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Chapter 1

Elementary abelian subgroups of

the exceptional simple groups

1.1 Introduction and notation

Let G be one of the exceptional simple complex Lie groups, i.e. one of type G2,
F4, E6, E7 or E8. Let p be a prime number. For reasons explained below, we are
interested in determining the conjugacy classes of elementary abelian p-subgroups
E of G. These may conveniently be divided in two classes, the toral ones and the
nontoral ones. Here, an abelian subgroup A is called toral if A is contained in a
torus of G and nontoral if it is not. If H is a maximal torus of G, then any two
subsets of H are conjugate in G if and only if they are conjugate in the normalizer
of the maximal torus NG(H) (see Lemma (1.1.3(4))). Since the action of the Weyl
group W = NG(H)/H of G on H is well known, this makes the determination of
the conjugacy classes of toral subgroups routine. In fact, in most cases these are the
only elementary abelian p-subgroups:

(1.1.1) Proposition. Assume that p ≥ 3 if G has type G2, p ≥ 5 if G has type
F4, E6 or E7 and p ≥ 7 if G has type E8. Then all elementary abelian p-subgroups
of G are toral.

(1.1.2) Proof : By [18, Exercise 5.11, p. 209] the conclusion holds if p is not a
torsion prime for G. Thus the result follows by examining the list [18, I.4.4, p.
178–179]. 2

Thus we are reduced to describing the conjugacy classes of nontoral elementary
abelian p-subgroups in the finitely many cases left by the proposition.

In the present paper we carry out the computations for all odd primes p. For
each conjugacy class of nontoral elementary abelian p-subgroups, we give an explicit
representative E ⊆ G and compute its Weyl group, which by definition is the group

3



4 Elementary abelian subgroups of the exceptional simple groups

W (E) = NG(E)/CG(E). We also compute the class distribution of E, i.e. the
number of elements in E from each conjugacy class of elements of order p in G.
Moreover we determine the oversize of E, which by definition is the codimension of
the largest toral subgroup of E. In almost all cases we also compute the centralizer
CG(E) and some auxiliary information which we need for our applications.

Briefly outlined, the strategy of our proof is as follows. The important work of Griess
[13] gives the maximal nontoral elementary abelian p-subgroups and some further
information as well. Unfortunately this paper is not very accessible or explicit and
we have therefore tried to keep our treatment as independent as possible. We have
collected some corrections to [13] in the last section.

Following Griess, we first find representatives for the maximal nontoral elementary
abelian p-subgroups. We then get lower bounds for their Weyl groups by producing
explicit elements in these. From this we are able to identify the nonmaximal nontoral
elementary abelian p-subgroups and get lower bounds for their Weyl groups. Finally
we get exact results on the Weyl groups by computing centralizers.

The reason for our interest in the problem is that the computations form the core
of the classification of p-compact groups [10] for odd primes p. This work, which is
joint with Jesper Grodal, Jesper Møller and Antonio Viruel, is the subject of the
forthcoming paper [1]. I am happy to take this opportunity to thank all three of
them deeply for their collaboration.

Our notation is fairly standard. For elements x, y in a group G we let yx = x−1yx
denote the conjugate of y by x, and [x, y] = x−1y−1xy be the commutator of x and
y.

Let C be the field of complex numbers and Fp the finite field with p elements. Now
let K be an arbitrary field. We let K× denote the multiplicative group of K. The
algebra of n × n-matrices over K is denoted Mn(K) and we let In ∈ Mn(K) be
the identity matrix. The diagonal matrix with entries a1, . . . , an ∈ K is denoted
diag(a1, . . . , an). We let GLn(K) and SLn(K) be the general linear group and the
special linear group respectively. For an elementary abelian p-subgroup E ⊆ G of
rank r, the Weyl group W (E) is a subgroup of GL(E). Fixing a basis of E, we
may consider W (E) as a subgroup of GLr(Fp). We make the convention that all
matrices acts on columns. For a permutation σ in the symmetric group Σn we also
let σ denote the associated permutation matrix A = [aij], where

aij = δi,σ(j) =

{
1 for i = σ(j)
0 otherwise.

We shall on occasions also use the following special notation. For matrices A1 ∈
Mn1(K), . . . , Am ∈ Mnm

(K) we let

A1 ⊕ . . . ⊕ Am =




A1 . . . 0
...

. . .
...

0 . . . Am



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denote the n × n-block matrix with the Ai’s in the diagonal (n = n1 + . . . + nm).
We also need the “blowup” homomorphism ∆n,m : Mn(K) −→ Mmn(K) defined by

∆n,m







a11 · · · a1n
...

. . .
...

an1 · · · ann





 =




a11Im · · · a1nIm

...
. . .

...
an1Im · · · annIm


 ,

i.e. the mn × mn-block matrix obtained by replacing each entry aij by aijIm.

As we have p = 3 in almost all the cases we consider we use some special notation.
We let ∗ denote an arbitrary element of F3 and ε denote an element of the multi-
plicative group F×

3 . Moreover we let ω = e2πi/3 and η = e2πi/9. We also consider the
elements

β = diag(1, ω, ω2) =




1 0 0
0 ω 0
0 0 ω2


 , γ = (1, 2, 3) =




0 0 1
1 0 0
0 1 0


 ,

τ1 =
e−πi/18

√
3




1 ω2 1
1 1 ω2

ω2 1 1


 , τ2 = diag(η, η−2, η) =




η 0 0
0 η−2 0
0 0 η




in SL3(C) and note that βτ1 = βγ, γτ1 = γ, βτ2 = β and γτ2 = βγ.

For complex Lie groups we use standard notation taken from the literature on alge-
braic groups. Some basic references are [15] and [17]. For the root systems we use the
conventions used in [3]. We shall need the following well-known result repeatedly.

(1.1.3) Lemma. Let G be an algebraic group over an algebraically closed field
K.

(1) If A is an abelian subgroup of G and x ∈ A, then A is toral in G if and only
if A is toral in CG(x).

(2) If G is simply connected and reductive, then the centralizer of a semisimple
element is connected.

(3) If G is simply connected and reductive and A is an abelian subgroup of G
consisting of semisimple elements generated by at most two elements, then A
is toral.

(4) If H is a maximal torus, then two subsets of H are conjugate in G if and only if
they are conjugate in NG(H). If A is toral in G, then W (A) = NG(A)/CG(A)
is isomorphic to a subquotient of the Weyl group W = NG(H)/H of G.

(5) Assume that G is reductive, let Z ⊆ G be a central subgroup, and let π : G →
G/Z be the quotient homomorphism. Then A ⊆ G/Z is toral in G/Z if and
only if π−1(A) is toral in G.
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(6) Assume char K = 0, let G be connected and let g be the Lie algebra of G. If
S ⊆ G is a finite subset of G, then the Lie algebra of CG(S) is given by

cg(S) = {x ∈ g|Ad(s)(x) = x for all s ∈ S}.

In particular, if S ⊆ G is a finite subgroup, then

dim CG(S) =
1

|S|
∑

s∈S

tr Ad(s) |
g
.

(1.1.4) Proof : (1): Obviously, if A is toral in CG(x) then A is toral in G. Con-
versely, if A is toral in G, then A ⊆ H for a torus H in G. Since x ∈ A we get
H ⊆ CG(x) and thus A is toral in CG(x).

(2): Our assumptions imply that G is semisimple, and thus the result follows from
[18, Theorem II.3.9, p. 197].

(3): This follows directly from part (2), cf. [18, II.5.1, p. 206].

(4): The first part follows by a Frattini argument. Let A, Ag ⊆ H be conjugate.
Then H and Hg−1

are maximal tori of CG(A). Thus we may write H = Hg−1c with
c ∈ CG(A) and we conclude that n = g−1c ∈ NG(H). Then An−1

= Ac−1g = Ag,
which proves the first part. The second part follows similarly, cf. [16, Proposition
1.1(i)].

(5): By [15, Corollary 21.3.C] we know that if H is a maximal torus of G, then π(H)
is a maximal torus of G/Z, and all maximal tori of G/Z are of this form. Since G is
reductive we have Z ⊆ H for all maximal tori H of G by [15, Corollary 26.2.A(b)].
From the above we then see that if H ′ is a maximal torus of G/Z, then π−1(H ′) is
a maximal torus of G and all maximal tori of G are obtained in this way. From this
relation between the maximal tori of G and G/Z, the claim follows immediately.

(6): The first part follows by combining [15, Theorem 13.4(a)] and [15, Theorem
12.5]. Now assume that S ⊆ G is a finite group, and let χ be the character of the
adjoint representation of G restricted to S. Then the dimension of

cg(S) = {x ∈ g|Ad(s)(x) = x for all s ∈ S}.

equals the multiplicity of the trivial character in χ. By the orthogonality relations
this is given by

(χ |1) =
1

|S|
∑

s∈S

χ(s),

and we are done. 2

For some of our computations we have used the computer algebra system MAGMA
[2]. More precisely we use this for our computations in 3E6(C) and E8(C). For both
of these, we represent the group by the action given by its smallest faithful complex
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representation. We also use the computer to make some computations of minimal
overgroups in GLr(Fp) relevant to the exact determination of the Weyl groups of
the elementary abelian p-group in consideration.

The remainder of this part of thesis is divided into 6 sections. The first one, which
is extremely short, deals with E8(C) in the case p = 5 and F4(C) in the case p = 3.
The next sections deals in succession with the groups 3E6(C) and E6(C), 2E7(C)
and E8(C). In section 1.6 we compute some of the centralizers CG(E). The final
section collects some corrections to the papers [7; 8; 13].
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1.2 The groups E8(C), p = 5 and F4(C), p = 3

(1.2.1) Theorem (E8). Up to conjugacy, E8(C) contains a unique nontoral ele-
mentary abelian 5-subgroup E. This group has rank 3, is 1-oversize and has Weyl
group W (E) = SL3(F5).

(1.2.2) Proof : This follows from [13, Lemma 10.3], except for the result on the
oversize. However since E is the only nontoral elementary abelian subgroup up to
conjugacy, it must be exactly 1-oversize. 2

(1.2.3) Theorem (F4). Up to conjugacy, F4(C) contains a unique nontoral ele-
mentary abelian 3-subgroup E. This group has rank 3, is 1-oversize and has Weyl
group W (E) = SL3(F3).

(1.2.4) Proof : This follows from [13, Theorem 7.4], except for the result on the
oversize. However since E is the only nontoral elementary abelian subgroup up to
conjugacy, it must be exactly 1-oversize. 2
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1.3 The groups E6(C) and 3E6(C), p = 3

(1.3.1) Setup. In this section we consider the elementary abelian 3-subgroups of
the groups of type E6 over C. The adjoint group is denoted E6(C), and the simply
connected group is denoted by 3E6(C). The group 3E6(C) has two nonisomorphic
faithful irreducible 27-dimensional representations, these have highest weight λ1

and λ6 respectively and are dual to each other. An explicit construction of 3E6(C)
based on one of these representations was originally given by Freudenthal [11]. This
construction is described in more detail in [8, section 2] from which we take most
of our notation. In particular we let K be the 27-dimensional complex vector space
consisting of triples m = (m1, m2, m3) of complex 3×3-matrices mi, 1 ≤ i ≤ 3 where
addition and scalar multiplication is defined coordinatewise. We define a cubic form
〈·〉 on K by

〈m〉 = det(m1) + det(m2) + det(m3) − tr(m1m2m3).

Then 3E6(C) is the subgroup of GL(K) preserving the form 〈·〉. Moreover the
stabilizer in 3E6(C) of the element (I3, 0, 0) ∈ K is the group F4(C). For g1, g2, g3 ∈
SL3(C) we have the element sg1,g2,g3 of 3E6(C) given by

sg1,g2,g3 (m1, m2, m3) =
(
g1m1g

−1
2 , g2m2g

−1
3 , g3m3g

−1
1

)

for m = (m1, m2, m3) ∈ K. This gives a representation of SL3(C)3 which has kernel
C3 generated by (ωI3, ωI3, ωI3), and we thus get an embedding of SL3(C)3/C3 in
3E6(C). We will denote the element sg1,g2,g3 by [g1, g2, g3].

We let {ei
j,k}, 1 ≤ i, j, k ≤ 3 be the natural basis of K consisting of the elements

ei
j,k whose entries are all 0 except for the (j, k)-entry of the i’th matrix which equals

1. The elements of 3E6(C) which acts diagonally with respect to this basis of K
form a maximal torus H in 3E6(C). Let ej,k be the 3×3-matrix whose only nonzero

element is 1 occurring at the (j, k)-entry, and mj,k
i be the (j, k)-entry of the matrix

mi. We then have H-invariant subgroups

uα1(t) = [I3, I3 + te1,3, I3] , u−α1(t) = [I3, I3 + te3,1, I3] ,

uα2(t) = [I3 + te2,1, I3, I3] , u−α2(t) = [I3 + te1,2, I3, I3] ,

uα3(t) = [I3, I3 + te2,1, I3] , u−α3(t) = [I3, I3 + te1,2, I3] ,

uα4(t) : (mi)i=1,2,3 7→


mi + t ·




0 −m2,3
i+2 0

0 0 0

0 m2,1
i+2 0






i=1,2,3

u−α4(t) : (mi)i=1,2,3 7→


mi + t ·




0 0 0

m3,2
i+1 0 −m1,2

i+1

0 0 0






i=1,2,3
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uα5(t) = [I3, I3, I3 + te2,1] , u−α5(t) = [I3, I3, I3 + te1,2] ,

uα6(t) = [I3, I3, I3 + te1,3] , u−α6(t) = [I3, I3, I3 + te3,1] .

Here, in the description of u±α4(t), the mi’s should be counted cyclicly mod 3, e.g.
mi+2 = m1 for i = 2.

The associated roots αi, 1 ≤ i ≤ 6, of these root subgroups form a base for the
root system Φ(E6) of 3E6(C) (our numbering agrees with [3, p. 260–262]). For this
base of Φ(E6), the highest weight of K is λ1. Furthermore the root subgroups u±αi

,
1 ≤ i ≤ 6, have been chosen so that they satisfy [17, 8.1.1(i) and 8.1.4(i)], i.e. they
form part of a realization ([17, p. 133]) of Φ(E6) in 3E6(C). For α = ±αi, 1 ≤ i ≤ 6,
and t ∈ C×, we may then define the elements

nα(t) = uα(t)u−α(−1/t)uα(t), hα(t) = nα(t)nα(1)−1.

Then the maximal torus consists of the elements h(t1, t2, t3, t4, t5, t6) =
∏6

i=1 hαi
(ti)

and the normalizer N(H) of the maximal torus is generated by H and the elements
ni = nαi

(1), 1 ≤ i ≤ 6. It should be noted that this notation differs from the one used
in [8]. More precisely, the element h(α, β, γ, δ, ε, ζ) in [8] is h(δ, α−1, γ−1, β, ε−1, ζ)
in our notation, and the elements n1, n2, n3, n4, n5 and n6 in [8] equals respec-
tively n1hα1(−1)hα3(−1), n2h(−1, 1, 1,−1, 1,−1), n3hα1(−1), n4, n5hα6(−1) and
n6hα5(−1)hα6(−1) in our notation.

From the description of the root system of type E6 in [3, p. 260–262] we see that
the center Z of 3E6(C) is cyclic of order 3 and is generated by the element z =
[I3, ω

2I3, ωI3]. We consider also the element a = [ωI3, I3, I3]. A straightforward
computation shows that the roots of the centralizer C3E6(C)(a) are

{±α1,±α2,±α3,±α5,±α6,±α̃,±(α1 + α3),±(α5 + α6),±(α2 − α̃)},

where α̃ is the longest root. The Dynkin diagram for this centralizer is the same as
the extended Dynkin diagram for E6 with the node α4 removed. In particular it has
type A2A2A2 and basis {α1, α3, α5, α6, α2,−α̃}. Since 3E6(C) is simply connected,
Lemma (1.1.3(2)) implies that the centralizer C3E6(C)(a) is connected, and thus it
is generated by the maximal torus H and the root subgroups u±α(t) where α runs
through the simple roots in the basis {α1, α3, α5, α6, α2,−α̃} of the root system of
centralizer. Now note that ueα(t) = [I3 + te3,1, I3, I3] and u−eα(t) = [I3 + te1,3, I3, I3]
are root subgroups with associated roots α̃ and −α̃ respectively. Since these along
with H and the root subgroups u±α1, u±α2, u±α3, u±α5 and u±α6 generate the sub-
group SL3(C)3/C3 of 3E6(C) from above, we conclude that C3E6(C)(a) = SL3(C)3/C3.

To describe the conjugacy classes of elementary abelian 3-subgroups we need to
introduce some more elements. Consider the following elements in SL3(C)3/C3 ⊆
3E6(C):

x1 = [I3, β, β] , x2 = [β, β, β] , y1 =
[
I3, γ, γ2

]
, y2 = [γ, γ, γ] .
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We also need the following elements in N(H):

s1 = n1n3n4n2n5n4n3n1n6n5n4n2n3n4n5n6

s2 = n1n2n3n1n4n2n3n1n4n3n5n4n2n3n1n4n3n5n4n2n6n5n4n2n3n1n4·
n3n5n4n2n6n5n4n3n1

The action of these elements are as follows:

s1(m1, m2, m3) = (m3, m1, m2), s2(m1, m2, m3) = (mT

3, m
T

2, m
T

1),

where mT

i denotes the transpose of mi. From the description of the subgroup
SL3(C)3/C3 we see that conjugation by these elements acts as follows

[g1, g2, g3]
s1 = [g2, g3, g1] , [g1, g2, g3]

s2 =
[(

g−1
1

)
T

,
(
g−1
3

)
T

,
(
g−1
2

)
T

]
.

It may be checked that the image of s2 in the Weyl group W = W (E6) equals the
longest element in W . Moreover the element s1s

−1
2 lies in the subgroup F4(C) and

its image in W (F4) equals the longest element in W (F4). We will not need these
facts however.

(1.3.2) Lemma. We have

z = h(ω, 1, ω2, 1, ω, ω2), a = h(ω, 1, ω2, 1, ω2, ω), x1 = h(ω, 1, ω, 1, ω, ω),

x2 = h(1, ω2, ω2, 1, ω2, 1), y1 = n1n3n5n6hα5(−1),

y2 = n1n2n3n4n3n1n5n4n2n3n4n5n6n5n4n2n3n1n4n3n5n4n6n5hα2(−1).

Moreover conjugation by the element

n1n4n2n3n1n4n5n4n6n5n4n2n3n1n4 · hα2(−1)hα4(−1)

acts as follows:

a 7→ x2, x2 7→ a, y1 7→ s1, y2 7→ y2
2, x2x

−1
1 7→ hα4(ω) = [τ2, τ2, τ2] .

(1.3.3) Proof : Both parts of the lemma may be checked by direct computation.
The second part also follows from the first by using the following relations in N(H):
The element ni has image sαi

in W ([17, 8.1.4(i)]), we have n2
i = hαi

(−1) ([17,
8.1.4(ii)]) and

ninjni . . . = njninj . . .

for 1 ≤ i, j ≤ 6, where the number of factors on both sides equals the order of sαi
sαj

in W ([17, 9.3.2]). 2

(1.3.4) Conjugacy classes. For our calculations, we need some information on
the conjugacy classes of elements of order 3 in 3E6(C). These are given in [8, Table
2]: There are 7 such conjugacy classes, which we label 3A, 3B, 3B′, 3C, 3D, 3E

and 3E′, where 3B′ and 3E′ denotes the inverses of the classes 3B and 3E. This
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notation is almost identical to the notation in [8], but differs from [13]. We will need
the following, which follows quickly from [8, Table 2] using the action of W on H:
We have z ∈ 3E, a, x2, y2 ∈ 3C, x1, y1 ∈ 3D and x2x

−1
1 ∈ 3A. Multiplication by z

acts as follows on the conjugacy classes:

3A 7→ 3B, 3B 7→ 3B′, 3B′ 7→ 3A, 3C 7→ 3C, 3D 7→ 3D, 3E 7→ 3E′, 3E′ 7→ 1,

where 1 denotes the conjugacy class consisting of the identity element.

