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Preface

The present notes should be seen as a continuation of the basic mea-
sure theory course in 2MA, which is given for second year students.
The intention was to attract some of these students who have become
fascinated by measure theory, but on the other hand also more advanced
students followed the course. Consequently I could not assume very
much knowledge of functional analysis, and in particular I could not give
the beautiful short proof of Liapounov’s theorem due to Lindenstrauss,
but followed Halmos 1948 paper from Bull. A.M.S. I want to thank Sgren
Eilers for having prepared careful seminars covering the two appendices.
One of the reasons for including Liapounov’s theorem was that a simple
proof of the inequality in §4 could be based on it.

Copenhagen June 1991, Christian Berg
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§1. Complex measures

Let (X,E) be a measurable space, i.e. a set X equipped with a o-algebra
E of subsets of X.

DEFINITION 1.1: A complex measure p on (X,E) is a function p: E — C
such that

u( U E,) = Zu(En) (1)

for any sequence Fj, Ey,- - € E of pairwise disjoint sets.

For a complex measure y we necessarily have p(@) = 0.

Since the value of the left-hand side of (1) is a complex number, it is tacitly
assumed that the series on the right-hand side converges, and its sum is equal
to p(Uy" En). If 0 : N — N is any permutation (i.e. a bijection) then (1)
implies that the rearranged series

o0

Z 1(Eq(n))

n=1

converges to u(Une; Eo(n)) = (U1 Ern). We express this by saying that
the series in (1) is unconditionally convergent.

We recall the classical fact about an infinite series with complex members:
It is absolutely convergent if and only if it is unconditionally convergent. We
obtain this as a corollary later.

An ordinary finite measure is of course a complex measure, but a measure
p with infinite total mass is not a complex measure. Measures from 2 MA
will often be called positive measures.

Given a complex measure u, we define a new set function |g| which turns
out to be a positive measure:

|L|(E): = sup{z |(En)| |(En) partition of B}, E € E

n=1

where “(E,) partition of E” means that Ey, E,, ... is a sequence of pairwise
disjoint sets from E such that |J;° E, = E.

The measure |u| is called the total variation (measure) of p, or the absolute
value of p. O

THEOREM 1.2. The total variation |u| of a complex measure p is a measure.

ProorF: Clearly |u|(#) =0 and |p|(E) < |p|(F) when E C F.
Let (E;) be a sequence of pairwise disjoint sets from E with E = [J* E;.
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Let us first prove
D Iul(B:) < |ul(B) - (2)
=1

For this we can assume |g|(E) < oo. Let € > 0 be given and let us for each
i € N choose a partition (A;j);>1 of E; such that

ul(Bi) — 57 < ZI#(AU)I

Then (4;;),4,7 = 1,2,... is a partition of E and summing over ¢ we find
Z |ul(B:) — e < Z Z (Al < |pl(E)
i=1 j=1

and (2) follows since € > 0 was arbitrary.

To prove equality in (2) we choose an arbitrary partition (A4;) of E. For
fixed 4, (Ai N E;)j>1 is a partition of A;, and for fixed j, (A; N Ej)i>1 is a
partition of E;. Therefore

Do lu(Adl =313 mAin Ej))

1 j=1

ZI#(A N Ej)|

1j

.D“ﬁg

-~

M

I
—

~.

M
™8

|u(Ai 0 E;j)

<.
I
—

7

|l (Ej)

Lz,

1

J

and taking supremuim over all partitions (4;) of E we get
|ul(E) < E |ul(E;)

showing equality in (2). O
LEMMA 1.3. If z1,...,zy € C then there is a subset S of {1,...,N} for

which
1>zl > = Z |2k | -

kes
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PROOF: Write z; = |z|e!*. For —m < 6 < 7 let S(#) be the set of k €
{1,..., N} for which cos(ay — 6) > 0. Then

| Z zi| = e Z zk| > Re( Z e 2) = Z |z | cos(ay — 6)

kES(8) keS(6) keS(6) keS(6)
N

= Z |z | cosT(ay —0) .
k=1

Note that S(f) can be empty. The empty sum is 0 by definition. The
function ¢p(6) = E}?I=1 |2&| cosT (ax, — 0) is continuous on [—m, 7] and attains
its maximum at = 6. Put S = S(6p). Then

|sz|> max (p(9)>7/

™

©(0)do = Z |2k|—/ cosT(ay, — 0)do ,

kes - -
but
' 1 [T L fe 1
— —0)d0 = — t = — ==
o | cos™(a — 0)d o | cos™(6)do o | cos 0d6 -
so finally

1 N
1>zl 2 ;;VH-

kes
d

REMARK. The constant 1/7 in Lemma 1.3 is best possible. See Bledsoe:
Amer. Math. Monthly 77 (1970), 180-182.

THEOREM 1.4. If u is a complex measure on (X,E), then |u| is a finite
measure, 1.e. |p|(X) < oo.

PROOF: We first show the following statement (*):

If E € E is such that |u|(E) = oo, then we can split E as E = AU B,
A, B € E, AN B = { such that |p(A4)| > 1, |u|(B) =

In fact put t = 7(1 + |u(E)|). Since |p|(E) = oo there exists a partition

(E;) of E such that
> O Iu(E)| >t
1

and we can choose N € N such that

N
S In(E) > ¢
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By Lemma 1.3 with z; = p(E;) 4 = 1,...,N we find S C {i,... N} such
that

N
1 t
1D (B = =D (B > — =1+ [u(E)|, (3)
i€s 1

so with A = ;s Ei, B € U,¢s Ei we certainly have |u(4)| > 1 and

|u(B)| = |(E) — p(A)| > |p(4)| = [u(B)| > 1

by (3). Evidently at least one of |p|(A) and |u|(B) is oo since their sum is
0o by Theorem 1.2.

Assume now that |u|(X) = co. Using (*) we first split X = A; U By with
(A1) > 1, |pl(B1) = oo, then we split By = Ay U By with |u(4y)] > 1
|¢|(B2) = co. Continuing in this way, we get a countable pairwise disjoint
collection (A;)i>1 with |u(A;)| > 1. The countable additivity of y implies

n(JA) =) w4,

but the series cannot converge since each term is of absolute value > 1. This
contradiction shows that |p|(X) < oo. O

THEOREM 1.5. Let u be a complex measure. Then |u| is the smallest positive
measure o satisfying

|W(E)| £ o(E) for E € E.

PrOOF: We clearly have |u(E)| < |p|(E) for E € E since E = EUQUQU. ..
is a partition of E.
Let o be a positive measure on (X, E) satisfying

|W(E)| < o(E) for E€E. (4)

We claim that |u|(E) < o(E) for E € E, and to see this it is enough to prove
that

Z |u(E:)| < o(E)

for any partition (E;) of E, but this is clear since the left-hand side by (4) is

majorized by
o0

Y o(Ei) =0o(E).

1
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COROLLARY 1.6: Let u be a complex measure and E € E. Then

N
|ul(E) = sup{ ) _ |u(E:)|| N € N,{Ey,..., En} partition of E}

=1

N
=sup{) _|u(E:)||N €N, Ex,..., Ex € E pairwise
=1

disjoint subsets of E} ,

where “{E,, ..., En} partition of E” means that Ey,..., Ey € E are pairwise
disjoint subsets of E with union E. O

PROOF: For € > 0 there exists a countable partition (E;) of E such that
= €
> l(B)| > l(B) ~ 5
1

and since the series Y 7" |u(E;)| is convergent (viz. < |p|(E) < o), there
exists N € N such that

> Iu(E)l < -

N+1

Then E, ..., En are pairwise disjoint subsets of E satisfying

N oo oo
S IuE) = Y B = D B > (B - 5 - 5,
=1 =1 i=N+1

and

{Ei,...,En, E} with E = J3,, Ei is a finite partition of E with

N
> IH(E)| + 1B > [pl(B) — e .

a

From Lemma 1.3 we can also establish the result about “unconditional
convergence = absolute convergence”. (The converse implication is well-
known). We prove an apparently stronger statement:
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PROPOSITION 1.7. Let (2,) be a sequence of complex numbers such that
337 Zo(n) is convergent for any permutation o : N — N with a sum s, € C.
Then Y 7° |2n| < 00 and s, is independent of o.

PROOF: Assume ) 5 |2n] = 0c0. We first choose N1 € N such that

Ny
j£:|zj|>»w.
Jj=1

By Lemma 1.3 there exists S; C {1,..., Ny} such that
1 &2
IzszZ;ZIZle-
JES1 Jj=1

Since Y, 41 |#j| = oo we choose N3 > Ny such that Z%i_i_l |zj| > m and
(by Lemma 1.3) S2 € {N; +1,..., Na} such that

| EE: zj|>»1.

JES2
Continuing in this way we get a sequence S1,S2,... of pairwise disjoint and
finite subsets of N such that
|Ezj|>lforalln. (5)
JESn

N\ S; = {n1 <nz <...} we define a bijection 0 : N — N by arran-

ging N in the following way: S1,n1, S2,n2,. .., where the elements in each 5
are ordered according to the standard order. (If N\|J;° S; is a finite set {ny <
ng < -+ < ny} we arrange N by taking S1,n1,...,Sk—1,7k—1, Sk, %k Skt1,- -+ )-

Now Y z,(n) is not convergent, because if it was, there would exist N € N

such that
n+p

1
>N N : N < =
Vn > NVp € Ij;lza(;ﬂ <5

contradicting (5). O

EXAMPLES 1.8.
(a) Let (2,) € C be such that Y 7° |zn| < co. We define a complex measure
on the o-algebra, of all subsets of N by setting u({n}) = z,, n € N, so that

w(E) = ZznforEgl\I.
nekl
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Clearly

H(E) =3 Jzal

nek

(b) Let (X,E, p) be a measure space with a positive measure p and let
f : X — C be an integrable function. Then

U(E)=/Efd,u,EEE

is a complex measure by Lebesgue’s dominated convergence theorem.
We claim that

lo|(E) = /E flde ,E€E. (6)

PROOF: By Theorem 1.5 we have |o|(E) < [ |fldu. Let fi, fa be the real
and imaginary part of f. Assume first that E € E is a set such that u(E) < oo
and that

a1Sfl(:v)gbl,agsz(m)gbzformEE.

Then there exist ¢; € [ay,b1],&2 € [ag, bz] such that
[ fdu= (& + itu(m) . (")
In fact,
a1p(E) < / frdp < bipu(E)
E

and therefore we can write [ fidy = & u(E) for some & € [a1,b1] and
similarly with fo.

Assume next that pu(E) < co and let € > 0 be given. We divide C in the
countably many standard squares

Sn,m = {# € C|ne <Rez < (n+1)e,me < Imz < (m + 1)e}

where n,m € Z, and define the partition of £

En,m:{er|f(a:) € Spm}smEL.

Let €5,m € Sn,m be such that in accordance with (7)

/ fd[L = ﬁn,mﬂ(En,m) .
Enm
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We then find
| /E Fdul = enmli(Bam)

and therefore

[ V= umldn < VBB ).

This shows that

/E Fldu — Zm | /E R 21;1 /E (1= lenmb
<Y [ 1 bl < eVE Y () = eVEW(E)

hence

[E |l — |o|(B) < ev/au(E),

and (6) follows.
Finally let E € E be arbitrary and define

Eg={a:€E]f(a:)=O},En:{x€E||f(w)|2%},7»:1,2,... |

Clearly
o(A)=0forany A€ E,AC E,
and 1
co> [1fldnz [ Iflduz u(En),
E, n
SO

o1(B0) =0, lol(Bw) = [ Ifide.
Since E = Ey U, By we get
1(E) = [o1(Bo) + Jim.|ol(E,)

= tim [ 17ida= [ \rldn.
n—oo Jp B
O

The set of complex measures on (X,E) is denoted M(X,E). This set is
organized as a complex vector space under the operations
(1 +v)(E) = u(E) +v(E)
(ap)(E) = ap(E)
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for p,v € M(X,E),a € C and E € E.
It is easy to verify that

it v| < fpl+ ||
[ lul = ]| < |u—v]

|au| = lal|u] -
We finally put
leell = 1l (X
and it is clear that || - || is a norm on M (X, E), called the total variation.

LEMMA 1.9. For p € M(X,E) and E € E we have
sup [u(E)| < ||ull < 7 sup [u(E)] .
E€E E€E

ProoF: We have |u(E)| < |p|(E) < |p|(X) = ||ul|, so the first inequality
follows. Let F4,..., E, € E be pairwise disjoint. By Lemma 1.3 there exists
S C{1,...,n} such that

Z |W(Ei)| < 7l ZN(Ei)l = 7F|H(U E;)|

€S €S

< 7 sup |u(E)|,
E€E

and by Corollary 1.6 we get
|u|(X) < 7 sup |u(E)] .
EcE

REMARK 1.10. A complex measure p on (X,E) is a bounded function on
E so we can consider M (X, E) as a subspace of the vector space B(E,C) of
bounded functions on E, and this is a Banach space under the uniform norm.
Lemma 1.9 states that the restriction of the uniform norm to M(X,E) is
equivalent to the norm || - ||. In order to show that M(X,E) is a Banach
space, it is therefore sufficient to prove that M(X,E) is a closed subspace of
B(E, C) under the uniform norm.

THEOREM 1.11. M(X,E) is a Banach space under the total variation norm.

PROOF: Let (uy,) be a sequence of complex measures which converges uni-
formly to a function u € B(E, C). We shall show that y is a complex measure.
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We first remark that p is finitely additive: If Ey,..., E,, are pairwise
disjoint sets from E then

#(U E;) = Z#(Ei)

because
w(J B = Tim (B = lim (3 pa(B)) = 3 (Bs)
=1 i=1 i=1 =1

To see that u is countably additive let (E;) be a sequence of pairwise disjoint
sets from E. For € > 0 there exists ng such that

|(A) — pn,(A)| < eforall AcE.

By the finite additivity we get

(B = Y w@)l=1u( | B

i=m—+1

<l U B)=mne( U B+ luno( | B

i=m-+1 i=m-+1 i=m+1

<etlunl( |J B

i=m-+1

The last term above tends to zero for m — oo because |gn,| is a finite positive
measure. This shows that

(U B) - Y (B < 2

for m sufficiently large, i.e. & is a complex measure. O

Let us now specialize and consider a real measure pon (X, E), i.e. a function
i : E — R satisfying (1). Such measures are often called signed measures in
contrast to positive measures.
If 1 is a complex measure then p; = Re p and pg = Im p are real measures
and
p=Rep+iImp=ps +1p,. (8)



|

DEFINITION 1.12: For a real measure p we define

it = S+ ) 5= 50— ). (9)

Since

—|4(B) < |u(E)| < |ul(E) for B € E

we see that ut and p~ are positive measures on (X, E). They are called the
positive and negative part of p.
Clearly

p=pt—pm, |ul=pt (10)

This formula shows that any real measure is a difference of positive mea-
sures. The decomposition g = put — = is called the Jordan decomposition.
(C. Jordan, french mathematician, 1838-1921). There are of course many
decompositions of p as difference of finite positive measures because we can
add any finite positive measure o to u* and to p~. We shall later see that
the Jordan decomposition is the smallest such decomposition in the sense
that if 4 = Ay — A2 with positive measures A1, A2, then \; > pt, Ay > .
This shows that 0 = A\; — uT = Ay — p~ is a positive measure such that
M=pt 4o, g=p"+o0.

