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ences, University of Copenhagen, Denmark. The work has been carried out in the

period from May 1998 to April 2001 under the supervision of Professor Ragnar Nor-

berg, London School of Economics (University of Copenhagen until April 2000), and

Professor Christian Hipp, Universität Karlsruhe.

My interest in the topics dealt with in this thesis was aroused during my graduate

studies and the preparation of my master’s thesis. I realized a number of open

questions and wanted to search for some of the answers. This search started with

my master’s thesis and continues with the present thesis. Chapter 2 is closely

related to parts of my master’s thesis. However, the framework and the results are

generalized to such an extent that it can be submitted as an integrated part of this

thesis.

Each chapter is more or less self-contained and can be read independently from

the rest. This prepares a submission for publication of parts of the thesis. Some

parts have already been published. However, Chapters 3 and 4 build strongly on

the framework developed in Chapter 2. For the sake of independence, they will both

contain a brief introduction to this framework and a few motivating examples.
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Summary

This thesis deals with financial valuation and stochastic control methods and their

application to life and pension insurance. Financial valuation of payment streams

flowing from one party to another, possibly controlled by one of the parties or both,

is important in several areas of insurance mathematics. Insurance companies need

theoretically substantiated methods of pricing, accounting, decision making, and

optimal design in connection with insurance products. Insurance products like e.g.

endowment insurances with guarantees and bonus and surrender options distinguish

themselves from traditional so-called plain vanilla financial products like European

and American options by their complex nature. This calls for a thorough description

of the contingent claims given by an insurance contract including a statement of its

financial and legislative conditions. This thesis employs terminology and techniques

fetched from financial mathematics and stochastic control theory for such a descrip-

tion and derives results applicable for pricing, accounting, and management of life

and pension insurance contracts.

In the first part we give a survey of the theoretical framework within which this

thesis is prepared. We explain how both traditional insurance products and exotic

linked products can be viewed as contingent claims paid to and from the insurance

company in the form of premiums and benefits. Two main principles for valuation,

diversification and absence of arbitrage, are briefly described. We give examples of

application of stochastic control theory to finance and insurance and relate our work

to these applications.

In the second part we focus on the description and the valuation of payment

streams generated by life insurance contracts. We introduce a general payment

stream with payments released by a counting process and linked to a general Markov

process called the index. The dynamics of the index is sufficiently general to in-

clude both traditional insurance products and various exotic unit-linked insurance

products where the payments depend explicitly on the development of the financial

market. An implicit dependence is present in a certain class of insurance products,

pension funding and participating life insurance. However, we describe explicit forms

which mimic these products, and we study them under the name surplus-linked in-

surance. We also introduce intervention options like e.g. the surrender and free

policy options of a policy holder by allowing him to intervene in the index which

determines the payments. We develop deterministic differential equations for the

market value of future payments which can be used for construction of fair con-
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tracts. In presence of intervention options the corresponding constructive tool takes

the form of a variational inequality.

In the third part, we take a closer look at the options, in a wide sense, held by

the insurance company in the cases of pension funding and participating life insur-

ance. To these options belong the investment and redistribution of the surplus of

an insurance contract or of a portfolio of contracts. The dynamics of the surplus is

modelled by diffusion processes. It is relevant for the management and the optimal

design of such insurance contracts to search for optimal strategies, and stochastic

control theory applies. Out starting point is an optimality criterion based on a

quadratic cost function which is frequently used in pension funding and which leads

to optimal linear control there. This classical situation is modified in three respects:

We introduce a notion of risk-adjusted utility which remedies a general problem

of counter-intuitive investment strategies in connection with quadratic object func-

tions; we introduce an absolute cost function leading to singular redistribution of

surplus; and we work with a constraint on the control which leads to results which

are directly applicable to participating life insurance.



Resumé

Denne afhandling beskæftiger sig med metoder til finansiel værdiansættelse og sto-

kastisk kontrol samt deres anvendelse i livs- og pensionsforsikring. Finansiel vær-

diansættelse af betalingsstrømme mellem to parter, eventuelt kontrolleret af en af

parterne eller begge, er vigtig i adskillige omr̊ader inden for forsikringsmatematik.

Forsikringsselskaber har behov for teoretisk velfunderede metoder til prisfastsæt-

telse, regnskabsaflæggelse, beslutningstagning og optimalt design i forbindelse med

forsikringsprodukter. Forsikringsprodukter som f.eks. oplevelsesforsikringer med

garantier og bonus- og genkøbsoptioner adskiller sig fra traditionelle s̊akaldt plain

vanilla finansielle produkter som europæiske og amerikanske optioner ved deres kom-

plekse natur. Dette nødvendiggør en grundig beskrivelse af de betingede krav inde-

holdt i en forsikringskontrakt, herunder en redegørelse for dens finansielle og lovgiv-

ningsmæssige betingelser. Denne afhandling anvender terminologi og teknikker hen-

tet fra finansmatematik og stokastisk kontrolteori til en s̊adan beskrivelse og udleder

resultater som kan anvendes til prisfastsættelse, regnskabsaflæggelse og styring af

livs- og pensionsforsikringskontrakter.

I den første del gives en oversigt over den teoretiske ramme indenfor hvilken

denne afhandling er lavet. Det forklares hvordan b̊ade traditionelle forsikringskon-

trakter og eksotiske unit link produkter kan opfattes som betingede krav til og fra

forsikringsselskabet i form af præmier og ydelser. To hovedprincipper for værdian-

sættelse, diversifikation og fravær af arbitrage, beskrives kort. Der gives eksempler

p̊a anvendelse af stokastisk kontrolteori i finans og forsikring, og vores arbejde re-

lateres til disse anvendelser.

I den anden del fokuseres p̊a beskrivelsen og værdiansættelsen af betalingsstrøm-

me genereret af livsforsikringskontrakter. Der introduceres en generel betalingsstrøm

med betalinger udløst af en tælleproces og knyttet til en generel Markov proces

kaldet indekset. Indeksets dynamik er tilstrækkeligt generelt til at inkludere b̊ade

traditionelle forsikringsprodukter og forskellige eksotiske link forsikringsprodukter

hvor betalingerne afhænger eksplicit af udviklingen af det finansielle marked. En

implicit afhængighed er til stede i en særlig klasse af forsikringsprodukter, pension

funding og forsikringer med bonus. Eksplicitte former som efterligner disse pro-

dukter beskrives imidlertid, og disse studeres under navnet overskudslink forsikring.

Der introduceres ogs̊a interventionsoptioner som f.eks. forsikringstagerens genkøbs-

og fripoliceoption ved at tillade denne at intervenere i det indeks der bestemmer

betalingerne. Der udvikles deterministiske differentialligninger for markedsværdien
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af fremtidige betalinger som kan bruges til konstruktion af fair kontrakter. Ved

tilstedeværelse af interventionsoptioner tager det tilsvarende konstruktive redskab

form af en variationsulighed.

I den tredje del kigges nærmere p̊a optionerne, i bred forstand, ejet af forsikrings-

selskabet i forbindelse med pension funding og livsforsikring med bonus. Til disse

optioner hører investering og tilbageføring af overskud p̊a en forsikringskontrakt

eller p̊a en portefølje af kontrakter. Dynamikken af overskuddet modelleres ved

diffusionsprocesser. Det er relevant for styring og optimalt design af s̊adanne for-

sikringskontrakter at søge efter optimale strategier, og stokastisk kontrolteori er her

et naturligt redskab. Udgangspunktet er et optimalitetskriterium baseret p̊a en

kvadratisk tabsfunktion, som ofte bruges i pension funding og som fører til lineær

kontrol der. Denne klassiske situation er modificeret i tre henseender: Der intro-

duceres et begreb kaldet risikojusteret nytte der afhjælper et generelt problem med

ikke-intuitive investeringsstrategier som ofte opst̊ar i forbindelse med kvadratiske

objektfunktioner; der introduceres en absolut tabsfunktion som fører til singulær

tilbageføring af overskud; og der introduceres en begrænsning p̊a kontrollen som

fører til resultater der er direkte anvendelige p̊a livsforsikring med bonus.
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Chapter 1

A survey of valuation and control

in life and pension insurance

This thesis deals with valuation and control problems in life and pension insurance.

In this introductory chapter we give a survey of notation, terminology, and method-

ology used throughout the thesis, and we summarize some of the results obtained.

The chapter contains references to literature related to the thesis. In some cases

notation and terminology used in the thesis differs from notation and terminology

used in the references. We shall already here use the notation and terminology of

the thesis for the sake of consistence and such that the chapter can serve to prepare

the reader for the remaining chapters. This includes a partial change of notation

when going from valuation problems to control problems.

1.1 Introduction

Life and pension insurance contracts are contracts which stipulate an exchange of

payments between an insurance company and a policy holder. The payments are

contingent on events in the life history of an insured and possibly other contingencies.

Though it need not be the case, the policy holder and the insured are often the

same person. By connecting payments to the life history of the insured and possibly

other contingencies, a contract can be viewed as a bet on the life history and these

contingencies.

Section 1.2 deals with the terms of the contract. Those terms are supposed to

be comprehensible without any knowledge of probability theory, statistics, or fi-

nance. Of course, one cannot expect the policy holder to have proficiency in these

areas. Though formulated in mathematical terms, Section 1.2 therefore explains the

terms of the insurance contract without use of probability theoretical terminology.

Valuation of the contract or the bet, on the other hand, builds on assumptions on

probability laws governing the life history and the contingencies of the insurance

contract. Various principles of valuation and corresponding probability laws are

introduced in Section 1.3. That section also introduces intervention options of the

3



4 CHAPTER 1. A SURVEY OF VALUATION AND CONTROL

policy holder and discusses briefly their effect on the valuation problem. The in-

tervention options of the policy holder make up an example of a decision problem

imbedded in the insurance contract. In general, the payments of an insurance con-

tract may be rather involved and may contain various imbedded options held by

both the insurance company and the policy holder. Some of the imbedded deci-

sion problems held by the insurance company are brought to the surface in Section

1.4. That section also relates these decision problems to other decision problems

previously treated in the fields of finance and insurance.

1.2 Continuous-time life and pension insurance

Classical payment processes

In this section we specify payment processes in classical life and pension insurance

contracts. References to the mathematics of classical life and pension insurance

contracts are Gerber [25] and Norberg [54].

We let the payments stipulated in an insurance contract be formalized by a

payment process (Bt)t≥0, where Bt represents the accumulated payments from the

policy holder to the insurance company over the time period [0, t]. Thus, payments

that go from the insurance company to the policy holder appear in B as negative

payments. We shall specify the payments in a continuous-time framework. In order

to formalize the connection between payments and the life history of the insured,

we introduce an indicator process (Xt)t≥0. The process X indicates whether the

insured is dead or not in the sense that Xt = 0 if the insured is alive at time t and

Xt = 1 if the insured is dead at time t. The process X is illustrated in Figure 1.1.

0

alive →
1

dead

Figure 1.1: A survival model

We also introduce a counting process (Nt)t≥0 counting the number of deaths of

the insured (equals 0 or 1) over [0, t]. Note that N = X in this case. Fixing a time

horizon T for the insurance contract, most insurance payment processes are given

by a payment process B in the form

Bt =

∫ t

0−
dBs, 0 ≤ t ≤ T, (1.1)

where

dBt = B0d1(t≥0) + bc (t, Xt) dt− bd (t, Xt−) dNt −∆BT (XT ) d1(t≥T ). (1.2)

Here B0 is a lump sum payment from the policy holder to the insurance company at

time 0, bc are continuous payments from the policy holder to the insurance company,
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bd is a lump sum payment at time of death from the insurance company to the policy

holder, and ∆B (XT ) is a lump sum payment at time T from the insurance company

to the policy holder. The minus signs in front of bd and ∆B conform to the typical

situation where B0 and bc are premiums and bd and ∆B are benefits, all positive.

We can now specify the elements of some standard forms of benefit payment

processes (B0 = 0),

bc (t, Xt) bd (t, Xt−) ∆BT (XT )

pure endowment 0 0 1(XT =0)

term insurance 0 1(t<T,Xt−=0) 0

endowment insurance 0 1(t<T,Xt−=0) 1(XT =0)

temporary life annuity -1(t<T,Xt=0) 0 0

and specify the elements of some standard forms of premium payment processes

(bd (t, Xt−) = ∆BT (XT ) = 0),

B0 bc (t, Xt)

single premium 1 0

level premium 0 1(t<T,Xt=0)

It is clear that the event Xt− = 0 in the indicator function of bd (t, Xt−) is redundant

since we know that Xt− = 0 if dNt = 1. Nevertheless, we choose to expose a de-

pendence on Xt− to prepare for the generalized payment processes to be introduced

below.

Although the payment process in (1.1) formalizes a number of standard forms of

insurances and premiums, there are a number of situations which cannot be covered

by this process. One example is the situation where the premium is paid as level

premium but modified such that no premium is payable during periods of disability.

This modification is called premium waiver. Premium waiver and different types of

disability insurances can be covered by extending X with a third state, ”disabled”.

In general, we let (Xt)t≥0 be a process moving around in a finite number of states

J . The case with a disability state is illustrated in Figure 1.2.

0

active
→

(←)

1

disabled

ց ւ
2

dead

Figure 1.2: A survival model with disability and possibly recovery

Corresponding to the general J state process X, we introduce a generalized

counting process N , a J-dimensional column vector where the jth entry, denoted
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by N j , counts the number of jumps into state j. Correspondingly, we also gener-

alize bd (t, Xt−) to be a J-dimensional row vector where the jth entry, denoted by

bdj (t, Xt−), is the payment due upon a jump from state Xt− to state j at time t.

With the generalized jump process and jump payments we can specify a number

of generalized insurance and premium forms. In the disability model illustrated by

Figure 1.2, we can e.g. specify the elements of some standard forms of disability

benefit payment processes (B0 = ∆BT (XT ) = 0),

bc (t, Xt) bd (t, Xt−)

disability annuity -1(t<T,Xt=1) (0, 0, 0)

disability insurance 0
(
0, 1(t<T,Xt−=0), 0

)

and the elements of a premium payment process (B0 = bd (t, Xt−) = ∆BT (XT ) = 0),

bc (t, Xt)

level premium with premium waiver 1(t<T,Xt=0)

The disability model is a three state model, i.e. J = 3. Models with more states

are relevant for other types of insurances e.g. contracts on two lives where either

member of a married pair is covered against the death of the other or multiple cause

of death where payments depend on the cause of death.

Generalized payment processes

In our construction of the payment process (1.1), we have carefully distinguished

between the process X, determining at any point in time the size of possible pay-

ments, and the process N , releasing these payments. So far the purpose of this

distinction is not very clear since there is a one-to-one correspondence between X

and N , in the sense that X determines N uniquely and vice versa. However, with

the introduction of e.g. duration dependent payments or unit-linked life insurance

this simple situation changes.

Duration dependent payments are payments that depend, not only on the present

state of the process X, but also on the time elapsed since this state was entered.

Such a construction is relevant in e.g. the disability model if the insurance company

works with a so-called qualification period. Then the disability annuity does not

start until the insured has qualified through uninterrupted (by activity) disability

during a certain amount of time, e.g. three months. Another example is a so-called

unit-linked insurance contract which is a type of contract where the payments are

linked to some stock index or the value of some more or less specified portfolio.

Both in the case of duration dependent payments and in the case of unit-linked

insurance, information beyond the present state of X determines the possible pay-

ment. We formalize this by allowing of a general index S to determine the possible

payments. Thus, replacing X by S in the payment process (1.1), the generalized

payment process becomes

dBt = B0d1(t≥0) + bc (t, St) dt− bd (t, St−) dNt −∆BT (ST ) d1(t≥T ). (1.3)
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A specification of payments is obtained by a recording of the process S and a spec-

ification of B0 and the functions bc, bd, and ∆B. A special case is, of course, to let

S = X, hereby returning to the classical payment process given by (1.2).

In the case of duration dependent payments we put S = (X, Y ), where Yt equals

the time elapsed since the present state Xt was entered. Considering the disability

model illustrated by figure 1.2, we let Y indicate the duration of disability and see

that the dynamics of Y is given by

dYt = 1(Xt=1)dt− Yt−1(Xt−=1)dN
0
t − Yt−1(Xt−=1)dN

2
t , Y0 = 0.

An example of elements of an insurance coverage with qualification period y is given

by (B0 = bd (t, St−) = ∆BT (ST ) = 0)

bc (t, St)

disability annuity with qualification period -1(t<T,Xt=1,Yt>y)

A simple unit-linked insurance contract can be constructed by putting S =

(X, Y ), where Y is some stock index or the value of some portfolio. Letting G

denote a guaranteed minimum payment and letting X be the simple two-state life

death model illustrated in Figure 1.1, some examples of simple guaranteed unit-

linked contracts are given by (B0 = bc (t, St) = 0)

bd (t, St−) ∆BT (ST )

pure endowment 0 1(XT =0) max (Y (T ) , G)

term insurance 1(t<T,Xt−=0) max (Y (t) , G) 0

Once the insurance company and the policy holder have agreed on a payment

process, including the recording of the index S, an insurance contract is specified.

Thus, the insurance contract does not specify any assumptions as to the probability

laws for the processes driving the payments, the interest rate, and other features

of the market. Such assumptions are invoked by the insurer in the valuation of

the payments and are needed to answer questions like: How many units of level

premium with premium waiver represent a fair price to pay for a simple unit-linked

endowment insurance with a guarantee?

1.3 Valuation

Valuation by diversification

This section deals with valuation of the payment streams described in Section 1.2,

and we need for that purpose the probabilistic apparatus. We assume that the

processes S and N are defined on a probability space
(
Ω,F ,F = {Ft}t≥0 , P

)
.

We assume that payments are currently deposited on (or withdrawn from) a

bank account that bears interest. If we denote by Z0
t the (present) value at time t

of a unit deposited at time 0, we find that the (present) value at time t of a unit
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deposited at time s equals the amount
Z0

t

Z0
s
. We shall assume there exists a force of

interest or (short) rate of interest r such that

dZ0
t = rtZ

0
t dt, Z

0
0 = 1. (1.4)

Conforming to actuarial terminology, a present value at time t need not be Ft-

measurable. We can now speak of the present value at time t of a payment process

by adding up the value of all elements in the payment process, and we get the present

value at time t of the payment process B,

∫ T

0−

Z0
t

Z0
s

dBs.

The value at time 0 of a payment process B is the net gain at time 0 which the

insurance company faces by issuing the insurance contract. If the time of death and

other contingencies determining B are known at time 0, this gain can be calculated

at that point in time. To avoid gains one should balance the elements in the payment

process such that the net gain equals zero,

∫ T

0−

1

Z0
s

dBs = 0. (1.5)

However, the time of death and other contingencies determining B are in general

not known at time 0. We consider these contingencies as stochastic variables defined

on our probability space such that the left hand side of (1.5) becomes a stochastic

variable. The question is how one should balance the elements of the insurance

contract in this situation. A particular situation arises if

• the insurance company issues (or can issue) contracts on a ”large” number n

of insured with identically distributed payment processes (Bi)i=1,...,n,

• Bi is independent of Bj for i 6= j,

• the interest rate and hereby Z0 is deterministic.

Then the law of large numbers applies and provides that the gain of the insurance

portfolio per insured converges towards the expectation of the gain of an insured as

the number of contracts increases, i.e.

1

n

n∑

i=1

∫ T

0−

1

Z0
s

dBi
s → E

[∫ T

0−

1

Z0
s

dBs

]
as n→∞.

To avoid systematic gains, one should balance the elements in the payment process

such that the expected net gain equals zero

E

[∫ T

0−

1

Z0
s

dBs

]
= 0. (1.6)
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This balance equation formalizes the principle of equivalence which is fundamental

in classical life insurance mathematics.

If one of the three assumptions above fails, the classical principle of equivalence

fails as balancing tool for the payment process: If the insurance company cannot

issue a large number of contracts, it makes no sense to draw conclusions from the law

of large numbers; if Bi and Bj are dependent for i 6= j, the law of large numbers does

not apply; if the interest rate is not deterministic, we cannot conclude independence

between
∫ T

0−
1

Zs
dBi

s and
∫ T

0−
1

Zs
dBj

s from the independence between Bi and Bj, i 6= j.

It should be mentioned, however, that the first two assumptions can be weakened

such that they are only required to hold in a certain asymptotic sense.

So far, we have not said much about the distribution of S and N . The principle

of equivalence is only based on the assumption that payment processes of different

insured are identically distributed and independent. We are now going to assume

that there exist deterministic piecewise continuous functions µj (t, s) such that N j

admits the FS
t -intensity process µj (t, St). This means that the FS

t -intensity of N

is a function of t and St only. In the classical case where the index S is made up by

the process X, a consequence of this assumption is that X is a Markov process, i.e.

Markov with respect to the filtration generated by the process itself. In the set-up

with a general index S this need not be the case. However, a consequence is that X

is FS
t -Markov, i.e. Markov with respect to the filtration generated by the index S.

Consider the classical situation where S = X, assume that the life histories of

the insured are independent, and assume that the interest rate is deterministic. We

can then use the classical principle of equivalence (1.6) to determine fair premiums

for the standard forms of insurance introduced in Section 1.2. Consider e.g. the

calculation of a fair level premium for an endowment insurance of 1 in the survival

model illustrated by Figure 1.1. Putting µt = µ (t, 0), the principle of equivalence

states

E

[∫ T

0−

1

Z0
t

dBt

]
= E

[∫ T

0

1

Z0
t

(
π1(Xt=0)dt− 1(Xt−=0)dNt − 1(XT =0)d1(t≥T )

)]

= π

∫ T

0

e−
R t
0

rs+µsdsdt−
∫ T

0

e−
R t
0

rs+µsdsµtdt− e−
R T
0

rs+µsds

= 0⇒

π =

∫ T

0
e−

R t
0 rs+µsdsµtdt+ e−

R T
0 rs+µsds

∫ T

0
e−

R t
0 rs+µsdsdt

.

Actuaries have developed a special notation for present values and expected present

values of basic payment streams. An actuary would write the premium formula

above on coded form (given that the insured has age x at time 0),

π =
A

1

xT | + TEx

axT |
=
AxT |
axT |

.

The calculations for disability insurances, premium waiver and deferred benefit poli-

cies can be carried out in the same way, but they become, obviously, more involved.
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Valuation by absence of arbitrage

A crucial assumption underlying the principle of equivalence was the independence

between payment processes. For certain payment processes this independence comes

from independence between life histories and makes sense. We shall now consider

a payment process where this assumption cannot be argued to hold, and we shall

reflect on a reasonable valuation principle in this situation. It is clear that if we

cannot rely on the law of large of numbers, we have to rely on something else.

Arbitrage pricing theory relies on investment possibilities in a market and in-

troduces a principle of absence of arbitrage i.e. avoidance of risk-free capital gains.

The theory has been one of the most explosive fields of applied mathematics over

the last decades. The breakthrough of this theory was the option pricing problem

formulated and solved in Black and Scholes [6] and in Merton [44]. Later, rigorous

mathematical content was given to notions like investment strategy, arbitrage, and

completeness, and their connection to martingale theory was disclosed in Harrison

and Kreps [31] and in Harrison and Pliska [32]. We shall only make a few comments

on the basic theory and ask the reader to confer the cornucopia of textbooks for

further insight.

A fundamental theorem in arbitrage pricing theory states that a sufficient condi-

tion which ensures that no risk-free capital gains are available is that the expected

value of gains equals zero,

EQ

[∫ T

0−

1

Z0
s

dBs

]
= 0, (1.7)

where the expectation is taken with respect to a so-called martingale measure. A

martingale measure is a probability measureQ, equivalent to the measure P , such

that discounted prices of traded assets are martingales under Q.

One of the simplest illustrations of (1.7) one can think of, is to find the single

premium π of a payment at time T , a so-called T -claim, of a stock index YT where

Y is included in S, i.e.
(
bc (t, St) = bd (t, St) = 0

)

B0 ∆BT (ST )

simple claim π YT

If the stock index is not available as an investment possibility, one has not necessarily

enough information on the probability measure Q to say much about the price π.

If the stock index is available as an investment possibility, Y
Z

is a martingale under

the valuation measure Q such that

EQ

[∫ T

0−

1

Z0
s

dBs

]
= π − EQ

[
YT

Z0
T

]
= 0⇔

π = EQ

[
YT

Z0
T

]
=
Y0

Z0
0

= Y0. (1.8)

Why is (1.8) a reasonable result in the case where the stock index is available as

an investment possibility? The issuer can, instead of investing money in the bank
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account, invest money in the stock index. If he does so, the gain at time T amounts

to
YT

Y0
π − YT ,

and, obviously, in order to avoid risk-free capital gains, we need to put π = Y0.

Indeed, YT is a particularly simple T -claim, but what about a (European) op-

tion (YT −K)+? Arbitrage pricing theory deals with general claims pricing and

investment strategies which in general need to be dynamical as opposed to the

static strategy above. One of the key results is that (1.7) is sufficient for absence of

arbitrage.

Although the pricing formulas (1.6) and (1.7) only differ by a topscript indicating

the probability measure, one should carefully note that they rely on fundamentally

different properties of the risk in the payment process. Whereas (1.6) relies on

diversification, (1.7) relies on absence of arbitrage in an underlying market.

The left hand side of the formulas (1.6) and (1.7) value the future payments of

the contract at time 0. For various reasons one may be interested in valuing the

future payments at any point of time before termination. Obviously, if one wishes

to sell these future payments one must set a price. But even if one does not wish

to sell the future payments, various institutions may be interested in their value.

Owners of the insurance company and other investors are interested in the value of

future payments for the purpose of assessing the value of the company; supervisory

authorities are interested in ensuring that the payments are payable by the company

and set up solvency requirements which are to be met; tax authorities are interested

in the current surplus as a basis for taxation. All these parties are interested in

the value of outstanding payments or liabilities. In a life insurance company these

liabilities are called the reserve.

Different institutions may be interested in different notions of reserve. Whereas

the payment process is (more or less) uniquely specified by (1.3), the valuation

formulas (1.6) and (1.7) build on a (more or less) subjective choice of interest rate and

valuation probability measure. In particular, if one does not search for information

on r and Q on the financial market, values are certainly subjective and possibly not

consistent with absence of arbitrage. We call a set of interest rate and Q-dynamics a

valuation basis because such a set produces one version of the reserve. In Chapter 3,

we introduce various special valuation bases and study the dynamics of the surplus

under these.

The actual calculation of reserves, not giving rise to arbitrage possibilities, re-

lies on the probability law of processes driving the payment process and on the

underlying investment possibilities. So far we have only specified one probabilistic

structure by introduction of the FS
t -intensities for the counting process N . We need

some probabilistic structure on the index S in order to obtain applicable pricing

formulas. The relation (1.7) is not worth much if we have no idea of the proba-

bilistic structure of S. A crucial property that one is apt to rely on is the Markov

property. Assuming that S is a Markov process and requiring that the reserve is
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FS
t -Markov leads to appealing computational tools in the search for arbitrage free

reserves and payment processes. This is due to the close relation between expected

values of (functionals of) Markov processes and deterministic differential equations.

This relation is often used in applied probability, and it is used (and partly proved)

several times in this thesis.

Guaranteed payments and dividends.

In (1.7) the probability measure Q is to some extent determined by the market.

However, there may be risk present in S (and N) which is not ”priced by the

market” and which cannot be diversified by independence of payment processes.

The question is what to do with risk which is neither diversifiable nor hedgeable. A

nice example is the classical case where the only investment possibility is the bank

account. We now, realistically, allow the intensities of N to depend, not only on

the life history of the individual insured, but also on demographic, economic, and

socio-medical conditions. These conditions are formalized by the index S. Now,

the individual payment processes can no longer be said to be independent. Also

the assumption of deterministic interest, which is implicit in (1.6), seems unrealistic

under time horizons extending to 50 years. In general, the insurance company may

be unwilling to face undiversifiable and unhedgeable risk and needs to do something

else.

One resolution, developed by life and pension insurance companies, is to add

to the (first order) payment process an additional payment process of dividends

conditioned on a particular performance of a policy or a portfolio of policies. This

dividend can be constrained to be to the benefit of the policy holder or not, de-

pending on the type of insurance product. If the dividends are constrained to be

to the benefit of the policy holder, the first order payments must represent an over-

pricing, roughly speaking. In this case the dividends can be seen as a compensation

for this overpricing. One way of producing first order payments which represent an

overpricing is to use a certain artificial valuation basis consisting of an artificial rate

of interest rate r̂ driving an artificial risk-free asset Ẑ0, and an artificial valuation

measure Q̂, called a first order basis, to lay down payments at the time of issue.

The payment process produced is called the first order payment process B̂, and it

is determined subject to the artificial valuation formula,

E
bQ
[∫ T

0−

1

Ẑs

dB̂s

]
= 0.

The payment process of dividends is denoted by B̃. The first order payments and

the dividends make up the total payments B stemming from the contract,

B = B̂ + B̃.

Now the problem of setting fair payments is translated to the problem of allotting

fair dividends. At the end of the day, the insurance company needs to make up
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its mind about the assessment of (the value of) non-diversifiable and non-hedgeable

risk and balance dividends by the corresponding equivalence relation

EQ

[∫ T

0−

1

Z0
s

dBs

]
= 0. (1.9)

However, by the introduction of dividend payments, it is to some extent possible

for the insurance company to transfer a part of the risk from the insurance com-

pany to the policy holders. Hereby the insurance company is less exposed to risk

than in a situation without dividends, of course depending on how these are deter-

mined. We shall not go deeper into the interpretation of dividend distribution as

a risk management instrument now but content ourselves with a simple illustrative

example.

Assume e.g. that dividends are only paid out at time T and that this dividend

payment is a function of the performance of the first order payments. Then, by

introducing the process
∫ t

0−
Zt

Zs
dB̂s in the index S, we can define for a some function

f ,
(
B̃0 = b̃c (t, St) = b̃d (t, St−) = 0

)
,

∆B̃T (ST )

terminal dividends −f
(∫ T

0−
Z0

T

Z0
s
dB̂s

)

This dividend plan leads to a total gain of
∫ T

0−

1

Z0
s

dBs =

∫ T

0−

1

Z0
s

dB̂s −
1

Z0
T

f

(∫ T

0−

Z0
T

Z0
s

dB̂s

)
.

If e.g. the insurance company is allowed to choose as function f the identity function

the gain is zero and all risk is transferred to the policy holder. This is, of course,

an extreme (and extremely uninteresting) case, but it illustrates what is meant by

transferring risk to the policy holder. Another function f , which moreover ensures

that dividends are to the benefit of the policy holder, is

f

(∫ T

0−

Z0
T

Z0
s

dB̂s

)
= q

(∫ T

0−

Z0
T

Z0
s

dB̂s

)+

,

where q is a constant. In the case of no constraints on the dividends, we shall speak

of pension funding, and in the case where dividends are constrained to be to the

policy holder’s benefit, we shall speak of participating life insurance.

Chapter 3 deals with valuation bases, surplus, and dividends. The relation be-

tween expected values and deterministic differential equations gives a constructive

tool for calculation of fair strategies for investment and repayment of surplus through

dividends. Numerical results shall illustrate this tool.

Valuation under intervention options

It is implicitly assumed in all valuation formulas above that the insurance company

and the policy holder have no influence on the performance of the insurance contract,
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hereunder the dynamics of the index. In practice, there are a number of intervention

options that may (or may not) affect the valuation of payments.

One example of an intervention option is the exercise option of an American

option. The exercise option allows the owner of an American option to exercise

the contract at any point in time up to the expiration date T . For a life insurance

contract the most important intervention option is probably the surrender option

of the policy holder. Holding this option, he can at any point in time t up to T

close the contract and convert all future payments into an immediate payment of

the surrender value. Also the issuer of an insurance contract may hold intervention

options. E.g. the bankruptcy option of the owners of the insurance company can be

considered as an intervention option held by the insurance company.

It turns out that a very convenient way of modelling these intervention options

is to allow the policy holder and/or the insurance company to intervene in the index

S in some specified way. This enables us to capture exactly the types of intervention

options in which we are interested. Disregarding all intervention options held by the

insurance company but taking into consideration intervention options of the policy

holder, arbitrage arguments lead to a valuation formula on the form

sup
I∈I

EQI

[∫ T

0−

1

Z0I
s

dBI
s

]
, (1.10)

where topscript I indicates that the quantity is dependent on a certain admissible

intervention strategy taken by the policy holder and the supremum is taken over all

admissible intervention strategies.

The results building on optimal intervention represent one approach to the prob-

lem of valuation, taking into account intervention options. This approach expects

the policy holder to behave financially optimal. Whereas this assumption may be

reasonable for short-term pure financial contracts, a simple example demonstrates

that one should follow this approach with care in connection with long-term insur-

ance contracts.

Consider an insured holding a term insurance and assume the possibility of start-

ing to smoke with an increasing effect on mortality. We model this situation by

introducing an index indicating whether the insured is a smoker or not. Before

starting to smoke, the mortality is µ (t, 0) and after starting to smoke it increases

to µ (t, 1). We disregard the possibility of stopping smoking.

The question is now on which mortality rate should the insurance company base

the premium calculation and the reservation if the new customer tells that he is a

non-smoker. The insured can advance his death occurrence and hereby maximize his

expected benefit payments by starting smoking, and, in fact, the valuation formula

(1.10) tells the insurance company to use the high mortality rate assuming that he

does so immediately. However, the insured may take other things into consideration

than the benefits from the insurance contract and conclude that, after all, it is

optimal not to advance death whereafter he chooses not to start smoking.

This is a toy example which, nevertheless, shows that the insurance company
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should use a valuation formula based on optimization with care. The policy holder

may have other objectives than increasing the value of his insurance contract, and

when it comes to payments linked to his life history, he probably will. Nevertheless,

in Chapter 4 we give mathematical content to intervention options and work with

the valuation formula (1.10). In the case of no intervention options, the relation

between expected values and deterministic differential equations is demonstrated in

Chapter 2. In presence of intervention option, (1.10) relates to a so-called quasi-

variational inequality. This is a constructive tool for determining fair contracts

under intervention options and is derived in Chapter 4.

1.4 Control

In Section 1.3 we discussed valuation of payment streams. At the end of that section

we unveiled one control problem imbedded in the payment process, namely the

control by intervention of the policy holder. Furthermore we constructed guaranteed

payments and dividends, and we argued that this construction of payments allows

the insurance company to transfer risk to the policy holder. In fact, the design of

the dividend payment process B̃ can be considered as a genuine control problem on

the part of the insurance company. E.g. one could simply formulate an objective of

risk reduction in some sense and then look for an optimal dividend process.

We shall now consider a framework frequently used in finance and insurance

decision problems. Within this framework we recall some classical decision problems

in finance and non-life insurance, and we consider how the decision problem of the life

insurance company also has been approached within this framework in the literature

on life and pension insurance. The approach to the life insurance decision problem

studied in Chapters 5 and 6 is a modification of this classical framework. At the

end of this section we explicate this. We will now partially change notation in order

to conform to Chapters 5 and 6.

Consider the wealth (reserve, value, or surplus) of an agent (consumer or insur-

ance company) with the following dynamics

dX (t) = α (θ (t) , X (t)) dt+ σ (θ (t) , X (t)) dW (t)− dU (t) , (1.11)

X (0−) = x0,

where x is the initial wealth, and W is a standard Brownian motion defined on a

probability space
(
Ω,F ,F = {Ft}t≥0 , P

)
. The parameter θ is chosen by the agent

to balance drift and diffusion in the wealth process through the functions α and σ.

In this section, θ will represent the proportion of wealth invested in a risky asset

and/or a parameter indicating the extent of cover by some type of reinsurance. U (t)

is the amount withdrawn from the wealth either for consumption or as dividend

distribution until time t.

The agent needs an objective for his decisions, and he wishes to choose (θ, U) so
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as to maximize

E

[∫ τ

0

υ (t, X (t) , dU (t) , dt) + Υ (τ ,X (τ))

]
, (1.12)

for some utility functions υ and Υ and some stopping time τ . Note that the compact

notation for current utility only makes sense for particular functions υ. Examples

will be given below. We use the terms utility and disutility functions for general

(not necessarily increasing, concave/concave and continuously differentiable) reward

and cost functions, respectively.

Control in finance

Suppose there is a market in which two assets are traded continuously. One asset is

the bank account introduced in (1.4), Z0. The other asset is a risky asset denoted

by Z1 with a price process modelled as a geometric Brownian motion with drift, i.e.

dZ0 (t) = rZ0 (t) dt,

Z0 (0) = 1,

dZ1 (t) = µZ1 (t) dt+ σZ1 (t) dWt, (1.13)

Z1 (0) = z1.

Now the wealth process of an agent following the proportional investment strategy

θ and the consumption strategy U can be shown to have the dynamics given by

(1.11), with

α (θ (t) , X (t)) = (r + θ (t) (µ− r))X (t) ,

σ (θ (t) , X (t)) = θ (t) σX (t) .

One class of problems are so-called investment-consumption problems where one

requires consumption to be positive and absolutely continuous with respect to the

Lebesgue measure such that u (t) = dU(t)
dt
≥ 0 exists and where utilities are typically

given by

υ (t, X (t) , dU (t) , dt) = e−γtυ (u (t)) dt,

Υ (τ ,X (τ )) = e−γτΥ (X (τ)) .

Merton initiated the study of this problem in Merton [42] and [43] and found explicit

solutions for some particular utility functions. Primary examples of utility functions

in this case are the logarithmic and the power functions.

Another class of problems are hedging problems connected with a contingent

claim Y (τ). One approach is to let the consumption be fixed at zero and let the

utility of X (τ ) depend on Y (τ ) such that for e.g. a quadratic loss function,

υ (t, X (t) , dU (t) , dt) = 0,

Υ (τ ,X (τ )) = − (X (τ)− Y (τ))2 .
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In this way deviations from the τ -claim are punished and an optimal hedging strategy

can be searched for. In this hedging problem, one may also consider the starting

point of our wealth, x0, as a decision variable and speak of the optimal x0 as some

kind of price of Y . This approach to optimal investment strategies (and prices)

is called mean-variance hedging. Of course, the idea of mean-variance hedging is

not restricted to the simple market given by 1.13 but can studied for general (non-

Markovian) markets as well, see e.g. Schweizer [61].

Control in non-life insurance

Consider a non-life insurance company receiving premiums continuously and paying

out claims. The company balances its gains by an extent θ (t) of cover of some type

of reinsurance where the company pays premiums continuously and receives some

compensation for claims. Furthermore, the company decides to pay out dividends

to share-holders. We emphasize that dividend here is the share of profits paid to

share-holders as opposed to the dividend introduced in Section (1.3) which goes

to the policy holders. If we denote the rate of premiums (net of the reinsurance

premium) by π (θ (t)), the number of claims received up to time t by N (t), the

time for occurrence of claim number i by τ i, and the size of the ith claim (net of

the reinsurance compensation) by Yi (θ (t)), then X, the company’s reserve (net of

reinsurance payments) at time t is given by

X (t) = x0 +

∫ t

0

π (θ (s)) ds−
N(t)∑

i=1

Yi (θ (τ i))− U (t) .

We remark that the notion of reserve in non-life insurance has a different meaning

than in life insurance. If N (t) is a Poisson process with intensity λ and the claims

are i.i.d., then X can be approximated by the process given by (1.11) with

α (θ (t) , X (t)) = π (θ (t))− λE [Yi (θ (t))] ,

σ (θ (t) , X (t)) =
√
λE [Y 2

i (θ (t))].

Usually one lets τ in (1.12) be the time of ruin, i.e. the first time the reserve hits

zero, and wishes to maximize discounted dividends,

υ (t, X (t) , dU (t) , dt) = e−γtdU (t) .

One argument for using the identity function as utility function is that the value

of the firm may be represented by expected discounted dividends. This argument,

however, seems criticizable since it is by no means clear which discount factor and

which measure to use. For optimal proportional reinsurance see Højgaard and Taksar

[34]. In the non-life insurance model above, we have disregarded capital gains, but

optimal control of reinsurance can, of course, be combined with optimal investment.
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Control in life and pension insurance

The literature on control in life and pension insurance has until now concentrated

primarily on control of pension funds. For references to literature on control of

pension funds, see Cairns [12], which is partly a survey article gathering results of

several authors. The control parameters are usually a proportion in risky assets

and/or the level of premiums/benefits. The institutional conditions for pension

funds may be rather involved, and it is by no means clear how the objectives of

the fund manager, the employer (pays the premium), and the employed (receives

the benefits) should be reflected in the objective function of the control problem.

Here, we shall briefly demonstrate how pension funds are modelled and controlled

in continuous-time as exposed in Cairns [12].

