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Chapter 1

Introduction

This Ph.D. thesis is on the pricing of different securities involving credit risk.
In this chapter we will give a short introduction to credit risk by presenting a
few contributions in this area. It is not an attempt to review all contributions
in this area so a lot of important work has not been included.

Credit risk models can be divided into two main categories. The struc-
tural models which based on accounting information models the default prob-
ability. This type of modeling is theoretically solid and gives a good intuition
for which variables are important for the default risk. However, pricing in
these models tend to be somewhat difficult since they are usually based on
asset value which can be hard to estimate. The other type of models is the
reduced form/intensity based models which model default by an intensity.
Here, it is not as clear how the default event is related to the firms struc-
ture even though the intensity may depend on firm specific variables. As
we will see the pricing of defaultable claims becomes much more simple in
this setting since, loosely speaking, the intensity plays the role of an extra
discount factor. Therefore, pricing becomes very similar to pricing interest
rate derivatives. Since this thesis focuses on the pricing of (complicated)
defaultable claims we have chosen to work with a reduced form setting.

In Section 1.1 we will present four structural models which show most of
the important features of this type of modeling. This will be a useful refer-
ence for example when we touch upon the KMV data in Chapter 2. First
we will present Merton[49] which is a simple and very intuitive model. Next
we will present Black and Cox[6] which handles some of the deficiencies in
Merton[49]. Then we present Leland[44] which is a much more complicated
model where the owners decision making also influence the default proba-
bility. Finally, we present Duffie and Lando[22] which is a link between the
structural models and the intensity based models. Other models could have
been presented but these models serve our purposes. Section 1.2 presents an
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intensity based model. Furthermore, we give a pricing formula for defaultable
claims and show that in this setting different types of default settlements can
be handled and also tax can be handled in this setting.

1.1 Structural models

It was not until the seminal paper by Black and Scholes [7] where they give
an option pricing formula in a general equilibrium model that the pricing of
corporate debt could be analyzed in a more quantitative framework. In this
paper and in Merton[48] it is recognized that the option pricing formula pre-
sented in this paper can be used to price corporate securities. The argument
is that the equity is a call option on the firm value. This is the basis for the
first structural models.

In the structural models default is modeled as a function of the firm value.
Therefore we can view corporate debt as a contingent claim on the firm. In
the models we will consider in the next sections the firm value, V', is given
by

dVy = p(t, Vi)dt + oV, dW,

There is also a constant riskless interest rate r. For most of the applications
the calculations would be almost the same for a stochastic interest rate. It is
also assumed that there exits an equivalent martingale measure under which
any claim on the firms value can be priced. Hedging these claims, however,
might be difficult since firm value is not a traded asset.

1.1.1 Merton

In Merton[49] the first structural model for pricing corporate debt is set up.
He assumes that there are only two classes of claims on the firm value, one
homogeneous class of debt and a residual class of equity. The firm can not
issue new senior claims nor can it pay out dividends. The debt is D and it
is issued as zero-coupon bonds with maturity, 7. If the firm value is greater
than D at time 7" the debt is paid and the equity holders receive the residual.
If the firm can not meet the payment D at time 7" the bondholders liquidate
the firm and receive the total firm value. In that case equity holders receive
nothing.

In Figure 1.1 the debt at time 7' is plotted as a function of firm value.
The debt at maturity can be evaluated as

Br = min (Vp, D) = Vr — max (Vy — D, 0)
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Figure 1.1: The debt payed at time T as a function of firm value.

which is firm value minus the value of the equity, E7. As we can see the
equity part can be valued as a European call option on the firm value and a
strike price of D. Hence, the equity is valued using the Black-Scholes formula

E, = BS(V,,D,o,r,T —1t) =V,®(dy) — e " " IDd(dy)  (1.1)
log % + (r + 20?)(T — 1)

oT —1

dg = dl—O'\/T—t
where @ is the cumulative standard normal distribution function. From (1.1)
we find that

d1:

B, = Vi-E
= e—T(T—t)D <(I)(d2) + m@(—dﬂ)

Define the leverage ratio as
e—r(T—t)D
Vi

ltE
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and rewriting d; as
_ —logly+ 50%(T — 1)

d —
! oI —1t

then the yield spread defined as

1 B,
= — log — — 1.2
St T ley =T (1.2)

= -7 1_ log <q> (dy) + %(b (—d1)>

only depends on time to maturity, volatility, and leverage ratio. Notice, that
the yield spread only depends on the value of the firm through the leverage
ratio.

The Merton model is a good first attempt to price corporate debt. The
idea to think of equity as a call option on firm value has been widely used since
then. Merton also considers coupon bearing debt. In that case he can only
achieve closed form solutions with an infinite horizon. Still, the debt structure
in the Merton model has some deficiencies. The class of bondholders might
not be homogeneous, e.g. senior and junior debt should not be priced equally.
Also, bondholders will intervene if the firm value decreases to a certain level.
They are not willing to sit and watch the equity holders ruining the firm.
These two deficiencies have been studied by Black and Cox [6] in a similar
setup.

1.1.2 Black and Cox

In Black and Cox [6] they consider the effect of safety covenants. Specifically,
they introduce a lower boundary, H;, at which bondholders will liquidate the
firm and receive H,;. This boundary takes an exponential form

H, = Ce T

in which case they are still able to obtain a closed form solution for corporate
debt in the form of zero coupon bonds. The idea is illustrated in Figure 1.2.

They also introduce prioritized debt so the pool of bondholders is no
longer homogeneous. The pool of debt is divided into senior debt, SD, and
junior debt, JD

D=SD+JD

Let the value of junior debt be .JB; and the value of senior debt SB; then as
shown in Figure 1.3
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Figure 1.2: The firm is liquidated at time ¢ and bondholders receive
Ce(T=1),

JBr = Vi — SD|" — [Vy — SD — JD]*

Hence, J B, is the difference between two call options, so if we can calculate
the value of equity we can deduce the value of each class of debt.

Conditioning on no liquidation before maturity the equity is still a call
option on the firm value. In case of liquidation equity holders get nothing.
This is exactly a down-and-out call with an exponential barrier. This option
has the value!

E, = BS(V,,D,o,r,T —1t)

Ce—(T-)\ 27
_< Vi )

Introducing a covenant increases the value of debt from the Merton model

- (CeT-0)?
BS|~——*,D.0,r, T —t
Vi

!This value can be calculated using the distribution of (Vs, ming<4<¢ V,) which is a
transformation of (W, maxo<s<¢ W) whose distribution can be found in Harrison [31]
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Figure 1.3: The debt payed at time 7" as a function of firm value.

with

Ce—r(T-t)\ 252 7! Ce(T-1))?
(761/ ) s (G ) - ) ,D,o,r,T—1] >0
t t

In Figure 1.4 we have plotted the yield spreads for both the Merton model
(1.2) and the Black and Cox model. We can see that the spreads for the Black
and Cox model are smaller which is due to the introduction of the covenant
which increases the value of debt.

They also have a discussion on debt in the form of coupon bonds. In that
case they only obtain closed form solutions for the value of equity in a case
with an infinite horizon, just as Merton.

In the Black and Cox model the liquidation boundary is chosen exoge-
nously. In some cases an endogenously chosen boundary would be more
appropriate. Black and Cox propose to choose such a boundary by maximiz-
ing firm value. This is done in Leland [44] where the liquidation boundary is
found within the model by optimizing equity value.



1.1. STRUCTURAL MODELS 7

—— Merton
- Black and Cox

150
|

100
|

Yield spread

°© T T T T T 1
0 5 10 15 20 25 30

Time to maturity

Figure 1.4: Yield spread (in bps) as a function of maturity. The parameters
of the models are V = 150, D = 100,C' = 80,7 = 5%, 0 = 30%, v = r.

1.1.3 Leland

Leland [44] introduces tax and bankruptcy costs to the problem of valuing
corporate debt. He considers a model with infinite horizon such that he can
obtain a closed form solution for the value of debt. In this model the firm
promises to pay a continuous coupon of C. Now, any claim on the firm,
F(V), with an infinite horizon must be a solution to

1
—o?V2 P (V) + rVEA(V) =1 F(V) +C =0

2
The general solution is
F(V) = Ag+ A4V + AV (1.3)
2r
X — ﬁ

To find an optimal capital structure tax and bankruptcy costs are in-
troduced. Tax deductible coupons benefits high leverage. High leverage,
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however, increases the chance of bankruptcy which is costly?, therefore we
are able to find an optimal capital structure.

The bankruptcy cost can be found the following way. At the bankruptcy
level (which is not yet determined) Vp the bankruptcy cost, BC'(V), is as-
sumed to be a fraction of the firms asset value

BC(V) = aVp forV ="1Vp

BC(V) = 0 for V=00
At very high values of V' the probability of bankruptcy is 0, hence BC(V) =
0. The solution of (1.3) with these boundary conditions is

o) =ari ()’

Let the tax rate be 7 then we find the value of the tax shield, TB(V), by
a set of boundary conditions. At Vp the firm is liquidated so there are no
more tax benefits. Hence,

TB(V) = 0 for V="V
TB(V) = © for V=00
r

TB(V) = # (1 - <%)X)

The total firm value, v(V'), can be found as the asset value plus the value
of the tax shield less the bankruptcy cost

o(V) =V +TB(V) — BO(V)

and we find

The debt value D(V) is found using the boundary conditions

D(V) = 1-a)Vg forV="1Vp

(
(V) = ¢ for V=00

r

D

so a fraction « is lost to other parties in case of bankruptcy and for high
asset value the debt is riskless. The solution is

D)=+ ((1 —a) Vi 9) (%)X

T

2The total cost of bankruptcy is both the bankruptcy costs but also the lost tax benefits.
Brennan and Schwartz [9] show that even when bankruptcy costs are 0 the optimal leverage
ratio is less than 100% with a positive tax rate.
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If the bankruptcy level Vg is set by the equity owners they wish to max-
imize their value E(V) = v(V) — D(V). Setting 3‘97’1 = 0 leaves

(1-7)C

r+ 102

Ve =

which can be shown to maximize FE. Notice that the bankruptcy level is
proportional to the coupon, C', and does not depend on the bankruptcy cost,
.

In Figure 1.5 we have plotted both the total firm value and the debt value
as a function of the coupon. By maximizing the total firm value we can find
the optimal leverage ratio to be 64.3% for a coupon of C' = 7.8. For debt

75 100 125 150 175
| | | |

50

- Total firm value
—— Debt value

25

°© T T T T T T T T T 1
0 2 4 6 8 10 12 14 16 18 20

Figure 1.5: Total firm value and debt value as a function of the coupon for
the parameters V = 150, = 5%,0 = 30%,7 = 35%,a = 50%. The total
firm value is maximized for C' = 7.8 and the corresponding leverage ratio is
64.3%.

with an infinite horizon the yield spread is defined as

YS=C/DV)—r
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In Figure 1.6 we have plotted the yield spread as a function of the coupon.
Using the optimal capital structure with C' = 7.8 we find a yield spread of
179.1 bps.

Yield spread
50 1000 1250 1500
|

500
|

Figure 1.6: The yield spread as a function of the coupon with the parameters
V =150,r = 5%, 0 = 30%, 7 = 35%, a = 50%. For C' = 7.8 the yield spread
is 179.1 bps.

1.1.4 Duffie and Lando

One problem with most structural models including the three models pre-
sented in the previous sections is that the short yield spread is 0 which is
different from observed short spreads. To see this consider the yield spread
defined in (1.2), and let the short spread be defined as

Sy =S = lim S} a¢
’ At—0 i
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Assume V; > D then we have in the Merton model for small At

Suar = — 7108 (@ (@(a0) + 1 (~ai(a0)

— 1 Tog @ (d(A)
O (dy(AL)) — 1
At
1— P (Viyar > D)
At
P (Vizar < D)
At

12

12

since ®(ds) is exactly the survival probability. This is the reason that we get
a short spread of 0 in structural models since

P (default before time ¢ + At[no default at time ¢)
At50 At B

for a predictable process.

This can also be seen in the binomial model of Cox, Ross, and Rubinstein
[13]

uVy

Let

then we will get V; = Vpe"=297)49Wt a5 the limit when At — 0.
Assume that the firm defaults if the value V < D. We wish to calculate
the probability of default at time At given that Vy > D. Define X; = logV;
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then

P (Va: < D|Vy > D)
—  P(*down”)P (voe—ffm < D‘ V> D)

= (1-¢q)P <10ng <logD +0\/At‘ log Vo > logD)
= (1-¢q)P (Xo <logD +avAt‘ Xo > logD)

If X; is known at time O this is 0 from a certain step, hence

. P(Var<D|Vy>D)
lim

At—0 At =0

This is the case in the structural models of Merton, Black and Cox, and
Leland?. In Duffie and Lando[22] they assume that the value of the firm can
not be observed accurately. We can only observe if the firm has defaulted or
not. In this case they find

P (Vai < D|Vo > D)

Allitino At
P (X(] <logD + O'\/E‘ Xo > logD)
- Alil;l;lo(l —4) Aligno At
. P (XU < logD+U\/A_t‘ Xy > logD)
= 37 A o’ At
- %02 f'(log D) (1.4)

where f is the density function for X|X > logD. If this density has a
derivative different from 0 at the boundary the short spread is no longer 0.

1.2 Intensity Based Models

In intensity based models default is described by a stopping time which
admits an intensity. As we will see in Section 1.2.1 the result of Duffie and
Lando[22] justifies the use of an intensity even when working with structural
models if there is uncertainty about the asset value of the firm.

3Leland’s model as presented here only has debt with an infinite horizon. Therefore,
it seems irrelevant to define short spreads for that model. However, the model could also
be presented with a finite horizon in which case the short spread would be 0. With finite
maturity there are no closed form solutions and numerical methods are called for.
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The advantage of intensity based models is that they create a pricing
framework very similar to interest rate theory. The main result is that we
can discount promised payments with a default adjusted rate instead of dis-
counting the realized payments with the interest rate. The adjustment is
exactly the default intensity.

1.2.1 Model Setup

We will consider a filtered probability space (2, F, (F;);>0, P). We will assume
the existence of an equivalent martingale measure () under which all pricing
is done. We will use the natural filtration generated by an n-dimensional
state variable X; defined by the SDE

dXt = ,u(t, Xt) dt + O'(t, Xt) th

where g : [0,00) X R* — R",0 : [0,00) x R* — R" and W, is an n-
dimensional Brownian motion under P. We will also assume the existence of
a (locally) risk less interest rate which will be a function of the state variables
re = R(X,).

In intensity based models default is described by a stopping time 7 which
admits an intensity process \;. An intensity for 7 is a non-negative, pre-
dictable process with

t
/ As ds < oo for every t a.s.
0

for which .
1{'r§t} —/ )\51{T>5} ds (15)
0

is a martingale. For more details see Brémaud[8]. We will assume that the
intensity is a function of the state variables A : R" — [0, c0).
Using the martingale property (1.5) we find that

t
Ft:| = 1{T<t}—/ Aslirssy ds
0

T
E |:]-{T<T} —/ )\51{T>5} ds
0
T
& P(r<T|F) = 1{T<t}+/ E Al |F] ds
t

where we have assumed that we can interchange the integrals. Given no
default before time ¢ and then differentiating with respect to 7" and taking
the limit 7" — ¢ we find

at =M
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In other words the default intensity is the default probability within the next
time interval multiplied by the length of the interval. Therefore, in intensity
based models the short spread is typically positive.

In the model of Duffie and Lando[22] as we saw in (1.4) there exists a
default intensity. In their model the default intensity is an intensity with
respect to a filtration only containing information about the default time
and the inaccurate observation of the firm value. The default intensity, A,

is exactly

1
A= 502f' (log D)

1.2.2 Pricing in intensity based models

In this section we wish to price defaultable claims. We will consider two types
of payments. The first is a payment conditioning on no default prior to the
payment date. This type of defaultable payment is considered in Duffie and
Singleton[26] and Lando[43]. The other type is a payment paid upon default
and this type of payment is also considered in Lando[43].

First, consider a payment due at time 7', Zr1{;>7y. In Duffie and Singleton[26]
they work with a pre-default market value V; which is the value of a claim
given that there has been no default. Assume that in case of default a frac-
tion, d;, of the pre-default value is recovered. In this case the discounted gain
process is defined by

t
Gy =e bom®V,(1 - N) + / e o5V, dN,
0
where N; = 1,<. From Duffie[17] we know that the discounted gain process

is a martingale under (). Using It6’s lemma on G we find

dG,
= —re oy (1 = Ny dt+ e e ds(1 — NV,
—e hr BV AN, 4 el 5, VdN,
= —e i (1= N (rp 4+ M(1 = 8) Vidt + e o4 (1 — NV, + dM,

where M; is a martingale. From this we find that
dViy = (ry + M(1 — 04)) Vi dt + M (1.6)

where M is a martingale. Using the condition Vi = Z7 we find the solution
of (1.6)

‘/;5 _ Et o= ftTrs+/\s(1—5s)dSZT (17)
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Next, consider a payment Y;11,<7} at the time of default and expiring at
time T'. This can be viewed as a different type of settlement than the frac-
tional recovery of market value used previously. Again, define the discounted
gain process

t
Gtze_IOTSdsW(l—Nt)—F/ e_foSTuduifsts
0

and use Itd’s lemma to find

dG,
= —re oY (1 - N dt+ e S (1 — NaV,
—em li T BYAN, + e b YA,
= —e a1 = N (1, + A) Vidt + e S 45 (1 — Ny,
e Joredsyy (1 — Ny, dt + dMM,

where M; is a martingale. From this we find that

where M/ is a martingale. Using the condition V; = 0 we find the solution
of (1.8)

T
V, = E, [/ e~ i rutruduy g (1.9)
t

1.2.3 Default settlements

In general defaultable claims can be priced using (1.7) with § = 0 and then
pricing the recovery separately. In Duffie and Singleton[26] they use a fraction
of pre-default market value as recovery. This leads to the very nice pricing
formula in (1.7) where both recovery and the regular payment can be priced
at once.

In some cases, however, other settlements might be more appropriate. In
Jarrow, Lando, and Turnbull[33] they assume that recovery is a fraction of
the promised payment, ;. This type of settlement can be captured as

orZr + (1 = 0r) Zrlir>my

which can be priced using (1.7) with 6 = 0.

Any other settlement at the time of default can be priced using (1.9). For
example a recovery of par assumption could be priced by Y; = o, where &, is
the fraction of par.
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1.2.4 Tax in intensity based models

In Elton et. al.[28] they recognize the issue of different taxation of treasuries
and corporate bonds in the U.S. They show that tax on corporate bonds will
lead to a higher spread to treasury bonds which are not exposed to taxation.
They use a discrete time model to show this. Here we will introduce tax in
an intensity based model.

In Duffie and Singleton[26] and Lando[43] they find that instead of dis-
counting the defaultable payments in corporate bonds with the riskless inter-
est rate we might as well discount the promised payments with a higher risk
adjusted rate. Let 11,715, ...,T, be payment dates with a promised payment
of X; at time T;. Let the intensity for default be \; with a recovery rate 9.
L.e. this contract, V, can be evaluated as

n
t;
V(t)=E, |y e Jiimtr0=ndy, (1.10)
i=1
Let 7 be the tax and define X; =Y, + Z; where Y] is exposed to the tax
rate 7 and Z; is not exposed to tax. Now, the real payment that this contract
promises is

Also, in the case of a default the loss will be deductible such that the real
recovery is
SV () + (1 =87V (t) = (6 + (1 —8)7) V(t) =5V (1)

Now, instead of (1.10) we have

V() = E Zeffirsﬂs(lﬁ)dsj(i]
| i—=1

_ Et Ze_ ftti rs+As(1=0)(1—7) ds ((1 i T)Y; + Zi)

| i=1

so it is actually possible to include tax in the type of model from Duffie and
Singleton(1997) and Lando(1997).

Consider a corporate bond where the coupons are taxed. Define the
constant At =T, — T, | for every t = 1,..., N and let the coupon be ¢ paid
at time T7,...,Ty then the value of this bond is

V()

= B |} e St e ds(1=0)(=r) ds Ay(] — 1) = S TeAs(1=0)(1-7) ds]

=1
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For n = 1,¢ = 0.06, \; = 0.005,6 = 0.5,77 = At = 1,7 = 0.04 we find
the yield spread S(0) to be

S(0) = 0.47%

whereas with no tax the spread is 0.25%. I.e. even for a very small tax
the spread is in this case increased by almost 100%. A, = 0.005 is similar
to a BBB rating. It is mostly for the higher ratings that the tax effect is
significant. For lower rated bonds the tax deduction of the loss in case of
default almost cancels the taxation of coupons. E.g. for Ay = 0.25 which
is similar to a CCC rating the spread is actually smaller with tax (12.23%)
than without tax (12.5%).
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Chapter 2

On Corporate Bonds with
Step-Up Provisions.

Acknowledgments

This chapter is based on a joint work with David Lando with the same title. We are very
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2.1 Introduction

The corporate bond market in the Furopean telecommunication sector is
currently seeing a dramatic increase in the number and volume of bond issues
with embedded step-up and step-down covenants, i.e. provisions which link
the coupon payments of the bonds to the ratings of the issuing firms. The
major companies, most of which are former state monopolies, have been
forced by liberalization of the market into more high risk /high yield activities
most notably in the mobile phone market. In particular, the major players
have needed to finance their participation in auctions for so-called UMTS
licenses, which are needed to operate the next 'third generation’ mobile phone
technology.

