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Preface
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Ph.D. degree at the Department of Statistics and Operations Research, Institute
for Mathematical Sciences at the University of Copenhagen. The work has been
carried out in the period from May 1997 to July 2000 with Martin Jacobsen as
thesis advisor.

The thesis contains a brief overall introduction, two introductory chapters and
three papers. The introductory chapters have been prepared for this thesis exclu-
sively whereas the papers have been (or will shortly be) submitted for publication.
Each chapter and paper is self-contained and can be read independently from the
rest. The first page of each of the three papers contain an abstract and details
on publication. Page numbers within the papers are given in parentheses at the
bottom of each page, underlining that the papers have been prepared and written
separately. To emphasize the unity of the thesis, pages are also numbered consec-
utively (at the top of each page) and the lists of references are collected in one

bibliography placed at the end of the thesis.
The present version differs from the original one which was submitted for the

Ph.D. degree on July 20, 2000, by this preface and in that a minor number of typos
and misprints have been corrected.
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Summary

Diffusion processes have a wide range of applications. In physics and biology
they are used for modeling phenomena assumed to evolve randomly and contin-
uously in time. In mathematical finance they are used for modeling various price
processes. Data are essentially always sampled at discrete points in time only.
This leaves the statistician in a dilemma because the few models that are easy to
handle statistically, in general do not describe data adequately. For example, it
is well known that stock price data usually violate the assumptions of the geo-
metric Brownian motion (or in finance terms, the Black-Scholes model) classically
used for stock price modeling. For more complicated models maximum likelihood
estimation is usually not possible because the discrete-time transitions implicitly
defined by the continuous-time model are not known analytically. Consequently,
there is a need for alternative statistical methods.

The first part of this thesis (Chapter 2 and Papers I and II) is about para-

metric inference for stationary and ergodic diffusion processes with general, often
non-linear, specifications of the drift and diffusion functions. Chapter 2 provides
an overview of existing techniques with emphasis on estimating functions. Fur-
thermore, new results on identification for martingale estimating functions are
presented. In Paper I a simple, explicit approximation of the continuous-time
score function is derived in terms of the infinitesimal generator and the invariant
density. As opposed to the usual Riemann-Itô approximation, it is unbiased and
provides consistent estimators. Paper II presents a method suitable for estima-
tion of parameters in the diffusion term. It is based on a functional relationship
between the drift, the diffusion function and the invariant density, and provides
satisfactory estimates in the difficult CKLS model. The usual limit theory does not
apply; instead empirical process theory is employed in order to prove asymptotic
properties of the estimator.

The second part of the thesis (Chapter 3 and Paper III) is about parametric

inference for stochastic volatility models, that is, two-dimensional diffusion models
with a special structure and one of the coordinates unobservable. The introduc-
tion of a latent process makes it possible to retain a simple (linear) structure of the
model and still create the complex data structures known from empirical studies.
However, it also complicates the statistical analysis because the model is only par-
tially observed. Chapter 3 provides an introduction to stochastic volatility models
with special emphasis on four particular models and on statistical analysis. A com-
parison of different models shows that the increments of the observable process
can have almost identical distributions although the underlying latent processes
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are specified quite differently. Still, the models differ in their ability to create
highly leptokurtic distributions. The overview of estimation methods covers a
wide range of techniques from simple moment-based methods to quite compli-
cated techniques relying on very intensive computations. In Paper III a new ap-
proximate maximum likelihood method is presented. The idea is to pretend that
the increments of the observable process form a k’th order Markov chain for some
relatively small k. The corresponding approximate score function is unbiased, and
the estimators therefore consistent, for each fixed k because the true conditional
distributions given the k previous observations are used. These conditional densi-
ties are not known analytically but can be computed by simulation. The method
makes it thereby possible to compute quite natural approximations to the likeli-
hood function.



Dansk resumé

Diffusionsprocesser har anvendelsesmuligheder indenfor adskillige fagområder.
De benyttes til beskrivelse af fænomener der varierer kontinuert og stokastisk over
tid, for eksempel i fysik og biologi. De benyttes også intensivt i matematisk finan-
siering til beskrivelse af prisfluktuationer på forskellige finansielle aktiver. Uan-
set antagelsen om kontinuert variation er observationer af processerne dog altid
diskrete af natur idet målinger foretages på endeligt mange, adskilte tidspunk-
ter. Dette komplicerer den statistiske analyse betydeligt fordi overgangssandsyn-
lighederne, implicit defineret af modellen, kun er kendt analytisk for ganske få
modeller. Disse modeller er som regel for simple til at beskrive strukturen i de
observerede data tilfredsstillende. For eksempel er det velkendt at faktisk obser-
verede aktiekurser er i klar modstrid med den geometriske brownske bevægelse
(eller med terminologi fra finansiering: Black-Scholes modellen) som ellers klas-
sisk set er blevet brugt som model for aktiekurser. Det er med andre ord sjældent
muligt udføre maksimaliseringsestimation, og der er således behov for alternative
estimationsmetoder.

Afhandlingens første del (kapitel 2 og artikel I og II) handler om parametrisk

inferens for generelle stationære og ergodiske diffusionsprocesser. Kapitel 2 giver en
oversigt over eksisterende estimationsmetoder med hovedvægt på teorien for esti-
mationsfunktioner. Udover en redegørelse for velkendte metoder og resultater
præsenteres også et nyt resultat om identifikation for martingalestimationsfunk-
tioner. I artikel I udledes en simpel, eksplicit approksimation af scorefunktionen
hørende til en observation i kontinuert tid. Approksimationen er en central esti-
mationfunktion og giver derfor, til forskel fra den sædvanlige Riemann-Itô approk-
simation, konsistente estimatorer. I artikel II beskrives en metode til estimation af
parametre i diffusionsfunktionen. Metoden er baseret på en punktvis sammen-
hæng mellem driftfunktionen, diffusionsfunktionen og tætheden for den statio-
nære begyndelsesfordeling, og den giver fornuftige estimater i den ellers vanske-
lige CKLS model. De klassiske grænsesætniger kan ikke anvendes; i stedet benyttes
teorien om empiriske processer til at bevise asymptotiske egenskaber for estima-
torerne.

Afhandlingens anden del (kapitel 3 og artikel III) handler om parametrisk infe-

rens for stokastiske volatilitetsmodeller, dvs. todimensionale diffusionsmodeller der
har en speciel form og hvor kun den ene af koordinaterne er observerbar. Ind-
førelsen af den ekstra proces gør det muligt at frembringe fænomenerne kendt
fra empiriske analyser ved hjælp af relativt simple (lineære) modeller, men den
statistiske analyse kompliceres fordi modellen kun observeres partielt. Kapitel 3
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er en introduktion til stokastiske volatilitetsmodeller med særligt henblik på fire
specifikke modeller og på statistisk analyse. En sammenligning viser at forskellige
modeller for den ikke-observerbare process kan frembringe næsten identiske for-
delinger for tilvæksterne af den observerbare process, men at modellerne adskiller
sig fra hinanden ved deres evne til at skabe tilvækster med meget tunge haler.
Oversigten over estimationsmetoder for stokastiske volatilitetsmodeller spænder
fra enkle momentbaserede metoder til ganske komplicerede og meget beregnings-
krævende metoder. I artikel III præsenteres en ny approksimativ maximumlike-
lihoodmetode. Ideen er at opføre sig som om tilvæksterne for den observerbare
process udgør en markovkæde af orden k for et relativt lille k. Centraliteten af den
tilsvarende scorefunktion bibeholdes såfremt de sande betingede tætheder givet
de k foregående observationer benyttes. Således bliver estimatoren konsistent og
asymptotisk normalfordelt for ethvert fast k. De betingede tætheder er ikke kendt
analytisk men kan beregnes ved simulation. Metoden gør det dermed muligt at
beregne naturlige approksimationer til likelihoodfunktionen.
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1
Introduction

Diffusion models have a large range of applications. They have been used for a
long time to model phenomena evolving randomly and continuously in time, e.g.

in physics and biology. During the last thirty years or so the models have also been
applied intensively in mathematical finance for describing stock prices, exchange
rates, interest rates, etc. (although it is well-known that such quantities do not
really change continuously in time).

Data are essentially always recorded at discrete points in time only (e.g. weekly,
daily or each minute) and can thus be interpreted as time series data. Still,
continuous-time models are often preferred to classical time series models. There
are (at least) two reasons for this. First, if data are sampled at irregularly spaced
time-points, then an appropriate discrete-time model should incorporate this ex-
plicitly. As opposed to this, continuous-time models implicitly define transitions
over time intervals of any length in a consistent way. For example, missing data
in a sample where time-points for observations are otherwise regularly spaced, do
not give rise to serious problems in the continuous-time setting as they are treated
just like the values not observed due to discrete-time sampling. Second, all the
machinery from stochastic calculus is at our disposal when we use diffusion mod-
els. This has proved important in finance theory where derivation of various price
formulas usually relies heavily on this theory.

Thus convinced that diffusion models are important and useful alternatives to
classical time series models I turn to the statistical analysis. I shall be concerned
with parametric inference exclusively. For a few models, estimation is straight-
forward because the corresponding stochastic differential equation can be solved
explicitly. This is the case for the geometric Brownian motion, the Ornstein-
Uhlenbeck process and the square-root process which have log-normal, normal
and non-central chi-square transition probabilities respectively. However, “nature”
(or “the market”) most often generates data not adequately described by such sim-
ple models. For example, empirical studies clearly reveal that increments of loga-
rithmic stock prices are not independent and Gaussian as implied by the geometric
Brownian motion classically used for stock price modeling. Rather, they exhibit
temporal dependence and leptokurtosis. Consequently, more complex models are
needed in order to obtain reasonable agreement with data. This complicates the
statistical analysis considerably because the discrete-time transitions (implicitly
defined by the model) are no longer known analytically. Specifically, the likelihood

function is usually not tractable. In other words, one has to use models for which
likelihood analysis is not possible, and there is consequently a need for alternative
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methods.

In this thesis I am concerned with parametric inference for two types of gener-
alizations of the above simple models, namely (one-dimensional) diffusion mod-
els with more general, typically non-linear, specifications of drift and diffusion
functions, and continuous-time stochastic volatility models. By the latter I mean
two-dimensional diffusion processes with a special structure and one of the coordi-
nates unobservable. The introduction of an extra, latent process makes it possible
to retain a simple (linear) structure of the stochastic differential equation for the
observable process and still create the characteristic features known from empir-
ical studies. However, the extra process also complicates the statistical analysis
because the model is only partially observed.

Further introductory comments on the two model types and the corresponding
estimation problems are given in the beginning of Chapters 2 and 3.

Structure of the thesis

My main contributions in this thesis are contained in three papers: Papers I and II
on (pure) diffusion models and Paper III on stochastic volatility models. In addi-
tion I provide two introductory chapters: Chapter 2 on diffusions and Chapter 3 on
stochastic volatility models. The aim of the two introductory chapters is mainly to
provide overviews of existing estimation methods, but they also contain a few new
results. I do not know of any review papers with quite the same focus. The chap-
ters and papers may be read independently. This has the unfortunate consequence
that models, notation, etc. are defined several times. Attempts have been made
in order to customize notation; still, there may be slight differences which should
cause no confusion. The lists of references have been collected to one bibliography
placed at the end of the thesis.

Estimation in (pure) diffusion models. Chapter 2 provides an overview of ex-
isting estimation techniques for stationary and ergodic diffusion processes. Main
emphasis is on estimating functions, in particular on martingale estimating func-
tions and so-called simple estimating functions. Well-known properties and results
are reviewed, and some some new results concerning identification for martingale
estimating functions are presented: one of the regularity conditions needed in or-
der for the estimator to be asymptotically well-behaved is explained in terms of
reparametrizations. In addition to estimating functions, the chapter covers three
approximate maximum likelihood methods, Bayesian analysis and methods based
on auxiliary models.

Papers I and II contain my main contributions in the area of estimation in
diffusion models. Brief reviews are given in Sections 2.3.2 and 2.7. In Paper I
(Discretely Observed Diffusions: Approximation of the Continuous-time Score Func-

tion) I study how the structure of the continuous-time score function can be used
when only discrete-time observations are available. The usual Riemann-Itô ap-
proximation is biased; I derive an alternative, unbiased approximation in terms of
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the infinitesimal generator and the invariant density. The approximation is an ex-
plicit, so-called simple estimating function; is is invariant to data transformations;
and it provides consistent and asymptotically normal estimators as the number of
observations increases (for any fixed time interval between observations). The ap-
proach carries over to multi-dimensional diffusions (to some extent at least), and
I study a few examples where the method works very well.

In Paper II (Estimation of Diffusion Parameters for Discretely Observed Diffusion

Processes) I discuss a method suitable for estimation of parameters in the diffusion
term when the drift is known. It is based on a functional relationship between
the drift, the diffusion function and the invariant density. I apply the method
to simulated data from the relatively difficult CKLS model and get satisfactory
estimates. The estimators are probably not efficient, though. From a theoretical
point of view the derivation of asymptotic results is perhaps most interesting. The
usual limit theory does not apply; instead I employ empirical process theory. I am
not aware of other applications of empirical process theory to problems related to
discretely observed diffusions.

Stochastic volatility models. Chapter 3 is an introduction to stochastic volatil-
ity models in continuous time. I study four particular models in detail and con-
clude that they mainly differ in their ability to create processes for which the incre-
ments are highly leptokurtic. If parameter values are chosen appropriately, then
the models are hard to distinguish. I do not know of any similar comparisons in
the literature. Chapter 3 also provides an overview of existing estimation methods,
some of which are developed very recently. The overview covers moment meth-
ods, approximations to the marginal distribution of the increments, prediction-
based estimating functions, Bayesian analysis, indirect inference and EMM, and a
filtering-based method. Strikingly, most methods are extremely computationally
intensive.

My main contribution consists of a new approximate maximum likelihood
method, developed in Paper III (Simulated Likelihood Approximations for Stochas-

tic Volatility Models) and reviewed in Section 3.4.7. The method provides a se-
quence of approximations to the likelihood function. For the k’th approximation,
the idea is to pretend that the increments of the observable process form a k’th
order Markov chain. The corresponding approximate score function is unbiased
because the true conditional distributions given the k previous observations are
used. For any fixed k the estimator is invariant to transformations of data, consis-
tent and asymptotically normal (for any fixed time interval between observations).
There is no closed-form expression for the approximate likelihood function (just
as for the true likelihood function) but it can be computed by simulation. I ap-
ply the method to simulated data in Paper III and to Microsoft stock price data in
Section 3.4.7.

Finally, let me stress that although diffusion-type models are perhaps most
widely applied in finance these days, and although the applications mentioned
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originate from finance, the focus of this thesis is purely statistical! My main in-
terest in the models lies in their statistical properties rather than their financial
applications.



2
Inference for diffusion processes

Statistical inference for diffusion processes has been an active research area during
the last two or three decades. The work has developed from estimation of linear
systems from continuous-time observations (see Le Breton (1974) and the refer-
ences therein) to estimation of non-linear systems (parametric or non-parametric)
from discrete-time observations. In this chapter, as well as in Papers I and II, we
shall be concerned with parametric inference for discrete-time observations exclu-
sively. The models may be linear or non-linear.

This branch of research commenced in the mid eighties (with the paper by
Dacunha-Castelle & Florens-Zmirou (1986) on the loss of information due to dis-
cretization as an important reference) and accelerated in the nineties. Important
references from the mid of the decade are Bibby & Sørensen (1995) on martingale
estimating functions, Gourieroux, Monfort & Renault (1993) on indirect inference,
and Pedersen (1995b) on approximate maximum likelihood methods, among oth-
ers. Later work includes Bayesian analysis (Elerian, Chib & Shephard 2000) and
further approximate likelihood methods (Aït-Sahalia 1998, Poulsen 1999).

Ideally, the parameter should be estimated by maximum likelihood but, ex-
cept for a few models, the likelihood function is not available analytically. In this
chapter we review some of the alternatives proposed in the literature. There ex-
ist review papers on estimation via estimating functions (Bibby & Sørensen 1996,
Sørensen 1997), but we do not know of any surveys covering all the techniques
discussed in this chapter.

Papers I and II contain my main contributions in this area. Furthermore, there
are some new results on identification for martingale estimating functions in Sec-
tion 2.3.1. In Paper I we discuss a particular estimating function derived as an
approximation to the continuous-time score function. The estimating function is
of the so-called simple type, it is unbiased and invariant to data transformations
and provides consistent and asymptotically normal estimators. In Paper II we dis-
cuss a method suitable for estimation of parameters in the diffusion term when the
drift is known. It is based on a functional relationship between the drift, the diffu-
sion function and the invariant density, and provides asymptotically well-behaved
estimators. The asymptotic results are proved using empirical process theory.

In the following we focus on fundamental ideas and refer to the literature for
rigorous treatments. In particular, we consider one-dimensional diffusions only,
although most methods apply in the multi-dimensional case as well. Also, we do
not account for technical assumptions, regularity conditions etc. An exception is
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Section 2.3.1, though, where the new identification results are presented.
The chapter is organized as follows. The model is defined in Section 2.1,

and Section 2.2 contains preliminary comments on the estimation problem. Sec-
tion 2.3 is about estimating functions with special emphasis on martingale estimat-
ing functions and so-called simple estimating functions, including the one from
Paper I. In Sections 2.4 we discuss three approximations of the likelihood which
can in principle be made arbitrarily accurate, and Section 2.5 is about Bayesian
analysis. In Section 2.6 we discuss indirect inference and EMM which both intro-
duce auxiliary (but wrong) models and correct for the implied bias by simulation.
The method from Paper II is reviewed in Section 2.7 and conclusions are finally
drawn in Section 2.8.

2.1 Model, assumptions and notation

In this section we present the model and the basic assumptions, and introduce
notation that will be used throughout the chapter. We consider a one-dimensional,
time-homogeneous stochastic differential equation

dXt = b(Xt;θ)dt +σ(Xt ;θ)dWt (2.1)

defined on a filtered probability space (Ω;F ;Ft;Pr). Here, W is a one-dimensional
Brownian motion and θ is an unknown p-dimensional parameter from the pa-
rameter space Θ � Rp . The true parameter value is denoted θ0. The functions
b :R�Θ!R and σ :R�Θ! (0;∞) are known and assumed to be suitably smooth.

The state space is denoted I = (l;r) for �∞ � l < r � +∞ (implicitly assuming
that it is open and the same for all θ). We shall assume that for any θ 2Θ and anyF0-measurable initial condition U with state space I, equation (2.1) has a unique
strong solution X with X0 = U . Assume furthermore that there exists an invariant

distribution µθ = µ(x;θ)dx such that the solution to (2.1) with X0 � µθ is strictly
stationary and ergodic. It is well-known that sufficient conditions for this can be
expressed in terms of the scale function and the speed measure (see Section II.2,
or the textbook by Karatzas & Shreve (1991)), and that µ(x;θ) is given by

µ(x;θ) = �M(θ)σ2(x;θ)s(x;θ)��1
(2.2)

where logs(x;θ) = �2
R x

x0
b(y;θ)=σ2(y;θ)dy for some x0 2 I and M(θ) is a normal-

izing constant.
For all θ 2 Θ the distribution of X with X0� µθ is denoted by Pθ . Under Pθ all

Xt � µθ . Further, let for t � 0 and x 2 I, pθ (t;x; �) denote the conditional density
(transition density) of Xt given X0 = x. Since X is time-homogeneous pθ (t;x; �) is
actually the density of Xs+t conditional on Xs = x for all s � 0. Note that the tran-
sition probabilities are most often analytically intractable whereas the invariant
density is easy to find (at least up the normalizing constant).

We are going to need some matrix notation: Vectors in Rp are considered as
p� 1 matrices and AT is the transpose of A. For a function f = ( f1; : : : ; fq)T :
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partial derivatives with respect to x, and ḟ (x;θ) = ∂θ f (x;θ) denote the q� p ma-
trix of partial derivatives with respect to θ , i.e. ḟ jk = ∂ f j=∂θk, assuming that the

derivatives exist.
Finally, introduce the differential operator Aθ given byAθ f (x;θ) = b(x;θ) f 0(x;θ)+ 1

2σ2(x;θ) f 00(x;θ) (2.3)

for twice continuously differentiable functions f : R�Θ ! R. When restricted to
a suitable subspace, Aθ is the infinitesimal generator of X (see Rogers & Williams
(1987), for example).

2.2 Preliminary comments on estimation

The objective of this chapter is estimation of the parameter θ . First note that
if X is observed continuously from time zero to time T then parameters from the
diffusion coefficient can be determined (rather than estimated) from the quadratic
variation process of X , and the remaining part can be estimated by maximum
likelihood: if the diffusion function is completely known, that is σ(x;θ) = σ(x),
then the likelihood function for X0�t�T is given by

Lc
T (θ) = exp

�Z T

0

b(Xs;θ)
σ2(Xs) dXs� 1

2

Z T

0

b2(Xs;θ)
σ2(Xs) ds

�: (2.4)

An informal argument for this formula is given below; for a proper proof see
Lipster & Shiryayev (1977, Chapter 7).

From now on we shall consider the situation where X is observed at discrete
time-points only. For convenience we consider equidistant time-points ∆;2∆; : : : ;n∆
for some ∆ > 0. Conditional on the initial value X0, the likelihood function is given
as the product

Ln(θ) = n

∏
i=1

pθ (∆;X(i�1)∆;Xi∆)
because X is Markov. Ideally, θ should be estimated by the value maximizing
Ln(θ), but since the transition probabilities are not analytically known, neither is
the likelihood function.

There are a couple of obvious, very simple alternatives which unfortunately are
not satisfactory. First, one could ignore the dependence structure and simply ap-
proximate the conditional densities by the marginal density. Then all information
due to the time evolution of X is lost, and it is usually not possible to estimate the
full parameter vector. See Section 2.3.2 for further details.

As a second alternative, one could use the Euler scheme (or some higher-order
scheme) given by the approximation

Xi∆ � X(i�1)∆ +b(X(i�1)∆;θ)∆+σ(X(i�1)∆;θ)p∆εi



8 Chapter 2. Inference for diffusion processes

where εi, i = 1; : : : ;n are independent, identically N(0;1)-distributed. This approxi-
mation is good for small values of ∆ but may be bad for larger values. The approx-
imation is two-fold: the moments are not the true conditional moments, and the
true conditional distribution need not be Gaussian. The moment approximation
introduces bias implying that the corresponding estimator is inconsistent as n!∞
for any fixed ∆ (Florens-Zmirou 1989). The Gaussian approximation introduces
no bias per se, but usually implies inefficiency: if the conditional mean and vari-
ance are replaced by the true ones, but the Gaussian approximation is maintained,
then the corresponding approximation to the score function is a non-optimal mar-
tingale estimating function, see Section 2.3.1.

Note that the Euler approximation provides an informal explanation of formula
(2.4): if σ does not depend on θ , then the Euler approximation to the discrete-
time likelihood function is given by (except for a constant)

exp

(
n

∑
i=1

b(X(i�1)∆;θ)
σ2(X(i�1)∆) �Xi∆�X(i�1)∆�� 1

2
∆

n

∑
i=1

b2(X(i�1)∆;θ)
σ2(X(i�1)∆) ) (2.5)

which is the Riemann-Itô approximation of (2.4).

2.3 Estimating functions

Estimating functions provide estimators in very general settings where an un-
known p-dimensional parameter θ is to be estimated from data Xobs of size n.
Basically, an estimating function Fn is simply a Rp -valued function which takes
the data as well as the unknown parameter as arguments. An estimator is ob-
tained by solving Fn(Xobs;θ) = 0 for the unknown parameter θ . General theory for
estimating functions may be found in Heyde (1997) or Sørensen (1998b).

The prime example of an estimating function is of course the score function,
yielding the maximum likelihood estimator. When the score function is not avail-
able an alternative estimating function should of course be chosen with care. In
order for the corresponding estimator to behave (asymptotically) “nicely” it is cru-
cial that the estimating function is unbiased and is able to distinguish the true
parameter value from other values of θ :

Eθ0
Fn(Xobs;θ) = 0 if and only if θ = θ0: (2.6)

Now, let us turn to the case of discretely observed diffusions again. The score
function

Sn(θ) = ∂θ logLn(θ) = n

∑
i=1

∂θ logpθ (∆;X(i�1)∆;Xi∆)
is a sum of n terms where the i’th term depends on data through (X(i�1)∆;Xi∆)
only. As we are trying to mimic the behaviour of the score function, it is natural
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to look for estimating functions with the same structure. Hence, we shall consider
estimating functions of the form

Fn(θ) = n

∑
i=1

f (X(i�1)∆;Xi∆;θ) (2.7)

where we have omitted the dependence of data on Fn from the notation. Condition
(2.6) simplifies to: Eθ0

f (X0;X∆;θ) = 0 if and only if θ = θ0.

Sørensen (1997) and Jacobsen (1998) provide overviews of estimating func-
tions in the diffusion case. In the following we shall concentrate on two special
types, namely martingale estimating functions (Fn(θ) being a Pθ -martingale) and
simple estimating functions (each term in Fn depending on one observation only).

2.3.1 Martingale estimating functions

There are (at least) two good reasons for looking at estimating functions that are
martingales: (i) the score function which we are basically trying to imitate is a
martingale; and (ii) we have all the machinery from martingale theory (e.g. limit
theorems) at our disposal. Also, martingale estimating functions are important as
any asymptotically well-behaved estimating function is asymptotically equivalent
to a martingale estimating function (Jacobsen 1998).

Definition, asymptotic results and optimality

Consider the conditional moment condition

Eθ
�
h̃(X0;X∆;θ)jX0 = x

�= Z
I
h̃(x;y;θ)pθ (∆;x;y)dy = 0; x 2 I;θ 2 Θ (2.8)

for a function h̃ : I2�Θ!R. If all coordinates of f from (2.7) satisfy this condition,
and (Gi) is the discrete-time filtration generated by the observations, then

Eθ
�
Fn(θ)jGn�1

�= Fn�1(θ)+Eθ
�

f (X(n�1)∆;Xn∆;θ)jX(n�1)∆�= Fn�1(θ);
so Fn(θ) is a Pθ -martingale with respect to (Gi). Usually, when pθ (∆;x; �) is not
known, functions satisfying (2.8) cannot be found explicitly but should be calcu-
lated numerically.

Suppose that h1; : : : ;hN : I2�Θ! R all satisfy (2.8) and let α1; : : : ;αN : I�Θ!Rp be arbitrary weight functions. Then each coordinate of f defined by

f (x;y;θ) = N

∑
j=1

α j(x;θ)h j(x;y;θ) = α(x;θ)h(x;y;θ)
satisfies (2.8) as well. Here we have used the notation α for the Rp�N -valued func-
tion with (k; j)’th element equal to the k’th element of α j and h for (h1; : : : ;hN)T .
Note that the score function is obtained as a special case: for N = p, h(x;y;θ) =(∂θ logpθ (∆;x;y))T and α(x;θ) equal to the p� p unit matrix.
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Classical limit theory for stationary martingales (Billingsley 1961) is employed
for asymptotic results of Fn with f as above. Under differentiability and integrabil-
ity conditions Ḟn(θ)=n! A(θ) in Pθ0

-probability for all θ and Fn(θ0)=pn! N(0;V0)
in distribution wrt. Pθ0

. Here,

A(θ) = Eθ0
ḟ (X0;X∆;θ) = N

∑
j=1

Eθ0
α j(X0;θ)ḣ j(X0;X∆;θ) = Eθ0

α(X0;θ)ḣ(X0;X∆;θ)
V0 = Eθ0

f (X0;X∆;θ0) f (X0;X∆;θ0)T = Eθ0
α(X0;θ0)τh(X0;θ0)αT (X0;θ0);

where τh(x;θ) = Varθ (h(X0;X∆;θ)jX0 = x). If the convergence Ḟn(θ)=n ! A(θ) is

suitably uniform in θ and A0 = A(θ0) is non-singular then a solution θ̃n to Fn(θ) = 0
exists with a probability tending to 1, θ̃n ! θ0 in probability, and

p
n(θ̃n� θ0)!

N(0;A�1
0 V0A�1

0
T ) in distribution wrt. Pθ0

(Sørensen 1998b). The condition that A0

is non-singular is discussed below.
For h1 : : : ;hN given it is easy to find optimal weights α? in the sense that the

corresponding estimator has the smallest asymptotic variance, where V � V 0 as
usual means that V 0�V is positive semi-definite (Sørensen 1997):

α?(x;θ) = �τh(x;θ)�1Eθ
�
ḣ(X0;X∆;θ)jX0 = x

��T :
How to construct martingale estimating functions in practice

The question on how to choose h1; : : : ;hN (and N) is far more subtle (when the
score function is not known), and the optimal h1; : : : ;hN within some class (typi-
cally) change with ∆. Jacobsen (1998) investigates optimality as ∆ ! 0, and it is
clear that the score for the invariant measure is optimal as ∆!∞. Not much work
has been done for fixed values of ∆ in between. Here we mention two particular
ways of constructing martingale estimating functions.

First, consider functions of the form

h j(x;y;θ) = g j(y)�Eθ (g j(X∆)jX0 = x) (2.9)

for some (simple) functions g j : I ! R in L1(µθ ), j = 1; : : : ;N. Obvious choices are

polynomials g j(y)= yk j for some (small) integers k j (Bibby & Sørensen 1995, Bibby
& Sørensen 1996). In some models low-order conditional moments are known an-
alytically although the transition probabilities are not. But even if this is not the
case, the conditional moments are easy to calculate by simulation. Kessler & Pare-
des (1999) investigates the influence of simulations on the asymptotic properties
of the estimator.

Second, let g j(�;θ) : I ! R, j = 1; : : : ;N be eigenfunctions for Aθ with eigen-
values λ j(θ). Under mild conditions (Kessler & Sørensen 1999) Eθ (g j(X∆;θ)jX0 =
x) = exp(�λ j(θ)∆)g j(x;θ) so

h j(x;y;θ) = g j(y;θ)� e�λ j(θ )∆g j(x;θ)
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satisfies (2.8). Note that this h j has the same form as (2.9) except that g j depends
on θ . The estimating functions based on eigenfunctions have two advantages:
they are invariant to twice continuously differentiable transformations of data and
the optimal weights are easy to simulate (Sørensen 1997). However, the applica-
bility is rather limited as the eigenfunctions are known only for a few models; see
Kessler & Sørensen (1999) for some non-trivial examples, though.

Considerations on identification

In order for the estimator to behave asymptotically nicely, the matrix A0 should
be regular. Below we shall see how this condition may be explained in terms
of reparametrizations. For simplicity we assume that N = 1 such that f (x;y;θ) =
α(x;θ)h(x;y;θ) for an α : I�Θ ! Rp and an h : I2�Θ ! R satisfying (2.8). Note
that τh(x;θ) = Eθ (h(X0;X∆;θ)2jX0 = x) is a real number. From now on we let α j :
I�Θ ! R, j = 1 : : : ; p; denote the coordinate functions of α and λ the Lebesgue
measure on I.

Obviously, τh(x;θ) should be positive; otherwise the conditional distribution
of h(X0;X∆;θ) given X0 = x is degenerate at zero and provides no information. It
is also obvious that the coordinates of α should be linearly independent; other-
wise there are essentially fewer than p equations for estimation of p parameters.
The following proposition shows that linear independence of the coordinates of
α(�;θ0) is equivalent to regularity of the variance matrix V0 of f (X0;X∆;θ0) and
that regularity of A0 implies regularity of V0.

Proposition 2.1 If τh(x;θ0) > 0 for all x 2 R, then (i) V0 is singular if and only if

there exists β 2 Rpnf0g such that β T α(x;θ0) = 0 for λ -almost all x 2 R; and (ii) V0
is positive definite if A0 is regular.

Proof Since

V0 = Eθ0
α(X0;θ0)τh(X0;θ0)α(X0;θ0)T= Eθ0

�
τh(X0;θ0)1=2α(X0;θ0)��τh(X0;θ0)1=2α(X0;θ0)�T ;

it holds that V0 is singular if and only if there exists a linear combination of the co-

ordinates of τh(X0;θ0)1=2α(X0;θ0) that is zero µθ0
-a.s. i.e. if and only if β 2 Rpnf0g

exists such that β T α(X0;θ0) = 0 µθ0
-a.s. (since τh(x;θ)> 0). The first assertion now

follows as µθ0
has strictly positive density wrt. λ .

For the second assertion we show that singularity of V0 implies singularity of
A0. Assume that V0 is singular and find β as above. Then

β T A0 = β T Eθ0
α(X0;θ0)ḣ(X0;θ0) = Eθ0

β T α(X0;θ0)ḣ(X0;θ0) = 0;
and A(θ0) is singular as claimed. �
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In the following we shall only consider h of the form h(x;y;θ) = g(y)�G(x;θ)
where G(x;θ) = Eθ (g(X∆)jX0 = x), see (2.9). Since α is nothing but a weight func-
tion, a natural requirement is that G determines the full parameter vector uniquely.
In essence, the proposition below claims that this is also sufficient in order for the
matrix A?

0 corresponding to the optimal weight function α? =�Ġ=τh to be regular.

Below we write Aα
0 to stress the dependence of α on A0. In particular, A?

0 = Aα?
0 .

We need some further terminology: say that a bijective transformation γ from a
neighbourhood Θ0 of θ0 to a set Γ0 � Rp is a reparametrization around θ0. The
inverse of γ is denoted by γ�1 or θ , and γ0 = γ(θ0). The function Gγ : I�Γ0 is
defined by Gγ(x;γ) = G(x;θ(γ)); hence G(x;θ) = Gγ(x;γ(θ)).
Proposition 2.2 If there exist j1; : : : ; jq � f1; : : : ; pg with jk 6= jk0 for k 6= k0 and a

reparametrization around θ0 such that for j = j1; : : : ; jq

∂Gγ(x;γ0)=∂γ j = 0; λ �a:s:; (2.10)

then Aα
0 has rank at most q for any α. Conversely, if A?

0 = Aα?
0 corresponding to

the optimal α? has rank q < p and τh(x;θ) > 0 for all x 2 I then there exists a

reparametrization γ around θ0 such that (2.10) holds for all j = q+1; : : : ; p.

Proof By the chain rule it holds for any α that

Aα
0 =�Eθ0

α(X0;θ0)Ġ(X0;θ0)=�Eθ0
α(X0;θ0)Ġγ(X0;γ0)γ̇(θ0)=��Eθ0
α(X0;θ0)Ġγ(X0;γ0)�γ̇(θ0)

where Ġγ is the matrix of derivatives wrt. γ of Gγ and γ̇ is the matrix of derivatives
of γ wrt. θ . By assumption the jk’th column of Ġγ(X0;γ0) has all elements equal to
zero almost surely, k = 1; : : : ;q, so Aα

0 has rank at most q as claimed.
For the second assertion, assume that

A?
0 = Eθ0

Ġ(X0;θ0)T Ġ(X0;θ0)=τh(X0;θ0)= Eθ0

�
Ġ(X0;θ0)τh(X0;θ0)�1=2�T�

Ġ(X0;θ0)τh(X0;θ0)�1=2�
has rank q < p and assume without loss of generality that the upper left q�q sub-
matrix is positive definite (possibly after the coordinates of θ have been renum-
bered).

According to Lemma 2.3 below, x1; : : : ;xq exist such that0B� ∂G(x1;θ0)=∂θ1 � � � ∂G(x1;θ0)=∂θq
...

...
∂G(xq;θ0)=∂θ1 � � � ∂G(xq;θ0)=∂θq

1CA
is regular. Hence, there is a neighbourhood Θ0 of θ0 such that γ : Θ0! Rp defined
by

γ(θ) = �G(x1;θ); : : : ;G(xq;θ);θq+1; : : : ;θp
�
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is injective. Let Γ0 = γ(Θ0) and γ0 = γ(θ0). The first q rows of γ̇(θ0) are given by0B� ∂G(x1;θ0)=∂θ1 � � � ∂G(x1;θ0)=∂θp
...

...
∂G(xq;θ0)=∂θ1 � � � ∂G(xq;θ0)=∂θp

1CA
and the last p�q rows are (0p�q�q; I(p�q)�(p�q)).

Next, let Ġ j = (Ġ1; : : : ; Ġq; Ġ j) be the 1� (q + 1) matrix of derivatives wrt.
θ1; : : : ;θq;θ j for j = q+1; : : : ; p. Since A?

0 has rank q, the matrix

Eθ0

�
Ġ j(X0;θ0)τh(X0;θ0)�1=2�T�

Ġ j(X0;θ0)τh(X0;θ0)�1=2�
is singular implying that β̃ j 2 Rq+1nf0g exists such that Ġ j(X0;θ0)β̃ j = 0 almost

surely wrt. µθ0
. Here, β̃ j

q+1
6= 0 because the upper left q� q sub-matrix of A?

0 is

regular. If β j 2 Rpnf0g is defined by

β j
k
=8<: β̃ j

k
=β̃ j

q+1
; k = 1; : : : ;q

1; k = j
0; otherwise

it follows that

Ġ(X0;θ0)β j = 0 µθ0
�a:s: (2.11)

for all j = q+1; : : : ; p and hence Ġ(x;θ0)β j = 0 λ -a.s. for all j = q+1; : : : ; p.
From the expression for the derivative γ̇(θ0) it now follows that γ̇(θ0)β j equals

the j’th unit column. Hence, since the inverse θ of γ has derivative θ̇ (γ) =
γ̇(θ(γ))�1 it holds that

β j = �∂θ1(γ(θ0))
∂γ j

; : : : ; ∂θp(γ(θ0))
∂γ j

�T ; j = q+1; : : : ; p:
Finally, by the chain rule

∂Gγ(x;γ0)
∂γ j

= Ġ(x;θ0)�∂θ1(γ0)=∂γ j; : : : ;∂θp(γ0)=∂γ j

�T = Ġ(x;θ0)β j = 0

almost surely wrt. the Lebesgue measure λ for all j = q+1; : : : ; p as claimed. �
Note that (2.11) implies that the coordinates of α?(�;θ0) are linearly dependent

λ -a.s., compare with Proposition 2.1. Also note that the reparametrization around
θ0 is not necessarily a global one as it may not be injective on all of Θ. In the proof
we used the following lemma.

Lemma 2.3 Let Y be a real random variable and d : R ! Rq be a function such

that Ed(Y )d(Y)T is positive definite. Then y1; : : : ;yq exist such that the q� q matrix

D(q)(y1; : : : ;yq) defined coordinate-wise by D(q)
i j

(y1; : : : ;yq) = d j(yi) is regular.
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Proof By assumption it holds for all β 2 Rqnf0g that

0< β T�Ed(Y )d(Y)T�β = E
�
β T d(Y )d(Y)T β

�= E
�
β T d(Y)�2

so β T d(Y ) is not zero almost surely and yβ exists with β T d(yβ ) 6= 0.

The points y1; : : : ;yq are chosen recursively as follows. First, let β1 be the
first unit vector and choose y1 such that β T

1 d(y1) = d1(y1) 6= 0. Next, let β2 =(�d2(y1);d1(y1);0; : : : ;0)T and choose y2 such that

β T
2 d(y2) = d1(y1)d2(y2)�d2(y1)d1(y2) = detD(2)(y1;y2);

i.e. such that D(2)(y1;y2) is regular. Continue in the same manner: for yr, assume

that y1; : : : ;yr�1 are chosen such that D(r�1)(y1; : : : ;yr�1) is regular, and note that

the determinant of D(r)(y1; : : : ;yr�1;Y ) is a linear combination β T
r d(Y) with coef-

ficients βr depending on d j(yi), j = 1; : : : ;r and i = 1; : : : ;r�1. Consequently, we

can find yr such that β T
r d(yr) = detD(r)(y1; : : : ;yr) 6= 0. The assertion now follows

for r = q. �
2.3.2 Simple estimating functions

An estimating function is called simple if it has the form Fn(θ) = ∑n
i=1 f (Xi∆;θ)

where f : I�Θ ! Rp takes only one state variable as argument (Kessler 2000).
Condition (2.6) simplifies to: Eθ0

f (X0;θ) = 0 if and only if θ = θ0. It involves the

marginal distribution only which has two important consequences: First, since the
invariant distribution is known explicitly, it is easy to find functionals f analytically
with Eθ0

f (X0;θ0) = 0. Second, simple estimating functions completely ignore the

dependence structure of X and can only be used for estimation of (parameters in)
the marginal distribution. This is of course a very serious objection.

Kessler (2000) shows asymptotic results for the corresponding estimators and
is also concerned with optimality. This work was continued by Jacobsen (1998).
However, it is usually not possible to find f optimally so f is chosen somewhat ad
hoc. An obvious possibility is the score corresponding to the invariant distribution,

f = ∂θ logµ. Another is moment generated functions f j(x;θ) = xk j �Eθ X k j
0

, j =
1; : : : ; p. Also, functions could be generated by the infinitesimal generator Aθ
defined by (2.3): let h j : I�Θ ! R, j = 1; : : : ; p, be such that the martingale part

of h j(X ;θ) is a true martingale wrt. Pθ . Then f = (Aθ h1; : : : ;Aθ hp)T gives rise to
an unbiased, simple estimating function. Kessler (2000) suggests to use low-order
polynomials for h1; : : : ;hp — regardless of the model.

In Paper I we study the model-dependent choice (h1; : : : ;hp) = ∂θ logµ. We
show that the corresponding estimating function based on f j =Aθ (∂θ j

logµ), j =
1; : : : ; p, may be interpreted as an approximation to minus twice the continuous-
time score function when σ does not depend on θ (Proposition I.1). Intuitively,
we would thus expect it to work well for small values of ∆, and it is indeed small
∆-optimal in the sense of Jacobsen (1998); still if σ does not depend on θ .
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There are two important differences from the usual Riemann-Itô approxima-
tion of the continuous-time score, that is, the logarithmic derivative wrt. θ of
(2.5): the above approximation is unbiased which the Riemann-Itô approxima-
tion is not; and each term in the Riemann-Itô approximation depends on pairs of
observations whereas each term in the above approximation depends on a single
observation only.

Also note that the estimating function from Paper I is invariant to bijective and
twice differentiable transformations of the data if σ does not depend on θ (Propo-
sition I.2); this is not the case for the simple estimating functions discussed earlier.
The ideas carry over (to some extent at least) to multi-dimensional diffusions, and
the estimating function works quite well in simulation studies.

Finally, a remark connecting a simple estimating function Fn(θ) = ∑n
i=1 f (Xi∆;θ)

to a class of martingale estimating functions. Define

h f (x;y;θ) =Uθ f (y;θ)� �Uθ f (x;θ)� f (x;θ)�
where Uθ is the potential operator given by Uθ f (x;θ) = ∑∞

k=0Eθ ( f (Xk∆;θ)jX0 =
x). Then h f satisfies condition (2.8), and the martingale estimating functions

∑n
i=1h f (X(i�1)∆;Xi∆;θ) and Fn(θ) are asymptotically equivalent (Jacobsen 1998).

However, the martingale estimating function may be improved by introducing
weights α (unless of course the optimal weight α?(�;θ) is constant). In this sense
martingale estimating functions are always better (or at least as good) as simple
estimating functions. In practice it is not very helpful, though, as the potential
operator in general is not known! Also, the improvement may be very small as we
shall see in the following example.

Example (The Ornstein-Uhlenbeck process) Consider the solution to dXt = θXt dt +
dWt where θ < 0. Kessler (2000) shows that the optimal simple estimating function
is obtained for f (x;θ) = 2θx2+1. It is easy to see that h f (x;y;θ)∝ f (y;θ)�ψ f (x;θ)
where ψ = ψ(θ ;∆) = exp(2θ∆) and that the optimal weight function is given by

α?(x;θ) = Eθ
�
ḣ f (X0;X∆)jX0 = x

�
τh f

(x;θ) = �4θ∆ψx2� (1�ψ +2θ∆ψ)=θ�8θψ(1�ψ)x2+2(1�ψ)2 :
Since α?(�;θ) is not constant, improvement is indeed possible. It turns out, how-
ever, that the asymptotic variance is only reduced by about 1% (for θ0 =�1). �

It is well-known that the optimal simple estimating function is nearly (globally)
efficient in the Ornstein-Uhlenbeck model, and the example does not rule out
the possibility that the improvement could be considerable for other models (and
other simple estimating functions).

2.3.3 Comments

Obviously, there are lots of unbiased estimating functions that are neither martin-
gales nor simple. For example,

f (x;y;θ) = h2(y;θ)Aθ h1(x;θ)�h1(x;θ)Aθ h2(y;θ)
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generates a class of estimating functions which are transition dependent and yet
explicit (Hansen & Scheinkman 1995, Jacobsen 1998).

Estimating functions of different kinds may of course be combined. For ex-
ample, one could firstly estimate parameters from the invariant distribution by
solving a simple estimating equation and secondly estimate parameters from the
conditional distribution one step ahead. See Bibby & Sørensen (1998) for a suc-
cesful application.

Also, estimating functions may be used as building blocks for the generalized

method of moments (GMM), the much favored estimation method in the econo-
metric literature (Hansen 1982). Estimation via GMM is essentially performed
by choosing an estimating function Fn of dimension p0 > p and minimizing the
quadratic form Fn(θ)T ΩFn(θ) for some weight matrix Ω.

2.4 Approximate maximum likelihood estimation

We now describe three approximate maximum likelihood methods. They all sup-
ply approximations, analytical or numerical, of pθ (∆;x; �) for fixed x and θ . In
particular they supply approximations of pθ (∆;X(i�1)∆;Xi∆), i = 1; : : : ;n, and there-

fore of Ln(θ). The approximate likelihood is finally maximized over θ 2Θ.

2.4.1 An analytical approximation

A naive, explicit approximation of the conditional distribution of X∆ given X0 = x
is provided by the Euler approximation. The Gaussian approximation may be poor
even if the conditional moments are replaced by accurate approximations (or per-
haps even the true moments). A sequence of explicit, non-Gaussian approximations

of pθ (∆;x; �) is suggested by Aït-Sahalia (1998). For fixed x and θ the idea is to
(i) transform X to a process Z which, conditional on X0 = x, has Z0 = 0 and Z∆
“close” to standard normal; (ii) define a truncated Hermite series expansion of
the density of Z∆ around the standard normal density; and (iii) invert the Hermite
approximation in order to obtain an approximation of pθ (∆;x; �).

For step (i) define Z = gx;θ (X) where

gx;θ (y) = 1p
∆

Z y

x

1
σ(u;θ) du:

Then Z solves dZt = bZ(Zt ;θ)dt +1=p∆dWt with drift function given by Itô’s for-

mula and Z0 = 0 (given X0 = x). Note that g0x;θ (y) = (∆σ2(y;θ))�1=2 > 0 for all y 2 I
so that gx;θ is injective.