Assume that the pension fund receives premiums and pays benefits. The in-

finitesimal net outgo of the fund is normally distributed with expected value u (t) dt

and variance β2 (t) dt, independently of the financial market. The mean rate of the

net outgo is controllable by the fund manager who can adjust this according to the

performance of the fund. The employer and the employed, respectively, experience

this control by changes in the premium level in the case of defined benefits and in the

benefit level in the case of defined contributions, respectively. We assume that the

money in the fund is invested in the market described by (1.13). Then the dynamics

of the fund is given by (1.11) with

α (θ (t) , X (t)) = (r + θ (t) (α− r))X (t) ,

σ (θ (t) , X (t)) =

√
θ2 (t)σ2X2 (t) + β2 (t),

dU (t) = u (t) dt.

So far the problem only differs from the investment-consumption problem of finance

by the term β. This indicates a connection between investment-consumption prob-

lems and the control problems of the life insurance company. This connection is

briefly mentioned in Cairns [12] and will be clarified in Chapters 5 and 6.

Now we introduce an objective which rewards a certain kind of stability of the

pension fund and in the payments. This is done by working with a quadratic disu-

tility the expected total of which is now to be minimized,

υ (t, X (t) , dU (t) , dt)

= e−γt
(
a (X (t)− x̂)2 + b (u (t)− û)2 + c (X (t)− x̂) (u (t)− û)

)
dt. (1.14)

This disutility function punishes distance between X (t) and x̂ and distance between

u (t) and û. The punishments are weighted by (a, b, c).

This disutility function is clearly somewhat connected to the quadratic ap-

proaches to hedging of contingent claims in finance like mean-variance hedging, but

the one cannot be considered as a special case of the other. However, the quadratic

approaches share a counter-intuitive conclusion on investment which is easily ex-

plained: If one wishes to have X (t) close to x̂ (or eventually X (τ ) close to Y (τ)),
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and X (t) exceeds its target, then one is urged to throw away money on the finan-

cial market by investing non-efficiently. In the case of hedging one can argue that

the quadratic approach is only relevant if X (t) is below its target. This argument

calls for further studies in connection with pension funding where X (t) very well in

practice may be above its target.

Risk-adjusted utility

In this section we seek to remedy the drawback of the quadratic approaches to

hedging and pension fund controlling concerning counter-intuitive investments by

introducing a notion of risk-adjusted utility. This is an alternative to the traditional

objective function given by (1.12). It is based on a certain kind of state-dependence

of utilities which, in some special cases, separates the problem of optimal investment

from the problem of optimal consumption. The idea is to allow for dependence of a

state price deflator Λ, such that we wish to optimize

E

[∫ τ

0−
υ (t,Λ (t) , X (t) , dU (t) , dt) + Υ (Λ (τ ) , X (τ ))

]
.

The state price deflator is just the one used to calculate values of payment

processes by their expected value, namely (see (1.7))

EQ

[∫ T

0−

1

Z0
s

dBs

]
= E

[∫ T

0−
ΛsdBs

]
.

The dependence on Λ can be introduced directly in the control problems explained

above in both finance and life insurance. In finance, we introduce dependence of Λ

such that the investment-consumption problem reads

υ (t,Λ (t) , X (t) , dU (t) , dt) = e−γtυ (Λ (t) u (t)) dt,

Υ (Λ (τ) , X (τ)) = e−γtΥ (Λ (τ)X (τ )) .

In pension funding, the dependence on Λ is introduced by (c = 0),

υ (t,Λ (t) , X (t) , dU (t) , dt)

= e−γt
(
a (Λ (t)X (t)− x̂)2 + b (Λ (t) u (t)− û)2) dt. (1.15)

The idea is the same as in the classical formulation, but instead of measuring

utility of consumption or wealth by their nominal values we measure it by their

deflated values. In Chapter 5 we pursue this idea and study its effect on variations

of Merton’s problem and its effect on pricing by utility indifference. Although we

show that the concept produces nice and intuitively appealing prices and strategies

for consumption and investment, we do not claim that it will work well in every

area where utility theory is the basis for decision making or pricing. We shall not

conceal that it is a pragmatic idea which should be used with care.
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Modifications of control in life and pension insurance

The quadratic disutility functions given by (1.14) and (1.15) bring to mind the

classical control problem called the linear regulator problem, exposed in just about

every textbook on stochastic control, see e.g. Fleming and Rishel [23]. This problem

differs from most other stochastic control problems by being easily solved explicitly

and by having a simple solution. This carries over to the life insurance company’s

decision problem in the case of pension funding. Both in Cairns [12] and in our

Chapter 6 based on risk-adjusted utility, u is optimally controlled by a linear function

of X.

The simple solution to the linear regulator problem relies heavily on absence

of constraints on the control variable u. We shall also be interested in the case

where dU (t) is constrained to be chosen in R+ ∪ {0}. We are interested in this

situation because it relates to the situation in life insurance where dividends are

constrained to be to the benefit of the policy holder. Thus, we are going to speak of

pension funding and participating life insurance as the unconstrained case and the

constrained case, respectively.

The constrained case represents one modification of the pension fund control

problem with quadratic disutility. Another modification is to punish the distance of

consumption to its target by absolute value instead of quadratic value,

υ (t,Λ (t) , X (t) , dU (t) , dt) = a (Λ (t)X (t)− x̂)2 dt+ b |Λ (t) dU (t)− ûdt| .

While quadratic disutility leads to optimal consumption of classical (absolutely con-

tinuous with respect to the Lebesgue measure) type, absolute disutility leads to

optimal consumption of singular type. The idea of rewarding stability of payments

and wealth is the same as in the quadratic case, but by measuring distance in an-

other way one gets an optimal control of completely different nature. It becomes

optimal to keep the surplus or fund within a certain area by singular repayments.

If U is not constrained to be positive, the area is bounded from above and below; if

U is constrained to be positive, the area is bounded from above only. This optimal

behavior is well-known in the literature on life insurance mathematics where the

boundary is called the bonus barrier, see e.g. Daykin et al. [16, p. 419].

The introduction of risk-adjusted utility is one modification of the traditional

pension funding control problem leading to intuitively feasible investment strategies.

Quadratic and absolute disutility of payments, constrained or not, lead to intuitively

feasible strategies for dividend payments. However, other ways of adjusting the

objective of control may lead to different but still intuitively feasible strategies. In

Hansen [30], a traditional concave utility of dividends combined with no utility of

surplus is studied. This resembles the classical optimization problem in finance but

differs by the way in which dividends are paid out; dividends are not immediately

turned into payments but currently traded into future payments. This can lead to

a class of problems related to habit formation utility specifications also resulting

in optimal dividend distribution of singular type. In Taylor [68], the quadratic
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disutility of dividends is maintained but the quadratic disutility of the fund (ratio)

is replaced by a decreasing function such that high funds are not punished in the

same way as low funds are.

1.5 Overview and contributions of the thesis

Valuation in life and pension insurance

In Chapter 2 we work with general valuation of payment streams. A classical re-

sult in life insurance mathematics, Thiele’s differential equation, is generalized to

valuation by absence of arbitrage, and examples of insurance contracts where the

equation proves to be a constructive tool, are given. A special case of the set-up in

Chapter 2 constitutes a part of Steffensen [64].

Chapter 3 takes a closer look at the contingent claims that are actually present in

life and pension insurance contracts. Varying from pension funds to participating life

insurance contracts, we explain how the payments of these contracts are made up by

first order payments and dividends. Linking dividends to the surplus represents one

way of explicitly imitating the implicit dependence on the surplus present in these

products, and we study the dynamics of various versions of the surplus intensively.

We show how Thiele’s generalized differential equation in the case of such surplus-

linked dividend payments is a constructive tool in the search for fair strategies

for investment and redistribution of surplus. A main example illustrates notation,

terminology, and results and is also the basis for a few illustrative figures. These are

borrowed from Ekstrøm [21].

In Chapter 4 we introduce intervention options held by the policy holder. This

leads to a further generalization of Thiele’s differential equation such that it takes the

form of a so-called quasi-variational inequality. A simple example of an intervention

option is the exercise option in an American option in finance, but the free policy and

surrender options in life and pension insurance are more important in our context.

The framework and the resulting quasi-variational inequality are illustrated by these

three examples.

Control in life and pension insurance

Chapter 5 and Chapter 6 extends the study of fair dividends to the study of optimal

dividends. In Chapter 5 the idea of risk-adjusted utility is introduced and illus-

trated in a number of optimization problems in finance. Also the problem of pricing

claims by equivalence of utility is considered. Chapter 5 prepares for Chapter 6

and demonstrates no connection to decision problems of the life insurance company,

whatsoever.

In Chapter 6 risk-adjusted utility is applied to the problem of optimal investment

and distribution of surplus in life and pension insurance. This is done in a general

framework of consumption and investment with risky income and risky debt. A
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range of problems of classical and singular type, constrained and unconstrained,

lead to a small collection of problems and solutions: Some solutions are known and

cited here; some solutions are, we believe, carried out here for the first time; some

solutions are not to be found explicitly but can be illustrated numerically; and in a

few cases we do not even get that far.



Part II

Valuation in life and pension

insurance
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Chapter 2

A no arbitrage approach to

Thiele’s differential equation

The multistate life insurance contract is reconsidered in a framework of securitiza-

tion where insurance claims may be priced by the principle of no arbitrage. This

way a generalized version of Thiele’s differential equation is obtained for insurance

contracts linked to indices, possibly marketed securities. The equation is exemplified

by a traditional policy, a simple unit-linked policy and a path-dependent unit-linked

policy. This chapter is an adapted version of Steffensen [66].

2.1 Introduction

The reserve on an insurance contract is traditionally defined as the expected present

value of future contractual payments and is provided by the insurance company to

cover these payments. The reserve thus defined can be calculated under various

conditions depending e.g. on the choice of discount factor used for calculation of the

present value. We shall take a different approach and define the reserve as the market

price of future payments. This redefinition of the reserve inspires a reconsideration

of the premium calculation principle. Financial mathematics suggest the principle of

no arbitrage, and our purpose is to derive the structure of the reserve imposed by this

principle. Fortunately, this structure specializes to well-known results in actuarial

mathematics like Thiele’s differential equation, introduced by Thiele in 1875, and

since then generalized in various directions. Thus, the traditionally defined reserve

coincides with the price under certain market conditions.

The key to market prices is the notion of securitization of insurance contracts.

Securitization of insurance contracts is making progress in various respects these

years. At the stock exchanges all over the world attempts are made at securitiz-

ing insurance risk as an alternative to traditional exchange of risk by reinsurance

contracts. This development on the exchanges is the background for an interest in

modelling and pricing a variety of new products (see e.g. Cummins and Geman

[13] and Embrechts and Meister [22]). Parallel to this development, securitization

25
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has become an important concept in the unification of actuarial mathematics and

mathematical finance since it plays an important role in stating actuarial problems

in the framework of mathematical finance and vice versa (see e.g. Delbaen and

Haezendonck [17] and Sondermann [63]).

Financial theory applies to markets where there exist assets correlated with the

claim subject to pricing, and finance is thus particularly apt to analysis of insurance

contracts if such a market exists. An obvious example is unit-linked life insurance,

at least if the unit is traded, and this subject of actuarial mathematics has been

an issue of financial theory since Brennan and Schwartz [10] recognized the option

structure of a unit-linked life insurance with a guarantee. Aase and Persson [1] gives

an overview of existing literature up to 1994.

Aase and Persson [1] obtained a generalized version of Thiele’s differential equa-

tion for unit-linked insurance contracts. Our model framework covers their set-up,

and we show how the securitization leads to further generalization of Thiele’s dif-

ferential equation by means of arguments fetched from finance exclusively. The

fundamental connection between the celebrated Thiele’s differential equation and

the Black-Scholes differential equation (just as celebrated but in a different forum)

is indicated by Aase and Persson [1]. Our derivation brings to the surface more

directly this connection by treatment of financial risk and insurance risk on equal

terms.

The target group of the chapter is twofold. On one hand, we approach an actu-

arial problem of evaluating an insurance payment process. The tools are imported

from financial mathematics, and the reader with a background in traditional actu-

arial mathematics will benefit from knowledge of the concept of arbitrage as well as

its connection to martingale measures. References are Harrison and Pliska [32] and

Delbaen and Schachermayer [18]. On the other hand, the chapter may also form an

introduction to life insurance mathematics for financial mathematicians. A statisti-

cal model frequently used in life insurance mathematics is presented, an insurance

contract is constructed, and our main result is specialized to Thiele’s differential

equation. The statistical model and the construction of an insurance contract is

not motivated here, however, and the reader with a background only in financial

mathematics is asked to consult a textbook on basic life insurance mathematics,

e.g. Gerber [25].

In Section 2.2 we present the basic stochastic model. In Section 2.3 we define

an index and a market based on this model and in Section 2.4 we introduce a

payment process and an insurance contract based on the index. In Section 2.5 the

price process of an insurance contract is derived, whereas the differential equation

imposed by a no arbitrage condition on the market forming this price process is

derived in Section 2.6. Section 2.7 contains three examples of which one is the

traditional actuarial set-up, whereas two treat unit-linked insurance in a simple and

a path-dependent set-up, respectively.
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2.2 The basic stochastic environment

We take as given a probability space (Ω,F ,F = {Ft}t≥0 , P ). We let (Xt)t≥0 be a

cadlag (i.e. its sample paths are almost surely right continuous with left limits) jump

process with finite state space J = (1, . . . , J) defined on (Ω,F ,F = {Ft}t≥0 , P ) and

associate a marked point process (Tn,Φn), where Tn denotes the time of the nth

jump of Xt, and Φn is the state entered at time Tn, i.e. XTn = Φn. We introduce

the counting processes

N j
t =

∞∑

n=1

1(Tn≤t,XTn=j), j ∈ J ,

and the J-dimensional vector

Nt =



N1

t
...

NJ
t


 .

We let (Wt)t≥0 =
(
W 1

t , . . .W
K
t

)
t≥0

be a standard K-dimensional Brownian motion

defined on (Ω,F ,F = {Ft}t≥0 , P ).

For a matrix A we let AT denote the transpose of A and let Ai· and A·i denote

the ith row and the ith column of A, respectively. For a vector a, we let diag (a)

denote the diagonal matrix with the components of a in the principal diagonal and

0 elsewhere. We shall write δ1×J and δJ×1 instead of (δ, . . . , δ) and (δ, . . . , δ)T ,

respectively. For derivatives we shall use the notation ∂x = ∂
∂x

and ∂xy = ∂2

∂x∂y
. For

a vector a we let
∫
a and da mean componentwise integration and componentwise

differentiation, respectively.

2.3 The index and the market

In the subsequent sections we shall define and study an insurance contract. Instead

of letting the payments in the insurance contract be directly driven by the stochastic

basis we shall work with an index which is driven by the stochastic basis and which

will form the basis for the payments.

We introduce an index S, an (I + 1)-dimensional vector of processes, the dy-

namics of which is given by

dSt = αtdt+ βt−dNt + σtdWt, S0 = s0,

where α ∈ R(I+1), β ∈ R(I+1)×J , and σ ∈ R(I+1)×K are functions of (t, St) and

s0 ∈ RI+1 is F0-measurable. We denote by Si, αi, βij , and σik the ith entry of S,

the ith entry of α, the (i, j)th entry of β, and (i, k)th entry of σ, respectively. The

information generated by S is formalized by the filtration FS=
{
FS

t

}
t≥0

, where

FS
t = σ(Ss, 0 ≤ s ≤ t) ⊆ Ft.
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We assume that S is a Markov process and that there exist deterministic piece-

wise continuous functions µj (t, s), j ∈ J , s ∈ RI+1 such that N j
t admits the

FS
t -intensity process µj

t = µj (t, St), informally given by

µj
tdt = E

(
dN j

t

∣∣FS
t−
)

+ o (dt)

= E
(
dN j

t

∣∣St−
)

+ o (dt) ,

where o (h) /h → 0 as h → 0. We introduce the J-dimensional vectors containing

the intensity processes and martingales associated with N ,

µt =



µ1

t
...

µJ
t


 , Mt =



M1

t
...

MJ
t


 =



N1

t −
∫ t

0
µ1

sds
...

NJ
t −

∫ t

0
µJ

s ds


 .

To help the reader fix ideas, we explain briefly the roles of the introduced pro-

cesses. Their roles will become more clear when we formalize the payment process

below. The process N describes (at least) some specification of the life history of

an insured. Whereas the process N will partly determine the points in time where

payments fall due, the process S determines the amounts of these payments (and

the intensities for the process N). In classical life insurance mathematics, payments

are allowed to depend on the state of the policy, X. We can cover this situation by

taking S1 to be equal to X by the coefficients

α1
t = 0, β1j

t = j − S1
t , σ

1
t = 0, s1

0 = X0. (2.1)

If e.g. X is included in the index S, µ (t, Xt) candidates to the intensity process

corresponding to the classical situation, see e.g. Hoem [33]. However, in general, the

intensity process µ may differ from the intensity process with respect to the natural

filtration of N .

However, this classical contract can be extended in various directions. We can

e.g. allow for payments (and intensities) to depend on the duration of the sojourn

in the current state by letting S2 be defined by

α2
t = 1, β2j

t = −S2
t , σ

2
t = 0, s2

0 = 0, (2.2)

and allow for payments (and intensities) to depend on the total number of jumps

by letting S3 be defined by

α3
t = 0, β3j

t = 1, σ3
t = 0, s3

0 = 0. (2.3)

In Møller [47] and Norberg [52] generalized versions of Thiele’s differential equation

have been studied where payments depend on the duration of the sojourn in the

current state.

We introduce a market Z, an (n+ 1)-dimensional vector (n ≤ I) of price pro-

cesses assumed to be positive, and denote by Z i the ith entry of Z. The market Z

consists of exactly those entries of S that are prices of traded assets. We assume that
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there exists a short rate of interest such that the market contains a price process Z0

with the dynamics given by

dZ0
t = rtZ

0
t dt, Z

0
0 = 1.

This price process can be considered as the value process of a unit deposited on

a bank account at time 0, and we shall call this entry for the risk-free asset even

though rt is allowed to depend on (t, St). Furthermore, we assume that the set of

martingale measures, Q, i.e. the set of probability measures Q equivalent to P such

that Zi

Z0 is a Q-martingale for each i, is non-empty. From fundamental theory of asset

pricing this assumption is known to be essentially equivalent to the assumption that

no arbitrage possibilities exist on the market Z. The entries of an index S will

also be called indices, and the indices appearing in Z will then be called marketed

indices or assets. With this formulation the set of marketed indices is a subset of

the set of indices and it contains at least one entry, namely Z0. We let αZ ∈ R(n+1),

βZ ∈ R(n+1)×J , and σZ ∈ R(n+1)×K denote the coefficients of the asset prices Z.

2.4 The payment process and the insurance con-

tract

Fixing some time horizon T , we formally take an insurance contract to be a payment

process B which is an FS
t -adapted, cadlag process of finite variation with dynamics

given by

dBt = B0d1(t≥0) + bctdt− bdt−dNt −∆BTd1(t≥T ),

where B0 ∈ R is a function of S0, b
c ∈ R and bd ∈ RJ are functions of (t, St), and

∆BT ∈ R is a function of ST . We denote by bdj the jth entry of bd. Note that the

FS
t -adaptedness of B places demands on the connection between the coefficients of

S and the coefficients of B. Although it need not be the case, the reader should

have in mind the case where F0 and thus also FS
0 are trivial, i.e. F0 = FS

0 = {Ø,Ω}.
Then B0 is deterministic.

Bt represents the cumulative payments from the policy holder to the insurance

company over [0, t]. Both continuous payments and lump sum payments are thus

allowed to depend on the present state of the process (t, St). The minus signs in front

of bd and ∆B in dBt conform to the typical situation where B0 and bc are premiums

and bd and ∆B are benefits, all positive. To simplify notation, lump sum payments

at deterministic times are restricted to time 0 and time T . Thus, an insurance

contract is given by a set of functions
(
B0, b

c, bd,∆B
)

such that a recording of S

completely determines the payment stream.

It should be noted that the inclusion of Z in S opens for insurance contracts with

payments depending on marketed indices and on indices which are somehow driven

by the market. This remark motivates a continuation of our series of examples

of entries in S (2.1)-(2.3) showing that the general insurance contract opens for a
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number of well-known simple and advanced unit-linked life insurance policies. We

will still focus on the process S and take as given that this process is Markov and that

the FS
t -intensity process exists in all cases. Given S, interesting insurance contracts

are easily devised. The reader will recognize some elements from this illustration in

the examples in Section 2.7 below.

We extend the dependence of payments given in (2.1)-(2.3) by letting payments

depend on the present state of a marketed index, e.g. a geometric Brownian motion.

The geometric Brownian motion and the process Z0 constitute the Black-Scholes

model and is obtained by defining

α4
t = S4

t α
4, β4

t = 0, σ4
t = S4

t σ
4.

A Markovian multidimensional diffusion model is obtained by just adding further

processes similar to S4 to the market. The Black-Scholes case and the multidimen-

sional diffusion case have been studied previously in connection with unit-linked

insurance in Aase and Persson [1] and Ekern and Persson [20], respectively, with a

particular construction of X, namely a classical survival model. However, they did

not bring the processes N and X to the surface.

The pure diffusion price processes are continuous. Price processes involving

jumps involve a development of the traditional actuarial idea of the process X,

where X describes the state of life of an individual or a group of individuals only. In

a jump model for prices, the process X may also partly describe the financial state.

This development of the traditional actuarial idea has been studied previously in

e.g. Norberg [51] where a stochastic interest rate is driven by a process of the same

type as X. We mention that e.g. a price process modelled by a geometric compound

Poisson process, where the jump distribution is discrete and finite, is included in

the present model.

Just as we opened the possibility of path-dependence on the non-marketed index

X through addition of the state variables S2 and S3, we can also have dependence

on the path of the marketed index S4 e.g. by defining

α5
t = g

(
t, S4

t

)
, β5

t = 0, σ5
t = 0,

where g is some specified function. Introduction of path-dependence of marketed

indices through addition of state variables is well-known in the theory of Asian

derivatives, and it opens for quite exotic unit-linked products as will be exemplified

in Section 2.7.3. Previously, path-dependent unit-linked insurance has been studied

in Bacinello and Ortu [2] and Nielsen and Sandmann [49] in set-ups quite different

from ours.

In Aase and Persson [1], Ekern and Persson [20], Bacinello and Ortu [2], and

Nielsen and Sandmann [49], standard arbitrage pricing theory is applied to (com-

plete market) financial risk in unit-linked insurance. Working in a framework of

securitization, we apply, however, (possibly incomplete market) financial mathemat-

ics to both financial risk and insurance risk, and we obtain thereby a generalized
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version of Thiele’s differential equation and a corresponding pricing formula, where

financial risk and insurance risk are treated on equal terms.

2.5 The derived price process

The insurance contract forms the basis for introduction of two price processes, F

and V :

Ft = the price at time t of the contractual payments to the

insurance company over [0, T ] , i.e. premiums less benefits,

Vt = the price at time t of the contractual payments from the

insurance company over (t, T ] , i.e. benefits less premiums.

We make some preliminary comments on these processes as a preparation and mo-

tivation for a detailed study.

By the price at time t of contractual payments we mean the amount against which

the payments stipulated by a contract are taken over by one agent from another.

Thus, buying and selling means ’taking over’ and ’handing over’, respectively, the

contractual payments over some specified period of time. This consideration of

contractual payments as dynamically marketed objects is called ’securitization’ of

insurance contracts and plays an important role in the adaptation and application

of financial theory to insurance problems. Important contributions are Delbaen and

Haezendonck [17] and Sondermann [63].

By the securitization of contractual payments, we have implicitly taken as given

the existence of a market, on which these contractual payments are allowed to be

traded and, furthermore, that these contractual payments actually are bought and

sold by the agents on the market. We shall assume that Z constitutes such a market.

In many countries government regulations appear to prohibit a securitization of

insurance contracts. One of the reasons may be that the supervisory authorities are

not at all prepared for a free exchange of the kind of financial interests appearing on

the insurance market. On the other hand, traditional reinsurance contracts actually

represent one allowable way of forwarding risk to a third party. The agents on

the insurance market, i.e. the customers, the direct insurance companies, and the

reinsurance companies are, of course, the primary investors, but also other parties

may consider the contractual payments of insurance contracts as possible investment

objects. This statement is substantiated by the fact that F can be interpreted as

the surplus of the company stemming from the insurance contract. This surplus

is reflected in the equity, which is definitely a relevant investment object for all

investors.

We have introduced two price processes, one covering all contractual payments

and one covering future payments only. Even though we may be interested in the

price of the future payments only, we shall work with the process F since this process
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forms the asset, in a financial sense, arising from the securitization of the insurance

contract. One could consider the introduction of the process F as a preliminary

step leading to the definition of and derivation of formulas for the process V . In

practice, one should have trading and marketing of V in mind. This also explains

why we have not taken the investment strategy (to be introduced below) chosen

by the insurance company as an integrated part of the insurance contract. As we

shall see, this strategy affects the price of past payments but not the price of future

payments.

In actuarial terminology, the outstanding liabilities are called the reserve, and

these liabilities can be calculated under various assumptions. Since F and V are

price processes arising on a market, it seems natural to call Vt the market reserve at

time t. We will, however, suppress the word ’market’, and simply speak of Vt as the

reserve at time t. One should carefully note that, whereas the reserve is traditionally

defined as the expected present value of future payments, we take the reserve to be

the market price of future payments.

Our approach to the price process F is the following: Assuming that the market

Z is arbitrage free, we require that also the market (Z, F ) be arbitrage free. We

use the essential equivalence between arbitrage free markets and existence of a so-

called martingale measure, i.e. a measure under which discounted asset prices are

martingales. If the no arbitrage condition is fulfilled for (Z, F ), we shall speak of B

as an arbitrage free insurance contract and about V as the corresponding arbitrage

free reserve.

Already at this stage we will argue for side conditions on the price process V .

These side conditions are due to the no arbitrage condition on the market (Z, F )

and the structure of the payment process B. Here it is important to state clearly

the problems we actually want to solve: Given S, including Z, we wish to determine

a payment process B such that no arbitrage possibilities arise from marketing the

insurance contract. Afterwards, given the payment process B we wish to determine

arbitrage free prices of the insurance contract.

When determining the payment process, this process is to be considered as a

balancing tool and is as such comparable with the delivery price of a future or the

price of an option. However, the payment process contains a continuum of balancing

elements (premiums and benefits) and in practice all but one of these elements are

predetermined by the customer and the last one acts as the balancing tool of the

insurance company. Which elements are predetermined and which element is the

balancing tool depends on the type of insurance contract (defined benefits, defined

contributions etc.). Since the contract can be entered into at time 0 with no past

payments, B should be balanced such that the equivalence relation

F0− = −V0− = 0 (2.4)

is fulfilled in order to prevent the obvious arbitrage possibility that arises if an agent

can enter into the insurance contract and immediately sell the same contract on the

market at a price different from 0. If FS
0 is trivial such that B0 is deterministic, the
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equivalence relation (2.4) can also be written as

V0 = B0.

If e.g. B0 is fixed at 0, the remaining elements of B are to be determined subject to

V0 = 0. Hereby, the insurance contract is somewhat similar to a future contract.

The side condition at time T is also given by a no arbitrage argument. Since the

price at time T of a payment of ∆BT at time T in an arbitrage free market must be

∆BT , we have

VT− = ∆BT . (2.5)

So, the side conditions (2.4) and (2.5), imposed by the no arbitrage condition, should

be included in the basis for balancing the payment process B. Given B, this payment

process is to be considered as an, indeed unusual, contingent claim and achieves as

such at least one arbitrage free price at any time in an arbitrage free market. Here

again, the insurance contract is somewhat similar to the future contracts which has

a price, positive or negative, at any time during the term of the contract.

The insurance company receives payments in accordance with the insurance con-

tract B, and we assume that these are currently deposited on (withdrawn from) an

account which is invested in a portfolio with positive value process U , generated by

a self-financing investment strategy θ ∈ Rn+1, i.e.

Ut = θt · Zt =

n∑

i=0

θi
tZ

i
t > 0,

dUt = θt · dZt.

The strategy is furthermore assumed to comply with whatever institutional require-

ments there may be. Throughout this chapter one can think of θ as the strategy

corresponding to a constant relative portfolio, i.e. a strategy θ such that for a

constant (n+ 1)-dimensional vector γ, θi
tZ

i
t− = γiUt−, i = 0, . . . , n. This strategy

reflects an investment profile possibly restricted by the supervisory authorities, e.g.

such that θi is non-negative for all i if short-selling is not allowed. We emphasize

that θ, in general, is not a strategy aiming at hedging some contingent claim.

Consequently, the present value at time t of the contractual payments over [0, T ]

becomes Ut

∫ T

0
1

Us
dBs, where U is the value process corresponding to the chosen

trading strategy θ. This present value is composed of an FS
t -measurable part,

Lt = Ut

∫ t

0

1

Us

dBs,

and a part which is not in general FS
t -measurable,

Ut

∫ T

t

1

Us

dBs.

If the price operator, denoted by πt, is assumed to be additive, pricing the contrac-

tual payments over [0, T ] amounts to replacing Ut

∫ T

t
1

Us
dBs by some Ft-measurable
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process, the price process −Vt. Thus,

Ft = πt

(
Ut

∫ T

0

1

Us

dBs

)
= Lt − Vt.

We restrict ourselves to prices allowing Vt to be written in the form V (t, St). This

restriction seems reasonable since S is Markov and since the payments by B and the

intensities of N depend only on time and the current value of S, but it is actually a

restrictive assumption on the formation of prices in the market. It corresponds to a

restrictive It corresponds to the restrictive structure of the measure transformation

in Section 2.6.

If X jumps to state j at time t, S will jump to St− + β ·jt−, and thus Vt jumps to

V j
t−, where V j

t ≡ V
(
t, St + β·jt

)
. Each V j

t− is FS
t -predictable, and we can introduce

the J-dimensional FS
t -predictable row vector

V Jt− =
[
V 1

t−, . . . , V
J
t−
]
.

Assume that the partial derivatives ∂tV (t, s), ∂sV (t, s), and ∂ssV (t, s) exist and

are continuous, abbreviate

∂sVt = ∂sV (t, St) = ∂sV (t, s)|s=St
,

and denote 1
2
tr
(
σT

t ∂ssVtσt

)
by ψt. Then Ito’s lemma applied to the process V gives

the differential form,

dVt =
(
∂tVt + (∂sVt)

T αt + ψt

)
dt+

(
V Jt− − V 1×J

t−
)
dNt + (∂sVt)

T σtdWt.

Ito’s lemma also gives the differential form of the process L,

dLt = bctdt− bdt−dNt +
Lt−
Ut−

dUt

= bctdt− bdt−dNt + Ltrtdt− Ltrtdt+
Lt−
Ut−

dUt

= bctdt− bdt−dNt + Ltrtdt+
Lt−Z

0
t

Ut−
d

(
Ut

Z0
t

)
.

It should be noted that we can also write dLt = dBt + θtLt−

Ut−
dZt and consider the

process L as a value process corresponding to a trading strategy given by υt = θtLt−

Ut−
.

Because of the payment process B, this strategy is not self-financing, though.

Now, collecting terms gives the differential form of the process F,

dFt = dLt − dVt

= rtFtdt+(
bct + rtVt − ∂tVt − (∂sVt)

T αt − ψt −
(
bdt + V Jt − V 1×J

t

)
µt

)
dt

− (∂sVt)
T σtdWt −

(
bdt− + V Jt− − V 1×J

t−
)
dMt +

Lt−Z
0
t

Ut−
d

(
Ut

Z0
t

)
.



2.6. THE SET OF MARTINGALE MEASURES 35

Upon introducing

Rt = bdt + V Jt − V 1×J
t ,

TD
(
αS

t , µt

)
= bct + rtVt − ∂tVt − (∂sVt)

T αt − Rtµt − ψt,

and abbreviating

αF
t = rtFt + TD (αt, µt) ,

βF
t = −Rt,

σF
t = − (∂sVt)

T σt,

ρF
t =

LtZ
0
t

Ut
,

we arrive at the simple form

dFt = αF
t dt+ βF

t−dMt + σF
t dWt + ρF

t−d

(
Ut

Z0
t

)
. (2.6)

The abbreviations R and TD are motivated by the terms sum at Risk and Thiele’s

Differential, respectively. In Section 2.6, we shall see that TD, taken in a point

different from (αt, µt) , equated to 0 constitutes a generalized version of Thiele’s dif-

ferential equation. A differential equation for the reserve of a life insurance contract

was derived by Thiele in 1875, but we shall refer to Hoem [33] for a classical version

presented in probabilistic terms.

Note that (2.6) is not the semimartingale form under P , since U
Z0 is not in general

a P -martingale. This is, however, a convenient form as the succeeding section will

show.

2.6 The set of martingale measures and Thiele’s

differential equation

In this section we study the consequences of the no arbitrage condition on the

markets Z and (Z, F ) by studying the conditions for existence of an equivalent

martingale measure on these markets.

For construction of a new measure Q, we shall define a likelihood process Λ by

dΛt = Λt−

(
∑

j

gj
t−dM

j
t +

∑

k

hk
t dW

k
t

)

= Λt−
(
gT

t−dMt + hT
t dWt

)
,

Λ0 = 1,

where we have introduced

gj
t = gj (t, St) , hk

t = hk (t, St) , (2.7)
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and

gt =



g1

t
...

gJ
t


 , ht =



h1

t
...

hK
t


 .

Assume that gt and ht are chosen such that the conditions

EP [ΛT ] = 1,

gj (t, s) > −1, j ∈ J , (2.8)

are fulfilled. Then we can change measure from P to Q on (Ω,FT ) by the definition,

ΛT =
dQ

dP
,

and it follows from Girsanov’s Theorems that W k
t under Q has the local drift hk

t and

that N j
t under Q admits the FS

t -intensity process (1 + gj
t )µ

j
t . In vector notation,

Wt has the local drift ht and Nt admits the FS
t -intensity process diag

(
1J×1 + gt

)
µt

under Q. Note that by (2.7) we consider only the part of possible measure trans-

formations that allow g and h to be stochastic processes in a particular form. This

restriction on the measure transformation is imposed by the restriction on the price

operator leading to Vt = V (t, St). This will be argued at the end of this section.

Defining the Q-martingales

MQ
t = Nt −

∫ t

0

diag
(
1J×1 + gs

)
µsds,

WQ
t = Wt −

∫ t

0

hsds,

we can write the dynamics of (Z, F ) as

dZt = αZQ
t dt+ βZ

t−dM
Q
t + σZ

t dW
Q
t ,

dFt = αFQ
t dt+ βF

t−dM
Q
t + σF

t dW
Q
t + ρF

t−d

(
Ut

Z0
t

)
, (2.9)

where

αZQ
t = αZ

t + σZ
t ht + βZ

t diag
(
1J×1 + gt

)
µt,

αFQ
t = rtFt + TD

(
αt + σtht, diag

(
1J×1 + gt

)
µt

)
.

We define the market prices of diffusion and jump risk, respectively, by

ηt = −ht,

ξt = −diag (gt)µt,

and we say that the insurance company is risk-neutral with respect to diffusion risk

k or jump risk j if ηk
t = 0 or ξj

t = 0, respectively.
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Now we determine the set of martingale measures Q in the market Z by requiring
Z
Z0 to be a martingale under Q. We see that gt and ht should be chosen such that

αZ
t + σZ

t ht + βZ
t diag

(
1J×1 + gt

)
µt − rtZt = 0.

We have that also U
Z0 is a martingale under Q and (2.9) is seen to be written on

semimartingale form under Q. Thus, requiring that also F
Z0 is a martingale under

Q gives the equation

TD
(
αt + σtht, diag

(
1J×1 + gt

)
µt

)
= 0,

which constitutes a generalized version of Thiele’s differential equation (TDE). In

Section 2.7, we recognize the classical version from Hoem [33].

Adding to TDE the side conditions V0− = 0 and VT− = ∆BT , we formulate our

result as a theorem:

Theorem 1 Assume that the partial derivatives ∂tV , ∂sV , and ∂ssV exist and are

continuous. Assume that (g, h) can be chosen such that

αZ
t + σZ

t ht + βZ
t diag

(
1J×1 + gt

)
µt − rtZt = 0. (2.10)

Then, if the arbitrage free reserve on an insurance contract B can be written in

the form V (t, St), V (t, s) solves for some (g, h) subject to (2.10) the deterministic

differential equation (coefficients are (t, s) and (T, s), respectively)

∂tVt = bc + rtVt − (∂sVt)
T (αt + σtht)− Rtdiag

(
1J×1 + gt

)
µt − ψt,

VT− = ∆BT .

An arbitrage free insurance contract fulfills the equivalence relation

V0− = 0. (2.11)

Although the semimartingale form of F under P was not needed in our deriva-

tion of TDE, it may be interesting for other reasons. After some straightforward

calculations one gets

dZt =
(
rtZt + βZ

t ξt + σZ
t ηt

)
dt+ βZ

t−dMt + σZ
t dWt,

dFt =

(
rtFt +

(
βF

t +
θtLt

Ut

βZ
t

)
ξt +

(
σF

t +
θtLt

Ut

σZ
t

)
ηt

)
dt (2.12)

+

(
βF

t− +
θtLt−
Ut−

βZ
t−

)
dMt +

(
σF

t +
θtLt

Ut
σZ

t

)
dWt.

This representation of (Z, F ) motivates the term market price of risk and shows

how the expected return on the marketed indices, now including F , is increased

compared to the return on the asset Z0. From Theorem 1 it is seen that the price

process V does not depend on θ, but (2.12) shows that the price process F indeed

does. This implies that when it comes to laying down the payment process B,



38 CHAPTER 2. A NO ARBITRAGE APPROACH TO THIELE’S DE

the only marketed indices of importance are those actually appearing as indices

in B. Only if we consider the price process F , the remaining entries of Z, i.e.

those entries of S that play the role of investment possibilities but do not appear

as indices in B, are important. In the succeeding section we consider examples of

insurance contracts. Since we focus on the process V , we let the market comprise

only those assets on which payments depend. The representation in (2.12) may

be an appropriate starting point for choice of an admissible strategy θ, taking into

account e.g. the preferences of (the owners of) the insurance company.

Here we finish the general study of the process (V, F ) by pinning down its stochas-

tic representation formula. The traditionally educated life insurance actuary may

rejoice at recognizing the reserve as an expected value. We have postponed the

representation of the reserve as an expected value in order to emphasize that this

is rather a fortunate consequence of the no arbitrage condition than a (measure-

adjusted) consequence of traditional actuarial reasoning. In order to prevent arbi-

trage possibilities we have constructed Q such that
(

F
Z0 ,

U
Z0

)
under Q is a martingale,

and then it follows that

Ft

Z0
t

= EQ

(
FT

Z0
T

∣∣∣∣F
S
t

)

= EQ

(
1

Z0
T

∫ t

0

UT

Us
dBs

∣∣∣∣F
S
t

)
+ EQ

(
1

Z0
T

∫ T

t

UT

Us
dBs

∣∣∣∣F
S
t

)

= EQ

(
UT

Z0
T

∣∣∣∣F
S
t

)∫ t

0

1

Us

dBs +

∫ T

t

EQ

(
1

Us

dBsE
Q

(
UT

Z0
T

∣∣∣∣F
S
s

)∣∣∣∣F
S
t

)

=
Ut

Z0
t

∫ t

0

1

Us
dBs +

∫ T

t

EQ

(
1

Us
dBs

Us

Z0
s

∣∣∣∣F
S
t

)

=
Lt

Z0
t

+ EQ

(∫ T

t

1

Z0
s

dBs

∣∣∣∣F
S
t

)
.

Thus,

Vt = EQ

(
Z0

t

∫ T

t

1

Z0
s

d (−Bs)

∣∣∣∣F
S
t

)
, (2.13)

and the equivalence relation V0− = 0, can be written

EQ

(∫ T

0−

1

Z0
s

dBs

)
= 0.

A special case of this constraint is known in actuarial mathematics as the equiv-

alence principle, namely the case of risk-neutrality. In general, market prices of risk

are not zero, and here we have taken into account the existence of a market Z which

may contain information of these market prices of risk.

A calculation similar to the one leading to (2.13) shows that the equivalence

relation V0− = 0 corresponds to the alternative equivalence relation

EQ

(
LT

Z0
T

)
= 0, (2.14)
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Thus, instead of checking the condition (2.11) for a payment process, one can just

as well check the condition (2.14).

The representation in (2.13) explains why the restricted class of measure transfor-

mations corresponds to reserves in the form V (t, St). The structure of Λ determined

by (2.7) is necessary and sufficient for the following relation to hold,

Vt = EQ

(
Z0

t

∫ T

t

1

Z0
s

d (−Bs)

∣∣∣∣F
S
t

)

= EP

(
ΛT

Λt

Z0
t

∫ T

t

1

Z0
s

d (−Bs)

∣∣∣∣F
S
t

)

= EP

(
ΛT

Λt
Z0

t

∫ T

t

1

Z0
s

d (−Bs)

∣∣∣∣St

)

= V (t, St) .

