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Abstract

This thesis studies stability issues of ruin probabilities in various models occurring in risk theory. The
question of stability arises naturally in risk theory since the governing parameters in these models can
only be estimated with uncertainty. Moreover, in most cases there are no explicit expressions known for
the ruin probabilities.

The main contribution of the thesis is to provide explicit stability bounds for ruin probabilities in
various risk models. Since asymptotic behaviour of ruin probability is very important, we consider
weighted distance between the ruin probabilities. The proper choice of the weight functions is part of
the problem. It is related to the tail behaviour of the ruin probabilities, if the latter is known. Distance
between the governing parameters is dictated by the techniques involved. We are following mainly two
approaches to obtain our stability bounds: one is based on the stability bounds for stationary distributions
of Markov chains developed by Kartashov. A second approach exploits the regenerative property of so-
called reversed process.
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Chapter 1

Introduction

1.1 Actuarial risk models and the stability issue

Actuarial risk theory goes back to the works of Lundberg and is used to model the portfolio of an insurance
company. The risk process R represents the capital value of a company at each time t. Typically the
risk process R takes care of the premiums paid to the insurance company and the claims paid out by the
insurance company, thus considers the insurance risk. Such a situation is present in the Cramér-Lundberg
(also called classical), the Sparre Andersen and many others risk models. Some of the more recent risk
models involve also investment possibilities and consider the situation where capital is exposed to financial
as well as insurance risk. Such risk models were investigated by Paulsen, Norberg, Kalashnikov and many
others.

One of the most important characteristics of the risk process is a ruin probability ψ(x) which is a
probability that the capital falls below the level 0 and is considered as a function of an initial capital
x := R(0):

ψ(x) = P

(

inf
t≥0

R(t) < 0
∣

∣

∣R(0) = x

)

.

The level 0 here is chosen by tradition and convenience, one can consider any other level defining the
event ruin instead, see for example Embrechts & Schmidli [13]. However, the initial capital x can be
always adopted so that ruin is associated with the level 0. Note also that ruin hardly means bankruptcy
of the company. It should be considered as a technical term which expresses riskiness of the business.

Ruin probabilities can be found explicitly only in rare cases. This is so for the Cramér-Lundberg
risk model where claims are following the exponential distribution (or a mixture of exponentials), or the
Markov modulated risk model with phase-type distributed claims, see Asmussen [3]. However, in many
other interesting cases the ruin probability cannot be found explicitly, and thus the main attention is
devoted to the asymptotic behaviour of ψ(u) when u tends to ∞. In the Cramer-Lundberg model under
the Cramér assumption the ruin probability decays exponentially fast, i.e.,

ψ(x) ∼ C exp(−εx), asx→ ∞,

where constants C ≥ 0, ε > 0. The situation alters if one assumes ’heavy-tailed’ claims (all positive
exponential moments are infinite) or investments. For example, if the claim size distribution function (d.f.)
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2 CHAPTER 1. INTRODUCTION

is such that the corresponding integrated tail distribution (say, F I
Z) is subexponential, then the asymptotic

behaviour of the ruin probability is given by the function C(1 − F I
Z), where C > 0, see Embrechts et

al. [12]. Risk models with investments driven by a Lévy process were considered by Kalashnikov and
Norberg [31], among others. They investigated the tail behaviour of the ruin probability and showed
that with the possibility of risky investments, i.e. investments which may possibly lead to a loss, the ruin
probability is in general no longer an exponentially decaying function even in the case of small claims.
In some cases, the latter probability decays not faster than a power function. The behaviour of the ruin
probability in risk models with capital exposed to financial as well as insurance risks was considered by
various authors. Paulsen [41] sets up quite a general model with stochastic investments and shows that
the financial risk has a significant influence on the ruin probability. Norberg [39] considers risk processes
where the cash flow and the log accumulation factor are independent Brownian motions with drift. By
an application of martingale techniques it is shown that the ruin probability exhibits power function
behaviour. Those results indicate that even very small random perturbations may have a significant
influence on the ruin probability.

The listed examples show that the asymptotic behaviour of ruin probabilities is quite different. This
leads to the following considerations.

Stability issues. Let us collect all the parameters of a risk model to a vector valued governing parameter
or input characteristic a. For example, the Cramér-Lundberg model is governed by the premium rate
c, the claims occurrence intensity λ and the claim size d.f., say FZ . In the Sparre Andersen model the
intensity λ would be replaced by the claims inter-occurrence times d.f., say Fθ. Depending on the model,
the governing parameter a may take more complicated values including parameters of (random) interest,
etc. The ruin probability function

ψa := {ψa(x)}x≥0

(we will refer to ψa simply as ruin probability) is fully determined by the input a, and thus it represents
an output characteristic of the model. The examples above show that the ruin probability may have
different asymptotic behaviour for different inputs a. Thus, a natural and also crucial question for
applications is whether the model under consideration is stable, i.e., whether small perturbations in the
input characteristic a yield also to the small deviations of the output ψa. This question is not trivial, since
in general, the explicit expression for the ruin probability is not known, and hence the dependence of ψa on
the governing parameter a cannot be investigated directly. Furthermore, the importance of the stability
analysis is motivated by the fact that the governing parameter a is not known in practice. One typically
would estimate it from the data and replace it by the statistical estimates and empirical distributions
or use some other parameter which is believed to be close to the ’true’ (or optimal) parameter a. Thus,
we are in the situation where the input parameters are not known and for any given input, the output
characteristic is also not known (in certain ceases even the asymptotic behaviour of the ruin probability is
also not known). One major problem we are studying is whether convergence of the governing parameters
(in some sense) implies convergence of the corresponding ruin probabilities (in some sense). The goal
of the thesis is to obtain explicit bounds for the (unknown) ruin probabilities in terms of the governing
parameters.

Stability questions do not originate from actuarial risk theory. On the contrary, this question is well
known and has been investigated in the context of stochastic processes and their applications: stationary
distributions of Markov chains, finite-time and uniform-in-time stability of regenerative processes, waiting
times in queuing theory, reliability, storage theory, etc. The creator of the stability theory is considered
to be Lyapunov who considered stability in the theory of differential equations. The general stability
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problem for stochastic models was proposed by Zolotarev, see [52] and references therein. Its basic
statements with a view towards actuarial risk theory are reproduced in Kalashnikov [30, 32]. Stability
of the ruin probability is a particular case of the general setting. The above discussed stability in these
terms is a ’direct-stability’, whereas an ’inverse-stability refers to the deviations of input, in our case a,
with respect of the perturbations of output, ψa. This question also makes sense in our setting of ruin
probabilities. In this thesis stability refers to the ’direct-stability’, unless stated otherwise. The inverse
problem will be only touched briefly in the discussion of the main result.

Now we formulate the stability problem for the ruin probability.

1.2 Stability problem for the ruin probability

Stability problem. Let A be the space of governing parameters describing the risk model. The ruin
probability ψ is considered as a function of a ∈ A and is a mapping from the space A of governing
parameters into a functional space Ψ, i.e. ψ : A → Ψ, where ψa ∈ Ψ is a function of the initial capital
x. Assume that the spaces A and Ψ are metric spaces (A, dA) and (Ψ, dΨ). This setup allows for the
following notion of stability: The ruin probability ψ is called stable at the point a if for any sequence
{a′} ⊂ A converging to a we have the convergence of the corresponding ruin probabilities, i.e.,

dA(a, a′) → 0 ⇒ dΨ(ψa, ψa′) → 0.

We will not deal with the whole space of governing parameters but only with a certain subset meeting
conditions to be specified later. Throughout the thesis this set will be denoted by A and will be called
the set of admissible parameters. If we can find a function f , continuous at 0 with f(0) = 0, and a set A

such that
dΨ(ψa, ψa′) ≤ f(dA(a, a′)), a, a′ ∈ A (1.1)

then the inequality (1.1) is called a stability bound for the ruin probability. Often the function f depends
on some characteristics of the parameters a and a′ (moments, etc.). Our aim is to obtain stability bounds
of the form (1.1).

In the sequel we assume that the original process is governed by a given parameter a. Together
with the original process we consider a perturbed process. All quantities (parameters, random variables,
processes) referring to a perturbed process will be marked by a prime.

Metrics dA and dΨ. The choice of metrics dA and dΨ is of crucial importance for the successful
stability analysis and represents part of the problem. Since the most important characteristic of the
ruin probability is its asymptotic behaviour, we seek for such stability bounds which allow for a tail
comparison of the ruin probabilities. This implies that metric dΨ has to be weighted metric. We will use
the following metrics dΨ:

The weighted total variation metric ‖ · ‖w,

‖ψa − ψa′‖w :=

∫ ∞

0

w(u)|ψa(du) − ψa′(du)|; (1.2)

The weighted uniform metric | · |w,

|ψa − ψa′ |w := sup
u
w(u)|ψa(u) − ψa′(u)|.
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Here w is a weight function, i.e., it is bounded away from 0 and increasing (typically to ∞). The weight
function w restricts a set of admissible deviations in terms of the tail behaviour of the ruin probability
from the original model. Typically, the choice of w is related to the asymptotic behaviour of the ruin
probability, if the latter is known. We will use w(x) = exp(εx) if the ruin probability has an exponential
decay, and w(x) = (1 + x)ε in the case of power law decay of the ruin probability. However, stability
bounds are more interesting when the asymptotics of the ruin probability is not known. Thus, the choice
of the metric dΨ constitutes a part of the stability problem.

However, sometimes it is easier to obtain the stability bound in some other metric. Then one need
to use relations between the two metrics in order for the final result to be stated in a desired metric dA.
This task is not always easy since in general, different metrics induce different topologies. This problem
has been discussed in Zolotarev [52], Kalashnikov & Rachev [33], Kalashnikov [30]. Coming back to
the metrics ‖ · ‖w and | · |w, we consider that weighted uniform metric may be more useful for practical
applications. An inequality | · |w ≤ ‖ · ‖w allows to rewrite the stability bound (1.1) in terms of the
weighted uniform metric | · |w.

The choice of the metric dA in the parameter space A is mostly dictated by the techniques to be used.
For the better result, one should seek for the weaker metric dA. For example, the weighted total variation
metric is too strong: we cannot approximate absolutely continuous density functions by empirical (pure
jump) density functions.

1.3 Approaches to the solution

Since stability has been intensively investigated for different stochastic models, before solving the stability
of ruin probability problem, we list some important (for our problem) features of already developed results
and techniques.

First, stability analysis deals mainly with stationary stochastic systems and their stationary character-
istics: stability in the limit theorems was investigated by Zolotarev with the help of probability metrics,
see [52]; stability bounds for the stationary distributions of MC’s were investigated by Borovkov [10],
Kartashov [35] and others. The works of Kartashov are based on perturbation theory of linear oper-
ators in Banach spaces. Further, the stability of regenerative processes (such process consists of i.i.d.
cycles) was extensively studies by Kalashnikov using coupling and crossing arguments, see [28] and the
references therein. The finite-time stability bounds for different systems (regenerative process, queuing
systems, etc.) may be obtained using the technique of minimal probability metrics, see Zolotarev [52],
Kalashnikov [26], Rachev [44]. The uniform-in-time bounds use regenerative arguments.

The other feature of the above mentioned results is that they deal with bounded probability metrics
(i.e., probability metrics ν is bounded if ν ≤ C for some C < ∞), such as uniform, total variation,
Prohorov, Fortet-Mourier and other probability metrics. Stability bounds in terms of unbounded metrics
can be obtained with the help of existing relations between the probability metrics, and possibly under
some additional assumptions on the risk model. This problem is discussed in Kalashnikov [28]. However
weighted probability metrics had very limited attention. The only exception, to our knowledge, are
stability bounds for the stationary distributions of MC’s developed by Kartashov. These results hold in
the weighted total variation distance (1.2).

Coming back to the stability of the ruin probability problem let us note the following. Because of
the so-called positive safety loading condition which ensures that ruin does not occur with probability 1,
the risk process typically has drift to ∞, and thus, it does not possess stationary characteristics. This
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prevents the application of developed results to the risk process directly. However, this does not represent
a major problem either. It is well known that the risk process can be related to a dual process {Vn} like in
queuing and storage. In risk theory this process is known as a the reversed process since it is constructing
by a certain time-reversing procedure, see Amussen [3], Enikeeva et. al. for such constructions. The
reversed process satisfies the relation

ψ(x) = lim
n→∞

P(Vn > x).

The construction of the reversed process is typically algebraic (uses path-wise arguments) and does
not rely on the probabilistic properties of {Rn}. Therefore, in some cases {Vn} does not represent a
MC. Typically this can be solved by supplementing {Vn} with the additional coordinates form a certain
stationary sequence {ϕn}, which makes the process {Vn, ϕn} a MC and possibly also a regenerative
process. This allows one to employ the well developed results for the stability investigation.

The second problem concerning the unbounded probability metric is more difficult to overcome and
may require more sophisticated techniques.

Some of the results for the stability of the ruin probability are based on bounds for general MC’s
obtained by Kartashov, see Enikeeva et. al. [14], Rusaityte [46]. This technique uses a decomposition
(also called splitting) of the transition kernel P of a MC {Vn, τn},

P (v,Γ) = K(v,Γ) + h(v)ν(Γ), (1.3)

where h is a non-negative function, ν is a probability measure and a kernel K ≥ 0. The shift operator K

corresponding to kernel K has to meet a certain norm condition, namely, for some weight function w,

‖K‖w := sup
v≥0

Kw(v)

w(v)
< 1. (1.4)

For further details about this technical condition we refer to Section 3.2.2. Now we would like to emphasize
that this yields the stability bound for the stationary distribution π of a MC {Vn, τn} in the weighted total
variation metric with the latter weight w. Thus, it is very important to use the ’right’ (with respect to
the risk model) weight function w. In simple cases, like Sparre Andersen model, this does not represent a
big problem, and, actually, has been carried out by Kartashov in terms of queuing applications, see [35].
However, in general, it represents the main technical difficulty. In many other risk models it is not
possible to prove that the required norm condition ‖K‖w < 1 holds with the desired weight function w.
One needs to construct another weight function which has the same tail behaviour and is related to w.
This yields the stability bound for the ruin probability in metric ‖ ·‖w. However, this is not a final bound
since it is given in terms of the shift operators of the reversed processes. The bound directly in terms
of the governing parameters is obtained by solving the stability problem for the shift operator. It can
be solved with the help of minimal metrics. Typically the application of Kartashov’s bounds rely on the
assumptions which are related to the Cramér condition of the corresponding risk model.

Another approach proposed in Kalashnikov [30] uses the regenerative property of the reversed process.
Thus, we refer to his method as regenerative approach. This approach deals with the weighted uniform
metric | · |w. The two cases, so-called Cramér and non-Cramér, are treated differently. In a Cramér case,
the original and perturbed reversed processes {Vn} and {V ′

n}, respectively, with Vn ∼ Gn and V ′
n ∼ G′

n,
satisfy the following contraction property:

|Gn+1 −G′
n+1|w ≤ κ|Gn −G′

n|w + dA(a, a′), (1.5)
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where the constant κ < 1. Property (1.5) is typically related to the Cramér condition, see examples in
Kalashnikov [30]. In order that (1.5) holds one need to prove that Ew(Vn) is uniformly bounded for all
n > 0. The latter proof uses the regenerative property of the reversed process and test functions technique.
The construction of the test function problem is related to the construction of the weight function in the
MC approach discussed above. The stability bound follows immediately from the relation (1.5):

|ψ − ψ′|w ≤ sup
n≥0

|Gn −G′
n|w ≤ dA(a, a′)

1 − κ
. (1.6)

Since Gn corresponds to the finite-time ruin probability ψ(n) caused by the first n claims, the above bound

also holds for |ψ(n) − ψ′(n)|w. In Kalashnikov [30] this approach was applied to the Cramér-Lundberg
risk model and to the model with Lévy processes driven investments. In Rusaityte [47] it was generalized
to the Markov modulated risk model with investments driven by a Lévy process.

The non-Cramér case refers to the case when the relation (1.5) holds with constant κ ≥ 1. Typically
this is the case when Cramér condition of the risk model is violated, for a example the risk model with
heavy tailed claims, see [30]. In this case the approach is built upon the ideas from the uniform-in-time
comparison of regenerative processes developed by Kalashnikov, see [28, 29] and further references therein.
The first step is to prove the finite-time stability bound supn≤N |Gn −G′

n|w ≤ dA(a, a′)N . Then, by the
regenerative property of process {Vn}, to bound the remaining term δN , so that δN → 0 when N → ∞.
The final uniform-in-time stability bound in terms of supn≥0 |Gn−G′

n|w follows from the successful choice
of N = N(dA(a, a′)). For the further details we refer to [30].

Contribution of the thesis

This thesis is based on the following papers:

1. Continuity estimates for ruin probabilities, [14] (together with F. Enikeeva and V. Kalash-
nikov, Scan. Act. J., 2001). This paper proposes a general approach allowing to obtain explicit sta-
bility (continuity) bounds for ruin probabilities. The approach is based on the three steps: (i) reverse
the risk process; (ii) if necessary, make it a MC by supplementing with additional coordinates, and (iii)
apply known stability results. Each of these three steps are well-known in the literature. The paper also
proposes another construction of the reversed process. In particular it is useful in the risk models where
income depends on the current reserve, for example, the risk models with investments. This approach
is illustrated by two examples, the Sparre Andersen and Markov modulated risk models. Application
of Kartashov’s results for general MC’s yields stability bounds in weighted total variation distance with
exponential weight.

2. Continuity of the ruin probability in a model with borrowing and investments, [46]
(conditionally accepted). In this paper the above approach based on the stability bounds for general
MC’s is applied to the risk model where capital in excess of a given (large) level is invested to a portfolio
driven by a Lévy process, and when capital drops below certain given level, the company is obliged to
borrow the missing amount at a constant interest rate. This model is technically more involved and uses
different constructions concerning the decomposition of the transition kernel and the explicit expressions
in terms of the governing parameters. Distance between the ruin probabilities is weighted with exponential
weight when investments take place at constant interest rate, and with the power-law weight in general
model. This corresponds to exponential and power-law upper bounds for the ruin probability in the
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respective models. Explicit stability bounds are obtained for the investments at constant interest rate,
the interest rate is perturbed by jumps at Poisson times, and the Black-Scholes price process.

3. Stability of the ruin probability in a Markov modulated model with investments, [47]
(submitted). This paper deals with the stability of the ruin probability in a Markov modulated risk
model with Lévy process driven investments. We apply the regenerative approach from Kalashnikov [30].
Stability bounds are based on a certain ’contraction’ property for the reversed process {Vn}, and also
finiteness of the moments Ew(Vn), where w is a weight function in a weighted distance between ruin
probabilities. The latter moment condition is proved with the help of test functions. The final stability
bounds are given in weighted uniform metrics.

Some general remarks. 1. The results show that in our case ruin probability is stable, i.e. in each
model we are able to find a set of admissible governing parameters A where stability bound holds. The
main result of the thesis are the explicit stability bounds in the weighted metric. Weights play very
important role in the thesis. In some cases, when asymptotic behaviour of ruin probability is known, the
asymptotically faster weight functions can lead to instability. Such examples are given in Kalashnikov [30].

2. The weighted total variation metric is too strong: there is no convergence between absolutely
continuous and pure jump (for example, empirical) distributions. This is a disadvantage of the MC
approach since it provides stability bounds in weighted total variation metric between the distributions
involved in the governing parameter.

3. The regenerative approach yields stability bounds in a weighted uniform metric, which for practical
applications are better.

Outline of the thesis

In Chapter 2 we introduce the risk models which will be considered in the thesis. We start with the
general concepts of the risk process {Rn} and the corresponding ruin probability ψ. In Section 2.1.1
we present the construction of the so-called reversed process {Vn}, the stationary distribution of which
is identified with the ruin probability. This construction is taken from Enikeeva et. al. [14]. It uses a
path-wise argument, similar to Asmussen & Petersen [6], and is useful particularly in such cases where
income of the insurance company depends on the capital level, i.e., Rn+1 − Rn depends on Rn (among
other processes and r.v.’s). Such a situation occurs, for example, in models with investments. All the
technical details in the stability analysis of the ruin probability will be carried out in terms of the reversed
process.

Next, we introduce the particular risk models for which stability bounds of ruin probability will be
obtained. We consider four models: the Sparre Andersen risk model, well known in actuarial litera-
ture; the Markov modulated risk model representing the classical (or Cramér-Lundberg) risk model in
a Markovian environment; the model with Lévy processes driven investments and borrowing which is
a generalization of risk models considered by Kalashnikov & Norberg [31] (the Lévy process driven in-
vestments) and Embrechts & Schmidli [13] (borrowing and investments at constant interest rates). The
last model encounters both, random interest driven by a Lévy process and Markov modulation. The last
section is devoted to some facts about the asymptotic behaviour of the ruin probabilities in the listed
models under assumptions similar to those under which the stability bounds will be obtained.

In Chapter 3 we give the mathematical background on which thesis relies. MC’s are used throughout
all thesis. In Section 3.1 we introduce some basic notions, like generating operator of a MC, etc. Dynkin’s
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formula is an important tool used in Chapter 7 in a regenerative approach. Further we give some facts
about the ergodicity of denumerable (with finite or countable state space) and general (with state space
in R

k) MC’s. Ergodicity here means existence of a unique stationary distribution of a MC.
Part of the results in thesis rely on the stability bounds for stationary distributions of MC’s developed

by Kartashov [35]. These bounds together with involved facts about kernel operators and their norms are
given in Section 3.2. At the end of the section we discuss the applicability of these results to the stability
problem of ruin probability. Kartashov’s bounds serve as a main source for the results in Chapters 4 to 6.

Next we introduce regenerative processes and the notion of crossing of regenerative processes. The
stability bounds (uniform-in-time and finite-time) for the regenerative processes using crossing arguments
were developed by Kalashnikov, see for example [28]. They rely on finiteness of the moments of crossing
times. Such a uniform-in-time stability bound for discrete time regenerative process is given in Proposi-
tion 3.18. We use this result in order to compare finite-state MC’s, which can be treated as regenerative
processes. Also, the regenerative structure of the reversed process is exploited in Chapter 7.

Ergodicity theorems for general MC’s and also stability bounds for regenerative processes involve
certain moment requirements on the first passage time of the process to a given set. Test function
technique is very helpful in proving such conditions. Some results in this direction are given in Section 3.4.

Some facts about probability metrics are given in Section 3.5. In particular, technique of minimal
metrics play very important role in this thesis. In Chapter 6 it is used to solve the stability of the shift
operator of a MC problem with respect to the governing parameter.

In Chapter 4 we illustrate the applicability of Kartashov’s bounds for stationary distributions of MC’s
in the Sparre Andersen model. The imposed assumptions are related to the Cramér condition and yield
the exponential upper bound for the ruin probability ψ(x) ≤ e−εx. The final result is given in a weighted
total variation metric with weight function w(x) = eεx. In this model stability bounds for the ruin
probability follow straightforwardly. This example is taken from Enikeeva et. al. [14].

In Chapter 5 we apply the same MC approach based on the results of Kartashov to the Markov
modulated risk model. We work under assumptions related to the Cramér condition. The final result is
given in a weighted total variation metric with exponential weight eε∗v. Decomposition (1.4) is based on
the fact that for every n, Vn attains value {0} with positive probability. The main difficulty concerns
the norm condition (1.4) of the decomposed kernel K, see (1.3): we have to construct another weight
function W (i, v) s.t. W (i, v) ∼ Cie

ε∗v when v → ∞ for some constants Ci > 0 and ‖K‖W < 1. This
allows us to obtain the final stability bound for the ruin probability in a weighted total variation metric
with the desired weight eε∗v. This model was treated in Enikeeva et. al. [14].

In Chapter 6 we consider a risk model with borrowing at constant interest rate when capital is low
and Lévy process driven investments taking place for the capital in excess of some (large) level. Similar
to the previous two chapters, we apply MC approach based on the results of Kartashov in order to obtain
the stability bounds for ruin probability. The decomposition (1.3) in two previous models was based on
the fact that for all n, Vn takes 0 value with positive probability. In current situation, due to borrowing
condition, the reversed process {Vn} for n > 0 stays positive. Now we decompose kernel P using that the
reversed process {Vn} has a positive density in some interval (0, d∗) and also the ’memoryless’ property
of exponential claim inter-arrival times. This construction is given in Section 6.2. In order to prove
the norm condition (1.4), we consider two cases: the general model when investments are driven by a
genuine Lévy process U , and the deterministic model when process U is deterministic, i.e., Ut = αt for
some constant α > 0. The reason is, that in two cases, under certain conditions, ruin probability has
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different asymptotic behaviour and we would like to adjust the weight functions corresponding to it.
(Note, that assumption about borrowing for small capital values has no influence on the asymptotics of
ruin probability, see Emrechts & Schmidli [13] and Kalashnikov & Norberg [31].) Constructions of the
weights are given in the Appendix I of this chapter. In deterministic case we prove the condition (1.4)
with weight function w0, where w0(x) ≤ exp(εx) ≤ cw0

w0(x) (cw0
> 1). This yields the stability bound

for ruin probabilities in metric weighted with function w(x) = exp(εx). Similarly, in the general case we
construct weight function w1 satisfying conditions w1(x) ≤ (1 + x)ε ≤ cw1

w1(x) (cw1
> 1). This yields

the stability bound in metric dΨ = ‖ · ‖w, where w(x) = (1 + x)ε.

Application of Kartashov’s results now yield the stability bounds for the ruin probability in desired
metric with respect to the perturbations of the shift operator P. To express these stability bounds
directly in terms of the governing parameters in this case is technically more involved. The corresponding
constructions are given in the Appendix II. We use the technique of minimal metrics. In deterministic
model the final stability bound with respect to the claims occurrence intensity λ and the claim size d.f.
FZ is given in Section 6.3. The in general model is illustrated by two examples corresponding to the
particular choice of the Lévy process U . One is given by the deterministic jumps at Poisson times:

Ut = αt+

m
∑

1

αiPt(λi), α > 0, αi ∈ R, min
i
αi < 0,

where Pt(λi) are independent Poisson processes with parameter λi. In this case the final stability bound
is given w.r.t. the governing parameter a = (λ, λ1, . . . , λm, FZ , β), where β is the borrowing interest rate,
see Theorem 6.9 and Example 6.10. In the other example we choose

Ut = αt+ σWt, α, σ > 0,

where W is a standard Brownian motion. This corresponds to the Black-Scholes price model. The final
bound w.r.t. the governing parameter a = (λ, c, FZ , β, α, σ) is given in Theorem 6.9 and Example 6.11.

This chapter is based on Rusaityte [46].

In Chapter 7 we find stability bounds for the ruin probability in the Markov modulated risk model
with Lévy process driven investments. We apply the regenerative approach developed by Kalashnikov
which uses similar ’contraction’ property to (1.5) with κ < 1. Stability bounds follow immediately from
the later ’contraction’ property and the uniformly for all n ≥ 0 bounded w-moments of the reversed
process {Vn}. These conditions are given in (C1) and (C2) in Section 7.2.

Similarly to the previous chapter, we treat separately three cases with respect to the Lévy processes
driving investments. Depending on the state i of the modulating MC {In}, investments are driven by
m independent Lévy processes U i. The first model without investments corresponds to Ui ≡ 0 for all
i. This model has been already considered in Chapter 5 using MC approach. Stability bounds in this
chapter are derived under the same assumption which is related to the Cramér condition. The second
case is model with deterministic investments, which is given by U i

t = αit with positive constants αi. Now
we require that claims Zi, where i refers to the state of the modulating chain, possess finite exponential
moments. This implies an exponential upper bound for the ruin probability. In both cases we use the
exponential weight functions w (with different exponents) in weighted uniform metric dΨ = | · |w. The
final stability bounds for these two models are given in Subsections 7.2.1 and 7.2.2. The third, general
model, is given by genuine Lévy processes U i. In this case we use a power-law weight function to compare
ruin probabilities. To our knowledge, asymptotic behaviour of the ruin probability in this models has not
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been investigated. The stability results suggest power-law upper bounds, but this question is beyond the
scope of this thesis and has not been investigated.

To prove these bounds we have to show that conditions (C1) and (C2) holds for each model. These
proofs are given in the Appendix. We use the ideas from Kalashnikov [30]. The main technical difficulty
in the proof of (C1) is to construct a non-negative test function ϕ(v, i) which is related to the weight
function w (asymptotically) and s.t. Aϕ(v, i) ≤ −χϕ(v, i), where A is a generating operator of MC
{Vn, In}, and χ is a positive constant. Then, (C1) follows from the regenerative property of {Vn, In}
and by Dynkin’s formula. The proof of (C2) provides the explicit expression for the distance d(a, a′).

For simplicity, we work under assumption that Lévy processes U ′i in the perturbed model are given

by the time transformation {U ′i
t}

d
= {U i

βit
} (here

d
= stands for the identity of the finite-dimensional

distributions).



Chapter 2

Risk models and ruin probability

In this chapter we introduce various risk models of interest and the corresponding notation. The first
section is devoted to the description of a general risk process and the construction of the so-called reversed
process; all the technical details in the following chapters will be carried out in terms of the latter process.
In the second section we define those risk processes which will be investigated in the context of stability
of ruin probabilities later in the thesis. Some facts about ruin probabilities corresponding to these risk
processes are given in the third section.

2.1 General risk models and the concept of ruin probability

A risk process {R(t)}t≥0 describes the capital or reserve of an insurance company at each instant of time
t. We always assume it to have right-continuous paths with limits from the left for every t > 0. The
value R(0) = x is the initial capital. We assume that the main objects governing the risk process R are
the following:

• The cash-flow process of premiums minus claims,

Pt = ct−
Nt
∑

i=1

Zi, (2.1)

where c > 0 is a constant premium rate; {Zi}i≥1 are the positive claims which occur at the random
time-points generated by a point process N ;

• Investments in a portfolio where a monetary unit at time 0 accumulates to exp(Ut) units at time t.
Here U is a Lévy process called the interest process.

The cash-flow process P describes an insurance business in each time interval [0, t]. In the case
of no investments, P coincides with the risk process R. In the literature one can find more general
models, where P is defined as a Lévy process, see Kalashnikov & Norberg [31], or the premium rate may
depend on the current reserve at each time (this can also be interpreted as interest), see Asmussen [3]
for a discussion and further references. We confine ourselves to the model (2.1) which contains many
important examples (the Cramér-Lundberg model, the renewal and Cox models, etc.) and suffices for

11
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our purposes. If one tries to capture more features of the real-life insurance business a risk model should
also encounter investment possibilities and financial risks. It is often assumed that the cash-flow process
P and the interest process U are independent. However, we do not impose such an assumption; in a
Markov modulated case with investments these processes are in general dependent, see the corresponding
example in Section 2.2.4.

Thus, given the risk process R, ruin is the event that the process R ever falls below 0,

{Rt < 0 for some t ≥ 0} . (2.2)

The probability of ruin with initial capital x will always be denoted by ψ and is given by the quantity

ψ(x) = P

(

inf
t≥0

R(t) < 0

∣

∣

∣

∣

R(0) = x

)

, x > 0. (2.3)

Note that there is no particular reason to associate the event of ruin with the level 0. It is for mathematical
convenience only in order to simplify certain constructions such as the reversed process, see Section 2.1.1.
But it presents no restriction either, since the initial capital x can always be adjusted in such a way
that ruin occurs when the risk process falls below the level 0. Such a modification will be carried out in
Section 2.2.3.

Aiming at calculating the ruin probability, it suffices to consider the risk process R at the sequence
of random times

T = {Ti}i≥0, T0 := 0,

where T comprises the claim occurrence times, i.e. the times when the jumps of the process N happen.
This allows one to reduce the continuous time process R(t) to the (discrete time) skeleton process {Rn},
where

Rn = R(Tn). (2.4)

Then, the (ultimate) ruin probability in terms of the process {Rn} is

ψ(x) = P

(

inf
n≥0

Rn < 0 | R0 = x

)

. (2.5)

The probability of ruin up to time Tn is denoted by

ψ(n)(x) = P

(

min
0≤k≤n

Rk < 0

∣

∣

∣

∣

R0 = x

)

.

In the sequel we assume that the following holds.

Assumption 2.1. Assume that
Rn+1 = F (Rn, σn+1), (2.6)

where {σn}n≥1 is a (strictly) stationary sequence taking values in an appropriate Polish space Σ, and the
function F is right-continuous with respect to its first variable and also strictly increasing, i.e.,

{r < r′} ⇒ {F (r, σ) < F (r′, σ)}, ∀σ ∈ Σ. (2.7)

The condition (2.7) is natural. It infers whatever the given conditions (represented by σ), that if an
insurance company has a surplus r which is less than or equal to r′ then, at the next step, its reserve
F (r, σ) will still be less than or equal to F (r′, σ).
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2.1.1 The reversed process and the ruin probability

In a sense, the risk process can be considered as the dual process of certain processes in queuing and
storage theory. In particular one process can be constructed from the other one by an appropriate
reversing procedure. The connection between the different areas was first discovered by Prabhu [42] in
the queuing context. The duality was studied by Siegmund [48], Asmussen & Sigman [4] and many others,
for a survey and further references see Asmussen [3].

The construction presented here is taken from Enikeeva et al. [14] and uses arguments similar to those
in Asmussen & Kella [5] and Asmussen & Petersen [6].