(1.3.5) Theorem (3E6). The conjugacy classes of nontoral elementary abelian
3-subgroups of 3E6(C) are given by the following table.

rank name ordered basis 3E6(C)-class distribution dim C3E6(C)(E)

3 E3
3E6

〈a, x2, y2〉 3C26 0

4 E4
3E6

〈z, a, x2, y2〉 3C783E13E′1 0

Their Weyl groups with respect to the given ordered bases satisfies the following:

W (E3
3E6

) ⊇ SL3(F3), W (E4
3E6

) ⊇




1 ∗ ∗ ∗
0
0
0

SL3(F3)


 .

(1.3.6) Remark. In section 1.6 we will prove that the Weyl groups of E3
3E6

and
E4

3E6
are exactly the lower bounds given above.

(1.3.7) Proof :

NONTORAL SUBGROUPS: By [13, Theorem (11.13)], there are two conjugacy
classes of nontoral elementary abelian 3-subgroups in 3E6(C), one nonmaximal of
rank 3 and one maximal of rank 4. We may concretely realize these as follows.
Consider the subgroups

E3
3E6

= 〈a, x2, y2〉 and E4
3E6

= 〈z, a, x2, y2〉 ,

which are readily seen to be elementary abelian 3-subgroups of rank 3 and 4 respec-
tively. In particular both groups are subsets of C3E6(C)(a) = SL3(C)3/C3, and since
β, γ ∈ SL3(C) does not commute, we see that the preimages of E3

3E6
and E4

3E6
under

the projection SL3(C)3 → SL3(C)3/C3 are nonabelian. Thus by Lemma (1.1.3(5))
E3

3E6
and E4

3E6
are nontoral in SL3(C)3/C3 = C3E6(C)(a) and hence also nontoral in

3E6(C) by Lemma (1.1.3(1)). Thus by the above these two groups represent the
conjugacy classes of nontoral elementary abelian 3-subgroups in 3E6(C).

WEYL GROUPS: Note that we have an inclusion F4(C) ⊆ 3E6(C). Thus the
unique nontoral subgroup E of F4(C) of rank 3 from Theorem (1.2.3) may also be
considered as a subgroup of 3E6(C). As its Weyl group in F4(C) is SL3(F3), its Weyl
group in 3E6(C) must contain SL3(F3). In particular it has order divisible by 13
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and since the order of W (E6) is 27 · 34 · 5 which is not divisible by 13, we conclude
by Lemma (1.1.3(4)) that E is nontoral in 3E6(C) as well. Thus by the above E
must be conjugate to E3

3E6
, and we get that W (E3

3E6
) contains SL3(F3). From this

we immediately see that W (E4
3E6

) contains the group




1 0 0 0

0
0
0

SL3(F3)


 .

Note that the element [I3, β, β2] commutes with z, a and x2 and conjugates y2 to
y2z. Thus it normalizes E4

3E6
and produces the element




1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1




in W (E4
3E6

). As a result we see that W (E4
3E6

) contains




1 ∗ ∗ ∗
0
0
0

SL3(F3)


 .

CLASS DISTRIBUTIONS: Since a ∈ 3C by (1.3.4) and W (E3
3E6

) contains SL3(F3)
which acts transitively on E3

3E6
\ {1}, the class distribution of E3

3E6
follows immedi-

ately. Using this and the information given in (1.3.4) about the action of z on the
conjugacy classes, the class distribution of E4

3E6
is easily found.

CENTRALIZER DIMENSIONS: By Lemma (1.1.3(6)) we see that the dimension
of C3E6(C)(E) may be computed from the class distribution of E and the action of E
on the Lie algebra e6. The eigenvalue multiplicities on e6 for the different conjugacy
classes in 3E6(C) are given in [8, Table 2], and using this we easily get the dimensions
given above. As an example consider E3

3E6
. We find:

dim C3E6(C)(E
3
3E6

) =
1

|E3
3E6

|
∑

x∈E3
3E6

tr x |
e6

=
1

27
·
(
78 + 26 · (24 + 27ω + 27ω2)

)
= 0.

A similar computation for E4
3E6

finishes the proof. 2

(1.3.8) Notation. We now turn to the group E6(C). As above we let Z be the
center of 3E6(C) and we let π : 3E6(C) → E6(C) = 3E6(C)/Z denote the projection.
For g ∈ 3E6(C) we write simply g instead of π(g) and similarly we let S = π(S) for
a subset S ⊆ 3E6(C).
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(1.3.9) Lemma. Let E be a rank 2 nontoral elementary abelian 3-subgroup of
E6(C). Then the Weyl group W (E) is a subgroup of SL2(F3).

(1.3.10) Proof : Let E = 〈g1, g2〉. By Lemma (1.1.3) part (5) and (3) the group
〈g1, g2〉 ⊆ 3E6(C) is nonabelian. Thus setting z′ = [g1, g2] ∈ Z we have z′ 6= 1.

Assume that σ ∈ W (E) is represented by the matrix

[
a11 a12

a21 a22

]
, i.e. we have

σ(g1) = (g1)
a11(g2)

a21 and σ(g2) = (g1)
a12(g2)

a22 . Since σ is given by a conjugation
in E6(C), it lifts to a conjugation in 3E6(C). Now the relation [g1, g2] = z′ ∈ Z
shows (z′)a11 ·a22−a12·a21 = z′, so since z′ 6= 1 we have σ ∈ SL2(F3). 2

(1.3.11) Theorem (E6). The conjugacy classes of nontoral elementary abelian
3-subgroups of E6(C) are given by the following table,

rank name ordered basis 3E6(C)-class distribution dimCE6(C)(E)

2 E2a
E6

〈y1, x2〉 3C
18

3D
6
3E

1
3E

′1 8

2 E2b
E6

〈y1, x1〉 3D
24

3E
1
3E

′1 14

3 E3a
E6

〈a, y1, x2〉 3C
60

3D
18

3E
1
3E

′1 2

3 E3b
E6

〈a, x2, y2〉 3C
78

3E
1
3E

′1 0

3 E3c
E6

〈a, y1, x1〉 3C
6
3D

72
3E

1
3E

′1 8

3 E3d
E6

〈
x2x

−1
1 , y1, x1

〉
3A

2
3B

2
3B

′2
3C

48
3D

24
3E

1
3E

′1 4

4 E4a
E6

〈a, y2, y1, x2〉 3C
186

3D
54

3E
1
3E

′1 0

4 E4b
E6

〈
a, x2x

−1
1 , y1, x1

〉
3A

6
3B

6
3B

′6
3C

150
3D

72
3E

1
3E

′1 2

where the last entry in the row corresponding to E ⊆ E6(C) is the class distribution
of π−1(E) ⊆ 3E6(C).

These groups are all 1-oversize and their Weyl groups with respect to the given
ordered bases satisfies the following:

W (E2a
E6

) =

[
ε ∗
0 ε

]
, W (E2b

E6
) = SL2(F3), W (E3a

E6
) =




ε1 ∗ ∗
0 ε2 ∗
0 0 ε2


 ,

W (E3b
E6

) ⊇ SL3(F3), W (E3c
E6

) =




ε ∗ ∗
0
0

SL2(F3)


 , W (E3d

E6
) =




ε 0 0

0
0

SL2(F3)


 ,

W (E4a
E6

) ⊇




GL2(F3)
∗
∗

∗
∗

0 0 det ∗
0 0 0 det


 , W (E4b

E6
) =




ε1 ∗ ∗ ∗
0 ε2 0 0
0
0

0
0

SL2(F3)


 ,

where det denotes the determinant of the matrix from GL2(F3) in the description
of W (E4a

E6
).

(1.3.12) Remark. In section 1.6 we will prove that the Weyl groups of E3b
E6

and
E4a

E6
are exactly the lower bound given above.
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(1.3.13) Proof :

MAXIMAL NONTORAL SUBGROUPS: By [13, Theorem (11.14)], there are two
conjugacy classes of maximal nontoral elementary abelian 3-subgroups in E6(C),
both of which have rank 4. We may concretely realize these as follows. Consider
the subgroups

Ea = 〈z, a, y1, y2, x2〉 and Eb =
〈
z, a, x2x

−1
1 , y1, x1

〉

of C3E6(C)(a) = SL3(C)3/C3. Since the commutator subgroup of both of these is
Z, we see that E4a

E6
= π(Ea) and E4b

E6
= π(Eb) are elementary abelian subgroups

of rank 4 in E6(C). It follows from Lemma (1.1.3(5)) that both E4a
E6

and E4b
E6

are
nontoral in E6(C). We will see below that their class distributions are as given in
the table. From this it follows that they are not conjugate and thus represents the
two conjugacy classes of maximal elementary abelian 3-subgroups in E6(C).

LOWER BOUNDS FOR WEYL GROUPS OF MAXIMAL NONTORAL SUB-
GROUPS: We can find lower bounds for the Weyl groups of the maximal nontoral
elementary abelian 3-subgroups by conjugating with elements coming from the cen-
tralizer C3E6(C)(a) = SL3(C)3/C3 and the normalizer N(H) of the maximal torus.

The elements [β2, I3, I3], [I3, τ1, τ 2
1 ], s1 and s2 normalize E4a

E6
and conjugation by

these elements induce the automorphisms given by the matrices




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 ,




1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1


 ,




2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2




on E4a
E6

. Moreover, by Lemma (1.3.2) we may conjugate the ordered basis of E4a
E6

into the ordered basis
〈
x2, y2

2, s1, a
〉

. Noting that the element [τ1, τ1, τ1] commutes

with y2, s1 and a and conjugates x2 into x2y2, we see that W (E4a
E6

) contains the
automorphism given by the matrix




1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1


 .

The above matrices are easily seen to generate the group

W ′(E4a
E6

) =




GL2(F3)
∗
∗

∗
∗

0 0 det ∗
0 0 0 det


 ,

and thus W 4a
E6

contains this group.
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Now consider E4b
E6

and let σ = −(2, 3) ∈ SL3(C). We then see that the elements

[I3, τ1, τ
2
1 ], [I3, τ2β, τ 2

2 ], [σ, I3, I3], [γ, I3, I3], [I3, β2, I3] and s2 normalize E4b
E6

, and
conjugation by these elements induce the automorphisms given by the matrices




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 ,




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1


 ,




1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1


 ,




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,




1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,




2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2




on E4b
E6

. We see that these matrices generate the group

W ′(E4b
E6

) =




ε1 ∗ ∗ ∗
0 ε2 0 0
0
0

0
0

SL2(F3)




and thus W 4b
E6

contains this group.

ORBIT COMPUTATION: Any elementary abelian 3-subgroup of rank 1 is toral
since E6(C) is connected. As we already know that E4a

E6
and E4b

E6
are representatives

of the maximal nontoral elementary abelian 3-subgroups, we may find the conjugacy
classes of nontoral elementary abelian 3-subgroups of rank 2 and 3 by studying
subgroups of these.

Under the action of W ′(E4a
E6

), the set of rank 2 subgroups of E4a
E6

has orbit represen-
tatives

E2a
E6

= 〈y1, x2〉 , 〈a, x2〉 , 〈a, y1〉 and 〈a, y2〉 ,

and under the action of W ′(E4b
E6

), the set of rank 2 subgroups of E4b
E6

has orbit
representatives

E2a
E6

= 〈y1, x2〉 , E2b
E6

= 〈y1, x1〉 , 〈a, x2〉 , 〈a, y1〉 ,
〈
a, x2x

−1
1

〉
and

〈
x2x

−1
1 , x1

〉
.

Similarly we find that under the action of W ′(E4a
E6

), the set of rank 3 subgroups of
E4a

E6
has orbit representatives

E3a
E6

= 〈a, y1, x2〉 , E3b
E6

= 〈a, y2, x2〉 and 〈a, y1, y2〉 ,

and that under the action of W ′(E4b
E6

), the set of rank 3 subgroups of E4b
E6

has orbit
representatives

E3a
E6

= 〈a, y1, x2〉 , E3c
E6

= 〈a, y1, x1〉 , E3d
E6

=
〈
x2x

−1
1 , y1, x1

〉
and

〈
a, x2x

−1
1 , x1

〉
.
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OTHER NONTORAL SUBGROUPS: We see directly that the subgroups 〈a, x2〉,〈
a, x2x

−1
1

〉
,

〈
x2x

−1
1 , x1

〉
and

〈
a, x2x

−1
1 , x1

〉
are toral. Noting that the elements

β and γ are conjugate in SL3(C) we see that the group 〈a, y1, y2〉 is conjugate to

the group
〈
a, [I3, β, β2], x2

〉
which is obviously toral. Thus we see that the groups

〈a, y1, y2〉, 〈a, y1〉 and 〈a, y2〉 are also toral. Using the fact that [y1, x1] = [y1, x2] = z
we see from Lemma (1.1.3(5)) that both E2a

E6
and E2b

E6
are nontoral in E6(C). Since

the groups E3a
E6

, E3c
E6

and E3d
E6

all contain either E2a
E6

or E2b
E6

they are also nontoral.
Using Lemma (1.1.3(5)) we see that the group E3b

E6
is nontoral in E6(C), since we

know that π−1(E3b
E6

) = E4
3E6

is nontoral in 3E6(C) by Theorem (1.3.5).

OVERSIZE: Since the groups 〈a, y1, y2〉 and
〈
a, x2x

−1
1 , x1

〉
are toral and are codi-

mension 1 subgroups of E4a
E6

and E4b
E6

respectively, we see that E4a
E6

and E4b
E6

are at
most 1-oversize. Since they are nontoral they are both exactly 1-oversize. Since the
other nontoral elementary abelian 3-subgroups are contained in one of these, they
are also 1-oversize.

CLASS DISTRIBUTIONS: Using (1.3.4) and the action of the groups W ′(E4a
E6

) and
W ′(E4b

E6
) it is not hard to verify the class distributions in the table. As an example

consider the group E4b
E6

. From the action of W ′(E4b
E6

) we see that E4b
E6

\ {1} contains

2 elements conjugate to a, 6 elements conjugate to x2x
−1
1 , 24 elements conjugate to

x1 and 48 elements conjugate to x2. Thus by (1.3.4), the set π−1(E4b
E6

\{1}) contains
6 elements from each of the classes 3A, 3B and 3B′, 3 ·(2+48) = 150 elements from
the class 3C and 3 · 24 = 72 elements from the class 3D. Including the elements
z and z2 from the classes 3E and 3E′ respectively, we get the class distribution of
π−1(E4b

E6
)\{1} given in the table. Similar computations give the remaining entries in

the table. Since these distributions are different we see that the groups in the table
are not conjugate and thus they provide a set of representatives for the conjugacy
classes of nontoral elementary abelian 3-subgroups of E6(C).

CENTRALIZER DIMENSIONS: Noting that Z acts trivially on the Lie algebra
e6, we see from Lemma (1.1.3(6)) that for any finite subgroup E ⊆ E6(C) we have
dim CE6(C)(E) = dim C3E6(C)(π

−1(E)). Thus we can use the class distributions above
and [8, Table 2] to find the dimensions of the centralizers. As an example consider
E4b

E6
:

dim CE6(C)(E
4b
E6

) = dim C3E6(C)(π
−1(E4b

E6
)) =

1

|π−1(E4b
E6

)|
∑

x∈π−1(E4b
E6

)

tr x |
e6

=

1

35
·
(
3 · 78 + 18 · (36 + 21ω + 21ω2) + 150 · (24 + 27ω + 27ω2)+

72 · (30 + 24ω + 24ω2)
)

= 2.

Similar computations give the results for the other groups in the table.

LOWER BOUNDS FOR OTHER WEYL GROUPS: We now show that the other
matrix groups in the table are all lower bounds for the remaining Weyl groups. To
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do this consider one of the nonmaximal groups E from the table. We then have
E ⊆ E4a

E6
or E ⊆ E4b

E6
, and we get a lower bound on W (E) by considering the action

on E of the subgroup of W ′(E4a
E6

) or W ′(E4b
E6

) fixing E. As an example we see that
E2a

E6
⊆ E4a

E6
and that the stabilizer of E2a

E6
inside W ′(E4a

E6
) is




GL2(F3)
0
0

0
0

0 0 det x
0 0 0 det


 ,

where det is the determinant of the matrix from GL2(F3). The action of such a
matrix on E2a

E6
is given by

y1 7→ (y1)
det, x2 7→ (y1)

x(x2)
det.

Thus W (E2a
E6

) contains the group

W ′(E2a
E6

) =

[
ε ∗
0 ε

]

as claimed. Similar computations show that for the groups E = E2b
E6

, E3a
E6

, E3c
E6

and
E3d

E6
, the group W ′(E) occurring in the theorem is a lower bound for the Weyl group

W (E).

For the group E3b
E6

= 〈a, x2, y2〉 we note that by Theorem (1.3.5) the group E3
3E6

=
〈a, x2, y2〉 has Weyl group at least SL3(F3). Thus we see that W (E3b

E6
) also contains

SL3(F3).

EXACT WEYL GROUPS: By now we know that the groups in the table is a set of
representatives for the conjugacy classes of nontoral elementary abelian 3-subgroups
of E6(C), that they are all 1-oversize and that the matrix groups given in the theorem
are lower bounds for the Weyl groups. We thus only need to verify that for all the
groups except E3b

E6
and E4a

E6
the Weyl group is the one given above.

By Lemma (1.3.9) the Weyl groups W (E2a
E6

) and W (E2b
E6

) are subgroups of SL2(F3).
From this we see that W (E2b

E6
) = SL2(F3) and that W (E2a

E6
) is equal to either

W ′(E2a
E6

) or SL2(F3), since these are the only subgroups of SL2(F3) containing
W ′(E2a

E6
). We have E2a

E6
= 〈y1, x2〉, and by (1.3.4) we see that the elements y1 and

x2 are not conjugate in E6(C). In particular we see that W (E2a
E6

) cannot act transi-
tively on the nontrivial elements of E2a

E6
, and we conclude that W (E2a

E6
) = W ′(E2a

E6
)

is the group from above.

Note that the groups E3a
E6

, E3d
E6

, and E4b
E6

all contain E2a
E6

. By using for example
the computer program mentioned in the introduction, we find that the minimal
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overgroups of W ′(E) in GL(E) are:

E3a
E6

:




ε ∗ ∗
0
0

SL2(F3)


 ,




∗ ∗ ∗
0 ∗ ∗
0 0 ∗




E3d
E6

:




ε 0 0
∗
∗ SL2(F3)


 ,




ε ∗ ∗
0
0

SL2(F3)


 ,




ε 0 0
0
0

GL2(F3)




E4b
E6

:




ε1 ∗ ∗ ∗
0 ε2 0 0

0
0

0
0

GL2(F3)


 ,




ε1 ∗ ∗ ∗
0 ε2 ∗ ∗
0
0

0
0

SL2(F3)


 ,




ε1 ∗ ∗ ∗
0 ε2 0 0

0
0

∗
∗ SL2(F3)


 .

From this we see that if W (E3a
E6

) 6= W ′(E3a
E6

) then W (E3a
E6

) will contain one of the
matrices 


1 0 0
0 1 0
0 1 1


 ,




1 0 0
0 1 0
0 0 −1




both fixing the subgroup E2a
E6

of E3a
E6

. However the automorphisms of E2a
E6

induced
by these elements are given by the matrices

[
1 0
1 1

]
,

[
1 0
0 −1

]
.

Since none of these are contained in W (E2a
E6

) we get W (E3a
E6

) = W ′(E3a
E6

) as claimed.
Similar computations using the above list of minimal overgroups show that W (E) =
W ′(E) for E = E3d

E6
and E4b

E6
. For the group E3c

E6
we get that W ′(E3c

E6
) has only one

minimal overgroup, namely:




ε ∗ ∗
0
0

GL2(F3)




If W (E3c
E6

) contained this group, then it would contain the matrix




1 0 0
0 1 0
0 0 −1




fixing the subgroup E2b
E6

. However the action induced on E2b
E6

is given by the matrix

[
1 0
0 −1

]

which is not contained in W (E2b
E6

). Thus we get W (E3c
E6

) = W ′(E3c
E6

) as well. 2
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1.4 The group 2E7(C), p = 3

(1.4.1) Setup. In this section we consider the elementary abelian 3-subgroups of
2E7(C), the simply connected group of type E7 over C. We let H be a maximal
torus of 2E7(C), Φ(E7) be the root system relative to H, and choose a realization
([17, p. 133]) (uα)α∈Φ(E7) of Φ(E7) in 2E7(C).