It is clear that the set of real measures is a real vector space and a Banach
space under the norm ||x|. O



Appendix 1. The best constant in Lemma 1.3

Sgren Eilers

Lemma 1.3 tells us that for all finite sets of complex numbers zy, -+, zn
there is a subset

so that

1 N
DR

kes

Let us realize that 1/7 is the best possible constant in this inequality, i.e.

s 2k 1
.|ZLES il <=

Ve >0 3z, -, 2y €CVSC{l,--- ,N}:
iy lzl T

+e. (%)

We can assume that all z; # 0.
When S is chosen so that | ), ¢ zx| is maximal, S is of the form

sz{ke{la"' aN}l(zk|€)>0}

where (z|w) = Re(zw) for a suitable unit vector ¢ in C. Indeed, when

sz=7"§,r>0, €] =1

keS
and S is optimal, we have
(2 |€) >0=>keS
since the Cauchy-Schwarz inequality gives us, for (zj | £) > 0
[ + zk| 2 [(r + 2e|6)] = Ir + (2[)] > 7.
If k ¢ S then ré + 2 is the sum corresponding to S U {k} contradicting the

maximality of the sum corresponding to S.

When (z; | €) <0,
[ré — 2| 2 |(r€ — ze|6)] = [r — (2&[€)] > 7,

then k£ € S leads to a contradiction.



When (z | £€) = 0 we have by the Pythagorean theorem
€ £ 2k * = r? + |2 ] .

The assumption |z;| # 0 shows that both k¥ € S and k ¢ S lead to a
contradiction, as above.

For each N let us look at the roots in 22V =1,
e2mR/2N = (,... 2N —1.

From the discussion above we see that a subset of {0, - ,2N —1} yielding a
sum with maximum modulus must correspond to N consecutive roots. Since

ko+N-1 N-1 N-1
I Z 627rik/2N| — |621rik0/2N” Z e27rik/2N| _ | Z 627rz'k/2N| :
k=ko k=0 k=0

the maximum modulus is obtained by adding the first N roots.
Thus, showing that

N—-1 omik/2N
P |627rzk/2N| T
gives (k). But since
| Sicg TN _ 1 |N_1 )] = 2 IN_1 T (3]
= ol X = IS e
2V |e2mik/2N | 2N £ 2w = N

and the sum to the right obviously is a mean sum for
e'?:[0,7] = C
this follows from the basic calculus observation (IMA IV.1.4) that mean sums

converge to integrals when the maximal distance between the consecutive
points tends to zero, and

|/ e dip| = |[~ie?)5| = i +1] = 2.
0
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§2. Absolute continuity

If u is a positive measure on (X, E) and f € £1(¢) we have seen that

,\(E)z/Efd,u,EeE (1)

is a complex measure.
We remark that if 4(E) = 0 then A(E) = 0 and this leads to an important
new concept:

DEFINITION 2.1 Let p be a positive measure and let A\ be an arbitrary
measure on (X, E), i.e. A is either a complex measure or a positive measure.

We say that ) is absolutely continuous with respect to p and write A < p
if \(E) = 0 for every E € E with u(E) =0, i.e.

AL psVEEE(WE)=0=XE)=0). (2)

The following theorem explains why the word “continuity” is used in con-
nection with the relation A < p.

THEOREM 2.2. Suppose y is a positive measure and X is a complex measure
on (X,E). Then the following conditions are equivalent

(i) A< p.

(i) Ve > 036 > 0VE € E(u(E) <6 = [ME)| <¢) .
PROOF: Suppose (ii) holds and that u(E) = 0. Then [ME)| < ¢ for every
e > 0, hence A(E) = 0.

Suppose next that (ii) does not hold. Then there exists an ¢ > 0 and there
exist sets B, € E, n =1,2,--- such that

w(Ey) < 27" but |MER)| =€

We define - -
Av=JEi, A=) 4n
1=n n=1
and get

H(An) € 3O p(E) <27
Since A1 D Ay D -+ we have y(A) =0 and

AI(4) = Tim A|(4n),
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which is > € because |A\|(4,) > |A(Er) = |A(Er)| = €. On the other hand if
(i) holds, then we have A(B) = 0 for any B € E, B C A and hence |[A|(4) = 0,

which is a contradiction. O

REMARK 2.3. (i) does not imply (ii) if A is a positive measure with infinite
total mass. For instance, let u be Lebesgue measure on |0, 00 [ and put

A(E):/EétfforEeB(]o,oo[).

Then (i) holds but A(]0,€]) = oo for all 0 < e.

The main theorem of this section is the Radon-Nikodym theorem which
essentially tells us that if A < p then A has the form (1). We need however
an extra condition on y, namely o-finiteness: A measure p is called o-finite
if there exists a partition (B,) of X such that p(E,) < oo forn=1,2,---.

THEOREM 2.4. (Radon-Nikodym) Let A be a complex (resp. positive) mea-
sure on (X,E) and let pu be a o-finite positive measure. Then the following
conditions are equivalent:

(i) A < p.
(ii) There exists f € L1(p) (resp. f € M*(X,E)) such that

A(E)z/EfduforEEE.

Before we give the proof we need some lemmas.

LEMMA 2.5. Let p be a positive measure on (X,E). Then p is o-finite if
and only if there exists f € L£1(p) satisfying 0 < f(z) < oo for all z € X.

PROOF: If y is o-finite and (E,) is a partition of X with u(E,) < oo, then

f = Z 5n1E,.
n=1

satisfies the required conditions if €, >0, Y en < 00 and ) enu(Eyn) < oo,
and this is easily achieved.
Conversely, if f is integrable and 0 < f < oo then

1
An:{$€X|f($)Z‘;},n:1,2,.
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is an increasing sequence of sets from E with |J;° A, = X and
1
o> [fauz [ fduz cucan)
An L

so p(Ap) < oco. From this it is easy to see that u is o-finite. a

LEMMA 2.6. Let o and T be positive measures on (X,E) with o(X) <
7(X) < o0.
Then there exists Y € E such that

(a) o(Y) < 7(Y).

(b) oY <7|Y,ie o(E)<7(E)foral EEE,ECY.
PROOF: Let § = 7—o. Then § is a real measure with —o(X) < §(EF) < 7(X)
for E € E. We shall construct two sequences (4,), (X,), n > 0 from E
inductively. We put Ag =0, Xo = X = X\ A4o. If Ag,---, An and Xo,--- X,

are constructed we consider the quantity
an :=inf{6(A) |A€E, AC X,}. (3)

Since A = @ occurs above a, < §(0) = 0. If o, = 0 we define A,y = 0,
Xnt1 = Xn \Ant1(= X,). If @, < 0 are choose Apq1 € E, Ay € X, such
that

1
6(Ant1) < 5 n
which is possible by (3). Define Xp41 = X5 \ Any1.
The sequence (A4, ) consists of pairwise disjoint sets, so the series ) {° 6(A,)

is convergent and in particular §(A4,) — 0. This implies lim,_, o, @, = 0. The
sequence (X,,) is decreasing so for

Y:ﬁXneE
0

we find
§(Y)=7(Y)— oY) = lim (r(X,) — o(Xn))
= lim §(X,).
Using that §(Ap4+1) < 0 for all n we have

5(Xn+1) = 6(Xn) - 6(An+1) 2 5(Xn)
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and hence

6(Y) = lim 6(X,) > 6(Xo) = §(X)

which is > 0 by assumption, so (a) is verified. To verify (b) let E € E,
E CY. Then E C X, for all n so by (3) we have a, < §(E). Since a, — 0
we get (b). O

PROOF OF THEOREM 2.4: Only the implication (i) = (ii) remains to be
proved. This will be done in four steps.

19 X2 0, A(X) < o0, u(X) < oo

We consider the set G of measurable functions ¢ : X — [0, 00| such that
gp < A, i.e. such that

/ gdp < A(A) for all A € E . (4)
A

The idea is to take some “maximal” function f € G and obtain equality in
(4).

The function g = 0 belongs to G so G # 0.

The set G is max-stable: ¢1,92 € G = ¢1 V g2 € G. In fact, if we put
E ={g1 > g2} and F = {¢91 < g2}, then {E, F'} is a partition of X, and for
any A € E we find

/91V92d#=/ 91ngd#+/ 91V g2dp
A ANE ANF

=/ mw+/ g2dp
ANE ANF
SMANE)+ MANF)=AA).

Defining
¥ k= 8up /gdﬂ (5)

geG

we have v < M(X) < oo, and we can choose a sequence (¢g},) from G with
lim [ g}, dp = . From the just shown we know that g,, := max(g{, - ,g5,) €
G, and (g,) is an increasing sequence with [ ¢, dy < [gndu < 7. By the
monotone convergence theorem it follows that f :=lim ¢g,, belongs to G and
v = [ fdu. This can be expressed by saying that the function g — [ gdu on
G attains its maximum at f € G.

We will show that fu = A, and by (4) we already know that fu < A, so
T := A — fu is a positive measure. Step 1 will be completed by showing

(X )= D
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If we assume 7(X) > 0 then necessarily u(X) > 0 since A < p. Let

_17(X)
B = 3 a0

Then 7(X) = 26u(X) > Au(X), and we can apply Lemma 2.6 with o = By,
so there exists Y € E with 7(Y) > fu(Y) and fu|Y < 7|Y. The first
inequality implies in particular that 7(Y") > 0 and hence x(Y) > 0 because of
(i). The second inequality implies that the measurable function fo := f+ 81y
belongs to G, because for A € E we have

[ fodu= [ sau+puany) < | fau+rany) <x4)
On the other hand
[ todu= [ s+ puv) =1+ Bux) >,
which is in contradiction with (5).

2°. A >0, M(X) =00, u(X) <o00.

We will show the existence of a partition (X, )n>o of X with the following
properties
a) For any A € E, A C X, we have the alternatives

p(A)=XA)=0 or pu(A)>0,XIA)=oc0
b) MX,) <o0,n=1,2,--.
To do this, let F be the system of all sets F' € E with A(F") < oo and define

a = sup p(F) .
FeF

Then there exists a sequence (F,),>1 from F with o = lim p(F}, ), and since F
is stable under finite unions, we can assume that (F,) is increasing. Defining
Fo=|JFn, Xo=C0F, X1 = Fi, Xnt1 = Fop1 \ Fp forn > 1,

1
we then have a = p(Fy) and (X, )n>0 is a partition of X satisfying (b). To
verify (a) all we have to show is

VAEE, AC Xo(MA) <oo=pu(A) =0).
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If A €E,AC X, satisfies \(4) < co then A € F and hence AU F;, € F for
all n > 1. Since AN F,, = () we have

p(A) + p(Fr) = (AU Fp) < a,

and letting n — oo we find p(A) + p(Fo) < a showing that u(A) = 0.

Let now pin = p|Xn, An = A|Xn, n > 0 be the restrictions to the measu-
rable space (X,,Ex,), where Ex, = {E € E| E C X,.}. Then )\, < py,
n > 0 and by step 1° which can be applied for n > 1 there exists an Ex -
measurable function f, : X, — [0,00] such that X\, = f,u,. Because of
(a) we also have Ao = fopo on (Xo,Ex,) if fo = co. By putting the pieces
(fn)n>o together via the partition (Xn)n>o, i.e. by defining f : X — [0, co]
as being equal to f,, on X, elementary measure theory implies that A\ = fu
because for E € E

ME) =Y MENX,) =) A(ENX,)= Z/ Fadin
n=0 n=0 n=0Y ENXn

3°. A >0, p is o-finite.

By Lemma 2.5 there exists h € L£1(p), 0 < h(z) < oo and hp is a finite
measure with the same null sets as p. Therefore A < hp and by step 1° and
2° there exists f : X — [0,00] such that A = f(hp) = (fh)p, i.e. A has the
density fh with respect to p.

If A\ = fuand \(X) < oo then [ fdu < co so N = {z | f(z) = oo} is a
p-null set. Replacing f by

0 , TEN

f(‘”):{f(@ o g N

we obtain an integrable function f such that \ = fu.
4°. X complex, p is o-finite.

Let A = A\; — Az (A3 — \q) be the decomposition with Ay = (Re\)t, \; =
(ReA)™, A3 = (ImA\)*, Ay = (ImA)~. It is easy to see that Re),Im ) <
p and hence A\j < g, j = 1,---,4. By step 3° there exist non-negative
integrable functions f;,j = 1,---,4 such that A\; = f;u and then A\ = fp,

where f = fi — fa +4(fs — f1) belongs to L (). O
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REMARK 2.7. The density f in Theorem 2.4 (ii) is uniquely determined up
to a p-null set. This statement amounts to the assertions:

(¢) Let f € £1(x) and assume that [, fdu =0 for all E € E. Then f =0
p-a.e.

(d) Let fi, f2 : X — [0,00] be measurable functions such that

/f1dy=/f2duforallEEE.
E E

Then f1 = f2 p-a.e.

PROOF OF (c): The complex case follows from the real case, so assume that
f is real. Using E = {f >0} and E = {f < 0} we find f =0 p-a.e.
For the statement in (c¢) we do not use that p is o-finite, but this is essential

in (d). O

ProoF OF (d): If (d) holds for finite y, it also holds for o-finite y, so we
shall assume p(X) < oo.
Let E = {fi > fo} and E, = {& € E | fa(z) < n}. Then (E,) is an

increasing sequence with union E and
[ = = Jim [ (= i
E n—oo @

=n1i_{r;o(/Enf1d#—[Enfzdu)=0-

The first equality sign follows from the monotone convergence theorem and
in the second we use that

0< / fodp < nu(E,) < oo
En

It follows that u(E) = 0 and similarly pu({f1 < f2}) =0so0 fi = f; p-a.e. O

DEFINITION 2.8. Let A < u, where A and p are as in Theorem 2.4. The
density f such that A = fu which is determined p-a.e. is called the Radon-
Nikodym derivative of A with respect to p, and it is often denoted

d)
F=a

(Radon proved the theorem in 1913 for euclidean spaces with p equal to
Lebesgue measure. The general version is due to Nikodym 1930.)
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The following example shows that Theorem 2.4 may fail if x is not o-finite.

EXAMPLE 2.9. On the measurable space (R,B) we consider Lebesgue mea-
sure A and the counting measure g. Then A < u, but there is no measurable
function f : R — [0, 00] such that A = fu, because this equation implies

o:an=A}ﬂm:ﬂ@

for all ¢ € R.

We will now give some consequences of the Radon-Nikodym theorem.

THEOREM 2.10. Let p be a complex measure on (X,E). Then there is a
measurable function a : X — R such that

i _ ia

du|
ie.

w(E) = / '@ d|pu|(z) for E € E .
E

PROOF: The absolute value |y is a finite positive measure and clearly p <
|¢|. Let h € L£1(u) be such that g = h|p|. By Example 1.8 (b) we know that
|| = |h| |i| so by the uniqueness of the Radon-Nikodym derivative (Remark
2.7) |h| = 1|pu|-a.e. We can therefore assume that |h| = 1, and if Arg(z) is
the principal argument € |—m, 7] of z € C\ {0} then Arg is measurable and
so is a = Argobh. O

THEOREM 2.11. Let p be a real measure on (X,E). Then there exists a

partition {P, N} of X, called a Hahn decomposition, such that
pT(E)=uw(PNE),u (B)=-u(NNE)for EcCE.

If 4 = Ay — Ay with positive measures A, Az, then pt < Ay, p= < A,

In other words X can be split into disjoint sets P and N such that P
carries the positive mass and N the negative mass of u.