For step (ii) note that N(0;1) is a natural approximation of the conditional
distribution of Z∆ given Z0 = 0, as increments of Z over time intervals of length ∆
has approximately unit variance. Let pZ

θ (∆;0; �) denote the true conditional density
of Z∆ given Z0 = 0 and let pZ;J

θ (∆;0; �) be the Hermite series expansion truncated after

J terms of pZ
θ (∆;0; �) around the standard normal density.
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For step (iii) note that the true densities pθ (∆;x; �) and pZ
θ (∆;0; �) are related by

pθ (∆;x;y) = 1p
∆σ(x;θ) pZ

θ
�
∆;0;gx;θ(y)�; y 2 I

and apply this formula to invert the approximation pZ;J
θ (∆;0; �) of pZ

θ (∆;0; �) into an

approximation pJ
θ (∆;x; �) of pθ (∆;x; �) in the natural way:

pJ
θ (∆;x;y) = 1p

∆σ(x;θ) pZ;J
θ
�
∆;0;gx;θ (y)�; y 2 I:

Then pJ
θ (∆;x;y) converges to pθ (∆;x;y) as J !∞, suitably uniformly in y and θ .

Furthermore, if J = J(n) tends to infinity fast enough as n! ∞ then the estimator
maximizing ∏n

i=1 pJ(n)
θ (∆;X(i�1)∆;Xi∆) is asymptotically equivalent to the maximum

likelihood estimator (Aït-Sahalia 1998, Theorems 1 and 2).
Note that the coefficients of the Hermite series expansion cannot be computed

explicitly but could be replaced by analytical approximations in terms of the in-
finitesimal generator. Hence, the technique provides explicit, though very complex,
approximations to pθ (∆;x; �). Aït-Sahalia (1998) performs numerical experiments
that indicate that the error pJ

θ (∆;x;y)� pθ (∆;x;y) decreases quickly; roughly with
a factor 10 for each extra term included in the expansion of pZ

θ (∆;0; �).
2.4.2 Numerical solutions of the Kolmogorov forward equation

A classical result from stochastic calculus states that the transition densities under
certain regularity conditions are characterized as solutions to the Kolmogorov for-

ward equations. Lo (1988) employs a similar result and finds explicit expressions
for the likelihood function for a log-normal diffusion with jumps and a Brownian
motion with zero as an absorbing state. Poulsen (1999) seems to be the first to
employ numerical procedures for non-trivial diffusion models.

For x and θ fixed the forward equation for pθ (�;x; �) is a partial differential
equation: for (t;y) 2 (0;∞)� I,

∂
∂ t

pθ (t;x;y) =� ∂
∂y

�
b(y;θ)pθ (t;x;y)�+ 1

2
∂ 2

∂ (y)2

�
σ2(y;θ)pθ (t;x;y)�;

with initial condition pθ (0;x;y) = δ (x� y) where δ is the Dirac delta function. In
order to calculate the likelihood Ln(θ) one has to solve n of the above forward
equations, one for each X(i�1)∆, i = 1; : : : ;n. Note that the forward equation for

X(i�1)∆ determines pθ (t;X(i�1)∆;y) for all values of (t;y), but that we only need it at

a single point, namely (∆;Xi∆).
Poulsen (1999) employs the so-called Crank-Nicholson finite difference meth-

od for each of the n forward equations. For fixed θ he obtains a second order
approximation of logLn(θ) in the sense that the numerical approximation logLh

n(θ)
satisfies

logLh
n(θ) = logLn(θ)+h2 f θ

n (X0;X∆; : : : ;Xn∆)+o(h2)gθ
n (X0;X∆; : : : ;Xn∆)
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for suitable functions f θ
n and gθ

n . The parameter h determines how fine-grained a(t;y)-grid used in the numerical procedure is (and thus the accuracy of approxi-
mation). If h = h(n) tends to zero faster than n�1=4 as n ! ∞ then the estimator
maximizing logLh

n(θ) is asymptotically equivalent to the maximum likelihood esti-
mator (Poulsen 1999, Theorem 3).

Poulsen (1999) fits the CKLS model to a dataset of 655 observations (in a
revised version, even a six-parameter extension is fitted) and is able to do it in
quite reasonable time. Although n partial differential equations must be solved
the method seems to be much faster than the simulation based method below.

2.4.3 Approximation via simulation

Pedersen (1995b) defines a sequence of approximations to pθ (∆;x; �) via a missing
data approach. The basic idea is to (i) split the time interval from 0 to ∆ into pieces
short enough that the Euler approximation holds reasonably well; (ii) consider
the joint Euler likelihood for the augmented data consisting of the observation
X∆ and the values of X at the endpoints of the subintervals; (iii) integrate the
unobserved variable out of the joint Euler density; and (iv) calculate the resulting
expectation by simulation. The method has been applied successfully to the CKLS
model (Honoré 1997).

To be precise, let x and θ be fixed, consider an integer N � 0, and split the
interval [0;∆℄ into N +1 subintervals of length ∆N = ∆=(N +1). Use the notation
X0;k for the (unobserved) value of X at time k=(N + 1), k = 1; : : : ;N. Then (with

x0;0 = x and x0;N+1 = y),

pθ (∆;x;y) = Z
IN

N+1

∏
i=1

pθ
�
∆N ;x0;i�1;x0;i�d(x0;1; : : : ;x0;N)= Z

I
pθ
�
N∆N ;x;x0;N�pθ

�
∆N;x0;N ;y�dx0;N= Eθ

�
pθ
�
∆N;X0;N;y���X0 = x

�; y 2 I (2.12)

where we have used the Chapman-Kolmogorov equations.
Now, for ∆N small (N large), pθ (∆N ;x0;N; �) is well approximated by the normal

density with mean x0;N +b(x0;N ;θ)∆N and variance σ2(x0;N;θ)∆N. Let p̃N
θ (∆N;x0;N; �)

denote this density. Following (2.12),

pN
θ (∆;x;y) = Eθ

�
p̃N

θ
�
∆N;X0;N;y���X0 = x

�
is a natural approximation of pθ (∆;x;y), y 2 I. Note that N = 0 corresponds to the
simple Euler approximation.

The approximate likelihood functions LN
n (θ) = ∏n

i=1 pN
θ (∆;X(i�1)∆;Xi∆) converge

in probability to Ln(θ) as N ! ∞ (Pedersen 1995b, Theorems 3 and 4). Further-
more, there exists a sequence N(n) such that the estimator maximizing LN(n)

n (θ)
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is asymptotically equivalent (as n ! ∞) to the maximum likelihood estimator
(Pedersen 1995a, Theorem 3).

In practice we could calculate pN
θ (∆;x;y) as the average of a large number of

values fp̃N
θ (∆;X r

0;N;y)gr where X r
0;N is the last element of a simulated discrete-time

path X0;X r
0;1; : : : ;X r

0;N started at x. Note that the paths are simulated conditional
on X0 = x only which implies that the simulated values X r

0;N at time N∆N may be
far from the observed value at time ∆. This is not very appealing as the continuity
of X makes a large jump over a small time interval unlikely to occur in practice.
Also, it has the unfortunate numerical implication that a very large number of
simulations are needed in order to obtain convergence of the average. Elerian et al.

(2000, Section 3.1) suggest an importance sampling technique which utilizes the
observation at time ∆ as well, but is far more difficult to perform than the above
(see also Section 2.5 below).

2.5 Bayesian analysis

Bayesian analysis of discretely observed diffusions has been discussed by Eraker
(1998) and Elerian et al. (2000). The unknown model parameter is treated as a
missing data point, and Markov Chain Monte Carlo (MCMC) methods are used for
simulation of the posterior distribution of the parameter with density

f (θ jX0;X∆; : : : ;Xn∆) ∝ f (X0;X∆; : : : ;Xn∆jθ) f (θ): (2.13)

The Bayesian estimator of θ is simply the mean (say) of this posterior. Note that
we use f generically for densities. In particular, f (θ) denotes the prior density of
the parameter and f (X0; : : : ;Xn∆jθ) denotes the likelihood function evaluated at θ .

The Bayesian approach deals with the intractability of f (X0; : : : ;Xn∆jθ) in a way
very similar to that of Pedersen (1995b), namely by introducing auxiliary data
and employing the Euler approximation over small time intervals. However, the
auxiliary data are generated and used quite differently in the two approaches.

As in Section 2.4.3 each interval [(i� 1)∆; i∆℄ is split into N + 1 subintervals
of length ∆N = ∆=(N + 1). We use the notation Xi∆;k for the value of X at time

i∆+ k=(N +1), i = 0; : : : ;n�1 and k = 0; : : : ;N +1. The value is observed for k =
0 and k = N, and X(i�1)∆;N+1 = Xi∆;0. Further, let X̃i∆ be the collection of latent

variables Xi∆;1; : : : ;Xi∆;N between i∆ and (i+1)∆, let X̃ = (X̃0; : : : ; X̃(n�1)∆) be the nN-

vector of all auxiliary variables, and let Xobs be short for the vector of observations
X0;X∆; : : : ;Xn∆.

For N large enough the Euler approximation is quite good and the density of(Xobs; X̃), conditional on θ (and X0), is roughly

f N(Xobs; X̃ jθ) = n�1

∏
i=0

N+1

∏
k=1

ϕ
�

Xi∆;k;Xi∆;k�1+b(Xi∆;k�1;θ)∆N;σ2(Xi∆;k�1;θ)∆N

�
(2.14)

where ϕ(�;m;v) is the density of N(m;v). The idea is now to generate a Markov
chain fX̃ j;θ jg j with invariant (and limiting) density equal to the approximate
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posterior density

f N(X̃;θ jXobs) = f N(Xobs; X̃ jθ) f (θ)
f (Xobs) ∝ f N(Xobs; X̃ jθ) f (θ): (2.15)

Then fθ jg j has invariant density equal to the marginal of f N(X̃ ;θ jXobs). This
is interpreted as an approximation of the posterior (2.13) of θ and the Bayes
estimator of θ is simply the average of the simulated values fθ jg j (after some
burn-in time).

In order to start off the Markov chain, θ0 is drawn according to the prior den-
sity f (θ), and X̃0 is defined by linear interpolation between the observed values
of X , say. The j’th iteration in the Markov chain is conducted in two steps: first,
X̃ j = (X̃ j

0
; : : : ; X̃ j(n�1)∆) is updated from f (X̃ jXobs;θ j�1), and second, θ j is updated

from f (θ jXobs; X̃ j).
For the first step, note that the Markov property of X implies that the con-

ditional distribution of X̃i∆ given (Xobs;θ) depends on (Xi∆;X(i+1)∆;θ) only so the

vectors X̃ j
i∆, i = 0; : : : ;n�1 may be drawn one at a time. We focus on how to draw

X̃0 = (X0;1; : : : ;X0;N) conditional on (X0;X∆;θ j�1); the target density being propor-
tional to

N+1

∏
k=1

ϕ
�

X0;k;X0;k�1+b(X0;k�1;θ j�1)∆N;σ2(X0;k�1;θ j�1)∆N

�;
cf. (2.14). It is (usually) not possible to find the normalizing constant so direct
sampling from the density is not feasible. However, the Metropolis-Hastings algo-

rithm may be employed; for example with suitable Gaussian proposals. Eraker
(1998) suggests to sample only one element of X̃0 at a time whereas Elerian et al.

(2000) suggests to sample block-wise, with random block size. The latter is sup-
posed to increase the rate of convergence of the Markov chain (of course, all the
usual problems with convergence of the chain should be investigated). Note the
crucial difference from the simulation approach in Section 2.4.3 where X̃i∆ was
simulated conditional on Xi∆ only: here X̃i∆ is simulated conditional on both Xi∆
and X(i+1)∆.

For the second step it is sometimes possible to find the posterior of θ explic-
itly from (2.15) in which case θ is updated by direct sampling from the density.
Otherwise the Metropolis-Hastings algorithm is imposed again.

The method is easily extended to cover the multi-dimensional case. Also, it
applies to models that are only partially observed (e.g. stochastic volatility mod-
els) in which case the values of the unobserved coordinates are simulated like
X̃ above (Eraker 1998). Eraker (1998) analyses US interest rate data and simu-
lated data, using the CKLS model dXt = α(β �Xt)dt +σX γ

t as well as a stochastic
volatility model (see Section 3.4.4). Elerian et al. (2000) apply the method on
simulated Cox-Ingersoll-Ross data and on interest rate data using a non-standard
eight-parameter model.
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2.6 Estimation based on auxiliary models

We now discuss indirect inference (Gourieroux et al. 1993) and the so-called ef-

ficient method of moments, or EMM for short (Gallant & Tauchen 1996). The
methods are essentially applicable whenever simulation from the model is possi-
ble and there exists a suitable auxiliary model. This flexibility must be the reason
why the methods are fairly often applied by econometricians in empirical studies.
However, we find the methods somewhat artificial and awkward and believe that
the term “efficient” in EMM is misleading.

The idea is most easily described in a relatively general set-up: let (Y1; : : : ;Yn)
be data from a (complicated) time series model Qθ , indexed by the parameter
of interest θ . Estimation is performed in two steps: First, the model Qθ is ap-
proximated by a simpler one Q̃ρ — the auxiliary model, indexed by ρ — and the
auxiliary parameter ρ is estimated. Second, the two parameters ρ and θ are linked
in order to obtain an estimate of θ . This is done via a GMM procedure, and the
first step may simply be viewed as a way of finding moment functionals for the
GMM procedure.

Let us be more specific. Assume that (Y1; : : : ;Yn) has density q̃n wrt. Q̃ρ and let
ρ̂n be the maximum likelihood estimator of ρ, that is,

ρ̂n = argmaxρ logq̃n(Y1; : : : ;Yn;ρ);
with first-order condition

∂
∂ρ logq̃n(Y1; : : : ;Yn; ρ̂n) = 0:

Loosely speaking, θ̂n is now defined such that simulated data drawn from Q
θ̂n

resembles data drawn from Q̃ρ̂n
.

For θ 2Θ let Y θ
1 ; : : : ;Y θ

R be a long trajectory simulated from Qθ and let ρ̂R(θ) be
the maximum likelihood estimator of ρ based on the simulated data. The indirect
inference estimator of θ is the value minimizing the quadratic form�

ρ̂n� ρ̂R(θ)�Ω
�
ρ̂n� ρ̂R(θ)�T

where Ω is some positive semidefinite matrix of size dim(ρ)� dim(ρ). In EMM
computation of ρ̂R(θ) is avoided ash

∂
∂ρ logq̃R(Y θ

1 ; : : : ;Y θ
n ; ρ̂n)iΩ̃

h
∂

∂ρ logq̃R(Y θ
1 ; : : : ;Y θ

R ; ρ̂n)iT

with Ω̃ like Ω above, is minimized.
Both estimators of θ are consistent and asymptotically normal, and they are

asymptotically equivalent (if Ω and Ω̃ are chosen appropriately). If θ and ρ have
same dimension, then the two estimators coincide and simply solve ρ̂R(θ̂n) = ρ̂n.
However, as the auxiliary model should be both easy to handle statistically and
flexible enough to resemble the original model, it is often necessary to use one
with higher dimension than the original model.
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Now, how should we choose the auxiliary model? For the diffusion models
considered in this chapter the discrete-time Euler scheme

Xi∆ = X(i�1)∆ +b(X(i�1)∆;ρ)∆+σ(X(i�1)∆;ρ)p∆Ui

with U1; : : : ;Un independent and identically N(0;1)-distributed, is a natural sug-
gestion (Gourieroux et al. 1993). The second step in the estimation procedure
corrects for the discrepancy between the true conditional distributions and those
suggested by the Euler scheme. In a small simulation study for the Ornstein Uh-
lenbeck process (solving dXt = θXt dt +σdWt) the indirect inference estimator was
highly inefficient (compared to the maximum likelihood estimator). In the EMM
literature it is generally suggested to use auxiliary densities based on expansions
of a non-parametric density (Gallant & Long 1997). Under certain (strong) condi-
tions EMM performed with these auxiliary models is claimed to be as efficient as
maximum likelihood.

However, we are convinced that EMM is by no means efficient in practice. The
choice of auxiliary model is still quite arbitrary (and fairly incomprehensible), and
the whole idea seems slightly artificial. We believe that for many models it is
possible to do some kind of (simulated) likelihood approximation that is as fast
and efficient — and far more comprehensible. This has already been done for the
diffusion models (Section 2.4) and Paper III provides ideas for stochastic volatility
models in continuous time.

2.7 Estimation of parameters in the diffusion term

In Paper II we discuss a method for estimation of parameters in the diffusion func-
tion which does not fit into any of the previous sections. We briefly sketch the idea
here and refer to Paper II for details.

Assume that the drift is known, b(x;θ) = b(x) (or has been estimated by some
other method). Recall that µ(�;θ) is the invariant density and define f = σ2µ :
I�Θ ! (0;∞). By equation (2.2) it is easy to verify that f 0 = 2bµ. Aït-Sahalia
(1996) uses this relation for non-parametric estimation of σ2 via kernel estimation
methods. In Paper II the relation is used for parametric estimation. The idea is to
define a pointwise consistent estimator of f (�;θ) and estimate θ by the value that
makes the uniform distance between the “true” function f (�;θ) and the estimated
version minimal.

It is crucial that f converges to zero at at least one of the endpoints, l and r, of
the state space. If f (x;θ)! 0 as x& l, then f (x;θ) = 2

R x
l b(u)µ(u;θ)du for all x 2 I

and

f̂1;n(x) = 2
n

n

∑
i=1

�
b(Xi∆)1fXi∆�xg�

is consistent for f (x;θ), x 2 I. The uniform distance supx2I

�� f (x;θ)� f̂1;n(x)�� is min-

imized in order to obtain an estimator of θ . Similarly, if f (x;θ)! 0 as x % r,
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then

f̂2;n(x) =�2
n

n

∑
i=1

�
b(Xi∆)1fXi∆>xg�

is consistent for f (x;θ), x2 I, and supx2I

�� f (x;θ)� f̂2;n(x)�� is minimized. If f (x;θ)!
0 at both l and r then both f̂1;n and f̂2;n provide pointwise consistent estimators

of f (�;θ), and we may use a weighted average f̂n of the two in order to reduce
variance.

The estimators are
p

n-consistent and in certain cases weakly convergent (The-
orems II.7 and II.9) but the limit distribution need not be Gaussian. Note that
the observations are mixed in a quite complex way in the uniform distance so the
usual limit theorems do not apply. Instead, the asymptotic results are proved using
empirical process theory. We are not aware of any other applications of empirical
process theory to problems related to inference for diffusion processes.

In Paper II we apply the method to simulated data from the CKLS model, dXt =(α +βXt)dt +σX γ
t dWt , and get reasonable estimators for both γ and σ . The drift

parameters are estimated beforehand using martingale estimating functions. Note
that this model is relatively hard to identify as different values of the pair (γ;σ)
may yield very similar diffusion functions.

There are two objections to the method. First, it provides estimators of the
parameters in the diffusion function only; the drift needs to be estimated before-
hand. This is possible via martingale estimating functions if the drift is linear (as
in many popular models, e.g. the CKLS model above), but is otherwise difficult.
Second, the approach is perhaps somewhat ad hoc and the estimators need not be
efficient.

2.8 Conclusion

Maximum likelihood estimation is typically not possible for diffusion processes
that have been observed at discrete time-points only. In this chapter we have
reviewed a number of alternatives from the literature.

From a classical point of view, the most appealing methods are those based
on approximations of the true likelihood that in principle can be made arbitrarily
accurate. We reviewed three types above: One provides analytical approximations
to the likelihood function and is therefore in principle the easiest one to use. The
expressions are quite complicated, though, even for low-order approximations.
The other two rely on numerical techniques, one on numerical solutions to partial
differential equations and one on simulations. Even with today’s efficient comput-
ers both methods are quite computationally demanding so faster procedures are
often valuable.

Estimation via estimating functions is generally much faster. So-called simple
estimating functions are available in explicit form but provide only estimators for
parameters from the marginal distribution. Still, they may be useful for prelimi-
nary analysis. Paper I investigates a special simple estimating function which can
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be interpreted as an approximation of the continuous-time score function. The
corresponding estimator is invariant to transformations of data. Martingale esti-
mating functions are analytically available for a few models but must in general
be calculated by simulated. This basically amounts to simulating conditional ex-
pectations, which is faster than calculating conditional densities as required by
the direct likelihood approximations above. Under regularity conditions, estima-
tors obtained by martingale estimating functions are consistent and asymptotically
normal. We studied one of the regularity conditions in some detail and showed
how it may be explained in terms of reparametrizations.

The Bayesian approach is to consider the parameter as random and make sim-
ulations from its (posterior) distribution. This is quite hard and requires simu-
lation, conditional on the observations, of the diffusion process at a number of
time-points in between those where it was observed. The posterior distribution
depends on the prior distribution which is chosen more or less arbitrarily. Indi-
rect inference and EMM remove bias due to the discrete-time auxiliary model by
simulation methods. The quality of the estimators is bound to depend on the aux-
iliary model which is chosen somewhat arbitrarily, and we believe that more direct
approaches are preferable. The procedure from Section 2.7 (and Paper II) for esti-
mation of the diffusion parameters (when the drift is known) provides satisfactory
estimates in the difficult CKLS model. The estimators are probably not efficient,
though. The application of empirical process theory for proving asymptotic results
is interesting from a theoretical point of view.
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Stochastic volatility models

In this chapter we discuss continuous-time stochastic volatility models. By this
we mean two-dimensional diffusion models where only one of the coordinates is
observable and where the stochastic differential equation has a special form. The
models were introduced in the mathematical finance literature in the late eighties
as modifications of the classical Black-Scholes model. However, only very recently
satisfactory estimation methods have been developed.

This chapter provides an overview of existing estimation techniques and a com-
parison of four specific models. There exist review papers on stochastic volatility
models (Ghysels, Harvey & Renault 1996, Shephard 1996), but they are mainly
concerned with models defined in discrete time. The continuous-time case is
somewhat more delicate because not even the distribution of the latent process
is known. Hence, not all discrete-time methods can be applied, and those that can
are in general more troublesome for continuous-time models.

My main contribution is the development of a new estimation technique rely-
ing on simulated approximations to the likelihood. The estimation method is dis-
cussed in detail in Paper III and reviewed in Section 3.4.7 where it is also applied
to Microsoft stock prices. Furthermore, I have compared four particular models
that have all been used in the literature (Section 3.3).

The chapter is organized as follows. We give a motivation from finance in Sec-
tion 3.1 and discuss the models and their probabilistic properties in Section 3.2.
In Section 3.3 we compare specific models. Section 3.4 provides reviews of ex-
isting methods as well as of the new estimation technique from Paper III. Finally,
related models are briefly discussed in Section 3.5 and conclusions are drawn in
Section 3.6.

3.1 A modification of the Black-Scholes model

Consider the classical Black-Scholes model (or geometric Brownian motion)

dPt = αPt dt + τPt dWt (3.1)

where α 2 R and τ > 0 are constants and W is a standard Brownian motion. The
famous Black-Scholes formula (Black & Scholes 1973) for option prices was de-
rived in a set-up with the price of the underlying stock governed by (3.1), and in
this section we shall indeed think of the model as a model of stock prices.
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If the stock price P solves (3.1) then the process logP has independent, Gaus-
sian increments: if stock prices are sampled at discrete time-points i∆, i = 0; : : : ;n,
for some ∆ > 0, then the returns Zi = logPi∆ � logP(i�1)∆ are independent and

identically N((α � τ2=2)∆;τ2∆)-distributed. However, it is well-known that these
properties are inconsistent with empirical findings: typically stock returns (i) are
heavy-tailed; (ii) are uncorrelated but not independent; and (iii) have variance
that varies (randomly) over time.

Of course, it is possible to generate such features by allowing for more com-
plicated (non-linear) drift and diffusion functions for P; thereby staying in the
class of one-dimensional diffusion models. In the stochastic volatility approach,
however, the linearity of the drift and diffusion for P is retained, but an additional
source of noise is introduced as the constant τ in (3.1) is replaced by the value of
a diffusion process

p
V . The process V is latent and is interpreted as the random

variance, or volatility, at the market. To be specific, the modified model is given
by the two-dimensional stochastic differential equation

dPt = αPt dt +pVtPt dWt (3.2)

dVt = b(Vt ;θ)dt +σ(Vt;θ)dW̃t (3.3)

where only P is observable at certain time-points. This kind of model is indeed
able to generate data with the above properties. In this chapter, as well as in
Paper III, we shall consider models where the drift function for P may depend on
V as well.

Stochastic volatility models of the above type (and slight generalizations) were
introduced in the finance literature in the late eighties and early nineties (for ref-
erences, see Section 3.3). Focus was on option pricing which is not a simple issue
for stochastic volatility models; essentially because volatility is not a traded asset.
The pricing problem was investigated for fixed, known value of the parameter θ
determining the distribution of V . The majority of the papers paid no, or very
little, attention to estimation of this parameter.

3.2 The class of models

Consider the pair of stochastic differential equations

dXt = ξ (Vt)dt +pVt dWt (3.4)

dVt = b(Vt ;θ)dt +σ(Vt;θ)dW̃t (3.5)

defined on a filtered probability space (Ω;F ;Ft;Pr). The drift and diffusion for
V are parameter dependent, and in Section 3.4 we shall be concerned with esti-
mation of θ from discrete-time observations X0; : : : ;Xn∆ of X . The parameter θ is
p-dimensional and varies in a set Θ� Rp . Note that, by Itô’s formula, P = eX solves
dPt = (ξ (Vt)+Vt=2)dt +pVtPt dWt which simplifies to (3.2) if ξ (v) = α� v=2.

The functions ξ , b and σ are assumed to be such that for all θ 2 Θ there
is a unique, strong solution (X ;V) with V positive almost surely. The Brownian
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motions W and W̃ are assumed to be independent, and the drift and diffusion for X
do not depend on X itself. Both assumptions are fundamental for the distributional
result below and for the approximate maximum likelihood method described in
Section 3.4.7 and Paper III. Although the method could easily be modified to
work for models where the drift and diffusion for X are parameter dependent, we
shall for simplicity assume that this is not the case.

Now, let us briefly mention some probabilistic properties of the model. We refer
to Section III.2 for proofs and further details. For fixed ∆ > 0 define increments Zi
and integrals Mi and Si for i 2 N as

Zi = Xi∆�X(i�1)∆; Mi = Z i∆(i�1)∆ ξ (Vs)ds; Si = Z i∆(i�1)∆Vs ds;
and let Z = (Z1;Z2; : : :) be the sequence of increments.

It is not possible to characterize the distribution of Z explicitly, but we have the
following well-known result on the conditional distribution of Z given V (Proposi-
tion III.2): Conditional on the process V , the increments Z1;Z2; : : : are independent

and Zi is Gaussian with mean Mi and variance Si. Furthermore, if V is strictly sta-

tionary, then so is Z.

In the following we shall always assume that V is stationary. Let Pθ be the
distribution of Z (on R∞) when the parameter is θ and V is started according to
its stationary distribution. It is easy to write moments of Z in terms of moments
of S and M because of the conditional independence and normality given V . For
example, if the relevant moments exist,

Eθ Zi = Eθ M1 (3.6)

Varθ Zi = Eθ S1+Varθ M1 (3.7)

Eθ Z4
i = 3Eθ S2

1+Eθ M4
1 +6EM2

1S1 (3.8)

Covθ (Zi;Z j) = Covθ (M1;M j�i+1) (3.9)

Covθ (Z2
i ;Z2

j ) = Covθ (S1+M2
1;S j�i+1+M2

j�1+1) (3.10)

for all i; j 2 N with j > i.

Note that ξ � 0 implies that for all i 6= j (i) Eθ Zl
i = 0 and Eθ Zl

i Z
l
j = 0 if l is odd;

(ii) Eθ Z4
i =(Eθ Z2

i )2 > 3; and (iii) Corrθ (Z2
i ;Z2

j ) < 1=3. In particular, the stationary
distribution of Z always has heavier tails than the normal distribution and the Z’s
are uncorrelated — but not independent — if ξ � 0.

The two-dimensional diffusion process (X ;V) is Markov, but the Markov prop-
erty of X is spoiled by the latency of V , and neither (X0;X∆; : : :) nor (Z1;Z2; : : :) is
Markov. Note however that the model is a hidden Markov model with hidden chain
H̃ where H̃i = (Vi∆;Mi;Si), see Genon-Catalot, Jeantheau & Laredo (1998b), and
that the hidden chain has continuous state space.
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3.3 Four particular models

In this section we study four particular stochastic volatility models. All have ξ � 0
so the increments Z1; : : : ;Zn are uncorrelated and have mean zero. As models for V
we consider two mean-reverting models and two transformations of the Ornstein-
Uhlenbeck process.

3.3.1 Mean-reverting models

Consider models of the type

dVt = α(β �Vt)dt +σ(Vt)dW̃t

where α and β are positive parameters and σ is such that V is positive and sta-
tionary with finite second order moment. Furthermore, assume that the martin-
gale part of V is a genuine martingale (not only local). The function σ may be
parameter-dependent, and we write θ for the full parameter.

Many of the following moment calculations were carried out by Genon-Catalot
et al. (1998b) but they are repeated here for completeness. First we compute
moments of V . By the above assumptions, the conditional expectation of Vt given
V0 is given by

Eθ (Vt jV0 = v) = e�αt(v�β )+β = e�αtv+β
�
1� e�αt�:

Hence, by stationarity, Eθ V0 = β and

Eθ V0Vt = Eθ V0Eθ (Vt jV0) = e�αt Varθ V0+β 2:
In other words, β is the level of the volatility process and α controls the degree of
temporal dependence in V . For α small the mean-reversion is weak and V has a
tendency to stay above (or below) the mean level β for longer periods. In other
words: there will be periods with large variability in Z and periods with small
variability in Z. In finance this is referred to as volatility clustering.

Next we calculate moments of S: Eθ S1 = R ∆
0 Eθ Vs ds = β∆ and for j 2 N it holds

that

Eθ S1S j = Z ∆

0

Z j∆( j�1)∆ Eθ VsVu duds = β 2∆2+Varθ V0

Z ∆

0

Z j∆( j�1)∆ e�αju�sj duds:
By direct computations and subtraction of (Eθ S1)2 = (Eθ S2)2 = β 2∆2, it follows
that

Varθ S1 = 2
�
α∆�1+ e�α∆�

α2 Varθ V0; Covθ (S1;S2) = �1� e�α∆�2

α2 Varθ V0:
It finally follows from (3.6)–(3.10) that Eθ Z1 = 0, Varθ Z1 = β∆ and that

Varθ Z2
1 = 2β 2∆2+ 6

�
α∆�1+ e�α∆�

α2 Varθ V0 (3.11)

Covθ (Z2
1;Z2

2) = �1� e�α∆�2
α2 Varθ V0: (3.12)
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Note that the latter two expressions only depend on β through the variance of V0.
For (financial) applications it is important that the models are able to generate

highly leptokurtic distributions. The (excess) kurtosis κθ of the stationary distri-
bution of Z is given by

κθ (Z1) = Eθ Z4
1(Eθ Z2
1)2 �3= 6

�
α∆�1+ e�α∆�

α2∆2

Varθ V0

β 2

which is positive (as we knew) and less than 3Varθ V0=β 2 — use the inequality(α∆� 1+ e�α∆)=(α∆)2 < 1=2. Similarly, by taking the reciprocal and using the
inequalities (α∆)2=(1�e�α∆)2 > 1 and (α∆�1+e�α∆)=(1�e�α∆)2 > 1=2, we find
that

Corrθ (Z2
1;Z2

2) = �
1� e�α∆�2Varθ V0

2α2β 2∆2+6
�
α∆�1+ e�α∆

�
Varθ V0

< Varθ V0

2β 2+3Varθ V0
:

Hence, if Varθ V0=(Eθ V0)2 = Varθ V0=β 2 is bounded by a constant Kθ , then the ex-
cess kurtosis is bounded by 3Kθ (and positive), and the correlation is bounded by
Kθ=(2+3Kθ) (and positive).

In the following we shall consider two particular choices of the diffusion func-
tion σ .

The Cox-Ingersoll-Ross model

Let σ(v) = σ
p

v for a constant σ and consider the equation

dVt = α(β �Vt)dt +σ
p

Vt dW̃t :
The solution V is called a Cox-Ingersoll-Ross process (or square-root process) and
was used by Hull & White (1988) and Heston (1993) in a stochastic volatility
set-up.

Let θ =(α;β ;σ2). If σ2� 2αβ then V is positive and stationary, and the station-
ary distribution is Γ(2αβ=σ2;σ2=(2α)) so V , and therefore also Z, have moments
of any order. In particular, Varθ V0 = βσ2=(2α) which can be plugged into (3.11)
and (3.12). For a given value of β , Varθ V0� β 2 since σ2� 2αβ . Hence, it follows
from the above that the excess kurtosis of Z is at most 3 and that the correlation
between Z2

1 and Z2
2 is a most 1/5.

To get a better understanding of the model we have simulated 10.000 obser-
vations from it. We have used ∆ = 1 and parameter values α = 0:075, β = 1 and
σ2 = 0:12. With these values of the parameters,

Eθ V0 = 1; Varθ V0 = 0:8; Corrθ (V0;V∆) = 0:928 (3.13)

Eθ Z2
1 = 1; Varθ Z2

1 = 4:341; Corrθ (Z2
1;Z2

2) = 0:171: (3.14)

Note that we have chosen α small in order to create longer periods with high
volatility.
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In practice the simulations were generated as follows: the Millstein scheme was
used for simulation of V on the interval from 0 to 10:000∆ = 10:000, dividing each
∆-interval into 1000 subintervals; the integrals S were approximated by simple
Riemann sums; and finally the Z’s were drawn independently, Zi from N(0;Si).

The top of Figure 3.1 shows the last 1000 simulated values of Z. The bottom
shows the corresponding values Vi∆, i = 9001; : : : ;10:000, of the volatility process
(which would not be observable in applications). Clearly, the Z’s are more volatile
in periods with large values of V than in periods with low values of V .

9000 9200 9400 9600 9800 10000

-6
-4

-2
0

2
4

6

9000 9200 9400 9600 9800 10000

0
1

2
3

4
5

6

Figure 3.1: Simulated values of Zi (top figure) and Vi∆ (bottom figure),
i= 9001; : : : ;10:000, for the Cox-Ingersoll-Ross model. The model parameters
are α = 0:075, β = 1 and σ2 = 0:12, and ∆ = 1.

As expected, a correlogram of Z shows absolutely no activity and is hence not
shown here. Correlograms for Z2 and jZj (based on all 10.000 observations) are
shown in Figure 3.2. The two correlograms are very similar, but there is a tendency
that correlations between absolute values are slightly larger than correlations be-
tween squared values. It takes about 25 lags for the correlations to die out.

Figure 3.3 is a QQ-plot of Z (based on all 10.000 simulations): the empirical
quantiles of the marginal distribution of Z are plotted against the quantiles of the
normal distribution with mean zero and the same variance as Z. The dashed line
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Figure 3.2: Correlograms of Z2 (to the left) and jZj (to the right) from
the Cox-Ingersoll-Ross model. The dashed lines are approximate confidence
intervals.

goes through (0,0) and has slope 1. As expected, the distribution of Z has heavier
tails than the normal distribution. The solid line shows the quantiles of a scaled
t-distribution, ρ t( f ). The parameters ρ and f are estimated by requiring that the
second and fourth order moment equal those of the empirical distribution of Z.
This holds for ρ = 0:87 and f = 8:30 . The scaled t-distribution fits quite well.

Inverse Gamma model

Consider σ(v) = σv and the corresponding equation

dVt = α(β �Vt)dt +σVt dW̃t :
This model is the continuous-time limit (in a suitable sense) of the GARCH(1,1)-
model in discrete time (Nelson 1990). The solution V is positive and station-
ary. The stationary distribution is the inverse Gamma distribution with parame-
ters 1+2α=σ2 and σ2=(2αβ ), that is, the stationary distribution of 1=V is Γ(1+
2α=σ2;σ2=(2αβ )). Again let θ = (α;β ;σ2). In the following we shall simply refer
to the model as the inverse Gamma model, with parameter θ = (α;β ;σ2).

The inverse Gamma distribution with parameters 1+2α=σ2 and σ2=(2αβ ) has
finite moment of order r if and only if r < 1+2α=σ2. Note the difference from the
Cox-Ingersoll-Ross model which has finite moments of any order. The mean of V
is β and if σ2 < 2α, then V has variance β 2σ2=(2α �σ2). For any fixed value of
β it is thus possible to get the fraction Varθ V0=β 2 arbitrarily large by choosing 2α
and σ2 close. In particular, the kurtosis is unbounded and the correlation between
Z2

1 and Z2
2 can be arbitrarily close to the upper limit 1/3.

We have simulated 10.000 observations from the model using the same random
numbers as for the Cox-Ingersoll-Ross model. We have used the same values of
α and β (0.075 and 1) as above, but σ2 is chosen differently, equal to 0.0667, in
order to make the variance and correlation structure the same for the two models,
that is, in order for (3.13)–(3.14) to hold.
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Figure 3.3: The empirical quantiles of Z from the Cox-Ingersoll-Ross model
(on the y-axis) plotted against the quantiles of the normal distribution with
mean zero and variance equal to the empirical variance of Z (on the x-axis).
The dashed line has slope 1 and goes through (0,0). The solid line shows
the quantiles of the scaled t-distribution, ρ t( f ) which has same second and
fourth order moment as the empirical distribution of Z. Here, f = 8:30 and
ρ = 0:87.

The simulated volatility process is similar to that of the Cox-Ingersoll-Ross
model in the sense that the two processes take large (small) values at the same
time. However, the inverse Gamma model produces larger spikes (implying a
heavy right tail), whereas the Cox-Ingersoll-Ross model produces many very small
values (implying a heavy left tail). This is of course completely in line with
their marginal distributions: with the above parameter values Eθ V r

0 is finite for
r > �1:25 in the Cox-Ingersoll-Ross model and for r < 3:25 in the inverse Gamma
model.

The distribution of Z depends on V through the distribution of the smoothed
(integrated) variables Si only. This smoothing, and the extra Brownian noise W in
the equation for X , seem to almost quell the differences between the two models.
In Figure 3.4 the quantiles of the two sets of Z’s are plotted against each other.
They are almost indistinguishable. Also, correlograms from the inverse Gamma
model are indistinguishable from those of the Cox-Ingersoll-Ross model and are
omitted. Altogether, this suggests that there is not much difference between the
two distributions of Z as long as parameters are chosen such that the low order
moments of Z are the same.

As mentioned above, one important objection to the Cox-Ingersoll-Ross model
is that the Gamma distribution of Z can only be moderately heavy-tailed. The
same objection does not apply to the inverse Gamma model: heavier tails are
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Figure 3.4: The quantiles of Z in the inverse Gamma model (on the y-axis)
plotted against the quantiles of Z in the Cox-Ingersoll-Ross model (on the x-
axis). The parameter values are α = 0:075and β = 1 in both models whereas
σ2 = 0:12 in the Cox-Ingersoll-Ross model and σ2 = 0:0667 in the inverse
Gamma model.

obtained by choosing σ2 closer to 2α. To illustrate this we have simulated 10.000
observations from the model with α = 0:075, β = 1 (as above) and σ2 = 0:12 (as
for the Cox-Ingersoll-Ross model). For these values the distribution of V has finite
second, but not third, order moment, so Z has finite fourth, but not sixth, order
moment. Figure 3.5 shows a QQ-plot of Z. The dashed line corresponds to a
normal distribution with mean zero and variance equal to the empirical variance
of Z, and the solid line corresponds to the scaled t-distribution ρ t( f ) with ρ =
0:882and f = 9:68 which has same second and fourth moments as Z. Clearly, the
distribution of Z is far more leptokurtic than the scaled t-distribution.

3.3.2 Ornstein-Uhlenback based models

In many respects the Ornstein-Uhlenbeck process is the simplest diffusion process
apart from the Brownian motion and the geometric Brownian motion. It solves
the equation dṼt = α(β � Ṽt)dt +σ dW̃t which can be solved explicitly. For α 6= 0
the solution Ṽ has Gaussian transition probabilites, Ṽt jṼ0� N(λ1(t)Ṽ0+λ2(t);τ2(t))
where λ1(t) = e�αt , λ2(t) = β (1� e�αt) and τ2(t) = σ2(1� e�2αt)=(2α). For α > 0,
Ṽ is stationary with N(β ;σ2=(2α)) as its stationary distribution. The normality
implies that the model cannot directly be used as a model of the positive volatility
process, but we may transform it and still be able to utilize its nice properties.
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Figure 3.5: The empirical quantiles of Z from the inverse Gamma model
with parameters α = 0:075, β = 1 and σ = 0:12 plotted against the quantiles
of the normal distribution with mean zero and variance equal to the empiri-
cal variance of Z. The dashed line has slope 1 and goes through (0,0). The
solid line shows the quantiles of the scaled t-distribution, ρ t( f ) which has
same second and fourth order moment as the empirical distribution of Z.
Here, f = 9:68 and ρ = 0:88.

The geometric Ornstein-Uhlenbeck process

The specification V = exp(Ṽ ) was suggested by Wiggins (1987) and Chesney &
Scott (1989). We shall refer to V as the geometric Ornstein-Uhlenbeck process. Both
the stationary distribution and the transition probabilities are log-normal, and V
and Z have moments of any order. We easily find

Eθ V0Vt = exp
�
2β +σ2=(2α)+ e�αtσ2=(2α)�;

but it is not easy (if possible at all) to find Eθ S2
1 = R ∆

0
R ∆

0 Eθ VuVs duds or Eθ S1S2 =R ∆
0
R 2∆

∆ Eθ VuVs duds explicitly so we have no explicit expression for the moments of
Z (except those that are zero, of course).

Note that the approximation S1� ∆V0 leads to the approximation

κθ (Z1) = Eθ Z4
1�

Eθ Z2
1

�2 �3= 3
Eθ S2

1�
Eθ S1

�2 �3� 3
Varθ V0�
Eθ V0

�2 (3.15)

of the excess kurtosis of Z. The fraction Varθ V0=(Eθ V0)2 is unbounded so there is
presumably no bound on the kurtosis of Z in the geometric Ornstein-Uhlenbeck
model.

We are not able to determine parameter values such that the distribution of
Z has certain values. However, we can easily determine values of α, β and σ2
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such that (3.13) holds: α = 0:0571, β = �0:294 and σ2 = 0:0672. Note that the
value of σ2 is close to the corresponding value for the inverse Gamma model
(0.0667). This is not very surprising since V , by Itô’s formula, solves the stochastic
differential equation

dVt = �α
�
β � log(Vt)�Vt +σ2Vt=2

�
dt +σVt dW̃t

with same diffusion function as the inverse Gamma model. Simulations of the
geometric Ornstein-Uhlenbeck process with the above parameters are almost in-
distinguishable from those of the two mean-reverting models.

The squared Ornstein-Uhlenbeck process

The squared Ornstein-Uhlenbeck process V = Ṽ 2 was used by Scott (1987) and Stein
& Stein (1991). Under this model, V and thus Z have moments of any order. It is
easily verified that Varθ V0=(Eθ V0)2� 2 so the kurtosis of Z is presumably bounded
by a value around 6, cf. (3.15). The model has several disadvantages compared
to the previous models: (i) V is not strictly positive but hits zero; (ii) V is not
a diffusion unless β = 0 (the drift term in the stochastic differential equation for
V cannot be written in terms of V but involves Ṽ as well); and (iii) there are no
explicit expressions for covariances between V0 and Vt , say.

The covariances may be calculated by simulation from the invariant distribu-
tion of V , though. For this, note that Eθ V0Vt equals�

τ2(t)+λ 2
2(t)�Eθ V0+λ 2

1 (t)Eθ V 2
0 +2λ1(t)λ2(t)Eθ

�
V 3=2

0
g
�
V0;β ;σ2=(2α)�	

where the function g is given by

g(v;m;s2) = exp(mpv=s2)�exp(�m
p

v=s2)
exp(mpv=s2)+exp(�m

p
v=s2) :

The formula is derived via repeated expectations

Eθ
�
Vt jV0

�= Eθ
�
Ṽ 2

t jṼ 2
0

�= Eθ

�
Eθ
�
Ṽ 2

t

��Ṽ0

����Ṽ 2
0

�;
where the inner expectation is computable as the transitions of Ṽ are normal.

For α = 0:0661, β = 0:880 and σ2 = 0:0298 the values of Eθ V0, Varθ V0 and
Corrθ (V0;V∆) are (roughly) as in (3.13). Simulations of Z from the model with
these parameter values are very similar to the simulations of the three previous
models.

3.3.3 Concluding remarks

The above investigation indicates that the four models produce very similar dis-
tributions of Z — as long as the model parameters are chosen such that the low-
order moments of V are the same. The fact that the eighth order moment of Z
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is infinite for the inverse Gamma model and finite for the other models is hardly
recognizable from the simulations. The reason is that differences in the volatil-
ity distributions are suppressed by smoothing (when V is transformed to integrals
S) and by the extra noise in the equation for X . Still, there are important dif-
ferences between the four models in their ability to create strong leptokurtosis
and large auto-correlations: only two models (the inverse Gamma and the geo-
metric Ornstein-Uhlenbeck) allow for arbitrarily large kurtosis and maximal auto-
correlation (which is 1/3).

Of course one could think of many other models for the volatility process. Pre-
sumably, most of them would generate distributions of Z very similar to those
above as long as parameters are chosen appropriately. In conclusion: If data
are heavy-tailed to an extent that cannot be modeled by the two restrictive mod-
els, then one should use the inverse Gamma model or the geometric Ornstein-
Uhlenbeck model. On the other hand, if there are no stylized facts contradicting
any of the models and if there are no prior (economic) reasons to prefer one
specification to another, then it seems less important which one of the models
is applied. Note however that the squared Ornstein-Uhlenbeck model has some
disadvantages which makes it the least attractive of the four models.

3.4 Estimation methods

In the majority of the early finance papers on stochastic volatility models (refer-
enced in Section 3.3) no or little attention is paid to estimation problems. The
possibility of doing parameter estimation via historical option prices and reversed
versions of the option pricing formulas is mentioned but not carried out in prac-
tice. Anyway, this is a relatively indirect estimation approach. Only Scott (1987)
and Chesney & Scott (1989) address the estimation problem seriously and derive
moment-like estimators based on historical stock prices.

Recently there has been some progress in the statistics literature concerning
stochastic volatility models, and the aim of this section is to give an overview of
existing methods. Furthermore, a new method based on simulated approximations
to the likelihood is reviewed in Section 3.4.7; a detailed discussion is provided in
Paper III. There exist review papers on statistical analysis of stochastic volatility
models defined in discrete time (Ghysels et al. 1996, Shephard 1996), but as men-
tioned in the beginning of this chapter the continuous-time models are in general
more difficult to handle.