Note that we have an inclusion Φ(E6) ⊆ Φ(E7) of root systems (we use the notation
of [3, p. 260–266] for the root systems Φ(E6) and Φ(E7)). The subgroup G of 2E7(C)
generated by the root subgroups (uα)α∈Φ(E6) is isomorphic to 3E6(C) and these root
subgroups form a realization of Φ(E6) in G. Fixing an isomorphism G ∼= 3E6(C)
and using the choice of root subgroups for 3E6(C) from section 1.3 we get the root
subgroups u′

±αi
, 1 ≤ i ≤ 6 in G ⊆ 2E7(C). Now using [17, 8.1.4(iv)] we may actually

suppose that u±αi
= u′

±αi
for 1 ≤ i ≤ 6. For α = αi, 1 ≤ i ≤ 7, and t ∈ C× we

define the elements

nα(t) = uα(t)u−α(−1/t)uα(t), hα(t) = nα(t)nα(1)−1.

Then the maximal torus consists of the elements
∏7

i=1 hαi
(ti) and the normalizer

N(H) of the maximal torus is generated by H and the elements ni = nαi
(1), 1 ≤

i ≤ 7.

As in section 1.3 we define the following elements in 2E7(C):

z = hα1(ω)hα3(ω
2)hα5(ω)hα6(ω

2), a = hα1(ω)hα3(ω
2)hα5(ω

2)hα6(ω),

x2 = hα2(ω
2)hα3(ω

2)hα5(ω
2),

y2 = n1n2n3n4n3n1n5n4n2n3n4n5n6n5n4n2n3n1n4n3n5n4n6n5hα2(−1).

(1.4.2) Conjugacy classes. The conjugacy classes of elements of order 3 in
2E7(C) are given in [13, Table VI] and [7, Table 6] from which we take our notation.
In particular, there are 5 such conjugacy classes, which we label 3A, 3B, 3C, 3D

and 3E. Moreover these classes may be distinguished by their traces on e7, except
for the classes 3A and 3D which have the same trace. Since the trace of the element
h ∈ H is given by 7 +

∑
α∈Φ(E7) α(h) we easily obtain the inclusions

3C[3E6(C)] ⊆ 3C[2E7(C)], 3E[3E6(C)] ⊆ 3B[2E7(C)], 3E′[3E6(C)] ⊆ 3B[2E7(C)],

corresponding to the inclusion 3E6(C) ∼= G ⊆ 2E7(C).

(1.4.3) Theorem (2E7). The conjugacy classes of nontoral elementary abelian
3-subgroups of 2E7(C) are given by the following table.

rank name ordered basis 2E7(C)-class distribution dim C2E7(C)(E)

3 E3
2E7

〈a, x2, y2〉 3C26 3

4 E4
2E7

〈z, a, x2, y2〉 3B23C78 1
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These groups are all 1-oversize and their Weyl groups with respect to the given
ordered bases satisfies the following:

W (E3
2E7

) ⊇ SL3(F3), W (E4
2E7

) ⊇




ε ∗ ∗ ∗
0
0
0

SL3(F3)


 .

(1.4.4) Remark. In section 1.6 we will prove that the Weyl groups of E3
2E7

and
E4

2E7
are exactly the lower bounds given above.

(1.4.5) Proof :

NONTORAL SUBGROUPS: From the way the realization (uα)α∈Φ(E7) is chosen

above, it follows from Theorem (1.3.5) that E3
2E7

and E4
2E7

are elementary abelian
3-subgroups of 2E7(C) and that we have

W (E3
2E7

) ⊇ SL3(F3), W (E4
2E7

) ⊇




1 ∗ ∗ ∗
0
0
0

SL3(F3)


 .

In particular we see that both W (E3
2E7

) and W (E4
2E7

) have orders divisible by 13
and since the order of W (E7) is 210 ·34 ·5 ·7 which is not divisible by 13, we conclude
by Lemma (1.1.3(4)) that E3

2E7
and E4

2E7
are nontoral in 2E7(C). However by [13,

Theorem (11.16)] we know that there are precisely two conjugacy classes of nontoral
elementary abelian 3-subgroups in 2E7(C), and thus E3

2E7
and E4

2E7
represent these

two conjugacy classes.

CLASS DISTRIBUTIONS: The class distributions follows directly from the class
distributions of the groups E3

3E6
and E4

3E6
given in Theorem (1.3.5) and the in-

formation in (1.4.2) about the behavior of conjugacy classes in 3E6(C) under the
inclusion 3E6(C) ∼= G ⊆ 2E7(C).

CENTRALIZER DIMENSIONS: By using Lemma (1.1.3(6)), the class distributions
just found and the traces given in [13, Table VI], the dimensions of the centralizers
are verified easily.

OVERSIZE: Since the group 〈z, a, x2〉 is toral and has codimension 1 in E4
2E7

we
see that E4

2E7
is at most 1-oversize. Since E3

2E7
is contained in E4

2E7
it is also at

most 1-oversize. Now both E3
2E7

and E4
2E7

are nontoral, so they are both exactly
1-oversize.

LOWER BOUNDS FOR WEYL GROUPS: Using our realization (uα)α∈Φ(E7) we
may define a canonical map ϕ : W → N(H) as follows ([17, 9.3.3]): If w =
sαi1

. . . sαir
is a reduced expression for w ∈ W we let ϕ(w) = ni1 . . . nir (by [17,

8.3.3 and 9.3.2] this does not depend on the reduced expression for w). Note that
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the element ϕ(w) is a representative in N(H) for w ∈ W . Now let w0 ∈ W be
the longest element in W , and let n0 = ϕ(w0). From [3, p. 264–266] it fol-
lows that w0 equals the scalar transformation −1, and so conjugation by n0 acts
as inversion on H. Now let w ∈ W and define w′ by ww′ = w0. Since w0 is
central in our case, we have (ww′)w−1 = w−1 (ww′) = w′ so we conclude that
w′w = ww′ = w0. Now let ` be the length function on W . By [14, p. 16] we have
`(w) + `(w′) = `(w0). In general the map ϕ is not a homomorphism, but we do
have ϕ(w1w2) = ϕ(w1)ϕ(w2) if `(w1w2) = `(w1) + `(w2) by [17, 9.3.4(i)]. From this
it follows that ϕ(w)ϕ(w′) = ϕ(w′)ϕ(w) = ϕ(w0) = n0, and we conclude that n0

commutes with ϕ(w) for all w ∈ W .

Now consider the element

w = s1s2s3s4s3s1s5s4s2s3s4s5s6s5s4s2s3s1s4s3s5s4s6s5.

Using the fact that the length of an element is given by the number of positive roots
it sends to negative roots ([14, Corollary 1.7]), we see that the above product is a
reduced expression for w. Thus we have y2 = ϕ(w)hα2(−1). From the above we
then conclude that conjugation by n0 acts as follows:

z 7→ z2, a 7→ a2, x2 7→ x2
2, y2 7→ y2.

Thus n0 normalizes E4
2E7

and induces the element




2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1




in W (E4
2E7

). Combined with the above we conclude that

W (E4
2E7

) ⊇




ε ∗ ∗ ∗
0
0
0

SL3(F3)




as claimed. 2
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1.5 The group E8(C), p = 3

(1.5.1) Setup. In this section we consider the elementary abelian 3-subgroups of
the group E8(C), which is both the simply connected and adjoint group of type E8

over C. By using [4, Table 2, p. 214] we see that the smallest faithful representation
of E8(C) is the adjoint representation, i.e. the representation given by the action of
E8(C) on its Lie algebra e8, which has dimension 248. We may explicitly construct
this representation by following the recipe in [6, Chapter 4]. Letting Φ(E8) denote
the root system of type E8 (we use the notation of [3, p. 268–270]), we have in
particular a maximal torus H generated by the elements hαi

(t), 1 ≤ i ≤ 8, t ∈ C×

([6, p. 92, p. 97]) and root subgroups uα(t), α ∈ Φ(E8), t ∈ C. The normalizer
N(H) of the maximal torus, is generated by H and the elements ni = nαi

, 1 ≤ i ≤ 8
([6, p. 93, p. 101]). We let

h(t1, t2, t3, t4, t5, t6, t7, t8) =
8∏

i=1

hαi
(ti).

Note that by [6, p. 100 and Lemma 6.4.4] the root subgroups uα form a realization
([17, p. 133]) of Φ(E8) in E8(C). In particular we have the following relations. The
element ni has image sαi

in W = W (E8) ([17, 8.1.4(i)]), we have n2
i = hαi

(−1) ([17,
8.1.4(ii)]) and

ninjni . . . = njninj . . .

for 1 ≤ i, j ≤ 8, where the number of factors on both sides equals the order of sαi
sαj

in W ([17, 9.3.2]).

Now let a = hα1(ω)hα2(ω)hα3(ω
2) ∈ E8(C). Direct computation shows that for any

root α ∈ Φ(E8) we have α(a) = ω2〈α,λ2〉. From this we see that Dynkin diagram of
the centralizer CE8(C)(a) is the same as the extended Dynkin diagram of E8 with
the node α2 removed. Thus it has type A8 and basis

{α1, α3, α4, α5, α6, α7, α8,−α̃},

where α̃ is the longest root. As in [3, p. 250–251] we identify Φ(A8) with the set
of elements in R9 of the form ei − ej with i 6= j and 1 ≤ i, j ≤ 9, where ei denotes
the i’th canonical basis vector in R9. We now consider SL9(C), which is the simply
connected group of type E8 over C. For any 1 ≤ i, j ≤ 9 we let ei,j be the 9 × 9-
matrix over C whose only nonzero element is 1 occurring at the (i, j)-entry. Given
a root α′ = ei − ej ∈ Φ(A8) we let u′

α′(t) = I9 + tei,j for t ∈ C. With respect to the
maximal torus consisting of the diagonal matrices, this is a root subgroup of SL9(C)
corresponding to the root α′. The roots α′

i = ei − ei+1, 1 ≤ i ≤ 8, form a basis of
Φ(A8). From the above we then see that

u′
α′

1
(t) 7→ uα1(t), u′

α′

2
(t) 7→ uα3(t), u′

α′

3
(t) 7→ uα4(t), u′

α′

4
(t) 7→ uα5(t),

u′
α′

5
(t) 7→ uα6(t), u′

α′

6
(t) 7→ uα7(t), u′

α′

7
(t) 7→ uα8(t), u′

α′

8
(t) 7→ u−eα(t)
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defines a homomorphism SL9(C) → E8(C) onto the centralizer CE8(C)(a). It is
easy to check that this map has kernel C3 = 〈ωI9〉 and thus we may make the
identification CE8(C)(a) = SL9(C)/C3. For any g ∈ SL9(C) we denote by g its image
in SL9(C)/C3 = CE8(C)(a) ⊆ E8(C). In particular we see that a = ηI9 corresponds
to the element a from above. We also define the following elements in SL9(C) :

x1 = diag(1, ω, ω2, 1, ω, ω2, 1, ω, ω2), x2 = diag(1, 1, 1, ω, ω, ω, ω2, ω2, ω2),

x3 = diag(1, 1, 1, 1, 1, 1, ω, ω, ω), y1 = (1, 2, 3)(4, 5, 6)(7, 8, 9),

y2 = (1, 4, 7)(2, 5, 8)(3, 6, 9).

From the explicit homomorphism above we easily find

a = hα1(ω)hα2(ω)hα3(ω
2), x1 = hα1(ω)hα5(ω)hα8(ω),

x2 = hα1(ω)hα3(ω
2)hα5(ω

2)hα6(ω), x3 = hα1(ω
2)hα3(ω)hα5(ω

2)hα6(ω),

and a direct computation in E8(C) shows that

n−eα = n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5n4n2n3n4n5n6n7n8·
n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5n4n2n3n4n5n6n7n8.

From this and the explicit homomorphism above we find, either by direct computa-
tion or by using the relations in N(H), that

y1 = n1n3n5n6n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5·
n4n2n3n4n5n6n7n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3·
n1n7n6n5n4n2n3n4n5n6n7n8 · hα1(−1)hα2(−1)hα7(−1),

y2 = n2n3n1n4n2n3n4n5n4n2n3n4n6n5n4n2n3n1n4n7n6n5n4·
n2n3n1n4n3n5n6n7n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5·
n4n3n1n7n6n5n4n2n3n4n5n8n7n6 · hα2(−1)hα5(−1).

(1.5.2) Conjugacy classes. To distinguish subgroups of E8(C), we need some
information on the conjugacy classes of elements of order 3. These are given in [13,
Table VI] (which is taken from [7, Table 4]): There are 4 such conjugacy classes,
which we label 3A, 3B, 3C and 3D. Moreover these classes may be distinguished by
their traces on e8. Since the trace of the element h ∈ H is given by 8+

∑
α∈Φ(E8) α(h)

we easily obtain that a ∈ 3A, x1, x2, x3 ∈ 3B and x3a−1 ∈ 3D.

(1.5.3) Notation. If K is a field and n is a natural number, we define the general
symplectic group GSp2n(K) as the group of 2n × 2n matrices over K which leaves
the skew-symmetric scalar product given by the matrix

B =

[
0 −1
1 0

]
⊕ . . . ⊕

[
0 −1
1 0

]

︸ ︷︷ ︸
n copies

,
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invariant up to a nonzero scalar. Thus we have

GSp2n(K) = {X ∈ GL2n(K)|X tBX = cB, c ∈ K×}.

We define χ : GSp2n(K) → K× as follows. If X ∈ GSp2n(K) with X tBX = cB,
c ∈ K×, we let χ(X) = c. This is easily seen to be a group homomorphism. The
kernel of χ is the symplectic group Sp2n(K) which is the subgroup leaving the above
skew-symmetric scalar product invariant, i.e.

Sp2n(K) = {X ∈ GL2n(K)|X tBX = B}.

These groups were first investigated by Jordan and Dickson. In [9, §110] the groups
GSp2n(K) and Sp2n(K) are called the general Abelian linear group and the special
Abelian linear group and denoted by respectively GA(2n, K) and SA(2n, K). It
should be noted that our notation GSp2n(K) is not standard. Indeed no standard
notation seems to be available since this group does not occur as often in applications
as the symplectic group Sp2n(K).

(1.5.4) Theorem (E8). The conjugacy classes of nontoral elementary abelian
3-subgroups of E8(C) are given by the following table.

rank name ordered basis E8(C)-class distribution dim CE8(C)(E)

3 E3a
E8

〈x1, y1, a〉 3A183B8 8
3 E3b

E8
〈x1, y1, x3〉 3B26 14

4 E4a
E8

〈
x1, y1, x3, x3a−1

〉
3A523B263D2 4

4 E4b
E8

〈x2, x1, y1, a〉 3A543B26 2
4 E4c

E8
〈x2, x1, y1, x3〉 3B80 8

5 E5a
E8

〈
x2, x1, y1, x3, x3a−1

〉
3A1563B803D6 2

5 E5b
E8

〈x1, y1, x2, y2, a〉 3A1623B80 0

These groups are all 1-oversize and their Weyl groups with respect to the given
ordered bases satisfies the following:

W (E3a
E8

) =


 GL2(F3)

∗
∗

0 0 det


 , W (E3b

E8
) ⊇ SL3(F3), W (E4a

E8
) =




SL3(F3)
0
0
0

0 0 0 ε


 ,

W (E4b
E8

) =




ε ∗ ∗ ∗
0
0

GL2(F3)
∗
∗

0 0 0 det


 , W (E4c

E8
) ⊇




ε ∗ ∗ ∗
0
0
0

SL3(F3)


 ,

W (E5a
E8

) =




ε1 ∗ ∗ ∗ ∗
0
0
0

SL3(F3)
0
0
0

0 0 0 0 ε2




, W (E5b
E8

) =




GSp4(F3)

∗
∗
∗
∗

0 0 0 0 χ



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where det is the determinant of the matrix from GL2(F3) in the description of
W (E3a

E8
) and W (E4b

E8
). In the description of W (E5b

E8
), χ denotes the value of the

homomorphism χ : GSp4(F3) → F×
3 defined in (1.5.3) evaluated on the matrix from

GSp4(F3).

(1.5.5) Remark. In section 1.6 we will prove that the Weyl groups of E3b
E8

and
E4c

E8
are exactly the lower bounds given above.

(1.5.6) Proof :

MAXIMAL NONTORAL SUBGROUPS: By [13, Lemma (11.7) and Lemma (11.9)],
any maximal nontoral elementary abelian 3-subgroup of E8(C) contains an element
of type 3A. We may thus find representatives in CE8(C)(a) = SL9(C)/C3. From [13,
Corollary 11.10], it follows that there are two conjugacy classes of these maximal
nontoral elementary abelian 3-subgroups: E5a

E8
and E5b

E8
, both of which have rank

5. Moreover, by [13, Lemma 11.5], their preimages in SL9(C) may be chosen to
have the shape 31+2 ◦ 9 × 3 × 3 and 31+4 ◦ 9, where ◦ denotes a central product
over C3 = 〈ωI3〉. Using the representation theory of extraspecial 3-groups ([12,

Chapter 5.5]) we find that E5a
E8

is represented by
〈
x2, x1, y1, x3, x3a−1

〉
and that E5b

E8

is represented by 〈x1, y1, x2, y2, a〉.

LOWER BOUNDS FOR WEYL GROUPS OF MAXIMAL NONTORAL SUB-
GROUPS: We can find lower bounds for the Weyl groups of E5a

E8
and E5b

E8
by conju-

gating with elements in the centralizer CE8(C)(a) = SL9(C)/C3 and the normalizer
N(H) of the maximal torus.

Note that

a = ηI3 ⊕ ηI3 ⊕ ηI3, x1 = β ⊕ β ⊕ β, x2 = I3 ⊕ ωI3 ⊕ ω2I3,

x3 = I3 ⊕ I3 ⊕ ωI3, y1 = γ ⊕ γ ⊕ γ

and (A ⊕ B ⊕ C)y2 = B ⊕ C ⊕ A. Conjugation by τ1 ⊕ τ1 ⊕ τ1, τ2 ⊕ τ2 ⊕ τ2 and
I3 ⊕ β2 ⊕ β gives

τ1 ⊕ τ1 ⊕ τ1 : a 7→ a, x1 7→ x1y1, x2 7→ x2, x3 7→ x3, y1 7→ y1, y2 7→ y2. (i)

τ2 ⊕ τ2 ⊕ τ2 : a 7→ a, x1 7→ x1, x2 7→ x2, x3 7→ x3, y1 7→ x1y1, y2 7→ y2. (ii)

I3 ⊕ β2 ⊕ β : a 7→ a, x1 7→ x1, x2 7→ x2, x3 7→ x3, y1 7→ x2y1, y2 7→ x1y2.
(iii)

Now consider the group E5a
E8

. From (i)—(iii) we see that the elements τ1 ⊕ τ1 ⊕ τ1,

τ2 ⊕ τ2 ⊕ τ2 and I3 ⊕ β2 ⊕ β normalize E5a
E8

and that conjugation by these elements
induces the automorphisms on E5a

E8
given by the matrices




1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1




,




1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,




1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.
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Letting σ = −(1, 4)(2, 5)(3, 6) ∈ SL9(C) we see that (A ⊕ B ⊕ C)σ = B ⊕ A ⊕ C.
Using this and the above we obtain that σ, y2 and I3 ⊕ I3 ⊕ β2 normalize E5a

E8
and

that conjugation by these elements induces the automorphisms on E5a
E8

given by the
matrices




2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,




1 0 0 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1




.

By using the relations in N(H) given above or by direct computation, it may be
checked that conjugation by the element

n = n1n2n4n2n3n5n4n2n3n1n4n3n5n4n6n5n4n2n3n4n7n6n5n4n8n7n6·
n5n4n2n3n1n4n3n5n4n2n6n5n4n7 · h(1, 1,−1,−1,−1, 1,−1,−1)

induces the automorphism on E5a
E8

represented by the matrix




1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2




.

It is easy to see that the above matrices generate the group

W ′(E5a
E8

) =




ε1 ∗ ∗ ∗ ∗
0
0
0

SL3(F3)
0
0
0

0 0 0 0 ε2




,

and thus W (E5a
E8

) contains this group.