PROOF: By Theorem 2.10 we have y = h|p| for a measurable function h
with |h| =1 and we can assume that A is real-valued, hence h = 1. Put

P={zeX|h(z)=1}, N={z € X | h(z) =-1}.
Since p* = 1(|u| £ p) we have

lplu| =1lpp

1

+

= 50l = {
2 Inlal =—1ws,
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so for E € E we get
pH(E)=wPNE), p (E)=-p(NNE).
If p is the difference of two positive measures A1, A, we find
pt(E)=w(PNE)=M(PNE)-)X(PNE)<M(PNE) < \(E)
and
p (E)=—pu(NNE)=X(NNE)—M(NNE)<M(NNE) < (E).

a

LEMMA 2.12. For a complex measure yu on (X,E) and A € E the following
conditions are equivalent:

(i) W(E)=0forall E € E with ENA=10
(ii) u(E)=w(ENA) forall E€E
(i) [41C4) = 0.

If u and A satisfy the above conditions we say that p is concentrated on A.
The proof of Lemma 2.12 is straightforward and left as an exercise.

DEFINITION 2.13. Let \,v be arbitrary measures on (X,E). We say that
)\ and v are mutually singular and write A L v if there exist disjoint sets
A, B € E such that )\ is concentrated on A, v is concentrated on B.

LEMMA 2.14. Let \,v be arbitrary measures on (X,E) and p a positive
measure on (X, E).

(a) If A L v, then |A| L |v|.
(b) If N\ L pandv L p, then A\ +v L p.
(¢) If < pand X L p, then A = 0.

PROOF: (a) is clear since A and |)| are concentrated on the same sets by
Lemma 2.12.

(b) If {A;, B1} and {A;, B, } denote pairs of disjoint sets from E such that
) is concentrated on A;, v concentrated on A; and p concentrated on B
and on B, then p is concentrated on By N By and A 4 v is concentrated on
A U A,y by Lemma 2.12 (iii)

(c) Let {A, B} be a pair of disjoint sets such that A is concentrated on A,
p is concentrated on B. For E € E we find

ME)=XNENA) +ME\A) =0
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where the first term vanishes because u(E N A) = 0. O

LEMMA 2.15. Let A,p be positive o-finite measures on (X, E) and assume
A < p. Then there exists a measurable function f : X — [0,1] such that

A= F.

ProOOF: Clearly A < p, so by the Radon-Nikodym theorem there exists a
measurable function f : X — [0,00] so that A = fu. Let E € E with
w(E) < oo and let @ > 1. Then E, :={z € E | f(z) > a} € E and

W(ED 2 MEa) = [ fduz au(Ba),

E.

hence u(E,) = 0. Since

B /{z e E| f(z) > 1}
we see that u({z € E | f(z) > 1}) = 0, and using the o-finiteness of p we
get f <1 p—ae. . O

THEOREM 2.16. Let A be a complex measure and let . be a positive o-finite
measure on (X, E).

There exists a uniquely determined decomposition A = A\, + A, as sum of
complex measures A\, and Ay satisfying

(1) Aa < p,
(ii) As L p.
If \ is real (resp. positive) then A\, and A, are real (resp. positive).

The decomposition above is called the Lebesgue decomposition of A\ with
respect to p and A, is called the p-absolutely continuous part, As; the p-
singular part of \.

PRrRoOOF: The decomposition is unique, because if we consider two decompo-
sitions A = Ay + Ay = A, + )| as above and define 7 = A\, — A, = X, — A,
then 7 <« p and 7 L u. By Lemma 2.14 (c) we get 7 = 0.

It is enough to prove the decomposition for positive finite measures A
because afterwards we can apply the decomposition to each of the positive
terms in the decomposition A = A; — Ay 4 t(A3 — Ay).

Assume A\ > 0, A(X) < oco. Then A + p is a positive o-finite measure
and clearly A\ < A + p. By Lemma 2.15 there exists a measurable function
f:X —[0,1] such that A = f(A + ). Let

A={zeX|f(z)<1}, S={zeX|f(z)=1}
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then {A, S} is a partition of X and we define
M(E)=MENA), \(E)=XNENS) for ECE.

Then A = A\, + )\, is the desired composition. If u(E) =0 then
ME)=AMENA) = fdA+p) = / fd\
ENnA ENnA

and hence

/ (1= f)dr=0.
ENnA

Since 1 — f(z) > 0 for z € E N A this implies A(E N A) = 0 showing that
A¢ K p. To see that A\; L p we remark that A, is concentrated on S, and p
is concentrated on [.S because

A(S) = /S FA+ ) = X(8) + u(S) ,

so u(S) = 0. O

As an application of the Radon-Nikodym theorem we shall prove that the
dual space of Ly(pn) = Ly(X, E, i) can be identified with L,(u) if 1 <p < oo
and 1/p+1/q = 1. As usual L,(u) is the Banach space of equivalence classes
[f] of functions f € L,(p).

Let E be a complex Banach space. We recall that the dual space E' of
continuous linear functionals T': E — C is a Banach space under the norm

ITN| = sup{|T()] | llz]| < 1} -

THEOREM 2.17. Let u be a positive measure on (X,E) and let 1 < p < oo,
1/p+1/q=1. For ¢ € L(X,E, ) the expression

T, ([f]) = / Fodu , f € Ly(X,E, p)

defines a continuous linear functional T, : L,(X,E, ) — C satisfying
() T,=Tpy&e=19% p-—ae
(i) 1Tl = llellq-

The mapping [¢] — T, is an isometric isomorphism of Ly (X,E,u) onto
Ly(X,E,p).

ProoF: By Holder’s inequality it is clear that T, defines a linear functional

such that
1T (LD < N fllnllellq
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which shows that T,, is continuous and ||T,|| < ||¢||;- The property (i) is a
consequence of (ii), if we remark that ¢ — T, is linear.

It remains to be shown that if ® is a continuous linear functional on

L,(X,E, ), there exists ¢ € Lq(X,E, p) such that T, = ® and ||¢||; < ||2.
If ® =0 we can choose ¢ = 0, so assume ||®| > 0.

1° pu(X) < oo.
For E € E we define A\(E) = ®([1g]); note that 15 € L,(p) because
#(X) < co. Then A : E — C is finitely additive because ® is linear. To prove

countable additivity, suppose E is the union of countably many disjoint sets
E, €E, put Ay = E; U---U E}, and note that

11z — Lal, :'u(E\Ak)l/P —0 for k— 0.

By continuity of & we then have \(Ax) = ®([14,]) — ®([1g]) = A(E). This
shows that ) is a complex measure. It is clear that A(E) = 0 if u(E) =0
because then ||1g|, = 0. Thus A < p, and by the Radon-Nikodym theorem
there exists ¢ € L£1(p) such that A = ¢y, i.e.

<I>([1E])=/Egodp for E€E. ~(6)

By linearity (6) implies

((f]) = / Fodp ()

for all simple measurable functions, and we see next that (7) also holds for
all bounded measurable functions f. In fact for any measurable function f
satisfying | f| < K there exists a sequence (fy,) of simple measurable functions
such that ||f — fullu < 1/n and then ||f — fall, = (1/n) u(X)'/?. The first
inequality shows that [ fopdp — [ fodp, the second that ([fn]) — 2([f]).
(The existence of (fn): For each n let us consider a finite partition (D;) of

1
{z € C | |2| £ K} in sets of diameter < —, choose d; € D; and put
n
Jo= Z di li-1(Dyy 5

then [|f = fulle < 1/n.)
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Choose now a measurable function a with |a| = 1 so that ay = |¢| and

define
E,={zeX||p(z) <n}, f=ale|" 1g,.

Applying (7) to the bounded measurable function f we get

/ |7 dy = / Fodu=3(f]) < 181 £l
B,

and dividing by
1
11l = (/E ol dps) '

we find
/ oltdu < @7, n>1.
E,

Letting n — oo the monotone convergence theorem implies ¢ € £,(x) and
lells < [|@||. We know by (7) that ® and T,, agree on simple £,-functions
which form a dense subset of £, by a theorem in 2MA, and therefore the
continuous functionals ® and T, agree.

2° u(X) = oo.

Let Ec = {F € E | p(E) < oo}. For E € Ey we consider the space
L,(u|E) = L,(E, Eg, p|E), and the embedding I : L,(u|E) — Ly(p) given
by
f(z), rel

B =1, whee fo={] 257

Clearly Ig is a linear isometry, and ® o Ig : L,(u|E) — C is a continuous
linear functional on L,(p|E), so by part 1° there exists pg € L4(p|E) so
that

(In((f]) = / fopdulE) for feLy(uE), (8)

and

r(E) = |8 o I = / losl? d(ulE). (9)

Now ¢g : E — C is unique up to p-null sets so it is clear that if E, F' € Ey,
E C F then g = pp|E p-a.e. It follows that 7 : Eg — [0,00][ is additive
and increasing. Furthermore 7(E) < ||®||? for all E € E,.
We claim:
sup 7(E) = |[2]. (10)

€Eo
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Let 0 < A < ||@|| be given. By definition of ||®|| there exists f € L,(p) with
Ifll, <1 and |2([f])| > A. For r > 0 define

A, ={ze X ||f(z)| >r}.

Since f € L£,(p) we have p(A,) < oo; and f1la, — f in L,(p) for r — 0 by
dominated convergence, hence

®([f14,]) — 2([f])

by continuity of ®, so
1@ 0 L4, || = | 0 Ly, ([f|AD] = |2([f 14,])] > A,

where the last inequality holds for r sufficiently small. This establishes (10).
By (10) we can find By C E; C -+ € Eg such that 7(E,) / ||®]|?. Let ¢,

be chosen according to (8) corresponding to the set E,, and we can assume
that pq1|En =¢n, n=12,.... The function

o(z) = { en(z) for ze€ E,

11
0 for z¢ " En, (11)

is measurable and

/ |7 dys = /E (ol (4l En) = 7(En) /|07

n

By the monotone convergence theorem ¢ € Ly(p) and |¢|l, = [|®]. We
claim that T, = ® and for this it suffices to prove that

#((1e) = [ wdu
F
for all F' € E, since the linear span of the functions 1, F' € Eg is dense in
L,(w). By additivity it is enough to consider the following two cases:

a)FEEo,FgUTOEn.
Since 1png, — 1r in L,(p) we have

3([Lr]) = lim &((1png,]) = lim il / o,
n—o00 n—o JpnEg, F

b) FEEo, F N (U En) = 2.
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Since ¢ = 0 on F' by (11), we have to show that ®([1r]) = 0 which is fulfilled
since ® o I = 0, and this can be seen in the following way:
For n € N we have

T(F) + 7(Bn) = 7(F U Ep) < [|®]|

and for n — oo we get

T(F) + 12" <[]l

hence

0=7(F)=|®oIp|“.
a

REMARK 2.18. (a) For p = ¢ = 2 we get in particular that any continuous
linear functional ® : Ly(p) — C is given as the scalar product with an
Lo-function p:

((f]) = / fodu=(fI7) for fe La(n).

This is a general fact about Hilbert spaces and is due to F. Riesz: Let H be
a Hilbert space. For any continuous linear functional ® : H — C there exists
a unique vector y € H so that

®(z) = (z|ly) forall ze H.

It is possible to deduce the Radon—-Nikodym theorem from the Riesz theorem.
This is done in Rudin’s book.

(b) For a Banach space X the double dual space X" is defined as the dual
space of X'. If X and X" are the “same” we call X reflezive. We see that
L,(p) is a reflexive Banach space for 1 < p < oo.

(c) As an application of Theorem 2.17 let X = {1,--- ,n} and let x be the
counting measure on X. Then £,(X,p) = Lp(X, 1) can be identified with
C" equipped with the norm

1/p
(2:;1 |a:ilp) 1<p<oo

_max |z , P=00
1=1,-,n

lll, =

Linear functionals ¢ : C"* — C are automatically continuous, and if ¢(e;) =
vi,? = 1,--+,n, where ey, - ,e, is the standard basis of C*, then y =
(y1,**+ ,yn) € C™ determines ¢ because of the equation

p(z) = %(i wiﬁi) = i TiYi-

1 1
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This shows that the dual space of (C", || - ||,) is isomorphic with C", and the
norm on C™ as the dual space of (C, || - ||,) is

n
sup {| Z ziyil
1

which is equal to ||y||, for 1 < p < 00,1/p+1/g = 1. In this simple case the
result also holds for p = 1 and p = co. These results can be verified directly.
In fact, the expression in (12) is < ||y||q by Holder’s inequality, and for y # 0
the above supremum is a maximum attained for

]l < 1} (12)

z = (21, ,Tn) Where z; = sgn(yi)(ﬂ)q_1 for 1 < p < oo,

1yllq
and for p = 1 we choose iy € {1, ,n} so that |y;,| = ||y|lcc and put
_ { sgn(yi,) if 1 = 4,
T lo if 7 £ .
In general Loo(p) # L1(p), but L1 (p)' = Loo(p) at least when p is o-finite.
We use the terminology of Theorem 2.17 in the precise statement below.

THEOREM 2.19. Let p be a positive o-finite measure. Then [p] — T, is an
isometric isomorphism of Lo.(p) onto Ly(p)', where

T(1) = [ fodu for § € L1, € Los(i)

PROOF: As in the proof of Theorem 2.17 it suffices to establish the following:
Let ® : Li(¢) — C be a continuous linear functional with ||®|| > 0. Then
there exists ¢ € Loo(pt) such that ® = T, and ||¢]|c < [|2]|.

1° pu(X) < oo.

As before A(E) = ®([1g]), E € E is a complex measure which is absolutely
continuous with respect to p. By the Radon-Nikodym theorem there exists
¢ € L1(p) such that (6) and (7) hold.

In particular

] [ i ’s 121l 115l = [Bllu(E) for B e E

showing that |pu| = |¢|x < ||®||¢, and it follows easily that |p| < ||®|| p-a.e.,
ie. ¢ € Loo(p) and |l¢|leo < ||®||- By (7) we know that ® and T, agree on

simple £;-functions hence ® = T, by the denseness in £, of these functions.
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2° u(X) = oo.

By Lemma 2.5 there exists h € L£1(p) so that 0 < h(z) < oo for all z € X.
Then o = hp is a finite measure and [f] — [hf] is a linear isometry I of
Lq(o) onto Ly(u).

Then ¥ = ®o/ is a continuous linear functional on L1 (o) with ||| = ||2]|,
and by 1° there exists ¥ € Loo(0) with ||¥]eo = ||¥|| such that

(lg]) = /gz/)dar for g € L4(0).

Noting that 3 also belongs to Loo(p) and with the same norm in Lo ()
as in Loo(0) we find for f € Lq1(p):

®(17) = ¥ (/) = [(s/myphau= [ fodp.
O

REMARK 2.20. For a positive measure p there is a Radon-Nikodym theo-
rem with respect to p if and only if the dual space of Ly(p) is Loo(p) and
measure spaces with these properties have been characterized by I.E.Segal:
Equivalences in measure spaces. Amer. J. Math.73 (1951), 275-313.
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§3. Differentiation theory

In this section we shall develop a differentiation theory of measures with
respect to Lebesgue measure and thus obtain a procedure for finding the
Radon-Nikodym derivative of a measure which is absolutely continuous with
respect to Lebesgue measure.

In R* we write |z| for the euclidean norm

ol = (D ah)?,
and K(z,r) denotes the open ball
K(z,r)={yeR* ||z —y| < r}.
Let g be a complex measure on (R¥,Bj) and define

Q@) = B2 st r>0, 1)

where m = my, denotes Lebesgue measure.

