) under Gm (cf.

Lemma 5.1).

5.3. Remark. Let
∫

H
dh be the normalized Haar integral on H. Then the

dual transform can be expressed

ϕ̌(m) = ϕ̌(g · o) =

∫

H

ϕ(gh · ξ0) dh,

since this indeed is a normalized Gm-invariant positive integral on Ξ(m).

5.4. Definition. Let f ∈ C(M). For eachm ∈M let R 3 r 7→M rf(m) ∈ C

denote the meanvalue function of f around m defined by

M rf(m) =
1

Ωn−1

∫

Sn−1

f ◦ Expm(rω) dω,

where
∫

Sn−1 dω is the unique Haar integral on Sn−1 under O(n) with total

mass Ωn−1 = 2π
n
2

Γ( n

2
)
.

5.5. Remark. Let
∫

H
dh be the normalized Haar integral on H. For each

r ∈ R let yr be any element of M such that d(y, o) = |r|. Then the
meanvalue function can be expressed

M rf(m) = M rf(g · o) =

∫

H

f(gh · yr) dh,

since this indeed is a normalized O(n)-invariant positive integral on Sn−1.

In the Euclidean case an inversion formula for the Radon transform
is based on the fact, that calculation of (f̂ )̌ gives a handy result (in

particular (f̂ )̌ is well-defined). On the hyperbolic space M we have:
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5.6. Lemma. For each f ∈ Ck(M), f̂ is continuous on Ξ.

Proof. It is enough to show that g 7→ f̂(g · ξ0) is continuous on G. Let
g ∈ G be given. Since Expg·o(y) = g · Expo(dlg−1y) for all y ∈ Tg·o

where det (dlg−1) = 1 since g−1 is an isometry, Lemma 3.7 combined with
the transformation theorem for integration on Riemannian spaces (cf. [13,
Thm. I.1.3]) shows that

(11) f̂(g · ξ0) =

∫

Rk

f(g · Expo(y))

(

sinh |y|
|y|

)k−1

dy.

Since f ∈ Ck(M) there exists ε > 0 and c > 0 such that

|f(g · Expo(y))| ≤ c sinh1−k(d(g · Expo(y), o))(d(g · Expo(y), o))
−1−ε

for all y ∈ Rk and g ∈ G with d(g · Expo(y), o) > c. Thus when K is
a compact subset of G there exists, according to Lemma 4.2, a c′ > 0
independent of g in K such that

|f(g · Expo(y))| ≤ c′ sinh1−k(d(Expo(y), o))(d(Expo(y), o))
−1−ε

= c′ sinh1−k |y||y|−1−ε

for all y ∈ Rk with |y| = d(Expo(y), o) > c′ and all g ∈ K. From this and
(11) in combination with Lebesgue’s Dominated Convergence Theorem,

the continuity of g 7→ f̂(g · ξ0) follows. �

5.7. Lemma. Let f ∈ Ck(M) be given. Then

(f̂ )̌ (m) =
Ωk−1

Ωn−1

∫

M

f(y) sinhk−n(d(y,m)) dy, m ∈M.

Proof. According to the previous lemma f̂ ∈ C(Ξ), so (f̂ )̌ is well-defined
on M . Now
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(f̂ )̌ (m) = (f̂ )̌ (g · o) =

∫

H

f̂(gh · ξ0) dh

=

∫

H

∫

ξ0

f(gh · x) dx dh

=

∫

ξ0

∫

H

f(gh · x) dh dx

=

∫

ξ0

Md(x,o)f(m) dx

=

∫ ∞

0

∫

Sk−1

Md(Expo(rω),o)f(m) sinhk−1(r) dω dr

=

∫ ∞

0

∫

Sk−1

M rf(m) sinhk−1(r) dω dr

= Ωk−1

∫ ∞

0

M rf(m) sinhk−1(r) dr

=
Ωk−1

Ωn−1

∫ ∞

0

∫

Sn−1

f ◦ Expm(rω) dω sinhk−1(r) dr

=
Ωk−1

Ωn−1

∫

M

f(y) sinhk−n(d(y,m)) dy.