For a fixed N ≥ 1, define the process {V (N)
n } by the following recursive equation:

V
(N)
n+1 = (V (N)

n + η
(N)
n+1)+, 0 ≤ n ≤ N − 1, V

(N)
0 = 0, (2.8)

where the random variables (r.v.’s) η
(N)
n will be defined later. Then

V (N)
n = max(0, η(N)

n , η(N)
n + η

(N)
n−1, . . . , η

(N)
n + · · · + η

(N)
1 ), 1 ≤ n ≤ N. (2.9)

Let us assume that both {Rn} and {η(N)
n } are defined on the same probability space and thus, {V (N)

n } is

also defined on the same probability space. Now, let us require that the sequence {η(N)
n }1≤n≤N satisfies

the conditions
{

V (N)
n ≤ RN−n

}

⇒
{

V (N)
n + η

(N)
n+1 ≤ RN−n−1

}

, (2.10)
{

V (N)
n > RN−n

}

⇒
{

V (N)
n + η

(N)
n+1 > RN−n−1

}

. (2.11)

It is possible in these arguments to put η
(N)
n+1 = −(RN−n − RN−n−1), but later on we need the more

general conditions (2.10) and (2.11).

Lemma 2.2. Given relations (2.10) and (2.11),

ψ(x) = lim
N→∞

P
(

V
(N)
N > x

)

.

Proof. Define the stopping time

τ = min{i ≥ 1 : Ri < 0},

where τ = ∞ if Ri ≥ 0 for all i. Let us fix N > 0 and assume that ruin occurs within [1, N ] that is,
min1≤i≤N Ri < 0. Then

ψ(N)(x) = P(τ ≤ N |R0 = x).

By (2.11),

{τ ≤ N} ⊂ {Rτ < V
(N)
N−τ} ⊂ {Rτ−1 < V

(N)
N−τ+1} ⊂ · · · ⊂ {x = R0 < V

(N)
N }

It follows that

ψ(N)(x) ≤ P
(

V
(N)
N > x

)

.
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In the complementary case, there is no ruin within [1, N ], and hence, all Rn ≥ 0, 0 ≤ n ≤ N . But

V
(N)
0 = 0 ≤ RN . Therefore

{τ > N} = {V (N)
0 ≤ RN} ∩ {τ > N}

⊂ {V (N)
0 + η

(N)
1 ≤ RN−1} ∩ {τ > N}

= {(V (N)
0 + η

(N)
1 )+ ≤ RN−1} ∩ {τ > N}

= {V (N)
1 ≤ RN−1} ∩ {τ > N} ⊂ · · · ⊂ {V (N)

N ≤ R0 = x} ∩ {τ > N}
⊂ {V (N)

N ≤ R0 = x}

which yields that

1 − ψ(N)(x) ≤ P
(

V
(N)
N ≤ x

)

= 1 − P
(

V
(N)
N > x

)

,

or
P
(

V
(N)
N > x

)

≤ ψ(N)(x).

Therefore
ψ(N)(x) = P

(

V
(N)
N > x

)

,

which completes the proof.

The proof of Lemma 2.2 is mostly algebraic than probabilistic. It does not use any of the distributional
assumptions on the process R. Using Assumption 2.1, we will give an explicit construction of the process
V (N). For fixed σ ∈ Σ denote

F−1(v, σ) = inf{r : F (r, σ) ≥ v}. (2.12)

Under Assumption 2.1 and for fixed N > 0, let

η(N)
n = F−1(V

(N)
n−1 , σN−n+1) − V

(N)
n−1 . (2.13)

We shall verify conditions (2.10) and (2.11) for the corresponding process {V (N)
n } given by (2.8). If

V
(N)
n ≤ RN−n, then, by monotonicity of F−1,

V (N)
n + η

(N)
n+1 = F−1(V (N)

n , σN−n) ≤ F−1(RN−n, σN−n) = RN−n−1.

If V
(N)
n ≥ RN−n, then

F−1(V (N)
n , σN−n) ≥ F−1(RN−n, σN−n) = RN−n−1.

Thus, (2.10) and (2.11) hold and, hence,

ψ(x) = lim
N→∞

P
(

V
(N)
N > x

)

.

Without loss of generality the sequence {σn}n≥1 can be embedded in the stationary sequence {σn}−∞<n<∞.
Thus, we can define the sequence {Vn}n≥0 by the relation

Vn+1 = (Vn + ηn+1)+ , V0 = 0, (2.14)
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where
ηn+1 = F−1(Vn, σ−n) − Vn. (2.15)

Evidently, the following equality in distribution holds

{Vn}0≤n≤N
d
= {V (N)

n }0≤n≤N ,

and therefore, by Lemma 2.2,
ψ(x) = lim

n→∞
P(Vn > x). (2.16)

The process {Vn} will be referred to as the reversed process .

The sequence {Vn} can be rather general. In order to use standard techniques it is convenient to
embed this sequence into a Markov chain (cf. Cox [11], Gnedenko and Kovalenko [18]).

Assumption 2.3. Assume that the sequence {Vn} defined by (2.14) can be embedded into a Markov
chain

Wn = (Vn, τn) , (2.17)

where {τn} is a sequence taking values in a Polish space T.

For any Borel set B ∈ R+ × T, denote by

P (w,B) = P (Wn+1 = (Vn+1, τn) ∈ B |Wn = w)

the transition probability of the chain (2.17) and by

Pf(w) = E (f(Wn+1) | Wn = w) (2.18)

the corresponding shift operator . The operator P is defined for all measurable functions f : W → R such
that the right-hand side of (2.18) is finite.

2.2 Specific models

In this section we introduce more specific risk models to be investigated in the thesis.

2.2.1 The Sparre Andersen risk model

The Sparre Andersen (S.A.) risk model assumes continuously paid premiums with intensity c > 0 and
independent identically distributed (i.i.d.) positive claims Zn generated by an ordinary renewal process
{Nt}t≥0. The skeleton risk process R = {Rn}n≥0, see (2.4), is given by the recursion

Rn+1 = Rn + cθn − Zn, R0 = x, (2.19)

where θn are the i.i.d. inter-arrival times with distribution function (d.f.) Fθ. This model was introduced
as a generalization of a classical risk model by Andersen [1]. In the literature the S.A. model is also called
an ordinary renewal risk process, to distinguish it from the case when θ1 has a different distribution, see
Grandell [21].

To describe the S.A. risk process it suffices to determine the premium rate c and the distribution
functions FZ and Fθ. Thus we will refer to a S.A. risk model as to a triple (c, Fθ, FZ).

If {Nt} is given by a homogeneous Poisson process (with parameter λ, say) then the S.A. model
reduces to the well-known classical or Cramér-Lundberg risk model. The triple (c, λ, FZ) will be used to
describe a classical risk process.
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2.2.2 Markov modulated model

In this section we assume that the underlying point process N is a certain Cox process. Such risk models
were extensively treated in Grandell [21], see also Björk & Grandell [8] .

Assume there are m independent classical risk processes Ri governed by the corresponding parameters
ai = (ci, λ

cl
i , FZi). Here λcl

i stands for the claims occurrence intensity of the iht process, ci is the
corresponding premium rte and FZi is the distribution of the i.i.d. positive claims Zi

j . The corresponding
Markov modulated risk process with underlying modulating Markov chain is defined as follows.

Markov modulation. Let J = {Jt}t≥0 be a Markov process with state space E = {1, 2, . . . ,m}. It
leaves state i with intensity λJ

i and, upon leaving i, it jumps to state j (j 6= i) with probability pJ
ij . The

risk process R behaves like Ri while the underlying process J = {Jt}t≥0 is in state i ∈ E.

Let {Tn}n≥0 be the increasing sequence of both, claims occurrence times and jump times of J . The
corresponding sequence of inter-occurrence times is {θn}n≥0, where θn = Tn−Tn−1, n ≥ 1. Set In = JTn .
Then the r.v.’s {θk, k ∈ {l : Il = i}} are i.i.d. exponentially distributed with parameter

λi = λcl
i + λJ

i . (2.20)

The above defined process I = {In}n≥0 is a Markov chain with transition probabilities

pij =

{

λJ
i p

J
ij/λi, j 6= i,

λcl
i /λi, j = i.

(2.21)

We assume that the chain I has the unique stationary distribution {πi}i∈E and that at time 0 it is in
steady state, i.e. P(I0 = i) = πi. The existence of {πi}i∈E follows, for example, from the existence of the
probabilities {πJ

i }i∈E such that

πJ
j =

∑

i∈E

πJ
i p

J
ij . (2.22)

Then the probabilities πi are given by

πi = πJ
i

(

1 +
λi

λJ
i

)

(

∑

i∈E

πJ
i

(

1 +
λi

λJ
i

)

)−1

. (2.23)

Since ruin can only occur at the claim arrival times, it suffices to consider the risk process R at the
times Tn, where it is given by the recursion

Rn+1 = Rn + cInθ
In − δInIn+1

ZIn+1

n , R0 = x, (2.24)

where δij is the Kronecker symbol and θi is exponentially distributed with parameter λi, i ∈ E. Notice

that the process R satisfies Assumption 2.1 with σn = cInθ
In − δInIn+1

Z
In+1

n .
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2.2.3 Interest and borrowing

Now we consider the situation when an insurance company with reserve process R0 also faces a financial
risk due to random interest. The cash-flow process P is given by (2.1), where N is a homogeneous Poisson
process with parameter λ and the claims Zn are i.i.d with distribution FZ . Thus, P is described by the
parameters (c, λ, FZ). The risk process R0 = {R0(t)}t≥0 with initial capital R0(0) = x0 is defined by the
following conditions:

(C1) The capital in excess of the level D0 > 0 is invested in a portfolio with price process exp(Ut), where
U = {Ut} is a Lévy process on (−∞,∞), i.e., if R0(u) ≥ D0 for u ∈ [s, s+ t), then

R0(s+ t) = eUs+t−Us

(

R0(s) +

∫ s+t

s

eUs−Uu dPu −D0

)

+D0. (2.25)

We assume that U is independent of all other processes and r.v.’s of the model.

(C2) There is a minimal requirement of liquid reserve of size d0, d0 < D0, and if at some t ≥ 0 the reserve
R0(t) falls below the level d0 then the amount d0 −R0(t) is borrowed at the constant interest rate
β > 0.

It follows from the assumption (C2) that once the level d0 − c/β has been reached ruin is unavoidable
since the risk process will decay thereafter. Therefore, the event

{R0(t) ≤ d0 − c/β for some t ≥ 0}

is called ruin.
This risk model can be considered as a generalization of the model in Embrechts & Schmidli [13] where

an insurance company invests its money at a constant interest rate (thus, U is a deterministic function).
However, this modification is essential, since randomness in the investments leads to a different asymptotic
behavior of the ruin probability, see Section 2.3. Ruin probabilities in a model with investments driven
by a Lévy process like in (2.25) were investigated by Kalashnikov & Norberg [31]. The above model can
be considered as a special case in their set up.

Risk process. For technical reasons it is more convenient if ruin is associated with hitting the level 0;
see the discussion following formula (2.3). Therefore, we shall transform our initial risk process R0 by
defining the process

R(t) = R0(t) +
c

β
− d0, R(0) = x0 +

c

β
− d0 =: x. (2.26)

Now, ruin in terms of the process R is the event

{R(t) < 0 for some t ≥ 0}.

Further on we only deal with the process R which has the same cash-flow process P as R0 and it satisfies
the conditions (C1)-(C2) with D0 and d0 replaced by D = D0 + c/β − d0 and d = c/β, respectively.

Since ruin can only occur at the claim occurrence times Ti, i ≥ 1, it suffices to study ruin for the
skeleton risk process {Rn}n≥0,

Rn := R(Tn), n ≥ 1, R0 := R(0). (2.27)
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2.2.4 Markov modulation and interest

In this section we consider both random interest and Markov modulation. We start with the basic process
R∗ given by

R∗(s+ t) = eUs+t−Us

(

R∗(s) +

∫ s+t

s

eUs−Uu dPu

)

, (2.28)

where P is of the form (2.1) governed by the triple (c, λcl, FZ) and U is a Lévy process. Ruin probabilities
for such risk processes were investigated by Kalashnikov & Norberg [31], see Section 2.3.3 for their main
result.

Assume there are m independent processes Ri of the type (2.28). The notation corresponding to
the ith process is equipped with an index i; upper-i for random processes and lower-i for constants (i.e.,
Ri, Ri, P i, N i and ci, λ

cl
i ). The underlying modulating Markov process J with state space E = {1, . . . ,m}

is as in Section 2.2.2. The corresponding Markov modulated risk process R is defined in the same manner,
see Section 2.2.2.

Since ruin can only occur at the claim arrival times, it suffices to consider the risk process R at the
times Tn, denoted by Rn = R(Tn), where {Tn}n≥0 is the increasing sequence of claim occurrence times
and jump times of J , see Section 2.2.2). The process {Rn} is given by the following recursion

Rn+1 = ζ
In+1

n+1

(

Rn + χ
In,In+1

n+1

)

, R0 = x, (2.29)

where

ζi
n+1 = exp

(

U i
Tn+1

− U i
Tn

)

,

χji
n+1 = −δjiZ

i
n exp

(

U i
Tn+1

− U i
Tn

)

+ ci

∫ Tn+1

Tn

exp
(

U i
Tn+1

− U i
u

)

du,

and δij is the Kronecker symbol.

2.3 About ruin probabilities

In this section we give some well known facts about the asymptotic behavior and bounds of the ruin
probabilities for the previously introduced risk models. Such results can give an idea about the quality
of the stability bounds. We do not aim at giving a complete survey about the results in the literature;
we are only interested in those which hold under similar conditions as the corresponding stability bounds
to be derived in this thesis. Note also, that the Markov modulated model with investments has not been
investigated so far (except for the degenerate case when the Lévy process U is identically equal to 0).

2.3.1 The Sparre Andersen model

Assume that the S.A. model (c, Fθ, FZ) satisfies the net profit condition cEθn > EZn (thus we also assume
finite mean values); otherwise ruin occurs with probability (w.p.) 1.

Assumption 2.4. There exists a positive constant r∗ such that

E exp(r∗(Z1 − cθ1)) = 1. (2.30)
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The value r∗ is the Lundberg exponent (see Grandell [21]) and Assumption 2.4 is called the Cramér
condition (for S.A. risk model). In the literature, r∗ is also called adjustment coefficient (see Gerber [19],
Asmussen [3]).

Under the Cramér condition the ruin probability ψ satisfies the Lundberg inequality

ψ(x) ≤ e−r∗x. (2.31)

If, in addition,
∫∞

0 zer∗z dFZ (z) <∞, then the Cramér-Lundberg approximation

lim
x→∞

er∗xψ(x) = C (2.32)

holds, where C ∈ (0, 1) is an explicit constant, see Grandell [21], Asmussen [3], Rolski et al. [45] and
others.

Assumption 2.4 implies that the claims Zi are ’light-tailed’ in the sense that the moment generating
function MZ(r) := E exp(rZi) exists for some positive r. The case MZ(r) = ∞ for all r > 0 refers to
’heavy-tailed’ claims.

2.3.2 The Markov modulated model

Ruin probabilities in the Markov modulated risk model (or risk model in Markovian environment)
were treated by a number of authors: the upper ’Lundberg-type’ bounds were investigated by Björk &
Grandell [8] and Grandell [21] using martingale techniques; the Cramér-Lundberg approximation based
on the Wiener-Hopf factorization technique is considered in Asmussen [2]. The Lundberg bound in this
section is taken from Grandell [21] (it also holds for a more general risk model with ’Markov renewal
intensity’, see Grandell [21] p.105).

We adopt the notation from Section 2.2.2. Assume that ci = c, FZi = FZ for all i ∈ E, and for some
ε > 0,

h(ε) :=

∫ ∞

0

eεz dFZ(z) − 1 <∞.

Let P J be the matrix (pJ
ij) and diag(φ(ε)) be the diagonal matrix (δijφi(ε)), where

φi(ε) := E exp
(

−εcθ̄i + h(ε)λcl
i θ̄

i
)

,

and θ̄i ∼ Exp(λJ
i ).

Proposition 2.5. Let ε∗ = sup
{

ε ≥ 0 : ‖diag(φ(ε))P J‖SP < 1
}

, where ‖ · ‖SP is the spectral radius.
Then for any ε ∈ (0, ε∗) we have

ψ(x) ≤ C(ε∗ − ε)e−(ε∗−ε)x,

for some finite constant C(ε∗ − ε).

2.3.3 Random interest

The ruin probability for the risk process R∗ in (2.28) was investigated by Kalashnikov & Norberg [31].
In particular, they considered the case when assets may yield negative interest and found upper and
lower bounds for the ruin probability. They showed under certain Cramér type conditions that the ruin
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probability decays like a power function, and they determined upper and lower bounds for the probability
of ruin of Cramér-Lundberg type.

Let R∗ be the risk process defined by (2.28) and introduce a r.v. θ which is exponentially distributed
with parameter λcl (it can be considered as a generic claim inter-arrival time r.v.). In what follows we
assume that

P
(

eUθ < 1
)

> 0, P

(

eUθ ≤ 1,

∫ θ

0

eUθ−Uu du− Z1 < 0

)

> 0 (2.33)

This requires that the interest process U takes negative values with positive probability, and the later
condition holds if, for example, the claims Zi have infinite support.

Assumption 2.6. Assume that for some ε∗ > 0,

E exp(−ε∗Uθ) = 1 (2.34)

Condition (2.34) is called Cramér condition in Kalashnikov & Norberg [31] (for the risk process R∗).
They proved the following result.

Proposition 2.7. Under the Assumption 2.6, condition (2.33), if the claims Zi have finite ε∗th-moment
and for some ε > 0, E exp(−(ε∗ + ε)Rθ) <∞, then for any δ > 0 there exist finite constants C1 > 0 and
C2 > 0 such that

C1x
−ε∗−δ . ψ(x) ≤ C2x

−ε∗+δ, x→ ∞,

where f(x) . g(x) means lim supx→∞
f(x)
g(x) ≤ 1.

The upper bound can be considered as an analogue of the Lundberg inequality. The lower bound
indicates that ε∗ is the ’correct’ exponent.

Remark 2.8. Condition (2.34) is needed for the lower bound only. If (2.34) it is not satisfied, one still
has the upper bound, although, one cannot say that ε∗ is the ”correct’ exponent (and not even that the
ruin probability has power law decay).

Remark 2.9. The result also holds if only capital in excess of a certain level x∗ is invested, and below
this level the ruin probability satisfies infx≤x∗ ψ(x) > 0 (see Section 2.3 in Kalashnikov & Norberg [31]).
This is obviously the case in a risk model with borrowing.

Borrowing and interest. As it was mentioned in Remark 2.9, the result in Proposition 2.7 also holds
in the current situation with borrowing. However, if the interest is deterministic (or absent), this bound
is not satisfactory. The case U = 0 was treated in the previous section. The case Ut = αt for some α > 0
was investigated by Embrechts & Schmidli [13]. They proved that, if

ε∗ = sup{r : E exp(rZ1) <∞} <∞, (2.35)

then for any δ > 0,
lim

u→∞
ψ(x)e(ε

∗−δ)x = 0, lim
u→∞

ψ(x)e(ε
∗+δ)x = ∞.

Markov modulation and random interest. The decay of the ruin probability has not been inves-
tigated so far.



Chapter 3

Mathematical background

In this chapter we give the necessary mathematical background on which the results of the thesis rely.

Throughout the chapter (X ,B(X )) denotes a measurable space on which all r.v.’s and processes are
defined. The collection of all measurable finite-valued functions on (X ,B(X )) is denoted by F(X ) and
M(X ) is the space of finite signed measures. The positive elements in the corresponding spaces are
denoted by F(X )+ and M(X )+, respectively.

3.1 Markov processes

Markov process play a very important role throughout the thesis. In this section we give the necessary
theoretical background from Markov process theory. While the terminology and results for denumerable
Markov chains (MC’s) (i.e. the state space X is countable or finite) can be found in many books, like
Feller [15], Kalashnikov [29] and others, the terminology referring to general MC’s (which means that
X ⊆ Rk) is not unique. For general MC’s we refer to Borovkov [10], Meyn & Tweedie [38], Nummelin [40].
The most important results for our purpose are the stability results for the stationary distribution of a
MC given in Section 3.2.

Let X = {Xn} be a P-measurable homogeneous Markov chain on (X ,B(X )) with transition proba-
bility kernel P , i.e.,

P(Xk+1 ∈ · |Xk = x) = P (x, ·).
The n-step transition probabilities P(Xn ∈ · |X0 = x) are denoted by Pn(x, ·), i.e.,

Pn(x, ·) =

∫

Pn−1(x, dy)P (y, ·).

Many properties (concerning ergodicity, finiteness of moments, etc.) of MCs can be proved by using
’local’ characteristics. Often such characteristics are formulated in terms of the generating operator.

Definition 3.1. The operator A : F(X ) → R defined by Af(x) = Ex [f(X1)] − f(x) is called the
generating operator of the MC X . In the literature, A is also called the drift operator, cf., for example
Meyn & Tweedie [38]. If Af(x) is finite for all x ∈ X then f is said to belong to the domain of the
definition of A; we write f ∈ DA.

21
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An important tool throughout this thesis is Dynkin’s formula which we give next; cf. Kalashnikov [29]
for the proof.

Proposition 3.2 (Dynkin’s formula). If τ is a stopping time w.r.t. the filtration generated by the MC
X such that Exτ <∞, f ∈ DA, and for some constant v <∞

sup
x∈X

Ex|f(X1) − f(x)| ≤ v,

then

Exf(Xτ ) = f(x) + Ex

[

∑

k<τ

Af(Xk)

]

.

Definition 3.3. The measure π ∈ M(X )
+

is called invariant w.r.t. the Markov chain X if

π(B) =

∫

X

π(dx)P (x,B) for all B ∈ B(X ).

It is an invariant probability measure if it is invariant w.r.t. to X and π(X ) = 1.

In what follows, we give some results about the existence of the invariant probability measure π and
the convergence of Pn to π. Define

τB := min{k ≥ 1 : Xk ∈ B} and τx := τ{x}. (3.1)

We will use the notation Px(·) = P(·|X0 = x) and Ex(·) = Ex(·|X0 = x).

Denumerable Markov chains

In this case the state space X is finite or countable. By pn
xy we denote the n-step transition probability

from state x to y, p1
xy =: pxy.

The MC X is called irreducible if for any x, y ∈ X there exists n ≥ 1 such that pn
xy > 0. The irreducible

MC X is called recurrent if for at least one state x ∈ X ,

Px(τx <∞) = 1. (3.2)

If in addition
Ex(τx) <∞, (3.3)

then X is positive recurrent.
The state x ∈ X is called periodic with period d if

d = g.c.d.{n : pn
xx > 0},

(g.c.d. stands for the greatest common divisor). If a state has period 1 then it is called aperiodic.
It is well-known that all states of an irreducible MC share various properties, for example, they all

have the same period and relation (3.2) holds for each x ∈ X . If X is also positive recurrent then (3.3)
holds for each x ∈ X .

Proposition 3.4. If X is an irreducible positive recurrent MC then there exists a unique invariant
probability measure π. If X is also aperiodic, then pn

xy → πy as n→ ∞.
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General Markov chains

Now we consider MCs in the space X ⊆ R
k.

Definition 3.5. The MC X is ϕ-recurrent for ϕ ∈ M(X )
+

if

Px(τB <∞) = 1 ∀x ∈ X (3.4)

for each B ∈ B(X ) such that ϕ(B) > 0. If Px(τB <∞) > 0 then the MC X is ϕ-irreducible.

The set A ∈ B(X ) is called an atom for X if there exists a measure ν ∈ M(X )
+

such that P (x,B) =
ν(B) for all B ∈ B(X ) and x ∈ A.

If X is ϕ-irreducible and ϕ(A) > 0 then A is an accessible atom.

Proposition 3.6 (Meyn & Tweedie [38], p. 234). If X is ϕ-irreducible and contains an accessible
atom A such that

EAτA <∞ (3.5)

then a unique stationary distribution π exists.

Definition 3.7. A ϕ-irreducible MC is called periodic if there exists a finite collection of disjoint sets
Xi ⊂ X , i = 1, . . . , d such that

(i) for x ∈ Xi, P(x,Xi+1) = 1, i = 0, . . . , d− 1(mod d)

(ii) ϕ
(

X \ ∪d
i=1Xi

)

= 0.

The maximal number d satisfying the above conditions is called the period of the MC X . If d = 1 then
X is aperiodic.

The following proposition is taken from Borovkov [10], p. 17 .

Proposition 3.8. If the MC X is aperiodic and there exist a set V ∈ B(X ), a probability measure ϕ on
(X ,B(X )), a number p ∈ (0, 1) and n ∈ N such that

(I) Px(τV <∞) = 1, for all x ∈ X ,

(II) supx∈V ExτV <∞,

(III) Pn(x,B) > pϕ(B) for all x ∈ V and B ∈ B(X ),

then there exists a unique invariant probability measure π, and

‖Pn(x, ·) − π(·)‖ → 0 as n→ ∞. (3.6)

Here ‖Pn(x, ·) − π(·)‖ :=
∫

X
|Pn(x, dx) − π(dx)| is the total variation distance, see Section 3.5 for more

details.

Remark 3.9. A set V ∈ B(X ) satisfying condition (I) is called strongly recurrent (see Kalashnikov [29],
p. 153). In specific problems, this condition usually follows from condition (II), since one often obtains
bounds for ExτV for all x ∈ X . In case that ExτV < ∞ for all x ∈ X , the set V is called positive (see
Kalashnikov [29], p. 155).
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Remark 3.10. In order to prove conditions like (II) or (3.5), it is convenient to use test functions. The
corresponding results are given in Section 3.4.

Example 3.11. Let X be a reflected random walk given by the recursive equations

X0 = 0, Xn+1 = (Xn + ηn)+,

where {ηn}n≥1 is a sequence of i.i.d. r.v.’s with d.f. Fη. If Eη1 < 0 then the MC X has a unique
stationary distribution π. This example is standard; we include a proof for the sake of illustration.

Proof. Take the probability measure ϕ on (R+,B(R+)) which is concentrated at 0, i.e., ϕ({0}) = 1.
Notice that X is ϕ-irreducible since P(η1 < 0) > 0 (see also Example 2.1 in Nummelin [40]) and that the
set {0} is an accessible atom.

In order to prove the condition (3.5) for A = {0}, notice that τ0 = min{n > 0 : Sn ≤ 0} =: τS
(−∞,0]

a.s., where Sn := η1 + · · ·+ ηn and Fη(x) = P(η1 ≤ x), x ∈ R. Denote by AS the generating operator of
the MC {Sn} and apply Proposition 3.24 from Section 3.4 with the test function

g(x) =

{

(x+ ε)+, x > 0,

0, x ≤ 0,

where the constant ε > 0 is such that
∫∞

−ε y dFη(y) < 0 (this is possible since Eη1 < 0). For x > 0,

ASg(x) =

∫ ∞

−x−ε

(x+ ε+ y) dFη(y) − (x+ ε)

= −(x+ ε)P(η1 ≤ −(x+ ε)) +

∫ ∞

−x−ε

y dFη(y)

≤
∫ ∞

−ε

y dFη(y) < 0.

When x ≤ 0, ASg(x) ≤ E(ε+ η1)+ ≤ ε. Thus, EτS
(−∞,0] = Eτ0 <∞.

Proposition 3.8 yields that Pn → π in the total variation metric (take the set V = {0}, then conditions
(I) and (II) are already proved and (III) holds trivially).

3.2 Stability of Markov processes

This section is devoted to stability bounds for the stationary distribution of a Markov chain obtained
by Kartashov, see [35] and [34]. These results serve as the main source for the stability bounds of ruin
probabilities obtained by the MC approach.

First we need some results on the norms of the kernel operators.

3.2.1 Kernel operators and their norms

Let K be a kernel on (X ,B(X )), i.e., for each fixed Γ ∈ B(X ), K(·,Γ) is a measurable function and for
each fixed x ∈ X , K(x, ·) ∈ M(X ). A non-negative kernel with K(x,X ) = 1 can be considered as a
transition probability kernel P of a certain Markov chain.
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One can associate the following two linear operators with the kernel K(x,Γ). The first one is the shift
operator K which operates on the functions f ∈ F(X ) according to the rule

Kf(x) :=

∫

X

f(y)K(x, dy), x ∈ X . (3.7)

The other operator (denoted by K∗) acts on the finite measures µ ∈ M(X ) according to the rule

K∗µ(Γ) :=

∫

X

K(x,Γ)µ(dx), Γ ∈ B(X ). (3.8)

Assume that M ⊆ M(X ) is a Banach space with a norm ‖ · ‖ satisfying the following consistency
with the order structure in M(X ) conditions,

‖µ1‖ ≤ ‖µ1 + µ2‖, µ1, µ2 ∈ M+, (3.9)

‖µ1 − µ2‖ = ‖µ1 + µ2‖, for µ1 ⊥ µ2, µ1, µ2 ∈ M+ (3.10)

|µ(X )| ≤ κ ‖µ‖, µ ∈ M (3.11)

where M+ is the positive cone in the spaces M, and κ is a finite constant.
Introduce the dual space F to the space M where each element f∗ ∈ F corresponds to a real-valued

measurable function f : X → R according to the rule

f∗(µ) :=

∫

X

f(x)µ(dx) (3.12)

with finite norm

‖f∗‖ = sup

{∣

∣

∣

∣

∫

X

f(x)µ(dx)

∣

∣

∣

∣

, ‖µ‖ ≤ 1, µ ∈ M
}

.

Slightly abusing notation, the same symbol is used to denote norms in different spaces; the space we refer
to will be clear from the context. Let F+ be the positive cone in F .

The operator K∗ corresponding to the kernel K such that K∗M ⊆ M, has a finite norm

‖K∗‖ = sup{‖K∗µ‖, ‖µ‖ ≤ 1, µ ∈ M},

and by the duality of the operators K and K∗ (see Kolmogorov & Fomin [36]),

‖K∗‖ = ‖K‖.

In order to derive stbaility bounds for ruin probabilities it will be natural to use the weighted total
variation norm ‖ · ‖w defined by

‖µ‖w =

∫ ∞

0

w(x) |µ|(dx), (3.13)

where |µ| is the variation of a measure µ and w is a positive measurable function bounded away from 0.
This norm induces the following norm of the operators (see Kartashov [35, 34] or Meyn & Tweedie [38,
Section 16.1]),

‖K‖w = ‖K∗‖w = sup
x∈X

Kw(x)

w(x)
, (3.14)
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and the norm of the functional f∗ : M → R, f∗ ∈ F is

‖f∗‖w = sup
x∈X

|f(x)|
w(x)

. (3.15)

The norm ‖ · ‖w satisfies conditions (3.9)–(3.11) with the constant κ given by

0 < κ = sup
x∈X

1

w(x)
<∞, (3.16)

see Kartashov [35, 34].

We are now in the position to state the stability bounds for the stationary distribution of a MC.

3.2.2 Kartashov’s results

Here we will give Kartashov’s results which are important for the thesis. We will also briefly discuss how
these results can be used in order to obtain the stability bounds for ruin probabilities.

As before, we assume that P is the transition probability kernel of a MC with a unique stationary
distribution π.

We introduce the following conditions on P and π:
There exist a probability measure ν ∈ M+ and a non-negative measurable function h ∈ F(X ) such that:

(D1)
∫∞

0
h(v)π(dv) > 0 and

∫∞

0
h(v) ν(dv) > 0;

(D2) the kernel
K(v,Γ) := P (v,Γ) − h(v)ν(Γ) (3.17)

is non-negative;

(D3) ‖K‖w ≤ ρ < 1, where K is the shift operator associated with the kernel K and w is a given weight
function.

We call (3.17) a decomposition of P into the components K,h, ν.

The following result is proved in Kartashov [35, Theorem 8].

Theorem 3.12. Assume that a MC with transition probability kernel P and the corresponding shift
operator P satisfy the conditions (D1)–(D3) with the norm ‖ · ‖w and let ‖P‖w < ∞. Then each MC
with the transition probability kernel P ′ and the shift operator P′ such that

∆ ≡ ‖P′ − P‖w <
1 − ρ

1 + ‖π‖wκρ
≡ ∆0, (3.18)

where ρ is from (D3) and κ is given in (3.16), has a unique invariant probability measure π′,

‖π′ − π‖w ≤ ∆‖π‖w

∆0 − ∆
. (3.19)

and the norm ‖π‖w can be bounded by

‖π‖w ≤ ‖ν‖w

1 − ρ
. (3.20)
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Theorem 3.12 serves as a main source for the stability results. We will use its assertion in the following
simplified form.

Corollary 3.13. Under the conditions and with the notation of Theorem 3.12,

‖π′ − π‖w ≤ ∆‖ν‖w

(1 − ρ)(∆1 − ∆)
, (3.21)

if

∆ <
(1 − ρ)2

1 + (κ‖ν‖w − 1)ρ
≡ ∆1. (3.22)

The following example was considered in Kartashov [35, 34]. The stability bound for the ruin proba-
bility in the classical risk model immediately follows from this example, see Chapter 4.

Example 3.14 (Continuation of Example 3.11). LetX = {Xn} be a reflected random walk satisfying
the conditions in Example 3.11. Its transition kernel P has the form

P (v,Γ) = P(v + η1 ∈ Γ, v + η1 > 0) + P(v + η1 ≤ 0)δ0(Γ), (3.23)

where δ0(·) is the probability measure concentrated at 0. Thus, decomposition (D2) is given by the
function h(x) = P(x+ η1 ≤ 0) and the measure ν = δ0.

