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Summary

This thesis is concerned with quadratic hedging approaches, indifference pricing
principles and their applications in insurance. These techniques are of general inter-
est in incomplete financial markets, that is, in models for financial markets where
general contingent claims cannot be priced uniquely using no-arbitrage arguments
alone. Thus, the situation differs from the complete case, where all prices are already
determined from the simple and economically reasonable assumption of absence of
arbitrage, i.e. absence of any possibilities to make riskless profits by trading on the
financial markets.

The emphasis in this thesis is on the analysis of insurance contracts which combine
traditional actuarial risk and financial risk. A simple example is a unit-linked pure
endowment contract with guarantee. With this life insurance contract, the sum in-
sured payable to the policy-holder at the term of the contract is contingent upon
survival and not fixed a priori, but linked to the development of some stock index
and guaranteed against falling below some amount. The actuarial risk in this con-
tract stems from the uncertainty of not knowing whether or not the policy-holder
will survive until the term of the contract, and the financial risk is related to the
performance of the underlying index. Another example of an insurance contract
with an inherent financial risk is a financial stop-loss contract. This reinsurance
contract differs from traditional stop-loss contracts in that the insurer’s total losses
have both an insurance and a financial component.

In the first part of the thesis, we focus on the problem of hedging and pricing
payment streams generated by unit-linked insurance contracts using the criterion
of risk-minimization. A widely used approach is based on the assumption of risk-
neutrality with respect to mortality, and we first demonstrate within simple discrete
time models how this can be derived from the asymptotic behaviour of the insurer’s
loss from a portfolio of unit-linked contracts as the number of policies increases.
Next, risk-minimizing hedging strategies are determined explicitly for a portfolio
of independent identical unit-linked pure endowment contracts with guarantee in
the special case where the financial market is described by the Cox-Ross-Rubinstein
model. These results characterize the combined insurance and financial risk in the
contracts and decompose this risk into a hedgeable part and a non-hedgeable part.
In addition, we show how payment streams can be incorporated into the theory of
risk-minimization in a continuous time set-up. This extension provides a framework
for the analysis of insurance contracts that generate genuine payment streams. In
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vi SUMMARY

this setting, risk-minimizing hedging strategies are worked out for general unit-linked
life insurance contracts driven by a Markov jump process with a finite state space
and for non-life insurance risk processes where claim amounts and premiums are
affected by some traded price index, for example a claim inflation index.

The second part of the thesis deals with financial transformations of two clas-
sical actuarial premium calculation principles, the variance and standard devia-
tion principles. The corresponding financial valuation principles were derived by
Schweizer (1997) via indifference arguments which embedded their actuarial coun-
terparts in a financial framework. Under the financial variance (or standard de-
viation) principle, the fair premium equals the expected value of the claim under
the variance optimal martingale plus a safety-loading which is proportional to the
variance (or standard deviation) of the non-hedgeable part of the claim. We com-
plement existing results by deriving optimal hedging strategies for the two financial
valuation principles when the discounted price process of the traded assets is a con-
tinuous semimartingale. For the variance principle, the optimal strategy differs from
the mean-variance hedging strategy only by a correction term which is independent
of the claim under consideration; for the standard deviation principle, the result is
more complicated. Furthermore, we provide an alternative direct characterization
of the financial standard deviation principle which does not involve an indifference
argument.

A separate study is devoted to an investigation of the impact on the fair premi-
ums of the amount of information available to the seller of the insurance contracts.
This includes a comparison result of mean-variance hedging errors under two differ-
ent filtrations, which is obtained via a projection argument for Hilbert spaces. In
particular, this result allows the derivation of simple bounds on the fair premiums
under the financial variance and standard deviation principles in the situation where
the insurance claim involves two stochastically independent sources of randomness,
purely financial risk and pure insurance risk. Explicit formulas are obtained for the
fair premiums and the optimal trading strategies under different levels of informa-
tion for unit-linked insurance contracts and for some reinsurance contracts with an
inherent financial risk.



Resumé

Denne athandling omhandler kvadratiske hedging metoder og indifferens-prisfastsaet-
telse samt deres anvendelser indenfor forsikring. Disse metoder er af generel interesse
i forbindelse med analyse af ufuldsteendige finansielle markeder, dvs. i modeller for
finansielle markeder hvor antagelsen om fraveer af arbitrage ikke er tilstraekkelig til
at sikre entydig prisfastsaettelse af generelle afledte kontrakter. I fuldsteendige finan-
sielle markeder er prisen pa enhver afledt kontrakt derimod entydigt bestemt alene
ud fra den enkle og gkonomisk rimelige antagelse om fravaer af arbitragemuligheder
(muligheder for risikofrie gevinster).

Afhandlingen fokuserer pa analyse af forsikringskontrakter, som kombinerer tradi-
tionel forsikringsrisiko og finansiel risiko. Dette er eksempelvis relevant for unit-link
kontrakter indenfor livsforsikring. Ved en unit-link ren oplevelsesforsikring med slut-
garanti er forsikringssummen, der udbetales ved oplevelse, ikke fastsat fuldstaendigt
ved aftalens indgaelse, men knyttet direkte til et underliggende aktieindeks eller
en pulje. Samtidig garanterer kontrakten et mindstebelgb, som sikrer forsikrings-
tageren imod situationer, hvor det underliggende aktieindeks udvikler sig ugunstigt.
Forsikringsrisikoen i sadanne kontrakter er relateret til usikkerheden omkring forsik-
ringstagerens overlevelse, og den finansielle risiko er knyttet til udviklingen i det un-
derliggende aktieindeks. Et andet eksempel pa en forsikringskontrakt indeholdende
finansiel risiko er en finansiel stop-loss kontrakt. Denne genforsikringskontrakt ad-
skiller sig fra traditionelle stop-loss kontrakter, idet den kan konstrueres saledes, at
den dakker forsikringsselskabets samlede finansielle og forsikringsmaessige tab.

I den fgrste del af athandlingen anvendes kriteriet risiko-minimering til prisfastsaet-
telse og hedging (afdaekning) af betalingsstrgmme fra generelle unit-link livsfor-
sikringskontrakter. Et ofte anvendt princip ved prisfastsaettelse af unit-link livs-
forsikringskontrakter er baseret pa antagelsen om “risiko-neutralitet med hensyn til
dgdsrisiko”. Dette princip udledes fgrst indenfor relativt enkle modeller med diskrete
handelstidspunkter ved at betragte den asymptotiske opfarsel af forsikringsselska-
bets tab knyttet til disse kontrakter. Derefter udledes eksplicitte udtryk for den
risiko-minimerende strategi for en portefglje af uatheengige, identiske, unit-link rene
oplevelsesforsikringer i den situation, hvor det finansielle marked beskrives ved en
Cox-Ross-Rubinstein model. Resultaterne giver en karakteristik af den kombinerede
finans- og forsikringsrisiko i disse kontrakter, idet risikoen dekomponeres i to dele,
en del som kan elimineres ved at handle pa det finansielle marked, og en del som ikke
kan afdakkes. Det demonstreres yderligere hvorledes generelle betalingsstrgmme kan
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viii RESUME

implementeres i eksisterende teorier for risiko-minimering i modeller hvor handel og
betalinger beskrives i kontinuert tid. Denne udvidelse muligggr behandling af for-
sikringskontrakter som genererer egentlige betalingsstrgmme. Indenfor denne nye
ramme bestemmes risiko-minimerende strategier for generelle unit-link kontrakter
modelleret ved Markov-springprocesser med et endeligt tilstandsrum. Derudover be-
tragtes en klasse af risiko-processer fra skadeforsikring, hvor bade enkeltskadebelgb
og preemier kan afthange af et prisindeks, som kan handles pa et marked.

I athandlingens anden del undersgges nogle finansielle transformationer af de klas-
siske aktuarielle preemieberegningsprincipper, varians- og standardafvigelsesprincip-
pet. Disse afledte finansielle principper blev opnaet af Schweizer (1997) ved anven-
delse af indifferens-argumenter samt ved at indfgre de aktuarielle principper i en
finansiel ramme. Under det finansielle variansprincip (henholdsvis standardafvigel-
sesprincip) bestemmes den fair preemie som summen af den forventede vaerdi under
det variansoptimale martingalmal af de diskonterede betalinger fra kontrakten og
et sikkerhedstillaeg, som er proportionalt med variansen (henholdsvis standardafvi-
gelsen) af den del af risikoen, som ikke kan hedges. Optimale investeringsstrategier
er udledt for de to finansielle principper i den situation, hvor den diskonterede pris-
proces for de underliggende aktiver kan beskrives ved en kontinuert semimartingal.
Forskellen mellem den optimale strategi under variansprincippet og mean-variance
strategien udggres af et korrektionsled, som ikke athanger af hvilken kontrakt der
betragtes. Sammenhangen mellem disse to strategier og den optimale strategi un-
der det finansielle standardafvigelsesprincip er derimod mere kompleks. Der gives
yderligere en alternativ og mere direkte udledning af det finansielle standardafvigel-
sesprincip, som ikke er baseret pa indifferens-argumenter.

Endelig undersgges hvorledes mangden af tilgeengelig information pavirker de fair
praemier. Denne undersggelse omfatter et generelt resultat, som er opnaet ved hjzelp
af projektionsargumenter for Hilbertrum, og som omhandler forskellen pa praecision-
en af mean-variance strategierne under to forskellige filtreringer. Resultatet muligggr
udledning af simple gvre og nedre graenser for de fair preemier under det finansielle
varians- og standardafvigelsesprincip for forsikringskontrakter med to stokastisk uaf-
heengige risikokomponenter, ren finansiel risiko og ren forsikringsrisiko. Eksplicitte
udtryk for den fair preemie og den optimale investeringsstrategi er opnaet for unit-
link livsforsikringskontrakter samt for nogle genforsikringskontrakter med finansiel
risiko under varierende antagelser vedrgrende mangden af tilgaengelig information.
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Chapter 1

Introduction

This thesis investigates methods for hedging and valuation of insurance claims with
an inherent financial risk. It thus focuses on aspects of the interplay between finance
and insurance, an area which has gained considerable attention over the last couple
of decades.

1 Insurance background

The two fields of insurance and finance started as separate areas. At its very origin,
the theory of insurance was mainly concerned with the computation of premiums
for life insurance contracts. An overview of the early history of life insurance can
be found in Braun (1937), and, according to this exposition, the first known social
welfare programs with elements of life insurance are the Roman Collegia which date
back at least to AD 133. The first primitive mortality tables were published in 1662
by John Graunt (1620-1674), who worked with only 7 different age groups. The
first mortality table, where the expected number of survivors from year to year is
given, is due to the astronomer Edmund Halley (1656-1742). These tables allowed
for more precise predictions about portfolios of independent lives and were essential
for computation of premiums for various life insurance contracts. In his book on
evaluation of annuities on life from 1725, Abraham de Moivre (1667-1754) suggested
methods for evaluation of life insurance contracts, combining interest and mortality
under very simple assumptions about the mortality.

In 1738, Daniel Bernoulli (1700-1782) argued that risks' should not be measured by
their expectations and hence laid the foundation for modern utility theory. Using
examples related to gambling, he explained that the preferences of an individual may
depend on his economic situation and, more specifically, that in some situations it

Yi.e. uncertain payoffs. The notion of risk is used in several different contexts in both the

actuarial and the financial literature; often it is simply used vaguely describing the fact that there
is some uncertainty, for example in mortality risk known from insurance and credit risk known
from finance. However, the notion also appears in various more specific concepts. Examples are
insurance risk process, which is typically defined as the accumulated premiums minus claims in an
insurance portfolio, and risk-minimization, which is a theory from mathematical finance that can
be used for determining trading strategies.
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could be reasonable for a poorer individual to prefer one uncertain future payment to
another (more) uncertain payment with a larger expected value, whereas a wealthier
person would prefer the payment with the largest expected value. This observation
was also of importance for insurance in general, since it explained for example why
individuals may accept to buy insurance contracts at a price which exceeds the
expected value of the payment from the contract.

2 Classical valuation of insurance contracts

In the actuarial literature, insurance theory is divided into the analysis of life in-
surance and non-life insurance contracts. In addition to historical aspects, there
are fundamental differences between the two areas, for example in respect of time
horizon (for life insurance extending up to 50 years, whereas for non-life insurance
typically limited to one year). These are reflected e.g. in the principles that are ap-
plied for the calculation of premiums. In this section, we review some notions and
key concepts of life and non-life insurance, placing focus on the valuation techniques
used there.

2.1 Life insurance

We recall some classical and basic concepts from life insurance; introductory expo-
sitions to the area are Gerber (1986) and Norberg (2000).

Consider a portfolio of n lives aged y, say, to be insured at time 0 with i.i.d. remaining
life times T1,...,7,, and assume that there exists a continuous function (called
the hazard rate function) 4, such that the survival probability is of the form
oy = P(T1 > t) = exp(— [§ pysu du). A pure endowment contract with sum insured
K and term T stipulates that the amount K (the insurance benefit) is payable at
time 7" contingent on survival of the policy-holder. Assume that the contract is paid
by a single premium &k, say, at time 0. Assume furthermore that the seller of the
contract (the insurance company) invests the premium & in some asset which pays a
rate of return 6 = (0;)o<i<r during [0,T]. For the ¢’th policy-holder, the obligation
of the insurance company is now given by the present value

T
Hi = 1{T¢>T}K€_f0 Jtdt, (21)

which is obtained by discounting the amount payable at T', 1¢7,>71 K, using the rate
of return 0. Note that (2.1) is a random variable. The fundamental principle of
equivalence now states that the premiums should be chosen such that the present
values of premiums and benefits balance on average. If we assume in addition that §
is stochastically independent of the remaining life times, the principle of equivalence
states that

& = E[H;] = rp,KE[e o %] (2.2)

for the single premium case. Since life insurance portfolios are often very large, this
principle can be partly justified by using the law of large numbers. Indeed, as the
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size n of the portfolio is increased, the relative number of survivors %2?21 Lz >1y
converges a.s. towards the probability 7p, of survival to T by the strong law of
large numbers since the lifetimes 71, ...,T, are stochastically independent. Thus,
for n sufficiently large, the actual number of survivors =% ; 1(7;57} will be “approx-
imately” equal to the expected number, nyp,. Accumulating the amount nx with
interest now leads to

n
nredo ot = nrpyKE[e” Jo o dt]efoT bedt oy > sy KE[e” Jo o Clt]efoT bedi (2.3)
i=1
In particular, when § is non-random, the expression on the right is equal to the
amount to be paid to the policy-holders. So in the case of a deterministic rate of
return, the principle of equivalence is justified directly by use of the law of large
numbers which essentially guarantees that the actual number of survivors is “close”
to the expected number.

The problem becomes much more delicate in the more realistic situation where
d is a stochastic process, and it follows immediately from (2.3) that the simple
accumulation of the premium x will not in general generate the amount to be paid,

T
since ¢~ Jo may differ considerably from its expected value. One way of dealing

with this problem is to replace the “true” rate of return process ¢ in (2.2) with
some deterministic rate of return process ¢’ which is such that the single premium
nk accumulated by the true rate of return § is larger than K times the expected
number of survivors with a large probability. The excess (if any) should then be
added to the amount paid to the policy-holder and is known as bonus, see e.g.
Ramlau-Hansen (1991) and Norberg (1999) and references therein. However, this
approach really raises the problem of whether it is reasonable to assume the existence
of any deterministic and strictly positive ' which over a very long time horizon has
the property that it will be larger than the actual return on investments with a
very large probability. In particular, this is an extremely relevant discussion when
one thinks of the historically low interest rates observed in the late 1990s. An
alternative to this approach is therefore to replace § by the so-called short rate of
interest and then replace the last term in (2.2) by the price on the financial market
of a financial asset which pays one unit at time 7', a so-called zero coupon bond,
see Persson (1998) who obtained a general version of Thiele’s differential equation
within this framework.

2.2 Non-life insurance

In comparison to the valuation principles in life insurance, discounting plays a much
less prominent role in the classical non-life insurance premium calculation principles;
see e.g. Bithlmann (1970) and Gerber (1979) for standard textbooks on the mathe-
matics of these principles. This difference can be partly explained by the relatively
short time horizons that are associated with most non-life insurance contracts, which
typically change from year to year.

Let H denote some claim payable at a fixed time 7', say. A premium calculation
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principle is a mapping which assigns to each claim a number, called the premium.
One class of classical actuarial valuation principles applied in non-life insurance can
be directly and somewhat pragmatically motivated from the law of large numbers.
These principles prescribe charging a premium @(H) which is equal to the expected
value E[H]| of the claim augmented by some amount A(H), the so-called safety-
loading, i.e.

i(H) = E[H] + A(H). (2.4)

The most important examples of such premium calculation principles are: A(H) =0
(the net premium principle or the principle of equivalence), A(H) = aE[H| (the
expected value principle), A(H) = a(Var[H])'/? (the standard deviation principle),
A(H) = aVar[H] (the variance principle) and A(H) = oE[((H — E[H])")?] (the
semi-variance principle). In practice, the standard deviation principle seems to be
the most widely used principle of the above. Biihlmann (1970) mentions the fact
that it is linear up to scaling as one possible explanation for its popularity, but
judges its theoretical properties to be inferior to those of the variance principle.

Another interesting class of premium calculation principles consists of the so-called
zero increase expected utility principles, which are derived as follows. Let u be a
utility function, i.e. u/(z) > 0 and u"(z) < 0 for any z € IR, and let V; denote the
insurer’s initial capital at time 0 (possibly random, e.g. depending on the result of
other business). The zero (increase expected) utility premium of H under u and
initial capital Vj is the solution %(H) to the equation

Blu(Vo + a(H) — H)] = E[u(V0)], (2-5)

which states that the expected utility of the final wealth Vi + @(H) — H from selling
the claim H at the premium @(H) should equal the expected utility of Vj; the latter
may be interpreted as the wealth associated with not selling the claim H. The zero
utility premium defined by (2.5) is often also called the fair premium, since selling
the claim leaves the expected utility unaffected, i.e. it leads neither to an increase
nor a decrease in expected utility. The most prominent example is probably the
so-called exponential principle which is obtained for the exponential utility function
u(z) = £(1 — e **). In particular, when Vj is constant P-a.s., the solution to (2.5)
does not depend on V; and is given by

w(H) = %log (E[eaH]) )

Another frequently used utility function is the quadratic utility function which is
2

defined by u(z) = 2— 5., < 5, and u(z) = ; for > 5. For a more complete survey

of utility functions in insurance (and finance), see e.g. Gerber and Pafumi (1998).

An alternative principle is the so-called Esscher principle, which states that

_ E[He ]

a(H) = g (2.6)
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This principle basically amounts to an exponential scaling of the claim H.

Other premium calculation principles worth mentioning are generalizations of the
so-called mazimal loss principle. For ¢ € [0,1] and p € [0,1], the (generalized)
(1 — g)-percentile principle states that the premium should be computed as

U(H) = pE[H] + (1 —p)F (1 —¢),

where F' is the distribution function of H and F~! is its generalized inverse, i.e.
F~'(y) = inf{z|F(x) > y}. Thus the premium is a weighted average of the expected
value of H and the (1 — ¢)-percentile of the distribution of H. In particular, the
maximal loss principle is obtained for ¢ = 0 and p = 0.

For a detailed investigation of the above mentioned principles and several other
premium calculation principles, see e.g. Goovaerts et al. (1984) and Heilmann (1987).

3 Financial background

Bachelier (1900) proposed to describe fluctuations in the price of a stock by a Brown-
ian motion by assuming that the change in the value of the stock in a time interval of
length h was normally distributed with mean «h and variance o?h and that changes
in non-overlapping intervals were stochastically independent. Samuelson (1965) ad-
vocated a framework where the stock price was modeled by a geometric Brownian
motion, which had the advantage that it did not generate negative prices. Within
this framework, Black and Scholes (1973) and Merton (1973) introduced the idea
that options on stocks should really be priced such that no sure profits could arise
from composing portfolios of long and short positions in the underlying stock and
in the option itself. Assuming that the option price was a deterministic function of
time and the current value of the stock, they obtained the celebrated Black-Scholes
formula for European call options, and this pricing formula has the at first glance
surprising feature that it does not involve the expected return of the underlying
stock. Cox, Ross and Rubinstein (1979) investigated a simple discrete time model,
where the change in the value of the stock between two trading times can attain
two different values only. In that setting, they derived option prices and obtained
the pricing formulas of Black, Scholes and Merton as limiting cases by letting the
length of the time intervals between trading times converge towards 0. Building on
concepts and ideas in Harrison and Kreps (1979) for discrete time models, Harrison
and Pliska (1981) gave a mathematical theory for pricing of options under continu-
ous trading and clarified the role of martingale theory in the pricing of options and
its connection to key concepts such as absence of arbitrage and completeness.

4 Financial valuation principles

We recall some basic notation and concepts from financial mathematics that will
be used throughout. Standard textbooks are Duffie (1996) and Lamberton and
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Lapeyre (1996); see also Hull (1997) for an exposition including some more insti-
tutional aspects. Let T denote a fixed finite time horizon and consider a financial
market consisting of two traded assets, a stock and a savings account with price
processes S = (St)o<t<r and B = (By)o<i<r, respectively, which are defined on some
probability space (€2, F, P), and introduce the discounted price processes X = S/B
and X% = B/B = 1. In this setting, a trading strategy (or dynamical portfolio
strategy) is a 2-dimensional process ¢ = (¥, m)o<i<r satisfying certain integrability
conditions (which will be given later), and where 9 is predictable and 7 is adapted
with respect to some filtration JF' = (F;)o<;<7 which describes the evolution of avail-
able information. The pair ¢; = (9, m) is the portfolio held at time ¢, that is, J;
is the number of shares of the stock held at ¢ and 7, is the discounted amount in-
vested in the savings account. Thus, the discounted value at time ¢ of ¢; is given
by Vi(p) = 0 X; + m;. A strategy ¢ is said to be self-financing provided that

Vi(e) = Vo(ep) +/0t s dX. (4.1)

Here, V() can be interpreted as the amount invested at time 0 and fj 9, dX, as
the accumulated trading gains generated by ¢ up to and including time ¢. Thus,
for a self-financing strategy ¢, the current value of the portfolio ¢; at time ¢ is
exactly the initially invested amount plus trading gains, so that no in- or outflow of
capital has taken place during (0,¢]. A contract (or claim) specifying the discounted
(Fr-measurable) payoff H at time T is said to be attainable if there exists a self-
financing strategy ¢ such that Vp(p) = H a.s., that is, if H coincides with the
terminal value of a self-financing strategy. Thus a claim is attainable if and only if
it can be represented as a constant Hy plus a stochastic integral with respect to the
discounted stock price process

T
H=Hy+ [ 0 dx, (4.2)
0

The initial investment V(@) = Hp needed for this perfect replication of H is also
called the unique no-arbitrage price of H.

A financial market is said to be complete if all claims are attainable, that is, if
all claims can be replicated by means of a self-financing strategy. One example
of a complete market with continuous trading is the so-called Black-Scholes model
which consists of two assets, a stock whose price process is described by a geometric
Brownian motion and a savings account which pays a deterministic and constant
rate of return. An example with discrete time trading is the Cox-Ross-Rubinstein
model described above, which is also known as the binomial model. One important
feature of complete markets admitting no arbitrage possibilities is the existence of
a unique risk-neutral measure, i.e. a probability measure () which is equivalent to
P and which is such that X is a (local) @-martingale. From the general theory of
stochastic calculus it follows that [ 9 dX is also a local Q-martingale under minimal
assumptions on 9. Furthermore, if 97 is sufficiently integrable for [97 dX to be
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a true ()-martingale, then it follows from (4.2) that the no-arbitrage price of H is
H, = Eg[H], since in this case Eg[fy 97 dX] = 0.

If there exist claims which are not attainable, i.e. claims which do not allow a
representation of the form (4.2) and hence cannot be replicated by means of any self-
financing trading strategy, then the market is said to be incomplete; in this case there
are infinitely many risk-neutral measures. For example, the completeness property
is lost as soon as we move on to more general models than the ones described above.
In the discrete time case, incompleteness occurs already if we replace the binomial
model with a trinomial model, i.e. a model where the change in the value of the
stock between two trading times can attain three different values. An example of an
incomplete model under continuous trading is obtained by adding to the geometric
Brownian motion a Poisson-driven jump component, say. Another class of examples
of incomplete markets consists of models where claims are allowed to depend on
more uncertainty than the one generated by the financial market. Pricing of non-
attainable claims is much more delicate and typically requires a description of the
preferences of the buyers and sellers. In the following we mention some different
approaches to pricing in incomplete markets.

Super-replication

One approach to pricing in incomplete markets is super-replication, see e.g. El
Karoui and Quenez (1995). For a given contingent claim H, this approach es-
sentially consists in finding the smallest number V{/, say, such that there exists a
self-financing strategy ¢ with V4(¢) =V and

Vr(¢) > H, P-as.

By charging the price V;* and applying the strategy ¢, the hedger can generate an
amount which exceeds the needed amount H, P-a.s. Thus, the main advantage of
this approach is that it leaves no risk to the hedger, since, after an initial investment,
no additional capital is needed in order to pay the amount H to the buyer of the
contract.

A (marginal) utility approach

An alternative is to derive fair prices from some utility function describing the
preferences of the buyers and sellers, see Davis (1997) and references therein. Using
a marginal utility argument, Davis (1997) defines the fair price of a claim H as the
price which makes investors indifferent between investing “a little of their funds” in
the contract and not investing in this contract. More precisely, let v be a utility
function, ¢ the investor’s initial capital at time 0, p the price charged at time 0 per
unit of some claim H, z the amount invested in H, and introduce

T
W (z,p,c) = supE lu (c— z+/ Py dXy + gﬂ)] :
9 0

where the supremum is taken over all strategies ¥ from some suitable space of
processes. The number W(z,p,c) is the maximum obtainable expected utility for
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an investor with initial capital ¢ who invests in z/p units of the risk H. The fair
price @%(H;c) of H is then defined as the solution p to the equation
0

gW(O,p, ¢) =0,

provided that the relevant quantities exist.

Quadratic approaches

A third class of approaches for pricing and hedging in incomplete markets consists
of the so-called quadratic methods, see e.g. Schweizer (1999) for a survey. This class
of approaches can be divided into (local) risk-minimization approaches, proposed
by Féllmer and Sondermann (1986) for the case where X is a martingale and gen-
eralized to semimartingales by Schweizer (1988, 1991), and mean-variance hedging
approaches, proposed by Bouleau and Lamberton (1989) and Duffie and Richard-
son (1991). With mean-variance hedging approaches, the main idea is essentially
to “approximate” the claim H as closely as possible by the terminal value of a
self-financing strategy using a quadratic criterion. More precisely, this amounts to
finding a self-financing strategy ¢* = (9%, 7*) which minimizes

E[(H = Vi()?] = 1H = Vi(¢)llZ2p) (4.3)

over all self-financing strategies ¢, i.e. a strategy which approximates H in the L*-
sense. By (4.1), this strategy is completely determined by the pair (Vo(¢*), ),
so that the solution to the problem of minimizing (4.3) is obtained in principle by
projecting the random variable H in L?(P) on the subspace spanned by IR and
random variables of the form [f 9 dX. The optimal initial capital V;(¢*) is often
called the approrimation price for H, and the optimal strategy is the mean-variance
hedging strategy.

Let us now turn to the criterion of risk-minimization. For any (not necessarily
self-financing) strategy ¢ = (n,9) we define the cost process by

Cil) = Vilg) — [ 0, ax, (4.4)

This process keeps track of the hedger’s accumulated costs associated with ¢: At
any time t, it is the current value V;(y) of the strategy reduced by trading gains
Ji9dX. In particular, it follows by inserting (4.1) in (4.4) that the cost process
of a self-financing strategy is P-a.s. constant. In contrast to (4.3), Follmer and
Sondermann (1986) proposed to drop the restriction to self-financing strategies but
insisted on keeping the condition V() = H. With their terminology, a strategy ¢
is now said to be risk-minimizing (for H) if Vp(¢) = H and if it minimizes at any
time ¢ the conditional expected squared remaining costs

E[(Cr(p) - Ci(9))*| A

This optimality criterion amounts to keeping the fluctuations in the cost process
as small as possible under the condition Vr(¢) = H; in particular, Féllmer and
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Sondermann (1986) proved that the cost process of a risk-minimizing strategy is a
martingale.

Quantile hedging and shortfall risk minimization

One possibly undesirable feature of the quadratic approaches is the fact that they
punish losses and gains equally. An alternative is to use quantile hedging, see Follmer
and Leukert (1999), where the objective is to hedge the claim with a certain proba-
bility. Another alternative is the criterion of minimizing the expected shortfall risk,
i.e. expected losses from hedging, which has been proposed by Follmer and Leu-
kert (2000) and Cvitani¢ (1998). They introduce a loss function [ : [0, 00) — [0, 00),
which is taken to be an increasing convex function with /(0) = 0, and consider the
problem of minimizing

B [1((H - Vilo))")]. (15)

over the class of self-financing hedging strategies. Typical loss functions are power
functions, I(z) = 2P, p > 1, and in this case, (4.5) is related to minimizing the
so-called lower partial moments.

5 Interplay between insurance and finance

In this section we mention some specific areas of the interplay between finance and
insurance that will be treated in this thesis. A survey of aspects of the growing
interplay between the two fields is also given in Embrechts (1996), who mentions
institutional issues such as the increasing collaboration between insurance compa-
nies and banks (e.g. the construction of so-called “financial supermarkets”) and the
deregulation of insurance markets as two important aspects. In addition, the emer-
gence of products combining financial and insurance risk (e.g. so-called unit-linked
insurance contracts, various catastrophe futures and options and financial stop-loss
reinsurance contracts) has forced the two fields to search for combinations and uni-
fication of methodologies and basic principles.

5.1 Unit-linked insurance contracts

Unit-linked? insurance contracts seem to have been introduced for the first time in
the Netherlands in the early fifties; in the United States the first unit-linked insur-
ance contracts were offered around 1954, and, in the United Kingdom, unit-linked
contracts appeared for the first time in 1957%. A unit-linked life insurance contract
differs from traditional life insurance contracts in that benefits (and sometimes also
premiums) depend explicitly on the development of some stock index or the value of
some (more or less) specified portfolio. This construction allows for great flexibility

2These contracts are often also called equity-linked or equity-based insurance contracts; in the
United States the contracts are known as variable life insurance contracts.

3See Turner (1971) for an overview of the early history of unit-linked life insurance products; a
treatment of some institutional aspects of unit-linked insurance contracts is given in Squires (1986).
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as compared with traditional life insurance products in that the policy-holder is of-
fered the opportunity of deciding how his or her premiums are to be invested. Today,
issuers of unit-linked life insurance contracts typically offer a variety of investment
possibilities that include worldwide, European or country specific indices, and refer-
ence portfolios with specific investment profiles, e.g. investments in companies from
certain branches or regions, or organizations with certain ethical codes.

Unit-linked contracts have been analysed by actuaries since the late sixties, see e.g.
Turner (1969), Kahn (1971) and Wilkie (1978); the two last mentioned give sim-
ulation studies for an insurance company administrating portfolios of unit-linked
insurance contracts. Using modern theories of financial mathematics, Brennan and
Schwarz (1976, 1979a,b) proposed new valuation principles and investment strate-
gies for unit-linked insurance contracts with so-called asset value guarantees (min-
imum guarantees). Their principles essentially consisted in combining traditional
(law of large numbers) arguments from life insurance with the methods of Black
and Scholes (1973) and Merton (1973). By appealing to the law of large numbers,
Brennan and Schwartz (1979a,b) first replaced the uncertain courses of the insured
lives by their expected values, so that the actual insurance claims including mor-
tality risk as well as financial risk were replaced by modified claims, which only
contained financial uncertainty. These modified claims were then recognized as es-
sentially being options (with a very long maturity, though) which could in principle
be priced and hedged using the basic principles of (modern) financial mathematics
due to Black and Scholes (1973) and Merton (1973). More recently, the problem
of pricing unit-linked life insurance contracts (under constant interest rates) has
been addressed by Delbaen (1986), Bacinello and Ortu (1993a) and Aase and Pers-
son (1994), among others, who combined the martingale approach of Harrison and
Kreps (1979) and Harrison and Pliska (1981) with law of large numbers arguments.
Whereas all the above mentioned papers assumed a constant interest rate, Bacinello
and Ortu (1993b), Nielsen and Sandmann (1995) and Bacinello and Persson (1998),
among others, generalized existing results to the case of stochastic interest rates.

In contrast to earlier approaches, Aase and Persson (1994) worked with continuous
survival probabilities (i.e. with death benefits that are payable immediately upon
the death of the policy-holder and not at the end of the year as would be implied
by discrete time survival probabilities) and suggested investment strategies for unit-
linked insurance contracts by methods similar to the ones proposed by Brennan and
Schwartz (1979a,b) for discrete time survival probabilities. In contrast to Brennan
and Schwartz (1979a,b), who considered a “large” portfolio of policy-holders and
therefore worked with “deterministic mortality”, Aase and Persson (1994) considered
a portfolio consisting of one policy-holder only. However, in all the above papers,
the uncertain courses of the insured lives were replaced at an early point with the
expected courses in order to allow an application of standard financial valuation
techniques for complete markets. The resulting strategies therefore did not account
for the mortality uncertainty within a portfolio of unit-linked life insurance contracts,
and the approach thus leaves open the question of how to quantify and manage the
combined actuarial and financial risk inherent in these contracts. In particular, it
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leaves open the question to which extent this combined risk can be hedged on the
financial markets.

In a recent paper by the author (Mgller, 1998a) risk-minimizing hedging strategies
were determined for a portfolio of unit-linked pure endowment contracts using the
theory of risk-minimization due to Féllmer and Sondermann (1986). In contrast to
the approaches of Brennan and Schwartz (1979a,b) and Aase and Persson (1994),
Mgller (1998a) did not average away the mortality risk (the uncertainty associated
with not knowing the actual number of survivors), but analysed the insurance con-
tracts as contingent claims in an incomplete market. Consequently, the resulting
strategies reflect, and react to, the financial uncertainty as well the uncertainty as-
sociated with not knowing the actual number of survivors. In particular, it is clearly
visible from these strategies how an insurer applying the risk-minimizing hedging
strategy is adapting his portfolio of stocks and his deposit on the savings account
to the actual development within the portfolio of insured lives. Using the results
of Follmer and Sondermann (1986), Mgller (1998a) also derived measures for the
part of the total risk in the unit-linked contracts that cannot be hedged away by
trading on financial markets only, the so-called intrinsic risk. Furthermore, it was
shown that this intrinsic risk could actually be completely eliminated by including
in addition a dynamic reinsurance market. More precisely, it was assumed that the
insurer could trade continuously, in addition to the stock and the savings account,
a third asset with a price process which was, at any time, equal to the prospective
reserve associated with a pure endowment insurance with sum insured 1. In this
way, the insurance risk was essentially transformed into a traded asset or a secu-
rity, a procedure which is known as securitization. In the model considered there,
this additional asset was indeed sufficient to restore completeness, leading to unique
prices and self-financing investment strategies.

5.2 Other insurance derivatives

In this section we describe some further specific products that have appeared in
practice and that combine traditional insurance risk and financial derivatives. The
best known examples are probably catastrophe futures, catastrophe-linked bonds,
financial stop-loss contracts and stop-loss contracts with a barrier. These new prod-
ucts are really genuine combinations of financial derivatives and insurance products,
and they are known as insurance derivatives. The emergence of such products has
been serving as a catalyst for breaking down borders between traditional reinsurance
and finance and has opened up the possibility of rethinking fundamental principles
of reinsurance and investment. This development presents a challenge to direct
insurers and reinsurers as well as to financial institutions in general.

Catastrophe insurance (CAT) futures

In the 1980s and early 1990s, several severe catastrophes impaired the capacity of
reinsurers offering traditional catastrophe covers, and this lack caused an increase in
reinsurance premiums. In 1992 the so-called catastrophe insurance (CAT) futures
and options on CAT futures were introduced. These instruments standardized catas-
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trophe insurance risk and transformed it into tradeable securities, thus providing a
new tool for insurers seeking covers against catastrophe risk. This securitization
was modified in 1995, but the underlying idea essentially remained the same. For
an introduction to CAT futures, see e.g. Cummins and Geman (1995) and references
therein; an overview of securitization of catastrophe insurance risk and an analysis
of some of the problems associated with securitization can be found in Tilley (1997).

The basic idea is the following. Consider losses occurring in a specific area and
caused by certain well defined catastrophic events, e.g. hurricanes with a certain
wind speed or earthquakes of a certain magnitude. Clearly, different insurers will be
subject to different exposures from such risks as a consequence of differences in the
composition of their insurance portfolios, and with traditional reinsurance contracts,
each company would purchase their own insurance covers against risk. Assume
now that a number of (suitably chosen) insurance companies report premiums and
claims related to the pre-specified type of catastrophes (during certain pre-specified
periods) to some central office. Based on the reports, this office constructs a loss
index L = (Ly)o<i<r which is taken to be the underlying process for a futures price
process. More precisely, this means that the index L is being reported regularly
to the public and that a futures price process F' = (Fi)o<i<r is constructed by
fixing the terminal value Fr = min(2, Ly /k), where & is the accumulated premiums
for the reporting companies and 7' is some fixed finite time horizon. Insurance
and reinsurance companies as well as other investors can now buy and sell this
standardized catastrophe risk by purchasing and issuing options on this index on
some stock exchange. For example, the call spread H = (Fp — K1)t — (Fr — Ko) 1,
0 < K; < Ky < 2, provides cover for relative losses (i.e. the ratio of losses over
premiums) in the interval K7, K5|. The main advantage of this construction lies
in the standardization and securitization of the catastrophic risk, which serves to
transform the risk related to individual insurance companies into one (common)
quantity. Thus, this transformed risk may be more attractive and understandable to
a group of investors which is larger than the one of traditional reinsurance companies,
since it is relatively close in nature to existing financial derivatives. By attracting
agents from a wider group of agents than just the traditional reinsurance companies,
these instruments increased the financial capacity of the reinsurance market. On the
other hand, the disadvantage for the direct insurers is that their own relative losses
may differ considerably from the average relative losses of the reporting companies.
Thus, for a given insurance company, the cover from the call spread on the CAT
futures index will typically not correspond exactly the actual loss experienced by
this company.

Catastrophe-linked bonds

Individual insurance companies can also choose to securitize part of their insur-
ance risk directly, for example by issuing bonds that are linked to insurance losses
from certain insurance portfolios. One example of such an arrangement is the so-
called Winterthur Insurance Convertible Bond, also called WinCAT bond. This
bond, which was introduced by Winterthur in 1997, is described and analysed in
Schmock (1999); see also Gisler and Frost (1999). With this three year bond, in-



INTRODUCTION 13

vestors receive annual coupons as long as certain catastrophic events related to one
of Winterthur’s own insurance portfolios have not occurred. Thus, the investors
receive a return from the bond which exceeded the market interest rate as long as
no catastrophes has occurred and a lower return in the case of a catastrophe. The
difference between the return under no catastrophes and the interest rate on the
market was essentially a premium that Winterthur paid investors for “putting their
money at risk”; similarly, the low return in connection with a catastrophic event
essentially implied that the investors had covered part of Winterthur’s losses.

This type of product has the advantage over for example options on the CAT futures
index, that it provides a much more tailor-made cover for the issuer, in that the
trigger events that knock out the coupons are directly linked to the company’s own
insurance portfolio and not to some standardized index. The disadvantage is that
there may be considerable costs associated with the selling of such bonds and that
the seller will have to convince buyers that they are only subject to a minimal moral
hazard and credit risk.

Financial stop-loss contracts

Whereas CAT futures and Catastrophe-linked bonds are aimed at a larger group
of investors, new reinsurance contracts that combine elements of insurance and fi-
nancial derivatives have also been introduced by traditional reinsurers. In Swiss
Re (1998), several new contracts are described under the title “Integrated Risk
Management Solutions”. One example is the so-called financial stop-loss contract,
which promises to pay at some fixed time 7T the amount

H=Ur+Yr—K)" (5.1)

where Uy is the aggregate claim amount during [0, 7] on some insurance portfolio, Y7
is some financial loss and K is some retention limit. For Y7 = 0 P-a.s., the contract
is just a traditional stop-loss contract; however, the loss Y7 could for example be
a put option on some underlying stock index S, that is Y = (¢ — Sy)* or it
could simply be the loss associated with holding one unit of this index, that is,
Yr = Sy — Sr. The financial stop-loss contracts provide a coverage not only for
large losses due to fluctuations within the insurance portfolio (insurance risk) but
also for adverse development of the financial markets (financial risk). In practice,
reinsurance companies would typically sell spreads on the form: (Ur + Yr — K;)* —
(Ur + Y7 — K3) ", where 0 < K; < K, which covers losses Ur + Y7 in the interval
(Kl, KQ] .

The main idea behind the insurance contract (5.1) is that it provides cover for the
insurer’s total risk, i.e. the combined insurance risk from the insurance portfolio and
the financial risk from the financial portfolio. With a traditional stop-loss contract,
the reinsurer would cover insurance losses exceeding the level K. However, the
financial stop-loss contract is designed so that the cover is only paid provided that
the insurance loss augmented by the financial loss exceeds this level. Thus, a large
financial gain —Y7 may compensate for large insurance losses, and in this situation,
the buyer does not really need additional compensation from the reinsurer. This
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feature is illustrated by figure 1.1. The area above the solid line represents pairs
(Y7, Ur) of financial losses Y7 and accumulated insurance claims Ur that generate a
payment from the reinsurer. The area between the solid line and and the dashed line
are pairs (Y7, Ur) where (large) insurance claims Uy are partially compensated by
financial gains —Y7. The problem of pricing these contracts is a challenge to both

Insurance

Claims (Ur)

Losses
covered

Financial

losses (Yr)

Figure 1.1: Regions of cover under the financial stop-loss contract with retention K.

actuaries and financial mathematicians. This fact is for example underscored by
the following quotation from Swiss Re (1998, p. 15), “..., the risk-neutral valuation
technique traditionally used for the pricing of financial derivatives cannot be applied
directly but needs to be adjusted and complemented by actuarial methods”.

The contract (5.1) should be compared to the alternative of buying a traditional
stop-loss contract with retention level K’ paying (Ur — K')* and a traditional finan-
cial derivative, which pays (Y7 — K”)*; the constants K’ and K" could for example
be chosen such that K' + K" = K. Tt follows already from the inequality

(Ur+Yr — K)" < (Ur — K"+ (Yr — K")*, (5.2)

which is satisfied provided that K' + K" < K, that the cover from the financial
stop-loss contract is dominated by combinations of a traditional stop-loss contract
on Uy and a call option on Y. The region of cover under the stop-loss contract and
the call option is depicted in Figure 1.2 as and the area above the solid lines. This
figure shows that the region is indeed larger than the corresponding region under
the financial stop-loss contract. In particular, it follows that the insurer will receive
compensation from the reinsurer also in the situation where very large gains have
arisen from investments. Thus, with the traditional instruments, the insurer has
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Figure 1.2: Regions of cover under a traditional stop-loss contract (Ur — K')* and
a call option (Yr — K")*.

actually bought too much insurance cover; the financial stop-loss contract suits the
needs of the insurer better.

Finally, we emphasize that the inequality (5.2) indeed indicates that the premium for
the financial stop-loss contract should be dominated by the sum of the price on the
financial market of (Y7 —K")* and the reinsurers’ premium for (Ur—K')*. However,
the difference may be relatively small since financial stop-loss contracts have only
appeared recently and since they are only bought and sold in very limited amounts.
Another important point is that, whereas the call option is sold on the financial
market, the (financial and traditional) stop-loss contracts are agreements between
a reinsurer and an insurer, and such contracts are typically not traded on stock
exchanges. Therefore it is not in general possible to make statements like “by no-
arbitrage arguments” etc. about insurance premiums; see also the discussion on the
difference between actuarial and financial valuation principles in Embrechts (1996).

5.3 Combining theories for financial and actuarial valuation

One fundamental difference between the financial valuation techniques, or, more
precisely, pricing by no-arbitrage, and the classical actuarial valuation principles
reviewed above is that the financial valuation principles are formulated within a
framework which includes the possibility of trading certain assets, whereas sev-
eral of the classical actuarial valuation principles are based on more or less ad hoc
considerations involving the law of large numbers. While the financial valuation
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principles are based on dynamic trading, many decision problems in insurance, for
example concerning the choice of optimal reinsurance plans and premiums, where
traditionally analysed taking a static view. Several attempts have been made to
bring together elements of the two theories, and this whole area is still very much
“under construction”. We do not aim at giving a complete overview of this process
but rather at focusing on some specific developments of importance for the rest of
the thesis.

Dynamic reinsurance markets (From financial to actuarial valuation principles)
Several authors have studied dynamic reinsurance markets in a continuous time
framework using no-arbitrage conditions, see for example Sondermann (1991), Del-
baen and Haezendonck (1989) and De Waegenaere and Delbaen (1992). For an
equilibrium analysis of dynamic reinsurance markets, see e.g. Aase (1993) and ref-
erences therein. The main idea underlying the above mentioned papers is to allow
for dynamic rebalancing of proportional reinsurance covers. They all assume that
some process related to an insurance risk process (accumulated premiums minus
claims) of some insurance business is tradeable and that positions can be rebal-
anced continuously. For example, this can mean that reinsurers can change at any
time (continuously) the fractions of the insurance business that they have accepted.
Thus, the insurance risk process can essentially be viewed as a traded security,
and this already imposes no-arbitrage bounds on premiums for other (traditional)
reinsurance contracts such as stop-loss contracts.