It was possible to interchange
∫

H
and

∫

ξ0
by applying Lemma 4.2 in the

same way as in the proof of Lemma 5.6. �

6. Convolution Operators

Let
∫

G/H
dgH be the Haar measure on G/H corresponding to the Rie-

mannian measure on M :
∫

G/H

f(g · o) dgH =

∫

M

f(m) dm, f ∈ Cc(M).

Since H is compact, there exists a unique Haar measure on G,
∫

G
dg, such

that

(12)

∫

G

η(g) dg =

∫

G/H

∫

H

η(gh) dh dg, η ∈ Cc(G),

where
∫

H
dh is the normalized Haar measure on H. The Haar measure

on G will be both left and right invariant, since G is unimodular as a
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semisimple Lie group. Note that for f ∈ Cc(M)
∫

M

f(m) dm =

∫

G/H

f(g · o) dgH

=

∫

G/H

∫

H

f(gh · o) dh dgH =

∫

G

f(g · o) dg.(13)

Convolution of two functions η1 and η2 onG is defined using the measure
from (12):

η1 ∗ η2(g0) =

∫

G

η1(g)η2(g
−1g0) dg.

To see when this has meaning, the following well-known result will later
be used (cf. [14, Cor. (20.14), Thm. (20.16), Thm. (20.18) and Thm.
(20.2)]):

6.1. Proposition. Let G be a locally compact, unimodular group. Assume
that η1 ∈ Lp(G) and that η2 ∈ Lq(G) for some 1 ≤ p, q < ∞ such that
1
p

+ 1
q
≥ 1. Then the integral η1 ∗ η2(g) exists and is finite for a.a. g ∈ G,

and η1 ∗ η2 ∈ Lr(G) where 1
p

+ 1
q
− 1

r
= 1 (if 1

p
+ 1

q
= 1 then r = ∞).

Convolution of two functions f1 and f2 on M is defined using the con-
volution on G:

(14) f1 ∗ f2(g0 · o) = (f1 ◦ ϕ) ∗ (f2 ◦ ϕ)(g0) =

∫

G

f1(g · o)f2(g
−1g0 · o) dg,

where as previously ϕ : G→M is given by ϕ(g) = g · o.
6.2. Definition. For each α ∈ C with 0 < Reα < n put

kα
+(m) =

1

Hn(α)
sinhα−n(d(o,m))

and

kα
−(m) =

1

Hn(α)
sinhα−n(d(o,m)) cosh(d(o,m)),

where

Hn(α) = 2απ
n

2

Γ(α
2
)

Γ(n−α
2

)
.

6.3. Remark. The convolution of a function f on M with kα
± is expressible

as an integral on M using the G-invariance of d:

f ∗ kα
+(m) =

1

Hn(α)

∫

G

f(g · o) sinhα−n(d(g · o,m)) dg

=
1

Hn(α)

∫

M

f(y) sinhα−n(d(y,m)) dy,
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(cf. (13)). Similarly

f ∗ kα
−(m) =

1

Hn(α)

∫

M

f(y) sinhα−n(d(y,m)) cosh(d(y,m)) dy.

6.4. Lemma. Let α ∈ C with 0 < Reα < n be given.
If f ∈ Lp for some p ∈ R+ with Re α−1

n−1
< 1

p
≤ 1, then the integral f ∗kα

+(m)

exists and is finite for a.a. m ∈M . In fact f ∗kα
+ ∈ Lr(M) for all r ∈ R+

with 1
p
− Re α

n
< 1

r
< 1

p
− Re α−1

n−1
and 1

r
≤ 1

p
.