Now, the situation is the following. Consider the model given by (3.4)–(3.5),
and assume that observations X0;X∆; : : : ;Xn∆ of X are available for some fixed ∆
while the volatility process is unobserved. Because of the nice conditional distri-
bution (given V ) of the increments Zi = Xi∆�X(i�1)∆, i = 1; : : : ;n, it is natural to

base estimation on the increments. The estimation problem is inherently difficult:
apart from the usual problems due to discrete-time observations of a continuous-
time system, we are faced with yet another missing data problem due to the la-
tency of V . As a consequence, most of the estimation procedures below are very
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computationally intensive.
Some remarks before reviewing the methods. First note that exact maximum

likelihood estimation is not really an option: For an observation (z1; : : : ;zn) it fol-
lows by conditional independence and normality given V that the likelihood func-
tion is given by

Ln(θ) = Z n

∏
i=1

1p
2πsi

exp
��(zi�mi)2

2si

�
dπn

θ (hn) = Eπn
θ

n

∏
i=1

ϕ(zi;Mi;Si) (3.16)

where we have used the notation ϕ(�;m;s) for the density of N(m;s) and πn
θ for

the distribution of Hn = ((M1;S1); : : : ;(Mn;Sn)). There is no closed-form expression
for the likelihood, not even for very simple models of V . In principle, values of
the likelihood function could be computed by simulation as follows: (i) simulate
a large number of paths V up to time n∆ according to (3.5); (ii) calculate for
each simulation (an approximation to) the integrals Mi and Si, i = 1; : : : ;n, and
the above product; and (iii) calculate the average of the simulated product values.
However, this is not feasible in practice as a huge number of simulations would
be required in order for the average to converge, that is, in order to compute the
likelihood for just a single value of the parameter. Our approach in Section 3.4.7
and Paper III will be to use the simulation approach on approximations to the
likelihood function.

Second, as we are faced with discrete-time observations of a continuous-time
model, a natural approach would be to perform estimation in a discrete-time ap-
proximation to the original model. If we use the Euler scheme or some stochas-
tic volatility model in discrete time, we are still left with an unobserved compo-
nent which makes estimation difficult. However, Nelson (1990) showed that some
diffusion processes can be approximated by ARCH type processes. For example,
the limit of a GARCH(1,1) model is the stochastic volatility model with inverse
Gamma-distributed volatility discussed in Section 3.3.1. Approximation by ARCH
type models is advantageous as estimation is relatively simple. The problem is of
course that the approximation is only good if the time between observations, ∆, is
small so consistent estimators are obtained only if ∆ ! 0. The methods based on
auxiliary models (Section 3.4.5) correct for this bias by simulation.

Third, apart from estimation of the model parameters, one could also be inter-
ested in filtering, that is, estimation of the unobserved volatility process V . Nelson
(1992) suggests a filtering method based on ARCH approximations. Given esti-
mates, V̂0;V̂∆; : : : ;V̂n, one could estimate θ by one of the methods in Chapter 2
as if V̂0;V̂∆; : : : ;V̂n∆ were actual observations of V . Nielsen, Vestergaard & Madsen
(2000) use another technique that simultaneously delivers parameter estimates
and estimates of the volatility process.

Except from Section 3.4.6 where the latter filter method is reviewed, the rest of
this chapter is exclusively about parameter estimation. We discuss simple moment
estimators in Section 3.4.1, estimation based on a simple approximation to the
marginal distribution in Section 3.4.2, prediction-based estimating functions in
Section 3.4.3, Bayesian analysis in Section 3.4.4, and methods based on auxiliary
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models in Section 3.4.5. The latter two sections are very brief as the methods
have been discussed in Sections 2.5 and 2.6 for pure diffusion models. The new
simulated, approximate maximum likelihood method is discussed in Section 3.4.7
(and Paper III). Conclusions are drawn in Section 3.4.8.

3.4.1 Moment estimation

Moment estimators are obtained by matching empirical and theoretical moments.
As already noted, moments of Z are easily expressed in terms of moments of the
integrals M and S. These can be calculated explicitly in simple mean-reverting
models (Section 3.3.1) and by simulation in more complex models.

Recall that p is the dimension of the parameter and choose p functionals
g1; : : : ;gp, for example of type z1! z j

1
and (z1;z2)! z j

1
z j
2

for suitable (small) values
of j. The parameter should be uniquely determined by the theoretical moments of
g1; : : : ;gp. With sloppy notation, the requirement is�

Eθ g1; : : : ;Eθ gp
� 6= �Eθ 0 g1; : : : ;Eθ 0 gp

�; θ 6= θ 0:
Then a natural estimate of θ is the value that makes the theoretical moments
of g1; : : : ;gp match their empirical counterparts. Also, moments may be used as
building blocks for the generalized method of moments, GMM (Hansen 1982) which
is very popular in the econometric literature. Here q > p moment functionals are
selected, and θ is estimated such that certain linear combinations of the theoretical
moments are close to their empirical counterparts.

Genon-Catalot et al. (1998b) showed consistency and asymptotic normality of
the empirical moments (in the model with ξ � 0). By transformation, the proper-
ties carry over to the moment estimators. Moment matching is quick compared to
other methods, in particular for models where moments are known analytically.
However, a simulation study in Section III.7 indicates that a solution to the esti-
mating equation fairly often does not exist and that moments estimators can be
very poor for a sample size of 500.

3.4.2 Approximation of the marginal density

In Section 3.4.7 we study approximations to the likelihood. The simplest of these
approximations, denoted L0

n, corresponds to pretending that Z1; : : : ;Zn are inde-
pendent, identically distributed according to the stationary (marginal) distribu-
tion, that is L0

n(θ) = ∏n
i=1 p1

θ (zi) where

p1
θ (z) = Z

ϕ(z;m;s)dπ1
θ(m;s) = Eπ1

θ
ϕ(z;M;S)

is the stationary density of Z and π1
θ is the distribution of (M1;S1).

The distribution of (M1;S1) is not known so we have no explicit expression
for the above density. In Section 3.4.7 we suggest to determine it by simulation.
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Alternatively, the density could be approximated as suggested by Genon-Catalot,
Jeantheau & Laredo (1999): use the approximations

M1 = Z ∆

0
ξ (Vs)ds� ∆ξ (V0); S1 = Z ∆

0
Vs ds� ∆V0 (3.17)

and the corresponding approximation

p̃1
θ (z) = Z

ϕ
�
z;∆ξ (v);∆v

�
dµθ (v) = Eµθ

ϕ
�
z;∆ξ (V0);∆V0

�
of the stationary density where µθ is the invariant distribution of V (which is
known analytically). Genon-Catalot et al. (1999) calculate the density p̃1

θ explicitly
for the two mean-reverting models from Section 3.3.1; more generally it could be
calculated by simulation.

The approximations (3.17) are good for “small” values of ∆, and Genon-Catalot
et al. (1999) indeed show that the estimator obtained by maximizing L̃0

n(θ) =
∏n

i=1 p̃1
θ (zi) is consistent as n! ∞ if ∆ = ∆n ! 0 and n∆ = n∆n ! ∞. If furthermore

n∆2
n ! 0 then the estimator is asymptotically normal. The proofs are based on limit

theorems proved in an earlier paper (Genon-Catalot, Jeantheau & Laredo 1998a).
If ∆ is fixed then the estimator is inconsistent.

The method has two severe disadvantages: (i) the bias can be considerable if
∆ is not small; and (ii) only parameters from the marginal distribution of V can be
estimated. Both disadvantages are resolved if the true marginal density p1

θ is used
instead of p̃1

θ : the corresponding estimator is consistent as n ! ∞ for any fixed
∆, and the marginal distribution of Z typically determines all parameters (at least
theoretically). The drawback is of course that the density p1

θ is not analytically
tractable and must be simulated. See Section 3.4.7 and Paper III for further details.

3.4.3 Prediction-based estimating functions

Martingale estimating functions are important tools for estimation in the (pure)
diffusion models where the Markov structure gives rise to natural martingales
based on conditional expectations one step ahead. For non-markovian models
there are no such simple martingales, and so-called prediction-based estimating

functions may be useful (Sørensen 1999).
To keep things simple we consider a somewhat simpler set-up than Sørensen

(1999). In particular, he considers estimating functions that are sums of N terms
of type (3.18) below. This is probably more powerful for high-dimensional pa-
rameters. Also, note that it is nowhere important that Z stems from a stochastic
volatility model; indeed the estimating functions are applicable for a large range
of models.

We need some notation. Let F Z
i denote the σ -algebra generated by Z1; : : : ;Zi.

Let H θ
i be the L2-space of F Z

i -measurable random variables that have finite sec-
ond order moment wrt. Pθ and let Pθ

i be a closed, linear subspace of H θ
i . Fur-

thermore, let f : R ! R be a function with Eθ f 2(Zi)< ∞.
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Now, consider the estimating function

Fn(θ) = n

∑
i=1

wi(θ)� f (Zi)� π̂i(θ)� (3.18)

where π̂i(θ) is the orthogonal projection of f (Zi) on Pθ
i�1 and wi(θ) is a p-dimen-

sional vector with coordinates belonging to Pθ
i�1. It is well-known that π̂i(θ) is

the minimum mean square error predictor of f (Zi) in Pθ
i�1. The properties of

the orthogonal projection ensures that Fn is an unbiased estimating function, i.e.

Eθ Fn(θ) = 0 for all θ 2 Θ.

Note that Fn is a martingale if Pθ
i =H θ

i (or more generally if and only if the
conditional expectation Eθ ( f (Zi)jZ1; : : : ;Zi�1) of f (Zi) given all the past belongs toPθ

i�1 for all i). The setsPθ
i are called sets of predictors. As an example,Pθ

i could
be spanned by 1;h(Zi); : : : ;h(Zi�k+1) for some function h : R ! R and some k � 0.
The constant is included in order to ensure unbiasedness.

Sørensen (1999) shows consistency and asymptotic normality of the estima-
tor obtained as solution to the equation Fn(θ) = 0. Also, given f and a finite-
dimensional set of predictors he finds optimal weights, yielding estimators with
the least possible asymptotic variance. There is no theory on how to select the
basis function f optimally. In practice one would probably use low order polyno-
mials or other simple functions, regardless of the model. This need not be effi-
cient, though, and indicates some amount of built-in arbitrariness. In particular
the method is not invariant to transformations of data.

The method seems more promising than the previous ones as it (i) does not
introduce bias and (ii) is able to take into account more features of the distribu-
tion than the simple moment estimators. The drawback is of course the need for
relatively time-consuming numerical procedures: the projection (and the optimal
weights) must typically be computed by simulation so the method is far slower
than the previous ones.

3.4.4 Bayesian analysis

Bayesian analysis has been applied to stochastic volatility models by Eraker (1998),
see also Elerian et al. (2000). The parameter is considered as random, and a
sequence (θ j) j is simulated that has the posterior of θ as the limiting distribution.
For each j this involves simulation of X and V as well: values of X are simulated
at a number of time-points in between those where X is observed; V also at the
time-points i∆, i = 1; : : : ;n. See Section 2.5 (or the above quoted papers, of course)
for details. The method is computationally quite demanding. However, it is also
extremely flexible as it does not rely on probabilistic properties of the model, but
purely on simulation (an on a prior distribution for θ which is chosen somewhat
arbitrarily).

The flexibility is indicated by an application by Eraker (1998). He analyses US
interest rate data as well as simulated data using the CKLS-inspired model

dXt = θ1(θ2�Xt)dt +Xθ3
t

p
Vt dWt (3.19)
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where logVt is an Ornstein-Uhlenbeck process. The model does not belong to
the class of models discussed so far as equation (3.19) for X is not completely
determined by the volatility process. The conditional independence and normality
of the Z’s (given V ) do not hold, and the methods discussed so far do not easily
apply to the model. Neither does the approximate maximum likelihood method
from Section 3.4.7.

3.4.5 Estimation based on auxiliary models

In the empirical econometric literature stochastic volatility models have been es-
timated by indirect inference (Gourieroux et al. 1993) and the so-called efficient

methods of moments, EMM (Gallant & Tauchen 1996). Essentially the idea is to
find the parameter value for which simulated data resembles the observed data
the most in the sense that the simulated data and the observations yield the same
estimator in some auxiliary model. See Section 2.6 for more details.

Gourieroux et al. (1993) apply indirect inference to the modified Black-Scholes
model with logV being an Ornstein-Uhlenbeck process (and the two Brownian mo-
tions possibly correlated). As auxiliary model they use a discrete-time stochastic
volatility model which is estimated via the Kalman filter. In our opinion an ARCH
type model would be a more obvious choice as it would be easier to handle sta-
tistically; a relatively simple one like GARCH(1,1) would probably suffice for this
application.

Andersen & Lund (1997) apply EMM on interest rate data using the model
(3.19) where V is again the exponential of an Ornstein-Uhlenbeck process. They
try a few different, though similar, ARCH type auxiliary models with up to 26
parameters whereas the model of interest has six parameters only (three from
(3.19) and three from the Ornstein-Uhlenbeck process)!

As mentioned above, most of the methods in this section do not apply to the
model (3.19), and EMM may thus be helpful. However, we are in general critical
to the methods based on auxiliary models, see Section 2.6. For simple models
where more direct estimation techniques are possible we believe that these should
indeed be preferred.

3.4.6 Estimation based on non-linear filters

In some applications it might be of interest to use the observations of X for filter-

ing, i.e. estimation of the unobserved volatility process V . Nielsen et al. (2000)
discuss a method that simultaneously provides estimates of the unknown parame-
ter as well as of the values Vi∆ of V at the time-points where X is observed. Their
set-up is somewhat more general than ours as the Brownian motions W and W̃
may be correlated and the observable process is observed with noise. Also, the
method applies (at least in principle) to systems of higher dimensions and of a
more complicated nature. Here we only consider the model given by (3.4) and
(3.5), with W and W̃ independent and X observed without noise.
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We need some notation. For i = 1; : : : ;n letF X
i denote the σ -algebra generated

by fX j∆g j=0;::: ;i and let�
X̂θ

tji�1;V̂ θ
tji�1

�= Eθ

�(Xt;Vt)��F X
i�1

�; t 2 [(i�1)∆; i∆℄
be the prediction of (Xt;Vt) at time (i�1)∆ and Pθ

tji�1 the corresponding prediction

variance. For t = i∆ we also write (X̂θ
iji�1;V̂ θ

iji�1) and Pθ
iji�1.

For fixed θ the filter consists of two sets of equations: the prediction equations
and the updating equations. The prediction equations determine equations for
the time derivatives ∂ X̂θ

tji�1=∂ t, ∂V̂ θ
tji�1=∂ t and ∂Pθ

tji�1=∂ t. The equations are only

approximate. They are derived via Taylor expansions of the drift and diffusion
functions truncated after the second order term. Third and fourth order condi-
tional moments are approximated by simple expressions in terms of X̂θ

tji�1, V̂ θ
tji�1

and Pθ
tji�1, corresponding to normality of the predictions. For the above model,

this amounts to  
∂ X̂θ

tji�1=∂ t

∂V̂ θ
tji�1=∂ t

!= ξ̂t + 1
2ξ̂ 00t P22

t

b̂t + 1
2b̂00t P22

t

!
(3.20)

∂Pθ
tji�1

∂ t
= V̂ θ

tji�1+2ξ̂ 0t P12
t ξ̂ 0t P22

t + b̂0tP12
t

ξ̂ 0t P22
t + b̂0tP12

t σ̂2
t +P22

t

�
2b̂0t +(σ̂ 0

t )2+ σ̂t σ̂ 0
t

�; ! (3.21)

where b̂0t = b0(V̂tji�1;θ), for example, and P jk
t is short for the ( j;k)’th element of

Pθ
tji�1.

The updating equations express how the estimate of Vi∆ and its variance are
modified as a new observation Xi∆ becomes available:

V̂ θ
iji = Eθ

�
Vi∆jF X

i

�= V̂ θ
iji�1+ �Xi∆� X̂θ

iji�1

�
Pθ ;12

iji�1
=Pθ ;11

iji�1

Rθ
iji = Varθ

�
Vi∆jF X

i

�= Pθ ;22
iji�1

� �Pθ ;12
iji�1

�2=Pθ ;11
iji�1

: (3.22)

The factor Pθ ;12
iji�1

=Pθ ;11
iji�1

is called the Kalman gain and determines how important

the new observation of X is for the updated estimate of Vi∆: the new observation
is ascribed large weight if the correlation between X̂iji�1 and V̂iji�1 is large.

The prediction and updating equations together constitute the Gaussian trun-

cated second order filter which for a fixed θ and initial guesses V̂ θ
0j0 and Rθ

0j0 is solved

recursively as follows: First, solve the prediction equations (3.20)–(3.21) for i = 1
with initial conditions X0 (which has been observed), V̂ θ

0j0 and R̃θ
0j0 where R̃θ

0j0 is the

2�2 matrix with lower right element equal to Rθ
0j0 and all other elements equal

to zero (at time zero X0 is observed without noise). This yields predictors X̂θ
1j0 and

V̂ θ
1j0 and a prediction variance matrix Pθ

1j0. Next, an updated estimate V̂ θ
1j1 and its

variance Rθ
1j1 are calculated according to the updating equations (3.22). The up-

dated estimates and X∆ are then used as initial values in the prediction equations
for i = 2 and so forth.
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All the above was for a fixed value of θ . Estimation of θ is possible via the one-
step predictions X̂θ

iji�1 of the observed values Xi∆, i= 1; : : : ;n: Let ri(θ)=Xi∆�X̂θ
iji�1,

i = 1; : : : ;n, be the prediction errors and assume that they are independent with
ri(θ)� N(0;Pθ ;11

iji�1
). Then the joint density is proportional to

n

∏
i=1

�
Pθ ;11

iji�1

��1=2
exp
��r2

i =�2Pθ ;11
iji�1

��
which is maximized in order to obtain an estimate of θ .

A few important remarks: First, the predictions and their variances are only ap-
proximations to the true ones. This implies bias of the estimator if ∆ is not “small”.
Second, the prediction errors need not be Gaussian. This should cause no bias but
affect efficiency only. Third, the method requires very intensive computations as
n (the number of observations) differential equations of dimension five must be
solved for every evaluation of the above density.

Nielsen et al. (2000) apply the method to simulated data from the model where
the Black-Scholes specification is used together with the inverse Gamma speci-
fication for

p
V (and also to a slightly more complicated model). The method

produces volatility estimates that are similar, but noticeably less variable, than
the actual simulated values (this is not surprising as some smoothing has taken
place). Also, reasonable estimates are obtained for some, but not all, parameters.
For example, the estimator of the mean-reverting parameter in the inverse Gamma
model is strongly biased.

In conclusion, if we are interested in estimates of the volatility process, the
method is indeed fine (though slow). However, if we are only interested in pa-
rameter estimation, then more direct — and unbiased — approaches are prefer-
able, as there is no reason to spend time and energy simultaneously estimating the
volatility process.

3.4.7 Approximate maximum likelihood estimation

Values of the likelihood may as mentioned in principle — but not in practice —
be computed by simulation. In Paper III we consider a sequence of approxima-
tions Lk

n(θ), k = 0; : : : ;n�1, to Ln(θ) which for low values of k are computable in
practice. In this section the method is reviewed and applied to Microsoft stock
prices.

In the following, let for i2N , pi
θ be the density of (Z1; : : : ;Zi) and pc;i

θ (�jz̃1; : : : ; z̃i)
be the conditional density of Zi+1 given Z j = z̃ j, j = 1; : : : ; i. Also, write pc;0

θ = p1
θ

for the marginal density.

Basic idea and results

Recall that Z is not Markov of any order. Yet, the idea of Paper III is to pretend that

Z is k’th order Markov for some relatively small k � 0 and simplify the likelihood
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function accordingly. Since Z is stationary this amounts to

Lk
n(θ) = pk

θ (z1; : : : ;zk)n�1

∏
i=k

pc;k
θ (zi+1jzi�k+1; : : : ;zi);

where Zi for i� k+2 contributes with the conditional density given the k previous
observations, rather than given all the past. Of course Lk

n is maximized in order to
obtain an estimator θ̂ k

n of θ .
No approximation is made for k = n�1, but the idea is to use a small k. In par-

ticular, k = 0 corresponds to pretending that the observations are independent and
identically distributed according to the invariant distribution of Z. Note the crucial
difference from the method described in Section 3.4.2: we use the true invariant
density pc;0

θ = p1
θ whereas Genon-Catalot et al. (1999) use an approximation to it

which is only good for small values of ∆.
Generally, we use the true k-lag conditional density rather than some approx-

imation. Consequently, the estimator θ̂ k
n is invariant to bijective transformations

of the data and furthermore consistent and asymptotically normal for any fixed

∆ and any fixed k � 0 (under regularity conditions of course, see Theorems III.7
and III.9). The size of k is thus a question of efficiency rather than bias (see below
for some further comments). The identifiability condition that the k-lag condi-
tional distribution uniquely determines θ , is usually satisfied even for k = 0 (at
least theoretically) because the invariant distribution of Z involves the distribu-
tion of (Vt)t�∆.

There are no explicit expressions for the densities pk
θ and pc;k

θ but they can be

calculated by simulation: replace n in (3.16) by k+1 in order to express pk+1
θ as

an expectation with respect to the distribution of (Mi;Si)i�k+1. Similarly for pk
θ .

Finally, pc;k
θ is computed as the quotient between pk+1

θ and pk
θ . In other words

we compute Ln(θ), or in practice rather its logarithm, by simulation of V on the
interval from [0;(k+1)∆℄. See Section III.4 for details.

Some comments on the applicability of the method: It is easily modified to
cover models where the drift ξ for X is parameter dependent. However, it is
crucial that the conditional distribution of Z given V is analytically known (and
preferably simple). Hence, the method cannot easily be applied to models where
(i) the drift or diffusion for X depends on X itself or (ii) the Brownian motions
W and W̃ are correlated. On the other hand the method applies immediately to
hidden Markov models, and the basic idea of using k-lag conditional densities
generally provides quite natural approximations to the likelihood for models with
a complicated dependence structure.

A few efficiency considerations

Intuitively we would expect the approximations Lk
n(θ) of Ln(θ) to improve as k in-

creases since, loosely speaking, more features of the dependence structure in data
are taken into account. Slightly more rigorously, it is easy to see that Eθ0

logLk
n(θ0)
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increases with k (Proposition III.10). However, it is not clear whether the estima-
tors θ̂ k

n improve. With the asymptotic normality in hand for each k it is natural
to compare θ̂ k

n for different k’s by their asymptotic variances. This project is not
feasible, though, because the expressions for the asymptotic variances are very
complicated and not computable, even for a one-dimensional parameter. In fact,
we have worked quite hard on the efficiency question, also from other points of
views, but we have not been able to come up with final answers. The reflections
below are only indicative.

In Paper III we try the method on simulated data from the model where ξ � 0
and V is a Cox-Ingersoll-Ross model. The study is small and thus only suggestive
for the true behaviour. When only one parameter is considered unknown there
does not seem to be any substantial differences among different values of k, and
even k = 0 yields quite satisfactory estimates. On the other hand, when all three
parameters are unknown estimation is almost impossible for k = 0 and k = 1. The
problems seem to diminish as k increases, suggesting that estimation actually im-
proves with k.

Now, let us consider a much simpler situation. It is not at all related to the
stochastic volatility set-up, but it illustrates the method and a simulation study in
large scale is easily carried out.

Example (Autoregressive process of order 4) Let (εi)i�5 be independent, standard
normal and consider the AR(4) process Y = (Yi)i�1 given by

Yi = β1Yi�1+β2Yi�2+β3Yi�3+β4Yi�4+σεi; i� 5

where β1; : : : ;β4 are such that Y is stationary and (Y1; : : : ;Y4) is distributed as to
obtain strict stationarity of Y .

The marginal distribution is normal with mean zero and variance denoted
ω2

0σ2. The k-lag conditional distributions, k = 1; : : : ;4, are Gaussian with

E
�
YijYi�1; : : : ;Yi�k

�= ϕk;1Yi�1+ : : :+ϕk;kYi�k

Var
�
YijYi�1; : : : ;Yi�k

�= ω2
k σ2;

for i � k + 1. Of course, ϕ4 j = β j, j = 1; : : : ;4, and ω2
4 = 1. For k = 1;2;3, the

parameters ϕk; j, j = 1; : : : ;k, are functions of β1; : : : ;β4 only and they are easily

determined recursively. The variance parameters ω2
k are given recursively by ω2

k =
ω2

k+1=(1�ϕk+1;k+1), k = 0; : : : ;3.

Our concern is estimation of σ2 from data (Y1; : : : ;Yn). The regression parame-
ters, and therefore also the ϕ ’s and the ω ’s, are assumed to be known. The above
conditional distributions give rise to five natural estimators:

σ̂2;0
n = 1

n�4

n

∑
i=5

Y 2
i =ω2

0

σ̂2;k
n = 1

n�4

n

∑
i=5

�
Yi�ϕk;1Yi�1� : : :�ϕk;kYi�k

�2=ω2
k ; k = 1; : : : ;4:
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In particular k = 4 yields the maximum likelihood estimator.
Figure 3.6 shows box-plots for 4000 simulated values of the five estimators,

each based on 1000 observations. The true value of the unknown σ2 is 1 whereas
the known regression parameter is (β1;β2;β3;β4) = (0:6;�0:5;0:4;�0:4). As ex-
pected, the maximum likelihood estimator has the least spread. For k� 3 it seems
that the spread reduces slightly as k increases, but the improvement is not sub-
stantial. �

0.
8

0.
9

1.
0

1.
1

1.
2

k=0 k=1 k=2 k=3 mle

Figure 3.6: Box-plots for 4000 simulated values of σ̂2;k
n for k = 0; : : : ;4. The

maximum likelihood estimator corresponds to k = 4. The dots denote medi-
ans; the boxes lower and upper quartiles; the horizontal lines the so-called
lower and upper adjacent values; and the circles observations outside the
adjacent interval. The upper adjacent value is the largest observations less
than the upper quartile plus 1.5 times the interquartile range; the lower
adjacent value is defined similarly.

Open problems and future work

Now some ideas to possible future work related to the approximate maximum
likelihood method. First, in order for the method to be really useful in practice,
one should be able to calculate or estimate the variance of the estimator. The ex-
pression for the asymptotic variance is not worth much in practice as it is (a quite
complicated expression) given in terms of the k-lag conditional densities which
are not known explicitly. It is not obvious how to estimate the variance either. In
principle it could be done via simulation of a large number of processes, calculat-
ing the corresponding estimators but since estimation for each simulated dataset
is relatively complicated and time consuming this is not feasible in practice.

Second, there are possibilities of model control built into the method: An esti-
mator of the same parameter is obtained for all values of k. Consequently, signifi-
cantly different estimators are indications of misspecification of the model. Again,
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in order for this to be applicable (and formalized properly) we need knowledge of
the distribution of the estimators.

Third, note that there are no results on the asymptotic behaviour of the true
maximum likelihood estimator. There is no reason to believe that it is not well-
behaved but the usual limit theorems do not apply. This is because the score
function cannot be written as a sum of one function, evaluated at consecutive ob-
servations. Rather, different terms originate from different functions, the i + 1’st
from ∂θ logpc;i

θ (zi+1jz1; : : : ;zi). However, since Lk
n is an approximation of the like-

lihood function and since the usual limit theorems apply to ∂θ logLk
n, one could

hope that properties of Lk
n might be applied in order to derive asymptotic results

for the maximum likelihood estimator.
Fourth, when proving asymptotic properties for θ̂ k

n , it is implicitly assumed
that the approximate likelihood function can be computed accurately. It would be
interesting to see how computation of Lk

n via simulation influence the estimators.
Similar work was done for martingale estimating functions (Kessler & Paredes
1999).

Fifth, it would be interesting to see how approximate maximum likelihood
estimation performs compared to other methods. Also, in relation to the discussion
in Section 3.3, we could estimate several models to the same data and see if they
have roughly the same implications for the volatility process, for examples in terms
of low-order moments.

Application to Microsoft stock prices

We now apply the approximate maximum likelihood method to a dataset consist-
ing of 1838 observations of Microsoft stock prices on NASDAQ from May 1991 to
August 1998. The logarithm of the prices and the returns are plotted in Figure 3.7.
Figure 3.8 shows correlograms for the returns (to the left) and the squared returns
(to the right), and Figure 3.9 is a QQ-plot of the returns. The returns seem to be
uncorrelated but not independent. The auto-correlations of the squared returns
die out relatively quickly and are below 0.2 at all lags. The marginal distribution
of the returns have moderately heavy tails compared to the normal distribution.
The excess kurtosis of the returns is 1.23.

This indicates that all four models from Section 3.3 should fit well with the
data. Here we use the Cox-Ingersoll-Ross specification for the latent stochastic
volatility process V and let ξ � 0. If X denotes the logarithmic stock prices, time is
measured in days, and we ignore weekends and holidays, then the model for the
returns is specified by Zi = Xi∆�X(i�1)∆ for ∆ = 1, where

dXt =pVt dWt (3.23)

dVt = α(β �Vt)dt +σ
p

Vt dW̃t : (3.24)

In order to avoid numerical inaccuracy due to values of Z very close to zero we
multiply the observed returns by a factor 100. Now, d(100Xt) =p104Vt dWt and
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Figure 3.7: The logarithm of Microsoft stock prices (the top plot) and their
increments (the bottom plot) from May 1991 to August 1998. The dashed
line divides the period into two halves.

104V is a Cox-Ingersoll-Ross process with parameters α, 104β and 104σ2. Hence,
these are the parameters estimated in the following.

We have computed estimators based on all 1837 observed returns and for com-
parison also those based on only the first and second half of the data, respectively.
The parameters are estimated by the approximate maximum likelihood method
with k = 2;3;4 (for k = 0 and k = 1 we did not find well-defined maxima).1 Fur-
thermore, we have estimated the parameters by matching the empirical and the-
oretical values of Eθ Z2

1, Eθ Z4
1 and Eθ Z2

1Z2
2 (see Sections 3.3.1 and 3.4.1). All

estimates are listed in Table 3.1; the estimates based on all observations are listed
in the upper third, those based on only half the data in the lower two thirds.

The estimates of β do not differ much for different estimation methods. This
is not surprising as β is simply the variance of Z which is easily estimated. The
variance is larger for the first half of data than for the second. The estimates of

1For each evaluation of logLk
n(θ ) 10.000 paths of V on the interval [0;(k+1)∆℄ were simulated

(via the Millstein scheme, splitting each ∆-interval into ten pieces) and used as described in Sec-
tion III.4. As initial points for the numerical maximization routine we used the maximum point
on a curve in R3 determined by estimates of the invariant distribution of V , see Section III.7 for
details.
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Figure 3.8: Correlogram for the Microsoft returns (to the left) and the
squared returns (to the right). The dashed lines are approximate 95% confi-
dence intervals.

α and σ2 are less stable across methods. Most notably, the moment estimates
are very different from the approximate maximum likelihood estimates. We are
not too concerned about this, however, because a small simulation study in Sec-
tion III.7 indicates that moment estimators are extremely imprecise! Consequently
we are more confident in the likelihood estimates. For the two halfs of the data
the approximate maximum likelihood estimates differ relatively much for different
values of k whereas they seem more stable when all data are used. It would be
interesting to see how much they would stabilize for larger values of k.

The above considerations are very loose and at most indicative as we have no
variance estimates of the parameter estimates. However, the application indeed
demonstrates that it is practically feasible to perform the necessary computations.

3.4.8 Concluding remarks

Above we have reviewed estimation methods for stochastic volatility models. The
most striking characteristic is perhaps the need for extremely time consuming nu-
merical techniques, most often simulation based. The only exceptions are the
methods from Sections 3.4.1 and 3.4.2. Neither are very appealing, though: Mo-
ment estimation indeed provides consistent estimators for any fixed ∆ as n ! ∞
but seems to work poorly in practice. The simple approximation to the marginal
density introduces bias and furthermore implies that important information on
the dependence structure is lost. However, the methods may prove valuable in a
preliminary analysis of the data.

The filtering method introduces bias as well but is of course useful if estimates
of the volatility process are of interest. Also, the method is quite flexible. So
are Bayesian analysis and EMM as they are completely simulation-based. Both
approaches require simulation of both the observable process and the volatility
process from time zero to n∆ (the time for the last observation). Bayesian analysis
furthermore requires simulation of the parameter which is considered as random,
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Figure 3.9: QQ-plot for the Microsoft returns with the quantiles of the nor-
mal distribution on the x-axis and quantiles of the returns on the y-axis.

and simulation is performed conditional on the observations. In both cases the
simulations correct for bias but the estimators are bound to depend on the prior
distribution of θ (in the Bayesian analysis) or the auxiliary model (in EMM) which
are both selected quite arbitrarily.

Prediction-based estimating functions and the approximate maximum likeli-
hood method provide consistent estimators as well. It is often natural to use
predictions based on k lags of the data for some k. In that sense prediction-
based estimation is in line with the approximate maximum likelihood method.
For fixed k, the functional generating the prediction-based estimating function is
chosen slightly arbitrarily (as low order polynomials, say). As opposed to this, the
approximate maximum likelihood method suggests always to use the score cor-
responding to the k-lag conditional density. This makes the method invariant to
data transformations but, admittedly, it need not provide efficient estimators. The
k’th approximation to the likelihood is computed by simulation, but only of the
volatility process and only at the interval from zero to (k+1)∆. Hence, the com-
putational effort needed is presumably considerably smaller than for the Bayesian
and auxiliary-based approaches.

3.5 Related models

So far we have been concerned with continuous-time models driven by Brownian
motions. We now discuss related models. First we discuss continuous-time models
driven by general Lévy processes, next models defined in discrete time.
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Data Method α̂n 104 � β̂n 104 � σ̂2
n

MOM 0.76 4.14 1.81

All
k = 2 0.19 4.13 0.53
k = 3 0.23 4.12 0.66
k = 4 0.21 4.13 0.59
MOM 1.35 3.90 2.88

Part 1
k = 2 0.11 3.88 0.28
k = 3 0.20 3.89 0.58
k = 4 0.24 3.88 0.75
MOM 0.42 4.36 1.14

Part 2
k = 2 0.17 4.36 0.42
k = 3 0.27 4.36 0.73
k = 4 0.19 4.39 0.52

Table 3.1: Parameter estimates for Microsoft stock prices in the Cox-
Ingersoll-Ross model given by (3.23)–(3.24). “Part 1” refers to the first half
of the data, “Part 2” to the second. “MOM” refers to moment estimation
(method of moments) where the empirical and theoretical values of Eθ Z2

1,
Eθ Z4

1 and Eθ Z2
1Z2

2 are matched.

3.5.1 Continuous-time models driven by Lévy processes

As an alternative to Brownian motions one could use general Lévy processes (pro-
cesses that are continuous in probability and have independent increments) as
building blocks for the volatility process. This is the approach taken by Barndorff-
Nielsen & Shephard (1999) who discuss models on the form

dXt = �ξ1+ξ2Vt

�
dt +pVt dWt (3.25)

dVt =�λVt dt +dz(λ t) (3.26)

(and slightly more general models). Here, λ > 0 is a parameter and z is a Lévy
process with positive increments implying positivity of V . Models for V of the above
type are referred to as Ornstein-Uhlenbeck type processes. Note that X exhibits
jumps (if ξ2 6= 0) since V does.

The class of Levy processes is large enough that any selfdecomposable distri-
bution on (0;∞) may be generated as the stationary distribution of an Ornstein-
Uhlenbeck type process — retaining the linear drift and the unit diffusion and
thus some amount of analytical tractability (Barndorff-Nielsen, Jensen & Sørensen
1998, Barndorff-Nielsen & Shephard 1999). The selfdecomposability condition is
not very restrictive. For example, the generalized inverse Gaussian distributions
are selfdecomposable; the Gamma, inverse Gamma, inverse Gaussian, and the
positive hyperbolic distributions all occur as special cases.

Despite the linear formulation of the volatility process, estimation (and filter-
ing) is not easy, though. Sørensen (1999) uses prediction-based estimating func-
tions on discrete-time observations of V . If only X is observed, we are basically left
with the same estimation problems as in the Brownian case. Barndorff-Nielsen &
Shephard (1999) mainly discuss estimation for a related and simplified discrete-
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time model and focus on two filtering approaches and on Bayesian analysis. The
two filtering methods carry over to a simplified version of the above continuous-
time model (with ξ1 = ξ2 = 0). The possibility of parameter estimation via spectral
analysis is also mentioned.

3.5.2 Related discrete-time models

So far we have been concerned with models that are defined in continuous time
but observed at discrete time-points only. Another possibility is of course to di-
rectly define models in discrete time. Such models are often easier to interpret as
they usually specify movements from observation to observation in a relatively di-
rect way. On the other hand, continuous-time modeling has advantages: First, the
theory of derivative pricing, for example, most often relies on stochastic calculus.
Second, it is easier to handle irregularly sampled data as a continuous-time model
implicitly defines transitions over time intervals of any length, whereas in discrete
time one would have to specify separate (though coherent) models for different
time intervals.

Apart from being important models in their own right the discrete-time ver-
sions may serve as approximations to the continuous-time models (for example, if
estimation is performed by indirect inference or EMM). Or the other way around:
the continuous-time versions may be interpreted as limits of discrete-time models
as the time interval between observations gets smaller (Nelson 1990).

Essentially, discrete-time models of changing variance are given by an equation
for the observations

Yi = µi +σiεi; i = 1; : : : ;n;
together with models for the mean µi and variance σi. We let µi � 0 as we shall
mainly be interested in the variance structure. The innovations (εi)i are assumed
to be white noise (e.g. Gaussian) with unit variance. The models can roughly
be divided into two groups: ARCH type models and stochastic volatility mod-
els. We refer to survey papers for a thorough treatment of similarities and differ-
ences between the two discrete-time type models (Shephard 1996) and between
the continuous-time and discrete-time versions of the stochastic volatility models
(Ghysels et al. 1996).

ARCH type models

In ARCH type models (εi)i is the only source of noise and σi is assumed to be
a (non-random) function of lagged values of Y and σ2. Consequently, the condi-
tional distribution of Yi given the past is directly specified and it is straightforward,
at least in principle, to do maximum likelihood estimation. Note that although the
ARCH type models are driven by one source of noise only, their continuous-time
limits (defined in a certain sense, see Nelson (1990)) can be stochastic volatil-
ity models of the type from this chapter. For example, the GARCH(1,1) model
converges to the inverse Gamma model from Section 3.3.1.
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There is a vast literature on ARCH type models, their applications and related
statistical issues, and it is beyond the scope of this thesis to go into this. See Bera
& Higgins (1993), for example, for a survey of the ARCH literature.

Stochastic volatility models

In the stochastic volatility set-up (σi)i is assumed to evolve independently from
— or at least not to be perfectly correlated with — (εi)i. For simplicity we shall
consider a particular model that by far is the most popular model in the literature:
assume that σ2

i = exp(Hi) where (Hi)i is an auto-regressive process of order one,

Yi = εi exp(Hi=2)
Hi = γ0+ γ1Hi�1+ηi;

where the sequences (εi)i and (ηi)i are Gaussian white noise with variances 1 and
σ2

η respectively, independent of each other. This model is the natural discrete-time
counterpart of the geometric Ornstein-Uhlenbeck model from Section 3.3.2.

We are interested in estimation of θ = (γ0;γ1;σ2
η) from observations (y1; : : : ;yn)

of (Y1; : : : ;Yn). The methods from Section 3.4 are all applicable (when suitably
modified) — and most of them have actually been applied. Not surprisingly mo-
ment estimation (generalized method of moments and simulated versions like
EMM) has been popular: Andersen & Sørensen (1996), among many others, ap-
ply GMM, and Gallant, Hsieh & Tauchen (1997) apply EMM to the above model.
Markov Chain Monte Carlo methods for stochastic volatilities were developed and
applied by Jacquier, Polson & Rossi (1994) and later refined by Kim, Shephard
& Chib (1998). The so-called quasi maximum likelihood estimator (Harvey, Ruiz
& Shephard 1994) relies on the Kalman filter which is applied to the linear state
space model for logY 2

i : logY 2
i = Hi + logε2

i . This yields consistent (but inefficient)
parameter estimates although logε2

i is not Gaussian. The above list of applications
is only a small selection; we refer to the survey papers by Shephard (1996) and
Ghysels et al. (1996) for many more references.

Maximum likelihood estimation is not possible — for the exact same reasons
as in continuous time: the likelihood is given only in integral form

Ln(θ) = ZRn
f (yjh) fθ (h)dh = Eθ f (yjH)

where we have written y for the vector (y1; : : : ;yn) and similarly for h and H and
used f generically for densities. Note that the density fθ (h) is actually explicitly
known. As in continuous time the likelihood could in principle be computed as the
average of simulated values of f (yjH) where H are simulated from fθ (h). Again,
this is not feasible in practice as a huge number of simulations would be necessary.

The new approximate maximum likelihood method from Section 3.4.7 and
Paper III is one way to circumvent the problem. The methodology immediately
carries over to the discrete-time set-up, and simulation of the k-lag conditional
densities is much easier than in the continuous-time case because the distribution
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of the conditional variances is known explicitly. Note that the method for k = 0
(pretending independence) only provides estimates of the parameters γ0=(1� γ1)
and σ2

η=(1� γ2
1) determining the invariant distribution of H.

Another answer is importance sampling. Basically, the idea is to choose a func-
tion gy;θ that satisfies

R
gy;θ (h)dh = 1 for all θ and rewrite the likelihood to

Ln(θ) = ZRn

f (yjh) fθ (h)
gy;θ (h) gy;θ (h)dh = Ey;θ� f (yjh) fθ (h)

gy;θ (h) �
(3.27)

where Ey;θ is the expectation corresponding to the density gy;θ . Then the likeli-

hood may be calculated as the average of simulated values of f (yjH) fθ (H)=gy;θ (H)
where H is drawn from gy;θ .

The question is of course how to choose the density gy;θ cleverly, i.e. such

that relatively few simulations are necessary. Danielsson & Richard (1993) and
Danielsson (1994) suggest a product of univariate Gaussian densities. In each
term the Gaussian mean and variance depend on some auxiliary parameters which
are estimated beforehand in order to obtain the largest possible variance reduc-
tion. The technique reduces the number of required simulations of H impressively.
Danielsson (1994) applies the technique to a dataset of roughly 2000 observations
(and a somewhat more complicated model than the above) and obtains conver-
gence using only 5000 simulations. However, the method requires heavy com-
putations for estimation of the auxiliary parameters and is still very computer
intensive.

Finally, note that it is absolutely crucial that the density of H is known explicitly.
Otherwise, the integrand in (3.27) is not known. Hence, the importance sampling
approach cannot immediately be modified to cover the continuous-time models
where the distribution of the conditional variances (S1; : : : ;Sn) is not known.

3.6 Conclusion

In this chapter (and in Paper III) we have studied a class of continuous-time
stochastic volatility models, mainly from a statistical point of view. The main
conclusion are the following (see Section 3.3.3 and Section 3.4.8 for more de-
tailed conclusions). An investigation of four particular models showed differences
in their ability to generate data with highly leptokurtic distributions. In other re-
spects the models were hard to distinguish. A new estimation method based on
simulated approximations to the likelihood function was derived. The method
provides consistent and asymptotically normal estimators for any time distance
between observations. There are other methods with the same properties, some
of which are more widely applicable. However, for the models from this chapter
the new technique provides very natural approximations to the likelihood and is
thus quite appealing.
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I.1 Introduction

This paper is about parameter estimation for discretely observed diffusion mod-
els with known diffusion function. The idea is to use an approximation of the
continuous-time score function as estimating function.

This idea is very much in the spirit of the early work by Le Breton (1976) and
Florens-Zmirou (1989). They both studied the usual Riemann-Itô discretization of
the continuous-time log-likelihood function, and Florens-Zmirou (1989) showed
that the corresponding estimator is inconsistent when the length of the time inter-
val between observations is constant.

More recently, various methods providing consistent estimators have been de-
veloped, e.g. methods based on approximations of the true, discrete-time likeli-
hood function (Pedersen 1995b, Aït-Sahalia 1998); methods based on auxiliary
models (Gallant & Tauchen 1996, Gourieroux et al. 1993); and methods based
on estimating functions (Bibby & Sørensen 1995, Hansen & Scheinkman 1995,
Kessler 2000, Jacobsen 1998).

The estimating function discussed in this paper is of the simple, explicit type
discussed by Hansen & Scheinkman (1995) and Kessler (2000), that is, on the
form ∑n

i=1Aθ h(Xti�1
;θ) whereAθ is the diffusion generator. Hansen & Scheinkman

(1995) focus on identifiability and asymptotic behaviour of the estimating func-
tion whereas Kessler (2000) focuses on asymptotic behaviour and efficiency of the
estimator.

The main contribution of this paper is to recognize that, with a special choice of
h, the corresponding estimating function can be interpreted as an approximation
to the continuous-time score function. The approximating estimating function is
unbiased, it is invariant to data transformations, it provides consistent and asymp-
totically normal estimators, and it can be explicitly expressed in terms of the drift
and diffusion coefficient. The estimating function is also — at least in some cases
— available for multi-dimensional processes.

The main objection against the method is the need for a completely known dif-
fusion function. In case of a parameter dependent diffusion function the suggested
estimating function is still unbiased and can thus in principle be used, but there
is no longer justification for using it since the continuous-time likelihood function
does not exist.

We present the model and the basic assumptions in Section I.2, and the estimat-
ing function is derived in Section I.3. We give the asymptotic results in Section I.4,
and examples and simulation studies in Section I.5. Sections I.2–I.5 discuss one-
dimensional diffusion processes exclusively; we study the multi-dimensional case
in Section I.6.

I.2 Model and notation

In this section we present the diffusion model, state the assumptions and introduce
some notation.

(I.2)
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We consider the one-dimensional, time-homogeneous stochastic differential
equation

dXt = b(Xt;θ)dt +σ(Xt)dWt ; X0 = x0 (I.1)

where θ is an unknown p-dimensional parameter from the parameter space Θ �Rp and W is a one-dimensional Brownian motion. The functions b : R�Θ ! R and
σ : R ! (0;∞) are known, and the derivatives ∂σ=∂x and ∂ 2b=∂θ j∂x are assumed
to exist for all j = 1; : : : ; p. Note that σ does not depend on θ .

We assume that for any θ , (I.1) has a unique, strong solution X and that the
range of X does not depend on θ . Assume furthermore that there exists a unique
invariant distribution µθ = µ(x;θ)dx such that a solution to (I.1) with X0� µθ (in-
stead of X0 = x0) is strictly stationary. Sufficient conditions for these assumptions
to hold can be found in Karatzas & Shreve (1991).

The invariant density is given by

µ(x;θ) = �C(θ)s(x;θ)σ2(x)��1
(I.2)

where C(θ) is a normalizing constant and s(�;θ) is the density of the scale measure,
i.e. logs(x;θ) =�2

R x b(y;θ)=σ2(y)dy:
For all θ 2 Θ, the distribution of X is denoted Pθ if X0 = x0 (as in (I.1)) and Pµ

θ
if X0� µθ .1 Under Pµ

θ all Xt � µθ . Eµ
θ is the expectation wrt. Pµ

θ .