If o = fm and f is continuous for z = a, then it is clear that Q,(x)(a) —
f(a) for r — 0, cf. 2MA, and we are going to examine lim,_,o Q-(¢)(z) under
weaker assumptions on .

The symmetric deriwative of p is defined as

D(p)(x) = lim Q. ()(=) 2)

at those points 2 € R¥ at which the limit exists.
In the study of D(u) we shall make use of the mazimal function M ()
introduced by Hardy and Littlewood in 1930:

M()(e) = 519 Qr()(a) = sup Y. )

Note that m(K(z,r)) = Vir¥, where Vj is Lebesgue measure of the unit ball,
so we have

k(X (2,7))| < |ul(K (2, 7)) < M(p)(z)Vir . (4)

This is only interesting for small 7 > 0 since x is bounded by ||||. In contrast
to D(u), where we do not know its set of definition, the maximal function is
defined at all points of R* possibly having the value co at certain points.
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LEMMA 3.1. The maximal function is lower semicontinuous, i.e. the set
{z € R* | M(p)(z) > A} is open for any A € R. In particular M(u) is a
Borel function.

PROOF: Assume M (u)(zo) > A. We shall find § > 0 such that M(p)(z) > A
for all € K(zg,6). By (3) there exists r > 0 such that Q,(|x|)(z¢) > A and
we choose § > 0 such that

(r + 8)F <r’°m. (5)
For z € K(2¢,8) we have K(zo,r) C K(z,r + 6) by the triangle inequality,
and therefore

|ul(E (2,7 + 6)) 2 [ul(K(0,7)) = Qr(lul)(zo)Ver*
which is bigger than Am(K (z,r + §)) by (5), hence

M(p)(e) > .

LEMMA 3.2. (Wiener’s covering Lemma.)
If W is the union of a finite collection of balls K; = K(z;,r;), L <t <N
in R¥, then there is a set S C {1,--+ ,N} so that

(a) the balls K(z;,r;), ¢ € S, are disjoint,
(b) W< U K(zi,3r:),
1€ES

(c) m(W) < 3 ¥iesm(K (wi,m4).

PrROOF: We can assume that the balls are numbered so that ry > ro >
... > ry. Put iy = 1. Remove all balls K; that intersect K; . In particular
K;, is removed. Let K;, be the first of the remaining balls if there are any.
Among these remove all K; that intersect K;,, and let K;, be the first of the
remaining ones, and so on as long as possible. In this way we get the finite
set S = {31,172, " }.

Clearly (a) holds. Every K;,j ¢ S, is a subset of K(z;,3r;) for some
i € S. In fact, K; N K; # 0 for some 7 € S for which r; > r; and hence
|z; — :I:j| < ri+r; £2r;, 50 that

I{j = K(:L‘j,’l‘j) g K(a:,-,3r,-) .
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This proves (b), and (c) is an immediate consequence of (b). |

The next theorem says, roughly speaking, that the maximal function can-
not be large on a large set.

THEOREM 3.3. Let y be a complex measure on R¥ and A\ > 0, then

m({z € R* | M(u)(@) > A} < 3141 ©

PrOOF: Let Q = {z € R¥ | M(u)(z) > A\}. By Lemma 3.1 we know that Q
is open. Let C' C Q be an arbitrary compact subset. Each z € C' is centre of
a ball K(z,r;) for which

Bl(K (2,72)) > Am(K (2, 73)) -

By compactness a finite collection of these balls covers C' and Wiener’s co-
vering lemma gives us a disjoint subcollection {K7,--- , K, } satisfying

j:] j=1

Since every compact subset of §2 has Lebesgue measure bounded by the right-
hand side of (6), also m() is bounded by this number. In fact,  # R* and

1
Cn={$EQ||$|§n,dist(m,CQ)Zg} , n €N

(e o]
gives an increasing sequence of compact subsets of {2 for which [ JC, = Q. O
1

For f € Li(R*,m) we define the mazimal function M(f) of f as the

maximal function of the complex measure fm, i.e.

M(f)(@) = sup m(}{r) /K W,

where we write K, = K(z,r) when the centre is without importance.
Let Eloc(Rk ) denote the vector space of Borel measurable functions f :
R* — C which are locally integrable, i.e.

/ [Fy)ldy< oo
K(z,r)
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for any ball K(z,r). Note that M(f) is well defined by (7) for any f € Li,c,

and as in Lemma 3.1 it is seen to be lower semicontinuous.

DEFINITION 3.4: Let f € Lloc(Rk). A point zy € R* is called a Lebesgue
point of f if
1

lim
resd m(I{T) K(zo,r)

|f(z) — f(zo)|dz = 0. (7)

Clearly, a point o of continuity is a Lebesgue point. In general (7) means
that the average of | f — f(2¢)| is small on small balls centered at z¢. Lebesgue
points are thus points, where f does not oscillate too much, in an average
sense.

It is far from obvious that every f € Lioc(R*) has Lebesgue points. Lebes-
gue showed that almost all points are Lebesgue points. O

THEOREM 3.5. Let f € Lioc. The set L(f) of Lebesgue points is a Borel set
and OL(f) is a Lebesgue null set.

ProoOF: Define
1
m(Kr) Ji(s,n)

T (f)(=) = |f — f(z)|dm

for z € R*, r >0, and
T(f)(w) = limsup T;(f)(z) .

Notice that 1

T.(f)(z) < (K S | fldm + | f(z)] ,
and hence
T(f) < M(f) +1f]. (8)
Furthermore we have
T.(f +9) <T:(f) + Tr(g)} 9)
T(f+9) <T(f)+T(9)
for f,g € L1oc(RF).
The Lebesgue set L(f) is given by
L(f) = {z € R* | T(f)() = 0} . (10)

The function

iy f@) = @), i le—y| <7
0, if |z —y| >

Fr(z,y) = {
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is non-negative and Borel measurable on R%*, so by Tonelli’s theorem

T.(f)@) = [ Fule,v)im(y)

is Borel measurable. To see that T(f) is Borel measurable, we remark that
T(f)(@) = limsup T3 ()(a)

because of the inequality
L(f)(x) < (1+ )M T5(f)(a)

for r € [;ﬁ, L1, and it follows that L(f) € Bx. We prove m(CL(f)) =0 in

two steps.

1° Assume f € L£1(R*).

Let A > 0 and n € N. By an approximation theorem (2 MA) there exists
g € Co(R*) so that ||f — g|l1 < 1/n. Putting h = f — g we have by (9)

T(f) =T(h+g) <T(h)+T(9) = T(h)
because T(g) = 0 since g is continuous. Combined with (8) we get
T(f) < M(h) + R,

hence

{T(f) > 22} € {M(h) > A} U{|h| > A}.
Combining the inequality

1Al > /{ oy i = m({h > A

with Theorem 3.3 (applied to g = hm) we find

k
m({T(f) > 2A}) < 3 “};“1 + ”’;”1 3 n“;l : (11)

The left-hand side of (11) is independent of n so m({T'(f) > 2A}) = 0 for all
A > 0 showing that

m(CL(f)) = m({T(f) > 0}) = 0.
2° For f € Eloc(Rk) we note that

CL(f) € (JCL(f1k(o,m)

n=1

so OL(f) is a null set by 1°. a
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For every Lebesgue point zo of f € L. we have

1 1
— fdm — f(zg)| £ ——= — f(zg)|dm — 0
|m(I(r) K(zo,r) ( 0)‘ m(KT') K(zo,r) |f f( O)I
and hence )
Hr &) /K(xo,r) fdm = J\go)} (12)

In particular (12) holds for Lebesgue almost all 2o € R*.

Let R(f) denote the set of points zo € R* for which the limit in (12)
exists. Then L(f) C R(f) and R(f) remains the same if f is replaced by an
equivalent function. However, if 9 € L(f) and f ~ f1, f(zo) # fi(z0) then
(12) shows that z¢ ¢ L(f1).

The function frey : R(f) — C defined by

Foeols) = lim —

—_— fdm |, o € R(f
r—0 m(K;) Ji(zo,r) ° (4)

is “the most regular representative” for f. If we want a globally defined
representative, we could define f,.4 to be zero on CR(F).

THEOREM 3.6. Suppose p is a complex measure on (R¥,By) and p < m.
Then the symmetric derivative

_ lim #E (@ 7))
Dl = 1 (e 1))

exists for Lebesgue almost all points of R* and is a Radon-Nikodym derivative
of p with respect to m, i.e.

D) = L

Cdm
REMARK: A precise version of the last statement is: Every measurable ex-

tension D(p) of D(11) to R* belongs to £(m) and p = D(p)m.

PROOF: Let f € L£(m) be so that ¢ = fm. By (12) D(u) exists at every
point of L(f) and is equal to f, so the assertion follows. |

DEFINITION 3.7: Suppose zo € R¥. A Sequence (E,) of Borel sets in R¥ is
said to shrink to zg nicely, if there are a number a > 0 and a sequence r, > 0
tending to zero so that for n > 1

En g I((&to,?"n) }

m(Ey,) > am(K (29, 7)) (13)
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Note that we do not require z¢ to belong to E,. The condition (13) means
that E,, shall constitute a portion of K(zg,r,) which is bounded below. O

Ezamples: (a) The standard cubes

A

shrink to 0 nicely.
(b) Let aq,- -+ ,ar > 0. The intervals

H[_ﬁ_’ ﬁ

shrink to 0 nicely.
(¢) The rectangles [0, 2] x [0, 7] do not shrink nicely to zero.

THEOREM 3.8. Assume that (E,(x)) shrink to « nicely for every = € R* and
let f € Lioc. Then

) 1
flz) = T}l_lgom /E,,(a:) fdm (14)

for any & € L(f), in particular for Lebesgue almost all x € R,

PROOF: Let € L(f) and let a = a(z) and r, = rp(z) be the positive
number and the radii associated to E,(z) according to (13). Then we have

_alg) W S .
m{En(@)) /Enu)lf SN S R ra)) S TN

and since the right-hand side converges to zero, so does the left-hand side,
and (14) follows. O

We will now give two a,pplications of Theorem 3.8.

THEOREM 3.9. Let f € Lioc(R), @ € R and define the primitive

/f t)ydt ,z€eR.

Then F is differentiable at any x € L(f) with F'(z) = f(¢). In particular F

is differentiable a.e.

PROOF: Let r, > 0 tend to zero and define E,(z) = [z,z 4+ r5]. Then
(En(2)) shrinks to @ nicely, and we get by Theorem 3.8 that

F(z +1n) — F(a) = ! fdm — f(2)
Tn m(En(2)) JB,(2)
for every @ € L(f). Letting E,(z) = [¢ — rn, ] we similarly get that the
left-hand derivative of F' at @ is f(z). O

We next apply Theorem 3.8 to f = 1g, where E € By, and find:



3.8

THEOREM 3.10. For every Borel set E C R¥ we have

lim m(ENK(z,r))

M (e, n)

for Lebesgue almost all v € E.

The same statement holds with nicely shrinking sequences instead of balls.
The metric density of E € By, at = € R¥ is defined to be

lim m(EN K(z,r))
r—0  m(K(z,r))
provided that this limit exists.
We see that the metric density of E is 1 at almost all points of E and 0 at
almost all points of the complement of E.
We shall leave the differentiation theory for a while in order to examine
to which extent a Borel measure x4 on R¥, i.e. a measure on (R* By), is

determined by its values on the families F and G of closed and open subsets
of R*. Our first result is:

PROPOSITION 3.11. Let p be a Borel measure on R* and assume p(R*) < oo.
For every B € B, we have

Ve>03IF e FIGEGFCBCG, l(G\F)<el. (15)

PROOF: Define E to be the family of Borel sets B for which (15) holds.
We claim that E is a o-algebra, i.e. satisfying (i)-(iii) below:
(i) RF ¢ E.
(ii) If E € E then CE € E.
(iii) If By, Es,--- € E then UT” En € E.

Here (i) and (ii) are clear. To see (iii) let € > 0 be given and assume that
Ei\,E,,--- € E. For each n € N we choose

F,.eF,G,€G
so that F,, C E,, C G, and u(G, \ F,) < 3. Then

0 = (e (Ur) < UG\ )

and hence
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However - .
Q= (JG)\(UF)\Q
i=1 =1

and since p(RF) < co we know that p(Q,) \, #(2) and hence
p(fn) <e
for n sufficiently big, showing that |J;° E, € E.
We finally claim that G C E from which we conclude that E = B;. To
see that (15) holds for any open set G, it suffices to construct an increasing

sequence (Fy,) of closed subsets of G such that |JF, = G. This is clearly
possible if G = R¥, and if G # RF we can define

F, = {z € R* | dist(2,0G) > ~} .
n

a

Let p be a Borel measure on RF with pu(R*) < co. Then (15) is equivalent
to the assertion

(B) =sup{u(F) | F € F,F C B} =inf{u(G) |G € G,BC G} (16)

for any B € By. Since any closed set F' C R is the union of an increasing
sequence of compact sets

Fn{z eR*||z| <n},
we see that u is inner regular (or tight) in the following sense:
u(B) = sup{p(K) | K compact, K C B} for any B € By, . (17)
By the second equality in (16) we have
uw(B) =inf{u(G) | G € G, B C G} for any B € By, (18)
and we say that p is outer regular.
A Borel measure u on R* is called regular if (17) and (18) hold. We have
seen that any finite Borel measure is regular.

DEFINITION 3.12: A Borel measure p on R* is called a Radon measure if

(K < oo for any compact K C R*.
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THEOREM 3.13. A Radon measure . on R¥ is o-finite and regular.

PROOF: A Radon measure is clearly o-finite. For each n € N let u, denote
the finite Borel measure

pn(B)=p(BNn{z € R*||z| <n}), BEB,.

Let B € By and A < u(B). Clearly A < pn(B) for n sufficiently big, and by
(17) there exists a compact set I C B so that

A< pn(K) = (K Nn{z eR*||z] <n}),
which shows that p is tight.
To see the outer regularity we can assume p(B) < co. Let ¢ > 0 be given.
Applying the outer regularity to each of the finite Borel measures
Er uy(ENK(QO,n)),
we can find open sets G,, 2 B so that

(G N IO, m) < (BN K(0,m)) + 57 -

The open set G := J, G N K(0,n) contains B and
o0 o0 e
T < — ==
C\B_z:: (G \ B) N K(0,n)) <nz=:12” ,

showing that p(G) < pu(B) +e. O
THEOREM 3.14. Associate to each @ € R* a sequence (E,(z)) which shrinks

to « nicely. If ju is a complex Borel measure and @ L. m then

lim M =0

A (Bn()) m — a.e. . (19)

PRrOOF: By the Jordan decomposition of u it suffices to prove (19) under
the assumption p > 0. Arguing as in the proof of Theorem 3.8 we find

(@ En(e)) _ p(Ea(@)) _ plE(s,ra)
m(En(2)) ~— m(K(z,ry)) ~ m(K(z,rn))’

so (19) follows once it is established that D(p)(z) = 0 m-a.e..




3.11

For each n € N the function

My(p)(z) = sup Qr(p)(z),
0<r<%
which is similar to the maximal function, is lower semicontinuous, and this
is seen as in Lemma 3.1. Since M,(p)(¢) is decreasing in n, the following
limit exists

D(p)(z) = lim M, (p)(2)

and defines a Borel function D() : R¥ — [0, 00] called the upper symmetric
derivative of p.