If f ∈ Lp for some p ∈ R+ with Re α
n−1

< 1
p
≤ 1, then the integral f ∗ kα

−(m)

exists and is finite for a.a. m ∈ M . In fact f ∗ kα
− = aα + bα, where

aα ∈ Lr(M) for all r ∈ R+ with 1
p
− Re α

n
< 1

r
≤ 1

p
, and bα ∈ Ls(M) for all

s ∈ R+ with 1
s
< 1

p
− Re α

n−1
.

If 0 < Reα < n
2
, then the integral kα

+ ∗ kα
−(m) exists and is finite for a.a.

m ∈M .

Proof. Write
kα
± = ϕα

± + ψα
±,

where
ϕα
±(m) = 1[0,1](d(o,m))kα

±(m).

By Remark 3.6 combined with (8), a counting of powers of sinh and cosh
shows that

(15) ϕα
± ∈ Lq(M) ⇔ q(Reα− n) + (n− 1) > −1 ⇔ 1

q
>
n− Reα

n
,

and

(16) ψα
+ ∈ Lq(M) ⇔ q(Reα− n) + (n− 1) < 0 ⇔ 1

q
<
n− Reα

n− 1
,

and

(17) ψα
− ∈ Lq(M) ⇔ q(Reα+1−n)+ (n− 1) < 0 ⇔ 1

q
<
n− 1 − Reα

n− 1
.

Assume that f ∈ Lp(M) for some p ∈ R+. Apply Proposition 6.1 to
obtain the following:

Because of (15) the integral f ∗ϕα
±(m) exists and is finite for a.a. m ∈M

if p ≥ 1 and 1
p

+ 1
q
≥ 1 for some q ∈ R+ such that n−Re α

n
< 1

q
≤ 1; that is

if
1

p
≤ 1.

Then f ∗ ϕα
± ∈ Lr(M) for all r ∈ R+ such that 1

r
= 1

p
+ 1

q
− 1 for some

q ∈ R+ such that n−Reα
n

< 1
q
≤ 1; that is for r such that

1

p
− Reα

n
<

1

r
≤ 1

p
.
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Because of (16) the integral f ∗ψα
+(m) exists and is finite for a.a. m ∈M

if p ≥ 1 and 1
p

+ 1
q
≥ 1 for some q ∈ R+ such that 1

q
≤ 1 and 1

q
< n−Re α

n−1
;

that is if
Reα− 1

n− 1
<

1

p
≤ 1.

Then f ∗ ψα
+ ∈ Lr(M) for all r ∈ R+ such that 1

r
= 1

p
+ 1

q
− 1 for some

q ∈ R+ such that 1
q
≤ 1 and 1

q
< n−Re α

n−1
; that is for r such that

1

r
≤ 1

p
and

1

r
<

1

p
− Reα− 1

n− 1
.

Because of (17) the integral f ∗ψα
−(m) exists and is finite for a.a. m ∈M

if p ≥ 1 and 1
p

+ 1
q
≥ 1 for some q ∈ R+ such that 1

q
< n−1−Reα

n−1
; that is if

Reα

n− 1
<

1

p
≤ 1.

Then f ∗ ψα
− ∈ Lr(M) for all r ∈ R+ such that 1

r
= 1

p
+ 1

q
− 1 for some

q ∈ R+ such that 1
q
< n−1−Re α

n−1
; that is for r such that

1

r
<

1

p
− Reα

n− 1
.

For the last part of the lemma note that according to (15), ϕα
+ and ϕα

−

are L1-functions on M when Reα < n, so that from Proposition 6.1

ϕα
+ ∗ ϕα

− exists and is finit for a.a. m ∈M when Reα < n,

and so that, when combining Proposition 6.1 with (16) and (17),

ϕα
+ ∗ ψα

− exists and is finit for a.a. m ∈ M when Reα < n− 1,

and

ψα
+ ∗ ϕα

− exists and is finit for a.a. m ∈M when Reα < n.

Finally

ψα
+ ∗ ψα

− exists and is finit for a.a. m ∈ M when Reα <
n

2
,

which again follows from Proposition 6.1, (16) and (17) since

n− Reα

n− 1
+
n− 1 − Reα

n− 1
> 1 ⇔ Reα <

n

2
.