The huge expenses to acquire these licenses (some figures estimate that
the auctions are expected to produce a revenue of 125 billion dollars in Eu-
rope), the large expenses in actually developing the new technology and
the high uncertainty in estimating the cash flows which the new technology
will produce, have given strong negative reactions in the equity markets.
These negative reactions have been reinforced by the general downturn in
the technology sector and have made equity financing less attractive as seen
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from the companies.! Figure 2.1 shows the evolution of the equity price of

Deutsche Telekom - a company used for illustrative purposes in this paper.
With internal cash flows far from sufficient to finance the new investments
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Figure 2.1: Daily observations of stock prices for Deutsche Telekom.

the companies have instead sought financing through large, corporate bond
issues.

Almost all new issues by the major players in the telecom sector have
step-up and/or step-down provisions.?

One can think of many reasons for these type of provisions to be seen as
useful. From a theoretical point of view, it is consistent with an attempt by

!For example, the initial public offering by Orange, A France Telecom spinoff, in early
2001 only generated a revenue of 10 Euros per share, far from the 18 Euros expected in
the beginning of the year, cf. Koo[39].

2Examples include the March 2001 issue by France Telecom with a dollar equivalent of
16,4 billion, the December 2000 and January 2001 issues by British Telecom with a total
dollar equivalent of 18.8 billion and the June 2000 issue by Deutsch Telecom whose dollar
equivalent value was 14.4 billion dollars. New issues by smaller players, such as TDC and
Sonera, have not included step-up language.
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management of the companies to signal that they will and can comply with
the target leverage ratios required by the rating agencies to retain ratings
which are above the step-up limit. In practice, many investors view the
step-up clauses as providing a natural hedge against price changes due to
downgradings. Investors may fear that the market will react strongly to
downgrades possibly because fund managers will have to abandon positions
as they come closer to having a speculative grade rating. At the same time,
investors may be convinced that the companies offer a limited risk of actual
default simply because the big companies still have a large fraction of shares
owned by the government and because the companies are so vital in providing
infrastructure that they are in a sense 'too big to fail’.

The precise language of the step-up provisions varies from issue to is-
sue. Typically the rating level defining the clauses depend on changes in the
rating by the two major agencies, Standard and Poor’s and Moody’s. The
relevant rating is that of senior unsecured debt. In some cases, as with the
Deutsche Telekom Euro issues used for illustrative purposes in this paper,
the stipulated 50 bps step-up of the coupon requires a downgrade by both
agencies below the comparable levels A3 and A- in the Moody’s and S&P
systems, respectively. In other cases, as with several British Telecom issues,
there are step-up triggers in place for actions of each rating agency. Here,
a one notch downgrade by one agency will trigger a 25 bps increase in the
coupon, even if the rating of the other agency remains fixed.

Provisions also vary with respect to step-down provisions which, as the
name suggests, trigger a lowering of the coupon if the company regains its
original rating after a downgrade. For example, the KPN June 2003 5.75 %
issue, has only a single step-up of 30 bps triggered by a downgrade either
below Baa2 (Moody’s) or below BBB+ (S&P) (a trigger which has become
effective), but has no step-down if the company regains its original rating.
A more common construction in the telecommunications sector, used for
example in later issues by KPN and in the Deutsche Telekom issues studied
in this paper, stipulates that coupons are stepped down if the rating rises
above the trigger level again. In the case of two rating agencies, if a step-up
has been triggered by a unanimous downgrade, then it requires a unanimous
upgrade by both agencies to step down the coupon again.

Finally, the provisions may differ with respect to what happens with
further downgrades. The Deutsche Telekom issues has only two possible
levels of coupons, but the KPN 2006 and 2008 issues have continual step-ups
for every further downgrade.

In all the constructions we are aware of, upgrades above the when-issued
rating level do not trigger reductions in the coupon, so the step-up provi-
sions are not completely like a floating rate security. Typically, the coupon
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change takes place on the first coupon date after the rating change has been
announced.

The idea of linking credit quality to coupon payments is not new. A
similar idea has been used in Floating Rate Notes, Credit Linked Notes and
in credit triggers in swaps. What is remarkable, however, is the volume in
which bonds with step-up clauses have been issued - making the secondary
market for these bonds highly liquid.

The high liquidity makes the data well suited for testing and implementing
the approach to arbitrage pricing of credit risky securities with rating depen-
dence introduced in Jarrow, Lando and Turnbull [33] and Lando (1994,1998)
and carried forward for example in the works by Das and Tufano [15], Ar-
vanitis, Gregory and Laurent[4] and Kijima [36]. It also provides a natural
opportunity to give an overview of the methods developed so far for pricing
rating-sensitive instruments.

This paper summarizes and compares various approaches one may take
to pricing rating sensitive debt and estimates some of the models using data
for Deutsche Telekom. A key trick to calibration in these models is to avoid
implying out all parameters in the risk-neutral transition probabilities from
scratch. The goal in this paper is to give an overview of the trade-offs that one
faces in ratings-based models between mathematical and statistical tractabil-
ity on one side and realism on the other. Ultimately, one may hope that a
good model can shed more light on the value of step-up provisions. For ex-
ample, despite the large liquidity of the bonds, a general feeling among many
market participants that we have talked to, is that the step-up provisions of
the bonds in the telecommunication sector are typically under-priced. The
question now is whether the rating-based methodology to pricing rating sen-
sitive instruments can be used in assessing the risk premia involved in pricing
the step-up provisions.

The overview of the paper is as follows: In Section 2.2 we describe the
data used throughout the paper. Section 2.3 sets up the framework in which
we will be working. In Section 2.4 we define the rating based model and
give the PDE which is used to price rating dependent claims. Also we give a
setup in which pricing can be done in closed form. In Section 2.5 we analyze
different rating models to get an idea on which variables can be implied
out from the prices and for which parameters can we use the empirically
estimated values. Section 2.6 gives a computationally tractable alternative
to the rating based model when we need more state variables than can be
handled in a rating based model. In Section 2.7 we analyze the threshold
model presented in Section 2.6 using KMV data. Finally, in Section 2.8 we
give an approach to estimate the parameters when we are observing coupon
bonds.
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2.2 Data

We have daily observations of the three major Euro denominated corporate
bonds from Deutsche Telekom. The first bond is issued on June 28 2000 with
an annual coupon of 6.125% and is maturing July 6 2005. The second bond
has an annual coupon of 6.625% and is maturing July 6 2010. It is also issued
on June 28 2000. Both bonds have a step-up feature where the coupon is
increased with 50 bps if Deutsche Telekom is rated below A3 by Moody’s and
below A- by Standard and Poor’s. If both the ratings rise above the trigger
level again after a downgrade the coupon is stepped down again. We also have
observations of a bond without a step-up provision. This bond is maturing
May 20 2008 and has an annual 5.25% coupon. We have 176 observations
of the two bonds with step-up provision and 303 observations of the regular
corporate bond. The prices are shown in Figure 2.2. Deutsche Telekom also
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Figure 2.2: Daily observations of bond prices for Deutsche Telekom.

have issues in Dollar and Yen. We will disregard these issues since we are
not including a full modeling of the capital structure of Deutsche Telekom
and also since we can not be sure that these bonds are comparable with the
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Euro issues. Since we are interested in models that can price comparable
corporate bond issues the three Euro issues will be sufficient for this paper.

In the same time period we also have the yields on German treasuries for
all maturities. The yields for the 5, 8, and 10 years treasuries are shown in
Figure 2.3. We will be using the German treasury as discounting since this
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Figure 2.3: Daily observations of German treasury yields.

is the common benchmark for Euro denominated bonds.

Furthermore, we have yield spreads for AAA, AA, A, and BBB bonds in
the same time period. These yields are shown in Figure 2.4 as referred in the
Merrill Lynch index of 7-10 years European corporates. We are interested
in the stochastics of a single firm but maybe the index is revealing some-
thing about the stochastics in the surroundings. We have chosen the 7-10
years index since this closely matches the Deutsche Telekom corporate bond
maturities.

In Figure 2.4 we have also included the yield spread for the 5.25%-2008
Deutsche Telekom bond. Moody’s rated Deutsche Telekom Aa2 with a neg-
ative outlook on January 1 2000. On April 10 the negative outlook was
removed, but it was invoked again on June 22 2000. Finally, on October 5 it
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Figure 2.4: Yield spreads for the Merrill Lynch indexes of AAA,AA,A,BBB 7-
10 years corporate bonds. We have included the yield spread for the Deutsche
Telekom 2008 for comparison.

was downgraded by three notches to a A2 rating. Standard and Poor’s rated
Deutsche Telekom AA- in the beginning of year 2000 and gave it a negative
outlook on April 28. On October 6 it was downgraded to A- and finally
in the end of the sample on February 27 2001 Deutsche Telekom received a
negative outlook. As we can see from the graph Deutsche Telekom’s spread
to the AA index started increasing in April 2000 and already in mid June
2000 it looked more like a A rated firm than a AA rated firm even though it
was not downgraded till October 2000.

Finally, we have monthly estimates from KMV of the asset value, default
point, volatility, and default probability for Deutsche Telekom. In Figure 2.5
we have plotted the asset value and the default point as a function of time.
In Figure 2.6 we have plotted the volatility and default probability.
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Figure 2.5: KMV estimates of the asset value and default point for Deutsche
Telekom.

2.3 Model setup

We will consider a filtered probability space (Q,]F, (Ft) 0 ,P). We will as-
sume the existence of an equivalent martingale measure, (), under which all
pricing is done. We will be using the natural filtration generated by the state
variables defined below.

In general we will work with an n-dimensional vector of state variables,

X, defined by the SDE
dXt = /,L(t, Xt) dt + U(t, Xt) th

where p : [0,00) X R" — R",0 : [0,00) Xx R" — R"™" and W, is a n-
dimensional Brownian motion under P. We will denote the (locally) risk less
interest rate by r, = R(X;) which will be some function of the state variables.

For the remainder of this paper we will assume that the state variables
have an affine specification i.e. u(z),o(x)o(z)” are both affine in z and follow
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Figure 2.6: KMV estimates of volatility and default probability of Deutsche
Telekom.

the pricing method of Duffie, Pan, and Singleton[23].> We will only consider
a general CIR model

dXt - K(] + KlXt dt + E\/ Xt thP
where Ky € R*, K; € R"", ¥ € R"™" and
Vi 0 - 0
VI = 9 Vi :
: B
0 cee 0 /T
With this setup

E, e IT potp1-Xs dsgaXi | — pa(T=1)+B(T—1)-Xe (2'1)

3In Duffie, Pan, and Singleton[23] they introduce a fast pricing method for state vari-
ables with an affine specification. They also allow a jump process in the specification of
the state variables.
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where pg € R p1,a € R" and o : [0,T] = R, 3 :[0,T] — R", and where «, 8
can be found as solutions to the set of ODE’s

Fls) = —m+ KT +5 (5T86)), AO)=a (22
o) = —pot KLB(s), a(0)=0 (2.3

where 2? = (22);=1..._,. We will denote the dependence on a in the solutions
by fa(t),aa(t). The derivation of these ODE’s is an application of Itd’s
lemma. For more on this see Duffie, Pan, and Singleton[23].

If we assume that the market prices of risk are given by +/X;b where

b € R” then under the equivalent martingale measure () we have

dX, = Ko + (K, + 2D(b)) X, dt + 2/ X, dW 2

where
zy 0 - 0
D(fl?) _ 0 Z9
. .0
0 -+ 0 =z,

Hereby, we can preserve the affine structure under Q).

We will be considering defaultable claims and the time of default is 7. We
will assume that this stopping time 7 admits an intensity process which we
will denote by \;. An intensity for 7 is a non-negative, predictable process
with

t
/ Asds < oc for every t a.s.
0

for which .
1{7’§t} - / )\81{T>S} ds
0

is a martingale. We will assume that the intensity is a function of the state
variables A : R" — [0, 00).

If we assume that the recovery, d;, is a percentage of the pre-default
market value of the claim, then pricing a defaultable claim can be done by
discounting the promised payment with r, + \(1 — d;) instead of just the
interest rate. This is shown in both Duffie & Singleton[26] and Lando[43].
Hence, the price of a defaultable claim with positive recovery is the same as
one with O-recovery but with a lower default intensity. Therefore, in some
cases it might be easier to fit \;(1 — &;) instead of both fitting the default
intensity and the recovery rate.

“For more details see Brémaud [8].
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Furthermore, we will define K different (non-default) rating categories,
1,..., K, and denote the rating process by 7,. A rating dependent defaultable
payment, C(7T,nr), can be priced as

E9Q |~ Jo retAe dtC(T, nT)
In this paper we will be considering payments of the form

C(t,m) = c+ slgp>q

for some choice of rating 7. In this case the coupon is stepped up whenever
the rating is above 7 and it will be stepped down as soon as the rating gets
below 7 again. This is exactly the case for two of the Deutsche Telekom issues
we are studying in this paper. A different provision is

C(t, nt) =c+ Sl{maxogugt Nu>1}

where the coupon cannot be stepped down again once the step-up provision
is triggered. This is the case for the KPN June 2003 5.75% issue.

2.4 A rating based model

The step-up provision is typically linked to an explicit rating category given
by a rating agency. In Jarrow, Lando, and Turnbull[33] they introduce a
pricing framework which explicitly takes the ratings into account. In this
model the rating transitions are governed by a continuous time Markov chain.
The Markov chain is defined by a generator (under Q)

A= (Nij)ij=1,..K

where );; is the transition intensity for the Markov chain to jump from ¢ to j
ifi # 7 and \;; = — Z#i Aij- Now, the price of a rating dependent payment,
C(T,nr) can be calculated as

[ — ST dti| ; W T,i)
= p(0,7) XK: (eAT)W. C(T, 1)

=1

where e is the matrix exponential of A and p(0,7) is the price of a zero-

coupon treasury with maturity 7.
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More generally, we will let the transition intensities depend on the state
variables. Denote the matrix of transition intensities by Ax (¢) and the default
intensity by Ax (7). We will work with two specifications of the generator.
For some recoveries one specification work better than the other and for other
recovery assumptions it is the other way around. The first possibility is to
let default be a state “outside” the rating system. In this case the Markov
Chain is a pre-default rating process and the generator for a system with two
non-default states would be

1 _ _)\12 )\12
Ax(t) = { Mot Ao

Here the default intensity, A% (n;), would be modulated by the pre-default
rating process. The other possibility is to let the Markov Chain include a
specific state for default which typically will be the last state, K. This state
is absorbing so for a system with two non-default states the generator would

be
—)\12 — )\13 )\12 )\13

A%( (t) = Ao —Ao1 — Aag Agg
0 0 0

In this case default has already been taken care of so \%(n;) = 0. If A\j3 =
A (1) and Xoz = A% (2) these to systems are equivalent.

We wish to be able to handle both specifications, therefore we will work
with a general generator Ax (¢) and an intensity for leaving the rating system
Ax (1:). In the following we will call the intensity for leaving the rating system
a default intensity. This is a slight abuse of language. As we saw if the rating
system already includes default Ay (7;) = 0 since there is no way to leave the
rating system. The actual default intensity is included in Ay ().

From Duffie and Singleton[26] and Lando[43] we know that the value of
a defaultable payment can be found by discounting the promised payment
with 7(X}) + Ax (). Define the martingale Y; by

Y, = [ — J T(Xa)+HAx (s dSC(T, UT)]
and the function f(t, X;,n;) as
[, Xe,m) = [ I r(Xs)FAx V(T UT)]

which is the price of a defaultable claim paying C(T,nr) at time T
Using I[t0’s lemma

AYy = = (r(X,) + Ax (m) Yodi + ¢ JorCer ot o gy



2.4. A RATING BASED MODEL 31

Since Y; is a martingale the drift must be 0, hence the drift of f, us(¢), have
to satisfy

pp () = (r(Xe) + Ax (me)) f (2, X, m0) (2.4)
Define the differential operator by
_of of 1 0 f

then using It6’s lemma for semimartingales with jumps (see e.g. Protter[52])
we find

f(ta Xtant) - f(oaX(]aTIU)
t
= /0 Df(s, Xoms)ds+ Y (f(s. Xe,ms) = f(5, X,ms=)) + My (2.5)

0<s<t

where M; is a local martingale.
Define \; = — (Ax(t)),; which is the intensity for leaving state 7. Then,

Z (f(SaXs,??s) - f(SaXs,??s—))

0<s<t

t
_ / My s [Af (s, Xoyms)| Any # 0] ds + M?
0

t K )\
= [ S T X k) = s X)) ds

A
k=1k#ns ="

t K
— / > A (s, Xy k) ds + M (2.6)
0 k=1

where M is a local martingale.
Denote the K-dimensional vector of any rating dependent function with
a bar on top. For example

f(t,z, 1)
[t z) = :
ft,z, K)

then using (2.4), (2.5), and (2.6) we find a K dimensional PDE for f
Df(t,x) + Ay (1) f(t,2) — D (r(z) + As) f(t,2) =0 (2.7)

with the terminal condition f(T,z) = C(T).
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2.4.1 Closed form solutions for the rating model

In general (2.7) has no closed form solution and numerical procedures are
called for. However, if the number of state variables is greater than two
numerical schemes as finite difference will be rather slow. When considering
defaultable claims it is reasonable to assume that there is one state variable
for the interest rate, one for the general default intensity in the economy, and
one firm specific state variable. Therefore, we are interested in models that
have closed form solutions. In Lando[43] closed form solutions are obtained
if we assume that there exists K linearly independent eigenvectors of Ax ()
all independent of X;. We will show this result more generally.
Let B € REXE*n and define

where the product is defined as (Bz);; = Y, Bijpxr. Also define K x K
matrices By,..., B, by

(Bi)jt = Bjri fori=1,...,n

Now, given the evolution of the state variables Ax(t) is just a matrix of
time-dependent intensities. Hence, we can define a conditional Markov chain
given the state variables. Define the conditional transition probabilities by
Py (s,t) where

(Px(s,t));; =P (m = j|Fy V o(ns = 1))
and the unconditional transition probabilities as
P(s,t) = E[Px(s,t)|F]

The conditional Markov chain solves the forward Kolmogorov equation

d
5 Px(s.1) = Px(s,)Ax (1) (2:8)
and hereby, 5
5P (5:1) = E[Px(s.t)Ax (1)| E]

Notice, that in general the unconditional transition probabilities P do not
solve the forward Kolmogorov equation. In Appendix 2.9.1 the differential
equation for P is given.
Equation (2.8) is solved by the product integral
i t—s t—s
Px(s,t) = H I+ Ax(u)du= lim EI—I— p- Ax(s+1

m—00 4
s<u<t

)

m
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which is defined more generally in Gill and Johansen[29] where they also
show some properties of the product integral.
For example for a matrix Ax(u) = UDx(u)U ™!

I] 7+ Ax(w)du=U ( I] 7+ Dx) du> Ut

s<u<t

This can be seen by observing that the right hand side solves (2.8).

In the case where n = 1 the product integral is just the exponential
function and in the case of diagonal matrices it is the matrix exponential. In
both cases

which is not easily solved in general. However, if we assume that
B,=UD;U ' foreveryi=1,...,n

where D; is a diagonal matrix of the eigenvalues for B; and U is a matrix of
eigenvectors. l.e. we assume that By,..., B, can all be diagonalized by the
same set of eigenvectors. Let D be the collection of Dy,..., D, such that
D € REXEX1 then

Ax(t) = UDX U™

has the same set of eigenvectors and we can evaluate the transition proba-
bilities as

P(s;t) = E,| [] I+U(DX,)U™" du
s<u<t

= UE, | [] 1+ DX,du| U™
s<u<t

— UE, [6fstDXudui| -1

If X, is an affine process we can solve this by the technique described

previously and
P(S, t) — Ute(s,t)Jr%(s,t)XS U*l
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where (s, t), B1(s,1),...,B,(s,t) are K x K diagonal matrices where each
element solve an ODE of the same type as (2.2) and (2.3) and B(s, ) is the
collection of By (s,t),...,B,(s,1).

We are interested in finding the price of a rating dependent payment,
C(T,nr). The price of such a payment at time ¢ given that 1, =i is

K
e I RED N (P (8,T)),, O(T, k)
k=1

v(t,T,i) = B?

Now, if C(T) is deterministic
B(t,T) = BP e I B0 pe(r, T
_ UEtQ [eftT DXsz(XS)Idsi| U-lCy

where we can use (2.1) if R(z) = po + p1 - 2.

A problem with stochastic eigenvalues and constant eigenvectors is that
we can get a positive probability that some of the intensities are negative.
This problem is very similar to the problem with negative interest rates in
the Vasicek model. Mathematically this is clearly incorrect but it can be
viewed as an approximation to using the generator Ax(¢)" defined by

(Ax(t)+)ij = max()\;,0) i#j
(AX(t)+)ii - _Z(Ax(t)+)ij
7]

One way to ensure the positivity of the intensities is to assume

for a positive function ¢ and A € RE*K. For example A could be the
observed matrix of transition intensities and g could be a function of the risk
adjustment and firm specific variables. This method is equivalent to having
a stochastic maturity. To see this remember that for g = 1

P(t,T) = AT

and in general
P(t7 T) = E eAftTg(Ssz)dS

so the maturity is ftT g(s, X,) ds instead of T — 1.