Let A > 0 and e > 0 be given. Since u L m, u is concentrated on a Borel set
B for which m(B) = 0. By inner regularity of ;1 there exists a compact subset
K C B with u(I) > u(B)—e. Let uy(E) = p(ENK) and po(E) = p(E\ K)
for E € Bg. Then p = p1 + po and pp(R*) = p(RF\ K) = (B \ K) < e. For
any @ ¢ K and r < dist(e, I{') we have

Qr(p)(@) = Qr(p2)(@)
and hence . -
B(4)(x) = D(pa)(w) < M(pa)(s) for @ ¢ K .
This implies .
{(Bu) > N} C KU {M() > A},

so by Theorem 3.3 we have

— N 3ke
m({D(p) > A}) < m(K) + - |lpall < == (20)
Since ¢ > 0 was arbitrary m({D(p) > A}) = 0 for every A > 0, and this
shows that D(x) = 0 m-a.e.. O

Theorems 3.8 and 3.14 can be combined to the following:

THEOREM 3.15. Associate to each € R* a sequence (E,(2)) which shrinks
to x nicely. Let p be a complex Borel measure on R* with Lebesgue decom-
position p = fm + pu, where f € L1(m) and ps L m.

Then

lim ————4% = f(2) m — a.e. .

In particular p L m if and only if D(p)(z) = 0 m-a.e. .

The regularity of a Radon measure p on R¥ leads to various approximation
results for integrable functions. We recall that the space C..(R¥) of continuous
complex valued functions with compact support is dense in Ep(Hk, p) for any
1 <p<oo. (Cf. Mat 2MA, II,7). In the next result we use definitions from
exercise 13.



3.12

THEOREM 3.16. (Vitali-Carathéodory). Let f : R* — R be integrable with
respect to a Radon measure p on R¥. For any € > 0 there exist functions
u < f <w so that

(i) w is upper semicontinuous and bounded above,

(i1) v is lower semicontinuous and bounded below,
(ii1) [(v —u)dp <e.

PROOF: 1° Assume first f > 0. We know that there exists a sequence
(sn) of simple non-negative measurable functions so that s, /* f. Defining
tn = 8n — Sn—1, n > 1 with so := 0, we see that f = Y {°¢,, and since t,
is simple there exists a sequence of Borel sets (E;), (not necessarily disjoint)
and constants ¢; > 0 so that

and hence

/fd,“ =Y cju(Ej), (21)

where the series in (21) is convergent. By the regularity of u there exist
compact sets I{; and open sets G; such that K; C E; C G; and

WG\ Kj) < Z2-i-1 (22)
Cj
Put
o) N
v = ZleGj , U = ZleKi ;
Jj=1 J=1
where N is chosen so that
= €
> culE) < ;- (23)
j=N+1

Then u < f < w satisfy (i) and (ii), and (iii) holds because

N o
U—U:ijlgj\I(j + Z Cj]-Gj )
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SO

j=N+1
oo (o]
Zc,ﬂ Gi\E)+ Y ciu(I;)<e
j=1 j=N+1

by (22) and (23).

2°. In the real case we write f = f* — f~ and apply 1° to ft and f~.
If uy < fF < vy, ug < f~ < vy where u; satisfy (1), v; satisfy (ii) and
[(vi —u;)dp < e/2 then ug — vy < f < vy —ug and

/((Ul —uy) — (u1 —vy))dp < €.

Furthermore u; — vy is sum of the upper semicontinuous functions u; and
—vy and hence upper semicontinuous. It is also bounded above. Similarly
vy — ug satisfies (ii). O

The fundamental theorem of calculus
This theorem says roughly speaking that differentiation and integration
with respect to Lebesgue measure are inverse operations on functions. It has
therefore two parts. The first part says classically that if f is continuous

then i
Fa) = [ fo

is differentiable with F'(z) = f(«). Theorem 3.9 extends this part to f €
Lioc(R).

The second part says classically, that if f : [a¢,0] — C is continuously
differentiable then

f@) - f@ = [ "Wt w € [a,8]. (24)

There are several guesses for generalizations of this part:
(a) Is it enough to assume differentiability of f? The answer is no, because
although f' is measurable, it is not necessarily locally integrable.

Put f(z) = 2%sin(1/2? ) for  # 0 and f(0) = 0. Then f is differentiable

but i
/ \F(t)]dt =
0
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because

1 2 oo .
/ | cos(1/t )|dt: l/ |cos3J|dm
0 t 2 i z

(2n+1)% | 588 :L|

1 = smu
52/(2,1 1)% z & 22/ u - (7 _Z

(b) Suppose f : [a,b] — C is continuous on [a,b] and differentiable for
almost all @ € [a,b], and that f' is equal a.e. to an integrable function on

[a,b]. Is it then true that (24) holds?
Again the answer is no as the following example shows.

l:
2

EXAMPLE 3.17. This example is connected to the Cantor set C.

We shall construct a sequence (En.)n?_o of closed sets and a sequence of
continuous functions f, : [0,1] — [0,1], n > 0, each being piecewise linear.

We put Ey = [0,1] and fo(z) = =.

We divide Ej in 3 compact intervals Eqg, Eg1, Eoo of equal length 1/3 and
define f; as the piecewise linear function which is constant 1/2 on the middle
interval Fg; and connects (0,0) to (1/3,1/2) on Eyo and connects (2/3,1/2)
to (1,1) on Egs.

We put El = EOO U E02-

In the next step we divide each of the two intervals Eyy and Eyy in 3
compact intervals of equal length 1/3% and remove the middle open intervals
in order to get E, as union of 22 compact intervals of length 1/3%. To get fo
from fi we change f; on Ey to be constant 1/ 22 on the middle interval and
linear on the remaining two intervals. Similarly we change f; on FEyq to be
constant 3/2? on the middle interval, linear on the remaining two intervals.
On Ey; we have fo = f1 = 1/2.

In the next step each of the 22 intervals is divided in 3 compact intervals
of equal length. The middle intervals are removed and Fj is the union of the
2 remaining intervals. We define f3 = f, on [0, 1]\ E; and on each of the 22
intervals of Fy we change f, to be constant on the middle interval and linear
on the two others. The constant value is the mean value of the value in the
end points. Continuing in this way, we have

and for z € [0, 1]

1

1 1
= 6’ |fn(@) - fn—}-l(fv)l < 6 r—

|fo(2) = fi(z)] < on

N —
Ll
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The Cantor set is defined as C' = [, E,, which is compact with m(C) = 0.
The sequence ( f,) is a Cauchy sequence in the Banach space C([0, 1]) with
the uniform norm, because

n+p—1 1 n+p—1 . 1
I fn = Frtpllu < JZ 1 = Fiaallu < 2 JZ 279 < 2o,

and therefore (f,) converges uniformly to a continuous function f : [0,1] —
[0,1] which is increasing since every f, is so. By construction f is constant
1/2 in the open interval |1/3,2/3[, and similarly it is constant in each of the
open intervals which are removed in order to get the Cantor set, the constant
values being of the form k/2™. It follows that f is differentiable in all points
of [0,1]\ C with f'(z) =0, i.e. in Lebesgue almost all points.

The function f is called Cantor-Lebesgue’s singular function. It satisfies

the conditions of (b) but (24) is not verified. )
(1,1

0oy % Yy 13 a3 7o To o (0
Using dyadic and triadic numbers we can describe Cantor-Lebesgue’s func-
tion. If p > 2 is an integer, a p-adic fraction is a symbol of the form
P0,aaq -+, where a; € {0,1,---,p — 1}, and it represents the real num-

ber

oS}
a;
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From E, we remove 2" open intervals of the form
130, a1a9 -+ @022+ -+ ,%0,a1a2 -+ - @200 -+ - [,
where a; € {0,2},7=1,--- ,n and

Far1(30,a1a2 -+ 0,022+ ) = fny1(%0,a102 - - @200 - )

2, U1 A2 p
=2 i TR s
T2 2 2
Note that
30, a1ag -+ a, 022+ = 30,a1a9 - -a, 100 .

On such an interval f is constant with the same value as f,+; has at the end
points.

Every point 2 € C has a unique representation as triadic fraction ¢ =
30,ayay - -+ where a; € {0,2} and by continuity of f we get

fG0,a1a9---) = lim f(®*0,a; - -a,200--+) = lim fo1(30,a; -+ @,200---)

We shall finally give a true form of the second part of the fundamental
theorem of calculus:

THEOREM 3.18. If f : [a,b] — C is differentiable at every point of [a,b] and
f' € L([a,b]) then

f@) - fa) = [ @t fora € fo,8].

Note that differentiability is required at every point of [a, b], implying conti-
nuity of f.

PRrROOF: It is clearly enough to consider real functions and to prove the
formula for « = b. Fix ¢ > 0. By Theorem 3.16 there exists a lower semicon-
tinuous function ¢ > f’ such that

b b
/ o(t)dt < / F(t)dt +e . (25)
By adding a sufficiently small positive constant to g we can still have (25)

and furthermore g(a) > f'(2) for all @ € [a,b]. Let n > 0 be arbitrary and
define

Fiz) = /l gt)dt — f(z) + f(a) + n(z —a) , © € [a,D] . (26)
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To each z € [a, b[ there corresponds a 6, > 0 such that

g 1@~ f2)

t—2

g(t) > f'(z) a < f'(z)+n

for all ¢t €]x, x + 6, [, simply because ¢ is lower semicontinuous at = and f is
differentiable (from the right) at @. For these values of ¢ we then have

t
Ft) = Fa(@) = [ a(s)ds = (F(8) = (&) +n(t =)
>(t—a)f'(x) = (t—2)(f'(=) +m) +n(t—2)=0,

and we have shown the following;:

Va € [a,b[ 36, > 0Vt €la,x + 6, : Fy(z) < Fyy(t) . (27)
The set A = {z € [q,b] | Fy(2) > 0} contains a because F,(a) = 0, and
A is closed since F, is continuous. Putting ¢ = sup A then 2o € A. We
claim that zg = b for otherwise zg < b and by (27) F,(t) > F,(z¢) > 0 for

t €]@o, 20 + 84,[ contradicting the definition of z,.
It follows that F3(b) > 0, so by (26) we have

b
.mwﬁws/gmwwm—@.

Since this holds for any n > 0 we get
b b
O - 1@< [ o< [ e,
and since € > 0 was arbitrary

< /ab f(t)at

Applying this inequality to —f, which also satisfies the conditions of the
theorem, we get the opposite inequality. O



Appendix 2. Liapounov’s theorem

Sgren Eilers

In this section we are going to prove that the range of a finite dimensional
vector measure is always closed, and, under certain restrictions, convex.

Let (X,E) be a measurable space. An m-dimensional real vector measure,
as defined in exercise 4, is a countably additive mapping p : E — R™.

Most of the theory we have developed for complex measures also applies
to m-dimensional vector measures, since if we write

H = (,ula---,,um)

p is countably additive if and only if all the p;’s are so. Thus p is nothing but
an m-dimensional vector function whose m components are real measures.
We equip R™ with the 1-norm and define the absolute value of p as

|x|(B) = sup{z |(Ei) | (E:i) partition of E} .

Using | - |1 instead of the euclidean norm has the advantage that

e 1)

where |p;| are the ordinary absolute values.
To see this, note first that

Zm(E = > B € Yo l(E

j=11=1

so |p|(E) < Z;n |4;|(E). For the other inequality, for any ¢ > 0 and j €
{1,...,m} take a partition {Eij}ieN of E, so that

Z 13 (BH] 2 1(E) —e/m .

Then {E} N---NE™ | (41,...,im) € N™} is also a partition of E, and
writing it {Fy | « € N™} gives us



Dl (EDI< D lus(Fa)

and hence

Z I(E) e+ )0 |ni(Fa)l

=1 «

=c+ ) |u(Fa)li < |ul(E) +e.

Since € > 0 was arbitrary (1) follows.
For . non-negative, i.e. with each p; > 0, we thus have |u| = Y it pi.

For vector measures p : (X,E) > R™ and v : (X,E) - R™ we say that v
is absolutely continuous with respect to p (in symbols v < p), if

VE e E(|u|(E)=0= v(E)=0).
DEFINITION 1: A vector measure p : (X,E) — R™ is called semi-convez if
for every E € E there exists F' C E, F' € E so that

1

wF) = Su(E) .

Given E € E, we say that ¢ € K(u, E) if ¢ : E — [0, 1] is measurable and
VA€ [0,1]: u({p < A}) = Au(E) .

We say that p is convez, when K(u, E) # @ for every F € E.

A convex measure is clearly semi-convex. The converse is far from obvious
but will be proved in Lemma 4 below. Furthermore, if y is a semi-convex
vector measure and A € E, then the restriction 14 : E — R™ defined by

pa(E) = p(ANE)
1s semi-convex.

DEFINITION 2: The following notation will be useful in the sequel. When
E,,..., Ey is a finite family of subsets of E, to each binary number

b=(by,...,bx) € By := {0,1}*

2



we assoclate a set

i
Elb):= () B},

where A = E'\ A, A! = A. The sets E[b],b € By form a partition of E.
X

| - EZ

LEMMA 3. Let p: (X,E) = R™ be a semi-convex vector measure. For each
E € E there exists a sequence (E,),eNn from E of subsets of E so that for all
k € N, any numbers 1 <n; <ny < -+ <ny and any b € By

)
r (_ﬂ E:;-;.) = Jrul(E). (2)

PrOOF: From the semi-convexity we can take £y C E, E; € E so that
u(Er) = u(E). Thus, (2) is satisfied for n; = 1, k = 1.

Now assume that E;,...,E, has been chosen so that (2) holds, when
1<n; <---<ni<n. For b € B,, write
n
E[b):= ) E}
i=1

and pick F[b] C E[b] from E so that u(F[b]) = u(E[b]). We can take

Enp1:= | F[b].
beEB,

To see this we must prove that if 1 <n; < -+- <nj_; <nandif npy =n+1,
then (2) holds for each b € By. Fix b € By, and define

B={ceB,|Vie{l,...,k=1} :cp, = b;},

3



which has exactly 2" ~*+! elements. It is easy to see that
k-1
U E% = | Eld
=1 CEB
When b = 1 we have
k
(&= (U Elehn( U Fi) = J Fld,
i=1 ceB bEBn ceB
and when b; = 0 we have
k
(N Ex = (U EBleD\(J FI) = | El\ Fd,
i=1 c€B bEB, ceB

so in both cases we get

k
W BY) = 5 3 mEl)
=1 ceEB
= S on YL H(E) = (B

cEB

LEMMA 4. A semi-convex vector measure i : (X,E) — R™ is convex.
PROOF: For given E € E choose (E, )neN from Lemma 3. Put

E, =liminf E, = | | (] En4p
" n>1p>0

(z € E, if z is in E, eventually) and define

o(z) = ( i113 (m)) 1p\E.(2) -

n—l
The function ¢ is obviously well defined and measurable with (X)) C [0,1].
We will prove ¢ € K(p, E). For a dyadic number k/2", k € {1,...,2"} we
have

{p <k/2"} =E,U{> 2l1E < kj2") .

1=1



The inclusion from left to right is clear.
If an z in the rightmost set does not come from E,, z must satisfy

n
| k-1 k
—1 5 L& —
; n E'(:E) - 9n < on
since the sum must have the form [/2". Since = ¢ E, we have
— 1

1

n+1

so that p(z) < k/2".
Putting

B*={beBn|) 2" b <k},

=1

we have in the terminology from Lemma 3
{illE <—k—}={i2n_i15. <k} = U Eb]
1 21 ' 2” 1 ' beB* ’

where B* has exactly k elements (think binarily!). From (2) above, we see
that E, is a null set and that

z ({99 < o= ) =p ({Z 18, < ;}> (bg E[b]>

= Y WEE) = Y n(B) = pen(B).

beB* beB*

Any A €]0,1] is limit of an increasing sequence of dyadic numbers A;. From
the countable additivity

p({p <A} =p (U{tp < /\i}) =limp({p < Ai}) = Lm Aip(E) = Au(E) .

a

LEMMA 5. Let p: (X,E) —» R™ be a convex and non-negative vector mea-
sure and let E € E, p € K(p,E). If v : (X,E) — R" is a vector measure
such that v < pu, then the function N : [0,1] — R™ given by

NQ) =v({p < A})

5



is continuous.