�

6.5. Remark. Let f ∈ Ca(M) for some a ∈ R be given. If α ∈ C with
0 < Reα < n, the integral f ∗ kα

+(m) exists and is finite for all m ∈ M if
Reα ≤ a, because then

y 7→ f(y) sinhα−n(d(y,m))
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is integrable on M for all m ∈ M (cf. Remarks 6.3 and 3.6). In fact,
counting powers of sinh we see that f will be in Lp(M) if p(1−a)+(n−1) ≤
0 that is if 1

p
≤ a−1

n−1
. Thus the previous lemma gives information on the

integrability of f ∗ kα
+ when Reα < a.

Similarly, the integral f ∗ kα
−(m) exists and is finite for all m ∈ M if

Reα ≤ a−1, and the previous lemma gives information on the integrability
of f ∗ kα

− when Reα < a− 1.

Using Lemma 6.4 and Remark 6.5 the definition of the following con-
volution operators (cf. [26]) now makes sense (see Remark 6.3):

6.6. Definition. Let α ∈ C with 0 < Reα < n be given.
For each f ∈ Lp(M), where p ∈ R+ with Re α−1

n−1
< 1

p
≤ 1, or f ∈ Ca(M)

for some a ≥ Reα, define

(Kαf)(m) = f ∗ kα
+(m) =

1

Hn(α)

∫

M

f(y) sinhα−n(d(y,m)) dy,

the integral existing and being finite for a.a. m ∈ M if f ∈ Lp and
everywhere if f ∈ Ca.
For each f ∈ Lp(M), where p ∈ R+ with Re α

n−1
< 1

p
≤ 1, or f ∈ Ca(M) for

some a− 1 ≥ Reα, define

(Kα
−f)(m) = f∗kα

−(m) =
1

Hn(α)

∫

M

f(y) sinhα−n(d(y,m)) cosh(d(y,m)) dy,

the integral existing and being finite for a.a. m ∈ M if f ∈ Lp and
everywhere if f ∈ Ca.

7. Some Results Involving Kα and Kα
−

We will need a series of lemmas concerning the convolution operators
of Definition 6.6.

7.1. Lemma. Assume that f ∈ Ca(M) for some 0 < a < n. Let m ∈ M
be given. Then the map

α 7→ Kαf(m)

is well-defined and continuous on {α ∈ C|0 < Reα < a}.
Proof. Note that α 7→ Kαf(m) is indeed well-defined on {α ∈ C|0 <
Reα < a} according to Remark 6.5. From Remark 3.6 and Definition 5.4

(18) (Ksf)(m) =
Γ(s)

Hn(s)
Ωn−1

1

Γ(s)

∫ ∞

0

Fm(r, s)rs−1 dr,

where

Fm(r, s) = (M rf)(m)

(

sinh(r)

r

)s−1

.

A standard application of Lebesgue’s Dominated Convergence Theorem
proves the continuity. �
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7.2. Lemma. Assume that f ∈ Ca(M) for some a > 0. Then

lim
s→0+

(Ksf) = f

pointwise on M .

Proof. Let m ∈M and s > 0 be given. Rewrite (Ksf)(m) as in (18), and
note that

Γ(s)

Hn(s)
=

(s− 0)Γ(s)Γ(n−s
2

)

2( s
2
− 0)2sπ

n

2 Γ( s
2
)
→ Γ(n

2
)

2π
n

2

=
1

Ωn−1

for s→ 0.