The objective is to estimate θ from observations of X at discrete time-points
t1 < � � �< tn. Define t0 = 0 and ∆i = ti� ti�1 and let θ0 be the true parameter.

Finally, we need some matrix notation: Vectors in Rp are considered as p�1
matrices, and AT is the transpose of A. For a function f = ( f1; : : : ; fq)T : R�Θ !Rq we let f 0(x;θ) be the q�1 matrix of partial derivatives with respect to x and
ḟ (x;θ) = Dθ f (x;θ) be the q� p matrix of partial derivatives with respect to θ , i.e.

ḟ jk = ∂ f j=∂θk.

I.3 The estimating function

In this section we derive a simple, unbiased estimating function as an approxima-
tion of the continuous-time score function.

First a comment on the model: It is important that σ does not depend on θ .
Otherwise the distributions of (Xs)0�s�t corresponding to two different parameter
values are typically singular for all t � 0. If Y is the solution to dYt = b(Yt ;θ)dt +
σ̃(Yt ;θ)dWt , then the process (R Yt 1=σ̃(y;θ)dy)t�0 is the solution to (I.1) with σ � 1,
but this is of no help for estimation purposes since the transformation depends on
the (unknown) parameter.

1Note the difference in notation from Chapter 2 and Paper II where Pθ is the distribution of X
when X0 is started according to the stationary distribution (and where we have no notation for the
distribution of X given a particular value of X0).

(I.3)
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When σ is completely known as we have assumed, it follows from Lipster
& Shiryayev (1977) that the likelihood function for a continuous observation(Xs)0�s�t exists and that the corresponding score process Sc is given by

Sc
t (θ) = Z t

0

ḃ(Xs;θ)
σ2(Xs) dXs�Z t

0

b(Xs;θ)ḃ(Xs;θ)
σ2(Xs) ds:

Using (I.1) we find that

dSc
t (θ) = ḃ(Xt;θ)

σ(Xt) dWt : (I.3)

This shows that Sc(θ) is a local martingale and that it is a genuine martingale if
Eµ

θ
R t

0(ḃ j(Xs;θ)=σ(Xs))2ds < ∞ for all t � 0 and all j = 1; : : : ; p, i.e. if

Eµ
θ

�
ḃ j(X0;θ)

σ(X0) �2 = Z � ḃ j(x;θ)
σ(x) �2

µ(x;θ)dx < ∞ (I.4)

for all j = 1; : : : ; p. In particular, Eµ
θ Sc

t = 0 for all t � 0 if (I.4) holds.

If X was observed continuously on the interval [0; tn℄ we would estimate θ by
solving the equation Sc

tn(θ) = 0. For discrete observations at time-points t1; : : : ; tn,
the idea is to use an approximation of Sc

tn as estimating function.
The most obvious approximation is obtained by simply replacing the integrals

in (I.3) with the corresponding Riemann and Itô sums,

Rn(θ) = n

∑
i=1

ḃ(Xti�1
;θ)

σ2(Xti�1
) �Xti

�Xti�1

�� n

∑
i=1

∆i

b(Xti�1
;θ)ḃ(Xti�1

;θ)
σ2(Xti�1

) : (I.5)

Note that this would be the score function if the conditional distributions of the
increments Xti

�Xti�1
, given the past, were Gaussian with expectation ∆ib(Xti�1

;θ)
and variance ∆iσ

2(Xti�1
). However, usually Eµ

θ Rn(θ) 6= 0, and Rn provides inconsis-

tent estimators unless supi=1;::: ;n ∆i ! 0 (Florens-Zmirou 1989).
We now propose an unbiased approximation of Sc

tn. Let Aθ denote the differ-
ential operator associated with the infinitesimal generator for X , that is,Aθ f (x;θ) = b(x;θ) f 0(x;θ)+ 1

2
σ2(x) f 00(x;θ)

for functions f : R�Θ ! Rp that are twice continuously differentiable wrt. x.
Recall that µ is the invariant density and assume that the derivatives

h? = Dθ logµ : R�Θ ! Rp

wrt. the coordinates of θ exist and are twice continuously differentiable wrt. x,
such that Aθ h? is well-defined. The connection between h? and Sc is given in the
following proposition:

(I.4)



I.3. The estimating function 59

Proposition I.1 With respect to Pθ and Pµ
θ , it holds for all t � 0 that

2Sc
t (θ) = h?(Xt;θ)�h?(X0;θ)�Z t

0
Aθ h?(Xs;θ)ds: (I.6)

Proof We show that

dh?(Xt;θ) =Aθ h?(Xt ;θ)dt +2dSc
t (θ): (I.7)

Then (I.6) follows immediately since Sc
0 = 0. Using (I.2) we easily find the first

derivative of h? = Dθ logµ in terms of b and σ ;

h?0(x;θ) = DxDθ logµ(x;θ) =�Dθ Dx logs(x;θ) = 2
ḃ(x;θ)
σ2(x) : (I.8)

Now simply apply Itô’s formula on h?. �
The proposition suggests that we use

Fn(θ) = 1
2

n

∑
i=1

∆iAθ h?(Xti�1
;θ)

as an approximation to �Sc
tn (since the term h?(Xtn;θ)�h?(X0;θ) is negligible when

n is large) and hence solve the equation Fn(θ) = 0 in order to find an estimator for
θ .

The right hand side of (I.6), with an arbitrary function h 2 C 2(I) substituted
for h?, is a martingale if Eµ

θ (h0σ)2 < ∞. Hence,

Eµ
θ Aθ h(X0;θ) = 0 (I.9)

if furthermore h andAθ h are in L1(µθ ). In particular Fn is unbiased, i.e. Eµ
θ Fn(θ) =

0, if (I.4) holds and if h? and Aθ h? are in L1(µθ ).
The moment condition (I.9) was used by Hansen & Scheinkman (1995) to con-

struct general method of moments estimators (their condition C1) and by Kessler
(2000) and Jacobsen (1998) to construct unbiased estimating functions. Kessler
particularly suggests choosing polynomials h of low degree — regardless of the
model. Instead, we suggest the model-dependent choice h = h?. Intuitively, this
should be good for small ∆i’s since Fn � �Sc

tn. Indeed, for ∆i � ∆, Fn is small ∆-
optimal in the sense of Jacobsen (1998).

It should be clear, though, that moment conditions like (I.9) cannot achieve
asymptotically efficient estimators for a given ∆> 0 since each term in the discrete-
time score function involves pairs of observations. Note that if the observations
were independent and identically µθ -distributed, then the score function would
equal ∑n

i=1 h?(Xti
;θ) which is thus optimal for ∆!∞. Kessler (2000) discussed this

estimating function.
When ∆i � ∆, Fn is a simple estimating function, i.e. a function of the form

∑n
i=1 f (Xti�1

;θ) where Eµ
θ f (X0;θ) = 0 (Kessler 2000). In general, the ∆i’s can be

(I.5)
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interpreted as weights compensating for the dependence between observations
that are close in time: an observation is given much weight if it is far in time from
the previous one, and little weight if it is close in time to the previous one.

Note that (I.9) holds so that Fn is unbiased even if σ depends on θ . However,
the interpretation of Fn as an approximation of minus the continuous-time score
function is of course no longer valid, and the method will be non-optimal even for
small ∆i’s (Jacobsen 1998).

A nice property of Fn is that it is invariant to transformations of data; the
estimator does not change if we observe ϕ(Xt1

); : : : ;ϕ(Xtn) instead of Xt1
; : : : ;Xtn.

This is not the case for the polynomial martingale estimating functions discussed
by Bibby & Sørensen (1995).

To prove the invariance, we need some further notation: For a diffusion process
Y satisfying a stochastic differential equation similar to (I.1), we write µY and AY
for the corresponding invariant density and the differential operator, and define
h?

Y = Dθ logµY .

Proposition I.2 Let ϕ : I ! J � R be a bijection from C 2(I) with inverse ϕ�1, and

let Y = ϕ(X). Then AY h?
Y (y;θ) =AX h?

X

�
ϕ�1(y);θ�: (I.10)

Proof By Itô’s formula Y is the solution to

dYt = bY (Yt ;θ)dt +σY (Yt)dWt

where, with obvious notation,

bY (y;θ) = bX

�
ϕ�1(y);θ�ϕ 0�ϕ�1(y)�+ 1

2

�
σ2

X ϕ 00��ϕ�1(y)�;
σY (y) = �σX ϕ 0��ϕ�1(y)�:

One can now either check directly from (I.11) below that (I.10) holds or argue
as follows. The density for the invariant distribution of Y = ϕ(X) is given by

µY (y;θ) = µX

�
ϕ�1(y);θ����ϕ�1

�0 (y)�� and thus

h?
Y (y;θ) = Dθ logµY (y;θ) = Dθ logµX

�
ϕ�1(y);θ�= h?

X

�
ϕ�1(y);θ�:

Finally, note that AY ( f Æϕ�1)(y) =AX f
�
ϕ�1(y)� for all f 2 C 2(I) which concludes

the proof. �
In the following we write f ? for (Aθ h?)=2 = (Aθ Dθ logµ)=2. It is important

to note that we can express f ? — and thus Fn = ∑n
i=1∆i f ?(Xti�1

; �) — explicitly

in terms of b and σ , even if we have no explicit expression for the normalizing
constant C(θ): from (I.8) we get

f ? =Aθ h?=2= � bḃ
σ2 + 1

2
ḃ0� ḃσ 0

σ

�: (I.11)

(I.6)
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I.4 Asymptotic properties

In this section we state the asymptotic results for Fn. We consider equidistant
observations, ti = i∆ where ∆ does not depend on n, and let n!∞.

Under suitable regularity conditions, a solution θ̂n to Fn(θ)= 0 exists with a Pθ0
-

probability tending to 1, and θ̂n is a consistent, asymptotically normal estimator
for θ . The asymptotic distribution of θ̂n is given byp

n
�
θ̃n�θ0

� D! N
�

0;A(θ0)�1V (θ0)�A(θ0)�1�T
�

wrt. Pθ0
as n! ∞, where A(θ0) = Eµ

θ0
ḟ ?(X0;θ0) and

V (θ0) = Eµ
θ0

f ?(X0;θ0) f ?(X0;θ0)T +2
∞

∑
k=1

Eµ
θ0

f ?(X0;θ0) f ?(Xk∆;θ0)T :
Conditions that ensure convergence of the sum in are given by Kessler (2000). If
(I.9) holds for each ∂h?

j=∂θk, then

A(θ0) = 2Eµ
θ0

�
ḃ(X0;θ0)

σ(X0) �T� ḃ(X0;θ0)
σ(X0) �;

and A(θ0) is symmetric and positive semidefinite. It must be positive definite. We
will not go through the additional regularity conditions here but refer to Kessler
(2000) and particularly to Sørensen (1998b).

I.5 Examples

As already mentioned Fn can always be expressed explicitly in terms of b and σ .
When b is linear wrt. the parameter we even get explicit estimators. Assume that
b(x;θ) = b0(x)+∑p

j=1
b j(x)θ j for known functions b0;b1; : : : ;bp : R ! R such that

the assumptions of Sections I.2 and I.3 hold. From (I.11) we easily deduce that
the k’th coordinate of f ? is given by

f ?k (x;θ) = p

∑
j=1

bk(x)b j(x)
σ2(x) θ j + b0(x)bk(x)

σ2(x) + 1
2

b0k(x)� bk(x)σ 0(x)
σ(x) :

It follows that Fn is linear in θ and it is easy to show that the estimating equation
has a unique, explicit solution if and only if b1; : : : ;bp are linearly independent.

The Ornstein-Uhlenbeck model and the Cox-Ingersoll-Ross model are special
cases of this setup. Several authors have studied inference for these models,
see Bibby & Sørensen (1995), Gourieroux et al. (1993), Kessler (2000), Jacob-
sen (1998), Overbeck & Rydén (1997), and Pedersen (1995b), for example. From
now on, we consider equidistant observations, ∆i � ∆.

(I.7)
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Example (The Ornstein-Uhlenbeck process) Let X be the solution to

dXt = θXt dt +dWt ; X0 = x0;
where θ < 0. The estimator is given by θ̂n = �n=(2∑n

i=1 X2(i�1)∆). Since h? is an

eigenfunction for Aθ , the simple estimating functions corresponding to f = h? and
f = f ? are proportional (and hence provide the same estimator). Kessler (2000)
showed that, for all ∆, θ̂n has the least asymptotic variance among estimators
obtained from simple estimating equations. This also follows from results in Ja-
cobsen (1998). �
Example (The Cox-Ingersoll-Ross process) Consider the solution X to

dXt = (α +βXt) dt +pXt dWt ; X0 = x0

where β < 0 and α � 1=2. The estimating function Fn is given by

Fn(α;β ) = �
α� 1

2

�
∑n

i=11=X(i�1)∆ +nβ

β ∑n
i=1 X(i�1)∆ +nα

! :
To see how the estimator performs we have compared it to three other estimators
in a simulation study. We have simulated 500 processes on the interval [0;500℄ by
the Euler scheme with time-step 1/1000. The number of observations is n = 500
and ∆ = 1. For each simulation we have calculated four estimators: those obtained
from Fn, Rn given by (I.5), Hn = ∑n

i=1h?(Xti�1
; �), and the martingale estimating

function suggested by Bibby & Sørensen (1995).
The estimating function Hn is given by

Hn(θ) = 2

 
∑n

i=1 logX(i�1)∆�nΨ(2α)+n log(�2β )
∑n

i=1X(i�1)∆ +nα=β

!
where Ψ is the Digamma function, Ψ = ∂ logΓ=∂x. Note that the second coordi-
nates of Fn and Hn are equivalent and that Hn(θ) = 0 cannot be solved explicitly.

The empirical means and standard errors of the four estimators are listed in
Table I.1. The true parameter values are α0 = 10 and β0 =�1.

The estimator from Rn is biased (as we knew). Fn and Hn seem to be almost
equally good and are both better than the martingale estimating function. �

Finally, we consider an example where the parameter of interest enters as an
exponent in the drift function.

Example (A generalized Cox-Ingersoll-Ross model) Let X be the solution to

dXt = �α +βXθ
t

�
dt +pXt dWt

(I.8)
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Estimating function
α̂n β̂n

mean s.e. mean s.e.
Fn 10.1271 0.7218 -1.0126 0.0737
Hn 10.1543 0.7151 -1.0154 0.0729
Rn 6.3691 0.4279 -0.6368 0.0430

Martingale 10.2000 1.1900 -1.0200 0.1200

Table I.1: Empirical means and standard errors for 500 realizations of var-
ious estimators for (α;β ) in the Cox-Ingersoll-Ross model. The number of
observations is n = 500and ∆ = 1. The true value is

�
α0;β0

�= (10;�1).
where α � 1

2 and β < 0 are known and θ > 0 is the unknown parameter. Note that
X is a Cox-Ingersoll-Ross process if θ = 1; for θ 6= 1 the mean reverting force is
stronger or weaker.

From (I.11) it follows that f ? = (Aθ h?)=2 is given by

f ?(x;θ) = βxθ�1 logx
�

α +βxθ + θ
2
� 1

2

�+ 1
2

βxθ�1:
The estimating equation must be solved numerically. For comparison we have also
considered the simple estimating function corresponding to

f̃ (x;θ) = x�Eµ
θ X0 = x� Γ

�(2α +1)=θ
�

Γ
�
2α=θ

� �� θ
2β

�1=θ
(I.12)

As above, we have simulated 500 processes by means of the Euler scheme;
n = 500and ∆ = 1. The true value of θ is θ0 = 1:5 and α = 2, β = �1. The means
(standard errors) of the estimators are 1.5028 (0.0508) when using Fn and 1.5001
(0.0590) when using ∑ f̃ (X(i�1)∆; �).

Both estimators are very precise. The estimator obtained from (I.12) is closer
to the true value but has larger standard error than the estimator obtained from
Fn. �
I.6 Multi-dimensional processes

So far, we have only studied one-dimensional diffusion processes. In this section
we discuss to what extend the ideas carry over to the multi-dimensional case.

We consider a d-dimensional stochastic differential equation

dXt = b(Xt;θ)dt +σ(Xt)dWt ; X0 = x0: (I.13)

The parameter θ is still p-dimensional, θ 2 Θ � Rp , but X and W are now d-
dimensional. The functions b : Rd �Θ! Rd and σ : Rd ! Rd�d are known, σ(x) is
regular for all x 2 Rd , and x0 2 Rd .

(I.9)
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Let ḃ be the d� p matrix of derivatives; ḃi j = ∂bi=∂θ j, and let Dig = ∂g=∂xi and

D2
i jg = ∂g2=∂xi∂x j for functions g : Rd �Θ ! R with g(�;θ) in C 2(Rd ). With this

notation, the analogue of Aθ is given byAθ g(x;θ) = d

∑
i=1

bi(x;θ)Dig(x;θ)+ 1
2

d

∑
i; j=1

�
σ(x)σ T (x)�i j D2

i jg(x;θ)
and the score process is given by

Sc
t (θ) = Z t

0
ḃT (Xs;θ)Σ(Xs)dXs�Z t

0
ḃT (Xs;θ)Σ(Xs)b(Xs;θ)ds;

where Σ(x) = �σ(x)σ T (x)��1
, see Lipster & Shiryayev (1977). Using (I.13) we find

dSc
t (θ) = ḃT (Xt;θ)(σ�1)T (Xt)dWt :
Now, similarly to (I.7) we look for functions h?

1; : : : ;h?
p : Rd �Θ ! R such that

for each k, dh?
k(Xt ;θ) = Aθ h?

k(Xt;θ)dt +2dSc
k;t(θ): Arguing as above, this leads to

the equations

Dih
?
k(x;θ) = 2

h
ḃT (x;θ)Σ(x)i

ki
= 2

d

∑
r=1

ḃrk(x;θ)Σir(x); i = 1; : : : ;d (I.14)

and thus Aθ h?
k = 2

d

∑
i;r=1

ḃrkΣirbi + d

∑
j=1

∂ ḃ jk

∂x j
+ d

∑
i; j;r=1

�
σσ T�

i j ḃrk

∂Σir

∂x j
(I.15)

The equations (I.14) may, however, not any have solutions; differentiation wrt.
x j yields

D2
i jh

?
k = 2

d

∑
r=1

 
∂ 2br

∂θk∂x j
Σir + ∂br

∂θk

∂Σir

∂x j

! ;
but the right hand side is not necessarily symmetric wrt. i and j, see the example
below.

If there are solutions, then (I.15) has expectation zero and the simple estimat-

ing function with f = �Aθ h?
1; : : : ;Aθ h?

p

�T
may be used. Otherwise, the right hand

side of (I.15) is typically biased.

Example (Homogeneous Gaussian diffusions) Let B be a 2� 2 matrix with eigen-
values with strictly negative parts and let A be an arbitrary 2�1 matrix. Consider
the stochastic differential equation

dXt = (A+BXt) dt +σdWt ; X0 = x0

where σ > 0 is known, W is a two-dimensional Brownian motion, and x0 2 R2.

(I.10)
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Solutions to all the equations (I.14) exist if and only if B is symmetric. Let
α1;α2;β11;β22;β12 denote the entries of A and B and let S1 = ∑X1;(i�1)∆, S2 =
∑X2;(i�1)∆, S11 = ∑X2

1;(i�1)∆, S22 = ∑X2
2;(i�1)∆, and S12 = ∑X1;(i�1)∆X2;(i�1)∆; all sums

are from 1 to n. Then the estimating equation is given by

1
σ2

0BBBB� n 0 S1 0 S2
0 n 0 S2 S1
S1 0 S11 0 S12
0 S2 0 S22 S12
S2 S1 S12 S12 S11+S22

1CCCCA0BBBB� α1
α2
β11
β22
β12

1CCCCA=0BBBB� 0
0�n=2�n=2
0

1CCCCA :
We have simulated 500 processes (by exact simulation), each of a length of

500 with ∆ = 1 and σ =p2. The true matrices are

A0 = � 4
1

�
and B0 = � �2 1

1 �3

� :
The means and the standard errors (to the right) are

Ân = � 4:0349
1:0035

�
0:2904
0:2891

and

B̂n = � �2:0155 1:0078
1:0078 �3:0247

�
0:1248 0:1177
0:1177 0:1978

The estimators are satisfactory. �
Acknowledgements I am grateful to my supervisor Martin Jacobsen for valuable
discussions and suggestions, and to Jens Lund, Martin Richter and the referees for
comments on earlier versions of the manuscript.
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Abstract

We study estimation of diffusion parameters for one-dimensional, ergodic diffu-
sion processes that are discretely observed. We discuss a method based on a
functional relationship between the drift function, the diffusion function and the
invariant density and use empirical process theory to show that the estimator isp

n-consistent and in certain cases weakly convergent. We try out the method
on the so-called CKLS model and compare it with other methods in a simulation
study.
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II.1 Introduction

This paper is about parametric estimation of the diffusion function for a discretely
observed diffusion process. The likelihood function is only known analytically in
very few cases so it is usually not possible to do maximum likelihood estimation.
The method discussed in this paper is inspired by a non-parametric estimation
procedure suggested by Aït-Sahalia (1996) which we shall describe shortly.

Let b be the drift function, σ the diffusion function, and µ the invariant density
for a one-dimensional diffusion process with state space (l;r). Then, in many
cases, there is the connection 2bµ = (σ2µ)0, i.e.

b(x) = 1
2

��
σ2�0(x)+σ2(x)µ 0(x)

µ(x) �; x 2 (l;r) (II.1)

between b, σ and µ, a prime denoting differentiation with respect to the state
variable. This relationship has been used for non-parametric estimation by several
authors. For σ known Banon (1978) defines an estimator of b(x) for all x in (l;r)
(pointwise) by plugging in kernel estimates of µ(x) and µ 0(x). For σ unknown but
constant (so that (σ2)0 = 0) an estimate of σ is plugged in as well. For general
unknown functions σ Jiang & Knight (1997) use local time based estimators of σ2

and (σ2)0, see also Florens-Zmirou (1993).
Aït-Sahalia (1996) uses a related but almost opposite estimation strategy in

that he first estimates the drift and next the diffusion function. He assumes that
σ2(x)µ(x)! 0 as x! l and uses the integrated version

σ2(x)µ(x) = 2
Z x

l
b(u)µ(u)du; x 2 (l;r) (II.2)

of (II.1). He considers linear drift only and uses conditional least squares for
estimation of the drift parameters. For each x an estimator of σ2(x) is defined by
dividing a kernel estimator of the integral in (II.2) by a kernel estimator of µ(x).

This procedure yields a non-parametric estimator of σ2. The method seems to
work well for a large sample size (Aït-Sahalia uses the method on a dataset with
5505 observations). For moderate sample sizes, however, the kernel estimators
and hence the diffusion estimator will be rather variable. Also, if a non-parametric
analysis indicates a certain form of σ2 (e.g. that of a power function), then it is
natural to specify the diffusion parametrically and estimate the parameters. For
parametric specifications it is also possible to verify for which parameter values
the relation (II.2) actually holds.

In this paper the relationship (II.2) is utilized for parametric estimation of the
diffusion function. The idea is the following. Let f = σ2µ. As we shall see, it is
easy for each x to define a consistent estimator f̂ (x) of f (x;θ). We also have an
analytical expression for f (x;θ), and we estimate θ such that the “true” function
f (�;θ) is close to the estimated version f̂ in the sense that the uniform distance
supx2(l;r)�� f (x;θ)� f̂ (x)�� is minimal. In order for a simple estimator f̂ (x) to exist it

is crucial that f converges to zero at at least one of the endpoints, l and r, of the

(II.2)
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state space. We distinguish between three cases: f converges to zero (i) at l only;
(ii) at r only; (iii) at both l and r. We use different pointwise consistent estimators
of f in case (i) and (ii) and a suitable average of the two in case (iii).

The corresponding estimators are consistent under weak regularity conditions
and

p
n-consistent under somewhat stronger conditions. In case (iii) the estimator

is weakly convergent. The asymptotic results are proved by means of empirical
process theory.

We use the Ornstein-Uhlenbeck process and the so-called CKLS model (Chan,
Karolyi, Longstaff & Sanders 1992) for illustration. For the CKLS model given
by dXt = (α + βXt)dt +σX γ

t dWt , we compare the method with other estimation
methods (generalized method of moments, IID estimation, and simple, explicit
estimating equations) in a simulation study. The method seems to work well.

The paper is organized as follows. The model and the basic assumptions are
presented in Section II.2. We discuss the estimation approach in Section II.3 and
prove asymptotic properties in Sections II.4 and II.5. While in Sections II.3– II.5
it is assumed that the drift function is completely known, in Section II.6 we dis-
cuss what to do if the drift must be estimated as well. In Section II.7 we study
the Ornstein-Uhlenbeck process and the CKLS model. Conclusions are drawn in
Section II.8. In Appendix II.A we give a brief review of the theory of empirical
processes which we use to show asymptotic properties for our estimator. Finally,
Appendix II.B gives a proof that the Ornstein-Uhlenbeck process is β -mixing at an
exponential rate.

II.2 Model and notation

In this section we define the diffusion model and list basic assumptions that ensure
nice properties of the model. For details on diffusion processes see Karatzas &
Shreve (1991), for example.

We consider the one-dimensional, time-homogeneous stochastic differential
equation

dXt = b(Xt)dt +σ(Xt ;θ)dWt (II.3)

where θ is an unknown p-dimensional parameter from the parameter space Θ �Rp , W is a one-dimensional Brownian motion and b : R ! R and σ : R�Θ ! R are
known continuous functions.

The objective is estimation of θ from observations X∆; : : : ;Xn∆ at discrete, equi-
distant time-points. Let θ0 be the true parameter. Note that the drift function, b,
does not depend on the parameter. We will relax this unrealistic condition later
and instead assume that the drift parameters can be estimated without informa-
tion on the diffusion parameters, see Section II.6.

We assume that a unique, strong solution to (II.3) exists for all θ 2 Θ and all
initial distributions of X0, that the state space, denoted by I, is the same for all
θ 2 Θ and that I is open. Since X is continuous, I is an interval, and we write
I = (l;r) where �∞� l < r �+∞.

(II.3)
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We furthermore make assumptions ensuring stationarity of the process: as-
sume that σ(x;θ)> 0 for all (x;θ) 2 I�Θ and define

s(x;θ) = exp

��2
Z x

x0

b(y)
σ2(y;θ) dy

� ; (x;θ) 2 I�Θ (II.4)

where x0 2 I is arbitrary but fixed. For each θ 2 Θ the function x! R x
x0

s(y;θ)dy is

called a scale function.

Assumption II.1 The diffusion function is positive, i.e. σ(x;θ)> 0 for all (x;θ) 2
I�Θ, and for all θ 2Θ the function s(�;θ) satisfies

1.
R r

x0
s(x;θ)dx = R x0

l
s(x;θ)dx =+∞;

2.
R r

l

�
s(x;θ)σ2(x;θ)��1

dx < ∞. �
With these assumptions, X is recurrent (hits any level in I almost surely), does not
hit l and r, and has a unique invariant distribution µθ (dx) = µ(x;θ)dx where

µ(x;θ) = K0(θ)�s(x;θ)σ2(x)��1: (II.5)

The normalizing constant K0(θ) is the inverse of the integral in Assumption II.1.2
and depends on the choice of x0.

We let Pθ denote the distribution of X when X0 � µθ and Eθ the expecta-
tion with respect to Pθ . Under Pθ all Xt � µθ and the ergodic theorem holds,

i.e. 1
n ∑n

i=1g(Xi∆)! Eθ g(X0) Pθ -almost surely as n ! ∞ for all g 2 L1(µθ ). In the
following we shall use the ergodic theorem on the drift function b so we assume
that it is µθ -integrable:

Assumption II.2 The drift function b is in L1(µθ ) for all θ 2 Θ, i.e.
R jbjdµθ < ∞

for all θ 2 Θ. �
The estimation method described in this paper is based on the function f =

σ2µ : I�Θ! (0;∞). For θ fixed we will often write fθ for the function f (�;θ) : I !R. By (II.5) and (II.4)

fθ (x) = f (x;θ) = K0(θ)
s(x;θ) = K0(θ)exp

�
2
Z x

x0

b(u)
σ2(u;θ) du

� :
Differentiation of f with respect to x yields

∂ f
∂x

= 2 f
b

σ2 = 2σ2µ
b

σ2 = 2bµ (II.6)

and f (x0;θ) = K0(θ) so f (x;θ) = K0(θ)+2
R x

x0
b(u)µ(u;θ)du for x 2 I and θ 2 Θ. In

particular, for θ fixed the function fθ is bounded by K0(θ)+2Eθ jb(X0)j; the limits

(II.4)
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fθ (l) = f (l;θ) = limx&l f (x;θ) and fθ (r) = f (r;θ) = limx%n f (x;θ) are well-defined

and finite; and

f (x;θ) = f (l;θ)+2
Z x

l
b(u)µ(u;θ)du; x 2 I (II.7)

f (x;θ) = f (r;θ)�2
Z r

x
b(u)µ(u;θ)du; x 2 I: (II.8)

The limits f (l;θ) and f (r;θ) are non-negative for all θ 2Θ. For the estimation
method below to work at least one of the limits must be zero for all θ 2 Θ. Infor-
mally, since f = σ2µ, the assumption is that σ2 does not grow too fast at (at least
one of) the limits. More precisely we must check that

R r
x0

b(x)=σ2(x;θ)dx =�∞ for

all θ 2Θ and/or
R x0

l
b(x)=σ2(x;θ)dx =+∞ for all θ 2Θ: In both cases fθ is bounded

by 2Eθ jb(X0)j.
Some comments: (i) If l >�∞ (r <+∞) then automatically f (l;θ)= 0 ( f (r;θ)=

0) because of Assumption II.1.2. In particular f (l;θ) = 0 for all models with state
space (0;∞). (ii) If I = (�∞;∞) and b � 0 so X is on natural scale, then fθ is
constant and the above integral assumption is not satisfied. (iii) It follows from
(II.7) and (II.8) that f (r;θ)� f (l;θ) = 2Eθ b(X0). In particular Eθ b(X0) = 0 if both
f (l;θ) = f (r;θ) = 0. (iv) f (l;θ) = f (r;θ) = 0 holds e.g. for the Ornstein-Uhlenbeck
process, the Cox-Ingersoll-Ross model and for the CKLS model if the exponent in
the diffusion function is between 1/2 and 1, see Section II.7.2 for details. (v) If
f (l;θ) = 0 then (II.7) is identical to (II.2).

Finally a remark concerning identification: for two parameter values θ and θ 0
the functions fθ and fθ 0 are identical if and only if σ(�;θ) and σ(�;θ 0) are identical
(even if neither f (l;θ) or f (r;θ) is zero for all θ 2 Θ). Indeed, if fθ = fθ 0, then

µ(�;θ) = µ(�;θ 0) according to (II.6) and hence σ(�;θ) = σ(�;θ 0) since f = σ2µ. If
f (l;θ) or f (r;θ) is zero for all θ 2 Θ, then fθ = fθ 0 if and only if µθ = µθ 0 holds
as well (use (II.7) or (II.8)). We will of course not allow parametrizations where
σ(�;θ) = σ(�;θ 0) is possible for θ 6= θ 0.
II.3 Estimation

In this section we discuss how to define pointwise consistent estimators of fθ =
f (�;θ) and how to use them for estimation of θ .

The basic idea

If f (l;θ) = 0 we see from (II.7) that

f (x;θ) = 2
Z x

l
b(u)µ(u;θ)du = 2Eθ

�
b(X0)1fX0�xg�; x 2 I; θ 2 Θ:

From the right hand side and Assumption II.2 it follows that

f̂1;n(x) = 2
n

n

∑
i=1

�
b(Xi∆)1fXi∆�xg� (II.9)

(II.5)
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is an unbiased and consistent estimator of f (x;θ) with respect to Pθ for all x 2 I:
Eθ f̂1;n(x) = f (x;θ) and f̂1;n(x)! f (x;θ) almost surely as n ! ∞. Also, note that

f̂1;n(x) = 0= f (l;θ) for x < minfXi∆ : i = 1; : : : ;ng so we write f̂1;n(l) = 0.

Similarly, if f (r;θ) = 0 then

f̂2;n(x) =�2
n

n

∑
i=1

�
b(Xi∆)1fXi∆>xg� (II.10)

is unbiased and consistent for f (x;θ) under Pθ for all x 2 I. We write f̂2;n(r) = 0

since f̂2;n(x) = 0 for x�maxfXi∆ : i = 1; : : : ;ng
The functions f̂1;n and f̂2;n are piecewise constant with jumps at each data

point Xk∆; the jump size is 2b(Xk∆)=n. In particular f̂1;n and f̂2;n are increasing

(decreasing) if fθ is increasing (decreasing) at Xk∆, cf. (II.6). Note that f̂1;n(x)�
f̂2;n(x) = 2

n ∑n
i=1 b(Xi∆) so the deviation between f̂1;n(x) and f̂2;n(x) is the same for

all x 2 I.
As indicated, the idea is to estimate θ by the value that makes the function fθ

close to its estimator, f̂1;n or f̂2;n. More precisely we define the uniform distances

Ui;n(θ) = sup
x2I

��� f̂i;n(x)� fθ (x)���; i = 1;2
and suggest minimizing U1;n if f (l;θ) = 0 and U2;n if f (r;θ) = 0. Note that Ui;n(θ)
is finite since Ui;n(θ)� 2

n ∑n
j=1 jb(X j∆)j+2Eθ jb(X0)j. One could use other measures

of distance between f̂i;n and fθ . This and some computational aspects will be
discussed in the end of the section.

Meanwhile, what if both f (l;θ) and f (r;θ) are zero? Then (II.9) and (II.10)
are both unbiased, consistent estimators of f (x;θ) and it makes sense to minimize
U1;n as well as U2;n. Recall that Eθ b(X0) = 0 so 2

n ∑b(Xi∆) becomes close to zero as

n grows and f̂1;n and f̂2;n — and hence U1;n and U2;n — are close. For a moderate

size of n, like 500, it might however make a difference whether we use f̂1;n or f̂2;n.

Note in particular that either f̂1;n or f̂2;n becomes negative (close to r or l) whereas

f is positive on (l;r).
Instead of using either f̂1;n or f̂2;n we suggest using a convex combination of the

two. Define for λ (x) = �λ1(x);λ2(x)� with λ1(x)+λ2(x) = 1 the estimator f̂λ ;n(x) by

f̂λ ;n(x) = λ1(x) f̂1;n(x)+λ2(x) f̂2;n(x)= f̂1;n(x)� 2
n

λ2(x) n

∑
i=1

b(Xi∆): (II.11)

With this notation f̂λ ;n = f̂1;n for λ � (1;0) and f̂λ ;n = f̂2;n for λ � (0;1).
If λ (x) is deterministic, then f̂λ ;n(x) is unbiased for f (x;θ) and it makes sense

to choose λ (x) such that the variance of f̂λ ;n(x) is minimal. In general it is not

(II.6)
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possible to calculate the variance of f̂λ ;n(x) since it involves covariances between

functionals of Xi∆ and X j∆ for i 6= j which we typically do not know. It is easy,

however, to minimize an approximation to the variance: First, note that if X0� µθ ,
then Covθ

�
2b(X0)1fX0�xg;2b(X0)1fX0>xg�= f 2(x;θ). If the observations X∆; : : : ;Xn∆

were independent and identically µθ -distributed we would thus get

Varθ f̂λ ;n(x) = 1
n

�
λ 2

1 (x)Vθ ;1(x)+λ 2
2 (x)Vθ ;2(x)�2λ1(x)λ2(x) f 2(x;θ)�

where Vθ ;1(x) and Vθ ;2(x) are given by

Vθ ;1(x) = Varθ
�
2b(X0)1fX0�xg�= 4Eθ b2(X0)1fX0�xg� f 2(x;θ);

Vθ ;2(x) = Varθ
�
2b(X0)1fX0>xg�= 4Eθ b2(X0)1fX0>xg� f 2(x;θ):

Easy calculations show that the minimal variance is

1
n

�
4λθ ;1(x)λθ ;2(x)Eθ b2(X0)� f 2(x;θ)� (II.12)

which is obtained for

λθ ;1(x) = Vθ ;2(x)+ f 2(x;θ)
Vθ ;1(x)+Vθ ;2(x)+2 f 2(x;θ) = Eθ b2(X0)1fX0>xg

Eθ b2(X0) (II.13)

λθ ;2(x) = 1�λθ ;1(x) = Eθ b2(X0)1fX0�xg
Eθ b2(X0) : (II.14)

Of course, the observations are not independent so these weights are only approx-
imately optimal. Also, we do not know the expectations above, but we can use
their empirical counterparts and consider

λ̂1;n(x) = ∑n
i=1b2(Xi∆)1fXi>xg

∑n
i=1 b2(Xi∆) and λ̂2;n(x) = ∑n

i=1 b2(Xi∆)1fXi�xg
∑n

i=1 b2(Xi∆) :
The corresponding estimator f̂n(x) = f̂

λ̂n;n(x) is given by

2
n∑b2(Xi∆)��∑b2(Xi∆)1fXi∆>xg��∑b(X j∆)1fX j∆�xg���∑b(Xi∆)1fXi∆>xg��∑b2(X j∆)1fX j∆�xg��

(all sums are from 1 to n). Note that λ̂n and hence f̂n(x) are well-defined even if b
is not in L2(µθ ).

For x close to l we have λ̂1(x) close to 1 and hence f̂n(x) close to f̂1;n(x). Simi-

larly f̂n(x) is close to f̂2(x) when x is close to r. In particular, f̂n(x) = 0 for x outside

(II.7)



74 Paper II. Estimation of Diffusion Parameters

the range of the observations. Note that f̂n(x) is consistent for f (x;θ) but that it
can be biased although f̂1;n(x) and f̂2;n(x) are unbiased.

Like f̂1;n and f̂2;n, the estimator f̂n is piecewise constant with jumps at each
data point Xk∆. The jump size is

f̂n(Xk∆)� limx"Xk∆
f̂n(x) = 2

n
b(Xk∆)�1� ∑b(Xi∆)

∑b2(Xi∆)b(Xk∆)� (II.15)

cf. (II.11). Since X is ergodic and Eθ b(X0) = 0, the parenthesis in (II.15) will

typically be positive in which case f̂n increases (decreases) at Xk∆ if fθ is increasing
(decreasing) at Xk∆, cf. (II.6). In particular, if the parenthesis in (II.15) is positive
for all k = 1; : : : ;n and b is decreasing from some positive value (or limit) at l to
some negative value (or limit) at r, then f̂n is increasing as long as b is positive,
decreasing thereafter and strictly positive between the smallest and the largest
observation.

For estimation of θ the idea is of course to minimize the uniform distance

Un(θ) = sup
x2I

��� f̂n(x)� fθ (x)���: (II.16)

between f̂n and fθ . We let θ̂n denote the corresponding estimator.

Important comments

Below follows important remarks on the three estimators of fθ and the corre-
sponding U -distances.

First an illustration of the difference between the three estimators of fθ . Fig-

ure II.1 shows graphs of f̂1;n, f̂2;n and f̂n for 100 hypothetical data points. The data

are simulated from the model dXt = (0:04�0:6Xt)dt +0:2X γ
t dWt with true parame-

ter value γ0 = 0:75and ∆ = 1. The model is discussed in detail in Section II.7.2. For

this particular simulation ∑n
i=1 b(Xi∆)> 0 so the graph of f̂1;n lies over the graph of

f̂2;n. The graph of f̂n is in between; close to f̂1;n for small data values and close to

f̂2;n for large data values.

Second, note that neither f̂1;n, f̂2;n or f̂n would change if the order of observa-
tions was changed. In other words, the observations are treated as if they were
independent. This is of course unfortunate since they come from a diffusion model
with built-in dependence.

For “large” values of ∆ the dependence between observations is minor and we
would thus expect the method to perform better for “large” ∆ than for “small”
∆. Still, it turns out that the proposed estimators are consistent as n ! ∞ for any

fixed value of ∆ > 0 (Section II.4). Intuitively, this is because θ can be identified
through the invariant distribution only (recall that µθ = µθ 0 if and only if fθ = fθ 0
if and only if θ = θ 0). However, we do loose the information originating from the
dependence between the observations. In the more realistic case of a parameter
dependent (rather than known) drift function, we will use the joint distribution of

(II.8)
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Figure II.1: Graphs for the estimators f̂1;n, f̂2;n and f̂n for 100 simulated data

from the model dXt = (0:04�0:6Xt)dt +0:2X γ
t dWt with true value γ0 = 0:75.

The value of ∆ is 1.

two consecutive observations to estimate the drift parameters, see Section II.6 for
details.

Third, an important practical remark. Despite the definition of Un(θ) as a
supremum over the whole state space I, we can calculate Un(θ) from the values of
fθ and f̂n at data points and points where b is zero. To be specific, let X̃1� �� � � X̃n

be the observations ordered according to size and X̃0 = l. Then, because fθ is

continuous and has a derivative with same sign as b, and because f̂n is piecewise
constant, Un(θ) = max(N0;N1;N2) where

N1 = max
k=1;::: ;n�� f̂n(X̃k)� fθ (X̃k)��

N2 = max
k=1;::: ;n�� f̂n(X̃k�1)� fθ (X̃k)��

N0 = sup
x0:b(x0)=0

�� f̂n
�
X̃(x0)�� fθ (x0)��:

Here X̃(x0) = maxk=0;::: ;nfX̃k : X̃k � x0g is the largest observation smaller than x0 (or

l if all observations are larger than x0). For the most commonly used models b is
only zero at very few points. In particular, if b is decreasing from some positive
value (or limit) at l to some negative value (or limit) at r, then b is zero at a single
point x0 and N0 = �� f̂n(X̃(x0))� fθ (x0)��.

Of course similar formulas apply to U1;n(θ) (U2;n(θ)) as long as f (l;θ) = 0

( f (r;θ) = 0) for all θ 2 Θ; simply substitute f̂n by f̂1;n ( f̂2;n) and remember also to

(II.9)
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compare f̂1;n ( f̂2;n) with fθ at the endpoint r (l).

An alternative measure of distance

Finally, some comments on the nature of Un and an alternative measure of distance
between f̂n and fθ . It is easier to adjust fθ to f̂n in areas of I with many observa-
tions than in areas with few observations so the supremum in (II.16) will usually
be attained for very small or very large data points. Consequently, the function fθ̂n

corresponding to the estimator θ̂n need not fit well with f̂n for data points in the
central area of the distribution but has (by definition) the least possible maximum
distance.

The opposite effect is obtained if we define the distance between f̂n and fθ as
a weighted sum of squares,

Sw
n (θ) = n

∑
i=1

�
f (Xi∆;θ)� f̂n(Xi∆)�2

wi (II.17)

with a contribution from each observation. It is natural to choose the i’th weight,
wi, as the inverse of the variance of f̂n(Xi∆), or rather an estimate of it, e.g.

1
w i

= 4
n

�
λ̂1;n(Xi∆)λ̂2;n(Xi∆)1

n

n

∑
j=1

b2(X j∆)� 1
4

�
f̂n(Xi∆)�2

�
(II.18)

cf. formula (II.12). Note that the variance of f̂n(Xi∆) is small when Xi∆ is close
to l or r so small and large observations are given relatively large weights. In
particular the variance estimate of f̂n is zero for the largest observation since λ̂1;n
and f̂n are both zero. Hence, (II.18) does not make sense for this observation.
Instead we could give it same weight as the smallest observation, for example.

There are however only few observations near the endpoints and despite their
large weights their contributions are in general negligible compared to the contri-
butions from the many observations in the middle of the distribution (if the largest
observation is given the weight suggested above). In effect, if θ̃n is minimizing Sw

n ,
then fθ̃n

and f̂n fit almost perfect in areas with many observations but can differ

considerably for extreme values.
The difference between the two criteria Un and Sw

n is evident from Figure II.2
which shows fθ̂n

= f0:786 and fθ̃n
= f0:770 for the 100 simulated data points used

in Figure II.1: f̂n is closer to fθ̃n
than to fθ̂n

for average (and small) observations

whereas f̂n is closer to fθ̂n
than to fθ̃n

for large observations.

In conclusion, Un takes the tails of the distribution more into account than Sw
n .

This is advantageous since there is often much information about the (diffusion)
parameter contained in the tail behaviour. On the other hand, possible outliers
are too influential (but could be discarded by taking supremum over a subset of I
only). Note that Un by definition compares fθ and f̂n at all points in I whereas Sn

makes the comparison at the (random) data points only.

(II.10)
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Figure II.2: The graph for f̂n based on the data from Figure II.1 and graphs
for fθ for θ = θ̂n = 0:786 (minimizing Un) and θ = θ̃n = 0:770 (minimizing
Sw

n ).

In Section II.4 and II.5 we prove that θ̂n minimizing Un is consistent and con-
verges in distribution (when normed by

p
n). We have no such results for θ̃n, but

in the simulation study in Section II.7.2 we calculate both estimators and there
seems to be only little difference.

II.4 Consistency

In this section we prove that the estimators θ̂1;n, θ̂2;n and θ̂n obtained by minimizing
the supremum distances U1;n, U2;n and Un are consistent as n ! ∞ for any fixed
∆ > 0. It is implicitly assumed that the estimators exist (for n large enough).

Let U(θ) = supx2I

�� fθ (x)� fθ0
(x)�� denote the uniform distance between fθ and

fθ0
. Then U(θ) = 0 if and only if θ = θ0. We shall assume that θ0 is well-separated

as a minimum of U in following sense.

Assumption II.3 For all δ > 0 it holds that

C(δ ) = inffU(θ) : jjθ �θ0jj> δg> 0: �
The assumption is for example satisfied (i) if θ ! fθ (x) is increasing or decreas-

ing for all x 2 I which will often be the case (this makes sense for one-dimensional
parameters only); or (ii) if U is continuous and Θ is either open with U bounded

(II.11)
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away from zero at the boundary or compact. A sufficient condition for continuity
of U is that θ ! f (x;θ) is continuous, uniformly in x 2 I.

Theorem II.4 Assume that Assumptions II.1, II.2 and II.3 hold and that b changes

sign at most countably many times on I. If f (l;θ) = 0 ( f (r;θ) = 0) for all θ 2 Θ
then θ̂1;n (θ̂2;n) is consistent for θ , and if f (l;θ) = f (r;θ) = 0 for all θ 2 Θ then θ̂n is

consistent for θ as well.

Proof It follows from van der Vaart & Wellner (1996, Corollary 3.2.2) that it is
sufficient to show that the uniform distances converge in Pθ0

-probability (or almost

surely with respect to Pθ0
) to U(θ), uniformly in θ .