PROOF: By definition each component v; of v satisfies v; < |u|. From n

applications of Theorem 2.2 we get, using the fact that |u|(F) = |u(F)|,
Ve>036>0VF €E: [w(F)i <= |v(F)i <e.

Given €, when |A; — A2| < 6/|u(E)| with § as above and A, < A;, we have

lu({A2 <@ <Pl = [p({e < M}) = u({e < XD
= [Mu(E) = Aapu(B)y < 6

so that

IN(A) = N(A2)lt = |v({e < M}) = v({p < A2}y
=v[{X<p <MD <e.

THEOREM 6. When p: (X,E) - R™ is a convex vector measure and EFe
E, there exists a family {C(X)|X € [0,1]} of sets from E so that

(i) C(0)=E, C1)=F.
(il) w(C(A)) = (1= Nu(E) + Au(F).
Furthermore, if y is non-negative and v < p then
(ii) A+ v(C(A)) is continuous.
In particular, the range of a convex vector measure is convex.

PRrOOF: Let p € K(u, E\ F), ¢ € K(u, F\ E) and define
CA)=(ENF)U{p<1-AU{yp<A}.
Then (i) follows by definition, and (iii) follows by Lemma 5. For (ii) we have

W(CO)) = (BN F)+ u({p < 1— X))+ (% < A)
— W(ENF)+ (1~ V(B \ F) + u(F \ E)
= (1= NW(E N F) + u(B\ F)) + Al ENF) + u(F\ E)
= (1= \)u(E) + Mu(F)
a
DEFINITION 7: If v is a real measure on (X,E) and E € E has the properties

v(E)#0
v(F)e{0,v(E)} VFCE, Fe€E,

6



then E is called an atom of v.

A vector measure p : (X,E) — R™, is called purely non-atomic if none
of the coordinate measures p; has any atoms. It is called purely atomic, if
(Ei)ier is a countable family of disjoint sets that are atoms for all x;, so that

X:UE.

el

EXAMPLES. The Dirac measure ¢, on (R,B) has an atom {a}. If the o-
algebra E on X consists of § and X only, then X is an atom for every
non-zero measure yg. The measure

p=> %en
n=1

on (N, P(N)) is purely atomic.

LEMMA 8. A purely non-atomic (finite) measure yi : (X,E) — [0, oo is semi-
convex.

PRrROOF: Given E € E we must find F € E, F C E, so that

p(F) = %#(E) :

We may assume p(E) # 0. For any € €]0, 1] there exists F. C E, F. € E so
that
0 < p(Fe) <eu(E). (3)

If e < 27" this follows from n applications of the fact that p is purely non-
atomic, i.e. for every G € E with p(G) > 0 there exists a partition {Gy, G5}
of G so that

MG) = w(G1) + u(Ga) with u(Gi) >0, i = 1,2,
so that every G € E contains a subset G' € E with p(G') < Ju(G).

If {E; |7 € I} is a family of disjoint sets from E with positive measure, I
must be countable. In fact, each of the sets

L= {i € T| (B > 7)

is finite, since u(X) < oo, and I = (J{°I,,. The set I being countable we
have |J; E; € E.



Let us call a family A C E disjoint if it consists of disjoint sets, and let us

define

A= {ACE|A disjoint, VA € A(4 C E, u(4) > 0),u( | ] 4) < %,u(E)} .
A€EA

By inclusion A is inductively ordered, for if (A;)jes is a totally ordered
subset of A, then
A:=]A;

JEJ
is a majorant for (Aj)jes. We must prove that A € A. If E,E; € A
there exist ji,j2 € J so that Ex € Aj, ,k = 1,2. By the total ordering we
may assume A; 2 A;, and therefore the sets E,, Ey are disjoint, if they are

different.
From the observation above A is countable. Write A = {Ey, F»,...}. From
the total ordering {E,... yEn} C A;, for some j, € J, and therefore

(00

whence by the countable additivity

" (U Ei) = > u(Ei) =lm ) u(E;) =limy (U Ei) < -;-#(E)

as required.
With F. chosen so that (3) holds for ¢ < 7, {F.} € A, so Zorn’s Lemma
applies. Choose Ag = {E; |7 € I} maximal from A. We must have

" <U Ei) = %/L(E) :

for if u(U; Bi) < (3 —€)u(E) we could find F, C E'\ |J; E; so that p(Fe) <
en(E), and then

w(E) ,

N —

R U{F.} e A
which would contradict the maximality of Ag. O

LEMMA 9. Let u = (p1,...,4m) : (X,E) — R™ be a non-negative and
purely non-atomic vector measure and assume that

Hi K fhi-1 ZE{Q,,TI’L}

8



Then p is convex.

PRrRoOF: We proceed by induction in m. In view of Lemma 4 it is enough to
find F C E, F € E so that

for a given set E € E.

For m = 1 F is given from Lemma 8. For m > 1 assume that u' =
(41, ..+, tm=1) is already known to be convex. With ' = 1, we have v’ <
since fim <K ftm—1. Since u' is convex, we can find Fy C E, E, € E so that

#(Bs) = S4(E).

If v'(Ey) = 3v'(E) we may take F = E,, otherwise put Fy = E \ E, and
assume

I/I(Eo) < V,(E)/Q, V’(Fo) > VI(E)/2 .
Theorem 6 (iii) applied to p',v', Ey and Fy gives us A € [0,1] so that
V(CON) = V(E)2

since [0, 1] is connected. We have, by Theorem 6 (ii),

1 1
w(CA) = (1= i (Bo) + A (Fo) = 5(1 = Mu'(B) + SAu'(B)
_ 1.
=51 (E)
and F' = C(A) shows the semi-convexity. O

THEOREM 10. (Liapounov, 1940). A purely non-atomic vector measure f :
(X,E) = R™ is convex, and in particular the range u(E) is a convex subset

of R™.

PrROOF: By Lemma 4 it is enough to prove that y is semi-convex.
1° Assume first that p is non-negative.
The vector measure y' defined by

m
,ui-zz,uj,izl,...,m
j=i

9



is easily seen to be purely non-atomic, and it satisfies the conditions of Lemma
9 because

m m
Hi=) miS Y mi=pho
j=i j=i-1
Thus p' is convex. With
11 11
0 1 11
e :

0 0 01

we have p' = T, but T is invertible, and for each E € E the (semi)-convexity
of i gives us F C E, F € E so that y/(F) = $4'(E), and hence

W(F) = T7(F) = T (Gp(B)) = 5T 4(B) = Su(B)

2° When p is any purely non-atomic vector measure, we consider the vector
measure

p' = (F‘Taﬂl—> suss sl
By definition p" is non-negative, and since the Hahn decomposition theorem
2.11 gives us partitions {P;, N;} of X so that
pi (F) = wi(F NP, pi(F) = —pi(FON;)

an atom of uf or p; would be an atom of y; as well. Thus, p" is purely
non-atomic and for any given E € E 1° gives us FF C E, F' € E so that

1o

p'(F) = su"(E),

whence

w(F) = (pf (F) = (U (F), ..., it (F) — p (F))

_ %(@(E) — T (E),..., it (E) — pr(E))
— %,u(E)
0

DEFINITION 11: When dealing with closed convex sets in R™ one often turns
to the notion of supporting hyperplanes. A hyperplane C supports the closed

10



convex set A, when 4N C # @ and A is contained in one of the closed
half-spaces determined by C.

A hyperplane C has the form {¢ = a} for some (continuous) linear func-
tional ¢ : R™ — R. We may assume (replacing, if necessary, (a,¢) by
(—a, —¢)) that ©(A) C [a, oo[.

There are many supporting hyperplanes in the following sense:

THEOREM 12. If A is a closed convex set in R™ and a € O0A, there is a
supporting hyperplane C' of A so that a € C.

PROOF: See Arne Brgndsted: An introduction to Convex Polytopes, theo-
rem 4.3. O

LEMMA 13. Ifa vector measure y : (X,E) — R™ has convex range R := p(E)
and C' is an supporting hyperplane of R, then C N R # 0.

PROOF: Let C'= {p =a}, RC {¢p > a}. Since by definition C N R # 0
a = inf{o(u(E)) | E € E} .

Writing ¢(z) = Y " @iz, then pop = U aiy; is a real measure. As a
consequence of Hahn’s decomposition theorem, ¢ o i attains its minimum (in
the terminology of 2.11 the minimum is realized by N),and a € po u(E) =
¢(R) as required. O

LEMMA 14. Ifp: (X,E) — R™ is a vector measure with range R and £ € R,
there exists a vector measure y' with range R' = R — €. If u is convex, then
so is p'.

PrOOF: With € = pu(A) put
H(E)=wE\A)-u(ENA), E€E. (4)

11



Then p' is a vector measure and

p(E)=mw(E\A) —(w(A) - (A\E)) =p((E\A)U(A\E)) - ¢

so the range R' of p' satisfies R' C R — €. Furthermore

WE) =& =(E)— p(A) = w(E\ A) — p(A\ E)
=p'(E\A)U(A\E)),

where the last equality follows, when (4) is applied to (E\ A)U(A\ F). This
shows the opposite inclusion R — ¢ C R'.
If i is convex, for a given E € E we may choose F_, Fy € E so that

F_CE\A, u(F.) = su(B\ A);
1
Fr CENA, p(Fy) = su(ENA).

By (4) we have
W(F-) = p(F-), ' (Fy) = —p(Fy)

and hence
W(F-UFy) = () — p(Fy) = 5(4(E\ 4) — f(EN 4)) = 2 /(E)

so p' is semi-convex and hence convex. O
LEMMA 15. The range of a convex vector measure p : (X,E) — R™ is closed.

PrRoOF: We proceed by induction after the affine dimension N of R := u(E),

i.e. the dimension of the smallest affine set containing R.
When N =1 p has the form

WE)=w(E), E€E

for a suitable £ € R™ and p a real measure. Since R is convex, po(E) is an
interval of R. Since real measures attain their extrema, the interval is closed.
Assume that ranges of convex vector measures with affine dimension less
than N are closed. We will use this to show that for every supporting hyper-
plane C of R we have RN C C R. From Theorem 12 cited above it follows
that O(R) C R, but for convex sets in R™ it is known that d(R) = dR, and
it follows that R is closed.
By Lemma 13 we can choose £ € RNC, and since R—¢ is also the range of
a convex vector measure by Lemma 14, we may assume that 0 € C (replace
12
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R,C,p by R—§&,C — €&, u'). Take a continuous linear functional ¢ so that
C ={p =0}, RC {p >0} Then v = popu is a positive measure, and
from the Lebesgue decomposition, for each coordinate measure p; there is a
partition {4;,S;} of X so that, letting

pi(E)=pi(AinE), pi(E)=pi(SiNE)for E€E,

we have
pi <L, pi Lv,v(S;)=0,

cf. (the proof of) 2.16. If we write
S=[JSi, A=X\S
=1

and
pa(E)=wENA), ps(E) =w(ENS)

we have p = p4 + ps and (since A C A; fori=1,...,m)
paLv, v(S)=0.
With Rg := ps(E) we have Rs C C since
e(us(E)) =v(ENS)=0.

The vector measure j g is obviously semi-convex, hence convex, and since the
dimension of Rg is at most N — 1, Rg is closed.

Now take £ € RN C. There is a sequence (E,,) from E, so that u(E,) — ¢,
whence v(E,) — ¢(§) = 0. Since pg < v we get from Theorem 2.2 that
pa(En) — 0, and hence

¢ = lim u(B,) = lim (ua(En)+ps(En)) = lim us(E,) € Rs=RsCR.
THEOREM 16. (Liapounov, 1940). The range of a vector measure
p:(X,E) - R™

1s closed.

PROOF:
1° First assume that p is non-negative.

Let A € R} be a regular matrix with positive elements (e.g. a;; = 2 for
i = J, ajj = 1 elsewhere); replacing p by A o u gives us a vector measure,

13



where every coordinate measure is absolutely continuous with respect to
every other (the common null-sets are the sets for which y;(E) = 0, Vi). If
the range of Aoy is closed, so is the range of 4, since A is a homeomorphism.
We can thus assume that g has this property of mutual absolute continuity
of the components. In particular, every atom of a coordinate of 4 is an atom
of every other.

From a Zorn’s Lemma argument, we can pick a maximal family (E;);¢s of
disjoint common atoms. Since p;(E;) > 0 for every 1,7, I is countable, and
putting

A=JA, N=X\4
el
gives us a decomposition of p
pa(E) = p(ANE), un(E) = f(NNE)
with g4 purely atomic, puy purely non-atomic.

The range Ry = pn(E) is closed by Theorem 10 and Lemma 15. For
E € E we have

I

pa(E) = p (U(Ai N E)) =Y w(A;iNE) =) bi(E)u(A:)
I I
with b;(E) € {0,1}. Thus,

Ra={) bin(Ai) | (b:) € {0,1}}.
I

Equipped with the discrete metric, {0,1} is compact. Hence {0, 1} with the
product topology is also compact (Tychonoff’s theorem, see 2MA exercise
1.6.10). The space {0,1}! is metrizable under the metric

d(b,c) =S 27 )e;; — b,
j=1

where {i;,%5,...} is some ordering of I. The mapping ¢ : {0,1}/ — R™
given by

P(b) = Y bun(As)
I

can be seen to be continuous with respect to this metric. (Given b € {0,1}/
and € > 0 take jg so that

14



o0

Z lu(Ai;)h <e.
J=Jo+1
When d(b,c) < 2770 then the first jo coordinates of b and c agree, and

hence |p(b) — p(c)l1 <<.)
This shows that R4 = ¢({0,1}!) is compact, and since

R:RA+RN3

R is compact, hence closed.

2° In the general case we consider the vector measure

V= (:u-1+7 iu‘;"" >N¢u#;)a

which is non-negative with values in R?™, so its range is compact by 1°. If

we define f : R?™ — R™ by
f(xl,yla"' »Q"m,ym.) = (371 — Y1y, Tm "ym))

then u(E) = f(v(E)) is also compact.

HISTORICAL COMMENTS. Liapounov’s theorem can be stated that the range
of a finite dimensional vector measure is compact. It is convex if the vector
measure is purely non-atomic. The theorem was proved in the paper ”Sur les
fonctions-vecteurs completements additives”, Bull. Acad. Sci. URSS vol.4
(1940), 465-478. In a subsequent paper with the same title, in the same
journal, vol.10 (1946), 277-279, Liapounov gave a very elegant example to
show that neither convexity nor closure can always be asserted for infinite
dimensional vector spaces.
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4.1

84. An inequality

We shall now generalize Lemma 1.3 to an arbitrary euclidean space E, i.e.
a real finite dimensional vector space with inner product. The complex plane

C is of course a two-dimensional euclidean space.