Let us review the main results obtained by Sondermann (1991) and Delbaen and
Haezendonck (1989) in more detail. As in the previous section, let U; be the accumu-
lated claims during [0, ¢] in some insurance business. Let furthermore p = (p;)o<i<r
be a predictable process related to the premiums on this business, and define a new
process X by

Xt = Ut + Py (53)

Sondermann (1991) takes —p; to be the premiums paid during [0, ¢], so that —X;
is in fact identical to the insurance risk process. Thus, one can think of X; as the
value at time ¢ of an account where claims are added and premiums subtracted as
they incur. In particular, in the special case where premiums are paid continuously
at a fixed rate x, p, = —kt. Reinsurers can now participate in the risk by trading
the asset X, i.e. by holding a position in the asset with price process X. Sonder-
mann (1991) points out that in this setting of a dynamic market for proportional
reinsurance contracts, traditional reinsurance contracts such as stop-loss contracts
can be viewed as contingent claims and that these claims should be priced so that
no arbitrage possibilities arise. Delbaen and Haezendonck (1989) take p; to be the
premium at which the direct insurer can sell the remaining risk Ur — U; on the rein-
surance market. Thus, in their framework, X; represents the insurer’s liabilities at
time ¢. In the special case where the direct insurer receives continuously paid premi-
ums at the rate x and provided that this premium is identical to the one charged by
the reinsurers, we obtain that p, = k(T — t), so that p; in this situation differs from
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Sondermann’s choice only by the constant x7". Delbaen and Haezendonck (1989) as-
sume that U is a compound Poisson process, i.e. U; = vaztl Z;, where N is a Poisson
process and Zi, Zs, ... is a sequence of i.i.d. non-negative random variables which
are independent of N. They then focus on the set of equivalent measures () which
are such that U is also a QQ-compound Poisson process. For each such measure @),
a predictable premium process p is obtained by requiring that X is a ()-martingale.
This procedure is partly motivated by no-arbitrage considerations (assuming in ad-
dition that all amounts have been discounted with the interest rate on the market),
since this guarantees that no arbitrage possibilities arise from trading in X. In this
way, Delbaen and Haezendonck (1989) recover several traditional actuarial valuation
principles on a certain subspace of claims from no-arbitrage considerations, namely
the expected value principle, the variance principle and the Esscher principle. A
more detailed account of the results of Delbaen and Haezendonck (1989) is also
given by Embrechts (1996).

From actuarial to financial valuation principles

Gerber and Shiu (1996) among others consider the situation where the logarithm
of the stock price process is a Levy process, i.e. a process with independent and
stationary increments. For example, this class of processes includes the geometric
Brownian motion and the geometric (shifted) compound Poisson process. Within
this setting, they demonstrate how the Esscher transform (see (2.6)), can be used in
the pricing of options. They give a very simple option pricing formula which involves
Esscher transforms and which, for a European call option, indeed specializes to
the well-known Black-Scholes formula in the case of a geometric Brownian motion.
Furthermore, they demonstrate how this pricing formula can be derived via a simple
utility indifference argument in the case of a power utility function u(x) = ‘”11::
with parameter ¢ > 0. This way Gerber and Shiu (1996) give a candidate for a
martingale measure that could be used for pricing in incomplete markets also; they
call the resulting martingale measure the risk-neutral Esscher measure. For further
results on the relation between Esscher transforms, utility theory and equilibrium
theory, see Bithlmann (1980, 1983) and references in Gerber and Shiu (1996). A
treatment of some of the mathematical aspects associated with Esscher transforms
for stochastic processes can be found in Bithlmann et al. (1996).

In Schweizer (1997), starting points are the traditional standard deviation and vari-
ance principles, which are of the form (2.4). These principles are taken as measures
of riskiness, which assign to each claim a premium. It is then argued that the mea-
sures can equivalently be viewed as measures of preferences which operate on the
insurer’s terminal wealth by simply changing the sign on the loading factor. This
way Schweizer (1997) obtains measures which to each outcome of the insurer’s final
wealth assign a number, and one can think of this number as the expected value
of the insurer’s utility of this wealth. These new measures are then embedded in a
financial framework where the insurer can trade certain assets. Via an indifference
argument, Schweizer (1997) derives financial counterparts of the actuarial standard
deviation and variance principles. These financial valuation principles resemble their
actuarial counterparts in that they consist of an expectation augmented by some
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safety-loading. However, for the financial valuation principle, the expected value
is now computed under a specific martingale measure known as the variance opti-
mal martingale measure. Furthermore, the loading factor is now a function of the
variance of the so-called non-hedgeable part of the claim H which, in general, is
smaller than the variance of H. These new financial valuations are in accordance
with no-arbitrage pricing for attainable claims, and thus, they provide alternative
approaches for the valuation of options and other derivatives in incomplete markets.

6 Overview and contributions of the thesis

The aim of this thesis is to analyse insurance claims which combine financial and
insurance risk. The thesis can be divided into two main parts. The first part
consists of Chapters 2 and 3 and gives applications to insurance of the theory of risk-
minimization with special emphasis on hedging (and pricing) of unit-linked insurance
contracts. The second part, Chapters 4, 5 and 6, deals with the financial variance
and standard deviation principles of Schweizer (1997) and gives several actuarial
applications of these principles. Below we give a brief account of the contents of the
individual chapters.

Hedging unit-linked insurance contracts in discrete time

Chapter 2, based on Mgller (1999a), gives an introduction to the necessary financial
terminology and to the problem of pricing and hedging of unit-linked insurance
contracts. The presentation, which is kept in a simple discrete time framework and
hence requires only a minimum of stochastic analysis, discusses the application of
various approaches for hedging and pricing in incomplete markets. The techniques of
Brennan and Schwarz (1976, 1979a,b) are compared to the ones suggested by super-
replication and risk-minimization, respectively. The Cox-Ross-Rubinstein model is
considered as a main example. In this case, the financial market consists of two
assets, a savings account with constant interest and a stock, whose change in value
between two trading times can attain two different values only. Risk-minimizing
hedging strategies are determined within this set-up for a portfolio of unit-linked life
insurance contracts, and these strategies are briefly compared to the ones obtained
by Mgller (1998a) in a continuous time framework.

Hedging insurance payment processes

The theory of risk-minimization introduced by Follmer and Sondermann (1986) fo-
cuses on the problem of hedging a contingent claim payable at a fixed time. However,
insurance contracts often generate genuine payment streams where amounts are paid
out over time. For example, with a so-called life annuity, payments are due yearly,
say, from a certain time and as long as the policy-holder is still alive. Similarly, life
insurance contracts in general are often paid by periodic premiums, e.g. premiums
paid at the beginning of each year as long as the policy-holder is still alive. In Chap-
ter 3, which is based on Mgller (1998b), we incorporate general payment streams in
to the theory of risk-minimization and hence provide a framework which allows for
the analysis of (insurance) payment processes. This modified framework is applied
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to the analysis of general unit-linked life insurance contracts, where the state of the
policy is described by a Markov jump process with a finite state space. This gener-
alizes previous results obtained in Mgller (1998a). In addition, we consider payment
processes with claims occurring according to an inhomogeneous Poisson process and
where claim amounts are affected by some tradeable claim index, for example an
index for claim inflation.

On transformations of actuarial valuation principles

In Chapter 4 we review the main results of Schweizer (1997) on financial transforms
of the actuarial variance and standard deviation principles and recall the crucial
indifference argument used there. We determine optimal investment strategies asso-
ciated with these principles for the case where the discounted stock price process is
described by a continuous semimartingale. Furthermore, we give an alternative and
more direct characterization of the financial standard deviation principle, which does
not involve an indifference argument. Finally, a numerical example demonstrates
how the financial valuation principles can be applied for the valuation of unit-linked
life insurance contracts and for determining optimal trading strategies. Chapter 4
is based on Mgller (1999b).

Indifference pricing of insurance contracts: Theory

Chapters 5 and 6 are based on Mgller (2000) and are devoted to a more detailed
study of some properties of the financial variance and standard deviation principles.
In particular, we focus on the dependence of the fair premiums on the amount of
information available to the insurer. For reasons of length and in order to separate
theory and examples, the presentation is divided into two chapters. Via a comparison
result for mean-variance hedging errors in different filtrations, we obtain in Chapter 5
a natural ordering of the fair premiums. More precisely, we show that more actuarial
information leads to lower premiums and characterize this difference further. The
results allows for derivation of relatively simple upper and lower bounds for the fair
premiums of reinsurance contracts under the assumption of independence between
the traded assets and the insurance risk involved.

Indifference pricing of insurance contracts: Fxamples

In Chapter 6 we apply the results obtained in Chapter 5 to the analysis of some
examples related to insurance. We determine the fair premiums and the optimal
trading strategies under various scenarios corresponding to different amounts of
information. Contracts considered include unit-linked insurance contracts and stop-
loss contracts with a barrier. In addition, the chapter analyses a framework which
is sufficiently general to allow for situations where the stock price process (of an
insurance company, for example) is affected by certain catastrophic events.






Chapter 2

Hedging Unit-Linked Insurance
Contracts in Discrete Time

(This chapter is an adapted version of Mpller (1999a))

In this chapter we consider a portfolio of unit-linked life insurance contracts and
determine risk-minimizing hedging strategies within a discrete time set-up. As a
main example we consider the Cox-Ross-Rubinstein model and a unit-linked pure
endowment contract under which the policy-holder receives max(Sr, K) at time 7" if
he is then alive, where S is the value of a stock index at the term 7' of the contract
and K is a guarantee stipulated by the contract. In contrast to most of the existing
literature, we view the contracts as contingent claims in an incomplete model and
discuss the problem of choosing an optimality criterion for hedging strategies. The
subsequent analysis leads to a comparison of the risk (measured by the variance of
the insurer’s loss) inherent in unit-linked contracts in the two situations where (1)
the insurer applies the risk-minimizing strategy and (2) the insurer does not hedge.
The chapter includes numerical results which can be used to quantify the effect of
hedging and to describe how this effect varies with the size of the insurance portfolio
and assumptions concerning the mortality.

1 Introduction

A financial market is said to be complete if all contingent claims can be hedged
perfectly and, hence, priced uniquely. This is the case for example in the well-
known Black-Scholes model and the so-called CRR model, proposed by Cox, Ross
and Rubinstein (1979). In the CRR model, the financial market consists of two
basic traded assets, a stock and a savings account. Trading takes place at the end of
fixed periods of equal length, and the change in the value of the stock between two
trading times can attain two different values only; as a consequence of this simple
structure, the model is also known as the binomial model. Between two trading
times, a deterministic constant interest is earned on the savings account. To each
contingent claim, there exists a unique self-financing trading strategy that duplicates

21
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the payment. This strategy, which specifies at any time a portfolio consisting of a
certain number of stocks and a certain deposit on the savings account, requires an
initial investment of some amount at time 0, say. Between time 0 and the fixed
terminal time 7', say, where the claim is payable, no additional inflow or outflow of
capital is needed. Furthermore, at the terminal time 7', the value of the strategy will
be exactly equal to the amount payable in connection with the claim. However, in
more general models, for example a trinomial model, where the change in the value
of the stock between two trading times can attain three different values instead
of two, this property is not preserved, and contingent claims can typically not be
duplicated by self-financing strategies and hence cannot be priced uniquely by no-
arbitrage arguments only. Such models are said to be incomplete.

Another simple class of incomplete models can be obtained from any a priori given
complete model by allowing contingent claims to depend on an additional source
of risk that is stochastically independent of the risk on the financial market. This
extension is relevant e.g. for the analysis of unit-linked life insurance contracts.
These insurance contracts typically include options on some underlying stock (index)
that are payable to the policy-holder (the insured) provided that he or she survives
to some agreed term, and thus, the insurance benefit is linked to the stock. For
example, with a unit-linked pure endowment contract with guarantee, the policy-
holder receives the maximum of the value of one (say) unit of a stock index and some
guarantee provided that he is still alive at the term of the contract. By construction,
the contracts include risk related to the future development of the stock index as
well as uncertainty as to whether or not the policy-holder will survive. Unit-linked
contracts have been analyzed by Brennan and Schwartz (1976, 1979a, 1979b), who
proposed one pricing principle and investment strategies for insurers issuing these
contracts. This pricing principle and these investment strategies were derived by
combining no-arbitrage arguments and traditional arguments from insurance. More
recently, several authors have dealt with the problem of pricing of various unit-
linked contracts using ideas that originate from the ones proposed by Brennan and
Schwartz (1976), see e.g. Delbaen (1990), Nielsen and Sandmann (1995), Aase and
Persson (1994) and references therein. The principle proposed basically consists in
replacing the unknown future course of the insured lives by the expected, a principle
which can be justified using the law of large numbers since insurers are typically
holding a large number of contracts. Thus, for the unit-linked pure endowment
contract, the pricing problem is basically transformed into the problem of pricing a
contract which specifies the payment of max(Sz, K) times the probability of survival
to the terminal time 7', where St denotes the terminal value of the stock index and
where K denotes the guaranteed amount. This new claim can then typically be
priced by using no-arbitrage arguments only.

In this chapter, we argue that the insurance contracts should really be viewed as
contingent claims in an incomplete model. In the mere framework of no-arbitrage
pricing, this leaves open the problem of pricing and hedging the contracts, since
self-financing strategies which duplicate the claims do not exist. We discuss vari-
ous approaches for determining optimal trading strategies and apply the criterion
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of risk-minimization instituted by Follmer and Sondermann (1986) to suggest in-
vestment strategies for the contracts. These strategies minimize the variance of
the insurer’s future costs, which are defined as the difference between the insurance
claim and the gains made from trading on the financial market. In Mgller (1998a,b)
risk-minimizing hedging strategies were determined for unit-linked life insurance
contracts in a generalized Black-Scholes framework. In that framework, the finan-
cial market consisted of two basic assets, a stock and a savings account, which
could be traded dynamically in continuous time, and the development of the price
of the stock were modeled by a diffusion. Here, we demonstrate how the theory of
risk-minimization works for unit-linked contracts in much more simple discrete time
models, such as the CRR-model. This has the advantage over the previous approach
that certain technical problems associated with stochastic processes in continuous
time are avoided. Hence, we are able to keep the present chapter almost free of
mathematical technicalities and still deal with the essentials of the problem of hedg-
ing unit-linked insurance contracts. To exemplify the incompleteness of the model,
note that even if it is possible to replicate perfectly the option on the stock index,
the combined contract where this option is payable provided that the policy-holder
survives, cannot be hedged. For example, how would you replicate perfectly the
contract that pays an amount equal to the value of unit of a stock to a policy-holder
at a future date, provided that he or she is still alive at this date, by trading on the
stock market only?

This chapter is organized as follows. In Section 2 we analyze the insurer’s loss
associated with a portfolio of identical unit-linked insurance contracts and examine
the asymptotical properties as the size of the portfolio is increased. We consider
first the situation where the insurer does not trade on the financial market, and
we then show how risk can be reduced considerably by buying suitable options
on the underlying stock. Section 3 is devoted to a brief introductory analysis of
a two-period model, where trading takes place only at time 0 and time 1, say.
A pure unit-linked insurance contract is considered as an example. In Section 4,
we introduce the notion of trading in multi-period models and review briefly the
theory of risk-minimization, see F6llmer and Sondermann (1986) and Follmer and
Schweizer (1988). We then mention some fundamental properties of the CRR model.
In Section 5, we discuss different criteria for optimality of hedging strategies and
compare briefly the criterion of superreplication, risk-minimization and the Brennan-
Schwartz approach. Next, we determine risk-minimizing hedging strategies for unit-
linked pure endowment contracts within the CRR-model. Some numerical results
are presented in Section 6, and in Section 7 we finally compare the results from the
present discrete time analysis to the ones obtained by the author in a continuous
time framework (Mgller, 1998a,b).

2 Unit-linked life insurance contracts

With a unit-linked life insurance contract, the sum insured typically depends on
the development of some stocks or stock indices. We set out with some general
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considerations that do not rely on any specific assumptions concerning the choice of
model for the stock market. The value of the stock at time ¢ is denoted S; and we
shall refer to the entire development of the stock by simply writing S.

Consider a portfolio consisting of n policy-holders who buy the same form of unit-
linked pure endowment contract at time 0. This contract specifies that an amount
f(S) is paid to the policy-holder at time 7 if he or she is still alive at this time;
f is a function which prescribes some dependence on the development of the stock
price. For example, the amount paid could be a function of the terminal value of
the stock only, that is

f(8) = S, (2.1)
or the terminal value guaranteed against falling short of some prefixed amount K
f(S) = max(Sr, K). (2.2)

The contract (2.1) is known as a pure unit-linked contract and (2.2) is called unit-
linked with guarantee (the guarantee is in this case K). However, f could also specify
more complex dependences, for example a guaranteed annual return is given by

2l Sj - Sj_l
=

7j=1
Here, the fraction (S; — S;_1)/S;_1 is the return in year j on the asset S and 0,
is the guarantee in year j. At time 0 the amount payable at time 7" is guaranteed
against falling short of K - [T} (1 + §;).

2.1 The insurer’s loss

In this section we consider the loss of an insurance company that is not trading on
the financial market. Denote by Y™ the number of survivors at time ¢, and let f (S)
denote the amount payable at time 7" if the policy-holder is still alive at that time.
If each individual contract is paid by a single premium « at time 0, the present value
at time 0 of the insurer’s loss associated with the contracts is

L, =Y £(8)e T — n, (2.4)

i.e. the present value is taken to be the payments discounted at some constant
interest rate ¢ (actuarial usage). Here, the random variables v\ and f (S) are
taken to be defined on some probability space (2, F, P); € is a set which can be
interpreted as all states of the world, and F is a o-algebra of subsets of 2. P is a
probability measure which, in particular, describes the joint distribution of the pair

(i, £(S))-

We assume that the policy-holders’ remaining lifetimes are stochastically indepen-
dent of the development of the stock. This very natural assumption simplifies com-
putations greatly. It is straightforward to compute the mean and the variance of
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the insurer’s total loss by using standard rules for conditional expectations and
variances:

B[La) = ¢ TE[f(S) EY;"] — s,
and
Var[Ln] = E[Var[Ly|S]] + Var[E[L, S]]
= ¢ WTE[(S)?] Varly{"] + e *TVarlf(S)] (EV{"])"
Assume in addition that the n policy-holders are aged x at time 0 with i.i.d. remain-
ing lifetimes 77, ..., T,. The survival function is denoted

P[Tl > t] = tPz,

where we have used standard actuarial notation. Formulas can now be made more
explicit, since this additional assumption implies that

E[YTn)] =E [z 1{T¢>T}] = ZE [1{T¢>T}] = ’I’LP[Tl > T] = N7Pg,
=1 =1

and
Var[Yq(wn)] =Y Var[linsry] = nope(1 — 1ps)-
i=1
These formulas follow for example by noting that 1(p>7y,..., 147,57 are ii.d.

Bernoulli variables (i.e. 0-1 variables) which attain the value 1 with probability

rpz- By inserting the expressions for the mean and variance of YT(") in the above
formulas for the mean and variance of L,, we find that

E[L,] = n(rp.e ™ E[f(S)] — k), (2.5)
Var[L,] = e *TE[f(S)*]nrpe(1 — mps) + e Var[f(S)] n’rp,®.  (2.6)

We note the following properties: The expected present value of the loss is equal to 0
if and only if &k = rp,e*TE[f(S)]. In addition, we see that Var[L,] is asymptotically
equivalent to const - n? if Var[f(S)] > 0 and asymptotically equivalent to const - n
if Var[f(S)] = 0. Since this variance is zero precisely when f(S) is constant a.s.
(i.e. with probability 1), we see that the second term in (2.6) does not appear for
traditional life insurance contracts with deterministic benefits.

By the strong law of large numbers, lim,_,, % Yo sty = Ellinsny] = 70
P-a.s., and hence it follows directly from (2.4) that

1
~L, — f(S)e_‘iT TP — K, P-a.s. asn — oo. (2-7)
n

This result has the following interpretation: By increasing the volume of the port-
folio, the insurer can eliminate the risk associated with the uncertainty concerning
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the number of policy-holders that will survive to time 7. However, it is crucial to
realize that the financial uncertainty associated with the future development of the
stock remains with the insurer, since all contracts are linked to the same stock; the
limit in (2.7) is a random variable and is unknown at time 0. This could also be seen
directly from (2.6), since the limit of L, /n cannot be deterministic if the variance of
L,, grows like n?. The sign of the unknown quantity f(S)e=! p, — & has dramatic
consequences for the loss L, since it determines whether the loss L, will converge
towards oo or —oo, that is, whether the insurer will suffer enormous losses or earn
enormous profits as the size of the portfolio increases. One could argue that it should
be possible to eliminate this remaining risk in a similar way (i.e. by the strong law of
large numbers) by considering contracts linked to different stocks. However, this is
simply impossible, since the insurance contracts are typically linked to a relatively
small number of stocks, which furthermore are not stochastically independent.

2.2 Hedging by means of options on the underlying stock

Now assume that the insurer has access to a financial market and can purchase at
time 0 a contract that pays the amount f(S) at time 7' (an option on the stock
S), and denote by W(’; the price of such an contract. Assume for simplicity that
the insurer buys exactly np, units of this contract at time 0, and that no further
transactions are made on the financial market. This investment will give the payoff
nrp.f(S) at time T, so that the present value at time 0, i.e. the amounts discounted
by the interest rate d, of the insurer’s loss now equals

L, = r}")e_‘STf(S) —nK — (n 102 f(S)e T — nprw(J;) ) (2.8)

The first term is again the present value of the net amount paid to the surviving
policy-holders, and the second term is the present value of the net loss (— net gain)
from buying the options. By comparison with (2.4), the loss L, is equal to the
insurer’s original loss L,, in the case with no trading, reduced by trading gains. It
is straightforward to verify that E[in] = 0 if and only if the single premium « is
determined such that

K= 1Dy T, (2.9)
and in this case
Var[L,] = E[Var[L, | S]] = e”PTE[f(S)*| nrps(1 — 7ps)- (2.10)

The equation (2.9) suggests that the single premium for the unit-linked pure en-
dowment contract be computed by simply multiplying the option price 7r(’; with the
probability p, of survival to time 7. To comment on this principle, one introduces
the notions of mortality risk, that is, risk associated with not knowing how many
of the policy-holders will survive, and financial risk, that is, risk associated with
not knowing the future development of stock prices. It is often said that the pre-
mium (2.9) is a consequence of the insurer being risk-neutral with respect to mortality
risk. The notion of risk-neutrality with respect to mortality might be explained by
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the fact that the premium can be derived by a limit argument which neglects the
mortality risk that will be present in any finite portfolio. Another explanation for
the notion could be that the factor ;p, in (2.9) is the true expectation of 1{7,57y,
that is, the probability of survival to 7', whereas the second factor 7'('(]; is the price
of the option, which will typically differ from the expected present value of the pay-
off. For comments on this premium principle and these notions, see e.g. Aase and

Persson (1994) and references therein.

Comparing (2.10) with the variance (2.6) of the loss L,,, we see that the two variances
differ by the second term in (2.6) which is proportional to n?, that is, by the term
essentially stemming from the uncertainty associated with S. Also from the compu-
tations leading to (2.6) it is seen that this difference equals Var[E[YT(") f(8)e T|S]].
In particular, it can be verified by calculations similar to those leading to (2.7) that,
when £ is given by (2.9), we have that lim,, ., %in = 0 P-a.s., so that the insurer
is able to eliminate (at least in principle) the total risk associated with the portfolio
of unit-linked life insurance contracts by buying standard options on the stock and
by increasing the number of policies in the portfolio. In this sense, the situation is
similar to the traditional case with deterministic benefits. Similar arguments show
that if the single premium is larger than (2.9), then lim,,_, %En = prﬁg -k <0
P-as. and hence L, — —oo P-a.s. This means that the insurer will earn an infinite
(positive) profit as the size of the portfolio is increased, if the single premium is
larger than the corresponding option price times the probability of survival to 7.
Similarly, premiums lower than the corresponding option price lead to an (infinite)
loss as the number of policy-holders increases.

Clearly we have neglected important facts of both theoretical and practical nature
here, such as the difference between the time horizon for life insurance contracts
(typically more than 15 years) and standard options (typically less than 1 year).
Furthermore, life insurance contracts are normally priced using a so-called first order
valuation basis, that is, a valuation principle which determines a premium on the safe
side. Often the surplus that arises from this difference between the “fair price” and
the charged premium is then returned in the form of bonuses. However, one might
still ask the questions: Is it in some sense optimal to simply buy n7p, contracts
which each pays the amount f(S) at time 77 Or do there exist better “strategies”
for insurers who sell unit-linked life insurance contracts, for example by trading
the stocks in a clever way? In particular, is it possible to currently update the
investment strategy as more information about the insurance portfolio is revealed?
Of course, answers to these vague questions depend on the criterion applied, and
here we shall mainly apply a variant of the criterion of risk-minimization of Follmer
and Sondermann (1986).

3 Trading in a two period model

In this section we consider a financial market with two basic assets only, a stock and
a savings account, where trading takes place at time 0 and at time 1, say. This will
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serve as an introduction to the general multi-period case, which will be treated in
Section 4 below. Proofs of the results listed in this section can be found in Follmer
and Schweizer (1988).

The value of the stock at time ¢t € {0,1} is denoted S; and the value at time ¢ of
1 unit deposited on the savings account at time 0 is denoted B;. We assume that
B, = (1 + )" for some constant r > 0, so that the interest on the savings account
from time 0 to time 1 is known at time 0. The final outcome S; of the stock will
not be known before time 1.

Consider an insurer (or a hedger) who has sold an insurance contract stipulating a
pay-out at time 1 with present value H (at time 0), and assume that the insurer
has access to this market and is interested in “reducing risk” as much as possible;
we shall also refer to H as the insurer’s (discounted) liability. We describe the
insurer’s actions by introducing a trading strategy ¢. In the present two-period
model, this basically amounts to saying that the number £ of stocks bought at time
0 and held throughout the period [0, 1] and the amount 7, deposited on the savings
account at time 0 are to be fixed at time 0. We introduce the discounted stock price
X; = S;/By. The discounted value of one unit deposited on the savings account at
time 0 is, trivially, B;/B; = 1. The (discounted) value at time 0 of the strategy ¢
after purchase of £ stocks equals

Volep) = £Xo + mo.

At time 1, the value of the stocks held has changed to £X; and, if we allow the
insurer to change his deposit on the savings account at time 1 to 7, the value at
time 1 is

Vilp) = X1+

At time 1 a deposit or withdrawal must be made on the savings account to establish
balance on the business, that is, 7; must be chosen at time 1 such that Vi(y)
exactly equals the insurer’s liability H. Follmer and Sondermann (1986) introduced
the cost process associated with a strategy ¢ in a continuous time framework. In
the present set-up, the cost process was introduced by Follmer and Schweizer (1988)
and Schweizer (1988); it is defined as Cy(p) = V() and

Ci(p) = Vi(p) — &€(X1 — Xo) = H — EAX,. (3.1)

In the second equality we have used the condition V;(¢) = H and introduced the
notation AX; := X;— Xy, which will be used throughout this chapter. The quantity
Ci(p) is the accumulated cost at time t. At time 0 costs are exactly the initial value
Vo(g) of the portfolio (&,70), and at time 1 costs are the value V;(¢) = H of the
new portfolio (&, 7;) reduced by the trading gains £ AX; from the & stocks held. We
also point out the analogy between this notion of costs and the notion of “insurer’s
loss” applied in the previous section: The loss (2.8) is the net amount paid to the
policy-holders reduced by the net gains from trading on the financial market, and
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the costs (3.1) are the amount paid to the policy-holders reduced by net gains from
trading on the financial market. In principle, this means that (2.8) and (3.1) differ
only by the premium paid at time 0.

One possibility is now to choose the trading strategy so as to
minimize Var[C}(¢)]. (3.2)

The problem (3.2) is so simple that it can be solved directly for a general claim
H without introducing additional assumptions on the specific distribution of the
increment AX; or the liability H. Direct calculations show that

Var[Ci(¢)] = Var[H — EAX,]
= Var[H] — 2¢Cov(H, AX,) + £*Var[AX]]
= J().

Provided that Var[AX;] > 0, J"(£) > 0, and hence J attains its unique minimum

for £ satisfying J'(€) = 0, that is
2 COV(H, AXl)
=y 7/ 3.3
5 Var[AXl] ( )

Straightforward calculations show that the minimum obtainable variance as de-
scribed by (3.2) is

Cov(H, AX;)?
Var[AXl]

Var[H — éEAX,] = Var[H] — = Var[H| (1 — Corr(H, AX1)2) , (34)

where

Corr(H,AX;) = Cov(H, AX,)
\/Var(H] Var[AX;]

is the correlation coefficient of H and AX;. The solution (3.3) and the associated
variance (3.4) are also recognized as the well-known solution to the problem of
minimizing the variance of a linear estimator.

A related problem is to minimize the expected value of the square of the additional
costs from time 0 to time 1, that is

minimize E[(C}(¢) — Co(¢))?] (3.5)

as a function of £ and 7. Since Cy(¢p) is constant and equal to V5(¢p), this minimum
is attained for a strategy ¢ satisfying Cy() = E[C1(p)], and hence the solution is
also the solution for the problem (3.2). At first sight this adds no new insight to
the understanding of the nature of the risk inherent in the contract. However, the
problem (3.5) has the advantage over (3.2) that the initial value V;(y) is obtained
from the solution to (3.5), and this is given by

Vo(@) = Co((ﬁ) = E[H - éAXl] = E[H] - éE[AXl]'
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This quantity may be taken as a suggestion for the fair premium of the contract, see
Follmer and Schweizer (1988). In particular, this result shows that if E[AX;] = 0,
which actually means that X is a martingale, then V;(¢) = E[H|. However, the fair
premium will not be equal to E[H] in the general case.

Example 3.1 As an example, consider the so-called pure unit-linked pure endow-
ment contract, where each policy-holder receives the value of one unit of the stock
at time 1 if he is still alive at this time, that is

H=YX,.

(With the notation of Section 2, Y; denotes the number of survivors at time 1.) By
the independence between Y; and X, we find that

COV(leXl, AXl) = E[COV(Yle, AXl | Xl)] + COV(E[leXl ‘ Xl],E[AXl | Xl])
= 0+ COV(E[}/&] Xla AXl) = E[Yl]Var[AXl]

énd by inserting this into the expression (3.3), we find the optimal number of stocks
¢ = E[Y1], that is, it is optimal to hold a number of stocks corresponding to the
expected number of survivors. The initial value of the strategy is

Vo(9) = E[H] - €E[AX,] = E[V]E[X,] — EME[X; — Xo] = E[V)]Xo.

This result is similar to what we obtained in Section 2.2, since the price at time 0
of one unit of the stock at time 1 is equal to Sy = X (simply buy the stock at time
0). However, the crucial difference is that this result is derived from a criterion and
not just from an apparently ad hoc choice. O

4 Trading strategies in discrete time

In this section, we put up the notation and quantities needed for the introduction
of the concept risk-minimizing trading strategies, which is due to Féllmer and Son-
dermann (1986) and Follmer and Schweizer (1988). This account is inspired by the
latter.

Let T € IN be a fixed finite time horizon and consider a financial market where
trading is possible at discrete times ¢ = 0,1,...,7, say. There exist two assets
that can be traded, a stock S = (Sy)cqo,1,.,r} and a savings account with price
process B, = e’ where § is fixed and deterministic. We introduce at this point the
discounted price process X; = S;/By; note that the discounted value of the savings
account is constant and equal to 1.

These processes are defined on a probability space (€2, F, P) equipped with a filtra-
tion IF' = (F;)seqo,1,...,ry (i-e. an increasing sequence of o-algebras Fy C F; C --- C
Fr). The filtration describes the amount of information that is available to the in-
surer/hedger at any time. It is assumed that the price processes (S, B) are adapted,
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i.e. for each t, S; is F;-measurable; B is deterministic. This has the usual inter-
pretation that at time ¢ we know the current outcome of the stock and the savings
account. The probability measure P is called the physical measure, since it describes
the true nature of the processes. We shall assume that there exists another probabil-
ity measure P* which is equivalent to P (i.e. for all A € F: P(A) =0 & P*(A) =0)
and which is such that X is a martingale under P* (i.e. E*[X; | Fi—1] = X;— for all
t=1,...,T). The measure P* is also called an equivalent martingale measure.

Formally, a strategy is a two-dimensional process ¢ = (&,n) where & is F; i-
measurable and 7, is F;-measurable for each t. Here, &, is the number of stocks held
from time t — 1 to time ¢, and the requirement that & should be F;_;-measurable
amounts to saying that this number is fixed at time ¢ — 1 based on the knowledge
about stock prices up to and including time ¢ — 1. In contrast, the deposit on the
savings account 7, is only required to be F;-measurable, so that we at time ¢ can fix
the amount on the savings account based on the additional information available at
time ¢ also. The pair ¢; = (&, n:) is called the portfolio held at time ¢.

Let us consider the flow of capital which takes place during the time interval (t—1, ¢],
t=1,...,T. At time ¢t — 1 the hedger holds the portfolio ¢; 1 = (&_1,71), that
is, he holds &_; stocks and has a deposit on the savings account of 7,1 B;_;. The
discounted value of the portfolio ¢;_; at time ¢t — 1 is denoted V;_;(¢) and is given
by

Vici(p) = &1 X1 + i1

The process (Vi(¢))teqo,1,..,r} Will also be called the (discounted) value process of .
Immediately after time ¢ — 1, the portfolio ¢, ; is adjusted so that the hedger now
holds &; stocks. This is achieved by buying additionally & — & stocks, and this
gives rise to the cost (& — & 1) Xy 1. The new portfolio (£, 7; 1) is held until time
t where the new prices (S;, B;) are announced, and thus, the hedger receives the
discounted gain &(X; — X; 1). Finally, the hedger may at time ¢ decide to change
the deposit on the savings account from 7, ;B; to n.B; based on the additional
information available at time ¢. So we see that

Vi(o) = Vici(p) = (& — &—1)Xe—1 + &( X — Xy—1) + (e — mi—1)- (4.1)

In (4.1), the first and the third terms on the right hand side represent costs to
the hedger, whereas the second term is trading gains obtained from the strategy ¢
during (¢ — 1,¢]. And so, we introduce the cost process of the strategy ¢ given by

Cil) = Vilp) = S EAX;. (42)

Jj=1

This cost process was introduced by Foéllmer and Sondermann (1986) in continuous
time; Follmer and Schweizer (1988) considered the discrete time analogue. It is
simply the value of the strategy reduced by trading gains; in particular, the cost
process C(¢p) satisfies the relation

Vile) = Vici (o) + &(Xy — Xio1) + (Ci(p) — Cia(9)),
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which corresponds to (4.1). We note that Cy(¢) = Viy(¢), which says that the initial
costs are exactly equal to the amount invested at time 0.

A strategy is said to be self-financing if the change (4.1) in the value process is
generated by trading gains only, that is, the portfolio is not affected by any in- or
outflow of capital during the period considered. This condition amounts to requiring
that

Vi) = Volg) + S GAX, (43

i=1

for all £, and hence we see that this is the case precisely when the cost process is
constant.

The insurer is trading on the financial market in order to control his risk associated
with some liability H, that is, the insurer is hedging against some risk. In some
situations it is possible to determine a self-financing strategy which generates or
replicates the liability completely, that is, there exists a self-financing strategy ¢
which sets out with some amount V;(¢) and has terminal value Vr(p) = H. In
this case, the initial value V;(¢) is the only reasonable price for the liability H;
such claims are also said to be attainable, and Vj(y) is called the no-arbitrage price
of H. For example, this is the situation with the so-called Cox-Ross-Rubinstein
model, which will be reviewed in Section 4.2 with emphasis on the existence and
structure of a unique self-financing strategy to any (European) option on the stock.
However, in many cases, the hedger’s liabilities cannot be hedged perfectly by use
of a self-financing strategy, and this leaves open the question of how to choose an
optimal trading strategy. One very natural idea is to apply superreplication. This
approach basically consists in looking for attainable claims H’ which dominate the
original claim H and which (by attainability) can be hedged perfectly by means of
some self-financing strategy ¢'. By definition, such strategies will have the property
that Vr(¢') > H, and are called superreplicating strategies. The superreplication
price is now defined as the smallest initial investment to which there exists a self-
financing strategy which superreplicates H. The main advantage of the approach
of superreplication is that it leaves no risk to the hedger in that, after the initial
investment is made, no additional capital will be needed in order to pay the claim H.
Unfortunately, a major drawback of the approach is that it leads in many situations
to unreasonably high prices, since the superreplicating strategies often need a large
investment at time 0, see El Karoui and Quenez (1995) for an amplification of this
point. We shall also continue the discussion of this problem in Section 5. Another
suggestion, which should be appealing to actuaries, is to minimize the variance of
future liabilities; this theory is also called the theory of risk-minimization.

4.1 An introduction to risk-minimization in discrete time

In this section we very briefly review some results on risk-minimizing hedging strate-
gies in discrete time; an introduction to this topic written especially for actuaries is
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found in Féllmer and Schweizer (1988).

We consider here the special case where, for each ¢, we seek to minimize

ri() = B [(Cuua(p) — Cul9))’| ], (4.4)

the conditional expected value under a martingale measure P* of the square of the
costs occurring during the next time interval. One can think of the approach of
minimizing the quantities r;(¢) as a generalization of the problem (3.5) considered
in the two-period case. However, in (4.4) expectations are with respect to a martin-
gale measure, see Remark 4.1 below. The idea in (4.4) is to solve the problem by
backwards induction starting from rr_;. At time ¢, r,(¢) should then be minimized
as a function of &1 and n; for given (&49,...,&r) and 941, ..., nr. This minimiza-
tion can be performed as in Section 3; see Follmer and Schweizer (1988) for more
details.

The structure of the solution can be related to the P*-martingale V* defined by
Vi =FE'[H | F.

This process has the unique decomposition

t
Vi=Ve+ Y §AX; + L], (4.5)
j=1
where £ is predictable (i.e. £’ is F;_1-measurable) and L* is a P*-martingale
which is orthogonal to X, that is, the process X L is also a P*-martingale.

~

From Foéllmer and Schweizer (1988) we get that the optimal strategy ¢ = (£, 1)
which minimizes the quantities r, for each t is given by

ét = é-tHa
e = Vi —&X.
For this particular strategy, we see from the definition (4.2) of the cost process that
t ~
Ci(@) =V = Y §AX; = Vi + L, (4.6)
j=1

and hence the minimum obtainable risk is
2
Tt(@) =E* [(ALfil) ‘E] .

Thus, the problem reduces to determining the decomposition (4.5). In particular,
we see that the cost process associated with the optimal, risk-minimizing strategy
is a martingale under P*. As a consequence, the strategy is said to be mean-self-
financing. The class of mean-self-financing strategies includes the self-financing ones,
since the cost process of a self-financing strategy is constant.
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Remark 4.1 We point out that the expectations in (4.4) are with respect to a
martingale measure P* and not the physical measure P. It can be proven that the
solution ¢ is also equal to the solution of the problem of minimizing

Ry(¢) = E* [(Cr(p) — Ci(9)*| 7], (4.7)

for all ¢, over all strategies ¢. In the alternative formulation (4.7) of the problem,
the term C7(p) — Ci(¢) may be interpreted as the future costs associated with the
strategy, and hence the criterion basically consists in minimizing the conditional
variance of all future costs over all possible strategies ¢.

This parallel cannot be drawn in the case where the expectation under P* in (4.4)
is replaced with an expectation under the physical measure P, and when P is not
itself a martingale measure. In fact, the problem (4.7) does not have a solution
in the general case when P* is replaced by P and when X is not a P-martingale,
see Schweizer (1988). However, the problem (4.4) can also be solved when the P*-
expectation is replaced by an expectation with respect to P, and this leads to the
following recursion formula for the strategy:

: Cov <H — I EAKX;, AXt‘ .7'}—1)

b Var[AX, | Fy 1] ’
T ~ ~

ﬁt - E H— Z §JAX] ft _tht- O
j=t+1

4.2 The Cox-Ross-Rubinstein model

With the Cox-Ross-Rubinstein model, the development of the stock price is given
by

Sy = (1+ pt)St-1, (4.8)

where pq, ..., pr is a sequence of i.i.d. random variables with p; € {a,b} and such
that 0 < P(p; = b) < 1; p; is the return per unit of the stock during the time
interval (¢ — 1,¢] and this quantity is not known before time t. The savings account
is often written on the form B; = (1 + r)’. A natural condition on the parameters
a,b,r is that —1 < a < r < b, which amounts to saying that the return on the
stock in each period should exceed the return on the savings account with a positive
probability and vice versa. As above, we denote by X the discounted stock price
process. We refer to Baxter and Rennie (1996) and Pliska (1997) for an introduction
to this model; an exposition focusing on the mathematical aspects is Shiryaev et
al. (1994).

Now introduce the natural filtration & = (gt)te{O,l,...,T} generated by S defined by
Gy = o{S1,...,S;}, and define a new probability measure P* with P*(p; = b) =

+—o =: p* and such that py,..., pr are i.i.d. under P*. We note that with this
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specific choice of p* the discounted stock price process X is a (&, P*)-martingale,
since

1 1
E* [Xi|Gi] = X g E*[(1+ p)| Gi—1] = Xon 1 (L4 E*[p])

r +7r

(14+pb+ (1—p")a) = Xe.

= X

1y

Martingales and martingale measures play an important role in mathematical fi-

nance. This is for example clear from the fundamental binomial representation
property, which we here give the following formulation:

Theorem 4.2 Let H be a Gr-measurable P*-integrable random variable. Then, the
(@&, P*)-martingale N defined by Ny = E*[H | G;] admits a unique representation

t
Nt = NO =+ Z CMjAXj, (49)

=1
where o s Gj_1-measurable for each j.

Remark 4.3 It is pointed out that the representation property in Theorem 4.2 is
very specific for the Cox-Ross-Rubinstein model. If, for example, p1, ..., pr in (4.8)
were replaced by a sequence of i.i.d. random variables with three different outcomes
{a,b,c} (a so-called trinomial model), then Theorem 4.2 would no longer hold and
the representation (4.9) would have to be replaced by a more general decomposition
of the form (4.5). The representation property may also be lost if the claim H
depends on other sources of randomness than the one given by the stock. O

A proof of Theorem 4.2 can for example be found in Shiryaev et al. (1994). If
we think of V as the discounted value process of some trading strategy ¢ and of
H as the present value of some liability, we see from the definition of N and the
property (4.9) that Vr(¢) = H and

Vi(p) = Vale) + i o AX;.

=1

Now compare this with (4.3) to see that this shows that this strategy ¢ would be
self-financing and that it would replicate H. The strategy ¢ = (£,7n) can actually
be defined by letting & = «y, whereas 7, should be chosen such that the strategy is
in fact self-financing, which is achieved by taking

t
ne = No + Z §AX; — § X,

=1

In particular, we see that the initial value of the self-financing strategy ¢ which
replicates H is Ny = E*[H], and so, the price of the contract should be E*[H]. This
implies that the price of the contract will typically differ from the expected present
value E[H].
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Example 4.4 As an example, consider a European-type option on the stock S with
exercise time 7" which specifies the payment g(Sr) at time T for some function g.
The present value at time 0 of this payment is given by H = ¢(Sr)/By. Shiryaev
et al. (1994) give a closed form solution for the process « for such claims. However,
in general o can be computed as

o = A(N, X)t _ COV*(ANt,AXt | ft—l)
PTAX,X), T Cov'(AX,, AX, | Fiy)’

where N is defined by N; = E*[H | F] and where (.,.) is the so-called predictable
quadratic covariation process; for square-integrable P*-martingales X and Y it is
defined by

A(X, V), =B [AXY),| Fia] = Cov'(AX, AY; | Fioa). D

5 Hedging unit-linked contracts

5.1 Framework

As in Section 2, we consider a portfolio of n policy-holders aged = at time 0 and
denote by Y; the number of survivors at time ¢. We consider a unit-linked pure
endowment contract payable at time T with present value

H =Yrg(Sr)/Br

at time 0. Here ¢ is some function, see e.g. Example 4.4. It is assumed that S is
defined by (4.8), that is, the financial market is described by the CRR-model, and
that the remaining lifetimes of the policy-holders are stochastically independent of
the stock price process S (or, equivalently, of the discounted stock price process X).

We assume that, at any time £, the insurer has current access to information con-
cerning the number of surviving policy-holders as well as the development of the
stock price up to and including time ¢. This is formalized by introducing the fil-
trations & = (Git)ieqo,1,... 7} defined by G, = o{Xy,..., X;} and H = (H)ieqon,...1}
defined by H; = o{Y1,...,Y;}. The filtration & describes the information available
about the development on the stock market and IH contains information about the
policy-holders. In addition, we introduce a third filtration IF' = (F;)scqo,1,...,1}, given
by F; = GV H; = 0(Gy U H,;), which means that F; is the smallest o-algebra which
includes both G; and H;. Hence IF' includes all the available information.

We work here directly under a specific martingale measure P*, which is closely
related to the measure introduced in Section 4.2 (also denoted P*) and which has
the following properties:

1. X is a P*-martingale and, under P*, pq, ..., pr is a sequence of i.i.d. random
variables with P*(p; = b) = }=2.

2. Ty,...,T, are i.i.d. under P* with P*(Ty > t) = P(T\ > t) = {p,.
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3. The two random sources are stochastically independent under P*.

The first property states exactly that P* is similar to the measure of Section 4.2,
and, by the second property, the change of measure from P to P* does not affect the
marginal distribution of the remaining lifetimes. Finally, the last property states
that the independence between the insured lives and the a priori given financial
market is preserved under the measure P*.