First assume that f (l;θ) = 0 for all θ 2 Θ. By the triangle inequality for the
uniform metric, it holds that jU1;n(θ)�U(θ)j �U1;n(θ0) for all θ 2 Θ so it suffices
to show

U1;n(θ0) = sup
x2I

��� f̂1;n(x)� fθ0
(x)���! 0 (II.19)

Pθ0
-almost surely. Note that pointwise convergence follows from the ergodic theo-

rem and Assumption II.2.
We can write I =[ j2JI j where J is at most countable, each I j has the form [z1;z2℄

for some z1;z22 I or (l;z℄ or [z;r) for some z2 I, and b is either non-positive or non-
negative on I j. To prove (II.19) it is enough to show that supx2I j

�� f̂1;n(x)� fθ0
(x)��!

0 for all j 2 J.
Consider a j 2 J and assume for example that I j = [z1;z2℄ and that b � 0 on I j.

Then fθ0
and f̂1;n are non-decreasing on I j since (II.6) holds and f̂1;n is piecewise

constant with jump size b(Xk∆) at Xk∆.
Since fθ0

is continuous it takes all values in [m;M℄ where m = fθ0
(z1) and M =

fθ0
(z2). For K 2 N given we choose z1 = x0 < :: : < xK�1 < xK = z2 such that fθ0

(xk) =
m+ k(M�m)=K for all k = 0; : : : ;K. Then, for k = 0; : : : ;K�1 and xk � x� xk+1,

f̂1;n(x)� fθ0
(x)� f̂1;n(xk+1)� fθ0

(xk)= f̂1;n(xk+1)� fθ0
(xk+1)+ fθ0

(xk+1)� fθ0
(xk)= f̂1;n(xk+1)� fθ0

(xk+1)+(M�m)=K

since f̂1;n and fθ0
are non-decreasing. Also

fθ0
(x)� f̂1;n(x)� fθ0

(xk+1)� f̂1;n(xk)� fθ0
(xk+1)� fθ0

(xk)+ fθ0
(xk)� f̂1;n(xk)= fθ0

(xk)� f̂1;n(xk)+(M�m)=K:
Hence,

sup
x2I j

��� f̂1;n(x)� fθ0
(x)���� max

k=1;::: ;K��� f̂1;n(xk)� fθ0
(xk)���+(M�m)=K:

(II.12)
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Now, choose Ã1; : : : ; ÃK such that Pθ0
(Ãk) = 1 and

�� f̂1;n(xk)� fθ0
(xk)��! 0 on Ak for

all k = 1; : : : ;K. Then maxk=1;::: ;K�� f̂1;n(xk)� fθ0
(xk)��! 0 on AK = Ã1\ �� � ÃK and

supx2I j

�� f̂1;n(x)� fθ0
(x)��! 0 on \∞

K=1AK, hence Pθ0
-almost surely.

Similar arguments apply if I j = (l;z℄ or I j = [x;r) and if b� 0 on I j. We have now
proved (II.19) and thus uniform convergence of U1;n(θ) to U(θ) and consistency

of θ̂1;n. Consistency of θ̂2;n follows similarly if f (r;θ) = 0 for all θ 2 Θ.

Finally assume that f (l;θ)= f (r;θ)= 0 for all θ 2Θ. Recall that f̂n(x)= f̂1;n(x)�
2
n λ̂2;n(x)∑n

i=1 b(Xi∆) and 0� λ̂2;n(x)� 1. By the triangle inequality for the supremum
metric, ��Un(θ)�U(θ)j � supx2I

�� f̂n(x)� fθ0
(x)��� supx2I

�� f̂1;n(x)� fθ0
(x)��+2

���1
n

n

∑
i=1

b(Xi∆)���
which converges uniformly in θ to zero Pθ0

-almost surely since Eθ0
b(X0) = 0. This

proves consistency of θ̂n. �
II.5 Further asymptotic results

In this section we show that θ̂1;n, θ̂2;n, and θ̂n are
p

n-consistent and furthermore

that
p

n(θ̂n� θ0) converges weakly as n ! ∞. For simplicity we only list the as-
sumptions for a one-dimensional parameter but the convergence result holds for
multi-dimensional parameters under similar conditions.

Consider first θ̂i;n, i = 1;2. Proposition II.6 below claims that

Mi;n(h) = sup
x2I

���n1=2� f̂i;n(x)� fθ0+h=pn(x)����
converges weakly, uniformly in h 2 H for any compact set H � R. Write Mi;n(h) =
supx2I

��M0
i;n(x)�M00

n (h;x)�� where

M0
i;n(x) = n1=2� f̂i;n(x)� fθ0

(x)�
M00

n (h;x) = n1=2� fθ0+h=pn(x)� fθ0
(x)�:

Note that the processes M00
i;n and Mi;n are well-defined for n large enough provided

that θ0 is an inner point of Θ.

Recall that j f̂i;n(x)j � 2
n ∑n

j=1 jb(X j∆)j for all x2 I and that j fθ (x)j � 2Eθ jb(X0)j for

all (x;θ) 2 I�Θ. It follows that M00
n takes values in l∞(H� I) (since H is compact),

M0
i;n in l∞(I), and thus Mi;n in l∞(H� I). Here we have used the notation l∞(T ) for

the set of uniformly bounded, real functions on T; l∞(T ) = fg : supt2T jg(t)j< ∞g.
The process M00

n is non-stochastic and M00
n (h;x)! ḟθ0

(x)h pointwise if θ ! fθ (x)
is differentiable in θ0 with derivative ḟθ0

(x). Assumption II.5.2 below ensures that

(II.13)
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the convergence is suitably uniform. Note that it also ensures continuity of U in θ0,
cf. the remark below Assumption II.3. A sufficient condition for Assumption II.5.2
is that θ ! fθ (x) is twice differentiable in a neighbourhood Θ0 of θ0 for all x 2 I
with the second derivative f̈θ (x) bounded in Θ0� I, i.e. sup(x;θ )2I�Θ0

j f̈θ (x)j< ∞:
For convergence of M0

n we will use empirical process theory (Arcones & Yu
1994). See Appendix II.A for a brief introduction to the theory of empirical pro-
cesses and the results used in the following. We assume that the drift has finite
absolute p’th moment for some p > 2 (Assumption II.5.3) and that the temporal
dependence in X decays fast enough. More precisely we assume that the β -mixing
coefficients decrease at an exponential rate (Assumption II.5.4). As usual for sta-
tionary Markov processes, we define the β -mixing coefficients

βk = Z
sup

A

��pk∆;θ0
(x;A)�µθ0

(A)��dµθ0
(x)

where pk∆;θ0
is the transition probability from time 0 to time k∆.

Assumption II.5 The true parameter value θ0 is an inner point of Θ and for any
x2 I the function θ ! fθ (x) = f (x;θ) is continuously differentiable in a neighbour-
hood of θ0 with first partial derivative ḟθ = ∂ fθ=∂θ satisfying

1. ḟθ0
is bounded, i.e. supx2I j ḟθ0

(x)j< ∞;

2. supx2I

�� ḟθ (x)� ḟθ0
(x)��! 0 as θ ! θ0.

Furthermore,

3. Eθ0
jb(X0)jp < ∞ for some p > 2;

4. there exist constants c1;c2 > 0 such that βk � c1e�c2k∆ for all k � 1. �
Proposition II.6 Let H be an arbitrary compact subset of R, and assume that As-

sumptions II.1, II.2 and II.5 hold. Then fM1;n(h)gh2H converges weakly if f (l;θ) = 0
for all θ 2Θ and fM2;n(h)gh2H converges weakly if f (r;θ) = 0 for all θ 2Θ.

Proof Assume first that f (l;θ) = 0 for all θ 2 Θ. We will use Theorem 2.1 from
Arcones & Yu (1994) to show that fM0

1;n(x)gx2I converges weakly to a Gaussian
process. By Assumption II.5.4 the required mixing condition is satisfied: with p
from Assumption II.5.3. it holds that kp=(p�2)(logk)2(p�1)=(p�2)βk ! 0 as k! ∞.

Define for x 2 I the function Fx : I ! R by Fx(y) = 2b(y)1fy�xg and let F =fFxgx2I. Then, Eθ Fx(X0) = fθ (x) and by definition of f̂1;n,

M0
1;n(x) = n�1=2

n

∑
i=1

�
Fx(Xi∆)�Eθ0

Fx(X0)�:
(II.14)
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The function Fx(y) is jointly measurable in (x;y) and the envelope function of F ,
supx2I jFxj= 2jbj, has finite p’th moment by Assumption II.5.3. Furthermore, it fol-

lows from Lemma II.11 in the appendix that F is a so-called Vapnik-Červonenkis
subgraph class of functions.

We conclude (Arcones & Yu 1994) that M0
1;n converges weakly in l∞(I) to a

tight, Gaussian process with Pθ0
-almost all paths uniformly bounded and uniformly

continuous (with respect to the metric d on I given by d(x;y)2 = R (Fx�Fy)2dµθ0
).

Convergence of M00
n follows from Assumption II.5.2, and the limit process M00

given by M00(h;x) = ḟθ0
(x)h is in l∞(H � I) by Assumption II.5.1. It now follows

from Slutsky’s Theorem that M0
1;n�M00

n converges weakly in l∞(H� I) and finally,
convergence of M1;n in l∞(H) follows by the Continuous Mapping Theorem.

Similarly for M2;n if f (r;θ) = 0 for all θ 2 Θ. �
We have just established convergence of M1;n(h) and M2;n(h), uniformly in h2H

for compact sets H. Note however that the limit processes are not Gaussian (except
perhaps for very special cases). In the much simpler case where the observations
are independent and identically uniformly distributed on (0;1) and b � 1 (so that
f̂1;n(x) is simply the empirical distribution function) one has a — rather unpleasant

— expression for the distribution function of the limit M1(0) = supjM0
1(x)j, see

Billingsley (1968, Chapter 13). In the more complicated case under consideration
in this paper it is not possible to identify the distribution of the limit.

By the above convergence results for Mi;n we can now show
p

n-consistency of

θ̂i;n, i = 1;2.

Theorem II.7 Assume that Assumptions II.1, II.2, II.3 and II.5 hold and furthermore

that ḟθ0
(x0) 6= 0 for an x0 2 I. Then

p
n(θ̂1;n�θ0) is Op(1) if f (l;θ) = 0 for all θ 2Θ

and
p

n(θ̂2;n�θ0) is Op(1) if f (r;θ) = 0 for all θ 2 Θ.

Proof Recall that θ̂i;n minimizes Ui;n(θ) = supx2I j f̂i;n(x)� fθ (x)j and that Ui;n(θ)!
U(θ) = supx2I j fθ0

(x)� fθ (x)j Pθ0
-almost surely as n ! ∞. It is easy to see thatp

nU(θ̂i;n) is Op(1): By the triangle inequalityp
nU(θ̂i;n)�pnUi;n(θ̂i;n)+pnUi;n(θ0)� 2

p
nUi;n(θ0)

and
p

nUi;n(θ0) = Mi;n(0) converges weakly and is hence Op(1).
Recall the definition of C(δ ) from Assumption II.3 and note that P(pnjθ̂i;n�

θ0j> δ )� P
�p

nU(θ̂i;n)�pnC(δ=pn)� for all δ > 0. Hence, ifp
nC(δ=pn)> cδ (II.20)

for all δ > 0, some constant c > 0 not depending on δ and n large enough, thenp
n
�
θ̂i;n�θ0

�
is Op(1).

(II.15)
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To prove (II.20), choose c;η > 0 such that U(θ)> cjθ �θ0j for all θ with jθ �
θ0j � η. This is possible by differentiability of θ ! fθ (x0) (use e.g. c = j ḟθ0

(x0)j=2).

For n > δ 2=η2,

C(δ=pn) = inf
�

U(θ) : jθ �θ0j> δ=pn
	= min

�
inf
�

U(θ) : δ=pn < jθ �θ0j � η
	; inf

�
U(θ) : jθ �θ0j> η

	�= min
�

inf
�

U(θ) : δ=pn < jθ �θ0j � η
	;C(η)�:

Now, C(η) > 0 by Assumption II.3 and inf
�

U(θ) : δ=pn < jθ � θ0j < η
	! 0 as

n! ∞ since U(θ0) = 0 and U is continuous in θ0. Hence, for n large enough

C(δ=pn) = inf
�

U(θ) : δ=pn < jθ �θ0j< η
	> cδ=pn

which proves (II.20) and thus
p

n-consistency of θ̂i;n. �
We now consider the situation where f (l;θ) = f (r;θ) = 0 for all θ and show

that
p

n
�
θ̂n�θ0

�
is Op(1) and even converges weakly.

Define M0
n(x) = n1=2

�
f̂n(x)� fθ0

(x)� and Mn(h) = supx2I jM0
n(x)�M00

n (h;x)j. We

first give a uniform convergence result for Mn. As in the proof of proposition II.6
we use empirical process theory to show convergence of M0. In this case it is
however not immediate that the relevant class of functions is a Vapnik-Červonenkis
subgraph class, and rather than showing that it is (which is indeed the case, see
Lemma II.12 in the appendix), we choose to work with covering numbers directly.

Proposition II.8 Assume that Assumptions II.1, II.2 and II.5 hold and that f (l;θ) =
f (r;θ) = 0 for all θ 2 Θ. Then fMn(h)gh2H converges weakly for any compact set

H � R.

Proof Recall that f̂n = λ̂1;n f̂1;n + λ̂2;n f̂2;n where λ̂ j;n converges pointwise (and uni-
formly as we shall argue below) Pθ0

-almost surely to λ j := λθ0; j, j = 1;2. We first

argue that it suffices to consider λ1 f̂1;n +λ2 f̂2;n instead of f̂n: By adding and sub-

tracting λ1 f̂1;n and λ2 f̂2;n we get

f̂n = �λ̂1;n�λ1

�
f̂1;n + �λ̂2;n�λ2

�
f̂2;n +λ1 f̂1;n +λ2 f̂2;n= �λ̂1;n�λ1

��
f̂1;n� fθ0

�+ �λ̂2;n�λ2

��
f̂2;n� fθ0

�+λ1 f̂1;n +λ2 f̂2;n
and hence,

M0
n = �λ̂1;n�λ1

�
M0

1;n + �λ̂2;n�λ2

�
M0

2;n +M0
λ ;n (II.21)

where M0
λ ;n(x) = n1=2

�
λ1(x) f̂1;n(x)+λ2(x) f̂2;n(x)� fθ0

(x)�:
Since λ1 is continuous and decreasing from one to zero, it takes all values

in the unit interval (0;1). From arguments almost identical to those leading to

(II.16)
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the uniform convergence (II.19) of f̂1;n to fθ0
, it follows that λ̂1;n(x)! λ1(x) and

hence also λ̂2;n(x)! λ2(x) Pθ0
-almost surely, uniformly in x 2 I. In the proof of

Proposition II.6 we showed that M0
1;n and M0

2;n converge weakly and it now follows

from Slutsky’s Theorem that M0
n converges in l∞(I) if M0

λ ;n does.

Now, let F = fFxgx2I where Fx : I ! R is defined by

Fx(y) = 2λ1(x)b(y)1fy�xg�2λ2(x)b(y)1fy>xg= 2b(y)�λ1(x)�1fy>xg�; y 2 I:
Then Eθ Fx(X0) = fθ (x) and M0

λ ;n(x) = n�1=2 ∑n
i=1

�
Fx(Xi∆)� fθ0

(x)�. The function

Fx(y) is jointly measurable in (x;y) and the envelope function supx2I jFxj = 2jbj ofF has finite p’th moment by Assumption II.5.3.

Let Q be a probability measure on I with b2 L2(Q), let jj � jjQ be the L2(Q)-norm

and define B̄Q = R
b2dQ. We show that the jj � jjQ-covering number N(ε;F ; jj � jjQ),

which is the minimal number of jj � jjQ-balls of radius ε needed to cover F , is at

most 32B̄Q=ε2 (at least for small ε).

First, note that for all x;z 2 IjjFx�Fzjj2Q = Z (Fx�Fz)2dQ= 4
Z

b2�λ1(x)�1(x;r)�λ1(z)+1(z;r)�2
dQ� 8

Z
b2�λ1(x)�λ1(z)�2 dQ+8

Z
b2�1(x;r)�1(z;r)�2 dQ:

Define BQ(x) = R x
l b2dQ = R

b21(l;x℄dQ and use the notation ^ for minimum and _
for maximum. Then,

�
1(x;r)�1(z;r)�2 = 1(l;x_z℄�1(l;x^z℄ andjjFx�Fzjj2Q � 8

�
λ1(x)�λ1(z)�2B̄Q +8BQ(x_ z)�8BQ(x^ z):

Next, for 0< ε < 4B̄1=2
Q

given, let K = 16B̄Q=ε2 (or rather the smallest integer

larger than this number). The functions λ1 and BQ are continuous, λ1 decreases

from 1 to 0 and BQ increases from 0 to B̄Q so we can choose u1; : : : ;uK�1 and
v1; : : : ;vK�1 such that

8B̄Qλ1(uk) = 8BQ(vk) = kε2=2; k = 1; : : : ;K�1:
For k = 2; : : : ;2K � 1, define yk as the (k� 1)’st smallest of the 2(K � 1) pointsfuk;vkgk=1;::: ;K�1. Also, let y1 = l and y2K = r. Then jjFx�FzjjQ < ε for x;z2 [yk;yk+1℄
for some k = 1; : : : ;2K�1. Indeed, let yk � x� z� yk+1 and let u = maxfu j � yk; j =
1; : : : ;K�1g and ū = minfu j � yk; j = 1; : : : ;K�1g be the u j ’s that are closest to yk

(II.17)
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(and smaller/larger respectively). Define v and v̄ similarly. Then,jjFz�Fzjj2Q � 8
�
λ1(x)�λ1(z)�2B̄Q +8BQ(z)�8BQ(x)� 8
�
λ1(u)�λ1(ū)�2B̄Q +8BQ(v̄)�8BQ(v)� �ε2=2
�2

8B̄Q
+ ε2=2< ε2;

and F can be covered by 2K balls (with respect to jj � jjQ) of radius ε. Hence,

N(ε;F ; jj � jjQ)� 2K = 32B̄Q=ε2 = 32jjbjj2L2(Q)=ε2 (II.22)

for any Q with b 2 L2(Q) (and ε small enough). In particular (II.22) holds for

Q = µθ0
and hence

R ∞
0

�
logN(ε;F ; jj � jjµθ0

)�1=2
dε < ∞:

It follows (Arcones & Yu 1994, Lemma 2.1) that M0
λ ;n converges in l∞(I) and

hence from (II.21) that M0
n converges in l∞(I). Finally, weak convergence of M00

n
and Mn follows as in the proof of Proposition II.6. �
Theorem II.9 Assume that Assumptions II.1, II.2, II.3, and II.5 hold and f (l;θ) =
f (r;θ) = 0 for all θ 2Θ. If, in addition, ḟθ0

(x0) 6= 0 for some x02 I then
p

n(θ̂n�θ0) is

Op(1) and if furthermore ḟθ0
(x) 6= 0 for all x 2 I, then

p
n(θ̂n�θ0) converges weakly.

Proof The
p

n-consistency follows exactly as in the proof of Theorem II.7.
For the weak convergence it then suffices to show that Pθ0

-almost all paths of

the limit M of Mn has a unique minimum (van der Vaart & Wellner 1996, Theorem
3.2.2).

The limit process fM(h)gh2R has the form M(h) = supx2I jM0(x)� ḟθ0
(x)hj where

M0 is the Gaussian limit of M0
n. We first show that M0(x)! 0 Pθ0

-almost surely as

x& l and x% r, that is Pθ0
(M0 2 A) = 1 where A = fϕ = (ϕx)x2I 2 l∞(I) : limx&l ϕx =

limx%r ϕx = 0g.
It is easy to see that A is closed with respect to the uniform metric d(ϕ;ϕ 0) =

supx2I jϕx�ϕ 0xj. Indeed, let (ϕn) be a sequence from A with ϕn ! ϕ and let ε > 0.
Choose N such that d(ϕn;ϕ)< ε=2 for all n� N. In addition, choose xl and xr such
that

��ϕN
x

��< ε=2 for x� xl and for x� xr. Then, for x� xl and x� xr,jϕxj � jϕx�ϕN
x j+ ��ϕN

x

��� sup
x2I

��ϕx�ϕN
x

��+ ��ϕN
x

��< ε

so ϕ 2 A and A is closed.
For every n � 1 all paths of M0

n are in A since f̂n(x) = 0 for all x < minfXi∆ : i =
1; : : : ;ng and all x � maxfXi∆ : i = 1; : : : ;ng and limx!l fθ0

(x) = limx!r fθ0
(x) = 0. It

now follows from Portmanteau’s theorem that Pθ0
(M0 2 A) � limsupn!∞ Pθ0

(M0
n 2

A) = 1.

(II.18)
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Now, all paths h ! M(h) satisfy M(h)! ∞ as h ! �∞ since M(h) � ��M0(x)�
ḟθ0

(x)h�� and ḟθ0
(x) 6= 0 for any fixed x2 I (for this it suffices that ḟθ0

(x0)= 0 for some

x0 2 I). All paths are continuous since jM(h2)�M(h1)j � jh2�h1jsupx2I j ḟθ0
(x)j for

all h1;h2 2 R and hence have a minimum. We must show that the minimum is
unique.

It is easy to see that all paths of M are (weakly) convex: for h1;h2 2 R and
α 2 (0;1)

M
�
αh1+(1�α)h2

�= sup
x2I

���α�M0(x)� ḟθ0
(x)h1

�+(1�α)�M0(x)� ḟθ0
(x)h2

����� α sup
x2I

��M0(x)� ḟθ0
(x)h1

��+(1�α)sup
x2I

��M0(x)� ḟθ0
(x)h2

��= αM(h1)+(1�α)M(h2):
It holds Pθ0

-almost surely that M0 is continuous and belongs to the set A from

above. Consider a path h!M(h) for which this is the case and assume that h1 < h2
both minimize M. Let m = M(h1) = M(h2) be the minimum value. By convexity
M(h̄) = m where h̄ = (h1+h2)=2 is the mid point between h1 and h2.

By definition, M(h̄) = supx2I

��M0(x)� ḟθ0
(x)h̄��. Choose a sequence (xn) from I

such that
��M0(xn)� ḟθ0

(xn)h̄��� m�1=n for each n� 1. For j = 1;2 and all n� 1,

m = M(h j)� ��M0(xn)� ḟθ0
(xn)h j

��
implying that

�� ḟθ0
(xn)��(h2�h1)=2� 1=n and hence

�� ḟθ0
(xn)��! 0 as n! ∞.

Since ḟθ0
(x) 6= 0 for all x 2 I it thus holds for any l < x1 < x2 < r that xn 62 [x1;x2℄

for n large enough and hence M0(xn)! 0 as n! ∞. It follows that

m = M(h̄) = lim
n!∞

��M0(xn)� ḟθ0
(xn)h̄��= 0 (II.23)

so M(h1) = M(h2) = m = 0. This is not possible, though, since for any x 2 I at least
one of the values jM0(x)� ḟθ0

(x)h1j and jM0(x)� ḟθ0
(x)h2j is strictly positive.

We conclude that M has a unique minimum Pθ0
-almost surely and hence thatp

n
�
θ̂n�θ0

�
converges weakly. �

We have just shown that θ̂n converges weakly, but there is no reason to believe
that the limit distribution is Gaussian. Simulation studies indicate however that
the limit distribution might be close to normal.

Parts of the above proof could be repeated with M1 or M2 substituted for M. If
h̄ and (xn) are as above with M replaced by M1, say, then it would still hold that
xn could be made arbitrarily close to l or r by choosing n large enough. But M0

1(x)
does not converge to zero as x ! r so limn!∞

��M0
1(xn)� ḟθ0

(xn)h̄��, corresponding

to (II.23), need not be zero and cannot be rejected as the minimum value of M1.

(II.19)
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Similarly, M0
2(x) does not converge to zero as x & l and we cannot rule out the

possibility that M1 and M2 have several minimum points.

Note that the limits of M0
1(x) and M0

2(x) as x tends to l and r do exist with
limx%r M0

1(x) and limx&l M0
2(x) Gaussian and limx&l M0

1(x) = limx%r M0
2(x) = 0 Pθ0

-

almost surely. This can be proved via Portmanteau’s theorem and the continuous
mapping theorem.

Finally, a comment on Assumption II.5: The boundedness conditions may seem
rather restrictive but in practice we can take a supremum over a (very large) com-
pact subset of I rather than over I when forming the criterion functions U1;n, U2;n
and Un. Then, by continuity, the boundedness conditions are automatically satis-
fied.

II.6 When the drift is not known

So far, we have assumed that the drift is completely known which is of course
unrealistic. When this is not the case we follow the approach of Aït-Sahalia (1996)
in that we suggest estimating the drift beforehand and then simply pretend that
the drift is equal to its estimator when estimating the diffusion parameters.

More precisely we assume that the drift has a parametric specification b(x) =
b(x;ξ ) and that the parameter ξ can be estimated consistently without any knowl-
edge of the diffusion parameter θ . This is the case if b is linear and the martingale
part of X is a genuine martingale: then we can use martingale estimation func-
tions as suggested by Bibby & Sørensen (1995). Let ξ̂ be the estimator of ξ and
redefine f̂1;n in the obvious way

f̂1;n(x) = 2
n

n

∑
i=1

�
b(Xi∆; ξ̂ )1fXi∆�xg�:

Similarly for f̂2;n and f̂n. The true function f of course also depends on ξ . Again

we just plug in the estimator and minimize supx2(l;r)�� f (x; ξ̂ ;θ)� f̂n(x)��:
II.7 Examples

We now consider two particular models, namely the Ornstein-Uhlenbeck process
(or Vasicek model) and the CKLS model. Of course, for the Ornstein-Uhlenbeck
process the estimation problem is already solved since the transition probabilities
are known and we can do maximum likelihood estimation. We study it briefly
anyway since we get some qualitative results on the improvement caused by using
f̂n rather than f̂1;n or f̂2;n. For the CKLS model we discuss various estimation
methods and compare them to our estimation approach in a simulation study.

(II.20)
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II.7.1 The Ornstein-Uhlenbeck process

Consider the stochastic differential equation

dXt = βXt dt +σ dWt

where β is a known constant and σ > 0 is the unknown parameter. A solution
X exists for all combinations of β 2 R and σ > 0. The transition probabilities are
normal,

XtjX0� N

�
eβ tX0;�σ2

2β

�
1� e2β t

�� ; β 6= 0

and the state space is R.
We will only consider β < 0. Then X is stationary and ergodic with invariant

distribution µσ = N(0;�σ2=2β ). The function f is thus given by

f (x;σ) = σ
r�β

π
exp
�
βx2=σ2� ; x 2 R;σ > 0;

and f (x;σ)! 0 as x!�∞ for all σ > 0. Figure II.3 shows the graph of f (�;σ) for
β =�1 and various values of σ .
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Figure II.3: The graph of the function x ! f (x;σ) for the Ornstein-
Uhlenbeck process for β =�1 and various values of σ .

The function f is twice differentiable with respect to σ with derivatives

ḟ (x;σ) = ∂ f (x;σ)
∂σ

=r�β
π

�
1� 2βx2

σ2

�
exp
�
βx2=σ2�> 0 (II.24)

f̈ (x;σ) = ∂ 2 f (x;σ)
∂σ2 =r�β

π

�
2βx2

σ3 + 4β 2x4

σ5

�
exp
�
βx2=σ2� :

(II.21)
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In particular ḟ and f̈ are bounded on R� (0;∞) so Assumptions II.5.1 and II.5.2
are satisfied. Note that ḟ (x;σ)! 0 as x !�∞ for all σ > 0. Assumption II.5.3
holds because all moments of µσ exist, and we prove exponential decay of the β -
mixing coefficient (Assumption II.5.4) in Appendix II.B. Also, σ0 is well-separated
as a minimum of Uσ = supx2R j fσ (x)� fσ0

(x)j since σ ! fσ (x) is increasing for all
x 2 R, cf. (II.24), so Assumption II.3 holds.

Hence, by the theorems in Section II.5, the estimators obtained by minimizing
Un;1, Un;2 and Un are all

p
n-consistent and the estimator obtained by minimizing

Un is even weakly convergent (when centered and scaled by
p

n, of course).
Now, let us consider three even simpler estimators for which we can (at least

partly) determine the limit distribution. Choose x0 2 R and solve the estimating

equation, f̂1;n(x0) = f (x0;σ). Denote the solution by σ̄n;1 and define σ̄n;2 and σ̄n

by substituting f̂2;n and f̂n for f̂1;n. In other words: we estimate σ by the value

that makes the function f (�;σ) and its estimator ( f̂1;n, f̂2;n or f̂n) fit perfect in x0 —
without taking into account at all how they fit in other points.

Since the uniform criterion functions from the previous sections take the whole
state space into account one would expect the corresponding estimators of σ to be
more precise than the σ̄n’s just defined. The reason for considering the σ̄n’s at all,
is that we for a particular x0 are able to compare the limit distributions of σ̄n;1, σ̄n;2
and σ̄n and hence give qualitative statements on the improvement on the variance
caused by using f̂n rather than f̂1;n or f̂2;n.

First, for x0 arbitrary, σ̄n;1 and σ̄n;2 solve

0= n
�

f̂1;n(x0)� f (x0;σ)�= n

∑
i=1

�
2b(Xi∆)1fXi∆�x0g� f (x0;σ)�

0= n
�

f̂2;n(x0)� f (x0;σ)�= n

∑
i=1

��2b(Xi∆)1fXi∆>x0g� f (x0;σ)�
respectively. These equation are examples of so-called simple, unbiased estimat-
ing equations, i.e. equations on the form ∑n

i=1g(Xi∆;σ) = 0 where Eσ g(X0;σ) = 0.
Under regularity conditions one can show that solutions to simple, unbiased esti-
mating equations are consistent and asymptotically normal. See Kessler (2000),
for example, for further details, proofs and the expression for the asymptotic vari-
ance (which can usually not be computed explicitly).

Let us turn to the special case x0 = 0. Then the expression for f (x0;σ) is par-

ticularly simple, f (x0;σ) = f (0;σ) = σ(�β=π)1=2. The above estimating equations
are then linear and can be solved explicitly

σ̄n;1 = 1
n

n

∑
i=1

cXi∆1fXi∆�0g
σ̄n;2 =�1

n

n

∑
i=1

cXi∆1fXi∆>0g
where c = 2β (�β=π)�1=2 = �2(�βπ)1=2. The (approximately) optimal convex
combination of f̂1;n(x0) = f̂1;n(0) and f̂2;n(x0) = f̂2;n(0) is the simple average, see

(II.22)
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(II.13) and (II.14). Hence,

σ̄n = 1
2

�
σ̄n;1+ σ̄n;2�= 1

n

n

∑
i=1

1
2

�
cXi∆1fXi∆�0g� cXi∆1fXi∆>0g�:

It follows immediately from the ergodic theorem that all three estimators are
consistent for σ (for σ̄n;1 and σ̄n;2 we indeed knew this already from above.) Also,

all three estimators are asymptotically normal: If g1 is defined by g1(x)= cx1fx�0g�
σ0, then p

n
�
σ̄n;1�σ0

�= 1p
n

n

∑
i=1

g1(Xi∆)! N(0;V12)
weakly, cf. Florens-Zmirou (1989). The variance is given by

V12 = Eσ0
g1(X0)2+2

∞

∑
k=1

Eσ0
g1(X0)g1(Xk∆): (II.25)

Simple (but tedious) calculations yield Eσ0
g1(X0)2 = σ2

0(π�1) and

Eσ0
g1(X0)g1(Xk∆)= σ2

0

��
1� e2β∆k�3=2�1

�+ c2eβ∆k Eσ0

�
X0Φ(�eβ∆k=τk)�

where Φ is the distribution function for the standard normal distribution and τ2
k =�σ2

0(1�e2β∆k)=(2β ) is the conditional variance of Xk given X0. There is no explicit
formula for the expectation appearing in the above formula.

By symmetry,
p

n
�
σ̄n;2�σ̄0

�!N(0;V12) as well. For σ̄n, note that
p

n
�
σ̄n�σ0

�=
1p
n ∑n

i=1g(Xi∆) where g(x) = 1
2

�
cx1fx�0g� cx1fx>0g� = g1(x)� 1

2cx: Hence
p

n
�
σ̄n�

σ0

�! N(0;V ), where the variance V is the given by (II.25) with g1 replaced by g.
We can easily express V in terms of V12: it holds that

Eσ0
g(X0)2 = Eσ0

g1(X0)2�σ2
0π=2= σ2

0(π=2�1)
and

Eσ0
g(X0)g(Xk∆) = Eσ0

g1(X0)g1(Xk∆)� eβ∆kπσ2
0=2:

so it follows that

V =V12�σ2
0

π
�
1+ eβ∆)

2
�
1� eβ∆) :

Hence, the asymptotic variance of σ̄n is indeed smaller than the asymptotic vari-
ance of σ̄n;1 and σ̄n;2.

Note that V � Eσ0
g(X0)2 = σ2

0(π=2�1)� 0:57σ2
0 . Of course, the above estima-

tors cannot compete with the maximum likelihood estimator

σ̌n = �� 2β
n
�
1� e2β∆

� n

∑
i=1

�
Xi∆� eβ∆X(i�1)∆�2

�1=2

(II.23)
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which satisfies
p

n
�
σ̌n�σ0

�! N(0;σ2
0=2). However, as argued above we would

expect the estimator σ̂n based on the supremum distance Un be more precise than
σ̄n so the above comparison is not quite fair to the estimation approach discussed
in this paper.

II.7.2 The CKLS model

In this section we study the model given by the stochastic differential equation

dXt = (α +βXt)dt +σX γ
t dWt : (II.26)

We use the method from this paper on simulated data from the model and compare
with from various other methods.

In the econometric literature the model is often called the CKLS-model after the
paper by Chan et al. (1992) where the model was first discussed in this generality.
It includes important and much favoured models as special cases: the geomet-
ric Brownian motion (or Black-Scholes model) for (α;γ) = (0;1); the Ornstein-
Uhlenbeck process (or Vasicek model) for γ = 0; and the square root process (or
Cox-Ingersoll-Ross model) for γ = 1=2.

Let ξ = (α;β ) vary in Ξ = (0;∞)� (�∞;0) and let θ = (γ;σ). If γ < 1=2, then
Assumption II.1.1 is not satisfied since

R r
x0

s(x;ξ ;θ)dx < +∞ and the process may

hit zero. If γ > 1, then f (+∞;ξ ;θ) 6= 0 and the locale martingale part of X is not
a genuine martingale. Hence, to be able to estimate α and β by least squares and
to use f̂n we must assume 1=2� γ � 1. Note that f (0;ξ ;θ) = 0 even if γ > 1 so we
could use f̂1;n for estimation of γ and σ in that case (if estimates of ξ are available).
The expression for the invariant density is different for γ = 1=2 and γ = 1, than for
1=2� γ � 1, so for simplicity we let θ = (γ;σ) vary in Θ = (1=2;1)� (0;∞) only.

For (ξ ;θ) 2 Ξ�Θ the process is positive and stationary and has f (0;ξ ;θ) =
f (+∞;ξ ;θ) = 0; the invariant density is proportional to

1
σ2x2γ exp

�
2α

σ2(1�2γ)x1�2γ + β
σ2(1� γ)x2�2γ

� ; x > 0; (II.27)

and the function f is given by

K0(ξ ;θ)exp

�
2α

σ2(1�2γ)x1�2γ + β
σ2(1� γ)x2�2γ

� ; x > 0:
There is no explicit expression for the normalizing constant, K0(ξ ;θ), but we can
calculate it numerically (at least when γ is not very close to 1/2 and 1).

Estimation strategies

Recall that ξ = (α;β ) is the drift parameter and θ = (γ;σ) the diffusion parameter,
and let ξ0 and θ0 denote the true values. In the simulation study below we consider
three situations: (A) α, β and σ are known so that only γ need to be estimated;

(II.24)
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(B) σ is known and α, β and γ must be estimated; (C) all four parameters are
unknown and must be estimated. The first two situations are of course unrealistic
but they provide insight to the estimation problem.

As for the method discussed in this paper, the strategy is as follows. In case (A)
γ is estimated as described in Section II.3, i.e. by minimizing

sup
x2I

��� f̂n(x)� f (x;ξ0;θ)���: (II.28)

with respect to γ for σ = σ0 known. In cases (B) and (C) the drift parameters are
estimated by conditional least squares: For (ξ ;θ) 2 Ξ�Θ the martingale part of X
is a genuine martingale; hence the conditional expectation one step ahead

ϕ(x;ξ ) = ϕ(x;ξ ;θ) = Eθ
�
X∆jX0 = x

�= eβ∆
�

x+ α
β

�� α
β

(II.29)

does not depend on θ . The drift parameters α and β are estimated by minimiza-

tion of ∑n
i=1

�
Xi∆�ϕ(Xi∆;ξ )�2, that is, by solving the two (martingale) estimating

equations obtained by differentiation. The outcoming estimators are consistent
and asymptotically normal (but note that the estimating functions could be im-
proved if γ and σ were known (Bibby & Sørensen 1995)). Next, the diffusion
parameter is estimated as described in Section II.6, that is, by substituting the es-
timator of ξ for ξ0 and minimizing (II.28) with respect to γ in case (B) and (γ;σ)
in case (C).

In Section II.3 we also briefly discussed the distance measure Sw
n given by

(II.17). We will use it below for comparison. In practice the weights do not
seem to make much difference so we have used wi � 1. We also compare with
a few simple standard methods, namely generalized method of moments (GMM),
IID estimation and simple estimating functions. The methods will be described
shortly.

Honoré (1997) uses “simulated maximum likelihood estimation” on treasury
bill yield data and simulated CKLS data with good results. The method is de-
veloped by Pedersen (1995b) and is based on approximations of the likelihood
function calculated by simulation. Poulsen (1999) obtains estimators in the CKLS
model via numerical solutions of the Fokker-Planck equation. Both methods are
computationally rather demanding and they will not be used in this study.

GMM based on simple discretizations. This is the method used by Chan et al.
(1992). It is based on simple approximations of the conditional moments of
Xi∆�X(i�1)∆ given X(i�1)∆, namely (α +βX(i�1)∆)∆ as approximation to the mean

and ∆σ2X2γ(i�1)∆ as approximation to the variance. These approximations are good

when ∆ is “small” but can be bad when ∆ is “large”, leading to considerable bias
of the estimator.

To be specific, define εi = Xi∆�X(i�1)∆� (α +βX(i�1)∆)∆ and

Gn(ξ ;θ) = n

∑
i=2

�
εi;εiX(i�1)∆;ε2

i �∆σ2X2γ(i�1)∆;ε2
i X(i�1)∆�∆σ2X1+2γ(i�1)∆�T

(II.25)
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and minimize GT
n (θ ;ξ )W (θ ;ξ )Gn(θ ;ξ ) where W (θ ;ξ ) for all (ξ ;θ) is a positive

definite weight matrix. In cases (A) and (B) we of course plug in the known
parameter values. Hence, Gn has larger dimension than the unknown parameter,
and the estimators depend on the choice of W (ξ ;θ). It is reasonable to use (an
estimator of) the particular W (ξ ;θ) that gives the least asymptotic variance for
the estimator, see Chan et al. (1992). In case (C) the estimator simply solves
Gn(ξ ;θ) = 0 and does not depend on the weight matrix.

We know the true conditional expectation from (II.29) so alternatively we
could use ε̃i = Xi∆� eβ∆�X(i�1)∆ + α=β

�+ α=β . In case (B) and (C) it does not

change the estimation of γ and σ , though, since we get the same estimators of
the conditional expectations. Also, in case (A) the difference between the two
corresponding γ-estimates is very small.

IID estimation. If the observations were independent, identically µξ ;θ -distributed,

then the log-likelihood function would be

ln(ξ ;θ) = n

∑
i=1

logµ(Xi∆;ξ ;θ)
which we would maximize in order to estimate (ξ ;θ). The observations are not in-
dependent but the estimators so obtained are nevertheless consistent and asymp-
totically normal (but not efficient), see Kessler (2000). Since f = σ2µξ ;θ we would

expect the IID estimators and the estimators obtained by minimizing Un (and Sn)
to be highly correlated.

Note that we cannot distinguish two parameter vectors (ξ ;θ) = (α;β ;γ;σ) and(ξ̃ ; θ̃) = (kα;kβ ;γ;k1=2σ) for k > 0 since µξ ;θ = µ
ξ̃ ;θ̃ . Hence, we cannot use IID

estimation in case (C). However, we could estimate the drift parameters by least
squares as above and next use the IID approach for estimation of the diffusion
parameters. We will do this in both case (B) and (C).

Simple estimating functions based on the generator. Hansen & Scheinkman (1995)
and Kessler (2000) discuss estimating functions of the form

Hn(ξ ;θ) = n

∑
i=1
Aξ ;θ h(Xi∆;ξ ;θ)= n

∑
i=1

(α +βXi∆)h0(Xi∆;ξ ;θ)+ 1
2

σ2(Xi∆)X2γ
i∆ h00(Xi∆;ξ ;θ):

Here, h0 = ∂h=∂x and h00 = ∂ 2h=∂x2 are derivatives of h : (0;∞)�Ξ�Θ ! R with
respect to the state variable, and Aξ ;θ is the differential operator associated with

the infinitesimal generator for the diffusion process. If h and Aξ ;θ h are in L1(µξ ;θ )
and if Eξ ;θ�h0(X0;ξ ;θ)X γ�2 < ∞, then Hn is an unbiased estimating function, i.e.

Eξ ;θ Hn(ξ ;θ) = 0.

(II.26)
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In case (A) we use h(x) = x2. In case (B) we use h(x) = (x;x2;x3) and define the
corresponding estimating Hn coordinate-wise. The estimating functions are easy
to solve. In case (C) we cannot use this approach since simple estimating functions
can only be used to identify parameters from the invariant distribution.

Results of the simulation study

Now, let us turn to the details and the results of the simulation study. It is based
on 100 realizations of the model (II.26) with parameters

α0 = 0:04; β0 =�0:6; γ0 = 0:75; σ0 = 0:2:
The simulated paths are constructed by means of the Euler scheme with time step
1/1000. Each realization consists of n = 500 observations and ∆ = 1. One of the
simulated paths is shown in Figure II.4.

Time

0 100 200 300 400 500

0.0
5

0.1
0

0.1
5

0.2
0

Figure II.4: A typical simulation of the CKLS model with (α;β ;γ;σ) =(0:04;�0:60;0:75;0:20). There are n = 500observations and the value of ∆ is
1.

The means and standard errors of the estimators are listed in Table II.1. The
first five lines are for case (A), the next six for case (B) and the last four for
case (C). As explained below, not all the optimization problems are well-behaved
and for some methods an optimum in the parameter space did not exist for all
simulations. The number of failures is given in the notes to the table.

In case (A) the GMM estimator is biased but the other three estimators seem to
be unbiased. The estimators based on f have slightly larger standard errors than
the IID estimator, and the estimator obtained from the simple estimating function
based on h(x) = x2 has standard error about four times as big as the IID estimator.
Figure II.5 shows f̂n and f (�;α0;β0;γ;σ0) with γ equal to the true value (0.75) and
γ equal to the estimators obtained by minimizing Un (0.737) and Sn (0.730) for
the simulated data from Figure II.4.

In case (B) and (C) the least squares estimators of α and β are by far the best
— unbiased with small standard errors.

(II.27)
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Method
α̂n (0.04) β̂n (-0.60) γ̂n (0.75) σ̂n (0.20)

mean s.e. mean s.e. mean s.e. mean s.e.
minUn — — — — 0.7550 0.0167 — —
minSn — — — — 0.7548 0.0150 — —

IID — — — — 0.7505 0.0129 — —
Simple — — — — 0.7597 0.0561 — —
GMM — — — — 0.8431 0.0176 — —

LS-minUn 0.0411 0.0050 -0.6166 0.0785 0.7487 0.0186 — —
LS-minSn 0.0411 0.0050 -0.6166 0.0785 0.7482 0.0188 — —

IID(1) 0.0478 0.0257 -0.7192 0.3944 0.7442 0.0881 — —
LS-IID 0.0411 0.0050 -0.6166 0.0785 0.7481 0.0187 — —
Simple 0.0646 0.0486 -0.9734 0.7490 0.7068 0.1237 — —
GMM 0.0278 0.0024 -0.4198 0.0377 0.8503 0.0192 — —

LS-minUn
(2) 0.0411 0.0050 -0.6166 0.0785 0.7386 0.0958 0.2009 0.0531

LS-minSn
(3) 0.0411 0.0050 -0.6166 0.0785 0.7286 0.0962 0.1958 0.0514

LS-IID(4) 0.0411 0.0050 -0.6166 0.0785 0.7467 0.0800 0.2039 0.0439

GMM(5) 0.0306 0.0027 -0.4586 0.0422 0.5076 0.1328 0.0862 0.0352

Table II.1: Empirical means and standard errors of various estimators for
100 realizations of the CKLS model. The true parameters are given in the
top line, n = 500, and ∆ = 1. A “—” means that the corresponding parameter
is considered known. Notes: (1) 1 failure; (2) 6 failures (3) 3 failures; (4) 7
failures; (5) 49 estimates less than 1/2.

In case (B) the γ-estimates obtained from LS-IID estimation (i.e. maximization
of ln with α and β equal to the least squares estimates), and minimization of
Un and Sn (also with α and β equal to the least squares estimates) are equally
good. The pure IID estimator ignores the dependence among observations and
has standard error more than four times larger than the LS-IID estimator. The
estimator obtained from simple estimating functions has an even larger standard
error and the GMM estimator is biased.

In case (C) the LS-IID estimators for γ and σ seem to be a little better than
those obtained from Un and Sn. The GMM estimator is still biased but note that
the mean of the estimator is now smaller than the true value. Half the γ-estimates
are less than 1/2 which is in fact outside the parameter space!

The estimation results are very similar whether we minimize Un or Sn. The
empirical correlation between the two γ-estimates is 0.90 in case (A), 0.93 in
case (B) and 0.83 in case (C) and the empirical correlation between the two σ -
estimates in case (C) is 0.82. As one would expect the standard errors of the
γ-estimates are smallest in case (A) and largest in case (C). For the estimators
obtained by minimizing Un and Sn the standard error is five times larger in case
(C) compared to case (B), for example.

(II.28)
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Figure II.5: Graphs of f̂n and f (�;α0;β0;γ;σ0) for γ = γ0 = 0:75 (the true
value), γ = 0:737 (minimizing Un) and γ = 0:733 (minimizing Sn). The data
are those from Figure II.4.

Identification problems in case (C)

The distribution of X only depends on (γ;σ) through the values of the diffusion
function σxγ . Figure II.6 shows the graph of this function for three different values
of (γ;σ). The solid line corresponds to the true value (0.75,0.20) and the two
dotted lines to (0.65,0.15) and (0.85,0.26) respectively; the values of σ are chosen
so all three curves intersect at x = �α0=β0 = 0:0667. The range of x is from 0 to
0.20 which is about typical for the simulated paths. The graphs are close in the
central area of the invariant distribution so it is difficult to distinguish between
different values of (γ;σ) as long as the values of σ(�α=β )γ are close.