Next consider the group E5b
E8

. From (i)—(iii) we see that the elements τ1 ⊕ τ1 ⊕ τ1,

τ2 ⊕ τ2 ⊕ τ2 and I3 ⊕ β2 ⊕ β normalize E5b
E8

and that conjugation by these elements
induces the automorphisms on E5b

E8
given by the matrices




1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,




1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,




1 0 0 1 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1




.

Now note that a = ∆3,3(ηI3), x2 = ∆3,3(β) and y2 = ∆3,3(γ). Noting also that
∆3,3(M1) commutes with M2 ⊕ M2 ⊕ M2 for any M1, M2 ∈ M3(C) we see that the
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elements ∆3,3(τ1) and ∆3,3(τ2) normalize E5b
E8

. The automorphisms induced on E5b
E8

by conjugation with these elements have the matrices




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1




,




1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1




.

The upper left 4 × 4-corner of these matrices is easily seen to generate the group

〈



SL2(F3)
0 0
0 0

0 0
0 0

SL2(F3)


 ,




1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1




〉
.

Using the coordinates (η1, ξ1, η2, ξ2) in (F3)
4 we see that this is exactly the same

group as in [9, §114]. By comparing with [9, §110] and (1.5.3) we see that this is the
symplectic group Sp4(F3) from above.

By using the relations in N(H) given above or by direct computation, we get that
conjugation by the element

n = n2n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6·
n5n4n2n3n4n5n6n7n8 · h(1,−1,−1,−1,−1, 1, 1, 1)

of N(H) induces the automorphism on E5b
E8

represented by the matrix




1 0 0 0 0
0 2 0 0 0
0 0 1 0 1
0 0 0 2 0
0 0 0 0 2




.

It now follows that W (E5b
E8

) contains the group

W ′(E5b
E8

) =




GSp4(F3)

∗
∗
∗
∗

0 0 0 0 χ




.

LOWER BOUNDS FOR OTHER WEYL GROUPS: We now show that the other
Weyl groups in the table are all lower bounds. To do this consider one of the
nonmaximal groups E from the table. We then have E ⊆ E5a

E8
, and we get a lower
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bound on W (E) by considering the action on E of the subgroup of W ′(E5a
E8

) fixing
E. As an example we find that the stabilizer of E3a

E8
inside W ′(E5a

E8
) is




ε1 0 0 x x
0 a11 a12 a13 0
0 a21 a22 a23 0
0 0 0 det 0
0 0 0 0 det




,

where det = a11 · a22 − a12 · a21 6= 0. The action of such a matrix on E3a
E8

is given by

x1 7→ (x1)
a11(y1)

a21 , y1 7→ (x1)
a12(y1)

a22 , a 7→ (x1)
a13(y1)

a23(a)det.

Thus W (E3a
E8

) contains the group

W ′(E3a
E8

) =


 GL2(F3)

∗
∗

0 0 det




as claimed. Similar computations show that for the remaining groups E = E3b
E8

,
E4a

E8
, E4b

E8
and E4c

E8
, the group W ′(E) occurring in the theorem is a lower bound for

the Weyl group W (E).

ORBIT COMPUTATION: Note first that all elementary abelian subgroups of rank
at most two are toral by Lemma (1.1.3(3)). By using the lower bounds on the Weyl
groups of E5a

E8
and E5b

E8
established above, we may find a set of representatives for

the conjugacy classes of subgroups of E5a
E8

and E5b
E8

of rank 3 and 4.

Under the action of W ′(E5a
E8

), the set of rank 3 subgroups of E5a
E8

has orbit represen-
tatives

E3a
E8

= 〈x1, y1, a〉 , E3b
E8

= 〈x1, y1, x3〉 , 〈x1, x2, y1〉 ,

〈a, x1, x2〉 , 〈a, x1, x3〉 and 〈a, x2, x3〉 ,

and under the action of W ′(E5b
E8

), the set of rank 3 subgroups of E5b
E8

has orbit
representatives

E3a
E8

= 〈x1, y1, a〉 , 〈x1, x2, y1〉 and 〈a, x1, x2〉 .

Similarly we find that under the action of W ′(E5a
E8

), the set of rank 4 subgroups of
E5a

E8
has orbit representatives

E4a
E8

=
〈
x1, y1, x3, x3a−1

〉
, E4b

E8
= 〈x2, x1, y1, a〉 ,

E4c
E8

= 〈x2, x1, y1, x3〉 and 〈a, x1, x2, x3〉 ,

and that under the action of W ′(E5b
E8

), the set of rank 4 subgroups of E5b
E8

has orbit
representatives

E4b
E8

= 〈x2, x1, y1, a〉 and E0 = 〈x1, x2, y1, y2〉 .
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CLASS DISTRIBUTIONS: Recall that by (1.5.2), a is in the conjugacy class 3A,
x1 and x2 are in the class 3B and x3a−1 belongs to the class 3D. Using the actions
of W ′(E5a

E8
) and W ′(E5b

E8
) it is then straightforward to verify the class distributions

given in the table. As an example consider the group E5a
E8

. Under the action of
W ′(E5a

E8
) it contains 156 elements conjugate to a, 78 elements conjugate to x1, 2

elements conjugate to x2 and 6 elements conjugate to x3a−1, which gives the class
distribution in the table. Similar computations give the results for the remaining
groups.

We also see that the group E0 = 〈x1, x2, y1, y2〉 has class distribution 3B80 and from
the class distribution of E5b

E8
we get E0 = (E5b

E8
∩ 3B) ∪ {1}. It then follows from

[13, Lemma (11.5)] that E0 is toral.

CENTRALIZER DIMENSIONS: By using Lemma (1.1.3(6)), the class distributions
found above and the traces given in [7, Table 4], the dimensions given in the last
column of the table in the theorem are easily checked.

OTHER NONTORAL SUBGROUPS: We see directly that the groups

〈a, x1, x2, x3〉 , 〈a, x1, x2〉 , 〈a, x1, x3〉 and 〈a, x2, x3〉

are toral. Since the group 〈x1, x2, y1〉 is a subgroup of E0 it is also toral. Alterna-
tively, from the action of W ′(E5a

E8
) we see that it is conjugate to the group 〈x1, x2, x3〉,

which is visibly toral. Thus any nontoral elementary abelian 3-subgroup of E8(C)
is conjugate to a group in the table. Moreover, since their class distributions differ,
none of the groups occurring in the table are conjugate.

To see that the groups in the table are actually nontoral we may proceed as fol-
lows. The group E3a

E8
contains the element a, so by Lemma (1.1.3(1)) it is toral if

and only if it is toral in CE8(C)(a) = SL9(C)/C3. However this is not the case by
Lemma (1.1.3(5)), since its lift to SL9(C) is nonabelian. The groups E4a

E8
and E4b

E8

are thus also nontoral since they contain E3a
E8

. We saw above that the Weyl group
of E3b

E8
contains SL3(F3), which has order 24 · 33 · 13. Since the Weyl group of E8(C)

has order 214 · 35 · 52 · 7 which is not divisible by 13 it follows from Lemma (1.1.3(4))
that E3b

E8
is nontoral. Since E4c

E8
contains E3b

E8
it is also nontoral.

OVERSIZE: Note that both E5a
E8

and E5b
E8

are 1-oversize in E8(C). For E5a
E8

this
follows from the fact that it is nontoral and contains the toral subgroup 〈a, x1, x2, x3〉
of codimension 1. For E5b

E8
it follows similarly using the toral subgroup E0 from

above. Since the other groups in the table are contained in a maximal nontoral
elementary abelian 3-subgroup, these are 1-oversize as well.

EXACT WEYL GROUPS: By now we know that the groups in the table is a set of
representatives for the conjugacy classes of nontoral elementary abelian 3-subgroups
of E8(C), that they are all 1-oversize and that the matrix groups given in the theorem
are lower bounds for the Weyl groups. We thus only need to verify that for all the
groups except E3b

E8
and E4c

E8
the Weyl group is the one given above.
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First consider the group E3a
E8

= 〈x1, y1, a〉. Let x4 = τ−1
2 ⊕τ−1

2 ⊕τ−1
2 ∈ SL9(C). Note

that conjugation by (2, 7, 3, 4)(5, 8, 9, 6) ∈ SL9(C) acts as follows:

a 7→ a, x1 7→ x2, x2 7→ x2
1, x3a

−1 7→ x4, y1 7→ y2, y2 7→ y2
1.

In particular we see that E3a
E8

is conjugate to 〈x2, y2, a〉. If W (E3a
E8

) was larger
than the group W ′(E3a

E8
) from above, we then see (using for example the computer

program mentioned in the introduction) that W (E3a
E8

) would have to contain one of
the groups


 GL2(F3)

∗
∗

0 0 ε


 or SL3(F3)

which are the minimal overgroups of W ′(E3a
E8

) inside GL3(F3). Thus W (E3a
E8

) would
have to contain one of the matrices




1 0 0
0 −1 0
0 0 1


 ,




1 0 0
0 1 0
0 1 1


 .

This would mean that inside CE8(C)(x2, a) there would be an element which conju-
gates y2 into either y2

2 or y2a. However, since CE8(C)(a) = SL9(C)/C3, we get

CE8(C)(x2, a) = CSL9(C)/C3
(x2) = 〈y2, {A ⊕ B ⊕ C | det ABC = 1}〉.

From this it is easily seen that no such element exists, and thus we have W (E3a
E8

) =
W ′(E3a

E8
) as claimed.

Note that the groups E4a
E8

, E4b
E8

, E5a
E8

and E5b
E8

all contain E3a
E8

. The minimal over-
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groups of W ′(E) in GL(E) for these groups are found to be:

E4a
E8

:




GL3(F3)
0
0
0

0 0 0 ε


 ,




SL3(F3)
0
0
0

∗ ∗ ∗ ε


 ,




SL3(F3)
∗
∗
∗

0 0 0 ε




E4b
E8

:




ε ∗ ∗ ∗
0
0
0

SL3(F3)


 ,




ε1 ∗ ∗ ∗
0
0

GL2(F3)
∗
∗

0 0 0 ε2




E5a
E8

:




ε1 ∗ ∗ ∗ ∗
0
0
0

GL3(F3)
0
0
0

0 0 0 0 ε2




,




ε1 ∗ ∗ ∗ ∗
0
0
0

SL3(F3)
0
0
0

0 ∗ ∗ ∗ ε2




,




ε1 ∗ ∗ ∗ ∗
0
0
0

SL3(F3)
∗
∗
∗

0 0 0 0 ε2




E5b
E8

:




GSp4(F3)

∗
∗
∗
∗

0 0 0 0 ε




.

From this we see that if W (E4a
E8

) 6= W ′(E4a
E8

) then W (E4a
E8

) will contain one of the
matrices 



1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1


 ,




1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1


 ,




1 0 0 0
0 2 0 0
0 0 2 1
0 0 0 1




all fixing the subgroup E3a
E8

of E4a
E8

. However the automorphisms of E3a
E8

induced by
these elements are given by the matrices




1 0 0
0 2 0
0 0 1


 ,




1 0 0
0 1 0
0 1 1


 ,




1 0 0
0 2 0
0 0 1


 .

Since none of these are contained in W (E3a
E8

) we get W (E4a
E8

) = W ′(E4a
E8

) as claimed.
Similar computations using the above list of minimal overgroups show that W (E) =
W ′(E) for E = E4b

E8
, E5a

E8
and E5b

E8
. 2
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1.6 Centralizers

In this section we compute the centralizers of most of the elementary abelian sub-
groups given in the previous sections. Our calculations also enables us to finish the
computation of Weyl groups begun earlier; we show that in the cases where only a
lower bound was given, the Weyl group actually equals this lower bound. The no-
tation for the various elements and subgroups is the same as before. For an abelian
group A and a prime p, we let pA denote the elementary abelian p-subgroup of A
generated by the elements in A of order p.

The results of this section are used in [1] together with the Weyl group computations
to show the vanishing of certain higher limits which occurs in the proof of the
classification of p-compact groups at odd primes. The main technical result we need
for this application is the following:

(1.6.1) Theorem. Let p be an odd prime, let G be one of the exceptional simple
algebraic groups over C considered in the previous sections and let E be a non-
toral elementary abelian p-subgroup of G. Assume that p 6= 3 or that (G, E) 6=
(3E6(C), E3

3E6
), (E6(C), E2b

E6
) and (E8(C), E3b

E8
) for p = 3. Then pZ(CG(E)) = E. 2

(1.6.2) Remark. Obviously, if E is an elementary abelian p-subgroup of G, then

pZ(CG(E)) is an elementary abelian p-subgroup containing E. Thus if E is maximal,
then the conclusion of Theorem (1.6.1) holds for E. However we are not going to
need this since we can compute most of the centralizers and their centers directly.

We do not know if the conclusion of the theorem holds in the cases (G, E) =
(E6(C), E2b

E6
) and (G, E) = (E8(C), E3b

E8
) with p = 3, since we do not know the

exact structure of these centralizers.

For p = 3, G = 3E6(C) and E = E3
3E6

we have pZ(CG(E)) = 〈E, Z(G)〉 due to the
fact that Z(G) has p-torsion. However, in general we do not have pZ(CG(E)) = E for
any nontoral elementary abelian p-subgroup E of a simple group G of adjoint type.
The following example is inspired by [5, Section 3]. Let p ≥ 5 be a prime number
and choose any m with 3 ≤ m ≤ p − 1. Let ξ = e2πi/p and G = PSLmp(C). For
an element g ∈ SLmp(C), the corresponding element in G is denoted by g. Choose
different integers i1, . . . , im in {0, . . . , p−1} satisfying i1 + . . .+ im ≡ 0 (mod p) and
consider the following elements in SLmp(C):

g1 = diag(1, ξ, . . . , ξp−1

︸ ︷︷ ︸, . . . , 1, ξ, . . . , ξ
p−1

︸ ︷︷ ︸),

g2 = (1, 2, . . . , p)(p + 1, . . . , 2p) . . . ((m − 1)p + 1, . . . , mp) ,

g3 = diag(ξi1, . . . , ξi1

︸ ︷︷ ︸
p

, ξi2, . . . , ξi2

︸ ︷︷ ︸
p

, . . . , ξim, . . . , ξim

︸ ︷︷ ︸
p

).

Note that E = 〈g1, g2, g3〉 is an elementary abelian p-subgroup of rank 3. Then we
have

CPSLmp(C)(g1) =
〈
g2, CSLmp(C)(g1)

〉
,

CPSLmp(C)(g1, g2) =
〈
g1, g2, CSLmp(C)(g1, g2)

〉
.
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We directly get CSLmp(C)(g1, g2) = ∆m,p ({A ∈ GLm(C)| (det A)p = 1}). Since m is
coprime to p we actually have

CPSLmp(C)(g1, g2) = 〈g1, g2, ∆m,p(SLm(C))〉 ∼= 〈g1, g2〉 × PSLm(C).

Here g3 corresponds to the element x = diag(ξi1 , . . . , ξim) ∈ PSLm(C). Since
i1, . . . , im are different and m < p we get that CPSLm(C)(x) = Tm−1 is the maxi-
mal torus in PSLm(C). Therefore

CPSLmp(C)(E) = 〈g1, g2〉 × Tm−1,

and hence pZ(CPSLmp(C)(E)) has rank 2 + (m − 1) = m + 1 > 3.

(1.6.3) Centralizers in 3E6(C) and E6(C). Let Θ : SL3(C) −→ SL3(C)3/C3 ⊆
3E6(C) denote the homomorphism given by Θ(g) = [g, g, g] for g ∈ SL3(C). We
have already seen that C3E6(C)(a) = SL3(C)3/C3. From this we get

C3E6(C)(a, x2) = CSL3(C)3/C3
(x2) = 〈y2, (T2 × T2 × T2) /C3〉 ,

C3E6(C)(a, x2, y2) = 〈x2, y2, (〈ωI3〉 × 〈ωI3〉 × 〈ωI3〉) /C3〉 = E4
3E6

.

Thus C3E6(C)(E
3
3E6

) = C3E6(C)(E
4
3E6

) = E4
3E6

. We now turn to the subgroups of
E6(C). By Lemma (1.3.2) the group E2a

E6
= 〈x2, y1〉 is conjugate to the group 〈a, s1〉.

Since as1 = az2 we obtain CE6(C)(a) = 〈s1, SL3(C)3/C3〉, and from this we get

CE6(C)(a, s1) = 〈a, s1, z, Θ(SL3(C))〉 = 〈a, s1, z〉 × Θ(SL3(C)) ∼= 〈a, s1〉 × PSL3(C).

We thus have CE6(C)(E
2a
E6

) = E2a
E6

× PSL3(C). In particular Z(CE6(C)(E
2a
E6

)) = E2a
E6

.
By abusing the notation slightly, we let g denote the image of g ∈ SL3(C) in the
quotient PSL3(C). From Lemma (1.3.2) we then see that the elements a, y2 and

x2x
−1
1 in CE6(C)(E

2a
E6

) equal the elements β, γ2 and τ2 in the PSL3(C) component of
CE6(C)(E

2a
E6

). From this we now immediately get

CE6(C)(E
3a
E6

) = E2a
E6

× CPSL3(C)(β), CE6(C)(E
3d
E6

) = E2a
E6

× CPSL3(C)(τ2),

CE6(C)(E
4a
E6

) = E2a
E6

× CPSL3(C)(β, γ2), CE6(C)(E
4b
E6

) = E2a
E6

× CPSL3(C)(β, τ2).

Note that CPSL3(C)(β) = 〈T2, γ〉, from which we get CPSL3(C)(β, γ2) =
〈
β, γ

〉
and

CPSL3(C)(β, τ2) = T2. We thus have

CE6(C)(E
3a
E6

) = E2a
E6

× (T2 : 3), Z(CE6(C)(E
3a
E6

)) = E3a
E6

,

CE6(C)(E
4a
E6

) = E4a
E6

, Z(CE6(C)(E
4a
E6

)) = E4a
E6

,

CE6(C)(E
4b
E6

) = E2a
E6

× T2, Z(CE6(C)(E
4b
E6

)) = E2a
E6

× T2.

In particular 3Z(CE6(C)(E
4b
E6

)) = E4b
E6

. For E3d
E6

we have CPSL3(C)(τ2) ∼= GL2(C) so

CE6(C)(E
3d
E6

) = E2a
E6

× GL2(C), Z(CE6(C)(E
3d
E6

)) = E2a
E6

× T1

and 3Z(CE6(C)(E
3d
E6

)) = E3d
E6

.
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We now consider the group E3b
E6

. Since CE6(C)(a) = 〈s1, SL3(C)3/C3〉 we get

CE6(C)(a, x2) = 〈s1, y1, y2, (T2 × T2 × T2) /C3〉,
CE6(C)(a, x2, y2) = 〈s1, y1, y2, [I3, β, β2] , x2, (〈ωI3〉 × 〈ωI3〉 × 〈ωI3〉) /C3, 〉

which is a finite group of order 36. It is not hard to check that the center is the
subgroup 〈a, x2, y2〉 and we conclude that Z(CE6(C)(E

3b
E6

)) = E3b
E6

.

Finally consider the group E3c
E6

. We obtain

CE6(C)(a, x1) = 〈y1, (SL3(C) × T2 × T2) /C3〉,
CE6(C)(a, x1, y1) = 〈y1, x1, (SL3(C) × 〈ωI3〉 × 〈ωI3〉) /C3〉.

Thus CE6(C)(E
3c
E6

) = SL3(C) ◦〈a〉 E3c
E6

is a central product, and from this we find
Z(CE6(C)(E

3c
E6

)) = E3c
E6

.

(1.6.4) Centralizers in E8(C). In section 1.5 we saw that E3a
E8

is conjugate to
〈a, x2, y2〉 and that

CE8(C)(a, x2) = 〈y2, {A ⊕ B ⊕ C | det ABC = 1}〉.

From this we directly get

CE8(C)(a, x2, y2) =
〈
x2, y2, {A ⊕ A ⊕ A | (det A)3 = 1}

〉

= 〈x2, y2, a, {A ⊕ A ⊕ A | det A = 1}〉
∼= 〈x2, y2, a〉 × PSL3(C).