5.2 On the choice of criterion

Before working out the unique risk-minimizing strategy for the unit-linked pure
endowment contract, we turn back to the more general discussion on the choice
of optimality criterion for hedging strategies. One idea is to look for claims H'
which are larger than H and which can be hedged by a self-financing strategy.
For example, consider the claim H' = n ¢(St)/Br, which is obtained by simply
replacing the unknown number of survivors at time 7" with the number of policy-
holders n entering the contract at time 0. Clearly, H' is larger than the actual
claim H = Y7 ¢g(Sr)/By, since Yp < n. With the CRR-model, this new claim H’
is attainable, since it is simply n times the European-type option ¢(St)/Br, which
depends only on the randomness from the financial market. Mathematically, this
means that H' is Gp-measurable. Thus H' can be hedged and priced uniquely, and
we note that the strategy ¢’ which replicates H' satisfies Vr(¢') = H' > H, so
that ¢’ is a superreplicating strategy for H. Theorem 4.2 determines the strategy
as well as the unique price for the claim, and the latter is simply n E*[g(S;)/Br].
Actually it can be shown that this is the cheapest superreplicating strategy, that
is, all other superreplicating strategies require an initial investment which exceeds
nE*[g(Sr)/Br]; see El Karoui and Quenez (1995, Example 3.4.2) for a similar prob-
lem. Thus, if we insist on applying superreplication, we obtain a superreplication
price for H which is equal to the no-arbitrage price for n g(Sy)/Br. This price is
clearly too high since it basically corresponds to using a survival probability rp,
which is equal to 1. Although superreplication has many appealing features, the
perhaps most remarkable one being that it eliminates all risk for the hedger, we
therefore conclude that superreplication does not seem to be the right tool for our
situation, where claims depend on an additional source of risk which is stochastically
independent of the financial market.

[43

Another idea is the so-called Brennan-Schwartz approach which suggests to “re-
place” the original claim H with the claim H"” = E[Y7] g(St)/Br, that is, to replace
the unknown number of survivors by the expected number, and then consider the
problem of pricing H"” instead of H. Here, H" is again a constant times a European-
type option and hence it is attainable and can be hedged and priced uniquely. Again,
Theorem 4.2 determines the unique no-arbitrage price for H”, which is now given
by E[Yr] E*[9(Sr)/Br]. One candidate for the price of H could now be to simply
use the price of H” and, similarly, a candidate for the hedging strategy of H is the
(self-financing) hedging strategy for H”. This choice could for example be moti-
vated by the law of large numbers as was done in Section 2. Actually, most existing
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literature on pricing and hedging of unit-linked insurance contracts focus on the
problem of pricing and hedging of H” instead of H. The replacement of H with
H" is motivated by the assumption of risk-neutrality with respect to mortality, see
e.g. Aase and Persson (1994) and references therein. We underline that the problem
of pricing claims on the form H” can be very complicated indeed and is extremely
important for practical purposes since unit-linked contracts in practice often involve
quite complex dependencies on the underlying stocks or stock indices. However,
in comparison with the approach of superreplication, this “replacement approach”
has the disadvantage that it leaves risk to the hedger, a risk which is related to
not knowing the actual number of survivors Y7. In addition, the approach gives no
directions as to how to deal with or how to quantify this risk — it simply refers to the
risk-neutrality and leaves to the law of large numbers to “do its job”, which from
a theoretical point of view is somewhat unsatisfactory. It is crucial to realize that
there is an enormous difference between pricing and hedging of the original claim H,
which cannot be done uniquely or perfectly, and pricing and hedging of H", since
this can be done uniquely and perfectly by use of Theorem 4.2.

Below we shall apply the results from Section 4.1 to determine the unique risk-mi-
nimizing hedging strategy for the claim H, an approach which basically amounts
to minimizing the variance of the hedger’s future costs. Thus, this approach really
takes into account the total risk included in the claim in that the original claim
H is not replaced with some modified claim. Although the idea of minimizing the
variance of future costs seems to be a very natural one, it also has some undesired
properties: For example, minimization of the variance (or the expected value of the
square of the future costs) implies that relative losses and relative gains are treated
equally. Consequently, being short of USD 100 at time 7' is as bad as having USD
100 too much! Of course, it would be more appealing to apply some non-symmetric
criterion that does not punish losses and gains equally, but then explicit results are
considerably harder to obtain. As an example of such a criterion we mention quantile
hedging, see Follmer and Leukert (1999), where the objective is to hedge the claim
with a certain (given) probability. Another example is the criterion of minimizing
the expected loss of hedging, i.e. the so-called shortfall risk; references are Follmer
and Leukert (2000) and Cvitanié¢ (1998).

5.3 The unique risk-minimizing hedging strategy

In order to determine the risk-minimizing hedging strategy, we need to determine
the decomposition (4.5). We define two processes 77 and M which are related to the
financial market and the portfolio of insured lives, respectively. First, recall that,
by Theorem 4.2, the unique (discounted) price at time ¢ of a contract specifying the

payment ¢g(St) at time 7T is
Qt] _ [g

(;TT)] +jz;a§AXj, (5.1)
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where the predictable process of is the hedge associated with ¢g(S7). Second, we
introduce a process M defined by

M, :=FE" [YTl Ht] = Y1 tDo+t, (5-2)

which is the conditional expected number of survivors at time 7'; 7_yp,4; is the
conditional probability of survival to time 7" given that the policy-holder is alive at
time t. Note that M will typically fluctuate over time and that M; = Y7, that is,
the terminal value (at time T') of M is equal to the number of survivors at time
T. This approach does not rely on the specific structure of the filtration /H and
can be generalized to other choices of filtrations. For example, one could consider
the situation where the number of deaths are not revealed before time 7', that is,
the investment department receives no information about the development within
the portfolio of insured lives. In that case, M would be constant and equal to
E*[Yr| = nrp, until time 7', when My = Y.

We shall see that 79 and M determine the decomposition (4.5). First note that by
the independence between Y and S, we have that

L — AR A
= E* [ggT) gt] E* [ Y| Hy] = 7 M,
T

In the second equality we have used the independence between Y and S, and in the
third equality we have used the definition of the o-algebra F; and the independence
between the remaining lifetimes of the policy-holders and the development on the
stock market; the last equality is the definition of 79 and M. Now note that
AVP = V=V =m My — 7y My
(7Tg - ’ﬂ'iq_l)Mt_l + 7Ttg(Mt - Mt—l) = Mt_lafAXt + WfAMt,

where we have used (5.1) in the last equality. Here we note that M; iaf is F;_1-
measurable and hence the process £ defined by

ftH = M, 10
is predictable. If we can show that the process L defined by
¢
Lt = Z ﬂ'}qAM]
j=1

is a martingale and that LX is a martingale, then we have actually obtained that
the decomposition (4.5) is

t t

=1 =1
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To see that L is a martingale, note that, by the law of iterated expectations and the
independence between & and IH, we find that

E* [ALt‘ E—l] = E* [WfAMt‘ }'t—l] = E* [’/T{?E* [AMt| gt V Ht_]_” E_l] = 0,

since M is a martingale, and since M is stochastically independent of the filtration
&. Similar calculations show that also LX is a martingale: Since

A(LX)t - LtXt - Lt—lXt—l - ALtAXt —+ Lt—lAXt + Xt—lALty
it is sufficient to show that
E* [ALtAXt| ft—l] =0.

This, in turn, follows by calculations similar to those used to show that L is a
martingale. Thus, we have shown that (5.3) is the desired decomposition. From the
results reviewed in the previous section, we find that the risk-minimizing hedging
strategy is given by

& = Y T—(t—l)pz—l—(t—l)atga (5-4)
N = Yir—Pept T — Yie1 r——1)Pot(t—1) 0 X (5.5)

After these calculations, some comments are in place: The optimal number &; of
stocks held in period t (during the interval (¢ — 1,¢]) is simply the hedge of from
the underlying option ¢(S7) multiplied with the conditional expected number of
survivors to 7" at time ¢ — 1. Furthermore, the deposit on the savings account is
constantly adjusted, so that the value of the strategy at each time t exactly equals
V;*, that is, the value at time ¢ is equal to the fair premium for the portfolio of unit-
linked contracts at time ¢. Let us also emphasize that the strategy defined above
will typically not be self-financing. This follows by considering the cost process of
the strategy, see (4.6), given by

t

=1

In particular, this means that the cost process is constant only if the process M
defined by (5.2) is constant or if 7§ = 0, and this will typically not be the case. The
term A M, is the change in the conditional expected number of survivors from time
t —1 to time ¢. If the actual number of deaths during the interval (¢ —1,¢] is smaller
than the expected number, then the expected number of survivors will increase
and AM; > 0. This represents a loss to the insurer who has to pay the amount
g(Sr) to each survivor among the policy-holders. In contrast, if AM; < 0 then
the expected number of survivors decreases, and the insurer can reduce his reserves
associated with the contracts. Rewriting the survival probability 7_—1)pz4—1) as
1Pat(t—1) T—tDPa+t, We can also rewrite the loss during (¢ — 1,¢] as

AL; = 7T£q T—tPz+t (Y;: -Yi lp:c+(t71)) )
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which can be given the following interpretation: The insurer’s loss is proportional
to the factor 7§ 7 4p,++ which is the discounted price at time ¢ on the option g(St)
times the survival probability ;_¢p,1¢. This quantity represents a reasonable reserve
at time ¢ for one policy-holder who is alive at time ¢. The second factor (Y; —
Y1 1px+(t_1)) is exactly the difference between the actual number of survivors at
time ¢ and the conditional expected number calculated at time ¢t — 1.

We end this section by assessing the risk that remains with an insurer who applies
the risk-minimizing strategy. For example, this can be done by considering the vari-
ance under P* of the accumulated costs Cr(¢p) associated with the risk-minimizing
strategy. Using that the martingale M has uncorrelated increments, the indepen-
dence between 79 and M under P* and the fact that the change of measure from P
to P* does not affect the distribution of the remaining lifetimes, we find that

Var*[Cyp (¢ Z E*[(nf)2AM?] = 2 E*[(rf)2E[AM2]. (5.6)

Here, the term involving A M, can be expressed in terms of the survival probabilities.
This can be seen from the following calculations:

E[AME] = E[Var[AM, | F,_1]] + Var[E[AM, | F;_1]]
= E[Var[T—tpaH—t Y; | ft—l]]
= NPz r—tPott (1 — 1Pzt@-1)), (5.7)

where the last equality follows by using that Y; | 71 ~ Binomial(Y; 1, 1p54(—1))-
The variance (5.6) should be compared to the total variance of the claim H given
by

Var*[Yrg(St)/Br| = E*[(n3)*] n rp. (1 — rp,) + Var*[r%] (n7p.)?, (5.8)

which is the variance of the insurer’s loss with no trading, see also (2.6).

6 Numerical results

In this section, we give a numerical example with five trading times, £k = 0,1, 2, 3, 4,
that is 7' = 4. For example, one can think of one year as being divided into four
periods, each of length three months. We denote the length of each period by
At, that is, At = 1/4. For simplicity, we assume that the remaining lifetimes of the
policy-holders are independent and exponentially distributed with hazard rate p, and
consider various choices of p. Thus, the survival probability is xp, = exp(—pkAt)
for all £ (and ). In this case formulas (5.6) and (5.8) simplify to

Var*[Cr(p)] = n Z E*[(n])?]e T A HEAL(] _ gmnAl) (6.1)

and, with H = YTg(ST)/BTa

Var*[H] = E*[(7%)?] ne #1211 — e #T'AY) 4 Var*[nd] n?e~2#TAL, (6.2)
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We shall assume in the following that the amount payable at T is given by g(Sr) =
max(St, K), and we let the guarantee K be computed as K = Sy(1+37)". Figure 2.1
shows the binomial tree for the stock price process S and the undiscounted price
process (Bym{)o<i<r for the claim g; the parameters used are listed in Table 2.1.

174.9

Figure 2.1: Binomial tree for the stock price (the upper numbers) and the unique
arbitrage-free price for the contract max(St, K) (the lower numbers).

At T S, K a b r p* P
1/4 4 100 103.0 —0.10 0.15 0.015 0.46 0.50

Table 2.1: The parameters used in the numerical example.

It follows from Figure 2.1 that the terminal value of the stock is smaller than the
guaranteed amount K = 103.0 if and only if the value of the stock has been de-
creasing during three or four of the periods. This corresponds to the terminal stock
prices 83.8 and 65.6, respectively. As a consequence, the no-arbitrage free price for
max(Sr, K) is equal to the discounted value of K if the value of the stock has de-
creased during each of the first three periods, since in this case, the terminal value
cannot possibly exceed the guarantee. Similarly, if the value of the stock has in-
creased at least twice during the first three periods, then the terminal value cannot
fall short of the guarantee, and in this case, the no-arbitrage price for max(Sy, K)
is exactly equal to the value of the stock. Between these two “extremes”, it is not
clear before the terminal time, whether St will be larger or smaller than K. This is
reflected in the no-arbitrage price, which is now slightly more complicated.

The hedge af for max(St, K) and the number of stocks in the risk-minimizing
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hedging strategy for one policy-holder with hazard rate 1 can be found in Figure 2.2.
The risk-minimizing strategy denotes the optimal number of stocks to be held for
one policy-holder who is still alive at the time of consideration. At time 0, the
risk-minimizing strategy consists of £&; = 0.219 stocks and a deposit 17y = e #108.2 —
0.219 - 100 = 17.9 on the savings account, see (5.4) and (5.5). At time 1 these
numbers will change in accordance with the development in the value of the stock
and depending on whether or not the policy-holder is still alive at this time. If
the policy-holder does not survive until time 1, then & = 0 and 7, = 0 (see (5.4)
and (5.5) again). If he is still alive at time 1, and the value of the stock has increased
(to 115.0), then & = 0.383 whereas 1, = e #¥/4117.9 — 0.383 - 115.0 = 11.6.

Figure 2.2: The hedge for max(Sr, K) (the upper numbers) and the risk-minimizing
hedging strategy for the pure endowment contract H for one policy-holder contingent
on survival in the case where p =1 (the lower numbers).

In Table 2.2 we have listed the variance of Cr(y), the variance of H and the ra-
tio between the two variances for various choices of hazard rate p and number of
policy-holders n. It follows immediately from (5.6) and (5.7) that Var*[Cp(y)] is
proportional to n, whereas the dependence of the hazard rate p is more complex.
Table 2.2 shows that the ratio between Var*[Cr(¢)] and Var*[H| seems to decrease
as a function of n and increase as a function of u. This property can for example
be verified directly when 7"=1 and At = 1, since in that case, it follows from (6.1)
and (6.2) that the ratio can be rewritten as

1—e# 1—e#

o _, Var'z9 Var*[«9] _ Var*[x9) "
l—e#*+ne NE*[(W-‘{V] (1—nE*[(W§)12] (1—eH)+n L
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hazard rate (u) Var*[Cr(p)] Var*[H] Var*[Cr(p)]/Var*[H]

0.1 1.02-10% 1.28-10° 0.80
0.5 2.84-10% 2.98-10% 0.95
(n=1) 1 2.77-10°  2.83.10° 0.98
0.1 1.02-10*  3.49-10% 0.29
0.5 2.84-10* 3.97-10* 0.71
(n = 10) 1 2.77-10*  3.20-10* 0.87
0.1 1.02-10°  2.56-10° 0.04
0.5 2.84-10° 1.39-10° 0.20
(n = 100) 1 2.77-10°  6.85-10° 0.40

Table 2.2: The wvariance Var*[H| of the discounted liabilities and the variance
Var*[Cr(p)] of the costs associated with the risk-minimizing strategy.

Here, the first expression shows that the ratio decreases as a function of n and the
second expression shows that the ratio increases as a function of y. The dependency
of u has the following interpretation: When p grows, the uncertainty with respect
to not knowing the number of policy-holders who will survive becomes large in
comparison with the financial uncertainty. Similarly, when n increases, the term
appearing in Var*[H| which is proportional to n? becomes more dominating, and
hence the ratio decreases.

7 Results in continuous time

Results similar to those in the previous section were obtained in a continuous time
framework in Mgller (1998a) for unit-linked insurance contracts payable at a fixed
time T', for example the pure endowment contract. In Chapter 3 these results are
extended to the situation where the insurer’s liabilities are described by a genuine
payment stream, for example general unit-linked insurance contracts where pay-
ments are due immediately upon certain insurance events. That paper also includes
examples from non-life insurance, where the insurer’s liabilities are modeled by a
traditional risk process with the modification that claim amounts are affected by
some tradeable price index. Both expositions (Mgller (1998a), Chapter 3) consider
as main example a so-called generalized Black-Scholes model, where prices are driven
by the stochastic differential equations

dSt = O!(t, St)St dt + O'(t, St)St th,

dBt = T‘(t, St)Bt dt,
with Sy > 0, By = 1, where W = (W})o<;<r is a standard Brownian motion on the
time interval [0,7]. Also, let G; = o{W,, u < t}. In notation similar to the one

used in Section 5, the risk-minimizing strategy for a unit-linked pure endowment
contract with present value H = Yrg(Sr)/Br is

& = Y rpaniFI(t, S, (7.1)
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m = Yir_4per By TFI(t,S) — &Xy, 0<t<T. (7.2)

Here, the function FY is defined by

F9(t,S;) = B,E* | B3 g(Sr)

G| .
and F9(t, s) denotes the partial derivative of F9(t,s) with respect to s.

In contrast to the risk-minimizing strategy from the discrete time set-up, the strat-
egy (7.1)—(7.2) requires that the portfolio is rebalanced constantly in a continu-
ous manner. The analysis of such continuous time models requires more advanced
stochastic analysis than the one we have used in this chapter.






Chapter 3

Hedging Insurance Payment
Processes

(This chapter is an adapted version of Mgller (1998b))

Follmer and Sondermann (1986) proved the existence of a unique admissible risk-
minimizing hedging strategy for any square-integrable contingent claim H in the
martingale case. We extend this approach to the situation where the hedger’s lia-
bilities are described by a general payment process A and consider some examples
related to insurance. These include a general unit-linked life insurance contract
driven by a Markov jump process and a claim process from non-life insurance where
the claim size distribution is affected by a traded price index.

1 Introduction

This chapter addresses the problem of determining risk-minimizing hedging strate-
gies when the hedger’s liabilities are described by a general payoff stream. For
example, this would be relevant for a hedger facing not only one but several claims
with different (fixed) maturities or claims with random payment times, which is
often the case for insurance contracts. Life insurance contracts typically specify
payment of some amount (called the benefit) immediately upon the occurrence of a
specific insurance event, for example the death of a policy-holder. The benefit could
be a fixed amount or a function of some financial assets. Similarly, non-life insurance
contracts typically involve payments of random amounts at random times.

It is assumed that the financial market consists of two assets only: a riskless as-
set with a discounted price process equal to 1 and a risky asset whose discounted
price process is given by a locally square-integrable local martingale. In this set-
ting, Follmer and Sondermann (1986) introduced the concept of mean-self-financing
strategies and proved the existence of a unique risk-minimizing hedging strategy
for any square-integrable contingent claim with a fixed maturity. Here, we pro-
pose an extension of their framework so as to allow for general payment streams,

47
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where the liabilities of the hedger are given by a square-integrable payment process.
This process keeps track of the accumulated difference between (discounted) outgoes
and incomes at any time within a fixed time period. By considering some specific
payment processes, we show that this extension does indeed contain the original
Follmer-Sondermann approach.

In a recent paper by the author (Mgller, 1998a) risk-minimizing hedging strategies
for so-called unit-linked life insurance contracts were determined within the frame-
work of Follmer and Sondermann. With these contracts, the insurance benefits are
dependent on the value of a stock index and are payable contingent on some specific
events related to the stochastic life-length of the policy-holder. For example, the
policy-holder could receive the value of a stock index at a fixed time T, if he is
still alive at this time. In the present chapter, we determine risk-minimizing hedg-
ing strategies and intrinsic risk processes for more general unit-linked life insurance
contracts with payments incurring at random times within the term of the contract.
These intrinsic risk processes quantify the minimum risk that remains with a hedger
who uses a risk-minimizing hedging strategy. Furthermore, we consider an example
from non-life insurance, where claims are described by a marked point process with
index-dependent claim amounts.

The chapter is organized as follows: In Section 2 we present the extension of risk-
minimization for general payment processes. Some applications related to insurance
are given in Section 3.

2 Risk-minimization for payment streams

Let (2, F, P) be a probability space with a filtration IF' = (F;)o<i<r satisfying the
usual conditions of right-continuity and completeness and where Fj is trivial; T is
a fixed finite time horizon. Let P denote the predictable o-algebra on Q x [0, 7]
and O the optional o-algebra on © x [0,7]. Consider a financial market consisting
of two assets with discounted price processes X = (X;)o<i<r and Y = (¥3)o<i<r,
respectively. X is the discounted price process associated with some risky asset
(a stock), and it is assumed that X is locally square-integrable, adapted to the
filtration JF' and right-continuous with left limits (RCLL). The discounted price
process Y associated with the riskless asset (henceforth called savings account) is
assumed to be constant and equal to 1. Furthermore, it is assumed that P is a local
martingale measure for the market (X,Y") so that X is a local P-martingale.

Let (X) be the sharp bracket process for X, i.e., the unique predictable process such
that X?—(X) is a local martingale, and denote by £?(Px) the space of IF-predictable
processes £ satisfying

< Q.

B [/fﬁidmu

A (trading) strategy is a process ¢ = (£, n) satisfying some measurability and integra-
bility conditions which will be given in Definition 2.1 below. Here, &; is interpreted
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as the numbers of stocks held at time ¢, and 7, is the discounted deposit on the
savings account at t; the pair ¢; = (&, n;) is called the portfolio held at time ¢. The
(discounted) value process associated with the strategy ¢ is defined by

Vilp) =&Xy+my, 0<t<T. (2.1)

Consider an agreement between two parties, a seller (henceforth called the hedger)
and a buyer, specifying certain payments as given by an IF-adapted process A =
(At)o<i<r. It is assumed throughout that A is square-integrable and RCLL. For
0<s<t<T, A, — A, is taken to be the total discounted outgoes less incomes
during the interval (s, t] as seen from the hedger’s point of view. Thus, A describes
the hedger’s discounted liabilities towards the buyer, and we shall refer to A as the
(discounted) payment process. The simplest situation to be considered is where A is
of the form

At = —Kk + 1{t2T}H; 0 S t S T, (22)

for some constant x and H € L*(Fr, P). By (2.2), payments take place at time 0
and time 7" only: The hedger receives the amount x at time 0 and pays at time 7T’
the (discounted) amount H to the buyer of the contract.

Now consider a hedger whose liabilities in respect of a contract are given by the
payment process A and who applies a trading strategy . Immediately upon signing
the contract at time 0, the hedger receives (—Ay) from the buyer of the contract
and makes the initial investment V;(¢). Thus, the quantity

Co(p) = Voly) + 4o (2.3)

is the hedger’s initial cost associated with (i, A). Note that in the special case (2.2),
Co(yp) is equal to 0 if the price x is equal to the amount V() invested at time 0.
Similarly, additional costs may occur during (0,7]. One component is payments
generated by the contract; another is additional investments currently made by the
hedger in response to emergence of new information concerning future payments.
This is described more explicitly by introducing a cost process C(¢) = (Ci(¢))o<i<r
with initial value (2.3), where at any time ¢, the quantity Cy(y) represents the
hedger’s accumulated costs during [0,¢]. To motivate the formal definition given
below, we consider the additional costs occurring during the infinitesimal interval
(t,t+ dt]:

dCt(SO) = Ct+dt(80) - Ct(‘P) = (ft+dt - ft)Xtert + (77t+dt - 77t) + Appar — Ay (2-4)

Here, the term including £ and X is the cost associated with a change in the stock
position at time t + dt: &X; 4 is the value at time ¢ + dt of the stocks held from
time ¢ and &;1 4t X¢14¢ 1s the value of the new position. The second term is related to
the change in the discounted deposit on the savings account, and A;, 4 — A; is the
contractual payment made by the hedger during (¢,t + dt|. Using the process V(¢)
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defined by 2.1, we can rewrite (2.4) as

dCi(p) = Vita(p) = Vilep) = &(Xpyar — Xo) + Apyar — Ay

These considerations motivate the following definition:

Definition 2.1 A strategy is any process ¢ = (£,n) with € € L2(Px) and n adapted
such that the value process V() defined by (2.1) is RCLL and Vi(p) € L*(P) for
all t €10,T).

The cost process of the strategy ¢ (and the payment process A) is given by

Cilp) = Vily) — /Ot §u dXy + Ay, (2.5)
and the risk process of ¢ is defined by
Ri(¢) = E[(Cr() — Ci(p))?| 7] - (2.6)

By Definition 2.1, the cost process C(ip) is directly related to the hedger’s liabilities
as given by the payment process A. This means that C;(¢) comprises the hedger’s
accumulated costs during [0, ¢] including the payments A;, and hence, V;(¢) should
be interpreted as the value of the portfolio ¢, = (&, ;) held at time t after the
payments A;. In particular, V(i) is the value of the portfolio ¢z upon settlement of
all liabilities, and a natural condition is therefore to restrict to 0-admissible strategies
satisfying

Vr(p) =0, P-as. (2.7)

By the square-integrability of the payment process A and the assumptions on the
strategy ¢, the cost process (2.5) is indeed adapted and square-integrable. Note that
R(p) is defined as the conditional expected value of the squared future costs and
is taken as a measure of the hedger’s remaining risk. Observe also that the present
usage of the term “risk process” differs from the actuarial one, where “risk pro-
cess” typically refers to the accumulated payments. The criterion to be considered
amounts to minimizing R;(¢) for all ¢, given some constraint for the value Vr(y)
of the portfolio ¢r. This is made more precise in the following definition, which is
taken from Schweizer (1994):

Definition 2.2 A strategy ¢ = (&,m) is called risk-minimizing if for any t € [0,T]
and any strategy ¢ = (£,7) satisfying

Vr(p) = V() P-a.s., & = §As for s <t, and n, = 7 for s <t (2.8)
we have Ry(¢) > Ri(y).

A strategy ¢ satisfying (2.8) is called an admissible continuation of ¢ at time ¢.



HEDGING INSURANCE PAYMENT PROCESSES 51

Remark 2.3 Let us briefly review the results of Follmer and Sondermann (1986)
(subsequently abbreviated as FS) and compare that framework to the one presented
in this chapter. To distinguish the notions used in FS from the ones introduced
here, we equip all FS-entities with a bar~

FS dealt with the problem of hedging (in an incomplete market) contingent claims
H € L*(P, Fr) payable at a fixed time T, so-called T-claims. In that framework,
the cost process C'(p) associated with a trading strategy ¢ (defined as above) is
given by

Ci@) = Vilo) - [ &dXe, 0<1<T, 29)

where C;() is the accumulated costs of @ up to t: It is the value V;() of the portfolio
¢ reduced by the total trading gains during [0, ¢]. In contrast to the cost process
of Definition 2.1, this cost process C(p) is a priori independent of the hedger’s
liabilities. When considering a specific T-claim H, FS restricted to strategies ¢
which satisfy

Vr(¢) = H, (2.10)

a requirement which amounts to saying that the value of the portfolio ¢ at the
time of payment of the liability H should equal H. In particular, the terminal costs
associated with a strategy satisfying (2.10) are

Crlg)=H - [ &.ax.. (2.11)

Within the framework of F'S, a strategy is said to be self-financing if its cost process
is constant P-a.s. If there exists a self-financing strategy @ which satisfies (2.10),
then the claim H is said to be attainable. Due to incompleteness of the financial
market, the condition (2.10) cannot in general be fulfilled by a self-financing strat-
egy. FS therefore considered a larger class of trading strategies, and minimized
the conditional expected value of the square of the future costs at any time un-
der the constraint (2.10). Introducing the notion of mean-self-financing hedging
strategies, that is, strategies whose cost processes are martingales, F'S proved that
a risk-minimizing strategy is always mean-self-financing.

Note that the interpretation of the value process in F'S differs from the one given in
the extended framework, where V;(¢) was the value of the portfolio ¢, after payments
A;. Observe also that this way of defining the cost process as being independent
of the contingent claim H was possible only due to the fact that trading and the
actual payment of H were clearly separated in time in that no trading took place
after payment of the claim. This separation is no longer possible in the extended
set-up since intermediate payments can occur, possibly at random times and even in
a continuous manner. Consequently, the cost process should be updated constantly
with regard to the payments incurred by A, and this is achieved by Definition 2.1.

We end this remark by comparing explicitly the cost process in FS to the one of
Definition 2.1 in the case where the payment process is of the form (2.2) and x = 0,
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ie. Ay = ly>7ryH. For any 0O-admissible strategy ¢ the total cost at time 71" as
measured by C(y) is

T T
Cr(p) = Vr(p) - /0 £udX, + Ap = —/0 & dX, + H. (2.12)

Define a strategy @ in termsof o by E = &, 7, =n, for 0 <t < T and 7jp = H—&p X,
so that the strategies ¢ and ¢ differ by their terminal deposit on the savings account
only. Clearly, this implies that Cy(¢) = Cy(p) for t < T, and, by (2.11) and (2.12),
also the terminal costs are equal. Thus, for payment processes of the form (2.2), the
extended framework essentially reduces to the one of FS. O

It can be verified that also in our extended set-up, the cost process C(¢p) associated
with a risk-minimizing strategy ¢ is a martingale. The proof is similar to the one
given in FS and is omitted here.

Lemma 2.4 If ¢ is a risk-minimizing strategy, then C(p) is a martingale.

The notion of self-financing strategies and attainability for payment processes is
introduced in the following definition:

Definition 2.5 A strategy ¢ is called self-financing (for A) if Ci(p) = Co(p) P-
a.s. A payment process A is said to be attainable if there exists a strategy ¢ which
is self-financing (for A) and Vr(p) =0 P-a.s.

Note that this definition of self-financing strategies is only equivalent to the classical
definition when A; = Ay P-a.s. In the extended set-up, the appropriate interpre-
tation of a self-financing strategy is that all fluctuations for the value process are
either trading gains generated by the strategy or due to payments prescribed by
A. It follows from the definition that a self-financing strategy can have negative
terminal value V() with positive probability even if Vy(¢) > 0. However, if ¢
is self-financing for A and satisfies the condition (2.7) of 0-admissibility, then the
payment process can be perfectly replicated by ¢ and we call A attainable. The
next lemma relates the notion of attainability for the payment process A to classical
attainability for contingent claims payable at time 7.

Lemma 2.6 The payment process A is attainable if and only if the T-claim H = Arp
is (classically) attainable.

Proof. First assume that C(y) is constant and that Vr(¢) = 0 P-a.s. Then

T
Coly) = Cr(y) = —/0 £, dX, + Ap

and, since Co(p) = Ao + Vo(yp),

T
Ar — Ay = Vi(o) +/0 £, dX,.
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Thus Ar— Ay is (classically) attainable, and this is equivalent to Az being attainable
since JFy is assumed to be trivial.

Conversely, let ¢ = (£,7) be a (classically) self-financing strategy with Vi (p) =
Ar— Ay, and define a strategy ¢ = (£, n) in terms of ¢ by £ = E and n = —(A—Ay).
Clearly V() = 0, and since

Vile) = 6Xo+m=Vi(p) — (A= A0) = Vol@) + [ €X, — (A~ 4o
= Tolp)+ [ X~ (Ao Ao)

also Cy(p) = Cy(p). O

The construction of our risk-minimizing strategies is based on an application of the
Galtchouk-Kunita-Watanabe decomposition. Define a martingale V* by

Vi =E[Ar|F], 0<t<T. (2.13)
This definition is similar to the one of F'S which refers to V* as the intrinsic value pro-

cess. By use of the Galtchouk-Kunita-Watanabe decomposition, V* can be uniquely
decomposed as

t
Ve = E[Ar | Bl =Vy +/0 €4 dX, + LA, (2.14)

where L* is a zero-mean martingale which is orthogonal to X and £ is a predictable
process in £L?(Px). This allows us to formulate and prove a result extending Theorem
2 of F'S to the present framework.

Theorem 2.7 There exists a unique 0-admissible risk-minimizing strategy ¢ =
(&,m) for A given by

(Eom) = (Vi — A —&'Xy), 0<t<T
The associated risk process is given by Ri(p) = E [(L% — Lf‘)Q‘ .7-}] .
Proof. Note that by (2.14)
T T
Ar=Vi+ [ &hdXu+ I = Ve + [ ghdX,+ (LA - 1), (2.15)
0 t
Using (2.15) and the fact that Vr(®) = 0 for 0-admissible strategies, we see that
B . . T . t
Cr(@) = Cu@) = Vol@) - [ &dXut A= (V@) ~ [ &udXu+ A)

= (5 = A= V@) + (L - 1) + [ (€ ~E)dX.. (2.16)
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Since the martingales L4 and X are orthogonal and the first term in (2.16) is Fj-
measurable, we find

Rt(@) = E

(L8 = 12)"| 7] + 0 = A= Vi@

v | [ - erar),

7.

The first term is independent of the strategy ¢, whereas the other terms do depend
on the strategy. The last two terms are eliminated by first choosing £ = &4 and
then 7 such that Vi(¢) = V;* — A, for all ¢.

Uniqueness of the risk-minimizing strategy is proved as in FS: If a strategy ¢ is
risk-minimizing and 0-admissible, then ¢ minimizes Ry(-), and hence £ = €A Fur-
thermore, C(¢) is a martingale by Lemma 2.4, and this implies that V(¢) = V*— A,
that is 7 = V;* — A, — §X,. O

The structure of the solution is very natural: The number £ of stocks held is exactly
equal to the result obtained using the original framework of F'S for the T-claim Ay,
whereas the deposit 1 on the savings account is now being constantly reduced by
the payments A. In particular, when A is of the form (2.2) with k = 0, the risk-
minimizing strategy of Theorem 2.7 differs from the corresponding strategy of F'S
only by the choice of 7.

3 Applications

In this section we present some examples related to insurance with payment pro-
cesses that are more general than the simple form (2.2). First, in Section 3.1, we
consider a general life insurance contract specifying payments that are contingent
on the life-length of the policy-holder (the buyer of the contract). The policy-holder
pays premiums according to some predefined premium scheme, for example annual
payments for 10 years or as long as he is alive. In return, he will receive some
insurance benefits which could be payable at a fixed time contingent upon survival
or immediately upon some specific event. In addition, we allow benefits and premi-
ums to depend on the price of a traded stock (index). These contracts are known as
unit-linked or equity-linked insurance contracts, and the problem of pricing such con-
tracts has been analyzed by Brennan and Schwartz (1976, 1979a), Delbaen (1990),
Aase and Persson (1994) and Nielsen and Sandmann (1995), among others. In
Mgller (1998a), risk-minimizing strategies for unit-linked life insurance contracts
are determined for the case where the payment processes are of the form (2.2). In
Section 3.2, an example from non-life insurance is considered. Here claims arising
from some non-life insurance portfolio are described by a marked point process with
claim size distribution that depends on the value of some traded price index.
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3.1 Unit-linked life insurance contracts

Let (2, F,P) and IF be as in Section 2 and consider a financial market consisting
of two assets with price processes (B, S) given by the P-dynamics

dSt = T(t, St)St dt + O'(t, St)St th, (31)
dBt = T‘(t, St)Bt dt, (32)

So > 0, By = 1, where W = (W;)o<i<r is a standard Brownian motion on the
time interval [0,7]; r and o are functions satisfying certain Lipschitz conditions
ensuring the existence of a unique solution to (3.1). In addition it is assumed that r
is bounded and non-negative, and that o is strictly positive. Define, moreover, the
discounted price processes X = S/B and B/B = 1. Let & = (G;)o<i<r denote the
P-augmentation of the natural filtration of (B, S); it is defined by G; = G, VN,
where G) = o{(By, Su); u < t} and where N is the o-algebra generated by all
P-null-sets. Note that we work directly under the martingale measure P.

The development of some underlying life insurance contract is here described by the
classical multi-state Markov model of Hoem (1969); see also Norberg (1992). There
exists a finite set J = {0, 1,..., J} of possible states of the policy, 0 being the initial
state. For example, J could consist of three states corresponding to active, disabled
and dead. Let Z = (Z;)o<i<r be an IF-adapted right-continuous Markov process
with values in J and initial distribution (1,0,...,0). The P-augmentation of the
natural filtration of Z is denoted IH = (H;)o<i<r. We shall assume that Z and
(B, S) are stochastically independent under P and we take the filtration IF' to be
the P-augmentation of the natural filtration of Z and (B, S).

Define in addition the multivariate counting process N = (N7*),; by
Ni¥ =#{s|s€ (0,4], Z_ =], Z, = k},

and introduce the processes Itj = lyz,—j3, 7 € J. The quantities thk can be inter-
preted as the number of transitions from state j to state k up to and including time
t; I} is equal to 1 if the policy is in the state j at time ¢ and zero otherwise. The
transition rates for the Markov chain Z are denoted M* and are assumed to be of
the form

jk _ 73,k
A =L,

where /% are deterministic continuous functions. In particular, this implies that
the processes

. . t .
Mj* = Nt — / NEdu, 0<t<T, (3.3)
0

are martingales so that the counting processes N7* possess intensities. Since the
N7k by construction do not have any simultaneous jumps, the martingales M7* are
orthogonal and their predictable variance processes are given by

. t t o
(Mﬂc)t:/o )\{Lkduz/o I3 3% du.
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Furthermore, we note that also the discounted stock price process X and M7* defined
by (3.3) are orthogonal. The transition probabilities for Z defined by pjx(t,u) =

P(Z, =k | Z; = j) can be determined from Kolmogorov’s backward differential
equations
d _ je 4
apjk(t, u) = Z ti (P (t,u) — pex(t, u)), (3.4)
iy

for 0 <t < u, subject to the conditions pjx(t,t) = 1yj—g}-

Remark 3.1 In order to underline the importance of the choice of filtration IF', we
shall also refer to the market with the traded assets (B, S) by the triple (B, S, IF).
On this market, a contingent claim is an Fr-measurable, P-square-integrable ran-
dom variable. Hence claims (and payment processes) can depend on the development
of the traded assets (B, S) as well as uncertainty from the underlying insurance pol-
icy Z. As we shall see, the market (B, S, IF') is incomplete, and contingent claims
are in general not attainable. However, contingent claims that are related to the
traded assets only, that is, H € £?(Gr, P) C L?(Fr, P), are attainable and hence
can be priced uniquely. To see this, note that by independence between G, and H;
we have for such H that

Vi :=E[H | F]=E[H |G VH]=E[H]|G]

Due to the regularity conditions on the functions ¢ and r in (3.1)-(3.2), the “small”
financial market (B, S,&) is complete, and hence the square-integrable (&, P)-mar-
tingale V* admits a unique representation

¢ H
V= B[H] +/0 7 dx,,

where £% is @-predictable and £¥ € L£2(Px). Since H € £L2(Gr, P) is attainable on
the small market it is also attainable on the larger market (B, S, IF').

We shall consider the problem of hedging on the market (B, S, IF') payment processes
that are associated with unit-linked insurance contracts and are only adapted to the
large filtration IF'. In this model, the martingale measure for the discounted price
process X is not unique and therefore unique prices for the contracts do not exist.
But since P itself is already a martingale measure, it coincides trivially with the so-
called minimal martingale measure, cf. Schweizer (1991, 1995). This measure is often
used in the literature on pricing unit-linked insurance contracts, the motivation being
the assumed insurer’s risk-neutrality with respect to mortality; see for instance Aase
and Persson (1994). Here, our aim is to derive risk-minimizing hedging strategies
and we are not primarily dealing with the problem of pricing the claims. O

As in Norberg (1992), there are two basic forms of payments: Firstly, there are
so-called general life insurances by which the amount g{k = ¢’*(¢,S;) is payable
immediately upon a transition from state j to state k at time t. Secondly, there
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are general state-wise life annuities payable continuously at rate gg = ¢'(t,S;) at
time ¢ contingent on the policy sojourning in state j. This assumption serves only
to keep notation simple, and we refer to Remark 3.4 below for an extension to the
case where the absolutely continuous annuity payments are replaced by piecewise
continuous processes. Note that all payments specified by the contract are functions
of the current value of the stock only. It is assumed that (¢,s) — ¢’*(¢,s) and
(t,s) — ¢’(t, s) are measurable functions and that

sup E[(B;'g (u,S,))?] < oo (3.5)

uw€el0,T

for all ¢’ and ¢/. This condition ensures that the processes [ B~'g’* dM7* are
square-integrable martingales. Disregarding the random course of the policy, the
¢’ (u, S,) and ¢’*(u, S,) are just simple u-claims, and, by Remark 3.1 above, these
claims are attainable and hence can be uniquely priced on the financial market.
Their unique arbitrage-free processes are denoted FV and F7*, respectively, and are
given by

F](t, St; U) = E I:Bthrlg](U’a Su)
ij(t, St, U,) = E I:Bthjlgjk(ua Su)

gt] ) (3.6)
G|, 0<t<u<T. (3.7)

We assume that the functions (¢,s,u) — F'(t,s,u) are measurable, continuously
differentiable with respect to ¢ and twice continuously differentiable with respect to
s. In addition, it will be assumed that the first partial derivatives with respect to s
(henceforth denoted F;) are uniformly bounded, i.e., there exists a constant K < oo
such that

sup (max | FI%5(t, s,u) | +max | FY(t,s,u) |> < K < o0. (3.8)
(t,s,u) \ IFK J

By definition, the discounted price processes B; 'F"(t,S;,u) in (3.6) and (3.7) are
martingales; It6’s formula and the uniqueness of the canonical decomposition then
imply that

d (B7'F (t, Sy, u)) = F;(t, S, u)dX,.

Note also that F(t,S;,t) = ¢/(t, S;), and similarly for F7*,

The undiscounted payment process generated by the insurance contract is of the
form

dA, =Y Il glat+ Y g*dN}",
jeJ Jk:j#k

and the discounted value of payments occurring during [0, ¢] can be written as

t ~ t
At:A0+/ B;ldAu=A0+/B;12
0 0

(Ig gdu+ Y gF ng’“) . (3.9
jeT

k:k#j
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The process (3.9) specifies payments that are contingent on the development of the
policy (as described by Z) and are linked to the development on the financial market
in that the amounts g/ and g/* are time-dependent functions of the stock price.

Now consider the intrinsic value process V* associated with A7 defined by
=E[Ar | Ai] = A, + E[(Ar — Ay) | A (3.10)

Using the compensators for N7* the fact that [ B~!¢’¥ dM7* are martingales and
the independence between Z and (B, S), we find

Vy = A+E / B, 1Z(P du + Zgﬂ’“dNﬂk)‘ft]

JjET k:k#j

JjeET k:k#j

= a+Ee|[ B lf%p%m+2¢”’ NE]

= A+B'Y / Pz, (t, ) (Fj(t Spou)+ Y plFF*(, Sy, )) du.
JjeJ k:k#£j

It is convenient to introduce auxiliary processes V*, i € J, which represent the state-

wise expected value under P of future benefits less premiums under the contract and

are given by

Vi(t,S;) Z/ pij(t,u) (Fﬂ(t Spou)+ Y plFFIR(, St,u)> du, 0<t<T.
JjeJ k:k#j

The quantity V(t,S;) is often interpreted as the (undiscounted) market value of

future benefits less premiums conditional on the policy being in state ¢ at time ¢ and

on the value S; of the stock. Formally, it is defined by the conditional expectation

. T o
Vilt,s) =E lBt/ BYdA, z, =1, S, = s] .
t

However, since the insurance contracts cannot be priced uniquely on the market, jus-
tifying such an interpretation requires special assumptions concerning the market’s
attitude towards the pure insurance risk stemming from the underlying insurance
policy. But in any case, the process V* can now be written as

Vi=A+ )Y LIVt S)B; . (3.11)
1€eJ
Lemma 3.2 The Galtchouk-Kunita- Watanabe decomposition of V* is given by

V*+/ (ZI’ gZ) iX,+ ¥ /zﬂk dME*, (3.12)

€T 7.k j#k

where

$==Z/th(t& ZMWW&M%%(M®

e kik#j
viF = BIYVE(t, S)) + gl = VI, S))). (3.14)
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Idea of proof of Lemma 3.2: We can easily verify (3.12) under the additional as-
sumption that V* € C*2 for i € J, i.e., continuously differentiable with respect to
t and twice continuously differentiable with respect to s. Note that the martingale
V* can be written as

V;* = At + f(tv St; Zt)B;17

where the function f is defined by f(t,s,i) = V'(¢,s), i € J. Note also that the
derivatives F; are uniformly bounded due to (3.8) and that the functions p’* are
deterministic and continuous, hence uniformly bounded on compacts. Thus, by
dominated convergence

fs(t,s,7) = aﬁvi(t, s)
= Z/ pij(t, u) (FJ (t,s,u)+ Y ulFF*(t,s u)) du. (3.15)
JET k:k#j

By the integration by parts formula, we get that
t t
Vi = At £0,80,20) + [ f(u, S0 Z0) B + [ BN df(u,5,, 2. (3.16)
0 0

We now use (3.16) and Ité’s formula on f to rewrite the martingale V* as the
sum of a martingale and a predictable (even continuous) process of finite variation
(henceforth called an FV-process). This immediately implies that the predictable
FV-process is also a martingale and hence constant. Thus, it is only necessary to
identify those terms in (3.16) that are not predictable FV-processes: From A we
get the process _kzik [ B~1¢’* dN7* whereas the integral with respect to B! is a
Jok:g

continuous FV-process since B is. The additional assumption V¢ € C'>? allows for an
application of the It6 formula to the process (f(¢, Sy, Zi))o<i<r. The terms including
the partial derivatives f; and fss are continuous FV-processes and from the term
including the partial derivative f,, we get [ f,dX and a continuous FV-process.
Moreover, by (3.15), the integrand f; is

fs(t, Sy, Zy ) ZIE —VZ t,S) = ZIZ ft,
€T €T

which gives the first integral in (3.12). To obtain the last integral, note that by the
continuity of V¢ and S, the jump terms from the It6 formula are

B (f(t, S, Z) — f(t— S, Z)) = > B (VE(,S) — VI(t,S)) dNiF,
Jsk:i#k

which, combined with the contribution from A, gives the process Y [uvi* dN7*,
J,k:j#k
Now subtract and add the continuous FV-process Y. [17%¥M*du to obtain the
Jok:j#£k
corresponding integrals with respect to the compensated counting processes M*.
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The remaining terms now form a continuous F'V-martingale, and hence are constant.
O

The above argument shows where the terms in the decomposition (3.12) come from.
However, proving that V¢ € C1? turns out to be rather laborious. The following
proof does not use this assumption.