Let ε > 0 so small that f ∈ C1−a,−1−ε(M) as defined in 4.1 be given. Since
(r, s) 7→ Fm(r, s) is continuous on R2 it is possible to pick δ ∈]0, 1[ such
that

|Fm(r, s) − Fm(0, 0)| < ε

when |r|, |s| < δ. Now for 0 < s sufficiently small (at least so small that
s < min{δ, a}),

| 1

Γ(s)

∫ δ

0

(Fm(r, s) − Fm(0, 0))rs−1 dr| ≤ ε

Γ(s+ 1)
δs < 2ε,

and

| 1

Γ(s)

∫ ∞

δ

Fm(r, s)rs−1 dr| ≤ c

Γ(s)
|
∫ ∞

δ

r−1−ε dr| =
c

Γ(s)εδε
< ε,

where c is a constant independent of δ, ε and s. It was used here that
f ∈ C1−a,−1−ε(M) so that

Fm(r, s) = O(sinhs−a(r)r−s−ε).

Finally

|( 1

Γ(s)

∫ δ

0

rs−1 dr − 1)Fm(0, 0)| = | δs

Γ(s+ 1)
− 1||Fm(0, 0)| < ε

for s sufficiently small. Thus

| 1

Γ(s)

∫ ∞

0

Fm(r, s)rs−1 dr − Fm(0, 0)| < 4ε

for s sufficiently small. �

Let U(g) be the universal enveloping algebra of g (over R). Put Ul(g) =
{u ∈ U(g)|order of u ≤ l}. Define the representation X 7→ LX of g on
C1(M) by

(LXf)(m) =
d

dt

∣

∣

∣

0
f(exp(−tX) ·m).

This representation generates representations of Ul(g) on C l(M) for each
l ∈ N, Ul(g) 3 u 7→ Lu, such that when Ω ∈ U(g) is the Casimir element
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then LΩ is the Laplacian on M (times a non-zero constant) (cf. [13, Chap.
II]).

7.3. Lemma. Let l ∈ N be given. Let α ∈ C with 0 < Reα < n and
f ∈ C l(M) be given such that

(19) ∀u ∈ Ul(g) : Luf ∈ CRe α(M).

Then Kαf is in C l(M) and

∀u ∈ Ul(g) : Lu(K
αf) = Kα(Luf).

Proof. Note that u = 1 in (19) makes Kαf well-defined. Furthermore, by
induction, it is enough to prove the lemma for l = 1. Let u ∈ U(g) of
order 1 be given. Then u = X ∈ g and

(Luf)(m) =
d

dt

∣

∣

∣

0
f(exp(−tX) ·m), m ∈M.

We will prove that for each m ∈ M integration and differentiation in the
following expression (20) can be interchanged, because then it follows from
the G-invariance of d and of the integral on M that Kαf is in C1(M) with

(Lu(K
αf))(m)

=
d

dt

∣

∣

∣

0

∫

M

f(exp(−tX) · y) sinhα−n(d(y,m)) dy(20)

=

∫

M

d

dt

∣

∣

∣

0
f(exp(−tX) · y) sinhα−n(d(y,m)) dy

= (Kα(Luf))(m)

Let m ∈M be given. For any t0 ∈ R

d

dt

∣

∣

∣

t0
f(exp(−tX)·m) =

d

dt

∣

∣

∣

0
f(exp(−(t+t0)X)·m) = (Luf)(exp(−t0X)·m).

Therefore, with gt = exp(−tX), it follows from (19) that

d

dt
f(exp(−tX) ·m) = O(sinh1−Re α(d(gt ·m, o))(d(gt ·m, o)−1−ε)

for some ε > 0. Thus, according to Lemma 4.2, there exists c > 0 such
that

| d
dt
f(exp(−tX) ·m)| ≤ c sinh1−Re α(d(m, o))(d(m, o))−1−ε

for all t in some compact neighborhood of 0. Hence

m 7→ d

dt
f(exp(−tX) ·m) sinhα−n(d(y,m))

is dominated by an integrable function on M , which is independent of t
in some neighborhood of 0. �
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7.4. Lemma. Let l ∈ N and f ∈ C l(M) be given. Then

∀u ∈ Ul(M) : M r(Luf) = Lu(M
rf).