Thus CE8(C)(E
3a
E8

) = E3a
E8

× PSL3(C) and Z(CE8(C)(E
3a
E8

)) = E3a
E8

.

From section 1.5 we see that the elements x2, x3a−1 and y2 in CE6(C)(E
3a
E8

) equal

the elements β2, τ−1
2 and γ2 in the PSL3(C) component of CE8(C)(E

3a
E8

). Now the
computations in PSL3(C) done above in the case of E6(C) immediately show

CE8(C)(E
4a
E8

) = E3a
E8

× GL2(C), Z(CE8(C)(E
4a
E8

)) = E3a
E8

× T1,

CE8(C)(E
4b
E8

) = E3a
E8

× (T2 : 3), Z(CE8(C)(E
4b
E8

)) = E4b
E8

,

CE8(C)(E
5a
E8

) = E3a
E8

× T2, Z(CE8(C)(E
5a
E8

)) = E3a
E8

× T2,

CE8(C)(E
5b
E8

) = E5b
E8

, Z(CE8(C)(E
5b
E8

)) = E5b
E8

,

In particular 3Z(CE8(C)(E
4a
E8

)) = E4a
E8

and 3Z(CE8(C)(E
5a
E8

)) = E5a
E8

.

We now turn to the nontoral subgroups of 2E7(C) and the two remaining subgroups
E3b

E8
and E4c

E8
in E8(C).

(1.6.5) Setup. Consider the description of the root systems Φ(E7) ⊆ Φ(E8) from
[3, p. 264–270]. Let H denote a maximal torus of E8(C) and fix a realization uα of
Φ(E8) in E8(C) as in section 1.5. The subgroup generated by the root subgroups
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uα, α ∈ Φ(E7) is then isomorphic to 2E7(C) having as maximal torus the subgroup
generated by hαi

(t), 1 ≤ i ≤ 7, t ∈ C×. Thus we have an embedding 2E7(C) ⊆
E8(C) which is consistent with the embedding Φ(E7) ⊆ Φ(E8).

In particular define the element g1 = hα3(ω)hα1(ω
2) ∈ 2E7(C). By using [13, Table

VI] and [7, Table 6] we get that g1 belongs to the conjugacy class 3C[2E7(C)] ⊆
3B[E8(C)] and that the centralizers C2E7(C)(g1) and CE8(C)(g1) have types A5A2

and E6A2 respectively. The precise structure of these centralizers may be found
as follows. Since 2E7(C) and E8(C) are both simply connected, Lemma (1.1.3(2))
implies that both C2E7(C)(g1) and CE8(C)(g1) are connected. Setting

α′ = α1 + α2 + 2α3 + 3α4 + 2α5 + α6,

we see that {α5, α6, α7, α
′, α2} ∪ {α1, α3} is a basis of the root system of C2E7(C)(g1)

and that {α5, α8, α6, α7, α
′, α2}∪{α1, α3} is a basis of the root system of CE8(C)(g1).

Here the bases of the components of type A2, A5 and E6 have been ordered so that
the numbering is consistent with [3, p. 250–251,260–262]. From this we get explicit
homomorphisms SL6(C) × SL3(C) → 2E7(C) and 3E6(C) × SL3(C) → E8(C) onto
the centralizers C2E7(C)(g1) and CE8(C)(g1). The kernels of these maps are given
by 〈(ωI6, ω

2I3)〉 and 〈(z, ω2I3)〉 respectively, where z ∈ 3E6(C) denotes the central
element defined in section 1.3. Thus the centralizers are given by the central products
in the following diagram

SL6(C) ◦C3 SL3(C) ∼= C2E7(C)(g1) //

��

2E7(C)

��
3E6(C) ◦C3 SL3(C) ∼= CE8(C)(g1) // E8(C),

where the homomorphisms are defined from the identifications of root systems given
above. In particular we have a homomorphism Ψ : SL6(C) → 3E6(C).

We write elements in these central products as A·B with A ∈ SL6(C) or A ∈ 3E6(C)
and B ∈ SL3(C). Then ωA · B = A · ωB in SL6(C) ◦C3 SL3(C) ⊆ 2E7(C), and
zA · B = A · ωB in 3E6(C) ◦C3 SL3(C) ⊆ E8(C). Moreover, under the inclusion
2E7(C) ⊆ E8(C), the element A ·B in 2E7(C) corresponds to the element Ψ(A) ·B
in E8(C). With this notation we have g1 = ωI6 = ωI3 in 2E7(C) and g1 = z = ωI3

in E8(C). We also introduce the elements

g2 = (β ⊕ β) · β, g3 = (γ ⊕ γ) · γ2, g4 = ωI3 ⊕ ω2I3

in 2E7(C) ⊆ E8(C). Since g1, g2, g3 and g4 all have order 3 and are pairwise
commuting, we see that the groups E3 = 〈g1, g2, g3〉 and E4 = 〈g1, g2, g3, g4〉 are
elementary abelian 3-groups of rank 3 and 4 respectively.

(1.6.6) Lemma. We have

C2E7(C)(E
3) ∼= E3 × SL2(C), C2E7(C)(E

4) ∼= E3 × T1, Z(C2E7(C)(E
4)) = E4
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and moreover WE8(C)(E
3) 6= GL3(F3).

(1.6.7) Proof : Since C2E7(C)(g1) = SL6(C) ◦C3 SL3(C) we get

C2E7(C)(g1, g2) =
〈
g3, CSL6(C)(β ⊕ β) ◦C3 T2

〉
,

C2E7(C)(g1, g2, g3) =
〈
g2, g3, CSL6(C)(β ⊕ β, γ ⊕ γ) ◦C3 〈ωI3〉

〉
.

Then CSL6(C)(β ⊕ β, γ ⊕ γ) = ∆2,3({A ∈ GL2(C)|(detA)3 = 1}) is generated by
∆2,3(ω

2I2) and ∆2,3(SL2(C)). From this we get

C2E7(C)(E
3) = 〈g1, g2, g3, ∆2,3(SL2(C))〉 ∼= E3 × SL2(C).

Under this isomorphism g4 corresponds to the element diag(ω, ω2) ∈ SL2(C) and
thus we get C2E7(C)(E

4) ∼= E3 × T1. As g4 corresponds to the element ω ∈ T1 we
conclude 3Z(C2E7(C)(E

4)) = E4.

To prove the last statement recall that CE8(C)(g1) = 3E6(C) ◦C3 SL3(C) and that we
have g2 = Ψ(β ⊕ β) · β and g3 = Ψ(γ ⊕ γ) · γ2 in E8(C). Thus we get

CE8(C)(g1, g2) =
〈
g3, C3E6(C)(Ψ(β ⊕ β)) ◦C3 T2

〉
.

Note that no element in T2 conjugates γ2 into an element of the form ωkγ. Thus g3

is not conjugate to g−1
3 in CE8(C)(g1, g2). Hence diag(1, 1,−1) 6∈ WE8(C)(E

3) and we
are done. 2

(1.6.8) Proposition. The elementary abelian 3-groups E3 and E4 are nontoral
in 2E7(C) and E8(C). In particular E3 is conjugate to E3

2E7
and E4 is conjugate to

E4
2E7

in 2E7(C). In E8(C) the group E3 is conjugate to E3b
E8

and E4 is conjugate to
E4c

E8
. Moreover we have

C2E7(C)(E
3
2E7

) = E3
2E7

× SL2(C), Z(C2E7(C)(E
3
2E7

)) = E3
2E7

× 2,

C2E7(C)(E
4
2E7

) = E3
2E7

× T1, Z(C2E7(C)(E
4
2E7

)) = E3
2E7

× T1,

CE8(C)(E
4c
E8

) = E4c
E8

◦C3 SL3(C), Z(CE8(C)(E
4c
E8

)) = E4c
E8

.

In particular 3Z(C2E7(C)(E)) = E for E = E3
2E7

and E4
2E7

.

(1.6.9) Proof : Note first that if E ⊆ G is a toral subgroup, then CG(E) contains
a maximal torus of G. From this we see that E3 is nontoral in 2E7(C) since the rank
of the centralizer C2E7(C)(E

3) is less than 7 by Lemma (1.6.6). As E4 contains E3

we see that E4 is also nontoral in 2E7(C). From Theorem (1.4.3) we then get that
E3 is conjugate to E3

2E7
and E4 is conjugate to E4

2E7
in 2E7(C). We also see that

the Weyl groups W2E7(C)(E
3) and W2E7(C)(E

4) have orders divisible by 13. Since
W2E7(C)(E) ⊆ WE8(C)(E) for any elementary abelian group E ⊆ 2E7(C) we conclude
in particular that the Weyl groups of E3 and E4 in E8(C) also have orders divisible
by 13. Since the Weyl group of E8(C) has order 214 · 35 · 52 · 7 which is not divisible
by 13, it follows from Lemma (1.1.3(4)) that E3 and E4 are nontoral in E8(C).
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From the above and Theorem (1.4.3) we see that the class distributions of E3 and
E4 are 3C26 and 3B23C78 respectively in 2E7(C). Now using [7, Table 6] we see
that we have the inclusions

3B[2E7(C)] ⊆ 3B[E8(C)], 3C[2E7(C)] ⊆ 3B[E8(C)]

of conjugacy classes corresponding to the inclusion 2E7(C) ⊆ E8(C). Therefore the
class distributions of E3 and E4 in E8(C) are 3B26 and 3B80 respectively. Since E3

and E4 are nontoral in E8(C), Theorem (1.5.4) shows that E3 is conjugate to E3b
E8

and E4 is conjugate to E4c
E8

in E8(C).

The assertions about the structure of C2E7(C)(E), Z(C2E7(C)(E)) and 3Z(C2E7(C)(E))
for E = E3

2E7
and E4

2E7
follows directly from Lemma (1.6.6) using what we proved

above.

Finally consider the inclusion SL3(C)◦C3 3E6(C) ⊆ E8(C) from above. In particular
we may consider the subgroups of 3E6(C) as subgroups of E8(C). Since the Weyl
group of E3

3E6
in 3E6(C) has order divisible by 13 by Theorem (1.3.5), we see as

above that E3
3E6

is nontoral in E8(C). Hence E4
3E6

is also nontoral in E8(C). Using
the informations about the inclusions of conjugacy classes given above and the ones
given in (1.4.2) we see that E4

3E6
has class distribution 3B80 in E8(C). Thus

Theorem (1.5.4) shows that E4
3E6

is conjugate to E4c
E8

in E8(C).

Now since E4
3E6

contains the element g1 = z we get

CE8(C)(E
4
3E6

) = CCE8(C)(g1)(E
4
3E6

) = CSL3(C)◦C3
3E6(C)(E

4
3E6

)

= SL3(C) ◦C3 C3E6(C)(E
4
3E6

) = SL3(C) ◦C3 E4
3E6

,

using the computation above of C3E6(C)(E
4
3E6

). From this we get

Z(CE8(C)(E
4
3E6

)) = C3 ◦C3 E4
3E6

= E4
3E6

.

Since E4c
E8

is conjugate to E4
3E6

in E8(C) the results on E4c
E8

now follow immediately.
2

(1.6.10) Corollary. The Weyl groups of the elementary abelian 3-subgroups
E3

3E6
, E4

3E6
⊆ 3E6(C), E3b

E6
, E4a

E6
⊆ E6(C), E3

2E7
, E4

2E7
⊆ 2E7(C) and E3b

E8
, E4c

E8
⊆

E8(C) equal the lower bounds given earlier, i.e. we have

W (E3
3E6

) = W (E3b
E6

) = W (E3
2E7

) = W (E3b
E8

) = SL3(F3),

W (E4
3E6

) =




1 ∗ ∗ ∗
0
0
0

SL3(F3)


 , W (E4a

E6
) =




GL2(F3)
∗
∗

∗
∗

0 0 det ∗
0 0 0 det


 ,

W (E4
2E7

) = W (E4c
E8

) =




ε ∗ ∗ ∗
0
0
0

SL3(F3)


 .
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(1.6.11) Proof : By Theorem (1.5.4) we know that W (E3b
E8

) contains SL3(F3) and
by Proposition (1.6.8) and Lemma (1.6.6) we have W (E3b

E8
) 6= GL3(F3). Thus we

conclude that W (E3b
E8

) = SL3(F3). Note that by Theorem (1.5.4) W (E4c
E8

) contains
the group

W ′ =




ε ∗ ∗ ∗
0
0
0

SL3(F3)


 ,

whose only minimal overgroup in GL4(F3) equals




ε ∗ ∗ ∗
0
0
0

GL3(F3)


 .

However, since E3b
E8

= 〈x1, y1, x3〉 and E4c
E8

= 〈x2, x1, y1, x3〉, W (E4c
E8

) cannot con-
tain this group as this would imply that W (E3b

E8
) = GL3(F3). We conclude that

W (E4c
E8

) = W ′ as claimed.

Using the inclusion 2E7(C) ⊆ E8(C) and Proposition (1.6.8) we get

W2E7(C)(E
3
2E7

) ⊆ WE8(C)(E
3b
E8

), W2E7(C)(E
4
2E7

) ⊆ WE8(C)(E
4c
E8

).

Combining this and Theorem (1.4.3) with the results just proved for E3b
E8

and E4c
E8

we conclude that W (E3
2E7

) = SL3(F3) and W (E4
2E7

) = W ′.

In the proof of Proposition (1.6.8) we saw that E4
3E6

is conjugate to E4c
E8

in E8(C)
under the inclusion 3E6(C) ⊆ E8(C) from above. Similarly we obtain that E3

3E6
is

conjugate to E3b
E8

in E8(C). In particular we have W (E3
3E6

) = SL3(F3) by Theo-
rem (1.3.5), and W (E4

3E6
) ⊆ W ′. Since z is central in 3E6(C) we also have

W (E4
3E6

) ⊆




1 ∗ ∗ ∗
0
0
0

GL3(F3)


 ,

and combining this with W (E4
3E6

) ⊆ W ′ and the lower bound from Theorem (1.3.5),
it follows that

W (E4
3E6

) =




1 ∗ ∗ ∗
0
0
0

SL3(F3)


 .

Thus we get W (E3b
E6

) = SL3(F3) since E4
3E6

= 〈z, a, x2, y2〉 and E3b
E6

= 〈a, x2, y2〉.
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Finally consider the group E4a
E6

= 〈a, y2, y1, x2〉 which contains the groups E2a
E6

=
〈y1, x2〉 and E3b

E6
= 〈a, x2, y2〉. From Theorem (1.3.11) we know that W (E4a

E6
) con-

tains the group

W ′(E4a
E6

) =




GL2(F3)
∗
∗

∗
∗

0 0 det ∗
0 0 0 det


 .

Using our computer program we obtain that it has the following 3 minimal over-
groups in GL4(F3):




GL2(F3)
∗
∗

∗
∗

0 0 det ∗
0 0 0 ε


 ,




GL2(F3)
∗
∗

∗
∗

0 0 ε ∗
0 0 0 det


 ,




GL2(F3)
∗
∗

∗
∗

0 0 ε ∗
0 0 0 ε


 .

Thus if W (E4a
E6

) 6= W ′(E4a
E6

) then W (E4a
E6

) would have to contain one of the diagonal
matrices diag(1, 1, 1,−1), diag(1, 1,−1, 1) or diag(1, 1,−1,−1). However the first
two of these fix the subgroup E2a

E6
and induce the automorphisms diag(1,−1) and

diag(−1, 1) on E2a
E6

. Since W (E2a
E6

) = SL2(F3) we conclude that diag(1, 1, 1,−1) and
diag(1, 1,−1, 1) does not belong to W (E4a

E6
). The element diag(1, 1,−1,−1) fixes the

subgroup E3b
E6

and induces the automorphism diag(1,−1, 1) on E3b
E6

. Since W (E3b
E6

) =
SL3(F3) we conclude that diag(1, 1,−1,−1) 6∈ W (E4a

E6
) and thus W (E4a

E6
) = W ′(E4a

E6
)

as was to be proved. 2
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1.7 Corrections and misprints

In this section we have gathered some corrections to the papers [7], [8] and [13].

(1.7.1) Remark. There are some minor misprints in [7]. On p. 374, the term 30t7

should be replaced by 39t7 in the power series expansion of the generating function
for the number of elements of order a divisor of i.

In table 4, p. 375–376, the following corrections should be made: For the class 6J
the power maps should be [B, C] and for the class 6L it should be [A, C]. The
representative of the class 7G should be replaced by (2, 4, 0, 0, 0, 0, 2, 0).

In table 6, p. 384–385, the following corrections should be made: The centralizers
types of the classes 3A, 3E, 5E and 6Q should be A6T1, D6T1, A3A2A1T1 and
A3A1A1A1T1 respectively. The power maps for the class 6V should be [A, D].

(1.7.2) Remark. There are some minor misprints in [8]. On p. 108 the formula
defining the multiplication on K (the second formula) should read

〈x × y, z〉 = 6 〈x, y, z〉 .

On the bottom of p. 109, the formula for the action of n1 should read

h(α, β, γ, δ, ε, ζ)n1 = h(α, β, γ, (γδ)−1, ε, ζ).

On p. 110, line 5, the element n1n7 should be replaced by n1n7h(−1,−1, 1,−1, 1, 1),
since n1n7 is not an element of F = F4(C). In the third displayed formula on p. 110
giving the generating function for the number of conjugacy classes of elements of
finite order in F , the first term 1 should be removed. In the next formula the extra
factor (1 − xt) should be inserted in denominator.

In table 2, p. 111–112, the following corrections should be made: The representative
of the class 4H should be (1, 1, 1, 0, 2, 3). The g-multiplicity for the class 5D should
be 20, 13, 16, 16, 13. The representative of the class 6C should be (1, 0, 1, 0, 4, 3).
The centralizer type of the class 6R should be A2A2T2. The representative of the
class 7A should be (1, 5, 1, 0, 1, 6). The centralizer type of the class 7E should be
A3A1T2. The representatives of the classes 7Q and 7R should be (3, 1, 6, 1, 3, 4) and
(1, 1, 2, 1, 4, 5).

Finally, on p. 149, the reference for [5] should be J. Algebra 131 (1990) 23–39.

(1.7.3) Remark. There are some errors and misprints in [13]. We consider as
above the case of the ground field C.

The group 2E7(C) for p = 3 is considered in Table II, p. 259 and in Theorem
(11.16), p. 296. Here the centralizer of the rank 3 subgroup should have the shape
33 × SL2(C). Since the Weyl group of the rank 3 group is SL3(F3) the shape of its
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normalizer is wrong as well. The claims about the normalizers of both the rank
3 and the rank 4 groups mapping onto AGL3(F3) also seem inconsistent with our
Weyl group computations, although we do not know the exact structure of the
normalizers. Finally, in the table it is stated that the factor 2 in the normalizers
splits, but in the theorem and its proof it is claimed not to split.

The group E8(C) for p = 3 is considered in Table II, p. 259 and in Lemma (11.5), p.
289–290. The information for the maximal elementary abelian 3-subgroup of type
1 should be as follows. The centralizer should be 33 × T2 (this is given wrongly
in the table) and the Weyl group should have the shape 33 : GL(3, 3) × Σ3. Thus
the stated structure of the normalizer is wrong. Furthermore for the type 1 group
there is a unique subgroup of order 3 which is normal in N(E), namely E00 = 〈x2〉.
However we have E0 ∩ T2 =

〈
x2, x3a−1

〉
, so E00 6= E0 ∩ T2 contrary to the claim

on p. 290. For the group of type 2 group, the statement about the centralizer
types of the rank 2 subgroups of E0 = 〈x1, y1, x2, y2〉 is wrong since not every such
subgroup has a centralizer of type T4D4. For example the centralizer type of the
group 〈x1, x2〉 is seen to be A2

4 (this also follows by the information given about the
rank 2 subgroups in the type 1 case).

In Proposition (2.13)(vi), p. 265, the condition “H is semisimple” should be cor-
rected to “H is simply connected”. The numbering in the proof is not correct, there
is never a reference to (iv), but there are two references to (vii). Moreover the
references [BoLAG] and [St2] does not occur in the bibliography.

On the bottom of p. 265 and in Table VI, p. 266, the centralizer type of an element
in the class 3E[2E7(C)] should be D6T1.