2.7 Examples

2.7.1 A classical policy

In this section we consider a model where payments depend on the present state

of X. Hoem [33] obtained in this model a version of Thiele’s differential equation

which has taken a central position in life insurance mathematics and is widely used

by practitioners.

Let r be constant, put K = 0, define S by

αt βj
t σk

t s0

S0 rS0
t 0 0 1

S1 0 j − S1
t 0 X0

(2.15)

and let Z = S0. Thus the market Z consists of the risk-free asset only and contains

thereby no information on market prices of risk. We fix a martingale measure by

assuming that the insurance company is risk-neutral with respect to risk due to the

policy state, which is the only risk present in this model, i.e.

g = 0J×1.

Then the reserve function solves the classical TDE

∂tVt = bct + rtVt −
(
bdt + V Jt − V 1×J

t

)
µt,

VT− = ∆BT ,

and the payment process should be based on the equivalence relation

V0− = 0.
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2.7.2 A simple unit-linked policy

In this section we consider a model where payments depend on the present state

of X and the present state of a marketed index given by a geometric Brownian

motion. Aase and Persson [1] obtained a version of Thiele’s differential equation in

a similar model. We use the word simple since the payments depend on only the

present state of the marketed index. Modelling the marketed index by a geometric

Brownian motion, we now work with the Black-Scholes model.

Let r be constant, put K = 1, define S by adding to (2.15)

αt βj
t σk

t s0

S2 αS2
t 0 σS2

t S2
0

(2.16)

where α and σ are constant, and let Z =

[
S0

S2

]
.

Theorem 1 states that (g, h) should be chosen subject to

αS2
t + σS2

t ht − rS2
t = 0,

implying that

h =
r − α
σ

.

With g determined as in Section 2.7.1, the reserve function solves the TDE

∂tVt = bct + rtVt − ∂s2Vtrts
2 −

(
bdt + V Jt − V 1×J

t

)
µt −

1

2
σs2∂s2s2Vtσs

2,

VT− = ∆BT ,

and the payment process should be based on the equivalence relation

V0− = 0.

2.7.3 A path-dependent unit-linked policy

In this section we consider a model where payments depend on the present state of

X and the present state of two accounts. One account is defined as the value of

as-if investments in a marketed index and the other is defined as the value of as-if

investments in a non marketed index. We call it a path-dependent policy since the

payments depend on the path of the marketed index through the account defined

by the value of as-if investments in this index. Modelling the marketed index by a

geometric Brownian motion, the market Z constitutes the Black-Scholes model, and

as in Section 2.7.2 the geometric Brownian motion will be described by S2.

Now we construct the process S. First we introduce an artificial bank account

Ŝ0 given by

dŜ0
t = r̂Ŝ0

t dt, Ŝ
0
0 = 1,

where r̂ is an artificial short rate of interest, which may differ from the short rate of

interest r.
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The insurance contract specifies two artificial payment processes, B
cS0

and BS2
,

defined in the same way as B. The notation b
cS0c
t , bS

2c
t , b

cS0d
t , bS

2d
t for artificial

continuous and jump payments, respectively, is natural. Now we make up two

artificial accounts A
cS0

and AS2
by pretending to invest payments from B

cS0
and BS2

in Ŝ0 and S2, respectively. Consequently, the two accounts can be written

A
cS0

t = Ŝ0
t

∫ t

0

dB
cS0

s

Ŝ0
s

,

AS2

t = S2
t

∫ t

0

dBS2

s

S2
s

.

The payment process B is specified to depend on these two accounts. It is easily

seen that if we put K = 1 and define S by adding to (2.15) and (2.16)

αt βj
t σk

t s0

S3 bS2c
t

S2
t

bS2dj
t

S2
t

0 0

S4 b
cS0c
t + r̂S4

t b
cS0dj
t 0 0

we actually have that

A
cS0

t = S4
t ,

AS2

t = S2
t S

3
t .

As an example one could think of a policy specifying that e.g. continuous pre-

miums bct are invested in the pseudo bank account, the payment process BS2

t = t

is invested in the index S2, and the benefit payment bdt is the maximum of the two

accounts made up hereby. In that case one could interpret r̂ as the guaranteed rate

of interest and the pseudo bank account thus represents one way of introducing an

interest rate guarantee. By this example we point out that elements of the payment

process B are allowed to appear in the processes BS2
and B

cS0
.

Bacinello and Ortu [2] and Nielsen and Sandmann [49] have studied a variant of

this set-up and the occurrence of elements of B in B
cS0

is exactly what the endogene-

ity in the title of Bacinello and Ortu [2] refers to. Bacinello and Ortu [2] indicate

that the resulting insurance product is an Asian-like derivative, and comparing our

construction of state variables with the one known from theory of Asian options

shows in which way the derivative is Asian-like. Bacinello and Ortu [2] end up with

a delicate fix point problem and discuss conditions for existence of a payment process

satisfying the equivalence relation V0 = 0 (no lump sum payment at time 0). These

conditions constrain the two accounts and the payments depending on them. Apart

from the mathematical conditions, one could deal with conditions of the payments

being practically feasible. However, we shall not enter into any of these discussions,

but rather allow of general contributions to the two accounts as described above.

With (g, h) determined as in 2.7.2, the TDE can now easily be found by Theorem

1.
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Chapter 3

Contingent claims analysis in life

and pension insurance

The application of mathematical finance to unit-linked life insurance is unified with

the theory of distribution of surplus in life and pension insurance. The unification

is based a consideration of distribution of surplus as an integrated part of the insur-

ance contract. We suggest a distinction between the retrospective surplus and the

prospective surplus and study these versions of the surplus in detail. The retrospec-

tive surplus and the prospective surplus are proposed as indices in a type of index

linked insurance which we appropriately call surplus-linked insurance. This chapter

is an extended version of Steffensen [65].

3.1 Introduction

The term life and pension insurance is here used for the general type of life insurance

where premiums and benefits are calculated on a certain basis at the time of issue

of the contract and then revised currently according to the performance of the

insurance company. The revision of premiums and benefits can take various forms

depending on the type of the contract. Examples are various types of participating

life insurance (in some countries called with-profit life insurance) and various types

of pension funding.

The revision of premiums and benefits is based on payment of dividends, which

in general may be positive or negative, from the insurance company to the policy

holder. It is important to distinguish between two aspects of the revision, the

dividend plan and the bonus plan. The dividend plan is the plan for recording of

dividends. However, often the dividends are not paid out immediately as cash but

are converted into a stream of future payments. The bonus plan is the plan for how

the dividends eventually are turned into payments.

In Chapter 2 a framework of securitization is developed where reserves are no

longer defined as expected present values but as market prices of streams of pay-

ments (which, however, happen to be expressible as expected present values under

43
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adjusted measures). An insurance contract is defined as a stream of payments linked

to dynamical indices, opening for a wide range of insurance contracts including var-

ious forms of unit-linked contracts. Securitization is one way of dealing with the

dependence between the risk in the insurance policy and the risk in the financial

market. It is built on the consideration of the stream of payments stipulated in

an insurance contract as a dynamically traded object on the financial market. The

insurance company is then considered as a participant in this market and has to

adapt prices and strategies to the market conditions.

In the present chapter we construct a general life and pension insurance contract

within the framework developed in Chapter 2. Working with general index-linked

payments in participating life insurance and pension funding we go beyond the

traditional set-up of payments in existing literature on emergence of surplus and

dividends. However, index-linked payments open for a number of appealing set-

ups. An important one is obtained by linking payments directly to the surplus as

it will be defined in this chapter. The study of such surplus-linked insurance has

a two-fold motivation: Firstly, it represents a new product combining properties of

participating life insurance, pension funding, and unit-linked insurance. Secondly,

it seems to represent a good imitation of the behavior of managers. As such it can

be used as a management tool as well as a market analysis tool.

Even though payments need not be linked directly to the surplus, the surplus may

carry great weight when the insurance company decides on dividends. It is one of the

main purposes of this chapter to provide insight in the dynamics of the surplus, and

an important step is the classification of surplus into the retrospective surplus and

the prospective surplus. The recognition of previous definitions of surplus as either

a part of the retrospective surplus or a part of the prospective surplus contributes

to the insight in the notion of surplus and constitutes, together with other remarks,

a whole section of comparisons with related literature in the field.

Subjugating life and pension insurance to the market conditions, the appropri-

ate tool seems to be mathematical finance or, more specifically, contingent claims

analysis. Option pricing theory was introduced as a tool for analysis and manage-

ment of unit-linked insurance in the seventies (see Brennan and Schwartz [10] and

references in Aase and Persson [1]). Also the consideration of schemes in pension

funding as options goes back to the seventies (see e.g. Sharpe [62] and references

in Blake [7]). In participating life insurance, however, contingent claims analysis

as a tool for analysis and management has been long in coming and was, to our

knowledge, introduced in Briys and de Varenne [11]. A main reason for this delay

may be that the link between the payments and the performance of the company

in participating life insurance may be laid down by statute so vaguely that it may

seem unreasonable to consider dividends as contractual. Working in a framework of

securitization, our main objection to this argument is, of course, that the insurance

business and, hereby, the participation in the performance takes place in a com-

petitive market. Thus, the insurance company is forced to adapt e.g. its plans for

revision of payments to the market conditions. This objection is at the same time
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the primary argument for applying contingent claims analysis to life and pension

insurance at all.

The chapter is structured as follows. In Section 3.2, we recapitulate the frame-

work developed in Chapter 2. In Section 3.3, we construct the general life and

pension insurance contract within that framework and extract some decision prob-

lems of a life insurance company. The notions of retrospective and prospective

surplus are defined and studied in Section 3.4. In Section 3.5, we consider dividend

plans in general and surplus-linked dividends in particular, whereas various bonus

plans are studied in Section 3.6. Aspects of our approach is compared to related

literature in Section 3.7, and Section 3.8 reviews the balance sheet of a life insurance

company in the light of our terminology and definitions. Section 3.9 contains a few

numerical illustrations. These are based on a main example which already at the

end of Sections 3.3-3.6 serves to illustrate the contents of each section.

3.2 The insurance contract

3.2.1 The basics

In this section we recapitulate the framework developed in Chapter 2 and state the

main result obtained there. For motivation, details, and examples the reader is

asked to confer Chapter 2.

We take as given a probability space (Ω,F ,F = {Ft}t≥0 , P ). We let (Xt)t≥0 be a

cadlag (i.e. its sample paths are almost surely right continuous with left limits) jump

process with finite state space J = (1, . . . , J) defined on (Ω,F ,F = {Ft}t≥0 , P ) and

associate a marked point process (Tn,Φn), where Tn denotes the time of the nth

jump of Xt, and Φn is the state entered at time Tn, i.e. XTn = Φn. We introduce

the counting processes

N j
t =

∞∑

n=1

1(Tn≤t,XTn=j), j ∈ J ,

and the J-dimensional vector

Nt =



N1

t
...

NJ
t


 .

We let (Wt)t≥0 =
(
W 1

t , . . .W
K
t

)
t≥0

be a standard K-dimensional Brownian motion

defined on (Ω,F ,F = {Ft}t≥0 , P ).

For a matrix A we let AT denote the transpose of A and let Ai· and A·i denote

the ith row and the ith column of A, respectively. For a vector a, we let diag (a)

denote the diagonal matrix with the components of a in the principal diagonal and

0 elsewhere. We shall write δ1×J and δJ×1 instead of (δ, . . . , δ) and (δ, . . . , δ)T ,

respectively. For derivatives we shall use the notation ∂x = ∂
∂x

and ∂xy = ∂2

∂x∂y
. For
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a vector a we let
∫
a and da mean componentwise integration and componentwise

differentiation, respectively.

We introduce an index S, an (I + 1)-dimensional vector of processes, the dy-

namics of which is given by

dSt = αtdt+ βt−dNt + σtdWt, S0 = s0,

where α ∈ R(I+1), β ∈ R(I+1)×J , and σ ∈ R(I+1)×K are functions of (t, St) and

s0 ∈ RI+1 is F0-measurable. We denote by Si, αi, βij , and σik the ith entry of S,

the ith entry of α, the (i, j)th entry of β, and (i, k)th entry of σ, respectively. The

information generated by S is formalized by the filtration FS=
{
FS

t

}
t≥0

, where

FS
t = σ(Ss, 0 ≤ s ≤ t) ⊆ Ft.

We assume that S is a Markov process and that there exist deterministic piece-

wise continuous functions µj (t, s), j ∈ J , s ∈ RI+1 such that N j
t admits the

FS
t -intensity process µj

t = µj (t, St), informally given by

µj
tdt = E

(
dN j

t

∣∣FS
t−
)

+ o (dt)

= E
(
dN j

t

∣∣St−
)

+ o (dt) ,

where o (h) /h → 0 as h → 0. We introduce the J-dimensional vectors containing

the intensity processes and martingales associated with N ,

µt =



µ1

t
...

µJ
t


 , Mt =



M1

t
...

MJ
t


 =



N1

t −
∫ t

0
µ1

sds
...

NJ
t −

∫ t

0
µJ

s ds


 .

To help the reader fix ideas, we explain briefly the roles of the introduced pro-

cesses. Their roles will become more clear when we formalize the payment process

below. The process N describes (at least) some specification of the life history of

an insured. Whereas the process N will partly determine the points in time where

payments fall due, the process S determines the amounts of these payments (and

the intensities for the process N). In classical life insurance mathematics, payments

are allowed to depend on the state of the policy, X. We can cover this situation by

taking S1 to be equal to X by the coefficients

α1
t = 0, β1j

t = j − S1
t , σt = 0, s1

0 = X0.

If e.g. X is included in the index S, µ (t, Xt) candidates to the intensity process

corresponding to the classical situation, see e.g. Hoem [33]. However, in general, the

intensity process µ may differ from the intensity process with respect to the natural

filtration of N .

However, this classical contract can be extended in various directions. We can

e.g. allow for payments (and intensities) to depend on the duration of the sojourn

in the current state by letting S2 be defined by

α2
t = 1, β2

t = −S2
t , σ

2
t = 0, s2

0 = 0,
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and allow for payments (and intensities) to depend on the total number of jumps

by letting S3 be defined by

α3
t = 0, β3j

t = 1, σ3
t = 0, s3

0 = 0.

In Møller [47] and Norberg [52] generalized versions of Thiele’s differential equation

have been studied where payments depend on the duration of the sojourn in the

current state.

We introduce a market Z, an (n+ 1)-dimensional vector (n ≤ I) of price pro-

cesses assumed to be positive, and denote by Z i the ith entry of Z. The market Z

consists of exactly those entries of S that are prices of traded assets. We assume that

there exists a short rate of interest such that the market contains a price process Z0

with the dynamics given by

dZ0
t = rtZ

0
t dt, Z

0
0 = 1.

This price process can be considered as the value process of a unit deposited on

a bank account at time 0, and we shall call this entry for the risk-free asset even

though rt is allowed to depend on (t, St). Furthermore, we assume that the set of

martingale measures, Q, i.e. the set of probability measures Q equivalent to P such

that Zi

Z0 is a Q-martingale for each i, is non-empty. From fundamental theory of asset

pricing this assumption is known to be essentially equivalent to the assumption that

no arbitrage possibilities exist on the market Z. The entries of an index S will

also be called indices, and the indices appearing in Z will then be called marketed

indices or assets. With this formulation the set of marketed indices is a subset of

the set of indices and it contains at least one entry, namely Z0. We let αZ ∈ R(n+1),

βZ ∈ R(n+1)×J , and σZ ∈ R(n+1)×K denote the coefficients of the asset prices Z.

Fixing some time horizon T , we now formally take an insurance contract to be a

payment process B which is an FS
t -adapted, cadlag process of finite variation with

dynamics given by

dBt = B0d1(t≥0) + bctdt− bdt−dNt −∆BTd1(t≥T ),

where B0 ∈ R is a function of S0, b
c ∈ R and bd ∈ RJ are functions of (t, St), and

∆BT ∈ R is a function of ST . We denote by bdj the jth entry of bd. Note that the

FS
t -adaptedness of B places demands on the connection between the coefficients of

S and the coefficients of B. Although it need not be the case, the reader should

have in mind the case where F0 and thus also FS
0 are trivial, i.e. F0 = FS

0 = {Ø,Ω}.
Then B0 is deterministic.

Bt represents the cumulative payments from the policy holder to the insurance

company over [0, t]. Both continuous payments and lump sum payments are thus

allowed to depend on the present state of the process (t, St). The minus signs in front

of bd and ∆B in dBt conform to the typical situation where B0 and bc are premiums

and bd and ∆B are benefits, all positive. To simplify notation, lump sum payments

at deterministic times are restricted to time 0 and time T . Thus, an insurance
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contract is given by a set of functions
(
B0, b

c, bd,∆B
)

such that a recording of S

completely determines the payment stream.

The insurance contract forms the basis for introduction of two price processes,

F and V :

Ft = the price at time t of the contractual payments to the

insurance company over [0, T ] , i.e. premiums less benefits,

Vt = the price at time t of the contractual payments from the

insurance company over (t, T ] , i.e. benefits less premiums.

3.2.2 The main result

Our approach to the price process F is the following: Assuming that the market

Z is arbitrage free, we require that also the market (Z, F ) be arbitrage free. We

use the essential equivalence between arbitrage free markets and existence of a so-

called martingale measure, i.e. a measure under which discounted asset prices are

martingales. If the no arbitrage condition is fulfilled for (Z, F ), we shall speak of B

as an arbitrage free insurance contract and about V as the corresponding arbitrage

free reserve.

Since the market may be incomplete, there may be several martingale measures

and, correspondingly, several arbitrage free reserves. Thus, when we talk of the arbi-

trage free reserve, we think of having fixed a martingale measure according to some

criterion. Alternatively, one could imagine that there exists only one martingale

measure reflecting the market participants’ attitudes to risk although this measure,

in the incomplete market, is not to be identified by looking at asset prices only.

In this case the martingale measure could, appropriately, be fixed as the unique

measure reflecting the attitudes to risk.

We restrict ourselves to prices allowing Vt to be written in the form V (t, St).

This restriction seems reasonable since S is Markov and since the payments by B

and the intensities of N depend only on time and the current value of S, but it

is actually a restrictive assumption on the formation of prices in the market. It

corresponds to the restrictive structure of the measure transformation that we now

enter by defining the likelihood process Λ by

dΛt = Λt−

(
∑

j

gj
t−dM

j
t +

∑

k

hk
t dW

k
t

)

= Λt−
(
gT

t−dMt + hT
t dWt

)
,

Λ0 = 1,

where we have introduced

gj
t = gj (t, St) , hk

t = hk (t, St) ,
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and

gt =



g1

t
...

gJ
t


 , ht =



h1

t
...

hK
t


 .

With conditions on (g, h) (see Chapter 2) we can now change measure from P to Q

on (Ω,FT ) by the definition,

ΛT =
dQ

dP
.

Upon introducing

V j
t = V

(
t, St + β ·jt

)
,

V Jt =
[
V 1

t , . . . , V
J
t

]
,

ψt =
1

2
tr
(
σT

t ∂ssVtσt

)
,

Rt = bdt + V Jt − V 1×J
t ,

we can state the main result of Chapter 2:

Theorem 2 Assume that the partial derivatives ∂tV , ∂sV , and ∂ssV exist and are

continuous. Assume that (g, h) can be chosen such that

αZ
t + σZ

t ht + βZ
t diag

(
1J×1 + gt

)
µt − rtZt = 0. (3.1)

If the arbitrage free reserve on an insurance contract B can be written in the form

V (t, St), then V (t, s) solves for some (g, h) subject to (3.1) the deterministic differ-

ential equation (coefficients are (t, s) and (T, s), respectively)

∂tVt = bct + rtVt − (∂sVt)
T (αt + σtht)− Rtdiag

(
1J×1 + gt

)
µt − ψt, (3.2)

VT− = ∆BT ,

and has the representation

Vt = EQ

(∫ T

t

Z0
t

Z0
s

d (−Bs)

∣∣∣∣St

)
. (3.3)

An arbitrage free insurance contract fulfills the equivalence relation

V0− = 0. (3.4)

The relation (3.1) is just the standard condition for existence of a martingale

measure on Z and arises solely from the dynamics of Z. The relation (3.3) can be

derived directly from existence of a martingale measure on (Z, F ). For calculation of

Vt, (3.2) yields a constructive tool such that an arbitrage free insurance contract can

be constructed subject to the side condition (3.4). The equation (3.2) generalizes

the classical deterministic differential equation for a reserve introduced by Thiele in

1875, and we will simply speak of (3.2) as Thiele’s differential equation.
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3.3 The general life and pension insurance con-

tract

3.3.1 The first order basis and the technical basis

In this section we formulate the structure of the general life and pension insurance

contract within the framework recapitulated in Section 3.2.

We introduce a first order basis, (r̂, ĝ, ĥ), let the first order short rate of interest

r̂ drive a first order risk-free asset Ẑ (not a part of the market Z), and let the first

order Girsanov kernel (ĝ, ĥ) determine a first order measure Q̂. Here, r̂, ĝ, and ĥ

are functions of (t, St). We define a stream of first order payments B̂ in the same

way as B is defined in Section 3.2, i.e. linked to (t, St), and we define the first order

reserve by

V̂t = E
bQ

(∫ T

t

Ẑt

Ẑs

d
(
−B̂s

)∣∣∣∣∣St

)
.

Then, upon introducing

V̂ j
t = V̂

(
t, St− + β ·jt−

)
,

V̂ Jt =
[
V̂ 1

t , . . . , V̂
J
t

]
,

R̂t = b̂dt + V̂ Jt − V̂ 1×J
t ,

ψ̂t =
1

2
tr
(
σT

t ∂ssV̂tσt

)
,

we have, according to Theorem 1, the first order Thiele’s differential equation and

the first order terminal condition,

∂tV̂t = b̂ct + r̂tV̂t −
(
∂sV̂t

)T (
αt + σtĥt

)
− R̂tdiag

(
1J×1 + ĝt

)
µt − ψ̂t, (3.5)

V̂T− = ∆B̂T .

We let B̂ be constrained by the first order prospective equivalence relation,

V̂0− = 0.

Actually, this construction of the first order payments amounts to requiring that

B̂ be an arbitrage free contract on an artificial market with only one asset, Ẑ.

The first order basis serves solely to determine the first order payments at time

0. However, also during the term of the contract, the insurance company needs to

valuate the first order payments for different operations. The appropriate conditions

for such a valuation depend on what operation is performed. We shall introduce a

technical basis, (r∗, g∗, h∗) with functions r∗, g∗, and h∗ of (t, St) for such a valuation

of first order payments and define the technical reserve as

V ∗t = EQ∗

(∫ T

t

Z∗t
Z∗s
d
(
−B̂s

)∣∣∣∣St

)
.
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The technical Thiele’s differential equation and the technical terminal condition are

now obtained upon replacing (r̂, ĝ, ĥ, V̂ , R̂) in (3.5) with (r∗, g∗, h∗, V ∗, R∗), where

R∗ = b̂dt +V ∗Jt −V ∗1×J
t . Note that there exists no technical equivalence relationships.

Only if the first order basis is used as technical basis, the relation V ∗0− = 0 holds.

The technical basis plays a role in the operation of reporting to the owners

of the company and to the supervisory authorities. The insurance company may

draw up a statement of accounts at market value if the owners of the company

and/or the supervising authorities want a true picture of the company. For this

operation the basis given by (r, g, h) seems to be an obvious choice for technical

basis. However, specific conditions for solvency may be formulated under another

basis and the supervisory authorities may require a presentation of accounts on such

a basis. Such a basis could e.g. be the first order basis.

Thus, the first order basis and the basis (r, g, h) certainly candidate to the techni-

cal basis, but other technical bases may apply. This conforms with recent accounting

rules in Denmark, where the insurance companies set aside reserves on a basis that

differs from the first order basis (and probably also from the real basis) on portfolios

where the first order reserves seems not to be adequate in some sense.

3.3.2 The real basis and the dividends

As opposed to the first order basis (r̂, ĝ, ĥ) and the technical basis (r∗, g∗, h∗) we

shall speak of (r, g, h) as the real basis. Since the first order basis may differ from

the real basis, the first order payments may impose arbitrage possibilities in the

real environment. However, the real payments B are to be determined such that

B constitutes an arbitrage free insurance contract in the real environment. The

real payments are composed by the first order payments and an additional payment

stream B̃ called the dividends, i.e.

B = B̂ + B̃. (3.6)

Note that both B̂ and B̃ are payments to the insurance company such that e.g.

dividend payments to the policy holder will appear with a minus sign in B̃. We

want to work within the framework of Section 3.2, and we are therefore interested in

index-linked dividends. The index to which dividends are linked may be the same as

the one to which the first order payments are linked. However, we may also augment

this index with further state variables.

The formulas of Theorem 1 then read the real martingale measure constraint,

the real Thiele’s differential equation, the real expected value representation, and

the real equivalence relationships. If the dividends are designed in such a way that

the contract B is arbitrage free, i.e. the real equivalence relation holds, we shall

simply say that the dividends are arbitrage free. We shall be interested in designing

the dividends in such a manner that they are index-linked and arbitrage free.

The dividends rectify a possible imbalance between the first order basis and the
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real basis in the sense that we get from putting (3.6) into (3.3) and (3.4),

EQ

(∫ T

0−

1

Z0
t

dB̃t

)
= −EQ

(∫ T

0−

1

Z0
t

dB̂t

)
. (3.7)

The sign of EQ
(∫ T

0−
1

Z0
t
dB̂t

)
decides whether an insurance contract has positive or

negative dividends in expectation. In particular, if the real basis is used as first order

basis, then the expected dividends become zero. In this case, the dividends given

by B̃ = 0 would, obviously, be arbitrage free, and the unrevised contract would be

the appropriate name for this particular construction.

In participating life insurance the dividends are restricted to be to the policy

holder’s advantage, i.e. B̃ must be a non-increasing process with B̃0 ≤ 0. From (3.7)

it is seen that there will exist arbitrage free dividend plans to the policy holder’s

advantage only if

EQ

(∫ T

0−

1

Z0
t

dB̂t

)
≥ 0. (3.8)

On the other hand, if (3.8) is fulfilled, an arbitrage free dividend plan can easily

be devised. We conclude that (3.8) is a necessary and sufficient condition on the

relation between the first order basis and the real basis for existence of an arbitrage

free dividend plan. The interpretation is that the insurance company cannot come

up with dividends to the policy holder’s advantage arbitrage freely if the first order

payments are to the policy holder’s advantage in the first place. But if the first

order payments are to the policy holder’s disadvantage, there will exist a continuum

of arbitrage free dividend plans.

3.3.3 A delicate decision problem

When designing a life insurance product we face a delicate decision problem. First

of all, we have to decide on a first order basis. Given this first order basis, we need to

decide on a dividend plan such that the insurance contract becomes arbitrage free.

One can think of many dividend plans, some of them rather obscure. To mention

a few, one could e.g. pay out B̃0 = −EQ
(∫ T

0−
1

Z0
t
dB̂t

)
as a deterministic lump sum

payment at time 0 and thereby finish the revision of payments at time of issue. If the

policy holder does not find this plan appealing, one could simply toss a coin to see

whether the policy holder should receive a deterministic lump sum at time 0 or not.

The size of the lump sum would depend on the market’s attitude to toss-up. Note

that this toss-up example describes a special case where F0 is not trivial. Usually,

however, the policy holder is more interested in gambling on the financial market.

We shall see how this can be obtained by letting some indices represent accounts

that are invested on the market. Given such a construction, also the underlying

investment strategy becomes a part of the decision problem.

We want to design products which in these decision aspects imitate the manager

of a life insurance company. The problem is to come up with an appropriate index
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which, on the one hand, contains the information on which the manager bases the

decisions and, on the other hand, is mathematical tractable, i.e. not dependent on

”too many” state variables. We shall in the succeeding section study thoroughly the

notion of surplus since this seems to be the all-important piece of information on

which the manager bases the decisions concerning dividends. The surplus introduced

in the succeeding section depends on the technical basis. Hereby determination of

dividends is added to the list of operations for which a technical basis must be

specified.

The decision is made subject to two basic constraints. Firstly, we have the

arbitrage condition

V0− = 0,

which appropriately could be called the market constraint. Secondly, we have the

legislative constraints. They could e.g. simply put bounds on the first order rate

of interest. More interesting are possible constraints on the relation between the

dividends and the surplus. If such a relation is included in the legislative constraints,

it is of course important that the insurance company and the supervisory authorities

agree upon what surplus is and, possibly, on which technical basis it should be based.

3.3.4 Main example

We shall work with a simple insurance contract as an illustration. The insurance

contract is a single life endowment insurance with a sum insured of 1 and a constant

premium π paid as long as the insured is alive. The insurance contract is introduced

on the Black-Scholes market defined below by coefficients of S0 and S2. Let X be

the two-state process defined by Xt = 0 if the insured is alive at time t, Xt = 1 if the

insured is dead at time t, and X0 = 0. Since state 2 is absorbing, we need only one

counting process N1 counting the number of deaths, and for notational convenience

we skip the topscript 1. Assume that the intensity of N is given by µt = µ (t, Xt),

let the first order intensity of N be given by µ̂t = (1 + ĝ)µt for some constant ĝ,

and let r̂ be a constant first order rate of interest. The first order diffusion kernel ĥ

plays no role and can be chosen arbitrarily.

We define S by

αt βt σt s0

S0 rS0
t 0 0 1

S1 0 1− S1
t 0 0

S2 αS2
t 0 σS2

t S2
0

where r, α, and σ are constant, and let Z =

[
S0

S2

]
.

Theorem 1 states that (g, h) should be chosen subject to

αS2
t + σS2

t ht − rS2
t = 0,
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implying that

h =
r − α
σ

.

The market contains no information on the price of mortality risk, and we fix a

martingale measure by assuming risk neutrality with respect to mortality risk, i.e.

g = 0.

This example will serve to illustrate the contents of each of the succeeding sec-

tions. Throughout the example we will only consider the state-wise quantities (re-

serve, surplus, contributions, etc. all to be defined below) for S1
t = 0, i.e. the policy

holder being alive. For notational convenience we will then skip the explicit depen-

dence on this state variable in the formulas, i.e. V̂t ≡ V̂ (t, 0), µ̂t = µ̂ (t, 0) . The

system of deterministic differential equations for the reserve can then be written

∂tV̂t = π + r̂V̂t −
(
1− V̂t

)
µ̂t,

V̂T− = 1,

and π is determined by

V̂0 = 0.

3.4 The notion of surplus

3.4.1 The investment strategy

The insurance company receives payments in accordance with the insurance contract

B, and we assume that these are currently deposited on/drawn from an account

which is invested in a portfolio with positive value process U , generated by a self-

financing investment strategy θ ∈ Rn+1, i.e.

Ut = θt · Zt =
n∑

i=0

θi
tZ

i
t > 0,

dUt = θt · dZt.

The strategy is furthermore assumed to comply with whatever institutional require-

ments there may be. Throughout this chapter one can think of θ as the strategy

corresponding to a constant relative portfolio, i.e. a strategy θ such that for a

constant (n+ 1)-dimensional vector γ, θi
tZ

i
t− = γiUt−, i = 0, . . . , n. This strategy

reflects an investment profile possibly restricted by the supervising authorities, e.g.

such that θi is non-negative for all i if short-selling is not allowed. We emphasize that

θ, in general, is not a strategy aiming at hedging some contingent claim. Introduce

αU
t , βU

t , and σU
t such that

dUt = Utα
U
t dt+ Ut−β

U
t−dMt + Utσ

U
t dWt.
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3.4.2 The retrospective surplus

We define the retrospective surplus
←−
F ∗t corresponding to a technical basis (r∗, g∗, h∗)

by

←−
F ∗0− = 0,
←−
F ∗t = Lt − V ∗t , t ≥ 0,

where

Lt = Ut

∫ t

0−

1

Us
dBs.

The real equivalence principle can be expressed in terms of the discounted retrospec-

tive surplus at time T : Using that U
Z0 is a Q-martingale, one can show that (3.4) is

equivalent to (see also (2.14))

EQ

(←−
F ∗T
Z0

T

)
= 0. (3.9)

Using Ito’s formula on
←−
F ∗t , we get

d
←−
F ∗t = dLt − dV ∗t

= bctdt− bdt−dNt + Lt−
dUt

Ut−
−
(
∂tV

∗
t + (∂sV

∗
t )T αt + ψ∗t

)
dt

−
(
V ∗Jt− − V ∗1×J

t−
)
dNt − (∂sV

∗
t )T σtdWt.

Subtraction of the technical Thiele’s differential equation and some rearrangements

give the form

d
←−
F ∗t =

←−
F ∗t−

(
αU

t dt+ βU
t−dMt + σU

t dWt

)
(3.10)

+
((
αU

t − r∗t
)
V ∗t + (∂sV

∗
t )T σth

∗
t +R∗t diag (g∗t )µt

)
dt

+
(
V ∗t σ

U
t − (∂sV

∗
t )T σt

)
dWt +

(
V ∗t−β

U
t− −R∗t−

)
dMt + dB̃t.

It can now be shown, by Ito’s formula, that
←−
F ∗t can be written in the form

←−
F ∗t =

∫ t

0−

Ut

Us

(
d
(
C∗s + B̃s

)
− σ∗sσU

s ds
)
, (3.11)

where C∗ is a process defined by

C∗0 = B̂0 − V ∗0 ,

dC∗t = α∗tdt+ β∗t−dMt + σ∗tdWt, t > 0, (3.12)

with

α∗t =
(
αU

t − r∗t
)
V ∗t + (∂sV

∗
t )T σS

t h
∗
t +R∗tdiag (g∗t )µt,

β∗t = V ∗t β
U
t −R∗t ,

σ∗t = V ∗t σ
U
t − (∂sV

∗
t )T σS

t .
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The term σ∗tσ
U
t dt in (3.11) is a correction term stemming from the correlation be-

tween the increment of dUt and the increment of dC∗t .

Apart from the term dB̃t, (3.10) and (3.12) are written in semimartingale form

under the measure P . Since (3.9) is a relation under the measure Q, we shall derive

a corresponding semimartingale form under Q,

d
←−
F ∗t =

←−
F ∗t−

(
rtdt+ βU

t−dM
Q
t + σU

t dW
Q
t

)
(3.13)

+
(
(rt − r∗t )V ∗t + (∂sV

∗
t )T σt (h

∗
t − ht) +R∗t diag (g∗t − gt)µt

)
dt

+
(
V ∗t σ

U
t − (∂sV

∗
t )T σt

)
dWQ

t +
(
V ∗t−β

U
t− − R∗t−

)
dMQ

t + dB̃t,

and

dC∗t = α∗Qt dt+ β∗t−dM
Q
t + σ∗tdW

Q
t ,

with

α∗Qt = (rt − r∗t )V ∗t + (∂sV
∗
t )T σt (h

∗
t − ht) +R∗t diag (g∗t − gt)µt. (3.14)

Allowing, for a moment, of diffusion payments, we note that the retrospective

surplus can be considered as the retrospective reserve of an insurance contract with

payments given by C∗ + B̃ minus the correction term
∫
σ∗sσ

U
s ds. An appealing

interpretation of this payment process is to consider the process C∗ as the premium

payments, in general positive or negative, and the process B̃ as the benefit process,

in general positive or negative. The correction term comes from the correlation

between payments and investment gains. The payments of this contract start out

with a lump sum payment at time 0 of C∗0 + B̃0 = B0−V ∗0 and develop according to

dC∗ and dB̃, including a lump sum payment at time T of ∆B̃T . The relation (3.9)

is simply an equivalence relation for this contract.

3.4.3 The prospective surplus

We define the prospective surplus
−→
F ∗t corresponding to a technical basis (r∗, g∗, h∗)

by

−→
F ∗t = Vt − V ∗t , t ≥ 0,
−→
F ∗0− = 0, (3.15)

Using Ito’s formula on
−→
F ∗t , we get

d
−→
F ∗t = (∂tVt + ∂sVtαt + ψt) dt+

(
V Jt− − V 1×J

t−
)
dNt + (∂sVt)

T σtdWt

− (∂tV
∗
t + ∂sV

∗
t αt + ψ∗t ) dt−

(
V ∗Jt− − V ∗1×J

t−
)
dNt − (∂sV

∗
t )T σtdWt.

Now, a subtraction of the real Thiele’s differential equation, an addition of the
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technical Thiele’s differential equation, and some rearrangements give the form

d
−→
F ∗t = rt

−→
F ∗tdt (3.16)

+
(
(rt − r∗t )V ∗t +

(
(∂sV

∗
t )T σth

∗
t − (∂sVt)

T σtht

))
dt

+ (R∗t diag (g∗t )− Rtdiag (gt))µtdt

− (∂sV
∗
t − ∂sVt)

T σtdWt −
(
R∗t− −Rt−

)
dMt + dB̃t.

Apart from the term dB̃t, (3.16) is written on semimartingale form under the mea-

sure P . To compare with the dynamics of the retrospective surplus, we shall also

derive the semimartingale form under the measure Q,

d
−→
F ∗t = rt

−→
F ∗tdt (3.17)

+
(
(rt − r∗t )V ∗t + (∂sV

∗
t )T σt (h

∗
t − ht) +R∗t diag (g∗t − gt)µt

)
dt

+ (∂sVt − ∂sV
∗
t )T σtdW

Q
t +

(
Rt− − R∗t−

)
dMQ

t + dB̃t.

Since Ft =
←−
F ∗t−

−→
F ∗t , we know that

←−
F ∗

t−
−→
F ∗

t

Z0
t

is an FS
t -martingale under the measure

Q (see Chapter 2). Writing the retrospective surplus in the form (3.11), this can

be used to derive an appealing representation of the prospective surplus. It follows

that
←−
F ∗t −

−→
F ∗t

Z0
t

= EQ

(←−
F ∗T
Z0

T

∣∣∣∣∣F
S
t

)

= EQ

(
1

Z0
T

∫ t

0−

UT

Us

(
d
(
C∗s + B̃s

)
− σ∗sσU

s ds
)∣∣∣∣F

S
t

)

+EQ

(
1

Z0
T

∫ T

t

UT

Us

(
d
(
C∗s + B̃s

)
− σ∗sσU

s ds
)∣∣∣∣F

S
t

)

= EQ

(
UT

Z0
T

∣∣∣∣F
S
t

)∫ t

0−

1

Us

(
d
(
C∗s + B̃s

)
− σ∗sσU

s ds
)

+

∫ T

t

EQ

(
1

Us

(
d
(
C∗s + B̃s

)
− σ∗sσU

s ds
)
EQ

(
UT

Z0
T

∣∣∣∣F
S
s

)∣∣∣∣F
S
t

)

=
Ut

Z0
t

∫ t

0−

1

Us

(
d
(
C∗s + B̃s

)
− σ∗sσU

s ds
)

+

∫ T

t

EQ

(
1

Us
d
(
C∗s + B̃s

) Us

Z0
s

∣∣∣∣F
S
t

)
(3.18)

=

←−
F ∗t
Z0

t

+ EQ

(∫ T

t

1

Z0
s

d
(
C∗s + B̃s

)∣∣∣∣F
S
t

)
,

and we get the following representation of the prospective surplus

−→
F ∗t = EQ

(
Z0

t

∫ T

t

1

Z0
s

d
(
−C∗s − B̃s

)∣∣∣∣F
S
t

)
. (3.19)

In (3.18) the correction term has disappeared since we work with Ito-integrals which

are based on forward increments.
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This shows that the prospective surplus can be considered as the prospective

reserve of an insurance contract with payments given by C∗+B̃ (allowing for diffusion

payments) and (3.15) is simply the prospective equivalence relation of this contract.

A deterministic differential equation for the state-wise prospective surplus can

be obtained in the same way as for the prospective reserve in Chapter 2. The only

extension is the allowance for diffusion payments. Upon introducing

−→
F ∗Jt = V

(
t, St + β ·jt

)
− V ∗

(
t, St + β ·jt

)
,

−→
R ∗t = b̃dt +

−→
F ∗Jt −

−→
F ∗1×J

t ,
−→
ψ ∗t =

1

2
tr
(
σT

t ∂ss
−→
F ∗tσt

)
,

−→
F ∗t solves the differential equation

∂t

−→
F ∗t = α∗Qt + b̃ct + rt

−→
F ∗t −

(
∂s

−→
F ∗t

)T

(αt + σtht) (3.20)

−−→R ∗tdiag
(
1J×1 + gt

)
µt −

−→
ψ ∗t ,

FT− = ∆B̃T .

As an alternative to the real Thiele’s differential equation and the real equivalence

relation, (3.20) may be used together with the equivalence relation (3.15) to deter-

mine an arbitrage free dividend plan.

3.4.4 Two important cases

We now specify the dynamics of the retrospective and the prospective surplus in

the cases where the technical basis coincides with the first order basis and the real

basis, respectively.