Proof of Lemma 3.2. We first show that V*(t, S;) satisfies
. . t t . o
BV, Sy) = V(0,S,) + / £dX, — / (B;lg;+ > u;’fy;’f) dr. (3.17)
0 0 kikAi

Foreachie Jand 0 <t <u<T,let

szj (t,u)B <F9 (t, Sy, u) Z ik k(¢ St,u)> )

ied k:k#j

By application of the integration by parts formula and Kolmogorov’s backward
differential equations for p;; it can be shown that

dY;" = apdt + BytdX,,

where
ai’u = Z ,Uik (Y?u - Ytku) )
ki
i > pij(t,w) ( (¢, S, u)+ > ik Rk (¢, St,u)) )
jeT k:k#j
Using

. . t . . t t .
=y [avie=vir s [Caivar+ [givax, (3.18)
0 0 0
and the expression for V(t,S;), we get
. T . T . t . t .
BOVILS) = [ vt du= [ (Y(}’“+ [ aivar+ [ ﬂ;v“dXT) du
t t 0 0
T . t i t .
= / (}/E)Zau +/ 1{T<u}a,lr’u dr +/ 1{T<u}/6/lr’u dXT> du
0 0 - 0 -
t . u u
- / (Y;}’“Jr / it dr + / g dXT> du
0 0 0
T . t
_ / Y(f’“du—/ Y du
0 0
T rt . T rt .
+ [ [ pemaitdrdu+ [ [ 1Bt dX, du. (319)
0 0 - 0 0 -

In the last equality we have rearranged terms and used (3.18) for ¢ = u. Consider
the four terms in (3.19): By the definition of Y** we find that

T . .
/ Yt du = V¥(0, Sp)
0
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and
t
/YJ,Udu—/ gl + > uikgk
0 Kk

Since the functions (w,t,u) — of"(w), i € J, are O ® B([0, T])-measurable and

T gt ,
/0 /0 Lir<yy | 02" | dTdu < 0o P-as,

the first double integral in (3.19) can be rewritten by the Fubini theorem as

T rt ) t T
/ / lir<pyordrdu = / / o dudr
oJo 7

- / (Z WEBIN(Vi(r, S;) - Vk(T,ST))>dT.

k:k#i

The second double integral in (3.19) involves a stochastic integral with respect to
the square-integrable martingale X, and hence the standard Fubini theorem cannot
be applied. However, note that (w,t,u) — 5;%(w) is P ® B([0, T])-measurable and
uniformly bounded for each i by (3.8). Thus, by the Fubini theorem for stochastic
integrals, see Protter (1990, Theorem 45), we obtain

T rt . t pT t
/ / 17 <uy Bo4dX, du = / / GitdudX, = / £ dXx,.
0 0 - 0Jr 0

This proves (3.17). To prove that (3.12) is the Galtchouk-Kunita-Watanabe decom-
position for V*, note that

dI} = Y (dN}* — dN*).
k:k#i

Since the processes V¢ are continuous, an application of the integration by parts
formula to (3.11) gives

AVt = dA+ Y I d(B'V(t,5)) + Y. B Vi(t—, S, )dI;

€T €T
= B'Y (1;g;'dt+ > ggdegk) -S> I (Bt_lgt + 3wty )
=N k:k#i =N k:k#i
+3 I gdX,+ > B N(VE(@R, S — VL, Si)dNGE.
€T i,k1i#k

This proves (3.12) with index j replaced by ¢ in the integrals with respect to the
compensated counting processes M’*. By the boundedness of F;, the integral with
respect to X is a square-integrable martingale. Furthermore, (3.5) ensures that
¢’, ¢’ and V7 are square-integrable and that the integrals with respect to M7k
are square-integrable martingales. Since X and M7 are orthogonal, this shows
that (3.12) is the Galtchouk-Kunita-Watanabe decomposition. O
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We can now use Theorem 2.7 to determine risk-minimizing strategies for the pay-
ment process A. The integrals with respect to the compensated counting processes
M7* are related to the non-hedgeable part of the payment processes. In particu-
lar, ng represents the immediate extra costs for the insurer in connection with a
transition from state j to k at time ¢: the insurer will have to pay the (discounted)
amount g/*B;!, and the term V*(t, S;) — Vi(t,S;) denotes the difference between
the “reserves” in the two states. In traditional life insurance, ©/¥ is known as the
sum at risk associated with a transition from state j to state k£ at time ¢. By or-
thogonality of the martingales M7*, the intrinsic risk process associated with the

payment process (3.9) is
}']

Ri(p) = (/t 3 lﬂdeJk) F|=E
= X[ X B0 | Fpylt u)lt du. (3.20)

Jik:j#£k
ieg U jkuk

/ S ()N gy
t

Jik:g#k

In the last equality we have exploited the independence between (B, S) and Z and
the fact that (V/);cs do not depend on Z. We have now proved:

Theorem 3.3 For the payment process (3.9), the unique 0-admissible risk-minimi-
zing hedging strategy is given by

ftﬂ?t (Z IZ ft: ZIZ 1VZ L St - Xy thzfg) .
€T 1€J €T
where & is given by (3.13). The intrinsic risk process is given by (3.20).

Remark 3.4 The result in Theorem 3.3 is also true with lump sum annuity pay-
ments at fixed deterministic times in 7 = {7, ..., 7,} for some n > 1. In that case,
the state-wise annuity payments are described by the processes

Gi= ¥ AG(r,S,) +/ (u, S,) du,

TeT <t

and the auxiliary processes V¢ are given by

Vi, Sy) Z/ pij(t, u) (Fj(t, S, u) + Z p{;ijk(t, St,u)) du

ieg k:k#j
+Z Z pij(t’T)FAj(t,St:T)a OStST,
JET TET , >t

with
F%(t,S,,7) = BE[B'AGI(r,S,)

.7:,5], 0<t<r, T€T.

The processes £ appearing in the expression for £ are modified similarly. Here, the
processes (V*);cs are no longer continuous, but only piecewise continuous. However,
as jumps can occur only at a fixed number of deterministic times, calculations are
similar to the ones leading to Theorem 3.3. O
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We will now consider some examples which illustrate the flexibility of the multistate
Markov model. Assume for simplicity that the financial market is standard Black-
Scholes, with constant volatility o and interest rate r.

Example 3.5 Consider a so-called single life term insurance purchased by single
premium. This contract specifies that the sum insured is payable immediately upon
the death of the policy-holder if this occurs before time 7. We will consider the
state space J = {0,1}, where 0 represents “policy-holder alive” and 1 “policy-
holder dead”. Denote by x the age of the policy-holder at time 0 and by 7} the
policy-holder’s remaining lifetime after time 0. Thus 7, is the time of death of the
policy-holder and NY* = 17, <;3. The intensity p%" =: 41 is the hazard rate function,
and the transition probabilities are the survival probability

Poo(t; u) = exp (— /tu fr dT) (3.21)

and the probability of death pg; = 1 —pgg. More precisely, poo(t, u) is the probability
of survival to time u, given that the policy-holder is alive at time ¢; in actuarial
literature, this probability is typically denoted ,—_ip,+, and, similarly, po;(¢,u) =
u—tz+t- The contract functions are all equal to zero except ¢” and AG) and we
assume that g% (¢, S;) = max(S;, Ke®) and AG) = —k, for some constants K, &, d.
The constant k represents a single premium paid by the policy-holder at time 0, and
Ke is the minimum guaranteed amount payable in connection with a death at time
t; 6 could for example represent a constant inflation rate, which is used to adjust
the guaranteed amount. If the policy-holder dies at time ¢ € [0,7], the insurance
company pays an amount equal to max(S;, Ke®). This type of contract is known
as unit-linked with guarantee, see e.g. Aase and Persson (1994). In this case, the
Black-Scholes formula gives

FO't,S,,u) = Ele ™ I(Ke™ 4 (S, — Ke®)1) | F]
= Kelte "t 4 (Stq)(zt(u)) — KeMe 09 (zgu) —ovu— t))
= KeMte "D (—zt(u) + am) + StCD(z,S“)),

where @ is the standard normal distribution function and

zt(u) _ log(S;/Ke®™) + (r + 02/2)(u — t)

)
oVvu—1
Using Theorem 3.3, we find the risk-minimizing strategy
4 (w)
& = Lz>y /t Poo(t, w) pu ®(2") du,
T
e = lzsy /t Poo(t, 1) fy Ke’(T’J)”(I)(—zgu) +ovu—t)du

T
_1{T”:t}/t Poo(t, u) uuq)(z,gu))Xt du.
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Note that the risk-minimizing strategy (£,n) does not depend on the premium
paid at time 0. However, by (2.3) the initial value Cy(¢) of the cost process is
affected by «, since

T
00(90) = Vb(@) — k= /0 pOO(O,U) oy FOI(O,S(),U) du — K.

In particular, we find that the initial cost Cy(¢p) is 0 if and only if

T
K= / pOO(O,U) My FOI(O,S(),U) du. O
0

Example 3.6 Now consider a portfolio consisting of n policy-holders with i.i.d.
remaining lifetimes and common hazard rate function pu. The contracts considered
are term insurance contracts paid by single premium at time 0, that is, the amount
g(t, Sy) is payable at time ¢ if a death has occurred exactly at this time. We assume
that ¢ is of the same form as in Example 3.5. This contract can be embedded in

the present framework by a state space J = {0, 1,...,n}, where state j corresponds
to exactly j policy-holders having died. The transmon rates for the Z-process are
NF =] Lik=js13(n —7)p for j, k= 0,. — 1, and the transition probabilities are

pij(t,u) = exp (— /tu(n — J)r dT) ,
and p; = 0 for j > k; for j < k, p;, are determined from the differential equations
d :
dtpjk(t u) = (n — J)e(pj(t, u) — i1kt  v))-
With this contract, the unique risk-minimizing hedging strategy is

& =/ szt St u)(n = ) ®(z) du,

Jj=Zi—

n = /t S bt u)(n — it (KeTD(— 4 0v/u—1) + D) X,) du

Jj=2t

X[ S b sl u) - ) du

J=Zi_

Since the remaining lifetimes of the policy-holders are i.i.d. with hazard rate function
i, we see that for v > ¢ the conditional distribution of (n — Z,) given Z; is binomial
with parameters ((n — Z;), p(t,u)), where

p(t,u) = exp (— /tu Ly dT) :

This implies that

S Dyt u)(n— §) = El(n — Z.) | Z] = (n — Z)p(t,u),

Jj=2Z
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and the risk-minimizing hedging strategy above reduces to

T
& = (n=2) [ p(twpo(H") du
T
mo= (- 2) [ ot Ke I e(~o + oV du
t
T
_AZ, / lt, ) 1 ®(28) X, du.
t

These strategies were also obtained in Mgller (1998a) in a counting process set-up for
payment processes of the form (2.2). However, all payments there were transformed
into T'-claims by deferring them to the final time 7. These deferred insurance claims
were then analyzed within the original FS-framework. O

3.2 Index-linked claim amounts in non-life insurance

The occurrence of insurance claims and their sizes are often described by a marked
point process with an infinite mark space. In the actuarial literature, it is typi-
cally assumed that this process depends on unobservable random variables or some
unknown structural parameters. Here, we assume that claim amounts are affected
systematically by a price index which can actually be traded on the financial mar-
ket. This opens the possibility of hedging the risk related to the development of
this price index and thus controlling to some extent the uncertainty associated with
future liabilities as measured by their variance.

Let v(dt,dy) be a marked point process on the mark space (IR, B(IR,)) with com-
pensator v(dt, dy) satisfying v([0,¢] x A) < oo P-a.s. for all t <T and A € B(IR,).
That is, 7 is an integer-valued random measure on [0, 7] x IR, and for each A €

B(IR.)
7a(t) = ([0, 1] x A)
defines a counting process. We shall assume that the compensator is of the form
v(w,dt,dy) = A dt G(w, t, dy), (3.22)

where ) is a deterministic continuous function and G is a transition kernel from
(Q x [0,T],P) into (R, B(IR;)). Furthermore, assume that G(w,t,-) is a prob-
ability measure for each (w,t) and that G(w,t,-) = G(S;(w),t,-), where S; is the
price process associated with some underlying price index. This index and one risk-
less asset with price process B are assumed to be traded freely on the financial
market. As in Section 3.1 the P-dynamics of the price processes (B, S) are given
by (3.1)—(3.2). The interpretation of the marked point process + is basically that the
insurance claims occur in accordance with an inhomogeneous Poisson process and
that claim amounts are affected by the index S. One way of specifying dependency
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between price index and claim amounts could be the situation where G is absolutely
continuous with density g(S;, t,y) satisfying

o(Sut,y) = Sitgo(y/st), (3.23)

for some density gy so that S; is simply a scale parameter. We will return to this
example at the end of this section.

In this section we take IF' = (F;)o<i<r to be the P-augmentation of
F = o{(Bu, Su), ([0, u] x A); u < t, A € B(R)}.

Denote the first and second moments of G(s,t) by

m(t,s) = /R+ yG(s,t,dy), (3.24)

v(t,s) = y> G(s,t,dy), (3.25)

Ry

and assume that

E l/OTv(u, Su) Ay du| < 00. (3.26)

For each predictable (P ® Br-measurable) function h on 2 x [0,T] x IR, we can
define the integral process

hox oy = / h(u, y) v(du, dy)
[0,t]XR+
if |h| * y; is finite; h * v is defined similarly if |h| * v is finite. In particular, for
h(u,y) = yB,"

the quantity h x v represents the discounted value of claims incurred during the
interval [0, ¢]. For later use, we note that A (y—v) is a square-integrable martingale
under the above mentioned assumptions: By (3.22) the multivariate counting process
7 possesses intensity \;G(w,t,dy). In particular this implies that v(w, {t},dy) = 0
for all w,¢,dy. Furthermore, (3.26) and boundedness of r imply that h* x v is
integrable, and hence, by Jacod and Shiryaev (1986, Theorem I1.1.33), h * (y — v)
is a square-integrable martingale. From that theorem is also follows that

(hs(y—v),hs(y—v))y =h¥xp = /Ot /IR+ (yBu_l)2 v(du, dy). (3.27)

Finally we note that since the martingale h* (7 —v) is of finite variation, it is purely
discontinuous and hence orthogonal to X and any local martingale which can be
represented as a stochastic integral with respect to X.

We allow for continuously payable premiums with premium payment intensity b, =
b(u, S,) and a single premium « paid at time 0 and consider the discounted payment
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process
- t
A = h*%—/ buB,jldu—n
0
t t
= / / yB; ! vy(du, dy) — / byB, " du — k. (3.28)
0 JIRy 0
As in Section 3.1, we assume that
sup E[(B;'b(u,S,))?] < oo, (3.29)
u€[0,T]

and introduce the unique arbitrage-free price processes F™ and F° associated with
the claims specifying payment of the amounts m(u,S,) and b(u, S,), respectively,
at time u, defined by

F™(t,S,u) = BE[B,'m(u,S,)
F*(t,S,u) = BE[B;"b(u,S,)

ft]a
7,

for 0 < w < t < T. We assume that F™ and F® are measurable, continuously
differentiable with respect to t, twice continuously differentiable with respect to s
and that the first partial derivatives with respect to s are uniformly bounded, that
is

sup (| F*(ts,u) | + | F2(t,5,u) |) < K.

(s;tu)

Furthermore, note that

T
-1
E[/t B; /R+yG(Su,u,dy))\udu

g

For the intrinsic value process V;* = E[Ar | F;] associated with Ar we now have

Vi = A+ E[(Ar — 4) | F]

= At+El// B fy(dudy‘}'t]— l/ buB:t dul| F,

T
E [ / yB, " (du, dy)‘ ft]
t Jm,

g

T
= E l/ B 'm(u, Sy) Ay du
t

T
- B! / F™(t, Sy, 1) Ay du.
t

_ At—i-/ (F™(t, Siyu)Au — FO(t, Sy, u) ) du.
Lemma 3.7 The Galtchouk-Kunita-Watanabe decomposition of V* is given by
V=it el | u,y) (y(du, dy) = v(du,dy)),  (3.30)
0,t] XH‘Z+

where

A = /tT<Fsm(t,St,u))\u—Fsb(t,St,u))du. (3.31)
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Proof: The proof of the decomposition (3.30) is analogous to the proof of Lemma 3.2
and involves application of the Fubini theorem for stochastic integrals. Therefore,
we only show where the integrands come from, and we do this under the additional
assumption that the function

f(t,s):= /tT (Fm(t, 5,u) Ay — FO(t, s, u)) du

is in C12. Since F™ and F? are uniformly bounded and u + ), is continuous and
deterministic, we find that

fult,s) = % ft9)= | (Pt s, WA — FY(t,5,0) du

Now use the integration by parts formula to rewrite V* as
t t
Vo= A+ f(0,S0) + / Flu, S.) dB; + / Bldf(u,S,),  (3.32)
0 0

and identify terms that are not predictable FV-processes: From A we get the process
Jogxm, YBy 'y(du, dy), and application of the Ito-formula to f(t, S;) yields [ f, dX.
Now subtract and add the continuous FV-process [j; . m, yB, ' v(du,dy) to ob-
tain (3.30). Thus, V* admits the decomposition (3.30) into an integral with respect
to the discounted price process X and an integral with respect to the compensated
random measure 7. Furthermore, since the integrals with respect to (y — v) and X
are orthogonal, (3.30) is the Galtchouk-Kunita-Watanabe decomposition for V*. O

Theorem 2.7 can now be used to find the unique 0-admissible risk-minimizing strat-
egy for the payment process (3.28):

& = &, (3.33)
T T

m = Bl / F™(t, Sy, u) Ay du — B! / FY(t, Sy u) du — EAX,.  (3.34)
t t

4

By use of (3.27) the intrinsic risk process R(y) can be computed as

rie) = 5| ([ [, ) oty - i)

= 5| [ [, wm vt 7]

[ T
_ —1\2

= /tT E [(B;l)%(u, Su)

Note that the conditional variance of A; given F; can be computed by using the
decomposition (3.30)

g

Fi] M du. (3.35)

Var [Ar| F] = Var [(Ar — A))| Fi] = Ri(p) + Var [/tT 5;1 dX,

ft] , (3.36)



HEDGING INSURANCE PAYMENT PROCESSES 69

where R,;(y) is given by (3.35). The second term in (3.36) is related to the hedgeable
part of the payment process, whereas the first term equals the intrinsic risk R;(¢)

at time t. The process (3.36) corresponds to the risk process associated with the
strategy (§,7) = (0, V" — A).

Example 3.8 Consider a standard Black-Scholes market with constant r and o.
Assume that claims occur with a fixed intensity A and that premiums are paid with
a fixed constant intensity b; = b during [0, 7]. Assume moreover that the distribution
G(s,t,.) is absolutely continuous for each (¢, s) with density

1
G(s,t,dy) = ggo(y/é’)dy

for some density go on IR . This implies that the first and second moments of G(t, s)
are

1
m(t,s) = /]R+ y;go(y/S) dy =s /IR+ ygo(y) dy =: s my,

and

v(t,s) = 52 /B y2g0(y) dy =: s*v,.

+
Thus, F™(t,S;,u) = Symgy and FJ* = my, and so the risk-minimizing strategy is
given by

T
& = / moXdu = A(T — t)m,
t

T b
N = _/ B;ldeZ—;(e_Tt—e_rT),
t

The intrinsic risk process is in this case

Ri(p) = /tT E [(B;lSu)21)0| .7-}] Adu = Mg X7 /tT e (w1 gy

= )\voné (e”z(T_t) — 1) .

The conditional variance of the hedgeable part of the risk can now be determined
from (3.36):

T
Var[Ar| Fi] — Ri(p) = Var l /t AT = w)ymoo X, AW,

g

= E [/tT (MT — uw)my)* ® X2 du

.7-}]

= XNmiX} /T o?e”" (T — u)? du

= 04+ :
¢

This quantity is the difference between the total risk associated with the payment
process and its intrinsic risk process; it describes the risk-increase for an insurer who
uses the strategy ¢ = (0, V* — A) instead of the risk-minimizing strategy. O






Chapter 4

On Transformations of Actuarial
Valuation Principles

(This chapter is an adapted version of Mgller (1999b))

In this chapter we determine optimal trading strategies associated with the finan-
cial variance and standard deviation principles proposed by Schweizer (1997). These
principles take into consideration the possibilities of hedging on the financial market
and are derived by an indifference argument, which embeds the traditional (actu-
arial) variance and standard deviation principles in a financial framework. We also
investigate an alternative way of transforming actuarial principles and show that
for the standard deviation principle this leads to the financial standard deviation
principle. The principles are applied for the valuation and hedging of unit-linked
life insurance contracts.

1 Introduction

Schweizer (1997) proposes a financial valuation principle that is derived from tra-
ditional actuarial premium calculation principles and at the same time takes into
consideration the possibility of trading on a financial market. First, an a priori given
actuarial valuation principle (which measures risk) is translated into a “measure of
preferences”. Then, this new measure is used in a so-called indifference argument
to define a new financial premium principle, which can be viewed as a financial
transformation of the a priori given actuarial principle. The financial counterparts
of the actuarial variance and standard deviation principles are called the financial
variance principle and the financial standard deviation principle, respectively.

The traditional variance and standard deviation principles are recalled in Section 2,
and it is shown how these premium calculation principles can be translated into mea-
sures of preferences by use of an argument which is similar to a zero expected utility
argument. In Section 3, we give some preliminaries and recall the definition of the
so-called variance optimal martingale measure, which plays an important role for the

71
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financial valuation principles. The main results of Schweizer (1997) are reviewed in
Section 4 in a simplified framework suitable for pricing of reinsurance contracts that
combine traditional insurance risk and financial risk. In his framework, a liquid rein-
surance market is not present and the only investment and trading possibilities are
given on some financial market. Using the same set-up, we investigate in Chapter 5
how the premiums under the financial valuation principles depend on the amount
of information available to the reinsurer and give upper and lower bounds for these
premiums involving only conditional expectations and variances.

We then show in Sections 4.1 and 4.2 how optimal strategies associated with these
transformed valuation principles can be determined in the case of the variance
principle and the standard deviation principle, thus adding to the existing re-
sults. The results presented can basically be viewed as applications of the main
results of Schweizer (1997) since most proofs are based on the techniques used
there. For the variance principle, the optimal strategy, which maximizes the de-
rived measure of preferences, differs from the mean-variance hedging strategy (see
e.g. Schweizer (1999)) only by a correction term, which is independent of the contract
considered. The optimal strategy under the standard deviation principle is also re-
lated to the mean-variance hedging strategy, but in this case, the difference between
the two strategies is more complex. In Section 5, we consider an alternative modifi-
cation of the same principles, which we call the direct financial transformation. This
approach has the advantage that it does not involve a translation of the actuarial
premium calculation principle into a measure of preferences, as it is defined directly
in terms of the original actuarial principle. In the case of the standard deviation
principle, this approach leads to premiums which are similar to the ones computed
by using the financial standard deviation principle. For the variance principle, how-
ever, we show that the direct financial transformation does not lead to reasonable
premiums. Finally, some applications and numerical results related to unit-linked
life insurance contracts are presented in Section 6. The results are compared to the
risk-minimizing strategies obtained in Mgller (1998a) and in Chapter 2.

2 The actuarial premium calculation principles

In this section, we first introduce the two classical actuarial premium calculation
principles which will be analyzed in the following: the variance and the standard
deviation principles. Second, we recall that these valuation principles can be viewed
as the solutions to certain simple indifference principles. This serves as a motivation
for the results presented in Section 4.

Let H be a claim (or risk) which is to be valuated by an agent, henceforth called a
reinsurer. The following actuarial valuation principles are widely used:

1 (H) = E[H]+ aVar[H]|, (2.1)
to(H) = E[H]+ ay/Var[H]. (2.2)

In the actuarial literature, (2.1) is called the variance principle and (2.2) is the
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standard deviation principle, see e.g. Goovaerts et al. (1984). The terms aVar[H]
and aVar[H ]1/ 2, respectively, are often called the safety loadings, and we shall refer
to a as the safety loading parameter. It is convenient to work with the negative of H,
Y = —H, which can be interpreted as the amount received by the reinsurer, and we
introduce now the following slightly modified versions of the premium principles (2.1)
and (2.2):

w(Y) = E[Y]— aVar]Y], (2.3)
us(Y) = E[Y]— ay/VarlY]. (2.4)

Note that wu; differs from 4;, + = 1,2, by the sign on the loading factor and by
the fact that @; operates on —H. Thus, we shall think of @; as a measure of risk,
whereas u; is taken as a “measure of preferences”. More precisely we associate with
u; a preference relation specifying that the pair (p;, H) (selling the claim H and
receiving the premium p;) is preferred to (p}, H') if and only if

ui(pi — H) > u;(p;, — H').

In particular, the pair (0,0) corresponds to not selling any claims and not receiving
any premiums, and the reinsurer is now indifferent in terms of u; between not selling
H and selling H at the premium p; provided that

that is, provided that p; = @;(H), i = 1,2. Thus we can indeed obtain the original
principles (2.1) and (2.2) from (2.3) and (2.4). This way of defining the premium
is compatible with the zero expected utility increase principle; see e.g. Goovaerts et
al. (1984) for more details. Note however that the equation (2.5) does not involve
a proper utility function. Instead, we simply interpret (2.3) and (2.4) as quantities
which describe the preferences of the reinsurer, and which lead to the well-known
actuarial pricing principles (2.1) and (2.2).

It is relatively easy to construct examples which show that the actuarial valuation
principles @, and %y do not satisfy the natural condition

H, < Hy P-as. = fLZ(Hl) < ’llz(HQ), (26)

i = 1,2. Of course, this property would also not be satisfied if we replaced ; in (2.6)
with the modified versions u;.

3 Preliminaries

In this section we review some technical notions which are needed for the introduc-

tion of the financial market in the next section; for unexplained terminology, see
Jacod and Shiryaev (1987).

Consider a complete filtered probability space (2, F, P, IF'), where the filtration F' =
(F+)tepo,m satisfies the usual conditions and T is some fixed finite time horizon. It
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is not assumed that Fy is trivial. Let X = (X;)o<;<r be an IR%valued continuous
semimartingale with respect to IF'; X is taken to be the discounted price process for
some financial assets. (In Section 6, we consider an example where X is a diffusion
process, and hence in particular a continuous semimartingale.)

Before proceeding further, we give an outline of the rest of this section. We first
define the variance optimal martingale measure P, which is here a probability mea-
sure that is equivalent to P and (basically) can be characterized by the following
properties:

1. It is a martingale measure, i.e. the discounted price process X is a (local)
P-martingale.

2. The Radon-Nikodym derivative Z_zli with respect to the underlying measure P
has minimum variance over all martingale measures.

Then we define a space © of IR%valued trading strategies which has the impor-
tant property that the space G1(©) of (real-valued) stochastic integrals Gy (1) :=
JE9,dX,, 9 € O, is closed in L%(P); for ¥ € O, ¥¢ is the number of shares of
stock 7 held at ¢, and Gy(9) = f(f ¥, dX, is the trading gains generated from ?J up
to and including time ¢. This choice of space is crucial for Theorem 3.4 below and
makes it possible to derive optimal trading strategies in the next section. References
are Delbaen and Schachermayer (1996a,b), Schweizer (1996) and Rheinlédnder and

Schweizer (1997).

Let V denote the linear space spanned by the random variables of the simple form
h"(Xy, — Xr,), where Ty < Ty, < T are any stopping times such that the stopped
process X2 is bounded, and h is a bounded IR%valued Fr,-measurable random
variable. Denote by M?*(P) the space of signed measures Q < P with Q(2) =1
and
dQ

E|—f|=0 3.1
for all f € V, and by M*(P) the set of probability measures Q € M?*(P) with
@ ~ P. Furthermore, define spaces D* and D¢ by

T @ T
D —{dP‘QeM(P)},

for x € {s,e}.

Definition 3.1 The variance optimal martingale measure P is the unique element
of M?*(P) such that D := 9£ € L?(P) and such that D minimizes || D||2(py over all
D e DN L2(P).

We will be working under Assumption 3.2 below, which ensures the existence of the
variance optimal martingale measure P and guarantees that this measure is a prob-
ability measure which is equivalent to P, see Delbaen and Schachermayer (1996a,
Theorem 1.3).
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Assumption 3.2 D¢ L*(P) # .

Let © denote the space of IR4-valued IF-predictable processes 9 which are such that
G(9) = [9dX is a P-martingale and [ 9, dX, € L?(P), and define

Gr(0) = {/OT 9, dX,

ﬁeé}.

It was shown in Delbaen and Schachermayer (1996b) and in Gourieroux, Laurent

and Pham (1998), that when X is continuous, Assumption 3.2 implies that G(©) is
closed and is equal to the closure in L?(P) of the space V, see the remark following
Proposition 15 of Rheinlénder (1999). This remark also shows that a predictable
process 9 is in © if and only if the process G(¥9) is a Q-martingale for any Q € M¢(P)
with % € L2(P).

Remark 3.3 Note that the spaces M*(P), x € {s, e}, depend on the filtration IF.

Consequently, also the variance optimal martingale measure is affected by the choice
of filtration; we refer to Chapter 5 for an investigation of this property. O

The following result is now a consequence of the projection theorem for Hilbert
spaces:

Theorem 3.4 Any random variable H € L?(Fr, P) admits a unique decomposition
of the form

T
H=c"+ / 9" dX, + NH, (3.2)
0
where 9 € ©, E[N"] =0, and E[N" [['9,dX;| = 0 for all 9 € ©.

We denote by 7 the projection in L?(P) on Gr(©)*. The following lemma, which
is due to Delbaen and Schachermayer (1996a) and Schweizer (1996), relates the
variance-optimal martingale measure P to the projection 7.

Lemma 3.5 Under Assumption 3.2, the variance optimal martingale measure exists
and s given by

dpP 7(1)
dP  E[r(1)]

Throughout, we let Zy = Z—;; and write E for E P
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4 The financial valuation principles

In this section, we introduce the financial market and recall the crucial indifference
argument of Schweizer (1997) that leads to the definition of the fair premium. We
consider a financial market consisting of d 4+ 1 basic traded assets: d stocks with
price process X = (X!,..., X4 and a savings account with a price process which
is constant and equal to 1. (One can think of X as the discounted value of the stocks
expressed in terms of the savings account.) Here, a self-financing trading strategy is
a (d + 1)-dimensional F-adapted process ¢ = (¢9,7) such that 9 € © and such that
the value process defined by V(y) := 9" X + n satisfies

Vi) = Vole) + [ DX, (4.1)

for all ¢ € [0,T]. The pair ¢, = (9, ;) is the portfolio held at ¢: 9% is the number
of units of stock number i held, and 7, is the discounted deposit on the savings
account at . In (4.1), V;(p) is the initial investment at time 0, and [; 9dX is
trading gains from the strategy ¢. Thus, (4.1) states that, at each time ¢, the value
of the portfolio ¢ is the initial value plus trading gains, hence no additional in- or
out-flow of capital occurs after time 0. A claim H is said to be attainable if there
exists a self-financing strategy ¢ such that Vp(p) = H P-as., i.e.

T
H = V() +/0 9, dX,.

This implies that the claim H can be replicated perfectly by investing the amount
Vo(p) at time 0 and thereafter following the self-financing strategy ¢; the initial
investment Vy(¢) is called the (unique) no-arbitrage price for H. Since Fj is not
assumed to be trivial, the above definition of a self-financing trading strategy al-
lows for Fyp-measurable initial investments V5(¢), i.e. for random initial investments.
However, in the following we shall restrict to strategies with a non-random initial
investment.

The idea is now the following: Assume that the reinsurer applies one of the premium
calculation principles @;, ¢ = 1, 2, or, equivalently, the corresponding valuation func-
tions u;, 1 = 1,2 (henceforth called u). The reinsurer is considering the possibility of
accepting (insuring) a fraction v € IR of a claim due at time 7" with discounted value
H (here v < 0 corresponds to selling the fraction). We denote by ¢ the reinsurer’s
(non-random) initial capital (basis capital at time 0) and consider the following pos-
sibilities: On the one hand, the reinsurer can choose to accept the risk vH, receive
some premium h(c,7y) and invest the amount ¢ + h(c,y) on the financial market
using a self-financing strategy ¢ = (¢,7). This will generate the discounted wealth

T
¢+ h(c, ) +/0 9, dX, — vH,

where we have subtracted the term vH, which is to be paid at time 7" to the buyer
of the contract. However, the reinsurer could also choose not to engage in the risk H
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and simply invest the initial capital c on the market according to some self-financing
strategy @ = (,7) and generate the wealth

T .
c-l—/ 3, dX,.
0

The fair premium is now defined as the premium which, in terms of the valuation
function u, makes the reinsurer indifferent between the two possibilities of accepting
and not accepting the risk. From Schweizer (1997) we have the following formal
definition of the fair premium for v units of the risk H in the presence of a financial
market

Definition 4.1 h(c,7) is called a u-indifference price for v units of H if it satisfies

T T
sup u (c + h(c,v) + / Dy d Xy — 'yH> =supu (c —|—/ i dXt> i (4.2)
9€6 0 9€6 0

Remark 4.2 This definition of the fair premium specializes to the principle (2.5)
in the case where the space of investment strategies is given by © = {(0,...,0)"},
that is, no trading in the stocks is allowed, provided that u(c+Y) = ¢ + u(Y), for
¢ € IR. And hence, in the case of the variance or the standard deviation principles,
(4.2) generalizes (2.5) to the situation where a financial market is present, since
uilc+Y) = c+ u(Y), for i = 1,2. Furthermore, it follows directly from this
property and (4.2) that the fair premium h(c,y) will be independent of the initial
capital ¢ for the principles (2.3) and (2.4). From a mathematical point of view, the
fraction 7 in yH is redundant; we could as well work with a claim H. The inclusion
of v is motivated by the application we have in mind here, where the reinsurer
participates in a fraction 7 of the risk H. The question of how ~ should be chosen
is not addressed within this context, however. O

Schweizer (1997) proved that in the case of the variance and the standard devi-
ation principles, the solutions to the problem (4.2) can be related to the decom-
position (3.2). For completeness, we give here these two results (Theorem 9 and
Theorem 12 of Schweizer (1997)). In the case of the variance principle, the solution
is:

Theorem 4.3 (Schweizer (1997)) For any H € L?(P) and v,c € IR, the u;-
indifference price for vH is

hi(c,) = vi(vH) = vE [H] + a*Var [NH]
In the case of the standard deviation principle, we have the following result:

Theorem 4.4 (Schweizer (1997)) For any H € L?(P) and v,c € IR, the us-
indifference price for vH is

Var[92]

ha(c,y) = vo(vH) = yE[H] + aly[y| 1 — -

Var[Nf],

provided that a® > Var[i—ﬁ]. If a? < Var[g—lli], then the uq-indifference price is unde-
fined.
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4.1 The optimal strategy for the variance principle

We will determine the optimal strategy for a reinsurer who is using the principle (4.2)
in the case of the variance principle. That is, we determine * so that

T T
sup u; <c+h1(c,7)+/0 ﬁtht—7H> = (c-i—hl(c,fy)-l—/o I} dXt—q/H),
9€O

where hq(c,7y) is the fair premium determined by Theorem 4.3, and express the
maximum of u; in terms of the decomposition (3.2). The proof uses techniques from
Schweizer (1997) and consists in first determining the optimal strategy for a fixed
expected value m of the trading gains and then maximizing over all m € IR. In

particular, Theorem 4.3 and 4.4 will follow again from the results given in this and
the next subsection.

First note that we can formulate (4.2)Nequivalently by taking supremum over all
elements g = [T 9dX in the space Gp(©), that is hy(c,) satisfies

sup up (c+hi(e,y) +g—vH)= sup u(c+g). (4.3)
9€GT(O) §eGr(0)

Similarly, we let g = [ 9" dX denote the term appearing in the decomposi-
tion (3.2) for H. The following lemma is crucial for determining the optimal strat-

egy.
Lemma 4.5 Assume that 1 ¢ Gr(©)*. For any m € IR, the solution to the problem

max_ u,(g — N¥) subject to E[g] = m, (4.4)
9€GT(0)

is given by gn, = cy(1 — (1)) where c,, = m

Proof: We first note that, by the definition of N, we have that E[N¥] = E[Nfg] =

0 for all g € Gr(©), so that
ui(g— N*) = Elg— N"] —aVar[g — N”] = E[g] — aVar[g] — aVar[N "],

and hence, we have to minimize [|g||* := E[g®] over all g € G7(©) with (g,1) :=
E[g] = m. By the projection theorem for Hilbert spaces, any g € Gr(©) admits a
unique decomposition

g=a(l—=(1)) +4g,

where o € R, §j € G(©), and § L (1—7(1)) (i.e. E[g(1—n(1))] = (3, (1 —7(1))) =
0). This implies that

Elg®] = llgll* = o®[|(1 — = (1)II* + l|g]l?,
and

Elg] = (9,1) = o{(1 = 7(1)), 1) + (3, 1) = el (1 = w (1) II",
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since § L (1 —m(1)) and g L 7(1). Thus the solution to (4.4) is obtained for § =0
and o = m, that is

m

Im = m(l — (1)),

which is well-defined, since, by assumption, 1 ¢ Gr(0)+, so that ||[1 — «(1)| > 0. O

Lemma 4.6 Assume that 1 ¢ Gp(0)'. Let m € R and let g,, be defined as in
Lemma 4.5. Then

m2

Var[Zg|

Var[gm| =

Proof: This result follows from the proof of Lemma 10 from Schweizer (1997).
However, for completeness, we give the proof here. Since ((1 — 7w(1)),7(1)) = 0,
I (1)]|* = E[r(1)?] = E[x(1)], and hence [[1—7(1)||* = E[(1 =7 (1))?] = 1—[l=(1)]|*.
Direct calculations now show that

m’? 2 »  E[r(1)%

Var[g,,] = Elg2] — m* = m Tme=m W

Recall that Zp = E’Eil()l)] Using the above properties, we have

ar|Z,] = M 1= 1—E[r(1)] _ E[(1 — 7 (1))2]
V [ZT] (E[ﬂ-(l)])z L E[Tf(l)] E[ﬂ-(l)g] )

and this ends the proof. O

The next theorem essentially gives the solution to (4.3) in that it contains explicit
expressions for the maximum obtainable value of u;. The proof of this theorem is
given after a subsequent corollary, which determines the optimal strategy associated
to the financial variance principle, and a remark which relates this strategy to the
mean-variance hedging strategy for H.

Theorem 4.7 For any H € L*(P) and v,c € R,

sup_ ui (c+ hi(e,) + 9 —vH) =ui (c+ hi(e,7) + " —vH), (4.5)
geGT(0)

where

. 1+ Var[Z
g ="+ —— &
a

(1 —==(1)) (4.6)

Furthermore, the value associated with hq(c,v) and g* is

1 .
uy (c+ hi(e,y) + g —vH) = c+ hi(c,y) — ve" + @Var[ZT] — ay*Var[N"]. (4.7)



80 CHAPTER 4

Corollary 4.8 Let H € L*(P) and let 1 — (1) = fOTBdX. The optimal strateqy
¥* for H under the financial variance principle s

- (4.8)

Proof of Corollary 4.8 This is an immediate consequence of Theorem 4.7. O

Remark 4.9 In the solution (4.8), the first term 9 is exactly the mean-variance
hedging strategy for H, see e.g. Schweizer (1999). The second term is related to the
variance optimal martingale measure and the loading factor a and is independent
of the claim H. In particular it is seen that as a is increased, the process (4.8) will
converge towards the mean-variance hedging strategy. This is intuitively reasonable,
since for very large a, (4.5) will essentially amount to minimizing the L2-distance
between H and ¢ 4+¢. Note also that 9* is a linear combination of the mean-variance
hedging strategy and the process related to the variance optimal martingale measure
and that this combination does not depend on N*. We point out that the proof of
Theorem 4.7 is very similar to the one of Theorem 4.3. Furthermore, Theorem 4.3
follows directly from (4.7) since ¢ = E[H]. O

Proof of Theorem 4.7: First part of the proof is similar to the one of Schweizer (1997,
proof of Theorem 9). Since ui(z + g — YH) = z + u1(g — vH), we only consider
u1(g — vH), and as in the proof of Lemma 4.5 we find that

u(g—vH) = —ye +ui(g—~(¢" + N"))
= —yc" +E[g— 79" —yN"] — aVar [g — vg" — yN"]
= —v" +E [g - ’ng] — aVar [g — fng] — aVar [’)/NH] . (4.9)
Introducing ¢' = g — v¢™, we now have
ur(g — vH) = =y +ui (¢ — yN"),
and so, we can alternatively maximize u;(g' — YN¥) over all ¢’ € G1(0).

We first assume that 1 ¢ Gr(©)* and solve this problem by first maximizing this
term under the constraint that E[g] = m for a fixed m € IR and then maximizing
over m € IR. The first step follows by Lemma 4.5, and from Lemma 4.6 we find
that we should maximize

am?

 Var[Zr]

U1 (gm — YN?) = — ay*Var[N] =: fi(m).

Note that m ~ fi(m) is just a negative definite quadratic function, and that its
unique maximum is attained for m* satisfying f{(m*) = 0, i.e. m* = Var[Zr]/(2a).
Thus, u;(¢" — yN*) is maximized for

g = M=) _ VarlZe](1 = 7(1)
T B[-a1))] 2eE[(1-7(1))7]
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Since
1 _ Bl -r@)+7)] . Elr(@)] 1+ Var[Zy]
E[(1-(1))%] E[(1-(1))%] E[1-71)7 Var[Z]
we finally get
1+ Var[Z7]

(1= (1)).

™ 2a
Hence, the solution to (4.5) is
9" =79" + g,
which proves (4.6). Finally, (4.7) follows by inserting ¢g* into u:
ui(¢* —vH) = —yc? +E[gn] —a (Var[gm*] + 72Var[NH])

— ay*Var[N¥]

= —~vel +m* — a(m*)? -
i ) Nt Zy]

~ ~ o\ 2
Z Z 1
= —yct + LH[ 1] —a Var|Zy] — — ay*Var[N]
2a 2a Var[Zr|

Z
= —yc + W — ay*Var[N*].
a

Now assume that 1 € G¢(©)*, so that m(1) = 1, Var[Zs] = 0 and E[g] = 0 for
all g € Gr(©). In this case P is a martingale measure, and (4.9) is maximized for
g* = vg'. Tt follows immediately that the associated optimal value for u; is given
by (4.7). This ends the proof. O

4.2 The optimal strategy for the standard deviation princi-
ple
In the standard deviation case, we get a result which is similar to Theorem 4.7. This

case has also been worked out by Schweizer (1997), and the following theorem can
be proven by combining Lemma 10 and 11 and Theorem 12 from Schweizer (1997).

Recall that Zr = 2.