If there exists ε > 0 such that
E exp(εη) = ρ < 1, (3.24)

then condition (D3) holds in the norm ‖ · ‖w, where w(v) = exp(εv), and with the same constant ρ, see
Kartashov [34], Theorem 8.1.

Application to the stability of the ruin probability problem

Inequality (3.22) can be regarded as a stability bound of the ruin probability in a risk model governed by
a parameter a: quantities with primes correspond to the perturbed risk model governed by the parameter
a′, and ∆ measures the distance between the parameters a and a′. Then the inequality (3.22) provides
the stability bound in the weighted total variation distance (see Section 3.5) ν(ψ, ψ′) = ‖ψ′ − ψ‖w. The
relation

|ψ′ − ψ|w ≤ ‖ψ′ − ψ‖w (3.25)

yields bounds in the weighted uniform metric |ψ′ − ψ|w which is more suitable for applications.

There are two technical problems associated with the application of Theorem 3.12 in ruin theory.

The first one is to prove that the Markov chain X obtained from the reversed process V (see Section
2.1.1) satisfies conditions (D1)–(D3). The construction of a non-negative kernel K as in (D2) is not
very complicated if the MC X has an atom. In this case one can employ splitting techniques as in
Nummelin [40].

A more difficult problem is to prove that such a ’decomposed kernel’ K satisfies condition (D3). One
typically has to impose assumptions related to the Cramér condition of the corresponding risk model.
This typically implies an asymptotic upper bound for the ruin probability ψ(u) as u→ ∞ (for example,
exponential bounds in the case of the Sparre Andersen model or power law bounds in a risk model with
risky investments, see Sections 2.2.1 and 2.2.4). Thus, one can obtain ’sharper’ stability bounds (w.r.t.
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the comparison of the tail behaviors of ruin probabilities) by adjusting the weight function w to this
upper bound. This usually causes additional difficulties in proving (D3). Of course, the most interesting
case is when the asymptotic decay of the ruin probability is not known (as is the case in a Markov
modulated model with random investments, see Section 2.2.4). But even in this case one should seek
for the ”optimal” weight w (optimality is not well-defined here, but the imposed conditions might still
provide some intuition, see the discussion in Section 5).

Another problem concerns the right-hand side of the stability bound (3.19). In particular, the distance
between the governing parameters a and a′ is measured by the quantity ∆ = ‖P′ − P‖w which is very
inconvenient since it is not expressed directly in terms of the input. Note that Theorem 3.12 and also
Corollary 3.13 remain valid if one replaces ∆ by any upper bound. This reduces the problem to the
following: we have to find an upper bound of ∆ = ‖P′ − P‖w which is expressed directly in terms of
the inputs a and a′. This can easily be achieved for ”simple” risk models, but in more complicated cases
various technical problems occur.

3.3 Regenerative processes. Stability bounds

Regenerative processes find their applications in many fields, like queuing, storage, reliability theory, etc.
In actuarial risk theory regenerative techniques were used by Kalashnikov [30] in order to obtain stability
bounds for the ruin probability. Parts of the thesis (Chapter 7) use ideas of Kalashnikov [30].

In this section we give the necessary definitions together with the stability bounds for the discrete-
time regenerative processes. Such bounds for discrete and continuous-time regenerative processes were
developed by Kalashnikov, see [25, 26, 27, 28, 29], and the references therein.

Consider a random process Y = {Yt}t∈T , where either T = R+ or T = N∪{0}, in a measurable space
(X ,B(X )) together with an increasing sequence of finite random times S = {Sn}n≥0 ⊂ T . Define the
shifts of (Y, S) by

SSi(Y, S) =
(

(Y (Si + t))t∈T , (Sk − Si)k≥i

)

. (3.26)

Definition 3.15. The process (Y, S) is said to be regenerative if

(i) SSi(Y, S), i = 0, 1, 2, . . . are identically distributed;

(ii) SSi(Y, S), i = 0, 1, 2, . . . do not depend on

((Yt)t≤Si , S0, . . . , Si) . (3.27)

The sequence S is called a renewal process and the random times Si are renewal or regeneration epochs.
If T = R+ then (Y, S) is a continuous time regenerative process; otherwise, if T = N+ ∪ {0}, then (Y, S)
is a discrete time regenerative process. If S0 = 0 then the process (Y, S) is said to be without delay or
zero-delayed.

If instead of condition (ii) the weaker condition

(ii’) SSi(Y, S), i = 0, 1, 2, . . . do not depend on

(S0, . . . , Si) , (3.28)
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is fulfilled, then the process (Y, S) is called wide sense regenerative.

Example 3.16. A ϕ-recurrent MC X with an accessible atom A can be considered as a regenerative
process w.r.t. a renewal process S = {Sn} defined by

Sn = min{k : k > Sn−1, XSn ∈ A},

(see Example 3.14, p. 27). Indeed, P (x,B) =: ν(B) for x ∈ A and by the recurrence property the times
Sn are finite, thus (X,S) is a regenerative process.

�

Until the end of this section, (Y, S) and (Y ′, S′) are discrete time zero-delayed (wide-sense) regenerative
processes; Y = {Yn}n≥0 and Y ′ = {Y ′

n}n≥0 with Pn(·) := P(Yn ∈ ·) and P ′
n(·) := P(Y ′

n ∈ ·). The symbol
‖ · ‖ will denote the total variation probability metric. Define

εn := sup
k≤n

‖Pk − P ′
k‖, (3.29)

ε := lim
n→∞

εn. (3.30)

Upper bounds of εn provide a finite-time comparison of the processes Y and Y ′ and ε refers to the
uniform-in-time comparison, see [25, 28, 29] and the references therein. We are interested in the uniform-
in-time bounds which are somewhat delicate and use the notion of crossing of a renewal (or regenerative)
process.

Let S and S
′
be copies of the processes S and S′ defined on the same probability space i.e.

S
d
= S, S

′ d
= S′. (3.31)

Then the corresponding inter-renewal times have the same distribution function as those of S and S′, say
F and F ′. Set

σ := inf







Sk > 0 :
⋃

j≥1

(Sk = S
′

j)







, (3.32)

where σ = ∞ if Sk 6= S
′

j for all j, k ≥ 1.

Definition 3.17. A process (S, S
′
) satisfying (3.31) is called the crossing of the renewal processes S and

S′ and the r.v. σ is the crossing time.

The crossing (S, S
′
) is successful if P(σ <∞) = 1.

Proposition 3.18 ([29], p. 222). If there exists a crossing time σ such that

E exp(λσ) ≤ cλ (3.33)

for some constant λ > 0, then

ε ≤ inf
t

{

εt +
2cλ

λ exp(λt)

}

.
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Remark 3.19. In Kalashnikov [29] the above lemma is proved for

εt = ‖Y (· + t) − Y ′(· + t)‖, and ε = sup
t≥0

εt,

i.e. it deals with the total variation distance between the ”shifted” processes Y (·+ t) and Y ′(·+ t) instead
of the r.v.’s Y (t) and Y ′(t). However, all the arguments in the proof remain the same if one substitutes
the r.v.’s by the corresponding processes. See also Theorem 1 in Kalashnikov [25] for a similar result.

Condition (3.33) holds if the inter-renewal time distributions FS1
and FS′

1
satisfy certain arithmetic

properties which we are going to explain now.

Definition 3.20 ([29], p. 181). The distribution p = {pk}k≥1 of a r.v. in N belongs to the class of
uniformly aperiodic distributions U(N,α), where N ∈ N and 0 < α < 1, if

g.c.d.{n : pn ≥ α, 1 ≤ n ≤ N} = 1. (3.34)

Proposition 3.21 ([29], p. 186). If FS1
, FS′

1
∈ U(N,α) for some N ∈ N and α ∈ (0, 1), and if

E exp(λ̄S1) ≤ b̄, E exp(λ̄S′
1)} ≤ b̄, (3.35)

for some constants λ̄ > 0 and b̄ <∞, then there exist constants λ = λ(λ̄, N, α) ≤ λ̄ and c = c(λ̄, b̄, N, α) <
∞ (they can be written in a closed form) such that

E exp(λσ) ≤ c. (3.36)

The following result is a straightforward consequence of Propositions 3.18 and 3.21.

Corollary 3.22 (cf.[29], p. 223). Under the conditions of Proposition 3.21 and if

εn ≤ αn (3.37)

for some α ∈ (0, 1), then

ε ≤ hα log
( e

α

)

, (3.38)

where h = max(c, 1/λ).

Proof. From Propositions 3.18 and 3.21, it follows that for α/(λc) ≤ 1,

ε ≤ α

λ
log

(

λce

α

)

. (3.39)

If λc ≥ 1, then the result follows because (α/λc) log(λce/α) is decreasing in λc when α/(λc) ≤ 1.

Otherwise, if λc < 1, (3.36) also holds with 1/λ instead of c. Applying the same arguments as above
we obtain (3.38).

The following example will be used later in the thesis.
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Example 3.23. Consider two MCs I = {In}n≥0, I
′ = {I ′n}n≥0 with values in {1, 2, . . . ,m}, correspond-

ing transition probabilities qi = (qij) and q′i = (q′ij) and the same initial state s. The n-step transition

probabilities are denoted by q
(n)
i = (q

(n)
ij ) and q′

(n)
i = (q′

(n)
ij ), respectively. We assume that

min{qij , q′ij} ≥ q > 0.

Then, for some constant h (it can be written in explicit form)

sup
n≥0

‖q(n)
s − q′

(n)
s ‖ ≤ hmax

i
‖qi − q′i‖ log

(

e

‖qi − q′i‖

)

, (3.40)

when maxi ‖qi − q′i‖ ≤ 1.

Proof. The MCs I and I ′ are also regenerative processes with regenerative state s and the corresponding
renewal sequences are the successive visits to the state s. The distributions of the inter-renewal times
S1, S

′
1 belong to ∈ U

(

1, q
)

. We will prove the following:

a) supk≤n ‖q(k)
s − q′(k)

s ‖ ≤ nmaxi ‖qi − q′i‖;

b) E exp(rσ1) <∞ for r < − log(1 − q).

Relation a) follows by induction using the inequalities

∑

j

|q(n+1)
ij − q′

(n+1)
ij | ≤

∑

k

q
(n)
ik

∑

j

|qkj − q′kj | +
∑

k

|q(n)
ik − q′

(n)
ik |

∑

j

q′kj

≤ max
i

‖qi − q′i‖ +
∑

k

|q(n)
ik − q′

(n)
ik |.

Now we will prove b). Since minij qij ≥ q, we have that for any n ∈ N,

Ps(σ > n) = Ps(I1 6= s, . . . , In 6= s) ≤
(

1 − q
)n
.

This yields b) for any r < − log(1 − q). Analogous results hold for the Markov chain I ′. An application
of Corollary 3.22 with α = maxi ‖qi − q′i‖ yields (3.40).

3.4 Test functions

The method of test functions (also called Lyapunov or trial functions, see Borovkov [10], Kalashnikov [23])
originates from the direct Lyapunov method and is widely used in the analysis of stochastic processes
(MCs, renewal, regenerative processes) and their applications (queuing systems, etc). Test functions are
used in different drift criteria for the positivity, recurrence, transience, regularity and other properties
of a MC; see Meyn & Tweedie [38], Borovkov [10] for these results and further references; accessibility
and non-accessibility criteria in terms of test functions can be found in Kalashnikov [29]. These results
have further applications in regenerative process theory, see Kalashnikov [28]. The stability of random
processes in queuing problems was investigated by Kalashnikov [23]. Thus, it is not surprising that test
functions also have applications in actuarial risk theory: a risk process can be recognized as a MC or a
regenerative process, see Kalashnikov [30].
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In this thesis, following the work by Kalashnikov [30], test functions in combination with Dynkin’s
formula will be used to bound the moments of the reversed process. But first, as promised, we give some
results on accessibility, which, together with Propositions 3.6 and 3.8, provide the ergodicity conditions
of a MC.

Recall from (3.1) that for any V ∈ B(X ), τV = min{n > 0 : Xn ∈ V }. The following proposition is
taken from Kalashnikov [29], Section 5.2. See also Borovkov [10], Meyn & Tweedie [38] for similar results.

Proposition 3.24. The relation ExτV <∞ holds for all x ∈ X if and only if there exist a non-negative
test function g and a constant ε > 0 such that

(i) Ag(x) ≤ −ε for x ∈ V c,

(ii) Ag(x) <∞ for x ∈ V .

Then,

ExτV ≤











g(x)

ε
, x ∈ V c,

1 +
1

ε
(g(x) + Ag(x)), x ∈ V.

The renewal sequence is often generated by the random times when a MC visits a certain fixed set V .
In such cases the following proposition helps to prove conditions like (3.35), see Kalashnikov [29], Section
5.2.

Proposition 3.25 ( [29], p. 115.). The expectation Ex expλτV , λ > 0 is finite for any x ∈ X , if and
only if there exists a test function g(x) ≥ 1, x ∈ X such that

(i) Ag(x) ≤ −(1 − e−λ)g(x), x ∈ V c;

(ii) Ag(x) <∞, x ∈ V .

Then,

Ex exp(λτV ) ≤
{

g(x), x ∈ V c,

eλ(g(x) + Ag(x)), x ∈ V.

3.5 Probability metrics

In this section we present some parts of the theory of probability metrics. This notion was introduced by
Zolotarev [52] in order to measure the distance between the probability distributions of random elements.

Let X be a set of random elements with values in a complete separable metric space (X , dX ). Suppose
that if X ∈ X and X = Y a.s. then also Y ∈ X. For any X,Y ∈ X we denote their joint probability
distribution by PXY and the marginals by PX and PY , respectively. By PXY we denote the set of all
possible joint distributions PXY of random vectors (X,Y ) with fixed marginals PX and PY . Introduce
P2 = {PXY , X, Y ∈ X}.

Definition 3.26. A non-negative functional d : P2 → R+ ∪ {0} is called a probability metric if the
following conditions are fulfilled:
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1. If P(X = Y ) = 1 then d(PXY ) = 0;

2. d(PXY ) = d(PY X), for any X,Y ∈ X;

3. d(PXY ) ≤ d(PXZ) + d(PZY ) for any X,Y, Z ∈ X.

Probability metrics can be divided into the following two classes.

Definition 3.27. A probability metric d is simple if d(PXY ) is completely defined by the marginals PX

and PY . Otherwise, d is called compound.

In the case of a simple probability metric d we use the notation d(PXY ) =: d(PX , PY ). Also, if X ⊆ Rk

(as it is in our case) instead of the probability distribution PX we sometimes write the distribution function
FX .

Remark 3.28. We will sometimes write r.v.’s instead of their distribution as the arguments in the
probability metric (i.e., d(X,Y ) := d(PXY )). This is done for convenience quite often in the literature
(see Zolotarev [52], Kalashnikov [26], Rachev [44] and others), but one has to keep in mind that we are
dealing with the corresponding distributions.

We will use the following probability metrics later.

1. The total variation metric

‖PX − PY ‖ := sup
B∈B(X )

|PX(B) − PY (B)|

=
1

2

∫

|PX(dx) − PY (dx)| . (3.41)

2. The weighted total variation metric

‖PX − PY ‖w =
1

2

∫

w(x) |PX(dx) − PY (dx)| , (3.42)

where a so-called weight function w is measurable, positive and bounded away from 0. Further we
reserve the symbol w for the weight function and assume that it always satisfies these properties.
Sometimes it is required that w ≥ 1 but we do not assume this unless stated explicitly. It will also be
convenient to write V arw(X,Y ) := ‖PX − PY ‖w for the weighted total variation distance between
the distribution functions PX and PY (and similar, by V ar(X,Y ) := ‖PX − PY ‖ for w ≡ 1), see
Remark 3.28.

3. The supremum metric, for X,Y ∈ R,

|FX − FY | = sup
x∈R

|FX(x) − FY (x)|. (3.43)

4. The weighted supremum metric is given by

|FX − FY |w = sup
x∈R

w(x)|FX (x) − FY (x)|, (3.44)

where w is a weight function.
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5. The uniform metric is defined by
i(PXY ) := P(X 6= Y ). (3.45)

6. The probability metric

iw(PXY ) :=
1

2
E [(w(X) + w(y))1(X 6= Y )] . (3.46)

is called the weighted uniform metric. If w ≡ 1 then iw coincides with the uniform metric i.

7. The ζ-metric is defined by a class of functions F ⊆ F(X ),

ζ(PX , PY ;F) := sup {|E(f(X) − f(Y ))| : f ∈ F} . (3.47)

If one takes F = F1 := {f ∈ F(X ) : |f(x)| ≤ 1}, then it is well-known (see Zolotarev [52]) that
ζ(·;F1) is the total variation metric, i.e.

ζ(PX , PY ;F1) = ‖PX − PY ‖.

The metrics 1., 3., 5., 7. are well known in the literature and can be found in Zolotarev [52], Kalash-
nikov [28, 26], Kalashnikon & Rachev [33], Rachev [44] and others. The weighted total variation metric
was used by Kartashov [34, 35]; for more weighted metrics see Rachev [44].

Definition 3.29. Let d be a compound metric. The functional

d̂(PX , PY ) = inf{d(PXY ) : PXY ∈ PXY } (3.48)

is called the minimal metric with respect to d.

It is well-known that d̂ is a simple probability metric, see Zolotarev [52] for the proof.
The following result can be found in many books and papers about probability metrics, for example

see Zolotarev [52], Rachev [44] and others.

Proposition 3.30. The total variation metric ‖ · ‖ is minimal w.r.t. the uniform metric i.

Recall that dX is a metric in X and define

τ(PXY ; dX ) := EdX (X,Y ). (3.49)

It is a compound probability metric on the set of r.v.’s for which the quantity in (3.49) is finite. We also
introduce the set of functions

F(dX ) := {f ∈ F : |f(x) − f(y)| ≤ dX (x, y)}. (3.50)

Proposition 3.31 (Zolotarev [52], Theorem 1.3.3). The metric ζ(·; dX ) is minimal w.r.t. τ(·; dX ),
i.e.,

τ̂(PXY ; dX ) = ζ(PX , PY ;F(dX )), X, Y ∈ X.

This yields the following.

Corollary 3.32. The weighted total variation metric ‖·‖w is minimal w.r.t. the weighted uniform metric
iw.



3.5. PROBABILITY METRICS 35

Proof. Let us choose the metric in X ,

dw(x, y) :=
1

2
((w(x) + w(y))1(x 6= y))).

By Proposition 3.31,

τ̂ (PXY ; dw) = ζ(PX , PY ;F(dw)),

where the set of functions F(dw) is defined in (3.50) with the metric dX = dw.
It remains to show that ζ(PX , PY ;F(dw)) = ‖PX −PY ‖w for all X,Y ∈ X. It actually suffices to show

that the latter relation holds for all absolutely continuous distributions PX , PY with the corresponding
densities pX , pY . The general case follows by approximation.

Let us take the function f(x) = w(x) sign(pX(x) − pY (x))/2. Obviously, f ∈ F(dw). Thus,

ζ(PX , PY ;F(dw)) ≥ 1

2

∫ ∞

0

w(x) sign(pX(x) − pY (x))(pX (x) − pY (x)) dx

=
1

2

∫ ∞

0

w(x)|pX (x) − pY (x)| dx

= ‖PX − PY ‖w.

This completes the proof.

It often turns out that it is easier to deal with compound probability metrics than with simple ones.
The following property of minimal metrics will be used later in the thesis.

Example 3.33 (Zolotarev [51]). Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) be two collections of
r.v.’s on X . Then,

V ar(X,Y ) ≤
∑

i

V ar(Xi, Yi). (3.51)

Proof. Using that V ar = î and

{X 6= Y } ⊂ {X1 6= Y1} ∪ · · · ∪ {Xm 6= Ym},

we have

V ar(X,Y ) ≤ i(X,Y ) = P(X 6= Y ) ≤
m
∑

n=1

P(Xn 6= Yn) =

m
∑

n=1

i(Xn, Yn). (3.52)

These relation hold for any PXY ∈ PXY . Let now PXiYi ∈ PXiYi , where classes PXiYi are determined by
the marginals PX and PY . If we minimize (3.52) over the distributions

∏m
1 PXiYi , where PXiYi ∈ PXiYi ,

we obtain (3.51).

Remark 3.34. Note that all the arguments in the example above remain also valid for the weighted
total variation metric ‖ · ‖w, i.e.

V arw(X,Y ) ≤
∑

i

V arw(Xi, Yi)

for X and Y as in Example 3.33.



36 CHAPTER 3. MATHEMATICAL BACKGROUND



Chapter 4

The Sparre Andersen model

This chapter is based on Enikeeva, et al. [14]. Using the MC approach based on the results of Kartashov
(see Section 3.2) we derive the stability bound for the ruin probability in the S.A. risk model from
Section 2.2.1.

The reversed process. Recall the risk process {Rn}n≥0 defined in (2.19). It satisfies Assumption 2.1
with the governing sequence {σn} consisting of the i.i.d. r.v.’s σn = cθn − Zn. Thus, the construction
(2.14)–(2.15) is applicable and yields

Vn+1 = (Vn + Zn − cθn)+ . (4.1)

The process V = {Vn}n≥0 is Markov with shift operator

Pf(v) = Ef ((v + Z1 − cθ1)+) . (4.2)

From (2.16) and (4.1) we have

ψ(v) = lim
n→∞

P ((Vn + Zn − cθn)+ > v) . (4.3)

The MC V possesses a unique stationary distribution by virtue of the net profit condition cEθn > EZn,
see Example 3.11.

The stability bound. Now we prove that the MC V satisfies the conditions of Theorem 3.12. This
will imply the desired stability bound for the ruin probability, see the discussion in Section 3.2.2. The
following assumption is related to the Cramér condition (2.30).

Assumption 4.1. Assume that there exists constants ε > 0 and ρ < 1 such that

E exp(ε(Zn − cθn)) ≤ ρ. (4.4)

Note that (4.4) yields the net profit condition.

First we will prove the conditions (D1)–(D3) from Section 3.2.2. The decomposition (3.17) of the
transition kernel P is based on the following representation:

P (x,Γ) = P(v + Zn − cθn ∈ Γ, v + Zn − cθn > 0) + P(v + Zn − cθn ≤ 0)δ0(Γ), (4.5)

37
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where δ0(Γ) is the probability measure concentrated at 0. Thus, the kernel K in (3.17) is defined by the
function h(v) = P(v + Zn − cθn ≤ 0) and the probability measure ν = δ0. Take the weight function
w(v) = eεv. Using condition (4.4), we have

‖K‖w = sup
v≥0

e−εv

∫ ∞

0

eεy K(v; dy)

= sup
v≥0

e−εv
E

(

eε(v+Zn−cθn) 1(Zn − cθn + v > 0)
)

≤ Eeε(Zn−cθn) ≤ ρ. (4.6)

Thus, the conditions of Theorem 3.12 are satisfied. The inequality

‖P − P′‖w = sup
v≥0

e−εv

∫ ∞

0

eεy |P ′(v; dy) − P (v; dy)|

≤ sup
v≥0

e−εv

(∫ ∞

0

eε(v+z) |FZ′(dz) − FZ(dz)|

+

∫ ∞

0

eε(v+z) FZ(dz)

∫ ∞

0

∣

∣

∣Fθ′

(

d
y

c

)

− Fθ

(

d
y

c

)∣

∣

∣

)

= ‖FZ′ − FZ‖w + EeεZ ‖Fθ′ − Fθ‖ =: µ(a, a′) (4.7)

yields the following result.

Theorem 4.2. Let the non-perturbed model governed by the parameter a satisfy Assumption 4.1. Then
for any a′ s.t. µ(a, a′) ≤ (1 − ρ)2, where µ(a, a′) is defined by (4.7) and ρ is from (4.4), we have

|ψa − ψa′ |w ≤ 1

1 − ρ

µ(a, a′)

(1 − ρ)2 − µ(a, a′)
. (4.8)

Proof. We apply Corollary 3.13. Trivially,

κ = sup
x≥0

1

w(x)
= 1, ‖δ0‖w = 1, ∆1 = (1 − ρ)2.

Plugging these expressions in (3.21) and using | · |w ≤ ‖ · ‖w we obtain (4.8).

Example 4.3. Let θ and θ′ be exponentially distributed with parameters λ and λ′, respectively, i.e., we
consider the classical risk model. Then, using

‖Fθ′ − Fθ‖ ≤ 2

λ ∨ λ′ |λ− λ′|, (4.9)

we obtain the stability bound (4.8) with

µ(a, a′) = ‖FZ′ − FZ‖w + EeεZ 2

λ ∨ λ′ |λ− λ′|.



Chapter 5

The Markov modulated risk model

This chapter is based on Enikeeva et. al. [14]. We derive stability bounds for the ruin probabilities in
the Markov modulated risk model. Similarly to the previous chapter, we use Markov chain approach.

Recall the Markov modulated risk model from Section 2.2.2; the skeleton risk process {Rn} is given
by (2.24). First we construct the corresponding reversed process {Vn}.

The reversed process. In order to define a reversed process we first introduce a MC I = {In}n≥0

which may be considered as the ’reversed’ chain with respect to I in the sense that In = I−n. Thus, I
is a stationary Markov chain with state space E = {1, . . . ,m}, transition probabilities

qij =

{

pjiπj/πi, j 6= i,

pii, j = i,
(5.1)

and initial distribution {πi} as in (2.23) which is also the stationary distribution of I. The n-step

transition probabilities will be denoted by q
(n)
i = {q(n)

ij }. We assume that I is independent of the random

elements involved in the definition of Ri for all i ∈ E.
Now, following the construction (2.14)–(2.15), we define the reversed process as follows,

Vn+1 =
(

Vn + ηIn,In+1
)

+
, V0 = 0, (5.2)

where
ηji = δjiZ

i − ciθ
i, i, j ∈ E. (5.3)

The process
Wn = (Vn, In) , n ≥ 0, (5.4)

is a MC with values in R+ × E, with shift operator

Pf(v, i) = qii Ef
(

(v + Zi − ci θ
i)+, i

)

+
∑

j 6=i

qijEf
(

(v − cj θ
j)+, j

)

(5.5)

and stationary distribution Π. Existence of Π will be shown in Chapter 7, see Remark 7.14. Relation
(2.16) yields

ψ(x) = lim
n→∞

P(Vn > x) =
∑

i∈E

∫ ∞

x

Π(dy, i). (5.6)
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The main assumptions. Denote by MZi(ε) := E exp(εZi
n) the moment generating function (m.g.f.)

of the claims Zi
n and assume that MZi(ε) <∞ for some ε > 0 and all i ∈ E. We introduce a matrix P (ε)

with entries pij(ε) defined by

pij(ε) := pijEe
εηij =











pii Eeε(Zi−ciθ
i) = piiMZi(ε)

λi

λi + ciε
, j = i,

pij Ee−εcjθj

= pij
λj

λj + cjε
, j 6= i,

where the probabilities pij are from (2.21). This matrix is positive and therefore, its spectral radius
‖P (ε)‖SP is equal to the maximal eigenvalue which is positive and denoted by d(ε). Note that d(0) = 1.

Assumption 5.1. Assume that there exists a constant ε∗ > 0 such that

‖P (ε∗)‖SP = d(ε∗) < 1.

Assumption 5.1 can also be expressed in terms of the embedded reversed process (V, I). We define
another matrix Q(ε) with elements

qij(ε) := qijEeεηij =

{

qii E eε(Zi−ciθ
i), j = i,

qij E e−εcjθj

, j 6= i,

where the probabilities qij are defined in (5.1). Evidently,

Q(ε) = T−1P t(ε)T,

where T = diag(π1, . . . , πm), T−1 is the inverse of T and P t(ε) is the transpose of P (ε). Therefore, the
maximal eigenvalue of Q(ε) is equal to d(ε). We denote by γ(ε) the eigenvector (column) of the matrix
Q(ε) corresponding to the eigenvalue d(ε) and by γP (ε) the corresponding eigenvector of P t(ε). Then

γ(ε) = T−1γP (ε).

Denote by γi(ε) the components of the vector γ(ε). All these components are positive by the Perron-
Frobenius theory. For definiteness, let us assume that that γ1(ε) = 1. Evidently, γ(ε) is a continuous
function of ε.

Decomposition. Now we will construct a decomposition of the transition kernel P of the MC (V, I)
and will prove conditions (D1)–(D3) on p. 26. We decompose P in the following way:

P ((v, i); (Γ, j)) = K((v, i); (Γ, j)) + h(v, i) ν(Γ, j), (5.7)

where

h(v, i) = min
j∈E

qij
πj

min
i∈E

P(v + Zi − ciθ
i ≤ 0),

ν(Γ, j) = δ0(Γ)πj ,

where δ0 is a probability measure on [0,∞) s.t. δ0({0}) = 1. Conditions (D1), (D2) trivially hold. We
now focus on (D3).



41

We would like to compare the ruin probabilities in a weighted metric with weight function

w(v) = exp(ε∗v).

Such bounds would follow from Kartashov’s results (see Theorem 3.12 and Corollary 3.13) and relation
(5.6) if ‖K‖Wε∗

< 1 for a weight function Wε∗(v, i) = Ci exp(ε∗v), where constants Ci > 0. However,

one may only conclude from Assumption 5.1 that KWε∗ (v)
Wε∗ (v) ≤ ρ < 1 for large enough v (see Lemma 5.2).

Therefore, it becomes necessary to consider a slight modification ofWε∗ . Now we focus on the construction
of such function W .

For each ε ≥ 0, define a weight function Wε by

Wε(v, i) = γi(ε) e
εv, v ≥ 0, i ∈ E. (5.8)

Lemma 5.2. Let Assumption 5.1 hold and take the constant ε ∈ (0, ε∗]. Then,

sup
v≥V ∗

max
i∈E

KWε(v, i)

Wε(v, i)
≤ ρ∗, (5.9)

where the constants V ∗ = V ∗(ε) <∞ and ρ∗ = ρ∗(ε) < 1 are given in (5.11).

Proof. Since K ≤ P , it suffices to prove that (5.9) holds with P instead of K. From (5.5) we have

PWε(v, i) =
∑

j∈E

qijγj(ε)E exp
(

ε(v + ηij)+
)

,

where the ηij ’s are given in (5.3). Using

qij E exp
(

ε(v + ηij)+
)

≤ qij
(

E exp
(

ε(v + δijZ
j − cjθ

j)
)

+ 1
)

= qij(ε) e
εv + qij , (5.10)

and taking into account that
∑

j∈E
qij(ε)γj(ε) = d(ε)γi(ε), we have

PWε(v, i)

Wε(v, i)
≤ d(ε) +

γ(ε)

γ(ε)
e−εv,

where γ(ε) := maxi γi(ε) and γ(ε) := mini γi(ε). Choosing V ∗ as solution to the equation

γ(ε)

γ(ε)
e−εV ∗

=
1 − d(ε)

2

we prove (5.9) with

V ∗(ε) =
1

ε
log

2γ(ε)

(1 − d(ε))γ(ε)
, ρ∗(ε) =

1 + d(ε)

2
. (5.11)

This completes the proof of the lemma.
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Remark 5.3. It follows from the proof of Lemma 5.2 that for any 0 < ε0 ≤ ε∗ there exists V ∗(ε0, ε
∗)

such that

sup
ε∈[ε0,ε∗]

ρ∗(ε) < 1. (5.12)

Furthermore, for all ε ∈ [ε0, ε
∗] there exists one V ∗ = V ∗(ε0, ε

∗) satisfying Lemma 5.2.

Lemma 5.4. Let Assumption 5.1 hold. Then there exist constants 0 < ε∗ ≤ ε∗ and ρ∗(v̄) < 1 such that,
for any v̄ ≥ 0,

sup
v≤v̄

max
i∈E

KWε∗
(v, i)

Wε∗
(v, i)

≤ ρ∗(v̄). (5.13)

Proof. Using that W0(v, i) = γi(0) ≡ 1, we have

PW0(v, i)

W0(v, i)
= 1.

This together with (5.7) yields

KW0(v, i)

W0(v, i)
= 1 −

(

min
j∈E

qij
πj

)

s(v),

where

s(v) = min
i∈E

P(v + Zi − ciθ
i ≤ 0).

Evidently, s(v) > 0 for any v ≥ 0, and s(v) → 0 as v → ∞.

It follows that (5.13) holds for ε∗ = 0 and the left hand side on (5.13) does not exceed

1 − s(v̄) min
i,j∈E

qij
πj
.

The continuity of γi(r) with respect to r and Assumption 5.1 infer that relation (5.13) holds for some
positive (sufficiently small) ε∗ and appropriate ρ∗(v̄) < 1, which completes the proof.

Take ε∗ as in Assumption 5.1 and ε∗ ≤ ε∗ from Lemma 5.4. Put

W (v, i) = γi(r(v)) exp(r(v)v), v ≥ 0, i ∈ E, (5.14)

where

r(v) = ε∗ +
(ε∗ − ε∗)χv

1 + χv
, χ > 0. (5.15)

Evidently, r(0) = ε∗ and r(v) → ε∗ as v → ∞. Note also that the function r(v)v satisfies the Lipschitz
condition

|r(v1)v1 − r(v2)v2| ≤ ε∗ |v1 − v2|. (5.16)

Lemma 5.5. Let Assumption 5.1 hold. If W is defined by (5.14) and (5.15), then ‖K‖W = ρ < 1 for
sufficiently small χ > 0.
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Proof. Introduce the function

fv(z, i) = γi(r(v)) exp(r(v)z), i ∈ E, z ≥ 0, v ≥ 0.