If the technical basis equals the first order basis, i.e. (r∗, g∗, h∗) = (r̂, ĝ, ĥ),

we get from (3.13), (3.14), and (3.17),

d
←−
F ∗t = rt

←−
F ∗tdt+

(
dUt

Ut−
− rtdt

)(←−
F ∗t− + V̂t−

)

+α̂Q
t dt− (∂sV

∗
t )T σtdW

Q
t − R∗t−dMQ

t + dB̃t,

d
−→
F ∗t = rt

−→
F ∗tdt (3.21)

+α̂Q
t dt+

(
∂sVt − ∂sV̂t

)T

σtdW
Q
t +

(
Rt− − R̂t−

)
dMQ

t + dB̃t,

α̂Q
t = (rt − r̂t) V̂t +

(
∂sV̂t

)T

σt

(
ĥt − ht

)
+ R̂tdiag (ĝt − gt)µt.

We have that C∗0 = B̂0 − V̂0, i.e. E [C∗0 ] = 0. Interpreting C∗ as a premium process

corresponding to the benefit process B̃, this means that there is no systematic single

premium paid at time 0. All systematic premiums of the insurance contract C∗+ B̃

fall due during (0, T ).
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If the technical basis equals the real basis, i.e. (r∗, g∗, h∗) = (r, g, h), we get

from (3.13), (3.14), and (3.17),

d
←−
F ∗t = rt

←−
F ∗tdt+

(
dUt

Ut−
− rtdt

)(←−
F ∗t− + V ∗t−

)

− (∂sV
∗
t )T σtdW

Q
t − R∗t−dMQ

t + dB̃t,

d
−→
F ∗t = rt

−→
F ∗tdt

+ (∂sVt − ∂sV
∗
t )T σtdW

Q
t +

(
Rt− −R∗t−

)
dMQ

t + dB̃t.

We have that C∗0 = B̂0 − V ∗0 , i.e. E [C∗0 ] = EQ
(∫ T

0−
1

Z0
t
dB̂t

)
. Interpreting C∗ as a

premium process corresponding to the benefit process B̃, this means that there is

a systematic single premium of EQ
(∫ T

0−
1

Z0
t
dB̂t

)
at time 0. On the other hand, no

systematic premiums fall due during (0, T ).

By subtraction of (3.16) from (3.10) and subtraction of (3.17) from (3.13), we

get the P and Q dynamics of F , derived also in Chapter 2,

dFt = rtFtdt+

(
dUt

Ut−
− rtdt

)
(Ft− + Vt−)

+ (∂sVt)
T σthtdt+Rtdiag (gt)µtdt

− (∂sVt)
T σtdWt −Rt−dMt

= rtFtdt+
(
σU

t (Ft + Vt)− (∂sVt)
T σt

)
dWQ

t

+
(
(Ft− + Vt−) βU

t− − Rt−
)
dMQ

t .

The dynamics of F is, of course, independent of the technical basis. However, it

is interesting to see how the increments of F for a given technical basis split into

increments of the retrospective and the negative prospective surplus (the first column

of F increments is the sum of the second column of
←−
F ∗ increments and the third

column of minus
−→
F ∗ increments):

rtFtdt rt
←−
F ∗tdt −rt

−→
F ∗tdt

+
(

dUt

Ut−
− rtdt

)
(Ft− + Vt−) +

(
dUt

Ut−
− rtdt

)(←−
F ∗t− + V ∗t−

)
+0

− (∂sVt)
T σtdWt − (∂sV

∗
t )T σtdWt − (∂sVt − ∂sV

∗
t )T σtdWt

−Rt−dMt −R∗t−dMt −
(
Rt− − R∗t−

)
dMt

+0 +α∗t + dB̃t −
(
α∗t + dB̃t

)

dFt d
←−
F ∗t d

−→
F ∗t

Note, in particular, from the second line that possible risky investments influence

only the retrospective surplus and not the prospective surplus.

3.4.5 Main example continued

Let γ be the constant relative portfolio of risky assets corresponding to the invest-

ment strategy θ, i.e. θ2
tS

2
t = γUt and θ0

tS
0
t = (1− γ)Ut. Then the dynamics of U
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becomes

dUt = (r + γ (α− r))Utdt+ γσUtdWt.

In the rest of our example we consider the case where the first order basis is

chosen as technical basis and, for notational convenience, we skip the topscript ”∗”
on
←−
F ∗t and

−→
F ∗t . We get from (3.21),

d
←−
F t = r

←−
F tdt+ (γ (α− r) dt+ γσdW )

(←−
F t + V̂t

)

+α̂tdt−
(
1− V̂t−

)
dMt + dB̃t,

d
−→
F t = r

−→
F tdt+ α̂tdt+

(
V̂t− − b̃dt− − Vt−

)
dMt + dB̃t,

α̂t = (r − r̂) V̂t +
(
1− V̂t

)
(µ̂t − µt) .

3.5 Dividends

3.5.1 The contribution plan and the second order basis

We start this section by considering a simple dividend plan, called the contribution

plan. It plays an important role in the definition of a notion from participating life in-

surance, the second order basis. The contribution plan amounts to arranging B̃ such

that the discounted retrospective surplus
←−
F ∗

t

Z0
t

becomes a zero mean Q-martingale,

i.e.

B̃0 = V ∗0−,

b̃ct − b̃dt diag
(
1J×1 + gt

)
µt = −α∗Qt . (3.22)

Since all terms of α∗Qt are functions of (t, St), the contribution plan is index-linked.

Furthermore, since EQ
(←−

F ∗

T

Z0
T

)
= 0, the contribution plan is arbitrage free by con-

struction. Note that also the discounted prospective surplus
−→
F ∗

t

Z0
t

is a zero mean

Q-martingale under the contribution plan.

The equation (3.22) is actually one equation with two free parameters to be

chosen, b̃ct and b̃dt , and we have a whole set of contribution plans. Usually, the

contribution plan is considered as the special case where b̃dt = 0, i.e.

b̃ct = −
(
(rt − r∗t )V ∗t + (∂sV

∗
t )T σt (h

∗
t − ht) +R∗t diag (g∗t − gt)µt

)
. (3.23)

If, for a given dividend plan B̃ (not necessarily the contribution plan) there exists

a vector (r̃, g̃, h̃) such that (3.23) holds with (r, g, h) replaced by (r̃, g̃, h̃) we call

(r̃, g̃, h̃) the second order basis. This means that the second order basis for a given

dividend plan is the basis which, playing the role as real basis, turns the dividend

plan into the contribution plan. It is seen that the basis (r, g, h) candidates to the

second order basis only if the insurance contract actually follows the contribution
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plan. If the contract does not follow the contribution plan, i.e. if (3.23) is not

fulfilled, then the real basis (r, g, h) does not candidate to the second order basis.

The word candidate is appropriate here, since even if the insurance company actually

follows the contribution plan, b̃t can be obtained from (3.23) with other bases (r̃, g̃, h̃)

than (r, g, h) ((3.23) is in this connection one equation with three free parameters,

r̃, g̃, and h̃). This recognition of the second order basis as a decision variable has

to our knowledge not, previously, been described in the literature, although it is

well-known in practice. Sometimes the triplet of bases is completed by naming the

real basis the third order basis.

In Section 3.3 it was realized that there will exist arbitrage free dividend plans

to the policy holder’s advantage if and only if

EQ

(∫ T

0−

1

Z0
t

dB̂t

)
≥ 0.

In the actuarial literature on participating life insurance one normally works with

the much stricter requirement that, in particular, the contribution plan has to be

arbitrage free and to the policy holder’s advantage. This can be obtained if

−V ∗0− ≥ 0,

α∗Qt ≥ 0.

One way of achieving α∗Qt ≥ 0 is by having all the components of α∗Qt greater or

equal to zero, i.e.

(rt − r∗t )V ∗t ≥ 0,

R∗t diag (g∗t − gt)µt ≥ 0,

(∂sV
∗
t )T σt (h∗t − ht) ≥ 0.

These are well-known relations (perhaps except for the last one which is a conse-

quence of our diffusion type of indices), although they take different forms and are

established differently in other expositions (e.g. Norberg [53] and Sverdrup [67]).

3.5.2 Surplus-linked insurance

The apparently appealing contribution plan has considerable drawbacks in our

framework. Here we refer to the fact that, under the contribution plan, the pol-

icy holder does not participate in the game of investment. The contribution plan

leads to the same dividends independently of the investment strategy underlying

U , namely the dividends corresponding to pure investment in the risk-free asset. In

some actuarial literature on surplus (e.g. Norberg [53] and Ramlau-Hansen [59]) only

the possibility of investment in the risk-free asset has been taken into consideration.

Consequently, the drawbacks of the contribution plan are not brought to the surface

there. In practice the insurance companies hold large positions in risky assets, and

an important issue of this chapter is to integrate this circumstance.



62 CHAPTER 3. CONTINGENT CLAIMS ANALYSIS

We propose another plan which we shall call the surplus-linked dividend plan.

We add the retrospective surplus and the prospective surplus to the index and let

the dividend plan be linked to this augmented index. It is clear from Section 3.4

that the augmented index is really an index since both the retrospective and the

prospective surplus possess the dynamics of an index and the coefficients appearing

in them are functions of (t, St).

We now proceed to specify the functional dependence of the dividends on the

retrospective surplus and the prospective surplus. One can think of various con-

structions, but we shall go directly to a continuous affine form given by

B̃0 = 0,

b̃dt = 0,

b̃ct = −
(
pt + qt

←−
F ∗t

)
or b̃ct = −

(
pt + qt

−→
F ∗t

)
, (3.24)

∆B̃T = 0,

where pt and qt are specified functions of (t, St). In the case of participating life

insurance (3.24) should be modified such that b̃ct ≤ 0, e.g. by

b̃ct = −
(
pt + qt

←−
F ∗t

)+

or b̃ct = −
(
pt + qt

−→
F ∗t

)+

. (3.25)

Here the option structure of products in participating life insurance can be recog-

nized. We shall refer to the form in (3.24) as the pension funding form and the form

in (3.25) as the participating life insurance form.

There is a variety of candidates for the functions pt and qt. A simple form

would be to let pt and qt be deterministic functions. Other examples are qt =
q′t
V ∗

t

or qt =
q′t

R∗
t µt

, q′t being a deterministic function. Hereby we measure the surplus

per technical reserve or per sum at risk. Such formulations could be motivated by

solvency regulations.

As mentioned in Section 3.4, only the retrospective surplus (not the prospective

surplus) is affected by risky investments. Thus, only dividends linked to the retro-

spective surplus amend the drawback of the contribution plan as mentioned above.

Nevertheless, we propose also dividends linked to the prospective reserve for two

reasons. Firstly, it makes the account more coherent. Secondly, it has some nice

features from a mathematical point of view as we shall see below.

3.5.3 Main example continued

First we consider dividends linked to the retrospective surplus. Assume that

the dividend plan specifies that
(
p+ q

←−
F t

)+

, for constants p and q, is paid out as

long as the insured is alive, i.e.

b̃t = −
(
p+ q

←−
F t

)+

1(S1
t =0). (3.26)
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The dynamics of the retrospective surplus becomes

d
←−
F t = r

←−
F tdt+ (γ (α− r) dt+ γσdW )

(←−
F t + V̂t

)
+ α̂tdt

−
(
1− V̂t−

)
dMt −

(
p + q

←−
F t

)+

1(S1
t =0)dt.

The deterministic differential equation and terminal condition for the reserve is

given by (Vt = V (t, 0, f))

∂tVt = π − (p+ qf)+ + rVt − (1− Vt)µt (3.27)

−dfVt

(
rf − (p + qf)+ + α̂t +

(
1− V̂t

)
µt

)

−1

2
γ2σ2

(
f + V̂t

)2

dffVt,

VT− = 1.

In order to have arbitrage free dividends, (p, q) are to be determined subject to the

equivalence relation

V0 = 0.

We have no general analytical solution for the differential equation (3.27) and

must resort to a numerical solution. However, an analytical solution can be obtained

in the pension funding case where the topscript + in (3.26) is skipped. We get the

differential equation (Vt = V (t, 0, f)),

∂tVt = π − p− qf + rVt − (1− Vt)µt

−dfVt

(
rf − p− qf + α̂t +

(
1− V̂t

)
µt

)

−1

2
γ2σ2

(
f + V̂t

)2

dffVt,

VT− = 1.

We guess a solution in the form Vt = Xt + fYt, and find that the functions X and

Y solve

∂tXt = π − p+ rXt − µt (1− Xt) +
(
p− α̂t −

(
1− V̂t

)
µt

)
Yt,

XT− = 1,

∂tYt = −q + (µt + q)Yt,

YT− = 0,

leading to

Yt = q

∫ T

t

e−
R τ
t (µs+q)dsdτ,

Xt =

∫ T

t

e−
R τ
t (r+µs)dsHτdτ + e−

R T
t (r+µs)ds,

where

Ht = −π + p+ µt −
(
p− α̂t −

(
1− V̂t

)
µt

)
Yt.
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Now we consider dividends linked to the prospective surplus. Assume that

the dividend plan specifies that
(
p+ q

−→
F t

)+

, for constants p and q, is paid out as

long as the insured is alive, i.e.

b̃t = −
(
p+ q

−→
F t

)+

1(S1
t =0). (3.28)

The dynamics of the prospective surplus becomes

d
−→
F t = r

−→
F tdt+ α̂tdt+

(
V̂t− − Vt−

)
dMt −

(
p+ q

−→
F t

)+

1(S1
t =0)dt,

One tool is the deterministic differential equation and terminal condition for the

reserve given by Theorem 1, (Vt = V (t, 0)) ,

∂tVt = π −
(
p+ q

(
Vt − V̂t

))+

+ rVt − (1− Vt)µt, (3.29)

VT− = 1.

In order to have arbitrage free dividends, (p, q) are to be determined subject to the

equivalence relation

V0 = 0.

In the pension funding case without topscript + in (3.28) we get the differential

equation,

∂tVt = π − p− q
(
Vt − V̂t

)
+ rVt − (1− Vt)µt,

VT− = 1.

leading to the solution

Vt =

∫ T

t

e−
R τ
t (r+µs−q)ds

(
−π + p− qV̂τ + µτ

)
dτ. (3.30)

Another tool is the deterministic differential equation and terminal condition for

the prospective surplus, (3.20),
(−→
F t =

−→
F (t, 0)

)
,

∂t
−→
F t = r

−→
F t + α̂t −

(
p+ q

−→
F t

)+

+
−→
F tµt, (3.31)

−→
F (T−, 1) = 0.

In order to have arbitrage free dividends, (p, q) are to be determined subject to the

equivalence relation −→
F 0 = 0.

In the pension funding case without topscript + in (3.28) we get the differential

equation,

∂t

−→
F t = (r + µt − q)

−→
F t + α̂t − p,−→

F T− = 0.
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leading to
−→
F t =

∫ T

t

e−
R τ
t

(r+µs−q)ds (−α̂τ + p) dτ. (3.32)

The two methods building on the deterministic differential equations for the

reserve and for the prospective surplus, respectively, should lead to the same set of

arbitrage free dividends. It is left to the reader to verify that for V and
−→
F given

by (3.30) and (3.32) we get V0 =
−→
F 0 (use integration by parts and the first order

Thiele’s differential equation).

3.6 Bonus

3.6.1 Cash bonus versus additional insurance

Once payments of dividends have been determined, these are credited to the policy

holder’s account. This happens in basically two ways. Dividends are either paid out

immediately or used as single premiums in insurance contracts and thus converted

into a stream of future payments. If dividends are paid out immediately we speak

of cash bonus and if dividends are used as single premiums we speak of additional

insurance. Additional insurance can take various forms depending on the insurance

contracts added during the term of the original contract. In Sections 3.6.2 and 3.6.3

we shall pay attention to two schemes of additional insurance called terminal bonus

without guarantee and additional first order payments.

We endow all quantities related to the insurance contract initiated at time s with

a topscript s, denoting e.g. by V 0
t and V s

t the reserves at time t for the insurance

contracts initiated at time 0 and time s, respectively. A quantity without superscript

covers a sum of the corresponding quantities related to insurance contracts initiated

in the past, e.g.

Vt =

∫ t

0−
V ds

t .

The notation is apt for working with general dividend plans not necessarily abso-

lutely continuous. The circumstance that the dividend paid at time t is used as

single premium of an insurance contract initiated at time t can be written

dB̃t = −B̂dt
t , (3.33)

from which we get

dBt = dB̂t + dB̃t

= d

(∫ t

0−
B̂ds

t

)
+ dB̃t

= B̂dt
t +

∫ t−

0−
dB̂ds

t + dB̃t

=

∫ t−

0−
dB̂ds

t .
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This relation states that the payments at time t paid from the policy holder consists

of all first order payments related to contracts initiated over [0, t), including the

original set of first order payments initiated at time 0.

3.6.2 Terminal bonus without guarantee

We consider a bonus plan which is usually not classified as additional insurance but

rather as opposed to additional insurance. However, terminal bonus without guaran-

tee can actually be considered as additional insurance with the benefits linked to the

retrospective reserves. Payments linked to retrospective reserves can be considered

as index-linked, since the retrospective reserve has index dynamics and all coeffi-

cients appearing in the retrospective reserve are dependent on (t, St). This makes

it possible to formulate such pure saving contracts as special cases of insurance

contracts.

For s < T the dividends are used as single premiums on insurance contracts

paying out the retrospective reserve at time T , i.e.

dB̂ds
t = −Lds

t−d1(t≥T ).

Then

dBt =

∫ t−

0−
dB̂ds

t

= dB̂0
t +

∫ t−

0

dB̂ds
t

= dB̂0
t −

∫ t−

0

Lds
t−d1(t≥T )

= dB̂0
t − d1(t≥T )

∫ t−

0

Lds
t−

= dB̂0
t − d1(t≥T )

∫ t−

0

Ut−
Us

B̂ds
s

= dB̂0
t + d1(t≥T )

∫ t−

0

Ut−
Us

dB̃s.

Thus in addition to the first order payments, the policy holder simply receives at

time T the value of past dividends including capital gains.

3.6.3 Additional first order payments

We consider a bonus plan increasing/decreasing the future payments proportionally

to the first order payments contracted at time 0.

For s < T the dividends are used as single premiums on insurance contracts

paying out future payments of the original contract times a proportionality factor

dKs, i.e.

dB̂ds
t = dKsdB̂

0
t .



3.6. BONUS 67

Variants of such a dividend plan are obtained by linking the payments of the addi-

tional insurance contracts to positive or negative payments (premiums or benefits)

of the original contract only. The following results are easily carried over to such

constructions. The distinction between additional premiums and additional benefits

relates to the distinction between defined benefits or defined contributions, respec-

tively, in pension funding. In the particular case of the contribution plan, the con-

struction with additional benefits was studied in Norberg [53] and Ramlau-Hansen

[59]. Then B̃ and K are absolutely continuous. We work with general dividend

plans and obtain thereby generalized results. Firstly,

dBt =

∫ t−

0−
dB̂ds

t

= dB̂0
t +

∫ t−

0

dB̂ds
t

= dB̂0
t +

∫ t−

0

dKsdB̂
0
t

= (1 +Kt−) dB̂0
t .

We conclude from this that payments are index-linked if K can be added to the

index. We shall now derive the dynamics of K and see that in case of e.g. surplus-

linked insurance this is in fact so.

We have

V ∗ds
t = EQ∗

(∫ T

t

Z∗t
Z∗u
d
(
−B̂ds

u

)∣∣∣∣Ft

)

= EQ∗

(∫ T

t

Z∗t
Z∗u
d
(
−dKsB̂

0
u

)∣∣∣∣Ft

)

= dKsE
Q∗

(∫ T

t

Z∗t
Z∗u
d
(
−B̂0

u

)∣∣∣∣Ft

)

= dKsV
∗0
t , (3.34)

and in particular,

V̂ dt
t = dKtV̂

0
t . (3.35)

According to the first order equivalence relation exercised on the contract initiated

at time t we have

V̂ dt
t = B̂dt

t , (3.36)

and from (3.35), (3.36) and (3.33) we find

dKt =
V̂ dt

t

V̂ 0
t

=
−dB̃t

V̂ 0
t

. (3.37)

From (3.34) we have that V ∗t = (1 +Kt)V
∗0
t , and it can then be shown that the
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dynamics of the retrospective surplus are given by

d
←−
F ∗t = dC∗t + dB̃t +

←−
F ∗t−

dUt

Ut−

= (1 +Kt−) dC∗0t + dB̃t +
←−
F ∗t−

dUt

Ut−
. (3.38)

We know that all terms of dC∗0t are functions of (t, St). It is now clear from (3.37)

and (3.38) that we, in the case of retrospective surplus-linked dividends, can work

with the augmented index
(
S,K,

←−
F ∗
)
. Correspondingly, if we consider prospective

surplus-linked dividends, we can work with the augmented index (S,K) .

3.6.4 Main example continued

First we consider dividends linked to the retrospective surplus. Assume that

the dividend plan specifies that
(
p+ q

←−
F t

)+

, for constants p and q, is paid out as

long as the insured is alive, i.e.

b̃t = −
(
p+ q

←−
F t

)+

1(S1
t =1). (3.39)

The dynamics of the retrospective surplus becomes

d
←−
F t = r

←−
F tdt+ (γ (α− r) dt+ γtσdW )

(←−
F t + V̂t

)
+ (1 +Kt) α̂

0
tdt

− (1 +Kt−)
(
1− V̂ 0

t−

)
dMt −

(
p+ q

←−
F t

)+

1(S1
t =1)dt.

The deterministic differential equation and terminal condition for the reserve is

then (Vt = V (t, 0, f, k))

∂tVt = π (1 + k) + rVt − (1 + k − Vt)µt (3.40)

−dfVt

(
rf − (p+ qf)+ + (1 + k)

(
α̂0

t +
(
1− V̂ 0

t

)
µt

))

−dkVt

(
(p+ qf)+

V̂ 0
t

)
− 1

2
γ2σ2

(
f + (1 + k) V̂ 0

t

)2

dffVt,

VT− = 1 + k.

In order to have arbitrage free dividends, (p, q) are to be determined subject to the

equivalence relation

V0 = 0.

We have no general analytical solution for the differential equation (3.40) and

must resort to a numerical solution. However, an analytical solution can be obtained

in the pension funding case where the topscript + in (3.39) is skipped. We get the
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differential equation (Vt = V (t, 0, f, k)),

∂tVt = π (1 + k) + rVt − (1 + k − Vt)µt

−dfVt

(
rf − p− qf + (1 + k)

(
α̂0

t +
(
1− V̂ 0

t

)
µt

))

−dkVt

(
p+ qf

V̂ 0
t

)
− 1

2
γ2σ2

(
f + (1 + k) V̂ 0

t

)2

dffVt,

VT− = 1 + k.

We guess a solution in the form Vt = Xt + fYt + kZt, and find that the functions

X , Y , and Z solve

∂tXt = π + rXt − µt (1−Xt)

+
(
p− α̂0

t −
(
1− V̂ 0

t

)
µt

)
Yt −

p

V̂ 0
t

Zt,

XT− = 1,

∂tYt = (µt + q)Yt −
q

V̂ 0
t

Zt,

YT− = 0,

∂tZt = π + rZt − µt (1− Zt)−
(
α̂0

t +
(
1− V̂ 0

t

)
µt

)
Yt,

ZT− = 1,

leading to

Xt =

∫ T

t

e−
R τ
t

(r+µs)dsHτdτ + e−
R T

t
(r+µs)ds,

[
Yt

Zt

]
=

∫ T

t

e−
R τ
t Asds

[
0

−π + µτ

]
dτ + e−

R T
t Asds

[
0

1

]
,

where

Ht = −
(
p− a0

t −
(
1− V̂ 0

t

)
µt

)
Yt − π + µt +

p

V̂ 0
t

Zt,

At =



µt + q − q

bV 0
t

−
(
α̂0

t +
(
1− V̂ 0

t

)
µt

)
r + µt


 .

Now we consider dividends linked to the prospective reserve. Assume that

the dividend plan specifies that
(
p+ q

−→
F t

)+

, for constants p and q, is paid out as

long as the insured is alive, i.e.

b̃t = −
(
p+ q

−→
F t

)+

1(S1
t =1). (3.41)

The dynamics of the retrospective surplus are given by

d
−→
F t = r

−→
F tdt+ (1 +Kt) α̂

0
tdt+

(
V̂t− − Vt−

)
dMt −

(
p+ q

−→
F t

)+

1(S1
t =1)dt,
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The deterministic differential equation and terminal condition for the prospective

surplus becomes
(−→
F t =

−→
F (t, 0, k)

)

∂t
−→
F t = r

−→
F t + (1 + k) α̂0

t −
(
p+ q

−→
F t

)+

+
−→
F tµt − dk

−→
F t




(
p+ q

−→
F t

)+

V̂ 0
t


 ,

−→
F T− = 0.

In order to have arbitrage free dividends, (p, q) are to be determined subject to the

equivalence relation −→
F 0 = 0.

In the pension funding case without topscript + in (3.41) we get the differential

equation
(−→
F t =

−→
F (t, 0, k)

)
,

∂t
−→
F t = (r + µt − q)

−→
F t + (1 + k) α̂0

t − p− dk
−→
F t




(
p+ q

−→
F t

)

V̂ 0
t


 ,

−→
F T− = 0.

We guess a solution in the form
−→
F t = Xt + kZt, and find that the functions X and

Z solve

∂tXt = α̂0
t − p

(
1 +
Zt

V̂ 0
t

)
+

(
r + µt − q

(
1 +
Zt

V̂ 0
t

))
Xt,

XT− = 0,

∂tZt = α̂0
t + (r + µt − q)Zt −

q

V̂ 0
t

Z2
t , (3.42)

ZT− = 0.

Now we can write the solution

Xt =

∫ T

t

e
−

R τ
t

„
r+µs−q

„
1+ Zs

bV 0
s

««
ds

(
p

(
1 +
Zτ

V̂ 0
τ

)
− α̂0

τ

)
dτ,

where Zt is the solution to the ordinary nonlinear differential equation (3.42).

3.7 A comparison with related literature

3.7.1 The set-up of payments and the financial market

In the classical actuarial set-up of payments (see Hoem [33]), S = (Z0, X) with r

being deterministic. In this set-up, the surplus was studied in Ramlau-Hansen [58].
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Mathematically, it is only a small step to let r depend on X, still linking payments

and intensities to X only (not Z0). However, conceptually, it is a large step since it

is actually the step from working with deterministic financial market modelling to

stochastic financial market modelling. This was done in Norberg [51]. A stochastic

rate of interest was introduced in the analysis of surplus in Norberg [53].

Generalizing the financial market and linking the payments to this financial mar-

ket is a natural step. Conceptually, this is another large step because it opens for an

explicit interaction between the insurance contract and the financial market intro-

ducing financial mathematics as an integrated part of life insurance mathematics.

One way of approaching this interaction is, simply, to assume that the insurance

contract is integrated completely in the financial market and consider it as a dy-

namically traded security itself. This was done in Chapter 2 and is the starting

point for the reserves and surplus as introduced in this chapter.

3.7.2 Prospective versus retrospective

We have here introduced two notions of surplus, the retrospective surplus and the

prospective surplus. This terminology is inherited from the theory of retrospective

and prospective reserves as introduced in Norberg [50]. There the prospective reserve

at time t is defined as the expected present value of benefits minus premiums, i.e.

−B, over (t, T ] conditioned on information formalized by a sigma-algebra Gt ⊆ Ft,

where G is not necessarily a filtration. The retrospective reserve is defined as the

expected present value of premiums minus benefits, i.e. B, over [0, t] conditioned

on Gt. Thus, the two reserves differ in the sign on B and by the time interval over

which B is considered.

Taking Gt = FS
t , we see that Lt is a retrospective reserve and Vt is a prospective

reserve. Thus, the retrospective and the prospective surplus equal the retrospective

and the prospective reserve, respectively, with subtraction of the technical prospec-

tive reserve. We can, in fact, represent the retrospective surplus and the prospective

surplus as expected values themselves,

←−
F ∗t = EQ

(
Lt − V ∗t | FS

t

)
, (3.43)

−→
F ∗t = EQ

(
Vt − V ∗t | FS

t

)
. (3.44)

Furthermore, as was shown in (3.11) and (3.19) the retrospective surplus and the

prospective surplus are, in fact, reserves themselves. The retrospective and prospec-

tive surplus are the retrospective and prospective reserves, respectively, correspond-

ing to the payment process C∗ + B̃.

3.7.3 Surplus

In the traditional approach to emergence of surplus (see Sverdrup [67]), one defines

the contribution to the surplus C as the payment stream in the form, dCt = ctdt,
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fulfilling

V ′t = V ∗t + EQ

(∫ T

t

Z0
t

Z0
u

d (−Cu)

∣∣∣∣St

)
. (3.45)

From the corresponding differential equations one easily gets ct = α∗t . Using that

V ′t = Vt − EQ

(∫ T

t

Z∗t
Z∗u
d
(
−B̃u

)∣∣∣∣St

)
,

(3.45) can be written as

Vt − V ∗t = EQ

(∫ T

t

Zt

Zu

d
(
−Cu − B̃u

)∣∣∣∣St

)
,

and Sverdrup [67] can be said to be based on prospective reasoning. Note that our

prospective surplus does not show up here since we have enforced dCt = ctdt.

In Ramlau-Hansen [58] a realized profit, which corresponds to our retrospective

surplus with B̃ = 0 and (r∗, g∗, h∗) =
(
r̂, ĝ, ĥ

)
, is introduced and studied inten-

sively. Ramlau-Hansen [58] remarks that the realized profit only differs from the

difference between the ”second-order retrospective premium reserve” and the ”first-

order prospective reserve” by a martingale term. Since the second-order retrospec-

tive reserve in Ramlau-Hansen [58] is rather a retrospectively calculated prospective

reserve V̂t (as pointed out in Norberg [50]) and the first-order prospective equals

V ∗, this difference corresponds to our prospective surplus, still with B̃ = 0. Thus,

the remark by Ramlau-Hansen [58] can be seen as consequence of the fact that the

retrospective surplus and the prospective surplus only differ by a martingale term.

This follows immediately from the fact that F
Z0 is a martingale. This is true even

with B̃ = 0, although F
Z0 is no zero-mean martingale then.

In Norberg [53] the surplus is defined as the realized profit in Ramlau-Hansen

[58]. Norberg [53] sets out by deriving ct in (3.45) in the traditional way and obtains

that this equals the systematical contribution to the individual surplus. Again, this

is just a consequence of the fact that F is a martingale and the retrospective and

prospective surplus therefore only differ by a martingale term, even with B̃ = 0.

Finally, consider the special case of our surplus appearing from the set-up of

payments and the financial market considered in Norberg [53]: Invest in Z0 only,

let the payments depend on X only and price, referring to diversifiability, risk to

zero (g = 0). Let the technical basis coincide with the first order basis. Then (3.10)

coincides with (3.13) and reduces to

d
←−
F ∗t = rt

←−
F ∗tdt+

(
(rt − r̂t) V̂t + R̂tĝtµt

)
dt− R̂tdMt + dB̃t,

whereas α∗t coincides with α∗Qt and reduces to

α∗t = (rt − r̂t) V̂t + R̂tĝtµt.

Letting B̃ = 0 and defining, appropriately, the first order intensity by (1 + ĝ)µ,

these quantities equals the corresponding quantities in Norberg [53].
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3.7.4 Information

In (3.43) and (3.44) we have represented the retrospective and the prospective sur-

plus as expected values conditioned on FS
t . In Norberg [50] and Norberg [53], of

such expected values conditioned on the full information are spoken of as individual

quantities. It is one of the main ideas in Norberg [50] to relax this information and

work with different versions of the reserve and the surplus corresponding to different

sub-sigma-algebras Gt ⊆ FS
t , not necessarily filtrations. This idea also plays a role

in Norberg [53]. We shall not go into a study of the surplus under such relaxed in-

formation, but just remark that different sub-sigma-algebras Gt ⊆ FS
t replacing FS

t

in (3.43) and (3.44), correspondingly, define different versions of the retrospective

and prospective surplus, respectively. In Norberg [53] the relaxation is restricted to

concern information on diversifiable risk. We have no problem with relaxation of

any kind of risk since we have, appropriately, adjusted for a possible non-zero price

of risk by taking expectation under the measure Q.

3.7.5 The arbitrage condition

Last but not least, we compare the two apparently different requirements on the

dividends showing up in Norberg [53] and in our framework. Our requirement is

that dividends should be arbitrage free, leading to

EQ

(∫ T

0−

1

Z0
t

dBt

)
= 0, (3.46)

whereas in Norberg [53] the requirement is

E

(∫ T

0−

1

Z0
t

dBt

∣∣∣∣H
′
T ∨ GT

)
= 0, (3.47)

where H′T contains a part of the information over (0, T ] on diversifiable risk in the

environment and GT contains all information over (0, T ] on non-diversifiable risk in

the environment. It can easily be shown that (3.46) follows from (3.47) if diversifiable

risk is priced to zero,

EQ

(∫ T

0−

1

Z0
t

dBt

)
= EQEQ

(∫ T

0−

1

Z0
t

dBt

∣∣∣∣H
′
T ∨ GT

)

= EQE

(∫ T

0−

1

Z0
t

dBt

∣∣∣∣H
′
T ∨ GT

)
= 0.

By (3.47), the company is allowed to carry a part of the diversifiable risk only. This

may be an unfulfillable hard requirement. Taking instead expectation under the risk

adjusted measure this requirement is not necessary. The company is then properly

paid for the risk they are left with when all accounts have been settled at time T .

However, in our set-up, the owners of the insurance company are, of course, welcome

on the market if they want to get rid of some of this risk. This would be a matter

of hedging, to some extent, the contingent claim LT .
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We hereby indicate that our set-up imposes a very important separation of the

investment strategy underlying the investment of payments of the insurance con-

tract, θ, which should be based on the objectives of the policy holder, and the

investment strategy of the owners of the insurance company, which should be based

on the objectives of these owners and could include an extent of hedging of the claim

LT .

3.8 Reserves, surplus, and accounting principles

In fact, many quantities treated in this chapter are reflected in the balance sheet of

the insurance company. We shall in this section work with the following layout of a

balance sheet,

Assets Liabilities

Assets

Market reserve

+Hidden reserve

Technical reserve

Market dividend reserve

−Hidden reserve
Technical dividend reserve

Equity

Balance sum Balance sum

Consider an insurance company with a value (i.e. an equity) of E0 at time 0 and

at that time issuing (i.e. investing in) an insurance contract B. Apart from this

insurance contract the insurance company invests in the market Z according to an

investment strategy ξ. The balance sheet at time 0 ≤ t ≤ T becomes

Assets Liabilities

E0 + Lt +
∫ t

0
ξsdZs

V ′t
+ (V ∗t − V ′t )
V ∗t

Vt − V ′t
− (V ∗t − V ′t )
Vt − V ∗t
E0 + Lt +

∫ t

0
ξsdZs − Vt

E0 + Lt +
∫ t

0
ξsdZs E0 + Lt +

∫ t

0
ξsdZs

where

V ′t = EQ

(∫ T

t

Zt

Zs
d
(
−B̂s

)∣∣∣∣St

)

We have assumed throughout the chapter that E0 is sufficiently large to fulfill

the inequality

E0 + Lt +

∫ t

0

ξsdZs − Vt ≥ 0, t ≥ 0.
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If this inequality does not hold, the owners of the insurance company will, presum-

ably, declare the company bankrupt and leave the remaining assets up to the policy

holders to share. Thus, the inequality can be interpreted as some sort of non-ruin

condition.

The balance sheet shows that a given technical basis results in a corresponding

hidden reserve. The hidden reserve is a value transferred from the market dividend

reserve to the market reserve and resulting in the technical dividend reserve and the

technical reserve. Different technical bases can be interpreted as different account-

ing principles. Accountancy at the market principle amounts to evaluating future

payments on the real basis. We see that the hidden reserve then becomes 0, and

the balance sheet reflects a true picture of the company. The market reserve is a

natural piece of information for the owners of the company, the policy holders and

the supervisory authorities. However, as mentioned, other technical bases may be

relevant for other operations.

Accountancy at the market principle is complicated by the fact that an appro-

priate real basis (r, g, h) may be difficult to identify. In the incomplete market the

measure Q reflecting attitudes to risk can not be identified through the prices in

the market. So we need another way to fix a measure Q. Should the real basis be

determined by the market participants, separately, on the basis of possibly different

criteria and methods? One objection to this is, that although every participant does

its best to give a true picture, the direct comparability of balance sheets disappears.

Should the market participants agree on a common real basis on which all parti-

cipants should make up the accounts? Then the balance sheets would be directly

comparable, but possibly some participants not agreeing on the real basis would not

consider the result as a true picture. We shall not go further into this discussion

here.

In this chapter we have focused on the decision variable B̃ and the constraints

on it. If the investment strategy θ underlying U is affecting B̃ (e.g. through
←−
F ),

another important decision variable in the design of the contract is of course θ.

In fact
(
θ, B̃

)
can be considered as a delicate constrained investment-consumption

problem, where the technical basis decides when income is realized. In the third

part of this thesis, we shall formulate this as an optimization problem in a diffusion

framework and try to answer questions like: Can the solution sketched throughout

the main example, i.e. constant relative investment and the forms of (3.24) and

(3.25) in any sense be said to be optimal?

3.9 Numerical illustrations

In this section we want to illustrate results of the formula (3.27) with and without

the topscript +, i.e. both for participating life and for pension funding. For a given

choice of parameters in the first order basis and in the market, we fix p = 0 and want

to solve for combinations of (q, γ) such that the side condition at time 0 is fulfilled.
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Figure 3.1: The reserve as a function of q, V (q) .

This will produce a fair strategy for investment and distribution of surplus.

We shall consider an insured at age 30 for a period of T = 30 years. As first

order basis we use the Danish technical mortality intensity G82M for males and an

(infinitesimal) interest rate 1.5%,

µ̂t = 0.0005 + 100.038(30+t)+5.88−10,

r̂ = 0.015.

As real basis we use

µt = (0.02 + 0.001t) µ̂t,

r = 0.025,

σ = 0.1.

The form of the real mortality is inspired by a report from the Danish Society for

Assessment of Personal Insurance Risk [4].

The reserve as a function of q is illustrated in Figure 3.1. Figure 3.2 is a zoom

of Figure 3.1. We have fixed γ at 0.5, i.e. the insurance company places 50% of its

assets in stocks and 50% in bonds. We can vary the parameter q in order to obtain

arbitrage free contracts. There are two graphs, one for participating life (thick line

called LB in the figure) and one for pension funding (thin line called PF in the

figure).

For q = 0 the two reserves coincide in the point −0.125. This is the value

of first order payments, because if q = 0 no dividends are paid out in any case.
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Figure 3.2: The reserve as a function of q, V (q), zoom.

When q increases, the insurance company needs an additional liability for dividend

payments. In the point where the reserves are zero the contracts are arbitrage free,

i.e. for participating life the arbitrage free dividend parameter q is 0.74 whereas for

pension funding the arbitrage free dividend parameter q is 1.88.

The reserves seem to have asymptotes for q tending to infinity. In case of par-

ticipating life, this corresponds to a situation where positive surplus is paid out

immediately after its emergence. The strategy will in the limit correspond to a div-

idend barrier below which the surplus is kept by singular dividend payments as long

as the insured is alive. In case of pension funding, both positive and negative surplus

is paid out immediately after its emergence. The strategy will in the limit give a

surplus which is kept equal to zero by diffusion dividend payments as long as the

insured is alive. The fact that the reserve for pension funding exceeds the reserve

for participating life for q ∈ (0, 0.3) is imputed to uncertainties in the numerical

procedure.

For the sake of curiosity we have also calculated a reserve for a negative q. This

corresponds to the rather hypothetical situation where the insurance company pays

out positive dividends if the surplus is negative and pays out nothing and negative

dividends for participating life and pension funding, respectively, if the surplus is

positive. From a practical point of view this construction seems senseless because

it undermines the idea of dividend payments from the insurance company point

of view, namely to transfer (undiversifiable) risk to the policy holder. However,

mathematically the construction makes sense and one could look for negative q for

which the contract is arbitrage free. In pension funding positive q corresponds, in
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Figure 3.3: The reserve as a function of γ, V (γ)

some sense, to go long in the surplus whereas negative q corresponds to go short in

the surplus. In participating life positive q corresponds, in the same sense, to buy

call options on the surplus whereas negative q corresponds to buy put options on

the surplus.

The reserve as a function of γ is illustrated in Figure 3.3. We have fixed q at

0.74 (where it produces arbitrage free dividends with γ = 0.5, see above) and can

now vary γ in order to obtain arbitrage free contracts. There are two graphs, one

for participating life (called LB in the figure) and one for pension funding (called

PF in the figure).

One sees that the insurance contract is arbitrage free (V (0, 0) = 0) if γ = 0.5.