A problem with this model is that i—:l is constant for every 4,7, k,l =
1,..., K. However, notice that the fraction between the spreads observed
on different firms see Figure 2.4 do not have to be independent of the state
variables since we allow for firm specific variables in the function g.
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2.5 Analysis of rating based models

For corporate indexes we have a lot of data available but for single firms with
special features, e.g. highly volatile firms or counter cyclic firms, the data
might be inadequate. However, we might still be able to use some of the
general data, for example yield spreads of indexes or estimated generators.
In the following we will analyze different rating models to get an idea about
which variables can be implied out from the prices and for which parameters
can we use the empirically estimated values.

2.5.1 Empirical transition intensities

Since the step-up provision is linked to the rating of Deutsche Telekom it is
natural to use a rating based model for default. For a bond with step-up
we are interested in the transition probabilities between rating classes, not
just the default probabilities. The simplest model is to assume independence
between the interest rate and the transition probabilities and assume no risk
adjustment of the transition intensities. For this model we will also assume
that there is O-recovery. In this case the pricing formula for a corporate bond
with rating dependent coupons is

N

o(t,T) = _p(t,Ty)P(t,T;)Cr,

=1

where T; are the payment dates for 7 =1,..., N.

On CreditMetrics’s website we have downloaded an empirical estimated
matrix® of 1-year transition probabilities. In Table 2.1 we have given these
estimates for a rating system with 17 non-default rating categories. Using
these transition probabilities and the yields on the treasuries shown in Figure
2.3 we find theoretical corporate bond prices of the three Deutsche Telekom
bonds. The results are shown in Figure 2.7.

We can see that these prices are all too high compared to the observed
prices even though we have assumed 0-recovery which is not a realistic as-
sumption. This suggests that a risk adjustment on the transition probabili-
ties is needed to get a higher discounting and hereby lower prices. This is of
course not surprising. Furthermore, the differences between the theoretical
prices of the three bonds are quite different from the observed differences.
Another problem with this model is that bond prices would be the same for
different firms if they are rated the same.

5The matrix of empirically estimated transition probabilities was downloaded on April
7 2001.
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Figure 2.7: Theoretical bond prices using empirically estimated transition
probabilities.

2.5.2 Stochastic recovery rate

In Das and Tufano [15] they propose a model with a stochastic recovery rate
such that prices differ for firms with the same rating. Their model is simple
to calibrate to the observed prices and works well for a single issue of bonds.
However, in our case we have 3 different bond issues from the same firm with
identical recovery rates.

Define the risk adjustment by b € R and let the transition probabilities
under @) be denoted by Q(s,t). Define the one year risk adjusted transition
probabilities by

Q(0,1) =(1—-b)I+0bP(0,1)

where P(0, 1) is the matrix of empirical transition probabilities given in Table
2.1. As we can see in Table 2.1 default is defined as the last category which
is absorbing.

We will use a fraction, ¢;, of the promised payment as recovery. This is
the same assumption used in Jarrow, Lando, and Turnbull[33] and in Das
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and Tufano[15]. Define

N

o(t,T) = ZQ(taTz)EtQ [e— iy, dsOTi]

i=1

where (CTi)K = 5Ti (C_’Tz)
ratingisk=1,..., K — 1.
We wish to calibrate the recovery to the observed prices. In this setup all
we are interested in is the expectation of the recovery rate under the forward
measure, which we will denote (¢, T;). This is what we will calibrate, hence
we only need a time dependent recovery rate. Now, the pricing equation is

o, and (C_’Ti)k is the payment at time 7; if the

N

o(t,T) = p(t, T)Q(t, T)C(t,Ty)

=1

where (C(t,T;)) . = 0(t, T;) (C(t,T;)) x_, and (C(t,T;)), = (Cr,), for every
E=1,..., K —1.

Since we only have a 5, 8, and 10 years bond we assume that §(¢,1) =
- =0(t,5),0(t,6) =---=0(t,8),and 6(¢,9) = (¢, 10). First, we find 6(¢,1)
by calibrating the 2005 bond, then we find §(¢,6) by calibrating the 2008
bond, and finally we find §(¢,9) by calibrating the 2010 bond. We have done
this for the data on October 10 2000 for different choices of risk adjustments
and the results are shown in Figure 2.8. As we can see we will need a rather
large risk adjustment to get recovery rates between 0 and 1. Actually, we
get negative probabilities in the diagonal which is because of the way we
have chosen to change measure. This is similar to the method used in Das
and Tufano[15]. They use a different risk adjustment for each row whereas
we use a single adjustment for the entire matrix. Furthermore, the expected
recovery rates changes with more than 0.2 for every risk adjustment. It is
hard to find an economic reason for this large increase in expected recovery
rates. Also if we choose other ways to change measure the conclusion will be
the same, that the expected recovery rate has to vary a lot over time.

In both Duffie and Singleton[26] and Lando[43] it is shown that there is a
close relationship between the default intensity and the recovery rate of pre-
default market value. The risk adjustment for default with a positive recovery
rate should be A\;(1 — §;) so not surprisingly a higher default intensity can be
compensated by a higher recovery rate. So it might be hard to distinguish
the two. Instead of making the recovery rate firm specific and stochastic we
will in the following let the intensities be firm specific and stochastic.



38 CHAPTER 2. STEP-UP PROVISIONS

1.3

—— 1-5 year recovery
- 6-8year recovery
9-10 year recovery

1.1

Recovery
0.5 0.7 0.9

0.3

0.1

-0.1

T T T T T T T T T 1
35 40 45 50 55 60 65 70 75 80 85

Risk adjustment

Figure 2.8: Recovery rates chosen such that the theoretical bond prices
matches the observed prices on October 10 2000 for different values of the
risk adjustment.

2.5.3 (@-dynamics for the Markov Chain

It is not easy to find a specific generator for Deutsche Telekom with 17
different non-default ratings. We are only interested in the behavior under
(2 so we might not need the empirical structure with 17 non-default ratings.
We only need to distinguish between different payments. Therefore, we will
collect all ratings giving the same coupon in one rating. Since both the
Deutsche Telekom bonds with step-up provisions only have one trigger level
we will consider a Markov chain with two non-default ratings, which we will
try to fit to the observed data.

When the bonds with step-up provisions was issued Deutsche Telekom
was rated Aa2 but as the yield spread in Figure 2.4 shows the market viewed
Deutsche Telekom more as an A rated firm. Therefore, we have chosen to
let the yield spread for corporate bonds with an A rating also seen in Figure
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2.4 be a state variable. So the generator is a 3 x 3 matrix including default

where B is a matrix of coefficients which we will estimate using the observed
prices on all the three Deutsche Telekom bonds.

We have estimated B by least squares. Let v;(¢, T, k;) be the theoretical
bond price for bond 7 = 1, 2, 3 in this model where £, is the rating of Deutsche
Telekom at time ¢. Furthermore, let w;(¢,T) be the observed bond price for
j=1,2,3. We find the estimated coefficient matrix as

1 3
B — arg ZZ Vj tzaT ktZ j(tiaT))Q
=1 j=1

{B|B is a generator

where [ is the number of observations and ¢; is an observation time.
For our sample we find

R —9.3662  9.3662  0.0000
B = 8.2627 —14.6603 6.3976
0.0000 0.0000  0.0000

Using B generates the prices shown in Figure 2.9. As we can see we are
getting the right levels for the three bond prices but we do not get enough
volatility. This is not surprising since the index has less volatility than a
single bond issue. One way to get around this is to use a function of the
index yield spread and then try to fit the volatility to the observed data.
Another way to get the volatility right is to use a stochastic variable specific
for Deutsche Telekom.

2.5.4 State variable for Deutsche Telekom

In this section we will model the matrix of transition intensities as
Ax(t) = Ag(t, Xy)

where A is the estimated intensities given in Table 2.2. We will assume that
Y, = g(t, X;) is a CIR process

dY; = ko + kY, dt + 0/Y, dW,

So Y, can be a function of specific variables for Deutsche Telekom and possibly
also the risk adjustment.
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Figure 2.9: Theoretical bond prices using ()-dynamics for the generator.

A has 18 different eigenvalues, two of which are complex.® Let U be a
matrix with the eigenvectors and D a diagonal matrix with the eigenvalues.
We will assume that Y; is independent of the treasury, then

N
o(t,T) =Y p(t, T)UE? [eD Sy ds} U-'Cr,

=1

For our calculations we have chosen the parameters

k(] = 65
ki = =275
o = 245

Y; is chosen to match the observed prices of the 2008 5.25% bond which is the
bond with no step-up provision. Both the theoretical and observed prices are

6The complex eigenvalues do not create a problem. We just need to solve complex
versions of (2.2) and (2.3). It can also be verified that we end up with real prices.
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Figure 2.10: Theoretical bond prices using a specific stochastic variable for
Deutsche Telekom.

shown in Figure 2.10. Since the parameters of Y; might depend on the rating
of Deutsche Telekom we have assumed that Deutsche Telekom has been rated
A2 since the large issue of the two bonds with step-up provisions. As we saw
in Figure 2.4 it looks as if the market already viewed Deutsche Telekom as
an A rated firm at that time so this might be a close approximation. We
have excluded 2008 5.25% bond since Y; is found such that the theoretical
price exactly matches the observed price. As we can see from the figure we
get the right volatility and level using this model. The results might be even
better for a different set of parameters. In Section 2.8 we will briefly give an
estimation procedure for corporate bond observations in an affine setting.

2.6 Threshold model

The rating-based model seems like a natural choice for pricing corporate
bonds with step-up provisions. One problem with the approach, however,
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is the need to specify the parameters for the transition intensities and the
associated risk premia. The calibration methods developed to deal with
this typically assume that we have a large universe of comparable bonds
which behave fairly homogeneously within each rating category. For a sector
undergoing very significant structural change, as is the case with the telecom
sector, there is a large amount of idiosyncratic risk for each bond issuer
which needs to be modeled. We can accommodate this in our rating based
setting by having idiosyncratic risk factors affecting the transition intensities
for each firm separately in addition to systematic terms influencing credit
spreads in general. The associated model easily becomes hard to estimate.
In this section we will present a computationally tractable model with fewer
parameters.

Define a rating function by v : R* — [0,00) and K — 1 levels 0 < v <
Yo < --- < 7vg_1. Fori=1,..., K the rating process is defined to be

m=1i<v(Xy) €[vi1,vi)and t <71

where vy = 0, 7x = oo. We also define an absorbing state D for default such
that 7, = D & 7 < t. Now, the transition probabilities are

P(77t = Z) =F |e” Jo )‘(Xs)dsl{%ilgy(xt)<%}:| fori=1,..., K

and |
P(py=D)=1-F [ef I A(Xs)ds}

For example, if v(X;) = A(X;) then the rating jumps whenever the de-
fault intensity crosses a level. Another example would be v(X;) = A\(X}) —
AMBOR( X)) where AMBOR(X) is the default intensity for a refreshed AA. In
this case it is the spread to the LIBOR rate which determines the rating
category.

In the case where the state variable X; represents firm value this is similar
to having a classical model, as in Merton[49] where default is defined as the
first hitting-time of this process to a certain boundary defined by the debt
commitments of the firm. It is also similar to the CreditMetrics definition of
rating transitions induced by changes in asset values. However, it is different
in two important respects. First, it considers an intensity of default for all
asset values, and does not link default to the first-hitting time of these assets.
As shown in Duffie and Lando[22], it is consistent with a model of the Merton
type - even in a diffusion based setting, to have an intensity of default as long
as there is imperfect information of the firm’s assets. Furthermore, contrary
to, for example, the CreditMetrics approach, it allows for variables different
from asset value to influence the rating movement. As shown in Sobehart et.
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al.[56] there is considerable evidence that variables in addition to asset value
have predictive power for default, even when asset value estimates are in-
cluded as covariates. This is also consistent with the incomplete information
explanation laid out in Duffie and Lando[22].

To calculate the transition probabilities we can use the method of Duffie,
Pan, and Singleton[23] if we assume that both A(x), v(z) are affine in z. For
d € R",y € R define the function f by

fy,t,d, X3) = E [6_ i oo dsea'XTl{d-XTSy}}
Now, the Fourier transform of f is

¢(v) = E [ei I potor X dse(‘“ri”d)'XT]

— eaa+ivd(T)+,8a+ivd(T)'X0

The Fourier transform is inverted to evaluate the function f. Assume
that [, [¢(v)] dv < oo then for y,y, € R with y; < y»

d, X ax) =L [ )

t — t - | - -

f(y27 y U t) f(yla s &y t) 271—/[& v QZS('U) v

Since ¢ is the Fourier transform of a real function ¢(—v) = ¢(v)* where z*
is the complex conjugate of z. Using this we find

1 e YL _ ey 1 [ Im[p(v) (et — e ivy2)]
g1 [l

21 Jr w m

dv

This technique can also be used to price the step-up provisions of the
type
C(T,nr) = c+ slr>i = ¢+ s1p(xr)>yo1)

if we assume that R(z) + A(z) = po + p1 - x,v(x) = vy + 11 - . In that case
the price is given as

EtQ [ei Jpotor X (C +s— Sl{Vl-XTS%'—l—Vo})]

and the Fourier inversion technique can be used to evaluate this expression.

2.7 Analysis of the threshold model

KMV uses asset value and a default point to estimate a default probability.
We will in the following give an example, using monthly KMV data, to find
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the value of the step-up feature for the Deutsche Telekom bonds. Define the
asset value, X;, as the solution to the SDE

dXt = TXt dt —+ U(Xt) th (29)

and let the default point be a constant D. In Figure 2.11 we have plotted
the logarithm of the default intensity log A, as a function of log(3%) for the
time after the issue of the bonds with step-up provisions. As we can see this

> W
‘5; rl‘ — X
g x
£
E x
o |
5 9 X
o
=2
j=2
2 X
0
< 4
I
Q
c\l'; — X
\ T T T T T
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log(asset value/default point)

Figure 2.11: We have plotted log A\; as a function of log(%) for the time
after the issue of the bonds with step-up provisions Notice the almost affine
relationship.

function can be approximated by an affine function, hence, we approximate

X
log (100),) = 4 —4log 3'5

64 Xt -4
o= — (=
<o 100(1))

o x = p(00) T Zpe e (2.10)
t — 64 t — \/E t .



2.7. ANALYSIS OF THE THRESHOLD MODEL 45

Assume that ); is a CIR process
dX\y = ko + ki A dt + o/ N AW,

We are interested in finding parameters for \; using the KMV data. Use [to’s
lemma on (2.10)

dX,

€ Heo?

44/10 3210

De 502 ky 50
= NEP = — k| — =X, dt — ——=X2adW,
410 < 8 0) 4T gezpe it T

and then compare this expression to (2.9). We find

= —D—=)\"®d\+D A dt

502
Mo = 5
kl = —A4r
2e2D?
g = —57)(5)0'()(,5)

We will assume that » = 0.05 and approximate o by using the KMV
estimate of the asset volatility, hence

O'(Xt) = 02Xt
&S o o~ 0.037

and we can find

ko = 0.000853
kl == —02

where the long run mean is 0.0043.

In Figure 2.12 we have plotted both the default probabilities estimated by
KMV and the rating given by Standard and Poor’s. As we can see modeling
ratings as different levels of the default intensity seems to be a good idea.
Also, the increase in default probability is earlier than the rating change by
Standard and Poor’s. Just as the market seemed to price Deutsche Telekom
as an A rated firm even before it was actually downgraded. From the figure
we find a default probability of more than 0.3% is equivalent to a rating of
BBB or lower.

We are now able to price the step-up provision. l.e. the possible 50 bps
increase in coupon. The results are shown in Figure 2.13. Not surprisingly,
the fluctuations are very similar for both bonds. Also, comparing to Figure
2.12 we can see that the value of the step-up provision increases as the default
intensity increases.
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Figure 2.12: We have plotted both the rating of Deutsche Telekom given by
Standard and Poor’s and the estimated default probability given by KMV.
Notice the log scale on the y-axis. Source Nykredit Markets and KMV.

2.8 Estimation

For affine models we can very easily calculate the characteristic function for
the state variables using (2.1) with py = p; = 0 and a = iu. However, the
state variables are usually not observed. We are observing a transformation
of the state variables. Assume, that we have one state variable which is the
default adjusted interest rate, X; = r; + A\; defined by the SDE

Xt = k() —+ letdt+ o/ Xtth

This is only for illustrative purposes so to simplify things a little we will
assume that the risk adjustment is 0, hence, X; has the same distribution
under P and Q).

We are now observing corporate bond prices Y}, ..., Y}, paying c; at time
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Figure 2.13: We have plotted the value of the step-up provision for both the
Deutsche Telekom 2010 and 2005 bonds using the KMV data.

T; for j=1,...,N. Y, is a function of Xj, since
N
Z Bi=t+bo(Ti—t)X = f(1; X,)) foreveryi=1,...,1

f is increasing in the second argument so the inverse exists and can be found
numerically

Xti — fﬁl(tii 1/vt-l)

To estimate the parameters of the model we will assume that the condi-
tional distribution of Y}, given Y}, | is Gaussian. We can find the conditional
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mean as

E I:Y;fz| }/ti—l:|
N
= F Z cjeao(TJ‘—tiHﬂo(Tj—ti)Xti

=1

Xti—1]
N

_ § :Cjeaao(Tj—ti)(ti_ti—l)‘i'ﬂﬂO(Tj—ti)(ti_ti—l)Xti_l

i=1

N
_ o0 (T —t)(ti—ti—1)+Bpy(1; —epy(ti—tioa) f 1 (t,Yi-1)
§ : J
J=1

and similarly we find the conditional variance. We now have an approximate
conditional distribution of Y}, given Y}, , and we can use maximum likelihood
estimation. In the case of Deutsche Telekom 2008 5.25% bond after the large
issue of bonds with step-up provisions we find the parameters to be

ko = 0.0231
ky = —0.329
o = 0.0643

Hence, the long term mean is 7.02%.