Proof. By induction it is enough to prove the lemma for l = 1. Let
u ∈ U1(g) be given. Then u = X ∈ g so for each m ∈M

M r(Luf)(m) =
1

Ωn−1

∫

Sn−1

(Luf) ◦ Expm(rω) dω

=
1

Ωn−1

∫

Sn−1

d

dt

∣

∣

∣

0
f(exp(−tX) · Expm(rω)) dω

=
d

dt

∣

∣

∣

0

1

Ωn−1

∫

Sn−1

f(Expexp(−tX)·m(dlexp(−tX)(rω)) dω

(?)
=

d

dt

∣

∣

∣

0

1

Ωn−1

∫

Sn−1

f(Expexp(−tX)·m(rω)) dω

=
d

dt

∣

∣

∣

0
(M rf)(exp(−tX) ·m)

= (Lu(M
rf))(x).

In the transformation (?) it was used, that dlexp(−tX) is an isometry of
the unit sphere of Tm(M) on the unit sphere of Texp(−tX)·m(M), because
lexp(−tX) is an isometry of M . �

7.5. Lemma. Let l ∈ N and a ∈ R be given. Assume of f ∈ C l(M) that

(21) ∀u ∈ Ul(g) : Luf ∈ Ca(M).

Given m ∈M we will then have that

dl

drl
M rf(m) = O(sinh1−a(r)r−1−ε)

for some ε > 0.

Proof. Pick g ∈ G such that g · o = m. Then

M rf(m) =
1

Ωn−1

∫

Sn−1

f ◦ Expm(rω) dω

=
1

Ωn−1

∫

Sn−1

f(gExpo(rdlg−1ω)) dω = M r(f ◦ lg(o)),

since dlg−1 is an isometry of the unit sphere in Tm(M) on the unit sphere
in To(M), because lg−1 is an isometry of M . Furthermore, for u ∈ Ul(g)

Lu(f ◦ lg) = (LAd(g)uf) ◦ lg,
since when e.g. u ∈ U1(g), i.e. u = X ∈ g, then

(Lu(f ◦ lg))(m) =
d

dt

∣

∣

∣

0
f(g exp(−tX) ·m)

=
d

dt

∣

∣

∣

0
f(g exp(−tAd(g)X)g ·m) = ((LAd(g)uf) ◦ lg)(m)
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for each m ∈M . Since Ca(M) is invariant under lg (cf. Corollary 4.3), we
may thus assume that m = o.

Note that

dl

drl
M rf(o) =

1

Ωn−1

∫

Sn−1

dl

drl
f ◦ Expo(rω) dω.

Let ω ∈ Sn−1 ⊂ To(M) be given. Using Remark 3.2 and, for notational
convenience, not distinguishing between ω and (dϕe)

−1ω, we see that for
any r0 ∈ R

dl

drl

∣

∣

∣

r0

f ◦ Expo(rω) =
dl

drl

∣

∣

∣

0
f(exp((r + r0)ω) · o)

=
dl

drl

∣

∣

∣

0
f(exp(−r(−ω)) exp(r0ω) · o)

= (LY f)(exp(r0ω) · o),
where Y = (−1)lω · . . . ·ω (ω appearing l times). Therefore it follows from
(21) that for some ε > 0

dl

drl
f ◦ Expo(rω) = O(sinh1−a(d(exp(rω) · o, o))(d(exp(rω) · o, o))−1−ε)

= O(sinh1−a(|r|)|r|−1−ε),

since (cf. Remark 3.2 and (8))

d(exp(rω) · o, o) = d(Expo(rω), o) = |rω| = |r|.
�

7.6. Proposition. Let α ∈ C with 2 < Reα and f ∈ C2(M) be given
such that

(22) ∀u ∈ U2(g) : Luf ∈ CReα(M).

Then

((α− n)(α− 1) − ∆)Kαf = Kα−2f.