However, it is seen that another arbitrage free contract is obtained by letting γ =

−0.5, i.e. going short in stocks. This is, however, an uninteresting observation

from a practical point of view. In pension funding the reserve is independent of

the proportional investments in stocks. The contract cannot be arbitrage free then,

since q equals 0.74 and not 1.88 as it should be to obtain an arbitrage free pension

funding contract (see above).

Not surprisingly, the shape of the participating life graph resembles the shape of

a Black-Scholes option price as a function of the volatility of the underlying stock.

Arbitrage free points (q,γ) for participating life insurance is illustrated in

Figure 3.4. We let the parameter q vary and find for each q the parameter γ which

produces an arbitrage free dividend plan. In pension funding this makes no sense
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Figure 3.4: Arbitrage free points (q, γ)

since the reserve is independent of γ (see above). In participating life the graph

forms a set of combinations of investment strategies and dividend strategies which

produce arbitrage free contracts.

Figure 3.4 shows that there is a trade off between investments and dividends. It

is not surprising that if one invests aggressively (high γ) then it should be combined

with defensive dividend payments (low q) and the other way around. Given a set

of realistic parameters, figures similar to Figure 3.4 can be a guideline both for the

insurance company and for the supervisory authorities in their management and

supervision, respectively.
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Chapter 4

Control by intervention options

This chapter deals with the intervention options of the policy holder in life and pen-

sion insurance. To these options belong the surrender and the free policy (paid-up

policy) options. Our approach is to let payments be driven by processes in which

the policy holder is allowed to intervene. The main result is a quasi-variational in-

equality describing the market reserve on an insurance contract taking into account

intervention options. The quasi-variational inequality generalizes Thiele’s differen-

tial equation used for calculation of reserves on a policy without intervention options.

It also generalizes the classical variational inequality used for calculation of the price

of an American option.

4.1 Introduction

The market reserve on an insurance contract is in Chapter 2 defined as the market

price of future contractual payments. Since this is the primary reserve in this chap-

ter we will suppress the word market and simply speak of the reserve. It is a difficult

task to describe in detail the payments stipulated in an insurance contract includ-

ing the various options that may be held by both the policy holder, the insurance

company, and the supervisory authorities. In several articles, published during the

last decades, the authors bring some of these options to the surface and deal with

their impact on the pricing and the reservation problems.

Starting with unit-linked life insurance, Brennan and Schwartz [10] recognized

the option structure of a unit-linked life insurance contract with a guarantee. Bren-

nan and Schwartz [10] integrate the mathematics of finance inevitably as a part of

the mathematics of insurance. Going to participating life insurance, the application

of mathematical finance has been long in coming probably due to the complex nature

of these products. Briys and de Varenne [11] made the first attempt at dealing with

the bonus option of the policy holder and the bankruptcy option of the (owners of

the) insurance company in terms of contingent claims analysis. Since then, the idea

has been developed in various respects. Miltersen and Persson [46] deal with the

bonus option, whereas Grosen and Jørgensen [28] in addition take into consideration

81



82 CHAPTER 4. CONTROL BY INTERVENTION OPTION

the surrender option. Grosen and Jørgensen [29] formalize the bankruptcy option of

the insurance company and the intervention option of the supervising authorities.

Important references for the point of view taken in this chapter are Grosen and

Jørgensen [27] and [28], connecting early exercise with the surrender option in life

insurance.

This chapter deals with the type of options that can be described by control by

intervention. With control by intervention is meant that the controller is allowed to

intervene in the evolution of some specified controlled process by introducing a jump

at some controller-specified stopping time in the sense that he can actively move the

process to some new point in the state space. The simplest form of intervention is

optimal stopping, and as in Grosen and Jørgensen [27] we shall connect theory of

optimal stopping with the surrender option in life insurance. The surrender option

is the primary intervention option, often held by the policy holder, but there may

be others. An example is the free policy option where the policy holder can, at

any point in time, stop the payment of premiums but continue the contract with

subscribed benefits. The free policy option cannot be described completely by means

of theory of optimal stopping, at least if it is combined with the surrender option,

and shows the need of introducing general theory of control by intervention.

The intervention options described above belong exclusively to the policy holder.

However, also the insurance company may hold intervention options, and the bank-

ruptcy option is the primary example. Allowing for intervention options of both the

policy holder and the insurance company, we can regard the insurance contract as

a so-called game option, see Kifer [39]. However, we shall not pursue this idea but

leave it to the reader to generalize the results in this chapter to the situation with

intervention options of the insurance company.

Due to the fact that most of the derivatives traded on the markets in practice

are of American type, i.e. derivatives including an early exercise option, theory of

optimal stopping plays an important role in derivative pricing. Many textbooks on

mathematical finance contain an introduction, see e.g. Lamberton and Lapeyre [41].

A main result in optimal stopping is the expression of the optimal value function

in terms of a solution to a so-called variational inequality. Description of the solution

in the case of the American option and procedures for calculation of the solution

were studied in e.g. Jaillet et al. [35]. The main result of the present chapter

is a quasi-variational inequality, the solution of which expresses the reserve on an

insurance contract with intervention options held by the policy holder. Since the

American option is a special case of the setup of payments in this chapter, we choose

to repeat, in a separate section, the well-known result for this case. On one hand,

this will give the reader with a background in insurance but without particular

knowledge to American option pricing an introduction to this well-studied object in

the literature on mathematical finance. On the other hand, this will help the reader

with a background in finance but without particular knowledge to insurance options

to comprehend the setup introduced here.

In Section 4.2, we present the stochastic environment and introduce the payment
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process that makes up our insurance contract. In Section 4.3, the main results are

presented in three theorems. In Sections 4.4, 4.5, and 4.6, we illustrate the main

results in the cases of the American option in finance, the surrender option in life

insurance, and the free policy option in life insurance, respectively.

4.2 The environment

In this section we recapitulate and extend the framework developed in Chapter 2.

The special case of no intervention or no impulse control is exactly the framework of

Chapter 2. Therefore, we ask the reader to confer Chapter 2 for motivation, details,

and examples in this special framework, and we give here only interpretations and

comments on the inclusion of intervention options.

We take as given a probability space (Ω,F ,F = {Ft}t≥0 , P ). We let (Xt)t≥0 be a

cadlag (i.e. its sample paths are almost surely right continuous with left limits) jump

process with finite state space J = (1, . . . , J) defined on (Ω,F ,F = {Ft}t≥0 , P ) and

associate a marked point process (Tn,Φn), where Tn denotes the time of the nth

jump of Xt, and Φn is the state entered at time Tn, i.e. XTn = Φn. We introduce

the counting processes

N j
t =

∞∑

n=1

1(Tn≤t,XTn=j), j ∈ J ,

and the J-dimensional vector

Nt =



N1

t
...

NJ
t


 .

We let (Wt)t≥0 =
(
W 1

t , . . .W
K
t

)
t≥0

be a standard K-dimensional Brownian motion

defined on (Ω,F ,F = {Ft}t≥0 , P ).

For a matrix A we let AT denote the transpose of A and let Ai· and A·i denote

the ith row and the ith column of A, respectively. For a vector a, we let diag (a)

denote the diagonal matrix with the components of a in the principal diagonal and

0 elsewhere. We shall write δ1×J and δJ×1 instead of (δ, . . . , δ) and (δ, . . . , δ)T ,

respectively. For derivatives we shall use the notation ∂x = ∂
∂x

and ∂xy = ∂2

∂x∂y
. For

a vector a we let
∫
a and da mean componentwise integration and componentwise

differentiation, respectively.

We introduce an index S, an (I + 1)-dimensional vector of processes, the dy-

namics of which is given by

dSt = αtdt+ βt−dNt + σtdWt, S0 = s0,

where α ∈ R(I+1), β ∈ R(I+1)×J , and σ ∈ R(I+1)×K are functions of (t, St) and

s0 ∈ RI+1 is F0-measurable. We denote by Si
t , α

i
t, β

ij
t , and σik

t the ith entry of St,
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the ith entry of αt, the (i, j)th entry of βt, and (i, k)th entry of σt, respectively. The

information generated by S is formalized by the filtration FS=
{
FS

t

}
t≥0

, where

FS
t = σ(Ss, 0 ≤ s ≤ t) ⊆ Ft.

We assume that S is a Markov process and that there exist deterministic piece-

wise continuous functions µj (t, s), j ∈ J , s ∈ RI+1 such that N j
t admits the

FS
t -intensity process µj

t = µj (t, St), informally given by

µj
tdt = E

(
dN j

t

∣∣FS
t−
)

+ o (dt)

= E
(
dN j

t

∣∣St−
)

+ o (dt) ,

where o (h) /h → 0 as h → 0. We introduce the J-dimensional vectors containing

the intensity processes and martingales associated with N ,

µt =



µ1

t
...

µJ
t


 , Mt =



M1

t
...

MJ
t


 =



N1

t −
∫ t

0
µ1

sds
...

NJ
t −

∫ t

0
µJ

s ds


 .

To help the reader fix ideas, we explain briefly the roles of the introduced pro-

cesses. Their roles will become more clear when we formalize the payment process

below. The process N describes (at least) some specification of the life history of

an insured. Whereas the process N will partly determine the points in time where

payments fall due, the process S determines the amounts of these payments (and

the intensities for the process N). In classical life insurance mathematics, payments

are allowed to depend on the state of the policy, X. We can cover this situation by

taking S1 to be equal to X by the coefficients

α1
t = 0, β1j

t = j − S1
t , σ

1
t = 0, s1

0 = X0.

If e.g. X is included in the index S, µ (t, Xt) candidates to the intensity process

corresponding to the classical situation, see e.g. Hoem [33]. However, in general, the

intensity process µ may differ from the intensity process with respect to the natural

filtration of N .

However, this classical contract can be extended in various directions. We can

e.g. allow for payments (and intensities) to depend on the duration of the sojourn

in the current state by letting S2 be defined by

α2
t = 1, β2

t = −S2
t , σ

2
t = 0, s2

0 = 0,

and allow for payments (and intensities) to depend on the total number of jumps

by letting S3 be defined by

α3
t , β

3j
t = 1, σ3

t = 0, s3
0 = 0.

In Møller [47] and Norberg [52] generalized versions of Thiele’s differential equation

have been studied where payments depend on the duration of the sojourn in the

current state.
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We introduce a market Z, an (n+ 1)-dimensional vector (n ≤ I) of price pro-

cesses assumed to be positive, and denote by Z i the ith entry of Z. The market Z

consists of exactly those entries of S that are prices of traded assets. We assume that

there exists a short rate of interest such that the market contains a price process Z0

with the dynamics given by

dZ0
t = rtZ

0
t dt, Z

0
0 = 1.

This price process can be considered as the value process of a unit deposited on

a bank account at time 0, and we shall call this entry for the risk-free asset even

though rt is allowed to depend on (t, St). Furthermore, we assume that the set of

martingale measures, Q, i.e. the set of probability measures Q equivalent to P such

that Zi

Z0 is a Q-martingale for each i, is non-empty. From fundamental theory of asset

pricing this assumption is known to be essentially equivalent to the assumption that

no arbitrage possibilities exist on the market Z. The entries of an index S will

also be called indices, and the indices appearing in Z will then be called marketed

indices or assets. With this formulation the set of marketed indices is a subset of

the set of indices and it contains at least one entry, namely Z0. We let αZ ∈ R(n+1),

βZ ∈ R(n+1)×J , and σZ ∈ R(n+1)×K denote the coefficients of the asset prices Z.

So far we have followed the notation and the framework introduced in Chapter

2. We shall now go an important step further by allowing for intervention in the

index S. Generally, for any point (t, s) ∈ R+ ×R(I+1) there will be a set of points

Kt = K (t, St) to which St can be moved. The formal probabilistic apparatus

necessary to describe this situation precisely is unfortunately rather cumbersome.

One reason is that we need to work with an indexed set of filtrations
(
FI
)

I∈I where

FI is the filtration belonging to the intervention strategy I (to be defined below).

For the case where S is a piecewise deterministic process this apparatus is given

in Davis [15]. Here, we skip the technical details and concentrate on the ideas and

potentials of such a construction.

An intervention strategy is a marked point process I =
(
T I

n ,Φ
I
n

)
n=1,2,...

, where T I
n

denotes the time of the nth intervention, and ΦI
n is the state entered at time T I

n , i.e.

ST I
n

= ΦI
n. An intervention strategy is said to be admissible if for all ω and n that

T I
n (ω) is an FSI

-stopping time and ΦI
n (ω) ∈ K

(
T I

n (ω)−, ST I
n(ω)−

)
. This ensures

that intervention at time t is based on only the information available at that point

in time and takes place to a state that actually can be reached by intervention. We

denote by I the set of admissible intervention strategies. Throughout the rest of the

chapter, we will not need a notation for the dimension of the index, and the letter I

will be used for specification of intervention strategies only. Introduce the counting

processes

N I
t =

∞∑

n=1

1(T I
n≤t),

counting the number of interventions. Now, for all ω an intervention strategy I ∈ I



86 CHAPTER 4. CONTROL BY INTERVENTION OPTION

will give rise to a realization of the index given by

dSI
t = αtdt+ βt−dNt + σtdWt +

(
SI

t − SI
t−
)
dN I

t , S
I
0 = sI

0.

Here, the term
(
SI

t − SI
t−
)
dN I

t will, if intervention happens at time t, move the

index from St− to St.

Fixing some time horizon T , we now formally take an insurance contract to be a

set of admissible intervention strategies I and an indexed payment process
(
BI
)

I∈I ,

where BI is an FSI

t -adapted, cadlag process of finite variation with dynamics given

by

dBI
t = B0d1(t≥0) + bctdt− bdt−dNt − bS

I
t

t−dN
I
t −∆BTd1(t≥T ), (4.1)

where B0 ∈ R is a function of SI
0 , b

c ∈ R and bd ∈ RJ are functions of
(
t, SI

t

)
, and

∆BT ∈ R is a function of SI
T . b

SI
t

t− is the intervention payment due if intervention at

time t moves SI from SI
t− to St. Thus, for all k ∈ K

(
t, SI

t

)
, bkt ∈ R is a function of(

t, SI
t

)
. We denote by bdj the jth entry of bd. Note that the FSI

t -adaptedness of BI

places demands on the connection between the coefficients of SI and the coefficients

of BI .

BI
t represents for a given intervention strategy I ∈ I the cumulative payments

from the policy holder to the insurance company over [0, t] following this strategy.

Both continuous payments and lump sum payments are thus allowed to depend on

the present state of the process
(
t, SI

t

)
. The minus signs in front of bd, bk, and

∆B in dBt conform to the typical situation where B0 and bc are premiums and bd,

bS
I
t , and ∆B are benefits, all positive. To simplify notation, lump sum payments at

deterministic times are restricted to time 0 and time T . Thus, an insurance contract

is given by a set of functions
(
B0, b

c, bd,∆B, bk, k ∈ K (t, s)
)

such that a recording

of SI completely determines the payment stream.

By (4.1) the roles of the introduced processes become clear. It is the introduction

of the intervention option that generalizes the payment process in Chapter 2. The

reader could think of letting an entry of S indicate whether the insurance contract

is surrendered or not. Then it is clear that this entry is moved by intervention of

the policy holder. It is also clear that the payments depend on this entry, because if

the policy is surrendered no future payments are to be paid. Finally, it is clear that

we should open for a payment of the surrender value upon surrender (by the term

b
SI

t
t−dN

I
t ). In Section 4.5, we illustrate the main results in the case of a surrender

option in life insurance.

The insurance contract forms the basis for introduction of two price processes,

F and V :

Ft = the price at time t of the contractual payments to the

insurance company over [0, T ] , i.e. premiums less benefits,

Vt = the price at time t of the contractual payments from the

insurance company over (t, T ] , i.e. benefits less premiums.
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Our approach to the price process F is the following: Assuming that the market

Z is arbitrage free, we require that also the market (Z, F ) be arbitrage free. We

use the essential equivalence between arbitrage free markets and existence of a so-

called martingale measure, i.e. a measure under which discounted asset prices are

martingales. If the no arbitrage condition is fulfilled for (Z, F ), we shall speak of(
BI
)

I∈I as an arbitrage free insurance contract and about V as the corresponding

arbitrage free reserve.

Since the market may be incomplete, there may be several martingale measures

and, correspondingly, several arbitrage free reserves. Thus, when we talk of the arbi-

trage free reserve, we think of having fixed a martingale measure according to some

criterion. Alternatively, one could imagine that there exists only one martingale

measure reflecting the market participants’ attitudes to risk although this measure,

in the incomplete market, is not to be identified by looking at asset prices only.

In this case the martingale measure could, appropriately, be fixed as the unique

measure reflecting the attitudes to risk.

We restrict ourselves to prices allowing Vt to be written in the form V
(
t, SI

t

)
.

This restriction seems reasonable since S is Markov and since the payments by B

and the intensities of N depend only on time and the current value of SI , but it

is actually a restrictive assumption on the formation of prices in the market. It

corresponds to the restrictive structure of the measure transformation that we now

enter by defining the likelihood process ΛI by

dΛI
t = ΛI

t−

(
∑

j

gj
t−dM

j
t +

∑

k

hk
t dW

k
t

)

= ΛI
t−
(
gT

t−dMt + hT
t dWt

)
,

ΛI
0 = 1,

where we have introduced

gj
t = gj

(
t, SI

t

)
, hk

t = hk
(
t, SI

t

)
,

and

gt =



g1

t
...

gJ
t


 , ht =



h1

t
...

hK
t


 .

With conditions on (g, h) (see Chapter 2) we can now change measure from P to

QI on (Ω,FT ) by the definition,

ΛI
T =

dQI

dP
. (4.2)

In the case where the coefficients of ΛI depend on the index S (no interventions),

we simply denote the measure defined in (4.2) by Q.

Before starting to describe the price process Vt, we consider the market Z. As-

suming that Z is arbitrage free, we can directly conclude that
(
ZI

t − ZI
t−
)
dN I

t = 0. (4.3)
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If we are allowed to trade in an asset and at the same time can move the asset price

by intervention, it is easy to devise an arbitrage strategy. Given (4.3), we obtain

absence of arbitrage by assuming existence of a martingale measure, i.e. existence

of a solution (g, h) to

αZI

t + σZI

t ht + βZI

t diag
(
1J×1 + gt

)
µt − rtZ

I
t = 0. (4.4)

Note carefully that, although the asset prices are not allowed to be affected

by intervention through the term
(
ZI

t − ZI
t−
)
dN I

t , intervention may actually affect

prices through the coefficients that are generally dependent on the index SI . Also the

coefficients of Λ are generally dependent on the index SI . These circumstances imply

that both each martingale measure and the set of possible martingale measures, in

general, depend on the intervention strategy. Thus, in addition to the probabilistic

admissibility condition on the intervention strategy we should add an absence of

arbitrage condition stating that an intervention strategy is admissible if for all ω

there exists a solution to (4.4). Then, a martingale measure exists for all admissible

intervention strategies. We shall not discuss the interpretation of intervention in

martingale measures but content ourselves with the fact that the situation where

intervention does not affect the market at all, is, of course, just a special case.

4.3 The main results

We warm up with the situation where no intervention is possible. This is the special

case treated in Chapter 2. We slightly reformulate the main result obtained there

such that we have a version which is directly comparable with the result obtained in

the situation with intervention. Note that both Theorem 3 and Theorem 4 presented

in this section basically contain two results. The first is a financial result on the

price process V . The second is a purely mathematical result which gives a tool for

calculating the price. Theorem 5 gives conditions for simple optimal intervention

strategies which are fulfilled in some simple cases.

Introduce the notation for a function U (t, St),

U j
t = U

(
t, St + βS·j

t

)
,

UJt =
[
U1

t , . . . , U
J
t

]
,

ψt =
1

2
tr
((
σS

t

)T
∂ssUtσ

S
t

)
,

Rt = bdt + UJt − U1×J
t ,

AtUt = (∂sUt)
T (αS

t + σS
t ht

)
+Rtdiag

(
1J×1 + gt

)
µt + ψt.

Theorem 3 1. Assume that there are no intervention options. Assume existence

of a solution to (4.4) and that the arbitrage free reserve Vt can be written in the

form V (t, St). Then

V (t, St) = EQ

[∫ T

t

Z0
t

Z0
s

d (−Bs)

∣∣∣∣St

]
(4.5)



4.3. THE MAIN RESULTS 89

for some martingale measure Q ∈ Q, and

V (0−) = EQ

[∫ T

0−

1

Z0
s

d (−Bs)

]
= 0.

2. Assume that U (t, s) is a (sufficiently) regular solution to the following differential

equation

∂tUt = bct − bdt diag
(
1J×1 + gt

)
µt + rtUt − AtUt, (4.6)

UT− = ∆BT . (4.7)

Then

U (t, St) = V (t, St)

Sketch of proof. 1. This follows if
(

Z
Z0 ,

F
Z0

)
is a Q-martingale (see Chapter 2).

2. If U is sufficiently regular, an Ito calculation shows that for Ut = U (t, St),

mt =
Ut

Z0
t

−
∫ t

0

1

Z0
s

(∂sUs − rsUs + AsUs) ds

is a Q-martingale. Then, the optional sampling theorem gives

EQ [mT | Ft] = mt. (4.8)

By applying (4.8), (4.6), and (4.7), we have that

Ut = EQ

[
−
∫ T

t

Z0
t

Z0
s

(∂sUs − rsUs + AsUs) ds+
Z0

t

Z0
T

UT−

∣∣∣∣Ft

]

= EQ

[∫ T

t

Z0
t

Z0
s

(
−bcs + bdsdiag

(
1J×1 + gs

)
µs

)
ds+

Z0
t

Z0
T

∆BT

∣∣∣∣Ft

]

= EQ

[∫ T

t

Z0
t

Z0
s

d (−Bs)

∣∣∣∣Ft

]

= V (t, St) .�

Theorem 4 1. Assume existence of a solution to (4.4) and that the arbitrage free

reserve Vt can be written in the form V
(
t, SI

t

)
. Then

V
(
t, SI

t

)
= sup

I∈I
EQI

[∫ T

t

Z0I
t

Z0I
s

d
(
−BI

s

)∣∣∣∣S
I
t

]
(4.9)

for some martingale measure QI ∈ Q (I), and

V (0−) = sup
I∈I

EQI

[∫ T

0−

1

Z0I
s

d
(
−BI

s

)]
= 0.
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2. Assume that U (t, s) is a (sufficiently) regular solution to the following system of

partial differential inequalities (quasi-variational inequality)

∂tUt ≤ bct − bdt diag
(
1J×1 + gt

)
µt + rtUt − AtUt, (4.10)

U (t, s) ≥ max
k∈K(t,s)

(
U (t, k) + bkt

)
, (4.11)

0 =
(
−∂tUt + bct − bdt diag

(
1J×1 + gt

)
µt + rtUt −AtUt

)

×
(

max
k∈K(t,s)

(
U (t, k) + bkt

)
− U (t, s)

)
, (4.12)

UT− = ∆BT . (4.13)

Then

U
(
t, SI

t

)
= V

(
t, SI

t

)
.

and the optimal intervention I is given by
(
T I

n ,Φ
I
n

)
n=1,2,...

, where
(
T I

n ,Φ
I
n

)
n=1,2,...

are

found successively by
(
T I

0 = 0
)

T I
n = inf

T I
n−1<τ≤T

{
U
(
τ , SI

τ

)
= max

k∈K(τ−,SI
τ−)

(
U (τ , k) + bkτ−

)
}
,

ΦI
n = arg max

k∈K

„
T I

n−,SI

TI
n−

«

(
U
(
T I

n , k
)

+ bkT I
n−

)
.

Sketch of proof. 1. An arbitrage argument, left to the reader, shows that no

one is willing to buy for more and no one is willing to sell for less than V given by

(4.9).

2. The first part of the proof is a classical optimal stopping argument. An Ito

calculation shows that for Ut = U (t, St) ,

mt =
Ut

Z0
t

−
∫ t

0

1

Z0
s

(∂sUs − rsUs + AsUs) ds

is a Q-martingale. Then, for a stopping time τ , t ≤ τ ≤ T , the optional sampling

theorem gives

EQ [mτ | Ft] = mt. (4.14)

On one hand, by applying (4.14), (4.10), (4.11), and (4.13) we have that

Ut = EQ

[
−
∫ τ

t

Z0
t

Z0
s

(∂sUs − rsUs + AsUs) ds+
Z0

t

Z0
τ

Uτ−

∣∣∣∣Ft

]

≥ EQ

[∫ τ

t

Z0
t

Z0
s

(
−bcs + bdsdiag

(
1J×1 + gs

)
µs

)
ds

∣∣∣∣Ft

]

+EQ

[
Z0

t

Z0
τ

(
max

k∈K(τ−,Sτ−)

(
U (τ , k) + bkτ−

)
1(τ<T ) + ∆BT 1(τ=T )

)∣∣∣∣Ft

]

= EQ

[∫ τ

t

Z0
t

Z0
s

d (−Bs) +
Z0

t

Z0
τ

max
k∈K(τ−,Sτ−)

(
U (τ , k) + bkτ−

)
1(τ<T )

∣∣∣∣Ft

]
.
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Taking supremum over all stopping times t ≤ τ ≤ T , this proves

Ut ≥ sup
t≤τ≤T

EQ

[∫ τ

t

Z0
t

Z0
s

d (−Bs) +
Z0

t

Z0
τ

max
k∈K(τ−,Sτ−)

(
U (τ , k) + bkτ−

)
1(τ<T )

∣∣∣∣Ft

]
.

(4.15)

On the other hand, by defining

τ t = min

(
inf

t≤τ<T

{
U (τ , Sτ ) = max

k∈K(τ−,Sτ−)

(
U (τ , k) + bkτ−

)}
, T

)
,

kt = arg max
k∈K(τ t−,Sτt−)

(
U (τ t, k) + bkτ t−

)
,

we get by (4.12) and (4.13) for t ≤ s < τ t ≤ T ,

∂sUs = bcs − bdsdiag
(
1J×1 + gs

)
µs + rsUs − AsUs

and

U (τ t, Sτ t) = max
k∈K(τ t−,Sτt−)

(
U (τ t, k) + bkτ t−

)
1(τ t<T ) + ∆BT 1(τ t=T ),

such that the optional sampling theorem yields

Ut = EQ

[
−
∫ τ t

t

Z0
t

Z0
s

(∂sUs − rsUs + AsUs) ds+
Z0

t

Z0
τt

Uτ t

∣∣∣∣Ft

]

= EQ

[∫ τ t

t

Z0
t

Z0
s

(
−bcs + bdsdiag

(
1J×1 + gs

)
µs

)
ds

∣∣∣∣Ft

]

+EQ

[
Z0

t

Z0
τt

(
max

k∈K(τ t−,Sτt−)

(
U (τ t, k) + bkτ t−

)
1(τ t<T ) + ∆BT 1(τ t=T )

)∣∣∣∣∣Ft

]

= EQ

[∫ τ t

t

Z0
t

Z0
s

d (−Bs) +
Z0

t

Z0
τ t

max
k∈K(τ t−,Sτt−)

(
U (τ t, k) + bkτ t−

)
1(τ t<T )

∣∣∣∣∣Ft

]
.

This proves that

Ut ≤ sup
t≤τ≤T

EQ

[∫ τ

t

Z0
t

Z0
s

d (−Bs) +
Z0

t

Z0
τ

max
k∈K(τ−,Sτ−)

(
U (τ , k) + bkτ−

)
1(τ<T )

∣∣∣∣Ft

]
.

(4.16)

By (4.15) and (4.16) we have

Ut = sup
t≤τ≤T

EQ

[∫ τ

t

Z0
t

Z0
s

d (−Bs) +
Z0

t

Z0
τ

max
k∈K(τ−,Sτ−)

(
U (τ , k) + bkτ−

)
1(τ<T )

∣∣∣∣Ft

]
.

We now have to show that the quantity characterized by this relation actually is

Vt = sup
I∈I

EQI

(∫ T

t

Z0I
t

Z0I
s

d
(
−BI

s

)∣∣∣∣S
I
t

)
.

Define

V n
t = sup

I∈In

EQI

(∫ T

t

Z0I
t

Z0I
s

d
(
−BI

s

)∣∣∣∣S
I
t

)
,
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where In is the set of admissible intervention strategies involving at most n inter-

ventions. Then

V n+1
t = sup

t≤τ≤T
EQ

[∫ τ

t

Z0
t

Z0
s

d (−Bs) +
Z0

t

Z0
τ

max
k∈K(τ ,Sτ )

(
V n (τ , k) + bkτ−

)
1(τ<T )

∣∣∣∣Ft

]
.

(4.17)

With appropriate regularity conditions on In and I, lim n→∞V
n
t will exist and

limn→∞ V
n
t = Vt. Taking the limit on both sides of (4.17), bounded convergence

gives that

Vt = sup
t≤τ≤T

EQ

[∫ τ

t

Z0
t

Z0
s

d (−Bs) +
Z0

t

Z0
τ

max
k∈K(τ−,Sτ−)

(
V (τ , k) + bkτ−

)
1(τ<T )

∣∣∣∣Ft

]
.�

Theorem 5 Fix a time ρ. Let Yt, ρ ≤ t ≤ T , be given by

Yt =

∫ t

ρ

Z0
ρ

Z0
s

d (−Bs) +
Z0

ρ

Z0
t

max
k∈K(t−,St−)

(
V (t, k) + bkt−

)
1(t<T ). (4.18)

If Y is a Q-submartingale, then the optimal intervention is not to intervene. If Y

is a Q-supermartingale, then the optimal intervention is immediately to transmit S

to

k = arg max
k∈K(ρ−,Sρ−)

(
V (ρ, k) + bkρ−

)
.

Sketch of proof. If Yt is a Q-submartingale, optional sampling theorem gives

for any stopping time ρ ≤ τ ≤ T ,

Yτ ≤ EQ [YT | Fτ ] .

Taking conditional expected value yields

EQ

[∫ τ

ρ

Z0
ρ

Z0
s

d (−Bs) +
Z0

ρ

Z0
τ

max
k∈K(τ−,Sτ−)

(
V (τ , k) + bkτ−

)
1(τ<T )

]

≤ EQ

[∫ T

ρ

Z0
ρ

Z0
s

d (−Bs)

]
.

Supremum of the left hand side over all stopping times ρ ≤ τ ≤ T is obtained for

τ = T , since then an equality holds.

If Yt is a Q-supermartingale, optional sampling theorem gives for any stopping

time ρ ≤ τ ≤ T ,

Yρ ≥ EQ [Yτ | Fρ] .

This reads

max
k∈K(ρ−,Sρ−)

(
V (ρ, k) + bkρ−

)

≥ EQ

[∫ τ

ρ

Z0
ρ

Z0
s

d (−Bs) +
Z0

ρ

Z0
τ

max
k∈K(τ−,Sτ−)

(
V (τ , k) + bkτ−

)
1(τ<T )

∣∣∣∣Fρ

]
.

Supremum of the right hand side over all stopping times ρ ≤ τ ≤ T is obtained for

τ = ρ, since then an equality holds.

Given intervention at time ρ, the optimal intervention is to move S to

k = arg max
k∈K(ρ−,Sρ−)

(
V (ρ, k) + bkρ−

)
.�
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4.4 The American option in finance

In this section we consider the European and American options in finance. They

are very well-studied objects in mathematical finance, and the results obtained here

can also be found in almost every text book on mathematical finance, see e.g.-

Lamberton and Lapeyre [41]. Nevertheless, the section serves well as an illustration

of the framework introduced in Section 4.2 and of the results obtained in Section

4.3.

Consider the Black-Scholes market where

dS0
t = rS0

t dt,

dS1
t = αS1

t dt+ σS1
t dWt.

These processes make up the two processes contained in Z. Introduce a European

call option stating that a payment of (S1
T −K)

+
is paid out at time T , i.e.

∆BT =
(
S1

T −K
)+
.

From (4.4) it is seen that the set of martingale measures contains only one

point,

h =
r − α
σ

.

From Theorem 3 we get that for an arbitrage free contract, the reserve, and hereby

the option price B0, is determined by a regular solution to the differential equation

(known as the Black-Scholes differential equation),

∂tVt = rVt − rs∂sVt −
1

2
σ2s2∂ssVt,

VT− = (s−K)+ .

Now we assume that the owner of the option is allowed to exercise prematurely

which means that he can close the contract at any point in time t < T and convert

the future payment of (S1
T −K)

+
at time T into an immediate payment of (S1

t −K)
+

at time t. To handle this situation we introduce a third index S2 (in addition to S0

and S1) which is not traded on the market, i.e. an index present in S but not in Z.

This index is not affected by the underlying stochastic process W , but serves only

to indicate whether the option is exercised or not. We assign to S2
t the value 0 if the

option is not exercised at time t and the value 1 if the option is exercised at time t.

Then

dS2
t = dN I

t , S2
0 = 0,

where N I
t counts the number of exercises until time t (equals 0 or 1). The payment

due on transition of S2 from 0 to 1 at time t is

b1
(
t, S0

t , S
1
t , 0
)

=
(
S1

t −K
)+
.
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From Theorem 4 we get that for an arbitrage free contract, the reserve, and hereby

the option price B0, is determined by a regular solution to the variational inequality,

∂tV (t, s) ≤ rV (t, s)− rs∂sV (t, s)− 1

2
σ2s2∂ssV (t, s) , (4.19)

V (t, s) ≥ (s−K)+ ,

0 =

(
−∂tV (t, s) + rV (t, s)− rs∂sV (t, s)− 1

2
σ2s2∂ssV (t, s)

)

×
(
(s−K)+ − V (t, s)

)
,

V (T−, s) = (s−K)+ .

The variational inequality (4.19) is a constructive tool for determination of the

reserve Vt.

For the special case of a call option treated in this section, we also can draw

conclusions from Theorem 5. Fix a time ρ. Now, Yt in (4.18) is given by

Yt =

(
Z0

ρ

(
St

Z0
t

− K

Z0
t

))+

, ρ ≤ t ≤ T .

If r ≥ 0, then K
Z0

t
is a Q-supermartingale. Since Su

Z0
u

is a Q-martingale, Z0
ρ

(
St

Z0
t
− K

Z0
t

)

is then a Q-submartingale. Since the function (·)+ is convex, Jensen’s inequality

gives that Yt is a Q-submartingale. Theorem 2 states that it is never optimal to ex-

ercise, and we conclude the well-known result that the reserve/price of an American

call option equals the price of a European call option (in the Black-Scholes model).

4.5 The surrender option in life insurance

In this section, we consider a model where payments depend on the present state of

X. Hoem obtained in [33] in this model a version of Thiele’s differential equation

which has taken a central position in life insurance mathematics and is widely used

by practitioners. See also Chapter 2, example 7.1.

Let r be deterministic, put K = 0, define S by

αS
t =

[
rtS

0
t

0

]
, βS

t =

[
01×J

1− S1
t · · ·J − S1

t

]
, s0 =

[
1

X0

]
, (4.20)

and let Z = S0. Thus, the market consists of the risk-free asset only and contains

thereby no information on market prices of risk. We fix a martingale measure by

assuming that the insurance company is risk-neutral with respect to risk due to the

policy state, which is the only risk present in this model, i.e.

gt = 0.

From Theorem 3, we see that for an arbitrage free contract the reserve, and

hereby the single premium B0 (or another balancing element of B), is determined
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by a regular solution to the differential equation (known as Thiele’s differential

equation),

∂tVt = bct + rtVt −
(
bdt + V Jt − V 1×J

t

)
µt, (4.21)

VT− = ∆BT .

Now we assume that the policy holder is allowed to surrender the contract. This

means that he can close the contract at any time t < T and convert the future

payments into an immediate payment of a surrender value which we shall denote by

V ∗t . We assume that V ∗t only depends on S1. To handle this situation we introduce

a third index S2 (in addition to S0 and S1) which is not traded on the market, i.e.

a second index present in S but not in Z (in addition to S1). This index is not

affected by the underlying stochastic process N , but serves only to indicate whether

the contract is surrendered or not. We assign to S2
t the value 0 if the contract is not

surrendered at time t and the value 1 if the contract is surrendered at time t. Then

dS2
t = dN I

t , S2
0 = 0,

where N I
t counts the number of surrenders until time t (equals 0 or 1). The payment

falling due upon transition of S2 from 0 to 1 at time t is the surrender value, V ∗t ,

i.e.

b1
(
t, S0

t , S
1
t , 0
)

= V ∗t .

From Theorem 4 we get that for an arbitrage free contract the reserve, and hereby

the single premium B0 (or another balancing element of B), is determined by a

regular solution to the variational inequality,

∂tVt ≤ bct + rtVt −
(
bdt + V Jt − V 1×J

t

)
µt, (4.22)

Vt ≥ V ∗t ,

0 =
(
−∂tVt + bct + rtVt −

(
bdt + V Jt − V 1×J

t

)
µt

)
(V ∗t − Vt) ,

VT− = ∆BT .

We need to specify a surrender value V ∗t . One possibility could be to define

as surrender value a so-called technical reserve defined as Vt in (4.5) but with Z0

replaced by a technical risk-free asset Z0∗ with interest rate r∗ and the measure Q

replaced by a technical measure Q∗ given through a vector of technical transition

intensities µ∗, i.e.

V ∗t = EQ∗

[∫ T

t

Z0∗
t

Z0∗
s

d (−Bs)

∣∣∣∣St

]
. (4.23)

To the reader without particular knowledge to life insurance mathematics, such a

surrender value may seem rather odd, but this is actually how surrender values are

calculated in practice. It is closely related to general pricing and accounting in life

insurance, see Chapter 3. The surrender value V ∗t can, of course, be determined
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by the differential equation (4.21) with r and µ replaced by r∗ and µ∗. By the

variational inequality (4.22), we now have a constructive tool for determination of

the reserve Vt.

Assuming that the surrender value is given by (4.23), we can draw conclusions

from Theorem 5. Fix a time ρ. Now, Yt in (4.18) is given by

Yt =

∫ t

ρ

Z0
ρ

Z0
s

d (−Bs) +
Z0

ρ

Z0
t

V ∗t ,

such that Ito’s lemma and (4.6) with (r, µ) replaced by (r∗, µ∗) gives

Z0
t

Z0
ρ

dYt = d (−Bt)− rV ∗t + dV ∗t

= d (−Bt)− rV ∗t
+
(
bct + r∗tV

∗
t −

(
bdt + V ∗Jt − V ∗1×J

t

)
µ∗t
)
dt

+
(
V ∗Jt − V ∗1×J

t

)
dNt

= (r∗ − r)V ∗t −
(
bdt + V ∗Jt − V ∗1×J

t

)
µ∗tdt

+
(
bdt− + V ∗Jt− − V ∗1×J

t−
)
dNt

= (r∗ − r)V ∗t +R∗t (µt − µ∗t ) +R∗t−dM
Q
t ,

with

R∗t = bdt + V ∗Jt − V ∗1×J
t .

We see that a sufficient condition for Y to be a Q-supermartingale is that the

technical elements (r∗, µ∗) are chosen such that

(r − r∗)V ∗t ≥ 0, (4.24)

(µ∗t − µt)R
∗
t ≥ 0.

If these inequalities are fulfilled, it is then, according to Theorem 5, optimal to

surrender immediately and the insurance company should set aside a reserve simply

given by the technical reserve,

Vρ = V ∗ρ .

4.6 The free policy option in life insurance

The exercise of an American option and the surrender of a life insurance contract

result both in no payments beyond the date of exercise or surrender, respectively.

In these cases the theory of optimal stopping would be adequate, and we would not

have to introduce general theory of impulse control. Now we replace the surrender

option of a life insurance contract introduced in Section 4.5 by a free policy option.

A free policy option is an option to subscribe all future premium payments to zero

against a corresponding subscription of all future benefits. What could be meant by

a corresponding subscription will be explained below. After the time of conversion
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to free policy, the contract is not stopped but continues with converted payments

and therefore general theory of impulse control applies. The free policy option could

be considered in combination with the surrender option. Then one could allow for

surrender of a policy before or after conversion into free policy or both. However, in

order to keep things relatively simple we choose to disregard the surrender option

in this section and take into account the free policy option exclusively.

We consider once more the classical multi-state life insurance policy described in

Section 4.5, now with the free policy option. To handle this situation we introduce, as

in Section 4.5, a third non-marketed index S2, now indicating whether the contract

is converted or not. We let

dS2
t = dN I

t , S2
0 = 0.

where N I
t counts the number of conversions until time t (equals 0 or 1). We assume

that no payments fall due on transition of S2 from 0 to 1, but now a free policy

reserve has to be set aside. This will be a reserve for subscribed benefits. Since

these subscribed payments, to be defined below, will depend on the time elapsed

since conversion, we need a fourth index measuring this duration,

dS3
t = dt− S3

t−dN
I
t , S3

0 = 0.