2.9 Appendix

2.9.1 Stochastic intensities

Let \;; be a stochastic variable defined as the intensity for a jump of the
Markov chain from 4 to j. At time ¢ the intensity for a jump to j is A,,; so
a martingale is defined by

t
Lini=j} — /0 A du

hence

t K]
FE |:]'{77tj}_/0 )‘T]uj du IFS:| = 1{773]}_/0 )\nu]’ du

t
& P(p=jF) = l{nsj}+E[/ Apaj du

:
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Define
pij(s,t) = P (n, = j| Fy)

if the Markov chain is in 7 at time s, i.e. ny = 7. Now,

:

t
= 1{z‘j}+/ E [\, Fs] du

t
pij(S,t) = l{i:j} + E [/ )‘ﬂuj du

K

t
= 1{z‘=j}+/ > E [Mili=iy| Fa] du
S k=1

t K
— L+ [ 3P (0= HIE) gty Do 2] da

t
= 1{z‘j}+/ > pik(s,0) Bry=ina=ry [\ Fs] du
5ok

where E,—y [X] is the expectation of X on the set {w|n(w) = k}.
Differentiating with respect to ¢ and using matrix notation
OP(s,t)
ot

where ['y(t) € R swith (T5(1));; = Epna=im=r) [Mj| Fs] and we define
the product as (AB);; = >, AiBik;-

= P(s,t)T's(t) P(s,s)=1



Aad Aal AaZ Aas Al AZ AJ Baal baa’Z baas Bal baZ bBas bl B2Z B3 Caa D
Aa? | 8865 .0680 .0287 .0062 .0064 .0028 .0011 .0000 .0000 .0000 .0004 .0000 .0000 .0000 .0000 .0000 .0000 0.0000
Aal .0295 .7950 .0815 .0652 .0238 .0019 .0000 .0021 .0000 .0000 .0010 .0000 .0000 .0000 .0000 .0000 .0000 0.0000
Aa2 .0079 .0250 .8093 .0927 .0423 .0113 .0079 .0018 .0005 .0000 .0000 .0000 .0006 .0006 .0000 .0000 .0000 0.0000
Aa3 .0012 .0039 .0321 .8058 .1010 .0375 .0090 .0021 .0026 .0020 .0000 .0009 .0011 .0000 .0000 .0000 .0000 0.0009
Al .0005 .0009 .0067 .0483 .8134 .0771 .0299 .0081 .0033 .0016 .0046 .0034 .0007 .0015 .0000 .0000 .0000 0.0000
A2 .0003 .0007 .0022 .0065 .0575 .8069 .0740 .0329 .0081 .0044 .0029 .0012 .0013 .0003 .0006 .0000 .0003 0.0000
A3 .0005 .0010 .0002 .0022 .0150 .0892 .7554 .0676 .0395 .0144 .0063 .0019 .0024 .0040 .0004 .0000 .0000 0.0000
Baal | .0005 .0000 .0013 .0013 .0017 .0315 .0849 .7393 .0764 .0357 .0116 .0043 .0041 .0059 .0011 .0000 .0000 0.0005
Baa2 | .0000 .0011 .0015 .0014 .0015 .0091 .0353 .0773 .7521 .0752 .0193 .0054 .0072 .0053 .0048 .0027 .0000 0.0007
Baa3 | .0004 .0000 .0000 .0006 .0023 .0063 .0050 .0386 .1001 .7052 .0697 .0304 .0222 .0086 .0031 .0014 .0016 0.0044
Bal .0010 .0000 .0000 .0000 .0021 .0011 .0067 .0090 .0333 .0736 .7376 .0505 .0396 .0100 .0134 .0109 .0039 0.0072
Ba2 .0000 .0000 .0000 .0004 .0000 .0016 .0017 .0042 .0057 .0256 .0853 .7286 .0619 .0137 .0427 .0158 .0058 0.0070
Ba3 .0000 .0003 .0002 .0000 .0000 .0020 .0018 .0014 .0025 .0087 .0258 .0544 .7590 .0287 .0579 .0244 .0071 0.0258
B1 .0003 .0000 .0003 .0000 .0006 .0005 .0020 .0009 .0034 .0038 .0039 .0251 .0687 .7619 .0275 .0496 .0100 0.0416
B2 .0000 .0000 .0008 .0000 .0014 .0000 .0006 .0014 .0011 .0017 .0038 .0172 .0372 .0576 .6789 .0818 .0280 0.0886
B3 .0000 .0000 .0006 .0000 .0000 .0000 .0004 .0015 .0016 .0022 .0020 .0043 .0152 .0502 .0347 .6977 .0522 0.1375
Caa .0000 .0000 .0000 .0000 .0063 .0000 .0000 .0000 .0063 .0063 .0084 .0000 .0223 .0214 .0151 .0278 .6105 0.2756
D .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000

Table 2.1: A matrix of empiricaly estimated one year transition probabilities.
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Agd Aal AaZ Aas Al AZ AJS Baal BaaZ Baas bal baZ bas Bl B2 B3 Caa D
Aad | -1224 .0806 .0298 .0024 .0055 .0027 .0010 .0000 .0000 .0000 .0004 .0000 .0000 .0000 .0000 .0000 .0000 .0000
Aal .0347 -.2359 .0997 .0752 .0224 .0000 .0000 .0025 .0000 .0000 .0013 .0000 .0000 .0000 .0000 .0000 .0000 .0000
Aa2 .0087 .0307 -.2165 .1125 .0444 .0089 .0083 .0014 .0001 .0000 .0000 .0000 .0007 .0007 .0000 .0000 .0000 .0000
Aa3 .0012 .0042 .0391 -.2231 .1227 .0403 .0071 .0008 .0026 .0022 .0000 .0008 .0012 .0000 .0000 .0000 .0000 .0010
Al .0005 .0007 .0070 .0591 -.2144 .0923 .0332 .0069 .0024 .0009 .0053 .0040 .0003 .0017 .0000 .0000 .0000 .0000
A2 .0003 .0007 .0022 .0057 .0701 -.2243 .0919 .0381 .0058 .0036 .0026 .0009 .0013 .0000 .0007 .0000 .0004 .0000
A3 .0005 .0011 .0000 .0019 .0150 .1124 -.2928 .0859 .0469 .0147 .0063 .0014 .0020 .0046 .0000 .0000 .0000 .0000
Baal | .0006 .0000 .0015 .0013 .0000 .0341 .1105 -.3153 .0972 .0429 .0119 .0039 .0035 .0069 .0006 .0000 .0000 .0003
Baa2 | .0000 .0014 .0017 .0014 .0010 .0070 .0410 .0999 -.2988 .1003 .0202 .0040 .0068 .0054 .0059 .0029 .0000 .0000
Baa3 | .0004 .0000 .0000 .0005 .0025 .0066 .0005 .0462 .1342 -.3634 .0928 .0380 .0254 .0098 .0009 .0000 .0018 .0039
Bal .0013 .0000 .0000 .0000 .0025 .0001 .0074 .0072 .0375 .0992 -.3145 .0650 .0481 .0103 .0144 .0124 .0043 .0049
Ba2 .0000 .0000 .0000 .0005 .0000 .0017 .0013 .0041 .0029 .0293 .1140 -.3254 .0781 .0134 .0561 .0163 .0061 .0016
Ba3 .0000 .0004 .0002 .0000 .0000 .0023 .0019 .0011 .0016 .0088 .0298 .0709 -.2836 .0332 .0773 .0270 .0071 .0218
B1 .0003 .0000 .0003 .0000 .0006 .0003 .0023 .0006 .0038 .0037 .0016 .0300 .0879 -.2774 .0322 .0644 .0109 .0385
B2 .0000 .0000 .0010 .0000 .0017 .0000 .0004 .0016 .0007 .0011 .0027 .0212 .0460 .0749 -.3949 .1151 .0381 .0903
B3 .0000 .0000 .0007 .0000 .0000 .0000 .0004 .0018 .0013 .0023 .0015 .0037 .0154 .0659 .0478 -.3675 .0787 .1480
Caa .0000 .0000 .0000 .0000 .0089 .0000 .0000 .0000 .0084 .0084 .0115 .0000 .0301 .0286 .0206 .0399 -.5008 .3445
D .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

Table 2.2: A matrix of transition intensities calculated from empiricaly estimated transition probabilities.
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Chapter 3

Valuation of m-to-default
contracts.
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3.1 Introduction

An m-to-default contract is a type of OTC credit derivative whose payoff
depends on the occurrence and timing of the first m defaults in an under-
lying basket of defaultable bonds. It is a generalization of a first-to-default
swap or a basket default swap. The valuation of m-to-default contracts is
useful for the contracts themselves as well as for pricing each of the tranches
in collateralized debt obligations (CDO’s) (for more on CDO’s see Duffie
and Garleanu [20]). In a CDO the tranches are prioritized according to the
number of defaults in the underlying collateral. For instance the lowest pri-
oritization will only receive payments until a specific number of defaults have
occurred in the collateral. This is exactly the structure of the payments in
an m-to-default contract.

First-to-defaults are treated in Duffie [18], Kijima [36], and Kijima and
Muromachi [38]. In the latter paper they also treat second-to-defaults. The
general m-to-default is much more complicated than the first-to-default since
in a heterogeneous pool the valuation will depend on the order in which firms
default. As m increases the number of different default orderings explodes.
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For a pool of 50 firms there are more than 10! different orderings in which
the first 10 defaults can happen. This problem is often attached by approx-
imating the underlying pool with a homogeneous pool in which firms are
independent, so that, the ordering of defaults is no longer important. Fur-
thermore, in this case the number of defaults at any time has a binomial
distribution and the valuation problem simplifies. Moody’s has developed a
way to construct an approximating pool based on so called diversity scores,
see Cifuentes and O’Connor [11]. However, even if we can create an approx-
imating pool where the number of defaults have the same expectation and
variance as in the original pool the distribution of defaults in the original
pool might be very different from the binomial distribution. Hence, we can
not be sure how well the m-to-default contract is approximated.

In Duffie [18] default is described by an affine intensity process. This leads
to analytical' pricing of the first-to-default contracts. We will decompose
the m-to-default into a portfolio of first-to-defaults each of which we will
price using affine intensities. Unfortunately, for a heterogeneous pool we will
need a large number of first-to-default contracts to price an m-to-default
analytically. The particular default ordering is no longer important only the
number of ways m firms can default from the underlying pool. Again, if we
have 50 firms and m = 10 then this number is (i’g) ~ 10'°, We will propose a
simple way to approximate the value of an m-to-default contract. Instead of
making the entire pool homogeneous we will divide the pool into a number
of subsets and make firms in each of the subsets homogeneous. Imagine a
pool of 32 heterogeneous firms. This pool can be divided into 4 “buckets”
each containing 8 firms. The new approximating pool is still a pool with
32 firms but now we only have 4 types of firms. This speeds up the pricing
considerably. As we will see this approximation works really well even when
we are only using a few buckets. One advantage over an approximating pool
where the number of defaults is binomially distributed is that here firms in
the approximating pool do not need to be independent.

The paper is organized as follows. First we will define the setup in Section
3.2. Then in Section 3.3 we will define first-to-default contracts and give
some results from the literature on the pricing of these credit derivatives. In
Section 3.4 we extend this to include more general m-to-default contracts
which can be evaluated as a sum of first-to-default contracts. Section 3.5
adapts an affine setup to the setting of Section 3.3 such that the pricing can
be done efficiently. Section 3.6 presents a way to approximate a large pool of
different firms by using buckets. In Section 3.7 we study this approximation

! Analytical in the sense that the price of a first-to-default contract is the solution to a
set of ODE’s which can be solved very fast.
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when valuating two different contracts. Section 3.8 extends the analysis
to allow default intensities to depend on other defaults in the pool. Finally,
Section 3.9 concludes. All the proofs are in Appendix 3.10.1 and in Appendix
3.10.2 we give the analytical solutions of the ODE’s used in this paper.

3.2 The setup

We consider a filtered probability space (2, F, (F;),sq, P) and let the filtra-
tion be defined as the natural filtration generated by the price processes. Let
P be an equivalent martingale measure and all probabilities and expectations
will be calculated with respect to this equivalent martingale measure.

We will also assume the existence of an interest rate process

dry = p(t,r)dt + o(t,r,)dB;

which represents a (locally) riskless investment opportunity. Now, the value
of any security, S; with cumulative dividend process D;, can be written as

T
S,=F [/ e~ Jirvdugp 4 e S rudug,, (3.1)
t

see for example Duffie[17].

Furthermore, consider n stopping times 74, ..., 7, which can be thought of
as the arrival of defaults in the underlying pool of firms. Assume the existence
of n non-negative, F;-predictable processes A, ..., A\, which satisfy

¢
/ Ai(s)ds < oo for every t a.s.
0

and for which .
Lm<ty —/ Ai(s) (1= 1gri<sy) ds
0

is a martingale for every i = 1,...,n. Then we say that \;(¢) (1 - l{ngt})
is an intensity for 7;.> For more details see Brémaud[8]. In the following we
will refer to A; as the pre-default intensity which is very important for pricing
defaultable claims.

Loosely speaking, the pre-default intensity process for a default time 7;
is a first order approximation of the probability that default occurs within a
small time interval At given survival till time ¢

P(r€(tt+At)|r>1) ~At)At

2Notice, that the intensities are predictable with respect to F; and not F; V
g {1{T1SS}’ ey l{Tngs}aO S S S t}.
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3.3 Valuation of First-to-Default Contracts

We will decompose the general m-to-default contracts into a collection of
first-to-defaults. Therefore, we will first review the theory of pricing first-to-
default contracts in an intensity based framework. This approach is described
in Duffie[18] and the most important results for this paper are summarized
below. Also, the proofs of the assertions in this section can be found in
Duffie[18].

The first result is a generalization of the fact that the intensity of the
sum of two independent Poisson processes is the sum of the individual inten-
sities. Therefore, the first default from a pool of firms can be described as a
new default process with a higher intensity. Hence, pricing a first-to-default
contract becomes very similar to pricing a defaultable bond.

Lemma 1 Let 7; be a stopping time with pre-default intensity process \; for
i € {1,...,n} and assume that P(r; = 7;) = 0 for every i # j. Then Y ., X
is an pre-default intensity for the stopping time 7 = min(7y, ..., 7,)

If the pre-default intensity processes \; all depend on a set of exogenously
given state variables, X;, then the survival probability is

P(r; > t) = E [e JoXi(s:Xe)ds (3.2)

For more on valuation using stochastic default intensities see e.g. Lando[43].
Generally, we have to be careful when calculating survival probabilities us-
ing this formula. Kusuoka[40] gives a counter example where the survival
probability under an equivalent probability measure is not given by (3.2).3

Assume we have a claim, .S, which pays Z conditional upon survival of a
firm till time 7. In the event of default at time ¢ the claim pays Y (¢). Let A
be the pre-default intensity for this firm and 7 the time of default. In Duffie
& Singleton[26] and Lando[43] it is shown that the promised payments no
longer should be discounted with the riskless interest rate, but a risk adjusted
rate. This adjustment is exactly the pre-default intensity.

Proposition 1 Define
T
V(t) = Ey [/ e Ji rutAW) WN(s)Y (s) ds + e~ S rutA(w) du 7
t

with V(T) = 0. If AV(r) = 0 almost surely then S(t) = V(t) for every
t<T.

3The problem with calculating survival probabilities arises when the pre-default in-
tensities are predictable with respect to F; V o {1{71§s}a ool <61,0< s < t} and not
predictable with respect to F;. Hence, in our setup we do not have that sort of problem.
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To price a first-to-default contract we combine Lemma 1 and Proposition
1, since the default of such a claim is exactly the first default from a group
of firms. Hence, for a first-to-default contract the risk adjustment is the
sum of the pre-default intensities from the entire group. Assume we have a
group with n firms and now let S be a claim which pays Z conditional on
the survival of all the n firms. In case of default the contract pays Y;(7;) if
firm ¢ is the first firm to default and the time of default for firm 7 is 7;. The
pricing formula for this claim is very similar to that of Proposition 1

Proposition 2 Define A(t) = >, \i(t) and

V(t) = E,

T n
/ e~ firerat Z Ai(8)Yi(s) ds +e” S rutxw du 7
t i=1

and V(T) = 0. If AV (1) = 0 almost surely then S(t) = V(t) for everyt <t

where T = min;—y __, ;.

For these types of contracts default correlation is an important issue. We
allow for correlation through the state variables. In some cases this might not
be enough. In Davis and Lo[16] they use an infectious default model where
default probabilities depend on other defaults in the pool. Here, we have
implicitly assumed that each A is a pre-default intensity for a specific firm
to default. Some of the \’s, say A;, could also be pre-default intensities for a
simultaneous default with a compensation of Y;(7;) in that case. The \’s are,
basically, pre-default intensities for any credit event that will terminate the
contract. This means that the assumption in Lemma 1 that P(r; = 7;) =0
does not exclude simultaneous defaults of firms.

3.4 First m to default

We will define an m-to-default contract as a contract defined on an underlying
pool with n firms. Let U™"™ be a contract that pays out an amount, Y, for
each of the first m defaults where Y might depend on the defaulted firm.
Furthermore, let W™™ be a contract which only has a payoff, Z, at time T
conditional on less than m defaults. Using (3.1) we find

T n
[ e ft " dul{N(s—)<m} Z Y;(S) dN(S)]
i=1

m,n —fT'rsds
wmr =k [6 t 1{N(T)<m}Z:|

Um’n — Et
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In Proposition 2 m = 1 and we would have
V(t)=U""(t) + Wh"(¢)

where UM and W can be evaluated as

T n
/ o S rutA(u) du Z )\Z(S)Y;(S) dS]
t i=1

Wl’n(t) — E [6_ ftT ru+A(u) duZ:|

Ul’n (t) — Et

First, we will assume that there is no additional payment at maturity, 7.
Let firm 7 be one of the first m to default, and let the time of this default be
7; < T. Then the contract pays Y;(7;) at time 7;.

An m-to-default contract can be computed recursively in the following
way. After the time of the first default there are only n — 1 firms left so
the remaining contract is an (m — 1)-to-default of n — 1 firms. We will
create a portfolio of (m — 1)-to-default contracts that exactly matches the
m-to-default contract.

First, consider the case m = 2 and assume for simplicity that there are no
simultaneous defaults. Then we can create a second to default contract from
a basket of first-to-default contracts. First, buy n first-to-default contracts.
In each of the contracts one party should be excluded from the underlying
pool i.e. each contract is a first-to-default of n — 1 firms. When one party
defaults n — 1 of the n contracts are paid out. The only one not paid out is
the one where the defaulting party has been excluded. Since we only want
one payment at the time of the first default we sell n — 2 first-to-default
contracts including all n firms. This leaves one payment at the time of the
first default and one contract which is a first to default out of the n —1 firms
which are still alive. The payments are shown in Table 3.1.

Define U;™(t) as the value of an m-to-default of j contract. The sub-
vector, [, signifies which firms have been excluded of the original pool of
firms. If the £’th entry is 1 then the £’th firm has been excluded otherwise
the entry is 0 and the firm is still in the pool. That is U7""~(¢) is the price
of an m-to-default of n — 1 firms where firm & has been excluded. Now, we
find

Proposition 3 Assume that firms can not default simultaneously. Then an
m-to-default contract satisfies the recursion

Umn(r) = —— (Z Uty — (o — m)Um_l’"(t)> (3.3)

m—1
k=1
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Position Firm Number of | Payment at Payment at
excluded | contracts first default second default

1 1 Yi(th) 0

j-1 1 Yi(t) 0

J 1 Yi(t1) 0

J+1 1 Yi(t1) 0

Long : : : :
1 1 0 Y(t2)

i+1 1 Yi(t) 0

Short None n—2 —(n —2)Yi(t1) 0
Total Yi(th) Y;(t2)

29

Table 3.1: Portfolio of first-to-default contracts to hedge a second-to-default.
Here, we assume that the first firm to default is 7 at time #; and the second is
J at time t,. We also assume that both defaults occur before maturity such
that ¢ < to < T, otherwise, we would need to multiply the payments with
an indicator function 1y <7y}.

The recursion gives a way to calculate an m-to-default contract as a
portfolio of first-to-default contracts, which can be priced as in Section 3.3.
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For example the price of a third-to-default is

U™ (t)
_ ! (Z U2 (8) = (n 3)U2’"<t>)
4z (g ciz0 - (-
—(n—3) (kzn; U™ (t) + (n — 2)U1’”(t)> )
_ ! (Z SO0 =20 -9+ 020 3)U1’"<t>)
- U0 — (0= 3) 3 et 1)+ L2 = gy

In the last equation we use that Uelkrjrez( )= Uelpﬁl;f (t). We can see that (3.3)
leads us to calculate the same first-to-default contracts over and over again.

A more efficient expression is given below.

Proposition 4 Let n be the number of defaultable firms in the pool and as-
sume that they cannot default simultaneously. Then an m-to-default contract
can be priced as a portfolio of first-to-default contracts and the price is given

by

m—1 .
mon (g _ m—jo1 (V=] —2 1,n—j
U™ (t) = Z(_l) i (m_j_1> Z | U (t) (3.4)
7=0 {le{0, 13 225 =4}

It is possible to extend (3.4) to allow for simultaneous defaults. This can be
done by letting some of the marginal pre-default intensities be a pre-default
intensity for simultaneous default. In this paper we will not consider this
case.

Notice that in Proposition 4 we do not need the reduced form pricing
framework described in Sections 3.2 and 3.3 but as we will see in Section 3.5
this allows for a very efficient pricing technique. This result is purely based
on an arbitrage argument so any m-to-default contract can be priced from a
set of first-to-default contracts no matter which pricing model we choose.*

4The result is also true if we let the pre-default intensities be predictable with respect to
FiVo {1{719}, v lr<6,0<s < t}. However, the pricing of each of the first-to-default
contracts will be more difficult.
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Instead if we are interested in a payment Z at maturity conditioning on
less than m defaults have occurred we can change the recursion (3.3) a little.?
Now, the recursion is

R p— (Z Wb () — (n—m+ 1)WM1’”(t)) (3.5)

m—1
k=1

To see this, if less than m — 1 defaults occur all the contracts pay out Z
and we get %Z = Z and in case of exactly m — 1 defaults we get
Z—jZ = Z from the m — 1 contracts where we have excluded one of the
defaulted firms

Similarly to Proposition 4 we have

Proposition 5 Define N(t) as the number of defaults in the pool of n firms
and let W™" be the price of a contract that pays Z1inry<my at time T then

Wm’”u):le(—l)m“(:[_‘@ill) 2 W

J=0 {1e{0, 137 32, le=3}

3.5 Analytical Solutions

The pricing of the m-to-default contracts is based upon a decomposition into
a large number of first-to-default contracts. Hence, we will need an efficient
method to calculate prices of these contracts. One way is to assume an affine
dependence on a set of state variables which have an affine specification. In
such a setting we have (almost) analytical solutions.

Let X be a p dimensional vector of state variables and define the dynamics
of X by

dX; = u(X,) dt + o(X;) dBy + dJ, (3.6)

where p, oot are affine in X;. B, is a ¢ dimensional Brownian motion and

Jy is a pure jump process with jump intensity v(X;) which is also affine in
X;. Furthermore, the jump size distribution of .J; is independent of X;. X,
is called an affine jump-diffusion.

? Another approach is to keep the recursion (3.3) and let W/*~1"~! pay out Z and

Wm=1n" pay out %”Z"IZ both conditioning on less than m — 1 defaults. In total, if less

than m — 1 defaults occur we get w = Z and in case of exactly m — 1 defaults
we get Z—jZ = Z from the m — 1 contracts where we have excluded one of the defaulted

firms.
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In Duffie, Pan, & Singleton[23] it is shown that for a;,as,a3 € R and
by, by, by € R

Ele ST a1+b1-Xs ds gaztha- X1 (as + bs - XT)‘ Xt}
= (a1 (8) + Bi(E) - X,) e O+BA0-Xe (3.7)

where «; : [0,7] — R and f; : [0,7] — RP solve a set of ODE’s for i = 1, 2.
In that paper they also give the set of ODE’s which needs to be solved. In
Appendix 3.10.2 we solve the ODE’s considered in this paper analytically.

We can use this to price first-to-default contracts. If we assume that
7, Aj(t),log Y;(t), and log Z are all affine in X; we can see from Proposition
2 that all the first-to-default contracts can be priced using (3.7).