Proof. Note, that (22) for u = 1 makes Kαf well-defined.
According to Lemma 7.3, Remark 3.6 and Lemma 7.4

Hn(α)∆mK
αf(m) =

∫

M

(∆f)(y) sinhα−n(d(y,m)) dy

= Ωn−1

∫ ∞

0

M r(∆f)(m) sinhα−1(r) dr.

Thus using the Darboux equation (see e.g. [12, p. 90-91])

Hn(α)∆mK
αf(m) =

∫ ∞

0

(∆radM
rf)(m) sinhα−1(r) dr,
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where ∆rad is the radial part of the Laplacian on M :

∆rad =
∂2

∂r2
+ (n− 1) coth(r)

∂

∂r
.

For each N > 1 we have by way of partial integration, that

(23)

∫ N

1

N

(
d2

dr2
M rf)(m) sinhα−1(r) dr

=
[

(
d

dr
M rf)(m) sinhα−1(r)

]N
1

N

−
[

(α− 1)(M rf)(m) sinhα−2(r) cosh(r)
]N

1

N

+ (α− 1)

∫ N

1

N

(M rf)(m)
d

dr
(sinhα−2(r) cosh(r)) dr

and

(24)

∫ N

1

N

coth(r)(
d

dr
M rf)(m) sinhα−1(r) dr

=
[

(M rf)(m) sinhα−2(r) cosh(r)
]N

1

N

−
∫ N

1

N

(M rf)(m)
d

dr
(sinhα−2(r) cosh(r)) dr.

Note that

|M rf(m)| ≤ 1

Ωn−1

∫

Sn−1

|f ◦ Expm(rω)| dω = |f ◦ Expm(rω)|,

so that f ∈ Ca implies

(25) ∀m ∈M∃ε > 0 : M rf(m) = O(sinh1−a(r)r−1−ε).

Since

d

dr
(sinhα−2(r) cosh(r)) = (α− 2) sinhα−3(r) + (α− 1) sinhα−1(r),

it follows from (25) that r 7→ (M rf)(m) d
dr

(sinhα−2(r) cosh(r)) is domi-
nated on [0,∞[ by an integrable function. Thus letting N go to ∞ in (23)
and (24) while applying Lemma 7.5 and (25), we obtain

∫ ∞

0

(∆radM
rf)(m) sinhα−1(r) dr

= (α− n)

∫ ∞

0

(M rf)(m)((α− 2) sinhα−3(r) + (α− 1) sinhα−1(r)) dr.



60 The Hyperbolic Case

Hence

((α− n)(α− 1) − ∆)Kαf

= (α− n)(α− 1)Kαf

− α− n

Hn(α)
((α− 2)Hn(α− 2)Kα−2f + (α− 1)Hn(α)Kαf)

=
(α− n)(α− 2)

Hn(α)
Hn(α− 2)Kα−2f = Kα−2f.

�

7.7. Corollary. Assume that n > 2. Let f ∈ C2(M) be given such that

∀u ∈ U2(g) : Luf ∈ Ca(M)

for some a > 2. Then

((2 − n) − ∆)K2f = f.

Proof. Both α 7→ Kαf(m) and α 7→ ∆Kαf(m) = Kα(∆f(m)) are con-
tinuous on {α ∈ C|0 < Reα < 2} (cf. Lemma 7.1 and Lemma 7.3), so
according to Lemma 7.2 and Proposition 7.6

((2 − n)(2 − 1) − ∆)K2f(m) = lim
s→2+

((s− n)(s− 1) − ∆)Ksf(m)

= lim
s→2+

Ks−2f(m) = f(m).

�

8. The Inversion Theorem

8.1. Lemma. Let α ∈ C with 0 < Reα < min{n− 1, n
2
} be given. Then

(f ∗ kα
+) ∗ kα

− = f ∗ (kα
+ ∗ kα

−)

a.e. on M , whenever f ∈ Lp(M) for some p ∈ R+ such that

max { Reα

n− 1
,
2Reα− 1

n− 1
} < 1

p
≤ 1.