Then,

‖K‖W = sup
v≥0,i∈E

KW (v, i)

W (v, i)

= sup
v≥0,i∈E

K(fv + (W − fv))(v, i)

W (v, i)

≤ sup
v≥0,i∈E

K(fv)(v, i)

W (v, i)
+ sup

v≥0,i∈E

K(W − fv)(v, i)

W (v, i)
. (5.17)

We will prove that for appropriately chosen χ > 0, the first supremum in (5.17) is strictly less than 1,
and the second can be made arbitrarily small, implying the assertion of the lemma.

By Lemma 5.2 and Remark 5.3, there exist V ∗ ≥ 0 and 0 < ρ∗ < 1 such that

sup
i∈E,v≥V ∗

Kfv(v, i)

fv(v, i)
≤ ρ∗.

By Lemma 5.4, there exists 0 < ρ∗(V
∗) < 1 and χ1 > 0 such that, for all χ < χ1,

sup
i∈E,v≤V ∗

Kfv(v, i)

fv(v, i)
≤ ρ∗(V

∗).

Thus, the first supremum in (5.17) is bounded by max{ρ∗, ρ∗(V ∗)}.
Now we turn to the second term in (5.17). Since K ≤ P , we bound the following quantity.

∣

∣

∣

∣

P(W − fv)(v, i)

W (v, i)

∣

∣

∣

∣

≤ e−r(v)v

γi(r(v))
Ev,i

∣

∣

∣γI1(r(V1))e
r(V1)V1 − γI1(r(v))e

r(v)V1

∣

∣

∣ , (5.18)

where Ev,i is the conditional expectation given V0 = v, I0 = i, and hence, see (5.2), V1 = (v + ηiI1 )+. It
follows from the Lipschitz condition (5.16) and Assumption 5.1, that for all χ ≥ 0, the right-hand side of
(5.18) is uniformly bounded. Thus, by Lebesgue’s dominated convergence theorem, the right-hand side
converges to 0 when χ→ 0 (recall that γi(r) is continuous in r). Thus, for any δ > 0, there exists χ2 > 0
such that

∣

∣

∣

∣

P(W − fv)(v, i)

W (v, i)

∣

∣

∣

∣

≤ δ

for all χ ≤ χ2, i ∈ E, and v ≥ 0.

This yields that

‖K‖W ≤ max(ρ∗, ρ∗(V
∗)) + δ

for all χ ≤ min(χ1, χ2). Since δ can be chosen as small as necessary, the lemma is proved.
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The stability bound. We have proved that the decomposition (5.7) of the kernel P satisfies the
conditions (D1)–(D3) with weight function W defined in (5.14) and (5.15). Thus, Corollary 3.13 is
applicable to a MC (Vn, In). For the comparisson of ruin probabilities we will use weight function

w(x) = exp(ε∗x),

where ε∗ is from Assumption 5.1. Using the representation of the ruin probability (5.6) and the relation

ε∗v ≤ ε∗ − ε∗
χ

+ r(v)v,

we have

‖ψa − ψa′‖w =

∫ ∞

0

eε∗v|ψa(dv) − ψa′(dv)|

≤ e(ε
∗−ε∗)/χ

∫ ∞

0

er(v)v |ψa(dv) − ψa′(dv)|

≤ e(ε
∗−ε∗)/χ

∑

i∈E

∫ ∞

0

er(v)v |Π′(dv, i) − Π(dv, i)|

≤ e(ε
∗−ε∗)/χ

infε∈[ε∗,ε∗] γ(ε)
‖Π′ − Π‖W . (5.19)

The quantity ‖P′ − P‖W can be bounded as follows:

‖P′ − P‖W = sup
v≥0

max
i∈E

∑

j∈E

∫ ∞

0

γj(r(y))e
r(y)y

γi(r(v))er(v)v
|P ′((v, i); (dy, j)) − P ((v, i); (dy, j))|

≤ hγ sup
v≥0

max
i∈E

∑

j∈E

∫ ∞

0

er(y)y−r(v)v |P ′((v, i); (dy, j)) − P ((v, i); (dy, j))|,

where

hγ =
supε∈[ε∗,ε∗] γ(ε)

infε∈[ε∗,ε∗] γ(ε)
. (5.20)

Now,

∫ ∞

0

er(y)y−r(v)v |P ′((v, i); (dy, j)) − P ((v, i); (dy, j))| ≤ |q′ij − qij |Cij + q′ij ∆ij ,

where

Cij := sup
v≥0

E exp
(

r(v + δijZ
j − cjθ

j)+(v + δijZ
j − cjθ

j)+ − r(v)v
)

,

∆ij = sup
v≥0

∫ ∞

0

er(y)y−r(v)v
∣

∣

∣P (v + δijZ
j − cjθ

j ∈ dy) − P (v + δijZ
′j − c′jθ

′j ∈ dy)
∣

∣

∣ .
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The following bounds use the Lipschitz condition (5.16) and relation (4.9),

Cij ≤ sup
v≥0

E exp
(

r(v + Zj)(v + Zj) − r(v)v
)

≤ MZj (ε∗)

∆ij ≤ 2MZj (ε∗)

(

cj
λj

∧
c′j
λ′j

)∣

∣

∣

∣

∣

λ′j
c′j

− λj

cj

∣

∣

∣

∣

∣

+ δij‖FZj − FZ′j‖w.

This yields,

‖P′ − P‖W ≤ hγ max
i∈E

∑

j∈E

|q′ij − qij |MZj (ε∗)

+ 2hγ max
i∈E

∑

j

MZj (ε∗)

(

cj
λj

∧
c′j
λ′j

) ∣

∣

∣

∣

∣

λ′j
c′j

− λj

cj

∣

∣

∣

∣

∣

+ hγ max
i∈E

‖FZi − FZ′i‖w

=: µ(a, a′), (5.21)

This leads to the following result.

Theorem 5.6. If the Markov modulated risk process satisfies Assumption 5.1 and ε∗ > 0 is taken from
Lemma 5.4, then we have the following stability bound:

‖ψa − ψa′‖w ≤ µ(a, a′)

∆0 − µ(a, a′)

κ e(ε
∗−ε∗)/χ

1 − ρ

∑

j∈E

πjγj(ε∗), (5.22)

for any a′ s.t. µ(a, a′) < ∆0, where µ is from (5.21), and ∆0 is from (5.24).

Proof. We apply Corollary 3.13 to the MC (Vn, In) with weight funtion W . Using relations

‖ν‖W =
∑

i∈E

πiγi(ε∗)

κ := sup
v≥0,i∈E

1

W (v, i)
≤
(

min
ε∈[ε∗,ε∗]

γ(ε)

)−1

=: κ,

we have the following stability bound for stationary distribution Π of a MC (V, I):

‖Π′ − Π‖W ≤ ‖P′ − P‖W

∆0 − ‖P′ − P‖W

1

1 − ρ

∑

j∈E

πjγj(ε∗), (5.23)

if the perturbed process (V ′, I ′) satisfies

‖P′ − P‖W ≤ (1 − ρ)2

1 + (κ
∑

i πiγi(ε∗) − 1)ρ
=: ∆0. (5.24)

Bound (5.22) follows from relations (5.19) and (5.21).
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Chapter 6

Model with borrowing and

investments

In this section we obtain stability bounds for the ruin probability in the risk model with borrowing and
investments introduced in Section 2.2.3. We use the MC approach from Sections 3.2.

The risk process {R(t)}t≥0 and the skeleton risk process {Rn}n≥0 at the claims occurrence times
{Tn}n≥1 (R0 := R(0)), are defined in (2.26) and (2.27), respectively. Let θ be a generic r.v. for the i.i.d.
claim inter-occurrence times θi := Ti −Ti−1 (i.e., it is exponentially distributed with parameter λ) and it
is independent of all other r.v. and processes of a risk model. In the rest of this chapter we require the
following to hold true.

Assumption 6.1. There exists ε∗ > 0 such that

E exp (−ε∗Uθ) < 1. (6.1)

The condition (6.1) is related to the analogue of the Cramér condition 2.6 and will be discussed and
illustrated by some examples in Section 6.4. At this stage we only use that (6.1) implies

lim
t→∞

Ut = ∞ a.s. (6.2)

Indeed, the relation

E exp (−εUθ) =

∫ ∞

0

λe−λt
Ee−εUt dt < 1

can only hold if Ee−εUt < 1 for some t > 0. Then, by Jensen’s inequality, e−εEUt < 1, which yields
EUt > 0. The strong law of large numbers and the stationary independent increments of U imply that
limt→∞ Ut = ∞ a.s.

In order to carry out the construction we first introduce another process X , which is closely related
to the risk process R.

47
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Process X. In the construction of the reversed process and in the further investigations we will rely
on the properties of the process X which is defined by the same assumptions (C1) and (C2) as the
risk process R with the exception that the accumulated claim amount process is identically equal to 0
(i.e. we assume zero claims for the process X). It is convenient to define X on the whole real line, i.e.
X = {Xt}t∈R (this will be useful when constructing the reversed process, see Section 6.1). For this reason
we consider the claim occurrence times sequence {Ti}i≥1 as a part of the increasing sequence of random
times in R, {Ti}i∈Z, such that

θi := Ti − Ti−1, i ∈ Z, (6.3)

are i.i.d. exponentially distributed with parameter λ, and T1 = min{Ti, Ti > 0}. Then, the Poisson
process {Nt} in the condition (C1) is given by

Nt = max{i : 0 < Ti ≤ t}.

We first describe the paths of the process X . Conditions (C1)-(C2) imply that X has different path
behavior in the regions [0, d), [d,D) and [D,∞). Therefore, we describe the process X through processes
X1, X2 and X3, which are defined as follows. For fixed v > 0 we define

X1
t (v) = eUt

(

v −D + c

∫ t

0

e−Uu du

)

+

+D; (6.4)

X2
t (v) = v + ct; (6.5)

X3
t (v) = v exp(βt). (6.6)

Here v plays the role of the initial value at time 0. If the process X ever assumes values in the regions
(0, d], (d,D] and (D,∞], then it behaves as X3, X2 and X1 in the corresponding regions. Relations (6.2)

and {−Uu}u≥0
d
= {U−u}u≥0 (

d
= stands for the identity of the finite-dimensional distributions) yield

lim
t→−∞

∫ t

0

e−Uu du = −∞ a.s. (6.7)

implying that for any v ≥ D, limt→∞X1
t (v) = ∞ a.s. and that the following r.v. is well defined and

τ(v) := sup{t : X1
t (v) ≤ D} > −∞ a.s. (6.8)

Thus, the process X assumes values in the mentioned above regions a.s.

The dynamics of the process X can be seen from the stochastic differential equation,

dXt = (Xt −D)+dŨt − (d−Xt)+βdt+ cdt,

where

dŨt = dU c
t +

1

2
d[U ]ct +

(

e∆Ut − 1
)

(6.9)

and U c, ∆U and [U ] are the continuous part, the jump part and the optional variance of the process U
respectively.
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Similarly to (6.4)–(6.6), we introduce processes
(

SsX
i
t

)

(v) which depend on the shifted process
(Us+t − Us), where s ∈ R is fixed,

(

SsX
1
t

)

(v) := eUs+t−Us

(

v −D + c

∫ t

0

e−(Us+u−Us) du

)

+

+D, (6.10)

and
(

SsX
2
t

)

(v) ≡ X2
t (v) and

(

SsX
3
t

)

(v) ≡ X3
t (v), because X2 and X3 do not depend on U . Obvi-

ously,
(

S0X
1
t

)

(v) ≡ X1
t . These equations define the process (SsXt) (v), and because of the stationary

increments of U ,

{(SsXt) (v)} d
= {Xt(v)}, s ∈ R.

Therefore, we write Xt(v) suppressing the shift Ss for identities in distribution.

Lemma 6.2. Let X ′ be defined by the same equations as X, with U replaced by an independent copy U ′.
Then, for any s and t with s · t ≥ 0, we have

Xs+t(v) = (SsXt)(Xs(v))
d
= X ′

t(Xs(v)). (6.11)

Proof. Relation (6.11) holds for the deterministic processes X2 and X3. It only remains to prove that
X1 satisfies (6.11) for v > D and s, t such that X1

u > D for all u ∈ [0, s+ t] (or u ∈ [s+ t, 0], if s, t ≤ 0).
For such v, s, t we have

X1
s+t(v) = eUs+t−Ut eUt

(

v −D + c

∫ t

0

e−Uu du+ c

∫ s

0

e−Ut+u du

)

+D

= eUs+t−Ut

(

eUt

(

v −D + c

∫ t

0

e−Uu du

)

±D + c

∫ s

0

e−(Ut+u−Ut) du

)

+D

d
= eU ′

s

(

X1
t (v) −D + c

∫ s

0

e−U ′

u du

)

+D ≡ X ′1
t

(

X1
s (v)

)

,

where {U ′
s}

d
= {Ut+s−Ut} d

= {Ut} and U ′ is independent of Ut and therefore is independent of X1
s (v).

Let us return to our risk process {Rn}. It satisfies the following recursive equation

R0 = u, Rn = STn−1
Xθn(Rn−1) − Zn, n ≥ 1. (6.12)

6.1 Reversed process

The construction (2.14)–(2.15) is applicable to the risk process {Rn} defined in (2.4) with

σn = (θn, Zn, {UTn−1+u − UTn−1
)}u∈[0,θn)),

and the function F defined by the right-hand expression in (6.12). Let us consider SsXt as a function,
which for every v ≥ 0, SsXt : v → SsXt(v). It then follows from the definition (6.10) that STnX−θn is
the inverse function to STn−1

Xθn . Therefore,

Rn−1 = STnX−θn(Rn + Zn). (6.13)
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The process X is non-negative and, therefore, the construction (2.14)–(2.15) together with (6.13) gives
us the following reversed process,

V0 = 0,

Vn = STnX−θn(Vn−1 + Zn), (6.14)

which satisfies the relation (2.16).
Since {σn} is i.i.d., the sequence {Vn} constitutes a homogeneous Markov chain. Because of the

negative drift, the Markov chain {Vn} has a stationary distribution given by

π(x) = lim
n→∞

P(Vn ≤ x) = 1 − ψ(x), (6.15)

see (2.16). We denote the transition kernel and the shift operator of the Markov chain {Vn} respectively
by

P (v,Γ) = P (Vn+1 ∈ Γ|Vn = v) = P(X−θ(v + Z) ∈ Γ), (6.16)

Pf(v) =

∫ ∞

0

f(x)P (v, dx)) = Ef (X−θ(v + Z)) , (6.17)

where f is any measurable function. Given a non-negative kernel K, the corresponding shift operator K

is defined analogously to (6.17) with P replaced by K.

By virtue of (6.15) the problem of stability of the ruin probability is reduced to the stability of the
stationary distribution π of the MC {Vn}. Similarly to the two previous chapters, we would like to apply
Kartashov’s result from Section 3.2.2. Thus, our aim is to prove that the MC {Vn} satisfies conditions
(D1)-(D3). Assumption 6.1 will be crucial in the proof of (D3).

6.2 Decomposition of the kernel P

In this section we construct a decomposition (3.17) of P into K,h,G such that K ≥ 0. As we have
assumed positive claims Zi, it follows that there exist q > 0 and 0 < z1 < z2 <∞ such that

FZ(z2) − FZ(z1) ≥ q. (6.18)

Let d∗ = min{d, z1}. For every v ≥ d∗, θ
∗(v) is the unique solution to the equation

X−θ∗(v)(v) = d∗. (6.19)

For v ≤ D, θ∗(v) is a deterministic strictly increasing function of v, which is easy to see from (6.5) and
(6.6). For v > D, we have X−θ∗(v)(v) = X−θ∗(D)

(

Xτ(v)(x)
)

, where τ(v) is defined in (6.8). It follows
from (6.11) that θ∗(v) = −τ(v) + θ∗(D). This proves the existence and uniqueness of θ∗(v). Also, θ∗(v)
is increasing in v as τ(v) is decreasing (see (6.8) and (6.4)).

The decomposition of the transition kernel P in (6.16) is based on the fact that for any initial value
v ≥ 0 at time n ≥ 0, the distribution of Vn+1 has a strictly positive density in the interval (0, d∗).

Lemma 6.3. Let v ≥ 0 and Γ ⊂ (0, d∗). Then the transition kernel P satisfies the relation

P (v,Γ) ≥ h(v)G(Γ),



6.3. DETERMINISTIC INVESTMENTS 51

where

h(v) = qP(θ > θ∗(v + z2)), (6.20)

is a positive function, and G is a probability measure on (0, d∗) given by

G(Γ) = P(X−θ(d∗) ∈ Γ). (6.21)

The value q is defined in (6.18), and the r.v.’s θ and θ∗(v + z2) are independent.

Proof. Let v ≥ 0 and Γ ⊂ (0, d∗). From the definition (6.16) of the transition kernel P ,

P(v,Γ) = P
(

X−θ(v + Z) ∈ Γ
)

= P
(

X−θ(v + Z) ∈ Γ, Z ∈ [z1, z2)
)

+ P
(

X−θ(v + Z) ∈ Γ, Z /∈ [z1, z2)
)

≥ q inf
z∈[z1,z2]

P
(

X−θ(v + z) ∈ Γ
)

= q inf
z∈[z1,z2]

P
(

X−θ(v + z) ∈ Γ | θ > θ∗(v + z)
)

P
(

θ > θ∗(v + z)
)

, (6.22)

where the latter equality follows from the relation {X−θ(v+z) ∈ Γ} ⊂ {θ > θ∗(v+z)} for any z ∈ [z1, z2).
Provided that θ > θ∗(v + z) we have from (6.11)

X−θ(v + z) = X−θ′−θ∗(v+z)(v + z)

d
= X ′

−θ′

(

X−θ∗(v+z)(v + z)
)

= X ′
−θ′(d∗),

where θ′ := θ− θ∗(v+ z) and by the lack-of-memory of the exponential distribution, θ′ and θ∗(v+ z) are
conditionally independent and P

(

θ′ ≤ x | θ ≥ θ∗(v + z)
)

= P(θ ≤ x). Hence, the latter together with
(6.22) and using that θ∗(v) is increasing in v, yields

P(v,Γ) ≥ qP
(

X ′
−θ′(d∗) ∈ Γ

)

inf
z∈[z1,z2]

P
(

θ > θ∗(v + z)
)

= qP
(

X ′
−θ′(d∗) ∈ Γ

)

P(θ > θ∗(v + z2)),

This proves the lemma.

6.3 Deterministic investments

In this section we obtain stability bounds for ruin probabilities in the special case when the Lévy process
degenerates to a drift function, i.e.

Ut = αt, α > 0. (6.23)

Assumption 6.1 now trivially holds. In this case the behavior of the ruin probability was treated by
Embrechts & Schmidli [13], see Section 2.3.3.

In the following we assume that there exists ε∗ > 0 such that

E exp(ε∗Z) <∞. (6.24)
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Under this condition the ruin probability has exponential decay as u → ∞. From these results it seems
reasonable to compare the ruin probabilities in a weighted metric with weight function

w(v) = exp(εv)

where ε < ε∗. If ‖K‖w < 1, then Kartashov’s results (see Theorem 3.12 and Corollary 3.13) are applicable
and the stability bounds for the ruin probability follow. However, one may only conclude from condition

(6.24) that Kw(v)
w(v) ≤ ρ < 1 for large enough v (see Lemma 6.13 in the Appendix 6.5.1). Therefore, it

becomes necessary to consider a slight modification of w.

Lemma 6.4. Let E exp(ε∗Z) < ∞ and fix a positive ε < ε∗. Then there exists a function w0 depending
on ε which satisfies

w0(v) ≤ exp(εv) ≤ cw0
w0(v), ∀v ≥ 0, (6.25)

for some constant cw0
> 1, and

‖K‖w0
= ρ < 1.

The construction of w0 and the explicit value of cw0
are given in Appendix 6.5.1; see in particular

Lemma 6.15.
Now, by virtue of Corollary 3.13, we obtain stability bounds for the ruin probability with weight

function w0. Relation (6.25) provides the desired bounds with weight function w. For the sake of
simplicity and illustration we focus on stability bounds with respect to the parameter a = (λ, FZ)
keeping α, β and c fixed. Bounds with respect to all parameters can also be obtained. This, however, is
technically more involved; see the discussion in Section 6.6.1.

Let

µ(a, a′) = ‖FZ − F ′
Z‖f0

+ hλ|λ− λ′|, (6.26)

where

f0(x) = eε∗x and hλ =
1

λ ∨ λ′ (Ef0(Z) + Ef0(Z
′)) .

Theorem 6.5. Let E exp(ε∗Z) <∞, E exp(ε∗Z ′) <∞ and fix ε < ε∗. Take ρ and w0 as in Lemma 6.4.
If

µ(a, a′) <
(1 − ρ)2

1 + (eεd∗ − 1)ρ
=: ∆0,

then the following stability bound holds

|ψa − ψa′ |w ≤ cw0
eεd∗

(1 − ρ)

µ(a, a′)

∆0 − µ(a, a′)
. (6.27)

Proof. Lemma 6.22 in Appendix II yields the inequality

‖Pa − Pa′‖w0
≤ µ(a, a′). (6.28)

The constants κ and ‖G‖w0
(see (3.16) and (6.21)) can be bounded as follows

κ = sup
v≥0

1

w0(v)
= 1,

‖G‖w0
=

∫ v∗

0

w0(v)G(dv) ≤ exp(εd∗).
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This together with (6.28) and Corollary 3.13 yields

‖ψ′ − ψ‖w0
≤ eεd∗

(1 − ρ)

µ(a, a′)

∆0 − µ(a, a′)
. (6.29)

From (3.25) and (6.25),

|ψa − ψa′ |w ≤ cw0
‖ψa − ψa′‖w0

.

Now (6.27) follows from (6.29) and the latter inequality.

6.4 The general model

In this section we consider the general model, where U is a Lévy process satisfying Assumption 6.1.
Additionally we assume that

EZε∗

<∞, (6.30)

where ε∗ is as in (6.1).
To illustrate Assumption 6.1 we consider two examples.

Example 6.6. Let

Ut = αt+

m
∑

1

αiPt(λi), α > 0, αi ∈ R, i = 1, . . . ,m, min
i
αi < 0, (6.31)

where Pt(λi) are independent Poisson processes with parameter λi. Denote

g(ε) = −εα+

m
∑

i=1

λi(e
−εαi − 1). (6.32)

Then

E exp(−ε∗Uθ) = E exp(θg(ε∗)) =
λ

λ− g(ε∗)
.

From g(0) = 0 and g′′(ε) > 0 it follows that there exists ε∗ > 0 such that relation (6.1) holds if and only
if g′(0) < 0. Therefore, Assumption 6.1 holds if and only if

α+

m
∑

1

αiλi > 0. (6.33)

Example 6.7. Let
Ut = αt+ σWt, (6.34)

where W is standard Brownian motion and σ is a positive constant. In this case,

E exp(−ε∗Uθ) = E exp
(

θ((ε∗σ)2/2 − ε∗α)
)

=
λ

λ− (ε∗σ)2/2 + ε∗α
.

Assumption 6.1 holds if and only if α > 0. In this case, ε∗ < 2α/σ2.
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The weight function
w(v) = (1 + v)ε

with ε < ε∗ seems reasonable for the tail-comparison of the ruin probabilities in this case. However, we
cannot expect that ‖K‖w < 1 holds for this function: Assumption 6.1 together with the condition (6.30)

yields Kw(v)
w(v) ≤ ρ < 1 for large enough v (see Lemma 6.19). Similarly to the model with deterministic

investments, we consider a slight modification of w.

Lemma 6.8. Under Assumption 6.1 and condition (6.30), for any fixed ε < ε∗ there exists a function
w1 which satisfies

w1(v) ≤ (1 + v)ε ≤ cw1
w1(v), for all v ≥ 0, (6.35)

for some constant cw1
> 1, and

‖K‖w1
= ρ < 1.

The construction of w1 and the explicit expression of cw1
are given Appendix 6.5.2; see in particular

Lemma 6.20.
Now Corollary 3.13 together with the inequalities (6.35) provides the following stability bound. The

proof is analogous to the one of Theorem 6.5. The non-perturbed model is governed by the parameter
a = (λ, c, FZ , β, aU ), (where aU stands for the parameters governing the process U), and all quantities
with primes refer to the perturbed model governed by the parameter a′.

Theorem 6.9. Let EZε∗

<∞, E(Z ′)ε∗

<∞ and w1 be as in Lemma 6.8. Assume that µ(a, a′) satisfies

‖P′ − P‖w1
≤ µ(a, a′). (6.36)

and

µ(a, a′) <
(1 − ρ)2

1 + ((1 + d∗)ε − 1)ρ
=: ∆0. (6.37)

Then the corresponding ruin probabilities satisfy

|ψa − ψa′ |w ≤ (1 + d∗)
εcw1

1 − ρ

µ(a, a′)

∆0 − µ(a, a′)
. (6.38)

We conclude this section with two examples illustrating the use of Theorem 6.9.

Example 6.10. Let U be the process in (6.31) satisfying the condition (6.33). We assume that
the parameters c, α and αi are fixed and, therefore, not included in the governing parameter a =
(λ, λ1, . . . , λm, FZ , β). In this case the inequality (6.36) is fulfilled for

µ(a, a′) = hλ|λ− λ′| + hβ

∣

∣

∣

∣

λ

β
− λ′

β′

∣

∣

∣

∣

+ hZ‖FZ − F ′
Z‖f1

+

m
∑

1

hλi|λi − λ′i|.

Explicit expressions for hλ, hβ , hZ , hλi and the function f1 together with the proof are given in Appendix
6.6; see in particular Example 6.24.

Example 6.11. Let U be defined by (6.34). Define the governing parameter as a = (λ, c, FZ , β, α, σ).
Assume that parameter a′ satisfies

α′

σ′2
> max

(

2α

σ2
−
√

2λ

σ2
−
( α

σ2

)2

, 0

)

and
cσ′2

c′σ2
≥ 1

2
. (6.39)
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Then Theorem 6.9 holds with ε < 2 min(α/σ2, α′/σ′2) and

µ(a, a′) = hλc|
λ

c
− λ′

c′
| + hβ

∣

∣

∣

∣

λ

β
− λ′

β′

∣

∣

∣

∣

+ hZ‖FZ − F ′
Z‖f0

+ hασ

∣

∣

∣

∣

α

σ2
− α′

σ′2

∣

∣

∣

∣

+ hλσ

∣

∣

∣

∣

λ

σ2
− λ′

σ′2

∣

∣

∣

∣

+ hcσ

∣

∣

∣

∣

c

σ2
− c′

σ′2

∣

∣

∣

∣

δ

, (6.40)

where 0 < δ < 1/2, and the constants are given in the proof of Lemma 6.29.

6.5 Appendix I

6.5.1 Construction of the weight function in the deterministic model

As promised in Section 6.3, in this section we construct a weight function w0 which satisfies relation
(6.25) and

‖K‖w0
= sup

v≥0

Kw0(v)

w0(v)
≤ ρ < 1, (6.41)

in the particular case where Ut = αt.
First, we prove an inequality which will be used later in the proofs.

Lemma 6.12. For any ε ≥ 0 such that EeεZ <∞,

P exp(εv)

exp(εv)
≤ E

[

exp
(

εv(e−αθ − 1)
)]

E

[

exp (ε(Z +D))
]

, v ≥ 0, (6.42)

where the shift operator P is defined in (6.17).

Proof. We first prove two inequalities,

X−t(v) ≤ v, (6.43)

X−t(v) ≤ D + ve−αt (6.44)

for t, v ≥ 0. For Ut = αt the process X which coincides with X1, X2 and X3 in the corresponding regions
(see (6.4)–(6.6) and the discussion afterwards) is deterministic. Relation (6.43) is immediate.

Recall τ(v) from (6.8). Inequality (6.44) is valid for v ≤ D, and for
(

v > D and −t ≤ τ(v)
)

, because

in this case X−t(v) ≤ D. For
(

v > D and −t > τ(v)
)

,

X−t(v) = e−αt

(

v −D + c

∫ −t

0

e−αu du

)

+D

≤ e−αtv +D,

and thus, (6.44) holds.
Now, by (6.17),

P exp(εv)

exp(εv)
=

E exp (εX−θ(v + Z))

exp(εv)

= E

[

exp

(

εv

(

X−θ(v + Z)

v + Z
− 1

))

exp

(

εZ
X−θ(v + Z)

v + Z

)]

. (6.45)
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By (6.44),

εv

(

X−θ(v + Z)

v + Z
− 1

)

≤ εv

(

D + e−αθ(v + Z)

v + Z
− 1

)

≤ εD + εv
(

e−αθ − 1
)

,

and by (6.43),

εZ
X−θ(v + Z)

v + Z
≤ εZ.

This together with (6.45) yields (6.42).

Inequality (6.42) is the basis for the next result.

Lemma 6.13. Let E exp(ε∗Z) <∞ for ε∗ > 0. Then
(i) there exists V <∞ such that

sup
ε∈[0,ε∗]

sup
v≥V

P exp(εv)

exp(εv)
≤ 1. (6.46)

(ii) for any 0 < ε∗ ≤ ε∗ and any ρ∗ ∈ (0, 1) there exists V ∗ = V ∗(ε∗, ρ
∗) <∞ such that

sup
ε∈[ε∗,ε∗]

sup
v≥V ∗

P exp(εv)

exp(εv)
≤ ρ∗. (6.47)

The constants V and V ∗ are given by (6.52) and (6.53).

Proof. Relation (6.42) and inequality

E exp
(

εv(e−αθ − 1)
)

=

(∫ t

0

+

∫ ∞

t

)

λe−λt exp
(

εv(e−αt − 1)
)

dt

≤ 1 − e−λt + e−λt exp
(

εv(e−αt − 1)
)

, (6.48)

for any t > 0, yield

P exp(εv)

exp(εv)
≤
[

1 − e−λt
(

1 − exp
(

εv(e−αt − 1)
))]

E exp(ε(Z +D)) =: fε(v). (6.49)

Set η ≤ 1 and consider the conditions under which fε(v) ≤ η, i.e.

e−λt exp
(

εv
(

e−αt − 1
))

≤ η

E exp(ε(Z +D))
+ e−λt − 1. (6.50)

The latter is only possible if the right-hand expression is positive, which is equivalent to

t <
1

λ
log

(

Eeε(Z+D)

Eeε(Z+D) − η

)

.

Take

t =
1

λ
log

(

Eeε(Z+D) − γ

Eeε(Z+D) − η

)

, (6.51)
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where γ ∈ (0, η). Inserting this in (6.50) we see that (6.50) holds for any v ≥ V = V (ε), where

V (ε) =

(

1 −
(

Eeε(Z+D) − η

Eeε(Z+D) − γ

)α/λ
)−1

1

ε
log

(

Eeε(Z+D)

γ

)

.

We now consider two cases.

(i) Let η = 1 and take γ = e−ε. This yields (6.46) with

V := sup
ε∈(0,ε∗]

V (ε) =

(

1 −
(

Eeε∗(Z+D) − 1

Eeε∗(Z+D) − e−ε∗

)α/λ
)−1

sup
ε∈(0,ε∗]

log
(

Eeε(Z+D+1)
)

ε
. (6.52)

(ii) Set η = ρ∗ < 1 and take γ = ρ∗/2. This yields (6.47) with

V ∗ =

(

1 −
(

Eeε∗(Z+D) − ρ∗

Eeε∗(Z+D) − ρ∗/2

)α/λ
)−1

1

ε∗
log

(

2Eeε∗(Z+D)

ρ∗

)

. (6.53)

This completes the proof.

Lemma 6.14. Under the conditions of Lemma 6.13 there exist ε0 = ε0(V ) > 0 and ρ0 = ρ0(V ) < 1 such
that

sup
ε≤ε0

sup
v≤V

K exp(εv)

exp(εv)
≤ ρ0. (6.54)

Proof. By definition of K (see condition (D2)), for any ε ≤ ε∗ and v ≥ 0,

K exp(εv) = P exp(εv) − h(v)

∫ d∗

0

exp(εy)G(dy). (6.55)

We choose the specification of h and G as in (6.20) and (6.21). In particular, G is a probability measure
on [0, d∗]. Since h is positive and monotone decreasing to 0, it follows that for any v ≤ V and ε ≤ ε∗,

K exp(εv)

exp(εv)
≤ P exp(εv)

exp(εv)
− h(V )

exp(ε∗V )
.

From (6.42) and since E exp
(

εv(e−αθ − 1)
)

≤ 1,

P exp(εv)

exp(εv)
≤ E exp(ε(Z +D)).

Since the right-hand expression converges to 1 when ε→ 0 and h(V ) > 0, we can choose ε0 ∈ (0, ε∗) such
that

E exp(ε0(Z +D)) ≤ 1 +
1

2

h(V )

exp(ε∗V )
.

The last three inequalities give that (6.54) holds with

ρ0 = 1 − 1

2

h(V )

exp(ε∗V )
.
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The weight function w0 is given by the following construction. Let ε0 be from Lemma 6.14. Fix
ε∗ ∈ (0, ε0) and ε ∈ (ε∗, ε

∗). For any χ ≥ 0 define

r(v) = ε∗ + (ε∗ − ε∗)
(χ log(1 + v)) ∧C

1 + (χ log(1 + v)) ∧ C , v ≥ 0. (6.56)

where

C =
ε− ε∗
ε∗ − ε

. (6.57)

We define the desired weight function by

w0(v) = exp(r(v)v). (6.58)

Lemma 6.15. Under the conditions of Lemma 6.13 there exists χ > 0 such that ‖K‖w0
= ρ < 1.