Correlation between the default times is induced by the common state
variables. The intuition behind this is that some events e.g. a recession or
an earthquake are likely to make all the firms more volatile.

3.6 A Pool of Buckets

From (3.4) we see that to calculate the price of an m-to-default contract we
need to calculate Z;n:_ol (7;) first-to-default prices. For n = 50 and m = 10
this is more than 3 billion. Instead if we assume that all firms have the same

pre-default intensity then expression (3.4) simplifies to

g =S (22 (e @

i=0 J

Notice, that the number of calculations needed to evaluate this expression
does not depend on the number of firms n in the pool since the number of
terms in the sum is independent of n.

In general firms are not symmetric but Moody’s has developed a principle
in which the original pool of firms is compared to a hypothetical pool of firms
in which all firms are independent and identical.® Now, the m-to-default can
be approximated by a similar m-to-default written on the hypothetical pool
and (3.8) can be used. However, in general we do not know how well we have
approximated the distribution of the number of defaults.

It is difficult to find an approximating pool and even though we match
the expected number of defaults with the original pool we can not be sure

6The number of firms in the hypothetical pool is called the diversity score and this pool
should have the same loss distribution as the original pool. For more on this see Cifuentes
and O’Connor[11].
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that the distribution of defaults is close to the original distribution. For the
contracts we are valuating in Section 3.7 we will not only be interested in
a single point in the default distribution, so we need a good approximation
for the entire default distribution. This can not necessarily be achieved by a
binomial distribution therefore we propose a different approximation.

Instead of approximating with a homogeneous pool of firms we will collect
firms in different buckets and make firms within each bucket identical. Let
the number of buckets be K then K can be any number between 1 and n. If
K =1 all firms are identical and if K = n no firms are identical. Now, we
can approximate the original pool by a pool with less buckets. E.g. let n =4
and let the pre-default intensity of firm ¢ be A\; = 0.17 for : = 1,...,4. This
pool could be approximated by a pool with 2 buckets. In the first bucket
collect firm 1 and 2 and define the pre-default intensity for bucket 1 as 0.15
which is the average. In the second bucket collect firm 3 and 4 and define
their pre-default intensity as 0.35. Hence, in the new pool there are 2 firms
with pre-default intensity 0.15 and 2 with pre-default intensity 0.35. This
approximation will be investigated further in Section 3.7.

If we assume that the pool is divided into K buckets and let n; be the
number of firms in bucket k, i.e. n = Z,ﬁil ng. Assume for simplicity that
ng > m — 1 for every k,” then we find

3

’

3 g
3

0
- S (07 5 (0) ()

J

Il

S
-
oy

B
=

where the sub-indices denote the number of firms excluded from each bucket.
Notice, that the number of elements in the sum depends on the number of
buckets and not on the total number of firms n. For the special case K = 2
we have

U™t (t) |
o >l ) b O VY eI

Notice, that we do not need to assume that firms are independent to use
(3.9).

" Alternatively, we could define (}) = 0 if k > n.
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3.7 Examples

In this section we will use the techniques described in the previous sections for
pricing. The idea is to study how well we can approximate a heterogeneous
pool with a pool of buckets.

Let n be the number of firms in the pool. Let Ty, T, ...,T; be payment
dates where AT, =T, — T, 1 for i = 1,...,1 is assumed to be constant and
Ty = 0, Ty =T. For all our examples we have [ = 10, T = 5, and AT; = %
for every 1.

In both of our examples we will be interested in Y7 | W7"(t) which can
be calculated the following way

Proposition 6

)BUCKUED Il (et B DR el

j=1 j=0 {tefo,1}7| 32, =3}
We will model the pre-default intensity as
Ni(t) = a; + b X;(t) + bliry

where X; for s = 1,...,n are independent state variables all independent of
r¢. In the case of identical firms we define a = a;, b = bX,b" = bl for every i.
This is just a simple way of introducing correlation in the pool. Each of the
pre-default intensities depend on a firm specific variable X; and a common
variable which in this case is the interest rate.

Assume that the X;’s are affine jump-diffusion processes as defined in
(3.6) with

px(z) = p + pxe
ox(z)? = o% 4oy

vx(z) = V% +vye
and r; has a CIR specification

pe(r) = p)+ pyr
o.(r)? = olr

ve(r) = 0

In all our examples we let % = 0.005, u! = —0.1,0! = 0.0025.
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Now, all the first-to-default contracts can be priced using the technique
described in Section 3.5. For example

T ) )
Vl,j(()) = ]'5/ e (D487 (Dro+jax()+582 (t)zo (Ax(t) + By(t)xo) dt
0

+Z o (L) +B1(Ti)ro+ja Ti)+3Be(Ti)o ¢

where of, o, : [0,T] — R and 4, 3, : [0,T] — RP are solutions to a set of
ODE’s for every j. We have chosen v = 0 and an exponential jump distri-
bution (with parameter 0.1) such that the ODE’s can be solved analytically.
See Appendix 3.10.2. This is very convenient for our purpose since we need
very high accuracy of the solutions since the approximation errors are mul-
tiplied by large numbers and then subtracted to give the right result. See
Proposition 6.

As we saw in Section 3.6 calculating an m-to-default can be computation-
ally intensive if the number of different firms is large. We will study a pool of
16 firms all with different pre-default intensities. We will valuate two types
of contracts defined on this pool. We will compare these values with values
of contracts defined on a pool of 16 firms with only 8 different types of firms.
L.e. we collect the original 16 firms in 8 different buckets and for each bucket
we define a pre-default intensity (we will use a pre-default intensity which is
defined by the average of the parameters in the bucket) which is then used
to calculate the values of the contracts. We will continue to decrease the
number of different types of firms till all firms are identical, to see the effect
of using an “average” pre-default intensity for pricing instead of using the
marginal pre-default intensities.

Let the parameters be given as a; = b7 = 0, b* = 1. Since, b} = 0 the

pre-default intensities are all independent. Furthermore, /r}(, = —0.6, 0}(4 =
+0.1

0.02,0%, = 0,v%, = 10u%,, and X;(0) = —% which is the long run

mean.’

In group I we let
o _ 0.012(2:—1)
X T T
which gives us a group of evenly distributed pre-default intensities. In group
IT we have clustered the pre-default intensities more around the mean keeping

the minimum, maximum, and mean constant. This is done by using an

8With this specification of pre-default intensities the average of such pre-default inten-
sities will be of the same type, see Duffie an Garleanu[20]. The parameters are very similar
to those used in Duffie an Garleanu[20].
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inverse normal distribution function on y$ from group I. In Figure 3.1 we

0
have plotted 6; = Mfi which is the mean reversion level for each group. Table
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Figure 3.1: A plot of 8 for both Group I and II.

3.2 and 3.3 show how the firms are collected in buckets. In each bucket we use
the average parameters of the pre-default intensities of all the firms in that
bucket. We have calculated the 1-year default probabilities which are also
shown in Table 3.2 and 3.3. In both groups the 1-year default probabilities
for firms vary from 0.2% to a maximum of 7.4%.

In Figure 3.2 we have plotted the distribution of the number of defaults
for Group 1 after 10 years. The same figure for Group II is very similar,
therefore it has not been included. As we can see the distribution does not
change much for a different number of buckets. Especially, for K = 4,8,16
the distributions are very similar. Hence, we will not expect prices to differ
that much.
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- 1-year default probabilities (%)

e 16| K=8 | k=4 | K=2] K =1
T 102476
5[ 0.7410 | 0-4946 00568
3 12390 :

1.4765
1 17205
L 1.9638
6 [ 2.6003 | 24487

: 9.0312

7 3.1716

3.4114
8 1 3.6505
o o 3.8801
10 | 2.6013 | +364 o
11 | 5.0731 :

5.3082
12 | 55427

5.7766

13| 60099 |
1 64748 | & ;
5| 69573 | 6.7063
16 | 73077 ]

Table 3.2: Collection of firms in buckets for Group I.

3.7.1 Basket m-to-default swap

For this basket m-to-default swap we will receive § at the time of each of the
first m defaults from the underlying pool. At each of the payment dates we
will pay a coupon. The coupon at T; is defined as

AT, = Sm—N(T)'

c m
= 3 > liva<s)
j=1

such that each time a default occurs the total coupon payment is reduced.
Let U denote the default leg and W the fixed leg, i.e.

Umn(t) =

W () =

t
1

E

=1

T
E [/ e ft Tu dul{N(s_)<m} dN(S):|

Ti T S
Ze_ Jired 1{N<Ti><m}]
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- 1-year default probabilities (%)
e 16| K=8 | Kk=4]|K=2|K=1
1 | 02476 | 0.2476
5 1 1.3265 1.1710
3 [ 1.9315 | 1029
1 | 23377
o 25797 9.3748
6 | 31142 3.0001
7 3.4320 | 3.4280
8 1 3.73%,

9 | 4.0394 3.8891
10 | 4.3432 | 4.3472

11 | 4.6578 4.6815

12 [ 4.9939

e 51809 5.3799

11 | 5.8077

15 [ 63351 | 09968 | 65325

16 | 7.3977 | 7.3977

Table 3.3: Collection of firms in buckets for Group I1.

Now, the value of the basket m-to-default swap is
¢ — ,
D m — m,n - Jn
S™(t) = U™ (t) 5 jgl Wn(t)

hence, the fair coupon is

SU™n (1)
> Win(t)

In Table 3.4 we have calculated the fair coupon for m = 5 and m = 8
with 16 firms in the underlying pool. We can see that using 4 buckets we are
only off by 1.5 bps. Similarly, in Table 3.5 we have calculated the fair fixed
rate for an underlying pool with 32 firms. Here, the errors using 4 buckets
are approximately 2 bps.

c=2

3.7.2 CDO

Let the underlying pool of corporate bonds be defined such that at payment
dates each firm pays a constant rate cAT; till default or time T" whichever
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Distribution of defaults for Group |
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Figure 3.2: A plot of the distribution of the number of defaults for Group I
after 10 years with n = 16. Notice, that the distributions are very similar
especially for K = 4, 8, 16.

comes first. In case of a default we recover Y;(7) = for every i = 1,...,n.
Notice, that we are using a fraction of face value as recovery instead of a
fraction of market value.’

The value of the entire CDO is

Vepo(t) =) E
7j=1

T I
5/ e f(f rs+X;(s) dS)\j (t) dt + Z e fOTi re+A; (1) dtci
0 i=1

where ¢; = cAT fori=1,...,1 — 1 and ¢; = 1 + cAT.
Let the CDO be divided into 3 parts. An equity, junior bondholders, and

9Recovery of market value can be done by multiplying the pre-default intensity by 1
minus the recovery rate. See Duffie and Singleton[26]. So recovery of market value would
actually be easier computationally.
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5-to-default | 8-to-default

Group | K c (%) c(%)
16 6.211 3.254

8 6.214 3.256

I 4 6.227 3.266
2 6.276 3.304

1 6.471 3.456

16 6.289 3.314

8 6.292 3.316

11 4 6.306 3.327
2 6.351 3.362

1 6.471 3.456

Table 3.4: Fair coupon for a basket 5-to-default and 8-to-default swap with
n =16 and § = 1.

senior bondholders. At payment dates the equity part receives

E
[E = N(T)]" eAT = AT Y Linr<m)

m=1

Furthermore, the equity holders will receive the recovery of the first £ de-
faults. In total the value of the equity part, Vg, is

E
_ En ¢ m,n
Vi(t) = sU"(1) + 5 ;W (1)
where UP" W™ are defined as in Section 3.7.1. Similarly, we find the value
of the junior bondholders and senior bondholders as

JB+E

Vis(t) = UPTER(0) 4 5 30 W) = V(1)

VSB(t) - cho(t) - VE(t) - VJB(t)

In Table 3.6 we have calculated the value of the equity part of a CDO
with n = 16 and £ = 5. For this example there are no junior bondholders
so JB = 0. For every CDO we use the coupon which gives the entire CDO a
value of n. As we can see the value of the equity part does not change much.
The relative change in V' (0) from K = 16 to K = 2 is approximately 0.16%.
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5-to-default | 8-to-default

Group | K c (%) c(%)
32 15.406 8.932

16 15.407 8.933

8 15.410 8.937

I 4 15.424 8.953
2 15.478 9.015

1 15.694 9.260

32 15.526 9.071

16 15.527 9.072

8 15.531 9.076

II 4 15.545 9.092
2 15.585 9.137

1 15.694 9.260

Table 3.5: Fair coupon for a basket 5-to-default and 8-to-default with n = 32

In Table 3.7 we have done the same exercise with n = 32 firms and an
equity part of £ = 5 and junior bondholders JB = 5. Again, we see very
small changes as we change the number of buckets. E.g. the relative change
of Vi yp from K = 32 to K = 4 is approximately 0.06%.

In Table 3.8 we can see that the time used to calculate the prices explodes
after K = 8 for n = 32, whereas the gain in accuracy is less than 0.1%.

3.8 Supplementary remarks

A major concern for derivatives on a pool of firms is the default correlation
in the pool. As the model is presented in this paper we are able to model
correlation through a joint dependence on some of the state variables. In
some cases this might not be enough. Davis and Lo[16] develops an infec-
tious default model where correlation is modeled through a dependence on
other defaults in the pool. In an intensity setting we have to be careful if in-
tensities depend on other defaults. Consider the example from Kusuoka[40]
with two firms. Let 71,75 be stopping times (for default) with intensities
Ai(t,72), Ao(t, 71) and define N;(t) = 1ysqy for @ = 1,2, Let the intensities
be defined as

Mt ) = A)(1 — No(t)) + AL(t) No(t) (3.11)
Ao(t, 1) = M) (1 — Ni(2) + A5 (t) N1 (2) (3.12)
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Group | K | ¢(%) Ug Wg Vi
16 | 6.8283 | 1.7159 | 1.8971 | 3.6130
8 | 6.8295 | 1.7163 | 1.8964 | 3.6127
1 4 | 6.8345 | 1.7181 | 1.8934 | 3.6115
2 | 6.8544 | 1.7251 | 1.8819 | 3.6069
1 ]16.9334 | 1.7520 | 1.8372 | 3.5892
16 | 6.8592 | 1.7269 | 1.8787 | 3.6056
8 16.8604 | 1.7274 | 1.8780 | 3.6053
1I 4 | 6.8661 | 1.7293 | 1.8748 | 3.6041
2 | 6.8843 | 1.7355 | 1.8645 | 3.6000
1 ]16.9334 | 1.7520 | 1.8372 | 3.5892

Table 3.6: Value of equity part with £ =5 and n = 16

This captures the idea that after a default the market changes, hence the
default intensity of the surviving firm also changes.

To calculate the survival probability of firm 1 we would usually use the
formula

P(r > t) = E |eJoMilsm)ds (3.13)

however, implicitly this probability depends on the intensity of a default for
firm 2. From (3.12) we see that after a default of firm 1 X\y(t,7y) = M (%).
When calculating firm 1 survival probabilities it is clearly not interesting
what happens after a default of firm 1. Hence, (3.13) is wrong. Instead we
define the firm 1 pre-default intensities (i.e. N;(t) = 0 for every t) as

M) = A1 = No(t)) 4+ A () No(t)
Ao(t) = A(1)

where Ai(,7,) is the intensity for the stopping time 7; and A(t) is the in-
tensity for the stopping time 7, with Ny(t) = 1{4>7,). Now, we can calculate
the survival probability as

P >t)=F o~ Jo Ai(s,72) ds



3.8. SUPPLEMENTARY REMARKS 73

Group

K|c(%) | Ug W Ve | Ugtsp | WetsB | Vetas

32 1 6.8280 | 2.2014 | 0.7318 | 2.9332 | 3.5676 | 3.5011 | 7.0685
16 | 6.8283 | 2.2014 | 0.7318 | 2.9332 | 3.5679 | 3.5008 | 7.0687
8 | 6.8295 | 2.2014 | 0.7318 | 2.9332 | 3.5690 | 3.4989 | 7.0678
4 | 6.8345 | 2.2017 | 0.7316 | 2.9333 | 3.5734 | 3.4910 | 7.0644
2 1 6.8544 | 2.2027 | 0.7311 | 2.9338 | 3.5908 | 3.4599 | 7.0407
1 ]6.9334 | 2.2067 | 0.7289 | 2.9356 | 3.6561 | 3.3440 | 7.0000

IT

32 | 6.8717 | 2.2036 | 0.7305 | 2.9341 | 3.6060 | 3.4327 | 7.0387
6.8720 | 2.2036 | 0.7305 | 2.9341 | 3.6062 | 3.4323 | 7.0385
6.8736 | 2.2037 | 0.7305 | 2.9342 | 3.6075 | 3.4300 | 7.0375
6.8786 | 2.2040 | 0.7303 | 2.9343 | 3.6117 | 3.4225 | 7.0342
6.8934 | 2.2047 | 0.7299 | 7.0346 | 3.6239 | 3.4009 | 7.0248
6.9334 | 2.2067 | 0.7289 | 2.9358 | 3.6561 | 3.3440 | 7.0000

—_
D

— N =~ OO

Table 3.7: Value of equity part and junior bondholders part with £ = 5,
JB =5, and n = 32

To see this

Tl>t,7'2>t)+P(7—1>t,T2§t)
_1>t,’7_'2>t)+P(7_'1>t,7_'2§t)

t
ﬂ>t|%2>t)P(f2>t)+/ P (71 >t| T =35) P (% € ds)
0

t
6_ fot A(IJ(U) dUP (712 > t) _|__ / 6_ f; A(IJ(u) du—fst A%(U) duP (/7-2 E dS)
0

/ e SN N du[L M@ dup (7 ¢ g
0

/ e~ Jo Mi(ws)dup (T2 € ds)
0
E [e_ Jo X (usm2) du (3.14)

Here, we have assumed that A}, A are time dependent functions. They could
also have been stochastic processes. Then conditioning on the path of the
process it is just a time dependent function. After conditioning take expec-
tations on both sides and the result is still valid.

The transformation to 7 simplifies the conditional probability in the
fourth equality significantly. For example if A%, A\] are constants then for
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K Wg Weiin
A | CPU A CPU
321 0 2.6 0| 2699.9
16 | 0 0.2 3 33.1
81 0 0.0 23 0.4
41 2 0.0 102 0.0
21 8 0.0 412 0.0
1129 0.0 | 1572 0.0

Table 3.8: CPU is the CPU-time (in sec) used to calculate prices for each K,
and A is the difference (in bps) to the K = 32 price (in Group I).

the stopping times 7y, 7o we have
P(A>tfm>t) =
whereas for 7,

M4+ -
ADePAHA8=22)t 4 A9 — A)

P(T1>t|7'2>t):

Hence, we can not expect the conditional survival probability of 77 given 74 to
be of an exponential form. The difference is that 7 has no information about
71 whereas 7, clearly depends on 71 and therefore the conditional probability
gets more complicated. (3.14) is also shown more generally in Kusuoka[40].

When pricing derivatives on a pool of firms the problem is the same.
Therefore, the intensities used for pricing first-to-default contracts are pre-
default intensities. A pre-default intensity is an intensity assuming no default
has occurred in the pool. Remember, for this contract it is not interesting
what happens after the first default. For general m-to-default contracts the
problem is more complicated since after the first default the intensities of
the surviving firms will change. Hence, the decomposition of an m-to-default
contract into a portfolio of first-to-default’s is very convenient in this setup.
In most of the first-to-default contracts some of the firms have been excluded
from the pool. Default of the excluded firms will then work as state vari-
ables. In the example with two firms Ny(¢) worked as a state variable when
calculating the survival probability of firm 1.

For example let the number of firms be three and define the default in-
tensities by

3
N=X[ 4+ VPl fori=1,2,3

j=1
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To calculate the price of a second-to-default we decompose it into first-to-
default’s. This approach was not based on any model framework so it is also
applicable here, hence

W23(t) = 23: W2L2(t) — 2w (1)

i=1

W13(t) can be priced using the regular pre-default intensities which are
Xifor i =1,2,3 in this case. Therefore,

W1,3(t) _ EtQ [6_ ftT rs-I-Z?:l X;,dsz]

Define B . .
No=X, 4+ Y o for i =2,3

where 7, is a stopping time with intensity X/ then
Wh(t) = BR [e $ it 7]

We can price WL2(t), W)(t) in a similar way.

3.9 Concluding Remarks

We have given a way to decompose an m-to-default into a portfolio of first-to-
defaults. We have been working in a reduced form setting where pre-default
intensities are affine combinations of exogenously given state variables. In
this type of setting we can achieve analytical solutions for the first-to-default
contracts. The decomposition is only based on an arbitrage argument so this
result does not depend on the choice of model chosen to price the first-to-
default contracts.

For a heterogeneous pool of firms the number of calculations needed might
be too large to be handled efficiently. Therefore we approximated the het-
erogeneous pool with pools with less types of firms but more firms of each
type. It turned out that this approximation works well. In our examples the
approximation was both fast and accurate.