Theorem 4.10 Assume that o> > Var[Zr|. For any H € L*(P) and v,c € IR,

sup_ ug (c+ ho(c,7) + 9 —vH) = uz (¢ + ha(c,7) + 9" — 7H), (4.10)
g€GT(O)
where
14+ V. Z
gt =g + + Var|Z1] |7/ Var[NH](1 — = ( (4.11)

a /1 Var ZT
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Furthermore, the value associated with ho(c,v) and g* is

U2 (C+ hQ(C,’}’) —{—g* - ’YH) = c+ h2(077) - rycH

—ay/ Var[yNH]\[1 — %. (4.12)

Proof: As in the proof of Theorem 4.7, us(z + g — YH) = = + us(g — vH), so that
we only need to consider us(g — vH). Similarly,

u(g—7H) = Efg—(c" +g" + N¥)| — ay/Var[g — y(c" + g" + N)]
= — " +Eld] - a\/Var [¢'] + Var [yNH], (4.13)

H

where ¢ = g—~yg". This problem is very similar to the one considered in the case of
the variance principle. We consider here only the situation where 1 ¢ G7(©)"; the
case 1 € Gr(©)" can be treated as in the proof of Theorem 4.7. From the proof of
Lemma 4.5 we have that subject to the constraint E[g] = m, Var[g] is minimized by

Gm = %, and from Lemma 4.6 we have that Var[g,,] = m?/Var[Z;]. Thus,

(4.13) is maximized by maximizing over m € IR the function f, defined by

Uz (gm —yNH) = m—\l

This is a simple maximization problem, and it follows for example by Schwei-
zer (1997, Lemma 11) that f, attains its unique maximum for

2

Var[Zr]

m? + a?Var[yNH] =: fo(m). (4.14)

a*Var[yNH]
c(Cc-1) "

*.—.

where C = WQ[ZT]’ provided that C' > 1. Thus, (4.13) attains its maximum for
_ m'(1-m(1))
T B =21

J a?Var[yNH] 1+ Var[Z7|

a? a? V Z
VarZT ( _1> ar[ T]

(1 —=(1))

Var[z;]

1 Y/
— + Var|Zy] |v]/ Var[NH](1 — = (1

Varz
a1 — —3 var[zr]

and this shows (4.11). To see (4.12), note that
us(g” —yH) = —vc" + up(gm — yN")
= —yc' +m* - \/C'(m*)2 + a?Var[yNH]

2 H 2 H
ey JM B Jcmmwmm

C(C —1) C(C —1)

= —yc —ay/Var[yN¥]\/1 - Var| ZT]
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This ends the proof. O

Remark 4.11 In Theorem 4.4 it was only assumed that a? > Var[Z7]. In Theo-
rem 4.10, however, we need to assume that a2 > Var[Zr] in order to guarantee that
the supremum (4.10) is attained for an element g € G7(©). To see this, consider
the case where a? = Var[Z7], so that the function (4.14) is of the form

fo(m) =m —/m? +y,

where y > 0. In this case, fo(m) < 0 for all m € IR and fo(m) — 0 for m — oo, so
that the supremum is not attained for any m € IR, and hence, (4.13) does not attain
the supremum for any g € GT((:)). However, the supremum can be approximated
e.g. by choosing a sequence (gm, )kem, Where g, is defined in Lemma 4.5 and where

my, — oo for £ — oo. In this case, we obtain

sup ug (¢ + ha(c,7) + g —vH) = ¢+ ha(c,y) — v,

gEGT(G)

which extends (4.12) to the case where a* = Var[Z;]. For later use, we also note
that when a? < Var[Zr] then fy(m) — oo for m — oo, so that

sup  uz (¢ +ho(c,7) + g —vH) =o00. O
geGT(O)

As in the case of the variance principle, we obtain an explicit expression for the
optimal strategy immediately as a straightforward consequence of the theorem:

Corollary 4.12 Assume that o> > Var{Zr]. Let H € L*(P) and 1 — n(1) =
fOT BdX. Then, the optimal strategy V* for H under the financial standard devi-
ation principle is

g+ — g 4 L+ VarlZi] \/Var[NH] 3. (4.15)
a1 — Varz[ZT]

Remark 4.13 Note that the factor on 3 in (4.15) now depends on Var[N¥], where-
as, for the variance principle, it was independent of N see (4.8). This difference is a
consequence of the fact that the standard deviation principle involves maximization
of a function which includes the square-root of a sum of the variance of the trading
gain and the variance of N¥. For the variance principle, this complex dependence
is not present, since N is orthogonal to all trading gains g € G(6). O

We close this section with an investigation of the condition a® > Var[Zy] in the
case of a standard Black-Scholes market. In this case there is only one martingale
measure, and hence this is trivially the variance optimal martingale measure. Let
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v denote the market price of risk; the Radon-Nikodym derivative of the variance
optimal martingale measure with respect to P is then given by

Zr = exp (—I/WT — %I/2T> .
It is seen that
Z% = exp (—QVWT - %(21/)2T> exp (I/ZT) ,
hence Var[ZT] = exp(v?T)—1. Thus, the standard deviation principle can be applied
if a® > exp(v2T) — 1, or equivalently

In(1 + a?)
T
If for example 7" = 1 and v = 1/5 (e.g. risk-free interest rate r = 0.05, rate of

return on the stock @ = 0.10 and standard deviation o = 0.25), then the standard
deviation principle is well-defined provided that a > 0.2020.

> |y

5 Alternative financial transformations

In Section 4 we considered the financial variance and financial standard deviation
principles as they were defined by Schweizer (1997). Either principle is derived from
an actuarial premium principle @ by first changing sign on the loading factor to
obtain a function v that measures the reinsurer’s preferences. It is not immediately
clear how similar modifications should be made for other premium principles, for
example the so-called Esscher-transform principle. An alternative idea is, therefore,
to define a new premium calculation principle directly in terms of the actuarial
premium principle @ by

a(H)= inf a(H - g). (5.1)

We shall refer to 4 as the direct financial transformation of 4. The interpretation
of the principle (5.1) is the following: For a given actuarial valuation principle, we
look for the self-financing trading strategy ) which leads to the smallest possible
premium for the claim H — fOT ¥ dX using the original premium principle 4.

Note that when H is an attainable claim, with H = ¢ + ¢g” for some ¢ € IR and
g™ € G1(0), then the linearity of G7(©) implies that (5.1) can be rewritten as
a(H) = inf_ a(c? +g7 —g)= inf_d(c? +g).
9€GT(0) 9geGT(0)

In particular, we ask the questions: Does the principle (5.1) assign the no-arbitrage
price ¢ to an attainable claim? Is the principle equivalent to the indifference
transformation principle proposed by Schweizer (1997) in the cases of the standard
deviation and the variance principle?

Throughout this section, we work under the standing Assumption 3.2.
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5.1 The variance principle
In the situation where @ is equal to %; we have the following negative result

Theorem 5.1 The direct financial transformation of the variance principle is

41 (H) = E[H] + aVar[N¥] — %@ZT]. (5.2)

The associated optimal strategy U is given by (4.8).
Proof: From Theorem 3.4, we have the decomposition
H=c"+4g" + N¥

where we have used the notation g% = fOT 9" dX. Furthermore, it was shown in the
proof of Theorem 4.7 that

ui(g — H) = —c? + E[g — ¢¥] — aVar[g — g"] — aVar[N7]. (5.3)
Since @ (H — g) = —uy(g — H), minimizing @, (H — g) is equivalent to maximizing
u1(g — H) over g € Gr(0), and hence, we find by (4.7) and (5.3) that
inf @4(H—-g) = — sup ui(g—H)
9€G7(09) geGT(0)
Var[Z
= —ui(g* — H) =" + aVar[N"] — %,

where g* is also given by Theorem 4.7. This proves (5.2). Since also —u;(g* — H) =
@1 (H — g*), we find that the optimal strategy o is exactly equal to the strategy
determined by Corollary 4.8. This completes the proof. O

Remark 5.2 It follows from Theorem 5.1 that the valuation principle 4, differs
from the financial valuation principle of Schweizer (1997) by the additional term
—Var[Zr]/(4a). This has the consequence that @, is only consistent with absence of
arbitrage if Var[Z7] = 0, that is, if the measure P is a martingale measure. In fact,
for the claim H = 0, we get 1(0) = —Var[Zr]/(4a), and clearly this claim should
have the price 0. The same applies to any claim on the form H = fOT 9dX. O

5.2 The standard deviation principle
In the situation where @ is equal to 4o we have the following result

Theorem 5.3 The direct financial transformation of the standard deviation prin-

ciple 1s
Giy(H) = E[H] + a\ l—v%[}_i]\/\/ar[NH], (5.4)

provided that a® > Var[g—fz]. If a®> < Var Z—;;], then the direct financial transformation

1s undefined. The associated optimal strateqy D is given by (4.15).
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Proof: The result follows directly from the proof of Theorem 4.10 and Remark 4.11
by using arguments similar to the ones in the proof of Theorem 5.1. O

Remark 5.4 For the standard deviation principle, the direct financial transform is
equivalent to the indifference valuation principle proposed by Schweizer (1997), see
Theorem 4.3. This gives an alternative characterization of this indifference pricing
principle. O

5.3 A generalization

As shown above in Section 5.1 the direct financial transform (5.1) did not lead to
a pricing principle with reasonable properties in the case of the variance principle
in that the new principle would assign negative prices to attainable claims with
no-arbitrage price 0. We also proved that the direct transform of the standard
deviation principle was in fact identical to the indifference pricing principle examined
in Section 4. In this section, we consider for every p > 0 principles

U,(H) = E[H| + a (Var[H])”, (5.5)

noting that p =1 and p = % are the variance principle and the standard deviation
principle, respectively. We basically show here by a simple argument that if P is
not a martingale measure then the direct transform of 9, will assign negative prices
to any attainable claim with no-arbitrage price 0 if p # % This implies that the
standard deviation principle is the only principle from the class (5.5) that can be
transformed directly into a pricing principle which is consistent with the unique
no-arbitrage prices for attainable claims.

Assume that there exists g = [ 9dX € Gp(©), with the property that E[g] < 0;
recall that ¢ is the trading gain from some self-financing strategy ¥ € ©. Of course,
if there exists a strategy with E[g] # 0, then we can always get a strategy such
that E[g] < 0 by multiplying the strategy with —1 if the expected value is positive.
Furthermore, we note that this automatically implies that Var[g] > 0. To see this,
assume that Var[g] = 0, i.e. that ¢ is constant and equal to E[g] P-a.s. Now,
Assumption 3.2 guarantees the existence of an equivalent martingale measure @
such that E9[g] = 0, since g € G1(©). However, since g = E[g] a.s., this shows that
E[g] = 0, which contradicts our assumption. Hence, Var[g] > 0.

For this strategy ¢, we define for z € IR,, g, := xg, which is the trading gain for
the strategy zv. Then

U,(9z) = Elgs] + a (Var[g,])’ = = (E[g] + az®~! (Var[g])p) : (5.6)

Consider first the case where p < . In this case, (5.6) immediately shows that

1
0p(gy) = —o0 for z — o0 if p < 2’
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since E[g] < 0 and since 2**~! — 0 for x — oo. This result implies that the direct
financial transform is not well defined in the case where p < %, since

inf 9,(H —g) = —o0,

gEGT(Q)

when H is attainable. Now assume that p > . From (5.6) it is seen that 7,(g,) < 0

for z € (0,2*) where

This shows that there exist self-financing strategies ¥ € © so that 7,(fy ¥dX) <0
and this has the consequence that the direct financial transform (5.1) will assign
a strictly negative price to the trivial claim H = 0. By the above calculations
combined with Theorem 4.10 and Remark 4.11, we obtain:

Theorem 5.5 Assume in addition to Assumption 3.2 that E[g] # 0 for some g €
Gr(©). Consider for p > 0 the principles (5.5) and let H = c” + [[ 97 dX be an
attainable claim with no-arbitrage price c. Then

-0 pr < %a B
inf 9,(H—g)=<{ —oo ifp=3 anda® < Var[Zy],
9eGr(®) ' if p=1 and a® > Var[Zy).

Furthermore, if p > %, then inf ¢ ) U,(H —g) <cm.

6 Applications to unit-linked life insurance

In this section we apply the financial valuation principles to the valuation of unit-
linked life insurance contracts. With such a contract, benefits depend explicitly
on the price of some specified assets; for more details see Aase and Persson (1994)
and the references therein. In Mgller (1998a), risk-minimizing hedging strategies
were determined for a portfolio of unit-linked life insurance contracts. By applying
these strategies, the insurer can reduce the combined financial and insurance risk
(as measured by the variance of future losses under a specific martingale measure)
inherent in these contracts. We employ the basic set-up of that paper, and this will
allow us to draw on the results obtained there.

6.1 The basic model

In the following, all elements are defined on a probability space (€2, F, P) equipped
with a filtration ' = (F;)o<i<r, and T is a fixed finite time horizon. We briefly
review the basic model of Mgller (1998a). Consider a life insurance portfolio con-
sisting of n policy-holders aged y and denote by T3, ..., T, the (unknown) remaining
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lifetimes. For simplicity, it is assumed that 77, ..., T, are i.i.d. with survival func-
tion p, = exp(— J§ fty1r d7), where p is a deterministic continuous function (called
the hazard rate). The process N; = 31, 1{7;<s) counts the number of deaths up to
time ¢ and (n — Ny) is the number of survivors.

Consider in addition a financial market consisting of two basic traded assets whose
price processes are given by the dynamics

dSt = Of(t, St)St dt + O'(t, St)St th, (61)
dBt = T(t, St)Bt dt, (62)

So > 0, By = 1, where W = (W})o<i<r is a standard Brownian motion on the
time interval [0,7] and is assumed to be stochastically independent of N. Let
IF = (F;)o<i<r be the P-augmentation of the natural filtration generated by (N, W),
that is F, = F? VN, where F? = o{(Ny, W,);u < t} and N is the o-algebra
generated by all P-null-sets. The discounted stock price process is X := S/B, and
we let A := 2. It is assumed that the functions «, r, o are bounded and satisfy
certain Lipschitz conditions, which in particular ensures the existence of a unique
solution to (6.1), see e.g. Karatzas and Shreve (1991, Theorem 5.2.9). Furthermore,
we assume that r and o are non-negative and that ¢ is uniformly bounded away
from 0.

Finally, we recall that the process M defined by
t

M,= N, — /0 (n — Ny) pyto du
is a P-martingale and is independent of W.

The filtration IF' describes the amount of information which is available to the in-
surer. With the present construction, the insurer has access to current information
concerning the number of deaths within the insurance portfolio as well as to the
development of the asset prices.

6.2 The variance optimal martingale measure
In the present set-up, the so-called market price of risk process
vy = (a(t, Sy) — r(t,Sy))/o(t, St)

is bounded, and hence we can define a new measure P € M¢(P) by
P T 1T
D := ;Z_P = exp (—/0 Uy AWy — 5/0 v2 du) : (6.3)

The measure P defined by (6.3) is known from the literature as the minimal mar-
tingale measure, see e.g. Schweizer (1995). For later use, introduce the likelihood
process

t 1 rt
Z, .= E[D|F)] = exp (—/0 vy dW, — 5/0 V2 du) .
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In general, the variance optimal martingale measure P differs from P. As shown in
Grandits and Rheinldnder (1999), this would for instance be the case if the process
v would be a function of the triple (¢, Sy, N;). However, by exploiting the results of
Pham, Rheinlédnder and Schweizer (1998, Section 4.3), we find that the two measures
actually coincide in the present set-up: Since our model is a special case of what
they call “an almost complete diffusion model”, their argument justifies that D can
be written on the form

T .
D = D, +/0 CodX,. (6.4)

But Lemma 1 of Schweizer (1996) then implies that Z—Ili = D, so that indeed P = P.
By Lemma 3.5, the density D can also be written as

dP w(l)  1- [ BudX,

dP  E[r(1)]  E[r(1)]

and by equating the two expressions for D we find that E[«(1)] = DLO and § = —D%.
The integrand ¢ in (6.4) can now be determined as in Pham, Rheinlinder and
Schweizer (1998, Proposition 10), where ( is expressed in terms of the solution
to a second order PDE; note however that the present set-up differs slightly from
their framework in that our coefficients «, r and o depend on (¢,S;) instead of
(t, X;). In the special case where «, r and o are functions of ¢ only, we have that

Dy = E[D] = exp(Jf] v*(u) du), and

G = —Z )\ exp (/tT v (u) du) = —Ul(jt()t;(t Z,, (6.5)

where we have introduced the P-martingale Z, = E[D|F;] and used that \, = %

Furthermore, when v does not depend on S, it follows from (6.3) that

Z, = Zyexp (/tT V2 (1) du> .

It was shown in Mgller (1998a, Section 2.3) that M is a P-martingale and that
(M, X) are stochastically independent under P.

6.3 The unit-linked pure endowment contract

We consider the discounted payoff
H = B;'g(Sr)(n — Nr), (6.6)

where g is some continuous function such that E[(g(Sr)B;')?] < oco. With this
construction the benefit is linked to the financial asset S in that each of the (n— N7)
survivors receives the amount g(St) at time 7'. In addition, we introduce the unique
no-arbitrage price process for ¢(Sr) given by F9(t,S;) := E[B;'B.g(Sr)|F;] and
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assume that F9 € C'2. We denote by FY the partial derivative with respect to s
and require that the function F? is bounded, that is, that there exists a constant
Ky such that |F9(t,s)| < K, for all (¢,s) € [0,T] x [0, 00).

In order to apply the financial valuation principles, we need the decomposition (3.2)
for the claim H. This decomposition can be expressed in terms of the Kunita-
Watanabe decomposition (under P) for the P-martingale V; := E[H|F]; see e.g.
Schweizer (1999) for a general version of this result. The martingale V was studied
in Mgller (1998a) for the unit-linked contract (6.6), and it was shown there that

Vi = (n— N)r_ipys B, 'FI(t, ). (6.7)

Furthermore, by Mgller (1998a, Lemma 4.1), the Kunita-Watanabe decomposition
for V is

L t ¢ 5
V, = Vo +/0 e dx, +/0 v L, (6.8)
where (€%, ) are given by

(gtHv VtH) = ((n - Nt—)T—tpy+thg(t7 St)v _Bt_ng(tﬂ St)T—tpy-l—t) : (6'9)

From Schweizer (1999, Theorem 4.6) we now obtain the following expression for the
integrand 9¥¥ in the decomposition (3.2):

| -
19{{ = (n - Nt—)T—tpy+thg(ta St) + Ct/o Z—qulF‘q(U, Su)T—upy+u dM,. (6-10)

u

Furthermore, by using (3.2), (6.8), (6.10) and the product rule, it follows that

_ T . . Tl .
N = 7, /O vl it =~ /O = B PO, S) 1y 0,

u u

6.4 Risk-minimizing hedging strategies

The main results of Mgller (1998a) are briefly reviewed. In that paper, the criterion
of risk-minimization, which is due to F6llmer and Sondermann (1986), is applied.
This criterion essentially amounts to minimizing at any time ¢ the variance (under
some suitably chosen equivalent martingale measure) of future losses defined as the
amount to be paid at time 7" reduced by future trading gains. The risk-minimizing
strategy is determined by first computing the so-called intrinsic value process (6.7)
and then determining the Kunita-Watanabe decomposition (6.8) of this process. In
this way, V is decomposed into an integral with respect to X which represents the
hedgeable part of H and a martingale L = [ v# dM which is orthogonal to X and
which represents the risk inherent in H that cannot be hedged away. It follows from
Mgller (1998a, Theorem 4.4) that the risk-minimizing hedging strategy ¢* = (£*,7%)
for (6.6) is given by

& = (n— No)popye F2(t, Sy),
n = (n— N)r_iDy+e B, 'F9(t, ;) — & X,
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and that the minimum obtainable P-variance associated with ¢* is

T
Ry = Varp [H— / g;dXt]
0
T .
= Varp [LH] =n1p, /0 E[(F9(t, S0) B )| ripys piyedt.  (6.11)

In Mgller (1998a, Section 6) the quantities V; and R} are evaluated numerically in
the situation where the benefit is of the form ¢(Sr) = max(Sr, K) (K is a minimum
guarantee) for various choices of volatility o and guarantee K.

6.5 The variance of N7

In the present situation, we have

Hy _ r é g -1)2
Var[N*] = nrp, | E|Z (Fo(t, S)B, ) | 7—tpyss pryse dt. (6.12)

t

We give here only an idea of how this result can be proved and refer to the analysis
Section 4 (case 3) in Chapter 6 for a rigorous argument. Note that (6.12) specializes
to (6.11) in the special case where P = P, that is, when the physical measure P is
a martingale measure.

It follows already from Theorem 3.4 that E[N#] = 0, and hence

Var[N¥] = E[N7)}|=E (ZT /OT Ziy{f dMu)2 —E|Zy (/OT Ziyf d]\qu) T .

u u

Welet L = [ % dM and apply Itd’s formula to the process Z L? (see e.g. Jacod and
Shiryaev (1987) for a version that applies in this generality). After some rearrange-
ment of terms, we arrive at

2
tiy= [ B dzie2 [ Zhedii+ [ 2 <_H> N
T —_— t— t t4it— t t ~ t-
0 0 0 Zy

The first two terms are integrals with respect to the P-martingales Z and L, re-
spectively, and hence, they are likely to be p—martingales. However, we can only
guarantee that they are local P-martingales, and, in particular, this implies that
their expected values under P need not be equal to 0. It therefore requires some
additional work to show that this is actually the case! But provided that the two
processes are indeed P-martingales, we have now obtained that

Var[N¥] = B VOT (”?2 dNt] .

t
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And provided that also the local P-martingale f( " dM is a P- martingale, this
can be rewritten as

Var[N¥] = EVOT (Vi)Q(n—Nt ),uy+tdt]

_ /OT B [(”?2] B [(n = Noo)] iesy dt

t

- [ EE( o(t,5,)B; )2] (- Dy 1) El(n — Nty dt

t

Z.
= npr/O E th (F9(t,S)B; ) ] T—tDy+t Moy+t AL.
t

The second equality follows by the Fubini theorem and the P-independence be-
tween S and N, and the third equality is obtained by applying the definition of
the measure P and using the explicit expression for v given in (6.9). This veri-
fies (6.12) under the additional assumption that the local P-martingales involved
are true P-martingales.

6.6 The financial variance principle

The fair premium for (6.6) under the financial variance principle can now be deter-
mined by Theorem 4.3 and is given by

v (H) = nrp, (Fg(o,so) +a/0TE [é

Z

(0,508 -y ) (6.1)

Here, the first term is the number of survivors n r-p, times the market value F9(0, Sp)
at time 0 of the benefit g(Sy). The second term is more difficult to interpret. How-
ever, as noted in Section 6.5, it specializes to the variance of fj v dM when P = P.
Note also that the premium is here proportional to n; Section 2.2 of Chapter 2 con-
tains a discussion on this choice of premium for unit-linked life insurance contracts.
The optimal strategy * for the seller of H can be obtained by applying Corollary 4.8
and (6.10);

O = (n— Ne-)r—py FY (1, 51)

~ t— 1 ~
+Ct /0 Z_BJIF!] (ua Su)T—upy—l—u dMu +

Uu

1+ Var[ZT]B
B —

> (6.14)

The first term in (6.14) is recognized as the risk-minimizing strategy for H under P,
see Mgller (1998a). The second term is a “correction term”, which is related to the
seller’s loss; we also refer to Mgller (1998a) for an interpretation of the integral with
respect to M in the martingale case. The third term is independent of the claim H
and is related to the quadratic criterion applied.

Explicit expressions for ¢, 3 and Zt are given in Section 6.2 for the case where the
coefficients a, r and o are functlons of t only.
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6.7 The financial standard deviation principle

The fair premium under the financial standard deviation principle is found by using
Theorem 4.4, which applies provided that a? > Var[j—g. In this case, the fair
premium under the financial standard deviation principle is given by

1
2

. T Z _
vo(H) = nrp,F9(0,5) +a (n pr/o E {;(Fg(t, Si)B; 1)2] T—tPy+t Hy+t dt) ;

t

i=a|l1- Var[fT].
a

The optimal strategy for the seller of H is obtained from Corollary 4.12 and is now
given by

where we have introduced

- 1 ~
Z_qung (’U,, Su)T—upy-f-U dMu

Uu

U; = (n— Ni2)r—pyt FY (L, Sy) + é/o

1+ Var[Z T_|Z B 2
+% (n pr/o E [; (F9(t, St) B, 1)2] T—tPy+t Hy+t dt) Bt
t

6.8 Numerical results

We consider a numerical example with the same parameters as the ones used in the
numerical example of Mgller (1998a); for the insurance portfolio we take y = 45,
T =15,n =100 and

fiyt = 0.0005 + 0.000075858 - 1.09144¥+, ¢ > 0. (6.15)

We apply a standard Black-Scholes market with parameters Sy = By = 1, a = 0.10,
r = 0.06 and 0 = 0.25, and consider in addition the cases of low volatility (¢ = 0.15)
and high volatility (o = 0.35). Furthermore, we take ¢(S7) = max(Sr, K), which
is known as a unit-linked contract with guarantee, and consider various choices of
guarantee K. It follows by the well-known Black-Scholes formula that

FI(t,S;) = Ke "9 (—zt +oVT — t) + 5 ®P(2), (6.16)

where @ is the standard normal distribution function and

5 = log(S;/K) + (r + 0*/2)(T — t)
t oVT —t :

Furthermore, the first partial derivative is F9(¢, S;) = ®(z).

With ¢ = 0.25, we find that ¥ = 0.16 and hence it follows from the investigation
at the end of Section 4 that the financial standard deviation principle is only well-
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Cuarantee (K) E[H] Var[N¥] (std.dev.)
oc=0.15 0 08796  0.224 —

0.5exp(rT) 0.8996  0.224  (0.0004)
exp(rT) 1.0807 0.238  (0.0004)
(M = 500,000) 2exp(rT) 1.7993  0.379  (0.0003)
o =025 0 0.8796 0.415 -
0.5exp(rT) 0.9580  0.422  (0.0015)
exp(rT) 1.2066 0.460  (0.0015)
(M = 1,000,000) 2exp(rT) 1.9161  0.671  (0.0015)
o=0.35 0 08796 0.873

) 1.0255 0.883  (0.005)
exp(rT) 1.3213  0.940 (0.005)
(M = 5,000,000) 2exp(rT) 2.0511 1.197 (0.005)

Table 4.1: Values for E[H|, Var[N*] for one policy-holder and various choices of
volatility o and guarantee K.

defined for a > 0.6842. Since this value is probably too high for applications, we
have chosen only to apply the financial variance principle in our numerical example.

We set out by computing the fair premium (6.13). Thus we need to determine the
variance of N, which here simplifies to

T 2
nrpyE l/o e VT (Fg(t, St)(f”) T—tPy+t My+t dt] , (6.17)

—2(T—
g_::eu(Tt)

since > . The evaluation of this variance is very similar to the compu-

tation of (6.11). Note however, that the two quantities differ by the factor e=*(7—%

and in that (6.17) involves a P-expectation whereas Rj involves expectation with
respect to a martingale measure. We apply here the same numerical method as
in Mgller (1998a), that is, we use Monte Carlo simulation for S and discretize
the integral in (6.17) by using the summed Simpson rule, see e.g. Schwarz (1989).
Throughout, we use the step size At = 1/100. In Table 4.1 we have listed the
quantities Vy = E[H], which have been computed directly from (6.15) and (6.16)
without the use of simulation, and the estimates of Var[N*] for various choices of
o and K. This table also gives standard errors of the estimates of Var[N] and
the number M of simulated paths used. Since the premium under the financial
variance principle is linear in n, we have furthermore fixed n = 1. In Table 4.2 we
have fixed 0 = 0.25 and K = exp(rT) and computed the fair premium for various
choices of safety loading parameter a. These numbers illustrate the impact of a on
the fair premium, which attains values from 1.211 to 2.127, and this corresponds to
a relative loading (computed as (vy(H) — E[H])/E[H]) between 0.004 and 0.76.

We consider in the rest of this section an insurance portfolio with n = 100 and
present some simulation results for N, S and 9*. We take a = 0.25 and fix 0 =
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15

Time

Figure 4.1: Simulation of the process N in the case n = 100.

0 | 5 | 10 | 15
Time
Figure 4.2: Simulation of the price process S (solid line) and the deterministic
savings account B (dashed line).
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Figure 4.3: The optimal trading strategy corresponding to the realizations in Fig-
ures 4.1 and 4.2.
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Safety loading (a)  0.01 0.1 0.25 0.5 1 2
Premium 1.211 1.253 1.322 1.437 1.667 2.127
Table 4.2: The fair premium under the financial variance principle for n = 1,

o =0.25, K = exp(rT), and various choices of safety loading a.

0.25 and K = exp(rT). Figure 4.1 shows a possible realization for the counting
process N. The first death occurs after approximately 1.5 years, and the total
number of deaths is 12, which is close to the expected number E[Ny] = n(1 —
15045) = 100 - (1 — 0.8796) ~ 12. Figure 4.2 gives a possible realization for the
stock price process S; for comparison we have included the deterministic savings
account B; = ¢". The value of the stocks falls below the savings account only
shortly after time 0 and after approximately 5 years. Finally, Figure 4.3 shows the
optimal investment strategy (6.14) corresponding to the outcome of the insurance
portfolio from Figure 4.1 and the stock price process from Figure 4.2. We draw
attention to some interesting features: The drop in the price process close to time
5 is reflected in the optimal strategy, which falls from 70 at time 4 to 55 at time
5. The optimal number of stocks increases to 90 at time 10, which is close to the
conditional expected number of survivors, (100 — Nyg)sps5 = 90 - 0.9408 ~ 89; this
can be partly explained by the fact that the value of the stock is at a level, where
the probability of falling below the guarantee K = €™ is very small. After time 10,
deaths occurring within the insurance portfolio are clearly visible in the strategy,
which shows sharp jumps downwards in connection with each death. These jumps
can be described explicitly by considering a jump time 7 for the process N: Letting
U5, := limp\ o 97, ,,, we obtain from (6.14)

- 1
79:—4_ - 19: = _T—pr—kTFsg (7—1 ST) + CTZ_BT_IF!](T; ST)T—pr+T

T

on the set {r < T'}. Here, both terms are negative since ¢ < 0. Furthermore, this

shows that the jump for 9" is big when the value of S is big, since in this case F¢ ~ 1
and Fg(t, St) ~ St-



Chapter 5

Indifference Pricing of Insurance
Contracts: Theory

(This chapter is an adapted version of the first part of Mgller (2000))

We apply the financial variance and standard deviation principles of Schweizer (1997)
for the valuation of insurance contracts. These principles are financial transforma-
tions of the classical actuarial variance and standard deviation principles and take
into consideration the possibilities of hedging on financial markets. We focus on
the role of the information available to the insurer and study its impact on the fair
premiums and the optimal trading strategies. This leads to a general comparison
result for the hedging errors in the mean-variance hedging problem under two differ-
ent filtrations. Via a projection argument for Hilbert spaces, we obtain an explicit
expression for the increase in the hedging error that arises from restricting the in-
formation from one filtration to a smaller filtration. These results are applied in a
separate study of insurance contracts that depend on two stochastically indepen-
dent sources of randomness representing purely financial risk and pure insurance
risk, respectively. By considering different filtrations for the pure insurance risk,
we then arrive at simple upper and lower bounds for the fair premiums. Examples
considered include unit-linked life insurance contracts, financial stop-loss contracts
and stop-loss contracts with barrier.

1 Introduction

One of the classical issues in actuarial mathematics is the valuation of insurance
contracts. The main problem consists in determining reasonable principles that
can be used to calculate insurance premiums. A premium calculation principle is
a function, which assigns to each contract H (within a certain class) a number, a
so-called premium. Traditional examples of such principles are

(H) = E[H]+ aVar[H], (1.1)
ts(H) = E[H]+ ay/Var[H], (1.2)

97
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uz(H) = E[H|(1+a), (1.3)
. _ E[He"™]
U4(H) - E[eaH] ) (14)

provided that the involved quantities exist. These principles are known from the
actuarial literature as the variance, standard deviation, expected value and Esscher
transform principles; see e.g. Goovaerts et al. (1984) for a thorough treatment of
these and other actuarial premium principles.

One striking feature of the principles (1.1)—(1.4) is the absence of a market. More
precisely, they are formulated within a framework which does not allow the seller (or
buyer) to trade on financial markets or on reinsurance markets. With this set-up,
the premium is calculated at time 0, say, where the contract is sold. At the term
T of the contract, the buyer of the contract then informs the seller (henceforth also
called the reinsurer) about his claims and the seller pays the amount prescribed by
the contract. Between time 0 and time 7" no action takes place! This is in contrast
to financial valuation principles, see e.g. Duffie (1996), which are formulated within
a framework which allows for trading between the time of issue of the contract and
the term of the contract. As a consequence, the principles (1.1)—(1.4) cannot be
expected to be consistent with e.g. no-arbitrage pricing theory. This fundamental
difference between the two types of principles puts limits on the class of contracts
for which it makes sense to apply these actuarial valuation principles. As a trivial
example, consider (for instance) a standard Black-Scholes market and let the claim
H be equal to the value at some fixed time 7" of the stock. Then it follows by simple
no-arbitrage arguments, that the unique no-arbitrage price for H at time 0 is the
initial value of the stock; this can also be obtained as the expected value of the
discounted claim with respect to the unique martingale measure. In particular, this
price will be independent of the drift-coefficient of the stock, and it is not difficult to
verify, that this will not be the case in general if we apply the principles (1.1)—(1.4).

The problem becomes much more subtle if we instead consider for example a so-
called financial stop-loss contract, which is a reinsurance contract that promises to
pay at some fixed time T, say, the amount H = (Ur 4+ Y7 — K)*, where Ur denotes
the aggregate claim amounts from some insurance portfolio during the period [0, 7],
Y7 is a financial loss, and K is some retention limit. (Information on contracts of
this type can be found for example in Swiss Re (1998).) Note that for Y7 = 0, the
contract is just a traditional stop-loss contract. The loss Y could for example be a
put option on some underlying stock index S, that is Y7 = (¢—S7)™ or it could sim-
ply be the loss associated with holding 1 unit of this index, that is, Y = Sy — Sr.
The financial stop-loss contracts provide a coverage not only for large losses due
to fluctuations within the insurance portfolio (insurance risk) but also for adverse
development on the financial markets (financial risk). Contracts of this form com-
bine insurance and financial risk, and, typically, they cannot be priced uniquely by
no-arbitrage arguments alone. On the other hand, applying the actuarial valuation
principles directly to such a contract would completely neglect the fact that the
seller and buyer of the contract can actually trade on the financial markets and in
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this way possibly reduce the financial risk. So the question is really: Should we
use the financial valuation principles (which would only lead to very wide bounds
for the premiums) or the actuarial ones (neglecting the existence of the financial
market) for such a contract? The approach taken here to address this issue has
been suggested by Schweizer (1997). It combines the two different approaches and
leads to modifications of the actuarial valuation principles that are in a sense more
consistent with the valuation on the financial markets than the original principles.
The starting point for these new valuation principles is here the variance or the stan-
dard deviation principle introduced above. Taking these principles as a description
of the reinsurer’s preferences, a modified premium calculation principle is derived
by use of an indifference argument, which takes explicitly into account the existence
of the financial markets. In Chapter 4 optimal trading strategies are determined
for reinsurers whose preferences are described by the variance and standard devi-
ation principles. The issue of relating actuarial pricing principles to the one from
financial mathematics has been addressed by Biithlmann (1980, 1984), Delbaen and
Haezendonck (1989) and Sondermann (1991) among others. Embrechts (1996) gives
an overview of literature on this area and discusses some important developments.

The insurers’ possibilities for trading on the financial markets are in general con-
strained by many factors, such as legislation, transactions costs and the amount
of information available. We shall in particular focus on the role of the last men-
tioned and analyze how the premium principles under consideration are affected by
the information. In Section 3 we give a general comparison result for the so-called
hedging errors (the minimum obtainable L*-distance between the claim H and the
terminal value of a self-financing strategy) under different filtrations. The financial
valuation principles of Schweizer (1997) are recalled in Section 4. In Section 5 we
set up a product space model which is used for the analysis of claims that depend
on two stochastically independent sources of uncertainty, called pure insurance risk
and purely financial risk, respectively. Within this framework, our comparison result
allows us to derive upper and lower bounds for the fair premiums for a broad class
of insurance contracts; these bounds are given in Section 6. The upper bound is
obtained when the seller receives no information concerning the insurance risk; the
lower bound corresponds to the situation where all information is revealed immedi-
ately after the selling of the contract. These bounds are relevant for the valuation of
reinsurance contracts, since reinsurers often receive only summary information after
the selling of the contracts.

Section 7 contains a separate study of contracts which are the product of two stochas-
tically independent factors. For such contracts, more explicit expressions for the
difference in hedging errors under two different filtrations are obtained. This class
of contracts include unit-linked pure endowment contracts and so-called stop-loss
contracts with barrier. Examples are given in Chapter 6; in Section 5 of Chapter 6,
we give a framework which allows for dependence between the financial risk and
the insurance risk. As a main example, we consider the situation where the drift
and volatility parameters of the stock price process of an insurance company are
affected by a Poisson process which is taken to describe the occurrence of certain
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catastrophes. It is demonstrated how the fair premiums and the optimal trading
strategies can be obtained in an explicit example.

2 Preliminaries

In this section we introduce some general notation that will be used in the rest of
the chapter.

Consider a complete filtered probability space (2, F, IF, P), where the filtration IF' =
(Ft)o<i<r satisfies the usual conditions of right-continuity and completeness and
F = Fp; T is some fixed finite time horizon. We do not assume that Fy is trivial. Let
X be a d-dimensional continuous semimartingale with respect to /F' with canonical
decomposition

X =Xo+M+A,

where, X is Fp-measurable, M is a continuous local P-martingale and A is continu-
ous and of finite variation. A natural no-arbitrage condition on X is to require that
A be absolutely continuous with respect to (M) and that there exists an IR%-valued
predictable process A so that A4, = [ d(M),)\, and fOT ATd{M)sAs < 0o P-a.s. This
condition is necessary for the existence of a measure () which is equivalent to P
and such that X is a @-martingale, see Ansel and Stricker (1992, Théoréeme 4). In
particular, the so-called minimal martingale measure P is defined" by

dp
p =& (= [ram) .

see Follmer and Schweizer (1990). Note, however, that P need not exist in general.
In the following, we shall mainly work with another martingale measure, namely
the variance optimal martingale measure. Before defining this notion precisely, we
mention some fundamental concepts.

Let V denote the linear space spanned by the random variables of the simple form
h'" (X7, — X1,), where Ty < Ty < T are IF-stopping times such that the stopped pro-
cess X2 is bounded and where A is a bounded IR%valued Fr,-measurable random
variable. We introduce the class of (signed) martingale measures and the vari-
ance optimal martingale measure, see Delbaen and Schachermayer (1996a), Schwei-
zer (1996) and Rheinlénder and Schweizer (1997).

Let M?*(P) denote the space of all signed measures ) < P with Q(£2) =1 and

=[] - o

1Recall that the process Z = £(— J AdM) is the unique semimartingale which solves the stochas-

tic differential equation Zy=1-— f(f ZAS,)\des; in the special case where M is a continuous local
martingale, we have £(— [ AdM); = exp(— f(f s dM, — 1 f(f s d(M); ;). Recall also for later use

that for any two semimartingales X and Y, the quadratic covariation of X and Y is the process
[X,Y]=XY — XoYy — [X_dY — [Y_dX.



INDIFFERENCE PRICING OF INSURANCE CONTRACTS: THEORY 101

for all f € V, and M*(P) the set of all probability measures @ € M?*(P) with
@ ~ P. In addition, we introduce the spaces D? and D¢ by

D — {z—g‘QeM’”(P)}, (2.2)

for x € {s,e}.

Definition 2.1 The variance optimal martingale measure P is the unique element
of M*(P) such that D := 9 € L?(P) and such that D minimizes || D||2(p) over all
D e D¢ N L*(P).

Remark 2.2 The classes M?*(P) and M*(P) depend on the filtration, and so does
the variance optimal martingale measure. Thus, the symbols V, M?(P), D* etc.
should properly be equipped with an IF', but to save notation we will only mention
explicitly the filtration in situations where we are working with more than one
filtration. O

In the following, we will be working under Assumption 2.3, which ensures the exis-
tence of the variance optimal martingale measure. In general, P exists if and only if
D*NL2(P) # () since D*NL?(P) is a convex closed set. This does not guarantee that
P is equivalent to P or that P is a probability measure, however, but Delbaen and
Schachermayer (1996a, Theorem 1.3) proved that if X is continuous and provided
that D¢ N L*(P) # () then P € M¢(P), that is, P is a probability measure and
P ~ P. In particular, this means that D > 0 P-a.s. So we impose

Assumption 2.3 D¢N L*(P) # 0.

Introduce now the space ©(IF) of Rd—vablued~ IF-predictable processes ¥ which are
such that the real-value process [ dX is a P-martingale on [0,7] and [ 9,dX; €
L?(P), and let

Gr(6(IF)) := { /0 "9, dX,

196(:)(117)}.

It was shown in Delbaen and Schachermayer (1996b) and in Gouriéroux, Laurent and

Pham (1998) that, when X is continuous, Assumption 2.3 implies that G (O (F))
is closed and is indeed the closure of V in L?(P);

Ve = ar(6r)),

compare also Rheinlidnder (1999). In fact, the remark following Proposition 15 of
Rheinléinder (1999) shows that ©(IF) is identical to the space of all IF-predictable
processes 1 such that fOT 9dX € L?(P) and [9dX is a uniformly integrable Q-
martingale for all Q € M®(P) with 92 € L?(P). We shall exploit this relation in
Sections 3 and 5.

Introduce the strictly positive process Z defined by
E[D? | F)

Zt=E[D\ft]:m,

(2.3)
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where D = % and where we have used the short-hand notation E for the P-

expectation Es. From Delbaen and Schachermayer (1996a) it follows that Z is of
the form

- - t
Z,=Zy+ /0 Cod X, (2.4)

for some { € O(JF) and a constant Z;. Note that Z is continuous. Since D €
L?(P), we can also define a new probability measure R by % = D?/c, with ¢ =
E[D?. In particular, this implies that Z—fg = D/c. Define in addition a (d + 1)-
dimensional process Y = (YO, Y1,... Y9 by Y° = 1/Z and V' = Xi|Z, i =
I,...,d. Note that Y is a continuous R _valued local R-martingale, since X
is a local P-martingale. The following theorem corresponds to Rheinlinder and

Schweizer (1997, Proposition 8); the extension to non-trivial initial o-algebra Fy
has been proved by Schweizer (1999).

Theorem 2.4 Let LA(Y, R) denote the space of IF-predictable processes 1 such that
J¥dY is an R-square-integrable R-martingale. Then

~—Gr(O(I)) = {ZLT [ duax,

T

9 e (:)(]F)} - {/OTwudYu

Y e LA(Y, R)} (2.5)
Furthermore, for given 9 € (:)(F),

ZLT /O 9, dX, = /O b, dY,, (2.6)

where Y° = [9dX — 9" X and ' =9, i=1,...,d.

It follows from Schweizer (1997, Lemma 2) that the space
R+ Gr(O(F)) = {c+ Gr(¥)|c € R, 9 € O(F)}

is closed in L?(P) under Assumption 2.3. The following crucial result is now a
consequence of the projection theorem for Hilbert spaces (used for the space L?(P)
with inner product (H), H®?)) := E[HM H®?)]):

Theorem 2.5 Any random variable H € L?(Fr, P) admits a unique decomposition
on the form

T
H=c" +/ 97 dX, + N™, (2.7)
0

where ¢ € R, 97 € O(IF), E[N7] =0, and E[NY [ 9,dX,] = 0 for all ¥ € O(IF).

In addition, we recall the so-called feed-back formula of Schweizer (1999, Theo-
rem 4.6) for the projection 19{1 , which is related to the Galtchouk-Kunita-Watanabe
decomposition for H under P:
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Theorem 2.6 Assume that H € L*(Fr,P) and consider the Galtchouk-Kunita-
Watanabe decomposition of the P-martingale V, = E[H | ;] given by

~ ~ ~ t ~ -
Vo= E[H | F]=E[H] + [ &7 aX, + L{",
0
for 0 <t < T. Then, the integrand 9% in (2.7) is determined by

. t
g _ PG (f/_ _flH] - [ 0¥ qu)
t ‘St Zt t ] / u

_ sHP = %—E[H] =1
= & _Ct(%-i-/o Z_dLHP> (2.8)

u

In particular, the constant ¢ in (2.7) is determined by ¢ = E[H], and it follows
by applying the explicit formula for ¥# in (2.8) that the term N# in the decompo-
sition (2.7) is determined by

iy B+ 20 [ L an (29)

0 0 u

N =

To see this, note that by (2.7), the Galtchouk-Kunita-Watanabe decomposition for
V, (2.8), and the product rule

T
NE = H—cH—/ 9HdX,
0

~ T ~ -
= E[H]+ [ &"Pax,+ LT — o

_TH,f’w 137 HP
/0<t (Zo +/ZdL &) dax,

~ T . -~ T . . .
+Zr / Z;71dLmP - / 2,77t dL?
0
s - Zr
= Ly"" = (- E[H]) + Z(VO—E[H] +zT/ 77t dLi”

) +ZT/ Z7VdL?. (2.10)

Zy
As pointed out by Gouriéroux, Laurent and Pham (1998), the process Z can be
viewed as the value process of a certain self-financing strategy, see e.g. (1.4.1)
and (2.4). The first term in (2.10) can therefore be interpreted as the extra initial
capital (Vo — E[H]) accumulated by Zr/Z,. Similarly, the second term represents

accumulated increments of the non-hedgeable part L™>F.

The hedging error Jo(x) associated with the claim H is defined as

(H—x—/OTﬂtht>2]. (2.11)

Jo(z) := min E
IEO(IF)
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Here, = + fOT ¥ dX; represents the value at time T of some self-financing strategy
¥ with initial value z. Thus, we are looking for the strategy with the minimum
L?-distance for given initial value z. In addition, we introduce the quantity

Jo = mllg Jo(z), (2.12)
which is the hedging error associated with the “optimal” initial capital.

Remark 2.7 The problem of determining (2.11) and (2.12) can be used to give
a very useful characterization of the process 9 defined by (2.8). Note that by
Theorem 2.5, f] 9 dX, is just the projection of H — ¢ on to the space G1(O)
and, thus, 9¥ is also the solution to the minimization problem (2.11) for z = .
In general (for x not necessarily equal to ¢) the solution to (2.11) can be found in
Rheinlidnder and Schweizer (1997, Theorem 6) and is given by

g = tH,fJ_Ct (f/t_—a:—/ﬁszX>

Zy
Vo—x =1
op 0 HP
= — +/ —dL,~ 2.13
- (B [T Lant). 219
In particular, we will apply this formula to 2 = 0 and let 9" = 99H denote the

projection of H —0 on G7(0). The process 9 differs from (2.8) only in that E[H]
has been replaced by z. O

As noted in Rheinldnder and Schweizer (1997), we have that

T 2
(H—x—/ ﬁtht” - Z,E|ZL
0

E

In the last expression, we can apply the one-to-one correspondence between the
two spaces GT(G) and { ST by (Y, R)} which was established in The-
orem 2.4. Thls implies that
7 2
(5 o)

and thus the problem of determining the minimum obtainable quadratic risk Jy(z)
(or the minimum L?(P)-distance) has been transformed into a related problem under
the measure R. This result is due to Gouriéroux, Laurent and Pham (1998). This
observation allows us to prove the following corollary, which corresponds to Pham,
Rheinldnder and Schweizer (1998, Corollary 9); see also Schweizer (1996, Lemma
15).