Note that as long as S2
t = 0, we know that S3

t = t, the time elapsed since the issue of

the contract. For all processes below, we abbreviate the argument (t, S0
t , S

1
t , S

2
t , S

3
t )

by a subscript t and an argument (S2
t , S

3
t ), such that we e.g. can write Vt (S

2
t , S

3
t )

instead of V (t, S0
t , S

1
t , S

2
t , S

3
t ). Then the fact that no payments fall due on transition

of S2 from 0 to 1 is written

b1t (0, t) = 0.

Let B̂ be the payment process given that the insurance contract is not yet con-

verted, i.e. dBt (0, t) = dB̂t. We emphasize that this notation has no direct con-

nection with first order payments introduced in Chapter 3. Now, we assume that

the benefits are subscribed proportionally with a proportionality factor given by

the ratio between the technical reserve and the technical free policy reserve at the

conversion time. Then

dBt

(
1, S3

t

)
= dB̂−t

V ∗
t−S3

t

V ∗−
t−S3

t

, (4.25)

where

dB̂−t =
(
dB̂t

)−
,

V ∗t−S3
t

= EQ∗

[∫ T

t−S3
t

Z0∗
t−S3

t

Z0∗
s

d
(
−B̂s

)∣∣∣∣∣S
1
t−S3

t

]
,

V ∗−
t−S3

t
= EQ∗

[∫ T

t−S3
t

Z0∗
t−S3

t

Z0∗
s

d
(
−B̂−s

)∣∣∣∣∣S
1
t−S3

t

]
,
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and, accordingly,

Vt

(
1, S3

t

)
= EQ

[∫ T

t

Z0
t

Z0
s

d
(
−Bs

(
1, S3

t

))∣∣∣∣St

]

=
V ∗

t−S3
t

V ∗−
t−S3

t

V −t ,

where

V −t = EQ

(∫ T

t

Z0
t

Z0
s

d
(
−B̂−s

)∣∣∣∣St

)
.

From Theorem 4 we get that for an arbitrage free contract the reserve, and hereby

the single premium B0 (or another balancing element of B), is given by a regular

solution to the variational inequality (4.22) with V ∗t replaced by Vt (1, 0), the reserve

for free policy benefits at the time of conversion.

Now we only need a differential system for calculation of the free policy reserve

Vt (1, S
3
t ). Since no intervention is allowed for in a free policy, we see from Theorem

3 that for an arbitrage free contract, the free policy reserve Vt (1, S
3
t ) is determined

by a regular solution to the differential equation (Vt = V (t, s0, s1, 1, s3)),

∂tVt = bct + rtVt −
(
bdt + V Jt − V 1×J

t

)
µt − ∂s3Vt, (4.26)

VT− = ∆BT .

By (4.22) with V ∗t replaced by Vt (1, 0) and Vt (1, S
3
t ) given by (4.26), we now have

a constructive tool for determination of the reserve Vt.

If the free policy payments are given by (4.25), we can draw conclusions from

Theorem 5. Now, Yt in (4.18) is given by

Yt =

∫ t

ρ

Z0
ρ

Z0
s

d (−Bs (0, s)) +
Z0

ρ

Z0
t

Vt (1, 0) ,

such that Ito’s lemma and (4.6) with (r, µ) replaced by (r∗, µ∗) gives

Z0
t

Z0
ρ

dYt = d (−Bt (0, t))− rt (1, 0)Vt (1, 0) + dVt (1, 0)

= d (−Bt (0, t))− rt (1, 0)Vt (1, 0) +
(
V ∗Jt (1, 0)− V ∗1×J

t (1, 0)
)
dNt

+ (bct (1, 0) + rt (1, 0)Vt (1, 0)) dt

−
((
bdt (1, 0) + V Jt (1, 0)− V 1×J

t (1, 0)
)
µt (1, 0)− ∂s3Vt (1, 0)

)
dt

= d (Bt (1, 0)−Bt (0, t))− ∂s3Vt (1, 0) dt+Rt (1, 0) dMQ
t , (4.27)

with

Rt (1, 0) = bdt (1, 0) + V Jt (1, 0)− V 1×J
t (1, 0) .
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For the first term of (4.27), we have

d (Bt (1, 0)− Bt (0, t)) =
V ∗t
V ∗−t

dB̂−t − dB̂t

=

(
V ∗t
V ∗−t

(
b̂c−t − b̂d−t µt

)
− b̂ct + b̂dt−µt

)
dt

+

(
− V

∗
t−

V ∗−t−
b̂d−t− + b̂dt−

)
dMQ

t , (4.28)

and, introducing

R∗t = b̂dt + V ∗Jt − V ∗1×J
t ,

R−t = b̂d−t + V −Jt − V −1×J
t ,

R∗−t = b̂d−t + V ∗−Jt − V ∗−1×J
t ,

we have for the second term of (4.27),

∂s3Vt (1, 0) =
V −t
V ∗−t

∂s3V ∗t −
V −t V

∗
t(

V ∗−t

)2∂s3V ∗−t

= − V −t
V ∗−t

∂tV
∗
t +

V −t V
∗
t(

V ∗−t

)2∂s3V ∗−t

= − V −t
V ∗−t

(
b̂ct + r∗tV

∗
t − R∗tµ∗t

)
dt

+
V −t V

∗
t(

V ∗−t

)2
(
b̂c−t + r∗tV

∗−
t − R∗−t µt

)
dt

=

(
− V −t
V ∗−t

(
b̂ct − R∗tµ∗t

)
+

V −t V
∗
t(

V ∗−t

)2
(
b̂c−t −R∗−t µt

))
dt. (4.29)

Then, by (4.27), (4.28), and (4.29), we get

Z0
t

Z0
ρ

dYt =

[
V −t
V ∗−t

(
b̂ct − R∗tµ∗t

)
− V −t V

∗
t(

V ∗−t

)2
(
b̂c−t −R∗−t µ∗t

)

+
V ∗t
V ∗−t

(
b̂c−t − b̂d−t µt

)
− b̂ct + b̂dtµt

]
dt

+

(
Rt− (1, 0)− V ∗t−

V ∗−t−
b̂d−t− + b̂dt−

)
dMQ

t

=

[(
V −t
V ∗−t

− 1

)(
b̂ct −

V ∗t
V ∗−t

b̂c−t −
(
b̂dt −

V ∗t
V ∗−t

b̂d−t

)
µt

)
(4.30)

− V −t
V ∗−t

(
V ∗Jt − V ∗t

V ∗−t

V ∗−Jt

)
µt

+
V −t
V ∗−t

(
R∗t −

V ∗t
V ∗−t

R∗−t

)
(µt − µ∗t )

]
dt

+

(
Rt− (1, 0)− V ∗t−

V ∗−t−
b̂d−t− + b̂dt−

)
dMQ

t
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We are interested in the drift term of
Z0

t

Z0
ρ
dYt in order to draw conclusions from

Theorem 5. It seems difficult to come up with general conditions for r∗ and µ∗ but

we shall take a closer look at the drift term in a special case.

An example

We shall work with a simple insurance contract as an illustration of the drift term

of (4.30). The insurance contract is a single life endowment insurance with a sum

insured of 1 and a constant premium π as long as the insured is alive. Let X be the

two-state process defined by Xt = 0 if the insured is alive at time t, Xt = 1 if the

insured is dead at time t, and X0 = 0. Then

αS
t =

[
rtS

0
t

0

]
, βS

t =

[
0

1

]
, s0 =

[
1

0

]
.

Given that S1
t = 0, we have

b̂ct = π,

b̂c−t = 0,

b̂dt = b̂d−t = 1,

such that the drift term of
Z0

t

Z0
ρ
dYt, (4.30), given S1

t = 0, equals

(
V −t
V ∗−t

− 1

)(
π −

(
1− V ∗t

V ∗−t

)
µt

)
+
V −t
V ∗−t

(
1− V ∗t

V ∗−t

)
(µt − µ∗t ) .

Introducing traditional actuarial notation, one can write this drift term as
(
Ax+t T−t|

A
∗
x+t T−t|

− 1

)(
π −

(
1−

A
∗
x+t T−t| − πa∗x+t T−t|

A
∗
x+t T−t|

)
µt

)

+
Ax+t T−t|

A
∗
x+t T−t|

(
1−

A
∗
x+t T−t| − πa∗x+t T−t|

A
∗
x+tT−t|

)
(µt − µ∗t )

=

(
Ax+t T−t|

A
∗
x+t T−t|

− 1

)
π

A
∗
x+t T−t|

(
T−tE

∗
x+t +

∫ T

t

a∗s−t| s−tp
∗
x+t

(
µ∗x+s − µx+t

)
ds

)

+
Ax+t T−t|πa

∗
x+t T−t|(

A
∗
x+t T−t|

)2 (µt − µ∗t ) .

We are interested in sufficient conditions for this quantity to be non-positive such

that Y is a Q-supermartingale. Term by term, it can be seen that this will be the

case if µ∗ > µ, r > r∗, and µ∗ is increasing. According to Theorem 5, it is now

optimal to convert the into a free policy immediately and the insurance company

should set aside the free policy reserve, Vt (1, 0).

It is worth noting that these conditions on µ∗ and r∗ also would impose optimality

of immediate surrender in the case of the surrender option: If µ∗ is increasing, V ∗t
and R∗t are non-negative for all t ≤ T . Now, this conclusion follows from (4.24).



Part III

Control in life and pension

insurance
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Chapter 5

Risk-adjusted utility

This chapter introduces an idea of risk-adjusted utility. Instead of measuring moral

value or utility of nominal value, we suggest to measure utility of deflated value.

As deflator is chosen the same deflator which is used for determination of price

or financial value. Using this concept we study the problem of optimal investment-

consumption and the problem of utility indifference pricing in an incomplete market.

5.1 Introduction

In this chapter, we study two applications of a very particular state-dependence of

utility which leads to what we choose to call risk-adjusted utility. The two applica-

tions are in the fields of optimal investment-consumption and pricing in incomplete

markets.

We start out by the problem of optimal consumption and portfolio selection

of an agent playing the role as both investor and consumer. The work of Robert

Merton around 1970 is usually considered as the starting point of the continuous-

time formulation of the problem, see references in Merton [45]. In the work by

Merton, the preferences of an agent over consumption and wealth are given by

time-additive utility functions, and he solves for some specific markets and utility

functions explicitly the problem of choosing consumption and investment in order to

maximize expected total utility. Also in this chapter, we shall work in a continuous-

time framework and base decisions about consumption and investment on the same

fundamental idea. However, on various points, the objective of our decisions differs

from that of Merton.

Whereas Merton applied control theory to his problem, several authors around

1990 approached the problem with martingale methods from finance. The idea is

to split the dynamic decision problem into a static decision problem and a hedging

problem. Both methods have, compared to their original formulations, been refined

in various directions in order to obtain results that are more applicable. Important

are constraints on trading strategies, consumption, and wealth. See Korn [40] for

the martingale method, references on constrained problems, and for refinements

103
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connected with the introduction of transaction costs.

The preference ordering in Merton’s problem is rather special. A generalized

ordering of preferences is obtained by considering state-dependent utilities. However,

generalizations in this direction in general increases the number of state variables

and complicates the problem accordingly. In this chapter, we shall work with a very

particular state-dependence of utility which does not add difficulties to the problem.

On the contrary, it turns out that our state-dependent utility simplifies the problem

considerably since it separates the investment problem and the consumption problem

into two problems which can be solved independently of each other. The idea is that

the agent in his preferences takes into consideration the attitudes to risk to which

the market has already made up its mind. This is based on the usual assumption

that the decisions of the agent do not affect the market’s attitudes to risk.

Utility plays an important role in pricing in incomplete markets. We shall also

study the impacts of risk-adjusted utility on pricing by utility indifference. In par-

ticular, we shall consider the exponential principle, the variance principle, and the

standard deviation principle studied in actuarial literature. The variance and the

standard deviation principles are connected with rather special utility functions, as

explained in Schweizer [60]. There, financial versions of these principles, consistent

with absence of arbitrage, are introduced. Working with risk-adjusted utilities, we

come up with a variance principle and a standard deviation principle different from

those obtained in Schweizer [60] but still consistent with absence of arbitrage. For a

survey over utility functions and applications to finance and insurance, see Gerber

and Pafumi [26].

The reader will realize a partial change of notation compared to Chapters 2-4.

We choose, throughout the remaining of the thesis, to conform to a notation which

is more conventional in finance and control. This serves to emphasize that the

problems and results go beyond optimization in life insurance. In fact, the present

chapter demonstrates no connection to decision problems in life and pension insur-

ance, whatsoever, but prepares the reader to Chapter 6. In that chapter insurance

is our main application, and Section 6.3 helps the reader to interpret the results of

Chapter 6 in terms of life and pension insurance.

In Section 5.2 we introduce the market, the wealth process, and the objective

in the traditional optimization problem. In Section 5.3 we introduce the concept of

risk-adjusted utility and formulate a new optimization problem arising from these

state-dependent utilities. In Section 5.4 we solve in general the problem of optimal

investment. An optimal consumption plan is obtained in the case where utility of

consumption and terminal wealth coincide and in the case where there is no utility

of terminal wealth but the constraint that the financial value of consumption equals

initial wealth. Finally, in Section 5.5 we study the impacts of risk-adjusted utility

on utility indifference pricing in incomplete markets.
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5.2 The traditional optimization problem

We consider the problem of optimal consumption and portfolio selection of an agent

where the investment possibilities are provided by a Black-Scholes market. In this

market, the dynamics of the price processes of the bond, (B (t))t≥0, and the stock,

(S (t))t≥0, are given by

dB (t) = B (t) rdt, B (0) = 1, (5.1)

dS (t) = S (t) (µdt+ βdW (t)) , S (0) = s,

respectively, where r, µ, and β are constants and W is a Brownian motion defined

on a probability space (Ω,F ,F = {Ft}t≥0 , P ). Let
{
FW

t

}
t≥0

denote the filtration

generated by W .

Fix a time horizon T . A dynamic portfolio strategy is a predictable process,(
ηB, ηS

)
=
(
ηB (t) , ηS (t)

)
0≤t≤T

, where ηB (t) and ηS (t) denote the number of units

held at time t of B and S, respectively. The wealth at time t of the agent holding

the portfolio
(
ηS (t) , ηB (t)

)
is given by

X ′ (t) = ηS (t)S (t) + ηB (t)B (t) , (5.2)

and the relative portfolio in the risky asset is defined by

θ (t) =
ηS (t)S (t)

X ′ (t)
. (5.3)

We assume that the cumulative consumption of the agent up to time t is given

by U ′ (t) =
∫ t

0
u′ (s) ds, such that the wealth of the agent following a self-financing

investment-consumption strategy is given by

X ′ (t) = x0 +

∫ t

0

(
−u′ (s) ds+ ηS (s) dS (s) + ηB (s) dB (s)

)
, (5.4)

where x0 is the initial wealth. Then, by (5.1), (5.2), (5.3), and (5.4),

dX ′ (t) = −u′ (t) dt+ ηS (t) dS (t) + ηB (t) dB (t)

= −u′ (t) dt+X ′ (t) (r + θ (t) (µ− r)) dt (5.5)

+X ′ (t) θ (t)βdW (t) .

The agent’s preferences over consumption and wealth profiles in a traditional

problem of optimal investment-consumption are given by time-additive utility func-

tions υ for consumption and Υ for the terminal wealth. Given an endowment at

time t of x, an agent wishes to choose a consumption profile and an investment

policy so as to maximize his total expected utility of consumption over (t, T ] and

utility of wealth at time T using feasible policies. The agent wishes to maximize

J (t, x, θ, u′) = E

[∫ T

t

υ (s, u′ (s)) ds+ Υ (X ′ (T ))

∣∣∣∣X
′ (t) = x

]
,



106 CHAPTER 5. RISK-ADJUSTED UTILITY

and the value function of the agent is defined by

V (t, x) = max
θ,u′

J (t, x, θ, u′) .

The utility functions υ and Υ are assumed to be concave, and one typically works

with the power function, the logarithmic function, or the negative exponential func-

tion. We use the terms utility and disutility functions for general (not necessarily

increasing, concave/convex and continuously differentiable) reward and cost func-

tions, respectively. For derivatives of V we shall use the notation Vt = ∂
∂t
V (t, x),

Vx = ∂
∂x
V (t, x), and Vxx = ∂2

∂x2V (t, x).

This traditional formulation of the problem can be criticized in various respects.

The ordering of preferences is rather special and, in particular, the preferences of

the agent are independent of the attitudes to risk taken up by the market. It seems

natural to let the utility of wealth and consumption at time t depend on the state of

the world at that point in time. In general, state-dependent utilities complicate the

optimization problem, but we shall take a stand point which turns out to simplify

the problem considerably.

5.3 Risk-adjusted utility

Instead of measuring and comparing payments by utility or moral value we shall

make an excursion to derivative pricing and compare payments by price or financial

value. The market described above is complete and takes a unique position on the

price of W -risk. From arbitrage pricing theory we know that the price or finan-

cial value at time 0 of an FW
t -measurable payment of u′ (t) at time t is given by

E (Λ (t) u′ (t)), where the dynamics of the deflator Λ is given by

dΛ (t) = −Λ (t)

(
rdt+

µ− r
β

dW (t)

)
, Λ (0) = 1. (5.6)

Thus, taking stand at time 0, the deflator Λ plays a crucial role in measuring and

comparing prices or financial values of payments at different points in time. Arbi-

trage pricing theory tells us that Λ is the appropriate yardstick to use. Moreover,

for financial valuation, the yardstick Λ makes payments time-additive in the sense

that the price of the payment u′ (s) at time s plus the payment u′ (t) at time t equals

E [Λ (s) u′ (s) + Λ (t) u′ (t)].

When it comes to utility or moral value of money, one usually measures moral

value of nominal payments. Instead, we suggest using the yardstick from financial

valuation. More precisely, we suggest to measure at time 0 the moral value of a

payment of u′ (t) at time t by the quantity

E [υ (Λ (t)u′ (t))] , (5.7)

for some utility function υ. Thereby, the agent takes into account the market’s

attitudes to risk before making decisions based on his own individual utility function.
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This seems to be a controversial suggestion, but we believe that it makes sense to use

the same deflator for calculating financial and moral value of money. Furthermore, it

simplifies our problem considerably and the inclusion of a certain terminal constraint

in particular. Note, that our approach has no direct connection with the criticizable

approach to deflate by Λ the utility of nominal value,

E [Λ (t) υ (t, u′ (t))] .

In (5.7) we have skipped the time-dependence, assuming that the deflator Λ not

only adjusts for utility in different states at time t, but also adjusts for utility at

different points in time. This assumption could easily be weakened, at least in the

finite time problem studied in this chapter.

One way of thinking of the state-dependent utility suggested above is that prices

are deflated by Λ. If a consumer has preferences over purchasing power given by a

utility function υ, the quantity to be measured is exactly purchasing power rather

than the nominal amount of money. Using Λ as price deflator relates to the assertion

that prices go up when the market goes up – or the other way around. Though this

seems natural from a macro-economic point of view, we admit that our choice of

deflator is not underpinned by basic economic principles, but is rather a matter of

mathematical convenience.

After having argued for deflation of money, we admit that there are still critical

remarks to be made on the time-additivity. In the classical situation the marginal

utility of consumption at time t is independent of the amount of consumption at

time s, no matter how close s is to t. This seems to be criticizable. However, using

the picture in the previous paragraph, the same criticism goes for purchasing power

in our approach.

Abbreviating

X (t) = Λ (t)X ′ (t) ,

u (t) = Λ (t) u′ (t) ,
(5.8)

we see, by using Ito’s formula and (5.1)-(5.6), that the dynamics of X can be written

in various forms,

dX (t) = d
(
ηS (t) Λ (t)S (t) + ηB (t) Λ (t)B (t)

)

= d

(
Λ (t) x+ Λ (t)

∫ t

0

(
−u′ (s) ds+ ηS (s) dS (s) + ηB (s) dB (s)

))

= −u (t) dt+ ηB (t) d (Λ (t)B (t)) + ηS (t) d (Λ (t)S (t)) (5.9)

= −u (t) dt+X (t)

(
θ (t) β − µ− r

β

)
dW (t) , (5.10)

and that (5.7) can be written as

E [υ (u (t))] .
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5.4 Optimal investment and consumption

In this section, we show that decisions concerning investment and decisions concer-

ning consumption can be separated in the sense that the optimal investment policy

and the optimal consumption process can be found independently of each other.

We find the optimal investment policy and for particular cases also the optimal

consumption plan. Let

J (t, x, θ, u) = E

[∫ T

t

υ (u (s)) ds+ Υ (X (T ))

∣∣∣∣X (t) = x

]
,

and let the value function of the agent be defined by

V (t, x) = max
θ,u

J (t, x, θ, u) .

The Hamilton-Jacobi-Bellman equation for the optimization problem is

−Vt = max
u,θ

[
−uVx +

1

2
x2

(
θβ +

r − µ
β

)2

Vxx + υ (u)

]
. (5.11)

Differentiation of (5.11) with respect to θ and equating the right hand side to zero

results in the optimizer,

θ (t) =
µ− r
β2 , (5.12)

and differentiation of (5.11) once more shows that θ is maximizing if V is concave.

Proposition 6 If υ and Υ are concave, then V is concave.

Sketch of proof. Consider two initial points x1 and x2 and strategies (u1, θ1)

and (u2, θ2) and let λ ∈ (0, 1). We can now define a new strategy, (u, θ) =

(λu1 + (1− λ) u2, λθ1 + (1− λ) θ2) for the initial point x = λx1 +(1− λ)x2, and we

get by linearity of X, X (t) = λX1 (t) + (1− λ)X2 (t). Since υ and Υ are concave,

we know that

υ (u (t)) ≥ λυ (u1 (t)) + (1− λ) υ (u2 (t)) ,

Υ (X (T )) ≥ λΥ (X1 (T )) + (1− λ)Υ (X2 (T )) ,

Now, it follows that

J (t, x, θ, u) ≥ λJ (t, x1, θ1, u1) + (1− λ)J (t, x2, θ2, u2) .

For any ε > 0, we can choose (u1, θ1) such that J (t, x1, θ1, u1) ≥ V (t, x1) − ε and

(u2, θ2) such that J (t, x2, θ2, u2) ≥ V (t, x2)− ε. Since (u, θ) is suboptimal we have

V (t, x) ≥ λV (t, x1) + (1− λ)V (t, x2)− ε,

and since ε was arbitrary, concavity follows.�
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It follows from Proposition 6 and the comment following (5.12) that the optimal

investment policy is given by

θ (t) =
µ− r
β2 .

Inserting this investment policy in (5.11), we get

−Vt = max
u

[−uVx + υ (u)] . (5.13)

This is optimized by

u (t) = υ−1
u (Vx) , (5.14)

and even maximized at this point if υ is concave. Plugging (5.14) into the partial

differential equation (5.13) gives the equation

Vt − υ−1
u (Vx)Vx + υ

(
υ−1

u (Vx)
)

= 0, (5.15)

which is to be solved subject to the terminal condition, V (T, x) = Υ (x).

5.4.1 Terminal utility

We consider the situation where utility of consumption coincides with utility of

terminal wealth,

Υ = υ.

We guess a solution to (5.15) in the form

V (t, x) = (T + 1− t) υ
(

x

T + 1− t

)
,

and find

Vt = −υ
(

x

T + 1− t

)
+

x

T + 1− tυu

(
x

T + 1− t

)
,

Vx = υu

(
x

T + 1− t

)
,

such that (5.15) is fulfilled and V (T, x) = υ (x) = Υ (x) .

The optimal consumption is given by

u (t) =
X (t)

T + 1− t ,

or, by (5.8), in nominal terms,

u′ (t) =
X ′ (t)

T + 1− t .

This is the same solution as Merton’s solution for the special case of logarithmic

utility. In our formulation with risk-adjusted utility, this result is not dependent on

a particular form of υ but on the concavity only.
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5.4.2 Terminal constraint

We consider the problem with a terminal constraint,

E [X (T )] = 0. (5.16)

From (5.10) and (5.16) we get that

x0 = E

[∫ T

0

Λ (t)u′ (t) dt

]
, (5.17)

and we see that (5.16) amounts to requiring that the financial value of the consump-

tion over (0, T ] is equal to initial wealth.

Remark 7 For readers familiar with optimization problems in finance, the con-

straint (5.16) is recognized from the martingale approach to optimal consumption.

In a complete market with positive consumption, (5.16) replaces the admissibility

condition, X (t) ≥ 0, 0 ≤ t ≤ T . This condition will consequently be fulfilled in our

solution below. However, this is not our motivation for (5.16). In Chapter 6 we shall

work with a constraint similar to (5.16) in an incomplete framework where there are

no requirements, in general, concerning positive wealth and positive consumption.

The terminal constraint can there be motivated by a no arbitrage condition in a life

and pension insurance portfolio, as we shall see in Chapter 6.

We guess a solution to (5.15) in the form

V (t, x) = (T − t) υ
(

x

T − t

)
,

and find

Vt = −υ
(

x

T − t

)
+

x

T − tυu

(
x

T − t

)
,

Vx = υu

(
x

T − t

)
,

such that (5.15) is fulfilled. Now we need to find the optimal control and check the

constraint.

The optimal consumption is given by

u (t) =
X (t)

T − t ,

or, by (5.8), in nominal terms,

u′ (t) =
X ′ (t)

T − t ,

such that the dynamics of the optimally controlled process is

dX (t) = −X (t)

T − tdt, X (0) = x0.
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This is just an ordinary differential equation with the solution

X (t) =
(T − t) x0

T
,

such that

X (T ) = 0. (5.18)

Thus, the constraint (5.16) is fulfilled. The reason why we even arrive at (5.18)

is that the optimal consumption problem with Hamilton-Jacobi-Bellman equation

given by (5.13) is actually a deterministic control problem, although the nominal

process X ′ is still stochastic.

5.5 Pricing by risk-adjusted utility

In this section, we consider the problem of pricing claims in an incomplete market

by the principle of equivalent utility. We put consumption equal to 0 throughout

the section and denote by X ′x (t) the wealth process of an agent with initial wealth

x, defined by (5.4) with u′ = 0. Consider pricing of γ units of the T -claim H ′, and

let H be a T -claim defined by

H = Λ (T )H ′.

Let π (x, γ) denote the price of γ units of H ′ for an investor with initial wealth x.

The market is incomplete in the sense that H ′ is not necessarily FW
T -measurable.

In Schweizer [60], a general utility indifference pricing principle is suggested,

sup
θ
E
[
υ
(
X ′x+π(x,γ) (T )− γH ′

)]
= sup

θ
E [υ (X ′x (T ))] . (5.19)

However, following the idea of risk-adjusted utility, we shall instead propose to derive

the price from

sup
θ
E
[
υ
(
Λ (T )

(
X ′x+π(x,γ) (T )− γH ′

))]
= sup

θ
E [υ (Λ (T )X ′x (T ))] ,

equivalent to

sup
θ
E
[
υ
(
Xx+π(x,γ) (T )− γV H (T )

)]
= sup

θ
E [υ (Xx (T ))] , (5.20)

where

V H (t) = E [H| Ft] .

Since the market is incomplete, it is no longer clear that the risk-adjustment fac-

tor should be Λ. In fact, there will be one risk-adjustment factor for each martingale

measure, and the question is which factor to use. The idea with risk-adjustment

of utility is to take into consideration the market’s attitude to risk. Adding to this

that this consideration can only be taken into account to the extent that the market
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really takes a position, we suggest to use the minimal risk-adjustment corresponding

to discounting and a change of measure into the minimal martingale measure (see

e.g. Schweizer [61] for an account on the notion of minimal martingale measure).

The factor Λ is exactly such a minimal risk-adjustment.

Consider the right hand side of (5.20). If υ is concave, we have by Jensen’s

inequality

E [υ (Xx (T ))] ≤ υ (E [Xx (T )]) = υ (x) .

Since equality is obtained by the strategy

θ (t) =
µ− r
β2 ,

the supremum is obtained by this strategy, and the right hand side of (5.20) becomes

υ (x).

In order to represent the optimizing strategy for the left hand side of (5.20),

we shall write the martingale V H , according to the Galtchouk-Kunita-Watanabe

decomposition, uniquely as

V H (T ) = V H (0) +

∫ T

0

ξH (t) dW (t) + LH , (5.21)

such that

E
[
LH
]

= 0 (5.22)

and

E

[
LH

∫ T

0

ξ (t) dW (t)

]
= 0 (5.23)

for any (ξ (t))t≥0. From (5.21), (5.9), and (5.10) with u = 0 we get that

Xx+π(x,γ) (T )− γV H (T )

= x+ π (x, γ) +

∫ T

0

ηB (t) d (Λ (t)B (t)) +

∫ T

0

ηS (t) d (Λ (t)S (t))

−γV H (0)− γ
∫ T

0

ξH (t) dW (t)− γLH

= x+ π (x, γ)− γV H (0)− γLH +

∫ T

0

h (t) dW (t) , (5.24)

where

h (t) = Xx+π(x,γ) (t)

(
θ (t) β − µ− r

β

)
− γξH (t) . (5.25)

Consider the left hand side of (5.20). If υ is concave, we have by Jensen’s

inequality, (5.24), and (5.22),

E
[
υ
(
Xx+π(x,γ) (T )− γV H (T )

)]
≤ υ

(
E
[
Xx+π(x,γ) (T )− γV H (T )

])

= υ
(
x+ π (x, γ)− γV H (0)

)
.
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In general we cannot come up with a strategy such that equality holds. If H is FW
T -

measurable, however, such that LH = 0, we get an equality by putting h (t) = 0,

i.e.

θ (t) =
µ− r
β2 +

γξH (t)

βXx+π(x,γ) (t)
.

Then (5.20) becomes

υ
(
x+ π (x, γ)− γV H (0)

)
= υ (x) ,

and the equivalence price is given by

π (x, γ) = γV H (0) = γE [Λ (T )H ′] .

From this we conclude that our pricing approach is consistent with absence of arbi-

trage.

5.5.1 Exponential utility

Consider the case

υ (x) =
1

a

(
1− e−ax

)
.

Since exponential utility is concave, we get by (5.20) and the remarks above

π (x, γ) =
1

a
log inf

θ
E
[
ea(γV H(0)+γLH−

R T
0 h(t)dW (t))

]
,

with h (t) given by (5.25).

In general, we cannot say much about this expression. However, if H is indepen-

dent of S we have that

LH = H − E [H ] ,

ξH = 0,

such that

π (x, γ) =
1

a
log
(
E
[
eaγH

]
inf
θ
E
[
ea

R T
0 (X(t)x+π(x,γ)(θ(t)β−µ−r

β ))dW (t)
])

=
1

a
logE

[
eaγH

]
, (5.26)

where infimum is obtained by

θ (t) =
µ− r
β2 .

The pricing formula (5.26) is almost equivalent to the traditional actuarial expo-

nential principle. However, it is important to notice that it is the claim H (not H ′)

for which we have assumed independence of S, and which appears in (5.26). A ref-

erence to pricing and hedging by indifferent exponential utility (not risk-adjusted)

with applications to insurance is Becherer [3].
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5.5.2 Mean-variance utility

We shall now consider a rather special utility, υ : L2 → R, given by

υ (X) = E [X]− a (V ar [X])c , X ∈ L2. (5.27)

This utility function (see Schweizer [60] for further comments on this expression) cov-

ers both the variance principle (c = 1) and the standard deviation principle
(
c = 1

2

)
,

and we call a utility function in the form (5.27) for mean-variance utility. In Dana

[14] utility is said to be mean-variance if there exists a function f : R×R+→ R

such that υ (X) = f (E [X] , V ar [X]), X ∈ L2. Note that in case of mean-variance

utility, the expectation taken on both sides of (5.20) and (5.19) is redundant. Now

(5.20) becomes

sup
θ

(
E
[
Xx+π(x,γ) (T )− γV H (T )

]
− a

(
V ar

[
Xx+π(x,γ) (T )− γV H (T )

])c)

= sup
θ

(E [Xx (T )]− a (V ar [Xx (T )])c)

or, equivalently,

x+ π (x, γ)− γV H (0)− a inf
θ

(
V ar

[
Xx+π(x,γ) (T )− γV H (T )

])c

= x− a inf
θ

(V ar [Xx (T )])c . (5.28)

Consider the right hand side of (5.28). Here we have that

(V ar [Xx (T )])c ≥ 0,

and since equality is obtained by the strategy

θ (t) =
µ− r
β2 ,

the infimum is obtained by this strategy. Thus, the right hand side of (5.28) equals

x.

Consider the left hand side of (5.28). Here, by monotonicity of the power function

of positive numbers, (5.23), and (5.24), we have that

inf
θ

(
V ar

[
Xx+π(x,γ) (T )− γV H (T )

])c

= inf
θ

(
V ar

[
γLH +

∫ T

0

h (t) dW (t)

])c

=

(
V ar

[
γLH

]
+ inf

θ
V ar

[∫ T

0

h (t) dW (t)

])c

,

with h given by (5.25). We know that

V ar

[∫ T

0

h (t) dW (t)

]
≥ 0,



5.5. PRICING BY RISK-ADJUSTED UTILITY 115

and since equality is obtained by the strategy given by h (t) = 0, i.e.

θ (t) =
µ− r
β2 +

γξH (t)

βXx+π(x,γ) (t)
,

we get

π (x, γ) = γV H (0) + aγ2c
(
V ar

[
LH
])c

= γE [Λ (T )H ′] + aγ2c
(
V ar

[
LH
])c

.

Thus, in the case of mean-variance utility, the absence of correlation given by (5.23)

is sufficient for obtaining an explicit investment strategy and an explicit pricing

formula.

If H is attainable, we have that LH = 0, such that

π (x, γ) = γE [Λ (T )H ′] .

Thus, the pricing formula is consistent with absence of arbitrage.

If H is independent of S, we have that

LH = H − E [H ] ,

such that

π (x, γ) = γE [H ] + aγ2c (V ar [H ])c (5.29)

and

θ (t) =
µ− r
β2 .

As in the case of exponential utility, we get by (5.29) a formula almost equivalent

to the traditional actuarial pricing formula. Again, one should notice that it is the

claim H (not H ′) for which we have assumed independence of S, and which appears

in (5.29). A reference to pricing and hedging by indifferent mean-variance utility

(not risk-adjusted) with applications to insurance is Møller [48].
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Chapter 6

Optimal investment and

consumption in life and pension

insurance

In this chapter, we study the problem of optimal consumption and portfolio selection

of an agent. The decision problem takes into consideration risky income and risky

debt. As opposed to the traditional formulation of the problem we shall formulate

the preferences of the agent in terms of so-called risk-adjusted utility. This leads

to intuitively reasonable strategies for consumption and investment under quadratic

and absolute disutility. We give an interpretation of the set-up in terms of investment

and distribution of surplus in life and pension insurance such that the results can

be applied there. As a matter of precaution we remind the reader about the partial

change in notation, compared to Chapters 2-4, which started in Chapter 5 and

continues in the present chapter.

6.1 Introduction

In this chapter, we study the problem of optimal consumption and portfolio selection

of an agent playing the role as both investor and consumer. The work of Robert

Merton around 1970 is usually considered as the starting point of the continuous-

time formulation of the problem, see references in Merton [45]. In the work by

Merton, the preferences of an agent over consumption and wealth are given by

time-additive utility functions, and he solves for some specific markets and utility

functions explicitly the problem of choosing consumption and investment in order to

maximize expected total utility. In this chapter, we shall also work in a continuous-

time framework and base decisions about consumption and investment on the same

fundamental idea. However, in various respects the objective of our decisions differs

from that of Merton.

Whereas Merton applied control theory to his problem, several authors around

1990 approached the problem with martingale methods from finance. The idea is to

117
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separate the dynamic decision problem into a static decision problem and a hedging

problem. Both methods have, compared to their original formulations, been refined

in various directions in order to obtain results that are more applicable. Important

are constraints on trading strategies, consumption and wealth. See Korn [40] for

the martingale method, references on constrained problems, and for refinements

connected with the introduction of transaction costs.

We shall take into account a possible income stream increasing the wealth. There

are several articles on the issue. In Duffie and Zariphopoulou [19], which is also

based on control theory, the income stream is absolutely continuous with respect

to the Lebesgue measure. We call such an income risk-free even though the rate of

income is allowed to be stochastic. In this chapter, we shall work with an additional

diffusion part to the income stream and therefore speak of risky income. We shall

also take into account a possible debt. Debt is modelled as a stochastic process and

is subtracted from the value process consisting of income and gains on the financial

market (gross wealth) in order to determine the surplus or (net) wealth of the agent.

Our debt process contains a diffusion part and we shall speak of risky debt.

The introduction of risky income and risky debt gives us the opportunity to

interpret all our results in terms of distribution and investment of surplus in life and

pension insurance contracts. The link between investment-consumption problems

and the problem of redistribution of surplus in life and pension insurance that is

brought to the surface here, was also noted in Cairns [12]. We explain in Section

6.3 how an insurance contract or a portfolio of insurance contracts could be covered

by our model. The construction of the insurance contract in that section is based

on ideas and terminology fetched from Chapter 3. The main difference compared

to Chapter 3 is that payments are driven by diffusion processes instead of jump

processes.

Risky income and risky debt will be introduced as rather general stochastic pro-

cesses. However, when we come to solving our control problems, we will specialize

to a very simple structure. The relevance of the simple structure for practical prob-

lems can be discussed. However, we believe that solving the distribution/investment

problem in a simple case is a first step in the understanding of the problem and the

nature of its solution in a more involved case.

The preference ordering in Merton’s problem is rather special. A generalized or-

dering of preferences is obtained by considering state-dependent utilities. However,

generalizations in this direction, in general, increases the number of state variables

and complicates the problem accordingly. In Chapter 5, a notion of risk-adjusted

utility is introduced which simplifies the problem of optimal consumption and in-

vestment. The investment and the consumption problems are separated into two

problems which can be solved independently of each other. We shall follow this

idea and formulate the ordering of preferences of the agent in terms of risk-adjusted

utility.

After separation of the investment problem and the consumption problem and

solution of the investment problem, the consumption problem reduces to a tradi-
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tional controlled diffusion problem. In our formulation with quadratic disutility of

current wealth and quadratic or absolute disutility of consumption, this controlled

diffusion problem has been studied intensively in the literature on stochastic con-

trol. Sections 6.8, 6.9, and 6.10 of this chapter deal with these problems, and we

shall make extensive use of results from existing literature. In the case of absolute

disutility of consumption, we work in the framework of singular control (Section

6.8). In the case of quadratic disutility of consumption, we work in the framework

of the linear regulator problem known from just about every textbook on stochastic

control, see e.g. Fleming and Soner [24] (Section 6.9). Finally, we consider a class

of suboptimal control problems (Section 6.10).

The dynamic programming principle states, in non-mathematical words, that,

in a certain sense, locally optimal behavior is as good as globally optimal behavior.

Under certain regularity conditions, this principle leads to the dynamic programming

equation, henceforth abbreviated the DPE, which is a certain kind of differential

equation. The particular form of the DPE varies with the underlying problem. We

expect the reader to be familiar with these concepts such that the DPE for each

case can be put up directly. We work rather systematically with the consumption

problems of various kinds. In some cases we find the explicit solutions, in some cases

we are content with a description of a solution, and in some cases we do not even

get that far. These sections can be seen as a concentrated collection of solutions to

a certain class of control problems, some of which, to our knowledge, have not been

studied before.

6.2 The general model

In this section, we model the wealth of an agent with risky income and risky debt.

Let the stochastic basis be a standard two-dimensional Brownian motion
(
W,W

)

defined on a probability space (Ω,F ,F = {Ft}t≥0 , P ). Let the market be a Black-

Scholes market, where the dynamics of the price processes of the bond, (B (t))t≥0,

and the stock, (S (t))t≥0, are given by

dB (t) = B (t) rdt, B (0) = 1,

dS (t) = S (t)
(
µdt+ βdW (t)

)
, S (0) = s,

respectively, where r, µ, and β are constants.

The total payment process is the sum of two semimartingales, A′ and −U ′, of

which A′ is a gross income process and U ′ is a consumption process. It is assumed

that gross income A′ is uncontrollable whereas consumption U ′ is controllable. We

let A′ be a continuous semimartingale with dynamics given by

dA′ (t) = α′ (t) dt+ σ′ (t) dW (t) + σ′ (t) dW (t) , (6.1)

where α′, σ′, σ′ are adapted processes. Lump sum income at deterministic points in

time could be taken into account but is omitted for notational convenience. Note

that we allow negative income.
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Assuming that, at time t, the (controllable) relative portfolio θ′ (t) is invested in

asset S and the relative portfolio (1− θ′ (t)) is invested in asset B, the gross wealth

process L′ consisting of payments and gains on the financial market is given by the

dynamics

dL′ (t) = dA′ (t)− dU ′ (t) (6.2)

+
θ′ (t)L′ (t)

S (t)
dS (t) +

(1− θ′ (t))L′ (t)
B (t)

dB (t) ,

L′ (0−) = l0,

where l0 is an initial gross wealth. Note that initial gross wealth is specified at time

0−, since there may be a lump sum consumption at time 0.