In Table VI, p. 266, the eigenvalue multiplicities for the classes in 2E7(K) should
be as follows. For 3C it should be 43, 45, 45, for 3E it should be 67, 33, 33, for 4A

it should be 63, 0, 70, 0, for 4B it should be 39, 32, 30, 32 and for 4I it should be
39, 32, 30, 32.

On p. 268, line 10, 3E(K) should be corrected to 3E6(K), and on line 12 from the
bottom the word “subgroups” should be replaced by “2-subgroups”.

The statement of Theorem (11.14), p. 294, is somewhat misleading since the groups
occurring in part (ii) are not maximal.

On p. 295, line 17, Σ3 should be replaced by the dihedral group Dih12. On line 16
from the bottom, the minimum weight of the tetracode should be 3, and on line 5
from the bottom the equation should read 3C ∩ E = Z(E)v ∪ Z(E)v−1.

In remark (13.2), p. 298 the Weyl group of F3 should be SL3(F3) and not GL3(F3).

Finally, in remark (A2.6), p. 303, the reference [Gr7] does not occur in the bibliog-
raphy.
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Chapter 2

Fusion, Solvability and Swan’s

theorem

2.1 Introduction

The purpose of this note is to discuss the relations between various notions of solv-
ability of finite groups and control of fusion. More precisely, we prove the following
result.

(2.1.1) Theorem. Let G be a finite group, p a prime number and P a Sylow
p-subgroup of G.

(1) If G is p-supersolvable then NG(P ) controls p-fusion strongly in G.

(2) If G is p-solvable and P controls p-fusion weakly in G then G is p-supersolvable.

(3) If NG(P ) controls p-fusion weakly in G then NG(P ) controls p-fusion strongly
in G.

We also give a counterexample to the original version of Swan’s theorem [16; 17]
on the cohomology of p-normal groups. The results of this note represent work
in progress, and we hope to return later to some of the questions that we leave
open. It should also be mentioned that work of Stammbach [14] gives cohomological
characterizations of solvable and supersolvable groups and it would be interesting
to find relations between this and the present work.

I would like to thank Antonio Viruel for showing me another way to prove part (1).
I am also happy to thank Jesper Grodal for pointing out the reference [5], which
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led me to prove part (3), and for many stimulating conversations. In particular,
Theorem (2.2.22) (which is the key to proving part (2)) is really joint work.1

Finally it should be added that the theorem is inspired by numerous calculations
using the computer algebra system MAGMA [2].

1I would also like to thank Radu Stancu, who after the approval of my thesis showed that it is
possible to remove a superfluous condition in Theorem (2.2.22).
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2.2 Solvability and fusion

In the following all groups are finite and p denotes a prime. We start by recalling
the definitions of p-nilpotence, p-solvability, p-supersolvability and control of p-fusion
and p-transfer.

(2.2.1) Definition. A series of G is a series of subgroups 1 = G0�G1� . . .�Gs =
G. The quotients Gi/Gi−1, 1 ≤ i ≤ s, are called the factors of the series. The series
is called proper if Gi−1 � Gi for 1 ≤ i ≤ s, i.e. if the factors all are nontrivial. A
factor Gi/Gi−1, 1 ≤ i ≤ s, is called central if Gi−1�G and Gi/Gi−1 ≤ Z(G/Gi−1). A
proper series without proper refinements is called a composition series. Equivalently
the factors should be simple groups. The factors are called the composition factors.
A series 1 = G0 �G1 � . . .�Gs = G satisfying Gi �G, 0 ≤ i ≤ s, is called a normal
series of G. A proper normal series having no normal series as a proper refinement,
is called a chief series. The factors are called the chief factors.

(2.2.2) Remark. The chief factors are characteristically simple groups (see [12,
7.38]). By [7, Theorem 2.1.4], [8, Satz I.9.12] or [12, Theorem 8.10] a group is
characteristically simple if and only if it is a direct product H r of finitely many
copies of a single simple group H.

(2.2.3) Definition. A group G is called p-nilpotent if G has a normal p-comple-
ment, i.e. a normal subgroup K such that KP = G and K ∩ P = 1 for a Sylow
p-subgroup P of G. Equivalently every chief factor of G of order divisible by p should
be central ([8, Satz IV.4.4] or [12, Exercise 563]). A group is called p-supersolvable
if its chief factors are either cyclic of order p or p′-groups. Finally a group G is
called p-solvable if G has a series where all factors are either p-groups or p′-groups.
Equivalently the composition factors of G are either p-groups or p′-groups. This
is again equivalent to demanding that the chief factors of G are either p-groups or
p′-groups.

(2.2.4) Remark. A group is nilpotent if and only if it is p-nilpotent for all primes
p. Similarly G is solvable if and only if G is p-solvable for all primes p, and G is
supersolvable if and only if G is p-supersolvable for all primes p. We also have the
implications

G p-nilpotent =⇒ G p-supersolvable =⇒ G p-solvable.

These implications can not be reversed. The group Σ3 is supersolvable but not
3-nilpotent, and the group A4 is solvable but not 2-supersolvable.

We next turn to the definitions of control of p-fusion in a group.

(2.2.5) Definition (Fusion). A subgroup H ≤ G is said to control p-fusion
weakly in G if H contains a Sylow p-subgroup of G and whenever Q, Qg ≤ H for
some p-subgroup Q and some g ∈ G we may write g = nh with n ∈ NG(Q) and
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h ∈ H. The subgroup H ≤ G is said to control p-fusion strongly in G if H contains
a Sylow p-subgroup of G and whenever Q, Qg ≤ H for some p-subgroup Q and some
g ∈ G we may write g = ch with n ∈ CG(Q) and h ∈ H.

(2.2.6) Remark. Obviously, if H controls p-fusion strongly in G, then H controls
p-fusion weakly in G. Furthermore if H ≤ K ≤ G and H controls p-fusion weakly
or strongly respectively in G, then K also controls p-fusion weakly or strongly re-
spectively in G.

Our interest in control of fusion stems from the following result which relates it to
group cohomology. Here, for an abelian group M , we denote by M(p) its p-primary
submodule, i.e. the submodule consisting of the elements of p-power order.

(2.2.7) Theorem. Let G be a finite group, H a subgroup of G and p a prime
number. Then the following conditions are equivalent.

(1) H controls p-fusion strongly in G.

(2) The restriction map H∗(G, A)(p) −→ H∗(H, A)(p) is an isomorphism for any
trivial Z[G]-module A.

(3) The restriction map H∗(G, Fp) −→ H∗(H, Fp) is an isomorphism.

(2.2.8) Proof : The implication (1) =⇒ (2) is well known ([10, Proposition 2.1],
[9, Theorem 12.8]) and goes back to [16]. The implication (2) =⇒ (3) is obvious
and (3) =⇒ (1) is due to Mislin [11]. 2

Denote by Op(G) the smallest normal subgroup K of G, such that G/K is a p-group.
The following result is due to Tate.

(2.2.9) Theorem (Transfer). Let H be a subgroup of G containing a Sylow
p-subgroup P of G. Then the following conditions are equivalent:

(1) G/Op(G) ∼= H/Op(H)

(2) |G/Op(G)| = |H/Op(H)|

(3) H ∩ Op(G) = Op(H)

(4) G/(Op(G)G′) ∼= H/(Op(H)H ′)

(5) |G/(Op(G)G′)| = |H/(Op(H)H ′)|

(6) H ∩ Op(G)G′ = Op(H)H ′

(7) P ∩ G′ = P ∩ H ′

(8) PG′/G′ ∼= PH ′/H ′
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(2.2.10) Proof : See [9, Lemma X.6.15 and Theorem X.6.18]. 2

(2.2.11) Remark. In case the conditions are satisfied we say that H controls p-
transfer in G. By condition (7) we see that if H ≤ K ≤ G and H controls p-transfer
in G then K also controls p-transfer in G. Note also that by the Focal Subgroup
Theorem ([9, X.6.2] and [12, 10.34]) the subgroup P ∩G′ occurring in (7) is the focal
subgroup of P in G.

(2.2.12) Proposition. Let H be a subgroup of G containing a Sylow p-subgroup
P of G. If H controls p-fusion strongly in G then H controls p-transfer in G.

(2.2.13) Proof : See [9, Lemma X.9.2]. A cohomological proof runs as follows.
Since H controls p-fusion strongly in G we have H2(G, Z)(p)

∼= H2(H, Z)(p). How-
ever for any group K we have H2(K, Z)(p) = H1(K, Z)(p)

∼= K/(Op(K)K ′) and we
conclude that condition (4) is satisfied. 2

(2.2.14) Definition. Let G be a finite group, p a prime number and P a Sylow
p-subgroup of G. Then a p-subgroup Q of P is said to be weakly closed in P with
respect to G if Qg ≤ P implies Qg = Q, i.e. if Q is the only conjugate of Q contained
in P . The group G is called p-normal if Z(P ) is weakly closed in P with respect to
G.

(2.2.15) Theorem. Let G be a finite group, p a prime number and P a Sylow
p-subgroup of G. Then NG(P ) controls p-fusion strongly in G if and only if P has a
central series consisting of subgroups which are weakly closed in P with respect to
G.

(2.2.16) Proof : This is a special case of the main result in [5] translated to our
notation (the definition of strong control of fusion in [5] differs slightly from ours).
2

(2.2.17) Remark. This theorem generalizes work of Thevénaz [20], whose main
theorem states that if P has a strongly characteristic central series 1 = P0 � P1 �

. . . � Ps = P , then NG(P ) controls p-fusion strongly in G. Actually the original
inductive proof in [20] fails, but if one in addition assumes that Pi/Pj is strongly
characteristic in P/Pj for 1 ≤ j ≤ i ≤ s, then the inductive argument does go
through [19]. However, as already mentioned, due to Theorem (2.2.15) one does not
need this stronger hypothesis.

(2.2.18) Lemma. Let G be a finite group, p a prime number and P a Sylow
p-subgroup of G. If G is p-nilpotent then P controls p-fusion strongly in G.

(2.2.19) Proof : We first give a group theoretical proof, similar to [8, proof of
Satz IV.4.9]. Let K � G be a normal p-complement of P , and suppose Q, Qg ≤ P .
We can then write g = kp where k ∈ K and p ∈ P . For x ∈ Q we have xk =
(xg)p−1 ≤ (Qg)p−1 ≤ P p−1

= P so x−1xk ∈ P . On the other hand we also have
x−1xk = (x−1k−1x)k ∈ K since K � G. So x−1xk ∈ P ∩ K = 1 for any x ∈ Q,
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which proves k ∈ CG(Q). Since g = kp we get that P controls p-fusion strongly in
G. A cohomological proof runs as follows. Let ι : P → G be the inclusion and let
π : G → G/K ∼= P be the projection. Consider the diagram

H∗(P, Fp)
π∗

// H∗(G, Fp)
ι∗ // H∗(P, Fp)

corG
P // H∗(G, Fp)

where corG
P is the corestriction. Since the composition of the first two is the identity

and the composition of the last two is multiplication by [G : P ] which is prime to
p, we see that ι∗ is an isomorphism. Thus P controls p-fusion strongly in G by
Theorem (2.2.7). 2

(2.2.20) Lemma. Let G be a finite group, p a prime number and P a Sylow
p-subgroup of G. If G has a normal p-nilpotent subgroup of index prime to p, then
NG(P ) controls p-fusion strongly in G.

(2.2.21) Proof : Let K � G be a p-nilpotent subgroup of index prime to p. Then
P ≤ K and by the Frattini argument [8, Satz I.7.8] we have G = KNG(P ). Assume
now that Q, Qg ≤ P , and write g = kn with k ∈ K and n ∈ NG(P ). Then
Qk = Qgn−1 ≤ P n−1

= P . By Lemma (2.2.18) P controls p-fusion strongly in K, so
we may write k = cp with c ∈ CK(Q) and p ∈ P . Thus g = cpn with c ∈ CK(Q) and
pn ∈ NG(P ) proving that NG(P ) controls p-fusion strongly in G. A cohomological
proof runs as follows. As before we have P ≤ K and G = KNG(P ) by the Frattini
argument. From the Lyndon-Hochschild-Serre spectral sequence [4] we get that
the restriction H∗(G, Fp) −→ H∗(K, Fp)

NG(P ) is an isomorphism since K has index
prime to p. By Lemma (2.2.18) and Theorem (2.2.7) the restriction H∗(K, Fp) −→
H∗(P, Fp) is also an isomorphism. Finally H∗(NG(P ), Fp) −→ H∗(P, Fp)

NG(P ) is an
isomorphism, so the commutative diagram

H∗(G, Fp)
∼= //

��

H∗(K, Fp)
NG(P )

∼=
��

H∗(NG(P ), Fp)
∼= // H∗(P, Fp)

NG(P )

shows that H∗(G, Fp) −→ H∗(NG(P ), Fp) is an isomorphism, and we conclude that
NG(P ) controls p-fusion strongly in G by Theorem (2.2.7). 2

(2.2.22) Theorem. Let G be a finite group, p a prime number and K�G a normal
subgroup. Assume that H ≤ G controls p-fusion weakly or strongly respectively in
G. If K is p-solvable, then HK/K controls p-fusion weakly or strongly respectively
in G/K. 2

(2.2.23) Proof : We start by considering the case where K is either a p-group or
a p′-group. Note that we may assume K ≤ H. Let P be a Sylow p-subgroup of G

2Actually, the condition that K is p-solvable may be removed, as has been shown to us by Stancu
[15]. The proof will appear elsewhere. This renders Remark (2.2.24) below obsolete, however I
have chosen to retain it in order to keep this version of my thesis as close to the original as possible.
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contained in H. Then PK/K is a Sylow p-subgroup of G/K contained in H/K.
Let R, Rg ≤ PK/K be conjugate in G/K. We may then find Q1, Q2 ≤ P such that
R = Q1K/K and Rg = Q2K/K, i.e. we have Qg

1K = Q2K.

If K is a p′-group, then both Qg
1 and Q2 are Sylow p-subgroups of Qg

1K = Q2K. We
can thus find k ∈ K, such that (Qg

1)
k = Q2. In the case where K is a p-group we

have K ≤ P since K is normal. We thus conclude that Qg
1 ≤ Qg

1K = Q2K ≤ P .

Thus setting k = 1 ∈ K in the last case, we see that we have Q1, Q
gk
1 ≤ P in

both cases. We may then write gk = xh where h ∈ H and x ∈ NG(Q1) if H
controls p-fusion weakly in G or x ∈ CG(Q1) if H controls p-fusion strongly in G.
As R = Q1K/K we see that x ∈ NG/K(R) or x ∈ CG/K(R) respectively. Since

g = xh we conclude that H/K controls p-fusion weakly or strongly respectively in
G/K.

The special case where K is a p′-group and we want to prove that H/K controls
p-fusion strongly in G/K may also be handled directly by cohomological means.
Consider the diagram

H∗(G, Fp)
∼= // H∗(H, Fp)

H∗(G/K, Fp) //

∼=

OO

H∗(H/K, Fp)

∼=

OO

where the vertical maps are isomorphisms by the Lyndon-Hochschild-Serre spectral
sequence since K is a p′-group. Thus the restriction H∗(G/K, Fp) −→ H∗(H/K, Fp)
is an isomorphism and by Theorem (2.2.7) we conclude that H/K controls p-fusion
strongly in G/K.

We now consider the general case, i.e. the case where K is p-solvable. Then the
upper p-series of K,

1 = K0 � K1 = Op(K) � K2 = Op,p′(K) � . . . � Kn = K

terminates by [7, Theorem 6.3.1]. By construction the subgroups Ki are characteris-
tic in K, and since K is normal in G we have Ki �G. Since the factors Ki/Ki−1 are
either p-groups or p′-groups, the general case follows by induction from the special
case considered above. 2

(2.2.24) Remark. We do not know if the assumption that K is p-solvable can be
removed. Assume that G is a minimal counterexample, i.e. that the theorem does
not hold for the group G and that the order of G is chosen minimal with respect to
this property. Choose K � G and H ≤ G such that H controls p-fusion weakly or
strongly respectively in G, but HK/K does not control p-fusion weakly or strongly
respectively in G/K. Now the Fitting subgroup F (K) is a nilpotent characteristic
subgroup of K [8, §III.4]. In particular F (K) is p-solvable, so since G is a minimal
counterexample we conclude that F (K) = 1 by the theorem.
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Now consider the generalized Fitting subgroup F ∗(K), cf. [9, §X.13]. Then F ∗(K) is
quasinilpotent by [9, Theorem 13.10] and thus Z∞(K) = F (K) = 1 by [9, Corollary
13.7]. By [9, Theorem 13.6] we then conclude that F ∗(K) is semisimple, i.e. the
direct product of nonabelian simple groups. Writing F ∗(K) = Se1

1 × . . .×Sen
n where

the groups Si are isomorphic nonabelian simple groups, we see that the subgroup
Se1

1 is characteristic in F ∗(K). Since F ∗(K) is characteristic in K and K � G we
conclude that Se1

1 � G. Thus to prove the theorem without the assumption of p-
solvability, it suffices to consider the case where K is a direct product of isomorphic
nonabelian simple groups.

Our main result Theorem (2.1.1) is contained in the following.

(2.2.25) Theorem. Let G be a finite group, p a prime and P a Sylow p-subgroup
of G. Consider the following properties:

(1) G is p-nilpotent.

(2) P controls p-fusion strongly in G.

(3) P controls p-fusion weakly in G.

(4) NG(P ) controls p-fusion strongly in G.

(5) NG(P ) controls p-fusion weakly in G.

(6) G is p-normal.

(7) NG(Z(P )) controls p-fusion strongly in G.

(8) NG(Z(P )) controls p-fusion weakly in G.

(9) G is p-supersolvable.

(10) G is p-solvable.

(11) P controls p-transfer in G.

(12) NG(P ) controls p-transfer in G.

(13) NG(Z(P )) controls p-transfer in G.

Then we have the following implications:

(1) ⇔ (2) ⇔ (11) +3

��

(3)

��
(9) +3

��

(4) ⇔ (5) +3

��

(12)

��
(10) (6) ⇔ (7) ⇔ (8) +3 (13)

(3) + (10) +3 (9)
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(2.2.26) Proof : Most of the implications are trivial. By Remark (2.2.6) we get
(2) =⇒ (3), (4) =⇒ (5) and (7) =⇒ (8). Since Z(P ) is a characteristic subgroup
of P , we get P ≤ NG(P ) ≤ NG(Z(P )). Thus by Remark (2.2.6) we also have
(3) =⇒ (5) =⇒ (8) and similarly (12) =⇒ (13) by Remark (2.2.11).

Proposition (2.2.12) shows (2) =⇒ (11), (4) =⇒ (12) and (7) =⇒ (13). The impli-
cations (1) =⇒ (9) =⇒ (10) are obvious from the definitions, cf. Remark (2.2.4).

The implication (6) =⇒ (7) is proved in [9, proof of corollary X.12.9] and the
implication (8) =⇒ (6) follows directly from the definitions. Namely, assume that
(8) is satisfied, and let g ∈ G with Z(P )g ≤ P . We may then write g = nh with
n, h ∈ NG(Z(P )) so we get g ∈ NG(Z(P )) and thus Z(P )g = Z(P ) as desired.

Assume that P controls p-transfer in G. By Theorem (2.2.9) we have |G/Op(G)| =
|P |. In particular P has a normal p-complement Op(G), so G is p-nilpotent. This
argument, which is due to Tate [18], proves (11) =⇒ (1). The implication (1) =⇒ (2)
follows from Lemma (2.2.18).

We now prove have (9) =⇒ (4). Assume that G is p-supersolvable and let Gi/Gi−1

be a chief factor of G of order divisible by p. By definition, Gi/Gi−1 is then cyclic
of order p, and Aut(Gi/Gi−1) is cyclic of order p − 1. Since it is abelian of order
prime to p, both G′ and P acts trivially on Gi/Gi−1. Since this holds for all chief
factors, we see that PG′ is p-nilpotent by [8, Satz VI.5.4(b)]. Thus PG′ is a normal
p-nilpotent subgroup of G of index prime to p, and NG(P ) controls p-fusion strongly
in G by Lemma (2.2.20).