3.10 Appendix

3.10.1 Proofs

Proof of Proposition 3.
To see the recursion, consider the time of the first default and let 7 be the
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defaulted firm. Then U7"~""~! pays out a premium of Yj(7;) if i # k, i.e. we
LY (7). This is partly cancelled by the premium of Z=2Yi(7;) we

= 71n ERY(n) =
Yi(7;). Until default number m—1 the situation is the same since all the
contracts are still paying out premiums. After this time only the m — 1
contracts Ue’;‘_l’"_l where k has already defaulted pay out dividends. At
this time these contracts are all first-to-defaults out of the remaining n —
m + 1 firms. l.e. at the time of the m’th default we receive the premium
m=1y.(r;) = Y;(r;) where j is the m’th firm to default, and after this time

m—1-1J
no more premiums are paid out.

Proof of Proposition 4.
We will show (3.4) by induction of m. For m =1 (3.4) is obvious. Consider
m =2
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Now, assume that (3.4) is true for U™ " then

Um,n(t) — ; ZUm 1,n— 1 ( _m)Um—l,n(t))

n  m—2 .
1 meiofM—7—3 "
S =1 DD MRV (A L

=) 3 (DT

Sl DR il G [l

=) 3 (DT

m—j—2

For the last equality we have used that U,"\,*(t) = U,t.(t) and changed
the limits on the sum.

Now, we evaluate the sums for each j separately. For j =m — 1

Y ey

m—1
Slp=m—1
— Z Ull,n—m—i—l (t)
Zlk:m—l
For 7 =0
(—l)m_ln -—m({n—2 Ul’"(t)
m—1\m—2
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and finally for 0 < j <m —1

= (o (T

m—7j—1

~n= -7 )

m—J
() s (o) e
(17720 (o
(

N — ] .
n .] )Ulln](t)

m—j—1

m j—1
m j—1
m 7j—1

Proof of Proposition 5.
Substitute the old recursion (3.3) with the new recursion (3.5) and use the
proof of Proposition 4.

Lemma 2

Proof.
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Proof of Proposition 6.
We will only prove Proposition 6 for identical firms. Using Lemma 2 and
Proposition 5 we find that

(L G
= 3 (o S v (5210)

3.10.2 Analytical solution of ODE’s.
Consider the ODE’s

) =~ () + S H )+ (6(3(0) 1)

Q) = -t Kob(t) + 5 Hof() + 1o (9(5(1) ~ 1)
B(t) = KiB(t)+ HAt)B() + Lo (B(2)
A(t) = KoB(t) + HoB(t)B(1) + lod/ (B(1)) B(1)
with initial conditions 5(0) = «(0) = 0, B(0) = By, A(0) = A,.
If p; # 0 we have 5
Blt) = ~23()
/ _ _@ "
B) = 250
= TR+ OO + L0 ()
= K\B(t) + Hy(t)B(t) + L' (5(1)) B(2)

and B(0) = —%ﬁ’((]) = By.
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Also,

since

A) = KoB(t)+ HyB(H)B(E) + 1ot () B(H)
- —% (Ko (£) + HoB(0) A (1) + o6 (B(1))5'(1)

1

BU n
= —Ea (t)
hence,
A(t) — Ay = tA'(s) ds
BO I _ O/
= —E(a (t) — a/(0))
= @0+ )

If [y = 0 then ( is the solution to the Riccati equation which is

_ 2p1(e”* — 1)
29+ (v = Ky) (e = 1)

Y= \/K12+2H1p1

p(t) =

where

In general we have that
t
c1 + e
/ Gt
0 €3+ cue7°

t t
&1 Co
= ——ds+ ——ds
o C3+ cq€7? o C4+cC3e 78

at o c3+ ¢y et (c3 + ¢q) €7

= + —1lo - lo -
C3 C37Y c3 + cq€” Cq CqY C3 + cq€”
Clt C1 C3 + ¢4 Co C3 + ¢4

= —+—10g7t——10 —
C3 c37Y c3 + cq€” CqY c3 + cye”
Clt C1Cq4 — C9C3 C3 + ¢4

= — + log

C3 C3C47Y c3 + cqpet
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which gives us an analytical form of fot B(s)ds as

¢
/ B(s)ds
0
t e —1

= -2
pl/o T+ K+ (v Kp)er

B 2p< t T-Ki+7+ K o8 T+ K+ - K )
PVt K A+ K (= Ky) S+ K+ (- Ky)er
2 2ye2 (1K)

= —log
H1 ’Y+K1+(’7—K1)€7t

To solve for asset prices as described in Section 3.5 ¢(x) is defined as
P(z) = [ " dip(z) where ¢)(z) is the jump distribution. See Duffie, Pan, &
Singleton[23]. If the jump distribution is exponential with parameter 1 then
o(z) = ﬁ In this case we also have an analytical form of fot o(B(s))ds as

_ /t VA K+ (v - Ky e s
o (2npr+7 = Ky)er +y+ Ky —2np

+ 0
v+ Ky —2npy  2H; + 4K n — 4n%p, gé(t)

where
5(t) = 2np1 +v— Ky) e+~ + K, — 2npy

In this paper we only consider the case Hy = 0 but for completeness we
also give fot (3%(s) ds which is necessary if Hy # 0.

/t 5(5) ds — (7 = K1)* t + 4K, log PHFOKIT o, ()
0 - H}
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Chapter 4

Swap pricing with two-sided
default risk in a rating-based
model
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4.1 Introduction

This paper analyzes the pricing of defaultable securities in rating based mod-
els where the default of more than one agent is involved. We extend the model
of Duffie and Huang[21] to a framework which explicitly takes into account
the rating of each party. Although our method is by no means restricted to
swap contracts we will use as our illustrative example a plain vanilla interest
rate swap!. Our extension allows us to investigate the effects on swap spreads

'For an introduction to swap valuation, see for example Sundaresan[60]. For discussions
on reasons for the growth of swap contracts, see Smith, Smithson, and Wakeman[55],

83
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of early termination provisions, i.e. credit triggers, which are linked to the
ratings of the contracting parties. Clearly, a credit trigger will make each
counterparty look less risky, as illustrated for example in Wakeman|[62], sim-
ply because the trigger eliminates those defaults that occur after a sequence
of downgrades. How much this affects swap spreads can be studied using the
technique presented in this paper. We also consider the following questions:

e How does the degree of rating asymmetry affect swap spreads?

e How does the swap spread vary with rating when the two parties have
the same rating?

e How important is a stochastic specification of the transition intensities
(as in Lando [41],[43])7

A second application of the numerical technique is to the study of default
swaps. Here we study how the ratings of the reference security and the
protection seller affect default swap premiums.

The inclusion of ratings is conveniently handled in an ’intensity-based’ or
'reduced form’ approach in which one focuses on modeling the default inten-
sity of the parties directly.? In our setup, the rating category and the state
variable (which is the short rate on the money market account) determine
the default intensities. Introducing more state variables would complicate
the numerical solution, but the reduced form approach can easily handle
more firm-specific variables related to, for example, the asset value of the
firm. Indeed, as shown by Duffie and Lando[22], reduced-form modeling is
consistent with a full modeling of a firm’s assets and liabilities, if bondholders
have incomplete information on issuers’ assets.

Rating-based models of default risk are popular for modeling defaultable
bonds and credit derivatives since they use readily observable data which
enable a financial institution to control credit risk without having to build
detailed models for each counterparty. Using ratings alone may, however,
result in a too crude approximation and approaches which allow stochastic
variations in default intensities within each rating category are called for.
To handle such extensions we will be working with the framework presented
in Lando[41],[43] which extends the model presented in Jarrow, Lando, and

Litzenberger[46] and Brown, Harlow, and Smith[10]

2Papers using this technique include Artzner and Delbaen[3], Das and Tufano[15],
Duffie and Singleton[26], Duffie, Schroder, and Skiadas[24], Jarrow, Lando, and
Turnbull[33], Jarrow and Turnbull[34], Lando[41], Lando[43], Madan and Unal[47],
Schénbucher[54]. For a survey on the various approaches to modeling default risk, see
for example Lando[42].
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Turnbull[33]%. This framework allows for rating transition intensities to de-
pend on random state variables, but requires a somewhat restrictive assump-
tion on the stochastic transition intensities to obtain closed-form solutions
for prices on defaultable bonds. And even if there may be analytical expres-
sions for prices of corporate bonds many types of derivative prices, including
swaps with settlement based on pre-default market value, may not have an-
alytical solutions. Therefore, to allow for more complicated derivatives and
to handle more realistic specifications of the stochastic transition intensities,
a model based on ratings must have a numerical implementation to be of
practical use. This paper provides such an implementation.

An elegant way of studying two-sided default risk in a reduced-form set-
ting is presented in Duffie and Huang[21]. Here the authors show how to
value swaps with a settlement payment depending on the pre-default market
value of the contract - a problem which cannot be solved simply by analyzing
the values of the floating-rate side and the fixed-rate side separately. Using
a finite state space Markov chain as an additional factor in the default in-
tensities, the solution equations become a system of quasi-linear PDEs. We
pay special attention to an ADI-method which is well-suited for this prob-
lem which initially seems large due to the fact that both a spot rate and a
two-dimensional rating process are involved. We also show in this paper a
derivation of the valuation PDEs which does not build on recursive methods.

Earlier papers dealing with the pricing of one-sided default risk in swaps
include Abken|[1], Artzner and Delbaen[2], Cooper and Mello[12], Rendleman[53],
Sundaresan[60], Solnik[57], and Turnbull[61]. Rendleman[53] also considers
two-sided risk in an analysis based on the asset values of two firms entering
into the contract and Sorensen and Bollier[58] consider one- and two-sided de-
fault risk in general terms without stating an explicit term structure model or
model for default risk. Hiibner[32] starts from different assumptions to obtain
swap spreads analytically, and Jarrow and Turnbull[35] present a discrete-
time implementation which like the above mentioned approaches does not
model ratings changes before default. For empirical evidence on swap spread
behavior, see the papers by Brown, Harlow, and Smith[10], Dufresne and
Solnik[27], Duffie and Singleton[25], Minton[50], and Sun, Sundaresan, and
Wang[59]. In this paper, we do not estimate swap spreads from actual data,
so it is difficult to compare the size of our spreads with the empirical findings
of these papers. Our model agrees with Duffie and Huang[21] in showing
small swap spread sensitivities to changes in credit quality. This is consis-

3More recent contributions using rating-based modeling include Arvanitis, Gregory,
and Laurent[4], Das and Tufano[15], Kijima[36], Kijima and Komoribayashi[37], Li[45],
and Nakazato[51].
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tent with the study of Sun, Sundaresan, and Wang[59] in which there is no
significant difference in the midpoint prices (i.e. the average of bid and offer
prices) for identical swap contracts bought and sold by a AAA-rated and an
A-rated firm.

Since our paper is primarily concerned with implementation and compar-
ing different specifications of the rating process, we have chosen very simple
contracts to illustrate our methods. For example, the floating leg of the swap
contract is tied to the default-free term structure, and not to a LIBOR rate.*
If one viewed the AA category as being representative of LIBOR-rates, the
swap spreads would increase by an amount roughly equal to the default ad-
justed spot rate for LIBOR. Working with a spread to treasuries allows us
to focus on variations in the spread induced by variations in counterparty
risk as opposed to variations induced by fluctuations in an underlying rate
containing a default-risk adjustment.

We analyze one swap contract but our framework can easily handle a
whole portfolio of contracts between two parties and effects of netting provi-
sions may then be taken into account. Also, effects of using collateral could
be handled in our framework but we have chosen not to include that into
our analysis. Indeed, the spread results that we are getting can be used to
compare the expenses of setting up a detailed system of collateral to the cost
of offering a lower rated entity the same terms as, say, an AA-rated counter-
party, or alternatively to say how much the spread should be increased in a
contract with a lower rated counterparty posting no collateral.

The outline of the paper is as follows: In Section 4.2, we fix the notation
and reiterate the model for recovery proposed by Duffie and Huang[21] and
set up the relevant system of quasi-linear PDEs which arises from our model
formulation. We also propose an alternative derivation which does not build
upon recursive methods. Section 4.3 sets up the ADI-method for computing
prices in our framework. In Section 4.4 we address various problems in
swap pricing with two-sided default risk: How sensitive are spreads to credit
ratings if both parties have the same rating” How sensitive are swap spreads
to differences in rating? The results we obtain in this section are similar
to those obtained in Duffie and Huang[21]. In Section 4.5 we consider how
varying the specification of the stochastic transition intensities changes the
conclusions. In Section 4.6 we look at how the inclusion of a credit trigger
affects the fair swap rate. Predictably, credit triggers reduce swap spreads so
the contribution is to get a feel for the magnitude of the reduction. Section
4.7 considers an application of our numerical procedure to the valuation

“For more on the impact on swap spreads of using LIBOR rates to determine the
floating leg, see Dufresne and Solnik[27].
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of default swaps. We investigate in this section the premium of a default
swap as a function of the joint credit quality of the default protection seller
and the underlying reference security. In Section 4.8 convergence of the
numerical scheme is established and the non-default fixed rate, which is used
to calculate spreads, is found. Also, different settlement rules are analyzed.
Finally, Section 4.9 concludes.

4.2 The model

We consider a filtered probability space (T, (F;),.,,P) and assume the
existence of an equivalent martingale measure ) which may or may not
be uniquely defined. Jarrow, Lando, and Turnbull[33] propose one way of
determining a martingale measure from an empirically observed transition
matrix and an observed term structure of credit spreads.

The filtration will be defined as the natural filtration of the price and
rating processes defined below. Given is a spot rate process

d?"t = /,L(Tt, t)dt + U(Tt, t)th

and from the associated money market account we define the discount factor

B, s = exp (—/ Tu du)
t

such that under the martingale measure prices of zero coupon bonds can be

computed as
P(t,T) = E9 (Byr|F;)

We consider in this paper a two-dimensional stochastic process of ratings
ne= (n',nf)
where 7 is a continuous-time process with state space
LAt ={1,..., K -1} x{1,...,K — 1}

describing the joint evolution of the rating of firms A and B. Here, n rep-
resents non-default states and the default intensities for firm ¢, when the
joint rating of the companies is 7, is given under @ by \'(n). Later, we will
also work with the formulation adopted in for example Jarrow, Lando, and
Turnbull[33] and Lando[43] where default is given by adding the absorbing
state K to the state space. In both cases, the modeling of the simultaneous
rating process 7 is convenient for notational purposes and, more importantly,
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for allowing correlation between the two rating processes. The joint rating
process allows us to include cases in which, say, default of one party triggers
the default of the other.

To specify the stochastic evolution of n we use a (K —1)%x (K —1)? matrix
of transition intensities which we refer to (with a slight abuse of language) as a
generator matrix. In the case where A is constant it is simply the generator
of a time-homogeneous continuous-time Markov chain. When A is time-
dependent, but deterministic, it models a time-inhomogeneous Markov chain,
as used for example in Jarrow, Lando, and Turnbull[33]. When A depends
on the stochastic short rate, we use the setup of Lando[43] where, after
conditioning on a sample path of the short rate process, A is the generator
of a non-homogeneous Markov chain.

In the case where the two rating processes are independent, we may con-
struct A from the generator matrices of the chains n;* and n” by remembering
that the chain may only jump in such a way that one of the ratings changes.
We illustrate this in Appendix 4.10.2. Two continuous-time chains which are
independent do not jump simultaneously.

We are now interested in pricing an interest rate swap struck between the
two parties, and to compute swap spreads in the usual fashion by setting the
swap’s price at initiation equal to zero.

A critical ingredient of the pricing of the swap is the rules for settlement
in default. We work, as do Duffie and Huang[21], with the following setup: In
the event of default, if the contract has positive value to the non-defaulting
party, the defaulting party pays a fraction of the pre-default market value
of the swap to the non-defaulting party. If the contract has positive value
to the defaulting party, the non-defaulting party will pay the full pre-default
market value of the swap to the defaulting party.

Mathematically, this can be stated as follows: Assume that B defaults
first. Assume also for simplicity that there are no lumpy payments planned
on the swap at the default date. The payment received by A at the default
date is given by

S(r=rr,0=) (Ls(r—rr i y<0} + 02 L(S(r—rr e )>0}) (4.1)

where S is the price of the swap contract seen from counterparty A. Then
S(t—,r;,n,—) is the price right before default® and ¢Z _is the recovery paid
by the defaulting party B. A similar expression can be written stipulating
what happens if A defaults first.

In terms of arbitrage pricing technology, if we think of a security as a
claim to a cumulative (actual) dividend process D, (which for defaultable

5Note that r,_ = r, due to the continuity of r.
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securities may be different from the promised dividend process) then in a no
arbitrage setting (see for example Duffie[17], p.118), the price of the security
satisfies

T
S, = EX (Bt,TST + / Bt,sst> (4.2)
t

If the contract we are pricing has a maturity of 7, then we are left with the
expression

T

S, = Ey? / B, 4dD; (4.3)

t

but note that by the definition of the swap contract the cumulative dividends
depend through the settlement provisions on the future values of .S and also
on the random default time. A key result stated for two-sided default prob-
lems in various forms in Duffie and Huang[21] and Duffie, Schroder, and
Skiadas[24] tells us how to find S in terms of a pre-default process V' and

how to compute V as a function of promised cash flows, i.e. the cash flow
paid if there is no default before expiration. Define

T
V(t,r,m) = B2 [/ —R(s,Vs,n5)V (s,75,1m5)ds + dD¥ (4.4)
t

where the DY is the promised cumulative dividend received by A up to time
t and

R(t,v, k) = r+ SA(t, k)l{v<g} + 5B (t, k)l{v>g} (4.5)
s'(tk) = (1—¢")A\'(k)

Assume that
AV(Ta rr, k) = V(Ta rr, k) - V(T_a Tr—, k) =0

almost surely for each category k.5 Then the result of Duffie and Huang[21]
implies that the swap price is given as

S(ta T't, k) = V(ta T't, k)l{t<7'}

6Note that this is a requirement that the default event is not occurring at the same
time (with positive probability) as an event which would have caused a jump in the price
of the security even if no change in rating had occurred. If, for example, we had a jump
component in interest rates, then it would be easy to construct an example in which
interest rates jump at the same time as a default. One could also imagine that transition
intensities (including default intensities) are affected by the same jump process as the one
triggering default, in which case the pre-default value would jump at the time of a default.
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for each joint rating category k. Let V, = V(¢,ry,m;) and R, = R(t, Vi, my)
then the solution to (4.4) is

T

V, = EP [ / e I R“d“dDg’} : (4.6)
t

Hence the equation which gives us the swap price as an expected discounted

value of actual cash flows has been translated into an expression involving

an expected, discounted value of promised cash flows, but with a more com-

plicated discount factor.

We now derive two representations of the price process - one using a
theorem in Duffie and Huang and one using the enlarged Markov chain which
includes default categories (i.e. categories in which at least one of the parties
has defaulted).

First, let f(¢, 7, 1) denote the (pre-default) price at time ¢, when the joint
rating of the parties is given by 7, of a contingent claim whose only promised
payoff from B to A is d(T, 71, nr) at time T. Let f be a (K — 1) dimensional
vector of time ¢ prices

Ft,re, (1,1))
ft,r) = : (4.7)
flt,ry, (K =1, K —1))

The following proposition gives a system of PDEs that this vector function
must satisfy.

Proposition 7 Define A as a (K — 1)? x (K — 1)2—matriz with elements
(whose dependence on t,ry is suppressed)

ij )\ija iajeLKila 27&]

i = Xi— (1= NN <oy — (1= 8")N () s .0050)

where the transition intensities \;; and the diagonal elements \; may depend
on time and the short rate process r. Assume that for t fized the process

f(S, Ts, ns) exp <_ /S Rudu> - f(ta T, 77t)

is a semimartingale whose local martingale part is a martingale.
Then f is the solution to

S D

0 - J - 1 ,0% - - -

— — —0"—— Af — =0 4.8

gl Thg T30 gaf F A S (4.8)
with the boundary condition

f(T,r, i) =d(T,r,i) for everyic LK™ .
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The proof of the proposition is given in Appendix 4.10.1.

Note that the system of PDEs is linked through the matrix A. Intuitively,
the term A f takes into account the price changes that can occur due to rating
changes and default whereas the remaining terms keep track of changing
spot rates and time. To compute f(t,r,4) for a claim with promised lumpy
dividends at time point 77,...,Tx = T, we use the proposition above for
Tn_1 <t < Ty and work our way backward in the usual way: For Th_, <
t < Ty_1 use the procedure above with d(T, r,4) in the right hand side of the
boundary condition replaced by

f (TN—la T, Z) + d (TN—la T, Z)

and so forth.