This explains why the standard error of γ̂n is much larger in case (C) compared
to case (B) and implies that the estimators of γ and σ are highly correlated (for the
estimators obtained by minimizing Un the empirical correlation is 0.97, for exam-
ple). It also explains why the level of the GMM-estimates of γ changes from case
(B) to case (C); the average estimated value of the diffusion function evaluated at�α0=β0 are almost the same (0.0200 versus 0.0204) in the two cases.

Of course, the identification problem also gave rise to some practical prob-
lems. Figure II.7 shows a contour plot for Un (for the data from Figure II.4). The
level curves are very oblong corresponding to a valley of local minima and the
minimization routine had difficulties finding the global minimum. We solved the
problem as follows: The simple estimating function corresponding to h(x) = x2�2γ

(II.29)
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Figure II.6: The diffusion function x ! σxγ for three different values of(γ;σ). The three graphs intersect at x =�α0=β0 = 0:0667.

is

Hn(ξ ;θ) = αS1(γ)+βS2(γ)+ 1
2

nσ2(1�2γ)
where S1(γ) = ∑n

i=1X1�2γ
i∆ and S2(γ) = ∑n

i=1X2�2γ
i∆ . Solving the equation Hn(ξ̂n;θ) =

0 where ξ̂n is the estimator of the drift parameter, gives us σ as a function of γ,

σ = σ(γ) = �2α̂S2(γ)+2β̂S3(γ)
n(1�2γ) !1=2

(II.30)

The curve (γ;σ(γ)) is superimposed on Figure II.7. It is almost parallel to the level
curves and runs relatively close to the global minimum point (denoted by a circle).
Nevertheless, the minimum point on the curve (denoted by a triangle) is relatively
far from the the global minimum point.

We use the curve as an indication of which area is relevant to search for the
minimum. We calculate the values of Un in a fine grid around the curve and finally
use the minimum point on the grid as initial values in a numerical procedure.
We use the same technique when the criterion function is Sn or ln (and a similar
technique for IID estimation in case (B)).

Considerations on asymptotics

In case (A) where α and β are known,
p

n
�
γ̂n� γ0

�
converges weakly if the as-

sumptions of Theorem II.9 hold. There is no a priori reason to believe that the
limit distribution is Gaussian, but then what does the distribution of

p
n
�
γ̂n� γ0

�
look like?

(II.30)
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Figure II.7: Contour plot for Un and the data from Figure II.4 together with
the curve given by Hn(α̂; β̂ ;γ;σ) = 0, that is the curve (γ;σ(γ)) given by
(II.30). The triangle denotes the minimum point (0.737,0.198) on the curve
whereas the circle denotes the global minimum point (0.696,0.178).

The left hand side of Figure II.8 shows a QQ-plot for
p

n
�
γ̂n�γ0

�
with the quan-

tiles of the standard normal distribution on the x-axis and the empirical quantiles
of
p

n
�
γ̂n�γ0

�
on the y-axis. The normal distribution fits well in the central area of

the distribution but also not too badly in the tails. The right hand side is a QQ-plot
of
p

n
�
γ̃n�γ0

�
where γ̃n is the minimizer of Sn. We did not show any asymptotic re-

sults for γ̃n. The QQ-plot indicates that the distribution of
p

n
�
γ̃n� γ0

�
has slightly

heavier tails than the normal distribution.
Of course, 100 simulations are far too few to judge about the distribution of

the estimators. Also, one could ask how large n should be before the distribution
of
p

n
�
γ̂n� γ̂0

�
is close to its limit. For a further investigation we have simulated

1000 paths of the process up to time 1000 (with the same values of ∆ and the
parameters as before). For known values of α, β and σ we have calculated γ̂n

for the first 250 observations, the first 500 observations and all 1000 observations
respectively.1

Table II.2 shows empirical means and standard errors of the “raw” estimates
and the standardized estimates. For the standardized estimates the mean de-
creases as n grows but the variance is quite stable. Figure II.9 shows QQ-plots of

1For about 2% of the simulations Un did not have a minimum in (1=2;1) when we used the first
250 observations only. To simplify computations we did not use use these simulations at all —
neither for 500 or 1000 observations. Instead, we drew new simulated paths until we had 1000
paths for which γ̂250, γ̂500 and γ̂1000 all existed.

(II.31)
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Figure II.8: QQ-plots for normalized estimators of γ from case (A). The plot
to the left is for

p
n
�
γ̂n� γ0

�
and the plot to the right is for

p
n
�
γ̃n� γ0

�
. The

QQ-plots have the quantiles of the standard normal distribution on the x-axis
and the quantiles of the variable under consideration on the y-axis.

n
γ̂n

p
n(γ̂n� γ0)

mean s.e. mean s.e.
250 0.7579 0.0251 0.1256 0.3975
500 0.7549 0.0179 0.1086 0.4000
1000 0.7523 0.0129 0.0716 0.4071

Table II.2: Empirical means, variances and standard errors of γ̂n and
p

n
�
γ̂n�

γ0

�
in case (A) for 1000 simulated paths and three different values of n, the

number of observations. The true value of γ is 0.75.

the standardized estimators. The normal distribution fits rather well for n = 1000
(and n= 250if a single very small estimate is ignored). For n= 500the distribution
is somewhat further from the normal distribution. We conclude that although we
could not show that the limit distribution is Gaussian, a Gaussian approximation
would presumably be satisfactory for practical purposes.

II.8 Concluding remarks

In this paper we have discussed a method for estimation of parameters in the
diffusion function. It provides consistent and in some cases also weakly conver-
gent estimators. The usual limit theory does not apply; instead we used empirical
process theory for proving the asymptotic results. The drift parameters must be
estimated before the new technique is employed. This is possible using martingale
estimating functions if the drift is linear but can otherwise be difficult. We applied
the method to simulated data from the difficult CKLS model and obtained satis-
factory (though presumably not efficient) estimators. From a theoretical point of
view the application of empirical process theory is perhaps most interesting.

(II.32)
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Figure II.9: QQ-plots for
p

n
�
γ̂n� γ0

�
for 1000 simulated paths and three

different values of n. The values of α, β and σ are considered as known.

II.A Appendix: On empirical process theory

The asymptotic results in this paper (Sections II.4 and II.5) are proved using empir-
ical process theory which — in short — provides uniform versions of the classical
limit theorems. The first part of this appendix is a cursory review of the theory that
we use and its statistical applications for so-called M-estimation. It can be read in-
dependently from the rest of the paper. It is by no means a complete overview of
the theory of empirical processes. No proofs are included either and we refer to
the textbook by van der Vaart & Wellner (1996) for precise definitions and further
details. The textbook by Pollard (1984) is an excellent reference as well. None
of the results are new. However, we do not know of any applications of empirical
process theory for statistics on diffusion processes. The second part is concerned
with the application in this paper. In particular we show that certain classes of
function are so-called Vapnik-Červonenkis subgraph classes.

II.A.1 General Theory

In this section we give a hasty overview of some main results from the theory of
empirical processes and discuss briefly an application to M-estimators.

(II.33)
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Glivenko-Cantelli and Donsker classes

First of all, we point out what is meant by uniform limit theorems. Let Z;Z1;Z2; : : :
be independent, identically distributed random variables defined on some proba-
bility space (E;E ;Pr) with values in Z (equipped with some σ -algebra) and com-
mon distribution P = Z(Pr). Furthermore, let f : Z ! R be measurable. Then,
according to the classical law of large numbers, the average of f (Z1); : : : ; f (Zn)
converges, that is

1
n

n

∑
i=1

f (Zi)! E f (Z) (II.31)

almost surely and in L1 provided that f 2 L1(P). The classical central limit theorem
asserts that the centered and scaled sum converges weakly to a normal distribu-
tion, that is

1p
n

n

∑
i=1

�
f (Zi)�E f (Z)�! N

�
0;E� f (Z)�E f (Z)�2

�
(II.32)

weakly provided that f 2 L2(P) with E f 2(Z)> 0.
The corresponding uniform theorems claim that (II.31) and (II.32) hold uni-

formly for f varying in suitably small classesF . To be specific, the uniform version
of the law of large numbers states that

sup
f2F ���1n n

∑
i=1

�
f (Zi)�E f (Z)����! 0 (II.33)

almost surely, and F is called a Glivenko-Cantelli class if (II.33) holds.
To define a uniform central limit theorem, assume that supf2F �� f (z)�E f (Z)��<

∞ for all z 2 Z and let l∞(F ) be the set of functionals G : F ! R for which
supf2F jG( f )j< ∞. Equip l∞(F) with the uniform topology. Then, for each n, the

functional Gn :F ! R defined by

f !Gn( f ) = 1p
n

n

∑
i=1

�
f (Zi)�E f (Z)� (II.34)

is an element of l∞(F ) and one can ask whether Gn converges weakly to a Gaus-
sian limit G 2 l∞(F ). The process Gn is called the empirical process indexed by F
and F is called a Donsker class if Gn converges weakly in l∞(F ).
Covering numbers, entropy and VC classes

Now, when is a certain class a Glivenko-Cantelli or Donsker class? Informally, one
has to measure the size of the class and decide whether it is small enough for the
convergence results hold for all f 2F simultaneously.

Covering and entropy numbers are very important in this context. For a given
norm jj � jj on F and ε > 0 the covering number N(ε;F ; jj � jj) is defined as the

(II.34)



II.A. Appendix: On empirical process theory 101

minimal number of jj � jj-balls of radius ε needed to cover F . The logarithm of the
covering number is called the entropy. Obviously, if G �F (and the same norm
is used on both F and G ) then N(ε;G ; jj � jj)� N(ε;F ; jj � jj). Hence, the covering
number (or entropy number) makes sense as a measure of size of a given class.

Note that N(ε;F ; jj � jj) is one for large ε if supf ;g2F jj f �gjj<∞. Also, N(ε;F ; jj �jj) increases as ε decreases and the crucial point is how fast it increases for small
ε. In fact, F is a Glivenko-Cantelli class if certain measurability conditions are
satisfied, if the envelope function F = supf2F j f j is in L1(P) and if

sup
Q

N(εjjFjjQ;1;F ; jj � jjQ;1)< ∞ (II.35)

for all ε > 0. Here jj � jjQ;r denotes the Lr(Q)-norm, jj f jjrQ;r = R j f jr dQ, and the
supremum is taken over all probability measures Q onZ with 0< jjFjjQ;1= EQ F <
∞. This result is a corollary to Theorem 2.4.3 in van der Vaart & Wellner (1996).

Furthermore,F is a Donsker class if some further measurability conditions are
met, if F 2 L2(P) and ifZ ∞

0
sup

Q

q
logN

�
εjjFjjQ;2;F ; jj � jjQ;2�dε < ∞ (II.36)

where the supremum is taken over all probability measures Q with 0< jjFjj2Q;2 =
EQ F2 < ∞ (van der Vaart & Wellner 1996, Theorem 2.5.2). Note that convergence

at +∞ is automatic since N
�
εjjFjjQ;2;F ;L2(Q)�= 1 for ε > 2. Indeed, let f ;g 2F

be arbitrary. Thenjj f �gjj2Q;2 = Z j f �gj2dQ� Z
4jFj2dQ = 4jjFjj2Q;2

so for ε > 2, it holds that jj f � gjjQ;2 � 2jjFjjQ;2 < εjjFjjQ;2 and only one ball of
radius εjjFjjQ;2 is needed to cover F .

The above entropy conditions are automatically met for so-called Vapnik-Čer-
vonenkis subgraph classes (VC subgraph classes) of functions — a terminology
that we will now introduce and later use for our application.

Definition II.10 Let C be a collection of subsets of a set Y . Then C is said to
shatter a finite subset fy1; : : : ;yng of Y if each of its 2n subsets has the form C\fy1; : : : ;yng for some C 2 C , and C is a VC class (of sets) if there is a n0 such that no
subset of Y of size n0 is shattered by C . (Then the same holds for all n� n0.) The
least n0 with this property is called the VC index of C . A collection F of functions
f : Z ! R is a VC subgraph class if the subgraphs G = f(y; t) 2 Z �R : t < f (y)g
form a VC class of sets in Z �R. The VC index of F is defined as the VC index ofG . �

Intuitively, a class of functions cannot separate many points in Z �R if the
functions are “too much alike” so that the class is small in some sense. For ex-
ample, a VC subgraph class with VC index 1 consists of one single function. A

(II.35)
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non-trivial example arises when E = R and F = f ftgt2R is the class of left half-
lines ft(x) = 1fx�tg. This class has VC index 2.

Formally, VC subgraph classes are useful because the corresponding covering
numbers are bounded by a polynomial in 1=ε: if F is a VC subgraph class then
for any r � 1 there exist constants K and a such that for all probability measures
Q with jjFjjQ;r > 0,

N(εjjFjjQ;r;F ; jj � jjQ;r)� K
�1

ε

�a:
This follows from Theorem 2.6.7 in van der Vaart & Wellner (1996). In particular,
both (II.35) and (II.36) are satisfied so a VC subgraph class of functions that meets
certain measurability conditions is a Glivenko-Cantelli class if its envelope function
F 2 L1(P) and a Donsker class as well if F 2 L2(P).
Extension to stationary processes

All the above was for independent, identically distributed random variables. In
our application we need stronger theorems since our observations originate from
a stochastic differential equation and are thus not independent. Fortunately, the
convergence results can be extended to cover the case of strictly stationary and
sufficiently strong mixing random variables, just as for the classical theory.

Let now Z̃ = (Z0;Z1; : : :) be a strictly stationary sequence defined on (E;E ;Pr)
with invariant distribution P and β -mixing coefficients βk, defined in the usual
way

βk = 1
2

sup
I

∑
i=1

J

∑
j=1
jPr(Ai\B j)�Pr(Ai)Pr(B j)j:

The supremum is taken over l � 0 and all pairs of partitions fA1; � � � ;AIg andfB1; : : : ;BJg of E such that all Ai are in the σ -algebra generated by Z0; : : : ;Zl and
all B j are in the σ -algebra generated by Zl+k;Zl+k+1; : : : . Note that if Z̃ is strictly
stationary and Markov (which is the case in our application), then the supremum
is attained for l = 0 (Bradley 1986, Theorem 4.1) and it also holds that

βk = Z
sup

A

��pk∆;θ0
(x;A)�µθ0

(A)��dµθ0
(x)

where pk∆;θ0
is the transition probability from time 0 to time k∆ (Doukhan 1994,

Chapter 2.4). Arcones & Yu (1994) prove that Gn — still defined by (II.34) —
converges in l∞(F ) if F is a VC subgraph class and there is a p > 2 such that
F 2 Lp(P) and

kp=(p�2)(logk)2(p�1)=(p�2)βk ! 0 as k! ∞:
Note that while for independent observations F should only be square integrable,
F should in the stationary case be in Lp(P) for some p strictly larger than 2. Ar-
cones & Yu (1994) also state a result in terms of covering numbers which we will
not repeat here.

(II.36)
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Application to M-estimators

Following van der Vaart & Wellner (1996, Section 3.2), let us turn to a statistical
application of the above theory. Consider the situation where a parameter θ 2Θ�Rd is estimated by minimizing some functional Un(θ), that is θ̂n = argminθ2ΘUn(θ).
In other words, θ̂n is a M-estimator. Let P0 denote the probability corresponding to
the true parameter value θ0.

First, assume that Un(θ)!U(θ) in P0-probability, uniformly in θ and that the
limit process U is deterministic and has θ0 as unique minimum point. Then if

the argmin-functional is continuous at U , the convergence in probability of θ̂n to
θ0, that is consistency of θ̂n, follows immediately. In fact, the argmin-functional
is continuous at functions U for which the unique minimum is well-separated in
the sense that infθ 62Θ0

U(θ)>U(θ0) for all neighbourhoods Θ0 of θ0. Hence, this is

what we shall assume about U .

Next, assume that we have somehow established the rate of convergence and
consider the “local parameters” θ0+h=rn and the “localized criterion function”

h!Mn(h) =Un(θ0+h=rn)�Un(θ0)
instead of θ and Un themselves. Again, if Mn ! M weakly with respect to P0 in

l∞(Rd ) and M P0-almost surely has a well-separated (now stochastic) minimum, ĥ,

then ĥn = rn
�
θ̂n�θ0

�
converges weakly to ĥ. (Of course, for a set T , l∞(T ) is the

set of bounded, real functions defined on T .)

Convergence of Mn on all of l∞(Rd ) is often not satisfied but fortunately less
can do: if ĥn is tight, then it suffices that Mn converges in l∞(H) for all compact
subsets H � Rd (van der Vaart & Wellner 1996, Theorem 3.2.2).

II.A.2 The application in this paper

For the applications in this paper it is easy to see that the criterion functions (Un;1,

Un;2 and Un) converge uniformly in θ to a deterministic limit U(θ). Hence, the
corresponding estimators are consistent (under the assumption that θ0 is well-
separated as a minimum of U), see Theorem II.4.

For the convergence results in Section II.5 the hardest part is to obtain weak
convergence of the centered and scaled criterion functions (Mn;1, Mn;2 and Mn).

With this result,
p

n-consistency and weak convergence of the estimator (properly
centered and scaled) follows relatively easily. The lemmas below claim that the
relevant classes of functions are in fact VC classes so weak convergence can be
obtained via theorems from Arcones & Yu (1994). For the precise application of
the VC-property, we refer to the proof of Proposition II.6.

Lemma II.11 The sets F = fFxgx2I and F̃ = fF̃xgx2I where Fx(y) = b(y)1fy�xg and

F̃x(y) =�b(y)1fy>xg are VC subgraph classes of functions with VC index 2.

(II.37)
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Proof Consider F first. By definition, we must show that the class G = fGxgx2I of
subgraphs Gx defined by

Gx = f(s; t) 2 I�R : t < Fx(s)g:
is a VC class with index 2 on I�R.

We show that no subset f(s1; t1);(s2; t2)g of I�R with two elements is shattered
by G . If f(s1; t1)g is picked out by G then x1 2 I exists such that

Gx1
\f(s1; t1);(s2; t2);(s3; t3)g= f(s1; t1)g:

This implies that (s1; t1) 2 Gx1
and (s2; t2) 62 Gx1

(since (s2; t2) 2 Gx1
would implyf(s2; t2)g= Gx1

\f(s2; t2)g � Gx1
\f(s1; t1);(s2; t2)g= f(s1; t1)g). By definition of Gx1

,

t1 < Fx1
(s1) = b(s1)1fs1�x1g

t2� Fx1
(s2) = b(s2)1fs2�x1g:

Similarly, if f(s2; t2)g is picked out then

t1� Fx2
(s1) = b(s1)1fs1�x2g

t2 < Fx2
(s2) = b(s2)1fs2�x2g:

for an x2 2 I. Hence, if both f(s1; t1)g and f(s2; t2)g are picked out then

b(s1)1fs1�x2g � t1 < b(s1)1fs1�x1g
implying that either s1� x2, s1 > x1 and b(s1)< 0 or s1 > x2, s1� x1 and b(s1)> 0.
Similarly, either s2� x1, s2 > x2 and b(s2)< 0 or s2 > x1, s2� x2 and b(s2)> 0.

If b(s1) and b(s2) are both positive then x2 < s1 � x1 and x1 < s2 � x2 which
cannot both hold. Similarly if b(s1) and b(s2) are both negative. We conclude that
one of the values b(s1) and b(s2) is positive and the other negative. If b(s2)< 0<
b(s1) then the empty set cannot be picked out: if x0 2 I exists with ti � b(si)1fsi�x0g
for i = 1;2 then s2 � x0 < s1 in contradiction to the assumption that s1 � s2. See
Figure II.10 for illustration. Similarly, the two-point set f(s1; t1);(s2; t2)g cannot be
picked out if b(s1)< 0< b(s2).

It follows that G does not shatter f(s1; t1);(s2; t2)g implying that G is VC with
index 2 (since obviously the index is larger than 1).

For F̃ , one can either use similar arguments or note that F̃x = �b+Fx so the
subgraph for F̃x is given by

G̃x = f(s; t) : t < F̃x(s)g= f(s; t) : t +b(s)< Fx(s)g:
Consequently, a subset f(s1; t1);(s2; t2)g is shattered by F̃ if and only if f(s1; t1+
b(s1));(s2; t2+ b(s2))g is shattered by F . The latter is not possible, cf. the proof
above. �

(II.38)
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x2 s1 s2 x1

b

t1

t2

Figure II.10: The singletons f(s1; t1)g and f(s2; t2)g are picked out (by x1 and
x2 respectively) but the empty set is not picked out.

In the proof above we chose to show directly that F and F̃ are VC subgraph
classes. One could also use lemmas 2.6.16 and 2.6.18 from van der Vaart & Well-
ner (1996): the indicator functions

Hx(y) = 1fy�xg = 1(�∞;0℄(y� x)
form a VC subgraph class of functions (Lemma 2.6.16), Fx = bHx and F̃x =�b+bHx;
now use Lemma 2.6.18.

In the proof of Proposition II.8 we consider functions Fx defined by Fx(y) =
2b(y)�λ1(x)�1fy>xg�. By Lemma 2.6.18 from van der Vaart & Wellner (1996), F
is a VC subgraph class if H = fHxgx2I where

Hx(y) = λ1(x)�1fy>xg; y 2 I

is a VC subgraph class. See Figure II.11 for graphs of Hx for various x’s.
To our best knowledge it is not trivial that H is a VC subgraph class. In fact,

we found it easier to give a direct proof that the covering numbers are bounded
by a polynomial in 1=ε than proving the VC property. We refer to the proof of
Proposition II.8 for the argument. For completeness, however, we now prove thatH is a VC subgraph class with index 3. Following the approach from above, we
show that no subset with three elements is shattered by the class of subgraphsG = fGxgx2I where Gx = f(s; t) 2 I�R : t < Hx(s)g. The proof is somewhat more
tiresome than the one above, though not difficult, since we must take the empty
set as well as all subsets with one and two elements into account. In fact, it is
possible to find three-point sets for which all subsets with one and two elements
are picked out.

Recall that 0� λ1(x) � 1 and that λ1 is non-increasing. This will be used fre-
quently in the following.

Lemma II.12 The set H = fHxgx2I where Hx(y) = λ1(x)�1fy>xg is a VC subgraph

class of functions with index 3. ConsequentlyF = fFxgx2I with Fx(y) = 2b(y)�λ1(x)�
1fy>xg� is a VC subgraph class.

(II.39)



106 Paper II. Estimation of Diffusion Parameters

Proof First, choose s1;s2;x0;x1;x2;x122 I and t1; t2 2 R such that

x0 < s1 < x1 < s2 < x12 < x2

λ1(x0)�1< t2 < λ1(x2)< t1 < λ1(x12)< λ1(x1)< λ1(x0):
By inspection (or by Figure II.11), it follows that (s1; t1) 2 Gc

x0
\Gx1

\Gc
x2
\Gx12

and (s2; t2) 2 Gc
x0
\Gc

x1
\Gx2

\G12 so that the set f(s1; t1);(s2; t2)g is shattered by G .

Hence the VC index of H is at least 3.

x1 x2

Hx0

Hx1

Hx12

Hx2

λ1(x2)λ1(x1)λ1(x0)1

-1

λ1(x12)
x0 s1 s2 x12

t1

t2

Figure II.11: Graphs of Hx for various values of x. The two-point setf(s1; t1);(s2; t2)g is shattered by G so the VC index is at least 3.

Next, let f(s1; t1);(s2; t2);(s3; t3)g with s1 � s2 � s3 be a subset of I�R that is
shattered by G . In particular the singletons f(s1; t1)g and f(s2; t2)g are picked out,
so x1;x2 2 I exist such that

t1<λ1(x1)�1fs1>x1g; t2�λ1(x1)�1fs2>x1g
t1�λ1(x2)�1fs1>x2g; t2<λ1(x2)�1fs2>x2g

It follows that

λ1(x2)�1fs1>x2g � t1 < λ1(x1)�1fs1>x1g (II.37)

λ1(x1)�1fs2>x1g � t2 < λ1(x2)�1fs2>x2g (II.38)

(II.40)
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Hence, if s2 � x1 then λ1(x1) < λ1(x2)� 1fs2>x2g implying s2 � x2 since λ1 is non-

negative. Then (II.37) and (II.38) yields λ1(x2) < λ1(x1) and λ1(x1) < λ1(x2) re-
spectively. Similarly if s1 > x1 so we conclude that s1� x1 < s2.

By symmetry we obtain

s1� x1 < s2� x2 < s3

if all three singletons f(s1; t1)g, f(s2; t2)g and f(s3; t3)g are picked out. Hence,

t1<λ1(x1); t2�λ1(x1)�1; t3�λ1(x1)�1
t1�λ1(x2); t2<λ1(x2); t3�λ1(x2)�1

and

t1�λ1(x3)�1fs1>x3g; t2�λ1(x3)�1fs2>x3g; t3<λ1(x3)�1fs3>x3g:
If s1 � x3 then λ1(x3) � t1 < λ1(x1) and if x3 < s3 then λ1(x1)�1� t3 < λ1(x3)�1.
Hence, we cannot have s1� x3 < s3. There are thus two possibilities; either

x3� s3; t1�λ1(x3); t2�λ1(x3); t3<λ1(x3) (II.39)

or

x3 < s1; t1�λ1(x3)�1; t2�λ1(x3)�1; t3<λ1(x3)�1: (II.40)

First, assume that (II.39) holds. Then

s1� x1 < s2� x2 < s3� x3

λ1(x1)�1� t3 < λ1(x3)� t2 < λ1(x2)� t1 < λ1(x1):
Also assume that any subsets of f(s1; t1);(s2; t2);(s3; t3)gwith two elements is picked
out. Hence x12;x13;x232 I exist such that

t1<λ1(x12)�1fs1>x12g; t2<λ1(x12)�1fs2>x12g; t3�λ1(x12)�1fs3>x12g
and similarly for x13 and x23.

Then necessarily s2 � x12 < x2, s1 � x13 < x1 and s3 � x23 < x3. This follows
because, with short notation:

x12 < s2) t2 < λ1(x12)�1� 0;

x12� x2) λ1(x12)> t1 > λ1(x2)) x12 < x2;

x13 < s1) t1 < λ1(x13)�1< 0;

x13� x1) λ1(x13)> t1 > λ1(x2)) x13 < x2 < s3) λ1(x13)�1> t3 > λ1(x1)�1) x13 < x1;

x23� x3) λ1(x23)> t2 > λ1(x3)) x23 < x3;

x23 < s3) λ1(x23)�1> t3 > λ1(x1)�1) x23 < x1 < s2) t2 < λ1(x23)�1< 0

(II.41)
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where the right hand sides of the implications are all contradictory to the assump-
tions. Hence, we have established that

s1� x13 < x1 < s2� x12 < x2 < s3� x23 < x3;

λ1(x1)�1� t3 < λ1(x13)�1� λ1(x3)� t2< λ1(x23)� λ1(x2)� t1 < λ1(x12)� λ1(x1);
see Figure II.12 for illustration.

λ1(x3)λ1(x23)
t2

λ1(x2)λ1(x12)
t1

λ1(x1)λ1(x13)1

-1

t3

Hx2

Hx1

Hx13

Hx12

Hx23

Hx3

s1 x13 x1 s2 x12 x2 s3 x23 x3

Figure II.12: Graphs of Hx for various x’s. All one-point subsets and two-
point subsets of f(s1; t1);(s2; t2);(s3; t3)g are picked out, but the empty set
cannot be picked out.

Assume furthermore that the empty set is picked out, that is, x0 2 I exists such
that ti� λ1(x0)�1fsi>x0g for i = 1;2;3. Since x0� s3 implies λ1(x0)� t3< 0, we must

(II.42)
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have x0 < s3 and thus λ1(x0)�1� t3 < λ1(x13)�1 implying x0 > x13� s1. Hence,
s1 < x0 < s3. But this cannot hold since x0 < s3 � x23 implies λ1(x0) > λ1(x23) > t2
and s1 < x0 implies λ1(x0) � t1 < λ1(x12) and hence x0 > x12� s2 and t2 � λ1(x0).
We conclude that the empty set cannot be picked out if (II.39) holds.

Next, assume that (II.40) holds and that all three two-point subsets are picked
out. Then, by arguments as above,

x3 < s1� x13 < x1 < s2� x12 < x2 < s3

but both x23 < x3 and x23� s3 are possible. In both cases the assumption that the
empty set can be picked out, leads to a contradiction as above.

We conclude that no three-point set f(s1; t1);(s2; t2);(s3; t3)g is shattered by the
subgraphs and hence that H is a VC class of index 3. �
II.B Appendix: A mixing result for the OU-process

The proposition below claims that the Ornstein-Uhlenbeck process has β -mixing
coefficients that decrease at an exponential rate.

Proposition II.13 There exist constants c1;c2 > 0 such that the β -mixing coefficients

βk for the Ornstein-Uhlenbeck process satisfy βk � c1e�c2k∆.

Proof Recall that

βk = Z
sup

A

��pk∆;σ0
(x0;A)�µσ0

(A)��dµσ0
(x0);

where pk∆;σ0
is the transition probability from time 0 to time k∆. Consequently, if

pk∆;σ0
(x0; �) has density πk(x0; �) then

βk � ZR ZR��πk(x0;x)�π0(x))��π0(x)dxdx0

where π0 = µ(�;σ0) is short for the true invariant density.

Let τ2 = �σ2
0=2β and τ2

k = τ2(1� e2βk∆) < τ2 and let ξk = eβ∆kx0 for x0 2 R
given. Then π0 is the density for N(0;τ2) and πk(x0; �) is the density for N

�
ξk;τ2

k

�
.

If furthermore π̃k is the density for N(0;τ2
k ), thenZR��πk(x0;x)�π0(x))��dx� ZR��πk(x0;x)� π̃k(x))��dx+ZR��π̃k(x)�π0(x))��dx (II.41)

for all x0 2 R. The integrals are L1-distances between densities for normal distri-
butions with same variance or same mean. The integrals are represented by the
shaded areas in Figures II.13 and II.14.

(II.43)
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0 xi_kxi_k/2

pi_k-tilde pi_k

Figure II.13: Densities of two normal distributions with same variance but
different expectations. The size of the shaded areas corresponds to the first
integral in (II.41).

For the first integral, let x0 > 0 be arbitrary and let U be a standard Gaussian
random variable. ThenZR��πk(x0;x)� π̃k(x)��dx = 2

Z ∞

ξk=2

�
πk(x0;x)� π̃k(x)�dx= 2P

�
U >� ξk

2τk

��2P
�

U > ξk

2τk

�� K1
ξk

τk

where K1 is a constant that does not depend on k and x0. Similarly, it holds thatRR��πk(x0;x)� π̃k(x)��dx � �K1ξk=τk if x0 < 0, so for all x0 2 R (recall that πk(0; �) =
π̃k), ZR��πk(x0;x)� π̃k(x)��dx� K1

ξk

τk
= K1

eβ∆kjx0j
τ
�
1� e2β∆k

�1=2
:

For a new constant K2 = K1τ�1Eµ
σ0
jX0j= K1

p
2=π, it follows thatZR ZR��πk(x0;x)� π̃k(x)��π0(x0)dxdx0� K2eβ∆k�

1� e2β∆k
�1=2

which decreases at an exponential rate as k increases.

(II.44)
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0 x_k-x_k

pi_k-tilde

pi_0

Figure II.14: Densities of two normal distributions with same expectations
but different variances. The size of the shaded areas corresponds to the
second integral in (II.41).

For the second integral, note that it does not depend on x0 and let xk be the
positive point of intersection between π̃k and π0, see Figure II.14. ThenZR��π̃k(x)�π0(x))��dx= 2

Z xk

0

�
π̃k(x)�π0(x)�dx+2

Z ∞

xk

�
π0(x)� π̃k(x)�dx= 4

Z ∞

xk

π0(x)dx�4
Z ∞

xk

π̃k(x)dx:
With U as above we thus getZR��π̃k(x)�π0(x))��dx = 4P

�
U > xk

τ

��4P
�

U > xk

τk

�� K1

�xk

τk
� xk

τ

�� K1

1� �1� e2β∆k
�1=2

τ
�
1� e2β∆k

�1=2
xk

which tends to zero at exponential rate if xk is bounded. By solving the equation
π̃k(z) = π0(z) one finds that

x2
k =�τ21� e2β∆k

e2β∆k
log
�
1� e2β∆k���τ2 log

�
1� e2β∆k

�
e2β∆k

which tends to 1 as k ! ∞. If follows that
RR RR��π̃k(x)� π0(x)��π0(x0)dxdx0 and

hence βk tends to zero at an exponential rate as k! ∞. �
(II.45)
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Simulated Likelihood

Approximations

for Stochastic Volatility Models

Abstract

The objective of this paper is approximate maximum likelihood estimation for
stochastic volatility models. We consider a two-dimensional diffusion process(X ;V) where V is ergodic while X has drift and diffusion coefficient completely
determined by V . The distribution of V — and thereby also the distribution of X
— depends on an unknown parameter θ , and our concern is estimation of θ from
discrete-time observations of X . The volatility process V remains unobserved. We
consider approximate maximum likelihood estimation. For the k’th order approxi-
mation we pretend that the observations form a k’th order Markov chain, find the
corresponding approximate log-likelihood function, and maximize it with respect
to θ . There is no explicit expression for the approximate log-likelihood function,
but it can be calculated by simulation. For each k the method yields consistent
and asymptotically normal estimators. Simulations of the model where V is a
Cox-Ingersoll-Ross model are used for illustration.

Key words

Approximate maximum likelihood estimation; asymptotic normality; consistency;
Cox-Ingersoll-Ross process; discretely observed diffusion processes; stochastic vol-
atility models.

Publication details

A shorter version of this paper (without Appendix III.A.2, with fewer details on
the Cox-Ingersoll-Ross model and the simulation study and with fewer proofs in-
cluded) will be submitted for publication shortly.
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III.1 Introduction

We are concerned with inference for continuous-time stochastic volatility models.
By stochastic volatility models we will mean models for a pair of processes (X ;V )
where V is a latent, positive diffusion process and the observable process X solves
a stochastic differential equation with diffusion term

p
V and drift determined by

V as well. The process V is called the volatility process. We consider parametric
specifications of the drift and the diffusion function for V , and the objective is
approximate maximum likelihood estimation based on discrete-time observations
of X .

For a start, consider the classical Black-Scholes model (or geometric Brownian
motion)

dPt = αPt dt + τPt dWt (III.1)

which is (or rather was) often used to model stock prices. The classical option pric-
ing formula was derived for this model (Black & Scholes 1973). If P solves (III.1)
then logP has constant volatility (squared diffusion) and independent, normally
distributed increments. It is well-known that these properties are inconsistent with
empirical findings: studies have revealed that stock returns (and other financial
data) often are dependent, have strongly leptokurtic marginal distributions and
exhibit signs of randomly varying variance over time.

In the discrete-time setting ARCH-type models and discrete-time stochastic
volatility models have been used for modeling such phenomena. See Shephard
(1996) for an overview of both model types. However, for derivative pricing (and
related problems) it may be advantageous to use continuous-time models, retain-
ing the Black-Scholes machinery at our disposal. Also, irregularly sampled data
are easier to handle for continuous-time models than for discrete-time models.

Of course one could generate the above features by simply allowing for non-
linear drift and diffusion functions for the price process. In the stochastic volatility
framework, however, the linear structure of the equation for P is retained, but an
additional source of variability is introduced: the constant τ in (III.1) is replaced
by the value of a latent diffusion process

p
V . The modified equation for P is thus

dPt = αPt dt +pVtPt dWt : (III.2)

In this paper we shall consider models given by

dXt = ξ (Vt)dt +pVt dWt

dVt = b(Vt ;θ)dt +σ(Vt;θ)dW̃t

where V is stationary and ergodic. With P = eX it follows by Itô’s formula that this
model is equivalent to (III.2) if ξ (v) = α�v=2 (and α is known). Hence, a possible
application of the model is for the logarithm of a stock price.

The drift and diffusion for V are parameter dependent, and we shall be inter-
ested in estimation of θ from equidistant observations X0;X∆; : : : ;Xn∆ of X . The

(III.2)
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volatility process V remains unobserved. Conditional on V the above model is
very simple as increments of X are independent and Gaussian: Zi = Xi∆�X(i�1)∆ �
N(Mi;Si) where Mi = R i∆(i�1)∆ ξ (Vs)ds and Si = R i∆(i�1)∆Vs ds:

For the above model to make sense, we must model V as a positive pro-
cess. Various models were suggested in the late eighties and early nineties: V
was modeled as a geometric Brownian motion (Hull & White 1987), as a Cox-
Ingersoll-Ross process (Hull & White 1988, Heston 1993), as the exponential of
a Ornstein-Uhlenbeck process (Wiggins 1987, Chesney & Scott 1989) and as a
squared Ornstein-Uhlenbeck process (Scott 1987, Stein & Stein 1991).

The above papers all focus on pricing of a European call option written on a
stock with price process P. Pricing is investigated for fixed value of the parameter
θ in the equation for V , and the majority of the papers pay no or little attention
to estimation of θ . Only Scott (1987) and Chesney & Scott (1989) address the
problem seriously and derive moment-like estimators for the parameters. More
recently, several estimation approaches have been suggested, some of which have
earlier been applied for the discrete-time versions of the models; see Shephard
(1996) and Ghysels et al. (1996) for surveys.

Genon-Catalot et al. (1999) consider the approximation that the increments
Z1; : : : ;Zn are independent and identically distributed with conditional distribution
of Z1 given V equal to N(∆ξ (V0);∆V0). The estimators are consistent as n!∞ only
if the time-step ∆ decreases to zero as n increases. For (large) fixed values of ∆ the
bias may be considerable. Also, only estimation of parameters from the station-
ary distribution of V is possible. In another paper, Genon-Catalot et al. (1998b)
consider mean-reverting models for V . Then calculation of various moments of
the joint distribution of the increments is possible, and estimation is carried out
by matching theoretical and empirical moments. For any fixed ∆ the estimators
so obtained are consistent and asymptotically normal as n increases. However,
the simulation study in Section III.7 indicates that there may be serious existence
problems in practice. The two above methods require no hard numerical com-
putations or simulations and are thus quick in practice. As opposed to this most
other methods (and the one suggested in this paper) are quite computationally
intensive.

Nielsen et al. (2000) use a filtering approach where values of V are estimated
together with the parameter. This requires that n (that is, the number of obser-
vations) differential equations are solved by numerical methods. Eraker (1998)
use a Bayesian approach which requires Markov Chain Monte Carlo simulation of
values of V and X at time-points in between those where X is observed as well
as of values of θ ; see also Elerian et al. (2000). The so-called efficient method of
moments (Gallant & Tauchen 1996) is applied to a stochastic volatility model by
Andersen & Lund (1997). Finally, Sørensen (1999) studies prediction-based esti-
mating functions. Particular attention is paid to the case where for a function f
and an integer k, each term in the estimating function is given in terms of the value
f (Zi) and its projection on some space determined by the previous k increments
Zi�k+1; : : : ;Zi. Typically, the projections must be calculated by simulation.

(III.3)
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The method suggested in this paper is somewhat related since we also choose
a number k� 0 and base inference on k lags of the increments. For a given value of
k the idea is to pretend that (Z1;Z2; : : :) is k’th order Markov, find the corresponding
approximate likelihood function, and maximize it with respect to θ . In particular
k = 0 corresponds to pretending that observations are independent, drawn from
the stationary distribution (and may thus be interpreted as an improvement of the
method by Genon-Catalot et al. (1999) who use an approximation to the stationary
density), and k = 1 corresponds to pretending that observations are Markov.

There is no explicit expression for the k-lag conditional density, but we can ex-
press it in terms of expectations with respect to the distribution of (Vt)0�t�(k+1)∆
and therefore calculate it by simulation of V on the interval from zero to (k+1)∆.
For any fixed ∆ and any k� 0 the approximate score function in unbiased and (un-
der regularity conditions, of course) the estimator is consistent and asymptotically
normal as the number of observations increases.

We use the model where ξ � 0 and V is a Cox-Ingersoll-Ross process as example
and use the method on simulated data. If the parameter in the diffusion function
is considered known we obtain satisfactory estimates even for k = 0, whereas we
for all three parameters unknown must use a larger k, say 4, to get reasonable
estimates.

The paper is organized as follows. In Section III.2 we discuss the model and
its probabilistic properties. We introduce the likelihood approximations and the
estimation method in Section III.3 and discuss the computational aspects in Sec-
tion III.4. The efficiency of the estimators is briefly discussed in Section III.6. In
Section III.7 we discuss the Cox-Ingersoll-Ross model for V in detail, try out the es-
timation method on simulated data and compare with simple moment estimators.
We conclude in Section III.8.

III.2 Model and basic assumptions

In this section we discuss the model and the basic assumptions in detail. Let(W;W̃ ) = f(Wt;W̃t)gt�0 be a standard two-dimensional Brownian motion defined
on a filtered probability space (Ω;F ;Ft;Pr) satisfying the usual conditions and
let UX ;UV : Ω ! R be F0-measurable random variables, mutually independent
and independent of (W;W̃). Furthermore, let (X ;V) = f(Xt;Vt)gt�0 be a two-dimen-
sional diffusion process governed by the stochastic differential equations

dXt = ξ (Vt)dt +pVt dWt ; X0 =UX (III.3)

dVt = b(Vt ;θ)dt +σ(Vt;θ)dW̃t ; V0 =UV : (III.4)

Here θ is an unknown p-dimensional parameter from the parameter space Θ� Rp

and V is positive Pr-almost surely. The functions ξ : (0;∞)! R, b : (0;∞)�Θ! R
and σ : (0;∞)�Θ ! (0;∞) are known and continuous (for b and σ : with respect
to the state variable).

(III.4)
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The parameter θ determines the distribution of V and thereby also the dis-
tribution of X , and our concern is estimation of θ from equidistant observations
X0;X∆; : : : ;Xn∆ of X . The volatility process V remains unobserved.

We shall assume that ξ , b and σ are such that a solution (X ;V) to (III.3)–(III.4)
exists for all θ 2 Θ with V positive, stationary and ergodic. For the latter we need
some further notation. Introduce

α(A ;B) = sup
���Pr(A\B)�Pr(A)Pr(B)�� : A 2A ;B 2B	 (III.5)= sup
���Cov(UA;UB)�� : σ(UA)�A ;σ(UB)�B;0�UA;UB � 1

	
as a measure of “dependence” between σ -algebras A � F and B � F . The
inequality � above is trivial, the other follows because

��Cov(2UA�1;2UB�1)�� is at
most four times the expression in (III.5), see Doukhan (1994, Lemma 3, page 10).
For a stochastic process Y = fYtgt2T in discrete time (T = N [f0g) or continuous
time (T = [0;∞)), define the α-mixing coefficients by

αY (t) = sup
s2T

α
�

σ
�fYugu�s

�;σ�fYugu�s+t

��
and say that Y is α-mixing if αY (t)! 0 as t ! ∞. It is well-known that α-mixing
implies ergodicity (Doukhan 1994, page 21). One can think of the α-mixing co-
efficients as measures of the temporal dependence in Y . See Doukhan (1994), for
example, for the general theory of mixing and Genon-Catalot et al. (1998b) for an
overview of mixing for diffusion processes.

We are now ready to specify the basic assumption.

Assumption III.1 For any value of θ 2 Θ there exist

(A1) a unique strong solution (X ;V) to (III.3)–(III.4) with state space R� (0;∞);
(A2) a probability µθ on (0;∞) such that V is strictly stationary and α-mixing if

UV � µθ . �
Simple integral conditions on b and σ are known to imply stationarity and α-

mixing of the diffusion V : define the scale density sθ and the speed density µ̃θ for V
by sθ (v) = exp

��2
R v

1 b(u;θ)=σ2(u;θ)du
�

and µ̃θ (v) = (σ2(v;θ)sθ (v))�1. With this

notation, if
R 1

0 sθ (v)dv = R ∞
1 sθ (v)dv = +∞ and Kθ = R ∞

0 µ̃θ (v)dv < +∞, then V has
invariant distribution µθ (dv) = µ̃θ (v)=Kθ dv and condition (A2) is satisfied. See
Karlin & Taylor (1981, Section 15.6) or Karatzas & Shreve (1991, Section 5.5), for
example, for the above integral conditions, and Genon-Catalot et al. (1998b) for
the mixing result.

Because of the structure of the model it is natural to consider increments of X .
Define for i 2 N

Zi = Xi∆�X(i�1)∆; Mi = Z i∆(i�1)∆ ξ (Vs)ds; Si = Z i∆(i�1)∆Vs ds

(III.5)
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and Hi = (Mi;Si). Let R∞ be the space of real sequences and letB∞ be the σ -algebra
on R∞ generated by the finite-dimensional rectangles. Then Z = (Z1;Z2; : : :) is a
random variable with values in (R∞ ;B∞).

The following proposition states some probabilistic properties of the distribu-
tion of Z. The results are well-known but are proved below for completeness.

Proposition III.2 Assume that condition (A1) holds. Then, conditional on fVtgt�0,

the increments Z1;Z2; : : : of X are independent and the conditional distribution of Zi
is Gaussian with expectation Mi and variance Si. If furthermore condition (A2) holds

and V0 = UV � µθ , then H = (H1;H2; : : :) and Z = (Z1;Z2; : : :) are strictly stationary

and Z is α-mixing.

Proof Let (C+;B(C+)) be the space of positive, continuous functions defined on[0;∞), equipped with the σ -algebra generated by the coordinate projections xÆt ,
t 2 [0;∞) given by xÆt (c) = c(t) for c 2 C+. With this notation V takes values in(C+;B(C+)).

For each v 2 C+, define the process (that is, the random variable with values in
the space of real, continuous functions)

F(v;W ) = �Ft(v;W)�t�0 = �Z t

0
ξ (vs)ds+Z t

0

p
vs dws

�
t�0

which is well-defined by condition (A1).
It follows (by approximation and localizations arguments) that X �X0 is indis-

tinguishable from the process F(V;W) which is defined path-wise by F(V;W)(ω) =
F(V (ω);W ). In particular, the conditional distribution of X �X0 given V = v is the
same as the distribution of F(v;W). The first assertion follows immediately since
F(v;W ) has independent, Gaussian increments: Ft2

(v;W)�Ft1
(v;W )� N(m(v);s(v))

for t1 < t2 where m(v) = R t2
t1

ξ (vs)ds and s(v) = R t2
t1

vs ds.