To prove (5) =⇒ (4), we note that by Theorem (2.2.15) P has a central series
consisting of subgroups which are weakly closed in P with respect to NG(P ), since
NG(P ) obviously controls p-fusion strongly in NG(P ). Now assume that Q ≤ P is
any subgroup which is weakly closed in P with respect to NG(P ), and that Qg ≤ P
for some g ∈ G. By assumption we may write g = nh, with n ∈ NG(Q) and
h ∈ NG(P ). Thus Qh = Qg ≤ P . Since Q is weakly closed in P with respect to
NG(P ) we then get Qh = Q. Thus Qg = Qh = Q and we conclude that Q is weakly
closed in P with respect to G. Thus the central series of P from above actually
consists of subgroups which are weakly closed in P with respect to G, so NG(P )
controls p-fusion strongly in G by Theorem (2.2.15).

Finally, we prove that (3) + (10) =⇒ (9). Let H/K be a chief factor of G of order
divisible by p. Then H/K is by assumption a p-group and we have to prove that
|H/K| = p. Assume to the contrary that |H/K| > p. Note that H/K �PK/K, and
since PK/K is a p-group we have H/K ∩ Z(PK/K) 6= 1 by [8, Satz I.6.9]. Thus
we may find R such that R � PK/K and 1 < R < H/K. Since P controls p-fusion
weakly in G it follows from Theorem (2.2.22) that PK/K controls p-fusion weakly
in G/K. Now let g ∈ G/K. Then we have Rg < (H/K)g = H/K ≤ PK/K. Thus
we may write g = n̄p̄ with n ∈ NG/K(R) and p ∈ PK/K. Thus since R�PK/K we
get Rg = Rn̄p̄ = Rp = R. Thus R � G/K, but since 1 < R < H/K this contradicts
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the fact that H/K is a chief factor of G. We conclude that |H/K| = p and we are
done. 2

(2.2.27) Remark. Let P be a p-group and let G be a finite group such that P is
a Sylow p-subgroup of G. If the restriction H∗(G, Fp) −→ H∗(P, Fp)

NG(P ) is an iso-
morphism for any such group G, then P is called a Swan group. By Theorem (2.2.7)
this condition is equivalent to NG(P ) controlling p-fusion strongly in G for any such
group G. It is well known that if P is abelian then P is a Swan group [16, Lemma 1].
This follows also from Theorem (2.2.25) since in this case G is obviously p-normal.
Since Z(P ) = P we then obtain condition (4).

If P is cyclic we obtain directly from the definition that P controls p-fusion weakly
in G, since P then contains at most one subgroup of a given order.

Finally, if P is a T.I. set (trivial intersection set), i.e. if P g = P or P g ∩ P = 1
for all g ∈ G, then we also get directly that NG(P ) controls p-fusion strongly in
G. In fact, if P is a T.I. set, then we have an even stronger cohomological result,
namely that the restriction map H∗(G, A)(p) −→ H∗(H, A)(p) is an isomorphism for
any Z[G]-module A [1, Corollary 3.6.19].

The following table gives all possible combinations of truth values allowed by The-
orem (2.2.25)). For each case we also list a group with given properties. In the

examples Σ̃5 denotes either of the two nonisomorphic double covers of Σ5 ([13]) and
G576 denotes the solvable group of order 576 with the presentation:

G576 =
〈
x1, x2, x3, x4, x5, x6, x7, x8|x2

1 = x2
4 = x2

5 = x2
6 = x2

7 = x8, x
3
2 = x3

3 = 1,

x2
8 = 1, xx1

3 = x2
3, x

x1
4 = x6x8, x

x2
7 = xx3

7 = x6, x
x2
4 = xx3

5 = x4x5x8, x
x3
4 = x5,

xx2
5 = x4, x

x4
5 = xx1

7 = x5x8, x
x1
5 = xx6

7 = x7x8, x
x1
6 = x4x8, x

x2
6 = xx3

6 = x6x7,

[x1, x2] = [x2, x3] = [x4, x6] = [x5, x6] = [x4, x7] = [x5, x7] = [x1, x8] =

[x2, x8] = [x3, x8] = [x4, x8] = [x5, x8] = [x6, x8] = [x7, x8] = 1〉 .

This group is an extension of C3 o C2 by the extraspecial 2-group 21+4
+ generated by

x4, x5, x6, x7 and x8. The center of G576 is the cyclic group of order 2 generated by
x8, and we let G288 = G576/Z(G576).

The group ASL denotes the affine special linear group, which also occur is [6] where
it is called the quadratic group Qd.
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(1), (2), (11) (3) (4), (5) (6), (7), (8) (9) (10) (12) (13) Groups
+ + + + + + + + G abelian
– + + + + + + + Σ3, p = 3
– + + + – – + + A5, p = 3, 5
– – + + + + + + C3 o C2, p = 3
– – + + – + + + A4, p = 2
– – + + – – + + A5, p = 2
– – – + – + + + G576, p = 2
– – – + – + – + GL2(F3), p = 2
– – – + – – + + A5 × G576, p = 2

– – – + – – – + Σ̃5, p = 2
– – – – – + + + G288, p = 2

ASL2(F3), p = 3
– – – – – + – + GL2(F3) × G288, p = 2
– – – – – + – – Σ4, p = 2
– – – – – – + + A5 × ASL2(F3), p = 3

– – – – – – – + Σ̃5 × G288, p = 2
– – – – – – – – Σ5, p = 2

(2.2.28) Remark. A finite group G is called a monomial group (or simply an M -
group) if every irreducible complex character of G is induced from a linear character
of a subgroup of G. Then every supersolvable group is an M -group and every M -
group is solvable [8, Satz V.18.5(a) and Satz V.18.6(b)]. However, there seems to
be no good notion of a p-monomial group. The obvious definition would require
that every irreducible complex character of G of degree divisible by p is induced
from a linear character of a subgroup of G. With this definition G is an M -group if
and only if G is p-monomial for all p, but it is not true that any p-monomial group
is p-solvable. To see this consider the group A5, whose irreducible characters have
degrees 1, 3, 3, 4 and 5 [3, §14D]. Since the character of degree 5 is induced from
any of the two nontrivial linear characters of the subgroup A4, we see that A5 is
5-monomial. However it is not 5-solvable since A5 is simple.

We end this section by mentioning a question inspired by Theorem (2.2.25) and the
table above.

(2.2.29) Question. Let G be a finite group, p a prime number, P a Sylow p-
subgroup and H a subgroup containing NG(P ). Is it then true that H controls
p-fusion strongly in G if H controls p-fusion weakly in G ? By Theorem (2.2.25)
this holds for H = NG(P ) and H = NG(Z(P )). We have checked that this is true
for all groups of order less than 384.
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2.3 Swan’s theorem

In this section we give a counterexample to the original version of Swan’s theorem
on the cohomology of p-normal group [16]. The theorem was later corrected [17]
due to a counterexample of Evens, however the example was never published. The
corrected version of the theorem is as follows:

(2.3.1) Theorem. Let G be p-normal and let P be a Sylow p-subgroup of G. If
A is a trivial Z[G]-module, then the restriction map

H∗(G, A)(p) → H∗(NG(Z(P )), A)(p)

is an isomorphism.

(2.3.2) Proof : Since G is p-normal, we know by Theorem (2.2.25) that NG(Z(P ))
controls p-fusion strongly in G. Thus the theorem follows by Theorem (2.2.7). 2

(2.3.3) Example. We now give an example showing that the original version of
Swan’s theorem which left out the condition of trivial coefficients, does not hold.
Let p = 2 and

G = D12 =
〈
σ, τ |σ6 = τ 2 = 1, στ = σ−1

〉

be the dihedral group of order 12. Then P = 〈σ3, τ〉 is a Sylow 2-subgroup, and
since P is abelian, G is 2-normal. Moreover NG(Z(P )) = P . Let C2 =< σ3 >,
C3 =< σ2 > and C6 =< σ > be the cyclic subgroups of the subgroup of rotations
in G. Let M be an arbitrary Z[G]-module. By [21, 7.3, p. 158] we then have

H∗(G, M)(2) = H∗(P, M)(2) +
1

2

[
H∗(C6, M)(2) − H∗(C2, M)(2)

]
.

The first term is the one predicted by Swan’s theorem. Therefore the original ver-
sion of Swan’s theorem does not hold if we can construct M with H∗(C2, M)(2) 6∼=
H∗(C6, M)(2).

Now C2 is normal in G and G/C2
∼= Σ3

∼= GL(2, F2) acts naturally on M = F2
2.

Using this, M gets the structure of a Z[G]-module. The action of σ and τ is up to
conjugation given by

σ 7→
(

0 1
1 1

)
, τ 7→

(
1 1
0 1

)
.

Using the Lyndon-Hochschild-Serre spectral sequence we get the isomorphism

H∗(C6, M) ∼= H∗(C6/C3, M
C3).

A direct computation shows that MC3 = 0, so H∗(C6, M) = 0. However the action
of C2 on M is trivial, so Hn(C2, M) = F2

2 for all n.

(2.3.4) Remark. As remarked above, by [1, Corollary 3.6.19] the restriction map

H∗(G, A)(p) → H∗(NG(P ), A)(p)

is an isomorphism for any Z[G]-module A if the Sylow p-subgroup P is a T.I. set. In
particular this happens if |P | = p, and thus we see that the order of a counterexample
has to be at least 22 · 3 = 12.
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[19] Jacques Thévenaz. Personal communication.
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Chapter 3

On the Poincaré series of

cohomology rings of finite groups

3.1 Introduction

Let G be a finite group and let p be a prime. By the Venkov-Evens theorem [13; 29],
the cohomology ring H∗(G, Fp) is a finitely generated Fp-algebra. If the degrees of
the generators are n1, . . . , ns then by the Hilbert-Serre theorem ([2, Theorem 2.1.1]
or [26, Theorem 4.1.1]), the Poincaré series PG(t) =

∑∞
n=0 dimFp

Hn(G, Fp)t
n is a

rational function of the form

PG(t) =
f(t)∏s

i=1(1 − tni)
(i)

where f(t) is a polynomial in t with integer coefficients. The purpose of this paper
is to discuss some of the properties of PG(t) and their relations to properties of the
cohomology ring H∗(G, Fp). Along the way we correct a formula for the Poincaré
series of wreath products given by Webb [31].
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3.2 Zeroes and poles of the Poincaré series

The series PG(t) reflects some of the properties of the cohomology ring H∗(G, Fp).
For example the order of the pole of PG(t) at t = 1 equals the Krull dimension of
H∗(G, Fp) by [2, Theorem 2.2.7] or [26, Theorem 5.3.3]. By Quillen’s theorem [23]
this also equals the p-rank of G (i.e. the rank of the largest elementary abelian
p-subgroup of G).

Concerning the other poles of PG(t) we have less information. Of course by (i) they
must be roots of unity as well. In [24, p. 367] it is claimed that if G is a 2-group
and p = 2 then all the poles are |G|’th roots of unity, but no proof is given. For odd
primes p, this result is not true. Consider the semidirect product of cyclic groups of
order pα and pβ:

G =
〈
x, y|xpα

= ypβ

= 1, x−1yx = y1+u
〉

, (ii)

where 1 + u satisfies (1 + u)pα − 1 = m · pβ for some m ∈ Z. Then if α, β ≥ 1 and
p - m we have

PG(t) =
1 + t

(1 − t)(1 − t2p)
(iii)

by [17]. Note that the condition is satisfied if α = 1, β = 2 and u = p, in which
case G = p1+2

− , the extraspecial group of order p3 and exponent p2. Unfortunately
no details of the computation are given in [17], however their result may be verified
by using [30] 1 which gives the additive structure of the integral cohomology ring
for any split metacyclic group. We will return to this example again later.

Lacking evidence to the contrary, we conjecture that for p = 2 the poles of PG(t)
are all |G|’th roots of unity and that for p odd they are 2|G|’th roots of unity.
By the Hilbert-Serre theorem such a result pertains to the degrees of the genera-
tors of the cohomology ring H∗(G, Fp) and thus potentially interesting for concrete
computations.

The location of the zeros of PG(t) is more mysterious. By the Hilbert-Serre theorem
they are algebraic numbers. In [24, p. 367] Rusin gives an example showing that
they need not be roots of unity, and asks whether they are always algebraic integers.
In Example (3.2.8) below we show that this is not the case. In general we have the
following result linking ring theoretic properties of H∗(G, Fp) to properties of PG(t).
The commutative algebra we will need may be found in [7] and [19].

(3.2.1) Theorem. Let G be a finite group, p a prime number, PG(t) the Poincaré
series of H∗(G, Fp) and d the Krull dimension of H∗(G, Fp). Consider the following
conditions:

(1) H∗(G, Fp) is a complete intersection.

1The summations in the formulas for f2nd1 and km in [30, p. 254] should start at j = 0 instead
of j = 1.
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(2) H∗(G, Fp) is Gorenstein.

(2′) H∗(G, Fp) is Cohen-Macaulay.

(3) The roots of PG(t) are roots of unity.

(4) PG(t) satisfies PG(1/t) = (−t)dPG(t).

(5) PG(t) satisfies PG(1/t) = (−1)dtρPG(t) for some ρ ∈ Z.

(6) The roots of PG(t) are algebraic integers.

We then have the implications:

(1) +3

!)K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

(2) ⇐⇒ (2′) +3 (4)

��
(3) +3 (5) +3 (6)

(3.2.2) Remark. In [15, p. 2079] the properties (4) and (5) are called strongly
quasi-Gorenstein and quasi-Gorenstein respectively.

(3.2.3) Proof : The implications (1) =⇒ (2) =⇒ (2′) are well known and are
proved in [7, Proposition 3.1.20] for strictly commutative rings, but the proof carries
over verbatim to graded commutative rings. The implication (4) =⇒ (5) is obvious,
and (2′) =⇒ (4) and (2′) =⇒ (2) are [3, Theorem 1.1]. From [27, Corollary 3.3] we
see that if (1) is satisfied we may write PG(t) in the form

PG(t) =

∏r
j=1(1 − tfj )∏s
i=1(1 − tei)

, (iv)

for some positive integers f1, . . . , fr, e1, . . . es (note that even though [27] is written
for strictly commutative rings, the proof immediately carries over to graded commu-
tative rings as well). This immediately implies (3). If the roots of PG(t) are roots
of unity we see by comparison with (i) that all roots of f(t) are roots of unity as
well. Note that f(0) = 1 since H0(G, Fp) = Fp. Since f(t) has integer coefficients it
then follows that f(t) is a product of cyclotomic polynomials. Since these may be
written in the form (iv) it then follows that PG(t) may also be written in the form
(iv). Then by direct computation we get that

PG(1/t)

PG(t)
= (−1)r−stρ,

where ρ =
∑s

i=1 ei −
∑r

j=1 fj. Since the Krull dimension is the order of the pole of
PG(t) at t = 1 we get d = r − s. This proves (3) =⇒ (5). To show that (5) =⇒ (6)
we write PG(t) in the form (i). We then have

PG(1/t)

PG(t)
=

f(1/t)

f(t)
(−1)st

Ps
i=1 ni,
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Thus if (5) is satisfied, we see that f(1/t)
f(t)

must have the form ±tr for some r ∈ Z.

Now write f(t) = a0 + a1t + . . . + amtm, where am 6= 0. Note that a0 = 1 since
f(0) = 1. We then get

±tr =
f(1/t)

f(t)
=

am + am−1t + . . . + a0t
m

a0 + a1t + . . . + amtm
t−m.

Since a0 = 1 and am 6= 0 we conclude that am = ±a0 = ±1. In particular all roots
of f(t) must be algebraic integers, which proves (6). 2

(3.2.4) Remark. The Cohen-Macaulay property is satisfied in many interesting
cases. Let P be a Sylow p-subgroup of G. Then if H∗(P, Fp) is Cohen-Macaulay then
so is H∗(G, Fp) by [3, Proposition 6.8]. This condition is satisfied if P is abelian or
more generally if all elements of order p in P are central [12]. If P is an extraspecial
2-group then H∗(P, F2) is Cohen-Macaulay by [22]. However if p is odd and P is
an extraspecial p-group, then H∗(P, Fp) is not Cohen-Macaulay unless p = 3 and
P = 31+2

+ is the extraspecial 3-group of order 27 and exponent 3 [20].

We now proceed to give examples showing that the theorem is the best possible in
the sense that no further implications hold. For this we need the following result on
the cohomology of wreath products.

(3.2.5) Theorem. Let G be a finite group and p a prime number. The cohomology
ring H∗(G o Cp, Fp) of the wreath product G o Cp has Poincaré series

PGoCp
(t) =

1

p
(PG(t)p − PG(tp)) +

PG(tp)

1 − t
.

The Krull dimension and depth is given by

dim H∗(G o Cp, Fp) = max{1, p · dim H∗(G, Fp)},
depth H∗(G o Cp, Fp) = depth H∗(G, Fp) + 1.

(3.2.6) Proof : The result on the Poincaré series follows from [5] (an translation
may be found in [6]). We will return to Webb’s generalization [31] in section 3.3.
The result on the depth is [9, Theorem 2.1]. Finally, the Krull dimension may be
computed as follows. Let x ∈ G o Cp be an element which permutes the factors of
Gp ⊆ G o Cp cyclically. Let d denote the p-rank of G, and let E be an elementary
abelian p-subgroup of G o Cp. If E ⊆ Gp then E ⊆ π1(E) × . . . × πp(E) and thus
rank E ≤ pd, where πi : Gp → G is the projection on the i’th factor. If E 6⊆ Gp

then E contains an element of the form y = (g1, . . . , gp)x
i, 1 ≤ i ≤ p − 1. We may

assume that i = 1 after replacing y by a suitable power of itself. Since y has order
p we get g1 · . . . · gp = 1. Conjugating E by the element h = (h1, . . . , hp) where
hi = gi · . . . · gp we get that Eh contains x. Thus Eh ⊆ CGoCp

(x) = ∆G × 〈x〉,
where ∆G = {(g, . . . , g)|g ∈ G} ∼= G is the diagonal subgroup. From this we get
rank E = rank Eh ≤ d + 1. Conversely, let E be an elementary abelian p-subgroup
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of G of rank d. Then the subgroups Ep and ∆E × 〈x〉 are elementary abelian p-
subgroups of G o Cp of rank pd and d + 1 respectively. Thus the p-rank of G o Cp is
exactly max{pd, d + 1} = max{1, pd}. By Quillen’s theorem the p-rank equals the
Krull dimension of the cohomology ring and we are done. Alternatively the formula
for the Krull dimension may be proved by combining the formula for the Poincaré
series of the wreath product with the fact that the Krull dimension is the order of
the pole of the Poincaré series at t = 1. 2

We can now give the promised examples, which will mainly be wreath products of
2-groups. For our main examples we will not need to know very much about the
cohomology of these groups except for Theorem (3.2.5). For completeness we will
also give some other examples which have lower order, however their verification
requires a more detailed knowledge of the cohomology rings involved. For 2-groups
of order at most 32 these results may be found in [24]. The cohomology of the
2-groups of order at most 64 (except for a few) may be found on Carlson’s web page
[8]. These groups were first classified by Hall and Senior ([14]) and we will use their
names for the groups. The following table (which gives all possible combination of
truth values allowed by Theorem (3.2.1)), summarizes our examples. Incidentally
we do not know if any of the implications (1) =⇒ (2) =⇒ (4) or (3) =⇒ (5) can be
reversed in odd characteristic. However we do not believe that this is the case, and
that the lack of examples is probably only due to the fact that very few computations
have been carried out in odd characteristic compared to characteristic 2.