Jo(r) =2y min_Ejz

2.14
YELA(Y,R) 214)
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Corollary 2.8 The hedging error (2.11) is determined by

Jo(z) = EW'TZ:”)] +E l /0 ' Zit d[LH’ﬁ]t]
_ E[(o —2)?] _ZOE[(VO =) vy, (2.15)

Proof. Consider the Galtchouk-Kunita-Watanabe decomposition of Z% under R
given by

H H
—_— = E 5 —_
Zr [ZT

T ~ .
-7:0] + /0 YR 4y, + LR

where ¢ € L%(Y,R), L"E ¢ MZ(R) and where Y and L™E are strongly R-
orthogonal, i.e. the process Y L¥ is a local R—martlngale Since Y° = 1/Z, the
Galtchouk-Kunita-Watanabe decomposition for Z is simply

T x T x T
ZT ZO 0 K ZO 0 wt !

where ¢¥? = (z,0,...,0)". Thus

H-zx H—-x T 2 P
=Ex [— fo] + / (" = yp)dYs + Lo " (2.16)
ZT T 0
is the Galtchouk-Kunita- R-ortho-
gonality of Y and L#:%,
H—=zx T 2
Pl / 4y,
R ( Zr 0 v t)
2
H— N\ 2
_E, (ER [ — ]—"OD +E; [(L?’R> ]
Zr

T ~ ~
+ Eg [/0 (" = o = )" d(V )i ( {I’R—wf—zﬁt)],

which is minimized for ¢ = wH’R —1®. To obtain the first term of (2.15), use (2.14)
and note that

H —
ER[ Zr

1 iy
“l] = L (o) - (1)

Furthermore, by Rheinldnder and Schweizer (1997 , Proposition 10), we obtain that
LEE = [ 71dLEP  and since LR € M2(R) we find

| (20%) | = i [1£]
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- E, VOT Z;? d[LH’P]t]
= B 7 /0 Wi / Z‘ldLH’ﬁ]t]
_ 1g /OT Z, d[/ Z‘ldLH’ﬁ]t]

[T .
- R / Ztld[LHvP]t].
0

Zo

Here, the fourth equality follows by the optional projection theorem, see He, Wang
and Yan (1992, Theorem 5.16), since [[ Z~'dL**] is an increasing process. The
second equality in (2.15) follows from (2.9) by similar calculations:

22 (/ Z7tdr® )2]
28 [—% Vo — B[H]) (/OT Z;lde’f’ﬂ

B = B[ - ] + 6

BB g (5] o s
_ OB g g

In the last equality we have used the fact that L¥-% € M2(R). This completes the
proof. O

3 A comparison of hedging errors for two filtra-
tions

In this section we give a comparison result for the hedging errors under two different
filtrations by applying a projection argument for Hilbert spaces. The framework is
the one of Gouriéroux, Laurent and Pham (1998); see the previous section for the
necessary notation and definitions. We consider a complete filtered probability space
(Q, F, IF, P), where the filtration IF' satisfies the usual conditions, Fj is trivial and
F = Fr. Let X be a d-dimensional continuous semimartingale with respect to IF,
and consider in addition a smaller filtration IF'° C IF' satisfying the usual conditions
and which is so that X is adapted with respect to IF°; hence, X is also an IF*°-
semimartingale, see Stricker (1977). IF*° could for example be the P-augmentation
of the natural filtration generated by X. The role of IF° is only to restrict the space
of strategies and not the space of claims, and we require in addition that F7 = Fr;
for a comment on this assumption, see Remark 3.2 below. Throughout this section,
we work under the standing Assumption 2.3.

As in Section 2, we let V(IF°) denote the span of random variables of the form
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h'"(Xt, — Xr,), where T} < Ty < T are IF°-stopping times such that the stopped
process X2 is bounded, and h is a bounded JF1,-measurable random variable. It
is clear that V(IF°) C V(IF'). Recall that by Assumption 2.3, the variance opti-
mal martingale measure P under JF exists. We first show that this assumption
also guarantees the existence of a variance optimal martingale measure P° under
IF°. To see this, note that by (2.1) and (2.2), and since V(IF°) C V(IF'), we have
that D¢(FF) C D¢(FF°). Thus, Assumption 2.3 implies that D¢(F°) N L*(P) # 0
and hence the arguments used in Section 2 show that the variance optimal mar-
tingale measure P° under FF° exists. Second, we denote by (:)(F °) the space of
IF°-predictable processes ¥ where [9dX is a P°-martingale and fOT 9dX € L*(P).
Since P and P° may differ, it is not immediately clear that ©(F°) C ©(JF). How-
ever, the property D¢(IF°) N L?(P) # § already implies that G(©(IF°)) is closed
and that Gp(©(IF°)) = V(IF°), and thus

Gr(O(F°)) = V(IF®) C V(FF) = Gr(6(IF)).

The inclusion ©(F°) C O(IF°) can be proved directly using the alternative charac-
terization of ©(F) (and ©(JF°)) which was given by Rheinlinder (1999) and also
recalled in Section 2. The argument goes as follows. Assume that ¥ € ©(JF°),
so that [9¥dX is a P°-martingale and f, ¥dX € L?(P). By the observation of
Rheinlédnder (1999) this implies that [ ¢ dX is a Q-martingale for all QQ € M*(IF°)
with 92 € L?(P). Since D*(FF) C D°(FF°), or, equivalently, M*(IF) C ME(F°),
this shows that [ 9 dX is a Q-martingale for all @ € M*(FF') with j—g € L*(P), and
hence 9 € O(FF).

__ dpP°

Finally, we introduce the Radon-Nikodym derivative D° = o5 and the process
= PO E DO 2 fo d b~
Z =610 7= SOV LT gy [, (3.)
E[D* | 77) :

with (° € ©(IF°). Note that (3.1) is analogous to (2.3) and (2.4). In the rest of this
section, we consider the following problem:

Question: What can be said about the difference between the hedging errors

Jo(IF,z) and Jo(IF°, x) defined by
- 2
0

@ € {IF, IF°}, where H € L?(P, Fr) is a contingent claim?

Jo(@, z) := 1916%)1(1%)E

Remark 3.1 For the computations in connection with the valuation principles, we
shall actually consider H — ¢” instead of H — z, where ¢ is given as in (2.7). Since
the constants ¢ may be different for the two choices of filtrations, this implies that
in the general case, it will not be sufficient to compare Jy(IF, z) and Jo(F°,x) for
fixed z. Instead, one should compare quantities Jy(FF, z) and Jo(F,y), where z and
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y may differ. However, when the variance optimal martingale measures under IF'
and IF° coincide, Jy(IF,z) — Jo(IF°, z) is the relevant quantity for describing the
change in the hedging error. O

Remark 3.2 We show that the assumption F; = Fp is not essential for the in-
clusion O(IF°) C O(IF). To see this, let G° = (G?)o<i<r be a filtration satisfying
the usual conditions and which is such that X is G°-adapted and @° C IF. We do
not assume here that G& = Fp and verify that O(@&°) C O(IFF). Define another
filtration & = (Gi)o<t<r by G: = G, t < T, and Gr = Fr. We first show that
P(@&) = P(@°), that is, the o-algebra generated by left-continuous G-adapted pro-
cesses is equal to the one generated by the left-continuous G°-adapted ones: Note
that the @-predictable o-algebra P (&) is generated by the sets

{Ax{0}A€GU{Ax (s,4|s<t<T, A€G,}.

This follows from Jacod and Shiryaev (1987, Theorem 1.2.2) and the fact that any
left-continuous adapted process X can be obtained as the point-wise limit of a
sequence (X™) defined by

X7 = Xolpo) + Y XijanLjkson (k+1)/20a1]-
k€INg

In particular, this implies that P (&) does not depend on Gr and therefore P (&) =
P@&).

We now show that O(G°) = O(@&) C O(IF), that is, the space of strategies under
&° and & coincide; the last inclusion follows by the direct proof given above. Since
P(®) = P(@°), it is sufficient to verify that the variance optimal martingale measures
for & and &° coincide. To see the latter, we use that V(&°) = V(&), which will be
proved below, so that in fact D*(P,&°) C D*(P,&), x € {e,s}. Furthermore,
it follows from this property and (2.1) that for any D € D*(P,&), E[D | G3] €
D*(P,G°). Thus, the minimum for |D||,2p) over all D € D*(P,&) N L*(P) is
obtained for some D € D*(P,&°)NL?(P) and hence, the variance optimal martingale
measures for & and G° coincide.

We finally verify that V(@°) = V(&). The inclusion “C” is trivial, since @ C &. To
see “D” assume that f = h'"(Xp, — X7,) € V(®), where T} < T, < T are G-stopping
times such that X2 is bounded and A is a bounded Gr,-measurable random variable.
Then clearly, T1 <15 < T are also Z°-stopping times. Define hy := hl{r, <7}, which
is bounded and G5, -measurable, since for any B € B(IR?) with 0 ¢ B:

{he € BYn{T\<T} = {heB}n{T <T}
- U ({heB}ﬂ{TléT—%}>€QT§g%-

nelN

Thus, fo := b (X1, — X1,) € V(E°). Since f = f,, we see that f € V(E°). O
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We set out by proving Lemma 3.3 whose assumptions are satisfied under Assump-
tion 2.3, in the case where X is continuous. The proof is based on a projection ar-
gument for Hilbert spaces and uses only the closedness of the spaces G (©(FF°)) C
Gr(O(IF)). In particular, it does not rely on the continuity of X. Denote by [ 97 dX
and [97°dX the projections of H on the two spaces G7(O(F)) and Gr(O(F®)),
respectively, see Remark 2.7. We consider the situation where x = 0, which basi-
cally amounts to replacing H — x by H. Recall that if z = ¢, then the projection
[97dX for H — x is exactly the term appearing in (2.7). A similar remark applies
for IF°.

Lemma 3.3 Assume only that the two linear spaces Gp(O(FF°)) C Gr(O(IF)) are

closed. Then
T ) 2
([ = =y ax,)
0

Proof: Denote by ¢ = [F9"dX and g"° = [ 9"°dX the projection of H on
Gr(O(IF)) and Gr(O(IF°)), respectively. Since Gp(0(IF°)) C Gp(O(IF)), it follows
that ¢ can also be viewed as the projection of g” on G7(©(FF°)). Furthermore,
(H — g") € Gr(6(IF))* and g¥ — gf° € Gr(O(F°))* N Gr(O(FF)). Now write H

on the form

Jo(IF°,0) — Jo(IF,0) = E > 0. (3.3)

H—g"°=(H-g")+ (¢" — ¢"),

and note that by Pythagoras’ theorem:

|H — g™°|” = |H — g"|I> + [lg" — g"°|1%.

This shows that
Jo(IF*,0) = (IF,0) = |[H = g"|* = [ H = g"]|?

(ot~ dxtﬂ ,

— ”gH o gH,o”Q —E

which proves the result. O

As an important corollary to Lemma 3.3 we have the following:
Corollary 3.4 Assume that D¢(IF) N L?>(P) # (0. Then Var[N*°] > Var[N].

Proof: The result follows by repeating the arguments in the proof of Lemma 3.3

for the spaces IR + Gr(©(F°)) C IR + Gy (O(JF')) which are closed provided that
D¢(IF) N L*(P) # (), see Section 2. O

The above lemma gives a first expression for the difference Jo(ZF*,0) — Jo(F,0);
we shall also refer to the quantity (3.3) as the risk-increase (from IF' to IF°). The
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following calculations are concerned with the explicit form of this risk-increase, and
will relate (3.3) to the variance optimal martingale measure. First note that since
P~ P, Zy >0 P-a.s., and hence

B !(/OT@ ’°—1§f’)dXt>2

Here is the main result:

Theorem 3.5 Assume that D¢(IF) N L?*(P) # (. Then

o | o -0 dx,)”
_ -

R(F,0) = o, 0) =B | [ 2t axla, 5.
where
— (9 — ) ; ([ o —ameyax.) (3.5)

Idea of proof of Theorem 3.5: Consider the case where X is 1-dimensional and let
9 = 9% — 9. By Itd’s formula:

(f&dx) - / (deX)

= /wdm/ ~ 32 d[X]

]
+/ de) 2/ N d[Z,/ﬁdX].

Here, the first two terms are local P—martingales. If we assume that these processes
are true P-martingales, then the expected value of the above quantity evaluated at

time 7" simplifies to
~ 2
vy (o, (f9dX), (fﬁdX)w [T
il S GV e A =E/—~2dX,
/OZ(+Z2< C|dix]| =8| [ Zodx]
which proves the result under the additional assumption that the two local P-
martingales [(f9dX)/Z9dX and [(f9dX)?/Z*dZ are true P-martingales. O

E

It is not clear how it could be proved directly that the local p—martingales appearing
in the expression for (f 9 dX)2/Z are true P-martingales. We shall, therefore, prove
Theorem 3.5 by using the identity (2.5) and working under the measure R instead
of P. As pointed out in Gouriéroux, Laurent and Pham (1998) and Rheinlinder
and Schweizer (1997) this has the advantage that for v € L?(Y, R), [+ dY is by
definition a square-integrable R—martingale.

Proof of Theorem 3.5: Let 9 = 9 — 9 and note that 9 € ©(IF). By definition of
the measures P and R we have that

% (/OT&dX>2] - E [(/MX)Q]
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o e
- cER_<Z—T/O ﬁdX)]
= (Bj (/OT¢dY>

where the last equality follows from Theorem 2.4, with PO = [9dX — 19”{( and
Pt =19, 1=1,...,d. Since [1dY is a square-integrable martingale in M?(R), we

(/OdeY)Q - cER-VOTdV@de”
- E; :ZT/OTd[/deH
- E; _/oTZd[/deH

- E; _ /0 ' Zwt’“d[y]z/;], (3.6)

where the third equality follows by the optional projection theorem, see He, Wang
and Yan (1992, Theorem 5.16), since [ ¥dY] is an increasing process. The theorem
now follows from (3.6) by some rather tedious direct calculations: We consider only
the situation where X is 1-dimensional, so that Y = (Y%, Y')". By the definition
of Y, the Ito formula, and the continuity of the local P—martingales X and Z, we
find that

YO:E:?—/ dX-i—/CQd[X
and
3 g (e (e
Hence,
) - G
G = J(G-5) a0=] (50 - 25) am
[; % B _/22 <; Z?)d[X]:/<XZ€2_Z£3> ALX):

—~

3.6) by

Bp | [ 20t avis| = 55| [ 2wraz) e [ 20vanzxz

Now rewrite

+ /0 ' Z(aﬁl)Qd[X/Z]] . (3.7)
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To prove (3.4), simply insert o' = 9 and ¥° = [9dX — 9X to find that the three
terms under the P-expectation in (3.7) are

/(/ﬁdX + (0X)? = 2( [ §ax)hx )Z—Zd[X]

+2 / / JdX —9X)D (XZ—E,? - é) d[X]

o (1 X3¢ X
+ [ <§+ = —2§>d[X]

This proves (3.4). O

Remark 3.6 We note that (3.4) of Theorem 3.5 establishes a connection between
the difference Jy(IF°, 0)— Jo(JF, 0) and the quadratic variation process of the local P-
martingale X under mild assumptions on the filtrations IF'° and IF'. Thus, we only re-
quire that the F-semimartingale X is also [F°-adapted and that D¢(IF)NL*(P) # (.
This result is not an immediate consequence of Corollary 2.8, since the hedging errors
Jo(IFF°,0) and Jy(IFF,0) are given in terms of the processes L from the Galtchouk-
Kunita-Watanabe decompositions under the variance optimal martingale measures
with respect to IF’° and IF, respectively. An alternative approach to compare hedging
errors could therefore be to apply projection results for the corresponding Galtchouk-
Kunita-Watanabe decompositions under P. Féllmer and Schweizer (1990) have
shown how the Galtchouk-Kunita-Watanabe decomposition under one filtration can
be related to the Galtchouk-Kunita-Watanabe decomposition under a certain larger
filtration. However, these results seem difficult to apply in the full generality of
Theorem 3.5. O

We can now apply the feed-back formula from Theorem 2.6, see also Remark 2.7, for
the projections 9" and 97° to obtain an expression for g in terms of the Galtchouk-
Kunita-Watanabe decompositions for H under the variance optimal martingale mea-
sures. We work under the additional assumption:

Assumption 3.7 Assume that the variance optimal martingale measures w.r.t. IF
and FF° coincide, that is Z° = Z.

In section 5 we analyze a model where the two filtrations differ only by some ad-
ditional independent risk, and we shall see that in this case, Assumption 3.7 is
satisfied.

Introduce now the Galtchouk-Kunita-Watanabe decompositions for H under P with
respect to [F' and IF° given by

T - .
H=H0+/O P ax, + LHP,
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and
T ~ .
H=Hy+ [ &7 dx,+ L,

respectively, and let V = E;[H | IF] and V° = E5[H | FF°]; by Assumption 3.7,
H§ = Hy. Note first that by Theorem 3.5

. ot o .
o = (ﬁf-ﬁ/ 19de3> - (ﬁf°——/ 19H°dX>
Zy Jo
By the feed-back formula of Theorem 2.6, see also Remark 2.7, we can rewrite the
first term by

G H _ HP Ct <~ by ) G H
gH Zt/ﬂ dX, = (gt 2 (V- /ﬂsts Zt/ﬂ dX,

= -

t

By Assumption 3.7, Z and Z° as well as 5 and 5" coincide, and hence we obtain
similarly that

1§tH’O—€t/19HOdX — (6;1,0’13_%(‘7; /ﬁHOdX>> Ct/ﬂHodX
Z Jo Zt Z; Jo

Thus, we have proved the following corollary to Theorem 3.5:

Corollary 3.8 Assume that D¢(IF) N L?(P) # (0 and that Assumption 3.7 is satis-
fied. Then

[ rr 1
J()(FO,O)—JO(F,O) =E [/0 Egt d[X]tQt] s (38)
where
5~ 509~ C ¥,
e=&"" —gmr Ztt(vt -77). (3.9)

Remark 3.9 Theorem 3.5 shows how the hedging error increases when the filtration
is made smaller. It follows from (3.9) that the increase in the general case can be
expressed in terms of the Kunita-Watanabe decompositions under the filtrations IF’
and JF°. In the examples considered in the next sections, these will be easier to
obtain than the corresponding integrands appearing in the projections g and g#~°

It is noted that an expression similar to (3.9) cannot be obtained in the case where
the variance optimal martingale measures w.r.t. F' and [F*° are not identical. In
that case, the above calculations show that

. . > ~o t
_ é-tH,P B 5tH,o,P B (Ct A Ct ‘/to> (g _ g_t) / ﬁuH,o ax,.
Zt Zt Zt Zto 0
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We also point out that in the martingale case, ( =0and Z = 1, so that p =
(P — ¢HoP) "and so Theorem 3.5 simplifies to

T ~ -\ tr - .
Jo(IF*,0) = Jo(FF,0) = E[/0 (&P - &) apx), (sff”’—fﬁ"’””)]
— ||§H,15 _ gH,O,P“%Q(Px)'

A similar result can be found in Schweizer (1988, Section I1.2) for the case where
the continuous-time model is compared with a discrete-time model. O

4 The financial premium calculation principles

In this section we very briefly review the indifference pricing principles proposed by
Schweizer (1997) and examined further in Chapter 4. Let H € L?(P) be a claim and
consider the so-called variance principle and standard deviation principles defined
by

w1 (H) = E[H]+ aVar[H|, (4.1)
to(H) = E[H]+ ay/Var[H]. (4.2)

These two principles are classical actuarial premium calculation principles and often
used for the pricing of reinsurance contracts, for example stop-loss contracts; the
terms aVar[H]| and ay/Var[H] are often called safety loadings. The indifference
principles of Schweizer (1997) are derived by an indifference argument and allow for
modifications of (4.1) and (4.2). It is convenient to work with Y = —H, which can
be interpreted as the gain or final wealth at some fixed time 7" from selling the claim
H. Furthermore, we introduce the functions wu;(Y) = —;(H), that is

w(Y) = E[Y]—-aVar[Y], (4.3)
us(Y) = E[Y]— ay/VarY]. (4.4)

The functions u; and uy describes the preferences of the insurer. We shall assume
that the insurer’s objective is to maximize u;(Y").

Let ¢ denote the insurer’s initial capital. The wu;-indifference price for H is now
defined as the solution h; to the equation

T T
Sup u; (c—l—h,- +/ % d Xy — H) = sup u; <c+/ 1§th75> .
i) 0 o) 0

The solution is also called the fair premium, and the associated maximizing strategy
¥* is called the optimal strategy. The term on the left side of the equality is the
maximum obtainable value assigned to the wealth ¢ + h; + fOT ¥dX — H, which is
simply the initial capital ¢ augmented by the premium A; and trading gains fOT JdX
from some self-financing strategy 1, and reduced by the claim H. The term on the
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right is the maximum obtainable value assigned to the wealth from not selling the
claim and simply investing the initial capital in a self-financing strategy.

Denote by 7(-) the projection in L*(P) on G(©)* and let 1 — 7(1) = fI dX.
We formulate the main results which relate the indifference pricing principles to the
quantities introduced in the previous section. First, for the variance principle:

Theorem 4.1 (Schweizer (1997), Mgller (1999b)) For any H € L*(P) and c € IR,
the uy-indifference price for H is
hi(c) = v (H) = E[H] + aVar [NH] :
and the optimal strateqy is
1+ V&I‘[ZT] ~
2 .
a

Second, for the standard deviation principle:

Theorem 4.2 (Schweizer (1997), Mgller (1999b)) For any H € L*(P) and c € R,
the uq-indifference price for H is

ha(c) = vo(H) = E[H] + ay/1 — %\/VM‘[NH],

provided that a® > VaE[ZT]. If a®> < Var[Zp], then the uy-indifference price is
undefined. If a®> > Var|Zr|, then the optimal strategy is

1 Z .
g =g 4 LEValZnl R
a1 — VarQ[ZT]

5 A product space model

We consider in the following a model which describes a financial market with some
additional insurance risk. The aim is to investigate the premium principles reviewed
in the previous section and apply them to the problem of pricing certain reinsurance
contracts and unit-linked life insurance contracts. We work in the rest of this chapter
under the following assumption

Assumption 5.1 The financial market and the additional source of risk are sto-
chastically independent.

Remark 5.2 This assumption provides a simple set-up which is sufficiently general
for the analysis of several interesting problems. We can think of the additional risk
as an underlying pure insurance risk in nominal values, which will be discounted by
deflating the nominal values using some tradeable or non-tradeable financial asset.
On the other hand, the assumption rules out the possibility of including problems
where for example jumps in stock prices are triggered by certain insurance events.
Such problems would have to be considered separately within the more general
framework of Section 3. O
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The model is constructed by setting out with two separate probability spaces, one
for the financial market and one for the additional risk, and then embedding these
in a product space. This leads to a new market consisting of the same financial
assets, but where the class of claims is extended in that claims can now depend on
the additional insurance risk as well as on the financial assets. This construction has
the advantage that it allows to merge directly classical insurance risk models with
models for financial markets. We show that important properties for the a priori
given financial market are preserved by this extension. In particular, we will be able
to vary the amount of available information from the additional source of risk and
obtain simple results for its impact on the financial valuation principles.

The financial market

Let (€, F', P,) be a complete probability space with a filtration IF'! = (FHo<t<r
satisfying the usual conditions of right-continuity and completeness. We assume
that the o-algebra F{ is trivial, F* = F7, and fix a finite time horizon T. Consider
a d-dimensional process X = (X!, ..., X%) which is taken to describe the evolution
of the discounted prices of d tradeable stocks. To emphasize the fact that X is
defined on the space (£, F'), we will also write X (w;) for the path of X associated
with wi; € ;. A purely financial derivative is a random variable H' € L?(Py, F}).

It is assumed that X is a continuous semimartingale with canonical decomposition
X=Xo+M+A, (5.1)

where M is a continuous local martingale on (9, F*, P;) and A is a continuous
adapted process of finite variation. Moreover, the model is assumed to be free of

arbitrage; a necessary condition is the existence of a predictable process A such that
A= [d(M)X and

T _ _
/ MNTd{M)\ < oo P-a.s.

0

Denote by M¢(P;) the space of all equivalent local martingale measures (); and let
De(IF") be the space of their densities D on F!, see Section 2. Throughout, we work
under the following assumption which corresponds to Assumption 2.3 and ensures
the existence of the variance optimal martingale measure P; for X.

Assumption 5.3 D¢(IF') N L*(P)) # 0.

As in Section 2, we denote by (:)(F 1 the space of F-predictable processes 9 such
that [ 9dX € L*(P;) and [ YdX is an (I, Py)-martingale. We shall, however, use
the fact that ¥ € ©(F") if and only if fOT JdX € L?(P) and [9dX is an (IF1,Qy)-

martingale for any @, € M¢(P;) with % € L*(P,); see the remark following

Proposition 15 of Rheinlinder (1999). Recall also that the space Gy (©(IF)) is
closed in L?(P;) under Assumption 5.3.

The financial market (X, F 1) is said to be complete if any purely financial derivative
H admits a representation as a constant plus a stochastic integral with respect to
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X, that is, if there exist a constant Hy and 9% € ©(JF!) such that

_ _ T _ _
H=Hy+ [ 0fd%, Pas
0

The additional source of risk

Consider another complete, filtered probability space (9, F2, I[F2, P,), where the
filtration JF'2 is right-continuous but not necessarily complete and where F2 is not
necessarily trivial. For example, we can think of this space as carrying a pure
insurance risk process which describes the occurrence of insurance claims and the
development of the nominal amounts paid. To emphasize that an insurance risk
process U is defined on the space (€, F?) we may write U(ws) for the path of U
associated with we € 5. Similarly to the notion of a purely financial derivative, a
pure insurance contract is a random variable H® € L?(P,, F2).

The combined model

The two separate models are merged by introducing a new filtered probability space
(Q, F, IF, P) as the product space of (Qy, F', F1, P;) and (Qq, F2, IF2, P,). Since this
leads to some technical issues, we shall in the following discuss this construction in
detail. We let Q = Q; x QQy and P = P; ® P; in order to obtain a complete
probability space, we introduce the o-algebra N generated by all subsets of null-
sets from F! ® F?, that is

N=0{FCQ'x Q3G e F'@ F*: F CG,(P'® P)(G) = 0}.

We then let
F = (FleF)VN, (5-2)
and define the filtrations IF'* and IF? on the product space by
Fo= (F o0} v, (5.3)
F2o= ({0} e F}) VN (5.4)

The filtrations defined by (5.3) and (5.4) correspond to the original filtrations JF'1
and IF2, since they basically contain the same “amount of information”. However,
they differ from JF'! and JF2 in that (5.3) and (5.4) are defined on the new product
space. Some results on these filtrations are gathered in the next lemma:

Lemma 5.4
1. IF' and IF? satisfy the usual conditions.
2. IF' and IF? are independent.

3. The filtration IF = (Fy)o<i<r defined by Fy = F} V F? satisfies the usual
conditions. Furthermore

Fi=(F@FHVN. (5.5)
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Proof: 1. Since N' C F} for all t € [0,T], 1 = 1,2, IF* is complete. We verify that
JF! is right-continuous; the proof for the right-continuity of IF' 2 is symmetric and
uses only the right-continuity of IF2. Define for s € [0, T

D, ={F xQ | F, € F'}.
By definition, o(D,) = FL ® {0, Qs }, and since D, is also a o-algebra we obtain that
D, = FI @ {0,}.
This implies that

N Fle = NDue VN) = () Dse) VN =D, VN,

e>0 e>0 e>0

where the second equality follows from Kallenberg (1997, Lemma 6.8). The last
equality is a consequence of the right-continuity of Fl_: Assume that F' € Dy, for
all e > 0, then F' = F| x Q,, where Fy € N,.5oF},. = F}.

2. We have to show that, for any Fy € F}. and F, € F2,

that is, the o-algebras F}. and F2 are stochastically independent under P. We only
need to verify the property (5.6) for Fy € F+®{0,Q,} and F, € {0,Q,} ® F2, since
the result then follows for general F; and F5 by choosing G € .7_:% ® {0,922} and
Gy € {0, } ® F2, so that P((G;\ F;) U (F;\ G;)) =0, i =1,2. So we consider F},
F, on the form Fy = F} x Oy and Fy, = O; x Fy, where F; € F; and O; € {0,Q;};
hence P;(0;) € {0,1}. We now get

P(F1 N FQ) = P ((Fl X 02) N (01 X Fz)) =P <(F1 N 01) X (FQ ﬂOQ))
== P1 (Fl ﬂ 01) PQ(FQ ﬂ 02) == Pl(Fl)Pl(Ol)PQ(FQ) PQ(OQ)
= P(F)P(F),

where the third equality is the definition of the product measure P = P, ® P, and
the fourth equality follows since P;(0;) € {0,1}.

3. Since ' and JF? are independent and satisfy the usual conditions, it follows
from He and Wang (1982, Theorem 1) that IF satisfies the usual conditions. To
verify (5.5), note that

(Fl e {0,2}) v ({0,0} 0 7)) = (F & F7).

Here, the inclusion “C” follows immediately. To see “O”, note that for any F' =
7

Fy x F,, with F; € F}, we have
F1 X F2 = (F1 X QQ) N (Ql X FQ)

This completes the proof. O
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Remark 5.5 For filtrations H! and IH? on (€, ') and (Qs, F?), respectively, we
shall henceforth use the notation IH!®IH? for the complete filtration IH = (H;)o<i<r
defined by

He=(H{@H;)VN. O
The processes X and U are now embedded in the product space by

X(wl, CLJQ) = X(wl),

U(wy,we) = U(ws),
and a natural question is then: Is X a semimartingale on (2, F, IF, P)? The follow-
ing lemma ensures that this is the case and relates the canonical decomposition of

X to the one of X.

Lemma 5.6 Assume that X is a continuous semimartingale on (Qy, F*, IF, P,)

with canonical decomposition (5.1). Then X is a continuous semimartingale on
(Q, F, IF, P) with decomposition

X=X+ M+A,

where Xo(wi,ws) = Xo(wr), M(wi,ws) = M(w) and A(wi,ws) = A(w1). In
addition

A= / d(M)A,
with A(wy,ws) = A(w1).

Proof: We verify that M is a continuous (IF, P)-local martingale and that A is
continuous, adapted and of finite variation. The latter is clear, since A is continuous
and simply the difference between two increasing processes, and path properties are
not affected by the embedding of the process in the product space. Similarly, M is
continuous, since M is continuous.

By localization, we may assume that M is an (!, P,)-martingale. We prove that
M is then an (JF, P)-martingale by showing that for all 0 < s <t and F' € F, =
(Fl@ F2)V N:
Epep, [Milr] = Epgp, [Ms1F] . (5.7)
To verify this, recall that
(Fi@ FAVN ={F € FI3F € F} ® F2: P(FAF) =0},

where A is the symmetric difference, i.e. FAF = (F\ F)U (F \ F). Thus, it is
sufficient to verify (5.7) for F' on the form F' = Fy X Fy, where F|; € F! and Fy € F2
and this follows by

EP1®P2 [1F(Mt - Ms)]

= Epop, [1Fx0, Loy xr, (M — Mj)]

- /Q2 Ly, (w2) </§21 Ir (wl)(Mt(wl) - Ms(wl))dpl(wl)> dPy(ws)
=0,
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where the last equality follows by noting that the inner integral is 0 by the (E_’ 1 P)-
martingale property for M. O

The following simple lemma establishes the existence of an equivalent measure ¢ on
(2, F) which satisfies the property (2.1) and which has a square-integrable density.

Lemma 5.7 Assume that Assumption 5.3 is satisfied. Then D¢(IF) N L*(P) # ().

Proof: By Assumption 5.3, there exists a measure Q; € M¢®(Py, IF1) with ‘fg; €
L?(Py). For this measure, we define a measure Q on (2, F) by Q := Q; ® P,, and
show that @ € M¢(P, IF) and 92 € L?(P). Since by definition 42 (w;,ws) = 4% (w1),

dP;
we immediately obtain that

dQr "

dPy

dQ\’
(i)
We next use the fact that Q € M¢(P, IF) with 42 € L*(P) if and only if X is a
local (@, IF)-martingale and dQ € L?(P); see e.g. the comments following the proof
of Proposition 4.2 in Schwelzer (1999). With this result, we only need to verify that
(@ is an equivalent local martingale measure for X, and this follows immediately by
applying arguments similar to the ones used in the proof of Lemma 5.6, so that the

local Q;-martingale X on (Qy, F;) can be extended to a local Q-martingale X on
(Q,F). 0

Ep < 00.

In particular, this result guarantees the existence of the variance optimal martingale
measure P for X. In fact we will prove below that P = P, ® P,, which is intuitively
reasonable. However, to obtain this result we first need to introduce the space of
integrands on (€2, F) and to establish a connection to the integrands on the space
(Q4, F).

Recall that ©(JF) is the space of JF-predictable processes 9 on (2, F) such that
Gr(¥) € L*(P) and G(Y) is a @-martingale for each @ € M®(P, IF) with 92 €
L*(P). Define in addition the space ©(JF") for the smaller filtration JF'', and note
that O(JF') C ©(JF) by Remark 3.2. We then show that for any 9 € @(Fl),

can define a process ¥ € O(IF") by 9(w1,ws) := I(wi). This result gives a relatlon
between the spaces ©(F!) and ©(JF'), which is very useful for our further analysis
and will be used extensively throughout this section. Our argument uses the so-

called local character of the stochastic integral, see Dellacherie and Meyer (1982).

Let 9 € ©(IF!) and consider the semimartingale [ JdX on (Q;, F'). By Lemma 5.6
we can extend this process to a semimartingale G(¢) on the product space (2, F)
by

G(9)(wr,ws) = ( / JdX)(wr).

Now let ¥(wi,ws) = ¥(wi) and note that ¥ is JF'-predictable, since 9 is IF-
predictable. Furthermore, since M and M are indistinguishable, Theorem VIII.23
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of Dellacherie and Meyer (1982) implies that

(/MM)(M,MQ) - (/ﬁdM)(wl)

for P-a.a. (wi,w;). Similarly, [9dA = [©9dA P-as. since A and A are of finite

variation and hence

( / 9dX) (w1, ws) = G(D) (wr, w2)

for P-a.a. (wy, ws).

Using Lemma 5.6 and the local character of the stochastic integral, we obtain

Lemma 5.8 Assume that Assumption 5.3 is satisfied. For any 0 € O(IF'), the
process ¥ defined by

9wy, we) := I(w) (5.8)
is in O(IF*) C O(IF).

Proof: Assume that 9 € ©(FF!) and let 9 be defined by (5.8). By the above
arguments, 9 is IF'-predictable and G(9) is well-defined. Furthermore, it follows

immediately that G (9) € L?(P), since Gr(9) € L*(P,).
We consider Q@ € M®(P,IF") with %2 € L?(P) and verify that G(¢) is indeed

Y aP
a @Q-martingale, so that ¥ € O(F"'). Define first a measure Q; on (2, F;) by

QI(AI) = Q(Al X QQ) for Al € f]_, that is

QI(AI) = " %dpl = Q(Al X Q2)

dQ dQ
_ % 1p,dp :/ E<ap, | dp,.
/Alxnz ap = ( 0, dP 2) '

By Cauchy-Schwarz, % € L?(P,). Furthermore, we claim that Q; € M¢(JF!), that
is

EP1 l%htr(){& - XSI)] =0,
for any bounded Fl—stopping times S; < Sy < T such that X2 is bounded and
for any 7§ -measurable bounded IR%valued random variable h. To see this, define
bounded F'-stopping times Tj(wi,ws) := Si(w1), ¢ = 1,2, and a bounded Fj,-
measurable random variable h(w;,ws) := h(w;). Now since by assumption Q €
Me(P, ),

dQ

E _v
Plap

h,tr()(T2 - XTl) = 0 (59)
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The claim now follows from the following equalities

dQ

E
Plap

htr(XT2 XTI)‘| = EP lthtT(st XSI)]

o [dQu, f
= Ep ldplht(X —Xsl)],

where the first equality follows from the definition of A and 7;, and the second
equality is a consequence of the definition of ().

We finally verify that G(9) is a (Q, IF'')-martingale, that is for all 0 < s <t < T
and all A € Fl:

Eq [14 (Gy(9) — G4(9))] = 0. (5.10)

By definition of F! it is sufficient to consider sets of the form A = A; x Qg,_where
Ay € FL, and (5.10) now follows again by switching between G() and G(¢9) and

8

exploiting that G(?9) is a Q;-martingale:

Bo[Layenn(G0) — GLO)] = B | G010 (00)10)(G1(0) - Gu(9)

B, [2?3111,41@1)(&(19) c:s(ﬁ))]

This ends the proof. O

The following result deals with the structures of the minimal and the variance op-
timal martingale measures for X.

Proposition 5.9 Let_Pl and ]51 denote the minimal and the variance optimal mar-
tingale measures for X.

1. The minimal martingale measure P for X s given by P=P QP,.

2. The variance optimal martingale measure P for X is given by P = P, @ P,.

Proof: By definition, the minimal martingale measure for X has density on F!

dp,
=& (- [rant)
dP1 T
and similarly, the minimal martingale measure for X can be written as
dP - dP,
- 8(—/AdM> :8(—/AdM) 1=
dP T T dP,

dP, dP, _ d(p1®P2)
dP, dP, dP ’
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where the second equality follows by using the local character of the stochastic
integral. Now for any F' = F} x F, with F}, € F! and F, € F?, we find that

. dP ap,
P(F) = P = / 1dP; | P
(F) v dpP" <F dpP, 1) ?

= /F2 (/Fldpl)dpzzpl(Fl)P2(F2)'

This proves that the measures P and P, ® P, coincide on F' @ F 2 and hence they
will also coincide on the completed o-field F.

The density on F* for the variance optimal martingale measure P, for X admits the
representation

dP, T

— = dX
for some ¢ € (0,00) and ¢ € O(IF'). Now define a measure P* on (Q, F) by
P* = P, ® P,. By calculations similar to those in the proof of Lemma 5.6, it is seen
that any (IF', P;)-martingale on (£2;, F') can be extended to an (IF, P*)-martingale
on (Q, F'). And so, P* is a martingale measure for X, see the proof of Lemma 5.7.
Furthermore, the density for the measure P* can be written as

dpP* dP1
dP  dP,

1—c—|—/ gtht_ch/ ¢, dX, P-as., (5.11)

where (w1, wy) = ((w), and where we have used the local character of the stochastic
integral. Furthermore, since { € ©(JF!) Lemma 5.8 implies that also ¢ € O(JF) and
hence by Schweizer (1996 Lemma 1), we have that P* = P. O

As a corollary to Proposition 5.9 we have the following:

Corollary 5.10 Assume that the martingale measure for (X, IF') is unique. Then
P=P.

Proof. Denote by P the unique martingale measure for (X,F"). Then P, = P, =
Py, and hence, by Proposition 5.9, P = P. O

As another consequence of Proposition 5.9 we see that due to the independence
between the two sources of risk the minimal martingale measure and the variance
optimal martingale measure are not affected by the choice of filtration JF2 on the
space (g, F?, Py) for the additional risk, that is, the density does not depend on
the filtration JF2. This allows us to vary JF2 without affecting these two martingale
measures, and in particular we see that the variance optimal martingale measures
under F! and IF coincide.

The next result states that completeness for (X, IF'1) is preserved when X and IF1
are embedded in the product space.
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Lemma 5.11 Assume that (X, F1) is complete. Then (X, IF*') is complete in the
sense that for all H € L*(P, F}) there exists a process 9% € ©(IF*') and Hy € IR so
that

T
H= H0+/ 9HdX,.
0

Proof: Let H € L*(P, F}) and introduce the random variables

H' = E[H | F;®{0,Q},
H” = / Hl(wl,WQ)dPQ(LUQ).
Q

2

We show that H = H' = H" P-a.s. and then use that H" does not depend on wy,
so that H" € L?(P,F;). Hence, H" admits a decomposition as a constant plus a
stochastic integral with respect to X.

We first verify that H = H' P-a.s.: Since Fr = (F}®{0,Q}) VN, we have by the
F}-measurability of H and the definition of H' that

H =E[H|(FL®{0,)}) VN]=E[H|FL® {0,0)}] = H P-as.

To see that H' = H" P-a.s., note that by definition H' is F}- ® {0, {2, }-measurable.
Thus for fixed w; € Qy, H'(w1,.) is {0, Qs }-measurable, that is, constant. In partic-
ular, this implies that H' = [, H'dP,, so that H' = H".

Since H" € L?(P,,F}), the completeness assumption implies that there exist a
constant H! and 97 € O(FF") so that

T _ _
H' = Hy+ [ 98d%,.
0
Define Hy, := H{/ and 9 (wy,wy) := 9% (w;). Since H = H" P-a.s., we now find that
T _ _ T
H=H"=H+ [ 0%d% =H+ [ 08X, Pas,
0 0

where the last equality is a consequence of the local character of the stochastic
integral. Since 9" € ©(IF) this ends the proof. O

The following result will play an important role in the derivation of upper bounds
for the fair premium of insurance contracts. This bound will correspond to the
situation where the hedger receives no information about the additional source of
risk before the terminal time 7.

Proposition 5.12 Let P} be a martingale measure for (X, IF1), and define a mea-
sure P* by P* = P} ® Py. Then for any H € L'(P, Fr) N L'(P*, Fr):

Ep- [H|F}] =Ep [H|F}] as. (5.12)
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This result states that the two conditional distributions P FL and P|*
for the random variables H = 1p, F € F, (5.12) specializes to

"1 coincide, since
T

P*(F | Fr) = P(F | Fp).

This property is intuitively reasonable, since the two measures P = P, ® P, and
P* = Pf ® P, are product measures, which differ only by the choice of measure on
the space (Q, F'). Thus, if we condition on F}. (the financial uncertainty), then
(basically) only the additional uncertainty remains, and this additional source of
risk is not affected by the change of measure from P to P*.

Proof of Proposition 5.12: We verify (5.12) by a monotone class argument; consider
the multiplicative class

M = {H(l)H(Q) ‘H(i) is Fr-measurable and bounded, i = 1, 2} .
Clearly, M is multiplicative, since for any H, H € M, we have that
HH = (HVH®)(H'B?) = (HOEY) (H*H8?) e M.
Now, let H be the space of bounded random variables satisfying (5.12), that is
‘H = {H | H is bounded, Fr-measurable, and satisfying (5.12) }

It is clear that H is a vector space over IR and that 1o € H. Furthermore, H
is closed under monotone convergence for bounded elements in the sense that for
H, € H with 0 < H, < Hy, < ..., H, — H where also H is bounded, we have that
H € H. To see this, use monotone convergence twice:

n—0o0 n—oo

Bp |lim Ha| 7| = Jim Ep [Ha|7}] = lim Ep- [Ha|7}]
n—o

— Ep [hm H, ‘}“}] ,

where the second equality follows from (5.12). Furthermore, we see that M C H,
since for any H = HVH® ¢ M

Ep [H|F}| = Ep[HOH®|F}| = HOEp [H® |F}]
= HYE,[H?] = HV / H®dP,dP, = HVEy, [H?).
Q1 Jo,
where we have used that H") is F}-measurable in the second equality; the third
equality is a consequence of the independence between Fr and Fz. Similarly, we

obtain for P* = P/ ® P,:

Ep- [H|F}] = HOEp. [H®] = HO / HPdP,dP;
Q2 JQo

- HW ( / de) ( / H(Q)sz):H(l)Ep_z [H®].
(951 Qo
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Now the monotone class theorem gives that G C H, where G is the set of all bounded
random variables that are measurable with respect to the o-algebra

T=o0{(HeB)BeB(R), Hec M}.

Since, by definition, Ff = (F+ ® {0, %}) VN and F2 = ({0,%} @ F2) VN, we
find that Fr = F}. vV F2. Furthermore, since F& C T, 4 = 1,2, we conclude that H
contains all bounded Fr-measurable random variables.

For general (non-bounded) H € L*(P, Fr) N L*(P*, Fr), define H,, = (H Am) V
(—m), and use dominated convergence to verify that H satisfies (5.12). This follows
by noting that the sequence H, is dominated by |H| and hence, by dominated
convergence:

i B 11 [71] = e g, 1 73] 0

In the rest of this section we consider the problem of determining the decomposi-
tion (2.7) for some special choices of filtrations on the space (9, F2). In particular,
we investigate the two “extremes” where (a) the filtration for the insurance risk is
trivial and (b) all information concerning the insurance risk is revealed at time 0.

The trivial case ~ B
We consider briefly the situation, where the filtration 2 = (F?)o<i<r is given by

- 0,0}, t<T,
ff:{ ;‘2, ! t=T. (5.13)

Remark 5.13 In this case, the filtration IF' is given by

F, :{ (ﬁt1®{®;92})v/\/’, t<T,
(Fr® FAH VN, t=T,

and hence F; = F} for t < T. Thus, Remark 3.2 shows that P(IF) = P(F"). O

As mentioned above, (5.13) will correspond to the situation where the reinsurer
receives no information concerning the additional risk during the time interval [0, 7).
Under this assumption, we have the following result for the decomposition (2.7):

Theorem 5.14 Assume that IF? is given by (5.13) and that the model (X, IF!) is
complete. Then, for any H € L*(P, Fr), the unique decomposition (2.7) is given by

N" = H—Ep[H|F;| = H-Ep [H|F}], (5.14)
and Y7 is determined such that
Es [H \f}] = Hy + /OT I dX,, (5.15)

where Hy 1s some constant.
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Thus, in the situation where (X ,IF1) is complete and no information concerning
the risk from the space (€, F?) is available before time 7', the projection of H on

the space IR+ Gr(O(IF)) is exactly equal to (the projection on IR+ Gr(©(IF)) of)
Ej[H|F}], which is an Fj-measurable square-integrable random variable and hence
an attainable claim by the completeness assumption.