Proof. Let f ∈ Lp(M) for some p ∈ R+. Then, according to Lemma 6.4,
the integral f ∗ kα

+(m) exists and is finite for a.a. m ∈M if

Reα− 1

n− 1
<

1

p
≤ 1,

and then f ∗ kα
+ ∈ Lr(M) for all r ∈ R+ such that

1

p
− Reα

n
<

1

r
<

1

p
− Reα− 1

n− 1
and

1

r
≤ 1

p
.
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Again according to Lemma 6.4 the integral (f ∗kα
+)∗kα

− exists and is finite
for a.a. m ∈M if f ∗ kα

+ ∈ Lr(M) for some r ∈ R+ such that

Reα

n− 1
<

1

r
≤ 1.

This is especially true when f is replaced by |f |, so since kα
± are positive

functions, the function (cf. (14))

(g, h) 7→ f(h · o)kα
+(h−1g · o)kα

−(g−1g0 · o)
is in L1(G×G) for a.a. m = g0 · o in M , when

Reα− 1

n− 1
<

1

p
≤ 1 and

Reα

n− 1
< min{1

p
,
1

p
− Reα− 1

n− 1
},

that is when

max { Reα

n− 1
,
2Reα− 1

n− 1
} < 1

p
≤ 1.

From Fubini’s Theorem we get

((f ∗ kα
+) ∗ kα

−)(g0 · o) =

∫

G

(f ∗ kα
+)(g · o)kα

−(g−1g0 · o) dg

=

∫

G

∫

G

f(h · o)kα
+(h−1g · o) dh kα

−(g−1g0 · o) dg

=

∫

G

f(h · o)
∫

G

kα
+(g · o)kα

−(g−1h−1g0 · o) dg dh

=

∫

G

f(h · o)(kα
+ ∗ kα

−)(h−1g0 · o) dh

= (f ∗ (kα
+ ∗ kα

−))(g0 · o),
where kα

+ ∗ kα
− is well-defined according to the last part of Lemma 6.4,

since Reα < n
2
. �

8.2. Theorem. Assume that n > 2, and let k ∈ {1, . . . , n − 1} be given.
Let f ∈ C2(M) be given such that

∀u ∈ U2(g) : Luf ∈ Ca(M)

for some a with a > 2 and a ≥ k. Then f can be recovered from its
k-dimensional Radon transform by

(26) f = c

{

Pk(∆)(f̂ )̌ , k even

((2 − n) − ∆)K1
−Pk(∆)(f̂ )̌ , k odd

,

where

Pk(∆) =

[ k

2
]−1

∏

i=0

((k − 2i− n)(k − 2i− 1) − ∆),

[k
2
] denoting the integer part of k

2
, and c = (4π)−

k

2
Γ( n−k

2
)

Γ( n

2
)

.
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Proof. According to Lemma 5.7 and Definition 6.6

(f̂ )̌ (m) =
Ωk−1

Ωn−1
Hn(k)K

kf(m) = c−1Kkf(m)

for all m ∈M since f ∈ Ck(M). Using Proposition 7.6 repeatedly, and in
the case of k even applying Corollary 7.7, we see that

cPk(∆)(f̂ )̌ = Pk(∆)Kkf =

{

f , k even
K1f , k odd

.

We wish to apply Lemma 8.1 with α = 1 on f . But n > 2, so 1 <
min{n− 1, n

2
}. And according to Remark 6.5, f ∈ Lp(M) for all p ∈ R+

with 1
p
≤ a−1

n−1
, where 1

n−1
< a−1

n−1
since a > 2. Thus the prerequisites of

Lemma 8.1 are met, so

K1
−K

1f = (f ∗ k1
+) ∗ k1

− = f ∗ (k1
+ ∗ k1

−).

According to [26, p.220-221], k1
+ ∗ k1

− = k2
+. Hence

K1
−K

1f = K2f.

From Corollary 7.7 the result follows. �

The case n = 2 is discussed in e.g. [26, p.221], [12, Chap. III] and [20].
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