Proof. Write
fv(z) = exp(r(v)z).

Then,

‖K‖w0
= sup

v≥0

Kw0(v)

w0(v)

= sup
v≥0

K(fv + (w0 − fv))(v)

w0(v)

≤ sup
v≥0

(Kfv)(v)

fv(v)
+ sup

v≥0

K(w0 − fv)(v)

fv(v)
. (6.59)

We prove that for appropriately chosen χ, the first supremum in (6.59) is strictly less than 1, and the
second one can be made arbitrarily small, implying the assertion of the lemma.

We first prove that for some ρ1 < 1 to be specified,

sup
v≥0

(Kfv)(v)

fv(v)
≤ ρ1. (6.60)

Let V be as in Lemma 6.13 and take ε0(V ), ρ0(V ) as in Lemma 6.14. For ε∗ ∈ (0, ε0) take V ∗ = V ∗(ε∗, ρ0)
as in Lemma 6.13. Without loss of generality we assume V ∗ ≥ V . Now we require χ to be such that
r(V ∗) ≤ ε0, which follows from

r(V ∗) ≤ ε∗ + (ε∗ − ε∗)
χ log(1 + V ∗)

1 + χ log(1 + V ∗)
≤ ε0.

The latter inequality is equivalent to

χ ≤ χ1 :=
ε0 − ε∗

(ε∗ − ε0) log(1 + V ∗)
.

Because r(v) ∈ [ε∗, ε
∗] for any v ≥ 0, we have that

(Kfv)(v)

fv(v)
=

∫∞

0 K(v, dy)fv(y)

fv(v)
≤ sup

ε∈[ε∗,ε∗]

∫∞

0 K(v, dy)eεy

eεv
.
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This, together with Lemma 6.14 yields

sup
v≤V

(Kfv)(v)

fv(v)
≤ sup

ε∈[0,ε0]

sup
v≤V

Keεv

eεv
≤ ρ0.

Similarly, by Lemma 6.13,

sup
v≥V ∗

(Kfv)(v)

fv(v)
≤ sup

ε∈[ε∗,ε∗]

sup
v≥V ∗

Keεv

eεv
≤ ρ0.

And finally, equality (6.55) yields that for any v ∈ [V, V ∗],

(Kfv)(v)

fv(v)
≤ sup

ε∈[0,ε∗]

Keεv

eεv
≤ 1 − h(V ∗)

eε∗V ∗
.

Thus, (6.60) holds with

ρ1 = max

{

ρ0, 1 − h(V ∗)

exp(ε∗V ∗)

}

This proves (6.60).

Now we turn to the estimate of the second term in (6.59). We will prove that for sufficiently small
χ > 0, the quantity

sup
v≥0

K(w0 − fv)(v)

fv(v)
(6.61)

becomes arbitrarily small. Since the kernel K ≤ P , and r(y) is an increasing function, it follows that

K(w0 − fv)(v) =

∫ ∞

0

K(v, dy)
(

er(y)y − er(v)y
)

≤
∫ ∞

v

P (v, dy)
(

er(y)y − er(v)y
)

= E

[(

er(Vn+1)Vn+1 − er(v)Vn+1

)

1 (Vn+1 ≥ v) |Vn = v
]

Using that er(y)y − er(v)y is an increasing function of y, together with the inequality

X−θ(v + Z) ≤ v + Z +D,

we conclude that for any A ≥ 0,

K(w0 − fv)(v)

fv(v)
≤

(

∫ A

0

+

∫ ∞

A

)

er(v+z+D)(v+z+D) − er(v)(v+z+D)

er(v)v
dFZ(z)

=: I1 + I2. (6.62)

Choose χ so small that

χ ≤ 1 − C

1 + C
=: χ2,
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where C is defined by (6.57). Notice that

d

dv
(r(v)v) ≤ χ(ε∗ − ε∗) + r(v). (6.63)

The right-hand side is less or equal than ε∗, and so r(v)v is Lipschitz with constant ε∗. Applying this to
I2, we obtain that for any δ2 > 0 there exists A = A(δ2) such that

I2 ≤
∫ ∞

A

eε∗(D+z) dFZ(z) ≤ δ2.

Since d
dv (r(v)v) is increasing in v, (6.63) together with a Taylor expansion argument gives

r(v + z +D)(v + z +D) ≤ r(v)v + (χ(ε∗ − ε∗) + r(v + z +D)) (z +D).

Inserting the latter inequality in I1, one obtains

I1 ≤ Aer(v)(A+D)
(

eχ(ε∗−ε∗)(A+D)e(r(v+A+D)−r(v))(A+D) − 1
)

≤ Aeε(A+D)
(

eχ(ε∗−ε∗)(A+D)(1+log(1+A+D)) − 1
)

The last expression is less than any fixed δ1 > 0 for χ ≤ χ3, where

χ3 :=
log
(

1 + e−ε(A+D)δ1/A
)

(ε− ε∗)(A+D)(1 + log(1 +A+D))
.

The theorem is proved if we choose δ1 and δ2 such that ρ1 + δ1 + δ2 < 1, and χ = min{χ1, χ2, χ3}.
Finally, the function w0 satisfies the desired property

eεv ≤ cw0
w0(v), for all v ≥ 0,

with

cw0
= (ε∗ − ε∗)

C

1 + C
(eC/χ − 1). (6.64)

This concludes the proof of the lemma.

6.5.2 Construction of the weight function for the general model

In this section we will construct a weight function w1 satisfying (6.35) and such that

‖K‖w1
= sup

v≥0

Kw1(v)

w1(v)
≤ ρ < 1, (6.65)

for the general model, i.e. U is a Lévy process satisfying Assumption 6.1.
We prove an inequality which will be used later in the proofs.

Lemma 6.16. Let ε > 0 be such that EZε <∞. Then, for v ≥ 0,

P(1 + v)ε

(1 + v)ε
≤ E

[(

1 +D

1 + v
+ e−Uθ

)ε]

E

[(

1 +
Z

1 + v

)ε]

. (6.66)
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Proof. First, we prove that for every t ≥ 0 and v ≥ 0,

X−t(v) ≤ D + (1 + v)eU−t . (6.67)

It holds trivially for v ≤ D and
(

v > D and −t ≤ τ(v)
)

, because X−t(v) ≤ D in this case. So we consider

the case
(

v > D and −t > τ(v)
)

, where the process X coincides with X1 and by (6.4),

X−t(v) = eU
−

t

(

v +D + c

∫ −t

0

e−Uu du

)

+D,

from which (6.67) follows. Notice that

P(1 + v)ε

(1 + v)ε
= E

(

1 +X−θ(v + Z)

1 + v

)ε

= E

[(

1 +X−θ(v + Z)

1 + v + Z

)ε(
1 + v + Z

1 + v

)ε]

. (6.68)

By (6.67),

(

1 +X−θ(v + Z)

1 + v + Z

)ε

≤
(

1 +D

1 + v
+ eU−θ

)

d
=

(

1 +D

1 + v
+ e−Uθ

)

.

The latter inequality together with (6.68) leads to (6.66).

Lemma 6.17. Let Assumption 6.1 hold with ε∗ > 0 and assume that EZε∗

< ∞. Then there exists
V <∞ such that

sup
ε≤ε∗

sup
v≥V

P(1 + v)ε

(1 + v)ε
≤ 1.

Proof. For ε ∈ (0, ε∗], by (6.66) and Lyapunov’s inequality,

P(1 + v)ε

(1 + v)ε
≤ E

[(

1 +D

1 + v
+ e−Uθ

)ε (

1 +
Z

1 + v

)ε]

≤
(

E

[

(

1 +D

1 + v
+ e−Uθ

)ε∗
(

1 +
Z

1 + v

)ε∗
])ε/ε∗

.

The expectation in the last expression converges to Ee−ε∗Uθ < 1, when v → ∞. It follows that there
exists V <∞ such that the last expression is less or equal than 1 for all v ≥ V .

Lemma 6.18. Under the conditions of Lemma 6.17 there exist ε0 = ε0(V ) > 0 and ρ0 = ρ0(V ) < 1 such
that

sup
ε≤ε0

sup
v≤V

K(1 + v)ε

(1 + v)ε
≤ ρ0. (6.69)

Proof. By the definition of K,

K(1 + v)ε = P(1 + v)ε − h(v)

∫ d∗

0

(1 + y)εG(dy) (6.70)
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The latter equality together with the inequality (6.66) and using that h is a decreasing function and G
is a probability measure on [0, d∗] (see (6.20) and (6.21)), yield that for all ε ≤ ε∗

K(1 + v)ε

(1 + v)ε
≤ E

(

1 +D + e−Uθ
)ε

E
(

1 + Z
)ε − h(V )

(1 + V )ε∗
.

Choose ε0 ∈ (0, ε∗) such that

E
(

1 +D + e−Uθ
)ε0

E(1 + Z)ε0 ≤ 1 +
h(V )

2(1 + V )ε∗
.

This proves the lemma with

ρ0 := 1 − h(V )

2(1 + V )ε∗
.

Lemma 6.19. Assume that conditions of Lemma 6.17 hold. Take ε0 as in Lemma 6.18 and choose
ε∗ ∈ (0, ε0). Then there exist V ∗ = V ∗(ε∗) <∞ and ρ∗ = ρ∗(ε∗) < 1 such that

sup
ε∈[ε∗,ε∗]

sup
v≥V ∗

P(1 + v)ε

(1 + v)ε
≤ ρ∗. (6.71)

Proof. By Assumption 6.1, there exists 0 < γ < 1 such that maxε∈[ε∗,ε∗] Ee−εUθ ≤ γ. Choose ρ ∈ (γ, 1)
and recall inequality (6.66). There exist V1(ε∗) and V2 such that,

sup
ε∈[ε∗,ε∗]

E

[(

1 +D

1 + v
+ e−Uθ

)ε]

≤ ρ v ≥ V1,

E

[

(

1 +
Z

1 + v

)ε∗
]

≤ 2 − ρ v ≥ V2.

The latter two inequalities and (6.66) yield (6.71) with ρ∗ = ρ(2 − ρ) = 1 − (1 − ρ)2 < 1 and V ∗ =
max{V1, V2}. The constants V1 and V2 can be calculated explicitly.

We prove that (6.65) holds with

w1(v) = (1 + v)R(v), v ≥ 0 (6.72)

with properly chosen χ and

R(v) = r(log(1 + v)), v ≥ 0,

where r is defined in (6.56).

Lemma 6.20. Under the conditions of Lemma 6.19 there exists χ > 0 such that ‖K‖w1
= ρ < 1.
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Proof. The proof is similar to the one of Lemma 6.15 for deterministic investments. Write

fv(z) = (1 + z)R(v).

Then

‖K‖w1
≤ sup

v≥0

(Kfv)(v)

fv(v)
+ sup

v≥0

(K(w1 − fv))(v)

fv(v)
. (6.73)

We prove that the first supremum on the right-hand side is strictly less than 1, and the second one is
arbitrarily small for a proper choice of χ.

First, we prove

sup
v≥0

(Kfv)(v)

fv(v)
≤ ρ1 < 1. (6.74)

Take V as in Lemma 6.17, ρ0 as in Lemma 6.18 and V ∗(ε∗), ρ
∗(ε∗) as in Lemma 6.19. Without loss

of generality we assume that V ∗ ≥ V . Let us choose χ so that

R(V ∗) ≤ ε0.

This holds if (see (6.56))

χ ≤ χ1 :=
ε0 − ε∗

(ε∗ − ε0) log(1 + log(1 + V ))
.

Then Lemma 6.18 yields

sup
v≤V

(Kfv)(v)

fv(v)
≤ sup

ε∈[0,ε0]

sup
v≤V

K(1 + v)ε

(1 + v)ε
≤ ρ0,

and from Lemma 6.19,

sup
v≥V ∗

(Kfv)(v)

fv(v)
≤ sup

ε∈[ε∗,ε∗]

sup
v≥V ∗

P(1 + v)ε

(1 + v)ε
≤ ρ∗.

Relation (6.70) together with Lemma 6.17 yields

sup
v∈[V,V ∗]

(Kfv)(v)

fv(v)
≤ sup

ε∈[0,ε0]

sup
v∈[V,V ∗]

K(1 + v)ε

(1 + v)ε
≤ 1 − h(V ∗)

w1ε0
(V ∗)

.

which proves (6.74) with

ρ1 = max

{

ρ∗, ρ0, 1 − h(V ∗)

w1ε0
(V ∗)

}

.

This proves the first part of the bound for (6.73).

We now turn to the estimate of

sup
v≥0

(K(w1 − fv))(v)

fv(v)
. (6.75)



64 CHAPTER 6. MODEL WITH BORROWING AND INVESTMENTS

Because K ≤ P , and R(y) is an increasing function, for A > 0,

K(w1 − fv)(v)

fv(v)
=

∫ ∞

0

K(v, dy)
(1 + y)R(y) − (1 + y)R(v)

(1 + v)R(v)

≤
(

∫ v∨A

v

+

∫ ∞

v∨A

)

P (v, dy)
(1 + y)R(y) − (1 + y)R(v)

(1 + v)R(v)
= I1 + I2.

Choose χ so small that

χ ≤ 1 − C

1 + C
=: χ2.

Since r(v)v is Lipschitz with constant ε∗ (see (6.63) and the arguments following it in the proof of
Lemma 6.15), it follows that

(1 + y)R(y) − (1 + y)R(v)

(1 + v)R(v)
=

er(log(1+y)) log(1+y) − er(log(1+v)) log(1+y)

er(log(1+v)) log(1+v)

≤ eε∗| log(1+y)−log(1+v)|.

The latter inequality implies that we can choose A = A(δ2) such that

I2 ≤
∫ ∞

v∨A

P (v, dy) exp
(

ε∗ (log(1 + y) − log(1 + v))
)

= E

[

(

1 +X−θ(v + Z)

1 + v

)ε∗

1 (X−θ(v + Z) > (v ∨A))

]

≤ δ2.

For v < A (when I1 6= 0), we estimate I1 similarly to the corresponding integral I1 (defined by (6.62))
in the proof of Lemma 6.15,

I1 ≤ er(log(1+A)) log(1+A) − er(log(1+v)) log(1+A)

er(log(1+v)) log(1+v)

≤ (1 +A)ε
[

eχ(ε∗−ε∗) log(1+A)(1+log(1+log(1+A))) − 1
]

≤ δ1,

for χ ≤ χ3, where

χ3 =
log (1 + δ1(1 +A)−ε)

(ε∗ − ε∗) log(1 +A)(log(1 + log(1 +A)) + 1)
.

Choosing χ = min{χ1, χ2, χ3}, (6.75) is bounded from above by δ1 + δ2 which can be made arbitrarily
small. This proves the lemma.

6.6 Appendix II

In this section we provide the upper bound for the quantity ‖P−P′‖w0
for the model with deterministic

investments, and similar bounds for ‖P − P′‖w1
in the models considered in Examples 6.6 and 6.7. We

use the technique of minimal metrics, see Section 3.5 for a short survey.
The next lemma refers to the general case when the original model is governed by the parameter

a = (λ, c, FZ , β, U), and the governing parameter of the perturbed model is indicated with primes.
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Lemma 6.21. Let w : R → R+ be a monotone increasing function satisfying w(0) = 1 and

E
(

w(X ′
−θ′(v + z))

)

≤ w(v)f(z) z ≥ 0, v ≥ 0, (6.76)

where f is bounded away from 0. Then,

‖P− P′‖w ≤ ‖P1 − P′1‖w + ‖FZ − FZ′‖f + hλc

∣

∣

∣

∣

λ

c
− λ′

c′

∣

∣

∣

∣

+ hβ

∣

∣

∣

∣

λ

β
− λ′

β′

∣

∣

∣

∣

+ w(D)∆,

where

‖P1 − P′1‖w := sup
v≥0

1

w(v)
V arw

(

X1
−θ(v + Z), X ′1

−θ′(v + Z)
)

, (6.77)

∆ := sup
v≥D

∣

∣P(θ > −τ(v)) − P(θ′ > −τ ′(v))
∣

∣ (6.78)

and the constants are given by

hλc = 2w(D)

(

(D − d) +

(

c

λ
∧ c′

λ′

))

, (6.79)

hβ = 4w(D)

(

β

λ
∧ β′

λ′

)

. (6.80)

Proof. By the definition of the norm ‖ · ‖w, see Section 3.5,

‖P− P′‖w = sup
v≥0

V arw(X−θ(v + Z), X ′
−θ′(v + Z ′))

w(v)

≤ sup
v≥0

V arw(X ′
−θ′(v + Z), X ′

−θ′(v + Z ′))

w(v)

+ sup
v≥0

V arw(X−θ(v + Z), X ′
−θ′(v + Z))

w(v)

= I1 + I2. (6.81)

Because the (weighted) total variation metric V arw(X,Y ) is completely determined via its marginal
distributions FX and FY (so called simple metric; see Zolotarev [52], p. 36), one may freely choose the
dependence structure of (X,Y ). Therefore we assume without loss of generality here and in what follows
that Z is independent of X ′ and θ′.

Let us start with I1. From Corollary 3.32 and the relation

{X ′
−θ′(v + Z) 6= X ′

−θ′(v + Z ′)} ⊂ {Z 6= Z ′},

it follows that

V arw(X ′
−θ′(v + Z), X ′

−θ′(v + Z ′))

≤ 1

2
E
[(

w(X ′
−θ′(v + Z)) + w(X ′

−θ′(v + Z ′))
)

1
(

X ′
−θ′(v + Z) 6= X ′

−θ′(v + Z ′)
)]

≤ 1

2
E
[(

w(X ′
−θ′(v + Z)) + w(X ′

−θ′(v + Z ′))
)

1(Z 6= Z ′)
]

≤ 1

2
E [(f(Z) + f(Z ′))1(Z 6= Z ′)]w(v),
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where the last inequality follows from the condition (6.76). This yields

I1 ≤ min
PZZ′∈PZZ′

1

2
E [(f(Z) + f(Z ′)) 1(Z 6= Z ′)] = ‖FZ − FZ′‖f . (6.82)

Now we turn to the term I2. We have

V arw(X−θ(v + Z), X ′
−θ′(v + Z))

w(v)

=
1

w(v)

(

∫ D

0

+

∫ ∞

D

)

w(x)
∣

∣

∣P
(

X−θ(v + Z) ∈ dx
)

− P
(

X ′
−θ′(v + Z) ∈ dx

)

∣

∣

∣

= I21 + I22.

Notice, that I22 depends only on values of X above the level D. In this region process X coincides with
X1, see (6.4). Hence,

I22 ≤ sup
v≥0

1

w(v)

∫ ∞

D

w(x)
∣

∣

∣P
(

X1
−θ(v + Z) ∈ dx

)

− P
(

X ′1
−θ′(v + Z) ∈ dx

)

∣

∣

∣

= sup
v≥0

1

w(v)
V arw

(

X1
−θ(v + Z), X ′1

−θ′(v + Z)
)

= ‖P1 − P′1‖w.

It remains to consider the term I21. It deals with X below the level D where X is described by X2 and
X3, defined in (6.5) and (6.6). Using that Z is independent of X ′ and θ′, we have

I21 =

(

∫ (D−v)+

0

+

∫ ∞

(D−v)+

)

∫ D

0

w(x)
∣

∣

∣P
(

X−θ(v + z) ∈ dx
)

− P
(

X ′
−θ′(v + z) ∈ dx

)

∣

∣

∣ dFZ(z)

= I211 + I212. (6.83)

From X−t(x) ≤ x for x ≤ D and t ≥ 0 it follows that

I211 =

∫ (D−v)+

z=0

∫ v+z

x=0

w(x)
∣

∣

∣P
(

X−θ(v + z) ∈ dx
)

− P
(

X ′
−θ′(v + z) ∈ dx

)

∣

∣

∣ dFZ(z)

≤ w(D) sup
u∈(0,D]

∫ u

0

∣

∣P
(

X−θ(u) ∈ dx
)

− P
(

X ′
−θ′(u) ∈ dx

)∣

∣

=: w(D)S. (6.84)

By the ’lack of memory’ of the exponential r.v.’s θ and θ′, we have

I212 =

∫ ∞

(D−v)+

∫ D

0

w(x)
∣

∣

∣
P
(

X−θ(D) ∈ dx
)

P
(

θ > −τ(v + z)
)

−P
(

X ′
−θ′(D) ∈ dx

)

P
(

θ′ > −τ ′(v + z)
)

∣

∣

∣ dFZ(z)

≤ w(D)(∆ + S). (6.85)
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It now remains to estimate S. For u ≤ d using (6.6) we have

Sd := sup
u∈(0,d]

∫ u

0

∣

∣P
(

X−θ(u) ∈ dx
)

− P
(

X ′
−θ′(u) ∈ dx

)∣

∣

= sup
u∈(0,d]

∫ u

0

1

u

∣

∣

∣

∣

∣

λ

β

(x

u

)
λ
β −1

− λ′

β′

(x

u

)
λ′

β′
−1
∣

∣

∣

∣

∣

dx =

∫ 1

0

∣

∣

∣

∣

λ

β
y

λ
β −1 − λ′

β′
y

λ′

β′
−1

∣

∣

∣

∣

dy

≤ min

(

β

λ
,
β′

λ′

) ∣

∣

∣

∣

λ

β
− λ′

β′

∣

∣

∣

∣

+ min

(

λ

β
,
λ′

β′

)∫ 1

0

∣

∣

∣

∣

y
λ
β −1 − y

λ′

β′
−1

∣

∣

∣

∣

dy

= 2 min

(

β

λ
,
β′

λ′

) ∣

∣

∣

∣

λ

β
− λ′

β′

∣

∣

∣

∣

. (6.86)

Let now u > d. Denote
(

sup
u∈(d,D]

∫ d

0

+ sup
u∈(d,D]

∫ u

d

)

∣

∣P
(

X−θ(u) ∈ dx
)

− P
(

X ′
−θ′(u) ∈ dx

)∣

∣ =: A1 +A2.

Now,

A2 = sup
u∈(d,D]

∫ u

d

∣

∣

∣

∣

λ

c
exp

(

−λ
c
(u− x)

)

− λ′

c′
exp

(

−λ
′

c′
(u − x)

)∣

∣

∣

∣

dx

≤ (D − d)

∣

∣

∣

∣

λ

c
− λ′

c′

∣

∣

∣

∣

. (6.87)

and by the ’lack of memory’ of the exponential distribution,

A1 = sup
u∈(d,D]

∫ d

0

∣

∣

∣

∣

exp

(

−λ
c
(u − d)

)

P
(

X−θ(d) ∈ dx
)

− exp

(

−λ
′

c′
(u− d)

)

P
(

X ′
−θ′(d) ∈ dx

)

∣

∣

∣

∣

≤ sup
u∈(d,D]

∣

∣

∣

∣

exp

(

−λ
c
(u− d)

)

− exp

(

−λ
′

c′
(u− d)

)∣

∣

∣

∣

+ Sd,

≤ min

(

c

λ
,
c′

λ′

) ∣

∣

∣

∣

λ

c
− λ′

c′

∣

∣

∣

∣

+ Sd.

The latter together with (6.86) and (6.87) yields

S ≤
(

(D − d) +

(

c

λ
∧ c′

λ′

)) ∣

∣

∣

∣

λ

c
− λ′

c′

∣

∣

∣

∣

+ 2

(

β

λ
∧ β′

λ′

) ∣

∣

∣

∣

λ

β
− λ′

β′

∣

∣

∣

∣

.

This and I21 ≤ w(D)(∆ + 2S) which follows from (6.83)–(6.85) complete the proof.

6.6.1 Deterministic investments

We consider the model with deterministic investments, i.e., Ut = αt. This model depends on the param-
eters λ, FZ , c, α, β (see conditions (C1)-(C2) and (6.23)). In order to keep calculations simple we only
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investigate the stability with respect to a = (λ, FZ) assuming that α, c, β are the same for all models
(perturbed and non-perturbed). The general case, i.e. stability with respect to all parameters, can be
investigated, for example, by using Lemma 6.21 (with w replaced by w0 in Lemma 6.15).

Lemma 6.22. Let w0 as defined in (6.58) satisfy Lemma 6.15 and assume that Eeε∗Z and Eeε∗Z′

are
finite. Then

‖P − P′‖w0
≤ ‖FZ − F ′

Z‖f0
+ hλ|λ− λ′|,

where f0(v) = exp(ε∗v) and

hλ =
1

λ ∨ λ′ (Ef0(Z) + Ef0(Z
′)) . (6.88)

Proof. By definition of the norm ‖ · ‖w0
(see (3.42)),

‖P − P′‖w0
= sup

v≥0

1

w0(v)
V arw0

(X−θ(v + Z), X ′
−θ′(v + Z ′)).

It follows from Corollary 3.32 that,

V arw0
(X−θ(v + Z), X ′

−θ′(v + Z ′))

≤ 1

2
E

[

(

w0(X−θ(v + Z)) + w0(X
′
−θ′(v + Z ′))

)

1
(

X−θ(v + Z) 6= X ′
−θ′(v + Z ′)

)

]

=: I.

From the relation
{X−θ(v + Z) 6= X ′

−θ′(v + Z ′)} ⊂ {θ 6= θ′} ∪ {Z 6= Z ′},
and the inequality

w0(X−θ(v + Z)) ≤ w0(v + Z) ≤ f0(Z)w0(v),

(which follows from X−θ(v + Z) ≤ v + Z and the Lipschitz property of log(w0)) we obtain

I ≤ 1

2
E

[

(w0(X−θ(v + Z)) + w0(X−θ′(v + Z ′))) 1 (Z 6= Z ′)
]

+
1

2
E

[

(w0(X−θ(v + Z)) + w0(X−θ′(v + Z ′))) 1 (θ 6= θ′)
]

≤ 1

2
E

[

(f0(Z) + f0(Z
′))1(Z 6= Z ′)

]

w0(v) +
1

2
E(f0(Z) + f0(Z

′))P (θ 6= θ′)w0(v).

From Corollary 3.32,

inf
PZZ′∈PZZ′

1

2
E ((f0(Z) + f0(Z

′))1(Z 6= Z ′)) = ‖FZ − F ′
Z‖f0

;

inf
Pθθ′∈Pθθ′

1

2
P (θ 6= θ′) =

1

2
V ar(θ, θ′) ≤ 1

λ ∨ λ′ |λ− λ′|.

This proves the lemma.
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6.6.2 The general model

In this section we find explicit upper bounds for ‖P−P′‖w1
for the models defined in Examples 6.6 and

6.7.

Lemma 6.23. Take w1 as defined by (6.72) and assume that it satisfies Lemma 6.20. Then relation
(6.76) holds with w replaced by w1 and with

f(z) = (1 + z)ε∗

E

(

1 +D + e−U ′

θ′

)ε∗

.

In particular, ‖FZ − FZ′‖f = hZ ‖FZ − FZ′‖f1
, where

f1(v) := (1 + v)ε∗

and hZ := E

(

1 +D + e−U ′

θ′

)ε∗

. (6.89)

Proof. Notice that for v1, v2 ≥ 0,

| log(w1(v1)) − log(w1(v2))| ≤ ε∗| log(1 + v1) − log(1 + v2)|.

It follows that for v, z ≥ 0,

w1(X
′
−θ′(v + z))

w1(v)
≤ w1(v +D + (v + z)e−U ′

θ′ )

w1(v)

≤ exp

(

ε∗

∣

∣

∣

∣

∣

log

(

1 + v +D + (v + z)e−U ′

θ′

1 + v

)∣

∣

∣

∣

∣

)

= exp

(

ε∗

∣

∣

∣

∣

∣

log

(

(

1 + z
)1 + v +D + (v + z)e−U ′

θ′

(1 + z)(1 + v)

)∣

∣

∣

∣

∣

)

≤
(

1 +D + e−U ′

θ′

)ε∗

(1 + z)ε∗

. (6.90)

Relation (6.76) follows by taking expectations on both sides of (6.90).

Example 6.24. The Poisson case

Let U be defined by (6.31), and assume that (6.33) holds. We fix the constants α, c and αi, i =
1, . . . ,m. Then a = (λ, FZ , β, λ1, . . . , λm) is the governing parameter.

Lemma 6.25. Assume that EZε∗

<∞ and E(Z ′)ε∗

<∞, and let w1 be as in (6.72) such that Lemma 6.20
holds. Then,

‖P1 − P′1‖w1
≤ h∗λ|λ− λ′| +

m
∑

k=1

h∗λk |λk − λ′k|,

where the constants h∗λ and h∗λk are from (6.98) and (6.97).
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Proof. From (6.77),

‖P1 − P′1‖w1
≤ sup

v≥0

1

w1(v)
V arw1

(

X ′1
−θ(v + Z), X ′1

−θ′(v + Z)
)

+ sup
v≥0

1

w1(v)
V arw1

(

X1
−θ(v + Z), X ′1

−θ(v + Z)
)

= I1 + I2. (6.91)

We first consider I2. Let m = 1. Recall from (6.31),

Ut = αt+ α1Pt(λ1), and U ′
t = αt+ α1Pt(λ

′
1).

Without loss of generality we assume that P (λ1) and P (λ′1) satisfy the following relation (see also the
remark following (6.81)),

P (λ1 ∨ λ′1) = P (λ1 ∧ λ′1) + P (|λ1 − λ′1|), a.s. (6.92)

where the two processes on the right-hand side are supposed to be independent, and independent of
θ, θ, Z. It follows (see (6.4)) that

{

X1
−θ(v + Z) 6= X ′1

−θ(v + Z)
}

⊂
{

Pθ (λ1) 6= Pθ (λ′1)
}

=
{

Pθ (|λ1 − λ′1|) 6= 0
}

.

This relation, Corollary 3.32 and inequality (6.90) yield

1

w1(v)
V arw1

(

X1
−θ(v + Z), X ′1

−θ(v + Z)
)

≤ 1

2
E









w1

(

X1
−θ(v + Z)

)

w1(v)
+
w1

(

X ′1
−θ(v + Z)

)

w1(v)



 1
(

X1
−θ(v + Z) 6= X ′1

−θ(v + Z)
)





≤ 1

2
E(1 + Z)ε∗

E

[(

(

1 +D + e−Uθ
)ε∗

+
(

1 +D + e−U ′

θ

)ε∗
)

1 (Pθ (|λ1 − λ′1|) 6= 0)

]

(6.93)

Let for definiteness λ1 > λ′1. Since the processes U ′ = P (lambda′1) and P (|λ1 − λ′1|) are independent,
and

E

[

(

1 +D + e−U ′

θ

)ε∗

1 (Pθ (|λ1 − λ′1|) 6= 0)

]

= E

[

(

1 +D + e−U ′

θ

)ε∗
(

1 − e−θ|λ1−λ′

1|
)

]

≤ E

[

(

1 +D + e−U ′

θ

)ε∗

θ|λ1 − λ′1|
]

≤ |λ1 − λ′1|max(1, 2ε∗−1)

(

(1 +D)ε∗

λ
+

λ

(λ− g′(ε∗))2

)

. (6.94)
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Here we have used inequality (a+b)ε ≤ max(1, 2ε−1)(aε+bε) for positive a, b, ε, and equality E (θ exp(−ε∗U ′
θ)) =

λ/(λ− g′(ε∗))2, where the function g′ is defined by (6.32) with λis replaced by λ′is.
Similarly,

E

[

(

1 +D + e−Uθ
)ε∗

1 (Pθ (|λ1 − λ′1|) 6= 0)
]

≤ max(1, 2ε∗−1)

[

|λ1 − λ′1|
(1 +D)ε∗

λ
+ E

(

e−ε∗Uθ 1 (Pθ (|λ1 − λ′1|) 6= 0)
)

]

. (6.95)

We now insert expression (6.92) and consider

E

(

e−ε∗α1Pθ(|λ1−λ′

1|) 1 (Pθ (|λ1 − λ1|) 6= 0)
∣

∣ θ
)

= E

(

e−ε∗α1Pθ(|λ1−λ′

1|)
∣

∣ θ
)

− e−θ|λ1−λ′

1|

= exp
(

θ|λ1 − λ′1|
(

e−ε∗α1 − 1
))(

1 − exp
(

−θ|λ1 − λ′1|e−ε∗α1

))

≤ θ|λ1 − λ′1|e−ε∗α1E

(

e−ε∗α1Pθ(|λ1−λ′

1|)
∣

∣ θ
)

.

This yields

E

(

e−ε∗Uθ 1 (Pθ (|λ1 − λ1|) 6= 0)
)

≤ |λ1 − λ′1|
λe−ε∗α1

(λ − g(ε∗))2
. (6.96)

A similar argument applies in the general case m ≥ 1. Thus, (6.93) through (6.96) yield

I2 ≤
m
∑

k=1

|λk − λ′k|h∗λk,

where

h∗λk =
1 ∨ 2ε∗−1

2
E(1 + Z)ε∗

(

2(1 +D)ε∗

λ
+
λe−αkε∗

1(λk>λ′

k)

(λ− g(ε∗))2
+
λe−α′

kε∗
1(λ′

k>λk)

(λ − g′(ε∗))2

)

. (6.97)

We now turn to I1. Relation
{

X ′1
−θ(v + Z) 6= X ′1

−θ′(v + Z)
}

⊂
{

θ 6= θ′
}

,

Corollary 3.32 and inequality (6.90) imply

I1 ≤ inf
Fθθ′∈Pθθ′

1

2
E(1 + Z)ε∗

E

[(

(

1 +D + e−U ′

θ

)ε∗

+
(

1 +D + e−U ′

θ′

)ε∗
)

1(θ 6= θ′)

]

≤ E(1 + Z)ε∗

∫ ∞

0

E

(

1 +D + e−U ′

t

)ε∗
∣

∣

∣λe−λt − λ′e−λ′t
∣

∣

∣ dt

≤ E(1 + Z)ε∗

∫ ∞

0

E

(

1 +D + e−U ′

t

)ε∗

e−(λ∧λ′)t/2 2 |λ− λ′| dt.