Let E be of dimension d. The Lebesgue measure of F is denoted mpg. The
Lebesgue measure of the unit ball in F is V4 and we know that Vo = E%%Vd

(cf. Mat 2 MA) and hence

__ (@m _
Vae = 2d(2d—2)---4V2 T dl
(2)" g2d+1|

/. =
Vaar1 (2d+1)(2d—1)~-3v1 (2d + 1)

or
d

T2
V= —"
T+t

The surface measure w of the unit sphere S satisfies
mp(Bi(Q) = 3% (Q)
for € B(S), where B,(Q) for ¢ > 0 is the sector
By(2) ={s€|0<s<t,£e€q}.

In particular the total mass of w is

= —T
!

) with I‘(z):/ 2 te " da .
0

(1)

(If we want to emphasize the dimension we write wy for w, and S d=1 for S

because it is of dimension d — 1.)

We recall that w is invariant under orthogonal transformations. Therefore,

for a € S the integral

1
kq = Zu(—S) /a-EZO a-€dw(f)

over the half-sphere

{£€S]a-£20}

(2)



4.2

with north-pole a is independent of a. To determine k; we choose an ortho-

normal basis eq,...,eq for E and use a = e¢;. The coordinates of a vector
v € F with respect to eq,...,eq are denoted (z1,...,24) and the mapping
v + (21,...,24) is an isomorphism of E onto RY. We consider first the

integral of a - v over the half-ball
By={veE||[p]| <1, a-v2>0},

and using polar coordinates v = r€ we find

/B a-vdmp(v) = /am/ r(a- E)r¢ldr dw(€) = kc‘;‘f{_(f).

On the other hand this integral is also

/ xgdey -+ -dag
By

By =A{(z1,...,2za) | 2| €1, wa > 0},

and this integral can be calculated by Fubini. If we put 2’ = (21,...24-1)
and suppose ||2'|| < 1, then the section (B4 ), is given by

(B+)or = {za | (2, 2a) € B4} = [0,(1 — [|'[|*)?]

where

SO

(1-ll='1*)?
/ Ty d.’El tee dIEd = / (/ Ty dﬂ,‘d)diljl
By le'li<t Jo
1
-5 | a-lePa
llall<1

and this integral over the unit ball in R%~! can be calculated by polar coor-
dinates in R4~1:

1 1 1 _
- “/ A=ttt [ s = (G0 - peen(S*).

We finally get

we—1(S?) Ve Vao

kd - (d— l)wd(S’d—l) B wd(Sd“l) N dVd

or using (1)

I ! o — A P | _ 2
Wehavekl——a,kz—;,kg——z,k,;——g—,....



4.3

THEOREM 4.1. Let E be a euclidean space of dimension d. From any finite
family vq,...,v, of vectors from E it is possible to choose a subfamily (v;);er
with I C {1,...,n} so that

1D vill = ZIMII (4)
€1

The constant kq is best possible.

PROOF: We define a continuous function ¢ : .S — [0, oo[ by
e(6) =Y (£-v)T,
1=1

and have

r?é"s"“) w(S) / (£)dw(£)

> o5y [ € v0ante) = ke Z sl -

The function ¢ assumes its maximum at a point ¢, € S, and defining I =
{ie{1,...,n}| & -v; >0} we have

p(€) = vi) & <D vl
i€l i€l
which shows (4). O

In order to show that k4 is the best possible constant in (4), we need the
following:

LEMMA 4.2. Assume that (4) holds with some constant k > 0 instead of kq.
For any E-valued measure p : (X,E) — E we then have

sup{[|[u(A)| | A € B} = K| . ()

PROOF: Let € > 0 be given. In analogy with Corollary 1.6 we have

[lall = SUP{Z”H Ol | {E1,--- , By} partition of X},



4.4

so there exists a partition {E4,...,E,} of X such that

lall =& < >l EI -
=1

Applying Theorem 4.1 to the family v; = p(E;), 1 =1,...,n (with k£ instead
of kq), we get I C {1,...,n} so that

1Y S w(E) = kDB
el =1
whence with A = U E;

(Al = E(llpll - ¢)

and (5) follows. a

COROLLARY 4.3. For any E-valued measure 1 there exists A € E so that

(AN 2 Eallel] - (6)

PRrROOF: By Liapounov’s theorem p(E) is compact so there exists A € E such
that

4(A)|| = sup{lln(B)Il | B € E},

and the result follows from Lemma 4.2 with &k = ky. O

END OF PROOF OF THEOREM 4.1: Assume that (4) holds with some con-
stant k£ > 0 instead of ky. We shall prove that k¥ < k4. Let us consider the
E-valued vector measure p on (.S,B(S)) defined by

u(4) = /A £du(e)

i.e. the :’th component of x with respect to an orthonormal basis ey, ..., eq
is

i 4) = /A £ duw(€)

where ¢ € S has the coordinates ({1, ...,¢&q).
By Lemma 4.2 and Liapounov’s theorem there exists a Borel set 49 C S
such that

(Aol = sup{[lu(A)]| | 4 € B(S)} > k

wll - (7)
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The vector measure p has the density ¢ — ¢ with respect to w, and like in
Example 1.8 (b) the total variation ||u|| has the density £ — [|£]| = 1 with
respect to w, i.e. |i]| = w, so the right-hand side of (7) is kw(S).

To calculate the left-hand side of (7) we consider the unit vector

€ = 1(4o) cs

(Aol
and the half-sphere H = {£ € S | £ - o > 0} and claim that Ay = H w-a.e,
1.e:
w(Ag\H) =w(H\ A4)=0.
To see the first equation note that
l|4(Ao)ll = 1(Ao) - éo = p(Ao N H) - &o + (Ao \ H) - &o
so by the Cauchy-Schwarz inequality
l4(Ao N H)|| = p(Ao NH) - &0 = ||p(Ao)l| — (Ao \ H) - o
and by the maximality of Ao, cf. (7), we have u(Ao \ H)- & > 0, but

W(A\E) -G = [ €-Edu@) <0

Ag
unless w(Ap \ H) = 0, because we have £ - {o < 0 on 4 \ H.

To see the second equation we write

p(H) = p(H \ Ao) + p(H N Ao)
and denoting H= {6 €S| & >0}, we find
W(H) = p(H \ Ao) + p(Ao)

since w(H \ H) = w(Ao \ H) = 0. Using the Cauchy-Schwarz inequality we
get

(B = p(H) - bo = u(H \ Ao) - &o + [|n(Ao)ll »
so by maximality of Ay we have ,u(IZT \ 4Ag) - & < 0, hence w(H \ 4o) =
W(H \ Ag) = 0.

Knowing that A9 = H w-a.e. it is now easy to calculate |[(Ao)|| because

(Aol = 1(Ao) - & = /H £ - € duw(€) = w(S)ka
and (7) now gives kq > k. O

REMARK. The present proof is a modification of the proof in Kaufman and
Rickert: An inequality concerning measures. Bull. Amer. Math. Soc.72

(1966), 672-676.
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§5. Functions of bounded variation

Borel measures of finite total mass on the real line are in one-to-one corres-
pondence with distribution functions. More precisely we recall the following

result from 2MA §I1.5.3:

THEOREM 5.1. Let pu be a finite Borel measure on R. Then ¢ : R — [0, 00|

defined by
p(z) = p(] — oo, 2]) (1)

is

(i) increasing,

(ii) right-continuous,

(iii) ¢(—o00) =0, ¢(o0) < co.
Conversely, if ¢ : R — [0, 00| satisfies (i)-(iii), then there is a unique finite
Borel measure p on R such that ¢(z) = p(] — oo, z]) for z € R.

It is a natural problem to determine the class of functions (1) corresponding
to arbitrary complex measures on (R, B).

Let I = [a, b] be a compact interval. For a function f : I — C we introduce
the variation of f over I as

N
vr(f) =sup ) |f(t:) = F(ti-)l 2)

where the supremum is taken over all N and all choices of (¢;) such that
a=ty<t1 <---<ty=b.
The functions in
BV(I,C)={f:I—-C|uv(f) < oo} (3)

are called of bounded variation over I.
We clearly have
vi(f) =0« f is constant

or(Af) = | Avr(f) 5 vi(f + 9) < vr(f) +orlg) ,

which shows that BV (I, C) is a complex vector space and vy is a semi-norm,
(but not a norm).

It is also easy to see that f : I — C is of bounded variation if and only if
Re f, Im f are of bounded variation, so we can restrict the attention to the
real subspace BV (I,R) of real functions of bounded variation.
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THEOREM 5.2. 1°. Every monotonic function f : I — R is of bounded

variation and vi(f) = |f(b) — f(a)|.
2°. Every function f € BV (I,R) can be written as difference of two incre-

asing functions.
3°. Every C'-function f : I — C is of bounded variation.

PROOF: 1°. If f is increasing and a =g < t; < -++ < tn§ = b we have

N

SOIf(t) = Ftima)] = £(B) = f(a)

=1

and the assertion vr(f) = |f(b) — f(a)| follows. If f is decreasing, then —f
is increasing so the assertion also holds in this case.
2°. Leta<z<y<banda=ty <ty <--- <ty ==z Then we have

N
o) (f) 2 1) = @)+ D1F(E) = F(timn)l,

and hence

Vay)(f) 2 1) = (@) + v, (f) - (4)
Defining F(z) = v[4,2)(f) we have in particular

F(z) < F(y)
F(z) £ (f(y) — f(z)) < F(y) ,

which shows that F, F'+ f, F' — f are increasing functions.
Finally

f= s+ f—(F =)

is the difference of two increasing functions.
3°. It is enough to prove the assertion for real functions, and in this case
the mean-value theorem gives

vr(f) < (b= a)max|f ()] < oo

COROLLARY 5.3. For a function f € BV(I,C) the left-sided limit

f(z=):= lim f(y) exists for z €la,b],
y—z~
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and the right-sided limit

flz+) = lirn+ f(y) exists for z € [a, [ .
y—e

The set of points of discontinuity of f is at most countable.

PROOF: The result is well-known for increasing functions, and the general
result follows from Theorem 5.2 2°. a

For a function f : J — C defined on an arbitrary interval J we say that it
is locally of bounded variation if vi(f) < oo for every compact interval I C J,
and we say that it is of bounded variation over J if

vi(f) = =P vi(f) < oo,

where the supremum is taken over all compact intervals I C J. We clearly
have

N
vy(f) = sup Z |f(t:) — ftiz1)l

where the supremum is taken over all N and all choices of (¢;) from J so that
to <ty <. <ty.

We shall now in particular consider the case J = R. With f : R — C we
associate the total variation function Ty : R — [0, 00] defined by

N
Ty(z) = V)=c0,0)(f) = sup Z |[f(t:) — f(ti-)l ()

where the supremum is taken over all N and all choices —oo <ty < #; <
co < tN = 2.
The function T} is clearly increasing and vg(f) = lim;—,c Tf(2). The set

BV = BV(R,C) = {f : R — C | vr(f) < oo}

is a subspace of the vector space of bounded functions and vg is a semi-norm.

We call a function f € BV(R,C) normalized if
(i) limy——oo f(z) =0,
(i) f is right-continuous,

and the set of these functions is a subspace of BV denoted BV,, = BV, (R, C).
O
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THEOREM 5.4. 1°. If f € BV(R,C) and = < y then

[f(y) = f()| < T(y) — Ty () -

2°. For a monotonic function f : R — R we have
we(f) = lim f(a)— lim_f(z)],

and f is of bounded variation if and only if it is bounded.

3°. Every function f € BV(R,R) can be written as difference of two incre-
asing bounded functions.

4°. If f € BV(R,C) then f(z—) exists for every & €] — co,00] and f(z+)
exists for every z € [—o0o,00[. The set of points of discontinuity of f is at
most countable, and there exists a unique pair (¢, g) with ¢ € C and g € BV,
such that

f(z) =c+g(z) (6)
at all points of continuity of f. Also
vr(g) < or(f)-

5°. If f € BV then Ty € BV and T¢(—o0) = 0.
6°. If f € BV,, then Ty € BV,,.

PROOF: 1°. For z < y and € > 0 there are points tp < t; < -+ <ty =2 so
that

N
Z |f(t:) = f(tima)| > Tp(z) — ¢,

and hence
N
Ty(y) 2 1f(y) = F@)+ D) = ftien)l > () = f@)] + Tr(e) — e,

proving 1°. The assertions 2° and 3° and first half of 4° are proved like in
Theorem 5.2 and Corollary 5.3.

Concerning 4° assume first that we have a representation (6). Choosing a
decreasing sequence () of points of continuity of f tending to —oo (respe-
ctively to ) we get

f(=00) = lim f(zyn)=c+ lim g(z,)=c,

respectively

f(z+) = c+g(a+) = f(—o0) +g(2) ,
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showing that the pair (¢, g) is uniquely determined. For the existence of (6)
we define

¢ i= f(—o00), g(x) i= flz+) —c,

and ¢ is clearly right-continuous with limit 0 for £ — —oo. Furthermore
f(z) = g(z) + ¢ for all points & where f(z) = f(z+), in particular for
all points of continuity. To see that g has bounded variation we consider
—00 <ty < -++ <ty and find

N N
S lg(t) — ot = Jim S 1f( +8) = Fltics +8)] < on(f)
=1 =1

hence vg(g) < vr(f) < oo.
5°. If f € BV and € > 0 we choose

to<ti1 <---<tny=0
so that

N
Ty(0) —e < Y _|f(t:) = f(ti-1)l - (7)
i=1
For points yo < y1 < -+ < ym = to we then have
M N
Tr(0) > D 1f(wi) — Flwim)l + Y 1F(8:) — Fti)l
=1 =1

and combined with (7) we get

M
Z |f(yi) — flyiz1)l <e.

This shows that T¢(to) < € whence T'(—o0) = 0.

Since T is increasing and bounded it belongs to BV by 2°.

6°. For f € BV and z < y we clearly have T¢(z) + v[; 4 (f) = Tr(y). This
shows, that if f € BV, then T} is right-continuous at z if and only if

y]iril‘i’ v[zyy] (f) = 0.'

Let ¢ > 0 be given. Since v[; z41)(f) < oo there exists z =1 <3 <-:- <
ty =z + 1 so that

N
SOIfE) = £ti-1)l > v agny () — ¢
j=1
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and for z < y < t; we then have

N
|f(y) = f@)] +1f(t) — F(y)l + 2:2 |f(t5) = f(ti=1)] > Ve ,z41)(f) —€ - (8)

j=

Since f is right-continuous at z there exists 0 < § < ¢; — 2 so that

|f(y) — f(2)| <e for y€]z,z+4[,
and (8) implies
Wy,at1]lf) > Ve,o+1)(f) — 2¢ for y €z, +¢[,

hence
vz, (f) < 26 for y €]z, z + 6.