For the second assertion, let j; l 2 N be arbitrary. If V0� µθ then fVtg0�t�l∆ andfVtg j∆�t�(l+ j)∆ have same distribution. Hence, (H1; : : : ;Hl) and (H j+1; : : : ;H j+l)
have same distribution, and by the distributional result above it the follows that(Z1; : : : ;Zl) and (Z j+1; : : : ;Z j+l) have same distribution. Since j and l are arbitrary,

it follows that H and Z are stationary.
We finally show that the α-mixing coefficients for Z and V (corresponding to

an arbitrary θ which is omitted from the notation) satisfy αZ( j) � αV

�( j� 1)∆�
for all integers j � 2 so that α-mixing of V implies α-mixing of Z. Let j � 2
and l � 1 be arbitrary but fixed. Also, let 0�U1 � 1 be measurable wrt. the σ -
algebra generated by (Z1; : : : ;Zl) and 0�U2� 1 be measurable wrt. the σ -algebra
generated by (Zl+1;Zl+ j+1; : : :). Then, by the distribution result above,

EU1U2 = Z
Ω

E
�
U1U2jG �dPr = Z

Ω
E
�
U1jG l∆

0

�
E
�
U2jG ∞(l+ j�1)∆�dPr

where G = σ(Vt : t � 0), G l∆
0 = σ(Vt : 0� t � l∆) and G ∞(l+ j�1)∆ = σ(Vt : t � (l + j�

(III.6)
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1)∆). Hence,��Cov(U1;U2)��= ���Cov
�

E
�
U1jG l∆

0

�;E�U2jG ∞(l+ j�1)∆������ αV

�( j�1)∆� (III.6)

since E
�
U1jG l∆

0

�
is G l∆

0 -measurable and E
�
U2jG ∞(l+ j�1)∆� is G ∞(l+ j�1)∆-measurable.

The inequality (III.6) holds for arbitrary j � 2 and l � 1 so it follows that αZ( j)�
αV

�( j�1)∆� and that Z is α-mixing as claimed. �
By Proposition III.2 we easily derive moments of Z in terms of moments of M

and S. For example, if the relevant moments exist,

Eθ Zi = Eθ Mi

Varθ Zi = Eθ Si +Varθ Mi

Eθ Z4
i = 3Eθ S2

i +Eθ M4
i +6EM2

i Si

for i 2 N and

Covθ (Zi;Z j) = Covθ (Mi;M j) (III.7)

Covθ (Z2
i ;Z2

j ) = Covθ (Si +M2
i ;S j +M2

j )
for all i 6= j. In particular the Z’s are uncorrelated — but not independent — if
ξ � 0. For simple models of V the above moments may be calculated explicitly;
for more complicated models they must be computed by simulation.

In the following we shall always assume that Assumption III.1 is satisfied
and that V is started stationarily, V0 � µθ . We let Pθ = Z(Pr) denote the distri-
bution of Z = (Z1;Z2; : : :) when the parameter is θ . For d � 1, let furthermore
Pd

θ = (Z1; : : : ;Zd)(Pr) be the distribution of d consecutive increments.
Note that Z is a hidden Markov model with continuous state space of the hidden

chain: Let H̃i = (Vi∆;Mi;Si). Then H̃ = (H̃1; H̃2; : : :) is stationary Markov (because
V is stationary Markov and H̃i is a function of (Vt)(i�1)∆�t�i∆), and conditionally

on H̃ the increments Z1;Z2; : : : are independent with conditional distribution of Zi
depending on (i; H̃) via H̃i only. Hence, the second part of the above proposition
is a special case of Proposition 2.1 in Genon-Catalot et al. (1998b) which claims
that a hidden Markov model inherits stationarity and ergodicity from the hidden
chain. See Genon-Catalot et al. (1998b) for formal definitions and proofs of the
hidden Markov properties.

The following proposition shows that Z is reversible in the sense that (Z1; : : : ;Zn)
and (Zn; : : : ;Z1) are identically distributed.

Proposition III.3 Under Assumption III.1, (Z1; : : : ;Zn) and (Zn; : : : ;Z1) have same

distribution for all n� 1, i.e. (Zn; : : : ;Z1)� Pn
θ for all n� 1

Proof We first show that (H1; : : : ;Hn) and (Hn; : : : ;H1) have same distribution, next
that (Z1; : : : ;Zn) and (Zn; : : : ;Z1) have the same densities.

(III.7)
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First, for each i = 1; : : : ;n
Mi = Z i∆(i�1)∆ ξ (Vs)ds = Z (n�i+1)∆(n�i)∆ ξ (Vn∆�s)ds

and similarly for Si. Define a function f = ( f1; : : : ; f2n) from the space of positive
continuous functions defined on [0;n∆℄ to R2n coordinate-wise by

f2i�1

�fvsg0�s�n∆
�= Z i∆(i�1)∆ ξ (vs)ds; i = 1; : : : ;n

f2i

�fvsg0�s�n∆
�= Z i∆(i�1)∆ vs ds; i = 1; : : : ;n:

Then (H1; : : : ;Hn) = �(M1;S1); : : : ;(Mn;Sn)� = f
�fVsg0�s�n∆

�
. From the theory of

one-dimensional diffusion processes it is well-known that V is time reversible in
the sense that the processes fVt�sg0�s�t and fVsg0�s�t are identically distributed
for all t � 0. Hence,(H1; : : : ;Hn) = f

�fVsg0�s�n∆
� D= f

�fVn∆�sg�s�n∆
�= (Hn; : : : ;H1);

that is, (H1; : : : ;Hn) and (Hn; : : : ;H1) are identically distributed.
Second, recall from Proposition III.2 that conditional on fVtgt�0 the variables

Z1; : : : ;Zn are independent and Zi � N(Mi;Si). Hence, the density p(Z1;::: ;Zn) of(Z1; : : : ;Zn) at a point (z0; : : : ;z00) 2 Rn is given by

p(Z1;::: ;Zn)(z0; : : : ;z00) = Z
ϕ(z0;h0) � � �ϕ(z00;h00)dπ(H1;::: ;Hn)(h0; : : : ;h00) (III.8)

where we for h = (m;s) have used the notation ϕ(�;h) for the Gaussian density
with mean m and variance s and the notation π(H1;::: ;Hn) for the distribution of(H1; : : : ;Hn). Note that we have omitted the parameter dependence from the nota-
tion. The density of the reversed sequence (Zn; : : : ;Z1) at the same point (z0; : : : ;z00)
is (with obvious notation)

p(Zn;::: ;Z1)(z0; : : : ;z00) = Z
ϕ(z0;h0) � � �ϕ(z00;h00)dπ(Hn;::: ;H1)(h0; : : : ;h00)= Z
ϕ(z0;h0) � � �ϕ(z00;h00)dπ(H1;::: ;Hn)(h0; : : : ;h00)= p(Z1;::: ;Zn)(z0; : : : ;z00)

where the second equality holds because π(Hn;::: ;H1)= π(H1;::: ;Hn) and the third equal-

ity follows from (III.8). Since z0; : : : ;z00 were arbitrary the sequences (Z1; : : : ;Zn)
and (Zn; : : : ;Z1) have same distribution. �

Finally some comments on possible generalizations of the model. Under (III.3)
and (III.4) the distribution of X is completely determined by V . This is no longer

(III.8)
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true if ξ and the diffusion function for X is allowed to depend on X or if the Brow-
nian motions W and W̃ are correlated. Both generalizations destroy the nice con-
ditional distribution result in Proposition III.2 and make estimation in the model
very difficult.

One could also generalize the model by allowing ξ and the diffusion function
of X to depend on an unknown parameter η. The increments of X would still
be independent and Gaussian, but the mean and variance of the Gaussian distri-
butions would depend on η. Estimation of η is easily built into the estimation
method below, see Section III.8 for further remarks.

III.3 Approximations to the likelihood function

We aim at estimation of θ from discrete-time observations X0;X∆; : : : ;Xn∆. In this
section we describe a class of approximations to the likelihood function. Later we
discuss computational aspects (Section III.4) and show that maximization of any

of the approximations leads to a consistent and asymptotically normal estimator
of θ (Section III.5).

III.3.1 The fundamental idea

Motivated by the distributional result in Proposition III.2 we consider the vector
of increments (Z1; : : : ;Zn). For an observation (z1; : : : ;zn) the likelihood function is
given by

Ln(θ) = Z n

∏
i=1

1p
2πsi

exp
��(zi�mi)2

2si

�
dπn

θ (hn)= Eπn
θ

n

∏
i=1

ϕ(zi;Mi;Si); (III.9)

where hn is short for (h1; : : : ;hn) = �(m1;s1); : : : ;(mn;sn)�, πn
θ = Hn(Pr) is the distri-

bution of Hn and ϕ(�;m;s) is the density of N(m;s).
The likelihood is the expectation with respect to the distribution of Hn of a cer-

tain functional. In principle, this expectation could be calculated to any precision
as follows: (i) simulate a number of paths V up to time n∆ according to (III.4); (ii)
calculate for each simulation (approximations to) the integrals Mi and Si and the
above product; (iii) calculate the average of the simulated product values. Finally
the (simulated) likelihood function should be maximized in order to obtain an es-
timator of θ . However, this approach is not feasible in practice because one needs
a huge number of simulated paths of V just to calculate the likelihood function for
a single parameter value. This is not strange since two paths of V over a large time
interval may be very different.

Our approach will be to consider suitable approximations to Ln rather than
Ln itself. The approximations under consideration are easier to simulate, but of
course this is at the expense of loss of efficiency.

(III.9)
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Introduce some further notation on the distribution of Z: let pk
θ (z1; : : : ;zk) de-

note the density at (z1; : : : ;zk) of the simultaneous distribution of Z1; : : : ;Zk, k 2 N.

It follows from Proposition III.2 that pk
θ > 0 so the k-lag conditional density

pc;k
θ (zk+1jz1; : : : ;zk) = pk+1

θ (z1; : : : ;zk+1)
pk

θ (z1; : : : ;zk)
at zk+1 of Zk+1 given (Z1; : : : ;Zk) = (z1; : : : ;zk) is well-defined and positive for all

z1; : : : ;zk+1. For k = 0 we let pc;0
θ = p1

θ . Furthermore, introduce the notation z j
i

for

the vector (zi; : : : ;z j), i� j. With this notation the likelihood has the form

Ln(θ) = pn
θ (z) = n�1

∏
i=0

pc;i
θ (zi+1jz1; : : : ;zi) = n�1

∏
i=0

pc;i
θ (zi+1jzi

1) (III.10)

since Z is strictly stationary (Proposition III.2).
Recall that the increments form an α-mixing sequence, that is αZ(k)! 0 as

k ! ∞. Intuitively, this means that the dependence between Zi and (Z1; : : : ;Z j)
is small when i is much larger than j. It thus makes good sense to approximate
the conditional densities in (III.10) by k-lag conditional densities for some k large
enough. To be specific, leave for 0� k < n fixed the first k+1 terms in (III.10) un-
changed but approximate for i = k+1; : : : ;n�1 the conditional density pc;i

θ (zi+1jzi
1)

by pc;k
θ (zi+1jzi

i�k+1). The corresponding approximation of the likelihood is

Lk
n(θ) = k

∏
i=0

pc;i
θ (zi+1jz1; : : : ;zi) n�1

∏
i=k+1

pc;k
θ (zi+1jzi�k+1; : : : ;zi)= pk+1

θ (z1; : : : ;zk+1) n�1

∏
i=k+1

pc;k
θ (zi+1jzi�k+1; : : : ;zi)

and the idea is to use the approximation Lk
n instead of the true likelihood function,

that is, maximize Lk
n(θ) in order to obtain an estimator θ̂ k

n of θ . In particular k = 1
corresponds to a Markov approximation:

L1
n(θ) = p1

θ (z1)n�1

∏
i=1

pc;1
θ (zi+1jzi)

and k = 0 corresponds to independence of Z1; : : : ;Zn:

L0
n(θ) = n

∏
i=1

p1
θ (zi):

No approximation is made for k = n�1, but the idea is to use a small value of k.
Note that Lk

n would be the true likelihood function if Z was k’th order Markov.
It is important to realize that, although we use approximations of the likeli-

hood function, no bias is introduced and the estimators are consistent, see Sec-
tion III.5. The reason is that we use the true k-lag conditional k-lag densities and

(III.10)
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not some approximation. For example, assume for a moment that Z is a strictly
stationary auto-regressive process of order 2 with N(θ1Z1+ θ2Z2;σ2) as the con-
ditional distribution of Z3 given (Z1;Z2). For k = 1 we would not just put θ1 = 0!
Instead we would use that stationarity implies that the conditional distribution
of Z2 given Z1 is Gaussian with mean αZ1 where α = θ2=(1� θ1) and variance
σ2

1 = σ2=(1� θ2
1). Similarly, for k = 0 we would use the true stationary marginal

distribution N(0;σ2
1=(1�α2)) (rather than N(0;σ2) corresponding to θ1 = θ2 = 0).

Another important property is that the k’th order approximate maximum likeli-
hood estimator is invariant to data transformations: if g is a bijective function fromR to some subset of R then the estimator based on g(Z1); : : : ;g(Zn) is the same as
that based on Z1; : : : ;Zn.

In practice we shall of course minimize U k
n = � logLk

n=n rather than maximize
Lk

n. Define uk
θ =� logpk

θ , uc;k
θ =� logpc;k

θ . With this notation

U k
n (θ) =�1

n
logLk

n(θ) = 1
n

uk+1
θ (zk+1

1 )+ 1
n

n�1

∑
i=k+1

uc;k
θ (zi+1jzi

i�k+1) (III.11)= 1
n

n�1

∑
i=k

uk+1
θ (zi+1

i�k+1)� 1
n

n�1

∑
i=k+1

uk
θ (zi

i�k+1): (III.12)

III.3.2 Comments on the number of lags needed

Now some comments on how to choose k. Further remarks follow in Section III.6.
First note that is does no harm to use a larger k than the actual dependence struc-
ture in data calls for. For example, if the dependence on lag k is negligible, then
U k�1

n and U k
n should be indistinguishable.

In Section III.5 we show that, for each k, the estimator θ̂ k
n obtained by mini-

mizing U k
n is consistent and asymptotically normal as n increases. From this point

of view, choosing k is a question of efficiency. Intuitively we should prefer large k’s
to small k’s since further characteristics of the dependence structure are taken into
account as k increases. However, we have not been able to show that asymptotic
efficiency (measured as one divided by the asymptotic variance of the estimator
in case of a one-dimensional parameter) is in fact increasing in k; see Section III.6
for further comments. Also, one should take into account that the computing time
increases with k, see Section III.4.

It is of course crucial that the parameter is identifiable from the conditional
distribution of Zk+1 given Zk

1:Lθ (Zk+1jZk
1) 6=Lθ 0(Zk+1jZk

1); θ 6= θ 0: (III.13)

The distribution fVtg0�t�∆ depends on all parameters (otherwise the model is over-
parametrized). Typically, this implies that the distributions of H1 and Z1 depend on
all parameters as well, such that the identifiability condition (III.13) is satisfied for
k = 0. Note that for ξ � 0 (implying Mi � 0) it is easy to see thatLθ (Z1) =Lθ 0(Z1)
if and only if Lθ (S1) =Lθ 0(S1): indeed, the characteristic function at x 2 R of the

(III.11)
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stationary distribution of Z1 is given by

Eθ eixZ1 = Eθ Eθ
�
eixZ1jS1

�= Eθ e�S1x2=2 (III.14)

which is the Laplace transform of the distribution of S1 evaluated at x2=2.

In principle it could happen that (III.13) holds for some k0 but not for all k > k0.
For example, the conditional distribution of Z2 given Z1 (corresponding to k = 1)
need not depend on θ just because the stationary distribution does (k0 = 0). We
believe, however, that this problem is not likely to appear for the diffusion models
considered in this paper.

In practice, it might be very difficult (or impossible) to check that (III.13) is
satisfied. However, we may be able to check that the parameter is determined
from the simultaneous distribution of (Z1; : : : ;Zk+1), that is,Lθ (Zk+1

1 ) 6=Lθ 0(Zk+1
1 ); θ 6= θ 0; (III.15)

for example via moment considerations. Note that (III.15) is necessary, but not
sufficient for (III.13). Also note that the first sum in (III.12) can be interpreted as
a sum of k+ 1 (minus) log-likelihoods, each of which is obtained by pretending
that (k+1)-tuples with no overlap are independent, see Appendix III.A.1 for de-
tails. Hence, in case the parameter is determined from the simultaneous, but not
from the conditional distributions, one could consider minimizing the first sum in
(III.12) rather than (III.12) itself.

Although (III.13) — or (III.15) — holds, we might have problems identifying
the parameters in practice. For example, consider the model where X has no
drift (ξ � 0) and V is a Cox-Ingersoll-Ross model. We study this model in detail
in Section III.7. It turns out that although the distributions of (Z1;Z2) for two
different parameter values are not the same, they can be very much alike, even
for parameters far from each other. This makes estimation of all parameters in the
model practically impossible for k = 1. However, the identifiability problems seem
to diminish as k increases, and k = 4 yields acceptable estimates for seven of ten
simulated datasets considered in Section III.7.

Finally some more specific guidelines on how to choose k for concrete data.
Since for increasing k, U k

n takes more of the dependence structure of the model
into account, it might be useful to plot the autocorrelation functions for various
transformations of the data (like the data squared or the absolute values of the
data). If the empirical autocorrelation coefficients from lag k0 and onwards are
negligible then it seems reasonable not to use k much larger than k0. As noted
above, if we for some k0 have caught the important features of the distribution

then U k
n should be close to U k0

n for k > k0. Hence, so should the corresponding
estimates and one can try increasing values of k until the parameter estimates and
the minimal values of U k

n stabilize.

(III.12)
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III.4 Computational aspects

In this section we discuss how to compute U k
n(θ) in practice for a fixed but arbitrary

value of θ . Let us first focus on calculation of pk+1
θ (z̃k+1

1 ) for arbitrary z̃1; : : : ; z̃k+1 2R. An expression for U k
n (θ) follows almost immediately.

Replace n in formula (III.9) by k+1 in order to write pk+1
θ (z̃k+1

1 ) as an expecta-
tion

pk+1
θ (z̃k+1

1 ) = Eπk+1
θ

k+1

∏
j=1

ϕ(z̃ j;M j;S j) (III.16)

with respect to the distribution of (H1; : : : ;Hk+1). Again, ϕ(�;m;s) is the density of
N(m;s). We compute (III.16) as an average of R simulated values,

1
R

R

∑
r=1

k+1

∏
j=1

ϕ
�

z̃ j;M(r)
j
;S(r)

j

�
where for each r = 1; : : : ;R�

H(r)
1
; : : : ;H(r)

k+1

�= ��M(r)
1
;S(r)

1

�; : : : ;�M(r)
k+1

;S(r)
k+1

��
is a simulation of (H1; : : : ;Hk+1). We can compute (III.16) to any accuracy by

choosing R large enough. Of course pk
θ (z̃k

1) is calculated similarly; simply replace
the above product from 1 to k+1 by the product from 1 to k. Note that we can
use the same simulations of (H1; : : : ;Hk) when we calculate pk

θ and pk+1
θ .

The r’th simulation of (H1; : : : ;Hk+1) is calculated via a simulation, V (r), of the
volatility process V from time zero to time (k + 1)∆ as follows. First, the initial
value of V (r) is chosen according to the stationary distribution,

V (r)
0
� µθ :

Next, split the interval [0;(k+1)∆℄ into N(k+1)∆ subintervals of length δ = 1=N
and calculate values V (r)

lδ
, l � N(k+1)∆ recursively by the Millstein scheme

V (r)
lδ =V (r)(l�1)δ +b

�
V (r)(l�1)δ ;θ�δ +σ

�
V (r)(l�1)δ ;θ�ε(r)

l+ 1
2

σ
�
V (r)(l�1)δ ;θ�σ 0�V (r)(l�1)δ ;θ���ε(r)l

�2�δ
�; l � N(k+1)∆

where σ 0 = ∂vσ is the derivative of σ with respect to the state variable and the in-
novations ε(r)

1
; : : : ;ε(r)(k+1)N are independent, identically N(0;δ )-distributed random

variables. We could of course use the simpler Euler scheme (that is, the above
recursive scheme without the last term) instead of the Millstein scheme.

Finally, recall that M j = R j∆( j�1)∆ ξ (Vs)ds and S j = R j∆( j�1)∆Vs ds and let for j =
1; : : : ;k+1

M(r)
j

= 1
δ

jN�1

∑
l=( j�1)N ξ

�
V (r)

lδ

�; S(r)
j

= 1
δ

lN�1

∑
l=( j�1)NV (r)

lδ

(III.13)
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S3

∆ 3∆2∆

V (r)
S1 S2

Figure III.1: Calculation of S(r)
1
; : : : ;S(r)

k+1
from simulated values V (r)

lδ
as a left

Riemann sum. The thick line shows (the linear interpolation of) the path V (r)
and S1; : : : :Sk+1 are the volumes of the shaded areas. In the Figure, k+1= 3
and N = 4.

be the simple left Riemann approximations. The calculation of S1; : : : ;Sk+1 from

the discrete-time simulation V (r) is illustrated in Figure III.1 for k + 1 = 3 and
N = 4. The thick line shows the simulated V -path (where we have used linear
interpolation between partition points lδ), and S1;S2 and S3 are the sizes of the
shaded areas.1

As noted we can use the same simulations (H(r)
1
; : : : ;H(r)

k
) of (H1; : : : ;Hk) for

computation of pk
θ and pk+1

θ . Even more important, we can use the same simula-

tions of (H1; : : : ;Hk+1) for all arguments z̃k+1
1 . In other words we calculate U k

n(θ)
as �1

n

n�1

∑
i=k

log
1
R

R

∑
r=1

k+1

∏
j=1

ϕ(r)
i�k+ j; j + 1

n

n�1

∑
i=k+1

log
1
R

R

∑
r=1

k

∏
j=1

ϕ(r)
i�k+ j; j (III.17)

where ϕ(r)
i; j is short for ϕ(zi;M(r)

j
;S(r)

j
).

There are several “parameters” to choose: the number R of repetitions, the
number N of subintervals per ∆-interval, and of course the number of lags k. We
already discussed how to choose k in the end of Section III.3. The parameters N

1Of course, one could use better approximations to the integrals; for example the size of the
areas under the thick line. It would probably not improve the calculation much though, since
(i) the simple approximation introduces no systematic error, and (ii) we do not know how the
simulated path would behave had we simulated it at points in between the lδ ’s.

(III.14)
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and (in particular) R determine how accurately the values of U k
n are determined

and must be large enough that the calculation of U k
n (θ) is suitably stable, that is,

the simulated vales of U k
n (θ) are “sufficiently close” for different simulations.

The number of calculations needed to compute one single value of U k
n (θ) in-

creases approximately linearly in both R and k+1, and if computing time is lim-
ited one must compromize between stability and the number of lags involved.
Note that it might be necessary to increase R as k increases since we must simu-
late longer paths of V and thus might need more simulations to obtain numerical
stability.

So-called antithetic variables may increase computational stability. Here, it
means that we make simulations of V in pairs where we in one simulation use
the randomly generated ε ’s in the Millstein scheme and in the other one use minus

the ε ’s. For R sets of randomly generated ε ’s we thus compute 2R simulated paths
of V , compute the ϕ(r)-values in (III.17) for each of the 2R simulated paths of V ,
and average over all 2R simulations. The two ϕ(r)-values corresponding to the
same set of ε ’s (plus and minus) tend to be negatively correlated. The computing
time is approximately doubled when we use antithetic variables, but hopefully we
need R less than half as big as without antithetic variables in order to obtain same
precision.

It is possible to compute suitably accurate values of U k
n in reasonable time: for

n = 500 observations from the model where ξ � 0 and V is a Cox-Ingersoll-Ross
process, it takes somewhat less than a minute to compute a value of U4

n with N = 10
and R = 10:000on a Digital alpha running at 500 MHz. This is only to give an idea
of the computational burden — no attempts have been made as to optimize the
routine.

Finally a very important remark: As always when criterion functions (or es-
timating functions) are simulated, it is crucial to use the same random numbers

for different values of θ . Otherwise R must be chosen extremely large for the
simulated criterion function to behave continuously.

III.5 Asymptotic results

In this section we prove consistency and asymptotic normality (as n ! ∞) of the
estimator θ̂ k

n satisfying U k
n(θ̂ k

n ) = infθ2ΘU k
n (θ). The results hold for any fixed values

of k and ∆. The true parameter is denoted by θ0, and all results are with respect to
Pθ0

.

It is essential for the results below that limit theorems hold for the sequence
Z. As already mentioned, the ergodic theorem holds under Assumption III.1 since
α-mixing implies ergodicity. This, together with some regularity conditions, is suf-
ficient to show consistency. For the asymptotic normality we furthermore need
a central limit theorem for Z. We use a version of the central limit theorem in-
volving further assumptions on the α-mixing coefficients. Both limit theorems are
formulated and proved in the appendix (Theorem III.12) although the results are
well-known.

(III.15)
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The first term in (III.11) is negligible as n increases so we focus on the sum
1
n ∑n�1

i=k+1 uc;k
θ (zi+1jzi

i�k+1). In the following we let jj � jj denote the usual Eucledian

norm on Rp , and for a function g : Rp ! R and a probability Q on Rp we write
Q(g) for the integral

R
gdQ.

III.5.1 Consistency

Apart from Assumption III.1 we need the following regularity conditions for con-
sistency of θ̂ k

n .

Assumption III.4 Fix k � 0 and assume that the following conditions hold:

(B1) the parameter space Θ is a compact subset of Rp ;

(B2) for all θ 2 Θ there are a constant δθ > 0 and a function ūθ : Rk+1 ! R in

L1(Pk+1
θ0

) such that supθ 02Tθ ;δθ

��uc;k
θ 0 (zk+1jzk

1)�� � ūθ (zk+1
1 ) for all z1; : : : ;zk+1 2 R

where Tθ ;δ = fθ 0 2 Θ : jjθ �θ 0jj � δg;
(B3) the functions θ ! uc;k

θ (zk+1jz1; : : : ;zk) from Θ to R are continuous for all
z1; : : : ;zk+1 2 R;

(B4) the conditional distributions of Zk+1 given Zk
1 = zk

1 with respect to Pk+1
θ and

Pk+1
θ 0 are different for θ 6= θ 0 and all z1; : : : ;zk 2 R. �

Note that conditions (B1) and (B3) ensure that a minimum of U k
n exists, but

the minimum could be attained at the boundary of Θ and need not be unique.
Condition (B2) expresses that uc;k

θ is locally dominated integrable wrt. Pk+1
θ0

and

implies that uc;k
θ is in L1(Pk+1

θ0
) for all θ 2 Θ. The ergodic theorem thus yields

U k
n (θ)! Pk+1

θ0
(uc;k

θ ) = Eθ0
uc;k

θ
�
Zk+1jZ1; : : : ;Zk

�
(III.18)

as n!∞ in Pθ0
-probability (even Pθ0

-a.s and in L1(Pθ0
)). Denote the limit by Jk(θ).

Conditions (B2) and (B3) make U k
n and Jk continuous and ensure that the conver-

gence (III.18) holds uniformly in θ (Lemma III.6). Condition (B4) is an identifia-
bility condition ensuring that Jk has unique minimum for θ = θ0 as asserted in the
following lemma.

Lemma III.5 Assume that Assumption III.1 holds. If furthermore (B2) and (B4)

hold then Jk(θ)� Jk(θ0) for all θ 2Θ with equality if and only if θ = θ0.

(III.16)
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Proof By definition of Jk and Jensen’s inequality we get for θ 2 Θ

Jk(θ0)� Jk(θ) = Eθ0
uc;k

θ0
(Zk+1jZk

1)�Eθ0
uc;k

θ (Zk+1jZk
1)= Eθ0

log

� pc;k
θ (Zk+1jZk

1)
pc;k

θ0
(Zk+1jZk

1)�� logEθ0

� pc;k
θ (Zk+1jZk

1)
pc;k

θ0
(Zk+1jZk

1)�
with equality if and only if pc;k

θ (zk+1jzk
1) = pc;k

θ0
(zk+1jzk

1) for Pθ0
-almost all z1; : : : ;zk+1,

that is, if and only if θ = θ0 by condition (B4). The density of (Z1; : : : ;Zk+1) wrt.

Pθ0
at (z1; : : : ;zk+1) is pk

θ0
(zk

1)pc;k
θ0
(zk+1jzk

1). Hence,

Eθ0

� pc;k
θ (Zk+1jZk

1)
pc;k

θ0
(Zk+1jZk

1)�= ZRk+1
pc;k

θ (zk+1jzk
1) pk

θ0
(zk

1)d(zk+1
1 )= ZRk

pk
θ0
(zk

1)ZR pc;k
θ (zk+1jzk

1)dzk+1 dzk
1= ZRk

pk
θ0
(zk

1)dzk
1= 1

where we have used that pc;k
θ (�jzk

1) and pk
θ0
(�) are densities on R and Rk respectively.

It follows that Jk(θ0)� Jk(θ)� log1= 0 with equality if and only if θ = θ0. �
The next lemma claims that the convergence (III.18) is uniform in θ 2 Θ. It is

of course important that Θ is compact. The proof is almost identical to the proof
of Lemma 3.3 in Bibby & Sørensen (1995) but is given here for completeness.

Lemma III.6 Under Assumption III.1 and conditions (B1), (B2), and (B3), Jk is

continuous and supθ2Θ
��U k

n (θ)� Jk(θ)��! 0 as n!∞ in probability wrt. Pθ0
.

Proof We first show continuity of Jk: Let θn ! θ and choose δθ and ūθ according

to (B2). Then jjθn�θ jj< δθ and hence
��uc;k

θn

��� ūθ for n large enough. Dominated

convergence now yields Jk(θn)! Jk(θ).
Next, recall that Tθ ;δ = fθ 0 2 Θ : jjθ � θ 0jj � δg and define the function w :

Θ� (0;∞)�Rk+1 by

w(θ ;δ ;zk+1
1 ) = sup

θ 02Tθ ;δ ��uc;k
θ (zk+1jzk

1)�uc;k
θ 0 (zk+1jzk

1)��:
Then w(θ ;δ ;zk+1

1 )! 0 as δ ! 0 for all θ 2 Θ and all z1; : : : ;zk+1 2 R. This follows

from condition (B3) on continuity of θ ! uc;k
θ (zk+1jzk

1). Also, w(θ ;δ ; �) is dominated
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by 2ūθ for all θ 2 Θ, all δ < δθ and all z1; : : : ;zk+1 2 R. Of course δθ and ūθ are
chosen according to condition (B2). Hence, by dominated convergence w(θ ;δ ; �)
is in L1(Pk+1

θ0
) for δ < δθ and Eθ0

w(θ ;δ ;Zk+1
1 )! 0 as δ ! 0 for all θ 2 Θ.

Now let ε > 0. For each θ 2 Θ choose λθ 2 (0;δθ ℄ such that w(θ ;δ ; �) is in

L1(Pk+1
θ0

) with Eθ0
w(θ ;δ ;Zk+1

1 ) < ε=4 for all δ < δθ and jJk(θ)� Jk(θ 0)j < ε=4 ifjjθ�θ 0jj< λθ (recall that Jk is continuous). Let B(θ ;λ ) = fθ 0 2 Rp : jjθ �θ 0jj< λg
be the ball with centre θ and radius λ . Then Θ � [θ2ΘB(θ ;λθ ) and since Θ is
compact the open covering of Θ has a finite sub-covering. That is, θ1; : : : ;θm exist
such that Θ� [m

j=1B(θ j;λθ j
).

Consider a fixed θ 2Θ and choose j 2 f1; : : : ;mg such that θ 2 B(θ j;λθ j
). Thenjjθ �θ jjj< λθ j

and��U k
n (θ)� Jk(θ)��� ��U k

n (θ j)� Jk(θ j)��+ ��U k
n (θ)�U k

n(θ j)��+ ��Jk(θ j)� Jk(θ)��:
Here, the first term only depends on θ j and the third term is smaller than ε=4. For
the second term, note that��U k

n (θ)�U k
n (θ j)��= ���1n n�1

∑
i=k+1

�
uc;k

θ (Zi+1jZi
i�k+1)�uc;k

θ j
(Zi+1jZi

i�k+1)����� 1
n

n�1

∑
i=k+1

��uc;k
θ (Zi+1jZi

i�k+1)�uc;k
θ j
(Zi+1jZi

i�k+1)��� 1
n

n�1

∑
i=k+1

w
�
θ j;λθ j

;Zi+1
i�k+1

�� ���1
n

n�1

∑
i=k+1

w
�
θ j;λθ j

;Zi+1
i�k+1

��Eθ0
w
�
θ j;λθ j

;Zk+1
1

����+ ε=4

which only depends on θ j. It follows that the supremum of jU k
n (θ)�Jk(θ)j over Θ

is bounded by the maximum over fθ1; : : : ;θmg:
sup
θ2Θ

��U k
n (θ)� Jk(θ)��� max

j=1;::: ;m��U k
n (θ j)� Jk(θ j)��+ max

j=1;::: ;m���1n n�1

∑
i=k+1

w
�
θ j;λθ j

;Zi+1
i�k+1

��Eθ0
w
�
θ j;λθ j

;Zk+1
1

����+ ε=2:
Recall that λθ j

is chosen such that w(θ j;λθ j
) is in L1(Pk+1

θ0
). Also, uc;k

θ j
is in L1(Pk+1

θ0
)

by condition (B2). Hence, by the ergodic theorem, the two first terms converge to
zero in Pθ0

-probability and the lemma follows immediately. �
With these lemmas in hand it is easy to prove consistency of θ̂ k

n :

Theorem III.7 Under Assumptions III.1 and III.4, θ̂ k
n is consistent for θ0, that is,

θ̂ k
n ! θ0 in probability wrt. Pθ0

as n! ∞.

(III.18)
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Proof By assumption, Θ is compact and θ !U k
n (θ) is continuous. The function Jk

is well-defined under (B2) and continuous under (B3), see Lemma III.6. Since Jk

is defined on a compact set Jk is even uniformly continuous.

For η > 0 define Wn(η) = supjjθ�θ 0jj�η
��U k

n (θ)�U k
n (θ 0)��. Then θ̂ k

n is consistent if

Pθ0

�
Wn(η)� 2ψ(η)�! 0; n! ∞ (III.19)

where ψ : [0;∞)! R satisfies limη!0 ψ(η) = 0 (Dacunha-Castelle & Duflo 1986,

Theorem 3.2.8).

By the triangle inequality

Wn(η)� supjjθ�θ 0jj�η

���U k
n (θ)� Jk(θ)��+ ��Jk(θ)� Jk(θ 0)��+ ��U k

n (θ 0)� Jk(θ 0)�� 2 sup
θ2Θ

��U k
n(θ)� Jk(θ)��+ supjjθ�θ 0jj�η

��Jk(θ)� Jk(θ 0)��:
Here, the first term converges to zero in Pθ0

-probability, cf. Lemma III.6 above. The

second term is deterministic and converges to zero as η ! 0 since Jk is uniformly
continuous. Hence, with ψ(η) = supjjθ�θ 0jj�η

��Jk(θ)� Jk(θ 0)��, condition (III.19)

and thus consistency of θ̂ k
n follows. �

III.5.2 Asymptotic normality

We now turn to asymptotic normality of θ̂ k
n . Assume that the criterion function

U k
n is continuously differentiable (Assumption (C2) below) and let U̇ k

n denote the
p-vector of first derivatives. Then any minimizer of U k

n is either on the boundary
of Θ or solves the equation U̇ k

n (θ) = 0. In the latter case the theory of estimat-
ing functions applies, see Sørensen (1998b), for example. Theorem III.9 below
claims that (with a probability tending to one) there exists a solution to U̇ k

n (θ) = 0
and that the solution is asymptotically normal. Let us be more specific about the
regularity conditions:

Assumption III.8 Let ΘÆ denote the set of inner points of Θ and assume that

(C1) the true parameter θ0 is an inner point of Θ, i.e. θ0 2ΘÆ;
(C2) the functions θ ! pc;k

θ (zk+1jzk
1) are twice continuously differentiable for all

z1; : : : ;zk+1 2 R.

Then θ ! uc;k
θ (zk+1jzk

1) is twice continuously differentiable as well. Let u̇c;k
θ =(u̇c;k

θ ; j) j=1;::: ;p = (∂θ j
uc;k

θ ) j=1;::: ;p denote the p-vector of first derivatives and let üc;k
θ =(üc;k

θ ; jl) j;l=1;::: ;p = (∂θ j
∂θl

uc;k
θ ) j;l=1;::: ;p be the symmetric p� p-matrix of second deriv-

atives of uc;k
θ . Assume furthermore that

(III.19)
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(C3) there exists an η > 0 such that u̇c;k
θ0; j is in L2+η (Pk+1

θ0
) for all j = 1; : : : ; p

and such that the α-mixing coefficients for Z corresponding to θ0 satisfy

∑∞
m=1αZ(m)2=(2+η) < ∞;

(C4) there is a neighbourhood T0 of θ0 such that for all θ 2 T0 and all j; l = 1; : : : ; p
there is a constant δθ ; jl > 0 and a function ūθ ; jl : Rk+1 ! R in L1(Pk+1

θ0
) such

that for all z1; : : : ;zk+1 2 R, supθ 02Tθ ;δθ ; jl

��üc;k
θ 0; jl(zk+1jzk

1)��� ūθ ; jl(zk+1
1 ) where, as

before, Tθ ;δ = fθ 0 2 Θ : jjθ �θ 0jj � δg;
(C5) the symmetric p� p matrix

Ak(θ0) = Pk+1
θ0

�
üc;k

θ0

�= Eθ0
üc;k

θ0
(Zk+1jZk

1)
is positive definite. �

Under (C2), U k
n is twice continuously differentiable with first derivative given

by the p-vector U̇ k
n (θ) = 1

n ∑n�1
i=k+1 u̇c;k

θ (zi+1jzi
i�k+1) and second derivative given by

the p� p matrix Ü k
n = 1

n ∑n�1
i=k+1 üc;k

θ (zi+1jxi
i�k+1). Any minimizer of U k

n is either on

the boundary of Θ or solves U̇ k
n(θ) = 0. In particular, under (C1), any minimizer

of U k
n that is consistent for θ0 solves the estimating equation (with a probability

tending to one).
Note that the estimating function U̇ k

n is unbiased, that is, Eθ U̇ k
n(θ) = 0 for all

θ 2 ΘÆ. Indeed,

Eθ u̇c;k
θ ; j(Zk+1jZk

1) = Eθ Eθ

�
u̇c;k

θ ; j(Zk+1jZk
1)��Zk

1

�
and, with obvious notation for the derivatives of pc;k

θ (and if differentiation wrt. θ j
and integration wrt. zk+1 are interchangeable),

Eθ

�
u̇c;k

θ ; j(Zk+1)��Zk
1 = zk

1

�=�Z
ṗc;k

θ ; j(zjzk
1)dz =� ∂

∂θ j

Z
pc;k

θ (zjzk
1)dz = 0

for all z1; : : : ;zk 2 R and all j = 1; : : : ; p.
It is essential for the proof below that the estimating function itself evaluated

at the true parameter value and scaled by n1=2 converges in distribution. Un-
der condition (C3) this follows from the central limit theorem for α-mixing pro-
cesses in the appendix (Theorem III.12.2). To be specific let ζ j(zi+1

i�k+1) be short

for u̇c;k
θ0; j(zi+1jzi

i�k+1); then Theorem III.12.2 claims that the p� p matrix Γk defined

coordinate-wise by

Γk
jl(θ0) = Eθ0

�
ζ j(Zk+1

1 )ζl(Zk+1
1 )�+ ∞

∑
m=1

n
Eθ0

�
ζ j(Zk+1

1 )ζl(Zk+m+1
m+1 )�+Eθ0

�
ζl(Zk+1

1 )ζ j(Zk+m+1
m+1 )�o
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is well-defined and that n1=2U̇ k
n (θ0)! N(0;Γk(θ0)).

Condition (C4) ensures integrability of üc;k
θ0

and suitably uniform convergence

in probability of Ü k
n (θ0) to Ak(θ0). Note that if integration and twice differentiation

can be interchanged, then Pk+1
θ0

(p̈c;k
θ0
=pc;k

θ0
) = 0 and

Ak(θ0) = Pk+1
θ0

�
üc;k

θ0

�= Pk+1
θ0

��
u̇c;k

θ0

��
u̇c;k

θ0

�T
�;

that is, Ak(θ0) equals the first term in Γk. The condition that Ak(θ0) is positive
definite is an identifiability condition.

Theorem III.9 Suppose that Assumptions III.1 and III.8 hold. Then a solution θ̂ k
n to

U̇ k
n (θ) = 0 exists with a probability tending to 1 as n! ∞. Moreoverp

n
�
θ̂ k

n �θ0

�! N
�
Ak(θ0)�1Γk(θ0)Ak(θ0)�1�: (III.20)

Proof It follows from Corollary 2.5 and Theorem 2.8 in Sørensen (1998b) that it
is sufficient to show

n1=2U̇ k
n (θ0)! N

�
0;Γk(θ0)� (III.21)

in distribution wrt. Pθ0
as n! ∞ and

sup
θ2Tθ0;η=pn

��Ü k
n; jl(θ)�Ak(θ0)��! 0 (III.22)

in probability wrt. Pθ0
as n! ∞ for all η > 0 and all j; l 2 f1; : : : ; pg.

As already noted (III.21) follows immediately from condition (C3) and Theo-
rem III.12.2. In order to show (III.22) define Ak(θ) = Pk+1

θ0

�
üc;k

θ

�
for θ 2 T0 and let

j; l 2 f1; : : : ; pg and η > 0 be fixed. By the triangle inequality��Ü k
n; jl(θ)�Ak(θ0)��� ��Ü k

n; jl(θ)�Ak(θ)��+ ��Ak(θ)�Ak(θ0)��:
Choose N large enough that Tθ0;η=pN

� T0. Then, for n � N, Ak(θ) is well-defined

for all θ 2 Tθ0;η=pn. By arguments almost identical to those in the proof of Theo-

rem III.6 it now follows that

sup
θ2Tθ0;η=pN

��Ü k
n; jl(θ)�Ak(θ)��! 0

in Pθ0
-probability as n! ∞ (recall that Tθ0;η=pN

is compact).

Also, Ak is continuous in θ0. The convergence (III.22) follows immediately.
This proves both the existence assertion and the convergence result (III.20). �

(III.21)
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Note that although asymptotic normality is indeed a nice property of the esti-
mator, it is difficult to use in practice as we are not able to compute the asymptotic
variance. Also, the above conditions are all expressed in terms of the distribution
of Z and are thus in general difficult (if possible at all) to check. The condition
on the α-mixing coefficients in (C3) is an exception: we showed in the proof
of Proposition III.2 that αZ( j) � αV

�( j� 1)∆� for all j � 2 so it is sufficient that
the condition holds for the α-mixing coefficients for V . See Genon-Catalot et al.

(1998b), for example, for conditions ensuring exponential decay of the α-mixing
coefficients for V .

Recall from (III.14) that for ξ � 0 and k = 0, the identifiability condition (B4)
holds if and only if the distributions of S1 corresponding to two values θ and θ 0
differ when θ 6= θ 0. We have no similar results for larger values of k. For the
remaining conditions recall that

uc;k
θ (zk+1jzk

1) =� logEπk+1
θ

k+1

∏
i=1

ϕ(zi;Hi)+ logEπk
θ

k

∏
i=1

ϕ(zi;Hi)
where Hi = (Mi;Si), π l

θ is the distribution of H l = (H1; : : : ;Hl) and ϕ(�;h) = ϕ(�;m;s)
is the density of N(m;s) for h = (m;s). Hence, the continuity, differentiability and
local integrability conditions imposed on uc;k

θ would follow from roughly similar

conditions on the densities of Hk
1 and Hk+1

1 . This is not very helpful though, since
we have no explicit expression for the latter densities either.

Finally, it is important to stress that the above results hold for fixed value of
k (and ∆) as n ! ∞. In particular, the above results do not imply nice asymptotic
behaviour of the maximum likelihood estimator (which corresponds to k = k(n) =
n�1). The problem is of course that the terms in the log-likelihood function Un�1

n
originate from different functions (pc;i

θ for observation zi+1) such that the usual

limit theorems do not apply.
As noted in Section III.2 we can think of the model as a hidden Markov model

with continuous, unbounded state space of the hidden chain H̃ given by H̃i =(Vi∆;Mi;Si). Asymptotic results for the maximum likelihood estimator have been
proved for hidden Markov models where the state space for the hidden chain is
finite (Bickel & Ritov 1996, Bickel, Ritov & Rydén 1998) or compact (Jensen &
Petersen 1999). Neither approach can be applied in our setting and there are in
fact no results in the literature concerning asymptotic properties of the maximum
likelihood estimator for the models considered in this paper.

III.6 Efficiency considerations

In this section we briefly discuss how the number of lags k influence the quality of
the estimators. The subject is essential but unfortunately we have not been able
to prove very powerful results.

Intuitively we would expect estimators to improve as the number of lags in-
creases. With the asymptotic normality from Theorem III.9 in hand we could

(III.22)
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compare estimators for different k’s by their asymptotic variances and hope that
the variance is decreasing as a function of k (for symmetric positive semi-definite
matrices A and B we write A� B if and only if the difference B�A is positive semi-
definite). We have not been able to prove results like this! The problem is of course
that the expression for the asymptotic variance is so complicated that comparison
between different k’s is impossible, even for a one-dimensional parameter.

The simulation study in Section III.7 indicates that minimization of U k
n in prac-

tice may give rise to identification problems even if the k-lag conditional distribu-
tion uniquely determines the parameter (theoretically). In the simulation study
this is reflected in very oblong level curves corresponding to small values of cer-
tain linear combinations of the coordinates in Eθ0

Ü k
n (θ0) and thereby (ignoring the

matrix Γ(θ0) in (III.20)) to large asymptotic variance of the estimator. In the simu-
lation study the problem seems to diminish as we use larger values of k suggesting
that estimation in fact improves as k increases. On the other hand, in a simpler
situation with no identification problems for any value of k we did not find any
substantial differences among the estimators for different values of k.

Note that we in principle could improve estimation by introducing weight func-
tions. To be specific, consider estimating functions on the form

Dk
n(θ) = 1

n

n�1

∑
i=k

di(Zi
i�k+1;θ) u̇c;k

θ (Zi+1jZi
i�k+1)

where dk; : : : ;dn�1 are function from Rk �Θ to R. Note that we for simplicity have

left out the contribution from the first k observations and that U̇ k
n (except for the

first term in U k
n ) corresponds to di � 1, i = k; : : : ;n�1.

The estimating function Dk
n is unbiased since for each i = k : : : ;n�1

Eθ0
di(Zi

i�k+1;θ0)uc;k
θ0
(Zi+1jZi

i�k+1)= Eθ0
di(Zi

i�k+1)�Eθ0
uc;k

θ0
(Zi+1jZi

i�k+1)jZi
i�k+1

�= 0:
Under regularity conditions similar to those of Assumption III.8 the solution to
Dk

n(θ) = 0 is a consistent and asymptotically normal estimator of θ . By choosing
the functions di cleverly we can obtain smaller asymptotic variance than is the case

for θ̂ k
n , see Sørensen (1999) for similar considerations. This is only of theoretical

interest, though! In order to find the optimal weight functions one must invert an(n� k)� (n� k) matrix (which depends on θ and whose entries we do not even
know explicitly).