72 CHAPTER 6. MODEL WITH BORROWING AND INVESTMENTS

Inequality

∫ ∞

0

E

(

1 +D + e−U ′

t

)ε∗

e−(λ∧λ′)t/2 dt ≤ (1 ∨ 2ε∗−1)2

(

(1 +D)
ε∗

λ ∧ λ′ +
1

(λ ∧ λ′) − 2g′(ε∗)

)

completes the proof with

h∗λ = E(1 + Z)ε∗ 4(1 ∨ 2ε∗−1)

λ ∧ λ′
(

(1 +D)
ε∗

+
λ ∧ λ′

(λ ∧ λ′) − 2g′(ε∗)

)

. (6.98)

Lemma 6.26. Under the conditions of Lemma 6.25,

∆ ≡ sup
v≥D

∣

∣P(θ > −τ(v)) − P(θ′ > −τ ′(v))
∣

∣ ≤ 2

λ

m
∑

i=1

|λi − λ′i|. (6.99)

Proof. By definition of τ(v) and X1 (see (6.8) and (6.4)),

P
(

θ ≥ −τ(v)
)

= P
(

X1
−θ(v) ≤ D

)

= P

(

v −D

c
<

∫ θ

0

eUu du

)

.

Let m = 1. Without loss of generality (since ∆ depends only on the marginal distributions) we assume
(6.92) and the independence conditions given after (6.92). Let U∗ = U if λ1 < λ′1 and U∗ = U ′ if λ′1 < λ1.
Then,

∆ =

∣

∣

∣

∣

∣

P

(

v −D

c
<

∫ θ

0

eU∗

u+α1Pu(|λ1−λ′

1|) du

)

− P

(

v −D

c
<

∫ θ

0

eU∗

u du

)∣

∣

∣

∣

∣

.

In the last expression, the first probability is greater than the second one for α1 > 0, and smaller for
α1 < 0. This together with the inequality Pu(|λ1 − λ′1|) ≤ Pθ(|λ1 − λ′1|) a.s. for u ≤ θ implies that

∆ ≤
∣

∣

∣

∣

∣

P

(

v −D

c
< eα1Pθ(|λ1−λ′

1|)

∫ θ

0

eU∗

u du

)

− P

(

v −D

c
<

∫ θ

0

eU∗

u du

)∣

∣

∣

∣

∣

.

Using that {U∗
u}u∈(0,θ) and Pθ(|λ1 − λ′1|) are independent conditionally on θ, we obtain

∆ ≤ E

[

P

(

v −D

c
<

∫ θ

0

eU∗

u du
∣

∣ θ

)

∣

∣

∣P
(

Pθ

(

|λ1 − λ′1|
)

= 0
∣

∣ θ
)

− 1
∣

∣

∣+ P
(

Pθ

(

|λ1 − λ′1|
)

> 0
∣

∣ θ
)

]

≤ 2E

[

P
(

Pθ

(

|λ1 − λ′1|
)

> 0
∣

∣ θ
)]

= 2E

(

1 − exp
(

− θ|λ1 − λ′1|
)

)

≤ 2

λ
|λ1 − λ′1|.

In the case m > 1 similar arguments yield (6.99).
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Lemmas 6.21, 6.23 and 6.26 prove the following corollary.

Corollary 6.27. Assume the conditions of Lemma 6.25 hold. Then

‖P− P′‖w1
≤ hλ|λ− λ′| + hβ

∣

∣

∣

∣

λ

β
− λ′

β′

∣

∣

∣

∣

+ hZ‖FZ − F ′
Z‖f1

+

m
∑

1

hλi|λi − λ′i|, (6.100)

where hβ is from (6.80), hZ and f1 are from (6.89), hλ = h∗λ + hλc/c, and hλi = h∗λi + 2w(D)/λ, with
hλc, h∗λi from (6.79), (6.97).

Example 6.28. The Brownian case

Let U be defined by (6.34). We assume the governing parameter in this case is given by a =
(λ,B, c, σ, β).

Lemma 6.29. Let function w1 be as in (6.72) and satisfy Lemma 6.20. Assume that EZε∗

< ∞ and
E(Z ′)ε∗

<∞ and that condition (6.39) holds. Then,

‖P− P′‖w1
≤ hλc

∣

∣

∣

∣

λ

c
− λ′

c′

∣

∣

∣

∣

+ hβ

∣

∣

∣

∣

λ

β
− λ′

β′

∣

∣

∣

∣

+ hZ‖FZ − F ′
Z‖f1

+ hασ

∣

∣

∣

∣

α

σ2
− α′

σ′2

∣

∣

∣

∣

+ hλσ

∣

∣

∣

∣

λ

σ2
− λ′

σ′2

∣

∣

∣

∣

+ hcσ

∣

∣

∣

∣

c

σ2
− c′

σ′2

∣

∣

∣

∣

δ

,

where δ < 1/2, constant hλc and hβ are from (6.79) and (6.80), hZ and f1 are from (6.89), and hασ,
hλσ, hcσ are given in (6.112) in the proof below.

Proof. Following the lines of the proof of Lemma 6.21, it suffices to bound ‖P1 − P′1‖w1
+ w(D)∆.

We start with some preliminary calculations. From {U−t} d
= {−Ut}, {σWu} d

= {Wσ2u} and σ2θ ∼
Exp(λ/σ2), it follows that

X1
−θ(v)

d
= (v −D)e−Uθ +D − c

∫ θ

0

e−Uu du

d
= (v −D) exp(−α1θ1 −Wθ1

) +D − c1

∫ θ1

0

exp(−α1u−Wu) du,

where

α1 = α/σ2, c1 = c/σ2, θ1
d
= σ2θ ∼ Exp(λ1), with λ1 = λ/σ2

and the corresponding relations hold for the perturbed model. Denote

X = exp(−α1θ1 −Wθ1
), and Y =

∫ θ1

0

exp(−α1u−Wu) du.

Then (X,Y ) has density (see [9], p. 208) given by

p(x, y) =
2λ1

y
exp

(

−α1x− 2
1 + e−x

y

)

I
2
√

2λ1+α2
1

(

4e−x/2

y

)

,
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where Iν(x) is the modified Bessel function of order ν. The density of (X ′, Y ′) for the perturbed model
is denoted by p′.

Let us consider ∆ defined in (6.78). For any v > D,

P (θ > −τ(v)) = P

(

X <
c1

v −D
Y

)

=

∫ ∞

y=0

∫

c1
v−D y

x=0

p(x, y) dx dy

=
v −D

c1

∫ ∞

y=0

∫ y

x=0

p

(

x, y
v −D

c1

)

dy dx.

It follows that

∆ ≤ sup
v≥D

∫ ∞

y=0

∫ y

x=0

∣

∣

∣

∣

v −D

c1
p

(

x, y
v −D

c1

)

− v −D

c′1
p′
(

x, y
v −D

c′1

)∣

∣

∣

∣

dy dx

≤
∫ ∞

0

∫ ∞

0

∣

∣p
(

x, y
)

− γp′
(

x, γy
)

∣

∣ dy dx, (6.101)

where γ = c1/c
′
1.

We now turn to ‖P1 − P′1‖w1
. Corollary 3.32, inequality (6.90) and the inclusion

{Xθ′(v + Z) 6= X ′
θ′(v + Z)} ⊂ {X 6= X ′} ∪ {c1Y 6= c′1Y

′}

yield

‖P1 − P′1‖w1
≤ Ew(Z)

∫ ∞

0

∫ ∞

0

(1 +D + x)ε∗ ∣

∣p
(

x, y
)

− γp′
(

x, γy
)∣

∣ dy dx. (6.102)

Hence, (6.101) and (6.102) imply

‖P1 − P′1‖w1
+ w(D)∆ ≤

∫ ∞

0

∫ ∞

0

g(xε∗

)
∣

∣p
(

x, y
)

− γp′
(

x, γy
)∣

∣ dy dx, (6.103)

where

g(x) = w(D)
(

1 + (1 ∨ 2ε∗−1)Ew(Z)
)

+
(

1 ∨ 2ε∗−1
)

Ew(Z)x.

We will estimate (6.103) using the explicit form of p(x, y). Writing ν = 2
√

2λ1 + α2
1 and ν′ for the

perturbed model, as well as

F [a1, a2, a3, a4, a5](x, y) :=
2a1

y
exp

(

−a2x− 2
1 + e−x

a3y

)

Ia5

(

4e−x/2

a4y

)

,

we obtain

p
(

x, y
)

= F [λ1, α1, 1, 1, ν](x, y), γp′
(

x, γy
)

= F [λ′1, α
′
1, γ, γ, ν

′](x, y).
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Then,
∣

∣p
(

x, y
)

− γp′
(

x, γy
)∣

∣

≤ |F [λ1, α1, 1, 1, ν] − F [λ′1, α1, 1, 1, ν]| (x, y) + |F (λ′1, α1, 1, 1, ν]− F [λ′1, α
′
1, 1, 1, ν]| (x, y)

+ |F [λ′1, α
′
1, 1, 1, ν]− F [λ′1, α

′
1, γ, γ, ν]| (x, y) + |F [λ′1, α

′
1, γ, γ, ν] − F [λ′1, α

′
1, γ, γ, ν

′]| (x, y)
=: (J1 + J2 + J3 + J4) (x, y). (6.104)

For any f : R+ × R+ → R+ write

Q(f) :=

∫ ∞

0

∫ ∞

0

g(xε∗

)f(x, y) dx dy. (6.105)

It now remains to bound the quantities Q(Ji), i = 1, . . . , 4. From Assumption 6.1 we have

Q(J1) ≤ |λ1 − λ′1|
λ1

Eg
(

e−Uθ
)

≤
∣

∣

∣

∣

λ

σ2
− λ′

σ′2

∣

∣

∣

∣

g(1)

λ1
=:

∣

∣

∣

∣

λ

σ2
− λ′

σ′2

∣

∣

∣

∣

h1. (6.106)

Let α∗ = min(α1, α
′
1) and a positive η satisfy η < min{α∗, α∗ +

√

2λ1 + α2
1 − 2α1}. It is proved in

Lemma 6.30 below that under condition (6.39),

Q(J2) ≤
∣

∣

∣

∣

α

σ2
− α′

σ′2

∣

∣

∣

∣

2λ′1
η(2λ1 + α2

1 − (α∗ − η)2)
g (h∗2) =:

∣

∣

∣

∣

α

σ2
− α′

σ′2

∣

∣

∣

∣

h2, (6.107)

where

h∗2 =
2λ1 + α2

1 − (α∗ − η)2

2λ1 + α2
1 − (α∗ − η)2 + 2ε∗(α∗ − η) − ε∗2 .

Let us fix a positive constant δ < 1/2. Lemmas 6.31–6.34 below prove that under restriction (6.39),

Q(J3) ≤
∣

∣

∣

∣

c

σ2
− c′

σ′2

∣

∣

∣

∣

δ

h3, (6.108)

where

h3 =
(

c−δ
1 ∨ c−1

1

)

λ′1g
(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

×
[

2√
π

(

γ ∨ 1

2

)δ

Γ

(

δ + ν, 1/2− δ

1 + ν − δ

)

+
2(γ ∧ 1)δ

√
π

Γ

(

δ, 1/2 − δ

1 − δ

)

+ 2δ(γ ∧ 1)δΓ(δ) +
2ζ+1(γ ∧ 1)ζ

π(ν − ζ)
Γ(ζ)

]

. (6.109)

Here the positive constant ζ satisfies ζ < min(1, ν), and Γ
(

a1,a2

b

)

:= Γ(a1)Γ(a2)
Γ(b) , where Γ(b) =

∫∞

0 tb−1e−t dt

(b > 0) is the gamma function.

Lemma 6.35 proves that

Q(J4) ≤
(

|λ1 − λ′1|
√

2(λ1 ∧ λ′1)
+ |α1 − α′

1|
)

h4, (6.110)
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where

h4 = 2λ′1g
(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

×
[(

π

cos(δπ)

(

Γ(1/2)

δ
√
π

+ 1

)

+
π

ν

)(

1 +
π|ν − ν′|

2

)

+
1

πξ((ν ∨ ν′) − ξ)

]

. (6.111)

and 0 < ξ < min(ν, ν′).
Thus, the lemma holds with

hασ := h2 + h4, hλσ := h1 +
h4

√

2(λ1 ∧ λ′1)
, hcσ := h3. (6.112)

Supplement to the proof of Lemma 6.29

Here we provide the proofs of inequalities (6.107), (6.108) and (6.110).

Lemma 6.30. Let (6.39) hold. Then we have the bound (6.107).

Proof. From (6.104),

J2(x, y) =
2λ′1
y

∣

∣

∣e−α1x − eα′

1x
∣

∣

∣ exp

(

−2
1 + e−x

y

)

Iν

(

4e
−x/2

y

)

.

Let α∗ = min(α1, α
′
1) and η ∈ (0, α∗). Inequality |e−α1x − e−α′

1x| ≤ |α1−α′

1|
η e−(α∗−η) yields

J2(x, y) ≤ |α1 − α′
1|

η

λ′1

λ1 +
α2

1
−(α∗−δ)2

2

F

[

λ1 +
α2

1 − (α∗ − δ)2

2
, α∗ − δ, 1, 1, ν

]

,

from which it follows,

Q(J2) ≤ |α1 − α′
1|

η

λ′1

λ1 +
α2

1
−(α∗−η)2

2

Eg
(

e−(α∗−δ)θ∗−Wθ∗

)

, (6.113)

where θ∗ ∼ Exp
(

λ1 + (α2
1 − (α∗ − δ)2)/2

)

. The expectation in (6.113) is finite if and only if

ε∗ < α∗ − η +
√

2λ1 + α2
1. (6.114)

From Assumption 6.1 we have that ε∗ < 2α/σ2 ≡ 2α1 (see Example 6.7). it follows that (6.114) holds if
η ≤ α∗ +

√

2λ1 + α2
1 − 2α1 ((6.39) ensures that the latter is positive). Thus, for

η < min{α∗, α∗ +
√

2λ1 + α2
1 − 2α1}

the bound (6.113) is finite and

E

(

e−(α∗−δ)ε∗θ∗−ε∗Wθ∗

)

=
2λ1 + α2

1 − (α∗ − η)2

2λ1 + α2
1 − (α∗ − η)2 + 2ε∗(α∗ − η) − ε∗2 ≡ h∗2,

which proves the lemma.



6.6. APPENDIX II 77

We will use the following expression of the modified Bessel function Iν(u) (see [20] p. 958, formula
8.431.5),

Iν(u) =
1

π

∫ π

0

eu cos(v) cos(νv) dv − sin(νπ)

π

∫ ∞

0

exp (−u cosh(s) − νs) ds, (6.115)

and the result from [43] p. 305: for b > 0 and −ν < δ < 1/2,

∫ ∞

0

xδ−1e−bxIν(bx) dx =
(2b)−δ

√
π

Γ

(

δ + ν, 1/2− δ

1 + ν − δ

)

. (6.116)

Let the positive constants δ and ζ satisfy δ < 1/2 and ζ < min(ν, ν′).
We first consider case γ ≤ 1. Let us write

J3(x, y) ≤ |F [λ′1, α
′
1, 1, 1, ν]− F [λ′1, α

′
1, γ, 1, ν]| (x, y) + |F [λ′1, α

′
1, γ, 1, ν] − F [λ′1, α

′
1, γ, γ, ν]| (x, y)

=: J31(x, y) + J32(x, y). (6.117)

Lemma 6.31. Let γ < 1. Then

Q(J31) ≤ 2λ′1√
π

(

1

2

)δ (
1

γ
− 1

)δ

Γ

(

δ + ν, 1/2 − δ

1 + ν − δ

)

g
(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

.

Proof. From (6.117) and (6.104),

J31 =
2λ′1
y
eα′

1x

∣

∣

∣

∣

exp

(

−2
1 + e−x

y

)

− exp

(

−2
1 + e−x

γy

)∣

∣

∣

∣

Iν

(

4e
−x/2

y

)

≤ 2λ′1
y
eα′

1x exp

(

−2
1 + e−x

y

)(

2
1 + e−x

y

(

1

γ
− 1

))δ

Iν

(

4e
−x/2

y

)

.

Using (6.116) and the fact that Iν(x) is increasing in x (see the series representation of in ([20]), p. 961,
formula 8.445), we obtain

∫ ∞

0

y−1−δ exp

(

−2
1 + e−x

y

)

Iν

(

4e
−x/2

y

)

dy

=

∫ ∞

0

uδ−1 exp
(

−2(1 + e−x)u
)

Iν

(

4e
−x/2

u
)

du

≤
∫ ∞

0

uδ−1 exp
(

−2(1 + e−x)u
)

Iν
(

−2(1 + e−x)u
)

du

=
(4(1 + e−x))

−δ

√
π

Γ

(

δ + ν, 1/2 − δ

1 + ν − δ

)

.

This yields

Q(J31) ≤ 21−δλ′1√
π

(

1

γ
− 1

)δ

Γ

(

δ + ν, 1/2− δ

1 + ν − δ

)∫ ∞

0

g(xε∗

)e−α′

1x dx.
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The identity
∫ ∞

0

xε∗

e−α′

1x dx = α′
1
ε∗−1

Γ(ε∗ + 1). (6.118)

proves the lemma.

Notice that condition (6.39) yields γ ≥ 1/2.

Lemma 6.32. Let γ ∈ [1/2, 1]. Then

Q(J32) ≤ λ′1g
(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

[

2γδ

√
π

Γ

(

δ, 1/2− δ

1 − δ

)

+ (2γ)δΓ(δ) +
2(2γ)ζ

π(ν − ζ)
Γ(ζ)

]

×
∣

∣

∣

∣

c

σ2
− c′

σ′2

∣

∣

∣

∣

max
(

c−δ
1 , c−1

1

)

Proof. From (6.117) and (6.104),

J32(x, y) =
2λ′1
y
eα′

1x exp

(

−2
1 + e−x

γy

)

∣

∣

∣

∣

∣

Iν

(

4e
−x/2

y

)

− Iν

(

4e
−x/2

γy

)∣

∣

∣

∣

∣

. (6.119)

Using representation (6.115) we have
∣

∣

∣

∣

∣

Iν

(

4e
−x/2

y

)

− Iν

(

4e
−x/2

γy

)∣

∣

∣

∣

∣

≤ 1

π

(

∫ π/2

0

+

∫ π

π/2

)

∣

∣

∣

∣

(

e
4e

−x/2

γy cos(v) − e
4e

−x/2

y cos(v)

)∣

∣

∣

∣

dv

+
1

π

∫ ∞

0

∣

∣

∣

∣

e
4e

−x/2

γy cosh(s) − e
4e

−x/2

y cosh(s)

∣

∣

∣

∣

e−νs ds

=: (A1 +A2 +B)(x, y).

Now,

A1(x, y) =
1

π

∫ π/2

0

exp

(

4e
−x/2

γy
cos(v)

) ∣

∣

∣

∣

∣

1 − exp

(

−4e
−x/2

y
cos(v)

(

1

γ
− 1

)

)∣

∣

∣

∣

∣

dv

≤ 1

π

∫ π/2

0

exp

(

4e
−x/2

γy
cos(v)

)(

4e
−x/2

y
cos(v)

(

1

γ
− 1

)

)δ

dv

≤
(

4

y

)δ (
1

γ
− 1

)δ

I0

(

4e
−x/2

γy

)

. (6.120)

Similarly,

A2(x, y) =
1

π

∫ π

π/2

exp

(

4e
−x/2

y
cos(v)

) ∣

∣

∣

∣

∣

1 − exp

(

−4e
−x/2

y
cos(v)

(

1

γ
− 1

)

)∣

∣

∣

∣

∣

dv

≤ 1

π

∫ π

π/2

exp

(

4e
−x/2

y
cos(v)

)(

4e
−x/2

y
cos(v)

(

1

γ
− 1

)

)δ

dv

≤ 1

2

(

4

y

)δ (
1

γ
− 1

)δ

. (6.121)
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Let positive constant ζ < min(1, ν). Then,

B(x, y) =
1

π

∫ ∞

0

exp

(

−4e
−x/2

y
cosh(s)

) ∣

∣

∣

∣

∣

1 − exp

(

4e
−x/2

y
cosh(s)

(

1

γ
− 1

)

)∣

∣

∣

∣

∣

e−νs ds

≤ 1

π

∫ ∞

0

exp

(

−4e
−x/2

y
cosh(s)

)(

4e
−x/2

y
cosh(s)

)1−ζ+ζ

e−νs

(

1

γ
− 1

)

ds

≤ 1

π

(

4e
−x/2

y

)ζ
(

1

γ
− 1

)∫ ∞

0

(cosh(s))ζe−νs ds

≤ 1

π

(

4

y

)ζ (
1

γ
− 1

)

1

ν − ζ
. (6.122)

In order to bound Q(J32), we first have to investigate the following integrals. From (6.119) and (6.120),

∫ ∞

0

y−1−δ exp

(

−2
1 + e−x

γy

)

I0

(

4e
−x/2

γy

)

dy

≤
∫ ∞

0

uδ−1 exp

(

−2(1 + e−x)
u

γ

)

I0

(

2(1 + e−x)
u

γ

)

du

=

(

4
1 + e−x

γ

)−δ
1√
π

Γ

(

δ, 1/2− δ

1 − δ

)

≤ 1√
π

(γ

4

)δ

Γ

(

δ, 1/2− δ

1 − δ

)

From (6.121) and (6.119),

∫ ∞

0

y−1−δ exp

(

−2
1 + e−x

γy

)

dy ≤
(γ

2

)δ

Γ(δ),

and the same integral with δ replaced by ζ comes from (6.122) and (6.119). Equality (6.118) yields

Q(J32) ≤ λ′1g
(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

[

2γδ

√
π

Γ

(

δ, 1/2− δ

1 − δ

)

+ (2γ)δΓ(δ) +
2(2γ)ζ

π(ν − ζ)
Γ(ζ)

]

× max

(

∣

∣

∣

∣

1

γ
− 1

∣

∣

∣

∣

δ

,

∣

∣

∣

∣

1

γ
− 1

∣

∣

∣

∣

)

.

For γ ≥ 1/2, we have |1 − 1/γ|δ ≥ |1 − 1/γ|. This together with γ = c1/c
′
1 complete the proof.

Let γ > 1. Write

J3(x, y) ≤ |F (λ′1, α
′
1, 1, 1, ν] − F [λ′1, α

′
1, 1, γ, ν]| (x, y) + |F [λ′1, α

′
1, 1, γ, ν]− F [λ′1, α

′
1, γ, γ, ν]| (x, y)

=: J ′
31(x, y) + J ′

32(x, y). (6.123)
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Lemma 6.33. Let γ > 1. Then

Q(J ′
32) ≤ λ′1g

(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

[

2√
π

Γ

(

δ, 1/2− δ

1 − δ

)

+ (2)δΓ(δ) +
2ζ+1

π(ν − ζ)
Γ(ζ)

]

×
∣

∣

∣

∣

c

σ2
− c′

σ′2

∣

∣

∣

∣

max
(

c−δ, c−1
)

Proof. The proof is similar to the one of Lemma 6.32 From (6.123) and (6.117), brown

J ′
32(x, y) =

2λ′1
y
eα′

1x exp

(

−2
1 + e−x

y

)

∣

∣

∣

∣

∣

Iν

(

4e
−x/2

y

)

− Iν

(

4e
−x/2

γy

)∣

∣

∣

∣

∣

. (6.124)

Using representation (6.115) we have

∣

∣

∣

∣

∣

Iν

(

4e
−x/2

y

)

− Iν

(

4e
−x/2

γy

)∣

∣

∣

∣

∣

≤ 1

π

(

∫ π/2

0

+

∫ π

π/2

)

∣

∣

∣

∣

(

e
4e

−x/2

γy cos(v) − e
4e

−x/2

y cos(v)

)∣

∣

∣

∣

dv

+
1

π

∫ ∞

0

∣

∣

∣

∣

e
4e

−x/2

γy cosh(s) − e
4e

−x/2

y cosh(s)

∣

∣

∣

∣

e−νs ds

=: (A′
1 +A′

2 +B′)(x, y).

The following estimates are obtained similar to (6.120)–(6.122) in the proof of Lemma 6.32,

A′
1(x, y) ≤

(

4

y

)δ (

1 − 1

γ

)δ

I0

(

4e
−x/2

y

)

,

A′
2(x, y) ≤ 1

2

(

4

y

)δ (

1 − 1

γ

)δ

,

B′(x, y) ≤ 1

π

(

4

y

)ζ (
1

γ
− 1

)

1

ν − ζ
.

Relations

∫ ∞

0

y−1−δ exp

(

−2
1 + e−x

y

)

I0

(

4e
−x/2

y

)

dy ≤ 4−δ 1√
π

Γ

(

δ, 1/2 − δ

1 − δ

)

,

∫ ∞

0

y−1−δ exp

(

−2
1 + e−x

y

)

dy ≤ 2−δΓ(δ)

together with (6.118) yield the desired bound.

Lemma 6.34. Let γ > 1. Then

Q(J ′
31) ≤ 2λ′1√

π

(γ

2

)δ
(

1 − 1

γ

)δ

Γ

(

δ + ν, 1/2 − δ

1 + ν − δ

)

g
(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

.
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Proof. This proof is similar to the one of Lemma 6.31

J ′
31 =

2λ′1
y
eα′

1x

∣

∣

∣

∣

exp

(

−2
1 + e−x

y

)

− exp

(

−2
1 + e−x

γy

)∣

∣

∣

∣

Iν

(

4e
−x/2

γy

)

≤ 2λ′1
y
eα′

1x exp

(

−2
1 + e−x

γy

)(

2
1 + e−x

y

(

1 − 1

γ

))δ

Iν

(

4e
−x/2

y

)

,

Similarly as in the proof of Lemma 6.31,

∫ ∞

0

y−1−δ exp

(

−2
1 + e−x

γy

)

Iν

(

4e
−x/2

γy

)

dy ≤ (1 + e−x)−δ

√
π

(γ

4

)δ

Γ

(

δ + ν, 1/2− δ

1 + ν − δ

)

.

Relation (6.118) completes the proof.

Lemma 6.35. Relation (6.110) holds.

Proof.

J4 =
2λ′1
y
eα′

1x exp

(

−2
1 + e−x

γy

)

∣

∣

∣

∣

∣

Iν

(

4e
−x/2

γy

)

− Iν′

(

4e
−x/2

γy

)∣

∣

∣

∣

∣

. (6.125)

From (6.115),

|Iν(u) − Iν′ (u)| ≤ 1

π

∫ π

0

eu cos(x)| cos(νx) − cos(ν′x)| dx

+
| sin(νπ) − sin(ν′π)|

π

∫ ∞

0

e−u cosh(s)−νs ds

+
1

π

∫ ∞

0

e−u cosh(s)
∣

∣

∣e−νs − e−ν′s
∣

∣

∣ ds

=: (A+B + C)(u).

Hence, choosing u = 4e−x/2/(γy), we have

J4 ≤ 2λ′1
y
eα′

1x exp

(

−2
1 + e−x

γy

)

(A+B + C)

(

4e
−x/2

γy

)

=: (J41 + J42 + J43)(x, y). (6.126)

Let us consider A. Using 1 − cos(x) ≤ x2/2 and sin(x) ≤ x, we obtain

|cos(νx) − cos(ν′x)| ≤ π|ν − ν′|
(

1 +
|ν − ν′|π

2

)

,
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from where it follows

A(u) ≤ π|ν − ν′|
(

1 +
π|ν − ν′|

2

)

1

π

∫ π

0

eu cos x dx

≤ π|ν − ν′|
(

1 +
π|ν − ν′|

2

)

1

cos(δπ)

×
(

1

π

∫ π

0

eu cos x cos(δx) dx ± sin(δπ)

π

∫ ∞

0

e−u cosh(s)−δs ds

)

≤ π|ν − ν′|
(

1 +
π|ν − ν′|

2

)

1

cos(δπ)

(

Iδ(u) + 1
)

. (6.127)

Collecting y-terms in (6.125) and (6.127) and again choosing u = 4e−x/2/(γy), we have

∫ ∞

0

y−1 exp

(

−2
1 + e−x

γy

)

(

Iδ

(

4e
−x/2

γy

)

+ 1

)

dy

≤
∫ ∞

0

u−1 exp

(

−2
1 + e−x

γ
u

)

Iδ

(

−2
1 + e−x

γ
u

)

du +

∫ ∞

0

u−1e−
2
γ u du

=
1√
π

Γ

(

δ, 1/2

1 + δ

)

+ Γ(1)

=
Γ(1/2)

δ
√
π

+ 1. (6.128)

From (6.125), (6.127) and (6.128) it follows that

Q (J41) ≤ |ν − ν′| 2λ′1π

cos(δπ)

(

Γ(1/2)

δ
√
π

+ 1

)(

1 +
π|ν − ν′|

2

)

g
(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

. (6.129)

We now turn to B. For any u ≥ 0,

B(u) ≤ π|ν − ν′|
(

1 +
π|ν − ν′|

2

)

1

ν
,

which yields

Q(J42) ≤ |ν − ν′|2λ
′
1π

ν

(

1 +
π|ν − ν′|

2

)

g
(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

. (6.130)

It remains to consider C. Let ξ be a positive constant such that ξ < min(ν, ν′). Then, for any u ≥ 0,

C(u) ≤ 1

π

∫ ∞

0

e−u cosh(s)e−ξs
∣

∣

∣e−(ν−ξ)s − e−(ν′−ξ)s
∣

∣

∣ ds

≤
∣

∣

∣

∣

1 +
(ν ∧ ν′) − ξ

(ν ∨ ν′) − ξ

∣

∣

∣

∣

1

πξ
= |ν − ν′| 1

πξ((ν ∨ ν′) − ξ)
.

It follows

Q(J43) ≤ |ν − ν′| 2λ′1
πξ((ν ∨ ν′) − ξ)

g
(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

. (6.131)
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Combining relations (6.129)–(6.131) one obtains

Q(J4) ≤ |ν − ν′| 2λ′1g
(

α′
1
ε∗−1

Γ(ε∗ + 1)
)

×
[(

π

cos(δπ)

(

Γ(1/2)

δ
√
π

+ 1

)

+
π

ν

)(

1 +
π|ν − ν′|

2

)

+
1

πξ((ν ∨ ν′) − ξ)

]

,

which together with the inequality

|ν − ν′| =

∣

∣

∣

∣

√

2λ1 + α2
1 −

√

2λ′1 + α′
1
2

∣

∣

∣

∣

≤ |λ1 − λ′1|
√

2(λ1 ∧ λ′1)
+ |α1 − α′

1|.

proves (6.110).
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Chapter 7

Model with Markov modulation and

interest

In this chapter we derive stability bounds for the ruin probability in the Markov modulated risk model
with investments. We will use the techniques developed by Kalashnikov [30], where similar bounds were
obtained for the classical risk model and the model with random investments.

The risk process {Rn}n≥ is as in Section 2.2.4. In Section 7.1 we construct the reversed process
{Vn}n≥0 and express the ruin probability in terms of this process. The main steps of the approach
and the results of this chapter are presented in Section 7.2: the special case without investments (U ≡
0) is presented in Subsection 7.2.1, the model with deterministic investments (Ut = αt) is given in
Subsection 7.2.2 and in Subsection 7.2.3 we consider the general case (U is a genuine Lévy process).
Technically more involved proofs are given in the Appendix.

7.1 The reversed process

Applying the construction (2.14) and (2.15) to the risk process {Rn} defined in (2.29), we obtain the
following reversed process:

Vn+1 = ξ
In+1

n+1

(

Vn + η
In,In+1

n+1

)

+
, V0 = 0, (7.1)

where

ξi
n+1 = exp

(

U i
Tn+1

− U i
Tn

)

,

ηji
n+1 = δjiZ

i
n+1 − ci

∫ Tn

Tn+1

exp
(

U i
Tn+1

− U i
u

)

du.

The finite-time and ultimate ruin probabilities ψ(n) and ψ, respectively, with given parameter a governing
the risk process, satisfy the relations

ψa(x) = lim
n→∞

P(Vn > x) and ψ(n)
a (x) = P(Vn > x). (7.2)
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For fixed i, j ∈ E = {1, · · · ,m} the random vectors (ξi
n, η

j,i
n )n≥1 are i.i.d. It is convenient to introduce

the generic vector

(

ξi, ηji
)

=

(

exp
(

−U i
θi

)

, δjiZ
i − ci

∫ θi

0

exp
(

U i
θi − U i

u

)

du

)

. (7.3)

Throughout the paper Pi and Ei denote the conditional probability and conditional expectation,
respectively, given I0 = i, i ∈ E.