The agent takes debt into consideration, and we assume that the debt process is

given by a continuous semimartingale, V ′, which can be written on the form

dV ′ (t) = rV ′ (t) dt+ δ′ (t) dt+ ψ′ (t) dW (t) + ψ
′
(t) dW (t) , (6.3)

V ′ (0) = v0,

where, δ′, ψ′, ψ
′
are adapted processes and v0 is the initial debt. The term rV ′ (t) dt

could, of course, be included in δ′dt, but we choose not to do this for later notational

convenience.

The introduction of a debt process gives us the opportunity to interpret all

our results in terms of distribution and investment of surplus in life and pension

insurance. In the succeeding section, we provide the reader with the concepts needed

for such an interpretation. That section is, at the same time, an example of a possible

connection between the coefficients in the income process A′ and the debt process

V ′, respectively.

The net wealth, henceforth just called wealth or surplus of the agent is now

defined by

X ′ = L′ − V ′,
and by (6.2) and (6.3), it is given by the stochastic differential equation

dX ′ (t) = (α′ (t)− δ′ (t)) dt− dU ′ (t)
+ (σ′ (t)− ψ′ (t)) dW (t) +

(
σ′ (t)− ψ′ (t)

)
dW (t)

+X ′ (t) rdt+ L′ (t) θ′ (t) (µ− r) dt+ L′ (t) θ′ (t) βdW (t) , (6.4)

X ′ (0−) = x = l0 − v0.

In case U ′ is continuous, we have that X ′ (0) = x. Since the objectives in our

optimization problems below are formulated in terms ofX ′ (not L′), we now, without

loss of generality, let l0 = 0.

We are going to work with risk-adjusted utility and need for that purpose an

appropriate deflator, see Chapter 5. A deflator Λ is a process in the form

dΛ (t) = −Λ (t)
(
rdt− h (t) dW (t)− g (t) dW (t)

)
, (6.5)

Λ (0) = 1.
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With conditions on (g, h), we can define Q by

Λ (t) = e−rtE

[
dQ

dP

∣∣∣∣Ft

]
,

such that Λ is the product of a discount factor and the likelihood function of a

measure Q with respect to the measure P .

Abbreviating

X (t) = Λ (t)X ′ (t) ,

dU (t) = Λ (t) dU ′ (t) ,

σ (t) = Λ (t) (σ′ (t)− ψ′ (t)) ,

σ (t) = Λ (t)
(
σ′ (t)− ψ′ (t)

)
,

α (t) = Λ (t) (α′ (t)− δ′ (t)) + h (t) σ (t) + g (t) σ (t) , (6.6)

θ (t) = Λ (t)L′ (t) θ′ (t) ,

Ito’s lemma, (6.4), and (6.5) give the dynamics of the deflated wealth process, X =

ΛX ′,

dX (t) = Λ (t) dX ′ (t) +X ′ (t) dΛ (t) + dΛ (t) dX ′ (t)

= α (t) dt− dU (t) + (σ (t) + g (t)X (t)) dW (t)

+ (θ (t) β + h (t)X (t) + σ (t)) dW (t) , (6.7)

X (0−) = x.

In Chapter 5, it is argued that the relevant deflator to use in connection with

risk-adjusted utility is the minimal deflator corresponding to choosing as measure

Q the minimal martingale measure (see Schweizer [61]). Following this idea we get

that

h (t) =
r − µ
β

, (6.8)

g (t) = 0, (6.9)

such that (6.7) becomes

dX (t) = α (t) dt− dU (t) + σ (t) dW (t) (6.10)

+

(
θ (t) β +

r − µ
β

X (t) + σ (t)

)
dW (t) .

6.3 A diffusion life and pension insurance con-

tract

In this section we show how a general life and pension insurance contract with

payments of diffusion type is covered by the model described above in the sense
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that an agent now should be understood as an insurance company having issued

an insurance contract (portfolio). It is, at the same time, an example of a possible

connection between the coefficients in the income process A′ and the debt process

V ′, respectively. The section reconstructs the general life and pension insurance

contract along the lines of Section 3.3 in Chapter 3 with payments of diffusion type,

and the reader will recognize the structure of payments from there.

We introduce a first order deflator Λ̂ given by

dΛ̂ (t) = −Λ̂ (t)
(
r̂ (t) dt− ĥ (t) dW (t)− ĝ (t) dW (t)

)
,

Λ̂ (0) = 1,

where (r̂, ĝ, ĥ) is a function of
(
t,W (t) ,W (t)

)
. Define a stream of first order pay-

ments A′ by (6.1) where (α′ (t) , σ′ (t) , σ′ (t)) is now a function of
(
t,W (t) ,W (t)

)
.

The first order reserve V̂ ′ is defined by

V̂ ′ (t) = E

[∫ T

t

Λ̂ (s)

Λ̂ (t)

(
d (−A′ (s))−

(
σ′ (s) ĝ (s) + σ′ (s) ĥ (s)

)
ds
)∣∣∣∣∣Ft

]

= E
bQ
[∫ T

t

e−
R s
t br(τ)dtd (−A′ (s))

∣∣∣∣Ft

]
,

Let A′ be constrained by the first order equivalence relation

V̂ ′ (0−) = 0.

The first order deflator serves solely as a tool for laying down the first order

payments at time 0. During the term of the contract we work with a technical

deflator Λ∗, defined by

dΛ∗ (t) = −Λ∗ (t)
(
r∗ (t) dt− h∗ (t) dW (t)− g∗ (t) dW (t)

)
,

Λ∗ (0) = 1,

where (r∗, g∗, h∗) is a function of
(
t,W (t) ,W (t)

)
. The technical reserve V ′ is defined

by

V ′ (t) = E

[∫ T

t

Λ∗ (s)

Λ∗ (t)
(d (−A′ (s))− (σ′ (s) g∗ (s) + σ′ (s)h∗ (s)) ds)

∣∣∣∣Ft

]

= EQ∗

[∫ T

t

e−
R s

t r∗(τ)dtd (−A′ (s))
∣∣∣∣Ft

]

As opposed to Λ̂ and Λ∗ we shall speak of Λ as the real deflator. The real

payments are composed by the first order payments A′ and an additional payment

stream of bounded variation −U ′, called the dividends. The total payment process

A′ − U ′ is required to fulfill the real equivalence relation

0 = E

[∫ T

0−
Λ (t) (dA′ (t)− dU ′ (t) + (σ′ (t) g (t) + σ′ (t) h (t)) dt)

]
(6.11)

= EQ

[∫ T

0−
e−

R s
t r(τ)dt (dA′ (t)− dU ′ (t))

]
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With Chapter 3 on hand, it is now a (more or less) trivial exercise in Ito Calculus

to derive the dynamics of various versions of the surplus, hereunder the retrospective

surplus defined byX ′ = L′−V ′. A study includes a statement of a diffusion version of

Thiele’s differential equation. In this exposition, however, we shall content ourselves

with identifying, without proof, the coefficients in the technical reserve (see (6.3)),

ψ′ (t) = V ′w (t) ,

ψ
′
(t) = V ′w (t) ,

δ′ (t) = (r∗ (t)− r)V ′ (t) + α′ (t)

+ (σ′ (t)− ψ′ (t)) g∗ (t) +
(
σ′ (t)− ψ′ (t)

)
h∗ (t) ,

such that
α

Λ (t)
= (r − r∗ (t))V ′ (t) + (h (t)− h∗ (t)) (σ′ (t)− V ′w (t))

+ (g (t)− g∗ (t)) (σ′ (t)− V ′w (t)) ,
σ

Λ (t)
= σ′ (t)− V ′w (t) ,

σ

Λ (t)
= σ′ (t)− V ′w (t) .

The quantities α
Λ(t)

, σ
Λ(t)

, and σ
Λ(t)

are the coefficients of the contributions to the

surplus and can be compared to the coefficients in the process C∗ in Section 3.3. The

reader should note the systematic contribution to the surplus, α
Λ(t)

, which appears a

couple of times in our optimal dividend processes below.

We shall now assume that the agent is risk-neutral with respect to W -risk, and

one can think of W as being some kind of diversifiable risk e.g. stemming from

mortality risk in the insurance portfolio. Comparing to (3.9), it can then be shown

that the equivalence relation (6.11) also can be written as the relation

E [X (T )] = 0,

which shall play the important role as terminal condition in our (finite time) opti-

mization problems.

For the sake of generality we will, throughout the chapter, use the general ter-

minology introduced in Section 6.2. However, the reader should have in mind the

application to a life and pension insurance contract (portfolio). We end this sec-

tion with a small dictionary relating terms from our general set-up to the terms

from the general life and pension insurance interpretation. We write in brackets the

corresponding symbols used in Chapter 3.

Symbol General set-up General life and pension insurance

A′ gross income first order payments
(
B̂
)

V ′ debt technical reserve (V ∗)

U ′ consumption dividends
(
−B̃
)

X ′ wealth (retrospective) surplus
(←−
F ∗
)



124 CHAPTER 6. OPTIMAL INVESTMENT AND CONSUMPTION

6.4 Objectives

Given the model described in Section 6.2, we now formulate our control problem.

The control variables are the relative portfolio invested in the risky asset θ, and the

consumption U . The process to be controlled is the deflated wealth process with

dynamics given by (6.10). We introduce cost functions υu and υx and introduce, for

each control (θ, U), a cost functional. In this chapter, we are going to work with

two different cost functionals:

Finite time consumption:

J (t, x, θ, U) = E

[∫ T

t

υx (X (s)) ds+ aυu (dU (s) , ds)

∣∣∣∣X (t) = x

]
. (6.12)

Stationary consumption:

J (x, θ, U) = lim
T→∞

1

T
E

[∫ T

0

υx (X (s)) ds+ aυu (dU (s) , ds)

∣∣∣∣X (0) = x

]
.

(6.13)

Note that the compact notation for current utility of consumption only makes

sense for particular functions υu. The cost functions introduced below serve as ex-

amples. We use the terms utility and disutility functions for general (not necessarily

increasing, concave and continuously differentiable) reward and cost functions, re-

spectively.

The objective is to find the corresponding optimal cost functions

V (t, x) = min
θ,U

J (t, x, θ, U) and γ = min
θ,U

J (x, θ, U) ,

respectively, and to find the optimal control (θ∗, U∗) such that

V (t, x) = J (t, x, θ∗, U∗) and γ = J (x, θ∗, U∗) ,

respectively. Note that the letter V is used for the optimal cost function or value

function, not to be confused with the deflated debt process ΛV ′. For derivatives of

V we shall use the notation Vt = ∂
∂t
V (t, x), Vx = ∂

∂x
V (t, x), and Vxx = ∂2

∂x2V (t, x).

These cost functions show that we are interested in controlling the deflated wealth

X. We have specified an additional structure of the cost of wealth and the cost of

consumption. In order to be able to vary weight on cost of wealth against weight on

cost of consumption, we have introduced the weight factor a. In the case of finite

time consumption one could let a be time-dependent, but for simplicity we let a be

a constant which we take to be positive.

Usually, when working with optimization in investment-consumption problems,

one wishes to maximize J to reach a maximal total utility. Instead, we minimize J

to reach a minimal total disutility. Thus, we need to specify disutility functions υx

and υu. We are going to work with disutility of distance to a target. The underlying
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idea is utility of stability, where stability is measured in relation to a target process.

Deviations from the target are punished by a cost of distance. In the case of υx, we

shall measure distance by the quadratic function. In the case of υu, we shall measure

distance both by the absolute function and by the quadratic function. Sections 6.4.1

and 6.4.2 below substantiate this.

The quadratic cost function is well-known in both finance and insurance. In

finance it is the basis for quadratic hedging approaches to incomplete markets (see

Schweizer [61] for a survey). In insurance one has, since decades, been interested in

controlling pension funds in order to obtain some kind of stability, see Cairns [12]

and references therein. Important references in relation to our work are O’Brien [55]

and O’Brien [56], where the stability criterion and minimization of quadratic cost are

introduced for the first time in connection with pension funding in a continuous-time

framework similar to ours.

A survey of results in continuous-time quadratic control of pension funds is given

in Cairns [12] which in many respects relates to our work. However, on important

points our cost function differs from the cost function used in Cairns [12] and most

other approaches to quadratic control. Firstly, by introducing risk-adjusted util-

ity, we work with cost of X instead of cost of X ′. As it will turn out, this has a

most appealing effect on the optimal investment policy, which in connection with

quadratic utility usually leads to counter-intuitive investment strategies. We obtain

intuitively reasonable investment strategies. Secondly, we wish to control the sur-

plus itself instead of controlling the so-called funding level, X′

V ′ , which measures the

surplus relative to debt.

6.4.1 Cost of wealth

In this section we consider disutility of current deflated wealth. We assume that the

agent’s preferences over wealth are given by the quadratic disutility function,

υx (X (t)) = (X (t)− x̂ (t))2 ,

where, in general, x̂ (t) is an adapted process representing a target for our deflated

wealth at time t. Define

x̂′ (t) =
x̂ (t)

Λ (t)
.

6.4.2 Cost of consumption

In Section 6.4.1, we introduced the quadratic disutility of deflated wealth and we

shall now discuss disutility of deflated consumption. This section introduces two

cost functions leading to singular control and classical control, respectively, where

”classical” refers to a consumption plan which is absolute continuous with respect

to the Lebesgue measure.
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In singular consumption problems, we assume that the agent’s preferences over

consumption are given by the absolute disutility function

υu (dU (t) , dt) = |dU (t)− û (t) dt| , (6.14)

where, in general, û (t) is an adapted process. We call problems of this kind singular

consumption problems simply because the resulting optimal consumption contains

a singular part. Define

û′ (t) =
û (t)

Λ (t)
.

Denoting by U bv the set of processes of bounded variation, we require that U ∈
U bv. A process U ∈ U bv can be decomposed uniquely in a pure jump part, U j , and a

continuous part, U c, which further can be decomposed uniquely into an absolutely

continuous part, Uac, and a singular continuous part, Usc. By defining ∆U (t) ≡
U (t)− U (t−) and, existing almost everywhere, u (t) ≡ dUc(t)

dt
, we have

U j (t) ≡
∑

0≤s≤t

∆U (s) ,

U c (t) ≡ U (t)− U j (t) ,

Uac (t) ≡
∫ t

0

u (s) ds,

Usc (t) ≡ U c (t)− Uac (t) .

In control problems of singular type the state space splits into two regions, a

”push region” and a ”low action region”. If the state process starts from the ”push

region”, the optimal state process moves immediately (dU j (0) 6= 0) into the ”low

action” region, where it is controlled by absolutely continuous control (dUac (t) 6= 0).

Exit from the ”low action” region is prevented by reflection (dUsc (t) 6= 0) at the

boundary in an appropriate direction.

In the literature, authors dealing with singular control usually formulate the

problem such that the optimal control in the ”low action” is to do nothing, i.e.

u (t) = 0, and they speak instead of a ”no action” region. We call such a problem

a pure singular problem. In order to apply directly results from the literature, we

transform our singular problems into pure singular problems. Assume that we start

out by a process with dynamics given by

dX (t) = α̃ (t)− dŨ (t) + σ (t) dW (t)

+

(
θ (t) β − µ− r

β
X (t) + σ (t)

)
dW (t) ,

and a disutility function

υu
(
dŨ (t) , dt

)
=
∣∣∣dŨ (t)− û (t) dt

∣∣∣ .

Now, introducing controls

U (t) = Ũ (t)−
∫ t

0

û (s) ds,
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and the process

α (t) = α̃ (t)− û (t) ,

we can write the dynamics of X as

dX (t) = α (t)− dU (t) + σ (t) dW (t)

+

(
θ (t) β − µ− r

β
X (t) + σ (t)

)
dW (t) ,

and the disutility function as

υu (dU (t) , dt) = |dU (t)| .

This is a pure singular problem with a ”push” region and a ”no-action” region.

Given an optimal solution to this pure singular problem, we return to an optimal

solution to our original problem by the relation Ũ (t) = U (t) +
∫ t

0
û (s) ds. This

means that the ”no action” region is replaced by a ”low action” region in which the

absolutely continuous control û (t) dt is performed.

In classical consumption problems, we assume that the agent’s preferences over

consumption are given by the quadratic disutility function

υu (dU (t) , dt) =

(
dU (t)

dt
− û (t)

)2

dt. (6.15)

Here, we require that U ∈ Uac. We call these problems classical consumption prob-

lems simply because the resulting optimal consumption, of course, turns out to be

on classical (absolutely continuous) form.

6.5 Constraints

In addition to objectives, one needs to specify possible constraints under which an

optimal control is to be chosen. One can work with constraints on both the state

process X and the control (θ, U) .

The process X may be constrained by upper or lower barriers set by the agent

or the legislative environment in which the agent makes his decisions. We shall not

consider constraints of this type although the optimally controlled process, in the

case of singular control, actually will be bounded by such barriers. However, in the

finite time consumption problem we shall work with a terminal constraint on the

process X in the form

E [X (T )] = 0. (6.16)

In Section 6.5.1 we motivate our constraint and explain how it is dealt with in our

optimization problem.

With respect to the investment strategy θ, a typical constraint is restriction on

short-selling of risky assets. For references on investment restrictions in finance, see
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Korn [40]. For investment restrictions in insurance, see Cairns [12], where restric-

tion on short-selling of risky assets is an important issue. We shall not work with

constraints of this type.

With respect to U , constraints shall play a very important role. All problems will

be approached both without constraints on U and with U constrained to be non-

decreasing. In Boulier et al. [9] a constraint is introduced which can be compared

to our constraint on U being non-decreasing. However, as it will turn out, such a

constraint will typically complicate the problem considerably. The motivation for so

much emphasis on this particular constraint is to be found in Chapter 3. In terms

of life and pension insurance, and using the terminology introduced in Chapter 3,

the unconstrained problem corresponds to the problem of redistribution of surplus

in pension funding whereas the constrained problem corresponds to the problem of

redistribution of surplus in participating life insurance.

This terminology refers to the fact that redistribution in pension funding is ba-

sically assumed not to be constrained. In the literature on the subject, only Boulier

et al. [9] goes beyond this assumption and introduces a constraint somewhat similar

to ours. As opposed to pension funding, a crucial characterization of participating

life insurance is that redistribution is required to be positive. As in Chapter 3, we

are interested in both pension funding and participating life situation. We shall,

therefore, attempt to find optimal controls in both cases.

If consumption is constrained to be positive, we endow U bv and Uac with a

subscript ’+’, i.e. U bv
+ and Uac

+ .

In addition to optimal control, we shall consider suboptimal consumption where

consumption is required to be in a certain parametric form. Suboptimal consumption

can be considered as optimal consumption in the constrained problem, where the

constraint is exactly the particular parametric form of the consumption. We denote

by U l the class of linear controls in the form

u (t) = w + vX (t) ,

where w and v are constants. We shall also consider problems where the rate of

consumption in addition to the certain parametric form is constrained to be non-

negative. We denote by U l
+ the class of piecewise linear non-negative controls that

can be written in the form

u (t) = (w + v (X (t)− x0)) 1(X(t)>x0),

where w, v, and x0 are constant and

w ≥ 0.

6.5.1 A terminal constraint

In the finite time problems where the agent optimizes over a finite fixed period of

time, we can specify a disutility of terminal wealth. This shall play a special role
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in our problem. Whereas x̂ (t) plays the role as current target for X (t), we shall

introduce 0 as a target for X (T ), in the sense that our optimization problem is

formulated with a terminal constraint,

E [X (T )] = 0. (6.17)

The motivation for this constraint is to be found in Section 6.3 where (6.17) is

obtained as a no arbitrage relation for the payment process A′ − U ′.

Remark 8 For readers familiar with optimization problems in finance, the con-

straint (6.17) is recognized from the martingale approach to optimal consumption.

In a complete market with positive consumption, (5.16) replaces the admissibility

condition, X (t) ≥ 0, 0 ≤ t ≤ T . Here, however, the constraint (6.17) is motivated

by a no arbitrage condition on a life and pension insurance portfolio in an incomplete

framework where there are no requirements, in general, concerning positive wealth

and positive consumption.

The terminally constrained problem is solved by application of a Lagrange multi-

plier. The idea is to introduce a related, but unconstrained, problem with disutility

of terminal deflated wealth,

Υ (X (T )) = λX (T ) .

If there exists a λ0 and a solution to the related optimization problem such that

E [X (T )] = 0,

then this solution will be the solution to the terminally constrained problem. For

application of a Lagrange multiplier to terminally constrained problems in control

theory, see Øksendal [57].

In the stationary problem, it makes no sense to work with a terminal condi-

tion. Actually, it is easy to realize that for quadratic disutility of current wealth,

υx (X (t)) = (X (t)− x̂)2, where x̂ is now constant, we have that if X is optimally

controlled, then

E [X (T )]→ x̂ for T →∞,
independently of the form of utility of consumption.

This ends our introduction and discussion of the type of problems the solutions

of which we are interested in. We have introduced the coefficients in the payment

process α′, σ′ and σ′ as general adapted processes leading to general adapted pro-

cesses α, σ, and σ. Also the targets x̂ and û have been introduced as general adapted

processes. In the rest of the chapter, we are going to look for solutions in partic-

ular cases. And, in particular, concerning income coefficients and targets we shall

restrict ourselves to a very simple structure. We shall assume that α, σ, û, and x̂

are constant and that σ is a function of (t, X (t)). This is evidently a very special

structure and its relevance for practical problems can be discussed. However, we
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believe that solving the investment-consumption problem in a simple case is a first

step in the understanding of the problem and the nature of its solution in a more

involved case.

The restrictive structure assumed above means, broadly speaking, that coeffi-

cients of nominal income and nominal targets grow with the market. If the market

is high, then Λ is low and, consequently, coefficients and targets are high. In the life

insurance portfolio this means that contributions to the surplus and the targets for

surplus and redistribution are high when the market is high.

6.6 The dynamic programming equations

In this section we briefly explain the structure of the dynamic programming equation,

the DPE, appearing from the various control problems described in the previous

sections. We also comment on the DPE as a constructive tool for solution of the

control problems and on the verification. Finally, we prepare the reader to a number

of remarks in Section 6.8.

The DPE is a system of differential equations (inequalities). In the finite time

problems (6.12), the system concerns the value function V , and in the stationary

problem (6.13), the system concerns the derivative of a so-called potential function

which we also denote by V . An important difference between the DPEs appearing

in the finite time problems and the stationary problems, respectively, is the time-

dependence. In the finite time problem, V is time-dependent, and the DPE is

a system of partial differential equations (inequalities), whereas in the stationary

problem, V is not time-dependent, and the DPE is a system of ordinary differential

equations (inequalities).

Another important characteristic of the DPEs comes from our distinction be-

tween singular problems (6.14) and classical problems (6.15). In the singular prob-

lem, the DPE is a system of (partial) differential inequalities, or a so-called varia-

tional inequality, which also can be formulated as a free boundary value problem.

In the classical problem, the DPE is one (partial) differential equation, the so-called

Hamilton-Jacobi-Bellman equation.

The DPE plays two different roles. One has the result that if the function

V is sufficiently regular, then V (t, x) follows the DPE. This result is difficult to

use because it is difficult to establish the sufficient differentiability. The so-called

verification theorem is often more useful. This result states that if a function Ṽ (t, x)

follows the DPE, meets some special conditions, and accords with an admissible

control, then Ṽ (t, x) = V (t, x) and the according control is optimal. In the finite

time problems the special conditions boil down to a side condition at time T . In the

stationary problems the special conditions boil down to a condition on polynomial

growth in x.

In our work we shall use the verification conditions as constructive tools in our

search for candidates for the function Ṽ and an according control. Thus, these
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conditions will be fulfilled by construction, and if we succeed in finding a candidate

this candidate will consequently coincide with V . Therefore there will be no explicit

verification theorems in Chapters 6.8 and 6.9. In some problems we do not obtain

an explicit candidate, and in these cases we take one of three resorts: Either we

refer to results in the literature; or we search for a solution by numerical methods;

or we give up. However, in all cases we expose our search for a candidate as far as

we get.

There are deep relations between problems of singular control and problems of

optimal stopping, and several authors work on linking singular control problems to

optimal stopping problems in order to apply e.g. existence theorems established in

one field to the other, see Karatzas and Shreve [36], [37], and Boetius and Kohlmann

[8]. The main idea is to verify that the derivative with respect to x of the value

function of the singular control problem is nothing but the value function of the

stopping problem. There are basically two ways of realizing this connection. The

analytic way, where the DPEs of each problem are derived and related to each

other, and the probabilistic way, where the value functions of the two problems

are directly related. The former method assumes regularities in order to conclude

relations between underlying control problems from relations between the DPEs.

In Section 6.8 on singular control problems, we shall for each singular problem,

in a remark, specify the corresponding optimal stopping problem, which in some

cases is a generalized optimal stopping problem, namely an optimal stopping game.

We leave it to readers familiar with optimal stopping time problems and optimal

stopping games to realize these connections analytically.

6.7 Optimal investment

In this section we show that the decisions concerning investment and the decisions

concerning consumptions can be separated in the sense that the optimal investment

policy and the optimal consumption process can be found independently of each

other. We find the optimal investment policy.

For the singular finite time problem, the DPE in the ”low/no action” region is

−Vt = min
θ

[(α− û)Vx + υx (x) (6.18)

+
1

2

(
σ2 +

(
θβ +

r − µ
β

x+ σ (t, x)

)2
)
Vxx].

For the classical finite time problem, the DPE is

−Vt = min
u,θ

[(α− u)Vx + υx (x) + aυu (u) (6.19)

+
1

2

(
σ2 +

(
θβ +

r − µ
β

x+ σ (t, x)

)2
)
Vxx].
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In the corresponding stationary problems, −Vt in the equations above is replaced

by a constant γ.

Differentiation of (6.18) and (6.19) with respect to θ and equating the right hand

side of (6.19) to zero results in an optimizer which for both the singular and the

classical problem becomes

θ (t, x) = −σ (t, x)

β
+
µ− r
β2 x. (6.20)

Differentiation once more shows that θ is minimizing if V is convex.

Proposition 9 If υx, υu, and Υ are convex, then V is convex.

Sketch of proof. Consider two initial points x1 and x2 and admissible strategies

(U1, θ1) and (U2, θ2) and let λ ∈ (0, 1). Defining the strategy

(U, θ) ≡ (λU1 + (1− λ)U2, λθ1 + (1− λ) θ2) ,

for the initial point x = λx1 +(1− λ)x2, we get by linearity of X, X (t) = λX1 (t)+

(1− λ)X2 (t). Since υx, υu, and Υ are convex, we know that

υx (X (t)) ≤ λυx (X1 (t)) + (1− λ) υx (X2 (t)) ,

υu (dU (t)) ≤ λυu (dU1 (t)) + (1− λ) υu (dU2 (t)) ,

Υ (X (T )) ≤ λΥ (X1 (T )) + (1− λ)Υ (X2 (T )) .

Now, it follows that

J (t, x, θ, U) ≤ λJ (t, x1, θ1, U1) + (1− λ) J (t, x2, θ2, U2) .

We can choose (U1, θ1) such that J (t, x1, θ1, U1) ≤ V (t, x1) + ε and (U2, θ2) such

that J (t, x2, θ2, U2) ≤ V (t, x2) + ε. Since (U, θ) is suboptimal we have

V (t, x) ≤ λV (t, x1) + (1− λ)V (t, x1) + ε,

and since ε was arbitrary, convexity follows.�

Since the square, absolute, and linear functions are convex, the reasoning leading

to (6.20) and Proposition 9 gives us directly

Corollary 10 For υx (X (t)) = (X (t)− x̂)2, υu (dU (t) , dt) =
(

dU(t)
dt
− û (t)

)2

dt

or υu (dU (t) , dt) = |dU − ûdt|, and Υ (X (T )) = λX (T ), the optimal investment

policy is given by

θ (t) = −σ (t, X (t))

β
+
µ− r
β2 X (t) , (6.21)

or, equivalently,

θ′ (t) = −σ
′ (t, X (t))− ψ′ (t, X (t))

βL′ (t)
+
µ− r
β2

X ′ (t)

L′ (t)
.
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Inserting the investment policy (6.21) in (6.18) and (6.19), we get

Vt + (α− û)Vx +
1

2
σ2Vxx + υx (x) = 0,

min
u

[
Vt + (α− u)Vx +

1

2
σ2Vxx + υx (x) + aυu (u)

]
= 0,

respectively. These are recognized as the DPEs appearing if we start out with a

state process with the dynamics

dX (t) = αdt− dU (t) + σdW (t) . (6.22)

This is not surprising since this is the state process for the optimally invested wealth

process.

By (6.21) the solution of the optimal investment problem is given. The rest of the

chapter deals with finding the optimal consumption for the deflated wealth process

with dynamics given by (6.22). In every problem we search for optimal consumption

U , and in order to return to optimal nominal consumption, we simply need to divide

by Λ, dU ′ (t) = dU(t)
Λ(t)

.

6.8 Optimal singular consumption

6.8.1 Finite time unconstrained consumption

The singular finite time unconstrained problem has been studied in the special case

of α = 0 by Karatzas and Shreve [37]. The singular unconstrained problem is there

called the bounded variation follower problem. By symmetry, this problem coincides

with the reflected follower problem where X is reflected in x̂. The reflected follower

problem is the actual object of study in Karatzas and Shreve [37]. We shall here see

how far we can get in a search for an explicit solution. However, at the end we are

left with a system which must be approached by numerical methods.

The life and pension insurance interpretation of the problem studied in this

section is that of finding optimal time-dependent upper and lower surplus barriers

for a pension fund working with a finite time horizon.

We deal with the problem to minimize over U bv, subject to the terminal condition

E [X (T )] = 0,

E

[∫ T

0

(
(X (t)− x̂)2 dt+ a |dU (t)|

)]
.

We introduce the related, but unconstrained, problem to minimize over U bv,

E

[∫ T

0

(
(X (t)− x̂)2 dt+ a |dU (t)|

)
+ λX (T )

]
.

We let

V (t, x) = inf
U∈Ubv

E

[∫ T

t

(
(X (s)− x̂)2 dt+ a |dU (s)|

)
+ λX (T )

∣∣∣∣X (t) = x

]
,
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and we want to find V (0, x) with λ determined such that E [X (T )] = 0. As de-

scribed in Section 6.4.2, it is optimal to consume dU (t) = ûdt, or dU ′ (t) = û′ (t) dt,

in a ”low-action” region and to keep the state process within this region by singular

consumption on its boundary. The task is to find the boundary.

The DPE connected with this problem is given by the variational inequality

−Vt ≤ αVx +
1

2
σ2Vxx + (x− x̂)2 , V (T, x) = λx,

Vx ≤ a, Vx ≥ −a,

0 =

(
−Vt + αVx +

1

2
σ2Vxx + (x− x̂)2

)
(a− Vx) (a+ Vx) ,

or by the free-boundary problem

Vx = −a, x ≤ x0 (t) ,

−Vt = αVx + 1
2
σ2Vxx + (x− x̂)2 , x0 (t) ≤ x ≤ x1 (t) ,

Vx = a, x1 (t) ≤ x,

V (T, x) = λx.

By subtracting a particular polynomial solution, one finds that

V (t, x) =





−ax + S0 (t) , x ≤ x0 (t) ,

P (t) x2 +Q (t) x+R (t) + U (t, x) , x0 (t) ≤ x ≤ x1 (t) ,

ax+ S1 (t) , x1 (t) ≤ x,

with (P (t) , Q (t) , R (t)) given by

P (t) = T − t,
Q (t) = α (T − t)2 − 2x̂ (T − t) + λ, (6.23)

R (t) =

∫ T

t

(
σ2P (s) + αQ (s)

)
ds+ x̂ (T − t) ,

and U solving the PDE,

−Ut = Uxα +
1

2
Uxxσ

2, U (T, x) = 0. (6.24)

The principle of smooth fit is now supposed to give boundary conditions for a unique

solution U to this free boundary heat equation which then also determines (S0, S1).

Remark 11 The differential stopping game problem corresponding to the problem

studied in this section is that of finding

sup
ρ

inf
τ
E0,x

[∫ ρ∧τ∧T

0

2 (X (t)− x̂) dt+ a1(τ<ρ∧T ) − a1(ρ<τ∧T ) + λ1(T<τ∧ρ)

]
.

In the case α = 0, the differential stopping game reduces to a stopping problem with

absorption of finding

min
τ
E0,x

[∫ T∧η∧τ

0

2 (X (t)− x̂) dt+ a1(τ<T∧η) + λ1(T<τ∨η)

]
,

where

η = inf {t ≥ 0 : X (t) = x̂} ,
the first time X hits x̂.
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6.8.2 Finite time constrained consumption

The singular finite time constrained problem has been studied in the special case of

α = 0 by Karatzas and Shreve [36]. The singular constrained problem is there called

the monotone follower problem. We shall here see how far we can get in a search

for an explicit solution. However, at the end we are left with a system which must

be approached by numerical methods. The special case with α = 0, a = 0, and no

terminal condition was solved explicitly in Beneš et al. [5]. Since this special case is

of minor importance to us, we shall not repeat this solution here but just give the

reference as a rare example of an explicitly solvable singular problem.

The life and pension insurance interpretation of the problem studied in this

section is that of finding an optimal time-dependent upper surplus barrier for a

participating life insurance company working with a finite time horizon.

We deal with the problem to minimize over U bv
+ , subject to the terminal condition

E [X (T )] = 0,

E

[∫ T

0

(
(X (t)− x̂)2 dt+ a |dU (t)|

)]
.

We introduce the related, but unconstrained, problem to minimize over U bv
+ ,

E

[∫ T

0

(
(X (t)− x̂)2 dt+ a |dU (t)|

)
+ λX (T )

]
.

We let

V (t, x) = inf
U∈Ubv

+

E

[∫ T

t

(
(X (s)− x̂)2 dt+ a |dU (s)|

)
+ λX (T )

∣∣∣∣X (t) = x

]
,

and we want to find V (0, x) with λ determined such that E [X (T )] = 0. As de-

scribed in Section 6.4.2, it is optimal to consume dU (t) = ûdt, or dU ′ (t) = û′ (t) dt,

in a ”low-action” region and to keep the state process within this region by singular

consumption on its boundary. The task is to find the boundary.

The DPE connected with this problem is given by the variational inequality

−Vt ≤ αVx +
1

2
σ2Vxx + (x− x̂)2 , V (T, x) = λx,

Vx ≤ a,

0 =

(
−Vt + αVx +

1

2
σ2Vxx + (x− x̂)2

)
(a− Vx) ,

or by the free-boundary problem

−Vt = αVx + 1
2
σ2Vxx + (x− x̂)2 , x ≤ x1 (t) ,

Vx = a, x1 (t) ≤ x,

V (T, x) = λx.

By subtracting a particular polynomial solution, one finds that

V (t, x) =

{
P (t) x2 +Q (t)x+R (t) + U (t, x) , x ≤ x1 (t) ,

ax+ S (t) , x1 (t) ≤ x,
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with (P (t) , Q (t) , R (t)) given by (6.23) and U solving (6.24). The principle of

smooth fit and the polynomial growth condition are now supposed to give boundary

conditions for a unique solution U to this free boundary heat equation which then

also determines S.

Remark 12 The stopping time problem corresponding to the problem studied in this

section is that of finding

min
τ
E0,x

∫ τ∧T

0

2 (X (t)− x̂) dt+ a1(τ<T ) + λ1(T<τ).

6.8.3 Stationary unconstrained consumption

The singular stationary unconstrained problem will be solved almost explicitly be-

low. We are left with a numerical solution to a non-linear system of two equations

with two unknowns. Fleming and Soner illustrate in [24] singular stochastic control

by explicitly solving a similar infinite time problem, but we have not found the ex-

plicit solution for the stationary problem in the literature. However, one may argue

that this is no more than a nice exercise in smooth fit.

In the case α = 0, by symmetry, the control problem is equivalent to the same

optimization problem for X reflected in x̂. This follows from the reasoning by

Karatzas and Shreve [37] in the finite time case.

The life and pension insurance interpretation of the problem studied in this

section is that of finding optimal upper and lower surplus barriers in a pension fund

working with an infinite time horizon (the stationary view).

We deal with the problem to minimize over U bv,

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a |dU (t)|

)]
.

We let

γ = min
U∈Ubv

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a |dU (t)|

)]
,

denote by
∫
V the potential function, and want to find γ and V . As described

in Section 6.4.2, it is optimal to consume dU (t) = ûdt, or dU ′ (t) = û (t) dt, in

a ”low-action” region and to keep the state process within this region by singular

consumption on its boundary. The task is to find the boundary.

The DPE connected with this problem is given by the variational inequality

γ ≤ αV +
1

2
σ2V ′ + (x− x̂)2 ,

V ≤ a, V ≥ −a,

0 =

(
−γ + αV +

1

2
σ2V ′ + (x− x̂)2

)
(a− V ) (a+ V ) ,
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or the free-boundary problem

V = −a, x ≤ x0,

γ = αV + 1
2
σ2V ′ + (x− x̂)2 , x0 ≤ x ≤ x1,

V = a, x1 ≤ x.

(6.25)

Explicit solution in case α = 0 By subtracting a particular polynomial solution,

one finds that

V (x) =





−a, x ≤ x0,

Px3 +Qx2 +Rx+ S, x0 ≤ x ≤ x1,

a, x1 ≤ x,

with

P = − 2

3σ2
,

Q =
2x̂

σ2
,

R =
2 (γ − x̂2)

σ2
.

The principle of smooth fit gives

Px3
0 +Qx2

0 +Rx0 + S = −a,
Px3

1 +Qx2
1 +Rx1 + S = a,

3Px2
0 + 2Qx0 +R = 0,

3Px2
1 + 2Qx1 +R = 0,

from which we can determine (x0, x1, S, γ),

S =

−2x̂

(
3

(
(6aσ2)

1/3

2

)2

− x̂2

)

3σ2
,

γ =

(
(6aσ2)

1/3

2

)2

,

x0 = x̂− (6aσ2)
1/3

2
,

x1 = x̂+
(6aσ2)

1/3

2
.

The region within which the state process is optimally kept by singular control,

is determined by the barriers (x0, x1). The corresponding region for the nominal

wealth is determined by
(

x0

Λ
, x1

Λ

)
.
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Explicit solution in case α 6= 0 By subtracting a particular polynomial solution,

one finds that

V (x) =





−a, x ≤ x0,

Px2 +Qx+R+ U (x) , x0 ≤ x ≤ x1,

a, x1 ≤ x,

with

P = − 1

α
,

Q =
σ2

α2
+

2x̂

α
, (6.26)

R =
γ − x̂2

α
− σ2

α2
x̂− σ4

2α3
,

and U solving the differential equation

0 = αU +
1

2
σ2Ux, i.e. U = Ce−

2α
σ2 x.

The principle of smooth fit gives

Px2
0 +Qx0 +R + Ce−

2α
σ2 x0 = −a,

Px2
1 +Qx1 +R + Ce−

2α
σ2 x1 = a,

2Px0 +Q− 2α

σ2
Ce−

2α
σ2 x0 = 0,

2Px1 +Q− 2α

σ2
Ce−

2α
σ2 x1 = 0,

from which we can determine (x0, x1, C, γ) numerically. The system of 4 unknowns

can be reduced to a system of 2 unknowns (x0, x1),

−αa+ (x0 − x̂)2 = αa+ (x1 − x̂)2 ,(
x̂− x0 +

σ2

2α

)
e

2α
σ2 x0 =

(
x̂− x1 +

σ2

2α

)
e

2α
σ2 x1 .

The region within which the state process is optimally kept by singular control,

is determined by the barriers (x0, x1). The corresponding region for the nominal

wealth is determined by
(

x0

Λ
, x1

Λ

)
.

In Figure 6.1 we have illustrated how the barriers within which X is to be kept,

depend on α. We have fixed the parameters at

a = 1, σ =
√

2, x̂ = 0, û = 0. (6.27)

The solid lines (PF stands for pension funding) represent the upper and the lower

barrier as a function of α. The interpretation is clear: If we increase the drift α, we

need more pressure on X from above and the upper barrier tends to 0 whereas the

lower barrier tends to minus infinity.
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Remark 13 The differential stopping game problem corresponding to the problem

studied in this section is that of finding

max
ρ

min
τ
E

[∫ ρ∧τ

0

2 (X (t)− x̂) dt+ a1(τ<ρ) − a1(ρ<τ)

]
.

In the case α = 0, the corresponding differential stopping game reduces to a stopping

time problem with absorption of finding

min
τ
E

[∫ η∧τ

0

2 (X (t)− x̂) dt+ a1(τ<η)

]
,

where

η = inf {t ≥ 0 : X (t) = x̂} ,
the first time X hits x̂.

6.8.4 Stationary constrained consumption

The singular stationary constrained problem will be solved explicitly below. We

have not found the explicit solution for the stationary problem in the literature.