O
We can now prove the main theorem.
THEOREM 5.5. (a) If pu is a complex measure on (R,B) and if
f(2) =p(] —o0,2]), z €R (9)

then f € BV,.
(b) Conversely, to every f € BV,(R,C) there corresponds a unique com-
plex measure p on (R,B) such that (9) holds. For this p

Tp(z) = |pl(] —o0,2]) , w € R (10)

and va(f) =[xl
PRrOOF: (a) For ¢y < -+ <ty =z we have

N N
Zlf(ti) — f(ti-1)| = ZI#(]ti—l,ti])l < |pl(Jto, tn))
< |pl(] = o0, 2]),
and hence
Tf(m) S I:ul(] - OO,:C]) y & = R (11)

which shows that f is of bounded variation. Splitting ;4 in real and imaginary
part and using the Jordan decomposition (see p.1.11) we see that f € BV,.
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(b) There is at most one complex measure p satisfying (9) for given f €
BV,,. In fact, if two complex measures both satisfy (9) then they agree on
all standard intervals ]a, (], and hence on all open sets. For this we use
that any open set in R is countable union of disjoint standard intervals, cf.
2MA. To see that the two complex measures finally agree on all Borel sets
it is sufficient to remark that for any two complex measure p and v and any
Borel set B, there exists a sequence of open sets (U, ), U,, 2 B so that

wB) = lim p(Un), v(B) = lim v(Un). (12)

To see this we write pp = p1 —po +i(ps — pa) and v = ps — pg +2(pu7 — pg) with
p; > 0, and using the outer regularity of each p; we see that given B € B and
¢ > 0 there exists an open set G; with B C G; and u;(G;) < pi(B) + € for
i =1,---,8. The intersection G(¢) of these eight open sets is open, B C G/(¢)
and

pi(B) < pi(G(e)) < pi(Gi) S pa(B) +e,1=1,---,8.
The sequence of sets U, = G(1) has the property

lim /l’l(Un):lul(‘B)) 2217 a8’

and (12) follows.
Let f € BV, be given. Since Ty has the properties in Theorem 5.1 (by
Theorem 5.4), there exists a positive finite measure o on (R, B) so that

Ti(z) = 0(] —oo,z]) for z €R.

If f is real-valued we know that f = 1(Tf + f — (Ty — f)) is the difference
of two increasing functions in BV,,. By Theorem 5.1 we can associate two
positive measures 1, fiz to the functions (T & f) so that (1) holds. Then
[t = g1 — pio is a real measure such that (9) holds. The complex case is easily
reduced to the real case.

If p is the complex measure so that (9) holds, then

(e, B])| < o], f]) for a < f.

This follows immediately from the inequality in Theorem 5.4 1°. Any open
set G is disjoint union of a sequence (I,,) of standard intervals, and hence

(@] =1 pI) < DI S Y o(ln) = o(G) -

Finally by (12) we get |u(B)| < o(B) for any Borel set B, but |p| is the
smallest positive measure with this property, hence |y| < o and in particular

|ul() = 00,2]) < 0(] = o0, 2]) = Ty(2),
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which together with (11) establishes (10). O

PROPOSITION 5.6. Let p be a complex measure on (R,B) and

f(@) =p(] —o0,2]), z €R.

Then f is continuous if and only if u({z}) = 0 for all 2 € R, and this is
equivalent with pu being purely non-atomic.

ProOOF: We have
u({=}) = lim p(le— +2]) = f(@) - f(z-)

so u({z}) = 0 if and only if f is left-continuous at z, but this is equivalent
to the continuity of f at z.

If u({z}) # 0 then {z} is clearly an atom. Conversely if B € B is an atom
for p then it is easy to see that there exists z € B so that u({z}) = u(B),
cf. exercise 16. O

DEFINITION 5.7. A function f : R — C is called absolutely continuous if to
every € > 0 there exists § > 0 such that

N N
D (Bi—ai) <= ) If(B:) - fla)l <e (13)

whenever |ay, f1[,- -, Jan, Bn| are disjoint intervals.

Every absolutely continuous function is uniformly continuous (N = 1) and
v1(f) < oo for any finite interval. In fact, if § > 0 corresponds to e = 1 and
I is of finite length we can divide I = I; U---U I, in finitely many intervals
of length < §, so vy, (f) <1 by (13) and hence v;(f) < p.

If f is a Lipschitz function then it is automatically absolutely continuous.
In particular f(z) = sinz is absolutely continuous, but f ¢ BV.

PROPOSITION 5.8. Let y be a complex measure on (R,B) and

f(.'E) ZN(]—OO’HJ]), z€eR.
Then p < m if and only if f is absolutely continuous, (where m is Lebesgue
measure).

PROOF: Suppose first that f is absolutely continuous and let £ € B with
m(E) = 0 and € > 0 be given. Choose § > 0 according to (13). Using the
same idea as in (12) we can find open sets U, 2 E so that

w(Un) = u(E) , m(Uy) = m(E) = 0. (14)
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We may therefore assume that m(U,) < 6§ for all n. Every U, is disjoint
union of a sequence of standard intervals I; =]a;, B;] for which m(U,) =
S(Bj — aj) < 8. This is in particular valid for all finite partial sums, so by
(13) we get

> 1F(B;) — flaj) < e

(in the first place for all the finite partial sums and hence for the series itself),
and consequently

U < D Il = Y 1F(B) = faj)l S e

By (14) |u(E)| < &, and since € > 0 was arbitrary u(E) = 0.
If 4 < m then Theorem 2.2 immediately gives (13). O

For f : R — R we introduce the positive variation Py and the negative
variation Ny of f as

N
Py(z) =sup } (f(t:) = f(ti-))" (15)

N
Ny(w) =sup } (F(t:) = f(t:-1)) ™, (16)

where the suprema are taken for all N € N and all choices t; < -+ <ty = z.
These functions are clearly increasing, and they satisfy

Tf(.’E) = Pf(iC) + Nf(.z) , z€ER, (17)

which is an easy consequence of |a] = a* + a~ for a € R. (For the inequality
> one should merge two subdivisions associated with Py and Ny).
From (17) follows that f € BV if and only if P¢(c0) < oo and Nf(c0) < oo.
For f € BV we have the additional equation

f(z) = f(—o0) = Py(z) — Ny(z) , z €R, (18)

which follows from a = at — a™ for a € R.
In fact, given € > 0 there exists a subdivision ty < --- <ty = 2 such that

|f(to) — f(—o0)| < €/2 and

N
Py(z) —€/2 < Z(f(tz-) — f(tic1))*,
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and we get
N N
Pi(z) — Ng(z) < Z(f(tz') = fitia))" = Z(f(ti) — f(ti-1))” +¢/2

=f(z) — f(to) +¢/2 < f(z) — f(—o0) +e.

Similarly, given € > 0 there exists a subdivision sp < -+ < spr = @ such that

|f(s0) — f(—00)| < €/2 and
M
Np(@) = e/2.< ) (f(si) = flsi-))™

and we get
. M
f(@) + Ny(2) < £(@) = F(s0) + D_(F(s:) = f(si=1))™ +/2+ f(s0)

M
= Z(f(si) — f(si1))T +&/2+4 f(s0) < Pg(z) + €+ f(—00) .

PROPOSITION 5.9. Let u be a real measure on (R,B) with distribution fun-
ction

f(:I)) :/J’(]_ooax]) y T ER)
and Jordan decomposition p = u* — p~. Then we have
Py(e) = i+ — 0,]) , Ny(a) = (] —o0,a]) , z€R.

ProOF: We know that p* = £(|u| £ ) so the distribution functions of p*
are given by

$E( - 00,]) = 2(Ty(2) £ £())

but these function are Py(z) and N¢(z) by (17) and (18) because f(—o0) = 0.
O



EXERCISES

1. Show that if an infinite series ) z, of complex numbers is abso-
lutely convergent, then it is unconditionally convergent.

2. Let (B, ]|-||) be a Banach space. For an infinite series } | z, with e-
lements z, € B the concepts of convergence, absolute convergence
and unconditional convergence are straightforward to define.

Prove:
(i) absolute convergence = unconditional convergence.

(ii) Prove the converse implication in case B = C* with the
maximum norm.

(iii) Generalize (ii) to any finite dimensional Banach space. (Hint:
Choose a basis and use that the given norm is equivalent with the
maximum norm with respect to the basis).

(iv) Let B be aninfinite dimensional Hilbert space and let eq, €2, -
be an orthonormal sequence, i.e. €; - e; = §;;.

Show that the series ) ¢ %en is unconditionally convergent but
not absolutely convergent.

3. A famous theorem due to Dvoretzky and Rogers states: A Banach
spaces B is of finite dimension if and only if every unconditionally
convergent series 18 absolutely convergent. Find the precise refe-
rence to the journal(s), where this was first published.

4. Let (X,E) be a measurable space and (B, || - ||) a Banach space.
A function p : E — B is called a B-valued measure if

#(U E;) = z#(Ei)

for any sequence (E;);>1 of pairwise disjoint sets from E. We also
call y a vector measure (with values in B).

The series in question is unconditionally convergent. We can



introduce the absolute value |p| of such a vector measure:

#I(B) = sup{Y_ (Bl | (B:) partition of F} .

=1

Show that |u| : E — [0, 00] is a positive measure.

. Let u be a B-valued vector measure on (X, E), where B is a finite
dimensional normed space. Show that |p|(X) < oo.

. Let B be an infinite dimensional Hilbert space and let (e,) be an
orthonormal sequence. Let pu be the B-valued vector measure on

(N,P(N)) defined by

p({n)) = ~en

(This is a vector measure by 2(iv)). Find |u| and show that
||(N) = oo.

. Let u be a complex measure on (X,E). Show that

|Re pl
< |pl < [Re pf + [Im gl .
|Im p

. Let (X,E) and (Y,F) be two measurable spaces, and let ¢ : X —
Y be measurable. Show that if y is a complex measure on (X, E)
then ¢(y) is a complex measure on (Y, F) called the image mea-
sure, if we define

$(u)(F) =@ '(F)) for FeF.

Show that |¢(p)| < ¢(|¢|), and give an example showing that

equality need not occur.
. Let p be a real measure on (X, E). Show that for £ € E

pt(E) =sup{u(4) | A€E,AC E},
p(E)=—inf{u(A) | A€E,AC E}.

2



10. Let Mg(X,E) denote the real vector space of real measures on

11.

12.

13.

(X,E) and let p,v € Mg(X,E). For E € E we define

(uVv)(E) =sup{u(A) + v(B) | {4, B} partition of E} ,
(p Av)(E) =inf{u(A) + v(B) | {A, B} partition of E} .

(i) Show that p V v and p A v are real measures on (X, E) and
that u V v is the smallest real measure which majorizes p and v.

(ii) Show similarly that p A v is the biggest real measure min-
orizing p and v.

(i) p+v=(nVv)+(pAv)

(iv) pt =p VO, p= =—(uA0).

Let [0, 1] be equipped with the smallest o-algebra E on [0, 1] which
contains the countable sets. Show that E # B. Let p: E — [0, 00|
be counting measure. Show that

[ af@dute)

is well-defined for f € L£;(p) and that it defines a continuous
linear functional ® on Lq(x). Show that ® does not have the
form T, for some ¢ € Loo(p).

Suppose X consists of two points @ and b and define a measure
pon X by p(a) =1, u(b) = co. Show that any measure on X is
absolutely continuous with respect to p, but the Radon-Nikodym
theorem does not hold. Describe Ly(p) and Loo(p). Is it true
that Loo() is the dual of Ly(p) in this case?.

Let X denote a topological space and let f : X — [—o00,00]. We
say that f is lower semicontinuous at a € X, if for any ¢ < f(a)
there exists a neighbourhood U of a so that f(y) > ¢ for all y
in U. Note that f is automatically lower semicontinuous at any
point where f is —oo.

Define upper semicontinuity similarly. (It should be so that f
is upper semicontinuous at a if and only if —f is lower semicon-
tinuous at a.)



14.

15.

16.

Show that f is continuous at a if and only if it is both upper
and lower semicontinuous at a.

Show that f is lower semicontinuous, i.e. at every point of X,
if and only if {# € X | f(z) > t} is open in X for any ¢ € R.

Show that if (f;)ier is any family of lower semicontinuous fun-
ctions, then f := sup,;c; f; is again lower semicontinuous.

Show that if f 4 ¢ is defined at all points of X (i.e. there are
no points where f(z) = oo and g(z) = —oo or vice versa) and if
f, g are lower semicontinuous, then f+ g is lower semicontinuous.

Show finally that the indicator function 14 of a subset A of
X is lower (resp. upper) semicontinuous if and only if A is open
(resp. closed) in X.

Let f € Lioc(R). Show that

|f(2)] < M(f)(z)
at every Lebesgue point of f.

The density topology. A set E € R¥ is called approzimatively open
if for every « € E there exists a Borel set B, with z € B, C E
and so that B, has the metric density 1 at z.

Show that the family A of approximatively open sets in R* is
a topology (called the density topology).

Show that this topology is strictly finer than the ordinary to-
pology on R¥.

For more information about this topology see J. Ridder, Fund.

Math. 13 (1929), 201-2009.

(i) Let A C R be a Borel set with finite Lebesgue measure. Show
that the restriction m 4 of Lebesgue measure to A has no atoms.
(ii) Let f € £1(R,m) and define the real measure

ua) = [ fam.

Show that p has no atoms.
(iii) Let p be a positive finite measure on (R,B). Show that if
p has an atom A, then there exists a € A so that

p({a}) = u(4).

4



17. Let (X, E, ) be a measure space with (X)) < oo andlet L1 (X, E, y)
be the Banach space of equivalence classes of integrable functions.
For A € E we denote by [14] the equivalence class containing 1 4.
Show that
a(A) = [14]

isa L1(X, E, p)-valued vector measure and that the absolute value
of o is p.

Show that o(E) is closed in L1(X, E, p).

Show finally that if (X, E, i) is Lebesgue measure on the Borel
subsets of [0,1], then ¢(E) is not convex.
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156 II. ScHOLAR

There was a “night shift” and a “weekend shift” at Eckhart Hall;
the building was always alive. Nostalgia?—yes, maybe, but with top-
quality students in such breath-taking quantity, there is something to be 3
nostalgic about. Personal attitudes aside, the mathematics department
at the University of Chicago in the late 40’s and 50's was either the best ‘73
in the world or close enough that I can be forgiven for regarding it so. '

The beginning of Hilbert space ng

“Il

b

2

In the late 1940’s I began to act on one of my beliefs: to stay young, b |
you have to change fields every five years. Looking back on it I can now 3

see a couple of aspects of that glib commandment that weren't always
obvious. One: I didn't first discover it and then act on it, but, instead, g
noting that I did in fact seem to change directions every so often, I made
a virtue out of a fact and formulated it as a piece of wisdom. Two: i
it works. A creative thinker is alive only so long as he grows; you have to
keep learning new things to understand the old. You don't really have to
change fields—but you must stoke the furnace, branch out, make a
strenuous effort to keep from being locked in.

As my own focus on measure theory began to waver, I published a
couple of comments on other people’s measure theory. One was on
Liapounov’s theorem (to the effect that the ranges of well-behaved vector-
valued measures are closed convex sets). Kai Rander Buch published a
paper on closedness, and that paper made me angry: it struck me as
wordy and pretentious and unnecessarily complicated. Surely one can do
better than that, I said; I thought about the question, saw a way of doing
much better, and dashed off a note to the Bulletin of the AMS. My proof
was a lot slicker than Kai Rander Buch’s and a lot shorter, but his was
right, and. to my mortification, mine turned out to be wrong. Both Jessen
and Dieudonné wrote and told me that my Lemma 5, the crucial lemma,
was false. A pity; it was such a nice lemma. It says that the span of two
compact topologies is compact (span, supremum, generated topology)—
a statement for which it’s not only easy to find counterexamples but it’s
hard to find any non-trivial instances where it is true. Being caught
stumbling in public was all the motivation I needed to sit down and
think matters through more deeply and more effectively. My second
note came out a year after the first (1948), and it was twice as long (six
pages), but it was elegant and correct, and has been quoted quite a bit
since then. It is all superseded by now; in 1966 Lindenstrauss came out
with the slickest proof to end all proofs (J. of Math. and Mech.). ,

In 1949 I published another little note precipitated by an emotional
reaction. The irritant in that case was a paper by Shin-Ichi Izumi proving

$hoh?
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