It is instructive and convenient for handling general settlement rules to see
the derivation of the pricing formula starting with (4.2) but using a Markov
chain including the default categories. Again, consider a two-dimensional
Markov process of ratings, 7, with a state space LX which includes the default
state represented by K. Define the default space

D= LK\]LKfl

consisting of states where at least one party has defaulted. Let ¢t € [Ty_1,T)
and consider the discounted gain process for t < u < T

Gt,u - Bt,uSu + / Bt,sst (49)
t

where AD; = §(s,75,Ms—,7s) is a lump sum dividend payment in the event
of a transition at time s from 7),_ to 7,. Note that this allows us to include
payments made upon transitions between non-default states, which will be
useful for contracts with credit triggers. The promised dividend at time T
is d(T,rp,nr). Holding ¢ fixed we know from Duffie[17] that the discounted
gain process, Gy, is a martingale under ¢ and we have the pricing formula
Sy = E4[G,] for t < u. This time, let the function g be defined by

g(tartaﬁt) = St7 t<T
g(TarT:ﬁT) = d(TaTT:ﬁT)'

Notice that for 7, € D, g(¢,7,7;) = 0 since we assume that there is a set-
tlement payment when entering into the absorbing set of states DD, and after
that no dividends are paid out. We will now find an expression for dG;, and
due to the martingale property of Gy, , the drift must equal 0.
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Again (see (4.30)) for 7; ¢ D we find
a8, = (Dg(u, ru, ) + (Ag(u, 1))y, ) du+ M, (4.10)

where M is a martingale, g is a K2— dimensional vector obtained by stacking
the functions g¢(-,-,4), ¢ € LX and Dyg is given as in (4.29). This will give
us By ,dS, + SudBy, easily. Now, all we need is the second part of (4.9). For
t < u < T there are no dividends paid out unless a transition occurs so this

contribution is
u
/ B, dD;
t

— Z Bt’sé(S;TSJﬁS*JﬁS)

{s:t<s<u,Ans#0}

. u N i

= Mu—i—/ i, B2 5(s, s, Ts, 1) By sds
C

= MU—F/ Z)\ﬁsyié(s,rs,ﬁs,i)Btysds

b i,

where M is a martingale’. This can be written with matrix notation
. u
M, +/ [diag (AZ)];, Bisds (4.11)
t

where diag is a vector of the diagonal elements and = is a K? x K? matrix
whose element i, 7 represents the dividend payment in case of a transition
from 7 to ;.8

Now, insert (4.10) and (4.11) in (4.9) to see that a necessary condition
for G4, to be a martingale is

Dig(s,rs) + Ag(s,rs) + diag(AZ]) — rsg(s,rs) =0 (4.12)
with boundary condition ¢(T,r,i) = d(T,r,4), i € LX. If dividends associ-

ated with transition to default are given as in (4.1) and Z;; is zero for j ¢ D,
then the equations for g in the non-default categories are the same as in (4.8).

7After the second equality sign we have replaced 7j,_ by 7, which does not change the
integral with respect to Lebesgue measure.

8The diagonal of Z is zero since no transitions are associated with the diagonal. As
an example, we could have Z;; = g(t,74,4) — g(t, ¢, j), which would capture a payment at
each transition date compensating for the change in contract value due to a rating change.
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4.3 Numerical Solution

To justify our solution method, consider first using an ordinary implicit finite
difference method to approximate the solution to (4.8). For each state of the
Markov chain we would need a number of grid points to approximate the
interest rate, say M. We would now have to solve M K? equations so for
(say) M = 50 we would have 2450 equations for a Markov chain with 49
states. Using Gaussian elimination (the method could probably be improved
by taking the special structure of the system into consideration) we would
need in the neighborhood of 2450% ~ 15 billion multiplications and additions
cf. Golub and Ortega[30]. On a moderate size system it takes about 13
minutes to solve such a system. In order to price a defaultable zero-coupon
bond with maturity one year from today using a time step of At = 0.1
would take about 2 hours. Instead, we have chosen to approximate the
solution of (4.8) using an Alternating Direction Implicit Finite-Difference
Method (ADI-method) which seems to be more efficient when working with
two state variables. The basic idea is to alternate which variable is implicit
and which is explicit: In the first step the interest rate is implicit and the
Markov chain is explicit and in the next step it is the other way around.
This way we only have to solve two equation systems of dimension M and
K, respectively. Think of this as first solving for the interest rate and then
solving for the change in the Markov chain.
Define the approximating grid points as

Sk~ S(Atn, Arm + 1o, Ank) = S(t,r, )

where n =0,...,N = Alt, m=—-M,...,—1,0,1,...,M, and k =1,..., L,
where L is the number of states in LX~!, i.e. 49 in this illustration. So for
each time point we have an (2M + 1) x L matrix with values of S. Strictly
speaking, the values of S we compute in the following are pre-default values
of the swap but this is equal to the value of the swap as long as there is no
default.

Define the (2M + 1) x L matrix S, as the asset price at time point n in

every grid point i.e.

SML- .. SML
S, =

—M,1 —M,L
SoML o goM,

Notice, that the row numbers of .S,, are opposite to the usual matrix notation.
Furthermore, define a discrete time version of S; as
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Sm,l

n
qQm
n

ot

n
Instead of keeping track of which variable is implicit and which is explicit,
we say that each step consist of two iterations. To do this we introduce half
a step by, t + %At. Assume we know all the values at time point n + 1 of

S (that is for all values of m and k) then for r implicit and 7 explicit we
approximate S at n + % by using

& qQm+1 qQm qgm—1

or? N Ar? '
aSAt(’HrF%) - S:T; S:Zr 21 (4.14)

o - 2Ar '
ASpymsyy = ASTy (4.15)

aSAt n+l S”TJFI - 577;,:'1 4
) o - 16
ot SAt (4.16)

Using these approximations (4.8) leads to a system of equations

(s + A1D) Sy = S (oo + SH4) (4.17)

where D is a tridiagonal matrix and I,, denotes the n—dimensional identity
matrix. The advantage of the ADI-method is now apparent: S is a (2M +
1) X (K — 1)? matrix instead of a (2M + 1)(K — 1)? dimensional vector.
Therefore, the equation system to be solved is much smaller.

For the next iteration we use the Markov chain as implicit and the interest
rate as explicit. I.e. we change the approximations (4.15) and (4.16) to

ASns(ns) = AS (4.18)
Pastort) iy S (4.19)
ot - SAL '

Insert the approximations (4.13), (4.14), (4.18), and (4.19) into (4.8)
which leads to a similar system of equations

<I(K )2 — —A> (Sn)' = <Sn+%>’ (I2M+1 - %D)’

& S (T - —A) = (Lars1 — 3D) 5,1 (4.20)
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Solving (4.20) involves finding the inverse of I(x_y2 — %ZX which causes a
little problem since A contains an indicator function. This can be done with

the approximation
At -\’
Sn (I(K—1)2 - 7A>

At

At
~ S, (I(K_l)z — 7/\) + Sn-l—%Df;_% (4.21)
where D? is a diagonal (K — 1)? x (K — 1)? matrix containing the indicator
functions. Evaluated at time n+% these indicator functions are known. This
part can now be moved to the right hand side of (4.20). D? contains jumps

so we have to make sure that this approximation is appropriate. D¢ # Di L1
2

only if the swap price changes sign in that time period. If the swap price
changes sign over a very small period of time it must be close to zero, which
justifies the approximation (4.21)°.

To simplify notation we define

t
At

A2 — <I - —AI>
2
At

Bl — <I + —AI>
2
At
2

Now it follows that the two systems needing to be solved are
A15n+§ _ Sn+1B1

S™A, = B,S"Tr — St DY

In Appendix 4.10.3 we have included a description of the implementa-
tion and a discussion of the complications that arise when considering time-
dependent generators of even stochastic (e.g. spot rate dependent) transition
intensities.

9 Another way of eliminating the indicator functions is to use the method described at
the end of Section 4.2. However, this is a slower solution due to the higher dimension of
the intensity matrix. Our simulations indicate that the convergence properties of the two
approaches are approximately the same. Therefore, for swap pricing we recommend using
the (K —1)? x (K — 1)? intensity matrix.
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4.4 Pricing Swaps with Default Risk

We have selected a 5 year “plain vanilla” swap with semiannual exchanges
of fixed rate payments for floating rate payments. More precisely, consider
11 dates, Ty, 11, T5, ..., T, where T, —T; | = % for every : = 1,...,10. The
payment at time 7T; is defined as

1
Xp=F(—v————1-°
P(T;, T; + 35) 2

for + = 1,...,10 where ¢ is the fixed rate and F' is the constant notional
amount. Without loss of generality we will assume that F' = 1. Note,
however, that we only study a version without payment in arrear. Also, note
that the floating payment is based on the yield of a six-month treasury bond.

For our interest rate model we have chosen the Vasicek model, but of
course other models of the term structure could be used. Hence, under the
risk neutral measure, the spot rate is described as

dr = k(p — r)dt + odW;

where W, is a standard Brownian motion.

For our computations we have chosen typical values of parameters pu =
0.05, k = 0.15, and ¢ = 0.015. Furthermore, we have set r, = 0.05 and
chosen a recovery rate for both counterparties equal to 0.4. The ratings of
the two counterparties are assumed independent and follow Markov chains
described by the constant generator matrix used in Jarrow, Lando, and
Turnbull[33](Table 4 page 507)'°.

It is straightforward to calculate ¢ such that the initial value of a default
free swap is 0. Using closed form solutions for bond prices in the Vasicek
model, we find that in a riskless swap the fixed side would have to pay a
fixed rate of

¢ =5,0125%

to make the initial value of the swap zero. Swap spreads are computed with
respect to this quantity.

We first consider the fair fixed rate to be paid if the initial ratings of the
parties are the same and we consider what happens if this common rating
varies. To be precise, the rating at time 0 is assumed to be the same for the
two parties, but of course rating transitions can bring the two parties into

10Tt is straightforward to construct the generator matrix for the Markov chain of joint
ratings, using the fact that the only non-zero entries off the diagonal are those correspond-
ing to transition of one of the firms, see Appendix 4.10.2
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different categories during the life of the contract. As can be seen from Figure
4.1 the spreads are very small (all smaller than 0.8 basis points) and do not
vary a lot across ratings at an absolute level (but do show significant variation
at a relative level). One may wonder why there is any spread in the case with

0.8,

0.6

0.4

Spread

0.2

0.0 T T T T T 1
AAA AA A BBB BB B Ccc

Category

Figure 4.1: Swap spreads in basis points when the initial category is the same
for both counterparties.

symmetric ratings. It turns out that the asymmetry in payments (one pays
floating, the other fixed) does indeed produce a small spread. Hence the
small spreads we see are not due to numerical error. To see this, consider the
case of identical, constant default intensities for two counterparties who can
be in only one non-default category, and with a constant fractional recovery
of ¢ = 0.4. Using the same Vasicek model for riskless interest rates as above,
we may compute analytically the value of the swap spread.!! The size of
the spread in the symmetric case as a function of the default intensity A for
different values of the initial short rate is shown in Figure 4.2.

Spreads change significantly, however, when we allow for rating asymme-
tries. Hence we next fix the (initial) rating of party A at AA and let the
(initial) rating of B vary. Both the case where A pays fixed and A pays float-
ing are shown in Figure 4.3. It is worth noting that there is a high degree

1 The analytic expression is easily obtained using equation (4.6) and the fact that with
symmetric default intensities we have R(t) = r; + (1 — @)\, hence the indicator functions
vanish. The resulting expression for the spread is not zero.
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Figure 4.2: Swap spreads in the case of symmetric intensities as a function of
the intensity. Recovery is fixed at 0.4 and the riskless rate follows a Vasicek
model. Three different values of the initial short rate are used.

of symmetry in the spreads for the two cases. This symmetry is however
sensitive to choice of initial spot rate level and spot rate model.

In Figure 4.4, we plot the spreads against spreads on defaultable bonds
with same recovery and maturity as the swap and the graph seems to suggest
an almost linear relationship between the two spreads. The same linear
relationship is found in Duffie and Huang[21]. We find a bond yield spread
of 100 basis points translates into a swap spread of approximately 1.7 basis
points, which is very similar to Duffie and Huang[21], who find a translation
to 1 basis point.

4.5 Time-dependent and stochastic genera-
tors

The numerical method we have outlined can easily be adapted to the case
where the generator of the Markov transition matrix is non-homogeneous and
to the case where default intensities depend on the driving state variables
also. The interest in non-homogeneous matrices arises primarily because of
calibration issues: As shown in Jarrow, Lando, and Turnbull[33] one can use
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Figure 4.3: Swap spreads in basis points when the initial rating of one coun-
terparty is fixed to AA and the rating of the other counterparty varies. Both
the case where AA pays fixed and AA pays floating is considered. Notice the
symmetry.

an empirical generator matrix and a time-dependent risk adjustment matrix
to fit an initial structure of zero coupon bonds. The product of these two
matrices gives a non-homogeneous generator. Another possibility designed to
take into account changes in business cycles and correlation between rating
migrations and interest rates is to let the generator matrix have elements
which are functions of the interest rate (or, more generally, the state variables
driving the interest rates). This approach is described in Lando[41],[43]. In
this section we will present some illustrations of the latter approach applied
to swap pricing. We consider two cases of stochastic intensities. The first
case is the ’affine’ case studied in Lando[43]: The generator of the Markov
chain which includes the default category is now given for each party as

A(ry) = Bu(ry) B

where B is a constant matrix of eigenvectors for the generator used in Jar-
row, Lando, and Turnbull[33], and where p(rs) is a diagonal matrix whose
elements are

Mi<TS) = ’Yi‘f‘/ii(Ts—To), 1=1,..., K —1

ug(rs) = 0.
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Figure 4.4: Swap spreads as a function of corporate bond yield spread for
each category. Notice the almost linear relationship.

and where the coefficient vectors v,k are chosen to calibrate the level and
the spot rate sensitivities of the initial corporate bond spreads to observed
values'?. Below, we will refer to this generator as the affine generator. In
our example we have used the initial spreads (for zero recovery bonds)

§ = (16,20, 27,44, 89,150, 255)’
and initial spread sensitivities
ds = (—0.1,—0.15,—0.2, —0.25, —0.3, —0.5, —1.0)’

Now, the initial spreads and spot rate sensitivities are calibrated (see Lando[43])
by defining

v o= 573
Kk = ﬁfldAs

where fis a K — 1 x K — 1 matrix with entries

ﬁzysz]B;[% fOIi,jzl,...,K—l.

12Gince we work with intensities which are affine functions of the spot rate, there is a
positive probability of having negative intensities in this framework. We solve this in our
numerical implementation by setting the intensity equal to zero in such cases.
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This gives us

v = (-0.0057,—-0.0161, —0.0200, —0.0227, —0.0272, —0.0328, —0.0345)’
k = (0.2674,0.5600, 0.6320,0.7069,0.9013, 1.3590, 1.4002)’

We study the effect of interest rate sensitivity in rating transitions and default
intensities in this setting by comparing the affine generator with the ’base
case’ obtained by setting x = 0. This base case corresponds to having zero
interest rate sensitivity in the affine generator. Figure 4.5 shows that swap
spreads change considerably when the interest rate sensitivity is taken into
account. For example, the spread on a swap with an AA-rated floating payer

4.0

A Affine generator
Bl Constant generator

Spread

AAA AA A BBB BB B ccc

Category

Figure 4.5: A comparison between swap spreads calculated with an affine
generator and a constant generator. For both generators AA pays floating
and fixed pay side varies. The constant generator is equal to the affine
generator for ry = rq.

and a B-rated counterparty paying fixed, increases from approximately 1 to
2.2 basis points. The intuition is the following: When interest rates go up,
cash flows become less uncertain because the default intensities are calibrated
to fall in this case and the opposite is true when rates go down. This means
that the floating payer sees uncertain positive cash flows and less uncertain
negative cash flows and consequently wants compensation for this through a
higher spread. Also, the symmetry that we had in the non-stochastic case
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between spreads when AA paid fixed and AA paid floating vanishes. This is
shown in Figure 4.6.

4.07

A AApays floating
B AApays fixed

Spread

AAA AA A BBB BB B CcccC

Category

Figure 4.6: Swap spreads calculated with an affine generator. Notice that
the spreads are no longer symmetric.

A problem with the affine generator specification is that it is hard to
control the sign of all entries in the generator and it may take relatively
small fluctuations in the riskless interest rate to produce negative entries in
the off-diagonal elements of the generator!?.

Therefore, we consider a second case in which rating migrations are held
constant but default intensities are spot rate dependent. The default inten-
sity from category ¢ is assumed to be of a ’logit’ form

a;

Ai(re) =
(rt) 1 + exp(b,- + Ci(Tt — 7"0))

and negative sensitivity of intensities to changes in spot rates is obtained by
having ¢ > 0. This form is similar to the form proposed in Wilson[63] and
also used in Das and Sundaram[14]. We choose the parameter vectors a, ¢ to
match initial spreads and spread sensitivities!* and we impose the condition

13In our calibration, already at a spot rate level of 8% will some entries become negative.
M Note that with zero recovery the initial spread for category i is A;(rg) and the sensi-
tivity is the derivative Aj(ro).
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b = 0 which gives symmetric dependence of intensities on spot rates around
the initial level with our choice of a, ¢ :

a; = 2)\1(7"0)
¢ = — 2)\;(7“0)
)‘i (T(])

In Figure 4.7 we compare the results to those obtained using an affine gen-
erator. In both cases the short spreads and the sensitivity of changes in the

4.0

A Affine generator
B Logit default intensity

Spread

0.0 T T T T T 1
AAA AA A BBB BB B Ccc

Category

Figure 4.7: Swap spreads calculated with "logit’ default intensities compared
with the results using an affine generator. Both models fit the initial spreads
and spread sensitivities.

short spreads to changes in the spot rate have been matched but the logit
generator avoids negative intensities. The difference in spreads is not huge,
suggesting that for some cases the computations using the affine generator
are not invalidated by the positive probability of negative intensities.

4.6 Credit triggers

As an example of how our methods can take into account provisions in con-
tracts based on ratings, we will consider a credit trigger in the swap contract.
The credit trigger is formulated as follows: If the triggering category is k then
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in the event that either of the counterparties drops to k or below, the contract
terminates. The settlement payment in that case is defined to be equal to the
value of a swap without a credit trigger if the downgraded party has a rating
one level above the triggering category, k. In the event that a counterparty
defaults we use the partial settlement described in Section 4.2 where it is par-
tial to the swap with a credit trigger. These conventions are for illustrative
purposes only and it is easy to fit in other market conventions.

In Table 4.1 we have chosen the triggering category to be BB, (which
often is said to mark the transition to ’speculative grade’). We compare the

AAA | AA| A |BBB
JLT no trigger | -0.06 | 0.01 | 0.18 | 0.81
Generator BB-trigger | -0.02 | 0.00 | 0.10 | 0.38
Affine no trigger | 0.43 | 0.55 | 0.70 | 0.92
Generator BB-trigger | 0.42 | 0.54 | 0.69 | 0.90
Logit no trigger | 0.22 | 0.30 | 0.42 | 0.68
Generator BB-trigger | 0.22 | 0.29 | 0.39 | 0.57

Table 4.1: A comparison of spreads on a swap with a BB credit trigger and
regular swap spreads as studied above. The credit trigger has a significant
effect in the case of a constant generator, little effect when using the affine
and logit generator due to the calibration shifting probability mass from
downgrade transitions to direct default transitions.

effect of a trigger in three different settings: The first uses the (empirical)
constant generator used in Jarrow, Lando, and Turnbull[33]. The second uses
a stochastic generator with the affine specification which has been calibrated
to match short spreads and spread sensitivities, and the third specification
uses a stochastic generator where only the default intensities are changed
using a logit functional form for calibration. In the constant case we see that
introducing a credit trigger reduces the spreads to somewhere between one
third and two thirds. depending on ratings. For a B-trigger the spreads are
reduced to between 20 and 40% of the original spreads, again depending on
ratings. Similarly, the reduction for a BBB-trigger is between 60 and 80%.

In the second case (with the affine generator) a danger in using this
calibration shows up: To compensate for the fact that the observed spreads
are far from those generated by the empirical transition probabilities, there
is a large risk adjustment, and this affects also the non-default transition
probabilities. In this example, these take low values after calibration. The
low dimension of the risk adjustment parameters only allows us to control
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for initial spreads and spread sensitivities but there is little control over non-
default transition intensities. And in our example, the intensities of direct
default become relatively much more important after calibration and this in
turn renders the credit trigger much less efficient. This is true also in the
final example with the logit generator.

4.7 Default Swaps

As a second illustration of our numerical technique we consider default swaps
- i.e. contracts in which one party (the default protection buyer) pays a
fixed, periodic amount to the other party (the default protection seller) until
whichever comes first: Default of an underlying reference security or matu-
rity of the contract. If the reference security defaults before the maturity
of the default swap, the protection seller pays an amount to the protection
buyer which compensates (in a sense which varies among contracts) for the
loss in value of the reference security. A contract specification with physi-
cal delivery would for example allow the protection buyer to exchange the
defaulted reference security for its principal. For more on default swaps, see
Duffie[19].

We study the sensitivity of the price of a default swap to changes in the
joint credit quality of the protection seller and the reference security. In
particular, the effect of correlation can be studied more carefully. A natural
intuition to have on default swaps is that the party buying default protection
should worry about correlation in the credit quality between the underlying
reference security and the default protection seller. We show that if the
correlation is 'weak’ in the sense that defaults do not occur simultaneously,
then the effect of correlation is negligible.