(1) (2), (2′) (3) (4) (5) (6) Groups
+ + + + + + G abelian
– + + + + + Example (3.2.10)
– + – + + + Example (3.2.12)
– – + + + + Example (3.2.7)
– – + – + + Example (3.2.9)
– – – + + + Example (3.2.7)
– – – – + + Example (3.2.13)
– – – – – + Example (3.2.11)
– – – – – – Example (3.2.8)

(3.2.7) Example. Consider the group G = C2
n o C2, n ≥ 1 and let p = 2. The

cohomology ring H∗(C2
n, F2) is a polynomial algebra on n generators in degree 1

so it is Cohen-Macaulay of Krull dimension n and its Poincaré series is 1/(1 − t)n.
From Theorem (3.2.5) we then see that G satisfies (2′) if and only if n = 1. From
Theorem (3.2.5) we also get

PG(t) =
1

2

(
1

(1 − t)2n − 1

(1 − t2)n

)
+

1

(1 − t)(1 − t2)n

=
1

(1 − t)2n(1 + t)n−1 · 1

2

[
(1 + t)n−1 + (1 − t)n−1]

=
1

(1 − t)2n(1 + t)n−1 ·
[(n−1)/2]∑

j=0

(
n − 1

2j

)
t2j .
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The leading term in the sum is tn−1 for n odd and (n− 1)tn−2 for n even. From this
we see that (6) is satisfied if and only if n is odd or n = 2. Since the Krull dimension
of H∗(G, F2) is 2n we see from this by direct computation that (4) is satisfied exactly
when n is odd and (5) holds exactly when n = 2 or n is odd. We also see that (3)
holds if and only if all roots of the polynomial (1 + t)n−1 + (1 − t)n−1 are roots of
unity. However it is easily seen that this is the case only for n = 1, 2 and 3.

We conclude that for n odd, n ≥ 5, the group C2
n o C2 satisfies (4), (5) and (6),

but not (1), (2), (2′) or (3). For n = 3 the group satisfies (3), (4), (5) and (6), but
not (1), (2) or (2′). Another example with the same properties is the group 32Γ7a2.
In particular the Poincaré series of these groups satisfy the functional equation (4),
but their mod-2 cohomology rings are not Cohen-Macaulay. The example 32Γ7a2 is
also given in [4], which generalizes the implication (2′) =⇒ (4) of Theorem (3.2.1).

(3.2.8) Example. From the above example we also conclude that for n even,
n ≥ 4, the group C2

n o C2 satisfies none of the properties in Theorem (3.2.1). In
particular the roots of the Poincaré series are not algebraic integers. As mentioned
above, this answers a question of Rusin [24, p. 267]. From [8] we also find some
examples of order 64, namely the groups 64Γ15c3, 64Γ15c4, 64Γ15e3, 64Γ15f1, 64Γ16c1

and 64Γ17b2.

We can also construct some examples in odd characteristic. Consider the group
G = Cp o Cp which is the Sylow p-subgroup of the symmetric group Σp2 (see for
example [1, p. 184–185]). From Theorem (3.2.5) we get that for odd p the Poincaré
series of H∗(G, Fp) is given by:

PG(t) =
1

p

(
1

(1 − t)p − 1

1 − tp

)
+

1

1 − t
· 1

1 − tp

=
1

(1 − t)p(1 − tp)

[
1 +

p−2∑

i=1

p − i − 1

p

(
p
i

)
(−t)i

]
.

The leading term is p−1
2

(−t)p−2, so for p ≥ 5 we see that the roots of PG(t) are not
algebraic integers. Thus none of the properties in Theorem (3.2.1) are satisfied.

(3.2.9) Example. From Example (3.2.7) we see that the group C2
2 oC2 = 32Γ4a1

satisfies (3), (5) and (6), but not (1), (2), (2′) or (4). From [24] we also get that
this holds for the groups 16Γ2c1, 16Γ2d and 16Γ3a2 of order 16. The group 16Γ3a2

is the semidihedral group of order 16 and occurs as the Sylow 2-subgroup of the
Mathieu group M11 and of GL2(Fq) for q ≡ 3 (mod 8). It also occurs as the Sylow
2-subgroup of the simple groups PSL3(q) for q ≡ 3 (mod 8) and PSU3(q) for q ≡ 5
(mod 8). Both 16Γ2d and 16Γ3a2 are split metacyclic groups, so the Poincaré series
of their cohomology rings may also be found using [30].

In odd characteristic we have the example (ii) above. From its Poincaré series (we
assume that α, β ≥ 1 and p - m) we immediately see that this group satisfies (3)
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and hence (5) and (6), but not (4) and hence neither (1), (2) nor (2′). In particular
this applies to the extraspecial groups p1+2

− of order p3 and exponent p2.

Another example with the same properties is C3 o C3 for p = 3, which by Exam-
ple (3.2.8) has the Poincaré series

PC3oC3(t) =
1

(1 − t)2(1 − t3)
.

(3.2.10) Example. Consider the group G = C4 o C2 = 32Γ3e and let p = 2. This
group occurs as the Sylow 2-subgroup of the groups GL2(Fq) for q ≡ 5 (mod 8),
PSL3(Fq) for q ≡ 5 (mod 8) and PSU3(Fq) for q ≡ 3 (mod 8). Since the Poincaré of
C4 is 1

1−t
we see from Theorem (3.2.5) that the cohomology ring H∗(G, F2) is Cohen-

Macaulay of dimension 2 and has the Poincaré series 1
(1−t)2

. Thus the conditions

(2), (2′), (3), (4), (5) and (6) of Theorem (3.2.1) are all satisfied. However the
cohomology ring is not a complete intersection, which may be seen from Rusin’s
calculation [24]. Of course the cohomology ring may also be directly computed from
Nakaoka’s theorem [21, Theorem 3.3]. From [24] we find that the groups 32Γ2h,
32Γ3c2 and 32Γ4c3 have the same properties.

(3.2.11) Example. Consider the group G = C2 o (C2 × C2) = 64Γ25a1, where
C2 × C2 acts regularly on a set of size 4 and let p = 2. This group is the Sylow
2-subgroup of the simple groups A8

∼= GL4(F2) ∼= O+
6 (F2), PSU4(F22) ∼= O5(F3) ∼=

O−
6 (F2) and PSp4(F5) ∼= O5(F5) and it is also the Sylow 2-subgroup of the affine

general linear group AGL3(F2). By [31, Example 3.4] the Poincaré series of the
cohomology ring is

PG(t) =
1 + t2 − t3

(1 − t)3(1 − t4)
.

Thus G satisfies (6), but none of the properties (1), (2), (2′), (3), (4) or (5). Other
groups with the same properties are 32Γ4c1

2, 32Γ4d, 32Γ6a2, 32Γ7a3, 16Γ2d oC2 and
16Γ3a2 o C2 (the groups 16Γ2d and 16Γ3a2 also occurred in Example (3.2.9) above).

For odd primes we have more examples. Consider the extraspecial group G = p1+2
+

of order p3 and exponent p. The cohomology ring of this group is given in [18] and
its Poincaré series is found to be

PG(t) =
1 + t2 − t4 − t2p

(1 − t)2(1 − t2p)

(cf. [25, Theorem 7]). From this we see that if p ≥ 5, only condition (6) in Theo-
rem (3.2.1) is satisfied.

We also have the following example. Consider again the group

P =
〈
x, y|xpα

= ypβ

= 1, x−1yx = y1+u
〉

2The Poincaré series for this group equals 1+t+t
3

(1−t)2(1−t4)
, but is given in [24, p. 367] as 1+t

2+t
3

(1−t)2(1−t4)
.
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from (ii) above, where 1+u satisfies (1 + u)pα −1 = m ·pβ for some m ∈ Z. Assume
furthermore that p is an odd prime, that α, β ≥ 1 and that p - m. Then by [10,
Proposition 3.2(1)] we get Out(P ) = Op o Cp−1, where Op is a Sylow p-subgroup
of Out(P ). Choose any divisor d of p − 1 and consider the semidirect product
G = P o Cd, where Cd ≤ Cp−1 ≤ Out(P ). Then by [11, Theorem 1.1(2)] we have

H∗(G, Fp) ∼= Fp[v, z] ⊗ E[b, α2i−1, i = 1, . . . , p]/R

where the relations R are given by

α2i−1α2j−1 = 0 for 1 ≤ i, j ≤ p

α2i−1v = 0 for 1 ≤ i ≤ p − 1,

with deg b = 1, deg v = 2, deg z = 2p and deg α2i−1 = 2i − 1 + 2pd(i), where
0 ≤ d(i) < d is the residue of −i mod d. From this we can easily compute the
Poincaré series:

PG(t) =
1 + t

1 − t2p

[
1

1 − t2
+

tdeg α2p−1

1 − t2
+

p−1∑

i=1

tdeg α2i−1

]

=
1 + t2d−1 − t2d − t2d+1 + t2pd+1 − t2pd+2d−1

(1 − t)(1 − t2d)(1 − t2p)
.

If d > 1 we see from this that condition (5) is not satisfied and that condition (6) is
satisfied. Thus the group satisfies none of the conditions in Theorem (3.2.1) except
for (6). Note that for d = 1 we have G = P and we recover the Poincaré series
(iii) given earlier. For d > 1 we also see that the a-invariant ([7, Definition 4.3.6])
of H∗(G, Fp), which by definition is the degree of the Poincaré series as a rational
function, equals 2pd − 2p − 2. Thus it can be arbitrarily large compared with the
Krull dimension which is 2. Hence the analogue of [16, Conjecture 22] does not hold
for cohomology rings of finite groups.

(3.2.12) Example. Let p = 2 and consider the group Q8 o C2, where Q8 is the
quaternion group of order 8. By [1, Theorem IV.2.9] we have PQ8(t) = 1+2t+2t2+t3

1−t4
.

By Theorem (3.2.5) we then see that H∗(Q8 oC2, F2) is Cohen-Macaulay of dimension
2 and has the Poincaré series

PQ8oC2(t) =
(1 + t + t2)(1 + 2t2 − t3 + 2t4 + t6)

(1 − t)2(1 + t2)2(1 + t4)
.

Thus we see that Q8 o C2 satisfies (2), (2′), (4), (5) and (6) but not (1) and (3).
Other groups with this behavior are 64Γ4k2, 64Γ9b4, 64Γ9d2 and 64Γ9e which is the
Sylow 2-subgroup of the simple group Sz(8).

(3.2.13) Example. As a final example note that by combining Example (3.2.9)
and Example (3.2.12) we obtain that the group (Q8 o C2) ×

(
(C2)

2 o C2

)
satisfies

only conditions (5) and (6) of Theorem (3.2.1). Other examples are given by the
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groups 32Γ2d oC2, 32Γ2f oC2, 32Γ3a2 oC2, 32Γ4b2 oC2, 32Γ4c2 oC2 and 32Γ6a1 oC2
3.

Here 32Γ2d = C2 × 16Γ2d and 32Γ3a2 = C2 × 16Γ3a2, where the groups 16Γ2d and
16Γ3a2 occurs in Example (3.2.9) above. Moreover the group 32Γ3a2 is the Sylow
2-subgroup of GL3(Fq) for p ≡ q (mod 8). Note also that 32Γ6a1 = C8 o Aut(C8).

3The Poincaré series of the groups 32Γ2d, 32Γ2f , 32Γ3a2, 32Γ4b2, 32Γ4c2 and 32Γ6a1 is
1

(1−t)3(1+t2)
and thus dim Hn(G, Fp) = 1, 3, 7, 10, 14, . . . for n = 0, . . .. These dimensions are stated

wrongly in [24, p. 368].
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3.3 Poincaré series of wreath products

In this section we obtain a formula for the Poincaré series of the cohomology ring
of a wreath product of finite groups. Such a formula was first obtained by Webb
[31], but unfortunately his formula is not correct in general. Here we show how the
correct formula may be obtained by modifying Webb’s formula. To save space and
time we will assume complete familiarity with the definitions and results in [31].

Now let p be a prime number, F a finite group, G a subgroup of Σm and consider the
wreath product F oG = F m o G. We are then interested in computing the Poincaré
series of H∗(F o G, Fp). As in [31, p. 450] we start by using Nakaoka’s theorem [21,
Theorem 3.3], which gives an isomorphism H∗(F o G, Fp) ∼= H∗(G, H∗(F, Fp)

⊗m) as
graded rings. Here G acts on the factors of the m-fold tensor product H∗(F, Fp)

⊗m

not simply by permuting the factors (as claimed in [31]), but also by including the
appropriate sign. For example if σ = (1, 2) ∈ Σ2 then

σ · (ξ1 ⊗ ξ2) = (−1)deg ξ1 deg ξ2(ξ2 ⊗ ξ1).

Since there are no problems with the sign for p = 2 we will from now on assume
that p is odd unless stated otherwise. Now let Ξ be a graded basis of H∗(F, Fp),
i.e. a graded set such that Ξ(n) is a basis of Hn(F, Fp), and let B be the set of
elements ξ1 ⊗ . . . ⊗ ξm, where ξi ∈ Ξ. Then B forms a basis of H∗(F, Fp)

⊗m, but
unfortunately G does not act on B since we also have to include the appropriate
sign. To overcome this problem we introduce the ’double’

B̃ = B q−B = {±b|b ∈ B} ⊆ H∗(F, Fp)
⊗m,

which is a G-set, and we let M̃ = Fp

[
B̃

]
be the associated permutation module.

Then B+ = {b + (−b)|b ∈ B} ⊆ M̃ is a G-set and the G-action is just given by
permuting the coordinates (without the sign). Let M+ = Fp [B+] be the associated

permutation module. Define also B− = {b − (−b)|b ∈ B} ⊆ M̃ and let M− be the

submodule of M̃ spanned by B−. Since p is odd we find that M̃ = M+ ⊕ M− and
M−

∼= H∗(F, Fp)
⊗m as Fp [G]-modules. For a subgroup J ≤ G we now define the

power series f̃J and fJ by

f̃J(t) =
∞∑

i=0

∣∣∣B̃(i)J
∣∣∣ ti, fJ(t) =

∞∑

i=0

∣∣B+(i)J
∣∣ ti.

Now using [31, Proposition 1.2] and replacing G-sets by permutation modules we
obtain

PfM(t) =
∑

K≤J

Fp [G/K] µ(K, J)f̃J(t)

[G : K]
, PM+(t) =

∑

K≤J

Fp [G/K] µ(K, J)fJ(t)

[G : K]
,

where the sums are over all pairs of subgroups K ≤ J of G and µ is the Möbius
function of the poset of subgroups of G [28, 3.7]. As in [31] both sides of these
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equations are to be interpreted as elements in the ring of power series over the
Green ring A(G). Combining this with the above we see that the series of the
graded FpG-module H∗(F, Fp)

⊗m is

∑

K≤J

Fp [G/K] µ(K, J)
(
f̃J(t) − fJ(t)

)

[G : K]
.

Thus using [31, Lemma 3.2] we obtain that the Poincaré series of the cohomology
ring H∗(F o G, Fp) equals

∑

K≤J

gK(t)µ(K, J)
(
f̃J(t) − fJ(t)

)

[G : K]
,

where gK(t) is the Poincaré series of H∗(K, Fp).

To compute the series f̃J and fJ we may proceed as follows. Let {1, . . . , m} =
Ω1 ∪ . . .∪Ωn be the decomposition of {1, . . . , m} into J-orbits, f(t) be the Poincaré
series of H∗(F, Fp) and let b = ξ1 ⊗ . . .⊗ ξm ∈ B, ξi ∈ Ξ. Since G acts on B+ simply
by permuting the coordinates we see that b + (−b) ∈ B+ is invariant under J if and
only if ξi = ξj whenever i, j ∈ {1, . . . , m} are in the same J-orbit. Thus we get

fJ(t) = f(t|Ω1|) · . . . · f(t|Ωn|)

as in [31, p. 450 and Proposition 1.4(1)]. Computing the series f̃J is more difficult

since we have to take care of the signs. If b ∈ B̃ is invariant under the action of
J then ξi = ξj whenever i, j ∈ {1, . . . , m} are in the same J-orbit; however this is
enough to guarantee that b is J-invariant. Now assume that b satisfies this condition.
From the decomposition {1, . . . , m} = Ω1 ∪ . . . ∪ Ωn we get the homomorphism

ϕ : J −→ ΣΩ1 × . . . × ΣΩn

σ1×...×σn−→ F2 × . . . × F2 = V,

where σi : ΣΩi
→ F2 is the sign homomorphism. Let i1 ∈ Ω1, . . . , in ∈ Ωn be orbit

representatives and let • be the inner product on V , determined by the formula
u • v = u1v1 + . . . + unvn. With a slight abuse of notation we then have

g · b = (−1)ϕ(g)•(deg ξi1
,...,deg ξin ) · b

for g ∈ J . Thus b is J-invariant if and only if (deg ξi1, . . . , deg ξin) • ϕ(g) = 0 for all
g ∈ J , i.e. when (deg ξi1, . . . , deg ξin) ∈ ϕ(J)⊥. Now set

f0(t) =
∞∑

i=0, i even

dim H i(F, Fp) ti=
1

2
(f(t) + f(−t)) ,

f1(t) =

∞∑

i=0, i odd

dim H i(F, Fp) ti =
1

2
(f(t) − f(−t))
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and let
fv(t) = fv1(t

|Ω1|) · . . . · fvn
(t|Ωn|)

for v = (v1, . . . , vn) ∈ V . Thus we get the formula

f̃J(t) = 2 ·
∑

v∈ϕ(J)⊥

fv(t),

where the factor 2 comes from the fact that −b is J-invariant if b is. We summarize
the results of the above discussion in the following theorem which corrects [31,
Theorem 3.1] (as noted above the original formula is correct for p = 2).

(3.3.1) Theorem. Let p be a prime number, F a finite group and G a subgroup

of Σm. For a subgroup J ≤ G define the series f̃J(t),fJ(t) and gJ(t) as above. Then
the Poincaré series of the cohomology ring H∗(F o G, Fp) is given by

PF oG(t) =
∑

K≤J

gK(t)µ(K, J)fJ(t)

[G : K]
,

for p = 2 and by

PF oG(t) =
∑

K≤J

gK(t)µ(K, J)
(
f̃J(t) − fJ(t)

)

[G : K]
,

for p odd. 2

(3.3.2) Example. Let p be any prime number and let G = Cp act regularly on a
set of size p. Let F be any finite group with Poincaré series f(t). We then have

g1(t) = 1, f1(t) = f(t)p

gG(t) =
1

1 − t
, fG(t) = f(tp).

Now assume that p is odd. Noting that (1, . . . , p) ∈ G is an even permutation we
get

f̃1(t) = 2f(t)p, f̃G(t) = 2f(tp).

Thus the Poincaré series of H∗(F o Cp, Fp) is given as

PF oCp
(t) =

gG(t) · 1 ·
(
f̃G(t) − fG(t)

)

[G : G]
+

g1(t) · (−1) ·
(
f̃G(t) − fG(t)

)

[G : 1]

+
g1(t) · 1 ·

(
f̃1(t) − f1(t)

)

[G : 1]
=

1

p
(f(t)p − f(tp)) +

f(tp)

1 − t
.

For p = 2 it is easily seen that the same formula holds, since f̃J(t) − fJ(t) =
fJ(t). Thus we recover the formula of Bogačenko ([5]) from Theorem (3.2.5) above.
Incidentally this is also the result obtained from Webb’s original formula.
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(3.3.3) Example. Let p be an odd prime and let G = C2 act regularly on a set
of size 2. Let F be any finite group with Poincaré series f(t). We then have

g1(t) = 1, f1(t) = f(t)2

gG(t) = 1, fG(t) = f(t2).

Since σ = (1, 2) ∈ G is an odd permutation we get

f̃1(t) = 2f(t)2, f̃G(t) = 2f0(t
2)

and hence the Poincaré series of H∗(F o C2, Fp) equals

PF oC2(t) =
gG(t) · 1 ·

(
f̃G(t) − fG(t)

)

[G : G]
+

g1(t) · (−1) ·
(
f̃G(t) − fG(t)

)

[G : 1]

+
g1(t) · 1 ·

(
f̃1(t) − f1(t)

)

[G : 1]
=

1

2

(
f(−t2) + f(t)2) .

In this case the result does not agree with Webb’s original formula which gives
1
2

(
f(t2) + f(t)2). In the case F = Cp we have f(t) = 1

1−t
and we get

PCpoC2(t) =
1 + t3

(1 − t)(1 − t4)
.

This may be checked easily since we have the isomorphism

Cp o C2 = (Cp × Cp) o C2 = Cp × (Cp o C2) = Cp × D2p

because the matrices

[
0 1
1 0

]
and

[
1 0
0 −1

]
are conjugate in GL2(Fp). Since

H∗(D2p, Fp) has Poincaré series 1+t3

1−t4
by [30] this verifies our calculation.
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