Finally, we prove a result concerning the approximate log-likelihood functions
U k

n rather than the corresponding estimators: the limit, in probability, of U k
n (θ0) is

decreasing in k. It holds only for U k
n evaluated at the true parameter and is thus

not very useful in practice. Nevertheless it tells us that the approximations of the
likelihood improve in this sense.
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Proposition III.10 Let 0� k0 � k00 and assume that Condition (B2) is satisfied for

θ = θ0 and k = k0 and k = k00. Then

Eθ0
uc;k00

θ0

�
Zk00+1jZk00

1

�� Eθ0
uc;k0

θ0

�
Zk0+1jZk0

1

�:
Consequently, Eθ0

U k00
n (θ0) � Eθ0

U k0
n (θ0) and limn!∞U k00

n (θ0) � limn!∞U k0
n (θ0) where

convergence means convergence in Pθ0
-probability.

Proof It will suffice to consider k0 = k and k00 = k+1 for k� 0 arbitrary. By station-
arity it follows that it is sufficient to show that

Eθ0
uc;k+1

θ0

�
Zk+2jZk+1

1

�� Eθ0
uc;k

θ0

�
Zk+2jZk+1

2

�: (III.23)

By definition,

uc;k+1
θ0

�
Zk+2jZk+1

1

��uc;k
θ0

�
Zk+1jZk

1

�= log
pc;k

θ0

�
Zk+2jZk+1

2

�
pc;k+1

θ0

�
Zk+2jZk+1

1

�
so Jensen’s equality yields

Eθ0

�
uc;k+1

θ0

�
Zk+2jZk+1

1

��uc;k
θ0

�
Zk+2jZk+1

2

��� logEθ0

pc;k
θ0

�
Zk+2jZk+1

2

�
pc;k+1

θ0

�
Zk+2jZk+1

1

� :
Calculations similar to those in the proof of Lemma III.5 show that the latter expec-
tation is one, which yields (III.23). The expectation assertion follows immediately
by

U k+1
n (θ0)�U k

n (θ0) = 1
n

n�1

∑
k=1

�
uc;k+1

θ0

�
Zi+1jZi

i�k

��uc;k
θ0

�
Zi+1jZi

i�k+1

��
and the convergence result follows by the ergodic theorem. �
III.7 Example: The Cox-Ingersoll-Ross process

In this section we discuss a particular model, namely the model where the ob-
served X -process has no drift, and the volatility process V is a Cox-Ingersoll-Ross

process. This specification of the volatility process was first considered by Hull &
White (1987) and later by Heston (1993).

III.7.1 Basic properties

The model is given by the stochastic differential equations

dXt =pVt dWt ; X0 =UX

dVt = α(β �Vt)dt +σ
p

Vt dW̃t ; V0 =UV :
(III.24)
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with parameter θ = (α;β ;σ). Let Θ = f(α;β ;σ) : α;β ;σ > 0; σ2 � 2αβg. It is
well-known that for (α;β ;σ) 2 Θ, V is positive, stationary and α-mixing, that
is, Assumption III.1 is satisfied. Actually, the α-mixing coefficients decrease at
exponential rate (Genon-Catalot et al. 1998b, Corollary 1.1) so the condition on
the α-mixing coefficients in condition (C3) is satisfied for θ 2 Θ.

The invariant distribution is the Gamma distribution with shape parameter
2αβ=σ2 and scale parameter σ2=(2α). The transition probabilities are known to
be non-central χ2-distributions. The parameter β is simply the mean value of V
whereas the “mean reverting parameter” α can be interpreted as the size of the
force pulling the process back to its mean.

Figure III.2 shows simulated data from the model with ∆ = 1 and parameter(α;β ;σ)= (0:1;1;0:35). The bottom figure shows a simulated path of the V -process
from time 0 to time 500 and the top figure shows increments Zi = Xi∆�X(i�1)∆ of X

for i= 1; : : : ;500. Clearly the increments are more volatile in periods with relatively
large values of the volatility process V than in periods with low values of V .

Time

0 100 200 300 400 500

-2
0

2

Time

0 100 200 300 400 500

0
1

2
3

4

Figure III.2: Simulated values of Zi = Xi∆�X(i�1)∆ (top) and Vi∆ (bottom)

from the Cox-Ingersoll-Ross model for ∆ = 1 and i = 1; : : : ;n where n = 500.
The model parameter is (α;β ;σ) = (0:1;1;0:35).
Figure III.3 is a QQ-plot of the increments and we see that they are far too
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heavy-tailed to be Gaussian. Figure III.4 shows the correlogram for the incre-

Quantiles of Standard Normal

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

Figure III.3: QQ-plot for the data in the top of Figure III.2; quantiles of the
standard normal distribution at the x-axis, quantiles of data at the y-axis.

ments to the left and for the squared increments to the right. The dashed lines
provide approximate 95%-confidence intervals. Recall from (III.7) that Zi and Z j
are uncorrelated for i 6= j since ξ � 0. From the right figure we see that correlation
between squared observations is small from lag 9, say, and onwards.

If V is started stationarily, V0 = UV � Γ(2αβ=σ2;σ2=(2α)); then it is easy to
calculate various moments in the model. Most of the results in the following
proposition are known from Genon-Catalot et al. (1998b).

Proposition III.11 Let θ = (α;β ;σ) 2 Θ and assume that V is started according

to the invariant distribution: V0 = UV � Γ(2αβ=σ2;σ2=(2α)). For the unobserved

V -process it holds for s; t � 0 that

Eθ Vt = β ; Varθ Vt = βσ2

2α
; Covθ (Vs;Vt) = βσ2

2α
e�αjt�sj:

For the unobserved, integrated variables Si, i 2 N:

Eθ Si = β∆ (III.24)

Varθ Si = βσ2

α3

�
α∆�1+ e�α∆� (III.25)

Covθ (Si;S j) = βσ2

2α3 e�α∆( j�i�1)�1� e�α∆�2; j > i:
(III.26)
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Figure III.4: Correlogram for the data from the top of Figure III.2 (to the
left) and the same data squared (to the right). The dashed lines give approx-
imate 95%-confidence intervals.

For the observed increments Zi, i 2 N:

Eθ Zi = 0

Varθ Zi = Eθ Z2
1 = Eθ S1 = β∆

Varθ Z2
i = 3Varθ S1+2(Eθ S1)2 = 2β 2∆2+ 3βσ2

α3

�
α∆�1+ e�α∆�

Covθ (Z2
i ;Z2

j ) = Covθ (Si;S j) = βσ2

2α3 e�α∆( j�i�1)�1� e�α∆�2; j > i:
Proof The expressions for V follow immediately by the Gamma distribution, sta-
tionarity and the well-known formula Eθ (VtjV0 = v) = e�αtv+β

�
1� e�αt

�
for the

conditional expectation.
Recall that Si = R i∆(i�1)∆Vs ds. Stationarity of (S1;S2; : : :) follows by stationary of

V , and Eθ S1 = R i∆(i�1)∆ Eθ Vs ds = β∆. For l � 1,

Eθ S1Sl = Eθ

�Z ∆

0
Vu du

��Z l∆(l�1)∆Vs ds
�= Z ∆

0

Z l∆(l�1)∆ Eθ VsVu duds= Z ∆

0

Z l∆(l�1)∆�βσ2

2α
e�αju�sj+β 2

�
duds;

and straightforward calculations and subtraction of β 2∆2 yield the variance of S1
for l = 1 and the covariance between S1 and Sl for l � 2.

The expressions for the moments of Zi follow immediately by Theorem III.2
and the moments of Si. For example,

Varθ Z2
1 = Eθ Z4

1��Eθ Z2
1

�2 = 3Eθ S2
1� (Eθ S1)2 = 3Varθ S1+2(Eθ S1)2: �
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Note that Varθ Z2
1 > 3Varθ S1 and that Covθ (Z2

1;Z2
j ) = Covθ (S1;S j) > 0 is de-

creasing at exponential rate. The correlation between Z2
1 and Z2

j is thus positive,
exponentially decreasing and at most 1/3 for all j � 2. In fact it is at most 1/5
which can be seen as follows:

Corrθ (Z2
1;Z2

j ) = σ2
�
1� e�α∆�2

4α3β∆2+6σ2
�
α∆�1+ e�α∆

�e�α∆( j�2)
which is increasing in σ2. For fixed α and β , the correlation is hence maximal for
σ2 = 2αβ , with

Corr(α;β ;(2αβ )1=2)(Z2
1;Z2

j ) = �
1� e�α∆�2

2α2∆2+6
�
α∆�1+ e�α∆

�e�α∆( j�2):
The right hand side does not depend on β and is decreasing as a function of α∆
with limit 1/5 as α∆ ! 0. Also note that the excess kurtosis Eθ Z4

1=(Eθ Z2
1)2�3 is

at most 3. Hence, the model is not appropriate for data with very heavy tails or
with large correlations between squared observations Z2

1 and Z2
j for some j � 2.

III.7.2 A small simulation study

In the following we present a small simulation study. We have simulated 10
datasets of increments, Z1; : : : ;Z10, each consisting of n = 500 observations. The
model parameters are (α;β ;σ) = (α0;β0;σ0) = (0:1;1;0:35)
and the value of ∆ is 1. Each dataset was simulated as follows: a V -process
was simulated by the Millstein scheme with each interval [(i� 1)∆; i∆℄ split into
1000 subintervals; the integrals S1; : : : ;Sn were approximated as described in Sec-
tion III.4; and Z1; : : : ;Zn were finally drawn independently, Zi from N(0;Si). One
of the simulated datasets, Z4, was shown in Figure III.2 together with the corre-
sponding simulated V -values, and we shall use this dataset as example throughout
the section.

In a real-world application we would not have observed the V -process at all,
but in this simulation study we have saved the simulated values V0;V∆; : : : ;Vn∆ for
each simulation. Hence, we can estimate the parameters from the V -process as
well as from the Z’s and thus get an idea of how much information is lost when Z
rather than V is observed (see comments below).

By Proposition III.11 it is easy to calculate various moments of V , S and Z for
the chosen values of α;β ;σ and ∆. For example,

Eθ0
V0 = 1; Varθ0

V0 = 0:613; Corrθ0
(V0;V∆) = 0:905

Eθ0
S1 = 1; Varθ0

S1 = 0:593; Corrθ0
(S1;S2) = 0:936

Varθ0
Z1 = Eθ0

Z2
1 = 1; Eθ0

Z4
1 = 4:778; Corrθ0

(Z2
1;Z2

2) = 0:147:
(III.28)
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We see that values of V at two consecutive time points (i�1)∆ and i∆ as well as
two consecutive S’s are strongly correlated, and that the excess kurtosis of Z is
1.778.

For later use, define m2(θ) = Eθ Z2
1, m4(θ) = Eθ Z4

1 and m1;2(θ) = Eθ Z2
1Z2

2 and
let for a given dataset

m̃2 = 1
n

n

∑
i=1

Z2
i ; m̃4 = 1

n

n

∑
i=1

Z4
i ; m̃1;2 = 1

n�1

n

∑
i=2

Z2
i�1Z2

i

be the corresponding empirical moments. Also, let c̃1;2 = (m̃1;2� m̃2
2)=(m̃4� m̃2

2) be
the first empirical autocorrelation coefficient. Table III.1 in Appendix III.B lists the
average and m̃2, m̃4, m̃1;2 and c̃1;2 for the simulated datasets.

In the rest of this section we shall estimate the parameters α, β and σ from
each of the ten simulated datasets. We consider three different set-ups; (A) only
one parameter, say α, is considered unknown whereas the two others are known;
(B) two parameters are considered unknown; (C) all three parameters are consid-
ered unknown. Cases (A) and (B) are of course not realistic but provide insight to
the estimation problem.

In case (A) we compute the estimators α̂k
n for k = 0; : : : ;4 although it turns out

that even k = 0 yields satisfactory estimates. A comparison of the five values of k
with respect to mean and variance (over the ten simulations) shows that k = 1 is
the best choice and k = 0 the worst, but the difference between the five estimators
is not substantial. In case (B) we use only k = 0 and k = 1; both values yield
acceptable estimates as long as β is not the unknown parameter. The estimation
problem in case (C) is more difficult, and we must use larger values of k, say k = 4.
Still, the estimators are not completely satisfactory.

In each of the three cases we compare (i) with “method of moments estimators”
(Genon-Catalot et al. 1998b), that is, estimators obtained by matching various
empirical and theoretical moments; and (ii) with simple martingale estimators
based on the V -data (Bibby & Sørensen 1995, Sørensen 1997). The latter would
of course not be possible in practice. The moment estimators are quite bad and
there are often existence problems. The estimators based on V are not surprisingly
quite good. In case (A) the difference between the estimators based on V and the
approximate maximum likelihood estimators based on Z is moderate, whereas it
is very substantial in case (C)

Of course, the above results are only indications of the relations between the
estimators. We cannot draw final conclusions from the simulation study, since it
is based on only ten simulations. However, the study confirms that the method is
indeed applicable in practice!

Now, let us go through the three cases in detail. For all the below computations
of U k

n we have used N = 10 and R = 10:000, cf. Section III.4. We start out gently
and consider estimation of one parameter only.
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Case (A): Estimation of one parameter

We choose α as the unknown parameter and consider β = β0 = 1 and σ =σ0 = 0:35
known. Recall that the true value of α is α0 = 0:1.

Figure III.5 shows the graphs of U k
n for k = 0; : : : ;4 and data Z4 in the interval

from 0.06 to 0.16. To see the curvature of the curves more clearly, we have plotted

alpha

0.06 0.08 0.10 0.12 0.14 0.16

0.
32

0.
33

0.
34

0.
35

U0; U1; U2; U3; U4;

Figure III.5: Graphs of α !U k
n(α;β0;σ0) for data Z4, k = 0; : : : ;4, β0 = 1 and

σ0 = 0:35. The true value of α is α0 = 0:1:
the difference between the functions and their respective minima in Figure III.6.
For this particular simulation, the curvatures of U3

n and U4
n are almost identical,

and very similar to the curvature of U2
n and U1

n . Hence, the corresponding esti-
mates are close, around 0.105–0.110. The function U0

n has different curvature
and minimum below 0.08.

The estimation results are graphically illustrated in the first five columns in
Figure III.7. All five values of k yield reasonable estimators, with averages from
0.1027 (k = 1) to 0.1101 (k = 0) and standard errors from 0.0169 (k = 1) to 0.0281
(k = 0). In particular, the estimator α̂1

n is the best — and α̂0
n the worst — in this

study both with respect to bias and variance. The difference between the five
estimators is not substantial, though, and it is difficult to find any patterns in the
differences. The values of the estimators are listed in columns two through six in
Table III.2 in Appendix III.B.

For comparison we have also calculated the moment estimators α̃4
n and α̃1;2

n ,
that is the estimators obtained by solving the equations m̃4 = m4(α;β0;σ0) and
m̃1;2 = m1;2(α;β0;σ0) respectively. The estimators are listed in the seventh and
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Figure III.6: Graphs of α ! U k
n (α;β0;σ0)�minα U k

n (α;β0;σ0) for data Z4,
k = 0; : : : ;4, β0 = 1 and σ0 = 0:35. The true value of α is α0 = 0:1:

eighth column of Table III.2 in Appendix III.B. For the datasets Z3 and Z4 the
equations have no solution. The averages for the remaining eight datasets are
0.4111 and 0.1472 respectively so there is a considerable bias. The standard errors
are large; 0.6117 and 0.2648 respectively. Of course, one could have chosen to
match other moments, but note that neither the first three moments of Z nor
Eθ Z1Z j depend on α. Hence, they cannot be used for estimation in case (A), and
we are forced to use higher order moments like m4 and m1;2 as above.

Finally, we have estimated α from the volatility data V0;V∆; : : : ;Vn∆. Maximum
likelihood estimation is in principle possible since the transition probabilities are
known (non-central χ2-distributions), but for simplicity we have used the martin-
gale estimating equation

n

∑
i=1

∂αF(V(i�1)∆;α;β0)
Φ(V(i�1)∆;α;β0) �Vi∆�F(V(i�1)∆;α;β0)�= 0

instead (Bibby & Sørensen 1995). Here, we have let F(v;α;β ) = e�α∆(v�β )+β
and σ2Φ(v;α;β ) = σ2

�(β �2v)e�2α∆�2(β �v)e�α∆+β
�=(2α) denote the expecta-

tion and the variance of the conditional distribution of V∆ given V0 = v. The weight
function ∂αF=Φ is optimal in the sense that the corresponding estimator has the
least asymptotic variance among martingale estimators based on the first order
conditional moments (Bibby & Sørensen 1995). Note however that the maximum
likelihood estimator would have even smaller asymptotic variance.
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Figure III.7: The estimators α̂k
n for k = 0; : : : ;4 (the first five columns) and

the martingale estimator α̂V
n based on V (the last column). The true value of

α is α0 = 0:1 (shown by the dashed line).

The martingale estimators are plotted in the last column of Figure III.7, and
listed in the last column of Table III.2 in Appendix III.B. The average of α̂V

n is
0.1097. As one would expect, α̂V

n has smaller standard error (0.0154) than the
estimators based on Z. It is slightly surprising that the standard error is only
roughly 10% lower than that of α̂1

n .

Case (B): Estimation of two parameters

We now very briefly consider estimation of (α;β ) for σ = σ0 = 0:35 known and
estimation of (β ;σ) for α = α0 = 0:1 known. The combination with β known and(α;σ) unknown is much more diffucult as will be clear from the below discussion
of case (C).

We use approximate maximum likelihood with k = 0 and k = 1, moment estima-
tion (based on m2 and m1;2) and martingale estimation based on V . The estimators
for β are very much alike. This is expectable as β is simply the variance of Z which
is easy to estimate. For α and σ , respectively, the conclusions are essentially as in
case (A) and we omit the details: the approximate maximum likelihood estimates
are fine, the moments estimators are quite poor and the estimators based on V are
superior.
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Case (C): Estimation of all three parameters

Estimation of one or two parameters was succesful even for k = 0 and k = 1 (as
long as β was one of the unknown parameters). The estimation problem is far
more delicate when all three parameters are unknown, and a larger k is necessary
in order to obtain reasonable estimates.

At first glance it seems promising to use k = 1 for estimation of all three param-
eters as well: by the moment considerations in Proposition III.11 it follows that
the three-dimensional parameter is uniquely determined by the distribution of the
pair (Z1;Z2) — and thereby presumably also by the conditional distribution of Z2
given Z1. Hence, U1

n should be able to distinguish between different parameter
values.

In practice it turns out that U1
n is almost constant — and very close to its min-

imum — on a curve in R3. In other words: U1
n has difficulties distinguishing be-

tween parameters on this curve. This is perhaps not too surprising, though. One
could suspect that only the marginal (invariant) distribution of V is easily deter-
mined. The invariant distribution of V is determined completely by two parameter
functions, namely the shape parameter 2αβ=σ2 and the scale parameter σ2=(2α).
One could thus imagine these parameter functions — but not the parameters α, β
and σ themselves — to be easy to estimate.

It is easy to get an estimate of the product β of the shape and the scale param-
eter; simply use the empirical second moment (or the empirical variance) divided
by ∆,

β̃n = m̃2=∆ = 1
∆

n

∑
i=1

Z2
i : (III.26)

But for given β the distribution of (Z1;Z2) wrt. P(α 0;β ;σ 0) and P(α 00;β ;σ 00) can be very

much alike, though not the same, for (α 0;σ 0) and (α 00;σ 00) far from each other —
as long as (σ 0)2=(2α 0) is close to (σ 00)2=(2α 00).

This is illustrated by Figure III.8 where we consider level curves for the moment
functions (α;σ2)!m4(α;β0;σ) = E(α;β0;σ)Z4

1(α;σ2)! m1; j(α;β0;σ) = E(α;β0;σ)Z2
1Z2

j ; j = 2;3;4;5;

β0 = 1 being the true value of the parameter β . The two solid curves are level
curves, one for m4 and one for m1;2. Both go through the true value (α0;σ0) =(0:1;0:35), that is, all parameters on the curve for m1, say, have same value of
m1 as the true parameter values. The two level curves are very close, suggesting
that m4(α;β0;σ) is “close” to m4(α0;β0;σ0) if and only if m1;2(α;β0;σ) is “close”

to m1;2(α0;β0;σ0). Although the distribution of (Z1;Z2) is not determined by these
two moments alone, the figure indicates that is hard to distinguish between dif-
ferent parameter values around the two curves. The three dashed curves in Fig-
ure III.8 are level curves for the moments (α;σ2)! m1; j(α;β0;σ) for j = 3;4;5;

they indicate that identification might be easier for larger value of k.
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Figure III.8: The solid and dashed curves are level curves for m4 =
E(α;β0;σ)Z4

1 and m1; j = E(α;β0;σ)Z2
1Z2

j , j = 2;3;4;5; α on the x-axis, σ2 on the

y-axis. The value of β is fixed and equal to the true value 1, and the lev-
els are those corresponding to the true values (0.1,0.1225) of (α;σ2). The
dotted line is the line through (0,0) with slope σ2

0=α0 = 1:225.

We choose k = 4. It is important to find good starting points for the numerical
minimization routine. At first glance an obvious choice would be moment estima-
tors since they are easily computable. However, we know from cases (A) and (B)
that they are quite bad and that there may be problems with existence of solutions.
The existence problem is even worse in case (C): a solution to the equation(m̃2; m̃4; m̃1;2) = �m2(θ);m4(θ);m1;2(θ)�
only exists for two of the ten simulated datasets (Z1 and Z2). Since we shall use
the result as starting point for minimization of U4

n , it would be natural to use
m1;5 rather than m1;2. Then we get solutions for five of the ten datasets (but the

estimates are still quite bad).
We are thus forced to come up with better alternatives. The following account

of our approach may be somewhat tedious, but is included since it is an important
part of our numerical procedure and since we believe that it provides a better
understand of the problems involved.

The distribution of (Z1; : : : ;Z5) is determined by the distribution of (S1; : : : ;S5).
Probably, the marginal (invariant) distribution of S is fairly well-determined. We
do not know the invariant distribution of S, but for the moment we approximate
it by a Γ-distribution with shape parameter λ and scale parameter τ. With this
approximation Eλ ;τ S1 = λτ and Varλ ;τ S1 = λτ2, and we establish a link between
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III.7. Example: The Cox-Ingersoll-Ross process 147(λ ;τ) and the original parameters (α;β ;σ) by fitting the expectation and variance,
that is,

β∆ = λτ;
βσ2

α3

�
α∆�1+ e�α∆�= λτ2; (III.27)

see (III.24)–(III.25). In particular, this determines σ as a function of (α;β ;λ ),
σ2 = σ2(α;β ;λ ) = α3β∆

λ
�
α∆�1+ e�α∆

� : (III.28)

For (α;β ;σ) = (0:1;1;0:35) we have (λ ;τ) = (1:6875;0:5926).
The estimation strategy now is the following: (i) estimate β by β̃n given by

(III.26); (ii) find an estimate λ̃n of λ as described below; (iii) minimize U4
n along

the curve given by (III.28) with β = β̃n and λ = λ̃n, that is, find

α̃n = argminα U4
n

�
α; β̃n;σ(α; β̃n; λ̃n)� (III.29)

and the corresponding σ̃2
n = σ2(α̃n; β̃n; λ̃n); and finally (iv) minimize U4

n on R3 with
starting point (α̃n; β̃n; σ̃n).

For step (ii), recall that Zi � N(0;Si) conditionally on V , and let λ̃n be the mini-
mum point of the function

Ũ0
n (λ ) =�1

n

n

∑
i=1

log
Z ∞

0
p̃

λ ;β̃n=λ
(s̃)ϕ(zi;0; s̃)ds =�1

n

n

∑
i=1

Ẽ
λ ;β̃n∆=λ

ϕ(zi;0; S̃)
where p̃λ ;τ is the density of Γ(λ ;τ) and ϕ(�;m;s) as usual is the density of N(m;s).
In practice we calculate Ũ0

n (λ ) as�1
n

n

∑
i=1

log
1
R

R

∑
r=1

ϕ
�
zi;0; S̃(r)� (III.30)

where S̃(1); : : : ; S̃(R) are independent randomly generated Γ(λ ; β̃n∆=λ )-variables.
For α, σ and λ related by (III.28) with β = β̃n, the only difference between (III.17)
with k = 0 and (III.30) is the distribution from which the S-variables are drawn. For
Ũ0

n each S̃ is drawn according to a Γ-distribution, whereas for U0
n , S is generated

as an integral of V -values.
This has two important consequences. First, it is faster to draw directly from

the Γ-distribution than to draw V -paths and calculate integrals. Second, there is
no a priori reason to believe that the marginal distribution is a Γ-distribution so
we may have introduced bias. This means that U0

n does not necessarily have its
minimum on the curve given by (β̃n; λ̃n). The minimum point of U4

n may be even
further away from the curve. This is not really problematic, though, since we only
use the curve for finding good starting points. In practice the value of U4

n is indeed
small at the starting point and the minimization routine has no problem moving
away from the curve.
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Step (ii) is very much in the spirit of Genon-Catalot et al. (1999). They suggest
approximating the marginal density of S1 by a Γ-distribution as well. Actually,
they find an explicit expression for the marginal density of Z1 if S1 is Gamma-
distributed. It would indeed have been faster (and smarter) to use this explicit
expression for computing the density rather than the above simulation procedure.

Note that Genon-Catalot et al. (1999) link the parameters in the Γ-distribution
and the original parameters differently than we do: they use shape parameter
λ 0 = 2αβ=σ2 and scale parameter τ 0 = σ2∆=(2α) instead of λ and τ given by
(III.27) so the variance in their approximate Γ-distribution is not equal to the
actual variance of S. For small values of α∆, there is not much difference between
the parametrizations. The one with (λ 0;τ 0) is motivated by the approximation

S1 = Z ∆

0
Vs ds� ∆V0� Γ

�
2

αβ
σ2 ; σ2∆

2α

�
which is good for small ∆. Indeed, Genon-Catalot et al. (1999) show that the
corresponding estimators are asymptotically well-behaved if ∆ = ∆(n)! 0 as n !
∞, in which case the parametrizations (λ ;τ) and (λ 0;τ 0) coincide in the limit.

For the dataset Z4 we find β̃n = 0:7528 and λ̃n = 1:6732. Figure III.9 shows
level curves of (α;σ2)!U0

n (α; β̃n;σ). The dashed curve is given by (III.28) with
β = β̃n and λ = λ̃n. The level curves are very oblong and those corresponding
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Figure III.9: Level curves of (α;σ2) ! U0
n (α; β̃n;σ) for Z4; α on the x-

axis and σ2 on the y-axis. The dashed curve is given by (III.28) with
β = β̃n = 0:7528and λ = λ̃n = 1:6732. The true value of (α;σ2) is (α0;σ2

0) =(0:1;0:1225).
to low values are almost parallel to the dashed curve. The minimum along the
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curve is far from the true values; in fact it is outside the figure, for α around 0.25.
Figure III.10 shows the level curves of (α;σ2)! U4

n (α; β̃n;σ). The level curves
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Figure III.10: Level curves of (α;σ2)!U4
n (α; β̃n;σ) for Z4; α on the x-axis

and σ2 on the y-axis. The dashed curve is given by (III.28) with β = β̃n =
0:7528 and λ = λ̃n = 1:6732. The solid circle denotes the minimum point(α̃n; σ̃2

n ) = (0:1631;0:1549) along the dashed curve, and the circle denotes the
global minimum — when β varies as well — (α̂4

n ;(σ̂4
n )2) = (0:1040;0:0661).

The true value of (α;σ2) is (α0;σ2
0) = (0:1;0:1225).

are not parallel to the dashed curve (and thereby not to the level curves of U0
n ).

Anyway, the value of U4
n is relatively low at the minimum of the dashed curve

(denoted by a solid circle in the figure).
Figure III.11 shows the graph of U4

n along the curve, i.e. the criterion function
in (III.29). Minimum is attained at α̃n = 0:1631. The corresponding value of σ
is σ̃n = p

0:1549= 0:3936. In step (iv) the minimization routine moves from the
starting point (0.1631,0.7528,0.3936) to the global minimum point�

α̂4
n ; β̂ 4

n ; σ̂4
n

�= (0:1040;0:7441;0:2571):
Note that the estimate of β changes (slightly) in this last step, too. The point(α̂4

n ;(σ̂4
n )2) is shown with a circle in Figure III.10.

The averages of α̂4
n , β̂ 4

n and σ̂4
n are 0.1113, 1.0037 and 0.3036 respectively.

This is not too bad. However, for three of the datasets (number 1, 5 and 6), the
estimators for α and σ are very bad. This is reflected in huge standard errors:
0.1423, 0.1457 and 0.2463 respectively. If we leave out simulations 1, 5 an 6, α̂4

n
has average 0.0866 and standard error 0.0355, and σ̂4

n has average 0.2994 and
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Figure III.11: Graph of α !U4
n (α; β̃n;σ(α; β̃n; λ̃n)) for Z4 where σ(α;β ;λ )

is given by (III.28).

standard error 0.0887. The estimates λ̃n, α̃n, α̂4
n , σ̂4

n and σ̂4
n are listed in columns

two through six in Table III.3 in Appendix III.B.

Again, it is easy to find estimators based on the volatility process. They are so-
lutions to simple martingale estimating equations given in terms of the conditional
mean and variance one step ahead, see Sørensen (1997) for details. The martin-
gale estimators are listed in the last three columns in Table III.3 in Appendix III.B.
The means (standard errors) are 0.1146 (0.0286) for α̂V

n , 1.0024 (0.1485) for

β̂V
n , and 0.3548 (0.0134) for σ̂V

n so the estimators are far better than the approx-
imate maximum likelihood estimators based on Z. This is clearly illustrated in
Figure III.12 where the approximate maximum likelihood estimates are plotted in
columns 1, 3, 5 and the martingale estimators are plotted in columns 2, 4 and
6. Recall however that V would not be observed in applications so martingale
estimation based on V would not be an option.

Above we have used k = 4 which seemed to work reasonably well for seven of
the ten datasets. Of course we could have used other values of k, and informal
studies indicate that k = 3 would have worked reasonably for three of the simula-
tions and k = 2 for two simulations. In other words: estimation seems to improve
as k increases. This leaves us with some hope that estimation would improve for
datasets 1, 5 and 6 if we used more than four lags. The hope is strengthened by
inspection of the correlograms of the squared observations for the three datasets
which all have relatively large correlations (compared to the other datasets) on
several lags larger than four, indicating that U4

n does not capture all information
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Figure III.12: The approximate maximum likelihood estimators α̂4
n , β̂ 4

n , σ̂4
n

in columns 1, 3 and 5, and the martingale estimators α̂V
n , β̂V

n , σ̂V
n in columns

2, 4 and 6. The true values (0.1, 1 and 0.35) are shown with the dashed
lines.

in data. The correlograms are omitted.

III.8 Conclusion

We have discussed approximate maximum likelihood estimation for increments(Z1; : : : ;Zn) from a stochastic volatility model. For k � 0 the k’th order approxi-
mation to the likelihood function was obtained by pretending that (Z1; : : : ;Zn) is
k’th order Markov. Hence, the approximate likelihood is (essentially) a product of
conditional densities pc;k

θ (ZijZi�k; : : : ;Zi�1), i = k+1; : : : ;n. The corresponding es-

timators are consistent and asymptotically normal, essentially because we use the
true conditional densities given the k previous observations. There are no explicit
expressions for the densities but they are easy, though computationally demand-
ing, to simulate for small values of k � 0.

Throughout the paper we have assumed that the drift and diffusion for X (of
which Z1; : : : ;Zn are increments) are determined completely by the process V and
that the two Brownian motions driving V and X , respectively, are independent.
The second assumption is not easily relaxed since we extensively employ that the
conditional distribution of (Z1; : : : ;Zn) given V is known. The nice properties of
the conditional distribution of (Z1; : : : ;Zn) given V are also destroyed if the drift
and diffusion functions for X are functions of X as well as of V . However, it is
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straightforward to generalize the method so it applies to models where the drift
function for X is parameter dependent.

Also, the estimation procedure is applicable for other data types with similar
properties, in particular for (other) hidden Markov models. In this respect, the
important features of the models are the following: (i) given the values of an
unobservable process, the observations Z1; : : : ;Zn are independent with a known
distribution (up to some parameter) determined by the latent process; (ii) the
unobserved process is easy to simulate for all values of the parameter. These
properties make it easy to simulate values of the approximate likelihood function.

The idea of considering approximations to the likelihood function in terms of
k-lag conditional densities is of course applicable in all kinds of models with com-
plicated dependence structures. There are other possible approximations. For
example, one could split data into tuples of some length, and pretend that the
tuples were independent (see Appendix III.A.1). Or one could both condition
forwards and backwards in time, i.e. base estimation on the conditional densi-
ties pc;k

θ (ZijZi�k; : : : ;Zi�1;Zi+1; : : : ;Zi+k) given the k previous and the k subsequent

observations. We would get asymptotically well-behaved estimators by these ap-
proximations as well. However, since time runs forward, we feel that the approxi-
mations based on conditioning backwards in time only, are the most natural.

Finally some comments on possible future work. First, in order for the method
to be really useful one should be able to estimate the variance of the estimator. The
expression for the asymptotic variance from Theorem III.9 is not useful in practice
as it is given in terms of the unknown k-lag conditional density and its derivatives.
Second, there are possibilities of model control built into the method: For each k
an estimator of the same parameter is obtained. Consequently, significantly dif-
ferent estimators are indications of misspecification of the model. Third, when
proving asymptotic properties for θ̂ k

n , it was implicitly assumed that the approxi-
mate likelihood function could be computed accurately. It would be interesting to
see how computation of Lk

n via simulation influence the estimators. Similar work
was done for martingale estimating functions (Kessler & Paredes 1999).

III.A Appendix: Miscellaneous

In this appendix we first give an interpretation of the first term of the k’th order ap-
proximation of the log-likelihood function. Next, we state and prove and ergodic
theorem and a central limit theorem for the sequence Z.

III.A.1 Split data log-likelihoods

Consider the expression (III.12) for the k’th order approximation to (minus) the
log-likelihood function. We show that the first term may be interpreted as a sum
of “split data log-likelihoods” in the sense of Rydén (1994). Assume for simplicity
that the number of observations, n, is a multiple of k+1, that is, J = n=(k+1) is
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an integer, and split (Z1; : : : ;Zn) into J tuples of length k+1,�
Z1; : : :Zk+1

�; : : : ;�Zn�k; : : : ;Zn
�: (III.31)

If the J tuples were independent, then minus the log-likelihood would be

J

∑
j=1

uk+1
θ

�
z( j�1)(k+1)+1; : : : ;z j(k+1)�: (III.32)

It would be just as natural to split the data into one of the sets of J�1 (k+1)-tuples�
Za+1; : : :Zk+a+1

�; : : : ;�Z(J�2)(k+1)+a+1; : : : ;Zn+a�(k+1)� (III.33)

for a = 1; : : : ;k although it for each a would leave us with some observations
(Z1; : : : ;Za and Zn+a�k; : : : ;Zn) not included in a tuple.

Note that (III.33) with a = 0 equals (III.31). For each a = 0; : : : ;k, we get an
expression similar to (III.32) — plus extra terms originating from observations not
in a tuple for a 6= 0 — if we pretend that the tuples (III.33) are independent. The
sum over a of minus the log-likelihoods (without the extra terms) is

n�1

∑
i=k

uk+1
θ (zi+1

i�k+1); (III.34)

compare with (III.12). In other words: the first term in (III.12) can be interpreted
as a sum of log-likelihoods, each of which is obtained by pretending that (k+1)-
tuples with no overlap are independent. Note that observations zi for i = 1; : : : ;k
and zn�k+1; : : : ;zn appear in less than k+1 of the terms in (III.34); this could be
corrected by including the extra terms mentioned above.

III.A.2 Limit Theorems

We now state and prove an ergodic theorem and a central limit theorem for the
sequence Z. The proofs are very similar to the proofs of Theorem 2.2 and Corollary
2.1 in Genon-Catalot et al. (1998b).

In the proof of the central limit theorem we use the following result which
follows immediately from Hall & Heyde (1980, Corollary A.2, page 278): Let A
andB be σ -algebras included in F and let U1 and U2 be random variables which
are A - and B-measurable, respectively. If EjU1jr1 < ∞ and EjU2jr2 < ∞ where
r1;r2 > 1 and 1=r1+1=r2 < 1, then

Cov(U1;U2)� 8jjU1jjr1
jjU2jjr2

α(A ;B)1�1=r1�1=r2: (III.35)

Theorem III.12 Suppose that Assumption III.1 holds and let d � 1 be arbitrary but

fixed.

(III.41)



154 Paper III. Simulated Likelihood Approximations

1. (Ergodic theorem) For any function ψ : Rd ! R in L1(Pd
θ0
) it holds that

1
n

n�d+1

∑
i=1

ψ(Zi; : : : ;Zi+d�1)! Pd
θ0
(ψ) = Eθ0

ψ(Z1; : : : ;Zd)
Pθ0

-almost surely and in L1(Pθ0
) as n! ∞.

2. (Central limit theorem) Let q � 1 and consider functions ψ1; : : : ;ψq : Rd ! R
from L1(Pd

θ0
) with Pd

θ0
(ψ j) = Eθ0

ψ j(Z1; : : : ;Zd) = 0 for all j = 1; : : : ;q. Suppose

that there exists an η > 0 such that ψ j is in L2+η(Pd
θ0
) for all j = 1; : : : ;q and

such that the α-mixing coefficients for Z corresponding to θ0 satisfy the condi-

tion ∑∞
m=1αZ(m)η=(2+η) < ∞. Then

Σ jl = Eθ0
ψ j(Zd

1)ψl(Zd
1)+ ∞

∑
m=1

�
Eθ0

ψ j(Zd
1)ψl(Zm+d

m+1)+Eθ0
ψl(Zd

1)ψ j(Zm+d
m+1)�

is well-defined for all j; l = 1; : : : ;q and if the q�q matrix Σ = (Σ jl) jl is positive

definite then

1p
n

n�d+1

∑
i=1

�
ψ1(Zi+d�1

i ); : : : ;ψq(Zi+d�1
i )�T ! N(0;Σ)

in distribution wrt. Pθ0
as n! ∞.

Proof Under Assumption III.1, Z is α-mixing (Proposition III.2). It is well-known
that α-mixing implies ergodicity, see e.g. Doukhan (1994, page 21).

For the central limit theorem, first assume that q = 1 and define Yi = ψ(Zi+d�1
i ),

i� 1. Then the σ -algebras generated by Y satisfy

σ
�fYigi�l

�= σ
�fψ(Zi+d�1

i )gi�l

�� σ
�fZigi�l+d�1

�
σ
�fYigi�l+m

�= σ
�fψ(Zi+d�1

i )gi�l+m

�� σ
�fZigi�l+m

�
for all s; t 2 N . Hence, the α-mixing coefficients for Y = (Y1;Y2; : : :) satisfy αY (m)�
αZ(m�d +1) for m� d and thus

∞

∑
m=1

αY (m)η=(2+η) � d�1

∑
m=1

αY (m)η=(2+η)+ ∞

∑
m=1

αZ(m)η=(2+η) < ∞:
It now follows from Hall & Heyde (1980, Corollary 5.1, page 132) that Σ (which
is a real number since q = 1) is non-negative and finite and

Varθ0

�
n�1=2

n�d+1

∑
i=1

ψ(Zi)�! Σ (III.36)
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as n! ∞. If Σ > 0 then furthermore

n�1=2
n�d+1

∑
i=1

ψ1(Zi+d�1
i ) = n�1=2

n�d+1

∑
i=1

Yi ! N(0;Σ)
in distribution.

It might be useful to see how Σ < ∞ and the convergence in (III.36) are ob-
tained: the left hand side of (III.36) is equal to

1
n

n�d+1

∑
i; j=1

Eθ0
ψ(Zi+d�1

i )ψ(Z j+d�1
j )= Eθ0

ψ2(Zd
1)+ 1

n

n�d

∑
m=1

(n�m)Eθ0

�
ψ(Zd

1)ψ(Zm+d
m+1)+ψ(Zm+d

m+1)ψ(Zd
1)�= Eθ0

ψ2(Zd
1)+ n�d

∑
m=1

�
Eθ0

ψ(Zd
1)ψ(Zm+d

m+1)+Eθ0
ψ(Zm+d

m+1)ψ(Zd
1)� (III.37)� 1

n

n�d

∑
m=1

m
�

Eθ0
ψ(Zd

1)ψ(Zm+d
m+1)+Eθ0

ψ(Zm+d
m+1)ψ(Zd

1)� : (III.38)

Let r1 = r2 = 2+η. It follows by (III.35) that the expectations jEθ0
ψ(Zd

1)ψ(Zm+d
m+1)j

and jEθ0
ψ(Zm+d

m+1)ψ(Zd
1)j are bounded by 8jjψ(Zd

1)jj22+η αZ(m)η=(2+η). Hence, by

assumption, Σ is finite and (III.37) converges to Σ. It finally follows by Kronecker
Lemma that the sum (III.38) converges to zero as n! ∞ so that the convergence
(III.36) holds.

Now let q� 2. Calculations similar to those above show that Σ jl is well-defined

and can be obtained as a limit of covariances,

Covθ0

�
n�1=2

n�d+1

∑
i=1

ψ j(Zi);n�1=2
n�d+1

∑
i=1

ψl(Zi)�! Σ jl

for all j; l = 1: : : ;q. By Cramer-Wold’s device it suffices to show that for any y =(y1; : : : ;yq)T 2 Rq the linear combination

n�1=2
q

∑
j=1

y j

n�d+1

∑
i=1

ψ j(Zi+d�1
i ) = n�1=2

n�d+1

∑
i=1

q

∑
j=1

y jψ j(Zi+d�1
i )

converges in distribution to the normal distribution with mean 0 and variance
yT Σy. This follows immediately from the one-dimensional result. �
III.B Appendix: Results from the simulation study

In this appendix we have collected tables with estimation results from the simu-
lation study for the Cox-Ingersoll-Ross process (Section III.7.2). Table III.1 lists
empirical moments for the simulated datasets. Table III.2 lists estimators from
case (A) where only α is unknown, and Table III.3 lists estimators from case (C)
where all three parameters are unknown.
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Data
Mean m̃2 m̃4 m̃1;2 c̃1;2
(0) (1) (4.778) (1.555) (0.147)

Z1 0.023 1.042 4.635 1.418 0.093
Z2 0.005 1.156 6.905 1.965 0.112
Z3 0.009 0.850 2.774 0.960 0.115
Z4 0.068 0.753 2.396 0.594 0.014
Z5 0.010 1.027 4.457 1.553 0.147
Z6 0.005 1.053 5.217 1.910 0.194
Z7 0.075 0.880 3.088 1.030 0.110
Z8 -0.061 1.141 5.203 2.017 0.182
Z9 0.026 0.919 3.085 1.197 0.156
Z10 -0.039 1.211 6.739 3.025 0.300

Table III.1: Various empirical quantities for the ten simulated datasets. The
true values are shown in parentheses in the top line.

Data α̂0
n α̂1

n α̂2
n α̂3

n α̂4
n α̃4

n α̂1;2
n α̂V

n

Z1 0.0961 0.1241 0.1434 0.1531 0.1322 0.1084 0.1290 0.1245
Z2 0.1725 0.1347 0.1320 0.1201 0.1325 0.0463 0.0598 0.1244
Z3 0.1084 0.1127 0.0982 0.0967 0.1014 NA NA 0.1253
Z4 0.0751 0.1048 0.1132 0.1104 0.1107 NA NA 0.0888
Z5 0.0993 0.0917 0.0939 0.0798 0.0799 0.1212 0.1004 0.0826
Z6 0.0917 0.0961 0.1041 0.1325 0.1272 0.0807 0.0632 0.1213
Z7 0.0851 0.0874 0.0950 0.0906 0.0904 1.3884 0.8916 0.1085
Z8 0.1186 0.0917 0.1037 0.1018 0.1008 0.0812 0.0569 0.1158
Z9 0.1214 0.0811 0.0695 0.0806 0.0909 1.4138 0.2449 0.1015
Z10 0.1331 0.1027 0.0840 0.0884 0.0854 0.0484 0.0294 0.1038

mean 0.1101 0.1027 0.1037 0.1054 0.1051 0.4111 0.1969 0.1097
s.e. 0.0281 0.0169 0.0217 0.0238 0.0196 0.6117 0.2886 0.0154

Table III.2: Estimators for α in case (A) where β0 = 1 and σ0 = 0:35 are
known. The true value of α is α0 = 0:1 : approximate maximum likelihood
estimates α̂k

n , k = 0; : : : ;4; moment estimators α̃4
n and α̃1;2

n based on moments
m4 and m1;2; and a martingale estimator α̂V

n based on observations of V . NA
means that the moment equation has no solution.
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Data λ̃n α̃n α̂4
n β̂ 4

n σ̂4
n α̂V

n β̂V
n σ̂V

n

Z1 1.5663 0.2127 0.0020 1.0479 0.0398 0.1302 0.9556 0.3507
Z2 2.3553 0.0694 0.0733 1.1522 0.2755 0.1159 1.1844 0.3642
Z3 2.1925 0.0569 0.0556 0.8593 0.2111 0.1826 0.7983 0.3561
Z4 1.6732 0.1631 0.1040 0.7441 0.2571 0.0862 0.8666 0.3306
Z5 1.5881 0.0193 0.0088 1.0194 0.0106 0.0840 1.0113 0.3368
Z6 1.3629 0.4784 0.4959 1.0485 0.8894 0.1168 1.0747 0.3552
Z7 1.7447 0.0790 0.0755 0.8964 0.2843 0.1225 0.8660 0.3697
Z8 1.7060 0.1470 0.1459 1.1560 0.4751 0.0925 1.2501 0.3732
Z9 2.1827 0.0817 0.1097 0.9220 0.3507 0.1144 0.9148 0.3508
Z10 2.0514 0.0292 0.0425 1.1914 0.2424 0.1010 1.1025 0.3603

mean 1.8423 0.1337 0.1113 1.0037 0.3036 0.1146 1.0024 0.3548
s.e. 0.3288 0.1358 0.1423 0.1457 0.2463 0.0286 0.1485 0.0134

Table III.3: Estimates in case (C). The true values are α0 = 0:1, β0 = 1 and
σ0 = 0:35. The second and third column list preliminary estimates of λ and
α used to find starting points for the numerical routine (the preliminary
estimate β̃n is listed in Table III.1 as m̃2). Colomns four through six list the
final approximate maximum likelihood estimates (for k = 4). The final three
columns list martingale estimators based on observations of V .
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