For the illustration, we have selected a 5 year default swap with semian-
nual fixed rate payments where the reference security is a zero-coupon bond.
Since our focus is on the correlation between the protection seller and the
issuer of the reference security, we assume for simplicity that the protection
buyer cannot default. It is possible to include default of the protection buyer,
in which case we would need a three-dimensional stochastic process to rep-
resent the joint ratings movements. Again, consider for our illustration 11
dates, Ty, T, ..., 119 where T; —T;_; = % for every 1 =1,...,10 and 7Ty = 0.
The payment at time 7; is defined as

&
(Tz‘ - jjz'fl)c = 5

In case the protection seller defaults the settlement value is defined in terms of
the contract value just before default as in the case of a swap. The settlement
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in case the issuer of the zero-coupon bond defaults is as follows: Assume the
default occurs at time ¢ € (T;_1, T;) then the payment made to the protection
buyer is

(1=¢)P(t,T)— (t = Tiy)c

where ¢ is the recovery rate of the zero-coupon bond and where we have
subtracted from the payment the premium for the period between default and
next premium payment date. Other payments could have been considered,
e.g. a default payment of 1 — ¢, or the fixed payments could be paid in
advance instead. This would change the level of the fixed payments but not
alter our conclusions.

Now, ¢ is found as a fair fixed rate such that the contract value is 0 at
time 0. In Table 4.2 we have used the JLT generator for two independent
firms. As can be seen from the table the initial category of the protection

Ref \ Ps AAA AA A BBB BB B CCC
AAA 2.66 2.65 2.65 2.62 2.54 2.43 2.12
AA 7.17 7.16 7.15 7.09 6.90 6.63 5.88
A 19.48 19.47 19.43 19.32 18.94 18.38 16.87
BBB 61.05 61.02 60.94 60.67 09.76 58.41 04.73
BB 202.35 202.30 202.17 201.69 200.09 197.68  190.93
B 425.73  425.69  425.58 42521 42393 422.00 416.49
CCC 1131.75 1131.72 1131.63 1131.33 1130.31 1128.77 1124.27

Table 4.2: Default swap premiums using the JLT generator for different com-
binations of credit quality of protection seller and reference security. Protec-
tion buyer is assumed default-free. Swap premiums are paid in arrear.

seller is not that important for the fair fixed rate. This is due to the fact
that in a setup with no simultaneous defaults, there is only a loss to the
protection buyer in the event that the protection seller defaults before the
reference security, but when that happens the loss is a fractional loss on a
default swap where the reference security has not yet defaulted.

Next, we have modeled correlation through the transition intensities’ joint
dependence on the interest rate. In Table 4.3 we have used an affine generator
to model correlation and Table 4.4 shows the results when using logit default
intensities.  Again, the credit quality of the protection seller is a ’second
order’ effect compared to the credit quality of the reference security. It is
clear from this, that to get significant effects of correlation we need to have
'strong correlation’ in the sense of simultaneous defaults of protection seller
and reference security. Finally, the effect of having interest rate sensitive
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Ref \ Ps | AAA AA A BBB BB B CCC
AAA 8.90 8.90 8.90 8.90 8.89 8.89 8.89
AA 11.13 1113 11.13  11.13  11.13 11.13  11.12
A 15.00 15.00 15.00 15.00 15.00 14.99 14.99
BBB 24.18 2418 2418 2418 24.18 24.17  24.16
BB 4796 4795 4795 4795 4795 4794  47.93
B 79.75 7975 7975 7975 79.75 79.74  79.73
CcCC 134.59 134.59 134.59 134.58 134.58 134.57 134.56
Ref \ Ps | AAA AA A BBB BB B CCC
AAA 9.66 9.65 9.65 9.63 9.61 9.56 9.47
AA 12.07 12.07 12.05 12.04 12.00 11.94 11.81
A 16.11  16.09 16.08 16.06 16.01 15.93 15.76
BBB 25.46 2544 2543 2540 2534 25.24 25.04
BB 4971 49.69  49.67  49.63 49.57 4945  49.20
B 81.85 81.82 81.78 81.73 81.63 81.45 81.08
CCC 136.69 136.64 136.57 136.48 136.28 135.94 135.24

Table 4.3: Default swap premiums using the affine generator for different
combinations of credit quality of protection seller and reference security. The
upper table considers a ’base case’ in which the generator is calibrated in
order to match short spreads but has zero sensitivity to changes in the short
rate. The lower table is also calibrated to match short spreads but has spot
rate sensitive intensities as well. Protection buyer is assumed default-free.
Swap premiums are paid in arrear.

default intensities is small: the relative change in default premiums never
exceeds 10% in our example. The relative effects in the plain vanilla swaps
could be much larger.

4.8 Supplementary remarks

4.8.1 Convergence of ADI-method

In this section we will prove that the ADI-method used in this paper con-
1

verges. To see this substitute S"*z in (4.20) by the solution found in (4.17)

leading to

-1 —1
o (1-20) (14 80) "5 (14 2 (1- 2x) 1o
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Ref \ Ps | AAA AA A BBB BB B CCC
AAA 9.80 9.80 9.80 9.80 9.79 9.79 9.78
AA 12,71 12,71 1271 12771 1270 12,69  12.68
A 1755 1754 1754 1753 1752 1751  17.49
BBB 28.44 2844 2843 2842 2840 28.37 28.34
BB 592.52 5252 52,51 52,50 5246  52.43  52.38
B 79.49 7948 7948 7947 7945 7943 7941
CCC 115.78 115.78 115.77 115.77 115.75 115.74 115.71
Ref \ Ps | AAA AA A BBB BB B CCC
AAA 10.14  10.14 10.14 10.13 10.11 10.09 10.06
AA 13.16  13.15 13.15 13.14 13.11 13.08 13.04
A 18.13  18.13 18.12 1810 18.07 18.03 17.96
BBB 29.28  29.27  29.26  29.23  29.18 29.11  29.02
BB 53.76  53.75 53.73 53.69 53.61 53.51 53.36
B 81.18 81.16 81.14 81.10 81.00 80.88 80.71
CCC 11796 11794 11791 117.85 117.72 117.56 117.32

Table 4.4: Default swap premiums using the ’logit’ generator for different
combinations of credit quality of protection seller and reference security. The
upper table considers a ’base case’ in which the generator is calibrated in
order to match short spreads but has zero sensitivity to changes in the short
rate. The lower table is also calibrated to match short spreads but has spot
rate sensitive intensities as well. Protection buyer is assumed default-free.
Swap premiums are paid in arrear.

Denote the eigenvalues of D by v; and the eigenvalues of A by A; then
since D is positive definite and A is negative semidefinite the eigenvalues of
(I —AD) (I +4tD) " and (I+ 4LAY) (T —ALAY) ™" are

1_Aty.
2 Vi
_ < 1
At
1"—71/1'
1+ 4t <
1— Aty | —
5 i

Assume that we know the right price at time N then we can find the price
at time N — 1 as

S((N —1)At,7,m) = OS(T,r,n) + o(Ar?) + o(At)

where © = (I —4D) (I+4'D) ™ and T = (I + &) (T - 4A) 7 Te.
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the error at each time point is given as a M x K matrix and we can succes-
sively calculate them as

en_1=S((N=1Atr,n) — SV = o(Ar?) + o(At)
en_o = S((N —2)At,r,n) — SN2 = Oey_1[ + o(Ar?) + o(At)

In general the error is given as

EN—; = z_: @j (O(AT2) + O(At))rj

J=0

and we would like ¢ — 0. Remember, that the eigenvalues of © and I' are <
1, so that ©" — 0 and I'" does not explode. Define the spectral radius of a
matrix A by p(A) then

N-1
leolle = 11> ©7(0(Ar2) + o AT o
=0
N-1 . .
< S 1O cllolAt, Ar)| T
7=0
N-1
< 37 p(O) p(T)o(At, Ar)
j=0
N-1

= p(©) o(At, Ar)

o

_ 1=pO)" .
B 1—M@)(AtA)

which is what we wanted.

4.8.2 Calculation of fixed rate

We have selected a 5 year “plain vanilla” swap with semiannual exchanges
of fixed rate payments for floating rate payments. More precisely, consider
10 dates, T, T5,...,Tyg, where T; s — T; = % for every i = 1,...,9. The
payment at time 7T; is defined as

1
Xi=F|l—>—1-°%
P(T;, T+ ) 2
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fori=1,...,10 where F'is the constant notional amount. Without any loss
of generality we will assume that F' = 1. Notice, that we in this case study
a version without payment in arrear.

For our interest rate model we have chosen the Vasicek model

dr = k(p — r)dt + odW,
where W, is a standard Brownian motion. Then we find P(¢,T) as
P(t,T) = a(T — t)e PT=0r

where
1 —e*®

K

a(r) = exp(

(B(z) — 2)(5°n — 30%) 025(56)2>

K2 4K
The value of a riskless swap of this type would be calculated as

S(t) (4.23)

10 r . 1 c
= SO EQ | S <— 4 _>]
; I P(T;, T + %) 2

10 i o 1 c
= ZEtQ efft *r(s)ds < - — 1= _)]
— a(%)e—ﬂ(g)r(Ti) 2

10
1 Ti : c
= Yy B [ o] (14 5P T)
i—1 ¢ (5)
10 1
: 1 X
= Y PUT)ES [F ] - (14 D)P(1T)

i— & (5)

10
= Z (%65(%)f(taTi)e%ﬂ(%)r—)ﬂ(Q(Ti—t)) —(1+ f)) P(t,T;) (4.24)
=1 \ ¢ (5) 2

where E'i denotes the T; forward measure and f(t,T;) is the T; forward rate.
The last equality is due to the fact that under the conditional 7; forward

measure r(7T;) ~ N(f(t,Ti), "2—25(2(7} — t))) Bjork[5]. In a Vasicek model
we can find the forward rate as

0
£(4.T) B logaPT(t, T)

2 2 2

= pm g g I (T(t) +5 - u) ™" (4.25)
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For our simulations we have chosen to use p = 0.05, x = 0.15, and
o = 0.015. With these values we can find ¢ such that the value of a risk free
swap is 0. Using (4.24) and (4.25) we find

¢ =5.0125%

4.8.3 Default settlements

The pricing of a swap is basically as easy as it is to price the settlement
payment. This is because the payments in a defaultable swap can be decom-
posed into the promised payments which are paid until a default occur and
the settlement payment at the time of default. The first part which we will
call a swap-stop contract, since all the remaining payments are stopped after
a default, is easily priced as

SSTOP(t7 r,) = Z E, [ef Sl rs+AA+2B din for ¢t € [tj,l, tj)
i=j

where )\ is the default intensity for counterparty i = A, B and X, is the
promised payment at time ¢;. One example of a payment is X; = m —
1 —c where P(t;_1,1;) is the price of a default free zero-coupon bond between
t;_1 and t;.

The payment at the time of the settlement can be priced as
tn
SSEL(t, 1) = E, [ / e ST N A du (\AGA(g) 4 ABSP(5)) ds
t

where S%(t) is the settlement in case counterparty ¢ = A, B defaults first
at time t. Both S°T9F and SFT are first-to-default contracts of two firms
which can be priced using the method described in Section 3.3.

Now, any type of defaultable swap can be priced as

SP(t,r) = STOP(t, 1)) + STFT (¢, 1))

Notice that SSTOF can be priced analytically in an affine model. However,
depending on S4 and S® we might have more difficulties with S°FT. E.g.
we can have a partial settlement as in Duffie and Huang[21] where

SA(t) = SD(t_a Tt) (1{SD(t7,7't)>U} + ¢241{SD(t7,1"t)<0}) (4-26)

where ¢ is the recovery rate for counterparty A.
A different type of settlement proposed by Hiibner[32] is

SA(t) = Sa(t,r) — ¢ S-(t, 1)
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where

S_|_(t, Tt) = Z E |:€ftti Is din—i—] fort € [t]’_l, t])

1=j

n
S (tr) = Y. E [eft” i dSX;] for ¢t € [t; 1.t;)
i=j
With this type of settlement he finds a closed form solution. One prob-
lem with this settlement is that we do not net the payment before settling.
Consider a situation where counterparty A defaults with a recovery rate of
¢* = 0. Furthermore, assume that before default occurs the contract has
negative value to counterparty A. Now, after the default B ends up paying
A in settlement for a contract which “promised” B a payment from A. This
is because the payments are not netted before settling. This could be the
case for two separate contracts but not within a single contract.
Other settlements could be used. E.g. let

SA(t) = X;" — ¢ X, for every t € (t;_1, 1]
and similarly

SP(t) = o) X" — X7

)

for every t € (t; 1, ]

which is basically exponential functions we will be able to price SFT" (almost)
analytically in an affine setup using the Fourier inversion technique described
in Duffie, Pan, and Singleton[23]. This settlement is very similar to the one
used in Hiibner[32]. Here, only the next payment is settled.

In Jarrow, Lando, and Turnbull[33] they propose a settlement of default-
able zero-coupon bonds which is a proportion of a non defaultable bond.
We could adopt this type of settlement and replace S? in (4.26) with a non
defaultable version of the contract, S

SAt) = St 1) (Lgsryso) + 5 Lisr)<oy)

Now, we no longer have a recursion. All the terms in S°T are known and
the pricing becomes much more simple. Since the spreads for defaultable
swaps are small the results using this settlement will probably be close to
the results using (4.26).

4.9 Conclusion

We have presented a method for computing swap spreads in models of default
based on ratings. The results confirmed findings in Duffie and Huang[21] that
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swap spreads are relatively insensitive to credit quality for interest rate swaps.
Of course, for a book with thousands of swap contracts the small spreads will
add up and there is still a need to price and control the credit risk of the entire
portfolio. The framework presented may also be applied to foreign currency
swaps. This would, due to the exchange of principal, produce larger spreads
but the computational issues involved would be similar.

Our computations have also shown that using stochastic generators has a
large impact on the results. We used two specifications: The affine generator
permits analytical expressions for corporate bonds but also allows negative
intensities to occur, whereas the logit specification only allows positive inten-
sities but also to our knowledge requires numerical solution of bond prices.
Both specifications changed our results for swap prices but mostly in the case
with no credit triggers.

We also showed that in our setting the effect of the quality of the protec-
tion seller in a default swap was relatively small. This has implications for
correlation as well: If changing the rating of the protection seller does not
drastically alter the contract value, then, if we hold the marginal distribution
of default fixed, but change the correlation between protection seller and ref-
erence security this will not have a huge effect. This result depends critically
on the fact that we did not allow simultaneous default as a possibility in our
example. We applied a 'weak’ type correlation in which the correlation be-
tween defaults is obtained through the default intensities’ joint dependence
on the state variables. A ’strong’ type of correlation in which the defaults
are correlated by allowing for simultaneous transitions in the rating process
will be considered in future work. Allowing for simultaneous transitions may
capture not only default 'contagion’ effects but also the widening of credit
spreads on non-defaulted bonds following the default of a particular bond -
an issue of great concern to risk managers.
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4.10 Appendix

4.10.1 Proofs.

Proof of Proposition 7
Consider a time point ¢ < T, the date of the contract’s final promised cash
flow dr = d(T,r7,nr). Then

T
V, = E° [exp (— / Rudu> dT]
t

In the case where the price processes are driven by Markovian state variables
we can compute this expectation by solving an appropriate system of PDEs.
Let

fErm) = Vi, t<T (4.27)

f(Trr,nr) = dr (4.28
Define 5 5 | g
_ Y 9 L 20

Df—atf+,uarf+2a 57 (4.29)

By Ito’s lemma for processes with jumps (see for example Protter[52]) we
have

f(t: T, nt) - f(07 To, 770)
= /0 Df(s,rs,ns5)ds + Z (f(s,rs,ns) — f(s,rs,ns,)) + M,

0<s<t
where M; is a local martingale. The sum can be evaluated as'®

Z f(S,Ts,??s) - f(Sﬂ“s,ns—)

0<s<t

= /Ut)\ns Z

(f(sﬂ 7‘5, l) - f(S: /rs; 775)) P(/r]s; l)dS + Mt*
lel\{ns}

15We here use the representation of a pure jump process as the sum of a (local) mar-
tingale and the compensator of the jump process: For illustration, a counting process N
with intensity A, can be written as

t t t
Nt:Nt—//\sds+//\sds:Mt+/)\sds
0 0 0

where M is a local martingale. Also, we use the common notation n;_ for the left limit of
n at time t.
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where P(ng,1) is the conditional probability that n, = [ given that the value
of n,— and that the Markov chain jumps at time s, A, is the intensity by
which the chain leaves the state 7,, and M} is a local martingale. Continuing
on, we find

t
)\ *
- / Ans Z ﬂ(f(s,rs,l) — f(s,rs,ns)) ds + M,
0 1€\ {ns}
t
— / Z )\T]s,l (f(sarsal) - f(S,?”S,nS)) dS + ]\4t>k
0 \teL\{n:}

_ /Ot (Af(s,rs))nsdsqLMj.

Here, (Af(s,rs)> denotes the n/th element of the vector Af(s,r,). Also,

TNs
in the last equality we use the fact that a diagonal element of A is minus
the sum of the off-diagonal elements in the same row. We can now write the
differential of f as

df (t,re,me) = (Df(t, re,m) + (Af(t, rt))m) dt + dM, (4.30)

where M, is a local martingale.
Next, consider the discounted pre-default process

Y; - f(S: Ts, 775)5125 s>t (431)

where (3 is defined as
ﬁt,s =e ft Fudu

Now, using integration by parts

T T
YT - f(t, Tty nt) + / f(S, Ts, ns)dﬁt,s + / ﬁt,sdf(sa Ts, 775) (4'32)
¢ t
Inserting (4.30) in (4.32) gives

Yr — f(t,re,me) (4.33)

= /tTf(SaTsaﬁs)dﬁt,s + /tT Br.s (Df(S,Ts,ns) + (Af(S,rs))ns) ds + M,

T
— /t Br.s (Df(s,rs,ns) + (Af_(s,rs))ns — Rsf(s,rs,ns)> ds + M, (4.34)
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where M, by assumption is a martingale. We also have from the definition
of f and the expression for V' that

ftrem) = EZ (Brrdr)  fort <T (4.35)

By taking conditional expectation on both sides of (4.34) we have a second
expression for f(t,ry,n;), and for the two expressions to be equal we must
have for all t < T that

T —
EP {—/ Brs (Df(S,Tsﬂ?s) + (Af(S,Ts))nS — Rsf(s,rs,ns)) ds] -0

t
(4.36)
Hence f(s,rs,ms) = V5 is a solution to the partial differential equation

Df(s,rs,15) + (Af(s, Ts))ns — Ry f(s,75,1m5) = 0. (4.37)
and from the lumpy dividend paid at time 7" we have the boundary condition

f(T: T, 77) = dT-

Using a little algebra and writing (4.37) with the same vector notation as in
(4.7) gives the result.

4.10.2 A generator example

In this appendix, we illustrate the construction of joint generators where
independence between the two chains is maintained and we illustrate the
distinction between generators with and without the default category. First,
let the marginal generator matrices without the default category be given as

A _AB _ —Q «
A=A _[ ; _5]

and the default intensities as a 2-dimensional vector

A1
A2
Then the generator matrix including the default category, A” is defined as:

—(a+ ) a A1
AP = B —(B+X2) A
0 0 0
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where the third category (default) is absorbing.

The combined generator matrix without the default category will be a
4 x 4 matrix with state space {(1,1),(1,2),(2,1),(2,2)}. Using this sequence
of the states and assuming that counterparties A and B are independent (in
that case there are no simultaneous jumps) we define the combined generator

by

—2a « « 0
A= B —(a+p) 0 o
3 0 —(a+0) «

0 B B —20

I.e. A5 is the intensity that counterparty B jumps from category 1 to 2 and
A remains in category 1. Similarly, A3 is the intensity that counterparty A
jumps from category 1 to 2 and B stays in category 1. The 4-dimensional
vectors of default intensities are defined by

A A

A )\1 B __ )\2
A= o A7 = A\
A2 A2

4.10.3 Implementation

A program solving for the swap price would look something like

Initialization

find A7'

find A,'

for 1 = 1 to # of payments
swap = swap + Payment (1)

for i =1 ton

temp = swap*B;
swap = Afl*temp
temp = By*swap-swap*D?

swap = temp*AQ_1

where n is the number of time steps between payments and temp is the right
hand side of the equations, updated for each iteration. The initialization
involves reading the matrix A from a file and initializing the matrix D.
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In the case of a time dependent intensity matrix we need to do the inver-
sion of (I — 4!A’) in each time step. This means that the program will be
slower. Our simulations suggest that the time needed for calculating swap
prices with a time dependent intensity matrix is approximately 10% higher
than for the constant intensity matrix. A sketch of the program is outlined
below.

Initialization
find A;!
for 1 = 1 to # of payments
swap = swap + Payment (1)
for i =1 ton
temp = swap*B;
swap = Afl*temp
find Ay’
temp = By*swap-swap*D?

swap = temp*A;1

Another complication is an intensity matrix with dependence on the in-
terest rate. This complicates the program, since each row of swap is the swap
price for different values of the interest rate. This means that we need to
split up the matrix swap and we will call the r’th row for swap(r) where r
is between rmin and rmax. This idea is outlined below.

Initialization
find A;*
for r = rmin to rmax by Ar

find Ay(xr) !
for 1 = 1 to # of payments

swap = swap + Payment (1)

for i =1 ton

for r = rmin to rmax by Ar

temp(r) = swap(r)*B; (r)
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swap(r) = A]'xtemp(r)

temp(r) = By*swap(r)-swap(r)*D?(r)

swap(r) = temp(r)*Ay(r)~!

collect swap(r) in the matrix swap

This program is approximately 50% slower than the original program.
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