Governing parameter. The governing parameter a consists of the parameters corresponding to the
processes Ri and also of the transition probabilities {pij}i,j∈E which fully describe the Markov chain I
since its initial distribution is the stationary one. Similarly as in [30], we assume that for any a, a′ ∈ A

there exist constants βi ∈ R+ such that the Lévy processes U i and U i′ satisfy

{U ′i
t}t≥0

d
= {U i

βit}t≥0, i ∈ E. (7.4)

Further we consider two risk models: the non-perturbed and perturbed ones, governed by the parame-
ters a and a′, respectively. All quantities corresponding to the perturbed model are marked with a prime.
The parameters a and a′ will often be skipped in the notation and the corresponding ruin probabilities

are ψ, ψ(n) and ψ′, ψ′(n)
, etc.

7.2 Stability bounds

In this section we present the main results leaving out most of the technical details. Stability bounds are
given for the three particular cases:

(i) no investments: U i ≡ 0 for all i ∈ E;

(ii) deterministic investments: U i
t = αit for all i ∈ E;

(iii) the general case: U i is a general Lévy process for all i ∈ E.

The complete proofs are given in the Appendix.

Let w be a given weight function (i.e., it is increasing, typically to ∞, and bounded away from 0).
We will derive the stability bounds under the following conditions:

(C1) There exists a constant Cw such that for all a ∈ A,

sup
n≥0

Eiw(Vn) ≤ Cw, i ∈ E. (7.5)

(C2) For some appropriate metric d in A and for some weight functions wi ≥ w the following ’contraction’
property holds

∑

i

q
(n+1)
si sup

u≥0
wi(u)

∣

∣Ps(Vn+1 ≤ u | In+1 = i) − Ps(V
′
n+1 ≤ u | I ′n+1 = i)

∣

∣

≤ κ





∑

j

q
(n)
sj sup

u≥0
wj(u) |Ps(Vn ≤ u | In = j) − Ps(V

′
n ≤ u | I ′n = j)|



+ d(a, a′), (7.6)
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for every s ∈ E and some constant κ < 1.

These conditions will be checked in the following section separately for each of the three cases listed
above. In what follows we always consider the Markov modulated risk process R with Lévy processes
driven investments introduced in Section 2.2.4. It is governed by the parameter

a = (ci, λi, FZi , βi, qij , i, j ∈ E).

We assume that all governing parameters a, a′ (corresponding to the perturbed and non-perturbed mod-
els) belong to the set

Aq = {a : min
i,j

qij ≥ q}, (7.7)

where 0 < q < 1 is a given constant.

Theorem 7.1. If a, a′ ∈ Aq satisfy conditions (C1) and (C2)) then the following stability bound holds

|ψa − ψa′ |w ≤ Cw

(

2 +
1

q

)

∆q +
d(a, a′)

1 − κ
, (7.8)

where κ and d(a, a′) are from (7.6) and ∆q is given in (7.10).

Proof. From (7.2) we have

ψ(x) = lim
n→∞

∑

s

πs Ps(Vn > x).

It follows that

|ψ − ψ′|w = sup
x≥0

w(x)|ψ(x) − ψ′(x)|

≤ sup
x≥0

sup
n≥0

∑

i

πi

[

w(x) |Pi(Vn > x) − Pi(V
′
n > x)|

]

+ sup
x≥0

sup
n≥0

∑

i

|πi − π′
i|
[

w(x)Pi(V
′
n > x)

]

=: S1 + S2. (7.9)

Markov’s inequality and (7.5) yield w(x)Pi(V
′

n > x) ≤ Cw . Thus,

S2 ≤ Cw

∑

i

|πi − π′
i|

≤ Cw sup
n≥0

‖q(n)
s − q′

(n)
s ‖,

where ‖q(n)
s − q′

(n)
s ‖ is the total variation distance between the distributions {q(n)

ij } and {q′(n)
ij }, i.e.,

‖q(n)
s − q′

(n)
s ‖ =

∑

i∈E

|q(n)
si − q′

(n)
si |.
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Recall from Example 3.23 that if maxi ‖qi − q′i‖ ≤ 1, then

sup
n≥0

‖q(n)
s − q′

(n)
s ‖ ≤ hmax

i
‖qi − q′i‖ log

(

e

‖qi − q′i‖

)

:= ∆q (7.10)

for some constant h which can be calculated. This yields

S2 ≤ Cw ∆q.

Next we bound S1. Let s ∈ E be fixed. Skipping the dependence on s, we denote

Gn(u) = Ps(Vn ≤ u),

Gi
n(u) = Ps(Vn ≤ u | In = i).

By the total probability formula w.r.t. In+1 and I ′n+1 we have

sup
x≥0, n≥0

w(x)
∣

∣Gn+1(x) −G′
n+1(x)

∣

∣

= sup
x≥0, n≥0

w(x)

∣

∣

∣

∣

∣

∑

i

(

q
(n+1)
si Gi

n+1(x) − q′
(n+1)
si G′i

n+1(x)
)

∣

∣

∣

∣

∣

≤ sup
n≥0

∑

i

q
(n+1)
si

∣

∣

∣Gi
n+1 −G′i

n+1

∣

∣

∣

w
+ sup

x≥0, n≥0

∑

i

∣

∣

∣q
(n+1)
si − q′

(n+1)
si

∣

∣

∣

[

w(x)G′i
n+1(x)

]

, (7.11)

where F̄ = 1 − F for any distribution function F . Inequalities (7.5) and (7.10) yield

∑

i

∣

∣

∣
q
(n+1)
si − q′

(n+1)
si

∣

∣

∣

[

w(x)G′i
n+1(x)

]

≤ Cw

q
∆q.

Plugging the latter in (7.11) and using the condition (C2) we obtain

sup
x≥0, n≥0

w(x)
∣

∣Gn+1(x) −G′
n+1(x)

∣

∣ ≤ Cw

(

1 +
1

q

)

∆q +
d(a, a′)

1 − κ
.

Hence,

S1 + S2 ≤ Cw

(

2 +
1

q

)

∆q +
d(a, a′)

1 − κ
,

which proves the theorem.

Corollary 7.2. Under the conditions of Theorem 7.1 the finite time ruin probabilities ψ
(n)
a and ψ

(n)
a′ ,

n ≥ 1 satisfy the same stability bound (7.8).

Proof. By (7.2) we have

|ψ(n)
a − ψ

(n)
a′ |w = sup

x≥0
w(x)w(x)|ψ(n)

a (x) − ψ
(n)
a′ (x)|

≤ sup
x≥0

∑

i

πi

[

w(x) |Pi(Vn > x) − Pi(V
′
n > x)|

]

+ sup
x≥0

∑

i

|πi − π′
i|
[

w(x)Pi(V
′
n > x)

]

≤ S1 + S2,
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where S1 and S2 are from (7.9). The rest of the proof coincides with that of Theorem 7.1.

7.2.1 Model without investments

In this section we assume
U i ≡ 0, for all i ∈ E,

i.e., we consider the Markov modulated risk model as in Section 2.2.2. Stability bounds using the Markov
chain approach were obtained in Chapter 5.

Define the matrix Q(ε) = (qij(ε)) by

qij(ε) := qij E exp
(

εηij
)

=

{

qiiEe
ε(Zi−ciθ

i), i = j,

qijEe
−εcj θj

, i 6= j,
(7.12)

see (7.3). Let ‖Q(ε)‖SP be the spectral radius of Q(ε). It follows from the Frobenius theory for positive
matrices that ‖Q(ε)‖SP is the maximal eigenvalue d(ε) of Q(ε); see Gantmacher [16]. The corresponding
eigenvector γ(ε) = (γ1(ε), . . . , γm(ε))t is such that mini γi(ε) = 1. Denote

γ(ε) = max
i
γi(ε).

Assumption 7.3. There exist ε > 0 and ρ < 1 such that

‖Q(ε)‖SP ≤ ρ. (7.13)

It follows from (7.13) that there exists a constant CZ such that for all i ∈ E

E exp(εZi) ≤ CZ . (7.14)

We consider the following set of governing parameters,

A = {a : relations (7.13) and (7.14) hold} ∩ Aq, (7.15)

where Aq is defined in (7.7). We require the constants ρ and CZ to be the same for all models with
governing parameters in A in order to have uniform bounds over this set since the constants ρ and CZ

are involved in the final bounds.
Note that Assumption 7.3 is equivalent to Assumption 5.1 in Section 5. As in Section 5, we will use

the weight function
w(v) = exp(εv). (7.16)

for the comparison of ruin probabilities.

Corollary 7.4. For any a, a′ ∈ A the corresponding ruin probabilities ψa and ψa′ satisfy conditions (C1)
and (C2), and

|ψa − ψa′ |w ≤ Cw

(1 − κ) q

(

max
j

|FZj − FZ′j |w + max
j

4CZ

(λj ∧ λ′j)

∣

∣

∣

∣

∣

λj

cj
−
λ′j
c′j

∣

∣

∣

∣

∣

+ CZγ(ε)hq∆q

)

,

where hq = 1 +mq +m and the constant Cw is given in (7.44) in the Appendix.

The same stability bound holds for the finite time ruin probabilities ψ
(n)
a and ψ

(n)
a′ and any n ≥ 1.
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7.2.2 Deterministic investments

Let
U i

t = αit, t ≥ 0, i ∈ E, (7.17)

where the constants αi are positive. According to (7.4), the perturbed Lévy processes are U ′i
t = αiβit.

We write α′
i := αiβi for this model. The randomness of the investments is caused by the changes of states

of the modulating chain.
Now the main assumption is the following.

Assumption 7.5. There exist constants CZ and ε > 0 such that for all i ∈ E

E exp
(

εZi
)

≤ CZ . (7.18)

The set of admissible parameters is

A = {a : (7.18) holds } ∩ Aq. (7.19)

Let
w(v) = exp (ε(v ∨ v̄)) , (7.20)

where the constant v > 0 is defined in (7.56) in the proof of Lemma 7.16.

Corollary 7.6. For any a, a′ ∈ A the corresponding ruin probabilities ψa and ψa′ satisfy the following
bound:

|ψa − ψa′ |w ≤ Cw

(1 − κ) q

[

e−εv max
j

|FZj − FZ′j |w + max
j

4CZ

(λj ∧ λ′jβj)

∣

∣

∣

∣

∣

λj

αj
−
λ′j
α′

j

∣

∣

∣

∣

∣

+ max
j

CZλ
′
j

αi ∧ α′
i

∣

∣

∣

∣

∣

1

αj
− 1

α′
j

∣

∣

∣

∣

∣

+ (CZhq + q + 1)∆q

]

,

where hq = 1 +mq +m and the constant Cw is given in (7.74) in the Appendix.

The corresponding finite time ruin probabilities ψ
(n)
a and ψ

(n)
a′ , n ≥ 1 also satisfy the same stability

bound.

7.2.3 General model

We now consider the model from Section 2.2.4 without assuming any particular form for the processes
U i, i.e., U i are independent Lévy processes.

Recall the random vectors (ξi, ηji) defined in (7.3). We define the matrix Q(ε) = (qij(ε)) as follows,

qij(ε) = qij E
(

ξj
)ε
. (7.21)

Its spectral radius is the maximal eigenvalue d(ε) of Q(ε) and the corresponding eigenvector γ(ε) =
(γ1(ε), . . . , γm(ε))t is such that mini γi(ε) = 1. We denote

γ(ε) = max
i∈E

γi(ε).
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Assumption 7.7. There exist constants ε > 0 and ρ1, ρ2 < 1 such that

d(ε) ≡ ‖Q(ε)‖SP ≤ ρ1, E(ξi)ε−1 ≤ ρ2, E(ξi)−1 ≤ 1 ∀i ∈ E. (7.22)

Assumption 7.8. All r.v.’s Zi have densities pZi and there exist constants CZ <∞ and Cp <∞ such
that for every i ∈ E

E
(

Zi
)ε ≤ CZ , sup

u≥0
w(u)pZi (u) ≤ Cp. (7.23)

Assumption 7.9. For any M > 0 there exists qM > 0 such that

P
(

ξi ≤ 1, ηii ≤ −M
)

≥ qM , i ∈ E, (7.24)

Example 7.10. Let U i be the Brownian motion with drift. Then the vector (ξi, ηii) has a density, see
[9], p. 208. Thus, Assumption 7.9 is satisfied.

Remarks. The previously investigated models satisfy Assumptions 7.7 and 7.9. We studied them sepa-
rately because (under the additional restriction that the claim sizes have finite exponential moments) we
can prove stability bounds in the metric weighted with an exponential weight, while in the general case
the stability bounds are stated in the metric weighted with a power function. In this sense the previous
bounds are more tight.

We also notice that the asymptotic behavior of the ruin probability in this general case and also in
the deterministic case have not been investigated yet.

We will consider the following set of parameters:

A = {a : relations (7.22)–(7.24) hold } ∩ Aq. (7.25)

As a weight function we choose

w(v) = 1 + α (vε ∨ v̄ε) , (7.26)

where the constants α and v are given in the proof of Lemma 7.20 in Section 7.3.3, see the discussion
following the relation (7.81).

Corollary 7.11. For any a, a′ ∈ A the corresponding ruin probabilities ψa and ψa′ satisfy

|ψa − ψa′ |w ≤
(

Cqhq

(1 − κ)q
+ 1

)

∆q +
1

1 − κ

(

hZ max
j

|FZj − FZ′j |w

+ max
j
hλj

∣

∣

∣

∣

λi −
λ′i
βi

∣

∣

∣

∣

+ max
j
hcj

∣

∣

∣

∣

ci −
c′i
βi

∣

∣

∣

∣

)

,

see (7.115) and (7.116) in the Appendix for all the constants.

7.3 Appendix

In this section we prove the conditions (C1) and (C2) for all three models introduced above. The proofs
use ideas from Kalashnikov [30], Section 6.1.
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We first introduce the following notation (see also [30]):

f(v, ξ, η) := ξ(v + η)+,

gi(v, z, t) :=

(

(v + z) exp(−U i
t ) − ci

∫ t

0

exp(−U i
s) ds,

)

+

,

g′i(v, z, t) :=

(

(v + z) exp(−U i
t ) −

c′i
βi

∫ t

0

exp(−U i
s) ds

)

+

.

Then conditionally given In = j, In+1 = i (I ′n = j, I ′n+1 = i) the r.v. Vn+1 (and similarly V ′
n+1), see

(7.1) and (7.3), satisfies the following identities in law:

Vn+1
d
= f

(

Vn, ξ
i, ηji

) d
= gi

(

Vn, δjiZ
i, θi

)

,
(

V ′
n+1

d
= f

(

V ′
n, ξ

′i, η′
ji
)

d
= g′i

(

V ′
n, δjiZ

′i, βiθ
′i
))

.

Let us consider the condition (C2). Conditioning on In and using that Ps(In = j | In+1 = i) =

q
(n)
sj qji/q

(n+1)
si we have

Gi
n+1(u) =

∑

j

q
(n)
sj qji

q
(n+1)
si

Ps

(

f(Vn, ξ
i, ηji) > u|In = j

)

.

This yields
∑

i

q
(n+1)
si

∣

∣

∣Gi
n+1 −G′i

n+1

∣

∣

∣

wi

≤
∑

j

q
(n)
sj (Aj + Bj) +

(

sup
j,i

Dji

)

∑

i,j

∣

∣

∣

∣

∣

q
(n)
sj

q′
(n)
sj

qji −
q
(n+1)
si

q′
(n+1)
si

q′ji

∣

∣

∣

∣

∣

, (7.27)

where

Aj =
∑

i

qji sup
v≥0

wi(v)
∣

∣Ps

(

f(Vn, ξ
i, ηji) > v | In = j

)

− Ps

(

f(V ′
n, ξ

i, ηji) > v | I ′n = j
)∣

∣ ,

Bj =
∑

i

qji sup
v≥0

wi(v)
∣

∣

∣Ps

(

f(V ′
n, ξ

i, ηji) > v | I ′n = j
)

− Ps

(

f(V ′
n, ξ

′i, η′
ji

) > v | I ′n = j
)∣

∣

∣ ,

Dji = sup
v≥0,n≥0

q′
(n)
sj wi(v)Ps

(

f(V ′
n, ξ

′i, η′
ji

) > v | I ′n = j
)

.

Using relation (7.10), the last sum in (7.27) can be bounded as follows:

∑

i,j

∣

∣

∣

∣

∣

q
(n)
sj

q′
(n)
sj

qji −
q
(n+1)
si

q′
(n+1)
si

q′ji

∣

∣

∣

∣

∣

≤
∑

j

∣

∣

∣

∣

∣

q
(n)
sj

q′
(n)
sj

− 1

∣

∣

∣

∣

∣

∑

i

qji +
∑

i,j

∣

∣qji − q′ji

∣

∣ +
∑

i

∣

∣

∣

∣

∣

q
(n+1)
si

q′
(n+1)
si

− 1

∣

∣

∣

∣

∣

∑

j

q′ji

≤ ∆q

q

(

1 +mq +m
)

. (7.28)
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We now turn to the specific cases.

7.3.1 No investments

We consider the risk model as in Section 7.2.1. Recall the weight function w from (7.16) and let

wi(v) := γi(ε) exp(εv), (7.29)

where (γ1(ε), . . . , γm(ε)) is the eigenvector of the matrix Q(ε) corresponding to its spectral radius
‖Q(ε)‖SP such that mini γi(ε) = 1, see Section 7.2.1.

Lemma 7.12. For a, a′ ∈ A we have

Aj ≤ ρ |Gj
n −G′j

n|wj , (7.30)

where the constant ρ is from Assumption 7.3.

Proof. Recall ξi and ηji from (7.3). Then,

Aj ≤
∑

i

qji sup
v≥0

[

wi(v)E
∣

∣

∣Gj
n(v/ξi − ηji) −G′j

n(v/ξi − ηji)
∣

∣

∣

]

≤ |Gj
n −G′j

n|wj

∑

i

qji sup
v≥0

Aji(v),

where

Aji(v) := E

(

wi(v)

wj(v/ξi − ηji)
1
(

v − ξiηji ≥ 0
)

)

. (7.31)

In this case ξi ≡ 1 and ηji = δjiZ
i − ciθ

i. Using Assumption 7.3,

∑

i

qji sup
v≥0

Aji(v) ≤
∑

i

qji sup
v≥0

E

(

γi(ε) exp(εv)

γj(ε) exp(ε(v − δjiZi + ciθi))

)

=
1

γj(ε)

∑

i

qji(ε)γi(ε) ≤ ρ.

This completes the proof.

We now consider Bj . Obviously,

Bj ≤ qjjB
1
j +

∑

i∈E

qji B
2
ji,

where

B1
j := sup

v≥0
wj(v)

∣

∣

∣Ps(gj(V
′
n, Z

j , θi) > v|I ′n = j) − Ps(gj(V
′
n, Z

′j , θi) > v|I ′n = j)
∣

∣

∣ , (7.32)

B2
ji := sup

v≥0
wi(v)

∣

∣

∣Ps(gi(V
′
n, δjiZ

′i, θi) > v|I ′n = j) − Ps(g
′
i(V

′
n, δjiZ

′i, βiθ
′i) > v|I ′n = j)

∣

∣

∣ , (7.33)
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Lemma 7.13. If a, a′ ∈ A then,

B1
j ≤ CV

q
|FZj − FZ′j |wj , (7.34)

where CV is the constant satisfying (7.35); see (7.38).

Proof. We have

P(gj(u, Z
j, θj) > v) = EP

(

Zj > v + cjθ
j − u | θj

)

= EFZj

(

(v + cjθ
j − u)+

)

.

This yields

B1
j = sup

v≥0
wj(v)

∣

∣

∣

∣

∫ ∞

u=0

E
(

FZj (v + cjθ
j − u) − FZ′j (v + cjθ

j − u)
)

dG′j
n(u)

∣

∣

∣

∣

≤ |FZj − FZ′j |wj sup
v≥0

∫ ∞

0

E

(

wj(v)

wj(v + cjθj − u)

)

dG′j
n(u)

≤ |FZj − FZ′j |wj

∫ ∞

0

eεu dG′j
n(u)

≤ |FZj − FZ′j |wj

1

q
sup
n≥0

Es exp(εVn)

≤ |FZj − FZ′j |wj CV /q.

In the last step we used that for any a ∈ A the corresponding reversed process V satisfies condition

sup
n≥0

Es exp(εVn) ≤ CV ∀s ∈ E. (7.35)

Thus we proved (7.34).
The remainder of the proof is dedicated to show (7.35). Let

τ = min{n > 0, Vn = 0}.

Then, by the regenerative property of (Vn, In),

Es

(

eεVn
)

=

n
∑

k=0

m
∑

i=1

q
(k)
si Ps(Vk = 0 | Ik = i) Ei

(

eεVn−k 1 (V1 > 0, . . . , Vn−k > 0)
)

≤ 1 +
m
∑

i=1

Ei





∑

1≤k<τ

eεVk





= 1 +

m
∑

i=1

Ei



Ei





∑

1≤k<τ

eεVk
∣

∣V1, I1







 (7.36)

Let A be the generating operator of the Markov chain (Vn, In). Choose the test function

ϕ(v, i) =

{

0, if v = 0,

γi(ε)e
εv, if v > 0.
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Recall qij(ε) defined in (7.12). Then for v > 0,

Aϕ(v, i) = qii γi(ε) E

(

eε(v+Zi−ciθ
i) 1

(

v + Zi − ciθ
i > 0

)

)

+
∑

j 6=i

qijγj(ε)E
(

eε(v−cjθj)1
(

v − cjθ
i > 0

)

)

− γi(ε)e
εv

≤
m
∑

j=1

qij(ε) γj(ε)e
εv − γi(ε)e

εv

≤ −(1 − ρ)eεv, (7.37)

where the latter inequality follows from Assumption 7.3. By Dynkin’s formula,

0 = Ei

(

ϕ(Vτ , Iτ )
∣

∣V1, I1
)

= ϕ(V1, I1) + Ei





∑

1≤k<τ

Aϕ(Vk, Ik)
∣

∣V1, I1





≤ ϕ(V1, I1) − (1 − ρ)Ei





∑

1≤k<τ

eεVk
∣

∣V1, I1



 .

The latter together with (7.36) implies

Es exp (εVn) ≤ 1 +
1

1 − ρ

m
∑

i=1

Eiϕ(V1, I1) ≤ 1 +
γ(ε)CZ

1 − ρ

m
∑

i=1

qii =: CV (7.38)

In the last step we used

Eiϕ(V1, I1) = qiiγi(ε)E
[

eε(Zi−ciθi)1(Zi − ciθi > 0)
]

≤ qiiγ(ε)CZ .

This proves (7.35) and concludes the proof of the lemma.

Remark 7.14. It follows from the proof of Lemma 7.13 that MC {Vn} has a unique stationary distri-
bution Π: for a fixed i ∈ E take a set A = {0} ∪ i and a probability measure ϕ s.t. ϕ(A) = 1. Clearly,
the set A is an accessible atom for a MC {Vn}. From Proposition 3.24 and relation (7.37) it follows
that ExτA < ∞, for all x ≥ 0, which, by Proposition 3.6, implies the existence of a unique stationary
distribution Π.

We now turn to the term B2
ji. Recall that βi = 1 for all i ∈ E in the current case with no investments.

Lemma 7.15. If a, a′ ∈ A then,

B2
ji ≤

4CZCV γ(ε)

q (λi/ci ∧ λ′i/c′i)

∣

∣λ∗i − λ′
∗
i

∣

∣ , (7.39)

where λ∗i := λi/ci and λ′∗i := λ′i/c
′
i.
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Proof. Notice that ciθ
i ∼ Exp(λi/ci). Using the inequality

∣

∣

∣λ∗i e
−λ∗

i t − λ′
∗
i e

−λ′∗

i t
∣

∣

∣ ≤ 2|λ∗i − λ′
∗
i | e−(λ∗

i ∧λ′∗

i )t/2,

we have

B2
ji ≤ sup

v≥0
wi(v)

∫ ∞

0

P
(

gi(V
′
n, Z

′i, t) > v | I ′n = j
) ∣

∣

∣λ∗i e
−λ∗

i t − λ′
∗
i e

−λ′∗

i t
∣

∣

∣ dt

≤ 2|λ∗i − λ′
∗
i | sup

v≥0

{

wi(v)

∫ ∞

0

P
(

V ′
n + Z ′i > v | I ′n = j

)

exp
(

−(λ∗i ∧ λ′∗i )t/2
)

dt

}

≤ 4
|λ∗i − λ′

∗
i |

λ∗i ∧ λ′∗i
sup
v≥0

{

wi(v)P
(

V ′
n + Z ′i > v | I ′n = j

)}

≤ 4
|λ∗i − λ′

∗
i |

λ∗i ∧ λ′∗i
E

[

wi

(

V ′
n + Z ′i

)

|I ′n = j
]

. (7.40)

The latter relation follows from Markov’s inequality.
Relations (7.35) and (7.14) yield

E

[

wi(V
′
n + Z ′i)|I ′n = j

]

= γi(ε)E
[

exp
(

ε(V ′
n + Z ′i)

)

|I ′n = j
]

≤ γ(ε)CZ
E exp(εV ′

n)

q′
(n)
sj

≤ γ(ε)CZCV

q
. (7.41)

This and (7.40) prove (7.39).

From Lemmas 7.13 and 7.15 we have,

Bj ≤
CV γj(ε)

q
|FZj − FZ′j |w +

4CZCV γ(ε)

q
max

i

(

ci
λi

∨ c′i
λ′i

) ∣

∣

∣

∣

λ′i
c′i

− λi

ci

∣

∣

∣

∣

(7.42)

Finally we bound Dji. By Markov’s inequality,

Dji ≤ Es

[

wi(f(V ′
n, ξ

′i, η′
ji

)) | I ′n = j
]

≤ Es

[

wi

(

ξ′
i
(V ′

n + Z ′i)
)

| I ′n = j
]

.

In the current case ξ′
i ≡ 1. Condition (7.14) and (7.35) yield

Dji ≤ CZCV γ(ε). (7.43)

Now collecting the bounds for Aj from Lemma 7.12, for Bj from (7.42) and for Dji from (7.43) and
using relation (7.28), we conclude from (7.27) that (C2) holds with

κ := ρ,

d(a, a′) :=
CV γ(ε)

q

[

max
i

|FZi − FZ′i |w + 4CZ max
i

(

ci
λi

∨ c′i
λ′i

) ∣

∣

∣

∣

λ′i
c′i

− λi

ci

∣

∣

∣

∣

+ CZhq∆q

]

,
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where hq = 1 +m+mq (see (7.28)).
Condition (C1) follows from (7.35) with ,

Cw = γ(ε)CV , (7.44)

where the constant CV is given in (7.38).

7.3.2 Deterministic interest

We consider the model introduced in Section 7.2.2. First we show that (C2) holds. In this case we can
choose wi = w, where w(v) = exp(v ∨ v). As before, we need to estimate Aj , Bj and Dji. We start with
Aj .

Lemma 7.16. For a, a′ ∈ A we have

Aj ≤ κ |Gj
n −G′j

n|w, (7.45)

where the constant κ < 1 is given in (7.47).

Proof. Following the lines of the proof of Lemma 7.12, it suffices to bound the quantities supv≥0Aji(v)
defined in (7.31). In the current risk model

ξi = exp(−αiθ
i) and ηji = δjiZ

i − ci
αi

(exp(αiθ
i) − 1),

see (7.3).
For any v we have

Aji(v) = E

(

exp
(

εv(1 − eαiθ
i

) + εηji
)

1
(

ξiηji ≤ v
)

)

≤ E

(

exp
(

εv(1 − eαiθ
i
)

exp(εZi)
)

≤ CZE exp
(

εv(1 − eαiθ
i

)
)

.

Here we have used the condition (7.18). The latter expression tends to 0 as v → ∞. Therefore for any
given ρ1 < 1 we can find a constant v1 = v1(ρ1) such that for v ≥ v1:

Aji(v) ≤ ρ1. (7.46)

Now let v ≤ v where the constant v ≥ v1 will be chosen later. By construction of w, w(v) = w(v) for
v ≤ v. Hence,

Aji(v) = E

(

w(v)

w(v/ξi − ηji)
1
(

ξiηji ≤ v, ηji < −2v
)

)

+ E

(

w(v)

w(v/ξi − ηji)
1
(

ξiηji ≤ v, ηji ≥ −2v
)

)

≤ E

(

w(v)

w(−ηji)
1
(

ξiηji ≤ v, ηji < −2v
)

)

+ E

(

w(v)

w(v)
1
(

ξiηji ≤ v, ηji ≥ −2v
)

)

≤ w(v)

w(2v)
P
(

ηji < −2v
)

+ P
(

ηji ≥ −2v
)

≤ 1 − min
i

P
(

ηii < −2v
)

(

1 − w(v)

w(2v)

)

=: κ. (7.47)
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Choosing ρ1 := κ and combining (7.46) for v ≥ v and (7.47) for v ≤ v we conclude that

∑

i

sup
v≥0

qjiAji(v) ≤ κ.

This proves the lemma.

Following the lines in the previous section we now bound the term B1
j defined in (7.32).

Lemma 7.17. If a, a′ ∈ A then,

B1
j ≤ CV

q
|FZj − FZ′j |w, (7.48)

where the constant CV is given in (7.63).

Proof. The proof is similar to the one of Lemma 7.13. We have

P(gj(u, Z
j , θj) ≥ v) = EP

(

Zj ≥ Yj(u, v) | θj
)

= EFZj ((Yj(u, v))+) ,

where

Yj(u, v) := v exp(αjθ
j) +

cj
αj

(exp(αjθ
j) − 1) − u. (7.49)

This yields

B1
j = sup

v≥0
w(v)

∣

∣

∣

∣

∫ ∞

u=0

E
(

FZj (Yj(u, v)) − FZ′j (Yj(u, v))
)

dG′j
n(u)

∣

∣

∣

∣

≤ |FZj − FZ′j |w sup
v≥0

∫ ∞

0

E

(

w(v)

w(Yj(u, v))

)

dG′j
n(u)

≤ |FZj − FZ′j |w sup
v≥0

∫ ∞

0

exp(ε(v ∨ v))
exp(ε(v ∨ (v − u)))

dG′j
n(u)

≤ |FZj − FZ′j |w
∫ ∞

0

eεu dG′j
n(u)

≤ |FZj − FZ′j |w sup
n≥0

E exp(εV ′
n)/q.

The proof of (7.48) is finished if we can show that there exists CV < ∞ such that for any a ∈ A the
corresponding process V satisfies

sup
n≥0

E exp(εVn) ≤ CV . (7.50)

The remainder of the proof is devoted to show it.
Define the test function

ϕ(v) = ϕ(v, i) :=

{

0, v = 0,

1 + bv + deεv, v > 0,

where the positive constants b and d will be chosen later.



7.3. APPENDIX 99

From condition (7.18) and inequality εZ ≤ exp(εZ) a.s. we have

EZi ≤ CZ

ε
, ∀i ∈ E. (7.51)

Recall that A is the generating operator of the Markov chain (Vn, In), i.e.,

Aϕ(v, i) =
∑

j

qijE
[

(

1 + bξj(v + ηij) + d exp(εξj(v + ηij))
)

1(v + ηij > 0)
]

−1 − bv − d eεv. (7.52)

We first consider the case v > v̄ for v sufficiently large chosen later. Using that ξi = exp(−αiθ
i) ≤ 1,

ηij ≤ Zj a.s. and (7.51), we have

Aϕ(v, i) ≤
∑

j

qijE

[

1 + b(v + Zj) + d exp
(

εξj(v + Zj
)

]

− 1 − bv − d exp(εv)

≤ bCZ

ε
+ dCZ

∑

j

qijE exp
(

εvξj
)

− d exp(εv)

=
bCZ

ε
+ d exp(εv)



CZ

∑

j

qijE exp
(

−εv(1 − ξj)
)

− 1





≤ bCZ

ε
− d

2
exp(εv). (7.53)

In the latter inequality we choose v ≥ v2, where v2 is such that

CZ

∑

j

qijE exp
(

−εv(1 − ξj)
)

− 1 ≤ −1/2, v ≥ v2, (7.54)

which is possible since the left-hand side converges to −1 when v → ∞. We rewrite (7.53) as follows,

Aϕ(v, i) ≤ ϕ(v, i)f(v) where f(v) :=

(

bCZ

ε
− d

2
exp(εv)

)

/ϕ(v, i).

We choose the constant v3 so that for v ≥ v3, f(v) is a decreasing function. In particular,

f ′(v) =
1

ϕ2(v, i)

[

d

2
eεv (−ε− bεv + b) − b

CZ

ε
(b+ d εeεv)

]

,

from where one can choose

v3 =
1

ε
. (7.55)

Thus, if we set
v := max{v1, v2, v3}, (7.56)

where v1 is defined in (7.46), v2 in (7.54) and v3 in (7.55), we have

Aϕ(v, i) ≤ ϕ(v, i)f(v), v ≥ v. (7.57)
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Now we turn to the case 0 < v ≤ v̄. From (7.52),

Aϕ(v, i) ≤
∑

j

qijE
[

(

1 + b(v + Zj) + d exp(ε(v + Zj))
)(

1 − 1(v + ηij ≤ 0)
)

]

− 1 − bv − d eεv

≤
∑

j

qij

[

− (1 + bv)P
(

v + ηij ≤ 0
)

+ b
CZ

ε
+ dCZ exp(εv̄) − dP

(

v + ηij ≤ 0
)

]

= −(1 + bv + d)
∑

j

qijP
(

v + ηij ≤ 0
)

+ b
CZ

ε
+ dCZ exp(εv̄).

Let us denote

p := e−εv
∑

j

qijP
(

v + ηij ≤ 0
)

.