Proof of Theorem 5.14: The second equality in (5.14) is a direct consequence of
Proposition 5.12. Note that since (X, ) is complete, (X, ") is complete by
Lemma 5.11, and hence the Fj-measurable random variable Es[H |F}] can be
uniquely represented as a constant plus a stochastic integral f(;‘r VHdX, where 91 €
O(IF') C ©(IF). Also note that by Proposition 5.12, we have that

En [V [71] = b [( B0 1 7)) [71] = B (1 B [1]71]) 73] =0

so that E[N] = 0. Hence, we only need to verify that
T
Ep l/ 9dX (H-Ep [H ‘]—'%])] =0, (5.16)
0

for all ¥ € O(IF). This follows immediately for ¥ € ©(IF'), since f§ ¥dX is then
Fi}-measurable. However, by Remark 5.13 above, P(IF) = P(F"), so that [j 9dX
is actually Fi-measurable for any 9 € ©(IF), and hence the left side of (5.16) equals

o[ )0 o)) -

which completes the proof. O

The general case

In the general case, the decomposition (2.7) is not determined by Theorem 5.14.
Even if (X, IF'!) is complete, the decompositions may not be on this form. This can
be seen from the following example.

Example 5.15 Let ! = FY" and F? = F"?, where W and W® are in-
dependent standard Brownian motions on (£, F), and assume that X = W),
Consider H on the form

T T
H= / 92 aw V) 4 / I aw @,
0 0

where 9@ is F’-predictable, bounded and simple. The solution (5.14)—(5.15) of
Theorem 5.14 is

N = H-Ep[H|F}|=H-Ep[H|F}]

T T
_ / (0P — E[9P])dw; + / 90 g @,
0 0
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Now let 9* = 9@ — E[¢®)]. Then, ¥* is JF-predictable and bounded, hence ¥* €
O(IF), but

T T T T
El / 9t dw NH] — EV 9; AW (/ 9 dX, + / ﬁg”th‘”)]
0 0 0 0

- 5[ wira).

which differs from 0 if 9® is not constant P ® Ajo,71-a.8., where Agr) denotes the
Lebesgue measure on [0,7]. O

The “complete” case B
We get another extreme case, when IF? is defined by

F=FL0<t<T, (5.17)

which implies that F; = F} V F#. Thus, this is the case where all information about
the additional risk is revealed at time 0, that is, the filtration IF' is constructed by
an initial enlargement of IF'*. Under this assumption we can use results on initially
enlarged filtrations to show the following result:

Theorem 5.16 Assume that IF? is given by (5.17) and that the model (X, IF') is
complete. Then any H € L*(P, Fr) admits a unique decomposition

- T
H = i, +/ IR X, (5.18)
0

where Hy € L*(P, F) and 9 € O(IF).

Proof: By Lemma 5.11, (X, IF') is complete. Since 7 and F# are independent,
Theorem 3.9 of Amendinger and Becherer (2000) now shows that the model with
the initially enlarged filtration is also complete. O

Remark 5.17 It is noted that Theorem 5.16 is not really a statement about com-
pleteness in the usual sense since H is allowed to be Fj-measurable and hence is
not necessarily constant. O

6 Simple bounds for the fair premium

The results obtained in the previous sections can be used to derive simple bounds
for the fair premiums under the financial valuation principles reviewed in Sec-
tion 4. We apply the product space set-up from the previous section and keep
the filtration JF'! from the financial market fixed. Throughout this section, we
work under the assumption that the financial market is complete, that is, the
model consisting of (0, F', IF', P;) and X is complete. In Section 3 it was shown
that the hedging error for two different filtrations IF° C IF satisfies the inequality
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E[(N#°)?] = Jy(FF°, c°) > Jo(IFF,c?) = E[(N)?], where N#:° NH ¢t and ¥
are the quantities given in (2.7). In general, ¢ # c:°. However, in the present prod-
uct space framework they coincide, when the two filtrations differ by the choice of
filtration for the insurance risk; see the remark following the proof of Corollary 5.10.
Upper and lower bounds for the premiums arising from all possible choices of filtra-
tion on the space (g, F?) for the insurance risk are now determined by introducing
a minmimal and a mazimal filtration on this space. The upper bound for the fair
premium is obtained for the minimal filtration, which corresponds to the situation
where the seller of the contract does not receive any information about the insur-
ance risk; the lower bound is obtained in the case where all information about the
insurance risk is revealed immediately after the the contract is sold.

It is clear that for any filtration 2 on (€2, 72) such that F# = F2, we have that
&° C IF? C & where @&° is the trivial filtration given by

o {0,9,}, t<T,
9=\ R i=T

and where the filtration & is defined by G, = F2, for all t € [0,7]. Here, G° is
the minimal filtration on (Qy, F?) which satisfies the condition G = F?; @ is the
maximal filtration on (€, F2?) with Gy = F2. Introduce also the corresponding
complete and right-continuous filtrations @° := F! @ G° and & := F! @ @, see
Remark 5.5. By the results presented in Section 3 we hence find that the upper
bound for the financial variance principle is obtained for the minimal filtration &°
whereas the lower bound is obtained for the maximal filtration &. Using the result
in Theorem 5.14 and the formula for conditioning for variances, we get the upper
bound for the fair premium under the variance principle:

V1maz(H) = E[H]+ aVar[H — E[H | F}]|
E[H] + aE[Var[H | F}]]. (6.1)

For the lower bound, note that by Theorem 5.16 (X,&) is “complete” and hence
any H € L*(P, Fr) admits the unique decomposition
- T
H= H0+/ 91 dX,,
0
where Hy = E[H | Go]. This can be rewritten as

T -
H=:c" +/ O dX, + LEP,
0

where ¢ = E[H] and LtH’I5 = E[H | Gy| — E[H], t € [0,T]. Thus, by Corol-
lary 2.8 applied for non-trivial initial o-algebra Gy (see also Pham, Rheinlédnder and
Schweizer (1998, Corollary 9)), we find that

E[(Z5""))]

T(@) = h(@, ") = BN = =i

(6.2)
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Furthermore, by the independence between Z7 and G, we find that
E[H] = E[E[H | G]] = E[E[H | Go]],
hence
Bl(L"")?] = B(E[H | Go] — B[H))?] = Var[B[H | Go]].

This shows that the lower bound for the fair premium under the variance principle
is
Var[E[H | Go]

BlZ3]
Note that Gy = (N! ® F?) V N, so that the loading is related to the variance of

the term E[H | N!' ® F?], which can be interpreted as the price for H given the
complete information about the future development of the insurance portfolio.

Vimin(H) = E[H] + a (6.3)

Remark 6.1 We briefly compare the premium calculation principle (6.3) with the
approach proposed by Brennan and Schwartz (1976) for valuation of unit-linked
contracts; see e.g. Section 5 in Chapter 2 for a detailed description of their approach.
Using Proposition 5.12, we first obtain that
E[H] = E[E[H | Go]l.
Thus, (6.3) can be rewritten as
~ a

v1,min(H) = E[E[H | Go]] + E[Z2]
and this result can be given the following interpretation: The lower bound for the fair
premium is obtained by first computing E[H | Gy, which is the unique market price
of H given the complete information about the future development of the insurance
risk, and then using the traditional variance principle with loading parameter a,in =
a/(E[Z2]) < a on E[H | Gy]. Thus, (6.4) is a relatively simple combination of pricing
by no-arbitrage and the actuarial variance principle.

Var[E[H | Gol], (6.4)

The valuation principle of Brennan and Schwarz (1976) consists in first replacing
the claim H by H' = E[H | F}]| and then pricing this attainable claim H' by no-
arbitrage arguments. This procedure neglects the insurance risk and is based on
the assumption that the insurance risk is diversifiable, i.e. it can be eliminated,
for example by increasing the size of the insurance portfolio. In particular, this
approach is widely used for the pricing of unit-linked life insurance contracts, where
the number of policy-holders is typically large. O

For the standard deviation principle, the corresponding bounds are

Vomaz(H) = E[H]+a\/1— Vaz[f 1] \/E[Var[H | Fr]], (6.5)
vomn(H) = ElH]+ayf1 - VaZ[Z)ZT]J Var[g{; % Goll 66

We summarize these results by:
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Theorem 6.2 Assume that the financial market is complete and that Assump-
tion 5.3 is satisfied. For a claim H € L?(P), and any filtration IF2 for the insurance
risk, the fair premium v;(H) satisfies

Ui,min(H) S UZ(H) S vi,maz(H)a
i = 1,2, where v, min and V; may are determined by (6.1), (6.3), (6.5) and (6.6).

For a given choice of filtration for the insurance risk, the crucial decomposition (2.7)
may be complicated, and it may therefore be difficult to determine the corresponding
fair premium. In this situation, the bounds given by the above theorem could be
used to provide important information about the fair premium. Furthermore, these
bounds should be relatively simple to compute since they involve only conditional
expectations and variances; this observation motivates the title of this section.

Remark 6.3 We give a simple direct argument, which shows by use of the Cauchy-
Schwarz inequality that v;me,(H) is not smaller than vj m:,(H). We restrict our
attention to claims of the form H = H(Y H® where HV H® ¢ L2(P), HY is F}-
measurable and H® is Go-measurable; the next section is devoted to a separate study
of claims of this form. By Lemma 5.4, 7. and G, are stochastically independent
and hence

E[Var[H | FL] = E [(H(l))Q] Var [H®)] |
and similarly, since Zr is F}-measurable

Var[B[H | Gol] = Var [HOEZr HOJ| = Var [H®] (B [ZrHO])’.

Now, by the Cauchy-Schwarz inequality, we find that

(E[2en)" < | ()] e [(2)].
which confirms that indeed v; oy (H) > Vimin(H). O

We end this section by determining the process ¥ appearing in the decomposi-
tion (2.7) for the minimal and maximal filtrations in the case where the claim is of
the form H = HOH®) | where HY, H® ¢ [2(P) N L*(P), HY is F}-measurable
and H® is Gy-measurable; see also the above remark. Since (X, IF'1) is complete by
assumption, HM = Hél) + fOT 5{{(1)dXt for some constant Hél) and some predictable
process £# which is such that [£#dX is a square-integrable P-martingale. For
the minimal filtration, Theorem 5.14 gives that

5 5 T
i) = Bl (0 + [ e ax,)

8 T .
= EH®HY +/0 (E[H(Q)] tH(”) dX,
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so that in this case 9¥ = E[H®]¢#" . For the maximal filtration, the decomposi-
tion (5.18) of Theorem 5.16 is

HOH® = gOF® 4 / ' (H@)@H(”) dX;,
0

so that in this case 97 = H@gH"

7 A special class of insurance contracts
We consider in this section the following class of fairly general reinsurance contracts:
A={HOH® |HD € 1*(F}, P)n L*(F}, P),i=1,2}. (7.1)

The product form H = HYUH® of the claim is convenient under the product space
model where H) and H® are stochastically independent (under P) and where
H® can be viewed as a purely financial derivative and H® as a pure insurance
contract. The class A is a rather simple subset of L?(Fp, P) N L*(Fr, P), but still
rich enough to include for example unit-linked pure endowment contracts, where an
amount depending on certain stock prices is payable at a fixed time provided that
a policy-holder is still alive at this time. This can be obtained by considering the
situation where the probability space (Qg, F2, P,) carries the random life-time T}, of
a policy-holder. Then, H™ and H® could be chosen such that H® is some function
of the path of the stock and H® = l{r,>1y- Other examples of contracts included in
the class A are knocked in/out stop-loss contracts, that is, stop-loss contracts which
are payable only if some specific financial event has occurred. This event could for
example be the value of the stock dropping below some critical value.

7.1 Basic properties

The following simple argument shows that the o-algebras Fi and FZ are indeed
stochastically independent under P. Recall that

Fro= (Fie{0,20}) VN,
o= (0otef) v

As in the previous sections, P = P; ® P, is the variance optimal martingale measure
for X. We note that by Lemma 5.4 the o-algebras F+ and F2 are stochastically
independent under P, and similarly under the product measure P = P, ® P5. As
an immediate consequence of this result, we find that the P-martingales associated
with such H® and H® are stochastically independent under P and under P. This
is formulated as a lemma (we write E for E3):

Lemma 7.1 For any HY € L*(Fi, P) define P-martingales N, N® and N by

N =E[HO

7, (7.2)



INDIFFERENCE PRICING OF INSURANCE CONTRACTS: THEORY 133

i=1,2, and N,=E [H(l)H(Q)‘ .7-}] Then N and N® are stochastically indepen-
dent (under P and under P), and N = NON®).

Proof. Since IF' and IF? are stochastically independent under P, we find from
Lemma 5.4 (part 3) that

N = BHO | F] =BHO | F} v F) = BHO | F),

P-a.s. Since IF'', IF? and IF satisfy the usual conditions, all processes can be chosen
to be right-continuous. This shows that N (1) and N® are stochastically independent
under P and under P. By applying the independence again, we finally obtain

N, =E[HOH® | 7] =E[HY | FIEH® | F) = NN, O

The above lemma is used for the derivation of the Galtchouk-Kunita-Watanabe
decomposition for NWN®@) . Moreover, in the next section we use extensively that
N® and N® are stochastically independent under P in order to obtain more explicit
results. As a consequence of the above lemma, we also obtain that the martingale
N® is not affected by the choice of filtration on the space (23, F2) for the additional
risk.

Now for H € A, define an (IF, P)-martingale by V = E5[H | IF]. By Lemma 7.1, V/
satisfies

Vo= NON®,

where N and N® are given by (7.2). Since X is continuous, the Kunita-Watanabe
decomposition under P for NV exists, and we write

t A N
N = N+ [ el OPax, + LT, (7.3)

where NV is a constant, ¢#F ¢ O(F) and L7 is a P-martingale which is
strongly orthogonal to X. Here we have also used that H (1) is stochastically inde-
pendent of F¢ under P, so that NV = E[HY | 5] = E[HY]. We can now express

the Kunita-Watanabe decomposition for V' in terms of (7.3).

Lemma 7.2 The Kunita- Watanabe decomposition for V under P is given by
v, = E[H]-l—/ enPyx, + LIP, (7.4)
0

where
fH(l)’PNEZ),

Lt = [NOAN® & [ NOariP o (B | 5] - BlH]).
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Proof. By the product rule applied to NWN® and the strong P-orthogonality
between N and N we find

NON@ — NON®D 4 / NP GND 4 / NOIN®D 4 [NO N

= NN+ [ NOrOPax 4 [ NOaraOP 4 [ NOaNe,

Here, X and L¥ WP are strongly P-orthogonal by definition; furthermore, N® and
X are strongly P-orthogonal as a consequence of Lemma 7.1 (and this implies that
also N@ and LEP are strongly P-orthogonal, since LEP = NO) — [ ¢HWPgx
N, In addition, we note that

NONP = B[HW | F)B[H® | Fo) = B[HVH® | 7)) = BIH | F),
so that the process Y defined by
Y, =Y, := E[H | %] — E[H]

is also strongly P-orthogonal to X. Thus, (7.4) gives a decomposition of V in terms
of two local P-martingales [ §H’P dX and LEP , which are strongly orthogonal under
P. Since X is continuous, we can apply the results of Ansel and Stricker (1993),
where it is shown that there exists a unique Kunita-Watanabe decomposition for V
with exactly these properties, and hence, (7.4) is the Kunita-Watanabe decomposi-
tion for V. As in Rheinlinder and Schweizer (1998, proof of Theorem 3), we finally
note that by the continuity of X, [X] = (X) and 0 = (X, L*") = [X, L*"], and
this implies that

V] = [ €Pax]+ [L5F) + [ [ ¢nPdx, L17]
— /(fH’P)trd[X]fH’P + [LH,P] + /fH’Pd[X, LH,P]
— /(gH’P)tTd<X)fH’P + [LH,IS]'

Since H € L*(P), the P-martingale V is in the space M?(P), that is, supy<,<7 |Vi| €

L?(P), and by the Burkholder-Davis-Gundy inequality this means that [V]r €

LY(P). Thus, [f¢%PdX],, [L#F); € LY(P), which implies via the Burkholder-
Davis-Gundy inequality that the local P-martingales [£%FdX and LEF are true
P-martingales. This ends the proof. O

We use the above lemma to obtain the following expression for the hedging error
Jo(IF) := Jo(IF, c™), where ¢ = E[H] is the optimal initial capital.

Theorem 7.3 Assume that H € A and that X is continuous. Then
[ /T 1 2 ~ | (T 1 2 z
_ = @ 2) = (2 HOL,p
J(F) = B V@ 7 (NP) dIv ]5] +B [/0 7 (N®) dlz ]s]
. - 2
B (Bl | 7o) - ElH))]

! E (]
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Proof: First note that
[LH,P] _ [LH,P —LOH’P] _ [/ N£2)dLH(1)’ﬁ+/N£1)dN(2)]

= [(VO) dm O+ [ (NO) dNe),

where the third equality follows by using that N and~LH(1)’P are strongly P-
orthogonal (see proof of Lemma 7.1), so that [N®, L#"P] = 0. The result now
follows by using Corollary 2.8 in the case where the initial o-algebra is non-trivial,
see also Pham, Rheinldnder and Schweizer (1998, Corollary 9). O

7.2 A comparison of hedging errors

In particular, if the model (X, JF1) is complete and F; is trivial, then Theorem 7.3
says that the hedging error Jo(F) is

niE) = B[ [7 5 (N0) e, (75)

In this section we will ask the question: How does the quantity Jo(ZF') depend on the
choice of filtration on the space (§2,, F?) for the additional risk? More specifically, we
will fix one filtration JF'! on the space for the financial assets and consider different
choices of filtrations for the additional insurance risk. For H € A, where A is
defined by (7.1), we give a description of the change in the quantity Jo(F') when the
filtration on the space (€, F?) for the additional risk is changed. We consider two
filtrations on (€, F2) denoted by IF > and IF 2’0, respectively, and we shall assume
that F>° C E_WZ, that is F»° C F?2 for all 0 < ¢t < T. For simplicity, we assume that
Fy° and F? are trivial and that F? = F° = F2; the last assumption says that
the two filtrations contain the same information at the terminal time 7". Define the
corresponding product space filtrations F' and [F° as in Section 5, see in particular
Remark 5.5. By Proposition 5.9, the variance optimal martingale measures P and
P° under FF and F°, respectively, coincide, that is Z = Z°. We consider only the
situation, where the model (X, IF!) is complete.

In addition to the P-martingales N and N defined by (7.2), we introduce
(IF°, P°)-martingales N given by

N° .= Ep[H® | F°,

i = 1,2. First note that since P and P° coincide, N®° = E[H® | IF°], where we
have written E for E5. Furthermore, we see from the proof of Lemma 7.1 that

N = BHO | £ = BHO | 7] = BHO | F] = N, P-as.

so that N = NO: henceforth we only write N®). Now, by Theorem 7.3, the
difference between the hedging errors Jo(FF') and Jo(JF°) can be written as

R = a) = B [1 o (80 a8 | [T 5 (V) awee
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~ T 1 2
_ i [ [ () a (e, - [N@]s)] |
We have the following result for the variance processes of N and N
Lemma 7.4 Let N® and N®»° be defined as above. Then
B [[N(Q)"’]t] <E[N®)], fortelo,T],
with equality fort ="1T.

Proof: Since N® and N®-»° are square-integrable, we obtain from the definition of
[N®)] that

V@)= (N@)° = ()" =2 [ NPan®
and similarly for [N(?°]. Hence
B[IN®e]] = E'(Nt(”@)] (N&)’ —2E [/N dN()]
(1| 7)) - (v7)°
= E:(E[E[H‘”\EH )] - ()’
(B[22 7)) - (v) =B [y,

where the second equality follows by using that N®»° is square-integrable. The
third equality follows by the law of iterated expectations, and the inequality is a
consequence of Jensen’s inequality for conditional expectations. Since G} = Gr,
N§2)’° = Ng), and hence the equality for ¢t = T follows immediately. O

Il
Fﬁ

VAN
sk

The next lemma allows us to change the order of integration in (7.5) in the following
“operational manner”:

D VOT Zi (Ns‘i))Qd[N(?)]s] - /OTE

S

S

O e

This result is closely connected to the independence (under P) between N®) and
the pair (N® N®») which was established in Lemma 7.1.

Lemma 7.5 Let A and B be two stochastic processes which are stochastically in-

dependent under P and assume that B is increasing. Assume furthermore that
Br — By € L'(P) and that

A= sup | A, |€ LY(P).

0<u<lT

Then

E l/OT A, dBu] - /OTE[Au]d(E (B.)). (7.6)
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Proof: Since B is increasing, so is the function u — E[B,], and hence both integrals
in (7.6) exist as Lebesgue-Stieltjes integrals. In particular, for any sequence of

partitions 0 = t(()n) <fm<... < tgg()n) =T of [0,7] so that

: (n) _ 4(n) |_
A sup 47 — 15 [=0,
we have that

T N
/ A, dB, = lim > AMAB™, P —as.,
where A := Ay and AB{" := B, — B, . Note that
* i i—1

N N™
S AMABY <3 ATABY = Ay(Br — By),
i=1 i=1
which is integrable since the two factors By — By and A7 are stochastically inde-
pendent and integrable by assumption. Thus, by dominated convergence and the
independence between A and B we get

T N
E[ / AudBu] - ElleZAgﬁ)lABg")]
0 G|

Nn
= limE lz A,(")lABf”)]

n—00 4
=1

Nn

= Jm e B fas]
=1

= [BlAJdEIB).

Here, the second equality follows by dominated convergence and the third equality is
a consequence of the independence between A and B; the last equality follows since
u +— E[B,] is increasing, so that the integral with respect to E[B] is a Lebesgue-
Stieltjes integral. O

Define an (IF, P)-martingale Z by

Using Lemma 7.5, we obtain that

w(r) = B|[" 5 (V) awe

)
- F / N inee
(Z)I/Z

_ T
ZT/d
0
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/ ' Z.d / (g)%iQdN(Q)"’] ]
_ B l/OT% (NS(_))Zd[N(z),o]S]
= [e[Z )] ate i),

where the third equality follows by the optional projection theorem, see He, Wang
and Yan (1992, Theorem 5.16), since the process [(Z)~/2NPdN®= is of finite
variation and since E[Zp | F] = Z;. The last equality follows by Lemma 7.5
provided that

= E

V)

sup (é (N§£))2) e L(P). (7.7)

0<s<T s

We have now shown:

Corollary 7.6 Assume that (7.7) is satisfied. Then

Jo(IF) = /0 "B lg (NQ))Z] d (E [N®=],]).

S

Remark 7.7 The condition (7.7) is satisfied if for example H") € L?*¢(P), for
some € > 0. To see this note first that N is continuous since (X, F') is complete
and since X is continuous. Furthermore

Zs ()2
Z ()

S

(ElHO | 7))’
E[DHO | 7]\

(7

E[DHY | 7))’
7.7,

(EDH® | 7))’
E[D | 7]

< E[(HWM)?| F,] = L,,

NN NN

oy

where the inequality is a consequence of the Cauchy-Schwarz inequality. It now
follows by Doob’s inequality (see e.g. He, Wang and Yan (1992, Theorem 2.49))
that a sufficient condition for supy«,«r Ls € L*(P) is that HY) € L?*¢(P), for some
e > 0; another sufficient condition is that supy,<r E[Ls (log(Ls))*] < oo. O

The next lemma allows us to derive the final comparison result for the hedging
errors.
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Lemma 7.8 The function

5+ f(s) = F [% (E[H® \fsl]ﬂ

S

18 1ncreasing.

Proof: Consider first the martingale case, i.e. the case where P = P, so that Z =
Z = 1. By Jensen’s inequality for conditional expectations we get for s < t:

7)Y

— B|(B[E[HO|7]

fs) = E|(B[HO

7))

IA
T
~—~
eshl
T
=
)
~—
)
I
~
—~
=

E
In the general case, define a new measure R by

dR 1 /-2

e G
where ¢ = E[(Z7)?]. Note also that by the abstract Bayes formula and the indepen-
dence between IF'! and IF?
Bl 7] _

E[zlm] a1l

Zt = EI:ZT‘FtI]:

(Recall that Z = Zr and Z, = E[Zy | F]). Now use this result together with the
abstract Bayes formula again, to get

f(s) = B|Z(BE[HV|F! 2]

HO 2
= CER <ERlZ f;])
T

It now follows by calculations similar to the ones used in the martingale case that
f is increasing. This completes the proof. 0.

Finally, the above lemmas allow us to express the difference between hedging errors
in an alternative way and to quantify the increase in risk which occurs when the
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filtration is reduced. This is possible provided that (7.7) is satisfied, that is, provided
that the process A defined by

a=F @02

satisfies A} 1= supy o |As| € L'(P); see also Remark 7.7.

Theorem 7.9 Assume that (7.7) is satisfied. Then
Jo(IF°) — Jo(IF) = /0 " (B[IN®1,] - E [[N®),]) d(E[4,]) > 0. (7.8)

Proof: The inequality in (7.8) follows immediately, since the function s — f; = E[A/]
is increasing by Lemma 7.8 and since the integrand is non-negative by Lemma 7.4.
The equality follows by applying the change of variable formula. First introduce the
increasing functions g, := E[[N®],] and ¢° := E[[N®=],]. By Corollary 7.6 and the
change of variable formula we now find

)~ 1) = [ fodgt~ [ fodg,= [ fod(e:~ g)
= (g5 —on)fr = (65— 0o~ [ (62— 9u )y
- /OT(gu - ng)dfua

since g5 = go and g5 = gr. Furthermore, since X is continuous and (X, IF!) is
assumed to be complete, f is continuous, so that we can replace (g,— — go_) by

(9u — g2)- O

Remark 7.10 We establish a connection between Theorem 3.5 and the above The-
orem 7.9 by demonstrating how the general results from Section 3 specialize to the
ones obtained in the present set-up, since this is not immediately clear. For sim-
plicity, we only consider the case where X is 1-dimensional, that is, we take d = 1.
Since we are within the framework of Section 5, the variance optimal martingale
measures under IF' and IF° coincide by Proposition 5.9, and so Corollary 3.8 states
that

Jo(IF°,0) — Jo(FF.0) = B [ / ! %gfd[X]] , (7.9)

0

where

p=¢"— ¢t %(V —V°) = (5”” - %NE”) (N® —N®°) (7.10)

and where the second equality follows from Lemma 7.2 and the fact that V =
NMON®  As in the proof of Lemma 7.4, we also note that

E [(NP _ N§2)’°)Z] —E [(Nt‘” - N§2)’°)2] =E[[N®), - [N®°]]. (7.11)
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We impose the following additional assumptions:
[HY|, [H?| and |§H(l)\ are bounded,

T 7 T 72 1
/0 }d[x], /0 : d[X], and sup — € L'(P).

Z3 0<s<T 2y

In particular, this is sufficient to guarantee that

TZ (g € o i
/O > (g N ) d[X] € L}(P),

and that ¢#% NO N®@ N@- are bounded by some constant C; these conditions
ensure that Lemma 7.5 can be applied to (7.9). Using the optional projection
theorem, (7.10), Lemma 7.5 and (7.11), we can hence rewrite (7.9) as

Jo(IF°,0) — Jo(IF, 0)

—E|Z / "1 2arx

- T 0 ZQ

Tz o o ’ ) 2),0
E /0 T<gH ——~N> (N® — N© )Qd[X]]

Z Z
/0 t g (gH“) - NS”) 2 d[X]] ) .

In order to verify that this is identical to the result given in Theorem 7.9, we only
need to show that

~ 2
Zy cne  [TPL (om0 G ) _
Z (Nt ) /0 Z (E ZN— > d[X]] - KOa

\NIaY

= /OTE [[N(Q)]t - [N(2)’o]t] d (E

E

t

for all t € [0, 7] and for some constant Ky, or, equivalently, that

2
L vz _ | % (gH‘“ - %N@) d[X]] — K, (7.12)

Zy

E

Now apply the It6 formula to %(N (1)2 to obtain (after some rearrangement of terms)
N2 N(l) 2 N(l) N(l) 2
( ~) — (%)+/ 9 :é—H(l)_(*)C dx

N /i (51{(1) N 5) d[X]. (7.13)
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Here, the last term on the right side of the equality cancels with the second term
in (7.12), whereas the second term is a local P-martingale; to see that it is indeed

a true P-martingale, note first that

N HD (NSI))2~ T e L eee) N ’
[/(225 % ¢ dXT—/O(N)? 27" — 22-C | dlx].

Hence
(1) (1) 7\ 2
i [( / (2NZ: i _ (NZ:2 )25> i ) ]
Ir

—E TN(1)2Z 9 HD) N 2dX v
=B (| [ v 26" - =C) dix]

72
</0T§(2€H(1))2d[X]>1/2 + (/OT%(NZ%))ZEQd[X]) 1/2
(5) (7).

T 772 1/2 1/2
/ ﬁd[X | sup i
o 73 0<t<T 4

which is finite by Cauchy-Schwarz, since all factors are integrable by assumption.
This implies via the Burkholder-Davis-Gundy inequality that the local P-martingale
in (7.13) is a true P-martingale, and this completes the proof of (7.12). O

< CV2E

< 2V2C%E

Y

+V/2C°E




Chapter 6

Indifference Pricing of Insurance
Contracts: Examples

(This chapter is an adapted version of the second part of Mgller (2000))

In this chapter, we consider several examples of insurance contracts which will be
evaluated by the financial variance principle. We set out by keeping the assumption
of independence between the pure insurance risk and the financial risk. The chapter
is organized as follows. We first mention in Section 1 some well-known results
that are related to the standard Black-Scholes model and which are needed for the
subsequent analysis of our examples. In Section 2 we then consider the situation
where the additional risk is modeled by a homogeneous Poisson process N. Explicit
formulas are given for the fair premium and the optimal trading strategy under the
financial variance principle for the claim H = Ny X7, where X is the discounted
price process associated with a traded asset. In a simple numerical example, we
find that the relative difference between the upper and lower bounds for the fair
premiums is less than 5 per cent for some specific choices of parameters. Section 3
is devoted to a study of stop-loss contracts with barrier. With these contracts, a
stop-loss cover on the pure insurance risk is payable contingent on the occurrence
of some event related to the financial market. In Section 4 we focus on hedging
and valuation of unit-linked insurance contracts under the financial variance and
standard-deviation principles. In contrast to the results obtained in Chapter 4, we
here focus on the role of the amount of information available to the seller of the
contract and determine the fair premium and the optimal strategy under various
choices of filtration for the insurance risk. In Section 5 we give a framework, which
allows for dependence between the traded assets and the insurance risk and which
is sufficiently general to include stochastic volatility models. Within this set-up,
we briefly turn to the problem of valuating the financial stop-loss contract. As
another example, we consider the situation where the volatility and drift of the
stock price process for an insurance company are affected by the occurrence of
certain catastrophic events.

143
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1 The Black-Scholes model

Let Q3 = C[0,T] be the space of all continuous functions on [0,7], and let, for
w1 € 1, Wi : wi — wi(t) be the coordinate process. Furthermore, let ' be the
o-algebra generated by W = (W,;)o<;<r and denote by ' the P-augmentation of
the natural filtration of W. Finally, P, is taken as the Wiener measure on §2;, so
that W is indeed a Brownian motion.

The standard Black-Scholes market consists of two assets whose price processes are
given by B; = exp(rt), for some r > 0 and

t t
St=50+/ aSudu—i-/ S, dW,,
0 0

where Sp, « € Rand o € (0,00). The discounted prices are B/B = 1and X := S/B,
and it is straightforward to verify that X = Xo+M+ [ Ad(M), where M = [ o X dW
and A = &% = % and where v = (a —r)/0 is the so-called market price of risk. Tt
is well known that the Black-Scholes model is free of arbitrage and complete, and

the unique martingale measure P; for X is determined by Girsanov’s theorem

3—2 - 5(—/)\dM)T:5<—//\dX+//\2d(M)>T
_ ¢ (— / AdX)Texp(zﬂT).

In particular, this implies that the process Z defined by Z = Epl[g—g | F 1] can be
written as

- t . t
Z; = exp(V*T) —/0 E (—/)\dX) exp(V’T)\, dX, = Z, +/0 Cud Xy,

where Zy = exp(v*T) and { = —& (— fAdX)exp(v*T)\. Since furthermore Z, =
E (= [AdX),exp(v*T), we also see that

7, = F [5 (—/)\dM)T ﬁg] _¢ (—/)\dM)tzg (—/)\dX)texp(l/2t)

= 7 exp(—2(T — 1)),
which shows that Z,/Z, = e>§p(—v2(T—t)). With the notation used in Chapter 4, the
projection on the space G(0)* is denoted by (). Furthermore, 7(1) = 1—f; 3dX,

and since by Lemma 3.5 of Chapter 4, % = Eﬁti)]

, we see that
=) (— / AdX) = \7e T,
Finally, we note that since £ (— [ AdM) = € (—vW), we have that
E[(Zr)Y] = E [exp (—ZI/WT - I/QT)] = exp(V?7),

and hence Var[Zp] = exp(v°T) — 1.
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2 An additional Poisson process

Consider the standard Black-Scholes market reviewed in Section 1 and take as ad-
ditional risk a homogeneous Poisson process N with intensity A. This process is
defined on some probability space (Qy, F2, P,), which is assumed to carry the nat-
ural filtration 'Y of N. We shall also use the notation

Fr=FN =0{N,, u<t} (2.1)

and assume that 72 = F¥. As in Section 5 of Chapter 5 we embed the processes
N and X in the product space and also define the filtrations F! and IF? by (5.5.3)
and (5.5.4), respectively. The Poisson process N is taken to describe the occurrence
of some insurance claims, and by this construction, /V is independent of the financial
market.

In this section we consider the claim

H == NTXT, (22)

which for example could be used in the situation where claims are subject to some
inflation as described by the process X. We derive fair premiums and optimal strate-
gies for a reinsurer under four different scenarios. Each of the scenarios considered
is connected to a specific filtration on the space (€22, F?) and represents a different
level of information about the Poisson process:

L. The trivial filtration F*° = (ﬁf’o)OStST defined by F° = {0, 2}, 0< t < T,
and F2° = FN is the situation where no information concerning the Poisson
process N is available to the reinsurer before time 7'.

2. The piecewise constant filtration " = (FZP)o<icr defined by F2P = {0, 0y},
0<t<ty FiP=FN ty<t<Tand F’ = FY is the situation where
information concerning the past development is revealed only at some fixed
time to during (0, 7).

3. The filtration F° = (F?)o<i<r defined by (2.1) is the natural filtration of
N. This means that the reinsurer is observing the Poisson process during the
period [0, 7.

4. The revealing filtration " = (F7 Vo<t<r defined by FP" = FN, 0<t < T,
is the hypothetical situation where the reinsurer knows the final outcome of
the Poisson process immediately after the signing of the contract at time 0.

We introduce the associated filtrations on the product space defined (as in Re-
mark 5.5.5) by F° = F'QF>°, F? = F'@F"", F = F'®F” and F" = F'@F”",
respectively, and deal with the four cases separately. Recall first however, that by
Theorem 5.4.1, the optimal strategy for the variance principle is given by

1 +Var[ZT]B gy Z\

* H =
vt=0T 4+ 2a 2a’

(2.3)
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where 9 is determined by Theorem 5.2.5 and 5.2.6 for the filtration of interest. For
the standard deviation principle, the optimal strategy is

9 =97 + 1+ Var|Zy] v/ Var[NH]3 = 92 + Z?)\\/Var[NH], (2.4)

a1 — Va(fz[ZT]

:a\/l—%. (2.5)

As we shall see in our examples, 97 and N depend on the choice of filtration,
whereas the processes Z and A are given in Section 1 and do not depend on the
filtration on (£, F?). In addition, note that with the notation of Section 7 of
Chapter 5,

where

IS}

N = B[Xy | 7] = X,
This process will appear in all four cases considered below.

Case 1. (No information) We apply the notation of Section 7 of Chapter 5 and
note that as in the proof of Lemma 5.7.1 and by the definition of F*°

O o ) AT, t<T,
which implies that
[IN®°], = (Np — AT)* Loy

Thus, by Lemma 5.7.2, the Kunita-Watanabe decomposition of V° = E[H | IF°] is
~ t
Ve = AT X, + / AT dX, + X7(Np — AT) Loy (2.6)
o >
Using (5.7.5), we obtain that

Z
Jo(F°) =E [Z_TX%(NT - AT)2] =E [X%] Var[Np| = ATXgeQ(O‘_T)TJ”’ZT,
T

which gives the fair premium for this case
v (H) = AT X + aAT X2eX o T+ T

From the Kunita-Watanabe decomposition (2.6) and Theorem 5.2.6, we find that
9" = AT, so that the optimal strategy is
2

9 = AT + 5.
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The first term AT is the conditional expected number of claims during [0, 7] at any
time ¢ € [0,7), since no information about the occurrence of claims is available
before time T. The second term Z\/(2a) is a correction term which is related to
the financial variance principle, see e.g. (2.3).

Case 2. (Piecewise constant filtration) In this case

R AT, t < tO:
NP =B[Ny | Ff] =4 N+ AT 1), toy<t<T,
NTa t= T’

so that
[NCI], = (Nyg = Ato)* Lz} + (Nr = Nig = AT = 10))*Lg>ry.

By (5.7.5), this implies that

Z

to
Z
+E | ZEXF (Ve — Ny ~ AT - )]
T
= Atnge—zﬂ(T—t0)+2(a—r)to+a2t0 +A(T — to)Xgez(a_’")TJ“’QT_
We have now shown that the fair premium is given by

W(H) = ATX,
+a (Atnge—zﬂ(T—t0)+(2(a—'r)+a2)t0 + A(T _ tO)Xge(2(a_T)+o—2)T) .

By Lemma 5.7.2 and Theorem 5.2.6

19H _ ATa B t S t(),
e Nt0+A(T_t0)_CtXto(Nt0 —Ato), to<t<T,

and this implies that

*_{AT+%a t<t,
CT N + AT — to) — G Xy (N, — Ato) + 220, t <t <T.

This strategy coincides up to and including time ¢y with the optimal strategy in
the case where no information is available. At time ¢y, the reinsurer is informed
about the current total number of claims /V;; and adjusts his strategy according to
this additional information. The term Ny, + A(T — 1) is the conditional expected
number of survivors computed after time ¢y and X, (Ny, — Atp) is the difference in
the reinsurer’s estimate (at time ¢, and immediately before o) of the final outcome
of the claim NpXr.

Case 3. (Natural filtration) For this filtration,

Nt(2) :ENI[NT\}}] =N+ AT —t) = AT + M},
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where M;* := N; — At. This shows that [N®], = N,. By Lemma 5.7.2, the Kunita-
Watanabe decomposition for V := E[H | IF] is

~ t t
Vo= ATXo+ [ (Nyo+ AT = 5))dX, + [ X,dM?.
0 0

By (5.7.5), the martingale property of [ Z-'X?dM and the Fubini theorem, we
obtain that

- T
Jo(IF) = El/ Zixfdjvs]
O S
T
= / E[éXf]Ads
0 Z

— /T e—uz(T—s)Xg€2(oe—r)s+azsA ds
0

1
- A 7U2TX2
¢ 002 4+ 2(a — 1) + 02

(e(u2+2(a77")+02)T . 1) )

Hence, the fair premium is

Ae‘”2TXg
24+ 2(a—r1) + 02

UI(H) = ATXO —+ aV (e(u2+2(a—7‘)+(72)T _ 1) )

Finally, Theorem 2.6 combined with (2.3) shows that

L[t - Z\
ﬁf:Nt_—i-A(T—t)—g}/ 27X Ay + S
0

a

where again the last term is related to the financial variance principle. The first two
terms Ny + A(T — t) are the conditional expected number of survivors just before
time ¢, and the integral with respect to M*" is related to the change in the reinsurer’s
predictions for the final value of the claim.

Case 4. (Full initial information) In this case, NT = E[NT~| F{] = Ny and
hence, by Lemma 5.7.2, the Kunita-Watanabe decomposition for V" := E[H | "]
is

- t
V7 = AT X, + / NpdX, + (NrXo — ATX,).
0
By the results obtained in Section 6 of Chapter 5 (see (5.6.2) and (5.6.3)) we obtain
that

_ Var[E[H | Gol]

~ = e V'TX2AT,
E[Z}]

Jo(FF™)

where Gy = (N ® F?) VN, see Section 6 of Chapter 5. Thus, the fair premium is
in this case given by

v (H) = AT Xy 4 ae T X2AT.



INDIFFERENCE PRICING OF INSURANCE CONTRACTS: EXAMPLES 149

The optimal strategy is determined via Theorem 5.2.6
s 5 -1
I = Np — (Zy  Xo(Np — AT),
and consequently the optimal strategy is determined by

s o= -1 Z\

9F = Ny — G2y Xo(Np — AT) + %
Here, the first term Nt is the final outcome of the Poisson process; the second term
is related to the difference between the reinsurer’s estimate for Ny X7 before time 0

and at time 0.

We end this section with a numerical example which quantifies the range of the
premiums determined under the different filtrations. We fix T'=1, A =1, t; = 0.5,
Xo =1, a = 0.25 and take o = 0.10 and » = 0.06. The hedging errors Jo(IF°),
Jo(IF?), Jo(IF) and Jo(IF") are listed in Table 6.1 together with the relative difference
00" = (Jo(IF°)—Jo(FF"))/ Jo(IF°) between the maximal and minimum hedging errors
and the upper and lower bounds for the fair premiums under the financial variance
principle. It follows from these numbers that the hedging error under the revealing
filtration is between 15 percent and 19 percent smaller than the hedging error under
the trivial filtration. The corresponding relative differences between the upper and
lower bounds for the fair premiums are less than 5 percent in this example.

Volatility Jo(IF°) Jo(IF?) Jo(IF) Jo(F*) 6o Ve or
o=015 1.1079 1.0619 1.0171 009314 0.1594 1.2770 1.2328
o=025 1.1532 1.1067 1.0614 09747 0.1547 1.2883 1.2437
o=035 12245 1.1619 1.1015 0.9870 0.1939 1.3061 1.2468

Table 6.1: The hedging errors under the four different scenarios, the relative differ-
ence between the mazrimal and minimal hedging errors and the upper and lower
bounds for the fair premiums under the financial variance principle for various
choices of volatility.

3 Stop-loss contracts with barrier

As a very simple class of examples we consider traditional stop-loss contracts that
are payable contingent on the occurrence of some event on the financial market, for
example, the event that the terminal value of a certain stock lies within a certain
interval. Let F' € Fr represent some financial event, and note that this event
is related to the development on the financial market only. We denote by X =
(X4t)o<t<r the discounted price process of the financial asset (a stock) and by U =
(Ui)o<t<r an insurance claim process, which is stochastically independent of the
financial market; we consider the contract given by

H=1p(Ur — K)*. (3.7)
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We shall henceforth refer to a reinsurance contract of this form as a stop-loss contract
with barrier. As a main example, we shall consider the subset F' of {2 where the
terminal value Xy of the stock is within a set B € B(IR,), that is F = {X; € B}.
For example, we might have that B = [0, c] or B = [¢, 00) for some ¢ > 0; the first
case can be compared to a so-called knock-out option known from finance (see e.g.
Musiela and Rutkowski (1997)), and the second case is similar to a knock-in option.
These contracts could be relevant for an insurer who has invested in the stock X and
who is interested in a cover against the risk U: If the insurer holds a long position,
then he may decide that stop-loss cover is only necessary if the value of the stock
has not exceeded some value ¢, and this is obtained for B = [0, ¢]. Similarly, if the
insurer has a short position in the stock, B = [¢, 00) may be relevant.

Under the assumption that the financial market is complete, the results from Sec-
tion 6 of Chapter 5 can be applied to determine an upper bound for the fair premium
for the contract (3.7); we find that

Vimae(H) = E[Zp1p (Up — K)*] + aE[Var[lp (Up — K)* | FH
= E[Zr 15| E[(Ur — K)*] 4 aP(F) Var[([Ur — K)¥]
= P(F)E[(Ur — K)*] + aP(F) Var[(Ur — K)*], (3.8)

where we have used the independence between (X, Zr) and U twice in the second
equality. From (3.8) we see that the expression for the premium for the stop-loss
contract with barrier is very similar to the premium for the original stop-loss contract
(Ur — K)* computed by means of the traditional actuarial variance principle. It
is also noted that the premium will not in general be equal to P(F) times the
premium for (Ur — K)* computed using the traditional variance principle; this
difference between the two premiums is related to the fact that P(F) # P(F) in the
general case. Similarly, the lower bound for the fair premium is

aVar[E[lF (UT~_ K)" | A
E[Z7]

(P(F))? Var[(Ur — K)*]
Zo

Vimin(H) = P(F)E[(Ur — K)*] +

= P(F)E[(Ur—-K)+a

Let us compare more explicitly the upper bound for the fair premium for H to the
premium computed using the traditional variance principle; the latter can be com-
puted by using the standard rule for conditioning for variances and the independence
between U and X:

i1 (H) = E[lp (Ur — K)]+ aE[Var[lg (Ur — K)" | F7]]
+aVar[E[lp (Ur — K)* | 7]
= P(F)E[(Ur — K)'|+ aP(F) Var[(Ur — K)*]
+aP(F)(1 = P(F)) (E[(Ur — K)*])*. (3.9)

By comparing (3.8) and (3.9) we immediately get that @;(H) > v1me(H) if and
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only if

P(F) — P(F)
Z PF)(1-P(F))’

provided that P(F) ¢ {0,1}. In particular, this implies that @ (H) > v1mas(H) if
for example P(F) — P(F) < 0; however, this is not a necessary condition.

aE[(Ur — K)"]

As a naive example where more explicit formulas can be obtained, let us assume
that Ur is log-normally distributed under P and parametrize this as follows

1 ~
Ur = ug exp(—él-cQT + kW), (3.10)

where W is a standard Brownian motion which is independent of the financial mar-
ket. This implies that log(Ur) is normally distributed under P with parameters
(log(ug) — $x*T, k*T). Since Ur would typically represent the total accumulated
claim amounts on some insurance portfolios or the ratio between claims and pre-
miums, this is not a very realistic assumption. It would indeed be much more
suitable to let Uy be for example a compound Poisson variable. However, in that
setting explicit formulas would generally not be within reach. More modestly, one
could choose to approximate the ratio between claims and premiums by a sum of
independent log-normal random variables; also in that situation, explicit formulas
cannot be obtained, and one would have to apply some numerical method in order
to determine the fair premiums.