However, one can argue that this is no more than a nice exercise in smooth fit.

The life and pension insurance interpretation of the problem studied in this

section is that of finding an optimal upper surplus barrier for a participating life

insurance company working with an infinite time horizon (the stationary view).

We deal with the problem to minimize over U bv
+ ,

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a |dU (t)|

)]
.

We let

γ = min
U∈Ubv

+

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a |dU (t)|

)]
,

denote by
∫
V the potential function, and want to find γ and V . As described

in Section 6.4.2, it is optimal to consume dU (t) = ûdt, or dU ′ (t) = bu
Λ(t)

dt, in a

”low-action” region and to keep the state process within this region by singular

consumption on its boundary. The task is to find the boundary.

The DPE connected with this problem is given by the variational inequality

γ ≤ αV +
1

2
σ2Vx + (x− x̂)2 ,

V ≤ a,

0 =

(
−γ + αV +

1

2
σ2V ′ + (x− x̂)2

)
(a− V ) ,

or the free-boundary problem

γ = αV + 1
2
σ2V ′ + (x− x̂)2 , x ≤ x1,

V = a, x1 ≤ x.
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For α > 0, by subtracting a particular polynomial solution and requiring poly-

nomial growth, one finds that

V (x) =

{
Px2 +Qx+R, x ≤ x1,

a, x1 ≤ x,

with (P,Q,R) given by (6.26). The principle of smooth fit gives

Px2
1 +Qx1 +R = a,

2Px1 +Q = 0,

from which we can determine (x1, γ),

x1 = x̂+
σ2

2α
,

γ =
σ4

4α2
+ aα.

The region within which the state process is optimally kept by singular control,

is determined by the barrier x1. The corresponding region for the nominal wealth

is determined by x1

Λ
.

In Figure 6.1 we have illustrated how the barrier below which X is to be kept

depends on α. We have fixed the parameters in accordance with (6.27). The broken

line (PL stands for participating life) for α > 0 represent the upper barrier as a

function of α. For α < 0 the broken line is a lower barrier that works for the

constrained case where the control is required to be chosen negative. For α → 0+,

the (upper) barrier tends to infinity. I.e. for small α we should not press much from

above in order to keep the process ”close” to 0. For α = 0, no stationary distribution

exists.

Remark 14 The stopping time problem corresponding to the problem studied in this

section is that of finding

min
τ
E

[∫ τ

0

2 (X (t)− x̂) dt
]
.

6.9 Optimal classical consumption

6.9.1 Finite time unconstrained consumption

The classical finite time unconstrained problem will be solved explicitly below. This

problem is the finite time linear regulator problem known from just about every

textbook on stochastic control, see e.g. Fleming and Soner [24]. However, we have

not found the solution to the terminally constrained problem anywhere in the liter-

ature. This is certainly an interesting variation of the linear regulator problem, and

we have placed the calculations in Appendix A to this problem. However, one may
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Figure 6.1: Surplus barriers

argue that this is no more than a nice exercise in the application of the Lagrange

multiplier for a terminal constraint.

The life and pension insurance interpretation of the problem studied in this

section is that of finding an optimal time-dependent absolutely continuous dividend

strategy for a pension fund working with a finite time horizon.

We deal with the problem to minimize over Uac, subject to the terminal condition

E [X (T )] = 0,

E

[∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)]
.

We introduce the related, but unconstrained, problem to minimize over Uac,

E

[∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)
+ λX (T )

]
.

We let

V (t, x) = min
U∈Uac

E

[∫ T

t

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)
+ λX (T )

∣∣∣∣X (t) = x

]
,

and we want to find V (0, x) with λ determined such that E [X (T )] = 0 and the

corresponding optimal consumption plan.

In Appendix A, we have solved the linear regulator problem with terminal con-

straint. We get the solution to our problem by replacing u and û by α− û and α−u,
respectively. The optimal control is then given by

u (t) = α+
P (t)

a
(X (t)− x̂) + h (t) ,



142 CHAPTER 6. OPTIMAL INVESTMENT AND CONSUMPTION

where

P (t) =
√
a tanh

(√
1

a
(T − t)

)
,

h (t) =

2
√

a(x−bx)

sinh
“√

1
a
T

” + 2
√

abx
tanh

“√
1
a
T

”

2a cosh
(√

1
a
(T − t)

) ,

and the terminally constrained optimally controlled process is an Ornstein-Uhlen-

beck process with time-dependent coefficients. We remark that the term h (t) stems

from the terminal condition, and the optimal control for the problem with no ter-

minal constraints is as above with h (t) = 0.

We return to nominal consumption by

u′ (t) =
α

Λ (t)
+
P (t)

a
(X ′ (t)− x̂′ (t)) + h′ (t) ,

where

h′ (t) =

2
√

a(x′(t)−bx′(t))

sinh
“√

1
a
T

” + 2
√

abx′(t)

tanh
“√

1
a
T

”

cosh
(√

1
a
(T − t)

)

and

α

Λ (t)
= α′ (t)− δ′ (t) + h (t)

(
σ′ (t)− ψ′ (t)

)
+ g (t) (σ′ (t)− ψ′ (t)) .

In Figure 6.2 we have illustrated the optimal control of the linear regulator

problem with terminal condition by displaying E [X (t)] for an optimally controlled

process X as a function of t. In Appendix A this is the quantity m (t). We have

fixed the parameters at

α = 0, σ =
√

2, x = 0, x̂ = 1, û = 0, T = 10.

This means that we start out with zero wealth and expect zero wealth at time T ,

but in between we wish our wealth to be close to 1. The figure shows that we, on

the average, should save money at the beginning by negative consumption in order

to build up a wealth and then, towards the end of the period, consume the reserved

wealth. The expected wealth is drawn for three different choices of a. For a large a

stability of consumption (relative to 0) is more important than stability of wealth

(relative to 1), and we should not build up as large a wealth as in the case of a small

a.

6.9.2 Finite time constrained consumption

The classical finite time constrained problem will be approached below. We shall

here see how far we can get in a search for an explicit solution. However, at the end
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Figure 6.2: E [X (t)] as a function of t

we are left with a rather nasty PDE which needs to be approached by numerical

methods. Unfortunately, this section shows that constrained consumption compli-

cates substantially the linear regulator problem. This is probably the explanation

why we have not found in the literature any attempts at solving any constrained

versions of the otherwise very well-studied linear regulator problem.

The life and pension insurance interpretation of the problem studied in this sec-

tion is that of finding an optimal time-dependent absolutely continuous dividend

strategy for a participating life insurance company working with a finite time hori-

zon.

We deal with the problem to minimize over Uac
+ , subject to the terminal condition

E [XT ] = 0,

E

[∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)]
.

We introduce the related, but unconstrained, problem to minimize over Uac
+

E

[∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)
+ λXT

]
.

We let

V (t, x) = min
U∈Uac

+

E

[∫ T

t

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)
+ λXT

∣∣∣∣X (t) = x

]
,

and we want to find V (0, x) with λ determined such that E [X (T )] = 0 and the

corresponding optimal consumption plan.
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The DPE connected with this problem is given by

−Vt = min
U∈Uac

+

[
(α− u)Vx +

1

2
σ2Vxx + (x− x̂)2 + a (u− û)2

]
,

V (T, x) = λx.

Differentiating the DPE with respect to u and equating the right hand side to 0

suggests the control

u =

{
0, x ≤ x0 (t) ,

û+ Vx

2a
, x ≥ x0 (t) ,

and plugging this control into the DPE gives the differential equation,

−Vt =

{
Vxα + 1

2
Vxxσ

2 + (x− x̂)2 + aû2, x ≤ x0 (t) ,

Vx (α− û)− (Vx)2

4a
+ 1

2
Vxxσ

2 + (x− x̂)2 , x ≥ x0 (t) .
(6.28)

Upon subtracting a particular polynomial solution with time-dependent coeffi-

cients, one finds that

V (t, x) =

{
P− (t)x2 +Q− (t) x+R− (t) + U (t, x) , x ≤ x0 (t) ,

P+ (t)x2 +Q+ (t) x+R+ (t) + U (t, x) , x ≥ x0 (t) ,

with (P−, Q−, R−) given by (6.23) with αû (T − t) added to R− and (P+, Q+, R+)

given by (A.1) in Appendix A. For x ≤ x0 (t), U solves (6.24), and for x ≥ x0 (t),

U solves

−Ut =

(
α− û− 2P+ (t) x+Q+ (t)

2a
− Ux

4a

)
Ux +

1

2
Uxxσ

2. (6.29)

The suggested optimal control is then given by

u =

(
û+

2P+ (t)X (t) +Q+ (t) + Ux (t, X (t))

2a

)+

=


α +

P+ (t)

a
(X (t)− x̂) +

−2 (α− û) a+ λ

2a cosh
(√

1
a
(T − t)

) +
Ux (t, X (t))

2a




+

.

The principle of smooth fit and the polynomial growth condition are now sup-

posed to give boundary conditions for a unique solution U to this problem which we

shall not pursue further, though.

6.9.3 Stationary unconstrained consumption

The classical stationary unconstrained problem will be solved explicitly below. This

problem is the stationary version of the linear regulator problem known from just

about every textbook on stochastic control, see e.g. Fleming and Soner [24]. Al-

though the linear regulator problem has been studied intensively in the literature,

we have not found the explicit solution to the stationary version of the problem

there. However, one may argue that it is no more than a nice exercise in smooth fit.
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The life and pension insurance interpretation of the problem studied in this

section is that of finding an optimal absolutely continuous dividend strategy for a

pension fund working with an infinite time horizon (stationary view).

We deal with the problem to minimize over Uac,

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)]
.

We introduce

γ = min
U∈Uac

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)]
,

denote by
∫
V the potential function, and want to find γ, V , and the corresponding

optimal consumption plan.

The DPE connected with this problem is given by

γ = min
U∈Uac

[
(α− u)V +

1

2
σ2V ′ + (x− x̂)2 + a (u− û)2

]
.

Differentiating the DPE with respect to u and equating the right hand side to 0

results in the optimizer

u = û+
V

2a
, (6.30)

and plugging this control into the DPE gives the differential equation,

γ = (α− û)V − V 2

4a
+

1

2
σ2V ′ + (x− x̂)2 .

Differentiating the right hand side of the DPE once more with respect to u shows

that u given by (6.30) is minimizing.

We have a solution in the form

V (x) = Px+Q,

with (P,Q) given by

P = 2
√
a, (6.31)

Q = 2a (α− û)− 2
√
ax̂.

We find that

γ = a (α− û)2 +
√
aσ2.

The optimal control reads

u (t) = α +

√
1

a
(X (t)− x̂) . (6.32)

The optimal nominal consumption is now given by

u′ (t) =
α

Λ (t)
+

√
1

a
(X ′ (t)− x̂′ (t)) , (6.33)

where
α

Λ (t)
= α′ (t)− δ′ (t) + h (t)

(
σ′ (t)− ψ′ (t)

)
+ g (t) (σ′ (t)− ψ′ (t)) .
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6.9.4 Stationary constrained consumption

The classical stationary constrained problem will be approached by numerical meth-

ods below. This section is very important since we more or less gave up on the infi-

nite time version of the classical constrained problem. We reach at a certain Riccati

problem with growth condition. This problem is, also from a purely mathematical

point of view, interesting, and a vain attempt at finding a (more or less) explicit

solution is exposed in Appendix B. However, in the present section we illustrate the

solution by approaching the Riccati equation directly with numerical methods.

The life and pension insurance interpretation of the problem studied in this sec-

tion is that of finding an optimal absolutely continuous dividend strategy for a par-

ticipating life insurance company working with an infinite time horizon (stationary

view).

We deal with the problem to minimize over Uac
+ ,

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)]
.

We let

γ = min
U∈Uac

+

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)]
,

denote by
∫
V the potential function, and want to find γ, V , and the corresponding

optimal consumption plan.

The DPE connected with this problem is given by

γ = min
U∈Uac

+

[
(α− u)V +

1

2
σ2V ′ + (x− x̂)2 + a (u− û)2

]
.

Differentiating the DPE with respect to u and equating the right hand side to 0

suggests existence of an x0 such that

u =

{
û+ V

2a
, x ≥ x0,

0, x ≤ x0.

Plugging this control into the DPE gives the differential equation,

γ =

{
V α + 1

2
V ′σ2 + (x− x̂)2 + aû2 = 0, x ≤ x0,

V (α− û)− V 2

4a
+ 1

2
V ′σ2 + (x− x̂)2 = 0, x ≥ x0.

(6.34)

By subtraction of quadratic functions with constant coefficients, one finds that

V (x) =

{
P−x2 +Q−x+R−, x ≤ x0,

P+x+Q+ + U (x) , x ≥ x0,

with (P−, Q−, R−) given by (6.26) and (P+, Q+) given by (6.31). U solves

U ′ =

(
2

σ2
√
a

(x− x̂) +
1

2σ2a
U

)
U +

2
(
γ − a (α− û)2 −√aσ2

)

σ2
. (6.35)
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The optimal control is given by

u (t) =

(
α +

√
1

a
(X (t)− x̂) +

U (X (t))

2a

)+

. (6.36)

The principle of smooth fit gives directly from (6.34) γ expressed as a function of

x0,

γ (x0) = (x̂− x0)
2 +

σ2

α
(x̂− x0) +

σ4

2α2
+ aû2 − 2αaû, (6.37)

and the following initial conditions for U,

U (x0) = −2aα + 2
√
a (x̂− x0) , (6.38)

U ′ (x0) =
σ2

α2
− 2
√
a− 2

α
(x0 − x̂) .

Now, our consumption problem is reduced to the problem of finding an initial

point x0 such that the Riccati equation (6.35) with γ given by (6.37) and initial values

given by (6.38) obeys a polynomial growth condition. Since we have subtracted a

particular polynomial solution, the polynomial growth condition reads U → 0 as

x→∞. A problem of this kind is in itself an interesting mathematical problem. A

vain attempt at finding a solution to this problem can be found in Appendix B.

By numerical/graphical experimentation we can solve the problem of finding x0

and then illustrate the optimal consumption by means of the differential equation

(6.35). Figures 6.3 and 6.4 show the optimal control in the unconstrained case and

in the constrained case for two different choices of α. The parameters are fixed at

a = 0.5, û = 0, x̂ = 0, σ =
√

2,

and Figure 6.3 and Figure 6.4 show optimal control u as a function of X in the

cases of α = 1 and α = 0.5, respectively. The broken line (PF stands for pension

funding) represents the linear control given by (6.32) and the solid line (PL stands for

participating life) represents (6.36). The solid line shows how one, in the constrained

case, should not control until x exceeds a point x0, from which one should perform

a control which is asymptotically linear. Control in participating life is, in a sense,

more defensive than control in pension funding in the sense that x0 exceeds the point

of neutral control (u = 0) in pension funding. However, for X > x0, it is worth

noticing that the marginal control of PL actually exceeds the marginal control of

PF. At the end of Section 6.10.4 we compare the cost of optimal control of pension

funding and participating life, respectively, and we shall there also compare with

two different suboptimal controls.
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Figure 6.3: Optimal consumption, α = 1
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Figure 6.4: Optimal consumption, α = 0.5
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6.10 Suboptimal consumption

6.10.1 Finite time unconstrained consumption

A suboptimal finite time unconstrained problem will be solved almost explicitly

below. We are left with a numerical solution to a non-linear equation. Though we

found the explicit solution to the optimal problem in 6.9.1, one may be interested

in a simplified procedure of control where the coefficients in the linear regulation do

not depend on time.

The life and pension insurance interpretation of the problem studied in this

section is that of finding an optimal time-independent linear dividend strategy for

a pension fund working with a finite time horizon.

We deal with the problem to minimize over U l, subject to the terminal condition

E [X (T )] = 0,

E

[∫ T

0

(X (t)− x̂)2 dt+ a (u− û)2 dt

]
.

Since for U ∈ U l we have u (t) = w + vX (t), the problem is to minimize over

(w, v) ∈ R2, subject to E [X (T )] = 0, the quantity

g (w, v) ≡ E

[∫ T

0

(X (t)− x̂)2 dt+ a (w + vX (t)− û)2 dt

]
.

Note that given a solution, we simply obtain suboptimal nominal consumption by

u′ (t) =
w

Λ (t)
+ vX ′ (t) .

The controlled process (X (t))t≥0 is an Ornstein-Uhlenbeck process the marginal

distributions of which are known to be normal. More specifically, we know that

L (X (t)|X (0) = x) = N

(
α− w
v

+ e−vt

(
x− α− w

v

)
, σ2 1− e−2vt

2v

)
.
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Now we simply use the moments of the normal distribution to get

g (w, v) = E

∫ T

0

(
(X (t)− x̂)2 + a (vX (t) + w − û)2

)
dt

= E

∫ T

0

((
1 + av2

)
X (t)2 + 2 (awv − aûv − x̂)X (t)

)
dt

+
(
x̂2 + a (w − û)2)T

=
(
1 + av2

)
((

x− α− w
v

)2

− σ2

2v

)
1

2v

(
1− e−2vT

)

+2
(
1 + av2

) α− w
v

(
x− α− w

v

)
1

v

(
1− e−vT

)

+
(
1 + av2

)
(
σ2

2v
+

(
α− w
v

)2
)
T

+ (awv − aûv − x̂)
(
α− w
v

T +

(
x− α− w

v

)
1

v

(
1− e−vT

))

+
(
x̂2 + a (w − û)2)T, (6.39)

which we minimize subject to

E [X (T )] =
α− w
v

+ e−vT

(
x− α− w

v

)
= 0

⇔ w = α+ v
e−vT

1− e−vT
x. (6.40)

Upon inserting (6.40) in (6.39), the problem reduces to that of minimizing with

respect to v,

g (v) =
(
1 + av2

)
((

x

1− e−vT

)2

− σ2

2v

)
1

2v

(
1− e−2vT

)

−2
(
1 + av2

) x2

1− e−vT

1

v
e−vT

+
(
1 + av2

)
(
σ2

2v
+

(
xe−vT

(1− e−vT )

)2
)
T

+x

(
a

(
α− û+ vx

(
e−vT

(1− e−vT )

))
v − x̂

)( −e−vT

(1− e−vT )
T +

1

v

)

+

(
x̂2 + a

(
α− û+ vx

e−vT

(1− e−vT )

)2
)
T.

For x = 0, this reduces further to

g (v) =
(
1 + av2

)(
− σ2

4v2

(
1− e−2vT

)
+
σ2

2v
T

)
+
(
x̂2 + a (α− û)2) T.
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Figure 6.5: Optimal ν as a function of T

Figure 6.5 shows the optimal choice of v as a function of T for two different

choices of a. We have fixed parameters at

α = 0, û = 0, x = x̂ = 0, σ =
√

2.

For T close to 0 one should not control aggressively since the control is expensive

compared to what is gained from stability of wealth. As T goes to infinity the optimal

v tends to the optimal coefficient
√

1
a

from optimal stationary control, (6.32), which

for a = 1 equals 1 and for a = 0.5 equals
√

2.

6.10.2 Finite time constrained consumption

A suboptimal finite time unconstrained problem will be approached below. However,

the marginal distributions of a process regulated linearly in only one direction seems

hard to obtain. Therefore, we do not get far.

The life and pension insurance interpretation of the problem studied in this sec-

tion is that of finding an optimal time-independent piecewise linear dividend strategy

for a participating life insurance company working with a finite time horizon.

We deal with the problem to minimize over U l
+, subject to the terminal condition

E [X (T )] = 0,

E

[∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)]
.

Since for U ∈ U l
+ we have u (t) = (w + v (X (t)− x0)) 1(X(t)≥x0), w ≥ 0, the problem
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is to minimize over (w, v, x0) ∈ R+ ×R2, subject to E [XT ] = 0,

E

[∫ T

0

(
(X (t)− x̂)2 dt+ a

(
(w + v (X (t)− x0)) 1(X(t)≥x0) − û

)2
dt
)]

.

The controlled process (X (t))t≥0 has linear regulation in one direction and con-

stant regulation in the other direction. We shall not pursue its marginal distributions

but take a close look at its stationary distribution below.

6.10.3 Stationary unconstrained consumption

A suboptimal stationary constrained problem will be solved explicitly below. Since

the optimal solution obtained in 6.9.3 is actually in the desired linear form, we know

the answer on beforehand: If a solution to a suboptimal problem is required to be

in a certain parametric form, and the solution to the optimal problem is, in fact, in

this form, then of course the optimal solution also solves the suboptimal problem.

Nevertheless, we carry out the calculations as a warm-up for the succeeding section.

The life and pension insurance interpretation of the problem studied in this

section is that of finding an optimal linear dividend strategy for a pension fund

working with an infinite time horizon (stationary view).

We deal with the problem to minimize over U l,

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)]
.

Since for U ∈ U l we have u (t) = w + vX (t), the problem is to minimize over

(w, v) ∈ R2, the quantity

g (w, v) ≡ lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a (w + vX (t)− û)2 dt

)]
.

We let

γ = min
(v,w)∈R2

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a (w + vXt − û)2 dt

)]
,

and we want to find γ and the corresponding optimal (w, v) .

The controlled process (X (t))t≥0 is an Ornstein-Uhlenbeck process, the station-

ary distribution of which is known to be normal. More specifically, we know that

L (Xt)→ N

(
α− w
v

,
σ2

2v

)
as t→∞.



6.10. SUBOPTIMAL CONSUMPTION 153

Now we simply use the moments of the normal distribution to get

g (w, v) =
1√
2π σ2

2v

∫ ∞

−∞

(
(x− x̂)2 + a (vx+ w − û)2) e

−(x−α−w
v )

2

σ2
v dx

=
(
1 + av2

)
(
σ2

2v
+

(
α− w
v

)2
)

+2
α− w
v

(awv − aûv − x̂) + x̂2 + a
(
w2 + û2 − 2wû

)

= a (α− û)2 +
σ2

2

(
1

v
+ av

)
+

(
α− w
v
− x̂
)2

,

which we minimize.

The derivative with respect to (w, v) is

l′w = −2

(
α− w
v
− x̂
)

1

v
,

l′v =
σ2

2

(
− 1

v2
+ a

)
+ 2

(
α− w
v
− x̂
)
w

v2
,

and equating these to 0 gives

v =

√
1

a
,

w = α− vx̂ = α−
√

1

a
x̂.

Thus, γ and the optimal control become

γ =
√
aσ2 + a (α− û)2 ,

u = α+

√
1

a
(x− x̂) .

This was also the result which we found in Section 6.9.3.

6.10.4 Stationary constrained consumption

Two suboptimal stationary unconstrained problems will be solved almost explicitly

below. We are left with numerical solutions to non-linear systems of equations.

Since the solution to the optimal problem was approached in Section 6.9.4, we can

compare the solutions to the optimal and suboptimal problems, respectively. The

suboptimal problem and its solution is relevant if one is interested in a simplified

procedure of control compared to the relatively involved solution to the optimal

problem approached in Section 6.9.4.

The search for an explicit solution involves a study of the stationary distribution

of what we choose to call the defective Ornstein-Uhlenbeck process. This process is
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regulated linearly in one direction (here from above) but only constantly in the other

(here from below). We have not found any studies in the literature on the defec-

tive Ornstein-Uhlenbeck process. The process is certainly interesting in itself, and

Appendix C contains a derivation of its stationary distribution and the functional

needed in our optimization problem.

The life and pension insurance interpretation of the problem studied in this

section is that of finding an optimal piecewise linear dividend strategy for a par-

ticipating life insurance company working with an infinite time horizon (stationary

view).

We deal with the problem to minimize over U l
+,

lim
T→∞

E

[
1

T

∫ T

0

(
(X (t)− x̂)2 dt+ a (u− û)2 dt

)]
. (6.41)

Since for U ∈ U l
+ we have u (t) = (w + v (X (t)− x0)) 1(X(t)≥x0), w ≥ 0, the problem

is to minimize over (w, v, x0) ∈ R+ ×R2, the quantity

g (x0, w, v) ≡ lim
T→∞

E[
1

T

∫ T

0

((X (t)− x̂)2 dt

+a
(
(w + v (X (t)− x0)) 1(X(t)≥x0) − û

)2
dt)].

We let

γ = min
(x0,w,v)∈R+×R2

lim
T→∞

E[
1

T

∫ T

0

((X (t)− x̂)2 dt+

a
(
(w + v (X (t)− x0)) 1(X(t)≥x0) − û

)2
dt)],

and want to find γ and the corresponding optimal (w, v, x0). Note that given a

solution, we simply obtain suboptimal nominal consumption by

u′ (t) =

(
w

Λ (t)
+ v

(
X ′ (t)− x0

Λ (t)

))
1(X′(t)≥ x0

Λ(t))
.

The defective Ornstein-Uhlenbeck process is treated in Appendix C, and from

there we have

g (w, v, x0) =
σ2

2

(
1

v
+ av

)
+

(
α− w
v

+ x0 − x̂
)2

+a (α− û)2 +
σ2

2α
C (w, v)N (w, v, x0) ,

where

C (w, v) =



σ2

2α
+

√
σ2

2v

(
1− Φ

(
−
√

2
v

α−w
σ

))

Φ′
(
−
√

2
v

α−w
σ

)




−1

,

N (w, v, x0) =
σ4

2α2
− w2

v2
+
(α
v

+ αav + 2 (x0 − x̂)
)(w

v
− σ2

2α

)
.
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Instead of minimizing this quantity as a function of three variables, we can make

use of the relation (which is easily realized)

∫ ∞

−∞
xψ (x) dx = x̂,

i.e.

x̂ = C (w, v) e−
2α
σ2 x0

∫ x0

−∞
xe

2α
σ2 xdx

+C (w, v)

∫ ∞

x0

xe
2(α−w+vx0)

σ2 x− v
σ2 x2− 2(α−w)

σ2 x0− v
σ2 x2

0.

By this constraint, g (w, v, x0) can be written as a function of (w, v),

g (w, v) =
σ2

2

(
1

v
+ av

)
+

(
α− w
v

+ x0 (w, v)− x̂
)2

(6.42)

+a (α− û)2 +
σ2

2α
C (w, v)N (w, v) ,

where

x0 (w, v) = x̂− α− w
v

+ C (w, v)

(
σ4

4α2
− σ2

2α

w

v

)
,

N (w, v) =
σ4

2α2
− w2

v2
+
(α
v

+ αav + 2 (x0 (w, v)− x̂)
)(w

v
− σ2

2α

)
,

and g (w, v) is to be minimized over (w, v) ∈ R+ ×R2.

In the special case where we look for continuous control, we put w = 0 in (6.42),

and need to minimize over v ∈ R the quantity

g (v) =
σ2

2

(
1

v
+ av

)
+
(α
v

+ x0 (0, v)− x̂
)2

+a (α− û)2 +
σ2

2α
C (0, v)N (0, v) .

Note that given a solution, we simply obtain suboptimal continuous nominal con-

sumption by

u′ (t) =

(
vX ′ (t)− vx0

Λ (t)

)+

. (6.43)

Figure 6.6 compare the optimal control; suboptimal piecewise linear control; and

suboptimal piecewise linear continuous control. We have fixed parameters at

a = 0.5, α = 0.5, û = 0, x̂ = 0, σ =
√

2.

The solid line for optimal control (’O’ stands for optimal) is the same as in Figure

6.4. The dotted line for suboptimal piece-wise linear control (’L’ stands for linear)

shows that one should start consuming at a point x0 (w, v) larger than x0 for the

optimal control and jump up to start a linear control. The broken line for suboptimal
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Figure 6.6: Suboptimal control

piecewise linear continuous control (’C’ stands for continuous) shows that one should

start consuming at a point x0 (v) smaller that x0 for the optimal control and then

consume linearly from there. Figure 6.6 shows that the suboptimal control lies very

close to the optimal control for small x. We can also compare the performance of

the optimal control for the unconstrained case with the performance of the optimal

and suboptimal controls in the constrained case.

PF PL,O PL, L PL,C

α = 1 1.539 2.404 2.405 2.406

α = 0.5 1.914 4.474 4.475 4.476

Table 6.1: Optimal cost of control

Table 6.1 shows the optimal cost of control γ for the various control problems

for two different choices of α. We see, by comparing the first column with the

second, that there is a substantial cost in constraining the problem and that this

cost increases relatively when the drift α decreases. An important lesson to learn

from Table 6.1 is that there is not much to gain from working with optimal control

compared with suboptimal control, at least for the parameters chosen here. Actually,

one needs three decimals to detect a difference in the performance of these controls.

Depending on the parameters, one can conclude that the continuous control (’C’) is

so close to being optimal that it could be recommended due to simplicity.

The continuous suboptimal control for the constrained problem given by (6.43)

and the optimal control for the unconstrained problem given by (6.33) make up rela-
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tively simple rules of consumption. We conclude by directing the reader’s attention

to the resemblance between these forms and the forms of retrospective surplus-

linked dividends proposed in (3.24) and (3.25) in Chapter 3. Of course, the forms

are proposed and derived, respectively, in rather different set-ups, and we shall not

jump to conclusions on optimality of the surplus-linked form in Chapter 3. Nev-

ertheless, the results in the present chapter throw light on the type of problems

where surplus-linked payments actually can be considered as (close to) optimal, and

contain suggestions, at the very least, for the parameters of the dividend strategy.
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Appendix A

The linear regulator problem with

terminal condition

Let X be given by

dX (t) = udt+ σdW (t) , X (0) = x.

The objective is to minimize

E

[∫ T

0

(
(X (s)− x̂)2 + a (u− û)2) ds

]
,

subject to E [X (T )] = 0. We introduce the related unconstrained problem to mini-

mize

E

[∫ T

0

(
(X (t)− x̂)2 + a (u− û)2) dt+ λX (T )

]
.

We let

V (t, x) = min
U∈UAC

E

[∫ T

t

(
(X (s)− x̂)2 + a (u− û)2) ds+ λX (T )

∣∣∣∣X (t) = x

]
,

and we want to find V (0, x) with λ determined such that E [X (T )] = 0 and the

corresponding optimal consumption plan.

The DPE equation connected with this problem is given by

−Vt = min
U∈UAC

[
uVx +

1

2
σ2Vxx + (x− x̂)2 + a (u− û)2

]
,

V (T, x) = λx.

Differentiating the DPE with respect to u and equating the right hand side to 0,

gives the control

u = û− Vx

2a
,

and plugging this control into the DPE gives the differential equation,

Vt + ûVx −
V 2

x

4a
+

1

2
σ2Vxx + (x− x̂)2 = 0.
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Guessing a solution in the form

V (t, x) = P (t) x2 +Q (t) x+R (t) ,

leads to an optimal control in the form

u = û− P (t)

a
x− Q (t)

2a
,

and a Riccati system of differential equations for (P (t) , Q (t) , R (t)),

Pt =
(P )2

a
− 1,

Qt =
P

a
Q− 2ûP + 2x̂,

Rt =
1

4a
Q2 − ûQ− σ2P − x̂2.

The side conditions P (T ) = 0, Q (T ) = λ, and R (T ) = 0 lead, by some efforts, to

the solutions

P (t) =
√
a tanh

(√
1

a
(T − t)

)
,

Q (t) = 2ûa


1− 1

cosh
(√

1
a
(T − t)

)


 (A.1)

−2x̂P (t) +
λ

cosh
(√

1
a
(T − t)

) ,

R (t) =

∫ T

t

(
− 1

4a
Q2 (s) + ûQ (s) + σ2P (s) + x̂2

)
ds.

where we for calculation of Q (t) have made use of the relation

e−
R t
s

P (τ)
a

dτ = e
√

1
a

R T−t
T−s

tanh
“√

1
a
y

”
dy

=
cosh

(√
1
a
(T − t)

)

cosh
(√

1
a
(T − s)

) .

The optimally controlled process is an Ornstein-Uhlenbeck process with time-

dependent coefficients,

dX (t) =

(
û− P (t)

a
X (t)− Q (t)

2a

)
dt+ σdW (t) .

Now we need to determine λ such that E [X (T )] = 0, and we denote this λ by λ0.

Letting m (t) = E [X (t)], we have that

m (t) = x+

∫ t

0

(
û− P (s)

a
m (s)− Q (s)

2a

)
ds,
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or in differential form

dm (t)

dt
= −P (t)

a
m (t) + û− Q (t)

2a
, m (0) = x.

This leads to

m (t) = cosh

(√
1

a
(T − t)

)


x

cosh
(√

1
a
T
) (A.2)

+

(
û− λ

2a

)√
a

(
tanh

(√
1

a
T

)
− tanh

(√
1

a
(T − t)

))

+x̂




1

cosh
(√

1
a
(T − t)

) − 1

cosh
(√

1
a
T
)





 .

Now the condition m (T ) = 0 determines λ0 by

λ0 =
2
√
a (x− x̂)

sinh
(√

1
a
T
) +

2
√
ax̂

tanh
(√

1
a
T
) + 2a (α− û) .

Finally, we find m (t) and Q (t) by setting λ = λ0 in (A.1) and (A.2),

m (t) = (x− x̂)
sinh

(√
1
a
(T − t)

)

sinh
(√

1
a
T
) − x̂

sinh
(√

1
a
t
)

sinh
(√

1
a
T
) + x̂,

Q (t) = 2aû− 2x̂P (t) +

2
√

a(x−bx)

sinh
“√

1
a
T

” + 2
√

abx
tanh

“√
1
a
T

”

cosh
(√

1
a
(T − t)

) ,

such that the optimally controlled process having the right expectation at termina-

tion is the Ornstein-Uhlenbeck process with time-dependent coefficients,

dX (t) =

(
−P (t)

a
(X (t)− x̂)− h (t)

)
dt+ σdW (t) ,

where

h (t) =

(x−bx)

sinh
“√

1
a
T

” + bx
tanh

“√
1
a
T

”

√
a cosh

(√
1
a
(T − t)

) .
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Appendix B

Riccati equation with growth

condition

Consider the Riccati equation

U ′ = (a + bx+ cU)U + f (x0) ,

U (x0) = g (x0) ,

U ′ (x0) = h (x0) ,

and the problem of finding x0 such that U → 0 for x→∞.

U = −1

c

Y ′

Y
,

U ′ = −1

c

Y ′′

Y
+

1

c

Y ′2

Y 2
,

Y ′′ = (a+ bx) Y ′ − cf (x0)Y.

Now, the transformation

z =
1

2b
(a+ bx)2 ,

Z (z) = Y (x) ,

gives

zZ ′′ =

(
z − 1

2

)
Z ′ − cf (x0)

2b
Y,

which is the confluent hypergeometric differential equation the solution of which can

be represented by the hypergeometric function

Z = C1F

(
−cf (x0)

2b
,
1

2
, z

)
+
√
zC2F

(
1

2
− cf (x0)

2b
,
3

2
, z

)
,

where

F (a, c, z) =

∞∑

k=0

a (a + 1) · · · (a+ k − 1)

c (c+ 1) · · · (c+ k − 1)

1

k!
zk.

The problem here is to find the solution of Z which leads to non-exponential

growth of U .
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Appendix C

The defective Ornstein-Uhlenbeck

process

Consider a defective Ornstein-Uhlenbeck process X with linear regulation in one

direction and constant regulation in the other direction. The dynamics of X is

given by

dX (t) = α− (w + v (X (t)− x0)) 1(X(t)≥x0)dt+ σdW (t) , X (0) = x,

for v > 0.

The stationary distribution We want to calculate the stationary density ψ and,

following Karlin and Taylor [38], page 221, we get

1

2
σ2 ∂

2

∂x2
ψ (x)− ∂

∂x

[(
α− (v (x− x0) + w)1(x>x0)

)
ψ (x)

]
= 0.

For x < x0:

ψ (x) = e
R x

x0

2α
σ2 dz

[
C0

∫ x

x0

e
−

R y
x0

2α
σ2 dz

dy + C1

]

= C1e
R x

x0

2α
σ2 dz

= C1e
2α
σ2 (x−x0).

For x > x0:

ψ (x) = e
R x

x0

2(α−v(z−x0)−w)

σ2 dz

[
C0

∫ x

x0

e
−

R y
x0

2(α−v(z−x0)−w)

σ2 dz
dy + C2

]

= C2e
R x

x0

2(α−v(z−x0)−w)

σ2 dz

= C2e
2(α−w+vx0)

σ2 x− v
σ2 x2− 2(α−w)

σ2 x0− v
σ2 x2

0.

From the absolute continuity of X − σW we can conclude continuity of the density

function, i.e.

ψ (x0−) = ψ (x0+) ,
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which gives

C1 = C2 ≡ C.

Now, C must be determined such that

∫ ∞

−∞
ψ (x) dx = 1,

which gives

C =

(∫ x0

−∞
e

2α
σ2 (x−x0) + e−

2(α−w)

σ2 x0− v
σ2 x2

0

∫ ∞

x0

e
2(α−w+vx0)

σ2 x− v
σ2 x2

dx

)−1

.

Substituting

y = −
√

2

v

α− w
σ

+

√
2v

σ2
(x− x0) ,

y0 = −
√

2

v

α− w
σ

,

we can write C as

C (w, v, x0) =

(
σ2

2α
+

√
σ2

2v

(1− Φ (y0))

Φ′ (y0)

)−1

.

The quantity g We want to calculate the quantity

g (w, v, x0) = E
[
(X − x̂)2 + a

(
(v (X − x0) + w)1(X>x0) − û

)2]
,

where the distribution of X is the stationary distribution of the defective Ornstein-

Uhlenbeck process. The stationary distribution above gives

g (w, v, x0) = C

∫ x0

−∞

(
(x− x̂)2 + aû2

)
e

2α
σ2 (x−x0)dx (C.1)

+C

∫ ∞

x0

k (x) e
2(α−w+vx0)

σ2 x− v
σ2 x2− 2(α−w)

σ2 x0− v
σ2 x2

0dx,

where

k (x) = (x− x̂)2 + a (v (x− x0) + w − û)2 .

Firstly, the substitution

z = −2α

σ2
x, z0 = −2α

σ2
x0,

x = −σ
2

2α
z, x0 = −σ

2

2α
z0,
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gives

∫ x0

−∞

(
(x− x̂)2 + aû2

)
e

2α
σ2 (x−x0)dx (C.2)

=
σ2

2α
ez0

∫ ∞

z0

(
σ4

4α2
z2 +

σ2

α
x̂z + x̂2 + aû2

)
e−zdz

=
σ2

2α

(
σ4

4α2

(
z2
0 + 2z0 + 2

)
+
σ2

α
x̂ (z0 + 1) + x̂2 + aû2

)
,

where we have used the relation
∫ ∞

x

e−zdz =
[
−e−z

]∞
x

= e−x,

∫ ∞

x

ze−zdz =
[
−e−z (1 + z)

]∞
x

= e−x (x+ 1) ,

∫ ∞

x

z2e−zdz =
[
−e−z

(
2 + 2z + z2

)]∞
x

= e−x
(
x2 + 2x+ 2

)
.

Secondly, the substitution

y = −
√
σ2

2v

2 (α− w)

σ2
+

√
2v

σ2
(x− x0) ,

y0 = −
√
σ2

2v

2 (α− w)

σ2
,

gives

∫ ∞

x0

k (x) e
2(α−w+vx0)

σ2 x− v
σ2 x2− 2(α−w)

σ2 x0− v
σ2 x2

0dx (C.3)

=

√
σ2

2v
e

1
v (

α−w
σ )

2
∫ ∞

y0

k̃ (y) e−
1
2
z2

dy

=

√
σ2

2v

σ2

2

(
1

v
+ av

)(
y0 +

1− Φ (y0)

Φ′ (y0)

)

+
σ2

v

(
(α− w + vx0)

v
− x̂+ av (α− û)

)

+

√
σ2

2v

((
(α− w + vx0)

v
− x̂
)2

+ a (α− û)2

)
1− Φ (y0)

Φ′ (y0)

where

k̃ (y) =
σ2

2

(
1

v
+ av

)
y2

+2

√
σ2

2v

(
(α− w + vx0)

v
− x̂+ av (α− û)

)
y

+

(
(α− w + vx0)

v
− x̂
)2

+ a (α− û)2 ,
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and where we have used the relations
∫ ∞

x

e−
z2

2 dz =
√

2π (1− Φ (x)) ,

∫ ∞

x

ze−
z2

2 dz = −
[
e−

z2

2

]∞
x

= e−
x2

2 ,

∫ ∞

x

z2e−
z2

2 dz = −
[
ze−

z2

2

]∞
x

+

∫ ∞

x

e−
z2

2 dz

= xe−
x2

2 +
√

2π (1− Φ (x)) .

By (C.1), (C.2), and (C.1) we reach at

g (w, v, x0) =
σ2

2

(
1

v
+ av

)
+

(
α− w
v

+ x0 − x̂
)2

+a (α− û)2 +
σ2

2α
CN (w, v, x0)

with

N (w, v, x0) =
σ4

2α2
− w2

v2
+
(α
v

+ αav + 2 (x0 − x̂)
)(w

v
− σ2

2α

)
.
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