Using that (1 + bv + d)/(1 + bv + d exp(εv)) ≥ exp(−εv) for v ≤ v, we obtain

Aϕ(v, i) ≤ ϕ(v, i)



− 1 + bv + d

1 + bv + d exp(εv)

∑

j

qijP
(

v + ηij ≤ 0
)

+ b
CZ

ε
+ dCZ exp(εv̄)





≤ ϕ(v, i)

(

−p+ b
CZ

ε
+ dCZe

εv̄

)

=: ϕ(v, i)g(v). (7.58)

In order to make the quantities f(v) and g(v) negative, we choose constants d = d(v) and b = b(d, v)
so that dCZ exp(εv) ≤ p/4 and bCZ/ε ≤ d exp(εv)/4, in particular one can take

d =
p

4CZeεv
and b =

εdeεv

4CZ
=

εp

16C2
Z

. (7.59)

Then, with such b and d,

f(v) =

(

bCZ

ε
− d

2
eεv

)

/ϕ(v, i) ≤ − d

4ϕ(v, i)
eεv = − p

16CZϕ(v, i)
=: −χ,

g(v) = −p+ b
CZ

ε
+ dCZe

εv̄ ≤ −p+ 2dCZe
εv̄ ≤ −p

2
≤ −χ.

Combining the latter together with (7.57) for v ≥ v and (7.58) for v ≤ v, we have that for any v ≥ 0,

Aϕ(v, i) ≤ −χϕ(v, i). (7.60)

Similar to the proof of Lemma 7.13 we want to use Dynkin’s formula. First we introduce the stopping
time

τ = min{n > 0, Vn = 0}.
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Then, by the regenerative property of (Vn, In),

Es

(

eεVn
)

=

n
∑

k=0

m
∑

i=1

q
(k)
si Ps(Vk = 0 | Ik = i) Ei

(

eεVn−k 1 (V1 > 0, . . . , Vn−k > 0)
)

≤ 1 +

m
∑

i=1

Ei





∑

1≤k<τ

eεVk





= 1 +

m
∑

i=1

Ei



Ei





∑

1≤k<τ

eεVk
∣

∣V1, I1







 (7.61)

By Dynkin’s formula we obtain

0 = Ei

(

ϕ(Vτ , Iτ )
∣

∣V1, I1
)

= ϕ(V1, I1) + Ei





∑

1≤k<τ

Aϕ(Vk, Ik)
∣

∣V1, I1





≤ ϕ(V1, I1) − χEi





∑

1≤k<τ

ϕ(Vk, Ik)
∣

∣V1, I1



 . (7.62)

Now (7.61), (7.62) and exp(εv) ≤ (ϕ(v, i) − 1)/d imply

Es

(

eεVn
)

≤ 1 +
1

χd

m
∑

i=1

Ei(ϕ(V1, I1) − 1) ≤ 1 +
CZ

χd

(

b

ε
+ d

) m
∑

i=1

qii =: CV . (7.63)

In the last step we used

Eiϕ(V1, I1) − 1 = qiiE
[(

bξi(Zi − ciθ
i) + d exp

(

εξi(Zi − ciθ
i)
) )

1(Zi − ciθ
i > 0)

]

≤ qiiCZ

(

b

ε
+ d

)

.

This completes the proof of (7.50) and of the lemma.

Now we turn to the term B2
ji defined in (7.33). It is convenient to decompose it as follows,

B2
ji ≤ B21

ji +B22
ji ,

where the notation

B21
ji := sup

v≥0
wi(v)

∣

∣

∣Ps(gi(V
′
n, δjiZ

′i, θi) > v|I ′n = j) − Ps(gi(V
′
n, δjiZ

′i, βiθ
′i) > v|I ′n = j)

∣

∣

∣ , (7.64)

B22
ji := sup

v≥0
wi(v)

∣

∣

∣Ps(gi(V
′
n, δjiZ

′i, βiθ
′i) > v|I ′n = j) − Ps(g

′
i(V

′
n, δjiZ

′i, βiθ
′i) > v|I ′n = j)

∣

∣

∣ (7.65)

will also be used in the next section. The next lemma bounds B21
ji .
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Lemma 7.18. If a, a′ ∈ A then,

B21
ji ≤ 4CV CZ exp(εv)

q(λi/αi ∧ λ′i/α′
i)

∣

∣

∣

∣

λi

αi
− λ′i
α′

i

∣

∣

∣

∣

. (7.66)

Proof. The proof is similar to the one of Lemma 7.15. In this case we have,

gi(V
′
n, δjiZ

′i, θi) =
(

V ′
n + δjiZ

′i
)

exp(−αiθ
i) − ci

αi

(

1 − exp(−αiθ
i)
)

.

Now, αiθ
i ∼ Exp(λi/αi). Let us denote λ∗i := λi/αi and λ′

∗
i = λ′i/α

′
i.

Following the lines of the proof of Lemma 7.15 with λ∗i , λ
′∗
i defined above and using that exp(−αit) ≤ 1,

we arrive at the inequality (7.40), i.e.,

B2
ji ≤ 4

|λ∗i − λ′
∗
i |

λ∗i ∧ λ′∗i
E

[

w
(

V ′
n + Z ′i

)

|I ′n = j
]

.

Now, conditions (7.18) and (7.50) yield

E

[

w
(

V ′
n + Z ′i

)

|I ′n = j
]

≤ CV CZ exp(εv)

q
. (7.67)

This proves the lemma.

Lemma 7.19. Let a, a′ ∈ A. Then

B22
ji ≤

∣

∣

∣

∣

1

αi
− 1

α′
i

∣

∣

∣

∣

λ′iCV CZ exp(εv)

q(αi ∧ α′
i)

. (7.68)

Proof. Let c∗i = max{ci/αi, ci/α
′
i} and ci∗ = min{ci/αi, ci/α

′
i}. Thus,

B22
ji = sup

v≥0
w(v)

∣

∣

∣

∣

∣

Ps

(

1

αi
log

(

V ′
n + δjiZ

′i + c∗i
v + c∗i

)

≤ α′
iθ

′i <
1

αi
log

(

V ′
n + δjiZ

′i + ci∗
v + ci∗

)

∣

∣I ′n = j

)∣

∣

∣

∣

∣

.

Using that α′
iθ

′i ∼ Exp(λ′∗i ), where λ′∗i = λ′i/α
′
i as in the previous lemma, we have

B22
ji = sup

v≥0
w(v)

∫ ∞

u=v

[

(

v + c∗i
u+ c∗i

)λ′∗

i /αi

−
(

v + ci∗
u+ ci∗

)λ′∗

i /αi
]

dPs(V
′
n + δjiZ

′i ≤ u | I ′n = j).

Inserting the bound (for u ≥ v)

(

v + c∗i
u+ c∗i

)λ′∗

i /αi

−
(

v + ci∗
u+ ci∗

)λ′∗

i /αi

≤ λ′
∗
i

αici∗
|c∗i − ci∗| =

λ′i
αi ∧ α′

i

∣

∣

∣

∣

1

αi
− 1

α′
i

∣

∣

∣

∣

(7.69)

and using the monotonicity of w, we obtain

B22
ji ≤ λ′i

αi ∧ α′
i

∣

∣

∣

∣

1

αi
− 1

α′
i

∣

∣

∣

∣

sup
v≥0

Iji(v),
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where

Iji(v) =

∫ ∞

u=v

w(u) dPs(V
′
n + δjiZ

′i ≤ u | I ′n = j).

For j 6= i, using (7.50), we have

Iji(v) =

∫ ∞

u=v

w(u) dG′i
n(u) ≤ eεvCV

q′
(n)
ji

≤ eεvCV

q
. (7.70)

If j = i then similarly,

Iji(v) ≤
∫ ∞

u=0

w(u)

∫ u

x=0

dG′i
n(u− x) dFZ′i(x)

≤ eεv

∫ ∞

x=0

eεx dFZ′i(x)

∫ ∞

y=0

eεy dG′i
n(y)

≤ eεvCZCV

q
. (7.71)

Now (7.68) follows from (7.69)–(7.71).

Thus, Lemmas 7.17–7.19 yield

Bj ≤ CV

q
|FZj − FZ′j |w

+
CVCZ exp(εv)

q

(

4 max
i

(

αi

λi
∨ α′

i

λ′i

) ∣

∣

∣

∣

λi

αi
− λ′i
α′

i

∣

∣

∣

∣

+ max
i

λ′i
(αi ∧ α′

i)

∣

∣

∣

∣

1

αi
− 1

α′
i

∣

∣

∣

∣

)

(7.72)

It remains to bound Dji. Similar to the previous case, using Markov’s inequality and ξ′
i ≤ 1 a.s., we

have

Dji ≤ Es

[

w
(

(V ′
n + Z ′i)

)

| I ′n = j
]

.

Conditions (7.18) and (7.50) yield
Dji ≤ CZCV exp(εv). (7.73)

Collecting the bounds for Aj , Bj , Dji from Lemma 7.16, (7.72) and (7.73) respectively, and using the
relation (7.28) we conclude from (7.27) that (C2) holds with

κ := 1 − min
i

P
(

ηii < −2v
)

(

1 − w(v)

w(2v)

)

,

d(a, a′) :=
CV exp(εv)

q

[

exp(−εv)max
j

|FZj − FZ′j |w + 4CZ max
j

(

αj

λj
∨
α′

j

λ′j

) ∣

∣

∣

∣

∣

λj

αj
−
λ′j
α′

j

∣

∣

∣

∣

∣

+ CZ max
j

λ′j
(αj ∧ α′

j)

∣

∣

∣

∣

∣

1

αj
− 1

α′
j

∣

∣

∣

∣

∣

+ CZhq∆q

]
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where hq = 1 +m+mq.
From (7.50) and w(v) = exp(v ∨ v) we have that condition (C1) holds with

Cw := CV exp(εv) =

(

1 +
CZ

χd

(

b

ε
+ d

) m
∑

i=1

qii

)

exp(εv), (7.74)

where the constant CV is defined in (7.63), v in (7.56) and the constants b and d are given in (7.59).

7.3.3 Random interest

We will prove that conditions (C1) and (C2) hold for the risk model defined in Section 7.2.3. Recall the
weight function w from (7.26). The constants α and v will be defined in the course of the proof, see the
lines following (7.82) in the proof of Lemma 7.20. Set

wi(v) =

{

1 + αvε, 0 ≤ v ≤ v,

1 + αγi(ε)v
ε, v > v.

(7.75)

First we prove the condition (C2). As before, we need to bound the quantities Aj , Bj and Dji.

Lemma 7.20. For a, a′ ∈ A we have

Aj ≤ κ |Gj
n −G′j

n|wj ,

where the constant κ < 1 is given in (7.84).

Proof. Following the lines of the proof of Lemma 7.12, we have to bound the quantity
∑

i qji supv≥0Aji(v),

where the Aji’s are defined in (7.31). Recall (ξi, ηji) from (7.3):

(

ξi, ηji
)

=

(

exp
(

−U i
θi

)

, δjiZ
i − ci

∫ θi

0

exp
(

U i
θi − U i

u

)

du

)

.

We extend the functions wi to the negative real line by setting wi(v) = 1 for v < 0. Then,

Aji(v) ≤ E

(

wi(v)

wj (v/ξi − Zi)
1
(

ξiZi > v
)

)

+ E

(

wi(v)

wj (v/ξi − Zi)
1
(

ξiZi ≤ v
)

)

=: A1
ji(v) +A2

ji(v). (7.76)

We first consider v > v. By Markov’s inequality and Assumption 7.8,

A1
ji(v) = (1 + αγiεv

ε)P(ξiZi > v)

≤
(

1

vε + αγ(ε)

)

CZE(ξi)ε.

For a given δ ∈ (0, 1) to be chosen later we take v = v(δ) and α1 = α1(δ) such that

(

1

vε + α1γ(ε)

)

CZ ≤ δ

γ(ε)
. (7.77)
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Then using Assumption 7.7, for any α ≤ α1,

∑

i

qji sup
v≥v

A1
ji(v) ≤ δ

γ(ε)

∑

i

qjiE(ξi)εγi(ε)

≤ δ

γ(ε)
ρ1γj(ε)

≤ δρ1.

We now turn to the term

A2
ji(v) = E

(

(ξi)ε (1 + αγiv
ε)

(ξi)ε + αγj(ε) (v − ξiZi)
ε 1
(

ξiZi ≤ v
)

)

. (7.78)

For ξiZi ≤ v, the inequality

(

ξiZi

Zi

)ε

+ αγj(ε)
(

v − ξiZi
)ε ≥

(

V ji

Zi

)ε

holds with

V ji =
(αγj(ε))

1/εv

(αγj(ε))1/ε + 1/Zi
.

This yields,

A2
ji(v) ≤ E

(

1 + Zi(αγj(ε))
1/ε
)ε

E
(

ξi
)ε 1 + αγi(ε)v

ε

αγj(ε)vε
.

We choose α2 = α2(δ) such that

E

(

1 + Zi(α2γ(ε))
1/ε
)ε

≤ 1 + δ. (7.79)

From Assumption 7.7 we obtain that for any α ≤ α2

∑

i

qji sup
v≥v

A2
ji(v) ≤ (1 + δ)

1 + αvε

αγj(ε)vε

∑

i

qjiγi(ε)E
(

ξi
)ε

≤ (1 + δ)ρ1

(

1

αv̄ε
+ 1

)

.

Now we require that v = v(δ, α) in addition to (7.77) also satisfies

1

α vε ≤ δ. (7.80)

Choose δ such that

ρ1(δ + (1 + δ)2) ≤ 1 + ρ1

2
. (7.81)

Thus, we choose the constants in the following order. First we fix δ from the condition (7.81), then
take α = min{α1, α2} = α(δ) from the conditions (7.77) and (7.79) and finally take v = v(δ, α) such that
(7.77) and (7.80) hold.
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We arrive at the bound
∑

i

qji sup
v≥v

Aji(v) ≤
1 + ρ1

2
. (7.82)

Now let v ≤ v̄. Then

Aji(v) = E





wi(v)

wj

(

v
ξi − ηji

) 1
(

ξiηji < v, ξi ≤ 1, ηji ≤ −2v
)





+ E





wi(v)

wj

(

v
ξi − ηji

) 1
(

ξiηji < v, {ξi > 1} ∪ {ηji > −2v}
)





≤ wi(v)

wj(2v)
P
(

ξi ≤ 1, ηji ≤ −2v
)

+ 1 − P
(

ξi ≤ 1, ηji ≤ −2v
)

≤ 1 −
(

1 − w(v)

w(2v)

)

P
(

ξi ≤ 1, ηji ≤ −2v
)

This together with Assumption 7.9 yields

∑

i

qji sup
v≤v

Aji(v) ≤ 1 −
(

1 − w(v)

w(2v)

)

∑

i

qjiP
(

ξi ≤ 1, ηji ≤ −2v
)

≤ 1 − q2v

(

1 − w(v)

w(2v)

)

. (7.83)

Thus, combining (7.82) and (7.83) we have

∑

i

sup
v≥0

qjiAji(v) ≤ max

{

1 + ρ1

2
, 1 − q2v

(

1 − w(v)

w(2v)

)}

=: κ, (7.84)

where ρ1 and q2v are from Assumptions 7.7 and 7.9. This completes the proof.

Lemma 7.21. If a, a′ ∈ A then,

B1
j ≤ hZ |FZj − FZ′j |w, (7.85)

where the constant hZ is given by (7.93).

Proof. The proof is similar to the ones of the corresponding Lemmas 7.13 and 7.17 in the previous
sections. We have

P(gj(u, Z
j , θj) ≥ v) = EP

(

Zj ≥ Yj(u, v) | θj
)

= EFZj ((Yj(u, v))+) ,

where

Yj(u, v) := v exp
(

U j
θj

)

+ cj

∫ θj

0

exp
(

U j
θj − U j

s

)

ds− u. (7.86)
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This yields

B1
j = sup

v≥0
wj(v)

∣

∣

∣

∣

∫ ∞

u=0

E
(

FZj (Yj(u, v)) − FZ′j (Yj(u, v))
)

dG′j
n(u)

∣

∣

∣

∣

≤ γ(ε)|FZj − FZ′j |w sup
v≥0

∫ ∞

0

E

(

w(v)

w(Yj(u, v))

)

dG′j
n(u).

We first consider the expression

w(v)

w(Yj(u, v))
=

w(v)

w(Yj(u, v) + u)

w(Yj(u, v) + u)

w(Yj(u, v))
. (7.87)

Using the inequality
1 + α(yε ∨ uε)

1 + αuε
≤ 1 + (1 ∨ 2ε−1)(1 ∨ αuε), (7.88)

we bound the second term by

w(Yj(u, v) + u)

w(Yj(u, v))
≤ 1 + (1 ∨ 2ε−1)(1 + αuε). (7.89)

The expectation of the first term can be bounded as follows,

E

(

w(v)

w(Yj(u, v) + u)

)

≤ E

(

1 + α(vε ∨ vε)

1 + α(vε ∨ (v/ξj)ε)

)

≤ E

(

(ξj)ε + α(vε ∨ vε)(ξj)ε

(ξj)ε + αvε

)

≤ 1 + αvε + E(ξj)ε. (7.90)

By Assumption 7.7,

E(ξj)ε ≤ 1

qγj(ε)

∑

i

qjiE(ξi)εγi(ε) ≤
1

q
,

which together with (7.87)–(7.90) yields

∫ ∞

0

E

(

w(v)

w(Yj(u, v))

)

dG′j
n(u) ≤

(

1 + αvε +
1

q

)(

1 + (1 ∨ 2ε−1)

(

1 +
α

q
Es(V

′
n)ε

))

. (7.91)

We will prove that for some constant CV <∞ and any a ∈ A,

sup
n≥0

EsV
ε
n ≤ CV . (7.92)

This proves (7.85) with

hZ = γ(ε)

(

1 + αvε +
1

q

)(

1 + (1 ∨ 2ε−1)

(

1 +
αCV

q

))

. (7.93)
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Thus, it remains to prove (7.92). Repeating exactly the same arguments as in (7.36) in the proof of
Lemma 7.13, we obtain

EsV
ε
n ≤

m
∑

i=1

Ei



Ei





∑

1≤k<τ

V ε
k

∣

∣V1, I1







 (7.94)

Take the test function

ϕ(v, i) =

{

0, if v = 0,

1 + α0γi(ε)v
ε if v > 0,

and choose v∗ > 0 such that for all j ∈ E

E

(

1 +
Zj

v∗

)ε

≤ 1 + ρ1

2ρ1
. (7.95)

Then for v ≥ v∗,

E (ϕ(Vn+1, In+1) |Vn = v, In = i) = 1 + α0E

(

γIn+1
(ε)(ξIn+1)ε

(

v + ηiIn+1
)ε

+
1
(

v + ηiIn+1 > 0
)

| In = i
)

= 1 + α0E

(

γIn+1
(ε)
(

ξIn+1
)ε (

v + ηiIn+1
)ε

+
| In = i

)

≤ 1 + α0

∑

j

qijγj(ε)E
(

ξj
)ε

E

(

1 +
Zj

v

)ε

vε

≤ 1 + α0v
ε 1 + ρ1

2ρ1

∑

j

qijγj(ε)E
(

ξj
)ε

≤ 1 + α0v
ε 1 + ρ1

2
γi(ε)

=
1 + α0γi(ε)v

ε(1 + ρ1)/2

1 + α0γi(ε)vε
ϕ(v, i)

≤ 1 + α0v
∗ε(1 + ρ1)/2

1 + α0v∗
ε ϕ(v, i).

This yields

Aϕ(v, i) ≤ −α0 v
∗ε(1 − ρ1)

2 (1 + α0v∗
ε)
ϕ(v, i), for v ≥ v∗. (7.96)
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Consider 0 < v ≤ v∗. Recall qv∗ ≤ P(ξj ≤ 1, ηij < −v∗) from (7.24). Then,

E

[

ϕ(Vn+1, In+1) |Vn = v, In = i
]

≤ E

[

ϕ(ξIn+1(v + ZIn+1), In+1) | In = i
]

−E

[

ϕ(ξIn+1(v + ZIn+1), In+1)1
(

ηiIn+1 ≤ v∗
)

| In = i
]

≤
∑

j

qij
(

1 + α0γj(ε)E(ξj)ε
E(v + Zj)ε

)

−
∑

j

qijP(ηij ≤ −v∗)

≤ 1 + α0

∑

j

qijE(ξj)εγj(ε)E

(

1 +
Zj

v∗

)ε

v∗ε − qv∗

≤ 1 + α0γi(ε)
1 + ρ1

2
v∗ε − qv∗ .

In the last step we used Assumption 7.7 and the relation (7.95). Take

α0 =
qv∗

γ(ε)v∗ε(1 + ρ1)
.

Then,

Aϕ(v, i) ≤ −qv∗

2
ϕ(v, i), for v ∈ (0, v∗). (7.97)

Combining (7.96) for v ≥ v∗ and (7.97) for v ∈ (0, v∗), we have that for v > 0,

Aϕ(v, i) ≤ −χϕ(v, i), χ = min

{

α0v
∗ε(1 − ρ1)

2 (1 + α0v∗
ε)
,
qv∗

2

}

. (7.98)

Similar to the proof of Lemma 7.17, using the regeneration property of (Vn, In), and denoting τ =
min{n > 0, Vn = 0}, we have

EsV
ε
n =

n
∑

k=0

m
∑

i=1

q
(k)
si Ps(Vk = 0 | Ik = i) Ei

(

V ε
n−k 1 (V1 > 0, . . . , Vn−k > 0)

)

≤
m
∑

i=1

Ei





∑

1≤k<τ

V ε
k





=
m
∑

i=1

Ei



Ei





∑

1≤k<τ

V ε
k

∣

∣V1, I1







 (7.99)

An application of Dynkin’s formula together with (7.98) yields

0 ≤ ϕ(V1, I1) − χEi





∑

1≤k<τ

ϕ(Vk, Ik)
∣

∣V1, I1



 .

This together with (7.99) implies

EsV
ε
n ≤ 1

χα0

∑

i

Eiϕ(V1, I1). (7.100)
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The bound

Eiϕ(V1, I1) ≤ Ei

[(

1 + α0γI1(ξ
I1)εZI1

)

δi,I1
]

≤ qii + α0qiiγi(ε)E(ξi)εCZ

≤ qii + α0γ(ε)CZ

together with (7.100) proves (7.92) with

CV =

∑

i qii +mα0γ(ε)CZ

χα0
. (7.101)

and completes the proof of the lemma.

Remark 7.22. Condition (C1) immediately follows from (7.92) with

Cw := 1 + α (vε + CV ) , (7.102)

where the constant CV is given in (7.101).

Now we consider the term B21
ji defined in (7.64).

Lemma 7.23. If a, a′ ∈ A then,

B21
ji ≤ hλi

∣

∣

∣

∣

λi −
λ′i
βi

∣

∣

∣

∣

, (7.103)

where hλi is given by (7.105).

Proof. From (7.64) we have

B21
ji ≤ sup

v≥0
wi(v)

∫ ∞

0

P
(

gi(V
′
n, Z

′i, t) ≥ v | I ′n = j
) ∣

∣

∣λie
−λit − (λ′i/βi)e

−(λ′

i/βi)t
∣

∣

∣ dt

Set λi := min(λi, λ
′
i/βi) and λi := max(λi, λ

′
i/βi). Then,

∣

∣

∣λie
−λit − (λ′i/βi)e

−(λ′

i/βi)t
∣

∣

∣ ≤
∣

∣λi − λi

∣

∣ e−λit +
∣

∣

∣1 − e−(λi−λi)t
∣

∣

∣λie
−λit

≤
∣

∣λi − λi

∣

∣ e−λit +
∣

∣λi − λi

∣

∣ tλie
−λit.

Let the r.v. θ
i ∼ Exp(λi) and the r.v.’s θi

1 and θi
2 be i.i.d. with distribution Exp(λi) (all independent of

the process U i). Then θi
1 + θi

2 follows a Γ(2, λi) distribution. This together with the Markov inequality
yields

B21
ji ≤ |λi − λi|

λi

sup
v≥0

wi(v)

{

P
(

(V ′
n + Z ′i)e−Ui

θi ≥ v | I ′n = j
)

+ P

(

(V ′
n + Z ′i)e

−Ui

θi
1
+θi

2 ≥ v | I ′n = j

)}

≤ |λi − λi|
λi

E

[

wi

(

(V ′
n + Z ′i) exp

(

−U i

θ
i

))

+ wi

(

(V ′
n + Z ′i) exp

(

−U i
θi
1
+θi

2

))

|I ′n = j
]

≤ |λi − λi|
λi

(

2 + αγi(ε))v
ε
E

[(

V ′
n + Z ′i

)ε

|I ′n = j
] (

E exp
(

−εU i

θ
i

)

+ E exp
(

−εU i
θi
1
+θi

2

)))

.

(7.104)
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Assumption 7.7 implies that

E exp
(

−εU i
θi

)

≤ 1

qγi(ε)

∑

j

qijE exp
(

−εU j
θj

)

γj(ε) ≤
1

q
,

and similarly, E exp
(

−εU ′i
θi

)

≤ 1/q for the perturbed process. Since either U i
θi

d
= U i

θi
1

(if λi = λi) or

U ′i
θi

d
= U i

θi
1

(if λi = λ′i/βi)), it follows by the stationary and independent increments of the process U i

that

E exp
(

−εU i
θi
1
+θi

2

)

=
(

E exp
(

−εU i
θi
1

))2

≤ q−2.

Inserting the latter in (7.104) and using inequality E

(

V ′
n + Z ′i

)ε

≤ max(1, 2ε−1)
(

CV /q + CZ

)

we obtain

(7.103) with

hλi =
2 + αγi(ε)v

ε(1 ∨ 2ε−1)
(

CV /q + CZ

)

(1 + q)/q2

λi ∧ (λ′i/βi)
(7.105)

which completes the proof of the lemma.

Lemma 7.24. For any a, a′ ∈ A,

B22
jj ≤ hcj

∣

∣

∣

∣

cj −
c′j
βj

∣

∣

∣

∣

,

where the constant hcj is given in (7.108).

Proof. From (7.65) we have

B22
jj = sup

v≥0
wj(v)Ps

(

vj < V ′
n + Z ′j ≤ vj | I ′n = j

)

,

where

vj := v exp
(

U j
βjθ′j

)

+ (cj ∧ c′j/βj)

∫ βjθ′j

0

exp
(

U j
βjθ′j − U j

u

)

du (7.106)

vj := v exp
(

U j
βjθ′j

)

+ (cj ∨ c′j/βj)

∫ βjθ′j

0

exp
(

U j
βjθ′j − U j

u

)

du. (7.107)

Using the condition (7.23) and the inequality (7.88) we obtain

B22
jj = sup

v≥0
wj(v)E

∫ vj

vj

∫ t

0

pZ′j (t− u) dG′j
n(u) dt

≤ γj(ε)Cp sup
v≥0

w(v)E

∫ vj

vj

∫ t

0

1

w(t− u)
dG′j

n(u) dt

≤ γj(ε)Cp sup
v≥0

w(v)E

∫ vj

vj

1

w(t)

∫ t

0

(1 + (1 ∨ 2ε−1)w(u)) dG′j
n(u) dt

≤ γj(ε)Cp

(

1 + (1 ∨ 2ε−1)
Cw

q

)

sup
v≥0

E

(

w(v)

w(vj)

∣

∣vj − vj

∣

∣

)

≤ γj(ε)Cp

(

1 + (1 ∨ 2ε−1)
Cw

q

) ∣

∣

∣

∣

cj −
c′j
βj

∣

∣

∣

∣

E

[

(

1 + αvε + (ξj)ε
)

∫ βjθ′j

0

exp
(

U j
βjθ′j − U j

s

)

ds

]

.
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In the last inequality we have used relations (7.90). This completes the proof with

hcj := γj(ε)Cp

(

1 + (1 ∨ 2ε−1)
Cw

q

)

E

[

(

1 + αvε + exp
(

−εU j
βjθ′j

))

∫ βjθ′j

0

exp
(

U j
βjθ′j − U j

s

)

ds

]

.

(7.108)

Lemma 7.25. For any a, a′ ∈ A,

B22
ji ≤ h∗ci

∣

∣

∣

∣

ci −
c′i
βi

∣

∣

∣

∣

,

where the constant h∗ci is given in (7.112).

Proof. Similarly to the proof of the previous lemma, we have

B22
ji = sup

v≥0
w(v)Ps (vi < V ′

n ≤ vi | I ′n = j) ,

where the r.v.’s vi and vi are defined in (7.106) and (7.107), respectively (with i instead of j).

Next we will prove that for v > 0 there exists a density
dG′i

n(v)
dv s.t. for all n ≥ 0,

sup
v≥0

w(v)
dG′i

n(v)

dv
≤ Cp, (7.109)

for some constant Cp < ∞ and for all i ∈ E. Relation (7.109) holds for n = 0, 1. Assume, it holds for
n ≤ k (k ≥ 1).

w(v)
dG′i

k+1(v)

dv
= w(v)

∑

j

Ps(Ik = j | Ik+1 = i)
dPs

(

ξi(Vk + ηji) ≤ v | Ik = j
)

dv

= w(v)
∑

j

Ps(Ik = j | Ik+1 = i)

[

dPs

(

Vk ≤ (ξi)−1v − ηji | Ik = j
)

dv

]

= w(v)
∑

j

Ps(Ik = j | Ik+1 = i) Es

[

dGj
k((ξi)−1v − ηji))

dv

]

≤ Cp

∑

j

Ps(Ik = j | Ik+1 = i) Es

[

w(v)(ξi)−1

w((ξi)−1v − Zi)

]

. (7.110)

Note that

Ps(Vk ≤ (ξi)−1v − ηji | Ik = j) = Ps(Vk ≤ (ξi)−1v − ηji, (ξi)−1v − ηji > 0 | Ik = j),

which proves that G′i
k+1(v) is differentiable. The expectation on the right-hand side of (7.110) is bounded

uniformly in v, and the expression under the expectation converges to (ξi)ε−1, when v → ∞. Thus, by
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Lebesque’s dominated convergence theorem and Assumption 7.7, there exists constant v1 < ∞ s.t. for
all i ∈ E and v ≥ v1,

Es

[

w(v)(ξi)−1

w((ξi)−1v − Zi)

]

≤ ρ2 + 1

2
. (7.111)

Further we require that v ≥ v1 (recall the construction of the weight function w(v) = 1 + (v ∨ v)ε from
Lemma 7.78). For v ≤ v, we have

E

[

w(v)(ξi)−1

w((ξi)−1v − Zi)

]

≤ E(ξi)−1 ≤ 1.

Thus, the sum in (7.110) does not exceed one and supv≥0 w(v)
dG′i

k+1(v)

dv ≤ Cp.

Now, using (7.109), we proceed similarly as in the previous lemma,

B22
ji = sup

v≥0
wi(v)Es

∫ vi

vi

dG′j
n(u)

≤ γi(ε)Cp sup
v≥0

w(v)E

∫ vi

vi

1

w(u)
du

≤ γi(ε)Cp sup
v≥0

E

(

w(v)

w(vi)
|vi − vi|

)

≤ γi(ε)Cp

∣

∣

∣

∣

cj −
c′i
βi

∣

∣

∣

∣

E

[

(

1 + αvε + (ξi)ε
)

∫ βiθ
′i

0

exp
(

U i
βiθ′i − U i

s

)

ds

]

,

proving the lemma with

h∗ci := Cp E

[

(

1 + αvε + exp
(

−εU i
βiθ′i

))

∫ βiθ
′i

0

exp
(

U i
βiθ′i − U i

s

)

ds

]

. (7.112)

Remark 7.26. Conditions E(ξi)ε−1 ≤ ρ2 and E(ξi)−1 ≤ 1 in Assumption 7.7 are only used in the proof
of Lemma 7.25. Hopefully, these technical conditions can be relaxed.

Combining Lemmas 7.21–7.25 and using that hci ≥ h∗ci (see (7.108) and (7.112)), we obtain

Bj ≤ hZ |FZj − FZ′j |w + hλj

∣

∣

∣

∣

λi −
λ′i
βi

∣

∣

∣

∣

+ max
i
hci

∣

∣

∣

∣

ci −
c′i
βi

∣

∣

∣

∣

, (7.113)

where the constants hZ , hλj and hci are given in (7.93), (7.105) and (7.108), respectively.

It remains to bound Dji. By Markov’s inequality and using that E(ξ′
i
)ε ≤ 1/q, we have

Dji ≤ Es

[

w(f(V ′
n, ξ

′i, η′
ji

)) | I ′n = j
]

≤ Es

[

w
(

ξ′
i
(V ′

n + Z ′i)
)

| I ′n = j
]

≤ 1 +
α(1 ∨ 2ε−1)

q

(

CV

q
+ CZ

)

=: Cq. (7.114)
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Collecting the bounds for Aj , Bj , Dji from Lemma 7.20, (7.113) and (7.114), respectively, and using
relation (7.28) we conclude from (7.27) that (C2) holds with

κ = max

{

1 + ρ1

2
, 1 − q2v

(

1 − w(v)

w(2v)

)}

, (7.115)

d(a, a′) = hZ max
j

|FZj − FZ′j |w + max
j
hλj

∣

∣

∣

∣

λi −
λ′i
βi

∣

∣

∣

∣

+ max
j
hcj

∣

∣

∣

∣

ci −
c′i
βi

∣

∣

∣

∣

+
Cqhq

q
∆q, (7.116)

where the constants hZ , hλj , hcj and Cq are given in (7.93), (7.105), (7.108) and (7.114), respectively, and
hq = 1 +m+mq.
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