Assume furthermore that the financial market is described by a standard Black-
Scholes model, where the discounted stock price is given by the dynamics

dXt = (OZ — T')Xt dt + O'Xt th,

and Xy = xo. (r is the risk-free interest rate, o the expected rate of return and o
the volatility on the stock). It then follows by direct calculations that
E[(Ur — K)*] = u®(cy) — K®(cy — 6VT),
E[(Ur — K)Y)?Y] = K2®(cy — kVT) + u2e” T®(cs + kVT) — 2Kuog®(cy),
where
_ log¥% + 3k°T
B kT

and so, the two first central moments of (Ur — K)* can be expressed explicitly in
terms of the parameters ug, T, k. Furthermore, we find that for F = { Xt € [0, c|}:

P(F) = q><_1°g %0+(j\;fr_%02)T>

. log 2 — Lo?T
p(F) = (p<_°gc72‘7)_
o

Co

I
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This shows the obvious inequality P(X7 < ¢) > P(X7 < ¢) in the natural situation
where a > r and the reverse inequality in the case where a < r. Hence, we have
obtained explicit expressions for the premiums (3.8) and (3.9).

Note that (3.7) with F' = {Xr € B} is on the form
H =bUr)g(Xr), (3.11)

where b, g are measurable functions such that b(Ur), g(Xr) € L?>(P)NL?(P). Thus,
we can also apply the results obtained in Section 7 of Chapter 5. We assume that
the insurance claims process with terminal value (3.10) is given by

U, = ugexp(—1/262t + £W,).

We interpret U; as the current estimate at time ¢ for the terminal value Ur which
appears in the claim (3.11). For example, Ur could be the ratio between claims
and premiums during the period [0,7] and hence, U, is the estimate at ¢ for this
ratio. As in Section 7 of Chapter 5 we assume that W and U a priori are defined
on a separate probability space (€, F2 P,) equipped with the natural filtration
of U, which is denoted IF > In addition, we consider the filtration IF>° defined by
FPo={0,9},0 <t <Tand Fr° = F2 = o{U,, 0 < s < T}. These two filtrations
represent the situation where the reinsurer observes the process U and where the
process is not observed, respectively. We proceed as in Section 7 of Chapter 5 and
deal with the two cases separately.

Case 1. (No information) Consider first the situation described by the filtration
F° = F' ® F*°. In this case

Eb(Ur)], t<T,

N .= Bb(Uy) | F7] = { b(UT)T b=T

which implies that
IN®®, = (b(Ur) — EBUD)? Lysry.

Since X is a Markov process, we obtain by the Ito formula and the uniqueness of
the canonical decomposition

Nt(l) :

Blg(X7) | F2] = FU(t, X,) = F9(0, X,) + /0 RO, X)) dX,,  (3.12)

provided that F9 € CY2 Thus, by (5.7.5) the hedging error is

B(E?) = B [ 22 (o)) 0(0) - E[b(UTW] = EB[((X1))?] Var [b(Ur)]
In particular, this leads to (3.8) when g(X7) = 1{x,ep) and h(Ur) = (Ur — K)*. It

follows immediately from Lemma 5.7.2 that &7 = E[b(Ur)] F4(t, X;) for 0 <t < T,
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and this lemma together with Theorem 5.2.6 shows that 9% = EH’IS . Thus, the
optimal strategy is in this case
Zi

U; = Elb(Un)] FZ(t, X)) + S5t (3.13)

Case 2. (Natural filtration) We consider the filtration F = F' ® F°. By
arguments similar to the ones leading to (3.12)

N ¢
N® = B[b(Ur) | F] = F*(t,Us) = F*(0,Up) + /0 F(s,U,) dU,,
provided that F® € C%2. This implies that

t t
[N(2)]t = / (F'zlj(sa Us))2 d[U]s = / (F,IIZ(S, US)U5)2 Hz ds.
0 0
Thus, it follows from Corollary 5.7.6 and Remark 5.7.7 that

Jo(IF) = /0 B [? (F9(t, Xt))Q] E [(F};(t, Ut)Ut)Z] K2 dt,

t

provided that g(X7) € L?*¢(P), for some € > 0.

In most examples, this expression has to be evaluated numerically, for example by
Monte-Carlo simulation. The optimal strategy is again determined by applying
Theorem 5.2.6 combined with Lemma 5.7.2. This gives

~ [t -
9H = Fb(t,U,) F9(t, S,) — gt/ Z-VF9(s, X,)F(s,U,) dU,
0

which gives the optimal strategy for this situation

L Z,\
9; = FP(t,U,) FO(t, 8) — G / 219 (s, X,) F(s,Us) dUs + ==
0

4 Unit-linked life insurance contracts

We apply the financial variance principle to the pricing of unit-linked pure endow-
ment life insurance contracts for a portfolio consisting of n policy-holders aged y
with ii.d. remaining lifetimes with hazard rate functions p,; the survival prob-
ability is denoted (p, = exp(— f§ fi,+~ d7) in accordance with standard actuarial
notation. Similarly, +¢, = 1 —p,. Let Ti,...,T,, denote the remaining lifetimes,
and Ny = > 1y1,<4y the number of deaths up to and including time ¢. We apply
the set-up from the product space model and take N to be defined on a separate
probability space (g, F2). We denote by IF N the augmented natural filtration of
N, and take F? = o(lyr;<y, t <T,i=1,...,n). In addition we consider the stan-
dard Black-Scholes market defined in Section 1 on the complete probability space
(21, F1).The contracts considered here will be on the form

H = (n— Np)g(Xr), (4.14)
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where ¢ is taken to be some continuous function. If we choose for example g(z) =
(x — K)*, for some K > 0, then we may think of (4.14) as a reinsurance contract
which pays the amount (X1 — K)* (a European call option with strike price K) for
each surviving policy-holder. Similarly, (4.14) corresponds to the present value of a
unit-linked pure endowment contract with guarantee when g(z) = max(z, K), see
e.g. Aase and Persson (1994) and Mgller (1998a). The financial variance and stan-
dard deviation principles were also applied for the valuation of the contract (4.14)
in Section 6 of Chapter 4. However, in contrast to the analysis given there, we
here apply the results obtained in Chapter 5 and focus on the role of the amount of
information available to the insurer.

First note that applying the traditional variance principle to the valuation of the
contract (4.14) gives the premium

1 (H) = nopyElg(Xr)] +anopy(1 - pr)E[(g(XT))Q] + GHQ(TPy)QV?H[Q(XT)]
= np, (Elg(Xr)] + arg,El(9(Xr))?] + anrp,Varlg(X1)]) (4.15)

where we have used the independence between N and X, standard rules for condi-
tional expectations and variances and the fact that (n — Np) ~ Binomial(n, rp,).
For more details and comments on this, we refer to Chapter 2.

Note that the claim (4.14) remains in the class A of contracts considered in Section 7
of Chapter 5, so that we can apply these results in this example. Hence we can
investigate how the safety loading depends on the information available about the
development within the portfolio of insured lives. In addition, we give the optimal
strategies determined in Chapter 4 under the four different scenarios considered.
These scenarios correspond to the following filtrations for the insurance portfolio
and their associated filtrations on the product space:

1. The reinsurer receives no information about the number of deaths within the
portfoho of insured lives before time 7. This is described by the filtration
F (:Ft )O<t<T where F, = {@ QQ} 0 < t<T and F = :FT The
filtration on the product space is denoted F° = F' ® F>° , see Remark 5.5.5.

2. Information about the past development is revealed only at some intermediate
time ¢y, and after this time no additional information is available before time
T. This corresponds to the following piecewise constant filtration P =

(ﬁf’p)OStST
B {@ QQ}, < to,
FrP = Fto, to<t<T,
FN t="T,

and the corresponding product filtration is IF? = F! ® IF &

3. The reinsurer receives information about any death at the time of the death,
that is F* = (F2)o<i<p. Similarly, F = F' @ F2.
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4. All information about the future development within the insurance portfolio
is known to the reinsurer at time 0, that is, immediately after the contract
is sold. This situation corresponds to the filtration F~" = (F2")o<t<r Where
Fir o= FN,0<t<T. We denote by F" = F' ® F*" the corresponding
filtration.

The filtrations IF° and IF" correspond to the minimal and maximal filtrations con-
sidered in Section 6 of Chapter 5, and hence they lead to the upper and lower bound,
respectively, for the fair premium.

It follows from straightforward calculations (see e.g. Mgller (1998a)) that

T
(n—Np) = nop, — /0 T uDyra (AN, — Ay du), (4.16)

where A, = (n—Ny_)ty+, is the predictable intensity for N. For later use, introduce
the compensated counting process M = N — [\, dt which is a square-integrable
martingale. Also, let M; = E[(n — Ny) | FN¥] = (n— Ny)y_ipyre. For 0< s <t < T,
(4.16) together with the Fubini theorem gives that

B |- 11)°| = E[(/:T_upwdm)z]
= B[t e du]

t

= TLpr/ T—uPy+u Hy+u du
S

= NTPy (T—tpy+t - T—spy-l—s) .

Also, it follows by the independence between N and X that
E[(n — Nr)g(Xr)] = E[(n — Nr)] Elg(Xr)] = n1py E[g(Xr)]

We now deal with the four cases separately and determine the premiums and the
associated optimal strategies ¥*. Recall that by Lemma 5.5.11 there exists a unique
pair (9, £9) where ¢ € IR and &9 € ©(F") such that

T
g(xr) =+ [l ax. (4.17)

Furthermore, since X is a Markov process w.r.t. P

_ t
Pt X,) = Blo(Xr) | Fl = 0+ [ €1dX.,

and provided that F9 € C'? it follows by application of It6’s formula and the
uniqueness of the canonical decomposition, that & = F2(t, X;), where F2(t,x)
denotes the partial derivative of the function F9(¢,z) w.r.t. z.

Case 1. (No information) The filtration IF° is exactly the minimal filtration
considered in Section 6 of Chapter 5, and from this we immediately get the premium

vi(H) = nrp,Elg(Xr)] + aE[Var[H | F7]]
= nrpy Elg(Xr)] + aE[(9(X1))’] Var[(n — Nr)],
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where we have used the independence between N and X in the second inequality.
Again, since (n — Nr) ~ Bin(n, rp,), we find that Var[(n — Np)] = nrpy(1 — 1py),
so that we have shown that the fair premium for (4.14) in the case of no information
before time 7' is

vi(H) = n1p, (Blg(X1)] + aE[(9(X7))*] 7y ) - (4.18)

The optimal strategy can be determined by use of Theorem 5.5.14, since the filtration
JF° is identical to the one considered there. By that theorem it follows that ¥ is
determined such that

. T
E[H|F] = Ho+ [ 0/ dX,.
0
Thus, by using (4.17) we see that

N T
E [H ‘-7:%] =nrpy 9(Xr) = nrpy +/o nrpy & dXy,

so that ¥ = npp, &9. The optimal strategy is now obtained by inserting this into
the expression given in (2.3):

T\

— 4.19
ca (419

19: = nprgtg"'

where A = %=. The first term in (4.19) is YH, and this is simply nrp, = M,
times the process £7. This is also equal to the hedge for the modified claim H' =
nrpy 9(Xr), where the unknown number of survivors has been replaced by the
expected number Mo; see Chapter 2 for comments in this direction. The second
term in (4.19) is a general correction term which is closely related to the financial
variance principle and which is always present (i.e. for any claim), see Chapter 4.

Remark 4.1 Tt was shown in Chapter 2 that charging rp,E[g(X7)] + ¢, € > 0, as
single premium for each policy-holder will imply that the insurer’s gain converges
towards +o0o a.s. as the size of the portfolio is increased. Thus, the result (4.18)
indicates that the financial variance principle may not be a reasonable principle, since
the premium is proportional to n. The reason for this may be that the variance
principle is punishing large variances too hard and small variances too little, see
Chapter 4 for a further investigation of the variance principle. O

Case 2. (Piecewise constant information) We apply Theorem 5.7.3 in order to
determine the hedging error Jo(IF?). First, introduce processes N and N® as in
Section 7 of Chapter 5; N is defined by

N = Blg(Xe) | F] = 9 + / £9dX,, (4.20)

where ¢¢ = E[g(X7)] and where £€9 € ©(JF). The existence and uniqueness of such
a process &9 follows from Lemma 5.5.11. The process N2 is given by

N = El(n—Nr) | F] = E[(n - Nr) | 77,
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where the second equality is again a consequence of the independence between the
two sources of risk, and hence

N TPy, t < t07
Nt(2) = (TL - Nto) T—toPy+to» tO S t< T7 (421)
n— NT, t= T,

so that Nt(z) = M, fort € {0,ty, T} by definition of the martingale M. From this
result we get by definition of the square bracket process [N] that

. A N2 - A N2
[N®)], = (Mto - Mo) Lit>toy + (MT - Mto) Ly
Introduce the function f : [0,7] — IR, given by

Ly ¢~ 2
0 = | 2 (Elatxn) | 7). (422
t
for 0 <t < T, so that in particular f(T) = E[(g(X7))?]. Furthermore, Lemma 5.7.8
shows that f(s) < f(t) for 0 < s < t < T. Thus, by Theorem 5.7.3 the hedging
error (and hence the loading) is given by

B N(l) 2 N2 B N(l) 2 . N2
Jo(F?) = E (Zi) (M3, — My)" | +E ( ZT) (Mr - My,) 7| -
to

= |22 (Blotxn) | 9)'| namy sy — 10

to
+E [¢(X1)?| 1wy (1= 1-1oDy110)
= nrpy (f(to) (r-toPy+tc — TPy) + (1) 1—t0Gy+10) -

This also shows that the loading determined in this case is indeed smaller than the
loading determined in Case 1 (No information). We have shown that

v(H) = nrp, (E[Q(XT)] + af(to) (r—toPy+to — TPy) + af(T)T—tOQy+t0) .

The optimal strategy for the financial variance principle in the case of the piecewise
constant filtration is here determined by applying Theorem 5.2.6. First we note
that Lemma 5.7.2 allows us to express the Kunita-Watanabe decomposition of the
P-martingale V? = E[H | IF?] in terms of the processes N and N® defined
by (4.20) and (4.21). With the notation of this lemma, we have that

gf’f’ — gNt@) _ §fnpr, t <to,
- gifg(n - Nto) T—toPy+tos o <t< T,

and

Lbr = Nt(ol)(Mto — Mo)l{tZto} + Nq("l)(MT - Mto)l{tZT}'
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Thus, by Theorem 5.2.6

79H:{ ffnpr: s ) R R tStO:
; gtg(n - Nto) T—toPy+to — Ctthth(o)(Mto - M0)7 to<t<T.

This is now inserted in (2.3) in order to obtain the optimal strategy v*. We see
that this strategy differs from the one obtained in case 1 on the interval (¢, 7.
This difference is explained by the fact that the reinsurer with filtration F? receives
information about the actual number of deaths up to and including time ¢, at time
to. This allows him to adjust his strategy according to this new information, and the
direct consequence of this is that nyp, is replaced by (n — Ny, ) 7—1,Py+t,- However,
in addition a correction term appears in 9 for ¢ > ¢, and this term is related to
the adjustment in the expected number of survivors.

Case 3. (Natural filtration) Consider now the situation where the filtration is
given by JF = F' @ IF*. In this case, we obtain from (4.16)

~ t ~
Nt@) =M, = (n - Nt)T—tpy—l—t =N7TPy — /0 T—uPy+u dM,.

By standard rules for computation of the process [.,.] it follows that
2 ¢ 2
[N( )]t :/0 (Tfupy—ku) dNua
so that by the Fubini theorem

t i
E[VOL] =B | [ upys)Nadu| =nawy [ 1 apysa sy du

Thus, by Corollary 5.7.6 we find that
T Zu, ~ 2
Jo(F) = /0 E lZ— (E[Q(XT) | ‘7:11]) ] N TPy T—uPy+u Hy+u AU

T
= NTPy /0 f(U) T—uPy+u Hy+u du,

under sufficient integrability conditions on g(X7). For example, it is sufficient that
g(Xr) € L?**(P), for some ¢ > 0, see Remark 5.7.7. We have now shown that

. T
UI(H) = NPy <E[g(XT)] + a/() f(u) T—uPy+u Hy+u du) .
The optimal strategy is again determined via Theorem 5.2.6 which states that

Lot .
O =& (n — No=)r—ipyse + Ct/o Z;'N{Y T—uPy+u AMy,
so that the optimal strategy is
Zih

oot .
Uy =& (n — Ni2)r—ipyss + Ct/o Z;'NW T—uPy+u AMy, + >0
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These results are identical to the ones obtained (via heuristic calculations) in Sec-
tion 6 in Chapter 4. We have included the results here for comparison and since
they follow directly (up to the above mentioned integrability conditions) from the
general results obtained in Chapter 5.

Note that the first term in 9% is again of the structure which also appeared in
Case 1 and 2, namely the process £9 multiplied by the conditional expected number
of survivors. Here, the correction term is now an integral with respect to the compen-
sated counting process M and hence it really depends on the entire past development
within the portfolio of insured lives. Consider now an infinitesimal interval (¢, ¢+ dt].
Note that if dM, > 0, this means (loosely speaking) that dN, > ), dt which again
can be interpreted as saying that the number dN; of deaths during (¢, ¢+ dt] exceeds
the expected number of deaths \;dt. Since @ < 0, this means that a negative term
is added to the correction term. Similarly, if dM, > 0 then (4.16) shows that the
expected number of survivors decreases and hence the factor on &9 will also decrease.

Case 4. (Full initial information) Consider the filtration F* = F'®@ F™>", where
.7:",52” = F¥ for all 0 < ¢t < T. This represents the hypothetical situation where all
information about the policy-holders’ future life-times is available immediately after
the signing of the contract at time 0. In this situation, we can apply the results
obtained in Section 6 of Chapter 5, since IF" leads to the lower bound for the fair
premium which was derived there. By (5.6.2) and (5.6.3), we find that

E[(L8"")?] _ Var[B[H | Go]
E[Z3) E[Z3)

Y

Jo(IF") =

where, by definition E[Z2] = Z,, and where

Var[E[H | Go]] = Var [(n — Np)El[g(X7)]] = np,(1 - 1p,) (Elg(X0)]) .

Now insert this expression into (5.6.3) and use (4.22) to obtain the premium

vi(H) = nrp,Elg(Xr)]+ aZio (E[Q(XT)])Znpr(l — 1Py)

= NPy (E[g(XT)] +argy f(O)) :

The optimal strategy can be determined by applying Theorem 5.2.6. In Section 6
of Chapter 5 we showed that Lf‘r’P~ =L = E[H | Go) —E[H] forall 0 <t < T.
Furthermore, by Lemma 5.7.2, £ = €/ (n — Ny), since N® = E[(n—Np) | FN] =
(n—N;) for all 0 <t <T. Thus

19{{ = ftg(n — Nrp) — gtE[Q(XT)]@HﬂT ((n— Ngp) — npr) )

which leads to the strategy

95 = & (n — Nr) — GElg(Xr)]e™ T ((n — Np) — nrpy) + ot
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This strategy differs from the previous ones in that £7 is now multiplied with the
actual number of survivors (n — Np) since this is known to the reinsurer at time
0. However, he is not able to hedge the claim perfectly, since the valuation of the
contract is not based on this information, that is, the premium is not allowed to be
random.

Remark 4.2 From the previous calculations we can also determine the fair premi-
ums for the standard deviation principle. By Theorem 5.4.2, this is given by

vy(H) = E[H] + @/ Jo(-),

where @ is defined by (2.5) provided that a® > Var[Zr] = ¢’T — 1. By inserting the
above obtained expressions, we find that

vy(H) = nprE[g(XT)] + an'’? (f(T) Tpy TQy)l/Q )

Ug(H) = nprE[g(XT)] + a’nl/Q (pr f(to)(T—topy-Hfo - pr)

+1py f(T) (T—toqy+to))1/2 ;

~ T 1/2
V2 (H) = nprE[g(XT)] + &nl/Q (pr /0 f(u) T—uPy+u Hy+u du) )
vp(H) = nrp,Elg(Xr)] +an'/? (rpy g, (0))%,

where the increasing function f is defined by (4.22). The associated optimal strate-
gies are obtained directly by inserting ¥/ into (2.4). In particular, it is noted that
the ratio between the safety loading and the premium converges to 0 as n converges
to +00. Thus, these premiums determined by the financial standard deviation prin-
ciple will not necessarily lead to an infinite profit a.s. as the size of the portfolio
increases; see Remark 4.1 for a similar comment on the financial variance princi-
ple. O

5 The general Markov case

In this section, we give a general framework which allows for dependence between
the stock and the additional risk. We consider, in addition to a stock price process
X, some insurance risk process U, which is not necessarily stochastically indepen-
dent of X, and we assume that the pair (X,U) is a Markov process under the
variance optimal martingale measure for X. In this setting, we focus on claims of
the form ¥(Xy,Ur), where ¥ is some measurable function. The computation of
the fair premiums and optimal strategies then essentially boils down to solving cer-
tain partial differential equations; explicit results seem to be difficult to obtain for
realistic models. As an example, we investigate in more detail the situation where
the drift and the volatility of the stock price process of an insurance company are
affected by the occurrence of certain insurance events. We end this section with
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a very simple example, where the fair premium and the optimal trading strategy
under the financial variance principle can be determined explicitly.

Let (2, F, IF, P) be as in Section 2 of Chapter 5 and let X be a continuous semi-
martingale with canonical decomposition

X =Xo+ M* + A*.

Let U be another special semimartingale! defined on (9, F, IF, P) with canonical
decomposition under P

U = Uy + M™ + M®4 + A,

where M®¢ is a continuous local P-martingale, M™ is a purely discontinuous local
P-martingale and A" is a predictable process of finite variation. We work under the
following assumption

Assumption 5.1 (M?* M™) = 0.

Thus, the continuous martingale parts of X and U are strongly P-orthogonal. As we
shall see below, this may well include cases where X and U are not stochastically
independent. Assume in addition that Assumption 5.2.3 is satisfied, so that the
variance optimal martingale measure P for X exists. In particular, X is a continuous
local p—martingale. It follows by He, Wang, Yan (1992, Theorem 12.18) and the
fact that P < P since X is continuous that U is also a semimartingale under P
and we denote by M®¢ its unique continuous martingale part under P. By He,
Wang, Yan (1992, Theorem 12.14), [X,U]” and [X, U]’ are P-indistinguishable.
Furthermore, the continuity of X implies that

(X, U017 = (M*,M")" +> AX,AU; = (M®, M™)",

s>0

and similarly

X,UIF = (X, M*9)F + 3 AX,AU, = (X, M*)F,

s>0

and hence (X, M®¢)P = (M=, M*<)P = (. We proceed under the following assump-
tion

Assumption 5.2 Assume that (X,U) isa P-Markov process and that U is a special
semimartingale under P.

IRecall that a semimartingale U is called special if there exists a predictable process A% of finite
variation and a local martingale M*" such that X = Xo+ M"+ A%; if such a decomposition exists, it
is unique and it is called the canonical decomposition. In particular, any continuous semimartingale
is special.
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Remark 5.3 For example, U is a special semimartingale under P if U is locally
bounded or if Y (JAU|1{javjs1}) € Apb.(P), see e.g. He, Wang, Yan (1992, Corol-
lary 11.26). Another sufficient condition is that the process Z, = E[% | F] is
continuous. In fact, this implies that [U, Z] is continuous; thus [ + d[U, Z] is contin-
uous and hence a special semimartingale, and He, Wang, Yan (1992, Theorem 12.18)
gives that U is a special semimartingale under P. A sufficient condition for Z to be

continuous is that the mean-variance tradeoff process K has a deterministic terminal
value K, see Schweizer (1999, Lemma 4.7). O

Denote by v* the jump measure of U, i.e. the integer valued random measure defined
by

Y w, dt, dy) = 1{av, ()20} (s,aU, () (dE, dY),
s>0
where €, is the Dirac measure at y. Introduce in addition the dual predictable

projection (the compensator) %P of v* under P. The canonical decomposition of
U under P is then

U=U, —i—M“’c—i—//Ry(’y“ — F%P) +f1“,

where A" is predictable and of finite variation.

Consider a contract on the form
H - \I/(XT, UT), (51)

where ¥ is a bounded measurable function. Define now a P-martingale V by

Vi = E[¥(Xr,Ur) | 7

= E[V(Xr,Ur) | (X, Uy)]
= FY(t, X;,U,),

where we have used the Markov property in the second equality. We assume that
FY € C1?2. Using He, Wang, Yan (1992, Corollary 11.27), we can show the following
representation result which is similar to Elliott and Follmer (1991, Proposition 3.1).
They consider a claim of the form h(Xr) and assume that X is a (not necessarily con-
tinuous) local martingale with respect to some measure P and the P-augmentation
of the natural filtration of X. Under the assumption that X is a Markov process,
they give a representation result for the martingale F'(¢, X;) := Ep[h(X7) | F] (as-
suming in addition that F' € CY?) which involves an integral with respect to the
continuous local martingale part of X and an integral with respect to the compen-
sated random measure associated with the jumps of X. In the present set-up, we
consider the more simple situation where X is only a continuous local martingale,
but assume in addition that the claim depends on the terminal value of the special
semimartingale U. The Markov-assumption in Elliott and Féllmer (1991) is here
replaced by the assumption that the pair (X, U) is a Markov process under P.
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Proposition 5.4 Assume that F¥ € CY*2. Then the P-martingale V admits the
representation

~ t t ~
A Fw(o,XO,UO)Jr/ F;ﬁ(s,XS,US_)dXSJr/ F¥(s, Xy, Uy )dBT
0 0

[ AR (s,)(r"(ds, dy) ~ 57 (ds, dy), (52
where

AFY(s,y) = F¥(s, X5, Usm +y) — F¥ (5, X,, Us_).
Assume furthermore that (X) = [ p? ds, (M) = [ p*ds, A* = [ & ds and 7P =
m(s,dy)\*ds. Then F¥ solves the equation
1qu (t, X1, Up-)

1
prT/’ (t’ Xt’Ut*) + 2 t+ uu

2
+ /IR(AFw(ta y) - quip(t; Xt; Ut—))m(ta dy)j\?a

0 = Ft (t X, Ui ) qu(taXt:Ut )

with boundary condition
FY(T, Xp,Ur) = ¥ (X7, Ur).
Proof: We refer to He, Wang, Yan (1992, Chapter 11). Define

U'=U-U, - //y1(|y|>1)7“(d8,dy),

which is a special semimartingale under P; the canonical decomposition of U’ is
denoted

U'= M+ //yluy\sn(v“ - ) + A,

see proof of their Theorem 11.25. From He, Wang, Yan (1992, Corollary 11.27) it
now follows that if F¥ € C1?2? then V is a special semimartingale with canonical
decomposition

V=Vy+ M"+ AY,
where

it = [Frax+ [Frasres [ [ apvpe—5e0)
R

A = /ﬂ”’dtJr/Ffdflule%/Ffm / (V<)
+ / /IR(AW — YFL(y1<0) 77

Since V by definition is a P-martingale, A¥ = 0, and this proves the first part of
the proposition. Furthermore, He, Wang, Yan (1992, Corollary 11.26) establishes a
connection between A% and A*, namely

A= 2+ [ [ )i 63)
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Now simply add and subtract [ F¥ d A" in the expression for AY obtained above and
use (5.3) to see that

v = /FMH/FMA“ 2/FM 2/ d( e

[ | (@ar —yr)se

This proves the second part of the proposition by using the simplifying expressions
for (X), (M™*), A* and 4*P. O

This representation result is very important for our applications, since it essentially
determines the Galtchouk-Kunita-Watanabe decomposition for V under P, which
can be used together with Theorem 5.2.6 to obtain the crucial decomposition (5.2.7).
For completeness, we state this result as a corollary.

Corollary 5.5 Assume that F¥ € C"**. Then the Galtchouk-Kunita- Watanabe
under P for V is

~ t
¥ = F(0, Xo, Up) +/ F¥(s, Xy, U,_) dX, + LY, (5.4)
0
where

t ~ t
LY = [ Fi(s, X, Uitz + [ [ AF®(s,y)(7(ds, dy) = 7#(ds,dy)). (5.5)

Proof: The representation (5.4) and (5.5) follows immediately from Proposition 5.4.
Hence we only need to verify that LY and X are strongly P—orthogonal, and this can
be shown as in the proof of Lemma 5.7.2: Since [ F¥ dX and [ EY dM™* are local
P-martingales, it follows from the proof of Proposition 5.4 that [ [ AF¥ (7% —7%P)
is also a local P-martingale. Hence, this process is a purely discontinuous local
P-martingale, which, by definition, is strongly orthogonal to any continuous local
martingale. This shows that X and LY are indeed strongly P-orthogonal, since X
and M™¢ are strongly P-orthogonal by assumption. As in the proof of Lemma 5.7.2
we obtain

7= [(F2a) + [(#)) 2dM“>+[// AFY (" — 7m7)]

Since V' is bounded, supy<,<y |V;|* € L(P), which implies via the Burkholder-Davis-

Gundy inequality that [V]; € L'(P). Applying this inequality once more, we find
that [ F¥dX, [ F¥ dM™ and [ [ AF?(y* —4"“?) are actually P-square-integrable
P—martlngales O

In order to compute the fair premiums of Theorem 5.4.1 and 5.4.2, we need in
addition to determine the process [L¥], see for instance Corollary 5.2.8. Since
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[ [r AFY(y* — 4%P) is a purely discontinuous local martingale, we find that

[ farr =)
-2 ([ o= [ [

0<s<t

2

= ¥ ([ AP )0 Ushdy) - 77 (s} dy)) - (5.6)

0<s<t

In general, ¥“P({s}, IR) may differ from 0. This is for example the case, if U has
jumps occurring at fixed deterministic times with a strictly positive probability. By
Corollary I1.1.19 of Jacod and Shiryaev (1986), ¥“?({s}, IR) = 0 for all s € [0, T if
and only if U is quasi-left-continuous, that is, if and only if AU, = 0 a.s. on the set
{T < oo} for any predictable time 7. (In particular, 7 = ¢, t € IR, is a predictable
time.) If we in addition assume that U is quasi-left-continuous, then (5.6) simplifies

to
[/ I AFw(Vu_:yu’p)L N /ot [ (AF* (5,9 (ds, dy).

In the general case, Corollary 5.2.8 gives that

nir) = B| [ 2 rrpauir) 5.7
LB O;TZ (/ AFY (v ({t}, dy) — “’p({t},dy))y].

Furthermore, by Theorem 5.2.6 we have that
Lt -
91 = FY(t X, Up) -G / Z7VFY (s, X, Uy_) ™ (5.8)
0

=G [T 77 [ AFY(s,) (0 (ds, dy) = 40(ds, ).
0 R

5.1 The financial stop-loss contract revisited

We briefly turn to the problem of valuating the financial stop-loss contract intro-
duced in Chapter 1, see (1.5.1). We restrict here to the case where the financial loss
component is of the form Yr = g(X7) and consider, for K; < Ky < oo, the spread

(Ur + g(X7) — K1)t — (Ur + 9(X7) — Ko)" =: ¥ (X7, Uy), (5.9)

which is of the special form (5.1) and bounded by K, — K. Thus, this contract can
be analysed within the present framework.

The general case
Provided that the pair (X, U) satisfies Assumptions 5.1 and 5.2, one can apply the
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results obtained in the present chapter in the valuation of (5.9). First of all this
would involve a verification of the smoothness condition F'¥ € C*?2, and this seems
to be a difficult problem in the general case; one possible approach is to apply
techniques similar to the ones used in Lamberton and Lapeyre (1996, Chapter 7).
Having verified this condition, one would then typically apply Proposition 5.4 to
obtain a PDE for F'¥, which then, in most situations, must be solved numerically.

Independence between Xt and Ur

Under the additional assumption of independence between X and U, we can of
course apply the results obtained in Sections 5 and 6 of Chapter 5 by embedding
all quantities in a product space model of the type considered there. If furthermore
the model (X, F!) is complete, see Lemma 5.5.11, then Theorem 5.6.2 provides
upper and lower bounds for the fair premium which involve only on the distribution
functions of Xt under P and P and the distribution function of Ur under P. Thus,
the premiums can be determined by evaluating simple double-integrals with respect
to these distribution functions.

5.2 A stochastic volatility model

Let us consider a more explicit example within this framework. First note that if X
and U are stochastically independent, then we are basically within the framework
considered in Section 5 of Chapter 5 and hence we can apply the results presented
there; see also the example at the end of Section 3 of the present chapter. Thus,
we consider an example where U and X are not independent. This example is a
special case of the main example of Grandits and Rheinlidnder (1999). Let U =
N, where N is a homogeneous Poisson process with intensity A and let W be a
standard Brownian motion which is independent of NV under P. This is obtained by
letting (€2, F, IF, P) be the product space of two separate spaces, carrying W and N
respectively (again, we use the notation W and N for the original processes on the
underlying spaces). The filtration I is then defined as in Section 5 of Chapter 5, so
that 7, = (F)Y @ F¥)VN. Similarly to (5.5.3) and (5.5.4), we embed the filtrations
FY and F" in the product space and denote by FY and " the embedded
filtrations; recall also Lemma 5.5.4. However, it is emphasized that the process X is
now only defined on the product space and is here taken to be given by the dynamics

dXt = a(t, Nt_)Xt dt + O'(t, Nt_)Xt th,

so that the drift and volatility of X depend on the additional risk N. With the

notation above, M® = [oX dW and M{* = Ny — At. We let A = 35 and introduce
the mean-variance tradeoff process K = [A2d(M®) = [ g—;dt. We assume that
v := % is uniformly bounded and work under the conditions on parameters which
are given in Grandits and Rheinldnder (1999), henceforth abbreviated as GR, who

then show that the variance optimal martingale measure is given by

Ir=CE¢ (—/AdM“”)Texp(—f(T) T (— /AdX)T, (5.10)
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for some C' € IR,. Consider contracts of the form H = ¥(Xr, Nr), where VU is
a bounded measurable function. In order to apply proposition 5.4 above it should
be verified that the function F¥ defined by F¥(t, X, N;) = E[¥(Xr, Ny) | F] is in
CH22_ Note that N is a special semimartingale under P since it has bounded jumps,
so that we only need to verify that N is a P-Markov process and to determine the
canonical decomposition for N under P (i.e. the compensator for N).

We characterize the change of measure from P to P further by determining the
density process Z; = E[j—g | F¢]. This can be done by applying arguments similar to
the ones applied in the example in GR, since

7, = CE[exp(—f(T)e (— / AdMI)

‘

T

- CE [exp(—KT)E [5 (_/)‘sz>T

ftWVf;V]

Provided that £ (— [ AdM?) is also a martingale with respect to the filtration F* =
(F})o<t<r, where Fp = FV' v FY, we have thus obtained

Z,=C€ (—//\de> E [exp(—Kr)| 7] - (5.11)
t
We only need to show the following:

Lemma 5.6 £ (— [ AdM?) is an (IF*, P)-martingale.

Proof: Tt follows by arguments similar to the ones used in the proof of Lemma 5.5.6
that the standard Brownian motion W from the underlying space can be extended to
a continuous (IF*, P)-martingale W. Similarly, W2 —t is also an (IF'*, P)-martingale,
and hence, W is an standard Brownian motion with respect to (F*, P). By assump-
tion, v := 2 is uniformly bounded. Since o and o are assumed to be measurable
functions, v is IF*-predictable (actually v, is Fj-measurable). It now follows by

Novikov’s condition (see e.g. Karatzas and Shreve (1991, Corollary 3.5.13)) that

the process
«
— [ AdM?*)=E(— | —d
(= [rar) =g (= [ aw)

is indeed an (IF*, P)-martingale. O

Let k(s,n) := alsn)® o that K = [ k(s, Ns_)ds. By the Markov property for N

o(sm)?’

and the independence between N and W, we get

Mtk = E [exp(—KT)‘ft]

= kg lexp (- /t Tk(s,Ns_)ds>

= e K FF(¢ N,).

g
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For later use, we note that it now follows directly from (5.11) and (5.10) that = =
Elexp(—K7)] and

~ t
Zt:Cé’(—//\dX) :C—/)\05<—//\dX>dX. (5.12)
t 0
Furthermore,

z,  CE(=[AdM"),E [exp(—K7)| 7]

Z, CE& (- [ NdX),
_ E(= [ AdX),exp(=K))E [exp(—(Kr — K,))| 7] exp(Ky)
B E(— [ 1 dX),
= F*(t,N,).

We shall also use later that

Var[Z;] = E[Z2] — (E[Z/)) =2 —1=C — 1,
where C = 1~/E[exp(—R'T)] =1/F%(0,0). Letting {, = —\Z;, we obtain from (5.12)
that 3 = —$ =X(— [AdX) (3 is defined in Section 4 of Chapter 5).

Assume now that F* is continuously differentiable with respect to ¢ and let MY =
N; — At. Then Ito’s formula gives

dMF = —k(t, N)M} dt
+e K (F;’C(t, N, )dt + (F*(t, N, +1) — F¥(t, Ntf))dNt)
= ¢ K (F*(t, N +1) = F*(t,N,)) dM}"
e K (—’f(t, Ny)F*(t, Ny) + Ff (8, Ny) + (F*(t, Ny + 1) — F¥(t, Nt))A)dt
= M gFdMy,
where

g PRt Ny +1) — F*t, Ny )
gt = N . (5.13)

Furthermore, these calculations show that the function F* satisfies the equation
—k(t,n)F*(t,n) + FF(t,n) + A (F¥(t,n + 1) — F*(t,n)) =0, (5.14)

with terminal condition F*(T,n) = 1 for all n. This shows that

a(s, N;_) f
Z =Zy— /Z,idws /Zs, dM}, 5.15
0 o(s,Ns_) + fs AM; (5.15)
and hence, by the Girsanov theorem, the compensator for N under P is

_ FF(s,N,_ +1)
/(1 + 5\ ds = /A Fr(s. N ds,
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so that N is indeed a Markov process under P. (To see this, it is sufficient to
verify that for any bounded function f, E[f(Nis)|Fs] = E[f(Nigs) | Ns], see e.g.
Chung (1982, Section 1.1), and this can for instance be established by applying
the abstract Bayes formula and Lemma 5.6.) In particular, with the notation
of Proposition 5.4, a* = (1 + GF)A, v*(ds,dy) = &1(dy)dN;s and F“P(ds,dy) =
e1(dy)A(1 + B*)ds. Provided that F¥ € C%22, Proposition 5.4 gives that this func-
tion is determined by the equation

1
FY+ S0 T Fl+ AFPA(L+ 6%) =0, (5.16)

with terminal condition F¥(T,z,n) = ¥(x,n), and where
AFY(t,z,n) = F¥(t,z,n+1) — F¥(t,z,n).

Note that the equation (5.16) also involves the function F* in that 1+ 3*(t,n) =
F*(t,n+1)/F*(t,n). The same proposition now also determines the Kunita-Watana-
be decomposition for the P-martingale F¥ and the hedging error .Jy(IF), so that the
fair premium and the optimal strategy can be computed by means of Theorems 5.4.1
and 5.4.2. In the present example, (5.7) and (5.8) specialize to

I = FEY(t, Xy, Np) (5.17)
~ [t .
~G | Z7N(FY(s,Xe, Noo + 1) = F¥(s, X,, N,2) ) (dN, — A1+ ) ds),
0

where 3* is defined by (5.13), and

Jo(F) =& [/OT Z7 (FY(8, X0, Ne + 1) = F¥(t, X, Nio)) dNt] . (5.18)

The above framework could for example be used in the situation, where N describes
the occurrence of some catastrophic events which affect the stock price process of
(say) an insurance company. This is definitely not unrealistic, since a severe catas-
trophe will affect the surplus of the insurance company and might cause speculations
whether the insurance company will be able to cover its obligations or whether it
will be ruined.

Example 5.7 Let us consider a very simple example where explicit formulas can
be obtained relatively easily. We assume that «(¢,n) = o (independent of time and
N) and that

o(t,n) = oolin=o} + o1l{n>13.

Thus, the volatility of the stock jumps in connectlon with the occurrence of the
first catastrophe. We let ky = —2' and k; = —2', and we assume for simplicity that

A + ko # kq; this is satisfied if for example 01 > 0p. We shall determine the fair
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premium and the optimal strategy (under the financial variance principle) for the
claim

U (X7, Nr) = Ling>13, (5.19)
which pays one unit at time 7 if at least one catastrophe has occurred during [0, 7).

We need to determine the functions F*(¢,n) and F¥(t,n). The functions F* can be
computed directly or be determined via the equations (5.14). Since

T
F’C(t, n) =E lexp (_/t (kol{Ns_:O} —+ kll{N3_21}) dS) Ny = n] ,

we first note that
FE(t,n) = F¥(t,1) = e F1(T=1),
for n > 1. From (5.14) we now find that F*(¢,0) is the solution to
(ko + A)F¥(t,0) — Ff(t,0) = Ae M0,
with terminal condition F*(T,0) = 1. Hence

ko — ki ) A
Fk ¢ — (A+ko)(T—t) k(T t).
0 = i re Ak —FC

We now turn to the problem of determining F¥. Using arguments similar to the
ones leading to (5.11) and the abstract Bayes formula, we find for any bounded
function f

E [ Zrf(Nr)| 7]
Z
CE (= [ XdM?), exp(—K})E [exp (—(Kr — K,)) f(Nr)| 7]
CE(—[AdM®), eXP(—f(t)Fk(ta N)
E [exp (~(Kr — Ky)) f(Nr)| 7]
FE(t, Ny) ’

E[f(NT)|-7:t] =

which shows that F¥ is a function of (¢, N;) only, since N is a Markov process.
Clearly, F¥(t,n) = 1, for n > 1, and F¥(t,0) could now be computed directly by
using that the first jump time 7 for N is exponentially distributed with mean 1/A.
We shall instead, however, use that F¥(¢,0) solves the equation (5.16) with boundary
condition F¥(T,0) = 0. Since F¥ does not depend on X, and since F¥(t,1) = 1,
this specializes to

EY(t,0) — FY(t,00A(1 + B*(t,0)) = —A(1 + 6%(t,0)),

which has solution

F¥(t,0) =1 — exp (- /tT A1+ B%(s,0)) ds> :
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(In fact, this also follows immediately from the form of the compensator for N under
P and the fact that F¥(¢,0) = 1 — P(Ny = 0 | N; = 0).) After some tedious but
simple calculations, we thus arrive at

e*(A—HC()*kl)(T*t)

F¢(ta0):1_ ko—k A
b e—(Atko—k1)(T—t) 4 N

Thus, by (5.17) and Theorem 5.4.1, the optimal strategy under the variance principle
is

Fk(s,1)

t— .
95 = MNCE(- / AdX), /0 770 (1= F¥(5,0)) 1w,y (AN, = Ay oo
AE(= [ AdX),
2a F*(0,0)
Similarly, we obtain from (5.18)
[T - 2
Jo(F) = E A Zt_1 (1—F¢(t,0)) ]'{Nt—:()} dN;|
N
= E /0 Zt_l (1 — Fw(t, 0))2 1{Nt—:0}A(1 + ﬁk(t, 0)) dt]
- TZt » 2 &
= E /0 Z (1 — F¥(t, 0)) Lin,_=oyA(1 + B%(¢,0)) dt]
[ (T 2 F*(t,1)
= k — FY o A—"~
B| /O FH(t,N,) (1 FY(£,0)) Ly, —oyA ) dt]
T 2
- / (1= FP(t,0)) e MAFX(t,1) dt, (5.20)
0

where the second equality follows by using the P-intensity for N and the third
equality is a consequence of the optional projection theorem. The last equality is
obtained via the Fubini theorem and by using the fact that P(N; = 0) = e=*!. The
expression (5.20) can for example be evaluated by numerical integration. The fair
premium under the financial variance principle is thus

Ul(l{NTzl}) = F’P(O,O) + a'JO(F)
e~ (At+ko—k1)T

= 1 - ko—k}l e—(A+k0—]€1)T _+_ 71\
A+ko—k1 A+ko—k1

T 2
+a / (1= F¥(t,0)) e MAe BT gy,
0

It is now also possible to give the optimal strategy and the fair premium under
the financial standard deviation principle by applying the results of Section 4 of
Chapter 5. This ends the example. O
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